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Bifurcation Flight Dynamic Analysis of a Strake-Wing Micro Aerial Vehicle
Reprinted from: Appl. Sci. 2021, 11, 1524, doi:10.3390/app11041524 . . . . . . . . . . . . . . . . . 21

Muwnaika Jdiobe, Kurt Rouser, Ryan Paul and Austin Rouser

Validation of a Wind Tunnel Propeller Dynamometer for Group 2 Unmanned Aircraft
Reprinted from: Appl. Sci. 2022, 12, 8908, doi:10.3390/app12178908 . . . . . . . . . . . . . . . . . 43

Yisak Debele, Ha-Young Shi, Assefinew Wondosen, Jin-Hee Kim and Beom-Soo Kang

Multirotor Unmanned Aerial Vehicle Configuration Optimization Approach for Development
of Actuator Fault-Tolerant Structure
Reprinted from: Appl. Sci. 2022, 12, 6781, doi:10.3390/app12136781 . . . . . . . . . . . . . . . . . 83

MichaŁ Okulski and Maciej Ławryńczuk
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1. Introduction

Unmanned Aerial Vehicles (UAVs) are recognized as very useful tools to replace, help,
or assist humans in various missions, such as inspection and monitoring, surveillance,
search and rescue, exploration, logistics and transportation, etc. Practical uses for such
missions in both civilian and defense contexts have experienced a significant growth thanks
to recent technological progresses. Nevertheless, some challenges and open issues remain
to ensure a full operational use of UAVs.

This Special Issue aims to present recent advances in technologies and algorithms
to improve the levels of autonomy, reliability, and safety of UAVs. Different topics are
addressed in this Special Issue, covering vehicle design and characterization (aerodynamics,
flight dynamics, design optimization, communications), algorithms for autonomy (guid-
ance and control, path planning, machine learning, computer vision, perception), traffic
and risk management (Unmanned Traffic Management, reliability, risk assessment). Open
issues related to new missions such as precision agriculture or telecommunication relays
are also considered.

A total of twenty papers (nineteen research papers and one review paper) are presented
in this Special Issue.

2. Vehicle Design and Characterization

Fight mechanics and aerodynamics studies can be done to derive accurate dynamical
models of UAVs. When dealing with specific configurations of UAVs, these model can be
useful for performance evaluation and vehicle design, control algorithm synthesis, etc.

In [1], aerodynamic characterization of a coaxial tri-rotor Micro Air vehicle (MAV) is
performed, with particular attention to the influence of wind effect. Another type of MAV
configuration, namely a strake-wing MAV, is considered in [2], where bifurcation theory is
applied to study the open loop flight dynamics of the vehicle.

Actuators design and characterization also plays an important role in performance
analysis and design of the vehicle and control algorithms. Regarding characterization
of propellers (efficiency, thrust coefficient), an approach is proposed in [3] to validate a
wind tunnel propeller dynamometer. The choice of the number and types of actuators,
and how they are used in the vehicle design may improve its robustness wrt to faults.
In [4], an optimization framework is presented to design a novel actuator fault-tolerant
multrirotor MAV.

Optimization of the vehicle configuration can also be considered to account for specific
requirements of the mission. Optimized for long hover and long-range missions, a new
tandem-wing quadplane UAV configuration is proposed in [5].

3. Algorithms for Autonomy

Navigation, guidance and control of Unmanned Aerial Vehicles rely on different types
of algorithms that must realize automatic/autonomous functions of perception, decision
making, path planing, motion control, etc.

Appl. Sci. 2023, 13, 4134. https://doi.org/10.3390/app13074134 https://www.mdpi.com/journal/applsci
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Machine Learning algorithms are now widely used in perception and computer vision,
especially for classification and decision making. In [6], a light-weight deep neural network
architecture is proposed for real-time object classification, considering mission specific
input data augmentation techniques. In [7], a classifier is designed for aerial images via
deep transfer learning for UAV networks.

Reinforcement learning algorithms are proposed in [8] for solving the position control
problem of a quadrotor. In case of wind, a robust controller is developed in [9] through
Reinforcement Learning and disturbance compensation.

In the case of multiple vehicles, distributed cooperative control laws are proposed
in [10] for the problem of interception of static and maneuvering targets by several UAVs.
In [11], a distributed formation controller is presented using specific index patterns and
chain rules of visual references among the vehicles of the fleet, resulting in a good robustness
wrt losses of vehicle(s).

When moving in cluttered environments, collision-free reference trajectories are to be
sought, to be followed by the vehicles. As path planing can be computationally demanding,
a new light-weight planner is developed in [12] based on relative position of detected
obstacles that can be used in real-time in a perception and control loop. Another approach
is proposed in [13] that exploits obstacle geometry information to give priority to search in
sub-spaces where a solution can be found quickly.

4. Traffic and Risk Management

When operating in real world environments, reliability and safety requirements have
to be satisfied for the UAV and the operation to ensure mitigation of risks wrt third parties:
other manned or unmanned platforms in the airspace, people at ground, etc.

The work in [14] proposes a method to design reliable UAV architectures accounting
for modeling of emergency situations such as collision risk avoidance behaviors.

Regarding Unmanned aerial system Traffic Management (UTM), an open source
software architecture is presented in [15] to track aerial operations an monitor the airspace
during in real time. Furthermore, the system is capable of in-flight emergency management
and tactical deconfliction. For low-altitude UTM, a 3D flight volumization algorithm
along with path planning solutions is presented in [16] for definition and management of
geofenced airspaces that would contain compatible UAV trajectories and ensure avoidance
of no-fly zones.

To deal with risk wrt third parties at ground, a method based on Importance Sampling
is proposed in [17] to generate reliable ground impact footprints that contains a high
percentile of the drone impact points.

5. New Missions for UAVs

Unmanned Aerial Vehicles offer new capabilities that can be employed for innovative
usages. Acting as communication relays is one type of new missions that can be envisaged
for UAVs. Classification of routing protocols for Flying Ad-Hoc networks is proposed
in [18], along with a comparison of several protocols for WiFi technology. Regarding UAVs
as relays to be integrated in the future 6G cellular network, the work in [19] proposes a
method to detect the directions of arrival of each UAV relay in a network supporting an
uplink non-orthogonal multiple access cellular system.

Precision agriculture is another type of mission for which UAVs are at the center of the
attention. In this context, aerial electrostatic spray is a technology of interest for reducing
environmental pollution from application of pesticides. A review on the development of
such a technology in China is presented in [20].
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2. Nowakowski, M.; Sibilski, K.; Sibilska-Mroziewicz, A.; Żyluk, A. Bifurcation Flight Dynamic Analysis of a Strake-Wing Micro
Aerial Vehicle. Appl. Sci. 2021, 11, 1524. [CrossRef]

3. Jdiobe, M.; Rouser, K.; Paul, R.; Rouser, A. Validation of a Wind Tunnel Propeller Dynamometer for Group 2 Unmanned Aircraft.
Appl. Sci. 2022, 12, 8908. [CrossRef]

4. Debele, Y.; Shi, H.; Wondosen, A.; Kim, J.; Kang, B. Multirotor Unmanned Aerial Vehicle Configuration Optimization Approach
for Development of Actuator Fault-Tolerant Structure. Appl. Sci. 2022, 12, 6781. [CrossRef]
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Abstract: The coaxial Tri-rotor micro air vehicle (MAV) is composed of three coaxial rotors where
the aerodynamic characteristics of is complicated in flight especially when the wind effect is introduced.
In this paper, the hovering performance of a full-scale coaxial Tri-rotor MAV is analyzed with both
the simulations and wind tunnel experiments. Firstly, the wind effect on the aerodynamic performance
of coaxial Tri-rotor MAV is established with different rotor speed (1500–2300 rpm) and horizontal
wind (0–4 m/s). Secondly, the thrust and power consumption of coaxial Tri-rotor (L/D = 1.6) were
obtained with low-speed wind tunnel experiments. Furthermore, the streamline distribution, pressure
distribution, velocity contour and vortex distribution with different horizontal wind conditions are
obtained by numerical simulations. Finally, combining the experiment results and simulation results,
it is noted that the horizontal wind may accelerate the aerodynamic coupling, which resulting in
the greater thrust variation up to 9% of the coaxial Tri-rotor MAV at a lower rotor speed. Moreover,
the aerodynamic performance is decreased with more power consumption at higher rotor speed
where the wind and the downwash flow are interacted with each other. Compared with no wind
flow, the shape of the downwash flow and the deformation of the vortex affect the power loading and
figure of metric accordingly.

Keywords: coaxial Tri-rotor MAV; horizontal wind; low-speed wind tunnel; numerical simulation

1. Introduction

Compared with traditional Quad-rotor or Hex-rotor, the coaxial Tri-rotor the coaxial Tri-rotor has
a much wider class including a compact structure without redundancy device since the vehicle mass
is related to the rotor arm where the Quad-rotor or Hex-rotor is limited with more rotors to avoid
rotor conflict. Also, it provides the unique capability of being able to resist any applied wrench or
wind gust or failure tolerance with coaxial rotors (If one rotor, even three rotors, fails the system, it
still has the freedom of movement). For a coaxial Tri-rotor MAV, the three coaxial rotors are evenly
distributed along with the vehicle center. The aerodynamic interference is mainly including two
parts: the rotor interference between the upper rotor and lower rotor and adjacent coaxial rotors [1–6].
When the horizontal wind is introduced, the whole aerodynamic environment will be affected by
the horizontal wind during flight. Therefore, the objective of the present work is to explore wind effect
on the aerodynamic performance on a full-scale coaxial Tri-rotor MAV.

Currently, the research on the multi-rotor MAV is mainly focused on the control strategies. Pflimlin,
Zhang and Kirsch [7–9] designed the adaptive backstepping sliding mode controllers and realized
attitude, velocity and position control of the Hex-rotor MAV. Salazar and Arellano-Muro [10,11]
adopted the dynamic model of a multi rotor MAV to analyze the attitude and translation and estimate
the aerodynamic forces and moments acting of a hexarotor MAV in flight. Shi [12] presented an

Appl. Sci. 2020, 10, 8612; doi:10.3390/app10238612 www.mdpi.com/journal/applsci
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indoor path planning algorithm and overcome the drawbacks of Global Positioning System (GPS). So
the shortest trajectory for the Hex-rotor MAV in the complex terrains is obtained. Ma [13] designed
a 4 channels PID controller to achieve the attitude control of a miniature Hex-rotor MAV. Chen [14]
proposed a controller with cascaded structure, which has the ability to maintain the flight state of
MAV. Zhao [15] presented a novel Hex-Rotor MAV based on the unique configuration of its six driving
rotors and overcame the effect of the under-actuation and strong coupling characteristics on the flight
performance. Salazar-Cruz [16] proposed the dynamical model of an original coaxial Tri-rotor MAV
and applied a nested saturations control law to control the roll and the forward displacement, resulting
in the better behavior of controller. Mohamed [17] and Chiou [18] proposed the design and control of
the single tilt tri-rotor and shown the effectiveness of the controllers design scheme through nonlinear
simulation model. Brossard, Mystkowski and Tunik [19–21] discussed a nonlinear robust control design
procedure to micro air vehicle, resulting in the stable flight of MAV in the presence of perturbations.

Therefore, only a few studies lay emphasis on the aerodynamic characteristics of a Multi-rotor
MAV or even to consider the wind effect. Lei et al. studied the hover performance of a Multi-rotor
MAV by means of the combination of experiment and simulation [22,23]. Zhao promoted a method
to analyze the effects of airflow disturbance and rotor interference on the control scheme, which is
based on the dynamic experiment of the Hex-rotor MAV [24]. Hrishikeshavan reviewed the hover
capability of MAV with varying solidity, collective, operating RPM and planform [25]. The results of
the above studies are all conducive to analyze the aerodynamic characteristics of the coaxial Tri-rotor
MAV. However, there are no aerodynamic studies of the coaxial Tri-rotor MAV with the Horizontal
wind so far. Hence, this paper presents the aerodynamic characteristics of a coaxial Tri-rotor MAV with
the effect of the horizontal wind.

2. Theoretical Analysis

2.1. Structure

Structure of the coaxial Tri-rotor MAV is shown in Figure 1.

γ θ

xe

ye

ze

oe

xb
yb

zb

T
Ω

Ω

Ω

Ω

Ω

Ω

ob

Figure 1. Structure of coaxial Tri-rotor micro air vehicle (MAV).

Figure 1 shows the structural model of the coaxial Tri-rotor MAV. An inertial reference frame
oe (xe, ye, ze), an Euler angle in inertial frame (ϕ, θ, γ) and a body reference frame ob (xb, yb, zb) that
indicates a set of coordinate fixed to the MAV, are defined in Figure 1. The coaxial Tri-rotor MAV is
composed of three coaxial rotors units. The connecting line between the centers of three coaxial rotors
forms an equilateral triangle, which is center-symmetric. In addition, compared with traditional rotor
arrangement, the Tri-rotor MAV is more compact with less rotors in a same plane.

2.2. Flow Field Model

Flow model of the coaxial Tri-rotor MAV considering the horizontal wind is shown in Figure 2.
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(a) (b) 

Figure 2. Flow model of coaxial Tri-rotor MAV in the horizontal wind: (a) No wind; (b) Horizontal wind.

In the Figure 2, it can be observed that the flow field of the coaxial Tri-rotor system will shift along
the incoming flow direction in a horizontal wind. Compared with no wind effect, it can be found
that the downwash flows are coupled with each other besides the interference between upper and
lower rotor of coaxial rotors. In this case, the wake vortices of the front rotors directly affect the flow of
the rear rotors. In this case, the wind may aggravate the aerodynamic interference among rotors with
varied power consumption accordingly.

In the natural environment, the wind speed is usually less than 5.0 m/ s. Furthermore, the light
breeze (1.6–3.3 m/ s) and the gentle breeze (3.4–5.4 m/s) frequently appear in the natural environment.
The average values of the wind, 2.5 m/s and 4 m/s are selected as the horizontal incoming wind
speed. Therefore, it is conducive to study the influence of the horizontal wind on the aerodynamic
performance of the rotor system. In the meanwhile, the situation of the horizontal wind at 0 m/s is also
taken as the comparison to analyze the effect of the horizontal wind.

2.3. Force Analysis

Taking a rotor as an example, the airflow model with the presence of the horizontal airflow is
shown in Figure 3.

ν
ν α

ν α
α ν

ν α +νi

T L

W

Figure 3. The airflow model of the rotor disk in the horizontal wind.

In Figure 3, v is the horizontal wind velocity, W is the weight of rotor, T is the thrust of rotor, L is
the relative lift of rotor and α is the angle of attack. With the horizontal airflow, the rotor disk will tilt
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at a certain angle. Because the rotor is required to generate relative force (to balance the horizontal
force) and lift (to overcome the rotor gravity), resulting in stable hovering state. Clearly, the induced
power changes with the angle of attack. To derive the effect of the horizontal wind velocity on induced
power, the induced velocity vi for a rotor can be obtained as follow [26]:

vi =
vh

2√
(v cos α)2 + (v sin α + vi)

2
, (1)

where α is the angle of attack, v is the horizontal wind velocity, vh is the induced velocity in hover [26].

vh =

√
T1

2ρA
, (2)

where ρ is the air density, kg/m3; A is rotor disk area, m2. By applying the energy conservation,
the power required is obtained as follow:

P = T(vi + v sinα). (3)

Therefore, the horizontal wind may cause more power consumption resulted by the induced
velocity and affect the flight efficiency eventually.

2.4. The Parameters of Aerodynamic Performance

2.4.1. Power Loading

The total hover efficiency of a MAV can be quantified by means of effective power loading (PL).
The PL is defined as the ratio of the thrust to power required [27]:

PL =
T
P

. (4)

The thrust coefficient CT and power coefficient CP are defined as [28]:

CT =
T

ρAΩ2R2 , (5)

CP =
P

ρAΩ3R3 =
QΩ

ρAΩ3R3 =
Q

ρAΩ2R3 . (6)

Therefore, the power loading (PL) can be written as:

PL =
CT

ΩRCP
=

T
QΩ

, (7)

where T is the thrust, N; A is the area of the rotor, m2; P is the power, W; Ω is rotational speed of
the rotor, r/min; R is the rotor radius, m; Q is the torque, Nm; ρ is the fluid density, kg/m3; CT is
the thrust coefficient; CP is the power coefficient.

To maximize the PL, that is, for a given thrust, the power demand is minimum. When designing
a vehicle it is wanted to maximize the power loading such that energy requirements are minimized.
This will give the vehicle the best endurance or payload capabilities possible.
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2.4.2. Hover Efficiency

A figure of merit (FM) is adopted to characterize the hover efficiency. It is regarded as the ratio
of the ideal power demand to the actual power demand. In addition, by means of the measured
quantities, the figure of merit equation is defined as [29]:

FM =
CT

3/2
√

2CP
=

T3/2

QΩ
√

2ρA
, (8)

where T is the thrust, N; Ω is rotational speed of the rotor, r/min; Q is the torque, Nm; CT is the thrust
coefficient; CP is the power coefficient.

3. Experiment

3.1. Experiment Setup

In order to obtain the performance of the MAV in the horizontal wind, wind tunnel tests were
carried out to simulate the environment of MAV at 0 m/s, 2.5 m/s and 4 m/s. Experiment process of
the coaxial Tri-rotor MAV considering the horizontal wind is shown in Figure 4.

Figure 4. Experimental process.

The dimensions of rectangular test section of wind tunnel are 3 m (length) × 3 m (width) × 2.5 m
(height), ensuring sufficient space for maneuvering the multirotor platform. A settling chamber is
attached before the test section to characterize the output wind. Wind is generated with two 3 m
diameter, 45 kW fans. For the current low Reynolds number experiments the maximum testing velocity
is 12.5 m/s. According to the theoretical analysis, the power, rotor speed and thrust of the coaxial
Tri-rotor MAV with the horizontal wind are obtained accordingly to convert into the power loading
and FM. In the test, propeller is specially made with unidirectional carbon fiber fabrics as stiffener
based on the airfoil of C5.5/4.5, with 15.7 cm of pitch and 2.8 cm of chord at 75% position. The rotational
speed range of rotor is 1500–2300 r/min. The motor is brushless DC motor(model: MSYSLRK 195.03).
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The main measuring equipment is as follows: (1) speed controller (model: BL-6); (2) tachometer (model:
DT-2234C, accuracy: 6 ± (0.05% + 1D)); (3) thrust sensor (model: CZL605, accuracy: 0.02% F.S.).

3.2. Experimental Results

Figure 5 shows the thrust and power variation.

Figure 5. Thrust and power variation.

The thrust and power consumption at 0 m/s is set as the reference value to obtain the increment
the variation with the wind effect. According to the Figure 5, it can be observed that the thrust increased
with the wind effect, especially at 4 m/s. At the same time, it can be noted that the thrust increment
approached to 0 m/s at a higher rotor speed for 2.5 m/s. This is because the rotor interference is much
stronger at 2.5 m/s for a rotor speed ranging from 2000 to 2300 r/min. With an increased wind speed,
this interference is not domain the aerodynamic environment. In addition, it also can be observed
that the required power of coaxial Tri-rotor is also increased 2–4% with the wind speed. This extra
power consumption may be generated by the introduced rotor interference when the horizontal wind
is considered in this case. However, the thrust increment is higher than the power increment, especially
at a lower rotor speed. Clearly, it is advantageous to promote the power loading and the coupling
interference is offset to the minimum in the horizontal wind.

Figure 6 shows the variation of the power loading.
In Figure 6, it can be noted that the variation of power loading gradually decreases with the rotor

speed especially for 4 m/s. Also, it can be observed that the power loading with incoming flow is greater
than that of no wind effect between 1500 and 1800 r/min. In this case, the horizontal airflow will improve
the aerodynamic performance of the coaxial Tri-rotors to a certain extent. However, the decreased
power loading at a higher rotor speed indicated that the rotor interference is coupled with each other.
At this point, the external airflow aggravates the aerodynamic interference between the rotors. For
a light breeze, the coaxial Tri-rotor presented a good wind resistance. When the working speed is
2200 r/min, the power loading variation at 2.5 m/s and 4 m/s is about −0.5% and −2%, respectively.
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Figure 6. Power loading variation.

Figure 7 shows the FM increment with the wind effect.

FM

Figure 7. Figure of merit (FM) variation.

In Figure 7, it can be noted that the hover efficiency in the horizontal wind is higher at lower thrust
where the power increment is relatively low. It can be seen that the intervention of the horizontal
airflow can promote the aerodynamic coupling between rotors and improve the hover efficiency of
the coaxial Tri-rotor. In addition, it can be observed that the hover efficiency is slightly higher when
the horizontal airflow velocity at 2.5 m/s, which indicates that the hover efficiency of the coaxial
Tri-rotor can be improved by the intervention of the horizontal wind.

4. Simulation Analysis

4.1. Computational Fluid Dynamics (CFD) Setup

Sliding-mesh is applied to solve for the motion of the rotors due to the highly unsteady nature
of flow involved in the study and the time-step size is 10e-5. The meshing distribution of the entire
computing domain is shown in Figure 8.
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Figure 8. Mesh distribution.

The whole computational domain is divided into 7 regions including 1 cylinder stationary region
and 6 cylinder rotating regions to capture the flow detail of rotors with refined mesh. Also, the MAV is
located at the left region of the domain to obtain the detail of the downwash flow along with the wind
direction. Mesh parameters are showed in the Table 1.

Table 1. Mesh parameters.

Nodes Elements
Average

Skewness
Turbulence

Model
Pressure

Interpolation
Spatial

Discretization

1164307 6472340 0.21734 Spalart-Allmaras Standard Second-order
upwind

To validate the effectiveness of the CFD method, the comparison of CFD and experimental results
is showed in Table 2. Both the CT and CP in experiment and simulation showed that they are generally
in good agreement.

Table 2. Comparison of Computational Fluid Dynamics (CFD) and experiments.

Cases
CT

Experiment
CT

Simulation
Relative
Error (%)

CP
Experiment

CP
Simulation

Relative
Error (%)

1 0.404 0.385 4.94 0.198 0.181 9.39
2 0.578 0.562 2.85 0.215 0.196 9.69
3 0.783 0.742 5.53 0.218 0.197 10.66
4 0.854 0.878 −2.73 0.274 0.248 10.48
5 0.924 0.952 −2.94 0.408 0.375 8.80
6 0.968 0.988 −2.02 0.524 0.572 8.39
7 0.925 0.945 −2.12 0.798 0.764 4.45
8 0.965 0.925 4.32 0.834 0.848 −1.65

4.2. Simulation Results

4.2.1. Velocity Contour

The velocity contour of the coaxial Tri-rotor considering the horizontal wind is shown in Figure 9.
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In Figure 9, it can be clearly noted that the downwash flow is moved along with the wind
direction. Compared with the case with no wind effect, the velocity variation becomes even more
complex, which will affect the aerodynamic performance of the coaxial Tri-rotor. Moreover, with
the increase of the horizontal wind velocity, the downwash velocity of the coaxial Tri-rotor gradually
decreases and the velocity gradient arrangement of downwash becomes closer, leading to the strong
rotor interference. It can be seen that the aerodynamic coupling will be affected by the external
airflow and aggravate the aerodynamic interference between the rotors. Moreover, the enhancement of
aerodynamic interference will bring the increase of required power. This also verifies that in Figures 5
and 7, the overall power consumption of the coaxial Tri-rotor system with the influence of external
airflow is significantly greater than that without airflow.

4.2.2. Streamline Distribution

The streamline distribution of the coaxial Tri-rotor with the horizontal airflow is shown in
Figure 10.

 
(a) (b) 

 
(c) 

Figure 10. The streamline distribution of the coaxial Tri-rotor (2200 r/min): (a) 0 m/s; (b) 2.5 m/s;
(c) 4 m/s.

In Figure 10, it can be observed that compared with no-flow environment, the streamline deformed
with more vortices around the rotor tip in the horizontal wind environment. The streamline is
squeezed and deformed, resulting in the vortices under the rotor being deformed and the streamline
inclined distribution. At the same time, with the increase of the horizontal wind speed, the streamline
arrangement is more compact and the aerodynamic interference between rotors is more intense in
this case. Therefore, it can be seen that the horizontal airflow will move the coupling interference
between rotors and affect the overall aerodynamic performance. In addition, it can be also noted that
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compared with the horizontal wind at 4 m/s, the streamline distribution with the horizontal wind at
2.5 m/s is more uniform. The more uniform the streamline arrangement, the better the aerodynamic
performance, which also verifies that the power loading of the horizontal wind at 2.5 m/s is greater
than that of the horizontal wind at 4 m/s in Figure 6.

4.2.3. Vortex Distribution

The vortex distribution of the coaxial Tri-rotor considering the horizontal wind is shown in
Figure 11.

 
 

(a) (b) 

 
(c) 

Figure 11. The vortex distribution of the coaxial Tri-rotor (2200 r/min): (a) 0 m/s; (b) 2.5 m/s; (c) 4 m/s.

As shown in the Figure 11, it is observed that the vortex will shift to the rear when it is affected by
the horizontal airflow. With the increase of the horizontal wind velocity, the vortex shape inclines to
the rotor plane. In the meanwhile, it can be noted that with the increase of horizontal wind velocity,
the vortex shape becomes slenderer and the vortex overlap area of rotors is larger. Hence, it can be
seen that the coupling interference between rotors will be moved with the horizontal airflow, so as to
aggravate the aerodynamic interference, which will affect the overall aerodynamic performance of
the coaxial Tri-rotor. Above also verifies that when working speed at 2200 r/min, the power loading of
the horizontal airflow at 2.5 m/s is greater than that of the horizontal wind at 4 m/s in Figure 6.

4.2.4. Pressure Contour

The pressure contour of rotor tip in coaxial rotors is shown in Figure 12.
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(a) (b) (c)

Figure 12. The vertical pressure contour of rotor tip in a coaxial rotors unit (2200 r/min): (a) 0 m/s; (b)
2.5 m/s; (c) 4 m/s.

In Figure 12, it can be observed that the pressure difference between the upper and lower surfaces
of the rotor tip is higher with the horizontal wind which indicated a higher thrust. Also, it can be seen
that a part of the thrust produced by the coaxial Tri-rotor MAV with the horizontal airflow needs to be
adopted to balance the external force, resulting in the weakened thrust of the rotor. This also verifies
that in Figures 6 and 7. With the influence of the horizontal wind, the thrust growth rate of the coaxial
Tri-rotor is low, resulting in the poor hover efficiency. In addition, with the increase of the horizontal
wind speed, the thrust growth rate of the coaxial Tri-rotor becomes lower and lower.

4.2.5. Velocity Variation Figures

The velocity variation of the lower rotor plane is shown in the Figure 13.

s D s D

(a) (b)

Figure 13. The velocity variation of the lower rotor plane: (a) 2.5 m/s; (b) 4 m/s.

In Figure 13, the lower rotor plane of the coaxial Tri-rotor system is applied to obtain the velocity
distribution contour of the horizontal wind at 2.5 m/s and 4 m/s and extract the relevant velocity values
for analysis. The distance between the reference point and the coordinate origin is expressed by s. It is
interesting to note that the minimum of the downwash velocity will move with the horizontal airflow.
When the horizontal airflow is larger, the airflow around the rotor will flow faster and the rotor needs
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to increase the angle of attack to maintain its overall stability. This also verifies that in Figure 5, with
the influence of the horizontal airflow, the thrust growth rate of the coaxial Tri-rotor is relatively low.

5. Conclusions

In this paper, low-speed wind tunnel tests and numerical simulations are performed to obtain
the aerodynamic performance of the coaxial Tri-rotor MAV with the horizontal wind ranged from 0 to
5 m/s. Conclusions are as follows:

(1) For a lower rotor speed ranging from 1500 to 1800 r/min, the power required is constant, while
the thrust increased up to 9%, which indicated that the coaxial Tri-rotor system with lower speed has
larger power loading and better aerodynamic performance. In fact, part of the rotor interference is
offset by the horizontal inflow.

(2) The velocity and streamline distribution proved that the required power increment is the result
of the downwash deformation with the horizontal wind effect. At the same time, the greater
the deformation of downwash comes along with a larger the horizontal wind, which will decrease
the whole flight efficiency. Combined with the pressure distribution, it also can be seen that
the aerodynamic performance is related to the instantaneous thrust variation.

(3) Compared with the case of no wind, the horizontal wind can promote the aerodynamic
coupling between the rotors and improve the aerodynamic performance of the coaxial Tri-rotor system
at a lower speed. Conversely, the interaction between rotor tip vortices is stronger with a higher rotor
speed, thus the interaction between rotors is transferred by the horizontal wind, resulting in reduced
thrust. In this case, the stronger coupling interference directly affects the rear rotor with the action of
the horizontal wind, which may lead to the rotor vibration with extra power consumption.

(4) For the rotor speed ranging from 1900 to 2300 r/min, part of the horizontal flow is interacted
with the downwash flow, resulting in stronger interference to form an unstable flight. Hence, further
study will focus on the compensation of the control strategy, considering a lager wind speed.
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Abstract: Non-linear phenomena are particularly important in -flight dynamics of micro-class un-
manned aerial vehicles. Susceptibility to atmospheric turbulence and high manoeuvrability of such
aircraft under critical flight conditions cover non-linear aerodynamics and inertia coupling. The
theory of dynamical systems provides methodology for studying systems of non-linear ordinary
differential equations. The bifurcation theory forms part of this theory and deals with stability
changes leading to qualitatively different system responses. These changes are called bifurcations.
There is a number of papers, the authors of which applied the bifurcation theory for analysing aircraft
flight dynamics. This article analyses the dynamics of critical micro aerial vehicle flight regimes. The
flight dynamics under such conditions is highly non-linear, therefore the bifurcation theory can be
applied in the course of the analysis. The application of the theory of dynamical systems enabled
predicting the nature of micro aerial vehicle motion instability caused by bifurcations and analysing
the post-bifurcation microdrone motion. This article presents the application of bifurcation analysis,
complemented with time-domain simulations, to understand the open-loop dynamics of strake-wing
micro aerial vehicle model by identifying the attractors of the dynamic system that manages upset
behaviour. A number of factors have been identified to cause potential critical states, including
non-oscillating spirals and oscillatory spins. The analysis shows that these spirals and spins are
connected in a one-parameter space and that due to improper operation of the autopilot on the spiral,
it is possible to enter the oscillatory spin.

Keywords: nonlinear dynamics of flight; bifurcation theory; micro aerial vehicles; strake-wing
micro drones

1. Introduction

Classic methods of testing dynamic aircraft stability enable analysing their dynamic
properties in the framework of minor disturbances of a steady straight flight. However,
Micro Aerial Vehicles (MAV) operating in open space, where instantaneous gusts of wind
can exceed 10 m/s (which amounts for 25% of their cruising velocity) are exposed to
sudden flight parameter changes, the angles of attack and slip, in particular. At strong
gusts of wind, the disturbance velocity reaches values comparable to the flight velocity.
This issue has been reviewed in, among others, the publications [1–3]. In average weather
conditions, the changes of attack angle are sudden, and their amplitude amounts from +60◦
to −30◦. The velocity changes from 20 to 130 km/h, and the altitude from 250 to 25 m [3].
This is why there was a need to analyse the dynamic properties of micro aerial vehicles
over the entire operational range, including the range of near-critical and super-critical
angles of attack. Due to the high non-linearity of the differential equations describing flight
dynamics, well-developed and described methods of modal analysis cannot be applied in
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this case. There was a need to develop a new method for testing aircraft motion stability,
which would enable studying its dynamic properties throughout the entire range of usable
angles of attack and slip. In the second half of the 20th century, researchers suggested
a continuation method based on the bifurcation theory that enabled analysing dynamic
properties of an aircraft, over a wide range of flight states. Articles on this matter, published
in the 1970s include: [4,5]. The cited research work concerned the analysis of a fast inertial
barrel roll and spin. Numerous studies devoted to the bifurcation analysis of aircraft flight
dynamics and aerodynamics appeared in the 1970s, 80s and 90s. These include the AGARD
report from 1985 [6], and many papers on the issues of non-stationary aerodynamics and
non-linear dynamics of flight in the perspective of the dynamical system theory and the
bifurcation theory: [7–14].

The dynamical system theory enabled a global analysis of a system of strongly non-
linear ordinary differential equations describing the state of a dynamical system, and in
this aspect it is a generalization of the aforementioned dynamic stability analysis involving
a steady straight flight of an aircraft. The first step in this method is the assessment of quasi-
steady state stability. The quasi-steady state is determined by equating the derivatives
of state vector to zero and solving a system of non-linear algebraic equations. The local
stability of a dynamical system can be assessed based on the Hartman-Grobman [15]
theorem. This stability is determined by the eigenvalues of a locally linearised equations
of MAV flight dynamics. In our case, this system is linearized around the equilibrium
position, [7–14]. If even one of eigenvalues has a positive real part, then the equilibrium
position is unstable. It can be proved that if a linearized equation system is non-singular,
then the steady state of a dynamical system is a continuous function of state parameters [15].
It can also be proved that steady states of differential equations describing an aircraft
motion are continuous functions of rudder surface deflections [16]. Stability changes occur
when at least one eigenvalue of a locally linearized differential equation system of aircraft
motion changes its sign. The changes in the steady state stability lead to a qualitatively
various system response and are called bifurcations. Stability limits can be determined
through searching for eigenvalues with zero real zero part [17,18]. In the bifurcation
theory, the stability of quasi-steady states is tested as a function of the so-called bifurcation
parameters [15,19,20]. The usual assumption in the course of a flight dynamics bifurcation
analysis is that such parameters are the rudder surface deflections within the range of
change from the minimum to the maximum value of these angles. It enables obtaining an
image of all steady states (or quasi-steady) of aircraft motion. The source literature often
refers to this computation process as “global analysis” (cf. work [10,12,21–29]). This is why,
this type of aircraft flight analysis will be called a “global analysis of equilibrium position
stability”. Of course, classic states defining the stability of a steady and straight micro
aerial vehicle flight are one of the points determined in the course of a global analysis of
equilibrium position stability. In this perspective, this analysis is a generalization of the
classical aircraft stability analysis.

This article presents the application of bifurcation analysis, complemented with time-
domain simulations, to understand the open-loop dynamics of strake-wing micro aerial
vehicle model by identifying the attractors of the dynamic system that manages upset
behaviour. A number of factors have been identified to cause potential critical states,
including non-oscillating spirals and oscillatory spins. The analysis shows that these spirals
and spins are connected in a one-parameter space and that due to improper operation of
the autopilot on the spiral, it is possible to enter the oscillatory spin.

The Cobra maneuver was also studied from the point of view of the bifurcation theory
and the results of the time histories of the flight parameters during this maneuver were
presented.

2. Bifurcation and Continuation Analysis

A bifurcation can be defined as a qualitative change in the system dynamics as a
parameter is varied. In flight dynamics, a qualitative change is usually understood as
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a change in the stability of the aircraft. Bifurcation analysis and continuation methods
are based on the principles of the dynamical system theory. The basis of the dynamical
systems theory are described in many books (it can be mention here: [15–17,20,30,31]).
These methods consist in finding and tracking solutions numerically, in a selected range
of parameters, in order to generate bifurcation diagrams. Bifurcation diagrams allow to
identify qualitative changes in the dynamic response of the system.

2.1. Bifurcation Theory and Bifurcation Types

In our case bifurcation analysis is applied to autonomous dynamical system of general
form:

.
x = f(x,μ) (1)

where x ∈ �n is vector of n state variables, μ ∈ �m is vector of m control parameters, f is
nonlinear vector field governing system dynamics. The bifurcation for Equation (1) is every
qualitative change of the phase portrait occurring upon the passage of parameter μ through
a certain point μ0. Point μ0 is called the bifurcation point for Equation (1). By establishing
the set of parameters μ = μ0 and selecting the initial conditions x(t = 0) = x0, the system
of differential Equation (1) can be integrated for the selected initial condition. In this way,
one can study the evolution of vector field x over time. In order to thoroughly study the
dynamics of the system, this process can be repeated an infinite number of times starting
from different initial conditions and for an innumerable fixed combination of parameter
values μ. This task is exhausting and tedious. The major problem in this exercise is the
selection of initial conditions, which is a non-trivial task when dealing with systems that
are nonlinear. An alternative and more efficient approach to the analysis of nonlinear
dynamical systems described by Equation (1) is based on the asymptotic bifurcation and
continuation method. The bifurcation and continuation method begins with the calculation
of steady states of the equilibrium type of the Equation (1), which comes down to solving a
system of nonlinear algebraic equations:

.
x = 0 → f(x,μ) = 0 (2)

and computing the eigenvalues of the Jacobi matrix:

J =
∂f

∂x
(3)

in each equilibrium state. The numerical scheme for solving both problems is called the
continuation algorithm. It is an algorithm of the predictor-corrector type. A continuation
algorithm is used to solve the system of Equation (2) as a function of a single parameter
of the system μ ∈ μ. In other words, the task comes down to determining the zeros of
family f : �n → �n , namely, to determine the solutions to stationary, non-linear algebraic
Equation (2). The dimension of the μ parameter vector is called the bifurcation dimension.
For a one dimensional case μ ≡ μ∈ �1.

The bifurcation theory concerning non-linear ordinary differential equations deals
with a system of first-order differential Equation (1), which is a mathematical model
of a dynamical system in an n-dimensional Euclidean space �n. If the system (1) has
asymptotically stable stationary solutions x=0, then for all solutions x(0) belonging to this
neighbourhood:

- trajectory x(t) fulfils the condition: |x(t)| < ε for t > 0;
- |x(t)| → 0 for t → ∞.

Solving the problem involves finding answers to the question of how a parameter
change μ ∈ μ locally affects the neighbourhood of point x = x0. Due to the fact that for all μ
the Equation (2) is satisfied, and Equation (1) can be expressed as:

.
x = Rx +σ(x,μ) (4)
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where in R is a square characteristic matrix (Jacobian matrix) with elements provided by
the equation:

[R] i,j =
∂ fi(x0,μ)

∂xj
, (5)

and non-linear vector function σ fulfils the conditions:

σ(x0,μ) = 0,
∂σi(x0,μ)

∂xj
= 0. (6)

and finally:
.
x = Rx (7)

The Hartman-Grobman theorem applies within the process of studying the stability of
a stationary solutions to equation [15,16,19,20]. It states that if all eigenvalues of a Jacobian
matrix R of a linearized system (1) lie in the left complex half-plane, i.e.,

Re
(
λj
)
< 0, i = 1, 2, . . . , n (8)

then there is a certain continuous, homomorphic transformation of variables reducing a
locally non-linear system of Equation (1) to a linear system. This means that if a stationary
solution to a linearized system of equations is asymptotically stable, then also the solution
to a non-linear system is stable. The Hartman-Grobman theorem also indicates that every
qualitative change in the nature of solutions to a system of non-linear equations describing
a dynamical system is indicated by the appearance of zero real parts of the eigenvalues of
a linearized system characteristic matrix R.

In mathematical terms, bifurcation of equilibrium positions takes place, when a
eigenvalue of Jacobi matrix (3), (5) of system (1), estimated in the state of equilibrium,
intersects the imaginary axis. Similarly, in the case of an oscillating solution, bifurcation
occurs when the Floquet multiplier intersects the unit circle. The results shown in this
article discuss five bifurcation types; they all have a codification of one, which means that
they are encountered when a single continuation parameter changes.

Basic bifurcation types are [32]:

A. A saddle-node bifurcation, also called a saddle limit point, occurs when the real
eigenvalue of a Jacobian matrix (5) estimated in a state of equilibrium, intersects the
imaginary axis. There is no equilibrium on one side of the bifurcation point (locally),
whereas there are two equilibrium branches on the other (e.g., one stable and one
unstable) (Figure 1).

B. Hopf bifurcation occurs, when a complex pair of Jacobian (5) eigenvalues, assessed
at equilibrium, intersect the imaginary axis. In this case, the equilibrium changes
stability and a periodic orbit is formed, which can be stable or unstable (Figure 1).

C. The limit point or periodic orbit fold bifurcation occur when the real Floquet multiplier
intersects the unit circle at 1; as for the states of equilibrium, then there are no periodic
orbits on one side of the bifurcation (locally), whereas there are two periodic orbits on
the other (Figure 1).

D. A period-doubling bifurcation occurs when the real Floquet multiplier intersects the
unit circle at −1. The periodic orbit loses stability when a new period orbit appears
with a period (approximately) twice as long (Figure 1).

E. The Neimark-Sacker bifurcation or torus bifurcation appears, when the periodic orbit
becomes unstable, namely, when a pair of complex Floquet multipliers intersects the
unit circle and an additional oscillation frequency is introduced. The outcome is a
torus dynamic, which can be periodic (blocked) or quasi-periodic (Figure 1).
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Figure 1. Unit circle—diagram showing basic periodic orbit bifurcations—periodic orbit bifurcations.
1. The actual eigenvalue exceeds +1. Periodic limit points appear in this case. 2. The actual eigenvalue
exceeds −1. Period doubling bifurcation occurs in this case. In the proximity of this point, a stable
periodic orbit with a period of T becomes unstable and a new stable periodic orbit, with a period of
2T appears. This type of stability loss leads to chaotic motions. 3. Two conjugated eigenvalues leave
the unit circle. Stable or unstable trajectories surround an unstable bifurcation orbit [32].

To sum up, it can be concluded that:
The bifurcation theory is a set of mathematical results aimed at analysing and ex-

plaining unexpected modifications in the asymptotic behaviour of non-linear systems of
differential equations, when their parameters slowly change.

Starting from the asymptotic state approximation, for a set value of bifurcation param-
eters, the computer code, in the course of a continuation process, determines curves for the
solution of x(μ), which constitute a set of solutions to non-linear algebraic equations (2). In
the case of each of the points of the solutions to system (2) and (7), the stability of solutions
is determined:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Equilibrium points : f(x, μ) = 0
Limit points : f(x, μ) = 0
and at least one of eigenvalues : λ = 0
Hopf points : f(x, μ) = 0
and at least Re

(
λij
)
= 0 of pair of complex eigenvluwes : λij = ±2iπ/T

Periodic orbits : x(T) = x(0) +
∫ T

0 f(x, μ)dt

(9)

The continuation process assumes that all functions of the system of Equation (2) are
continuous and differentiable.

Summarising, the numerical continuation methods are a set of tools that enables
obtaining information required to conduct bifurcation analyses. These methods utilize the
predictor-corrector technique for finding, tracking and constructing equilibrium curves or
periodic orbits of a differential Equation (1), as solutions of a properly defined system of
algebraic Equation (2). Information on the stability is calculated based on analysing the J
eigenvalues of Jacobian matrix (5) for equilibrium states, or based on Floquet multipliers
(in the case of periodic orbits). Bifurcations can be detected, as well as tracked at various
bifurcation parameter values.

2.2. Continuation Software

Numerical methods for solving bifurcation problems appeared relatively recently
and complement the analytical achievements in this field. The following fundamental
difficulties encountered when applying these methods can be distinguished:
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- numerical instabilities associated with calculations in close proximity to bifurcation
points,

- issues related to parametrization in close proximity to bifurcation points and limit
points,

- structures of bifurcation branches,
- determination whether bifurcation actually takes place,
- problems associated with the convergence of the Newton-Raphson method at singular

points.

The system of Equation (2) can have numerous solutions. These can be isolated
solutions and they may not exist at all. There is no theory, which could be used as a base
to determine which case you are dealing with. Therefore, this issue is quite challenging,
because when using numerical methods, the question whether all solutions have already
been found still stands. Among the many methods, the ones applied the most when the f

functions are smooth is the Newton-Raphson method.
At the time, there are several software packages available, which are designed to

analyse non-linear dynamical systems, e.g., MatCont [33,34] or KRIT [35]. The most
recognizable computer program designed for bifurcation analysis of non-linear dynamical
systems is the one developed at the Canadian Concordia University, by a team led by
Prof. Eusebius Doedel, the AOTO97 package—program developed in the FORTRAN
language and AUTO2000—developed in the C language. The latest (as of 2021) version of
these packages is the AUTO07P [36]. The description of subsequent versions of the AUTO
package can be found in: [37–39]. AUTO07P was developed in the FORTRAN language,
for the UNIX operating system environment. A team at the University of Pittsburgh in
America, led by prof. Bard Ermentrout, developed XPPAUT [40], which is a version of the
AUTO package compatible with the WINDOWS system. A comprehensive description
of this package, together with a manual, can be found in the textbook by prof. Bard
Ermentrout [41]. A MATLAB system toolbox—Dynamical System Toolbox [42] was also
created based on the AUTO [43].

The best-known program designed for the bifurcation analysis of homogeneous
ordinary differential equations is that developed by a team lead by Prof. Doedel from the
Canadian Concordia University called AUTO. Differential equations describing MAV flight
dynamics were analysed using an AUTO version implemented in MATLAB (Dynamical
System Toolbox [42]).

3. Micro Aerial Vehicle Mathematical Model

3.1. Reference Frames

Coordinate systems rigidly associated with the object (MAV for example) or associated
with the inflow of air streams, and their combinations are usually selected to represent
motion equations in aviation. Figure 2 shows coordinate systems, used to derive aircraft
motion equations. Details of deriving aircraft motion equations can be found in numerous
textbooks and monographs (e.g., [44–49]), which is why will not discuss them in this work.
Below you can find micro aerial vehicle motion equations expressed in a so-called-semi
constrained coordinate system. This means that centre of mass motion equations are
written within a velocity system of coordinates (Figure 2b), while the equations of MAV
spherical motion relative to the centre of mass are written within a system related to MAV
axes of inertia.
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(a) (b) 

Figure 2. Coordinate systems with written micro aerial vehicle motion equations; (a) systems related
to axes of inertia (so-called “aircraft system”); (b) coordinate system related to flow (so-called
“velocity system” or “wind axis system of co-ordinates”).

3.2. Equations of Motion

In the course of implementing a mathematical dynamics model of an aircraft into
MATLAB Dynamical System Toolbox, it is more convenient to present aircraft centre of
mass motion equations in a velocity coordinate system Oxayaza (Figure 2) [49]. Furthermore,
the equations omitted the aircraft yaw (heading) angle Ψ and the aircraft centre of mass
position relative to the system related to the Earth, since these values do not influence
the dynamic properties of an aircraft [25]. This enabled the state vector dimension to be
reduced to eight components:

x = [V, α, β, P, Q, R, Θ, Φ]T (10)

where:
V flight velocity,
α angle of attack
β slip angle,
P banking angular velocity,
Q pitching angular velocity,
R yawing angular velocity,
Θ pitch angle,
φ bank angle.
In the general case of bifurcation analysis of aircraft flight dynamics, the components

of the vector of bifurcation parameters m may be the control surface deflection angles
(aileron, elevator, rudder, thrust) and other parameters such as the position of the center
of gravity. In this particular case of bifurcation analysis of strake-wing microdrone flight
dynamics, the bifurcation parameters vector has following form:

μ = [T, δe, δelv]
T (11)

where:
T propeller thrust
δe angle of symmetrical elevon deflection
δelv angle of asymmetrical elevon deflection,
The general form of the micro-airplane motion equations takes the form of autonomous

differential Equation (1). Components of vector f have the form [44–48]:

27



Appl. Sci. 2021, 11, 1524

f1 = 1
m [T cos α − PXa ]− g[cos Θ sin Φ sin β − (sin Θ cos α − cos Θ cos Φ sin α) cos β]

f2 = Q − (P cos α + R sin α) tan β+

− 1
mV0 cos β [T sin α + PZa − mg(sin Θ sin α + cos Θ cos Φ cos α)]

f3 = P sin α − R cos α − 1
mV [T cos α − mg(sin Θ cos α − cos Θ cos Φ sin α)] sin β+

−mg cos Θ cos Φ cos β − PYa}

(12)

f4 =
(

JX−JZ
JX

− J2
XZ

JX JZ

)
QR
D +

(
1 − JY−JX

JZ

)
JXZ PQ

JX D +

+ qSb
JX D

{
Cl0(α, β) + ∂Cl

∂R
Rb
2V0

+ ∂Cl
∂δelv

δelv +
[

∂Cl
∂P

+
(

∂2Cl
∂P∂β

β + ∂2Cl

∂P2
Pb

2V0

)]
Pb

2V0

}
+ LT

Jx D+

+ JXZqSb
JX JZ D

{
Cn0(α, β) + ∂Cn

∂R
Rb
2V0

+ ∂Cn
∂δelv

δelv +
[

∂Cn
∂P

+
(

∂2Cn
∂Pβ

β + ∂2Cn
∂Pβ

Pb
2V0

)]
Pb
2V

}
+ Jxz NT

Jx Jz D

f5 = qScA
JY

{
Cm0(α, β) + ∂Cm

∂
.
α

1
V0

+ ∂Cm
∂Q

QcA
2V0

+ ∂Cm
∂δe

δe

}
+ MT

JY
+ JZ−JX

JY
QP + JXZ

JY

(
R2 − P2)

f6 =
(

J2
XZ

JX JZ
− JY−JX

JZ

)
PQ
D +

(
JY−JZ

JX
− 1

)
JXZQR

JZ D +

+ JXZ
JX JZ

{
Cl0(α, β) + ∂Cl

∂R
Rb
2V0

+ ∂Cl
∂δelv

δelv +
[

∂Cl
∂P

+
(

∂2Cl
∂Pβ

β + ∂2Cl

∂P2
Pb

2V0
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Pb

2V0

}
+ JXZ LT

JX JZ
+
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Cn0(α, β) + ∂Cn

∂R
Rb
2V0

+ ∂Cn
∂δelv

δelv +
[

∂Cn
∂P

+
(

∂2Cn
∂Pβ

β + ∂2Cn
∂Pβ

Pb
2V0

)]
Pb
2V

}

(13)

f7 = P + Q sin Φ tan Θ + R cos Φ tan Θ
f8 = Q cos Φ − R sin Φ

(14)

where:
D = 1 − J2

XZ
JX JZ

,

q = 1
2 ρV2

0 is the dynamic pressure,

P = bP
2V0

, Q = cAQ
2V0

, R = bP
2V0

are dimensionless angular velocities.

The aerodynamic characteristics of the “Bee” MAV shown in Figure 3 were identified
based on aerodynamic water tunnel testing. The static and dynamic aerodynamic loads
were measured using a five-component aerodynamic balance. The testing was conducted
over a wide range of angles of attack and slip. A wide description of these tests can be
found in the works [49,50]. The identified aerodynamic characteristics presented in the
work [Sibilski et al.] were shown in the form of graphs and were available in tabular form.
Examples of aerodynamic derivative waveforms are shown in Figure 4.

 
Figure 3. Strake–wing MAV “Pszczoła” (Bee) [49,50].
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Figure 4. Examples of aerodynamic derivative waveforms as function of angle of attack α, and
reduced frequency f [50].

The linear interpolation of aerodynamic data tables commonly used in simulation
studies, due to the lack of derivative continuity, cannot be used in the case of continuation
tests, since the continuation software of the AUTO type can misidentify bifurcation points.
This is why a different method for interpolating aerodynamic data had to be used. Smooth,
differentiable state parameter function were created as a result of interpolating aerodynamic
characteristics. The pchip function interpolation in the MATLAB software was used for this
purpose, while maintaining linear interpolation and a multi-variative orthogonal function.
Block interpolation was also implemented using a 3rd-order spline function. Owing to the
structure of the “Bee”, which only has elevons, the bifurcation parameters were the elevon
deflection angles: δe and δelv.

4. Methodology of Bifurcation Tests in Aircraft Flight Dynamics

MAV motion is described through a system of highly non-linear ordinary differential
equations. For a classical model of a non-deformable micro aerial vehicle with movable
control surfaces, motion equations are presented by relationships (1), (12), (13), and (14).

The dynamical system theory enables analysing solutions to a system of highly non-
linear ordinary differential equations describing aircraft motion, depending on slow param-
eter changes (so-called bifurcation parameters). When analysing aircraft flight dynamics,
it is assumed that the bifurcation parameters are the control vector components (i.e., de-
flection angles of the elevator, rudder, ailerons, thrust vector, etc.). The first stage in the
analysis of a non-linear system of differential equations in the dynamical system theory
is assessing the stability of steady states of a system of differential equations describing
aircraft flight dynamics (1), (12), (13), and (14). The steady state is determined by equating
the derivatives to zero and solving a system of algebraic Equation (2).

Given the experience from numerous research (based on the bifurcation analysis and
continuation technique), the following, three-stage test diagram for a non-linear aircraft
motion was formulated [8–14,18,21–28,34,48,49,51–56]

1. The first stage involves determining all parameters of a dynamical system. The
fundamental task is to study all possible equilibrium states and periodic orbits, and
the analysis of their local stability. This test should be very thorough. The outcome
of the attempted test should be a determined global structure of the state space
(e.g., phase portraits) of all discovered attractors (steady states and closed orbits).
Approximated graphic representations of the calculations are crucial in this case, since
they enable diagnosing the obtained results.

2. The second stage involves, based on information on the evolution of phase portraits
together with parameter changes, predicting dynamical system behaviour. Next,
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based on the knowledge on the type of present bifurcations and the current position
of system parameters relative to stable areas, further aircraft behaviour is predicted.
Information on the range of parameter changes is also important for these analyses
and predictions. Rapid parameter changes and higher differences between steady
and transient states are also observed.

3. The third step involves a numerical simulation, which enables verification of the
expected aircraft behaviour. Waveforms of transient system characteristics for sig-
nificant state parameter changes upon a dynamical system parameter change are
obtained.

5. Bifurcation Flight Dynamic Analysis of a Micro Aerial Vehicle

Figures 5 and 6 show single-parameter bifurcation diagrams for equilibrium positions:
angles of attack α and angular velocity of banking P for different values of the bifurcation
parameter, namely, elevator deflection angles δe from a range of δe ∈ (−35◦, 30◦) for angles
of attack equilibrium position, δe ∈ (−35◦, 40◦) for banking angular velocity equilibrium
positions. Figure 5 shows enlarged bifurcation diagrams for elevator deflections in the
range of δe ∈ (3◦, 10◦), corresponding to steady states at low and moderate angles of
attack for α ∈ (0◦, 54◦), the second area corresponds to a range of high angles of attack
α ∈ (65◦, 83◦). Various types of micro aerial vehicle dynamics, corresponding to seven
flight regimes, can be classified in these areas. These regimes are marked with the letters A
to G. Regime A means steady symmetrical flight equilibrium states, for angles of attack
in the range of α ∈ (2◦, 23◦). Area B, for angles of attack in the range of α ∈ (15◦, 50◦),
corresponds to various motion states with stable and unstable orbits. Area C, for angles of
attack in the range of α ∈ (35◦, 55◦), corresponds to deep steady spirals. Area D corresponds
to inverted spirals. Area E corresponds to steady spins. Areas F and G correspond to
transient spins.

Figure 5. Bifurcation diagram. Quasi-steady states for various elevator deflection angles; α(δe).
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δ

Figure 6. Bifurcation diagram. Quasi-steady states for various elevator deflection angles; P(δe).

The aircraft equilibrium positions in each of these two areas were analysed depending
on the bifurcation parameter, namely elevator deflection angles (symmetrical elevon de-
flections) δe and asymmetrical elevon deflections δelv. During continuation tests, following
the methodology described in Section 4, it was assumed that the propeller thrust does not
change, and elevon deflections are only symmetrical (or δelv = 0). Continuation analyses
were conducted for positive and negative changes in the bifurcation parameter (symmetri-
cal elevon deflections δe), starting with δe = 20◦. The calculations were conducted for the
elevator deflection angle range of change of −35◦ ≤ δe ≤ 40◦, so that it was possible to
detect almost all solutions corresponding to the quasi-steady flight states.

At the starting point of the continuation analysis (δe = 20◦, α = 3◦), the aircraft was
conducting a steady symmetrical flight. As the elevator deflection angle changed, the
elevator angle of attack initially increased, and the deflection angular velocity remained
at zero. This dynamic regime was denoted with the letter A. Its corresponding range of
angles of attack is 2◦ < α < 25◦ (Figures 5 and 7). The range of steady states denoted with
the letter A corresponds to a symmetrical flight of the MAV (angular velocity P = 0). When
the elevator deflection angle decreases below δe≈10 and the angle of attack α ≈ 28 degrees,
the micro aerial vehicle enters the dynamics regime denoted with the letter B, with both
anti-symmetrical, as well as symmetrical motions. They can be associated with unstable
Dutch roll, wing-rock oscillations, spiral motion instabilities, as well as unstable phugoids.
Ant-symmetrical oscillations result from Hopf bifurcations in B. In this area, when the
elevator deflection angle continues to decrease, reaching a value of δe ≈ 4◦ and α ≈ 34◦,
the spiral mode loses stability, which leads to the bifurcation of the stable and almost
symmetrical solution. Two asymmetrical equilibrium position branches appear. At higher
angles of attack, the spiral model becomes unstable along the almost symmetrical solution
branch.

Development of equilibrium position asymmetry can be observed at continued re-
duction in the elevator deflection angle, and at δe ≈ 4◦, the micro aerial vehicle enters the
range of equilibrium states marked with C, which corresponds to spiral motions with a
high amplitude of bank angles (Figure 7). Stable position branches corresponding to spiral
motions exist on both sides of the straight line defining unstable horizontal flight equilib-
rium positions. Due to the aerodynamic load asymmetry, the micro aerial vehicle banks to
the left wing (with a negative banking angular velocity P), since the equilibrium branch
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representing the breaking away is connected with A (Figure 6). The equilibrium branch
representing rightward MAV banking is practically detached from branch A. The bifurca-
tions therein lead to the appearance of unstable equilibrium positions, where P ≈ 0 [◦/s].
However, it should be noted that the spiral motion direction is determined in practice by
the nature of the disturbance or the transient dynamics state of a micro aerial vehicle. As
shown in Figures 5 and 6, equilibrium branches of dynamics regime C (within the physical
range of elevator deflections), do not converge on the straight line corresponding to the
horizontal flight conditions. The MAV will remain at one of two spiral branches only up to
a value of δe = −35◦. Branch C, shown on the bifurcation diagrams (Figures 5 and 6), also
represents undesirable steep spirals. Steep spirals can be deemed undesirable flight condi-
tions, therefore, it is important to determine a recovery strategy. Based on a bifurcation
diagram (Figure 5), a micro aerial vehicle can be easily recovered from such a flight state by
reducing the angle of attack to a level below which no spiral branches are formed. This can
be achieved by increasing the elevator deflection angle. The ability to find and determine
branches, such as steep spirals, stresses the advantage of continuation and bifurcation
analyses over classical linear methods. Although classical linear methods for analysing
flight stability can identify stability changes, they are unable to find stable and unstable
branches of quasi-steady flight states (Figure 8).

Figure 7. Bifurcation diagram. Quasi-steady states for various elevator deflection angles; α(δe).

The slight lateral instability is also present at low angles of attack (α ≤ 2◦), (branch
D in Figures 5 and 6). In the case of the bifurcation analysis and continuation test pattern
in question, which assumes constant thrust, flight velocity reaches the highest and not
always realistic values at low, negative angles of attack, which entails an increase in the
negative angle of MAV pitch, until inverted flight conditions. Thus, although regime D can
be deemed an inverted spiral, it is not representative for realistic flight conditions and will
not be discussed in more detail (Figure 8).
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Figure 8. Bifurcation diagram. Quasi-steady states for various elevator deflection angles; V(δe).

Equilibrium positions of quasi-steady flight states also appear at high angles of at-
tack 65◦ < α < 85◦ (bifurcation diagrams shown in Figures 5 and 6). There are unstable
equilibrium position branches for negative deflection angular velocities and angles of
attack within a range of 80◦ < α < 85◦, and elevator deflections angles in the range of
−35◦ < δe < 10◦. There is a certain area of stable equilibrium positions for positive values
of deflection angular velocity. The differences arise from the asymmetry of MAV loads.
Left- and right-handed spins differ in terms of the state of equilibrium of inertial and
aerodynamic forces, which undoubtedly impacts the local stability of spin branches (just
as in the case of lower angles of attack α). Stable equilibrium positions, corresponding to
spins executed at a constant angular velocity, are represented by branch E of the bifurcation
diagrams. It can be seen that there is also a slight area of stable spins near the elevator
deflection angle of δe ≈ 12o. The waveform of flight parameters indicates that attractors
are present within branch E, hence, this equilibrium branch does not play a significant role
in the dynamics of disturbed spins [26,27].

For an angle of attack range of 65◦ < α < 85◦, most equilibrium positions are unstable.
There can be no steady spins on unstable branches, while one can expect solutions of
deterministic chaos nature on these branches [13]. The spin dynamics is significantly
impacted by two Hopf bifurcations present at δe = 23.4◦ and δe = −13.2◦ and a period-
doubling bifurcation present at δe = 12.5◦. All three bifurcations appear for angles of
attack of α > 65◦. In the case of an elevator deflection angle of δe = −13.2◦, the periodic
orbits created through the Hopf bifurcation are unstable throughout the entire range of
bifurcation parameters. The period-doubling bifurcation appearing at δe = 12.5◦ can lead
to a spin of chaotic nature [13]. The periodic orbit created through Hopf bifurcation at
δe = 23.4◦ is more significant. It is initially unstable and then branches into a stable periodic
orbit through the torus bifurcation at δe = −15.9◦. The stable periodic orbit of branch F
(Figure 5) is significant, since in this case, the average angle of attack is α ≈ 70◦, with
high values of deflection angular velocities. Therefore, it can be concluded that branch F
corresponds to steep oscillation spin states. It can also be inferred that MAV oscillation
spins occur at angles of attack of approximately 70◦. Also, a second stable periodic orbit
can be identified on branch G (Figure 6) within the range of high angles of attack. This
solution is true for a closed curve that is not connected with other curves. It is the outcome
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of torus bifurcation present on branch F (for δe = −15.9◦). Due to torus bifurcations, the
periodic orbit becomes unstable, and MAV flight dynamics equation solutions are attracted
by branch G periodic orbit. Solutions to micro aerial vehicle motion equations over branch
G represent more rapid, oscillation spins, relative to branch F solutions [26,27].

6. Numerical Verification of Predicted MAV Behaviour

According to the bifurcation test methodology, the third step in continuation analysis
involves numerical simulations, which enable verifying the predicted aircraft behaviour.
Waveforms of transient system characteristics for significant state parameter changes upon
a dynamical system parameter change are obtained. Examples of “wing rock” oscillation,
unsteady spin and the “Cobra” manoeuvre simulations are shown below.

6.1. “Wing Rock” Oscillation Simulation

A typical phenomenon encountered when flying at large angles of attack is the so-
called “wing rock”. It is a self-excited phenomenon, which occurs at subcritical and
supercritical angles of attack. Despite “wing-rock” generally not being dangerous, it is
advisable to examine it more thoroughly. Studying the dynamics of this motion was
attempted in numerous research work (for example: [10,55–60]. All of the quoted work
adopted quasi-static aerodynamic aircraft characteristics or presented different identifica-
tion methods. However, due to the oscillatory changes in the angle of attack occurring at
high, near-critical and supercritical angles of attack, the occurrence of phenomena associ-
ated with flow non-stationarity, including hysteresis, is obvious. “Wing rock” oscillation
simulations were conducted based on aerodynamic derivatives obtained during water
tunnel testing and identified through a pulse function.

Examples of simulation results are shown in Figure 9. The motion disturbance in-
volved elevator displacement from 8◦ to 7.8◦. This caused MAV displacement into an
area of unstable steady states (Hopf bifurcation). The outcomes were gradually increasing
oscillations, turning into a limit cycle, with a period of about 0.2 s.

 

Figure 9. Simulation of Wing-rock oscillations; waveforms of selected flight parameters.

Characteristic oscillations appeared as a result of the micro aerial vehicle moving into
the area of unstable steady states. They primarily involve rocking of the MAV from wing
to wing. That rocking has an amplitude of approximately 39◦ (for the banking angle), and
6◦ for the angle of attack and slip. The flight velocity is practically constant. Whereas the
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period of oscillations corresponding to MAV pitch angle change is equal to the period of
phugoid motions. These oscillations are of limit cycle vibration character.

6.2. MAV Spin Simulation

The G and F branches of quasi-steady states (Figures 6 and 7) correspond to states
of steady spins. The bifurcation analysis enables “control matching”, which allows to
recover from critical flight states. A sketch of a “bifurcation control matching” is shown
in Figure 10. The equilibrium surface of banking angular velocities P and the bifurcation
graph on the deflection plane of the elevator δe and elevons δelv show critical autorotation
areas (excluding the spin and a rapid inertia barrel). Recovery trajectories encounter an
“apex catastrophe”. Skipping through this singularity allows to “smoothly” achieve the
desired point of zero banking rate.

Figure 10. Diagram of bifurcation control matching, which enables recovery from a spin (skipping through the so-called
“cusp catastrophe”) [25] with the waveform of elevon deflection angle changes.

Figure 11 show the results of a spin recovery simulation. The method of spin recovery
was matched using the method shown in Figure 10 and involved displacement of control
surface positions beyond the area of unstable equilibrium states and limit cycles. The
analysis of simulation results shows the effectiveness of the “bifurcation control matching”
method.

6.3. “Cobra” Manoeuvre Simulation

“Cobra” is one of aerobatic figures. The manoeuvre was first executed at the turn of the
1950s and 60s, by the pilots of the Swedish Air Force (Svenska Flygvapnet) flying J-35 Draken
fighters. It has a Swedish name of “kort parad”—“short parade” and was part of standard
short-range manoeuvring combat training for Swedish fighter pilots [48,49]. In the 1980s,
the manoeuvre was executed by OKB Sukhoi test pilot, Igor Volk, during Su-27 spin tests.
The Cobra was first demonstrated in public by Viktor Pugachev at the Le Bourget air show
in 1989, on a MiG-29 fighter. This manoeuvre can be executed with an aircraft exhibiting
excellent manoeuvrability and low thrust load or equipped with thrust vector control
engines. Besides the spectacular impression it makes at air shows, enabling to demonstrate
the manoeuvrability and turning abilities of modern combat aircraft, this manoeuvre, used
in direct air combat, is primarily aimed at forcing the chasing foe to overtake through rapid
deceleration, thus providing the chased aircraft with a convenient position to open fire. The
effect of sudden deceleration is achieved owing to rapidly increasing aircraft drag resulting
from vertical positioning of the aircraft body in the upward direction (perpendicular to the
previous flight direction).
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Figure 11. Spin simulation. Angle waveforms for selected flight parameters.

The “Cobra” is conducted at supercritical angles of attack, significantly exceeding the
value under normal operating conditions. Figure 12 shows a diagram of the “Cobra”. This
manoeuvre is divided into three basic stages:

1. Transition from horizontal flight into the phase of increasing the aircraft pitch angle,
due to very rapid increase in the elevator deflection angle (sudden pulling of the
control stick to a maximum), while simultaneously throttling the engine or engines,

2. manoeuvre phase in which, as a result of such action by the pilot, the aircraft nose
rapidly rises up, until it reaches a very high angle of attack (even up to 120◦),

3. the exit phase, which involves increasing the thrust and releasing the control stick,
leading to the aircraft rapidly increasing its pitch angle, while simultaneously acceler-
ating and returning to horizontal flight, with a minor altitude loss.

 

Figure 12. “Cobra” manoeuvre phases (top), “Bee” MAV during a “Cobra” manoeuvre, time-lapse photos (bottom) [61].

The “Bee” MAV has a stake-wing and its dynamics is similar to the dynamics of
modern high-manoeuvring combat aircraft. Based on in-flight tests, it was concluded that
it was able to execute a “Cobra” manoeuvre (Figure 12) [61]. The “Cobra” manoeuvre
simulations were conducted based on aerodynamic and mass data of the “Bee” micro aerial
vehicle. Simple analyses show that executing the “Cobra” manoeuvre will be possible
without changing the flight altitude, when the vertical projection of the sum of external
forces acting on the MAV in the course of the manoeuvre should be equal to zero. However,
due to the fact that the computational thrust force value was initially negative, it was
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assumed that the MAV starts the manoeuvre with the engine off (zero thrust). It was also
assumed that, in the course of executing a manoeuvre, the thrust depends on the difference
in the aircraft’s angles of pitch Θ and attack α, and the flight velocity V [62,63].

Due to the fact that aircraft equipped with strake wings are characterized by wing-
rock instability and are not spirally stable, it was impossible to obtain a fully symmetrical
flight parameter waveform. This is associated with the occurrence of Hopf bifurcation
and torus creation bifurcation on G, E and F branches (Figures 5 and 6). The “Cobra”
manoeuvre is initiated with a sudden downward displacement of elevons (δe = −35◦). This
causes a rapid transition of the MAV through C, G, E and F branches of steady flight states
(Figures 5 and 6).

Figures 13 and 14 show the results of a digital simulation of the “Cobra” manoeuvre,
taking into account the occurrence of limit cycles. Based on the analysis of these graphs, it
can be concluded that all flight parameters are significantly changed during a Cobra figure,
increasing their values. Using the terminology of the Dynamical System Theory, it can be
said that the “Cobra” is unstable due to the presence of Hopf bifurcation (at an elevator
displacement angle of δe = −23.1◦) and torus bifurcation (for δe = −16.5◦). Figure 14 shows
Poincarè maps for selected state parameters. It can be concluded when the non-stationarity
(hysteresis) of aerodynamic coefficients were taken into account, MAV motion equation
solution irregularities of quasi-harmonic nature were obtained. The digital simulation took
into account the fact that at high angles of attack, the aircraft is spirally unstable (branch C,
Figures 5 and 6) and has a tendency to wing-rock oscillations (branch B, Figures 6 and 7).
In the course of a manoeuvre, the aircraft attack and pitch angles rapidly increase, reaching
maximum values of approximately 84◦ (for an attack angle of α) and 100◦ (for a pitch angle
of Θ). The MAV bank and yaw angle waveforms (Figure 13) indicate that these angles
increase over time. This is associated with the present area of spiral instability (branch C in
bifurcation diagrams—Figures 5 and 6). The development of wing-rock oscillations is also
visible. The period of these oscillations varies at approx. 0.2 s. It should be noted that the
amplitude and frequency of these oscillations are irregular (quasi-harmonic).

 

  

 

Figure 13. “Cobra” manoeuvre simulation. Time waveforms of selected flight parameters.
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Figure 14. “Cobra” manoeuvre. Poincare maps.

7. Conclusions

The article presents application examples of the theory of dynamical systems relative
to studying the flight dynamic specifics of a micro aerial vehicle, constructed as a fixed-wing
aircraft with a strake-wing. Such microdrons are characterized by high manoeuvrability
and can fly with high, supercritical angles of attack. The bifurcation analysis shown in
the article enabled identifying some of the numerous factors impacting the behaviour of a
strake-wing MAV. More specifically, this analysis allowed to discover a number of stable
attractors, associated with disturbances to the states of equilibrium. Compared with purely
simulational studies, which require long-term computations leading to the disappearance
of motion history transitions on weak attractors, creating bifurcation diagrams is much
less computation-demanding. Furthermore, bifurcation diagrams show the fundamental
structure of a dynamical system, hence they suggest, where and when the time domain
simulation should be conducted in order to better explain the behaviour of a dynamical
system (in this case, a micro aerial vehicle). Time domain simulations were presented as
supplementary to bifurcation diagrams, in order to gain more clarity in terms of the nature
of various attractor dynamics regimes. It was shown that an MAV was susceptible to steep
spiral motion disturbances, induced by loss of stability in this flight range. Bifurcation
analysis was also able to identify that elevator displacement aimed at recovery from a steep
spiral glide can lead to an oscillating spin. Bifurcation diagram analysis indicates that
the correct reaction is to restore elevator position to the value corresponding to balancing
conditions in straight flight.

The approach adopted in this article can be extended in several ways. Firstly, MAV
behaviour in an open control loop can be further tested through expanding the parameter
space in question; this can cover additional control signals, as well as combining the centre
of gravity and various damage scenarios, which can be added to the model. Another
potentially beneficial extension is the use of bifurcation methods to analyse micro aerial
vehicle models expanded with closed control loops, including bifurcation matching that
enables recovery from critical flight states.
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Abbreviations

Cl body axis rolling moment coefficient
Clp rolling moment coefficient derivative with respect to to rolling rate
Cm body axis pitching moment coefficient
Cmα pitching moment coefficient derivative with respect to angle of attack
Cmq pitching moment coefficient derivative with respect to pitching angular rate
Cn body axis yawing moment coefficient
Cnr yawing moment coefficient derivative with respect to to yawing rate
f reduced frequency of model oscillation in water tunnel
f vector of generic nonlinear function
f i, i=1, . . . 8 components of f vector describing microdrone flight dynamics
g acceleration of gravity
J Jacobi matrix
JX, JY, JZ, JXZ moments of inertia of microdrone
LT body axis banking moment due to propulsion
m mass of microdrone
MT body axis pitching moment due to propulsion
NT body axis yawing moment due to propulsion
V, V0 flight velocity
P body axia roll (banking) rate
PXa x wind axis aerodynamic force component
PYa y wind axis aerodynamic force component
PZa z wind axis aerodynamic force component
q dynamic pressure
Q body axis pitching rate
R body axis yawing rate
R state matrix (Jacobian of linearised aircraft equations of motion)
S wing area
T propeller thrust
α angle of attack
β slip angle
δe angle of symmetrical elevon deflection
δelv angle of asymmetrical elevon deflection
Θ pitch angle
λ eigenvalue
μ vector of bifurcation parameters (in this case microdrone control vector)
μ single bifurcation parameter
ρ air density
φ bank (roll) angle
Ψ yaw (heading) angle
.
() = d

dt time derivative
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_
() dimensionless quantity
MAV micro aerial vehicle, microdrone, micro aircraft
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Abstract: This paper presents an approach to validate a wind tunnel propeller dynamometer appli-
cable to Group 2 unmanned aircraft. The intended use of such a dynamometer is to characterize
propellers over a relevant range of sizes and operating conditions, under which such propellers are
susceptible to low-Reynolds-number effects that can be challenging to experimentally detect in a wind
tunnel. Even though uncertainty analysis may inspire confidence in dynamometer data, it is possible
that a dynamometer design or experimental arrangement (e.g., configuration and instrumentation) is
not able to detect significant propeller characteristics and may even impart artifacts in the results. The
validation method proposed here compares analytical results from Blade Element Momentum Theory
(BEMT) to experimental data to verify that a dynamometer captures basic propeller physics, as well
as self-similar experimental results to verify that a dynamometer is able to resolve differences in
propeller diameter and pitch. Two studies were conducted to verify that dynamometer experimental
data match the performance predicted by BEMT. The first study considered three propellers with
the same 18-inch (0.457 m) diameter and varied pitch from 10 to 14 inches (0.254 to 0.356 m). The
second study held pitch constant and varied diameter from 14 to 18 inches (0.356 to 0.457 m). During
testing, wind tunnel speeds ranged from 25 ft/s to 50 ft/s ( 7.62 to 15.24 m/s), and propeller rotational
speeds varied from 1500 to 5500 revolutions per minute (RPM). Analytical results from a BEMT
code were compared to available experimental data from previous work to show proper application
of the code to predict performance. Dynamometer experimental results for thrust coefficient and
propeller efficiency were then compared to BEMT results. Experimental results were consistent
with the expected effect of varying pitch and diameter and were in close agreement with BEMT
predictions, lending confidence that the dynamometer performed as expected and is dependable
for future data collection efforts. The method used in this study is recommended for validating
wind tunnel propeller dynamometers, especially for Group 2 unmanned aircraft, to ensure reliable
performance data.

Keywords: propeller; propulsion; UAS; dynamometer; thrust; pitch; torque; wind tunnel

1. Introduction

Unmanned aircraft systems (UAS) continue to prove their utility in the performance
of both missions that were once conducted by manned platforms and those that are entirely
novel altogether. In the United States, the current regulatory environment permits the
commercial operation of unmanned vehicles weighing less than 55 pounds in the National
Airspace System (NAS). Services such as pipeline patrol, communication relay, surveillance,
and surveying for agricultural and security purposes are offered for hire by businesses
utilizing this rule-set. For-profit entities and the public continue to demand services
via UAS. The Federal Aviation Administration (FAA), the regulator in the United States,
has been responsive to the demand, as evidenced by recent expansion of the existing
Part 107 rules to allow for limited operations over people and nighttime flights. The
economic value of expanding UAS operations has been recognized by the agency, including
the generation of a road map to expand operations, such as beyond visual line-of-sight
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flights based on the risk on a risk-management framework proposed under the upcoming
Modernization of Special Airworthiness Certificates (MOSAIC) rule-set.

As UAS operations expand and businesses are growing to meet customer demand, the
need to optimize mission performance becomes paramount to efficiently and profitably
provide services. Propulsion system optimization is among the many areas a designer
considers. Group 2 UAS are based on medium-sized unmanned aerial vehicles (UAVs),
with 21–55 lbs maximum take-off weight and flying lower than a 3500-foot operational
ceiling and under 250 knots cruise airspeed, according to the US Department of Defense.
Among Group 2 UAS, common power plants include low-cost electric motors and internal
combustion engines. These devices convert stored energy to propulsion with a simple fixed-
pitch propeller, as weight and cost constraints most often preclude the use of variable-pitch
propeller options. The use of fixed-pitch propellers requires a compromise between climb and
cruise performance. Thus, accurately understanding propeller performance is an important
factor contributing to the operating envelope and mission capability of the vehicle.

Early in the design cycle for a new platform, performance estimates are developed
using low-order models to take advantage of the ability to perform rapid design iterations
and mission performance evaluations. As the design matures, an increase in fidelity of the
estimates is desired. Commonly, models such as Blade Element Momentum Theory (BEMT)
are applied in early design stages to predict propeller performance. However, BEMT models
are subject to limitations, particularly at low Reynolds numbers and low advance ratios [1].
Researchers have demonstrated the ability to accurately predict propeller performance
using computational fluid dynamics (CFD), even in difficult-to-resolve flow conditions [2,3].
Although such examples commendably replicate performance characteristics based on
available data, CFD practitioners still require validation of their modeling results. Besides
its use as a validation tool, experimental propeller characterization remains a viable option,
especially for the UAS community, due to the smaller wind tunnel facility requirements
compared to full-scale aircraft propeller testing.

There is an ever-growing body of knowledge from wind tunnel experiments using
different configurations to assess propeller performance; however, there does not appear to
be a unifying method to ensure that the different configurations are valid. Czyz et al., 2022,
studied the aerodynamic performance of propellers with various pitch in a wind tunnel for
electric propulsion applications [4]. Podsedkowski et al., 2020, conducted experimental
tests of variable pitch propellers for UAVs [5], the study involved a propeller of 16 inches
in diameter and various pitch. Podsedkowski et al. designed and built a measuring station
that operated similarly to a propeller dynamometer. Avanzini et al., 2020, developed a test
bench for measuring propeller aerodynamic performance and electrical parameters; this
involved using measurements of thrust, torque, and electric power to validate models used
for preliminary designs of UAVs [6]. Islami and Hartono, 2019, developed a small propeller
test bench system; this study involved the use of a rig with loads cells to measure thrust
and torque for small propellers (10 inches in diameter) [3]. Experimental measurements
were compared to results obtained from CFD and BEMT [3]. These studies [3–8] have
formed a basis of knowledge useful to Group 2 UAS; however, they do not specifically
address a method for validating a wind tunnel dynamometer, which is essential for credible
experimental results. There are many potential sources of experimental artifacts that can
affect data and yet not be manifest from an uncertainty analysis. For example, the presence
of fluid–structure interaction between the propeller, motor, instrumentation and support
structure can influence results in a way that does not effect bias (systematic) or precision
(random) error. This current paper proposes a novel method to be adopted as common
practice for validating such wind tunnel dynamometers.

1.1. Previous Dynamometer Work

There are many existing wind tunnel propeller dynamometers, which can generally
be categorized by scale and configuration. Small-scale dynamometers are typically used to
evaluate propellers with up to about 10-inch diameter, and include those at the University
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of Illinois at Urbana–Champaign (UIUC) and Ohio State University ([9–14]). Brandt and
Selig ([9,10]) and Deters et al. ([11,12]) noted the effect of low-Reynolds-number operation
on such propellers from a wind tunnel propeller dynamometer, and Dantsker et al. ([13])
reported the performance of small folding propellers. McCrink and Gregory ([14]) com-
pared blade element momentum (BEM) modeling results with wind tunnel experimental
data for small propellers operating at low Reynolds numbers. Van Trueren et al. ([15])
evaluated small UAS propellers designed for minimum induced drag using a wind tunnel
propeller dynamometer at the United States Air Force Academy. Gamble and Arena ([16])
described automatic dynamic propeller testing at low Reynolds numbers and designed
a dynamometer. Bellcock and Rouser ([17]) described the design of a wind tunnel pro-
peller dynamometer at Oklahoma State University (OSU) for evaluating a jet-blowing
flow controller on small propellers to suppress boundary layer separation. Figure 1 shows
the previous OSU wind tunnel propeller dynamometer design described by Bellcock and
Rouser to evaluate a modified 10-inch diameter electric propeller. Morris ([18]) presented a
method for validating a mobile propeller dynamometer for UAS applications; however,
there has not otherwise been previous work on a method to validate a wind tunnel propeller
dynamometer for Group 2 UAS applications.

Figure 1. Previous OSU dynamometer for propeller flow control.

Examples of large wind tunnel propeller dynamometers are typically found in gov-
ernment and industry. Boldman et al. ([19]) described a dynamometer used in the United
Technologies Technology Research Center: a 10 ft by 15 ft large subsonic wind tunnel used
to evaluate an advanced ducted propeller. National Aeronautics and Space Administration
(NASA) facilities have been previous described, including a 2000 hp dynamometer at
NASA Langley used in a 16 ft, high-speed wind tunnel ([20]), shown in Figure 2, and a
1000 hp dynamometer at NASA Ames used in a 12 ft wind tunnel ([21]), shown in Figure 3.
The propeller diameters used in these NASA facilities range from 4 ft to 10 ft and are
roughly one half to one third of the test section size. Further, the propellers are located
between one half to two diameters ahead of the vertical strut. In order to collect credible
propeller performance data, it is important for wind tunnel dynamometers to be designed
to reduce fluid–structure interaction between the propeller flow-field and the wind tunnel
test section and dynamometer vertical support.
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Figure 2. NASA Langley 2000 hp dynamometer schematic [20].

Figure 3. NASA Ames 1000 hp dynamometer schematic [21].

Dynamometer configurations generally can be classified by the means by which they
measure thrust and torque. Thrust is typically measured with a linear load cell that is
inline or offset from the propeller shaft, or in a moment arm arrangement. The aforemen-
tioned OSU dynamometer includes a linear, offset load cell for measuring thrust, which
requires accounting for moment created by the offset distance. Alternatively, the NASA
dynamometer in Figure 2 includes inline thrust measurement with a pneumatic thrust
capsule. Torque is also typically measured inline or by using a moment arm arrangement.
Figure 1 shows an example of an inline torque meter integrated into the previous OSU
dynamometer, whereas the NASA Langley dynamometer includes torque arms for taking
measurements with a moment. The advantages and disadvantages of these measurement
approaches are discussed later in the design rationale for our proposed dynamometer.

1.2. Proposed Validation Method

The method includes a comparison of experimental results to BEMT analytical results
over a relevant range of test conditions. A validated dynamometer should be able to resolve
low-Reynolds-number effects. Furthermore, the method includes comparing experimental
results for propellers of at least three different diameters and pitch over the same range of
relevant test conditions. A validated dynamometer should distinguish a consistent trend
in performance across different diameters and pitch. Finally, the proposed performance
figures of merit should at least include thrust coefficient and propeller efficiency, noting that
the power coefficient can be derived from those two figures of merit. The motivation for
establishing this method is to assist those conducting propeller wind tunnel experiments,
especially for Group 2 UAS, to improve the credibility of their results. This, in turn, will
improve the confidence of those using propeller wind tunnel data in mission planning and
aircraft design.
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1.3. Objectives

The wind tunnel propeller dynamometer in this current study is intended to measure
the propeller performance of Group 2 UAS. This paper will address the details and rationale
for the dynamometer design. The objective of this paper is to present a method to validate
the design using BEMT and experimental data from a 3 ft by 3 ft subsonic wind tunnel
test section. The study evaluates the performance of three different propeller diameters,
ranging from 14 to 18 inches, and three different magnitudes of pitch, ranging from 10 to
14 inches. Tunnel airspeeds range from 25 to 50 ft/s, and shaft speeds range from 1500 to
5500 revolutions per minute (RPM). The propeller dimensions considered in this paper are
common and a good representation of Group 2 UAS propellers. However, there is a wide
range of propellers in the Group 2 category. The objective of this paper is not to measure
or improve propeller performance nor to present or improve dynamometer design (both
of these are already well-documented), but rather, it is about a method for validating a
propeller dynamometer.

1.4. Propeller Theory

This section provides a brief overview of parameters used to characterize propeller
performance, and then presents the methodology for the BEMT code implemented over
the course of this research to provide comparison data to contrast with the experimental
results to validate our proposed propeller dynamometer.

1.4.1. Performance Characterization

Propellers are characterized by the amount of torque and thrust they produce at a
given shaft speed, and by the ratio of the power transferred to the air versus the mechanical
power supplied, known as propeller efficiency [10,11,14]. As is typical in aerodynamics
applications, the dimensional thrust and power are not typically specified; rather, non-
dimensional coefficients are presented to allow the end-user of the data to adapt the
results to their application (i.e., operating with a different atmospheric density or at a
different velocity). Unlike aircraft wing aerodynamics, which are non-dimensionalized
using freestream velocity, propeller performance coefficients are based in the propeller
frame of reference, using chord-wise velocity at a given radial location as a function of both
freestream and rotational velocities.

Reynolds number is defined as the ratio of momentum force to viscous shear force.
For propellers, Reynolds number is based on chord length (c), relative velocity (Vrel), air
density (ρ), and dynamic viscosity (μ). In order to satisfy the objectives of this research for
validating a wind tunnel propeller dynamometer for Group 2 UAS, testing was conducted
at low Reynolds numbers.

Re =
ρcVrel

μ
(1)

Propeller characteristics are typically cataloged as a function of the ratio between
freestream and angular velocity to allow for translation to arbitrary operating speeds.
This ratio is known as the advance ratio (J), and is shown symbolically in Equation (2),
where V is freestream velocity, n is the rotational speed in revolutions per second, and D is
propeller diameter.

J =
V

nD
(2)

Thrust coefficient, defined as shown in Equation (3), is a non-dimensional quantity
that relates thrust produced (T) to the rotational velocity (n) and propeller diameter (D),
where ρ is the density of the air the propeller is acting on.

CT =
T

ρn2D4 (3)
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Similarly, power and torque coefficients are non-dimensional quantities that relate power
(P) and torque (Q), respectively, to the rotational velocity and propeller diameter, as in
Equation (4).

Cp =
P

ρn3D5 (4)

CQ =
Q

ρn2D5 (5)

Finally, propeller efficiency (ηp) is the ratio of power transferred to the air by the propeller
to the mechanical power required to turn the propeller, as shown in Equation (6).

ηp =
JCT
Cp

(6)

1.4.2. Blade Element Momentum Theory

Blade Element Momentum Theory (BEMT) is a common methodology for predicting
propeller performance in terms of the coefficients defined in Section 1.4.1. BEMT requires
only a few inputs. The code implemented for this research is described succinctly by the
flowchart presented as Figure 4, and is similar to examples found in [22–25].

Blade Geom.,

Airfoil Data,

V∞, RPM

[aaxial],
[aangular]

Calculate [εTot]

Calculate [α]

Look up [Cl], [Cd]

Calculate CQ, CT

Compute
[aaxial], [aangular]

[aaxial],

[aangular]

Within

Toler-

ance?

Update [aaxial], [aangular]

END
Yes

No

Figure 4. BEMT solution process.

The first step in the BEMT solution process is to discretize propeller geometry for
analysis. Input files catalog propeller twist and the local airfoil profile for n radial segments,
specified by distance from the hub (r), each of length dr, from the hub to the tip. The
measurements describing propeller geometry specification are shown as Figure 5.
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Figure 5. Propeller discretized into blade segments.

In addition to propeller geometry data, the propeller operating condition is input by
specifying freestream velocity (V∞) and RPM for a given run of the BEMT code.

After a run case begins, the code takes on assumed values for the axial and angular
inflow factors, aaxiali and aangulari

, respectively, for each propeller segment of length dri.
The initial assumed values for aaxiali and aangulari

are 0.1 and 0.01, respectively. These terms
are induction factors describing the axial and angular velocity components, Vaxiali and VΘi ,
respectively, within an annular streamtube containing dri. Due to the propeller rotation,
the fluid within streamtube i acquires the velocity components modeled as

Vaxiali = [aaxiali ]V∞

and
VΘi = [aangulari

]ωri

which are accounted for during application of momentum conservation equations.
Subsequently, the total downwash angle is computed for each blade segment. The

local flow geometry and definitions for force directions for a blade segment are shown in
Figure 6.

Figure 6. Velocities and force directions on propeller blade segment i.

Given the freestream velocity, rotational velocity at the radial location under consider-
ation, and the induced velocities due to the propeller motion, the total downwash angle at
segment i is computed as shown in Equation (7).

εToti = tan−1
(

V∞ + Vaxiali
ωri − VΘi

)
(7)

Next, with the total downwash angle defined, the local lift and drag coefficients for
the airfoil sections can be determined. For each blade segment, the effective angle of attack
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αe f fi
is the sum of the geometric angle of attack (AOA), αi and zero-lift AOA, αL=0i . The

geometric AOA is defined in Equation (8), where βi is the geometric pitch angle

αi = βi − εToti . (8)

Given the effective angle of attack, αe f fi
, the Cl and Cd for each section is straightforward to

determine from tables of 2-D aerodynamic data. As the APC (Advanced Precision Compos-
ites) propellers studied experimentally are predominately made up of National Advisory
Committee for Aeronautics (NACA) 4412 airfoils [14], this cross-section was assumed for
each propeller segment in the BEMT code. In this work, the 2-D input aerodynamic data
are developed from XFOIL [26] analysis at the Reynolds number computed based on the
vector sum of the freestream and rotational velocity and chord at the 75% radial location,
as is common in propeller aerodynamics [11].

Then, the total thrust and torque the propeller is producing are estimated. For each
blade segment, the incremental thrust and torque are shown as Equations (9) and (10),
respectively.

dTi = qici[Cli cos (εToti )− Cdi
sin (εToti )]Adri (9)

dQi = qiciri[Cli sin (εToti ) + Cdi
cos (εToti )]Adri (10)

where dynamic pressure at radial location i is defined as shown in Equation (11).

qi =
1
2

ρ
[
(V∞ + Vaxiali )

2 + (ωri − VΘi )
2
]

(11)

The total thrust and torque produced by the propeller are estimated by integrating the
incremental thrust and torque contributions along the blade span, and multiplying by the
number of blades (N) on the propeller. The total power of the propeller is obtained by
multiplying angular velocity with total torque of the propeller (P = ωQ) [22].

Finally, in order to determine if the conservation of axial and angular momentum is
satisfied by the current solution, the induction factors aaxiali and aangulari

are computed for
each radial section using Equations (12) and (13) and the incremental thrust and torque
found previously using Equations (9) and (10).

dTi = 4πriρV2
∞(1 + [aaxiali ])[aaxiali ]dri (12)

dQi = 4πr2
i ρωV∞(1 + [aaxiali ])[aangulari

]dri (13)

If the induction factors match the values at the beginning of the solution procedure within
a user-defined tolerance, outputs are stored for the flow condition under consideration.
Otherwise, the induction factors are updated with an average of the newly calculated and
initial inflow factor guess, and the solution procedure is repeated until convergence is
achieved; the solution is considered converged when the new aaxiali and aangulari

are less
than 1 × 10−5.

2. Materials and Methods

2.1. Propeller Dynamometer Design

The scale of the dynamometer components is dictated by size of the wind tunnel test
section (3 ft by 3 ft) and max propeller diameter (18 inch) such that the propeller diameter
is half that of the wind tunnel (consistent with dynamometer designs noted in the previous
work in Section 1.1). A typical highly loaded APC 18 in propeller is expected to draw about
4 kW of power at 6000 RPM and low airspeeds. Therefore, a 4 kW Magna-Power direct
current (DC) power supply is selected.

To avoid overloading the dynamometer motor, a 5 kW Great Planes Rimfire 50 cc
electric motor is selected to drive the propeller. The dynamometer drive motor has a max
voltage of 55 V, which is higher than the DC power supply’s 32 V range, avoiding the
potential for the supply to over-volt the drive system. The motor has a 230 kV rating, which
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limits max shaft speed to 7360 RPM at 32 V, well within the dyno motor limit of about
12,500 RPM.

A Castle Creations Phoenix Edge 160 HV electronic speed controller (ESC) is selected,
as its 50 V and 160 A range is greater than the DC power supply output. The ESC is placed
outside the dynamometer cowling such that freestream air and propeller wake provide
adequate cooling flow. The ESC receives a pulse-width modulation (PWM) throttle signal
from a GT Power Professional Digital Servo Tester that is powered by a 7.4 V to 12 V
DC input and provides a 4.8 V output. Table 1 includes a summary of the dynamometer
electrical and instrumentation components.

Table 1. Dynamometer electrical and instrumentation components.

Component Manufacturer Model Specifications

Drive Motor Great Plains Rimfire 50CC 5 kW, 55 V, 230 kV

DC Power Supply Magna-Power SL32-125/208 4 kW, 32 V, 125 A
+LXI

Electronic Castle Creations Phoenix Edge 50 V, 160 A
Speed Controller HV160

Throttle Controller GT Power Pro Digital 7.4 V to 12 V DC input;
Servo Tester 4.8V output

Hall-Effect Sensor Honeywell SS460S 1.5 micro-sec
rise–fall

Thrust–Torque Futek MBA500 50 lb, 50 in-lb;
Load Cell Error 0.25% RO

A Honeywell SS460S Hall-effect sensor is epoxied inside the motor to detect shaft
speed. A Futek MBA500 torque and thrust bi-axial load cell is mounted between and inline
with the drive motor and dynamometer horizontal support, using custom-designed and
3D-printed cowling components, as shown in Figures 7 and 8. The inline arrangement is
an improvement over the previous OSU dynamometer design, minimizing the effect of
vibrations that can be experienced with an offset, moment-arm arrangement. The load cell
has a 50 lb thrust limit and 50 in-lb torque limit with an error of 0.25% of read-out.

Figure 7. Motor mount backside (left) and cowling assembly (right).

Figure 8. Dynamometer load cell arrangement (left) with cowling (right).
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The dynamometer support structure is fabricated from 2 in by 2 in quad-rail, t-slot
aluminum extrusion. The horizontal support is shrouded in a 3 in diameter polyvinyl
chloride (PVC) pipe, as shown in Figure 9. The space between the rail and pipe is filled
with sand to damp vibrations induced by fluid–structure interactions. The length of the
vertical support is such that the horizontal support is in the center-line of the wind tunnel
when mounted to a 2.5 in thick, 6 ft long, 2 ft wide optical breadboard that rests on the
bottom of the wind tunnel test section.

Figure 9. Dynamometer dimensions in the wind tunnel.

The vertical support includes symmetric airfoil fairing pieces that were 3D printed
from polylactic acid (PLA) filament and inserted into the quad rail slots. The airfoil leading
edge extends 1.5 inches ahead of the quad rail, and the trailing edge extends 6.5 inches
behind, such that the total chord length of the vertical support is 10 inches. The distance
between the propeller plane of rotation and the leading edge of the vertical support fairing
is 36 inches, equal to twice the distance of the maximum 18 in propeller diameter, consistent
with that of NASA designs noted in previous work, and also an improvement over the
previous OSU design.

2.2. Wind Tunnel and Data Acquisition System

The dynamometer is in operation at Oklahoma State University in the Advanced
Technology Research Center (ATRC). The wind tunnel has a 125 hp draw down drive
motor. The test section has a 3 ft by 3 ft area. The wind tunnel has a pitot-static probe
positioned at the entrance of the test section, 18 in from the bottom of the test section. The
pitot-static probe is 3 ft from the propeller rotational plane on the propeller dynamometer,
and it is plumbed to an Omega differential pressure transducer with a 0.072 psi range. The
pressure transducer is driven by a 24 V, 10 A National Instruments (NI) power supply.
The transducer signal passes through a Phoenix Contact interface module that converts
the wired signal to a D-SUB port. The signal is then sent into an NI analog input module.
This analog input module is attached to an NI 8-slotted chassis that compiles the signals
received and transmits the data to a Dell Precision Tower 5810 computer. This computer
also uses the same NI chassis for sending signals to drive the wind tunnel fan through an
NI analog output module and a corresponding Phoenix Contact D-SUB interface.

The wires from the dynamometer Hall-effect sensor are connected to an Arduino
Uno to compute RPM measurements. The Arduino Uno sends this RPM data to the Dell
computer through a USB cable. The dynamometer Futek thrust and torque load cell is
connected to the Dell computer by two USB connectors corresponding to each measurement,
as shown in Figure 10 and Table 2.
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Figure 10. Wind tunnel data acquisition schematic.

Table 2. Wind tunnel data acquisition instruments.

Instruments Manufacturer Model Specifications

Differential Pressure Omega PX653 Range 0.072 psi,
Transducer Engineering -02D5V +/−0.3% of full scale

Power Supply National NI PS-16 24 V, 10 A, 240 W
Instruments

Signal Interface Phoenix 2281212 37-pole
to D-SUB Contact

Signal Management National NI 8 slots for modules
Chassis Instruments cDAQ-9188

Analog Signal National NI 9220 16-bit, +/−10 V,
Input Module Instruments 16 channels

Analog Signal National NI 9264 16-bit, +/−10 V, 4 mA
Output Module Instruments 16 channels

RPM Signal Arduino Uno Rev3 Operates at 5 V,
Processor Clock Speed 16 MHz

Computer DAQ Dell Precision 64-bit, 32 GB RAM,
5810 Tower 3.6 GHz processor

2.3. Experimental Procedures

Experiments in this study obtained data for five APC propellers, as depicted in Table 3.
Data include wind tunnel air speed (ranging from 25 ft/s to 50 ft/s); propeller RPM (ranging
from 1500 to 5500), thrust, and torque; and power supply voltage and current. Airspeed,
RPM, and power supply data were obtained by visually reading measurement displays.
Thrust and torque data were recorded using Sensit software. The wind tunnel utilizes a
closed-loop speed controller to maintain airspeed at a desired value. The procedure used
in this study for obtaining propeller data is as follows:

1. Open Arduino software for displaying propeller RPM; the Arduino measures the
RPM at 4 Hz.

2. Open Sensit software to tare instruments and adjust settings for autonomous testing
to record thrust and torque.

3. Turn on wind tunnel fan drive motor power and set test section speed to 25 ft/s.
4. Set propeller speed to 1500 RPM using servo tester and Arduino display.
5. Visually read and manually record all displays, averaging five measurements for

propeller RPM and power supply voltage and current.
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6. Run Sensit software autonomous recorder for 10 s at 100 samples per second.
7. Repeat steps 5 through 8 at propeller speeds ranging from 1500 to 5500 RPM.
8. Repeat steps 5 through 9 for wind tunnel air speeds ranging from 25 to 50 ft/s.

Table 3. Propeller test matrix to study effects of diameter and pitch.

Pitch

Diameter 10 12 14

18 x x x

16 x

14 x

3. Results

The method proposed to validate the dynamometer is to first show proper application
of the BEMT code to match existing experimental data for propellers with geometry similar
to those used in this study. Then, the BEMT code is used to validate experimental propeller
performance from the dynamometer used here. Equation (1) is used to estimate the range
of Reynolds number conditions for each propeller tested. Reynolds numbers for the study
stay between 28,000 to 94,000 for the 14-inch diameter propeller and between 68,000 to
230,000 for 18-inch propellers. The low-Reynolds-number conditions are associated with
low freestream velocity and low angular velocity.

3.1. Manufacturer-Published Propeller Data and BEMT Results

Figure 11, is a plot of BEMT results including thrust coefficient and propeller efficiency
versus the advance ratio for an 18 × 12E APC propeller. The plot includes results from
blade element momentum theory (BEMT) and APC published data. The published APC
data are obtained analytically according to the APC database website, and no further
information is provided regarding data methodology. The BEMT results cover a range
of propeller speeds from 1500 to 5500 RPM, whereas the APC data range is from 1000 to
6000 RPM. Each line on the plot represents a different RPM. The plot indicates that thrust
coefficient decreases as advance ratio increases. Initially, propeller efficiency increases as
advance ratio increases, then rapidly decreases for advance ratios greater than 0.63. APC
results extend to a maximum advance ratio greater than 0.7, but BEMT results in this study
are less than 0.7. Increasing RPM results in both higher thrust coefficient and propeller
efficiency. The BEMT propeller efficiency peaks are lower than those from APC and occur
at lower advance ratios. Thrust coefficient results from BEMT are lower than those from
APC; however, they are similar in slope.
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Figure 11. BEMT and APC CT , ηP of a 18 × 12 APC propeller. Each line represents a constant RPM
increasing from bottom to top of the plot.
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Figure 12 shows experimental results from UIUC for a 14 × 12E APC propeller
compared to those from the BEMT code. The plot for BEMT and UIUC experimental
results includes thrust coefficient and propeller efficiency as a function of advance ratio
at 3500 RPM [27]. The results are in close agreement in terms of propeller efficiency up
to an advance ratio of 0.6. The BEMT code under-predicts thrust coefficient by as much
as 15% for advance ratios below 0.3. In general, the BEMT results are more reliable than
the APC published performance in the previous figure. Though the BEMT results are
only reliable for validating performance over advance ratios of 0.3 to 0.6, they capture
the general trends beyond that range, including the slope of the thrust coefficient for
advance ratios between 0.6 and 0.8 and the rapid drop in propeller efficiency at an advance
ratio of about 0.8. The other main take-away is that the BEMT code used in this study
is indeed properly applied, acknowledging that the analytical model is not expected to
capture complicated viscous flow effects at high and low advance ratios where the blade
experiences very low and high relative angles of attack. Discrepancies may also possibly
result from experimental uncertainty and airfoil aerodynamic data that does not capture
three-dimensional flow effects.
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Figure 12. BEMT and UIUC CT , ηP of a 14 × 12E APC propeller at 3500 RPM [27].

3.2. Experimental Results Compared to Blade Element Momentum Theory (BEMT) Results

Figure 13 shows the experimental and BEMT results for 18 × 10E, 18 × 12E, and 18 × 14
APC propellers. The first two propellers are of a comparable thin, electric type, and the third
propeller is classified as a sport propeller. The plotted results include thrust coefficient and
propeller efficiency as functions of the advance ratio. All of the plots indicate that the thrust
coefficient decreases as the advance ratio increases. Initially, propeller efficiency increases
as advance ratio increases, then rapidly decreases at high advance ratios. Observations
from Plots A and B in Figure 13 indicate the experimental peak efficiency for propellers
18 × 10E and 18 × 12E occurs at higher advance ratios as pitch increases. The experimental
thrust coefficient lines increase with pitch for the 18 × 10E and 18 × 12E propellers, which
is expected. The BEMT results are generally consistent with experimental results for
advance ratios between 0.3 and 0.6, such that the dynamometer appears to produce valid
performance. The BEMT results have less agreement with the 18 × 14 sport propeller than
with the thin electric propellers. It also appears that the dynamometer is able to show that
performance trends are not consistent across the 18 × 12E thin electric and 18 × 14 sport
propellers with increasing pitch.
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Figure 13. BEMT and experimental CT and ηP for APC propellers 18 × 10E, 18 × 12E, and 18 × 14.

Figure 14 shows experimental and BEMT results in plots A, B, and C for 18 × 12E,
16 × 12E, and 14 × 12 APC propellers, respectively. The first two propellers are more
comparable, both being of a thin electric type. Consistent with aforementioned results
for all the propellers, efficiency initially increases as advance ratio increases, then rapidly
decreases, and thrust coefficient decreases with increasing advance ratio. Results from plots
D and E in Figure 14 indicate peak efficiency occurs at a lower advance ratio with decreasing
diameter, which is expected. The slope of the thrust coefficient for both experimental and
BEMT decreases as the propeller diameter decreases. The BEMT results are in good
agreement with experimental results over advance ratios from 0.3 to 0.6 for the thin electric
propellers, but under-predict performance for the 14 × 12 sport propeller. The BEMT code
appears to be better for validating dynamometer data from thin electric propellers, and the
propeller dynamometer appears to be able to resolve differences between propeller types:
thin electric and sport.
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Figure 14. BEMT and experimental CT and ηP for APC propellers 18 × 12E, 16 × 12, and 14 × 12.

4. Discussion

4.1. Comparison of BEMT and Experimental Results

As indicated in Figure 11, there is a significant difference between the BEMT code
and APC results, likely due to different analytical methods and application of airfoil data.
The APC published data have been found inconsistent by other studies: Alves, 2014 [28]
and Trevor’s master thesis, 2009 [29]. Figure 12 furthermore shows that the BEMT code
produces more reliable data for validating dynamometer experimental data, which is likely
due to the treatment of Reynolds number effects. Increasing the Reynolds number results
in increased thrust coefficient and propeller efficiency because an increase in the Reynolds
number increases the sectional lift coefficient and decreases the blade drag coefficient [11].
The BEMT analysis captures these effects by incorporating airfoil data, rendering a more
conservative prediction for both propeller efficiency and thrust coefficient.

As the advance ratio increases to a magnitude of about 0.6 at either low airspeed or low
rotational speeds, the propeller is expected to encounter a sufficiently low Reynolds number
that it is susceptible to boundary layer separation. The resulting effect is a sharp decline in
propeller efficiency and near zero thrust coefficient as the flow relative to the propeller may
render a negative angle of attack. Under this condition, flow is expected to separate around
the bottom (pressure side) of the propeller. The experimental data from the dynamometer is
consistent with this expectation, having better agreement with the BEMT results than those
of APC. Thus, the BEMT code is shown to be accurate and useful to validate dynamometer
performance over a range of advance ratios from about 0.3 to 0.6.
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4.2. Effect of Pitch and Diameter

Increasing propeller pitch from 10 to 12 inches increases the susceptibility of boundary
layer separation. This is apparent in Figure 13, where experimental results for efficiency
peak at lower advance ratios with increasing pitch, particularly for thin electric propellers.
The dynamometer is able to resolve the difference between thin electric and sport propellers,
though the trend in pitch is not comparable across the propeller types. Therefore, the BEMT
code appears to be more effective for validating a dynamometer with thin electric propellers,
and a reliable dynamometer should be able to indicate a trend in pitch and difference in
propeller types.

Likewise, as propeller diameter decreases from 18 to 16 inches, peak propeller ef-
ficiency shifts to lower advance ratios due to low operating Reynolds numbers, which
is apparent from experimental data in Figure 14. At low Reynolds numbers, the flow is
dominated by viscous forces [11], hence increasing the sectional drag coefficient and flow
separation; therefore hindering propeller efficiency and thrust coefficient, as manifested in
the experimental results. Thus, a reliable dynamometer should also be able to resolve the
effects of propeller diameter.

4.3. Uncertainty Analysis

Instrument bias error in this study is summarized in Table 4. The thrust–torque load
cell measured the thrust and torque produced by the propeller, the pressure transducer
measured the dynamic pressure, and the Hall-effect sensor measured the rotational speed
of the propeller. Bias error is sufficiently low in this study to support conclusions.

Table 4. Instrumentation error

Instrument Bias Error

Thrust–Torque load cell 0.25% RO

Temperature probe 0.05

Pressure transducer 0.3%

Hall-effect sensor 1.5 ms

In this study, an uncertainty analysis was performed on 18 × 10 propeller data. The
standard deviation of measurements from the torque and thrust sensors are computed and
used to determine precision error for thrust coefficient and propeller efficiency calculations.
Figure 15 includes a plot of error for an 18 × 10 APC propeller. The plot of precision
error shows how insignificant the error contribution is in the measurement data, as it
is indistinguishable from the actual data measurement points. Therefore, the error in
experimental data is sufficiently low.
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Figure 15. Plot of error on an 18 × 10 APC propeller.
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Table 5 includes a breakdown of precision error contributions from the thrust and
torque at a rotational speed of 3500 RPM and various wind tunnel speeds from 25 to 50 ft/s.
Percent error for thrust and propeller efficiency is calculated using the standard deviation
of thrust and propeller efficiency divided by average thrust and propeller efficiency values.
The percent error is higher for thrust coefficient than propeller efficiency but does not
exceed 7.7%.

Table 5. Thrust and propeller efficiency error at 3500 RPM for an 18 × 10 APC propeller.

Speed (ft/s) CT ηP CT Error ηP Error % CT Error % ηP Error

25 0.0744 0.5523 0.0006 0.0029 0.7812 0.5255

30 0.0678 0.6147 0.0009 0.0055 1.3342 0.8993

35 0.0627 0.6661 0.0025 0.0181 4.0577 2.7155

40 0.0515 0.6777 0.0013 0.0113 2.5679 1.6712

45 0.0370 0.6424 0.0020 0.0219 5.3265 3.4038

50 0.0284 0.6009 0.0022 0.0283 7.6710 4.7056

5. Conclusions

Group 2 unmanned aircraft represent a large and continually growing segment of
aerospace operations and businesses that demand optimal mission performance enabled by
propulsion systems. It is critical that reliable experimental propeller performance data are
available to UAS designers and mission planners, especially when progressing from low-
order models to validated, higher-fidelity estimates. Wind tunnel propeller dynamometer
designs have been well-documented for a range of propeller sizes, and the principles have
been applied to the dynamometer design in this study. However, it is important to have a
proper method to validate dynamometer performance, which is particularly challenging for
propellers at the low-Reynolds-number operating conditions often associated with Group 2
UAS. Because there is a lack of validated wind tunnel performance data for this particular
scale, an approach to validating such wind tunnel propeller dynamometers is presented
here. The method includes using BEMT code and experimental results to authenticate
a dynamometer.

The proper application of the BEMT code was shown by comparing results to existing
propeller data of a smaller scale (14 × 12E), revealing less than 10% difference between
BEMT and experimental results over a range of advance ratios from 0.3 to 0.6. The BEMT
code was then applied to larger-scale propellers to predict performance with a wind tunnel
dynamometer at airspeeds relevant to Group 2 UAS. BEMT and experimental results were
in good agreement, particularly for thin electric propellers, up to advance ratios of about
0.6, above which Reynolds number effects become problematic such that BEMT predicted
propeller efficiency increases as thrust coefficient approaches zero.

The validation method proposed here also involved experimentally demonstrating
expected effects of propeller diameter and pitch. Results showed that a reliable dynamome-
ter should resolve that peak efficiency occurs at higher advance ratios with increasing
pitch, showing peak efficiency at about a 25% higher advance ratio when increasing pitch
from an 18 × 10E to 18 × 12E propeller. This effect was particularly noticeable for thin
electric propellers. Peak efficiency also shifts to lower advance ratios as propeller diameter
decreases. Peak efficiency occured at a 10% lower advance ratio from an 18 × 12E to
16 × 12E propeller. Furthermore, a dynamometer should be able to resolve differences
in propeller type, as shown by results for thin electric and sport propellers, particularly
apparent when comparing 18 × 12E thin electric propeller results to those of an 18 × 14
sport propeller.

Use of the method presented here is recommended for validating wind tunnel propeller
dynamometers for Group 2 UAS. It is important to apply it to advance ratios between about
0.3 and 0.6 to ensure reliable propeller performance data. A validated dynamometer should
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produce thrust coefficient and propeller efficiency results within 10% of the results from BEMT
analysis. Furthermore, a validated dynamometer should be able to resolve performance effects
associated with varying propeller diameter and pitch, as well as propeller type. Future work
related to this study is recommended to show the effects of novel flow control methods to
mitigate degraded propeller performance due to low-Reynolds-number operating conditions.
Results from such a study will be enabled with a validated propeller dynamometer.
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Appendix A. Propeller Modelling

The BEM code requires inputs of (1) propeller geometry and (2) 2-D sectional aerody-
namic characteristics along the span. The data used in the BEM analysis in this paper are
presented in this Appendix.

Appendix A.1. Propeller Geometry

The blade element model requires a geometric description of the propeller geometry
to specify the twist distribution and airfoil profile along the length of the blade. Beta is the
measured geometric pitch angle between the chord line and fixed plane of rotation. The
tables below capture the inputs to the BEM code used to generate the theoretical data in
Figures 11–14. As documented in the narrative, since the vast majority of the propeller
blade was reported to feature the NACA 4412 cross-section, the BEM results for all radial
stations used airfoil data from this profile at the appropriate Reynolds number.

Table A1. APC 14 × 12 propeller geometry.

r/R c/R Beta

0.08 0.134 33.34

0.15 0.136 43.37

0.23 0.147 50.88

0.30 0.146 46.08

0.37 0.148 40.23

0.44 0.153 34.88

0.51 0.157 31.33

0.58 0.157 28.22

0.65 0.154 25.52

0.73 0.147 23.64

0.80 0.132 21.06

0.87 0.110 18.89

0.94 0.076 16.25
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Table A2. APC 16 × 12 propeller geometry.

r/R c/R Beta

0.06 0.105 25.96

0.12 0.102 33.08

0.19 0.118 49.51

0.25 0.136 47.22

0.31 0.151 40.52

0.37 0.161 34.33

0.44 0.163 30.69

0.50 0.161 27.12

0.56 0.153 23.56

0.62 0.142 20.87

0.69 0.130 19.29

0.75 0.113 18.19

0.81 0.098 16.78

0.87 0.084 15.80

0.94 0.071 14.66

1.00 0.056 13.21

Table A3. APC 18 × 10 propeller geometry.

r/R c/R Beta

0.07 0.118 17.45

0.12 0.113 23.32

0.18 0.122 39.95

0.24 0.138 39.84

0.29 0.150 34.43

0.35 0.158 30.05

0.40 0.162 26.22

0.46 0.161 22.68

0.51 0.155 19.17

0.57 0.146 18.71

0.62 0.136 15.91

0.68 0.121 15.76

0.74 0.107 14.77

0.79 0.092 14.12

0.85 0.076 13.54

0.90 0.064 13.29

0.96 0.036 11.60
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Table A4. APC 18 × 12 propeller geometry.

r/R c/R Beta

0.07 0.116 20.10

0.12 0.108 26.44

0.18 0.119 41.44

0.24 0.135 45.10

0.29 0.146 38.65

0.35 0.158 33.53

0.40 0.162 27.55

0.46 0.162 25.11

0.51 0.157 23.11

0.57 0.150 20.21

0.62 0.139 19.13

0.68 0.128 17.51

0.74 0.114 15.91

0.79 0.098 14.50

0.85 0.085 13.07

0.90 0.072 12.63

0.96 0.060 12.43

Table A5. APC 18 × 14 propeller geometry.

r/R c/R Beta

0.10 0.166 25.85

0.15 0.160 31.05

0.21 0.164 36.02

0.26 0.168 41.86

0.32 0.161 39.68

0.37 0.154 36.01

0.43 0.145 33.35

0.49 0.137 31.61

0.54 0.127 29.28

0.60 0.117 27.61

0.65 0.105 25.28

0.71 0.094 23.91

0.76 0.081 21.55

0.82 0.071 19.34

0.87 0.058 19.07

0.93 0.045 16.94
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Appendix A.2. 2-D Sectional Aerodynamic Characteristics for APC Propeller Airfoils
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Figure A1. Lift coefficient from XFOIL at different Reynolds numbers ranging from 2 × 104 to 1 × 106.
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Figure A2. Drag coefficient from XFOIL at different Reynolds numbers ranging from 2 × 104 to 1 × 106.
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Appendix B. Experimental Data

Table A6. APC 14 × 12 propeller wind tunnel raw data.

Speed (ft/s) RPM Prop Power (ft-lb/s) Thrust (lb) Torque (ft-lb)

25 1517 2.12 −0.0026 0.0133

25 2548 22.46 0.4938 0.0842

25 3504 64.05 1.3175 0.1745

25 4507 139.06 2.5406 0.2946

25 5512 241.54 3.9042 0.4184

30 1553 0.26 −0.0954 0.0016

30 2537 20.95 0.3907 0.0789

30 3497 66.53 1.2598 0.1817

30 4611 147.11 2.5109 0.3047

30 5464 242.12 3.7959 0.4231

35 1506 −1.77 −0.1895 −0.0112

35 2585 19.12 0.2780 0.0706

35 3570 67.26 1.1316 0.1799

35 4520 137.48 2.2219 0.2905

35 5558 262.62 3.8355 0.4512

40 1532 −2.81 −0.2715 −0.0175

40 2503 12.73 0.0892 0.0486

40 3571 63.73 0.9422 0.1704

40 4572 143.93 2.1730 0.3006

40 5639 271.58 3.7189 0.4599

45 1757 −5.30 −0.4801 −0.0288

45 2597 9.19 −0.0488 0.0338

45 3586 61.78 0.7965 0.1645

45 4517 143.36 2.0220 0.3031

45 5511 265.88 3.4931 0.4607

50 1817 −6.93 −0.6062 −0.0364

50 2545 2.18 −0.2460 0.0082

50 3525 48.38 0.4729 0.1311

50 4554 141.67 1.7964 0.2971

50 5559 260.34 3.1404 0.4472

Table A7. APC 14 × 12 propeller wind tunnel processed data.

J Cp Cq Ct eta

0.8475 0.0269 0.0043 −0.0010 −0.0305

0.5046 0.0604 0.0096 0.0657 0.5496

0.3669 0.0662 0.0105 0.0928 0.5143

0.2853 0.0675 0.0107 0.1081 0.4567
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Table A7. Cont.

J Cp Cq Ct eta

0.2333 0.0641 0.0102 0.1111 0.4041

0.9935 0.0031 0.0005 −0.0342 −10.8215

0.6081 0.0570 0.0091 0.0525 0.5594

0.4412 0.0692 0.0110 0.0890 0.5681

0.3346 0.0667 0.0106 0.1021 0.5121

0.2824 0.0660 0.0105 0.1099 0.4703

1.1952 −0.0230 −0.0037 −0.0722 3.7498

0.6963 0.0492 0.0078 0.0360 0.5089

0.5042 0.0657 0.0105 0.0767 0.5888

0.3982 0.0662 0.0105 0.0940 0.5656

0.3239 0.0680 0.0108 0.1073 0.5112

1.3428 −0.0348 −0.0055 −0.1000 3.8612

0.8219 0.0361 0.0057 0.0123 0.2803

0.5761 0.0622 0.0099 0.0639 0.5913

0.4499 0.0670 0.0107 0.0899 0.6039

0.3648 0.0673 0.0107 0.1011 0.5477

1.3172 −0.0434 −0.0069 −0.1344 4.0793

0.8911 0.0233 0.0037 −0.0062 −0.2387

0.6454 0.0596 0.0095 0.0535 0.5801

0.5124 0.0692 0.0110 0.0857 0.6347

0.4199 0.0706 0.0112 0.0994 0.5912

1.4152 −0.0513 −0.0082 −0.1587 4.3749

1.0104 0.0059 0.0009 −0.0328 −5.6469

0.7295 0.0491 0.0078 0.0329 0.4887

0.5647 0.0667 0.0106 0.0749 0.6340

0.4626 0.0674 0.0107 0.0878 0.6031

Table A8. APC 16 × 12 propeller wind tunnel raw data.

Speed (ft/s) RPM Prop Power (ft-lb/s) Thrust (lb) Torque (ft-lb)

25 1517 3.3576 0.0123 0.0211

25 2536 32.8465 0.8271 0.1237

25 3514 94.5394 2.0389 0.2569

25 4493 207.2060 3.7727 0.4404

25 5558 397.2475 5.9101 0.6825

30 1562 −0.3397 −0.1378 −0.0021

30 2582 30.0892 0.5983 0.1113

30 3512 98.4049 2.0062 0.2676

30 4581 212.5770 3.6594 0.4431

30 5527 392.3271 5.7619 0.6778
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Table A8. Cont.

Speed (ft/s) RPM Prop Power (ft-lb/s) Thrust (lb) Torque (ft-lb)

35 1567 −1.9920 −0.2394 −0.0121

35 2563 20.8815 0.3098 0.0778

35 3531 96.5214 1.8132 0.2610

35 4450 210.3278 3.5873 0.4513

35 5522 384.5077 5.5179 0.6649

40 1583 −4.0567 −0.3500 −0.0245

40 2567 16.5423 0.1505 0.0615

40 3494 93.6156 1.6205 0.2559

40 4543 216.9924 3.4430 0.4561

40 5577 416.5673 5.7364 0.7133

45 1558 −5.7658 −0.4778 −0.0353

45 2550 8.5515 −0.0995 0.0320

45 3562 92.5229 1.3869 0.2480

45 4624 221.8607 3.2377 0.4582

45 5555 418.4753 5.5473 0.7194

50 1591 −7.2435 −0.5630 −0.0435

50 2614 3.1477 −0.2578 0.0115

50 3491 71.9359 0.8795 0.1968

50 4470 202.9432 2.7901 0.4335

50 5560 405.0720 5.0691 0.6957

Table A9. APC 16 × 12 propeller wind tunnel processed data.

J Cp Cq Ct eta

0.7416 0.0219 0.0035 0.0027 0.0916

0.4436 0.0459 0.0073 0.0652 0.6295

0.3201 0.0497 0.0079 0.0837 0.5392

0.2504 0.0521 0.0083 0.0947 0.4552

0.2024 0.0528 0.0084 0.0969 0.3719

0.8643 −0.0020 −0.0003 −0.0286 12.1662

0.5229 0.0399 0.0063 0.0455 0.5965

0.3844 0.0518 0.0082 0.0824 0.6116

0.2947 0.0504 0.0080 0.0884 0.5164

0.2443 0.0530 0.0084 0.0956 0.4406

1.0051 −0.0118 −0.0019 −0.0494 4.2061

0.6145 0.0283 0.0045 0.0239 0.5192

0.4460 0.0500 0.0080 0.0737 0.6575

0.3539 0.0544 0.0087 0.0918 0.5970

0.2852 0.0521 0.0083 0.0917 0.5023
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Table A9. Cont.

J Cp Cq Ct eta

1.1371 −0.0233 −0.0037 −0.0708 3.4508

0.7012 0.0223 0.0035 0.0116 0.3639

0.5152 0.0500 0.0080 0.0673 0.6924

0.3962 0.0528 0.0084 0.0845 0.6347

0.3228 0.0548 0.0087 0.0935 0.5508

1.2997 −0.0348 −0.0055 −0.0997 3.7291

0.7941 0.0118 0.0019 −0.0078 −0.5235

0.5685 0.0467 0.0074 0.0554 0.6745

0.4379 0.0512 0.0081 0.0767 0.6567

0.3645 0.0557 0.0089 0.0911 0.5965

1.4142 −0.0410 −0.0065 −0.1127 3.8860

0.8607 0.0040 0.0006 −0.0191 −4.0950

0.6445 0.0386 0.0061 0.0366 0.6113

0.5034 0.0518 0.0082 0.0708 0.6874

0.4047 0.0537 0.0086 0.0831 0.6257

Table A10. APC 18 × 10 propeller wind tunnel raw data.

Speed (ft/s) RPM Prop Power (ft-lb/s) Thrust (lb) Torque (ft-lb)

25 1493 1.7466 −0.0729 0.0112

25 2502 38.1768 0.7454 0.1457

25 3550 134.2274 2.9654 0.3611

25 4516 290.6071 5.4911 0.6145

25 5577 555.7216 8.8060 0.9515

30 1587 0.2933 −0.2048 0.0018

30 2545 38.1715 0.6941 0.1432

30 3563 132.8820 2.7229 0.3561

30 4545 303.2770 5.4487 0.6372

30 5605 566.9247 8.6415 0.9659

35 1491 −2.9645 −0.3939 −0.0190

35 2530 29.5088 0.4109 0.1114

35 3537 130.3511 2.4809 0.3519

35 4549 293.3680 4.9574 0.6158

35 5548 553.0162 8.1742 0.9518

40 1528 −5.4990 −0.5608 −0.0344

40 2540 17.9976 0.0193 0.0677

40 3521 119.0318 2.0167 0.3228

40 4540 296.0171 4.7365 0.6226

40 5554 586.3313 8.3267 1.0081

45 1636 −7.4761 −0.7072 −0.0436
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Table A10. Cont.

Speed (ft/s) RPM Prop Power (ft-lb/s) Thrust (lb) Torque (ft-lb)

45 2540 7.0606 −0.3134 0.0265

45 3550 103.2212 1.4735 0.2777

45 4531 282.4474 4.1983 0.5953

45 5533 553.6882 7.4286 0.9556

50 1958 −11.9256 −0.8949 −0.0582

50 2599 −0.6172 −0.5372 −0.0023

50 3614 97.6277 1.1733 0.2580

50 4538 289.6495 4.0235 0.6095

50 5491 547.6228 6.9882 0.9523

Table A11. APC 18 × 10 propeller wind tunnel processed data.

J Cp Cq Ct eta

0.6698 0.0066 0.0011 −0.0103 −1.0433

0.3997 0.0308 0.0049 0.0377 0.4881

0.2817 0.0380 0.0060 0.0744 0.5523

0.2214 0.0399 0.0064 0.0852 0.4724

0.1793 0.0405 0.0065 0.0896 0.3961

0.7561 0.0009 0.0001 −0.0257 −20.9487

0.4715 0.0293 0.0047 0.0339 0.5455

0.3368 0.0372 0.0059 0.0678 0.6147

0.2640 0.0409 0.0065 0.0834 0.5390

0.2141 0.0407 0.0065 0.0870 0.4573

0.9390 −0.0113 −0.0018 −0.0561 4.6505

0.5534 0.0231 0.0037 0.0203 0.4873

0.3958 0.0373 0.0059 0.0627 0.6661

0.3078 0.0394 0.0063 0.0758 0.5914

0.2523 0.0410 0.0065 0.0840 0.5173

1.0471 −0.0195 −0.0031 −0.0760 4.0794

0.6299 0.0139 0.0022 0.0009 0.0428

0.4544 0.0345 0.0055 0.0515 0.6777

0.3524 0.0400 0.0064 0.0727 0.6400

0.2881 0.0433 0.0069 0.0854 0.5681

1.1002 −0.0216 −0.0034 −0.0836 4.2569

0.7087 0.0055 0.0009 −0.0154 −1.9971

0.5070 0.0292 0.0046 0.0370 0.6424

0.3973 0.0384 0.0061 0.0647 0.6689

0.3253 0.0414 0.0066 0.0768 0.6037

1.0215 −0.0201 −0.0032 −0.0738 3.7520
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Table A11. Cont.

J Cp Cq Ct eta

0.7695 −0.0004 −0.0001 −0.0252 43.5244

0.5534 0.0262 0.0042 0.0284 0.6009

0.4407 0.0392 0.0062 0.0618 0.6945

0.3642 0.0419 0.0067 0.0733 0.6380

Table A12. APC 18 × 12 propeller wind tunnel raw data.

Speed (ft/s) RPM Prop Power (ft-lb/s) Thrust (lb) Torque (ft-lb)

25 1465 3.2814 −0.0176 0.0214

25 2605 58.2540 1.4280 0.2135

25 3495 155.3620 3.2658 0.4245

25 4477 326.9132 5.6701 0.6973

25 5563 701.1023 9.4475 1.2035

30 1528 2.0179 −0.0675 0.0126

30 2565 54.5721 1.2151 0.2032

30 3565 163.1383 3.1777 0.4370

30 4537 338.4828 5.5851 0.7124

30 5578 673.1802 9.3279 1.1524

35 1555 −0.3309 −0.2151 −0.0020

35 2582 49.1241 0.9251 0.1817

35 3514 160.9492 2.9766 0.4374

35 4551 347.4308 5.4896 0.7290

35 5512 658.7973 8.9966 1.1413

40 1545 −4.1078 −0.4108 −0.0254

40 2511 29.4174 0.2568 0.1119

40 3531 161.4175 2.7666 0.4365

40 4534 342.2056 5.1365 0.7207

40 5535 660.1781 8.6858 1.1390

45 1594 −7.6263 −0.5733 −0.0457

45 2535 23.2764 0.1630 0.0877

45 3533 150.9018 2.3357 0.4079

45 4543 356.3566 5.0688 0.7490

45 5571 685.1968 8.6133 1.1745

50 1620 −10.5793 −0.7594 −0.0624

50 2511 4.8097 −0.3416 0.0183

50 3525 153.1912 2.1657 0.4150

50 4518 341.6694 4.5298 0.7221

50 5584 672.1857 7.9985 1.1495
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Table A13. APC 18 × 12 propeller wind tunnel processed data.

J Cp Cq Ct eta

0.6826 0.0132 0.0021 −0.0026 −0.1341

0.3839 0.0417 0.0066 0.0666 0.6128

0.2861 0.0460 0.0073 0.0846 0.5255

0.2234 0.0461 0.0073 0.0895 0.4336

0.1798 0.0515 0.0082 0.0966 0.3369

0.7853 0.0072 0.0011 −0.0091 −1.0029

0.4678 0.0409 0.0065 0.0584 0.6680

0.3366 0.0456 0.0073 0.0791 0.5844

0.2645 0.0459 0.0073 0.0858 0.4950

0.2151 0.0491 0.0078 0.0948 0.4157

0.9003 −0.0011 −0.0002 −0.0281 22.7538

0.5422 0.0361 0.0057 0.0439 0.6591

0.3984 0.0469 0.0075 0.0763 0.6473

0.3076 0.0466 0.0074 0.0838 0.5530

0.2540 0.0498 0.0079 0.0937 0.4780

1.0356 −0.0141 −0.0022 −0.0544 3.9998

0.6372 0.0235 0.0037 0.0129 0.3492

0.4531 0.0464 0.0074 0.0702 0.6856

0.3529 0.0465 0.0074 0.0790 0.6004

0.2891 0.0493 0.0078 0.0897 0.5263

1.1292 −0.0238 −0.0038 −0.0714 3.3827

0.7101 0.0181 0.0029 0.0080 0.3152

0.5095 0.0433 0.0069 0.0592 0.6965

0.3962 0.0481 0.0077 0.0777 0.6401

0.3231 0.0501 0.0080 0.0878 0.5657

1.2346 −0.0315 −0.0050 −0.0915 3.5890

0.7965 0.0038 0.0006 −0.0171 −3.5512

0.5674 0.0443 0.0070 0.0551 0.7069

0.4427 0.0469 0.0075 0.0702 0.6629

0.3582 0.0488 0.0078 0.0811 0.5950

Table A14. APC 18 × 14 propeller wind tunnel raw data.

Speed (ft/s) RPM Prop Power (ft-lb/s) Thrust (lb) Torque (ft-lb)

25 1568 10.7621 0.2042 0.0655

25 2505 59.5548 1.3286 0.2270

25 3490 174.4010 3.6346 0.4772

25 4529 349.5821 6.0447 0.7371

25 5593 638.6751 9.3844 1.0904

30 1548 7.8084 0.0967 0.0482

30 2551 66.4363 1.3760 0.2487
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Table A14. Cont.

Speed (ft/s) RPM Prop Power (ft-lb/s) Thrust (lb) Torque (ft-lb)

30 3589 186.9023 3.5863 0.4973

30 4586 389.4933 6.4469 0.8110

30 5620 672.2617 9.5368 1.1423

35 1508 4.0276 −0.0445 0.0255

35 2515 52.8140 0.9359 0.2005

35 3599 194.3804 3.4965 0.5157

35 4523 376.0632 5.9869 0.7940

35 5520 677.5513 9.4613 1.1721

40 1557 1.1586 −0.1782 0.0071

40 2494 46.1492 0.7157 0.1767

40 3544 179.5197 3.0255 0.4837

40 4600 396.5264 5.9353 0.8231

40 5549 678.3220 8.9954 1.1673

45 1509 −3.3940 −0.3962 −0.0215

45 2545 39.6254 0.4673 0.1487

45 3533 188.1003 2.9451 0.5084

45 4552 404.3274 5.7631 0.8482

45 5514 686.6947 8.7378 1.1892

50 1450 −3.1609 −0.4205 −0.0208

50 2548 34.1172 0.2830 0.1279

50 3514 188.8147 2.7235 0.5131

50 4504 378.1394 4.9877 0.8017

50 5537 711.8156 8.5555 1.2276

Table A15. APC 18 × 14 propeller wind tunnel processed data.

J Cp Cq Ct eta

0.6378 0.0353 0.0056 0.0263 0.4745

0.3992 0.0479 0.0076 0.0670 0.5577

0.2865 0.0519 0.0083 0.0944 0.5210

0.2208 0.0476 0.0076 0.0932 0.4323

0.1788 0.0462 0.0074 0.0949 0.3673

0.7752 0.0266 0.0042 0.0128 0.3715

0.4704 0.0506 0.0081 0.0669 0.6213

0.3344 0.0512 0.0081 0.0881 0.5756

0.2617 0.0511 0.0081 0.0970 0.4966

0.2135 0.0479 0.0076 0.0955 0.4256

0.9284 0.0149 0.0024 −0.0062 −0.3863

0.5567 0.0420 0.0067 0.0468 0.6202

0.3890 0.0528 0.0084 0.0854 0.6296

0.3095 0.0514 0.0082 0.0926 0.5572
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Table A15. Cont.

J Cp Cq Ct eta

0.2536 0.0510 0.0081 0.0982 0.4887

1.0276 0.0039 0.0006 −0.0233 −6.1519

0.6415 0.0376 0.0060 0.0364 0.6204

0.4515 0.0510 0.0081 0.0762 0.6741

0.3478 0.0515 0.0082 0.0887 0.5987

0.2883 0.0502 0.0080 0.0924 0.5305

1.1928 −0.0125 −0.0020 −0.0550 5.2532

0.7073 0.0304 0.0048 0.0228 0.5306

0.5095 0.0540 0.0086 0.0746 0.7046

0.3954 0.0542 0.0086 0.0880 0.6414

0.3264 0.0518 0.0082 0.0909 0.5726

1.3793 −0.0131 −0.0021 −0.0633 6.6513

0.7849 0.0261 0.0042 0.0138 0.4147

0.5692 0.0551 0.0088 0.0698 0.7212

0.4440 0.0524 0.0083 0.0778 0.6595

0.3612 0.0531 0.0084 0.0883 0.6010

Table A16. BEMT 14 × 12 APC propeller data.

Run at 1500 RPM Run at 2500 RPM
J Ct Cp eta J Ct Cp eta

0 0.116505 0.095371 0 0 0.120413 0.09114 0
0.1 0.1191 0.096204 0.1238 0.1 0.122606 0.092654 0.1323
0.2 0.116987 0.09698 0.2413 0.2 0.120389 0.092897 0.2592
0.3 0.112323 0.096158 0.3504 0.3 0.114882 0.091208 0.3779
0.4 0.107912 0.096696 0.4464 0.4 0.109803 0.091389 0.4806
0.5 0.10123 0.096886 0.5224 0.5 0.102563 0.091209 0.5622
0.6 0.091524 0.095327 0.5761 0.6 0.092471 0.089293 0.6214
0.7 0.076785 0.089886 0.598 0.7 0.077674 0.083682 0.6497
0.8 0.057768 0.079462 0.5816 0.8 0.058664 0.073121 0.6418

0.82 0.053774 0.076932 0.5732 0.82 0.054675 0.070565 0.6353
0.84 0.049737 0.074271 0.5625 0.84 0.05064 0.067875 0.6267
0.86 0.045665 0.071482 0.5494 0.86 0.046572 0.065058 0.6156
0.88 0.041559 0.068563 0.5334 0.88 0.04247 0.062111 0.6017
0.9 0.037418 0.065511 0.514 0.9 0.038327 0.059025 0.5844

0.92 0.033237 0.062322 0.4906 0.92 0.034157 0.055811 0.5631
0.94 0.029032 0.059004 0.4625 0.94 0.029952 0.05246 0.5367
0.96 0.024804 0.055558 0.4286 0.96 0.025726 0.048981 0.5042
0.98 0.020557 0.051986 0.3875 0.98 0.021481 0.045377 0.4639

1 0.016275 0.048275 0.3371 1 0.017208 0.041638 0.4133
1.02 0.011962 0.044424 0.2747 1.02 0.012898 0.037753 0.3485
1.04 0.007627 0.040439 0.1961 1.04 0.008566 0.033736 0.2641
1.06 0.003261 0.036314 0.0952 1.06 0.004208 0.02958 0.1508
1.08 −0.00112 0.032055 0 1.08 −0.00018 0.025285 0
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Table A17. BEMT 14 × 12 APC propeller data.

Run at 3500 RPM Run at 4500 RPM
J Ct Cp eta J Ct Cp eta

0 0.125598 0.087058 0 0 0.126318 0.087174 0
0.1 0.126155 0.091201 0.1383 0.1 0.126552 0.091189 0.1388
0.2 0.124468 0.09092 0.2738 0.2 0.125037 0.090954 0.2749
0.3 0.11977 0.087061 0.4127 0.3 0.120573 0.087146 0.4151
0.4 0.114512 0.086613 0.5288 0.4 0.115748 0.086531 0.5351
0.5 0.10644 0.085837 0.62 0.5 0.108108 0.08555 0.6318
0.6 0.095132 0.083141 0.6865 0.6 0.09678 0.082499 0.7039
0.7 0.079304 0.076609 0.7246 0.7 0.080408 0.075532 0.7452
0.8 0.06029 0.065795 0.7331 0.8 0.061124 0.064404 0.7593
0.9 0.040036 0.051493 0.6998 0.9 0.040953 0.050017 0.7369

0.92 0.035885 0.048236 0.6844 0.92 0.036821 0.046742 0.7247
0.94 0.031698 0.04484 0.6645 0.94 0.032652 0.043328 0.7084
0.96 0.027491 0.041316 0.6388 0.96 0.028464 0.039786 0.6868
0.98 0.023266 0.037666 0.6053 0.98 0.024257 0.036117 0.6582

1 0.019013 0.03388 0.5612 1 0.020024 0.032312 0.6197
1.02 0.014723 0.029948 0.5015 1.02 0.015755 0.028361 0.5666
1.04 0.010412 0.025882 0.4184 1.04 0.011465 0.024276 0.4912
1.06 0.006077 0.021678 0.2971 1.06 0.007151 0.020053 0.378
1.08 0.001714 0.017333 0.1068 1.08 0.00281 0.015687 0.1935
1.1 −0.0027 0.012822 0 1.1 −0.00158 0.011156 0

Table A18. BEMT 14 × 12 APC propeller data.

Run at 5500 RPM
J Ct Cp eta

0 0.123014 0.088978 0
0.1 0.123362 0.092334 0.1336
0.2 0.122795 0.092177 0.2664
0.3 0.119054 0.088335 0.4043
0.4 0.115502 0.087775 0.5264
0.5 0.109183 0.087113 0.6267
0.6 0.099042 0.084519 0.7031
0.7 0.083177 0.077686 0.7495
0.8 0.063967 0.066415 0.7705
0.9 0.043895 0.051963 0.7603
0.92 0.039779 0.048681 0.7518
0.94 0.035629 0.045264 0.7399
0.96 0.03146 0.041722 0.7239
0.98 0.027273 0.038057 0.7023

1 0.023057 0.034257 0.6731
1.02 0.018808 0.030316 0.6328
1.04 0.014528 0.026235 0.5759
1.06 0.010231 0.022026 0.4924
1.08 0.005904 0.017674 0.3608
1.1 0.001552 0.013183 0.1295
1.12 −0.00282 0.008563 0

Table A19. BEMT 16 × 12 APC propeller data.

Run at 1500 RPM Run at 2500 RPM
J Ct Cp eta J Ct Cp eta

0 0.085876 0.054212 0 0 0.087976 0.051102 0.0001
0.1 0.087824 0.053416 0.1644 0.05 0.09141 0.048734 0.0938
0.2 0.084148 0.055068 0.3056 0.1 0.089942 0.050272 0.1789
0.3 0.077795 0.055587 0.4199 0.15 0.088294 0.051207 0.2586
0.4 0.069433 0.055175 0.5034 0.2 0.085906 0.051731 0.3321
0.5 0.056947 0.052283 0.5446 0.25 0.081713 0.051391 0.3975
0.6 0.041507 0.046349 0.5373 0.3 0.078507 0.051681 0.4557
0.62 0.038166 0.044778 0.5284 0.35 0.074719 0.051577 0.507
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Table A19. Cont.

Run at 1500 RPM Run at 2500 RPM
J Ct Cp eta J Ct Cp eta

0.64 0.034772 0.04309 0.5165 0.4 0.069887 0.051096 0.5471
0.66 0.031309 0.041305 0.5003 0.45 0.064014 0.049936 0.5769
0.68 0.027831 0.03939 0.4804 0.5 0.057398 0.048138 0.5962
0.7 0.02431 0.037359 0.4555 0.55 0.049997 0.045554 0.6036
0.72 0.020756 0.035212 0.4244 0.6 0.041963 0.042133 0.5976
0.74 0.017167 0.032947 0.3856 0.61 0.040309 0.041362 0.5945
0.76 0.013543 0.030561 0.3368 0.62 0.038625 0.040549 0.5906
0.78 0.009882 0.028051 0.2748 0.63 0.036933 0.039711 0.5859
0.8 0.006194 0.025422 0.1949 0.64 0.035235 0.038847 0.5805
0.82 0.00247 0.022665 0.0894 0.65 0.033523 0.037953 0.5741
0.84 −0.00129 0.019769 0 0.66 0.031774 0.037046 0.5661

0.67 0.030038 0.036094 0.5576
0.68 0.028295 0.035116 0.5479
0.69 0.026543 0.034108 0.537
0.7 0.024779 0.033069 0.5245
0.71 0.023005 0.032001 0.5104
0.72 0.021225 0.030905 0.4945
0.73 0.019437 0.029781 0.4765
0.74 0.017641 0.028626 0.456
0.75 0.015833 0.027439 0.4328
0.76 0.014018 0.026222 0.4063
0.77 0.012195 0.024977 0.376
0.78 0.010363 0.023699 0.3411
0.79 0.008521 0.022388 0.3007
0.8 0.006676 0.021051 0.2537
0.81 0.004818 0.019679 0.1983
0.82 0.002953 0.018275 0.1325
0.83 0.001087 0.016846 0.0535
0.84 −0.0008 0.015364 0

Table A20. BEMT 16 × 12 APC propeller data.

Run at 3500 RPM Run at 4500 RPM
J Ct Cp eta J Ct Cp eta

0 0.091625 0.046855 0.0001 0 0.092669 0.046612 0.0001
0.05 0.093724 0.048012 0.0976 0.05 0.093815 0.047934 0.0979
0.1 0.093444 0.046553 0.2007 0.1 0.09422 0.046474 0.2027
0.15 0.091655 0.047061 0.2921 0.15 0.092592 0.046807 0.2967
0.2 0.088928 0.047665 0.3731 0.2 0.089905 0.047511 0.3785
0.25 0.084502 0.047117 0.4484 0.25 0.085613 0.046844 0.4569
0.3 0.080939 0.047187 0.5146 0.3 0.082206 0.046732 0.5277
0.35 0.076508 0.046817 0.572 0.35 0.077914 0.046143 0.591
0.4 0.07113 0.04603 0.6181 0.4 0.072388 0.04536 0.6384
0.45 0.06509 0.04474 0.6547 0.45 0.066287 0.04388 0.6798
0.5 0.058375 0.042832 0.6814 0.5 0.059333 0.041852 0.7088
0.55 0.050927 0.040152 0.6976 0.55 0.051622 0.038981 0.7284
0.6 0.042914 0.03667 0.7022 0.6 0.043537 0.035409 0.7377
0.65 0.0345 0.032427 0.6916 0.65 0.035138 0.031122 0.7339
0.66 0.032756 0.031507 0.6862 0.66 0.033384 0.030202 0.7295
0.67 0.031026 0.030542 0.6806 0.67 0.031661 0.029231 0.7257
0.68 0.029288 0.029549 0.674 0.68 0.029928 0.028231 0.7209
0.69 0.027542 0.028528 0.6661 0.69 0.028187 0.027202 0.715
0.7 0.025783 0.027476 0.6569 0.7 0.026435 0.026143 0.7078
0.71 0.024016 0.026394 0.646 0.71 0.024673 0.025053 0.6992
0.72 0.022241 0.025284 0.6334 0.72 0.022905 0.023936 0.689
0.73 0.02046 0.024145 0.6186 0.73 0.021131 0.02279 0.6769
0.74 0.01867 0.022976 0.6013 0.74 0.019346 0.021612 0.6624
0.75 0.016869 0.021775 0.581 0.75 0.017552 0.020404 0.6452
0.76 0.01506 0.020544 0.5571 0.76 0.01575 0.019165 0.6246
0.77 0.013244 0.019283 0.5289 0.77 0.013941 0.017896 0.5998
0.78 0.011419 0.01799 0.4951 0.78 0.012123 0.016596 0.5697
0.79 0.009583 0.016665 0.4543 0.79 0.010293 0.015262 0.5328
0.8 0.007745 0.015312 0.4047 0.8 0.008463 0.013902 0.487
0.81 0.005895 0.013925 0.3429 0.81 0.006619 0.012506 0.4287
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Table A20. Cont.

Run at 3500 RPM Run at 4500 RPM
J Ct Cp eta J Ct Cp eta

0.82 0.004037 0.012506 0.2647 0.82 0.004768 0.011079 0.3529
0.83 0.002179 0.011061 0.1635 0.83 0.002918 0.009626 0.2516
0.84 0.000295 0.009563 0.0259 0.84 0.001042 0.008119 0.1078
0.85 −0.0016 0.008024 0 0.85 −0.00085 0.006572 0

Table A21. BEMT 16 × 12 APC propeller data.

Run at 5500 RPM
J Ct Cp eta

0 0.088353 0.049098 0.0001
0.05 0.088759 0.047726 0.093
0.1 0.089333 0.049054 0.1821
0.15 0.088744 0.049311 0.27
0.2 0.087214 0.049639 0.3514
0.25 0.08391 0.048822 0.4297
0.3 0.082031 0.048793 0.5044
0.35 0.079658 0.048579 0.5739
0.4 0.076248 0.04843 0.6298
0.45 0.071152 0.047193 0.6785
0.5 0.06465 0.04516 0.7158
0.55 0.057235 0.042263 0.7448
0.6 0.049323 0.038625 0.7662
0.65 0.041045 0.034279 0.7783
0.7 0.032459 0.029283 0.7759
0.71 0.030723 0.028197 0.7736
0.72 0.028979 0.027085 0.7703
0.73 0.027225 0.025944 0.7661
0.74 0.025463 0.024775 0.7606
0.75 0.023689 0.023574 0.7536
0.76 0.021909 0.022348 0.7451
0.77 0.020121 0.021093 0.7345
0.78 0.018327 0.01981 0.7216
0.79 0.01652 0.018495 0.7056
0.8 0.014708 0.017153 0.686
0.81 0.012889 0.015782 0.6615
0.82 0.011058 0.014378 0.6306
0.83 0.009225 0.012949 0.5913
0.84 0.007388 0.011487 0.5403
0.85 0.005552 0.009998 0.472
0.86 0.003711 0.00848 0.3764
0.87 0.001873 0.00694 0.2347
0.88 −4.6 × 10−5 0.005306 0

Table A22. BEMT 18 × 10 APC propeller data.

Run at 1500 RPM Run at 2500 RPM
J Ct Cp eta J Ct Cp eta

0 0.081598 0.04384 0.0001 0 0.083143 0.040721 0.0001
0.1 0.081126 0.043859 0.185 0.1 0.082665 0.040736 0.2029
0.2 0.073919 0.045084 0.3279 0.2 0.075251 0.041802 0.36
0.3 0.063474 0.044402 0.4289 0.3 0.063844 0.040675 0.4709
0.4 0.049834 0.041687 0.4782 0.4 0.050198 0.037909 0.5297
0.5 0.033647 0.036335 0.463 0.5 0.034014 0.032501 0.5233
0.52 0.030238 0.03495 0.4499 0.52 0.030608 0.031105 0.5117
0.54 0.02679 0.033463 0.4323 0.54 0.02716 0.029606 0.4954
0.56 0.023282 0.031862 0.4092 0.56 0.023654 0.027993 0.4732
0.58 0.019742 0.030144 0.3799 0.58 0.020115 0.026262 0.4442
0.6 0.016161 0.02831 0.3425 0.6 0.016536 0.024416 0.4064
0.62 0.012532 0.026357 0.2948 0.62 0.012912 0.022451 0.3566
0.64 0.008862 0.024284 0.2335 0.64 0.009242 0.020365 0.2904
0.66 0.005141 0.022084 0.1536 0.66 0.005524 0.018152 0.2008
0.68 0.001368 0.019753 0.0471 0.68 0.001752 0.015806 0.0754
0.7 −0.00244 0.017301 0 0.7 −0.00205 0.013342 0
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Table A23. BEMT 18 × 10 APC propeller data.

Run at 3500 RPM Run at 4500 RPM
J Ct Cp eta J Ct Cp eta

0 0.086271 0.035999 0.0001 0 0.087591 0.035367 0.0001
0.05 0.093724 0.031641 0.1481 0.05 0.094369 0.031521 0.1497
0.1 0.085242 0.03613 0.2359 0.1 0.086356 0.035581 0.2427
0.15 0.0816 0.036736 0.3332 0.15 0.082798 0.036001 0.345
0.2 0.076543 0.036784 0.4162 0.2 0.077649 0.036109 0.4301
0.25 0.07042 0.03607 0.4881 0.25 0.071552 0.035151 0.5089
0.3 0.064699 0.035419 0.548 0.3 0.065684 0.034424 0.5724
0.35 0.058239 0.034283 0.5946 0.35 0.059006 0.033202 0.622
0.4 0.050991 0.032524 0.6271 0.4 0.051596 0.031346 0.6584
0.45 0.043119 0.030091 0.6448 0.45 0.043614 0.028823 0.6809
0.5 0.034826 0.027004 0.6448 0.5 0.035329 0.02571 0.6871
0.55 0.026242 0.023257 0.6206 0.55 0.026764 0.021929 0.6712
0.56 0.024487 0.022424 0.6115 0.56 0.025012 0.02109 0.6642
0.57 0.022724 0.021561 0.6008 0.57 0.023254 0.02022 0.6555
0.58 0.020956 0.020668 0.5881 0.58 0.02149 0.01932 0.6451
0.59 0.019178 0.019748 0.573 0.59 0.019717 0.018392 0.6325
0.6 0.017386 0.018796 0.555 0.6 0.017929 0.017433 0.617
0.61 0.015586 0.017817 0.5336 0.61 0.016133 0.016447 0.5984
0.62 0.013772 0.016806 0.5081 0.62 0.014324 0.015429 0.5756
0.63 0.011946 0.015764 0.4774 0.63 0.012503 0.014379 0.5478
0.64 0.010112 0.014693 0.4405 0.64 0.010675 0.013301 0.5137
0.65 0.008266 0.01359 0.3954 0.65 0.008834 0.01219 0.471
0.66 0.006404 0.012452 0.3394 0.66 0.006977 0.011045 0.4169
0.67 0.004527 0.01128 0.2689 0.67 0.005105 0.009864 0.3468
0.68 0.002643 0.010078 0.1783 0.68 0.003227 0.008655 0.2535
0.69 0.000758 0.00885 0.0591 0.69 0.001348 0.007419 0.1254
0.7 −0.00114 0.007586 0 0.7 −0.00055 0.006146 0

Table A24. BEMT 18 × 10 APC propeller data.

Run at 5500 RPM
J Ct Cp eta

0 0.087393 0.036192 0.0001
0.05 0.091741 0.03353 0.1368
0.1 0.085971 0.036425 0.236
0.15 0.083188 0.036832 0.3388
0.2 0.078903 0.037062 0.4258
0.25 0.073194 0.036112 0.5067
0.3 0.067477 0.035377 0.5722
0.35 0.060822 0.034089 0.6245
0.4 0.05343 0.032173 0.6643
0.45 0.045496 0.029608 0.6915
0.5 0.037198 0.026445 0.7033
0.55 0.028659 0.022638 0.6963
0.56 0.026914 0.021795 0.6915
0.57 0.02516 0.020921 0.6855
0.58 0.023402 0.020019 0.678
0.59 0.021633 0.019089 0.6686
0.6 0.019852 0.018129 0.657
0.61 0.018059 0.01714 0.6427
0.62 0.016255 0.016122 0.6251
0.63 0.01444 0.015073 0.6036
0.64 0.012614 0.013993 0.5769
0.65 0.010779 0.012885 0.5438
0.66 0.008928 0.011741 0.5018
0.67 0.00706 0.010563 0.4478
0.68 0.005187 0.009356 0.377
0.69 0.003315 0.008126 0.2815
0.7 0.001422 0.006856 0.1451
0.71 −0.0005 0.005541 0
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Table A25. BEMT 18 × 12 APC propeller data.

Run at 1500 RPM Run at 2500 RPM
J Ct Cp eta J Ct Cp eta

0 0.08776 0.050578 0.0001 0 0.089605 0.047186 0.0001
0.1 0.08784 0.050651 0.1734 0.05 0.095373 0.041851 0.1139
0.2 0.080957 0.051864 0.3122 0.1 0.089451 0.047136 0.1898
0.3 0.072641 0.051939 0.4196 0.15 0.086755 0.047852 0.2719
0.4 0.060556 0.05 0.4845 0.2 0.08314 0.048283 0.3444
0.5 0.045184 0.045335 0.4983 0.25 0.077679 0.047746 0.4067
0.6 0.027835 0.037834 0.4414 0.3 0.073076 0.047604 0.4605
0.62 0.024188 0.035973 0.4169 0.35 0.067486 0.046881 0.5038
0.64 0.020514 0.033992 0.3862 0.4 0.061007 0.045602 0.5351
0.66 0.016806 0.03189 0.3478 0.45 0.053593 0.043561 0.5536
0.68 0.013054 0.029665 0.2992 0.5 0.045632 0.040865 0.5583
0.7 0.009261 0.027314 0.2373 0.55 0.037162 0.037461 0.5456
0.72 0.005429 0.024838 0.1574 0.56 0.035427 0.036692 0.5407
0.74 0.001563 0.022235 0.052 0.57 0.033661 0.035884 0.5347
0.76 −0.00239 0.019469 0 0.58 0.031881 0.035047 0.5276

0.59 0.030091 0.034183 0.5194
0.6 0.028289 0.03329 0.5099
0.61 0.026472 0.032366 0.4989
0.62 0.024642 0.031412 0.4864
0.63 0.022808 0.030428 0.4722
0.64 0.020972 0.029416 0.4563
0.65 0.019123 0.028371 0.4381
0.66 0.017263 0.027296 0.4174
0.67 0.015394 0.026191 0.3938
0.68 0.013515 0.025055 0.3668
0.69 0.011624 0.023887 0.3358
0.7 0.009726 0.022689 0.3001
0.71 0.007818 0.021459 0.2587
0.72 0.005894 0.020194 0.2102
0.73 0.003967 0.0189 0.1532
0.74 0.00203 0.017573 0.0855
0.75 0.000099 0.016226 0.0046
0.76 −0.00192 0.014788 0

Table A26. BEMT 18 × 12 APC propeller data.

Run at 3500 RPM Run at 4500 RPM
J Ct Cp eta J Ct Cp eta

0 0.093187 0.042393 0.0001 0.0 0.094435 0.041946 0.0001
0.05 0.098665 0.039479 0.125 0.05 0.099102 0.039411 0.1257
0.1 0.092652 0.042449 0.2183 0.1 0.093781 0.042008 0.2232
0.15 0.089629 0.043048 0.3123 0.15 0.090865 0.042478 0.3209
0.2 0.085564 0.04342 0.3941 0.2 0.086862 0.042666 0.4072
0.25 0.079649 0.042695 0.4664 0.25 0.080847 0.04206 0.4805
0.3 0.074447 0.042297 0.528 0.3 0.075664 0.041459 0.5475
0.35 0.068598 0.041406 0.5799 0.35 0.069765 0.040511 0.6027
0.4 0.061936 0.039986 0.6196 0.4 0.062859 0.03894 0.6457
0.45 0.054503 0.037875 0.6476 0.45 0.055261 0.036743 0.6768
0.5 0.046549 0.035117 0.6628 0.5 0.047212 0.033904 0.6963
0.55 0.038095 0.031649 0.662 0.55 0.038667 0.030352 0.7007
0.56 0.036363 0.030867 0.6597 0.6 0.029826 0.026073 0.6864
0.57 0.034602 0.030046 0.6564 0.61 0.028018 0.025128 0.6801
0.58 0.032826 0.029196 0.6521 0.62 0.026198 0.024153 0.6725
0.59 0.03104 0.028318 0.6467 0.63 0.024375 0.023149 0.6634
0.6 0.029242 0.027412 0.6401 0.64 0.022549 0.022114 0.6526
0.61 0.02743 0.026475 0.632 0.65 0.020711 0.021049 0.6396
0.62 0.025605 0.025507 0.6224 0.66 0.018861 0.019951 0.6239
0.63 0.023776 0.024509 0.6112 0.67 0.017002 0.018824 0.6052
0.64 0.021945 0.023483 0.5981 0.68 0.015135 0.017666 0.5826
0.65 0.020102 0.022424 0.5827 0.69 0.013255 0.016475 0.5552
0.66 0.018247 0.021334 0.5645 0.7 0.011369 0.015254 0.5217
0.67 0.016383 0.020215 0.543 0.71 0.009472 0.014001 0.4803
0.68 0.01451 0.019064 0.5175 0.72 0.007563 0.012714 0.4283
0.69 0.012625 0.017881 0.4872 0.73 0.005647 0.011395 0.3618
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Table A26. Cont.

Run at 3500 RPM Run at 4500 RPM
J Ct Cp eta J Ct Cp eta

0.7 0.010732 0.016668 0.4507 0.74 0.003722 0.010045 0.2742
0.71 0.00883 0.015423 0.4065 0.75 0.001805 0.008673 0.1561
0.72 0.006913 0.014143 0.352 0.76 −0.0002 0.007211 0
0.73 0.004992 0.012833 0.284
0.74 0.003061 0.011491 0.1971
0.75 0.001137 0.010128 0.0842
0.76 −0.00087 0.008674 0

Table A27. BEMT 18 × 12 APC propeller data.

Run at 5500 RPM
J Ct Cp eta

0 0.09419 0.042857 0.0001
0.05 0.096246 0.041393 0.1163
0.1 0.093672 0.042954 0.2181
0.15 0.091632 0.043485 0.3161
0.2 0.088347 0.043764 0.4037
0.25 0.082518 0.043005 0.4797
0.3 0.077552 0.042407 0.5486
0.35 0.071746 0.041423 0.6062
0.4 0.064867 0.03979 0.6521
0.45 0.057305 0.037541 0.6869
0.5 0.049281 0.034658 0.711
0.55 0.040735 0.031063 0.7213
0.6 0.031922 0.026765 0.7156
0.61 0.03012 0.025819 0.7116
0.62 0.028306 0.024843 0.7064
0.63 0.026489 0.023838 0.7001
0.64 0.024667 0.022803 0.6923
0.65 0.022836 0.021739 0.6828
0.66 0.020991 0.020642 0.6712
0.67 0.019137 0.019516 0.657
0.68 0.017275 0.01836 0.6398
0.69 0.0154 0.017171 0.6188
0.7 0.013518 0.015954 0.5931
0.71 0.011625 0.014703 0.5613
0.72 0.009725 0.013424 0.5216
0.73 0.007811 0.012109 0.4709
0.74 0.005892 0.010765 0.405
0.75 0.003962 0.009387 0.3166
0.76 0.002019 0.007975 0.1925
0.77 0.000053 0.006518 0.0063
0.78 −0.00193 0.005018 0

Table A28. BEMT 18 × 14 APC propeller data.

Run at 1500 RPM Run at 2500 RPM
J Ct Cp eta J Ct Cp eta

0 0.085415 0.06742 0 0 0.087765 0.064712 0
0.1 0.089085 0.067858 0.1313 0.1 0.091317 0.065966 0.1384
0.2 0.087219 0.068008 0.2565 0.2 0.089502 0.065514 0.2732
0.3 0.082829 0.067216 0.3697 0.3 0.084572 0.064372 0.3941
0.4 0.079115 0.067328 0.47 0.4 0.080618 0.064143 0.5027
0.5 0.074976 0.067589 0.5546 0.5 0.076067 0.064241 0.592
0.6 0.066401 0.066564 0.5985 0.6 0.067051 0.06292 0.6394
0.7 0.053511 0.062076 0.6034 0.7 0.05402 0.058262 0.649
0.8 0.036623 0.053115 0.5516 0.8 0.037146 0.049226 0.6037
0.82 0.033178 0.050991 0.5335 0.82 0.033704 0.047087 0.5869
0.84 0.029707 0.048761 0.5118 0.84 0.030235 0.04484 0.5664
0.86 0.026205 0.046422 0.4855 0.86 0.026738 0.042487 0.5412
0.88 0.022669 0.043968 0.4537 0.88 0.023206 0.040016 0.5103
0.9 0.019139 0.04143 0.4158 0.9 0.019677 0.03746 0.4728
0.92 0.015588 0.038788 0.3697 0.92 0.016132 0.034804 0.4264
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Table A28. Cont.

Run at 1500 RPM Run at 2500 RPM
J Ct Cp eta J Ct Cp eta

0.94 0.012009 0.036035 0.3133 0.94 0.012558 0.032034 0.3685
0.96 0.008412 0.033177 0.2434 0.96 0.008963 0.029158 0.2951
0.98 0.004779 0.030196 0.1551 0.98 0.005338 0.026163 0.1999

1 0.001143 0.027123 0.0421 1 0.001703 0.02307 0.0738
1.02 −0.00251 0.023945 0

Table A29. BEMT 18 × 14 APC propeller data.

Run at 3500 RPM Run at 4500 RPM
J Ct Cp eta J Ct Cp eta

0 0.091282 0.062056 0 0 0.092083 0.062174 0
0.1 0.093465 0.06533 0.1431 0.1 0.094021 0.065304 0.144
0.2 0.092049 0.064838 0.2839 0.2 0.09276 0.06488 0.2859
0.3 0.087734 0.062328 0.4223 0.3 0.08871 0.062469 0.426
0.4 0.084411 0.060945 0.554 0.4 0.086386 0.059778 0.578
0.5 0.079281 0.060692 0.6531 0.5 0.08081 0.06004 0.673
0.6 0.069364 0.058886 0.7068 0.6 0.07049 0.05796 0.7297
0.7 0.055083 0.053283 0.7237 0.7 0.055803 0.051971 0.7516
0.8 0.03828 0.044125 0.694 0.8 0.039027 0.042769 0.73
0.82 0.034853 0.041959 0.6811 0.82 0.035614 0.040587 0.7195
0.84 0.031397 0.039685 0.6646 0.84 0.032173 0.038296 0.7057
0.86 0.027915 0.037304 0.6435 0.86 0.028706 0.035899 0.6877
0.88 0.024398 0.034806 0.6169 0.88 0.025204 0.033383 0.6644
0.9 0.020886 0.032222 0.5834 0.9 0.021707 0.030781 0.6347
0.92 0.017357 0.029536 0.5406 0.92 0.018195 0.028078 0.5962
0.94 0.013799 0.026737 0.4851 0.94 0.014653 0.02526 0.5453
0.96 0.010222 0.023831 0.4118 0.96 0.011093 0.022336 0.4768
0.98 0.006614 0.020806 0.3115 0.98 0.007503 0.019293 0.3811

1 0.002997 0.017681 0.1695 1 0.003905 0.016149 0.2418
1.02 0.000297 0.012905 0.0235
1.04 −0.00357 0.009725 0

Table A30. BEMT 18 × 14 APC propeller data.

Run at 5500 RPM
J Ct Cp eta

0 0.09007 0.063308 0
0.1 0.091743 0.066001 0.139
0.2 0.090891 0.065724 0.2766
0.3 0.087228 0.063431 0.4125
0.4 0.085463 0.06057 0.5644
0.5 0.080695 0.060761 0.664
0.6 0.071717 0.059175 0.7272
0.7 0.05761 0.053402 0.7552
0.8 0.040953 0.044162 0.7419
0.82 0.037555 0.041971 0.7337
0.84 0.034124 0.039671 0.7226
0.86 0.030666 0.037262 0.7078
0.88 0.027178 0.034743 0.6884
0.9 0.023694 0.032139 0.6635
0.92 0.02019 0.029433 0.6311
0.94 0.016663 0.026619 0.5884
0.96 0.013116 0.0237 0.5313
0.98 0.009539 0.020664 0.4524

1 0.005948 0.017526 0.3394
1.02 0.002353 0.014293 0.1679
1.04 −0.00151 0.01112 0
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Featured Application: The proposed approach can be utilized to support the design of novel actuator

fault-tolerant multirotor configurations capable of performing desired maneuvers.

Abstract: Presently, multirotor unmanned aerial vehicles (UAV) are utilized in numerous applica-
tions. Their design governs the system’s controllability and operation performance by influencing
the achievable forces and moments produced. However, unexpected causalities, such as actuator
failure, adversely affect their controllability, which raises safety concerns about their service. On
the other hand, their design flexibility allows further design optimization for various performance
requirements, including actuator failure tolerance. Thus, this study proposed an optimization frame-
work that can be employed to design a novel actuator fault-tolerant multirotor UAV configuration.
The approach used an attainable moment set (AMS) to evaluate the achievable moment from a
multirotor configuration; similarly, standard deviation geometries (SDG) were employed to define
performance requirements. Therefore, given a UAV configuration, actuator fault situation, and SDG
derived from the designed mission requirement, the suggested optimization framework maximizes
the scaling factor of SDG and fits it into the AMS by adjusting the design parameters up to a sufficient
margin. The framework is implemented to optimize selected parameters of the Hexacopter-type of
parcel delivery multirotor UAV developed by the PNU drone, and a simulation was conducted. The
result showed that the optimized configuration of the UAV achieved actuator fault tolerance and
operation-performing capability in the presence of a failed actuator.

Keywords: fault-tolerant configuration; multirotor UAV; attainable moment set; required moment

1. Introduction

Nowadays, unmanned aerial vehicles (UAVs) are widely used in civilian and military
applications. They are used for tactical reconnaissance, territory surveillance, target place-
ment, and other military operations, as well as mapping, field monitoring, meteorological
exploration, highway inspection, package delivery, and other civil applications. Their rangy
applicability is due to their excellent design, which makes them efficient and cost-effective.
They are also renowned for flying at varying speeds, hovering over locations, maintaining
a stable position, and performing sophisticated maneuvers. Unfortunately, unanticipated
events, such as actuator and sensor failures, can negatively impact their performance and
raise safety concerns. Especially in multirotor UAVs, which use merely spinning rotors
for thrust generation, actuator failure is a severe issue. Such causality potentially results
in flight troubles, leading to a vehicle accident, resulting in a catastrophe and injuries
to civilians.

An effective way to mitigate this problem is to develop a fault-tolerant system that
can endure a failure and continue to operate without significant performance degradation.

Appl. Sci. 2022, 12, 6781. https://doi.org/10.3390/app12136781 https://www.mdpi.com/journal/applsci
83



Appl. Sci. 2022, 12, 6781

The article by Fourlas et al. [1] presents a complete survey on UAV fault-tolerant systems.
Generally, two main components make up active fault-tolerant schemes. The first compo-
nent is the fault diagnosis unit responsible for detecting, isolating, and identifying the fault.
A second unit is a reconfiguration unit that employs an appropriate methodology that can
compensate for the appearance of faults so that the UAV continues its flight mission or
lands safely [2]. However, the reconfigurability of multirotor UAVs is possible whenever
the UAV is designed so that it allows alternative actuator distribution to compensate for
failed actuators.

Researchers suggest several configurations of multirotor UAV layout to address the
issue of actuator failure. The use of servomotors to convert the vehicle to reconfigurable
ones by tilting rotors [3], changing the spinning direction of unidirectional rotors [4], the
use of bidirectional rotors [5], and actuator redundancy that results in a bigger structure [6]
are among suggested solutions. Although these solutions could regain control for the
considered fault condition, post-failure mission execution capacities are limited to indoor
and controlled environments. Howbeit, in densely populated areas where landing is
impracticable, recovery operations are usually put through autonomous, obstacle-free, and
time-optimal path planning to prerecord location and guidance by or landing on a moving
vehicle by the vision-based detection technology of markers [7]. In such a situation, the
UAV should be feasible for outdoor applications of such landing site searching operations
that may require excellent maneuverability in flight with high perturbation. Taking the
design flexibility of multirotor UAVs, appropriately arranging actuators at the design level
allows compensation for failed actuators.

Durham et al. [8] proposed a method of determining an aircraft’s capability to perform
the desired maneuver in a nominal case. The authors represented the required moment as
a time history of moments and directly overlaid it into an attainable moment set (AMS)
envelope that shows the aircraft’s maximum moment-producing capability. As a result,
they infer that the existence of requested moment points outside the envelope indicates the
inability to conduct the intended operation. However, an attempt involving improving the
shroud and including the outside points is not mentioned. Hence, this work contributes to
filling the gap by proposing a framework that can optimize a given multirotor UAV config-
uration to be actuator fault-tolerant and capable of performing desired recovery operation
maneuvers. Hence, it provides flexibility in designing advanced failsafe operations that
meet the environmental factors.

This paper presents a methodology that is used to evaluate previously treated alter-
native solutions in the literature [3–6] and optimize a given design of multirotor UAVs to
tolerate actuator failure and perform maneuvers required by post-failure missions. The
needed moment force to track a predefined mission trajectory is denoted as a time history
of required moments that can be obtained from simulation and analytically converting the
desired course into control input. The system requirement that imprints these required
moments derived from the designed mission and disturbance rejection was geometrically
represented as standard deviation geometry (SDG) [9–11]. Similarly, the maximum capac-
ity of a given multirotor configuration in generating moment force is represented by the
attainable moment set (AMS) as a convex polytope whose shape is influenced by design
parameters, such as the number of actuators, position, orientation, and propeller-related
parameters. For a system to be capable of fulfilling its task, the AMS should inscribe
sufficiently scaled-up SDG to ensure the system requirement is below the system capabil-
ity. Therefore, the proposed approach focuses on formulating the optimization problem
that considers actuator health status and a related algorithm to evaluate the enclosure of
required moment points within the AMS up to the enforced marginal requirement. The
proposed method was applied on a Hexarotor type of UAV designed for urban parcel
delivery and developed by a PNU drone to optimize its actuator tilting angle and arm
installation angle and grant the system actuator fault tolerance. Furthermore, the model
of the selected UAV employing an active tilting mechanism was simulated for its fault
tolerance at hovering and following a preplanned path.
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A brief structure of the paper is given here: Section 2 comprises a theoretical and
mathematical overview of multirotor UAVs as well as an introduction to the assessment
tools and the assessment of the effect of actuator failure on the system; Section 3 elabo-
rates controllability criteria and their geometrical representation of system requirements;
Section 4 introduces an overview of the approbation and mathematical formulation of
the optimization problem and the Point-in-AMS checking algorithm; Section 5 discusses
implementation details; Section 6 comprises the results and discussion; and Section 7 briefly
concludes the paper.

2. Overview of Multirotor UAVs

2.1. Multirotor UAV Configuration

Multirotor UAVs are aerial vehicles that employ more than two rotors with fixed
pitch spinning blades, so-called propellers. The spinning of each propeller through the air
produces aerodynamic forces that are proportional to the square of their rotation rate ω.
The thrust force f acts along the propeller’s axis, where the drag moment τd acts about the
propeller’s axis [12].

The thrust force of the ith propeller is modeled as:

fi = ktω
2
i , (1)

where kt is thrust coefficient defined by propeller geometric characteristics.
The drag moment that is generated in reaction to the air resistance around the propeller

is given as:
τi,d = kdω2

i , (2)

where kd is a constant of drag coefficient defined by propeller geometric characteristics.
The rotors’ number, geometrical distribution, and orientation characterize multirotor

UAV configurations, as shown in Figure 1. The convectional design has single propellers
arranged with an even number and alternating spinning directions to balance out the drag
moment generated about the vertical axis of the airframe plane. However, according to
design requirements, such as power consumption, size, weight, control ease, payload,
and growing application in tasks requiring long flight time and complex maneuvers,
various configurations of multirotor UAVs have been constructed. The limitation of the
conventional design was resolved by introducing unconventional designs characterized by
overlapping propellers and the nonparallel arrangement of propellers.

Figure 1. Various layouts of multirotor UAVs.

In all multirotor configurations, the generalized effect of aerodynamic forces generated
from each propeller on the overall airframe is governed by the propeller’s position and
orientation. Therefore, it is necessary to define the propeller’s position and orientation
relative to the origin of the body frame.

The position of ith propeller xi can be given as:

xi =

⎡⎣cos θi
sin θi

0

⎤⎦× li (3)
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where θi is the ith propeller position angle about the Zb axis in the horizontal (XbYb) aircraft
plane, which is formed by the arm with a length li and Xb of the right-hand body coordinate.

The orientation of the ith propeller can be given as:

qi = RZb(θi)RYp

(
αi,y
)
Rxp(αi,x)e3 (4)

where RZb(·) is the rotation matrix for the arm rotation θi about Zb the axis of the body
frame; RYp(·) is the rotation matrix for the propeller rotation αi,y about Yp of the propeller
coordinate; Rxp(·) is the rotation matrix for the propeller rotation αi,x about Yp of propeller
coordinate; and e3 is a unit vector. The detailed computations and descriptions of the
rotation matrixes R, the generalized propeller’s position matrix x, and the orientation
matrix q are presented in Appendix A.

A vertically orientated propeller (αi,y = αi,x = 0) applies all its generated force to lift
the vehicle, and tilting the propellers results in the vectorization of vertical thrust into lateral
force along the plane of the airframe. Moment force about the body frame is generated by
virtue of the propellers being positioned some distance from the center of mass. As a result,
the steady-state model of thrust and drag induced, as well as its relationship with propeller
orientation and location, is expressed as:

F =
3

∑
i=1

qi fi (5)

τ =
3

∑
i=1

xi × fi + τdi (6)

where F is the generalized force generated in the [x, y, z]T direction of the airframe, whereas
τ gives the generalized moment generated about [x, y, z]T direction of the airframe, which
results in 6-D force and moment space Rk.

Generally, the above formulation can be written compactly by using the effectiveness
matrix, B ε Rk×n, which maps actuator space to moment space Rn −→ Rk as:

[
F
τ

]
= B

⎡⎢⎣ω2
i

...
ω2

n

⎤⎥⎦ (7)

As a result, a multirotor UAV system’s potential to generate force can be assessed and
characterized using configuration parameters.

2.2. AMS Based Multirotor Configuration Assessment

An AMS is a powerful method to assess and understand the system’s maximum
potential in generating moment force [13]. In a multirotor UAV, the achievable moment
force produced from a system using admissible control input is called an attainable moment
and is affected by design parameters. Thus, the set of all attainable moments in its three
axes is denoted by the AMS, Λ ∈ R3, as follows:

Λ =
{

m ∈ R
3
∣∣∣m = Bsubu, umin < u < umax

}
(8)

where Bsub ∈ R3×n is the effectiveness matrix that takes rows corresponding to the three
moment directions from the original B given in Equation (7); it is characterized by a set of
design parameters, such as propeller position, orientation, and constant coefficients, and
maps the actuator control input to moment space, where u is the control input constrained
between the operational range of the actuators.

Similarly, Equation (7) can be represented geometrically as a higher dimension convex
polytope, which is expressed as the following:
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Ω =
{

m ∈ R
3
∣∣∣B+

subm ≤ u, B+
sub ∈ R

n×3, u ∈ R
n
}

(9)

where B+
sub denotes the pseudo inverse of Bsub.

Therefore, the AMS convex polytope can be calculated given a feasible control set
(FCS) and the effectiveness matrix B by evaluating the moment produced at the extremes
of control inputs. The polytope vertex and facet are defined using a convex hull algorithm.
In this work, a MATLAB function convhull was employed.

2.3. Multirotor UAV Configuration with Failed Actuator

In multirotor UAVs, the failure of an actuator results in the loss of ability to generate
a moment required to control and stabilize the system. The unintentional damage of one
or more actuators from a systematically arranged configuration results in an unbalance in
their contributing direction.

Similarly, by replacing the effectiveness matrix B in Equations (8) and (9) with a
modified effectiveness matrix Bf , the effect of the failed actuator can be treated as follows:

Bf = B fi (10)

where fi is the fault indicator n × n identity matrix f = I(n), whose ith column correspond-
ing to the failed actuator is zero.

As a result, this section emphasizes that multirotor UAV behavior and controllability
are influenced by their design and actuator health.

3. Controllability Criteria

3.1. Null Controllability

In the event of an actuator failure, it is essential to employ an emergent hovering to
regain control before the decision to continue following the mission path or performing
an emergency landing [14]. An emergent hovering is guaranteed if the system is null
controllable, which describes the possibility of driving the UAV state to its hovering state
in a finite time with admissible control �. Thus, it necessitates the resultant attainable
moment set Λ origin to have neighborhood moment points with radius r.

Hence, the distribution of moment points around the origin o, where m = 0 and radius
r are represented by sphere geometry gs as follows:

gs = {O + u | ‖u‖2 ≤ r} (11)

where ‖·‖2 denotes the Euclidean norm, i.e., ‖u‖2 =
(
uTu

)2.
In doing so, Equation (11) depicts that having a large radius r around the origin o

clearly illustrates the UAV’s capability to produce adequate control moments to reject
disturbance and stabilize the system to hover at a location.

3.2. Maneuverability Requirement

Recalling the previous discussion, setting the UAV at an emergent hovering mode and
landing may not handle the causality in some situations. Nowadays, efficient, safe landing
searching algorithms autonomously plan routes that need complex and precise maneuvers.
To fully implement these algorithms, the system should have the ability to produce all the
moments required to meet the designed mission profile and disturbance rejection. A given
UAV system is said to be capable of performing the maneuver when the requirement lies
below the maximum capability of the system.

The designed mission trajectories can be converted into a sequence of control com-
mands analytically or obtained from simulation and represented as the time history of
moments (THM). Based on the nature of the operation, some maneuvers may not have the
same relative control authority requisite in different moment directions. This work utilizes
a statistical tool, standard deviation geometry (SDG), to define the weakest and strongest
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direction and geometrically characterize the required moment. If equal control is required
in all directions, such as in one of the situations considered in the previous section, the
geometry term indicates spheroid. In contrast, if weighted control authority is desired,
standard deviation ellipsoid (SDE) would be indicated.

Suppose X ∈ R3 is the trivariate Gaussian time history of moment data. By taking
each point of the moment time series as an observation, the mean of the desired moment
data can be calculated as:

X =
1

n − 1

n

∑
i=1

Xi (12)

The covariance matrix of trivariate data X is expressed as:

c =
1

n − 1

n

∑
i=1

(
Xi − X

)(
Xi − X

)T (13)

where X is the mean value, and c ∈ R3×3 is the symmetric and positive semi-definite matrix.
A corresponding ellipsoid can be constructed with the inverse square root of eigenval-

ues, λ1 > λ2 > λ3, to be its principal semi-axes oriented by the corresponding eigenvectors.
We can parameterize the ellipsoid as the image of the unit ball under an affine trans-

formation as:
ge = {O + Wu | u2 ≤ 1} (14)

where W = c1/2 is the symmetric and positive semi-definite matrix.
In addition, SDG can be extended to assess the probability of randomly scattered

moment points falling inside the scaled ellipsoid and its corresponding magnification factor.
In this work, an efficient computation algorithm for the confidence level analysis of SDG is
used from the work of [9]. As shown in Figure 2, the 3D data example shows the underlying
idea of how SDG and confidence level analysis can be applied to later formulations of
optimization problems.

Figure 2. Visualization of standard deviation geometry scaling and corresponding confidence level.

4. Optimization

4.1. Optimization Framework

In Section 3 discussions, the secret behind the variation in multirotor UAVs config-
uration is elaborated, and a powerful tool is introduced to quantify their moment force
generation capability. Furthermore, the effect of actuators’ complete failure in controlla-
bility and possible ways of alleviating the issue are described. Consequently, this section
proposes an optimization framework that can assist the structural design of multirotor
UAVs that considers their future control in nominal and actuator failure situations.

The proposed optimization technique aims to find design parameters that give a
multirotor UAV system actuator fault-tolerant capability. As shown in Figure 3, it evaluated
the AMS from the initial design parameters and specified the actuator effectiveness value.

88



Appl. Sci. 2022, 12, 6781

Firstly, the distribution of moment points is evaluated, and the relative control authority
demand is represented as SDG. It checks for the fulfillment of controllability criteria stated
in Section 3 by overlaying each required moment point needed to produce the designed
mission inside the AMS envelope. The inclusion of all points inside the AMS guarantees
the fulfillment of the necessary performance. However, if points exist outside the AMS
envelope, the framework maximizes the envelope to include the points. This can be accom-
plished through fitting and maximizing the SDG to find the largest possible magnification
of SDE and the achievable controllability margin by updating design parameters, such as
the actuator tilting angle, considering actuator health conditions. Therefore, the optimiza-
tion outcome will be a set of design parameters that grant actuator fault tolerance. This
parameter can be stored in lookup tables and used to reconfigure a system.

Figure 3. Optimization framework.

4.2. Optimization Formulation

For a given set of design parameter p that describes the UAV configuration, the set
of actuator failure possibilities ξ, and the defined mission requirement, the optimization
problem was formulated as the fitting geometry of the mission profile moment requirement
into an AMS convex polytope.

As shown in Figure 4, a 2D example of moment data points of various mission re-
quirements demonstrates the formulation visually. The first mission demands equal control
authority in all moment directions; in contrast, the second data set requires higher strength
in one of its directions, resulting in weighted control authority requests. Both data distri-
bution are represented geometrically as a circle and an ellipse using Equations (11)–(14),
respectively, and the concentric geometries portray different levels of their magnification.
Similarly, the violet polygon signifies the AMS, whereas the concentric convex polytope
(broken line) shows the marginal constraint. Recalling the properties of the AMS and
controllability criteria, sufficient magnification, and fitting of these geometries into the
AMS by adjusting design parameters ensure the enclosure of the required moment point
within the geometries and inside the AMS.
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Figure 4. 2D visualization of the optimization problem formulation of fitting SDG into the AMS.

For the first case, the above statement can be formulated mathematically by using
Equations (9)–(11) as a problem of fitting and maximizing directly the radius of spheroid
subjected to an inequality equation that describes the AMS polytope:

maximize S
Subject to, S||B+

f i||2 + B+
f i

To ≤ ui for i = 1, 2, . . . , n
ui,min < ui < ui,max

S > 0

(15)

The effect of actuator failure was considered through a modified effectiveness matrix
that features the actuator health status indicator in Equation (10):

B+
f = (Bf (ξ))

+ (16)

where B+
f is the pseudo inverse of Bf subjected to a set of actuator failure possibilities ξ.

For the second case, where the required moments are directionally distributed, the
problem is modified by Equation (14):

maximize log det(SW)
Subject to, S||WB+

f i||2 + B+
f i

To ≤ ui for i = 1, 2, . . . , n
ui,min < ui < ui,max

S > 0

(17)

Note that the formulation can be verified by computing the confidence level p, corre-
sponding to scale factor s, which defines the probability of randomly scattered required
moment data points falling inside the magnified geometry, as shown in Table 1. For a
three-dimensional SDE, a scaling factor S ≥ 5 gives a confidence level of 1.

Table 1. Confidence level of scaled SDE for different scaling factors and dimensions [9].

Dimensionality
(n)

Scale Factor S

1 2 3 4 5 6

1 0.6827 0.9545 0.9973 0.9999 1.0000 1.0000
2 0.3935 0.8647 0.9889 0.9997 1.0000 1.0000
3 0.1987 0.7385 0.9707 0.9989 1.0000 1.0000
4 0.0902 0.5940 0.9389 0.9970 0.9999 1.0000
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4.3. Inside-AMS-Point Check

In this section, Algorithm 1 is proposed to check the orientation of required moment
points relative to the AMS and address the issue of marginal requirement. In a convex
polytope analysis, each facet is a hyperplane that divides a space into half-spaces. As
shown in Figure 5, conventionally, the normal vector of a convex polytope facet is supposed
to be oriented to the exterior [15]. On the other hand, the signed distance between an
arbitrary point xi and a plane tells the orientation of the point relative to that plane. The
positive distance indicates the existence of a point xi on the same side of the facet normal
vector n̂, and negative if it is on the opposite side [16]. Therefore, if the distance of each
required moment data point from all facets of the AMS is negative, it shows the existence
of all points inside the AMS envelope.

Figure 5. Norm vector and vertex of an AMS facet.

Fi is a triangular facet of an AMS with the vertex vj =
[
vjx vjy vjz

]
, where

i = 1, 2, . . . , 2Cm
2 and j = 1, 2, 3 number of vertexes.

The normal unit vector to a facet of an AMS can be given as follows:

n̂ =
(v2 − v1)× (v3 − v1)

|(v2 − v1)× (v3 − v1)| (18)

The signed distance dj between an arbitrary point x0 and a facet of an AMS can be
calculated as for all vertices on the facet:

dj = n̂·(x0 − vj
)

(19)

If all vertices lay on the same plane, the signed distance should be:

d1 = d2 = d3 = d (20)

The determination of the point orientation relative to the AMS can be summarized
based on the sign d as follows:

f d =

⎧⎨⎩
< 0 the point is inside of AMS
> 0 the point is outside of AMS
= 0 on the boundary of AMS

In case marginal requirement ζ ∈ R+ is prescribed, the criteria can be modified as follows:

if d =

⎧⎨⎩
< −ζ the point is inside AMS upto specified margin
> −ζ the point is outside from specified margin
= −ζ on specified margin

The pseudo-code below describes the procedures involved in determining the orienta-
tion of moment points about the AMS.
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Algorithm 1 Inside-AMS-point check

1 xi for i = 1, 2, . . . ,n required moment with n number of points
2 Fj is a facet from AMS for j = 1, 2 . . . 2Cm

2

3 vj
k for k = 1, 2, 3 vertices of AMS facet

4 ζ marginal requirement
5 for all i
6 for all j
7 for all k
8 n = norm (Fj) //norm vector for each facet

9 d = dot (n, (xi − vj
k) //signed distance between each facet and points in a moment’s

history
10 If d >−ζ

11 outside point= hi //hi is outside of the AMS
12 Else if d <−ζ

13 inside point= hi //hi is inside the AMS
14 If z* = size(outside point)! = 0
15 performance requirement not fulfilled
16 If z* = size(outside point) = 0
17 performance requirement fulfilled

Our proposed optimization framework uses this algorithm to assess whether perfor-
mance criteria are met for specified marginal requirements. Furthermore, the number of
points residing outside of the margin of the AMS for an arbitrary S can be quantified using
by exclusion ratio γ, as expressed:

γ =
Z∗

Z
(21)

where 0 ≤ γ ≤ 1 and it is defined as the ratio of the set of points outside the margin of the
AMS Z∗ to the set of all points of the required moment Z. γ = 0 indicates the existence of
all points inside the AMS, whereas γ = 1 implies the existence of all points outside the
AMS envelope.

5. Implementation

The proposed method was implemented on parcel delivery Hexarotor UAV developed
by a PNU drone to optimize its actuator tilting angle and arm installation angle. This
implementation aimed to validate the presented approach and show functional application
practices of the computed parameters through a simulation of the assumed UAV.

The preliminary design of the assumed UAV had a standard coplanar configuration,
as shown in Figure 6. The output of the proposed method for possible actuator’s complete
failure one at a time and desired post-failure operations were computed. The possible
practice of deploying this optimized tilting angle for reorienting the actuators is using an
active tilting mechanism, as shown in Figure A1. These situations were demonstrated with
a simulation in its hovering and path-following mission.

Figure 6. Preliminary design of urban package delivery drone developed by a PNU drone.
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5.1. Plant Modeling and Simulation

In this work, a simulation of an assumed UAV was presented. Although the detailed
modeling process of the system is beyond the scope of this study, a subjective description
of the level of abstraction related to actuator failure and reconfigurability mechanisms is
elaborated in this section.

Nowadays, the advancements of modeling software and efficient computers enable the
simulation of highly abstracted models. Multibody modeling tools allow the development
of high-fidelity simulation models without getting into the complexity of the mathematical
modeling of a system [17]. In this modeling process, SOLIDWORKS 3D CAD modeling
software was employed to model the digital copy of the UAV structure with its inertial
parameters. In contrast, physical models, such as D.C. motors, R.C. servo motors, and other
relevant components, were modeled with Simscape MultibodyTM. It is an extension of
MATLAB/Simulink. It has tools to simulate a mechanical system with multiple degrees of
freedom which allows modeling the individual components and their integration, including
their energy interaction [18]. The library contains all the blocks required to define physical
systems, such as bodies, joints, actuators, and sensors. The solver simulates the dynamics
of the physical system by developing and solving differential equations [19].

The block diagram of the UAV HFM developed in Simscape MultibodyTM is shown in
Figure 7. Inside the UAV block, the inertial properties of the UAV were defined by a body
block that contained a CAD file of the UAV airframe. Based on the XML file generated from
CAD, the relative position and orientation of components were specified by transformation
block models, whereas the relative motion constraints were modeled in the joint block. The
propulsion system was composed of two central units. The first unit was responsible for
generating thrust, and it had a D.C. motor model block and propeller model block, while
the second unit was responsible for vectorizing the generated thrust, and it had an R.C.
servo motor model block and tilting mechanism model.

Figure 7. UAV system modeling and simulation block diagram.

Furthermore, these actuation blocks allow fault injection at a specified simulation time.
The environmental model block was applied to define the gravitational force and model
contact between the UAV and CAD modeled ground and obstacles. The translation and
rotational state of the UAV with respect to the world reference were measured by transform
sensor block. The propellers’ angular rate and tilting angles were measured by sensor
option on the respective joint block during the simulation. The model blocks are configured
according to the manufacturer’s datasheet of selected components.

The controller block receives the position setpoint from the waypoint-based trajectory
generator and the state of the UAV from the state measurement block. It outputs the control
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signal to the actuator block. The stabilization and control of the plant were implemented in
the control block, which uses the cascaded closed-loop PID position and attitude control.
The precomputed tilting angles combined with the fault tag are stored in the lookup table
to reconfigure the UAV [20–22]. In this test platform, by assuming the presence of a perfect
actuator fault detection and isolation system, fault signals were generated automatically,
and corresponding reconfiguration parameters were selected after some detection time.
Thus, each tilting mechanism servo received an actuation signal and executed structural
reconfiguration.

5.2. Parameter Selection

The preliminary design of the proposed UAV had six equally spaced propellers on
the same plane. The propellers were arranged in alternating order of their spinning
direction. The propellers’ counterclockwise (CCW) rotation about the Z-axis of the propeller
coordinate was taken as positive rotation, whereas the clockwise rotation was assumed
as negative, and the thrust generated by the propellers was directed parallel to both the
airframe and propeller coordinate Z-direction. Even though it was not fully controllable,
this arrangement fulfilled the minimum number of propellers required to provide actuator
fault tolerance [23].

Recalling the discussion in Section 1, actuator failure causes the loss of force and
moment unbalance, which results in an incapability to maintain entire attitude and altitude
control. A typical scheme for solving this situation is scarifying control of one or more DOF,
usually yaw motion to control rolling and pitching motion independently [24]. Vectorizing
thrust by tilting the propeller was another technique many researchers presented. The
inward, sideways, or combined tilting of propellers proved to enhance the multirotor UAVs’
fault tolerance and maneuverability [25–27].

Thus, as shown in Figure 8, actuators 3–6 were established to tilt inward and outward
about the axis perpendicular to the arm axis. In contrast, actuators 1 and 2 were situated to
make sideways tilting about the arm axis. The additional parameter β controls the deviation
between the lateral thrust vector produced by the vectorization of the thrust produced
by tilting the propellers and the arm axis. Angle β results in offsetting two symmetric
and opposite propellers’ lateral thrust. Figure 8c,d shows the modified configuration
of the preliminary design shown in Figure 8a,b. The green line represents the direction
of the lateral thrust offsetting by β, whereas the grey line represents the preliminary
design arm axis.

 

(a) (b) 

Figure 8. Cont.
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(c) (d) 

Figure 8. Comparison of proposed UAV preliminary design and UAV with tilting mechanism
(a) preliminary design where all propellers tilting angles are zero (coplanar) (b) preliminary de-
sign with axis offsetting angle zero (c) αi tilted propeller configuration (d) configuration with axis
offset angle β.

The design parameters to be optimized were chosen as:

p = [β, α1, α2, α3, α4, α5, α6]
T (22)

where αi is the propeller’s tilting angle, and β is the lateral thrust offsetting angle; the
outward tilting angle was taken as a positive tilting angle.

6. Result and Discussion

6.1. Optimization Result

The proposed framework’s verification by optimizing parameters in p for each ac-
tuator failure possibility in the platform and chosen post-failure operation performance
requirement is presented. The two common operations, hovering at the location and follow-
ing an obstacle-free trajectory to return home, are considered. The required moment data to
accomplish these operations and reject the associated disturbance in the nominal condition
were logged from the simulation and used as a performance requirement for optimization
in faulty conditions. If the framework is implemented correctly, the parameters must
converge to a value that gives a maximum cost function and the least exclusion ratio for
a given marginal demand. If this is violated, the parameters should not be accepted as
optimum, and we recommend that the operation and parameter constraints be revised. In
order to limit the maximum vertical thrust loss due to tilting to 5% and consider installation
constraints, the domain of parameters is defined as follows:

D = {p|0 < β < 30, −20 < αi < 20, i = 1, 2 . . . 6}

To perform the optimization, the particle swarm optimization (PSO) algorithm was
implemented to search for a combination of parameters that maximizes the cost function.
The algorithm used randomly distributed population sizes of 500 and 400 iterations.

6.1.1. Null Controllability

This section presents the optimization result of the assumed UAV towards achieving
actuator fault-tolerant capabilities in a single actuator total failure while hovering. The
framework used Equation (15) to maximize and fit the sphere described in Equation (11)
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into the AMS, and Figure 9 shows the result as a plot of parameters and cost function against
the number of iterations for actuator-1 total failure. The result showed that the parameters
were converged to values that maximize the cost function within their constraint limits. The
initial values, optimal values, and the resulting cost function computed by the optimization
framework for each actuator’s possible failure are listed in Table 2.

Figure 9. Optimization output: plot of actuator’s tilting angle and cost function trend against the
number of iterations for actuator 1 failure and the null controllability performance requirement.

Table 2. Parameter optimizations result in null controllability, single actuator failure at a time.

Fault Condition
Parameters (Angles in Degree)

Cost Function
Initial Value Optimization

Actuator 1 failed
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
15
15
15
15
15
15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
30 0 −20 20 20 20 20

]T 3.8862
Actuator 2 failed

[
30 20 0 20 20 20 20

]T 3.8862
Actuator 3 failed

[
30 20 13.5 0 19 20 20

]T 3.5078
Actuator 4 failed

[
30 20 13 −16 0 20 20

]T 3.4718
Actuator 5 failed

[
30 20 5 20 19 0 20

]T 3.6263
Actuator 6 failed

[
30 20 13 20 20 −20 0

]T 3.5029

A comparison of the preliminary designs of the AMS (yellow) and the configuration
augmented with optimum parameters (aqua) for each actuator’s failure is presented in
Figure 10. In preliminary design, actuator-1 total failure results in an inability to produce a
negative yaw moment and a negative roll moment simultaneously, and actuators-2 total
failure results in an inability to produce a positive yaw moment and a positive roll moment.
Likewise, the complete failure of actuators-3–4–5–6 degrades the system’s controllability, so
the system loses its attitude control. In contrast, owing to the vectorization of the vertical
thrust force into the lateral force via optimum angle tilting and arm installation angle of
the produced lateral force from symmetrically located actuators, the yaw moment was
produced independently with a slight loss of roll moment in the optimal configuration. As
a result, sufficient control was produced around the origin of the AMS, as shown on the
optimized configuration AMS by origin-centered sphere geometry.

The marginal evaluation result for actuator 1 failure optimization is depicted as shown
in Figure 11. The actuator-1 failure in the preliminary design results in S = 0 and γ = 0.462,
which indicates 46.2% of the required moment points outside the AMS envelope, as shown
in Figure 11a. Given the marginal value of ζ = 1, the coverage of all points within the
prescribed margin was ensured through the magnification of gs by S = 3.26. Furthermore,
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Figure 11b shows the maximum achievable scaling factor S = 3.886 and the corresponding
marginal value of ζ = 1.316.

 

Figure 10. AMS comparison of preliminary configuration with optimized configuration for each
actuator failure.

 
(a) (b) 

Figure 11. The marginal evaluation results. (a) Exclusion ratio for sampled scaling factors at marginal
value ζ = 1 (b) Achievable marginal requirement.
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6.1.2. Maneuver Requirement

In this case, the proposed framework was used to find the optimum design parameters
that would allow the system to execute its assigned mission in the event of an actuator
failure. The required moment data to track mission trajectory were obtained from the
assumed UAV model simulation at nominal conditions. The distribution of moment
data points in its three directions of moment space R3 was portrayed geometrically by
constructing the SDE using Equations (12)–(14). The framework used Equation (17) to
maximize and fit the SDE described by Equation (14) into the AMS, and Figure 12 shows the
result as a plot of parameters and cost function against the number of iterations. Similarly,
the parameters were converged to values that maximize the cost function within their
constraint limits.

Figure 12. Optimization output: plot of actuator’s parameters and cost function trend against the
number of iterations for actuator 1 failure and prescribed maneuver performance requirement.

Similarly, a comparison of the preliminary design of the AMS (yellow) and the configu-
ration augmented with optimum parameters (aqua) for each actuator’s failure is presented
in Figure 13. Unlike the hovering operation, the maneuver requires different control au-
thorities in all moment directions in this operation. In this case, the optimization fits
Equation (14), which describes the required moments to meet the assigned maneuver into
the AMS using the formulation in Equation (17). Similarly, the results demonstrated that
sufficient control authority was obtained in all directions, based on their relative weight.
The initial values, optimal values, and the resulting cost function computed for each
actuator’s possible failure are listed in Table 3.

Using Algorithm 1 given in Section 4, the orientation of points can be defined using
the exclusion ratio γ and confidence level pr(S) given marginal value ζ for an arbitrary
value of scale factor S, as shown in Figure 14a. In the preliminary design, failure in actuator
one results in a loss of controllability in one of the directions; hence, the geometry will
have zero radii that result in S = 0 and the corresponding pr(S) = 0. In this circumstance,
about 1/3 of the moments required to perform the needed operation were present outside
of the AMS envelope. As S increases, the number of points flowing into the AMS polytope
increases, whereas the number of points outside the envelopes decreases, as indicated by
decreasing of γ. At S = 5 the confidence level reaches a maximum pr(S) = 1, which shows
the existence of all points within the ellipsoid and hence in the AMS envelope. However,
5.2% of points reside outside the AMS’s prescribed margin. Further magnification of the
ellipsoid results in the enlargement of the AMS and crossing of the remaining points across
the specified margin inside the AMS. At S = 6.35 all points were orientated inside of the
requested margin.
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Moreover, the maximum marginal value that can be imposed is depicted in Figure 14b.
At ζ = 0 all points are orientated inside the AMS polytope without marginal specification.
For ζ > 0, the polytope must be enlarged to keep γ = 0. As a result of imposed constraint
on the parameter, the maximum marginal value that can be achieved was ζ = 2.05, which
corresponds to the maximum scale factor (S = 7.747). Therefore, the computed parameters
can be used to reconfigure the UAV to tolerate the considered fault and perform the
desired maneuver.

Figure 13. AMS comparison of preliminary configuration with optimized configuration for each
actuator failure and prescribed maneuver performance requirement.

Table 3. Mission-based parameter optimization results for single actuator failure at a time.

Fault Condition
Parameters (Angles in Degree)

Cost Function
Initial Value Optimization

Actuator 1 failed
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
15
15
15
15
15
15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
30 0 −20 20 20 20 −20

]T 7.747
Actuator 2 failed

[
30 20 0 20 −20 20 10

]T 8.416
Actuator 3 failed

[
30 20 20 0 20 20 −12

]T 8.595
Actuator 4 failed

[
30 20 20 −20 0 20 20

]T 8.101
Actuator 5 failed

[
30 20 −5 −20 20 0 −10

]T 8.173
Actuator 6 failed

[
30 20 17 20 20 −20 0

]T 6.751
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(a) (b) 

Figure 14. The marginal evaluation results for designed mission profile (a) Trend of exclusion ratio
and confidence level against cost function at a different stage of design parameter optimization is
plotted at ζ = 1; (b) Achievable marginal requirement.

6.2. Simulation Result
6.2.1. Scenario 1

The assumed UAV model simulation was used to prove the optimized configura-
tion’s ability to survive specified actuator failure while hovering at the target as shown
in simulation Video S1. As shown in Figure 15, the UAV with the preliminary actuator
orientation was commanded to take off to six meters and hover. While hovering, the fault
was injected into actuator1 at a simulation time of 20 s, and the propellers were steered to
tilt after sufficient detection time. The simulation result demonstrated that the optimum
configuration compensated for the lost control after some perpetuation and stabilized
towards its hovering state, as shown in Figure 16.

   (a)                                                                          (b) 

  (c)                 (d) 

  

  

Figure 15. Simulation for hovering flight (a) Hovering at a given height in the nominal situation.
(b) Right-side view of hovering at a given height in the presence of actuator failure. (c) Close-up view
of hovering flight before actuator failure. (d) Close-up view of actuator’s reorientation after actuator
failure at recovered hovering.
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              (a)                   (b) 

    (c)         (d) 

Figure 16. Hovering test result for fault injected at t = 20 s on propeller (a) Altitude of the vehicle
(b) Attitude response (c) Propeller tilting angle (d) Propeller’s rotation rate.

6.2.2. Scenario 2

In this scenario, the ability of a configuration with optimum design parameters to
navigate via waypoints was evaluated in the event of a single actuator failure. The way-
points are positioned so that they reflect the tasks that are carried out to avoid static barriers
that may be encountered in real-world applications. The B-spline trajectory generating
technique established in [28] was used to combine the waypoints as shown on Figure 17.

Figure 17. The path followed by the UAV.

As shown in Figure 18, the possible environmental confrontation is depicted as win-
dows at different heights, trees, and a house. The first window was placed in such a way
that it allowed the UAV to pass at a lower altitude below two meters, whereas the second
window was placed at the height of six meters. Following the mission profile, the UAV
was ordered to take off to the altitude of four meters (Figure 18a) pitch forward about ten
meters, and follow the curved path to the first and second window obstacles while rolling,
pitching, and descending to the height of two meters simultaneously (Figure 18c). Then it
had to ascend simultaneously to an altitude of six meters (Figure 18d) to pass through the
opening, and finally land at the depicted landing pad (Figure 18b). Therefore, in this flight
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path, the performance of the optimized configuration during a single actuator failure was
conducted to fulfill the specified operation.

  
(a) (b) 

  
(c) (d) 

Figure 18. Trajectory following simulation result with actuator-1 failed (a) Take-off (b) Landing (c)
Passing through obstacle 1 (d) Passing through obstacle 2.

The UAV was reconfigured to the optimum propeller tilting and offset angle listed in
Table 3 corresponding to the actuator-1 failure. As shown in Figure 19, the result showed
that the desired operation is fulfilled while the actuator-1 failed with optimized parameters.

Figure 19. Simulation result of the optimized configuration in tolerating actuator 1 failure and
performing maneuvers.

7. Conclusions

This work proposed a reliable optimization strategy that can be employed to design
actuator fault-tolerant multirotor UAV configuration. The framework considers the re-
quired moment data derived from the designed mission profile and disturbance rejection
requirement. Given the required moment as a geometry that describes its distribution and
the actuator’s health status indicator, the optimizer aims to maximize the scaling factor
of the geometry and fit into the AMS, such that the requirements lay under the system
capability in the presence of a failed actuator. An efficient marginal evaluation algorithm
is proposed to quantify the extent of capability margin. The framework is applied to the
delivery drone concept developed by the PNU drone with six rotors. The assumed UAV
is modified with a one-direction rotor active tilting mechanism to allow the system to
reconfigure itself in the event of failure and recovery. Firstly, the strategy is verified by
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a multivariable optimization of selected design parameters for performing a given task
under fault conditions, and the resulting trend of the cost function and parameter was
plotted. The optimization result shows that the proposed approach maximizes the AMS
to enclose requirements under system capability, and the resulting cost function is clearly
plotted against the exclusion ratio to show the orientation of points relative to the AMS.
The author believes that this work is a fundamental and essential step in designing fail-safe
operations, such as obstacle-free trajectory, safe landing site search, etc.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12136781/s1, Video S1: Simulation of actuator fault tolerant
multirotor UAV with tilting actuators.
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Appendix A. Position and Orientation Matrix Derivation

The relationship between the design parameters and the force and moment generated
can be summarized as follows:

Figure A1. Structural layout of proposed UAV.

The propeller’s position can be described with rotation about the body frame Zb axis
by angle θ as shown in Equation (3) in Section 2. The generalized position matrix x of the
assumed Hexarotor UAV preliminary configuration shown is defined as:

x =

⎡⎣ 0 0 s(θ) −s(θ) s(θ) −s(θ)
cθ −cθ −c(θ) c(θ) c(θ) −c(θ)
0 0 0 0 0 0

⎤⎦
Referring from Section 5, for optimization purposes, the orientation matrix was modi-

fied with offsetting angle β as:

x̂ =

⎡⎣ 0 0 s(θ − β) −s(θ − β) s(θ − β) −s(θ − β)
c(θ − β) −c(θ − β) −c(θ − β) c(θ − β) c(θ − β) −c(θ − β)

0 0 0 0 0 0

⎤⎦
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The orientation of each propeller can be computed as the successive rotation of the
arm with an angle θ about the body frame Zb axis and about propellers coordinate axis yp
and xp with angles αy and αx, respectively.

RZb(θ) =

⎡⎣ cθ sθ 0
−sθ cθ 0

0 0 1

⎤⎦

Ryp

(
αy
)
=

⎡⎣cαy 0 −sαy

0 1 0
sαy 0 cαy

⎤⎦

Rxp(αx) =

⎡⎣1 0 0
0 cαx sαx

0 −sαx cαx

⎤⎦
From Equation (4), the generalized propellers orientation matrix is given as:

q =

⎡⎣s(α1) −sα2 −s(θ)sα3 −s(θ)sα4 −s(θ)sα5 −s(θ)sα6
0 0 −c(θ)sα3 −c(θ)sα4 −c(θ)sα5 −c(θ)sα6

cα1 cα2 cα3 cα4 cα5 cα6

⎤⎦
Recalling from Section 2 for opmization purposes, the orientation matrix can be

modified with offsetting angle β as:

q̂ =

⎡⎣sα1 −sα2 −s(θ − β)sα3 −s(θ − β)sα4 −s(θ − β)sα5 −s(θ − β)sα6
0 0 −c(θ − β)sα3 −c(θ − β)sα4 −c(θ − β)sα5 −c(θ − β)sα6

cα1 cα2 cα3 cα4 cα5 cα6

⎤⎦
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Abstract: Most types of Unmanned Aerial Vehicle (UAV, drone) missions requiring Vertical-Take-Off-
and-Landing (VTOL) capability could benefit if a drone’s effective range could be extended. Example
missions include Search-And-Rescue (SAR) operations, a remote inspection of distant objects, or
parcel delivery. There are numerous research works on multi-rotor drones (e.g., quadcopters), fixed-
wing drones, VTOL quadplanes, or tilt-motor/tilt-wing VTOLs. We propose a unique compact
VTOL UAV optimized for long hover and long-range missions with great lifting capacity and
manoeuvrability: a tandem-wing quadplane with fixed motors only. To the best of our knowledge,
such a drone has not yet been researched. The drone was designed, built, and tested in flight.
Construction details, its advantages, and issues are discussed in this research.

Keywords: UAV; quadcopter; quadplane; multicopter; multirotor; VTOL; tandem-wing; long-range

1. Introduction

Currently, the Unmanned Aerial Vehicle (UAV) market is snowballing—thanks to
many successful civilian and military applications, including, but not limited to photogram-
metry [1], remote inspection [2], parcel delivery [3], disaster recovery [4,5], etc. Most UAV
missions will benefit from extending the drone range as much as possible while main-
taining the Vertical-Take-Off-and-Landing (VTOL) capability. We may consider medical
supplies [6], Search-And-Rescue (SAR) operations [7,8], and even non-critical missions
such as ordinary remote inspection of distant objects (e.g., wind turbines) or simple par-
cel delivery.

In this paper, we make the following contribution: we investigate a rare type of UAV
(Figure 1), designed for a mission where a small-sized, agile, long-range VTOL drone is
capable of precise hovering over a distant target. Many aspects of the drone are discussed,
including, but not limited to test flight results (Figures 2 and 3). We define the size and
weight constraints as follows: a ready-to-fly drone should fit into a square of 1 × 1 m and
weigh less than 3 kg (without payload). It should be able to carry at least 300 g of payload
and stay airborne for at least 15 min. This research aims to design, build, and test a UAV
with maximized range and hovering time.

There are many different types of UAVs, each having unique features. Figure 4 presents
the most common configurations:

(a) A flying wing [9,10]—typically used for long-endurance missions, e.g., photogram-
metry or aerial photography. It is not a VTOL drone.

(b) A fixed-wing plane [11,12]—similar applications as for a flying wing. Fixed-plane
UAVs are usually bigger and can carry more payload. If the plane has landing gear,
it can operate from a runway. Again, it is not a VTOL drone.

(c) A helicopter [13,14]—can fulfil VTOL missions when a heavy payload is required.
Complex mechanical design, many moving parts, and inefficient due to the energy
required for the tail rotor, which does not contribute to the lifting force.
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(d) A hexacopter [15,16]—similar applications to the helicopter. Especially popular
in aerial photography, the film industry, and crop spraying. Less complex design;
typically, it has no moving parts except the motors and propellers. It can survive if
one motor or propeller is lost.

(e) A quadcopter [12,17–19]—the most popular type of non-professional UAV. It is very
robust and agile; it can be tiny, as well as bigger and more powerful. Usually, it has
a limited range because its electric propulsion always comprises lifting force (static
thrust) and manoeuvrability (pitch-speed).

(f) A co-axial helicopter [20,21]—a rare type of UAV. It basically has the same features
as a helicopter, except there is no tail rotor; thus, it is more energy-efficient. However,
double main rotors mounted on a long shaft make it prone to wind gusts.

(g) A quadplane [22–24]—combines the benefits of a VTOL quadcopter with all features
of a fixed-wing plane. The drawbacks include higher take-off mass and increased
drag due to extra motors and motor holders or additional motor tilting mechanics.
The wings and the tailplane make this type of drone less agile in hover and more
prone to wind gusts.

(h) A tandem-wing quadplane—combines essential advantages of VTOL and fixed-
wing UAVs. There are a few full-scale designs, and prototypes [25,26] mainly use
multiple motors to hover (e.g., 6, 8, 12, or more). Existing tandem-wing drones
mostly use a tilt-motor [22,27,28] or tilt-wing design [24,29]. We decided to select
this type of UAV because it has no extra motor holder beams (the two wings support
the motors), and it can have a smaller wingspan than a quadplane with a comparable
wing surface. It is agile in hover because it acts almost like a regular quadcopter.
Thanks to the wings and the pusher motor, it can fly fast in a level flight without
using significant energy. Furthermore, all its electric propulsion can be optimized
for a single role: four main motors for hover conditions (high static thrust) and the
pusher motor for fast level flight (high pitch-speed).

Figure 1. The Elka1Q—an experimental tandem-wing quadplane UAV.
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Figure 2. The Elka1Q drone in one of its test flights.

Figure 3. View from the on-board video camera; altitude ca. 55 m above the airfield.
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Figure 4. An overview of popular UAV types.

2. Materials and Methods

2.1. Selecting the Drone Type and Its Design Details

The need to start and land vertically implies choosing one of the rotorcraft vehicle
types. A multirotor, especially a quadcopter, seems to be a better choice than a classic
helicopter. A helicopter has many more complex mechanical elements (e.g., main rotor
head, a swashplate, pushrods). In contrast, the quadcopter has just four motors with fixed
propellers and no moving parts at all. There are two ways of reaching a distant target by a
quadcopter: fly fast and drain the battery quickly or stay mid-air longer, but fly at a slower
speed. In both cases, flying forward causes more significant electric energy consumption
than hovering. However, adding wings and a propulsion system dedicated (and optimized)
for a forward flight might increase the drone’s range (a drawback: adding some extra
weight). We wanted to keep the drone small and agile. We finally decided to research a rare
tandem-wing configuration rather than a typical quadplane. Such a design allowed us to
increase the wing area without exceeding size constraints and minimize structural support
elements—the wings could become the quadcopter motors’ holders. The tandem-wing
(i.e., a lifting-tail) airplane can have its centre of gravity more aft than a regular tail plane.
That is beneficial from the quadcopter point of view because the main motors are loaded
more evenly.

We decided to use a pusher motor as the propulsion system for the level flight to avoid
drag produced by the propeller wake. The four main propellers’ wake could introduce
strong turbulence over the wingtips; therefore, we moved the motors below the wings.

2.2. Electric Propulsion

A helpful rule of thumb is that one starts with the electric propulsion design first
because it is easier to match the mechanical design of the fuselage to known components’
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sizes and weights. That is especially important for the battery pack—usually the heaviest
and largest element.

At the time of writing, the eCalc [30] seems to be the best and most accurate tool,
including, but not limited to finding the best motor–propeller–battery setup (see Figures 5
and 6). Another great tool, especially for predicting electric RC plane performance, is
MotoCalc [31]. We used it for detailed pusher propulsion performance prediction, e.g., to
estimate top speed in level flight and find the stall speed for various wing setups (see
Figure 7). Considering the general assumptions mentioned in Section 1, we decided to look
for high-D/P-ratio propellers (diameter-to-pitch ratio), a high-voltage setup, and lithium-
ion batteries rather than lithium-polymer ones. A propeller with a high D/P ratio provides
great static thrust (a lift force in the case of a drone), but the thrust drops suddenly when
the airspeed increases. That phenomenon, however, may impact drone manoeuvrability.
Typically, fast and agile drones (e.g., racing quadcopters) use the D/P ratio in the range
[1 . . . 2], where propellers with D/P close to 1 (e.g., 5 × 4) allow high-speed flights, but con-
sume much energy in hover. A high-voltage setup decreases the current needed (assuming
a constant total output power)—lower current benefits in thinner electric wires, and smaller
Electronic Speed Controllers (ESCs), thus a more lightweight setup. The Li-ion batteries
usually offer greater capacity than Li-poly batteries of the same weight, but cannot work
in high-current load conditions. The final setup of the quadcopter’s electric propulsion
is presented in Figure 5 and Table 1, and the predicted performance of the drone (and its
range) can be found in Figure 6. Predicted stall speed, top speed, and the total flight time
can be found in Figure 7. A summary of the predicted performance is presented in Table 2.

Table 1. The final electric propulsion setup.

Main Quadcopter Motors 4× T-Motor MN3110 KV470
Main Quadcopter Propellers 4× T-Motor Carbon-Fibre (CF) 12 × 4
Main Quadcopter ESCs 4× Hobbywing Micro 35A 3-6S BLHeli
Battery Type Li-Ion, 18× Sony US18650VTC5 cell, custom-made battery pack
Battery Setup 6S3P
Battery Capacity 7500 mAh
Battery Voltage 21.6 V nominal, 18–25.2 V full range
Battery Weight 936 g
Pusher Motor 1× T-Motor F60 PRO II KV1750

Pusher Propeller 1× APC-E 5 × 5 (2-blade propeller) or 1× HQProp Ethix S5
5 × 4 × 3 (3-blade propeller)

Pusher Motor ESC 1× Beatles 50 A
Total Drive Weight ca. 1800 g

Table 2. Predicted performance of the electric drive setup; assumed 90% max allowed discharge and
300 g payload (e.g., a video camera with a companion single-board computer).

All-up Weight 2900 g (2600 g + 300 g of payload)
Hover Flight Time ca. 20.4 min
Top Speed (plane mode, using pusher motor) 1 ca. 34–42 m/s (122–144 km/h)
Top Speed (quadcopter mode only) ca. 8.9–12.5 m/s (32–45 km/h)
Max Range (VTOL, plane mode) 1 ca. 25 km
Max Range (quadcopter mode only) ca. 4.6 km
Stall Speed (plane mode) ca. 11.1–13.9 m/s (40–50 km/h)

1 The drone’s range and top speed are much higher compared to a typical quadcopter.
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Figure 5. The eCalc [30] tool helped us find the best electric propulsion setup for the Elka1Q drone ;
disclaimer from eCalc: * The manufacturer limitation is NOT monitored (relates to motor revolutions).

Figure 6. The eCalc [30] tool estimates the drone range and its general performance.

112



Appl. Sci. 2022, 12, 7059

Figure 7. The MotoCalc 8.09 [31] workbench; the tool helped us estimate the drone performance in
level flight (plane mode).

2.3. Mechanical Design

The overall shape of the drone (as seen in Figures 8 and 9) is a compromise among the
general assumptions (described in Section 1), size and weight of significant components
(such as the battery pack), and smart usage of available materials.

Figure 8. An overview of the Elka1Q drone dimensions—top view.
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Figure 9. An overview of the Elka1Q drone—side view.

2.3.1. Wings

Typically, drone arms are made of carbon-fibre tubes because they are very stiff and
lightweight at the same time. However, such a single tube could have a too big a diameter
to fit into the drone’s wing. Instead, we decided to use double 6 × 2 mm carbon-fibre flat
bars as wing spars. Additionally, the space between them forms a convenient tunnel for
electric wires. The wings are built of two matching full-balsa wood elements: a bottom and
a top half, both CNC 3D milled and glued together. The leading and trailing edges of a wing
are usually prone to accidental damage (especially a very thin trailing edge); therefore, both
edges are reinforced with carbon-fibre 4× 1 mm flat bars. The carbon-fibre wing spars at the
wingtips support the main motor holders (CNC milled from a 3mm-thick aluminium sheet).
The two elements of the holders are screwed together to catch protruding wing spars tightly.
Finally, the surface of the wing is covered by Oracover [32] film. The wing construction
proves to be light and very durable. We could say it is a perfect balance between stiffness
and elasticity. Initially, we chose a wing profile (an airfoil) optimized for high-speed flight:
the P-51D tip (BL215) airfoil (see Figure 10). Generally speaking, high-speed airfoils have
low drag, but, on the other hand, have a low lift coefficient, which results in a high stall
speed, and that means the plane has to maintain high enough speed to stay airborne in a
level flight. That should not be an issue if the pusher motor can accelerate the drone to
that speed. Due to safety reasons, we decided to modify the original wings—we made
them much thicker (see Figure 11). Such a thick airfoil (thickness increased from 12% to
25% of the airfoil chord) gives us a much higher lift coefficient (resulting in a lower stall
speed) at the cost of lowering the top speed. Nevertheless, lower stall speed means we
could perform the in-flight experiments of switching between quadcopter and plane mode
at lower (i.e., safer) speed, and we could do that in a less spacious airfield.

Figure 10. The original airfoil for both drone wings; generated by Airfoil Plotter [33].
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Figure 11. An actual final wing airfoil—the original P-51D tip (BL215) airfoil is still visible underneath
an extra top wing surface. The original wing was full-balsa construction, while the modification was
based on a few balsa wood strips and a 1.5 mm-thick balsa wood covering.

The wing configuration used in the drone is called a “tandem-wing” or sometimes a
“lifting-tail plane”. Those names refer to the fact that the aft wing is not just a horizontal
stabilizer, like in a classic “tailplane” configuration, but it contributes to the total lift force
produced by the plane. It is a rare configuration due to possible stability and controllability
issues [34,35]. Sometimes, quite the opposite statements can be found—tandem-wing
planes are easier to pilot because of safer stall behaviour [36]. However, there were at
least a few successful tandem-wing planes, e.g., Quickie designed by Elbert Leander “Burt”
Rutan (and later QAC Quickie Q2) [36,37] and the Proteus [38] built by Scaled Composites
(Rutan’s company). Another famous tandem-wing plane is the “Flying Flea” (French
name: “Pou du Ciel”), designed by Henri Mignet in 1933. A thorough study of many more
historical and modern tandem-wing planes and UAVs, as well as their aerodynamic and
stability studies, can be found in [34].

A wing that produces lift force also generates a downwash, i.e., the airflow direction
behind the trailing edge of the wing is deflected down by the aerodynamic action of the
wing. That phenomenon changes the effective Angle of Attack (AoA) of the rear wing in the
tandem-wing configuration. Most tandem-wing planes have the front wing mounted lower
than the rear wing to minimize the downwash effect of the front wing [34,35]. Additionally,
it is recommended to set a higher AoA of the front wing than the aft wing—such a wing
setup affects the stall behaviour of the tandem-wing plane. The front wing with a higher
AoA will stall first while the aft wing still produces lift force—that situation will cause the
plane to pitch down, increase the speed, and ultimately, end the front wing’s stall (bring
back its lift force) [36]. Following the suggestions, the front wing of the Elka1Q drone was
mounted at ca. 4◦ AoA and the aft wing at ca. 2◦ AoA.

Finally, there is at least one more critical aspect of every aircraft having wings: Centre
of Gravity (CG, CoG). It is crucial to keep the longitudinal stability of an aircraft. We used
a CG calculator from the eCalc toolset [30]. The results of the calculation are presented
in Figure 12.
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Figure 12. Centre of Gravity (CG) calculated for the Elka1Q drone by the eCalc [30] tool.

2.3.2. Fuselage

The early design of the fuselage (Figure 13) was based on carbon-fibre components
(CNC milled from a 2.5 mm-thick CF plate). After a few flight tests, we discovered an issue:
the fuselage was twisting about the longitudinal axis, as seen in Figure 14.
( p ) g ,
the fuselage was twisting about the longitudinal axis, as seen in Figure 14.

Figure 13. The early Elka1Q fuselage mainly was made of carbon-fibre elements, but it was still not
rigid enough.
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Figure 14. Flight tests revealed that the early Elka1Q fuselage was twisting about the longitudinal axis
(see the arrows).

The final fuselage design was based on a rigid PVC tube (100 mm diameter and 1 mm
wall) and a lighter, but still solid plywood structure (Figures 15–17). The PVC tube acts
similarly to a monocoque structure, eliminating the twisting about the longitudinal axis.

The landing gear is non-retractable—we made four fixed legs of 3 mm spring steel
wire supported by pinewood blocks at the bottom of the fuselage.

The overall structure of the wings and the fuselage proved to be very rigid and
robust, surviving a few serious crash landings. The most significant disadvantage of such a
compact construction is complicated maintenance of internal components, e.g., access to
electronic boards, wires, and connectors.

Figure 15. The final design of Elka1Q fuselage—a PVC tube with internal plywood structure.

Figure 16. The final design of the Elka1Q fuselage—the internal plywood structure.
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Figure 17. The final design of Elka1Q fuselage—a PVC tube with internal plywood structure.

2.4. Electronic Systems

The complete diagram of all electronic components installed in the drone and wirings
among them are presented in Figure 18. We chose the Holybro Kakute F7 AIO [39] as the
central Flight Controller (FC) board—mainly due to its compact size and efficient primary
microcontroller (STM32F745). The FC board was attached to the fuselage through vibration
dampers—which is crucial for correct onboard Inertial Measurement Unit (IMU) readings.

The wiring diagram (Figure 18) reveals many connections across far drone sections.
To simplify the maintenance of the electronic components, we designed a dedicated connec-
tor board (Figure 19). The board exposes all signal sockets and separates the voltage supply
for the servos. A separate DC/DC converter provides a 5 V supply for the servos and video
camera. The servos could generate dangerous voltage spikes that could interfere, e.g., with
the FC or other crucial components. The FC board supplies other components through a
built-in 5 V DC/DC converter, which should be free of any voltage spikes. The diagram
shows that all power lines go through the FC board because the FC has a built-in current
sensor (up to 120 A). It is worth mentioning that the FC has only 6 Pulse Width Modulation
(PWM) output channels: four of them are used by the four main quadcopter motor ESCs,
and the two elevon servos use the remaining two. Because of the lack of another PWM
output, the pusher motor ESC is connected directly to the Radio Control (RC) receiver.
We used a Futaba T14SG transmitter and a Futaba R7008SB receiver to pilot the drone.
The receiver has the S.Bus output—a single connector to send all 14 channels to the FC
board. A 3DR radio transceiver (433 MHz) was used for telemetry and autopilot commands
from the Ground Station (GS). A GPS and compass were placed in a compact module
mounted outside the fuselage—to improve GPS signal reception and move the compass
away from substantial magnetic field interference induced by the power wires. The FC can
communicate its status via programmable LEDs (WS2812)—two such LEDs are mounted in
the front section, on both sides of the fuselage. The FC has a built-in barometer for altitude
reading. However, the barometer’s accuracy is limited. We planned to install a down-facing
rangefinder for a smooth auto-landing feature. Initially, an ultrasonic sensor was tested,
but we decided to replace it with a tiny, affordable, and very reliable Time-of-Flight (ToF)
laser rangefinder (Pololu VL53L1X [40]). With its range up to 400cm, the auto-landing
mode works perfectly smoothly.
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Figure 18. A diagram explaining the wiring of all electronic components of the Elka1Q drone.

We used good-quality 18 AWG power wires with XT60 and XT30 connectors. For the
signal connectors, we used Ninigi NXG-02 [41] (2mm raster connectors), 2–6 pins, depend-
ing on a particular component to connect.
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Figure 19. A dedicated connector board improves the maintenance because the flight controller board
is mounted deep inside the drone’s fuselage.

2.5. Control Principles

Figure 20 explains the forces acting on the drone’s body and primary axes of rota-
tion. The drone dynamics can be analysed from a quadcopter and a plane point of view.
The forces and moments equations can be derived from Euler’s equations for rigid body
dynamics—this is thoroughly explained in [12,17,18]. We also explained in our previous
paper [42] how the quadcopter control forces Fq (see Figure 20) are mixed to obtain desired
moments for the roll, pitch, and yaw axes. Although the quadcopter-like control always
actuates all four motors, the control task can be decomposed into isolated controllers for
each rotation axis separately [42]. The Fp force in Figure 20 is the forward-directed force
produced by the pusher propeller (when the pusher motor is active).

The trailing edge of the rear wing was converted into full-length elevons, i.e., control
surfaces that act as an elevator when deflected in the same direction and as ailerons when
deflected differentially [12]. The drone has no rudder, which means that while flying in
the plane mode (a level flight using pusher motor and wings’ lift force, quadcopter motors
shut down), only rotation around the roll and pitch axes is possible. We decided that
such a simplified control should be enough to maintain the horizontal flight and perform
basic turns.
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Figure 20. Axes of rotation and control forces produced by the drone’s motors and elevons (at the
rear wing).

2.6. Flight Controller Software

We chose the Kakute F7 AIO as the primary FC because the ArduPilot [43] software
can be compiled and installed on that board. The ArduPilot is a leading open-source
autopilot software. It is well tested and greatly supported by a broad community of UAV
enthusiasts. We compiled the ArduCopter subset of the ArduPilot stack. Figures 21 and 22
show a high-level overview of the ArduCopter software components. The structure of
ArduCopter attitude controllers is shown in Figure 23. The original attitude controller is
a cascade of Proportional (P) and Proportional–Integral–Derivative (PID) controllers [44]
(for each axis separately). Although the original diagram mentions a Feed-Forward (FF)
component, it was eventually disabled in our build of the ArduCopter software. We
investigated the overall agility of the attitude controller and eventually implemented a
novel variant of the Model Predictive Controller (MPC) [44,45] as described in [46]. The
control law of the attitude PID controller (see Figure 23) is simple enough that the embedded
microcontroller can compute it efficiently in the main control loop at 400 Hz. However,
our MPC controller was computationally heavy and barely fit into the main control loop.
An interesting control scheme optimization (event-triggered control scheme) was proposed
in [47,48]—future research could check how much processor time could be saved without
losing attitude stability.

We implemented two new flight modes [49]: the FixedTestTrajectory and the Elka1Q
mode. The former was helpful for model identification and controller tuning (described in
detail in our other papers [42,50]), and the latter was entirely dedicated to the plane-like
flight phase.

Let us consider the flight dynamics of a fixed-wing plane with symmetric elevon
control surfaces. When elevons deflect, the plane starts to rotate over its roll or pitch
axis, depending on the direction of the elevons’ deflection (to recap: the same direction
of deflection leads to pitch rotation, and differential deflection leads to roll rotation).
A simplified fixed-wing model can safely assume that the angle of the elevons’ deflection is
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proportional to the plane rotation speed. Based on that statement, we eventually simplified
the Elka1Q mode. When activated, the main quadcopter motors are slowed down to a
constant idle speed and no longer actuated. The pitch and roll control signals from the
rate controllers (see Figure 23) are directly translated into the desired elevons’ deflection
angles. Such a simplification has advantages: the ArduCopter stabilize mode implements
the attitude position and rate (i.e., rotation speed) controllers. Still, it allows control of the
target roll and pitch angles via the human pilot’s RC transmitter. Since the drone has not
been tested in a wind tunnel, we were not sure how big we should allow for the deflection
angles to be for controlling the drone safely. Due to that concern, we implemented a
live-tuning (via RC transmitter knobs) of scale coefficients for the output pitch and roll
signals, which were fed into the elevons’ mixer.

We decided to intentionally not implement any transition phase—a flip of an RC
transmitter switch turns the Elka1Q mode on and off immediately. In our reasoning, we
assumed it is safe to accelerate the drone in the regular quadcopter mode because the
ArduCopter’s stabilize mode maintains the drone’s attitude in the air (i.e., it keeps the
roll, pitch, and yaw tilt angles fixed). When the drone flies fast enough (faster than the
estimated stall speed), disabling the quadcopter motors and enabling the elevons should
(at least in theory) let it keep roughly the same attitude in the air in an actual on-wing level
flight. Similarly, going back to quadcopter mode in a fast forward flight should not be a
problem. The autopilot will just use different actuators to maintain the target attitude—the
quadcopter motors instead of elevons. The only predicted side effect could be related to
some rate of climbing (increasing altitude) because, for a moment, there will be two lift
force sources: the wings and the quadcopter motors.

Figure 21. A high-level architecture overview of the ArduPilot software; image source: https://
ardupilot.org/dev/docs/apmcopter-code-overview.html, accessed on 1 May 2022; published under
the CC BY-SA 3.0 license: https://creativecommons.org/licenses/by-sa/3.0/legalcode, accessed on 1
May 2022.
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Figure 22. A high-level architecture overview of the ArduCopter software—a sequence of actions
in a manually controlled flight mode; image source: https://ardupilot.org/dev/docs/apmcopter-
code-overview.html, accessed on 1 May 2022 published under the CC BY-SA 3.0 license: https:
//creativecommons.org/licenses/by-sa/3.0/legalcode, accessed on 1 May 2022.

Figure 23. The structure of ArduCopter attitude controllers. Image source: https://ardupilot.org/
dev/docs/apmcopter-programming-attitude-control-2.html, accessed on 1 May 2022; published un-
der the CC BY-SA 3.0 license: https://creativecommons.org/licenses/by-sa/3.0/legalcode, accessed
on 1 May 2022.
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3. Results

3.1. Experiments with Limited Flight Freedom

A series of initial tests was performed in a custom-made limited-freedom test harness,
which allows tilting the drone in a single axis only while holding it firmly and locking the re-
maining axes of rotation (Figure 24). Such a safe test environment was facilitative when we
worked on the model identification and implementation of the attitude controllers [42,46].
The final Elka1Q mode was tested in this environment as well.

Figure 24. The drone locked in a limited-freedom test harness.

3.2. Real Flight Experiments

The in-flight experiments (Figure 25) were divided into two stages:

1. VTOL (quadcopter) mode flights and onboard systems check: stabilize mode, hover,
GPS position hold mode, GPS return-to-land mode, smooth auto-landing using the
laser rangefinder, and low-speed forward flight with the pusher motor.

2. In-flight mode transition test and plane mode performance analysis.

The first stage of test flights went without any serious issues. We discovered some
instability in the onboard barometer readings—most likely due to pressure changes inside
the fuselage caused by wind gusts. The barometer is not crucial for the flights; GPS provides
a redundant coarse altitude value. The laser rangefinder provides precise and accurate
low altitude readings necessary for the auto-landing feature. The drone behaves correctly
in hover, responds sharply to pilot commands, and proved to be quite resistant to wind
gusts. Crosswind gusts induced some mild roll oscillations due to the presence of wing
surfaces. Low-speed horizontal flight using the pusher motor did not reveal any stability
issues. The drone maintained its attitude correctly.

The second stage of test flights revealed a few issues, some severe enough to lead to
a few crash landings eventually. Figure 26 shows a telemetry log from an experimental
flight when at about the 120th second, the mode was changed from quadcopter to Elka1Q.
The drone dived rapidly. Immediate manual intervention (switching back to the quadcopter
mode) rescued the drone while it still stayed airborne. The situation repeated in a few
other attempts, sometimes flipping the drone by 180◦ (a half-loop). We concluded that the
drone could have misplaced its CG. The eCalc CG tool states that the calculation results
should be carefully examined in test flights due to numerous limitations, including, but
not limited to “fat” fuselage effects and aerodynamic performance analysis. The overall
static and dynamic plane stability will also depend on the control surface effectiveness and
the attitude controller robustness. Eventually, we fixed that issue by moving the CG by ca.
10 mm forward.

124



Appl. Sci. 2022, 12, 7059

Figure 25. Flight experiments.
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Figure 26. Telemetry log from an in-flight experiment: a sudden pitch down (a dive) after the
transition into plane mode because of misplaced CG—eventually rescued thanks to an immediate
switch back to quadcopter mode.

Further flights showed that the pitch controller still is not always stable enough—in
some flights, after accelerating the drone and switching it to plane mode, the drone became
extremely pitch-unstable (Figure 27). Fast horizontal flights in quadcopter mode (using the
pusher motor to accelerate) also revealed some pitch instability (oscillations in Figure 28
starting from the 111th second).

Figure 29 presents power usage in quadcopter mode (<55 s), during the transition
phase (55–65 s; the drone accelerates with pusher motor; quadcopter motors still work)
and plane mode (>65 s; only pusher motor works; other motors were shut down). It is
worth mentioning that the electric power needed during the hover phase and the level
flight in plane mode is nearly identical (total current drawn from the battery was ca. 20 A).
The key difference is related to the horizontal speed of the drone in plane mode (above
100 km/h), while any non-zero forward flight speed in quadcopter mode requires more
power than in hover. The eCalc predicts (see Figures 5 and 6) that in quadcopter mode,
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the practical maximum speed will be less than 35 km/h at maximum main motor power
(current readings over 60 A!). That proves the plane mode’s efficiency—the drone can fly
3× faster while consuming 3× less electric energy!

Due to safety reasons, we performed the top speed test only partially. Figure 30 shows
that we measured ca. 105 km/h top speed in a level flight.
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Figure 27. Telemetry log from an in-flight experiment: pitch instability in plane mode flight.
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Figure 28. Telemetry log from an in-flight experiment: a close-up on pitch instability observed in
quadcopter mode when the pusher motor increased the drone’s speed in a horizontal flight.

54 56 58 60 62 64 66

time [s]

10

20

30

40

cu
rr

en
t [

A
]

0

20

40

60

80

100
m

ot
or

 th
ro

ttl
e 

[p
er

ce
nt

]battery current
pusher motor

Figure 29. Telemetry log from an in-flight experiment: battery current readings in quadcopter mode
(up to 55th second), accelerating with pusher motor (up to 65th second) and quadcopter motors shut
down when fully transitioned into plane flight mode.
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Figure 30. Telemetry log from an in-flight experiment: top speed test in a horizontal flight in
Elka1Q mode.

4. Discussion

The mechanical construction of the drone proved to be successful. It was lightweight
and highly robust and rigid. The only disadvantage of the construction was related to the
complicated maintenance of internal components.

The complete electronic components used in the drone worked with no issues. Es-
pecially, the Kakute F7 AIO Flight Controller was a good choice—it was tiny, yet highly
reliable and robust.

Thanks to excellent documentation and community support, working with the Ar-
duCopter software stack was a pleasure. Implementing new flight modes was eventually
relatively easy.

The VTOL test flights revealed no issues, which means the optimized quadcopter
electric propulsion provides significant lift force and still guarantees good manoeuvrability.
The motors and propellers were designed to carry 300 g of payload, while the drone could
easily lift an additional 1500 g of payload—or hover longer with a nominal payload.

The pusher motor also performed well—the acceleration was instant, and the high
pitch-speed of the propeller surely could accelerate the drone to an even higher top speed
than the measured 105 km/h.

Building wings around the quadcopter motor holders also proved a good idea. How-
ever, the aerodynamic configuration of a tandem wing turned out to be surprising and
challenging. The first serious problem was related to the correct CG localization. The calcu-
lated value seemed to be placed too far aft. That mistake caused one of the crash landings.

Another issue was related to pitch instability. It was caused (most likely) by too
small (and thus inefficient) elevons. However, the findings based on telemetry logs were
sometimes inconclusive in this matter.

The drone finally proved it could fly fast using its tandem-wing and the pusher motor
only. Due to airfield restrictions, we could not perform a full top speed test and long-
endurance flights. Nevertheless, we measured the electric power usage in both flight
phases. Based on that, we could estimate the drone range.

5. Conclusions

This research aimed to design, build, and test a unique UAV in flight: optimized for ef-
ficient hover, but able to fly in long-range missions. We chose a tandem-wing configuration
because it is the most compact variant of a VTOL drone compared to a fixed-wing one. We
proved in our test flights that the drone could fly very fast (in plane mode) using the same
electric power as in hover (in quadcopter mode). That feature lets it cover a longer distance
than a typical multi-rotor could do. Additionally, we could optimize motors and propellers
for a single purpose, unlike motor-tilting constructions. The tandem-wing configuration is
also significantly smaller and lighter than a typical quadplane of the same wing area.
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Eventually, we designed, calculated, simulated, built, and tested the Elka1Q drone in
static tests and in flight. We also identified a model of the drone dynamics to improve its
attitude controller implementation and experiment with custom-made MPC controllers.

The flights proved the wings almost do not affect the drone behaviour in hover and
VTOL manoeuvres.

Fast horizontal flights using the pusher motor and transitioning to plane mode proved
the drone could cover a significant distance in a short amount of time, i.e., it can oper-
ate in long-range missions. We measured the electric power usage and concluded that
the prototype drone offers a 5× more extended range than a typical VTOL-only UAV
(e.g., a multirotor). The compact mechanical construction of the tandem-wing and the
fuselage proved to be extremely robust—it survived some crash landings with very little
damage, having a take-off weight of ca. 2900 g!

The most significant disadvantages of the Elka1Q drone are related to its pitch stability
issues. Some were caused by a misplaced CG, some plausibly by inefficient elevons,
but some remain unexplained. We suggest examining the pitch controller in a wide range
of conditions and possibly tuning it further.

Future research could optimize the wings and measure all the physical limits of such a
drone, such as the actual top speed and range with a selected mission scenario.

There is a Supplementary Material available—a video summary of the research.

Supplementary Materials: The following supporting information (Video: Elka1Q UAV—a Tandem-
Wing Quadplane.) can be downloaded at: https://www.youtube.com/watch?v=2cdPLeVac24,
accessed on 19 May 2022.
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Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
SAR Search-And-Rescue
PID Proportional–Integral–Derivative
IMU Inertial Measurement Unit
MPC Model Predictive Controller
GPC Generalized Predictive Controller
FC Flight Controller
CG Centre of Gravity
AoA Angle of Attack
ESC Electronic Speed Controller
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Abstract: Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both
civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence
about the environments they are navigating in. This perception can be realized by training a
computing machine to classify objects in the environment. One of the well known machine training
approaches is supervised deep learning, which enables a machine to classify objects. However,
supervised deep learning comes with huge sacrifice in terms of time and computational resources.
Collecting big input data, pre-training processes, such as labeling training data, and the need for a
high performance computer for training are some of the challenges that supervised deep learning
poses. To address these setbacks, this study proposes mission specific input data augmentation
techniques and the design of light-weight deep neural network architecture that is capable of real-
time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to
train the network for object classification. Ten classes of 10,000 different images in each class were
used as input data where 80% were for training the network and the remaining 20% were used for
network validation. For the optimization of the designed deep neural network, a sequential gradient
descent algorithm was implemented. This algorithm has the advantage of handling redundancy in
the data more efficiently than other algorithms.

Keywords: object classification; deep learning; convolutional neural network; network architecture

1. Introduction

The emergence of artificial intelligence and computer vision technologies bring forth
a wide range of applications. As a result, various unmanned systems are being deployed
in both civilian and military domains. Equipped with these technologies, self-driving
cars [1–4] and autonomously navigating UAVs [5–9] are being integrated into our daily
life. All of these and other important applications of integrated artificial intelligence and
computer vision technologies rely, in one way or another, on training neural networks,
which is crucial for the classification of objects in images taken by visual sensors.

Moreover, the ability of a computing machine to autonomously detect and classify
objects leveraged the autonomous navigation of unmanned aerial vehicles in cluttered
environments. This capability further incites a wide range of applications of UAVs. UAV
missions, such as door-to-door package delivery, search and rescue of victims in a collapsed
building, indoor first aid, and target tracking in urban environments, demand that the UAV
has environmental perception. To this end, training a companion computer onboard the
UAV is mandatory. Training computing machines to perceive the surrounding environment
is a state-of-the-art technology, generally known by the name “machine learning”: a sub-
discipline of artificial intelligence. For the process of machine learning, a network of
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mathematical abstracts (neurons) are layered in structured way. The depth of the network
is determined by its number of layers and training this deep network to hierarchically
extract desired features in input data is referred to as “deep learning”. Various definitions
of deep learning were reviewed by Zhang et al. [10]. A comprehensive review of deep
learning and its variants was presented by Yann et al. [11] and Jurgen Schmidhuber [12].
A survey of the wide range of applications of deep learning as well as its challenges and
future directions was reported by Laith et al. [13]

There are various deep learning approaches where supervised deep learning is one
of the well known and widely used approaches. In this type of neural network learning
approach, the dataset is labeled manually for training the network. The three commonly
known neural networks to which supervised deep learning is applied are the convolutional
neural network (CNN), artificial neural network (ANN), and recurrent neural network
(RNN). Ever since its conception, supervised deep learning is being implemented in various
areas such as the autonomous navigation of both ground [14] and aerial vehicles [15],
speech and pattern recognition [16], and medical image analysis [17].

The commonly utilized network that is often implemented in deep learning for object
detection and classification is CNN [18–22]. This CNN is proved to outperform other
networks on various tasks [23]. There are many variants of CNN and their differences
are dictated by the network parameters, such as number of layers, number of intra-layer
neurons and the types of inter-layer connections in the architecture. These parameters
greatly affect the efficiency of the performance of a given CNN. An extensive survey of the
recent architectures of deep CNN was reported by Asiffullah et al. [24].

Neha et al. [25] analyzed three variants of CNN—AlexNet, GoogleNet and ResNet50—
and reported that the number of layers in a network architecture affects the performance
of CNN. Karen et al. [26] found that the increase in the number of layers of CNN en-
hances the performance accuracy of the network. Christian et al. [27] also proposed that
increasing the depth of the network remarkably improves the performance of the network.
In their study on training deep convolutional neural networks using huge image data,
Alex et al. [28] concluded that a very large network, such as ImageNet LSVRC-2010, is
essential to achieving good results.

Indefinite increment in network depth, however, incurs a tiresome training process,
requires high storage and computing capacities, and includes the difficulties of network
architectural design that lead to performance degradation. Tiresome pre-training processes,
such as input data labeling and the need for high performance computers, are common
setbacks for deep network implementation. A companion computer on-board a UAV has
to have enough memory to store huge amounts of activations and weights of the deep
network and needs to conduct resource intensive image processing in real-time for safe
navigation.

Challenges related to large network training were presented and explained by
Michael [29]. Soumya et al. [30] also discussed the challenges of training CNNs. Many
researchers suggested remedies to the challenges. Hugo et al. [31] suggested a deep neu-
ral network training procedure that leverages the performance of the network. Kaiming
et al. [32] proposed a learning framework, named residual learning, that resolves the diffi-
culty of training large networks and performance degradation. Stephan et al. [33] proposed
a stability training approach that enhances network tolerance to small perturbations in
input image data.

In addition to training difficulty, the work of selecting and designing a particular
deep CNN architecture is not simple. This is because the optimization algorithms have to
be gauged from the point of view of specific deep learning problems. There is, however,
a most appropriate optimization for a particular problem which is the result of the “no
free lunch theorem” of mathematical optimization reported by Tamás et al. [34]. Ivana
et al. [35] took the aforementioned network parameters and parameters such as number
of filters per layer and filter size in order to perform parameter optimization and obtain
a network architecture with the best performance. Gao et al. [36] introduced DenseNets,
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where each layer is connected to every other layer. They reported that this network reduces
some of the problems that come with increasing the depth of CNN architecture.

The remainder of this work is organized into sections. Section 2 describes the objective
of this research and the methodologies followed. Problem specific input data augmentation
techniques are listed and augmentation strategies are explained in Section 3. The designed
network architecture and its training procedure are presented in Section 4. Results and
discussions are presented in Section 5 and finally the conclusion is drawn in Section 6.

2. Problem Statement and Methodology

The objective of this research is to enable a quadcopter UAV engaged in search and
rescue operations to acquire the capability of classifying objects in a wreckage of collapsed
building. For this to be realized, a companion computer onboard the quadcopter has to be
well trained with plausible indoor objects. For the first phase of this work, we randomly
picked plausible indoor and surrounding objects, such as windows, doors, walls, columns,
pipes, poles, tables, fans, nets, and trees.

For training, we considered supervised deep learning of the convolutional neural
network approach. The architecture of this CNN is problem specific. Therefore, we
designed a custom CNN architecture specific to the aforementioned problem. Often,
network training requires big input data. There are no big data for the stated scenario. In
cases when the available input data are scarce, a common method to enhance the number
input data is to augment the available data through various methods. Connor et al. [37]
conducted an extensive survey on augmentation methods of input image data. In our case,
we used mission specific augmentation methods.

A mission specific augmented input data generation approach is pertinent to the
quadcopter UAV engaged in search and rescue operations, in a collapsed building. Under
such an operation, the quadcopter has to enter the collapsed building through any hole
available and avoid collision with obstacles as it searches for targets. The quadcopter will
possibly encounters environments with variable brightness as well as laid or inverted
objects. While the quadcopter is taking images of the scene, the images can be blurred due
to the vibration of the quadcopter. If images are taken during the rolling of the quadcopter,
objects in the images might appear rotated. If images are taken at a glance, objects in
the images appear sheared. These possibilities are taken into consideration during image
data augmentation. In designing the neural network model, data cleaning and code
development took most of the time and computing resources. Data training frameworks
and code development are carried out with Python libraries. Image preparation and
manipulation is performed with the Image Processing Toolbox™ from MathWorks®. Units’
dropout is randomly implemented in a ratio of 0.1 to 0.4 on the fully connected (dense)
layer of applied layers.

3. Data Preparation and Pre-Processing Methodology

A quadcopter UAV based mission for the search and rescue of a target in a collapsed
building was taken into consideration during augmentation of the input image data. We
used a stereo camera to collect the 3D image information in SVO format. Sample images
are presented in Figure 1. The image information is then converted to 2D stereo images for
training the supervised deep neural network.

Before the data were analyzed, they were organized into an appropriate form. The
raw image data were prepared in such a way that they retain complete information about
the environment they represent: the aspect of the environment that the data are describing.
Random sample image inputs of the actual experimental indoor environment are shown in
Figure 2. The integrity, completeness, validity, consistency and uniqueness of the dataset
are maintained as much as possible.

The whole preparation process contains tasks such as refining, integrating and trans-
forming input data. For our small dataset, we applied an image augmentation technique to
train the network.
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(a) Setup (b) puricare (fan)

(c) window (d) pole
Figure 1. Experimental setup and sample stereo images of objects used to train the network.

Figure 2. Sample random stereo images used to train our deep neural network.

This augmentation technique enhances the size of input data by zooming, shearing,
rotating, blurring, flipping and changing the color of already existing scarce input data.
The technique performs transformations to yield believable-looking images in the scene.
The network model makes use of this technique to perceive wider aspects of the input

134



Appl. Sci. 2021, 11, 7148

data. Deliberately introducing imperfections into our dataset was essential to making
our model more resilient to the harsh realities it will encounter in real world situations.
Degrading image quality by applying Gaussian blurring was one we applied to our
images for this purpose. Figure 3 shows a random sample of the blurred images used
for training.

Figure 3. Original (top) and blurred (bottom) sample images.

Many types of imperfections can make their way into an image: blur, poor contrast,
noise, joint photographic experts group (JPEG) compression, and more. Of these, blur-
ring is among the most detrimental to image classification. Blurring an image is taking
neighboring pixels and averaging them, in effect reducing detail and creating what can
be perceived as blur. When we implement different amounts of blur, we are determining
how many neighboring pixels to include. We measured this spread from a single pixel
as the standard deviation in both the horizontal and vertical directions. The larger the
standard deviation, the more blur an image receives. In this work, we filtered the image
with a Gaussian filter of 4 standard deviations. Image flipping is one of the commonly used
approaches in image augmentation techniques. Flipping images vertically or horizontally
does not alter the classes of objects in the images. Sample horizontally flipped (left and
right) images used in the model training are displayed in Figure 4a.

(a) left and right flipped
Figure 4. Cont.
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(b) top and bottom flipped
Figure 4. Left and right and top and bottom flipped images used for training.

Even though it is not as common as horizontal flipping, we flipped input images verti-
cally (up-side-down) and the sample is displaced in Figure 4b. Both of these horizontal and
vertical flipping techniques align with the scenario of objects under a collapsed building.

To make the network model invariant to the change in positions of objects in images,
input images were randomly cropped. Each input image was randomly cropped from 10%
to 100% of its original area, and the ratio of width to height of the region was randomly
selected between 0.5 and 2. Sample cropped images are shown in Figure 5a with the width
and height scaled to 180 pixels.

Varying the colors of input images is another image augmentation technique. We
varied the brightness, contrast, saturation and hue of input images. Brightness is randomly
varied between 50% to 150% of the original image and sample images are as shown in
Figure 5b. Similarly, the hues of the input images were randomly varied. Sample images
are displayed in Figure 6a.

(a) random cropped
Figure 5. Cont.
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(b) random brightness
Figure 5. Randomly cropped and brightened images used for training.

We also created random color jitter instances and randomly changed the brightness,
contrast, saturation and hue of the images as shown in Figure 6b. Finally, a multiple image
augmentation technique was applied. All the aforementioned techniques were overlaid
and applied to each input image used in the model training. Figure 6c shows the different
augmentation techniques on sample images.

(a) random hue

(b) random color jitters
Figure 6. Cont.
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(c) multiple augmentation
Figure 6. Images with random hue, color jitters and multiple augmentation used for training.

4. Network Architecture Design

There are two components in artificial neural network models. These are filters and
network architecture. The filter defines the weight parameters and the network architecture
defines parameters such as how many layers, how many neurons per layer, type of intra-
layer and inter-layer neurons connections in the network. Network architecture design is
problem specific. What is accurate for one problem may not perform well for the others.
Therefore, designing a problem specific deep neural network architecture is a common
practice with the intention of reducing computational burdens and enhancing the accuracy
or speed of the network for the objective it is designed for.

In this section, our designed deep neural network architecture for object classification
is presented. The designed architecture is based on CNN. As an objective, since we have
very few classes of objects to classify, it is better to have very few but an effective number
of layers in the network to make it light-weight for fast object classification to ensure the
real-timeness of the classification processes. In this light-weight CNN design, we followed
a common CNN architecture design trend [38], where the sequence of layers are with
few convolutional layers and activation functions followed by pooling layers as shown in
Figure 7.

Figure 7. Data flow in the first two layers of a convolutional neural network (CNN).

Deep neural learning networks and deep learning are popular algorithms. Most of
the outcomes of these algorithms depend on their cautious architectural design and the
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choice of appropriate activation functions. Commonly deployed activation functions in
neural network design are shown in Figure 8.

(a) rectified linear unit (b) sigmoid (c) tanhyperbolic
Figure 8. Different activation functions.

In Figure 7, a susceptive area of a part with a specified weight vector (a filter) is
transformed bit by bit over a two-dimensional arrangement of process parameters, which
are constituent of an image. The resulting arrangement of following activation incidents
of this part then provide parameters to higher-level parts and so forth. The basic parts in
each convolutional block are a convolutional layer, a rectified linear unit (ReLU) activation
function, and a succeeding max-pooling operation.

Each layer has a particular goal. The layers may be replicated with inconsistent
variables as part of the convolutional network. The types of layers we deployed in our
artificial neural network design are listed as follows:

• image input layer
• convolution 2D layer
• batch normalization layer
• relu layer
• max pooling 2D layer
• fully connected layer
• softmax layer
• classification layer

There can be various layers of each kind of layer. Some convolutional nets have hun-
dreds of layers. Convolution is the process of highlighting expected features in an image.
This layer applies sliding convolutional filters to an image to extract features. A batch
normalization layer normalizes each input channel across a mini-batch. It automatically
divides up the input channel into batches. This reduces the sensitivity to the initialization.
Relu layer is a layer that uses the rectified linear unit activation function.

Maxpooling 2D Layer creates a layer that breaks the 2D input into rectangular pooling
regions and outputs the maximum value of each region. The input pool size specifies the
width and height of a pooling region. Pool size can have one element (for square regions)
or two for rectangular regions. The fully connected layer connects all of the inputs to the
outputs with weights and biases. Softmax finds a maximum of a set of values using the
logistic function. A classification layer computes the cross-entropy loss for multi-class
classification problems with mutually exclusive classes.

The layers of the network are summarized in the Table 1. The neural network design
contains of three convolutional structures each of which has a layer that calculates the
maximum value. There is a fully connected layer with 256 units. The neural network
model uses a rectified linear unit (relu) activation function. The image-quantity is a
variable quantity of configuration (32, 180, 180, 3). That is a quantity of 32 images of the
configuration of 180 × 180 × 3, where the last feature represents the colors red, blue and
green channels.
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Table 1. Some layers of the neural network used for object classification training.

Layer (Type) Output Shape Parameter

Rescaling (None, 180, 180, 3) 0
conv1 (Conv2D) (None, 180, 180, 32) 896

max-pooling1 (MaxPooling2D) (None, 90, 90, 32) 0
conv2 (Conv2D) (None, 90, 90, 64) 18,496

max-pooling2 (MaxPooling2D) (None, 45, 45, 64) 0
conv3 (Conv2D) (None, 45, 45, 128) 73,856

max-pooling3 (MaxPooling2D) (None, 22, 22, 128) 0
Flatten (None, 61,952) 0

dense (Dense) (None, 256) 15,859,968
dense-1 (Dense) (None, 5) 1285

4.1. Training the Neural Network

The task of training a deep neural network is the biggest setback of all the processes
therein. This setback worsens as the depth of the network increases. Xavier et al. [39]
discussed the difficulty of training deep neural networks and suggested the work around
procedures to be taken during training. In this section, different methods are explored to
optimize the network output. The general network training flowchart is shown in Figure 9.

Figure 9. Flowchart of neural network training, analysis and application process.

Network training is all about determining the optimal values of network parameters
for which the network performs best. Neural networks are a common category of paramet-
ric nonlinear functions of the form that transforms a vector u of input variables to a vector
v of output variables. A simple way to obtain network parameters is to make the similarity
of curve fitting, and thus minimize the sum of squares error function. Given a training set
containing a set of input vectors un, where n = 1, . . . , N, together with a corresponding set
of target vectors �n, we calculate the minimum of the error function.
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ξ(Ω) =
1
2

N

∑
n=1

‖v(un, Ω)−�n‖2. (1)

Considering a single target variable k that can take any real value and that k has a
Gaussian distribution with an x-dependent mean, which is given by the output of the
neural network, so that

p(k|u, Ω) = N(�|v(u, Ω), α−1), (2)

where α is the precision of Gaussian noise. For N independent data Ø = {u1, ..., uN}
with corresponding target values � = {�1, ...,�N}, we can build the consistent probabil-
ity function.

p(�|Ø, Ω, α) =
N

∏
n=1

p(�n|un, Ω, α). (3)

We can evaluate the error function by calculating the negative logarithm of the proba-
bility function.

α

2

N

∑
n=1

{v(un, Ω)−�n}2 − N
2

ln α +
N
2

ln(2π). (4)

Equation (4) is used to learn parameters Ω and α. In neural networks design literature,
it is customary to take into account the minimization of the error function more than the
maximization of the probability function. We are following the same approach here. First
we obtain Ω by maximizing the probability function (or minimizing the sum-of-squares
error function).

ξ(Ω) =
1
2

N

∑
n=1

{v(un, Ω)−�n}2, (5)

where operational constants are rejected. The value of Ω obtained by minimizing ξ(Ω)
represented by Ωmxl corresponds to the maximum probability solution. Having obtained
Ωmxl , α can be found by minimizing the negative logarithm of probability

1
αmxl

=
1
N

N

∑
n=1

{v(un, Ωmxl)−�n}2. (6)

The practically local maximum of the probability may be obtained that corresponds to
the local minimum of the error function. If there are multiple target variables, which are
assumed to be independent depending on u and Ω with common α, then the conditional
distribution of the target values is obtained by:

p(�|u, Ω) = N(�|v(u, Ω), α−1I). (7)

With the same argument as for a single target variable, we obtain the maximum
likelihood weights by minimizing the sum-of-squares error function. The noise precision is
given by

1
αmxl

=
1

NK

N

∑
n=1

‖v(un, Ωmxl)−�n‖2, (8)

where K is the number of target variables. There is a real matching of the error function
and the output unit activation function. In regression, the network can be viewed as
having an output activation function that is the unitary, so that vk = bk. The corresponding
sum-of-squares error function can be expressed as

∂ξ

∂b�
= vk −�k, (9)
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which is used for error backpropagation. In the case of binary classification, in which there
is a single target variable k so that k = 1 represents class CL1 and k = 0 denotes class CL2.
Assuming a network to have a single output whose activation function is a logistic sigmoid,

v = σ(b) =
1

1 + exp(−b)
. (10)

In this instance, 0 ≤ v(u, Ω) ≤ 1. v(u, Ω) is explained as the conditional probability
p(CL1|u) given by 1 − v(u, Ω). The conditional distribution of targets given inputs is then
a Bernoulli distribution with the form

p(�|u, Ω) = v(u, Ω)�{1 − v(u, Ω)}1−�. (11)

Considering a training set of unconventional results, then the error function, which is
given by the negative logarithm probability, is a measure of the performance the classifier or log
loss error function which is given by the form

ξ(Ω) = −
N

∑
n=1

{�n ln vn + (1 −�n) ln(1 − vn)}, (12)

where vn denotes v(u, Ω). Using the log loss error function in place of the sum-of-squares
for a classifier improves training and generalization. If there are K separate binary classifi-
cations to be done, we can use a network that has K outputs, each of which has a logistic
sigmoid activation function. Associated with each output is a binary class label kt ∈ {0, 1},
where t = 1, . . . ,�. Assuming that the class labels are individualistic, given the input
vectors, the conditional distribution of the target is

p(�|u, Ω) =
K

∏
k=1

(u, Ω)�k [1 − v�(u, Ω)]1−�k . (13)

Evaluating the negative logarithm of the corresponding probability function then
gives the following error function

ξ(Ω) = −
N

∑
n=1

K

∑
k=1

{kn� ln vn� + (1 − kn�) ln(1 − vn�)}, (14)

where vn� represents v�(un, Ω). Considering the standard multi-class classification prob-
lem in which each input is assigned to one of the � mutually exclusive classes. The binary
target variables k� ∈ {0, 1} have a 1-of-� coding strategy showing the class, and the
network outputs are explained as v�(u, Ω) = p(k� = 1|u), which results in the following
error function

ξ(Ω) = −
N

∑
n=1

K

∑
�=1

k�n ln v�(un, Ω). (15)

The return unitary activation function, which correlates with the canonical link, is
then represented by the softmax function

v�(u, Ω) =
exp(bt(u, Ω))

∑j exp(bj(u, Ω))
, (16)

which fulfills 0 ≤ v� ≤ 1 and ∑� v� = 1. In general, there is a simple option of both
output part activation function and complement error function, in accordance with the
type of solution being sought. In the case of regression, linear outputs and a sum-of-
squares error are used. For multiple unconstrained duplicate classifications we use logistic
sigmoid outputs with a log-loss error function. In the case of multi-class classification we
implement softmax outputs with the comparable multi-class log-loss error function. For
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a classifier problem concerning two classes, a single logistic sigmoid output can be used,
or optionally network with two outputs having a softmax output activation function can
be implemented.

Parameter Optimization

We will find a weight vector Ω that decreases the selected function ξ(Ω). If we make
a small pace in weight span from Ω to Ω + δΩ, then the pace in the error function is
δξ  δΩT∇ξ(Ω), where the vector ∇ξ(Ω) shows in the direction of the largest rate of
the pace of the error function. Because the error is an even, continuous function of Ω, its
least value will happen at a point in weight span such that the slope of the error function
disappears, therefore

∇ξ(Ω) = 0, (17)

or else we could make a small pace in the direction of −∇ξ(Ω) and thereby further decrease
the error. Points at which the slope disappears are known as static points, and may be
categorized into minimum, maximum, and saddle points. Our aim is to find a vector
Ω such that ξ(Ω) takes its least value. Nevertheless, the error function always has an
extremely nonlinear dependence on the weights and bias parameters. So there will be
many points in weight span where the slope disappears (or is numerically very small). For
any point Ω that is a local minimum, there will be other points in the weight span that are
similar minima.

Additionally, there will always be many different static points and in particular multi-
ple different minima. A minimum that corresponds to the least value of the error function
for any weight vector is called a global minimum. Any other minima corresponding to
larger values of the error function are called local minima. For a better application of
neural networks, it may not be important to find the global minimum but it may be good
to compare many local minima to find an acceptably good result. because there is no
expectation of obtaining an analytical result to the equation ∇ξ(Ω) = 0, we seek iterative
numerical methods. Most numerical methods include selecting some initial value Ω0 for
the weight vector and then operating through the weight span in sequence of pace of the
following form,

Ω(λ+1) = Ω(λ) + ΔΩ(λ), (18)

where λ labels the iteration step. Separate algorithms use many alternatives for the weight
vector improvement ΔΩ(λ). There are methods that make use of slope detail and hence
need, after each improvement, the value of ∇ξ(Ω) to be calculated at the new weight vector
Ω(λ+1). It is viable to calculate the slope of an error function effectively by means of the
backpropagation procedure. The use of this gradient detail can lead to better improvements
in the speed with which the minima of the error function can be detected.

The simplest way to use gradient detail is to choose the weight update in Equation
(18) to include a small pace in the direction of the negative slope so that

Ω(λ+1) = Ω(λ) − μ∇ξ(Ω(λ)), (19)

where the specification μ > 0 is called the learning rate. Following each such improvement,
the slope is re-calculated for the new weight vector and the computation is repeated. The
error function is explained regarding a training set, and so each pace needs all the training
sets to be computed in order to estimate ∇ξ. Methods that use the whole dataset at once
are named batch methods. At each pace, the weight vector is moved in the direction of the
largest rate of decrease of the error function and so this approach is called the gradient
descent or steepest descent. Even though this approach might look sensible, in fact it turns
out to be a poor method. For batch optimization, there are more effective methods, such
as conjugate gradients and quasi-Newton methods, which are stronger and faster than
the simple gradient descent. Far from gradient descent, these algorithms have the effects
that the error function always diminishes at each iteration except for the weight vector has
reached a local or global minimum.
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To find an acceptably good minimum, it may be mandatory to run a gradient-based
algorithm many times, each time using a different randomly selected starting point, and
comparing the resulting performance on an independent validation set. However, there
is an on-line sort of gradient descent that has shown convenience in practice for training
neural networks. Error functions based on maximum probability for a set of independent
observations include a sum of terms, one for every data point,

ξ(Ω) =
N

∑
n=1

ξn(Ω). (20)

On-line gradient descent, also known as sequential gradient descent or stochastic gradient
descent, makes an update to the weight vector based on one data point at a time so that

Ω(λ+1) = Ω(λ) − μ∇ξn(Ω
(λ)). (21)

In this way, the update is redone by repeating through the data either in succession
or by random selection of points and replacing. The power of on-line methods handle
superfluity in the data much more effectively in contrast to the batch methods.

One of the challenges with training networks with a limited number of input data is
over fitting which greatly degrades the performance of the network. A recommended way
of reducing this overfitting is through randomly dropping a certain number of neurons
from layers [40]. We implemented this regularization method and were able to achieve an
improvement in the performance of our network.

5. Results and Discussion

The datasets used for this study are problem specific and a neural network is designed
for this specific purpose that does not rely on the use of other pre-trained networks and
transfer learning. So network training was done from scratch. Network training was
performed on NVIDIA® AGX Xavier Developer Kit for 50 epochs. The accuracies for
mini-batch, validation and the corresponding losses are summarized in Table 2 for some
selected epochs.

Using sequential gradient descent (SGD) with momentum (0.9) and a piece wise
adjustment to the learning rate schedule, training was run on a 512-core Volta GPU with
Tensor Cores. For GPUs with less memory, it may be necessary to reduce the batch size.
The choice of SGD optimization has advantages for small datasets. Based on the SGD
optimization scheme, ten classes of indoor objects were used for training the model. The
validation precision of the architecture to predict an object which was not contained in
training data was 76.5%. Furthermore, the performance of the network was improved by
fine tuning the weights (parameters) and learning rate. More importantly, the performance
of the network improved by about 10.5% using data augmentation and dropout techniques.

As we observe from our experimental results, training and validation precision are
separated by a large boundary in the case where data augmentation was not implemented.
The model in this case attained only around 68.5% precision on the validation dataset.
Shown in Figure 10, the training precision improves linearly over time, but the valida-
tion precision stalls around 68.5% in the learning process. Moreover, the difference in
precision between training and validation losses is clearly observed which is an indication
of overfitting.
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Table 2. Network training on 512-core Volta GPU result summary.

Epoch Mini-Batch Accuracy Vald. Accuracy Mini-Batch Loss Vald. Loss

1 37.54% 57.22% 1.48 1.10
4 68.53% 67.03% 0.82 0.94
8 74.08% 70.44% 0.68 0.74

12 79.09% 72.62% 0.55 0.68
16 82.30% 75.20% 0.50 0.69
20 83.55% 73.98% 0.41 0.75
24 88.20% 74.52% 0.40 0.77
27 88.09% 74.39% 0.32 0.84
31 91.62% 74.39% 0.26 0.78
35 92.04% 76.84% 0.23 0.83
39 93.08% 76.29% 0.18 1.06
43 94.56% 72.62% 0.16 1.14
47 93.89% 76.98% 0.18 0.90
50 94.48% 76.16% 0.15 1.09

Figure 10. Model performance without data augmentation.

When there is a small number of training datasets, the model sometimes learns from
unwanted details from the training dataset that negatively impact the performance of the
model on new datasets. This means that the model will not be able to generalize on a new
dataset. To reduce the problem of overfitting, we implemented image augmentation and
dropout techniques. Image augmentation produces more training images from our existing
image by augmenting them using random transformations that yield believable-looking
images. This helps expose the model to more aspects of the image and generalize better.
Image augmentation as depicted in Figure 11 improved the model performance to well
above 74.5%. At the same time, the loss during model training is much reduced, indicating
a better model performance.

In the dropout scheme, we randomly decreased the number of output units in the
dense layer in a range of 10% to 40%. Despite the fact that there was not much noticeable
improvement as a result of dropout in training and validation accuracy, there was a
progressive improvement of the validation and loss functions as shown in Figure 12a–d.
Increasing the number of dropouts from the output units again is not a guarantee for better
model performance as it may degrade model performance. In this study, the best model
performance is achieved for both validation precision and validation loss at 30% dropout
of the output units.

The performance of the trained model network is evaluated using validation datasets.
Validation data are not used to train the network. Our experimental results reveal that the
model classified the data in the training dataset with a success rate of 94.5% and validated
results with a success rate of 76.5%. As shown in Figure 12, the training loss reveals how
well the model is fitting the training data, while the validation loss reveals how well the
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model fits new data. Very successful rates on both training and validation loss are achieved
at a 30% dropout, which are well below 0.3 and 0.8, respectively.

Figure 11. Model performance with data augmentation.

(a) 10% dropout

(b) 20% dropout

(c) 30% dropout

Figure 12. Cont.
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(d) 40% dropout
Figure 12. Improvement in validation accuracy and loss function of the model architecture.

To study the precision over various label groups, the confusion matrix (error matrix)
is plotted, which is shown in Figure 13. The label imbalance noted in the training set
is an issue in the classification accuracy. The confusion chart (matrix) illustrates higher
precision and recall for walls and confuses most tables with doors. Even if there are very
few miss-predicted objects, the overall performance of the model to predict an object that
was not contained in the training or validation sets is successful. Since the purpose of
this study is to demonstrate a basic classification network training approach with raw
data, possible next steps that could be taken to improve classification performance, such
as re-sampling the training set or achieving better label balance or using a loss function
more robustly to label imbalance (e.g., weighted cross-entropy,) will be explored in future
studies.

Figure 13. Confusion chart illustrating precision for each class.
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6. Conclusions

A wide diversity of design and optimization techniques are used to design neural
networks and to analyze their performance. The goal of these novel approaches is not to
restrain the expertise architect but is rather to provide hands-on ways and mechanisms
that can help obtain less complex, more robust and high-performance designs. In this
study, we designed and presented a supervised deep neural network architecture for
accurate real-time classification of objects in cluttered indoor environments. We have
performed an in-depth analysis of augmentation in image classification for the case where
there is not a large dataset. Our experimental results revealed that model performance is
enhanced by enforcing different augmentation techniques provided that the level of noise
remains reasonable.

To overcome data constraints in the development of the model that require large
datasets, we implemented a data augmentation technique for each class of objects. More-
over, we implemented a dropout technique to further improve the performance of the
model and reduce the validation loss. In this case, the model achieved a success rate of
94.5% and 76.5% for the training and validation datasets, respectively. Experimental results
reveal that the model architecture performs very well in predicting new data that are not
included in either the training or validation datasets. In our future work, we will deploy
our model on different problems related to images and explore optimal ways to hasten the
computational time.
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Abstract: Nowadays, unmanned aerial vehicles (UAVs) have gradually attracted the attention of
many academicians and researchers. The UAV has been found to be useful in variety of applications,
such as disaster management, intelligent transportation system, wildlife monitoring, and surveillance.
In UAV aerial images, learning effectual image representation was central to scene classifier method.
The previous approach to the scene classification method depends on feature coding models with
lower-level handcrafted features or unsupervised feature learning. The emergence of convolutional
neural network (CNN) is developing image classification techniques more effectively. Due to the lim-
ited resource in UAVs, it can be difficult to fine-tune the hyperparameter and the trade-offs amongst
computation complexity and classifier results. This article focuses on the design of swarm intelligence
with deep transfer learning driven aerial image classification (SIDTLD-AIC) model on UAV networks.
The presented SIDTLD-AIC model involves the proper identification and classification of images into
distinct kinds. For accomplishing this, the presented SIDTLD-AIC model follows a feature extraction
module using RetinaNet model in which the hyperparameter optimization process is performed by
the use of salp swarm algorithm (SSA). In addition, a cascaded long short term memory (CLSTM)
model is executed for classifying the aerial images. At last, seeker optimization algorithm (SOA)
is applied as a hyperparameter optimizer of the CLSTM model and thereby results in enhanced
classification accuracy. To assure the better performance of the SIDTLD-AIC model, a wide range of
simulations are implemented and the outcomes are investigated in many aspects. The comparative
study reported the better performance of the SIDTLD-AIC model over recent approaches.

Keywords: computer vision; unmanned aerial vehicles; deep transfer learning; object detection;
aerial image classification; parameter optimization

1. Introduction

Unmanned aerial vehicles (UAV) are utilized as a cost-efficient and prompt methodol-
ogy for taking remote sensing (RS) images. The boon of UAV technology involves least cost,
small size, security, natural function, and, especially, the fast and on-demand acquisition
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of images [1]. The developments of UAV technologies have achieved the state that it can
offer intense higher resolution RS images encircling lavish contextual and spatial informa-
tion. This has allowed studies suggesting numerous original applications for UAV image
examination, comprising disaster management, vegetation monitoring, object detection,
detection and mapping of archaeological sites, oil and gas pipeline monitoring, and urban
site analysis [2,3].

Aerial image classification methodologies grant distinct semantic categories that are
usually established through exploiting changes in spatial deployments and structural forms
for designing scenes [4]. In opposition with object or pixel related classifier methods, scene
classification provides localization data from extensive aerial image which has apparent
semantic data of the surfaces. Such methodologies are classified into three categories, which
are: high level vision information, low level visual features, and mid-level visual repre-
sentations [5,6]. Aerial scenes are differentiated by low level characteristics use, structural
features, texture, spectral, and so on. Subsequently, low level feature vectors are pictorial
ascriptions which can be derived globally or locally and are usually utilized for describing
aerial scene images [7,8]. The typical low level feature methods are local binary patterns
(LBP), Global Invariant Scale Transform (GIST), and color histogram Scale Invariant Feature
Transform (SIFT). Mid-level analytical methods try to advance complete scene illustrations
through conveying high order statistical outlines which are created by deriving local visual
qualities [9]. The common processing pipeline derives local image patches, and they are
programmed as local signals; therefore, creating a complete mid-level depiction of the aerial
scenes. The familiar mid-level procedure is Bag of Visual Words (BoVW).

Deep learning (DL) procedures like Convolutional Neural Networks (CNNs) were
broadly recognized as a notable approach for numerous computer vision applications
(classification, image or video recognition, and detection), and have revealed amazing
outcomes in various applications [10]. Therefore, there comes numerous advantages to
stopping from utilizing DL methods in emergency response and calamity management
applications to restore crucial data in a timely manner and permitting superior research
and response in the course of time-critical circumstances, and supporting the decision-
making processes [11]. Although CNNs were rising successfully at several classification
roles via transfer learning (TL), their interpretation speed on implanted platforms, like
those discovered on-board UAVs, is hampered by the high computational cost, which may
acquire and the model size of these networks is prohibitive from a memory standpoint for
these entrenched gadgets [12]. At the same time, most of the earlier works do not consider
hyperparameter tuning process into account.

This article focuses on the design of swarm intelligence with deep transfer learning
driven aerial image classification (SIDTLD-AIC) model on UAV networks. The presented
SIDTLD-AIC model follows a feature extraction module using RetinaNet model, in which
the hyperparameter optimization process is performed by the use of salp swarm algorithm
(SSA). The SSA is chosen as it avoids the local optimal constraints, thus achieving a smooth
balance between exploration and exploitation. In addition, a cascaded long short term
memory (CLSTM) model is executed for classifying the aerial images. At last, seeker opti-
mization algorithm (SOA) is applied as a hyperparameter optimizer of the CLSTM model
and thereby results in enhanced classification accuracy. To assure the better performance of
the SIDTLD-AIC model, a wide range of simulations are executed and the outcomes are
investigated in various aspects.

2. Related Works

Haq et al. [13] applied DL based supervised image classification model and images
gathered using UAV for the forest region classification. The DL technique based stacked
Autoencoder (SAE) has shown remarkable potential with respect to the assessment of forest
areas and image classification. The experiment result shows that DL technique provides
improved performance than other machine learning approaches. The researchers in [14]
address the shortcoming of multi-labeling UAV images, usually considered by a higher level
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of dataset content, by presenting a novel technology based on CNN. They are employed
as a means to produce an accurate representation of the query images that are analyzed
afterward sub-dividing them into a grid of tiles. The multi-label classification process is
implemented by combining a radial basis function neural network and a multi-labeling
layer comprised of threshold operation. The researchers in [15] proposed a DL algorithm
for classifying UAV images derived from the location and sensor of earth’s surface. Initially,
the labelled and unlabelled UAV images are fed to a pre-trained CNN to generate deep
feature representation. Next, we learned strong domain-invariant features with a further
network comprised of two fully connected layers.

Rajagopal et al. [16] developed a new optimum DL-based scene classification algorithm
captured by UAV. The suggested method includes a residual network-based features
extraction (RNBFE) that extract feature from the convolutional layer of a DRN system.
Furthermore, the various parameters result in configuration errors because of parameter
tuning. Hence, self-adoptive global best harmony search (SGHS) approach is applied to
tune the parameter of the presented model. The researchers in [17] present a multi-objective
optimization algorithm to evolve deep CNN for scene classification that generates the
non-dominant solution in an automatic manner at the Pareto front. Then, we used two sets
of benchmark data sets for testing the effectiveness of the scene classification algorithm
and making an extensive analysis. Pustokhina et al. [18,19] presented an energy-effective
cluster-based UAV system using DL based scene classification model. The suggested
method includes a clustering with parameter tuned residual network (C-PTRN) system
that operates on two primary processes scene classification and cluster construction.

3. The Proposed Model

In this article, an automated SIDTLD-AIC method was established for the proper
identification and classification of images into distinct kinds on UAV networks. The
presented SIDTLD-AIC model follows a feature extraction module using RetinaNet model
in which the hyperparameter optimization process is performed by the use of SSA. Next,
the SOA-CLSTM model is applied to classify the aerial images. Figure 1 depicts the block
diagram of SIDTLD-AIC technique.

Figure 1. Block diagram of SIDTLD-AIC technique.
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3.1. Feature Extraction Using RetinaNet Model

Transfer learning model is applied to enhance the efficiency of the DL model by the use
of labeled data. It learns and employs many source processes for enhancing the learning
process in relevant domains. It encompasses pre-training approaches which is trained on
large scale dataset and is retrained at varying levels of the model on a small training set.
The preliminary layer of the pre-training network can be modified upon requirement. The
final layer of the model’s hyperparameters can be tuned for learning the abilities on new
datasets. In this work, the RetinaNet based TL model is applied for deriving feature vectors.
An input map was inspired by the individual layer still accomplishing the resulting map.
The CNN is designed in an order of layers. Consider ∈ Rh′×w′×c′((h): height, w: width, c:
channel) are RGB images. Each layer gets X and the set of variables W as input as well as
output images y ∈ Rh′×w′×c′ , for example, y = f (X, W). This makes an activation map to
demonstrate the reaction of that filter at each spatial region. For calculating the input X
with set of filters W ∈ Rhxw×c×c′ and add a bias b ∈ Rc′ as follows.

yi′ j′k′ = f

(
bk′ +

h

∑
i=1

w

∑
j=1

c

∑
d=1

Wijdk × Xi′+i,j′+j,d′

)
. (1)

Next, the max-pooling layer is employed to decrease the computation and parameter
with the decreased size of imputing shapes. It evaluates the maximum response of every
image channel from h × W sub-windows that implement as sub-sampling function. It can
be expressed in the following:

yi′ j′k′=max,
1<i<h̃

1<j<w̃Xi′+ij′+j,k. (2)

Finally, fully connected (FC) layer is a set of layers that integrate the data extracted
by previous layer (feature). This layer gets an input X, processes them, and the last FC
layer generates one dimensional vector of size. RetinaNet mainly consists of [20] two fully
convolution network (FCNs), ResNet, and feature pyramid network (FPN). The ResNet
employs network layer. The widely employed types of network layers are 50_, 101_, and
152_layers. The 101_layer with optimal trained efficacy is chosen. It could eliminate the
structure of echocardiography with ResNet and, after, keep them to following sub-network.
An FPN is an approach for efficiently eliminating the feature of each dimension from image
with a conventional CNN architecture.

Focal loss: it can be improved version of the binary cross entropy (CE), the loss
expression is given below:

CE (p, y) =

{
− log(p) i f y = 1
− log(l − p) otherwise,

(3)

In Equation (3), y ∈ [−1,+1] indicates the ground truth type and p ∈ [0, 1] represents
the prediction probability to type y = 1.

pt =

{
p, i f y = l
l − p, otherwise

(4)

The preceding formula can be abbreviated as follows:

CE (p, y) = CE(pt) = − log (pt) (5)

In order to resolve the problem of data imbalance among the negative and positive
samples, the new process is changed into the succeeding process:

CE(pt) = −αt log (pt). (6)
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Among them,

αt =

{
α, i f y = 1,
l − α otherwise,

(7)

Here, α ∈ [0, 1] represents the weight factor. In order to resolve the problem, the
concentrating variable C was determined to obtain the final process of focal loss:

FL(pt) = −αt(1 − pt)
γ log (pt). (8)

3.2. Hyperparameter Optimization: SSA

In this work, the hyperparameters of the RetinaNet model such as number of epochs,
batch size, learning rate, and momentum are adjusted by the design of SSA. The SSA is
simulated from the aggregation performance of salps that procedure a chain of salps and
then hunt and move. The salp chain was developed from two kinds of salps, leader and
follower [21]. The leader is the salp at the head of chains. Individual salps at the back
of chains are followers. During the salp technique, food source F was determined as the
individual with optimum fitness amongst every individual. The food source of tth order is
F(t). The steps of SSA technique are provided under.

1. Initialization of the population. In order for every individual, the places were arbitrary
numbers amongst the upper as well as lower limits. They then compute fitness of
every individual and sorted them. An individual with minimal fitness is the food
source F(t). t = 1, since one iteration was ended.

2. The population place was upgraded. The leader place was upgraded as:

xi
j(t + 1) =

{
Fj(t) + c1

[(
ubj − lbj

)
c2 + lbj

]
c3 ≥ 0.5

Fj(t)− c1
[(

ubj − lbj
)
c2 + lbj

]
c3 < 0.5

(9)

where i = 1, i.e., the count of leaders is 1. It ranks primary from the populations.
j = 1, 2 · · · D. Fj, ubj, and lbj are F(t), ub, and lb from the jth dimensional correspond-
ingly. c2 and c3 implies the arbitrary numbers from zero and one. c2 affects the step
length of leader movement. c3 defines if the leader moves forward/backward to food
sources. T signifies the maximal number of iterations. c1 refers the co-efficient of
moving length.

c1 = 2e−(4t/T)2
(10)

The place of follower is:

xi
j(t + 1) = 0.5

(
xi−1

j (t) + xi
j (t)

)
(11)

where i ≥ 2, and is the sequence of followers from the population. j = 1, 2 · · · D.
3. Compute the fitness of every upgraded individual. The sort of individuals. Upgrade

F(t). Improve t by 1.
4. If the iteration accuracy condition was attained or t = T, the iteration terminates; or

else, go to (2) to remain the iteration.

3.3. Image Classification Using Optimal CLSTM Model

In the final stage, the optimal CLSTM model is utilized to recognize different types of
classes that exist in the aerial images [22]. A recurrent neural network (RNN) is a kind of
DL method which is depending on existing input and the preceding input. In general, it is
suitable for the scenario where the dataset has a consecutive correlation. But while handling
a longer series of datasets, there exists an exploiting and vanishing gradient problem. In
order to resolve this problem, a long short term memory (LSTM) is utilized that has an
internal memory state which adds forget gate. The gate controls the time dependency
and the effects of preceding inputs. Bidirectional long short term memory (BiLSTM) and
bidirectional RNN (BiRNN) are other variations that reflect preceding input and assume
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the upcoming input of a certain time frame. This work, can present the BiLSTM RNN
and cascaded uni-directional LSTM models. The method comprises the initial layer of
bi-directional RNN integrated with uni-directional RNN layer. The bi-directional LSTM
comprises forward and backward tracks to learn patterns in two directions.

O f 1
n , h f 1

n , i f 1
n = L f 1

(
i f 1
n−1, h f 1

n−1, xn : P f 1
)

, (12)

Ob1
n , hb1

n , ib1
n = Lb1

(
ib1
n−1, hb1

n−1, xn : Pb1
)

, (13)

Equations (12) and (13) show the operation of forwarding and backward tracks.
Figure 2 depicts the framework of LSTM.

Figure 2. Infrastructure of LSTM.

From the equation, O f 1
n , h f 1

n , i f 1
n and Ob1

n , hb1
n , ib1

n indicate the output, the hidden state,
and the internal state of the existing state for forwarding and backward LSTM tracks
correspondingly. xn denotes the sequential input, P indicates the LSTM cell variable. The
output from these two tracks is integrated as in Equation (14) and forwarded into the
next layers.

O1
n = O f 1

n + Ob1
N−n+1. (14)

Bi-directional RNN and uni-directional RNN transform information into an abstract
form and assist in learning spatial dependency. The output from the uni-directional layer
can be attained by the following equation.

Ol
n, hl

n, il
n = LSTMl

(
il
n−1, hl

n−1, Ol−1
n ; Pl

)
, (15)

Now, the output from the lower layer Ol−1
n is integrated with preceding internal

state il
n−1 and hidden state hl

n−1 for obtaining output Ol
n of layer l, and Pl indicates a

variable of the LSTM cell. The input dataset comprises a series of instances (x1, x2, . . . , xN),
while every feature xn is regarded at time n (n = 1, 2, . . . , N). The information is mainly
classified into windows of time segment N and fed into the cascading LSTM. We attain
predicted score vectors for every time step

(
OL

1 , OL
2 , . . . , OL

N
)

at the output. The entire
prediction score can be attained by integrating the predictive score vector for the window
N. The combination of scores can be implemented by using the sum rule as demonstrated
in Equation (16) that implements well than other methodologies. Finally, the predictive
score is transformed into probability using a softmax layer over Y.

Y =
1
N

N

∑
(n=1)

OL
n . (16)
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We cascade LSTM to simulate incremental change of n time steps, and every LSTM is
utilized for estimating the increment for one time step. In this work, θ-increment learning
method learns increment of parameters using the cascaded LSTM network to gain higher
frequency approximation, and θ represents the targeted parameter to be calculated.

In order to optimally elect the hyperparameter values of the CLSTM model, the SOA is
exploited. In SOA, all the seekers have a central location vector

⇀
c , viz., the initial position

for finding upcoming solutions, and it is regarded as estimated value Ex. Furthermore, all
the seekers have a searching radius

⇀
r regarded as the En′, a trust level μ as membership

degree, and a searching direction
⇀
d . Next, the seeker with some level of trust followed

a potential direction and randomly moves towards the second point (novel candidate
solution) in some searching radius from their existing location. In every time step t, the
search decision-making is carried out for evaluating the four variables, and the seeker
moves toward the novel location

⇀
x (t + 1). The updating location from the central location

can be defined as y-conditional cloud generator [23]:

⇀
x ij(t + 1) =

⇀
c ij(t) +

⇀
d ij(t)×⇀

r ij(t)×
√
− ln(μi) (17)

Here “i” refers to the subscript index of seeker, and “j” indicates the subscript index
of parameter dimension. The pseudo-code of the SOA is given in Algorithm 1.

Algorithm 1: Pseudocode of SOA

t ← 0
Initialized generation of S position
{xi(t)|xi(t) = (xi1, xi2, . . . , xiD), i = 1, . . . , S, t = 0} Uniformly and randomly in the parameters.
Estimate all the seekers: Compute the fitness.
Searching techniques provide search variables involving central location vector, searching
direction, searching radius, and trust degree.
Update new location of all the seekers is evaluated.
t ← t + 1
When t < Tmax, then Go to 3; otherwise, End.

Instinctively, central location vector
⇀
c is fixed to existing location

⇀
x (t). Similar

to particle swarm optimization (PSO), all the seekers contain a memory stored in its
optimal location

⇀
p and a global optimal location g accomplished by communicating with

neighboring seekers. Every seeker is categorized into k class in the subscript index, and
the seeker in a similar class belongs to virtual neighbors. Therefore,

⇀
g is established in the

virtual neighbors.

⇀
c =

⇀
x (t) + r1∅1

(
⇀
p (t)−⇀

x (t)
)
+ r2∅2

(
⇀
g (t)−⇀

x (t)
)

(18)

Now r1, r2 indicates the cognitive and social learning rates, correspondingly. ∅1 and
∅2 denotes the real number randomly and uniformly selected within the range of [0, 1]. In
every experiment carried out in the study, r1 = 1, r2 = 1, and k = 3.

Generally, all the seekers have four significant directions, named local spacial direction
⇀
d ls, local temporal direction

⇀
d lt, global spacial direction

⇀
d gs, and global temporal direction

⇀
d gt, correspondingly.

⇀
d lt =

⎧⎨⎩ sign
(
⇀
x (t)−⇀

x (t − 1)
)

i f f it
(
⇀
x (t)

)
≥ f it

(
⇀
x (t − 1)

)
sign

(
⇀
x (t − 1)−⇀

x (t)
)

i f f it
(
⇀
x (t)

)
< f it

(
⇀
x (t − 1)

) (19)

⇀
d ls = sign

(
⇀
x (t)−⇀

x (t)
)

(20)
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⇀
d gt = sign

(
⇀
p (t)−⇀

x (t)
)

(21)

⇀
d gs = sign

(
⇀
g (t)−⇀

x (t)
)

(22)

From the above equation, sign (·) indicates signum function,
⇀
x
′
(t) represent the

location of the seekers with the maximum fitness in a neighbor region, fit
(
⇀
x (t)

)
denotes

the fitness function (FF) of
⇀
x (t). Next, searching direction is allocated based on the

four directions.

⇀
d = sign(ω

(
sign

(
f it
(
⇀
x (t)

)
− f it

(
⇀
x (t − 1)

)))(
⇀
x (t)−⇀

x (t − 1)
)

+r1φ1

(
⇀
p (t)−⇀

x (t)
)
+ r2φ2

(
⇀
g (t)−⇀

x (t)
)
)

(23)

In Equation (7), ω indicates the inertia weight that is fixed to ω = (Tmax− t)/Tmax.
Now, φ1 and φ2 indicates real numbers randomly and uniformly selected within [0, 1].

Search Radius is essential, but challenging, to reasonably provide searching radius. For
unimodal optimization problems, the performance is comparatively oblivious to searching
radius to some extent. However, for multi-modal problems, various searching radii might
lead to various performances of model particularly while handling variety of problems.

The μ variable is considered a quality assessment of location. It is equivalent to the
fitness of

⇀
x (t) or the index of ascensive sorting order of the fitness of

⇀
x (t). Especially, the

global optimal location has the maximal μmax = 1.0, when another location has a μ < 1.0.

μ = μ max − S − Sn
S − 1

(μ max − μ min) (24)

Here, Sn indicates the sequential value of
⇀
x (t) afterward arranging the finesses of

neighboring seekers in ascending sequence, μ max and μ min indicates the maximal and the
minimal μ. We adapted μ max = 1.0, and μ min = 0.2.

The SOA method develops a fitness function (FF) to accomplish better classification
accuracy. It describes a positive integer to characterize the improved performance of the
candidate solution. In this work, the reduction of the classification error rate is regarded as
the FF, as shown in Equation (25).

f itness(xi) = Classi f ier Error Rate(xi) =
number o f misclassi f ied samples

Total number o f samples
∗ 100 (25)

4. Experimental Validation

The performance validation of the proposed model is carried out using the UCM
dataset [24]. The dataset contains a total of 2100 images and 21 classes (agricultural,
airplane, baseballdiamond, beach, buildings, chaparral, denseresidential, forest, freeway,
golfcourse, harbor, intersection, mediumresidential, mobilehomepark, overpass, parkinglot,
river, runway, sparseresidential, storagetanks, and tenniscourt). It includes a total of
100 images under each class. The images were manually extracted from large images from
the USGS National Map Urban Area Imagery collection for various urban areas around the
country. The pixel resolution of this public domain imagery is 1 foot. Each image measures
256 × 256 pixels. For experimental validation, the dataset is split into 70% of training set
and 30% of testing set, i.e., 70 images from each class for training and remaining 30 images
for testing purposes. Figure 3 showcases the sample images of UCM dataset.
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Figure 3. Samples-UCM Dataset.

Figure 4 illustrates the confusion matrices provided by the SIDTLD-AIC model on 70%
of UCM datasets as training datasets. The results indicated that the SIDTLD-AIC model
has effectually categorized all the 21 classes.
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Figure 4. Confusion matrix of SIDTLD-AIC technique on 70% of UCM datasets as training datasets.

Table 1 reports the overall classification outcomes of the SIDTLD-AIC model 70% of
UCM datasets as training datasets. The results inferred that the SIDTLD-AIC model has
accomplished enhanced classifier outcomes on all class labels. For instance, the SIDTLD-
AIC model has recognized class 1 samples with accuy, precn, recal , Fscore, and Gmean of
99.39%, 90.41%, 97.06%, 93.62%, and 98.27%, respectively. Along with that, the SIDTLD-
AIC method has recognized class 3 samples with accuy, precn, recal , Fscore, and Gmean of
99.66%, 98.53%, 94.37%, 96.40%, and 97.11%, correspondingly. Moreover, the SIDTLD-AIC
system has recognized class 13 samples with accuy, precn, recal , Fscore, and Gmean of 99.32%,
91.67%, 94.29%, 92.96%, and 96.89%, correspondingly. Furthermore, the SIDTLD-AIC
approach has recognized class 16 samples with accuy, precn, recal , Fscore, and Gmean of
99.66%, 97.10%, 95.71%, 96.40%, and 97.76%, respectively. Lastly, the SIDTLD-AIC method
has recognized class 20 samples with accuy, precn, recal , Fscore, and Gmean of 99.73%, 95.71%,
98.53%, 97.10%, and 99.16%, correspondingly.

160



Appl. Sci. 2022, 12, 6488

Table 1. Result analysis of SIDTLD-AIC technique with various measures on 70% of UCM datasets
as training datasets.

Training Phase (70%)

Class Labels Accuracy Precision Recall F-Score Geometric Mean

0 99.73 98.48 95.59 97.01 97.73

1 99.39 90.41 97.06 93.62 98.27

2 99.52 96.88 92.54 94.66 96.13

3 99.66 98.53 94.37 96.40 97.11

4 99.86 100.00 97.10 98.53 98.54

5 99.39 95.65 91.67 93.62 95.64

6 99.59 97.22 94.59 95.89 97.19

7 99.73 97.18 97.18 97.18 98.51

8 99.39 93.51 94.74 94.12 97.16

9 99.73 97.10 97.10 97.10 98.47

10 99.59 97.06 94.29 95.65 97.03

11 99.66 95.52 96.97 96.24 98.37

12 99.73 98.63 96.00 97.30 97.94

13 99.32 91.67 94.29 92.96 96.89

14 99.46 93.94 93.94 93.94 96.78

15 99.59 94.20 97.01 95.59 98.36

16 99.66 97.10 95.71 96.40 97.76

17 99.59 94.37 97.10 95.71 98.40

18 99.80 96.00 100.00 97.96 99.89

19 99.59 94.59 97.22 95.89 98.46

20 99.73 95.71 98.53 97.10 99.16

Average 99.60 95.89 95.86 95.85 97.80

Figure 5 showcases the confusion matrices provided by the SIDTLD-AIC approach
on 30% of UCM datasets as testing datasets. The results point out that the SIDTLD-AIC
methodology has effectually categorized all the 21 classes.

Table 2 demonstrates the overall classification outcomes of the SIDTLD-AIC method
on 30% of UCM datasets as testing datasets. The results exposed that the SIDTLD-AIC
model has accomplished higher classifier outcomes on all class labels. For instance, the
SIDTLD-AIC method has recognized class 1 samples with accuy, precn, recal , Fscore, and
Gmean of 99.68%, 100%, 93.75%, 96.77%, and 96.82%, respectively. Next, the SIDTLD-AIC
model has recognized class 3 samples with accuy, precn, recal , Fscore, and Gmean of 99.52%,
96.43%, 93.10%, 94.74%, and 96.41%, correspondingly. Furthermore, the SIDTLD-AIC
system has recognized class 13 samples with accuy, precn, recal , Fscore, and Gmean of 99.21%,
93.10%, 90%, 91.53%, and 94.71%, respectively. Moreover, the SIDTLD-AIC methodology
has recognized class 16 samples with accuy, precn, recal , Fscore, and Gmean of 99.52%, 100%,
90%, 94.74%, and 94.87%, respectively. Finally, the SIDTLD-AIC model has recognized class
20 samples with accuy, precn, recal , Fscore, and Gmean of 99.21%, 88.57%, 96.88%, 92.54%, and
98.10%, correspondingly.
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Figure 5. Confusion matrix of SIDTLD-AIC technique on 30% of UCM datasets as testing datasets.

Table 2. Result analysis of SIDTLD-AIC technique with various measures on 30% of UCM datasets
as testing datasets.

Testing (30%)

Class Labels Accuracy Precision Recall F-Score Geometric Mean

0 100.00 100.00 100.00 100.00 100.00

1 99.68 100.00 93.75 96.77 96.82

2 99.52 91.67 100.00 95.65 99.75

3 99.52 96.43 93.10 94.74 96.41

4 99.68 100.00 93.55 96.67 96.72

5 99.37 92.86 92.86 92.86 96.20

6 99.84 96.30 100.00 98.11 99.92

7 99.37 96.30 89.66 92.86 94.61
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Table 2. Cont.

Testing (30%)

Class Labels Accuracy Precision Recall F-Score Geometric Mean

8 99.52 95.65 91.67 93.62 95.66

9 99.21 86.11 100.00 92.54 99.58

10 99.68 96.67 96.67 96.67 98.24

11 99.84 100.00 97.06 98.51 98.52

12 99.05 85.19 92.00 88.46 95.60

13 99.21 93.10 90.00 91.53 94.71

14 99.21 96.77 88.24 92.31 93.85

15 99.37 91.43 96.97 94.12 98.23

16 99.52 100.00 90.00 94.74 94.87

17 99.84 96.88 100.00 98.41 99.92

18 99.68 100.00 92.86 96.30 96.36

19 99.21 89.66 92.86 91.23 96.12

20 99.21 88.57 96.88 92.54 98.10

Average 99.50 94.93 94.67 94.70 97.15

The training accuracy (TA) and validation accuracy (VA) attained by the SIDTLD-AIC
model on UCM dataset is demonstrated in Figure 6. The experimental outcome implied
that the SIDTLD-AIC model has gained maximum values of TA and VA. In specific, the VA
seemed higher than TA.

Figure 6. TA and VA analysis of SIDTLD-AIC technique on UCM dataset.
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The training loss (TL) and validation loss (VL) achieved by the SIDTLD-AIC model
on UCM dataset are established in Figure 7. The experimental outcome inferred that the
SIDTLD-AIC model has been able least values of TL and VL. In specific, the VL seemed
that lower than TL.

Figure 7. TL and VL analysis of SIDTLD-AIC technique on UCM dataset.

A brief precision-recall examination of the SIDTLD-AIC method on UCM dataset is
portrayed in Figure 8. By observing the figure, it can be noticed that the SIDTLD-AIC
method has been able maximal precision-recall performance under all classes.

Figure 8. Precision-recall curve analysis of SIDTLD-AIC technique on UCM dataset.
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A detailed ROC investigation of the SIDTLD-AIC approach to UCM dataset is rep-
resented in Figure 9. The results indicated that the SIDTLD-AIC model has exhibited its
ability in categorizing different classes on the UCM dataset.

Figure 9. ROC curve analysis of SIDTLD-AIC technique on UCM dataset.

Figure 10 depicts the average image classification results of the SIDTLD-AIC model on
70% of UCM datasets as training datasets and 30% of UCM datasets as testing datasets. The
figure shows that the SIDTLD-AIC model has resulted in better classification results under
both aspects. On applied 70% of UCM datasets as training datasets, the SIDTLD-AIC model
has resulted in average accuy, precn, recal , Fscore, and Gmean of 96.60%, 95.89%, 95.86%,
95.85%, and 97.80%, respectively. Likewise, on applied 30% of UCM datasets as testing
datasets, the SIDTLD-AIC model has resulted in average accuy, precn, recal , Fscore, and
Gmean of 99.50%, 94.93%, 94.67%, 94.70%, and 97.15%, respectively.

Figure 11 illustrates a comparative accuy examination of the SIDTLD-AIC model with
recent models. The experimental values implied that the DL-PlacesNet and DL-VGG-VD19
models have shown lower values of accuy. Moreover, the DL-VGG-VD16, DL-VGG-M,
DL-VGG-F, DL-CaffeNet, and DL-AlexNet models have resulted to closer accuy values.
Then, the DL-VGG-S and DL based multiobjective PSO (DL-MOPSO) techniques have
reached reasonable accuy values of 95.24% and 95.81%. Though the DL-C-PTRN model
has resulted in considerable accuy of 98.96%, the SIDTLD and SIDTLD+SSA models have
accomplished near optimal accuy of 98.98% and 99.01%. However, the SIDTLD-AIC model
has accomplished superior outcome with maximum accuy of 99.50%.
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Figure 10. Average analysis of SIDTLD-AIC technique with various measures.

Figure 11. Accuracy analysis of SIDTLD-AIC technique with existing methods.
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Finally, a computation time (CT) assessment of the SIDTLD-AIC model with recent
models is carried out in Figure 12. The experimental values implied that the DL-PlacesNet,
DL-VGG-VD-19, DL-VGG-VD-16, and DL-VGG-S approaches have obtained increased
CT values. Followed by, the DL-VGG-F, DL-CaffeNet, and DL-AlexNet models have
reached moderately reduced CT values. The DL-MOPSO and DL-C-PTRN models have
accomplished reasonable CT of 135s and 95s, respectively. Meanwhile, the SIDTLD and
SIDTLD+SSA models have attained CT of 67s and 54s, respectively. Finally, the SIDTLD-
AIC model has outperformed other methods with minimal CT of 40s. The results implied
that the SIDTLD-AIC model has gained enhanced classification performance due to the
inclusion of SSA and SOA based hyperparameter optimizers. From the above results and
discussion, it can be stated that the SIDTLD-AIC model has accomplished enhanced image
classification results on the UAV networks.

Figure 12. CT analysis of SIDTLD-AIC technique with existing approaches.

5. Conclusions

In this article, an automated SIDTLD-AIC technique was established for the proper
identification and classification of images into distinct kinds on UAV networks. The pre-
sented SIDTLD-AIC model follows a feature extraction module using RetinaNet model
in which the hyperparameter optimization process is performed by the use of SSA. Next,
the SOA-CLSTM model is applied to classify the aerial images. For assuring the better
performance of the SIDTLD-AIC method, a wide range of simulations are executed and the
outcomes are investigated in various aspects. The comparative study reported the better
performance of the SIDTLD-AIC model over recent approaches with maximum accuracy
of 99.50%. Thus, the presented SIDTLD-AIC model can be exploited for aerial image classi-
fication in real time environment such as vegetation mapping, crop classification, disaster
management, weather prediction, etc. In future, hybrid metaheuristics should be utilized
for improving the overall classification performance. Furthermore, the proposed model
can be extended to real-time large-scale databases in future. Moreover, the investigation of
the performance using statistical analysis can be done in our future work.
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Abstract: Unmanned Aerial Vehicles (UAVs) are abundantly becoming a part of society, which is
a trend that is expected to grow even further. The quadrotor is one of the drone technologies that
is applicable in many sectors and in both military and civilian activities, with some applications
requiring autonomous flight. However, stability, path planning, and control remain significant
challenges in autonomous quadrotor flights. Traditional control algorithms, such as proportional-
integral-derivative (PID), have deficiencies, especially in tuning. Recently, machine learning has
received great attention in flying UAVs to desired positions autonomously. In this work, we configure
the quadrotor to fly autonomously by using agents (the machine learning schemes being used to fly
the quadrotor autonomously) to learn about the virtual physical environment. The quadrotor will
fly from an initial to a desired position. When the agent brings the quadrotor closer to the desired
position, it is rewarded; otherwise, it is punished. Two reinforcement learning models, Q-learning
and SARSA, and a deep learning deep Q-network network are used as agents. The simulation is
conducted by integrating the robot operating system (ROS) and Gazebo, which allowed for the
implementation of the learning algorithms and the physical environment, respectively. The result
has shown that the Deep Q-network network with Adadelta optimizer is the best setting to fly the
quadrotor from the initial to desired position.

Keywords: reinforcement learning; UAV; quadrotor; flight control; intelligent control

1. Introduction

In recent times, drone or unmanned aerial vehicle (UAV) technology has advanced
significantly, and it can be applied not only in the military sector but also in civilian areas,
such as in search and rescue (SAR) and package shipment, due to its high mobility and large
overload maneuver [1]. Many researchers worldwide are now working to address issues
related to UAVs. Herein, we focus on the application, performance, and implementation of
machine learning algorithms for controlling UAVs. Even though there are several types of
UAVs, such as fixed wings, quadrotors, blimps, helicopters, and ducted fan [2], due to its
small size, low inertia, maneuverability, and cheap price, the quadrotor had become an
industry favorite [3]. There are several applications of the quadrotor in industries such as
film, agriculture, delivery, infrastructure inspection, etc. [3,4]. A quadrotor or quadcopter
(henceforth, the terms UAV, drone, quadcopter, and quadrotor are used interchangeably)
is a type of UAV with four rotors designed in a cross configuration with two pairs of
opposite rotors rotating in the clockwise direction, whereas the other rotor pair rotates
in a counter-clockwise direction to balance the torque [5]. Figure 1 shows the famous
arrangements of the rotors of a quadcopter for flight mode.
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Figure 1. Configuration of rotors in quadcopter.

Configuration “A” shows how the rotors of the drone work when rotors 1 and 3 rotate
in the clockwise direction, and rotors 2 and 4 rotate in the same counter-clockwise direction.
Configuration “B” depicts the drone in hovering mode. In this case, all rotors have the
same torques. Configuration “C” shows how the drone performs a yaw flight, where the
strength torques of rotors 1 and 3 exceed those of rotors 2 and 4, or the strength torques of
rotors 2 and 4 exceed those of rotors 1 and 3. Both scenarios are dependent on the direction
of the drone flight with reference to the Z-axis. Configuration “D” represents the pitch up
and pitch down. Here, one rotor has greater torque strength than the rest of the rotors. The
rotor that can produce greater torque strength depends on the movements, which provides
better flexibility.

Traditionally, a closed-loop proportional integral derivative (PID) controller is used to
fly the quadrotor from the initial to the desired position. The PID controller flies the UAV
by tuning values such as Kp, Ki, Kd. However, tuning these values is a challenging and
cumbersome task. In contrast, recent reinforcement learning-based controllers have shown
a more promising way than the conventional method to fly a quadrotor accurately [6,7].

In this paper, to study this phenomenon further, we integrated learning algorithms
with a simulation environment and tested their performance under different conditions, op-
timization, and reward functions. We use the robot operating system (ROS) framework [8],
together with Gazebo [9], for simulation, and OpenAI Gym to load the agents (machine
learning algorithms) [10]. The drones will be flown from the initial to the desired position
autonomously via one of the agents. The agent flying the quadrotor will take one step from
the initial to the desired position. Then, for the remaining distance, if the current distance
is closer than the previous, the agent will be rewarded; otherwise, it will be punished. This
process allows the agent to learn its physical environment.

Q-learning and State–action–reward–state–action (SARSA) reinforcement learning as
well as Deep Q-network (DQN) deep learning agents are selected as agents. Since the DQN
algorithm can be optimized to improve the performance, Adadelta [11], RMSProp [12],
Stochastic Gradient Descent (SGD) [13], and ADAM [14] optimizers are used in this work.
On the other hand, two reward functions are used to evaluate the actions taken by an agent,
Euclidean distance and mean square error (MSE) of distance. For agents, handling even the
simplest task is difficult. Hence, we choose to conduct our simulation using data-position
(X, Y, and Z) to specify initial and desired positions. Our work shows that autonomous
flight, without the involvement of other additional sensors such as light detection and
ranging (LiDAR) or vision, is possible, which saves the power of the UAV and reduces
the cost. In addition, we have shown that the learning process is highly dependent on the
optimizer and reward function, rather than the learning steps.

The rest of this paper is organized as follows: in Section 2, issues related to this work
are discussed. In Section 3, preliminary concepts are presented, while in Section 4, the
agents used in this work are explained. The simulation environment and performance
evaluation are in Sections 5 and 6, respectively. Finally, a conclusion to our work is given
in Section 7.
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2. Related Work

Although machine learning-based autonomous flights have been the main focus of
current researchers, conventional UAV control algorithms are still in play. In this section,
a literature review from both directions is presented. Thus far, the most widely used
algorithms for UAV control are traditional control concepts, which do not involve any type
of intelligence. Numerous techniques and algorithms can be used in UAV control systems.
Among them are the proportional integral derivative (PID), linear quadratic regulators
(LQR), sliding mode control (SMC), model predictive control (MPC), integrator backstep-
ping, adaptive control, robust control, optimal control, and feedback control [15]. PID is the
most widely used controller with a feedback mechanism and is an industry favorite [16].
The PID controller has achieved better performances for controlling pitch angles, etc. [17].
Generally, the PID controller has been successfully applied in the quadcopter, although
with several limitations.

Batikan et al. [18] proposed a technique with the application of a self-tuning fuzzy PID
in real-time trajectory tracking of UAVs. The work focused on stabilizing the altitude and
trajectory. Meanwhile, Eresen et al. [19] presented the vision for the detection of obstacles.
The work demonstrated flying autonomously in urban areas while avoiding obstacles.
Goodarzi et al. [20] proposed a full six degree of freedom dynamic model of a quadrotor.
The controller was developed to avoid singularities of the minimal altitude representation.
Lwin et al. [21] proposed a method that combines a Kalman filter for separating true signal
from noise and a PID controller to calculate the error. For the stability of the flight control
system, the UAV was adjusted by the PID parameters. Salih et al. [22] presented a new
method for autonomous flight control for a quadrotor with a model vertical take-off and
landing (VTOL). The work by Zang et al. [23] focused on controlling the UAV height
during drone operation. The algorithm in this work uses active disturbance rejection
control (ADRC) and Kalman filtering to process controlling the height as well as to enable
autonomous flight of the UAV. The authors of [24], Siti et al., use a hierarchical strategy
to improve the PID controller to dive the UAV in a predetermined trajectory using only
system orientation. First, a reference model (RM) is used to synthesize the PID in the inner
loop, and then genetic algorithm is applied to optimize the outer loop. In [25], Hermans et
al. proposed a solution to control the UAV in a geofencing application, which is a virtual
boundary of a specific geographical area. An explicit reference governor (ERG) that first
stabilizes the UAV and then uses the Lyapunov theory to control the UAV is presented in
this paper.

Nevertheless, the PID has several limitations, such as complicated and challenging
tuning. Furthermore, the PID or classic controller still lacks complete handling and solving
the control problem of an autonomous flight of the quadrotor. Due to the strides made
in artificial intelligence, specifically machine learning, researchers both in academia and
industry are now turning their attention to this matter to solve autonomous flight control
in UAVs. Supervised learning is one of the most used methods in attempting UAV control,
but the training dataset has been problematic in this regard. Hence, the focus has now been
shifted to reinforcement learning (RL), which is also the case in our work. Reinforcement
learning entails learning what to do and how the agent resolves some challenges by taking
actions in the environment such that the agent maximizes reward [26]. The reinforcement
learning algorithm can reduce learning times and increase stability [27]. Currently, deep
RL is a powerful approach for controlling complex systems and situations [28].

W Koch et al. [5] used reinforcement learning to improve the accuracy and preci-
sion of altitude control of UAVs to replace classic control algorithms, such as the PID.
Zhao et al. [29] presented their research on the use of RL to learn a path while avoiding
obstacles. At first, the Q-learning algorithm was used to allow UAVs to learn the envi-
ronment, and then the adaptive and random exploration (ARE) approach was used to
accomplish both task navigation and obstacle avoidance. Kim et al. [30,31] proposed a
path planning and obstacle avoiding strategy for UAVs through RL. The Q-learning and
deep double dueling deep Q-network (DD-DQN) [32] learning algorithms are used to
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navigate the simulation environment. On the other hand, Cheng et al. [33] presented a
method focused on enemy avoidance based on an RL, where a UAV is expected to avoid
another UAV coming its way. The authors have shown that the learned policy achieved a
higher possibility of reaching the goal compared with the random and fixed-rule policies.
Kahn et al. [34] argued that even RL can be unsafe for the robot during training. The aim
of the research was to develop an algorithm that takes uncertainty into consideration. On
the other hand, Hwangbo et al. [35] proposed a method to control the quadrotor actuators
via the RL technique. The drone was able to produce accurate responses, achieving high
stability even under poor conditions.

The impact of reinforcement learning on UAV control and path planning has been
demonstrated in several dimensions. However, more research output is expected to
further verify and solidify the usage of RL in UAV operation than that of conventional
PID techniques. Furthermore, researchers focus on the single machine learning technique
with a single reward function for improving and testing autonomous flight in UAVs. Our
goal is to demonstrate the difference between the widely used machine learning agents for
autonomous UAV flight under multiple reward conditions and optimization functions.

3. Preliminaries

Three popular toolkits have been used in our research, namely (i) ROS, (ii) Gazebo
simulator, and OpenAI Gym. First, ROS is used to determine the speed, direction, and
destination of the drone. The parameters are then used to produce actions that are sent to
the Gazebo simulator to visualize the movement of the drone. Following this, ROS uses the
reinforcement learning algorithms available in OpenAI Gym to determine the next action.
In this section, a brief introduction to these three toolkits is provided.

3.1. ROS

ROS is an open-source and flexible middleware framework for writing robot soft-
ware [8]. Despite including an operating system in its name, this toolkit is not one. It is
more similar to a motherboard where chips and other modules are mounted on, to create a
computer. The ROS is a framework that allows developers to collaborate on developing
software and firmware for robots. However, it provides services such as a hardware abstrac-
tion layer, low-level device control, sending a message in-process, and packet management,
which are characteristics of a typical operating system.

Enabling robots to complete a simple task, which could easily be handled by humans,
involves several components and complex systems. However, several components written
by different people can be assembled using ROS bottom-up architecture, so as to contribute
to the collaborative development of the robotic software.

3.2. Gazebo Simulator

Unlike typical software, which is limited to the virtual world, the software for robots
and UAVs takes action in the physical world. Hence, visualizing the steps taken and
the decisions made by the robots is part of the experiment. For this, we employed the
Gazebo Simulator, which is an open-source 3D robotics simulator, to see the simulation
and action [9].

In addition to being open-source, there are several advantages to using Gazebo. It
has a range of robots that are highly accurate, efficient, and have great visualization.
Furthermore, the integration with ROS is simple, and testing as well as training it with AI
algorithms in realistic scenarios is possible. A comparison of robotic simulation tools is
available in [36].

Drone model: In this work, a drone model, which has been developed by the Technical
University of Munich (TUM), is used, which represents most off-the-shelf quadrotors on
the market. This package is based on TU Darmstadt ROS PKG and the simulator Ardrone.
The simulator can simulate AR.Drone 1.0 and 2.0. This simulator can connect to sticks
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and other devices, and Figure 2 from [37] shows how a joystick or a mouse can be used to
control the drone in the simulator.

The TUM drone simulator has been forked by Shanghai Jiao Tong University for de-
velopment to test the SLAM algorithm with different sensors such as inertial measurement
unit (IMU), range finder, and laser range. This simulator will work on Ubuntu 16.04 and
18.4 and Gazebo 7.

ROS

OpenAI Gym

Gazebo

Figure 2. Simulation configuration.

3.3. OpenAI Gym

To develop and compare multiple reinforcement learning algorithms, we use the
Python-based gym toolkit [10]. All three learning agents used here are from this toolkit.
The goal of this work is to enhance productivity in the AI sector by providing an easy-to-set
and flexible environment.

4. Agents

In this section, we discuss three popular reinforcement learning algorithms, which are
to be used by the agent/learner, the quadrotor in our case. Whenever the agent chooses
the best action or policy, it will receive a reward or point. However, the agent will be left
with its current state and reward instead of using the information from the environment
for future feedback. Usually, to optimize its reward, the agent is forced to decide between
choosing a new action to enter a new state or an old action to be in a known state, which is
referred to as “exploration versus exploitation trade-off”. The agent then considers whether
the environment is known or unknown and takes the next action [38]. Table 1 summarizes
all three agents used in this study.

Table 1. Type of agent algorithm.

Algorithm Description Model Policy Action Space State Space Operator

Q-Learning State-action-reward-state Model-Free Off-Policy Discrete Discrete Q-Value
SARSA State-action-reward-state Model-Free On-Policy Discrete Discrete Q-Value
DQN State-action-reward-state Model-Free Off-Policy Discrete Continuous Q-Value

4.1. Q-Learning

Q-learning is a special case of a temporal difference (TD) learning process, where an
agent iteratively takes all actions in all states to obtain the optimal reward. In Q-learning,
the next action is taken such that the state will maximize the reward. The goal of this
learning process is to find the optimal estimation of the optimal state-action value function
Q* in the case of an unknown model [38]. The Q-learning algorithm samples a new state
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s’ and takes a new action a’, which are used to update the policy value according to the
following equation:

Q∗(s, a) ← Q(s, a) + (1 − a)[r(s, a) + γ
max
a′εA

Q,
(
s′, a′

)
(1)

The aim is to find the optimal policy Q*, which can be represented as follows:

π∗(s) = argmax Q∗(s, a) : a ∈ A (2)

4.2. SARSA

SARSA is another reinforcement learning algorithm used to train an agent in an
unknown environment. The name is derived from the quintuples s, a, r′, s′, a′ that are used
to update the Q function, which is given as follows [39]:

Q(s, a) ← Q(s, a) + αt(s, a)
[
r′ + γ × Q

(
s′, a′

)− Q(s, a)
]

(3)

SARSA not only depends on the reward to be obtained from the current state and
action, but it also takes the state and action it will be in.

4.3. DQN

The Deep Q network (DQN) is one of the popular algorithms in reinforcement learning,
also called deep reinforcement learning (DRL). As the name suggests, DQN is a combination
of Q-learning with the neural network (NN) and many-layered or deep NN specialization
for a spatial processing array of data [26]. This means that the DQN is a multi-layered
neural network for a given state ‘s’ that outputs a vector of actions value Q(s, a; θ), where
θ is the trainable weights of the network parameter. Since Q(s, a; θ) is approximately
Q(s, a) [40], the target function used in the DQN is written as:

Q(s, a) ← r + γ
max

a′ Q
(
s′, a′

)
(4)

The DQN model was coded by using the Keras and Tensorflow backend framework.
We used three hidden layers. The layer of the parameters is shown in Table 2.

Table 2. Layer purpose.

Layer Output X Activation

Dense 1 None, 300 RELU
Dense 2 None, 300 RELU
Dense 3 None, 300 RELU

4.4. Optimizers

All the algorithms examined in this work are variants of first-order optimization.
However, it is impossible to pick the best one among them provided that the performance
depends on the problem environment and dataset.

4.4.1. SGD

One of the most usual methods is SGD, which is used to train a neural network. SGD
uses a small collection of data (mini-batch) in comparison to BGD, which uses the entire
set of data (batch) [13].

4.4.2. RMSProp

SGD requires many steps, which makes it slower in comparison. Interestingly, RM-
SProp targets resolving the diminishing learning rate of Adagrad. In RMSProp, the learning
is adjusted automatically by using a moving average of the squared gradient [12].

176



Appl. Sci. 2021, 11, 7240

4.4.3. Adadelta

Similarly, an extension of Adagrad is Adadelta, and it accumulates a fixed size past
gradient rather than all past squared gradients. At any given time t, the running average
depends only on the previous average and the current gradient [11].

4.4.4. ADAM

Instead of a single gradient, Adam adapts multiple gradients, along with an adaptive
learning rate according to the magnitude of the gradient [14].

4.5. Reward Computation

In this study, agents are rewarded based on the distance measures between the initial
and desired position. Two reward functions are used in our work. First, a simple Euclidean
distance is used as a reward function to compare the three agents. Then the agent that
showed a better performance is examined with a mean square error computed using
training and predicted distance data.

The Euclidean distance is the ordinary straight-line distance between two points in
Euclidean space [41]. In this case, we use three-dimensional Euclidean space as shown in
Equation (5):

di
(p,q) =

√(
qi

1 − pi
1
)2

+
(
qi

2 − pi
2
)2

+
(
qi

3 − pi
3
)2 (5)

where i ∈ {0, 1, 2, ..., N}, p is the position the UAV is at the ith step, q is the desired position,
and N is the number of steps taken from the initial to desired position. We assume that
at least one step is taken from the initial point towards the desired position. The reward
points are given in Table 3.

To compute the MSE [42] using Equation (6), we used the data obtained during a
training session that resulted in the fastest path from the initial to desired position. After
each step, the MSE is calculated and compared to the MSE computed from the previous
step to generate the reward. The MSE-based reward points are also shown in Table 3.

MSEi =
1
n

n

∑
i=1

(
di
(p,q) − di

(p,q)

)2
(6)

where di
(p,q) is the Euclidean distance at step i, whereas di

(p,q) is the distance after step i
during training for the fastest path. The agent uses the Euclidean function to shorten the
distance between the UAV and destination, whereas the MSE is used to find the fastest path.

Table 3. Rewards condition.

Condition Rewards

di
(p,q) = 0 +100, desired position

di−1
(p,q) − di

(p,q) > 0 +100, getting closer

di−1
(p,q) − di

(p,q) < 0 −100, moving away

di−1
(p,q) − di

(p,q) = 0 0, no movement
MSEi < MSEi−1 +100, shortens path
MSEi > MSEi−1 −100, elongate path
MSEi = MSEi−1 0, no movement
Current Altitude > Z position −100
Pitch Bad −100
Roll Bad −100

5. Environment

Here, the simulation environment is discussed. The first subsection entails the exper-
iment setup and general overview of the system, while the next subsection presents the
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building of the drone environment in the experiment, including an action command for the
drone, collection of the data sensor, and reward function.

5.1. Experimental Setup

For visualization, interface, and its highly dynamic physics engine, Gazebo is chosen.
The first step is to start it. Then the ROS is used to control the drone. Here, OpenAI Gym,
which provides the learning agents, is implemented inside the ROS to control the drone.
The drone simulator in Gazebo creates the environment and sends several data sensors to
give feedback to the agent, and the agent must send actions (Figure 3).

First, the drone is trained with a certain number of episodes. The training is expected
to move the drone from one location to a predetermined desired destination. Data from
the drone simulator contain the positions X, Y, and Z that will be sent to the ROS, and the
reinforcement learning algorithm was trained in controlling the drone to fly directly to the
desired position. The agent will send one of the ten commands (actions) in Table 4.

The final goal is to fly the drone autonomously. In the training process of the drone, rein-
forcement learning algorithms are used, which involves several parts, agents, and environments.

Drone Simulation Environment 
(Gazebo)

 Q-Learning  SARSA  DQN 

Agents

 s  r a

r'

 s' 

Figure 3. State, reward, agent, and environment interaction.

Table 4. Velocity commands.

Action Velocity Linear X Velocity Linear Y Velocity Linear Z Velocity Angular Z

0 = Forward = Speed Value - - 0.0
1 = Turn Left 0.05 - - = Speed Value
2 = Turn Right 0.05 - - = Speed Value
3 = Up 0.05 - - = − Speed Value
4 = Down - - = − Speed Value 0.0
5 = Backward = − Speed Value - - 0.0
6 = Fly To Left - = Speed Value - 0.0
7 = Fly To Right - = − Speed Value - 0.0

The first condition from the drone is on the floor, Initial Drone Position (IDP), where
the coordinated ground truth is X = 0.0, Y = 0.0, Z = 0.0, as shown in Figure 4. The goal
is then to move it to the Desired Drone Position (DDP), such as X = 9.0, Y = 0.0, Z = 1.0
(Figure 4).

The training starts with the agent sending the take-off command. The drone environ-
ment must take off with an altitude of 1 m from the floor and send a message to the agent,
“take-off success.” Then every 0.3 s, the agent sends action and receives a reward feed point
as feedback from the environment.

The training session is divided into episodes, each containing 100 steps to arrive from
the initial to the desired location. The agent accumulates each reward it receives per step
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and calculates the average reward at the end of the episode, which it then uses to learn
and adopt.

X

Y

Z

(0, 0, 0) - Initial Drone Position (IDP)

(9, 0, 1) - Desired Drone Position (DDP)

Figure 4. Drone movement from initial to the desired position.

5.2. Drone Environment

One of the main parts of reinforcement learning is a physical environment, and this
environment has been developed for the AR drone. Following the OpenAI decisions, the
environment only provides the abstraction, not the agent. This means that the environment
is independent of the agent, which resides in the ROS.

Directed by the OpenAI Gym rule, the environment must contain registration, steps,
and rewards. This will make sure that the interaction between the simulation and OpenAI
is smooth. The following tasks are executed to achieve this [10].

1. Registration: registers the training environment in the gym as an available one.
2. Init: in this stage, several parameters such as take-off and landing commands, as

well as training parameters such as the value of the speed, desired position, running
steps (new command sending time, 0.3 s), the maximum inclination of the drone, and
the maximum altitude of the drone, are set. Simulation stabilization is also done at
this stage.

3. Reset: this task allows one to reset simulation, pause/resume simulation, reset the
robot to initial conditions, and take observation of the state of the drone.

4. Step: for a given action selected by the reinforcement learning algorithm, the quadro-
tor performs corresponding movements after determining the velocity values as
shown in Table 4. The speed value in our simulation is 1 m/s.

5. Observe data: is a function block to obtain data from the drone sensor and also data
about position and IMU.

6. Process data: based on the data from the environment and IMU, a reward function
is used to compute the progress of the quadrotor to the desired position, such that
the quadrotor is given a reward or penalized. Then, the next action will be sent to the
drone. Roll, pitch, and altitude movements are also penalized or rewarded.

6. Evaluation

In this section, we first explain the parameters used for the simulation and follow with
the result obtained from the experiment.

Since our goal is to understand the behavior of the learning algorithms in flying the
drones autonomously, most of the ROS and Gazebo parameters are kept to default settings.
The three most influential parameters for our simulation are:

1. Learning Rate (α): when set to 0, robots will not learn; the ideal value is always greater
than 0.
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2. Discount Factor (γ): setting it to 0 means that agents consider only the current reward;
the best value is to arrange it in such a way that the rewards will increase to a higher
value for the long-term.

3. Exploration Constant (ε): is used to randomize decisions; setting it to a number
approaching 1 (such as 0.9) will make 90% of the actions stochastic.

A summary of these and other parameters is shown in Table 5. The simulation is run
from 500 to 1000 episodes, each of which is 100 steps. At the end of each episode, the drone
will start again in the initial condition and receive feedback and the called observation. In
every episode, the drone tries to take a maximum number of steps, learning every step to
obtain a high reward point. There are one initial and three desired positions (Table 6).

Table 5. Simulation hyperparameters.

Parameter Q-Learning and SARSA DQN

Episode 500–1000 500–1000
Steps 50–100 50–100
α 0.1 0.00025
γ 0.9 0.99
ε 0.9 1
Memory Size - 1,000,000
Network Input - 3
Network Output - 8
Network Structure - 300,300
Update Target Network - 10,000
Mini Batch Size - 128
Learn Start - 128

Table 6. Initial and desired positions.

Coordinates
Description

X Y Z

0.0 0.0 0.0 IDP
9.0 0.0 1.0 X-DDP
0.0 9.0 1.0 Y-DDP
0.0 0.0 10.0 Z-DDP

6.1. Result and Discussion

Here, we discuss the results obtained from all three learning algorithms discussed
above. For DQN, we use the RMSProp optimizer [12]. Figure 5 shows the moving average
of the rewards that the agent received after completing an episode. The Euclidean distance
reward function is used during this run. All three learning algorithms gained rewards as
the number of episodes increased, in all directions.

However, DQN showed significant improvement and had no negative moving average
reward in any direction. Compared to SARSA, Q-learning has better performance in X-
DDP and Y-DDP (Figure 5a,b, respectively). Nevertheless, both algorithms have a negative
reward in Z-DDP (Figure 5c). This indicates that DQN has no problem in flying horizontally
or vertically, while SARSA and Q-learning are able to fly horizontally but not vertically. As
can be seen from the results, the change in reward after the 500th episode is small. Hence,
the rest of the evaluations are tested for 500 episodes only, whereas the reward function
remains the Euclidean distance.
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(a) X-DDP (b) Z-DDP (c) Z-DDP

Figure 5. Learning algorithms with 100 steps/episode for a total of 1000 episodes using the Euclidean distance reward function.

(a) X-DDP (b) Y-DDP (c) Z-DDP

Figure 6. DQN and different optimizers with 100 steps/episode for a total of 500 episodes using the Euclidean distance
reward function.

Since DQN with RMSProp optimizer has better rewards, we analyzed the performance
of DQN under other optimizers such as Adadelta [11], SGD [13], and ADAM [14]. Here,
the agent is expected to reach the desired position in only 500 steps. In X-DDP and Z-
DDP, the Adadelta optimizer has a better reward (Figure 6a,c). Even though the SGD
optimizer showed a good reward in X-DDP, the result in Figure 6b,c shows that SGD has a
negative reward. When the agent uses the RMSProp optimizer, it never outperforms other
optimizers in any of the directions, whereas the agent shows good performance with the
ADAM optimizer in all directions (Figure 6). In Figure 5, there are six results that obtained
negative rewards; by dropping Q-learning and SARSA and adopting other optimizers,
we reduced that number to three (Figure 6). Then, we replaced the reward function with
MSE, which further reduced the negative reward results to two (Figure 7). Although all
optimizers show a good sign in flying the quadrotor autonomously, Adam and Adadelta
are the best optimizers in both horizontal and vertical desired positions. In addition, we
can see from Figures 6 and 7 that the agent is always improving towards a positive reward
when with the Adadelta optimizer. This shows the significant role that the optimizers and
the reward functions play in flying the drone autonomously.

Therefore, using the Adadelta optimizer and MSE reward function, we evaluated the
performance of the DQN agent under different steps, that is, the maximum number of steps
an agent can take between the initial and desired position. The results in Figure 8 indicate
that by limiting the number of steps, the reward increases, which means that the agent
performs better. This is due to the fact that the agent is not taking unnecessary actions that
might lead to negative rewards. However, reducing the number of steps just to improve
reward does not result in better performance, as there are small differences between 50 and
75 steps. In addition, realistic scenarios are not as simple as the simulation cases which can
be reached in a few steps.
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The results obtained in this evaluation showed that learning algorithms can be used to
fly drones autonomously. In addition to the learning algorithms, the choice of reward func-
tion and optimizer also impacts the performance of autonomous drone flight. Overall, the
DQN agent using either the Adadelta or ADAM optimizer and applying the MSE reward
function with the number of steps set to 50 shows the best performance in our assessment.
In the future, we plan to add more obstacles, use multiple reward functions, and select
different learning schemes depending on the next step, such as up, down, or horizontal.
We hope that this will reveal more interesting characteristics of the learning schemes.

(a) X-DDP (b) Y-DDP (c) Z-DDP

Figure 7. DQN and different optimizers with 100 steps/episode for a total of 500 episodes using MSE reward function.

(a) x_steps (b) y_steps (c) z_steps

Figure 8. DQN and Adadelta optimizer with steps/episode varying for a total of 500 episodes using MSE reward function.

7. Conclusions

Autonomously flying UAVs can no longer continue to use traditional controllers such
as PID due to tuning, stability, and flexibility issues. However, new reinforcement and
deep learning methods are currently showing better control and movement strategies in
autonomous UAV flights.

In this work, the simulation and performance evaluation of learning algorithms such
as Q-learning, SARSA, and DQN was presented. These algorithms have been evaluated
under a combination of positions (X, Y, and Z direction desired positions), optimizers
(RMSProp, Adadelta, SGD, and ADAM), and reward functions (Euclidean distance and its
MSE). From the evaluation, DQN with the Adadelta optimizer using MSE has shown the
best performance in flying drones from the initial to the desired position.

In the future, we plan to investigate the performance of other deep network and neural
network learning algorithms under environments that involve obstacles and complicated
destinations and to introduce a complex reward function that is more suitable for the
autonomous UAV flight.
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Abstract: In this paper, a novel control strategy is presented for reinforcement learning with distur-
bance compensation to solve the problem of quadrotor positioning under external disturbance. The
proposed control scheme applies a trained neural-network-based reinforcement learning agent to
control the quadrotor, and its output is directly mapped to four actuators in an end-to-end manner.
The proposed control scheme constructs a disturbance observer to estimate the external forces exerted
on the three axes of the quadrotor, such as wind gusts in an outdoor environment. By introducing an
interference compensator into the neural network control agent, the tracking accuracy and robustness
were significantly increased in indoor and outdoor experiments. The experimental results indicate
that the proposed control strategy is highly robust to external disturbances. In the experiments,
compensation improved control accuracy and reduced positioning error by 75%. To the best of
our knowledge, this study is the first to achieve quadrotor positioning control through low-level
reinforcement learning by using a global positioning system in an outdoor environment.

Keywords: external disturbance; quadrotor; reinforcement learning

1. Introduction

A quadrotor is an underactuated, nonlinear coupled system. Because quadrotors
have various applications, researchers have long been focusing on the problems of attitude
stabilization and trajectory tracking in quadrotors. Many control methods are used for
quadrotors. Proportional–integral–derivative (PID) controllers are widely used in consumer
quadrotor products and is often treated as a baseline controller for comparison with other
controllers [1]. In practice, the tuning of the PID controller’s gain often requires expertise,
and the gain is selected intuitively by trial and error. Advanced control strategies using
model-based methods have been applied to improve the flight performance of quadrotors.
Methods such as feedback linearization [2], model predictive control (MPC) [3,4], robust
control [5], sliding mode control (SMC) [6–8], and adaptive control [9,10] have been applied
to optimize the flight performance of quadrotors. However, the performance and the
robustness of the aforementioned strategies are highly related to the accuracy of the
manually developed dynamic model.

During outdoor flight, quadrotors are susceptible to wind gust, which affects the flight
performance or even leads to system instability [3]. Although quadrotors are sensitive to ex-
ternal disturbances [11], designers of most controllers have not accounted for this problem.
Some active disturbance rejection methods have been proposed to estimate disturbances,
and these methods perform well in cases of a sustained disturbance. Chovancova et al. [12]
designed proportional–derivative (PD), linear quadratic regulator (LQR), and backstepping
controllers for position tracking and compared their performance in a simulation. A distur-
bance observer with a position estimator was designed to improve controller positioning
performance, which was evaluated when external disturbance was applied in simulations.
The active disturbance rejection control (ADRC) algorithm treats the total disturbance as a
new state variable and estimates it through an extended state observer (ESO). Moreover,
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the ADRC algorithm does not require the exact mathematical model of the overall system
to be known. Therefore, this algorithm has become an attractive technique for the flight
control of quadrotor unmanned aerial vehicles (UAVs) [13,14]. Yang et al. proposed the use
of ADRC and PD control in a dual closed-loop control framework [15]. An ESO was used to
estimate the perturbations of gust wind as dynamic disturbances in the inner loop control.
A quadrotor flight controller with a sliding mode disturbance observer (SMC-SMDO) was
used in [16]. The SMC-SMDO is robust to external disturbances and model uncertainties
without the use of high control gain. Chen et al. [17] constructed a nonlinear disturbance
observer that considers external disturbances from wind model uncertainties separately
from the controller and compensates for the negative effects of the disturbances. In [18],
a nonlinear observer based on an unscented Kalman filter was developed for estimating
the external force and torque. This estimator reacted to a wide variety of disturbances in
the experiment conducted in [18].

Reinforcement learning (RL) has solved many complicated quadrotor control problems
in many studies. RL outperforms other optimization approaches and does not require a pre-
defined controller structure, which limits the performance of an agent. In [19], a quadrotor
with a deep neural network (DNN)-based controller was proposed for following trails in an
unstructured outdoor environment. In [20], RL and MPC were used to enable a quadrotor
to navigate unknown environments. MPC enables vehicle control, whereas RL is used
to guide a quadrotor through complex environments. In addition to high-level planning
and navigation problems, RL control has been used for achieving robust attitude and
position control [21,22]. The control policy generated through the RL training of a neural
network achieves low-level stabilization and position control and the policy can control
the quadrotor directly from the quadrotor state inputs to four motor outputs. The afore-
mentioned studies have implemented their proposed control strategies in simulations
and real environments. Although quadrotors with RL controller exhibit stability under
disturbance, the control policy cannot eliminate the steady-state error caused by wind or
modeling error and the performance of the controller can be improved. In [23], an integral
compensator was used to enhance tracking accuracy. The effect of this compensator on the
tracking accuracy of the controller was verified by introducing a constant horizontal wind
that flowed parallel to the ground in a simulation. Although the aforementioned integral
compensator can eliminate the steady-state error, it slows down the controller response
and has a large overshoot.

This paper presents a unique disturbance compensation RL (DCRL) framework that
includes a disturbance compensator and an RL controller. The external disturbance ob-
server in this framework is based on the work of [24]. The rest of this paper is organized
as follows. Section 2 introduces the dynamic model of a quadrotor and the basics of RL.
Section 3 describes the proposed DCRL control strategy. Section 4 describes the training
and implementation of the proposed DCRL strategy in a quadrotor experiment in indoor
and outdoor environments. Finally, Section 5 concludes the paper.

2. Preliminary Information

This section briefly introduces the dynamic model of a quadrotor, the basics of RL
and the use of RL in solving the quadrotor control problem.

2.1. Quadrotor Dynamic Model

In this paper, we assume that a quadrotor is a rigid and symmetrical body whose
center of gravity coincides with its geometric center.

The vector x = [x, y, z]T denotes the position of the quadrotor in an inertial frame.
The translation dynamics of the quadrotor can be expressed as follows:

ẋ = v

v̇ = m−1(
4

∑
i=1

Tibz + Fext)− giz,
(1)
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where m and g are the mass of the quadrotor and the acceleration due to gravity, re-
spectively; R = [bx by bz] ∈ SO(3) is the rotation matrix, which is used to transform a
coordinate from the body-fixed reference frame to the inertial reference frame; and Ti is
the thrust generated from motors and applied on the z-axis of the body frame bz. Figure 1
displays the order of motors placement. Finally, the vector Fext represents the external
disturbance force accounting for all other forces acting on the quadrotor.

For the rotation dynamics of system, we use a quaternion representation of quadrotor
attitude to avoid gimbal lock and ensure better computational efficiency.

q̇ = 0.5 · q ⊗
[

0
Ω

]T

Ω̇ = J−1(μ − Ω × JΩ),

(2)

where q̇ = [qw, qx, qy, qz]T is the normed quaternion attitude vector, ⊗ is the quaternion
multiplication. Ω is the angular velocity of body-frame, μ is the control moment vector
and J is the matrix of vehicle moment of inertia tensor. The rotation transformation between
the quaternion q to the rotation matrix R can be expressed as follows:

R =

⎡⎣ 1 − 2(q2
y + q2

z) 2(qxqy − qzqw) 2(qxqz + qyqw)

2(qxqy + qzqw) 1 − 2(q2
x + q2

k) 2(qyqz − qxqw)
2(qxqz − qyqw) 2(qyqz + qxqw) 1 − 2(q2

x + q2
y)

⎤⎦ (3)

Each thrust from the propeller axis is assumed to be aligned perfectly with the z-
axis. The force Ti and motor moment μ produced at a motor spinning speed of ωi can be
expressed as follows:

Ti = c f ωi
2

μ =
1√
2

⎡⎣−lc f lc f lc f −lc f
lc f −lc f lc f −lc f
cd cd −cd −cd

⎤⎦
⎡⎢⎢⎣

ω1
ω2
ω3
ω4,

⎤⎥⎥⎦
2

(4)

where i = 1, 2, 3, 4. Ωi is the speed of motors; l is the arm length of the quadrotor; and c f ,
cd are the coefficients of the generated force and z-axis moment, respectively.

Figure 1. Body-fixed frame of the quadrotor and motor placement.

The developed dynamic model is based on the following assumptions: (a) the quadro-
tor structure is rigid, (b) the center of mass of the quadrotor and the rotor thrusts are in the
same plane, and (c) blade flapping and aerodynamics can be ignored.

2.2. Reinforcement Learning

The standard RL framework comprises a learning agent interacting with the envi-
ronment according to a Markov decision process (MDP). A state transition has a Markov
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property if the probability of this transition is independent of its history. The MDP involves
solving decision problems with the Markov property, and RL theories are based on the
MDP. The standard MDP is defined by the tuple (S ,A, Pa

ss′ , r, ρ0, γ), where S is the state
space, A is the action space, Pa

ss′ : S ×A× S → R+ is the transition probability density of
the environment, r : S ×A → R is the reward function, ρ0 : S → R+ is the distribution
of the initial state s0, and γ ∈ (0, 1) is the discount factor. In modern deep RL conducted
using neural networks, the agent selects an action at each time step according to the policy
π(a|s; θ) = Pr(a|s; θ), where θ ∈ RNθ is the weight of the neural network.

The goal of the MDP is to find a policy π(a ∈ A|s) that can maximize the cumulative
discounted reward.

∞

∑
t=0

γtr(st, at). (5)

A state-dependent value function Vπ that measures the expected discounted reward
with respect to π can be defined as follows:

Vπ(s) = E

[
∑
l≥0

γlrt+l

∣∣∣∣∣st = s, π

]
. (6)

The state-action-dependent value function can be defined as follows:

Qπ(s, a) = E

[
∑
l≥0

γlrt+l

∣∣∣∣∣st = s, at = a, π

]
. (7)

The advantage function can be defined as follows:

Aπ(s, a) = Qπ(s, a)− Vπ(s), (8)

where Aπ is the difference between the expected value when selecting some specific action
a. The advantage function can be used to determine whether the selected action is suitable
with respect to policy π. Many basic RL algorithms, such as the policy gradient method [25],
off-policy actor–critic algorithm [26], and trust region policy optimization [27] can be used
to optimize a policy. To maximize the expected reward function Vπ(s), the neural network
parameterized policy π = π(a|s; θ) is adjusted as follows:

θ ← θ + α ∑
s∈S ,a∈A

ρπ(s)Qπ(s, a)
∂π(a|s)

∂θ
, (9)

where
ρπ(s) = ∑

t≥0
γtPr(st = s|t, a ∼ π) (10)

is the state occurrence probability and α > 0 is the size of the learning step. Equation (9)
is an expression for the policy gradient [28]. By using the state distribution ρ and state-
action value function Q, a policy can be improved without any environmental information.
The state distribution ρπ(s) depends on the policy π, which indicates that it must be
re-estimated when the policy is changed. In [26], the policy gradient was analyzed by
replacing the original policy π with another policy μ; therefore, (9) had the following form
in [26].

∑
s∈S ,a∈A

ρμ(s)Qπ(s, a)
∂π(a|s)

∂θ
. (11)

Equation (11) can still maximize Vπ with distinct policy gradient strategies.
To solve the nonlinear dynamic control problem for a quadrotor, we used the proximal

policy optimization algorithm (PPO) [29] and off-policy training method [22] to train the
actor and critic functions. The following inequalities are valid for the actor function:
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Vπ(s)− Vμ(s) ≥ 0, ∀(s, a) ∈ S ×A, (12)

if

[π(a|s)− μ(a|s)]Aμ(s, a) > 0 (13a)

or
[π(a|s)− μ(a|s)]Aπ(s, a) > 0. (13b)

Therefore, for a policy search iteration, (13) provides improvement criteria for the
action policy under a certain state.

3. Disturbance Observation and Control Strategy

Figure 2 depicts a block diagram of the quadrotor control with the DCRL framework.
The proposed DCRL strategy enhances the RL control policy with external disturbance
observer and compensator to strengthen the system robustness. The compensation algo-
rithm estimates the external forces and adjusts the input command for the RL controller.
The RL controller then changes the motor thrusts accordingly. In Figure 2, the observer
takes the attitude q f and acceleration a f as input, and outputs the estimated external
disturbance. Fext, F̂ext are the external disturbance and the external disturbance estimated
by the observer. The disturbance compensator calculates the qcomp from quadrotor attitude
q f and F̂ext. The original RL actor was trained to hover at the original point by receiving the
state s which contains the position, velocity, attitude and angular velocity of the quadrotor,
and output four motors thrust follows the policy α(s). In DCRL, to make the quadrotor
hover at the reference position xre f , the original point can be shifted with an off-set of
reference command and as the input of position xdev to the RL actor. The DCRL generates
thrust command with the sum of RL actor output and compensation force.

(a)

(b)
Figure 2. The structures of quadrotor control. (a) Block diagram of the quadrotor control structure
with reinforcement learning control and external disturbance compensator. (b) The neural network
in the reinforcement learning (RL) actor.
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The RL controller in the DCRL was trained to recover and hover at the original
point under an ideal simulation environment, while the external disturbances were not
considered in RL control policy training. Several reasons exist for not adding external
disturbances in RL training. First, the RL controller sometimes has superior performance
to traditional methods if the simulation environment is highly similar to a real-world
controller model. However, such a model has numerous uncertainties and is highly
difficult to reproduce in a simulator. In this study, the sensor noise was one of the uncertain
factors because each inertial measurement unit (IMU) sensor on the flight computer had
different physical characteristics. Second, the sensor noise does not follow the assumption
of the MDP in RL theory; thus, the final performance of the trained policy cannot be
guaranteed to be suitable. Finally, the aforementioned traditional external disturbance
estimation methods have been demonstrated to be effective. Therefore, we focused on
eliminating known disturbances by using an RL controller with a traditional observation
method for achieving a superior positioning performance in this study.

3.1. Disturbance Observer

In general, by rearranging the terms in (1), the external force may be calculated directly
from the acceleration information as follows:

F̂ext = mRTab −
4

∑
i=1

Tibz + mgiz, (14)

where the thrust forces are only applied on the z-axis of the quadrotor in the body frame
and ab is the acceleration measured by the onboard IMU sensor. The parameter ab includes
the gravitational acceleration.

A low-pass filter (LPF) with cut-off frequency at 30 Hz is used to reduce the effects
of noise caused by rotor spinning vibrations or the IMU. The thrust and acceleration
are transformed to the inertial reference frame prior to filtering. The reason of this pre-
processing is that the external force in the inertial reference frame F̂ext is assumed to have a
lower rate of change than do be slow-changing relative to the LPF dynamics.

3.2. Disturbance Compensator

When an external disturbance Fext is acting on the quadrotor (Figure 3), this distur-
bance generates a translational acceleration vector aext. For disturbance compensation,
a new compensation thrust vector g f c is defined. This vector combines aext and the gravita-
tional acceleration vector giz and can be expressed as follows:

izc =
aext + giz

|aext + giz| , (15)

which only considers the hovering situation without an acceleration command from the
trajectory tracking reference. The normalized vector g f c is then used to formulate a new
coordinate frame (force compensation frame) with a rotation matrix Rci relative to the
inertial frame.

Figure 3. Force compensation frame.
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In three-dimensional space, any rotation coordinate system about a fixed point is
equivalent to a single rotation by an angle θ about a fixed axis (called the Euler axis) that
passes through the fixed point.

To obtain the rotation matrix Rci from iz to g f c represent in quaternion with the
following equations can be used:

v = [0, g f c]

q = [cos(
θ

2
), sin(

θ

2
)u]

v′ = qvq∗ = qvq−1 = iz,

(16)

where v is the original quaternion vector, u is the unit vector of the rotation axis, v′ is
the rotated quaternion vector, q is the rotation vector between v and v′, and θ is the
rotation angle.

By substituting qci into (3), Rci can be determined as follows:

v′ = qcivq∗
ci = qcivq−1

ci

= Rciv.
(17)

The aforementioned equation is equivalent to Rodrigues’ rotation formula. After ob-
taining the rotation matrix Rci, the quadrotor attitude in the force compensation frame Rcb
can be calculated using the following equation:

Rcb = RciRib. (18)

After obtained the corrected coordinate for compensation, the magnitude of thrust of
motors with compensation is

Tci =
F̂ext · bz

4
+ αi(s), (19)

where αi(s) is the i-th motor action output of neural network which would be specified
in following section. By modifying the quadrotor attitude in the compensation frame Rcb
and using this attitude as the input state of the RL controller, the controller can generate
corresponding motor thrust to maintain the target attitude and therefore eliminate the
disturbance acting on the quadrotor.

4. Experiments

In this section, we introduce our training method for a low-level quadrotor control
policy. The RL controller receives the information on the quadrotor state (position, velocity,
attitude, and angular velocity) from sensors and directly outputs the control commands
of four rotors. The training was first performed and tested in a simulator. The quadrotor
simulator was established using Python according to the dynamic model described in
Section 2.1 for training and verifying the flight performance.

After verifying that the RL control policy was trained successfully, we transported
the controller into our DCRL structure and performed a real flight with the quadrotor.
To implement the proposed DCRL control algorithm in this study, PixRacer flight controller
hardware was developed and implemented using Simulink. The DCRL control strategy
was examined in an indoor environment by performing fixed-point hovering under an
external wind disturbance. Then, the quadrotor was set to track a square trajectory in
an outdoor experiment. The position and velocity of the quadrotor were obtained using
an OptiTrack motion capture system on the ground station computer. These data were
transmitted through Wi-Fi to the onboard PixRacer flight controller within 10 m range in
the indoor experiment. The physical parameters of the quadrotor platform are presented
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in Table 1. For outdoor trajectory tracking, position information was only obtained from an
onboard global positioning system (GPS) sensor.

Table 1. Physical parameters of the quadrotor.

Weight (g) Ixx, Iyy, Izz (kgm2)

665 0.0023, 0.0025, 0.0037

4.1. RL Controller Training

In the RL training process, we followed the dynamic equations in Section 2.1 and con-
structed a simulation environment in Python to generate training data. In the simulation
environment, the state space of the MDP comprised the position, velocity, attitude, and an-
gular velocity of the quadrotor. Moreover, the four motors thrust outputs were chosen as
the action space. The training process follows the work in [22] using two processes, one for
data collection and another for value and policy network update. The update is based on
off-policy training, and the main difference between on-policy is the on-policy only uses
the collected data once and be cleaned up after each time neural network updates. On the
contrary in the off-policy training, the collection thread keeps generating the trajectory data
and neural network updating thread can reuse the data from collection which accelerates
the learning process.

In data collection process, the quadrotor was randomly launched in a 2 m cubic space
with random states. The training data, which comprised the quadrotor states, action, proba-
bility, and reward, were recorded in each episode which contained 200 steps in two seconds
flight, and then saved as a single data trajectory in a memory buffer. The normalized
reward function for evaluating the current state of the quadrotor is as follows:

r = −(0.002
∥∥eq
∥∥+ 0.002

∥∥ep
∥∥+ 0.002‖a‖), (20)

where eq is the vehicle angle error, ep is the vehicle position error, and a is the motor thrust
command for constraining the energy cost.

When the number of data trajectories in memory buffer exceeded 10, the training
process starts. In training process, trajectories were randomly sampled from the memory
buffer. The advantage and value functions were defined recursively and calculated in
reverse direction which depend on the future time t + 1. The functions were estimated
according to

Atrace
t = At + γ min(1,

πt+1

μt+1
)Atrace

t+1 , (21)

and
Vtrace

t = Vt + min(1,
πt

μt
)Atrace

t . (22)

With the two equations above, we use stochastic gradient descent to optimize the
objectives as follows:

maximize Lpolicy = ∑
(s,a)∈T

min
[(

π(a|s)
μ(a|s) − 1

)
Atrace, ε|Atrace|

]

minimize Lvalue =
1
|T| ∑

(s,a)∈T

(
V(s)− Vtrace)2.

(23)
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To approximate the function π(a|s) for proposing actions and V(s) for predicting the
state value, two neural network were formulate as following equations, where stochastic
Gaussian policy was used for the actor network:

θ(s) = h̃32
1 ◦ h̃32

0 (s) (24)

α(s) = sin ◦ỹ4
2 ◦ θ(s) (25)

σ(s) =
1
2
+

1
2

cos ◦ŷ4
2 ◦ θ(s) (26)

π(a|s) = 1√
2πσ2(s)

e
− (a−α(s))2

2σ2(s) . (27)

The state value function can be approximated as follows:

V(s) = y1
2 ◦ h128

1 ◦ h128
0 (s), (28)

where hj
i and yj

i are the ith hidden layer and output layer of neural networks with width j,
◦ is the fully connected activation function. In both the actor and critic networks, the input
state s is the quadrotor’s position, velocity, attitude and angular velocity. The sin and cos
functions are used to constrain the output range. A rectified linear unit (ReLU) is used as
the activation function due to its characteristic of fast calculation and easy implementation
in a microcontroller unit. When implementing the RL controller in a quadrotor flight
computer system, only (25) is used to control the quadrotor.

To apply the developed RL controller in an outdoor environment, we extracted the
parameters of a trained neural network and loaded them into a Simulink model. The input
state of position was limited to the same finite range as that adopted in the training
environment to prevent an untrained condition from occurring when using the developed
RL controller with a GPS in outdoor environments. With the successful training of the
external disturbance observer and RL neural network controller, the DCRL control policy
was transferred to the PixRacer flight computer in real quadrotors to replace the original
PID controller.

4.2. Results of the Indoor Experiment

In the indoor experiment, we put an electric fan to simulate a constant wind distur-
bance (Figure 4). We used a self-made quadrotor with a flight control board and GPS
mounted in the plane. An OptiTrack motion capture system provides reliable state infor-
mation, and a multisensor fusion framework in the flight computer fuses the measurement
from the onboard IMU and the motion capture data to compensate for the time delay and
low update frequency of the OptiTrack system. We compared the position errors between
RL with and without compensation under wind disturbance. The measured wind speed
was 3.6 m/s at the center of the x-axis of the quadrotor. Figure 5 displays the position error
histogram. The mean errors of the original RL and DCRL controllers were 8.4 and 2 cm,
respectively, which reduced the hovering error by 75%. Figure 6 presents the estimated
position error and external disturbance force for a 30-s flight. Video clips of the indoor
experiment can be found at https://youtu.be/RtAoiljZTSI (accessed on 5 April 2021).

4.3. Results of the Outdoor Experiment

After verifying the DCRL control algorithm under motion capture accurate position
and velocity measurement and relative steady wind perturbation in a laboratory environ-
ment, the quadrotor was moved outdoors and a GPS was used to obtain position feedback.
The maximum wind speed was measured to be 4.2 m/s by an anemometer. The position
trajectory was a 10-m2 square with a constant height and a velocity of 1 m/s. The results of
the outdoor experiment are shown in Figure 7, and the estimated external forces acting on
the x-axis and y-axis are presented in Figure 8. Table 2 summarizes the position errors in
the indoor and outdoor experiments. In the outdoor experiment, a position waypoint was
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used as a reference for trajectory tracking without a velocity command. Thus, the quadrotor
had to maintain a certain position error to obtain the moving velocity for following the
waypoint. The tracking errors may have also been caused by the 2.5-m horizontal position
accuracy and 10-Hz update rate of the adopted GPS sensor. However, the experimental
results still indicate that the DCRL structure can reduce the quadrotor positioning error.

Figure 4. Experimental setup for indoor fixed-position hovering. An electric fan was used for simulating a constant wind
disturbance with a speed of 3.6 m/s which was applied along the x-axis of the quadrotor.

Figure 5. The position error histogram distribution of indoor fix-position hover experiment. The mean
error of the original RL controller and the disturbance compensation RL (DCRL) is 8.4 cm and is
2 cm respectively.
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(a)

(b)

(c)
Figure 6. (a) The indoor fix-position hover experiment setup. An electric fan was used for simulating
a constant wind disturbance with wind speed 3.6 m/s applied onto quadrotor x-axis. (b) The position
error along x-axis. (c) The estimation of external force on x-axis.

Figure 7. The position of tracking a 10 m square trajectory in an outdoor experiment. The GPS sensor
was used for position information measurement.
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Figure 8. The estimation of external forces on x and y-axis in outdoor tracking experiment.

Table 2. Root mean square errors along the three quadrotor axes in the indoor and outdoor experi-
ments.

ex RMSE (m) ey RMSE (m) ez RMSE (m)

Indoor RL 0.08 0.04 0.02
DCRL 0.02 0.06 0.02

Outdoor RL 0.80 0.46 0.17
DCRL 0.45 0.41 0.07

5. Conclusions

In this paper, an RL control structure with external force compensation and an external
force disturbance observer is proposed for quadrotors. The DCRL controller can reduce
the effects of wind gust on quadrotors in fixed-position hovering and trajectory tracking
tasks and improve their flight performance. In the outdoor experiments, compared with
the original RL control algorithm, the proposed control strategy reduced the fixed-position
hovering error by 75%. To the best of our knowledge, this study is the first to use a low-level
RL controller with a GPS in an outdoor environment to eliminate the external disturbance
acting on flying quadrotors.
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Abstract: In order to realize a saturation attack of multiple unmanned aerial vehicles (UAVs) on
the same target, the problem is transformed into one of multiple UAVs hitting the same target
simultaneously, and a terminal distributed cooperative guidance law for multiple UAVs based on
consistency theory is proposed. First, a new time-to-go estimation method is proposed, which is more
accurate than the existing methods when the leading angle is large. Second, a non-singular sliding
mode guidance law (NSMG) of impact time control with equivalent control term and switching
control term is designed, which still appears to have excellent performance even if the initial leading
angle is zero. Then, based on the predicted crack point strategy, the NSMG law is extended to attack
maneuvering targets. Finally, adopting hierarchical cooperative guidance architecture, a terminal
distributed cooperative guidance law based on consistency theory is designed. Numerical simulation
results verify that the terminal distributed cooperative guidance law is not only applicable to different
forms of communication topology, but also effective in the case of communication topology switching.

Keywords: UAVs; impact time control; sliding mode control; cooperative guidance law;
consistency theory

1. Introduction

With the rapid iterative update of the air and antimissile defense system equipped
around an enemy’s high-value targets, it becomes increasingly difficult for a single un-
manned aerial vehicle (UAV) to attack high-value targets [1]. In order to solve this problem,
there are usually two solutions: one is to adopt a cluster cooperative attack to break through
with intelligent cooperation and quantitative advantage; the second is to break through
with a speed advantage [2]. For the first, an effective method to achieve multiple UAVs
cooperative attack is to control the impact time, which will realize the simultaneous attack
of multiple UAVs on targets, thereby improving the impact effect [3].

The design of the impact time control guidance law is actually a tracking problem in
which the final impact time error is the tracking error. After defining the impact time error,
many system control theories, such as bias proportional guidance with error feedback,
sliding mode control theory, Lyapunov function, etc., can be used to make the tracking
error zero [4–6]. In [7], a guidance law with impact time control was proposed for the first
time in 2006, which consists two parts: one is the classic proportional navigation guidance
(PNG), and the other is the feedback item of impact time error.

In [8,9], considering the impact angle constraint, the fast terminal sliding mode al-
gorithm is applied to meet the requirements of guidance accuracy and landing angle by
adjusting the line of sight angular velocity. In [10], the second-order sliding mode control
theory was used to make the time-to-go estimation curve converge to the desired time-
to-go curve in finite time. On this basis, the desired time-to-go was planned by using a
double-layer cooperative guidance structure, so as to meet the impact time cooperative
guidance of multiple aircraft. In [11], the space is expanded from two-dimensional to
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three-dimensional, and a three-dimensional impact time control cooperative guidance law
satisfying the line-of-sight constraint was proposed. Refs. [12,13] proposed a guidance
law training framework based on reinforcement learning theory, which was robust to
uncertainties and different parameters.

The above research mainly focuses on the cooperative guidance laws for stationary
targets, and there is relatively little research on the cooperative guidance laws for maneuver-
ing targets. References [14–21] study the problem of cooperative guidance for maneuvering
targets, but reference [14] needs to assume that the tracking equation can meet the lin-
earization condition of small disturbance. References [14–19] need to assume that the direct
measurement information of target acceleration can be obtained, which is usually difficult
to achieve in engineering practice; although reference [20] studies the cooperative guidance
of maneuvering targets, its method is centralized. The method adopted in reference [21]
requires that the communication topology is undirected, which usually leads to more traffic
and energy consumption.

In recent years, when the terminal impact angle constraint has been considered at
the same time, the impact time and angle control guidance law has gradually developed.
Based on the non-singular terminal sliding mode control theory (NTSMC), a guidance law
satisfying both impact time and impact angle constraints was designed in [22]. Compared
with the traditional sliding mode guidance law, the proposed guidance law did not need to
design the line of sight curve offline, nor did it need to switch between the impact time
control guidance law and the impact angle control guidance law. In [23], an impact angle
control guidance law was designed based on backstepping control method, and an impact
time control guidance law was designed based on proportional guidance. The constraints of
impact time and impact angle were finally satisfied by using segments. In [24], a conversion
scheme was designed. When the impact time error was greater than a certain specified
value, the impact time control guidance law based on sliding mode theory was adopted.
When the impact time error was less than a certain fixed value, the optimal guidance law
designed in [25] satisfying the impact angle constraint was adopted in order to finally
realize the cooperative control of impact time and angle. In [26], the trajectory optimization
problem with impact time and impact angle constraints was firstly transformed into a
nonlinear trajectory planning problem, and then the Gauss pseudo-spectral method was
adopted to solve the problem with the optimization objective of minimizing the total
control energy. Reference [27] proposed a two-stage guidance law with auxiliary stage.
By appropriately modifying the switching conditions of the two-stage guidance law with
auxiliary stage, the impact time and angle can be controlled at the same time.

Considering the mutual communication among aircraft, in [28] the average estimated
value of the time-to-go of each member was taken as the coordination variable to design
the variation curve of range, and the control quantity was designed to track the nominal
trajectory, so as to realize the impact time cooperative guidance. Based on the principle of
distributed communication and network synchronization, a distributed time cooperative
guidance law was designed by taking the “lead-followers” mode to realize the simultaneous
convergence of multiple aircrafts to the target position in [29]. In [30], the desired time-to-
go was directly set as the average of each member’s time-to-go, so as to design a hybrid
guidance law satisfying both impact time and impact angle. The research in [31] designed
a guidance and control integrated guidance law satisfying the impact time constraint, in
which not only the time-varying velocity, but also the constraints such as uncertainty and
line-of-sight were considered.

The above cooperative guidance laws based on communication adopted a centralized
coordination strategy, and the coordination variable existed only in one member of the
formation, which was easy to implement. However, this strategy required the information
of the whole formation, and when the members were attacked and failed, the coordinated
control of the entire formation would fail, which would reduce the robustness and relia-
bility of the system. Therefore, a distributed cooperative guidance law design based on
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consistency theory is proposed in this paper. The main contributions of this paper are
as follows:

(1) A new time-to-go estimation method is proposed, which is more accurate than the
existing method in [32] when the leading angle is large.

(2) A non-singular sliding mode guidance law (NSMG) of impact time control with
equivalent control term and switching control term is designed, which still appears
to have excellent performance even if the initial leading angle is zero, while some
existing impact time control laws in [4,8,33] are invalid. Then the guidance law is
extended to attack maneuvering targets.

(3) Adopting hierarchical cooperative guidance architecture, a terminal distributed co-
operative guidance law based on consistency theory is designed, which is not only
applicable to different forms of communication topology, but also effective in the case
of communication topology switching.

The other parts of this paper are arranged as follows: In Section 2, the problem
statement and motion models are given. The new time-to-go estimation method and
the bottom layer guidance law based on sliding mode control theory are proposed in
Section 3. The upper-level distributed coordination strategy based on the consistency
theory is given in Section 4. Several numerical simulation examples are provided and
compared in Section 5. The conclusions are given in the final section.

2. Problem Statement

Two points are explained before establishing the cooperative guidance model. First,
during the flight, the thrust of the UAV is adjusted in a small range, which can keep the
velocity of the UAV basically unchanged, and the terminal attack distance is short, usually
only a few kilometers to more than 10 kilometers. Therefore, it can be assumed that the
velocity of each UAV is a constant. Second, in the process of designing the guidance law,
the guidance law can be designed separately in the longitudinal plane and the horizontal
plane. The guidance law designed in the longitudinal plane is to keep the UAV flying at a
fixed height, and the cooperative guidance law designed in the horizontal plane to is meet
the relevant cooperative strike requirements. Therefore, it can be assumed that the UAV
and the target are in the same horizontal plane. Therefore, four assumptions can be made,
as below:

Assumption 1: The UAV velocity can be considered as a constant value.

Assumption 2: The UAV and target are considered as ideal point-mass models.

Assumption 3: The target is stationary.

Assumption 4: Compared with the guidance loop dynamics of UAV, the dynamic response speed
of the UAV detection device and autopilot is fast enough, so it can be ignored.

Based on the above assumptions, it is assumed that the UAV in the two-dimensional
plane attacks the stationary target at a constant speed, and the relative motion relationship
is shown in Figure 1.

The UAV and the target are denoted by M and T, respectively. The equations describ-
ing the motions between the UAV and the target can be expressed as follows:

.
r = −VM cos σM (1)

.
λ = −VM sin σM

r
(2)

.
γM = aM/VM (3)

σM = γM − λ (4)
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Figure 1. Relative motion relationship between unmanned aerial vehicle (UAV) and target.

In the above equations, VM is the UAV velocity, the symbol r is the relative distance
between the UAV and target, namely the range-to-go. Symbols γM, λ and σM represent the
flight path angle, the line of sight (LOS) angle and the leading angle, respectively. Symbol
aM is the acceleration command.

3. Design of Bottom Guidance Law Based on Sliding Mode Control Theory

In this section, a new time-to-go estimation method is first proposed and compared
with the method in [32]. Then, the NSMG law for impact time control based on sliding
mode control theory is designed.

3.1. Time-to-Go Estimation of PNG Law

Assuming that the UAV is guided by the PNG law, the acceleration is expressed
as follows:

aM = NVM
.
λ (5)

where, N is the navigation gain and
.
λ is the rate of the LOS angle.

Substituting Equation (5) into Equation (3), yields

.
γM = N

.
λ (6)

Differentiating Equation (4) and substituting Equation (6), yields:

.
σM =

.
γM −

.
λ = (N − 1)

.
λ (7)

Substituting Equation (2) into Equation (7), yields:

.
σM = − (N − 1)VM sin σM

r
(8)

It can be obtained from Equations (1) and (8) that:

dσM
dr

=

.
σM

.
r

=
(N − 1) tan σM

r
(9)
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Integrating Equation (9) and its solution can be obtained as follows:

r = r0

(
sin σM
sin σM0

) 1
N−1

(10)

where r0 is the initial relative distance and σM0 is the initial leading angle.
Substituting Equation (10) into Equation (8), yields

.
σM = −(N − 1)VM sin σM/r0

(
sin σM
sin σM0

) 1
N−1

= K(sin σM)
N−2
N−1 (11)

where K = − (N−1)VM
r0

(sin σM0)
1

N−1 .
It can be obtained from Equation (11) that:

dt =
1
K
(sin σM)

2−N
N−1 dσM (12)

Integrating Equation (12) and using Taylor series expansion, ignore advanced items,
sin x = x − 1

6 x3 and (1 + x)α = 1 + αx, yields:

t − t0 = 1
K
∫ σM

σM0
(sin σM)

2−N
N−1 dσM

≈ 1
K
∫ σM

σM0

(
σM − σ3

M
6

) 2−N
N−1

dσM

= 1
K
∫ σM

σM0
σ

2−N
N−1
M

(
1 − σ2

M
6

) 2−N
N−1

dσM

≈ 1
K
∫ σM

σM0
σ

2−N
N−1
M

(
1 − 2−N

N−1
σ2

M
6

)
dσM

= 1
K
∫ σM

σM0

(
σ

2−N
N−1
M + 2−N

N−1
σ

N
N−1

M
6

)
dσM

(13)

Equation (13) can be further simplified as follows:

t = t0 +
r0

VM

(
1 +

2 − N
6(N − 1)(2N − 1)

σ2
M0

)(
σM0

sin σM0

) 1
N−1 − r0

VM

(
1 +

2 − N
6(N − 1)(2N − 1)

σ2
M

)(
σM

sin σM0

) 1
N−1

(14)

When the UAV attacks the target, the leading angle σM equals zero. Therefore, the
time-to-go tgo at the moment t can be expressed as follows:

tgo =
r

VM

(
1 +

2 − N
6(N − 1)(2N − 1)

σ2
M

)(
σM

sin σM

) 1
N−1

(15)

Defining,

N′ = 2 − N
6(N − 1)(2N − 1)

(16)

and the new time-to-go estimation method proposed in Equation (15) can be rewritten
as follows:

tgo =
r

VM

(
1 + N′σ2

M

)( σM
sin σM

) 1
N−1

(17)

Here, another time-to-go estimation method proposed in [32] is also given as below:

tgo =
r

VM

(
1 +

σ2
M

2(2N − 1)

)
(18)
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3.2. Design of the Impact Time Control Guidance Law
3.2.1. Design of the Guidance Law for Stationary Target

For stationary targets, considering the impact time control, the sliding mode surface is
designed as below:

s = t f − td
f = t + tgo − td

f = tgo − td
go (19)

where, td
f and td

go are the desired impact time and the desired time-to-go respectively.
tgo is the time-to-go under proportional navigation law and the expression is shown in
Equation (18).

The time derivative of Equation (19) is expressed as follows:

.
s =

.
tgo −

.
t
d
go

= (1 + K1) + (K2 + K3)
.
σM

= (1 + K1) + (K2 + K3)
(

aM
VM

+ VM sin σM
r

)
= (1 + K1) + (K2 + K3)

VM sin σM
r + (K2 + K3)

aM
VM

(20)

where, K1, K2 and K3 are the corresponding coefficients, and the specific expressions can be
expressed as:

K1 = − cos σM

(
1 + N′σ2

M

)( σM
sin σM

) 1
N−1

(21)

K2 =
r

VM

1
N − 1

(
σM

sin σM

) 1
N−1−1 sin σM − σM cos σM

sin2 σM

(
1 + N′σ2

M

)
(22)

K3 =
r

VM
(2N′σM)

(
σM

sin σM

) 1
N−1

(23)

According to the sliding surface designed by Equation (19), the impact time control
guidance law based on Lyapunov non-linear control theory is designed as follows:

aM = aeq
M + asw

M (24)

aeq
M = − VM

K2 + K3

(
(1 + K1) + (K2 + K3)

VM sin σM
r

)
(25)

asw
M = −ks sin σM − M(psign(K2 + K3) + 1)sign(s) (26)

where, aeq
M and asw

M are the equivalent part and switching part of the guidance law, respec-
tively, and the parameters k > 0, M > 0, p > 1. The equivalent control item is used to
control the line-of-sight angular velocity to ensure that the UAV can impact the target, and
to maintain the sliding mode surface reaching law

.
s = 0. The switching control term is to

satisfy the impact time constraint, while ensuring that the designed sliding mode guidance
law Equation (24) satisfies the Lyapunov stability condition as well as being non-singular,
that is, not containing singular points.

3.2.2. Proof of Stability

Choose V = (1/2)s2 as the Lyapunov function, then,

.
V = s

.
s = −K2 + K3

VM
ks2 sin σM − M

VM
(p|K2 + K3|+ (K2 + K3))|s| (27)

It can be seen from (K2 + K3) sin σM ≥ 0 and p|K2 + K3|+ (K2 + K3) ≥ 0 that
.

V is
negative semidefinite, which means that when the leading angle, the sliding surface s = 0
may not be satisfied. In order to satisfy the attack time control constraints and make
the sliding surface s = 0, it is necessary to explain that the leading angle σM = 0 is not
an attractor.
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It can be seen from Equation (4) that:

.
σM =

.
γM −

.
λ (28)

When the leading angle σM = 0, it can be seen from Equation (2) that the rate of
change of line of sight angle is as follows:

.
λ = −VM sin σM

r
= 0 (29)

Equivalent control term of the guidance law:

aeq
M = − VM

K2 + K3

(
(1 + K1) + (K2 + K3)

VM sin σM
r

)
= 0 (30)

Switching term of the guidance law:

asw
M = −ks sin σM − M(psign(K2 + K3) + 1)sign(s) = −Msign(s) (31)

It can be obtained from Equation (3) that:

.
γM =

aM
VM

=
aeq

M + asw
M

VM
= − M

VM
sign(s) (32)

Then the change rate of the leading angle satisfies,

.
σM =

.
γM −

.
λ = − M

VM
sign(s) (33)

Therefore, when the leading angle σM = 0 but s �= 0,
.
σM �= 0, it means that the leading

angle is not an attractor. At the same time, it can be seen from Equation (33) that when
the sliding surface s > 0, the change rate of the leading angle

.
σM < 0, the leading angle

decreases; when the sliding surface s < 0, the change rate of the leading angle
.
σM > 0,

the leading angle increases. This means that only when the sliding surface s = 0 and the
leading angle σM = 0, the leading angle σM = 0 is an attractor of the system. For the
leading angle σM �= 0, the stability of Lyapunov function has been proved by Equation (27).

At the same time, it should be noted that when the leading angle σM = 0, this can be
known according to the law of Robida:

lim
σM→0

sin σM − σM cos σM

sin2 σM
= lim

σM→0

σM
2 cos σM

= 0 (34)

lim
σM→0

σM
sin σM

= lim
σM→0

1
cos σM

= 1 (35)

Therefore, the coefficients K2 and K3 are not singular. When the UAV’s leading angle is
zero, the guidance law can also be activated. According to the above analysis, the guidance
law, Equation (24), is a non-singular sliding mode guidance law with impact time control,
which is recorded as NSMG.

3.2.3. The Extension of the Guidance Law under the Maneuvering Target

For maneuvering target, in order to achieve the effective attack on the target under
the designated time, the strategy of predicting the collision point is adopted. The target
prediction point (xTP, yTP) is shown in Figure 2.
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Figure 2. Relative motion relationship based on predicted collision point.

The coordinates of the target prediction collision point can be expressed as:

xTP = xT + (VT cos γT)tgo
yTP = yT + (VT sin γT)tgo

(36)

where, (xT , yT) is the target coordinates at the current time, VT is the target velocity, γT
is the target flight path angle. rP is the relative distance between the UAV and predicted
collision point, λP is the corresponding leading angle. By replacing r and λ with rP and
λP respectively, and bringing them into the guidance law Equation (24), it can attack the
maneuvering target in the designated time.

4. The Upper-Level Distributed Coordination Strategy Based on Consistency

When the upper layer of the two-layer guidance architecture adopts the centralized
coordination strategy, the coordination variable only exists in one member of the formation,
which is easier to realize. However, this strategy requires the information of the global
system, and when the centralized cooperative member is attacked and fails, the cooperative
control of the whole formation will fail, which reduces the robustness and reliability of the
system. Therefore, a distributed cooperative guidance law based on consistency theory is
designed in this paper.

Let us assume that n UAVs launched simultaneously are required to carry out a
saturation attack on a fixed target at the same time. The formation structure composed of
multiple UAVs is regarded as the network communication topology structure, and each
UAV is regarded as the network communication node. The acceleration command of the
ith UAV is expressed as:

aM,i = aM_1,i + aM_2,i(i = 1, ..., n) (37)

where, aM_1,i is the local control term of the ith UAV for zero miss distance, and aM_2,i is
the cooperative control item for realizing cooperative attack. The local control item selected
in this paper is:

aM_1,i = aeq
M,i = − VM,i

K2,i + K3,i

(
(1 + K1,i) + (K2,i + K3,i)

VM,i sin σM,i

ri

)
(38)
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The collaborative control item can be designed as:

aM_2,i = f
(
si1(t)tgo,1, ..., siq(t)tgo,q, ..., sin(t)tgo,n

)
(39)

where, sij(t) is the function of time, and f is the network communication connection. At
time t, when the jth UAV can receive the information transmitted by the ith UAV, sij(t) = 1,
otherwise, sij(t) = 0, and sii(t) = 1. Then the instantaneous communication matrix
describing the information exchange between UAVs in formation can be defined as:

S(t) =

⎡⎢⎢⎣
s11(t) s12(t) ... s1n(t)
s21(t) s22(t) ... s2n(t)

... ... ... ...
sn1(t) sn2(t) ... snn(t)

⎤⎥⎥⎦ (40)

The following formula can be obtained by deriving the time-to-go:

.
tgo,i = K1,i + (K2,i + K3,i)

.
σM,i

= K1,i + (K2,i + K3,i)
(

aM,i
VM,i

+
VM,i sin σM,i

ri

)
= K1,i + (K2,i + K3,i)

VM,i sin σM,i
ri

+ (K2,i + K3,i)
aM_1,i
VM,i

+ (K2,i + K3,i)
aM_2,i
VM,i

= f1,i(ri, VM,i, σM,i) + f2,i(ri, VM,i, σM,i)aM_2,i

(41)

where, f1,i(ri, VM,i, σM,i) = K1,i +(K2,i + K3,i)
VM,i sin σM,i

ri
+(K2,i + K3,i)

aM_1,i
VM,i

, f2,i(ri, VM,i, σM,i)

= (K2,i + K3,i)/VM,i.
When aM_2,i = 0, it means that there is no need to adjust the impact time of the UAV,

so the impact time of the UAV satisfies
.
t f ,i = 0. From tgo,i = t f ,i − ti, it can be known

that
.
tgo,i = −1. Considering that f1,i(ri, VM,i, σM,i) does not explicitly contain aM_2,i, then

f1,i(ri, VM,i, σM,i) = −1. Therefore, whether aM_2,i is zero or not, the derivative of the
time-to-go can be expressed as:

.
tgo,i = −1 + f2,i(ri, VM,i, σM,i)aM_2,i (42)

The dynamic change of the UAV’s impact time can be expressed as:

.
t f ,i = f2,i(ri, VM,i, σM,i)aM_2,i (43)

For the dynamic system described in Equation (43), according to the cooperative
control theory, the following cooperative control algorithm is designed:

aM_2,i = f−1
2,i

(ri, VM,i, σM,i)

⎛⎜⎜⎜⎝ n

∑
j=1

sijt f ,j
n
∑

j=1
sij

− t f ,i

⎞⎟⎟⎟⎠ = f−1
2,i

(ri, VM,i, σM,i)
n

∑
j=1

sij
n
∑

j=1
sij

(
t f ,j − t f ,i

)
(44)

By using this algorithm, the operational requirement of impact time cooperative
guidance can be satisfied. Substitute Equation (44) into Equation (43) to obtain,

.
t f ,i =

n

∑
j=1

sij
n
∑

j=1
sij

(
t f ,j − t f ,i

)
=

n

∑
j=1

dij

(
t f ,j − t f ,i

)
(45)

where, dij = sij/
n
∑

j=1
sij

For the first-order closed-loop cooperative control system described in Equation (45),
the research results of the consistent cooperative control theory show that the necessary
and sufficient conditions for the communication network topological system to converge
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to consistency are as follows: if and only if the communication network topology of the
system is strongly connected, that is, there is connectivity between any two nodes in
the communication network structure. Therefore, for the cooperative guidance system
composed of multiple UAVs, the ultimate goal of the ith UAV can be expressed as:

t f ,i →
n

∑
j=1

sijt f ,j/
n

∑
j=1

sij (46)

A non-singular sliding mode guidance law with impact time constraint is designed in
Section 3. When the desired impact time is designated in advance, the guidance law can be
used to attack the target at the designated time. Based on this, the collaborative control
is designed:

aM_2,i = kεi sin σM,i + M(psign(K2,i + K3,i) + 1)sign(εi) (47)

where, εi =
n
∑

j=1
dij

(
t f ,j − t f ,i

)
=

n
∑

j=1
dij
(
tgo,j − tgo,i

)
To sum up, the distributed time cooperative guidance law with time constraint de-

signed in this paper can be expressed as:

aM,i = aM_1,i + aM_2,i

= − VM,i
K2,i+K3,i

(
(1 + K1,i) + (K2,i + K3,i)

VM,i sin σM,i
ri

)
+

kεi sin σM,i + M(psign(K2,i + K3,i) + 1)sign(εi)

(48)

It can be seen from Equation (48) that the architecture of the distributed time coopera-
tive guidance law is a two-layer cooperative guidance architecture. The bottom layer is the
guidance law based on sliding mode control theory, and the upper layer is the distributed
cooperative strategy based on consistency.

5. Numerical Simulation

5.1. Comparison of Methods for Time-to-Go Estimation

The time-to-go estimation methods proposed in this paper and in [32] can be expressed
by Equations (17) and (18), respectively. In order to compare the accuracy of the two
methods, the navigation gain is set to N = 3; the initial range is set to r0 = 10, 000 m; the
constant velocity of the UAV is set to VM = 330 m/s. The time-to-go calculated by the two
methods is compared with the actual time-to-go, which can be shown in Figure 3.

Figure 3. Time-to-go with different initial leading angles.
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It can be seen from the figure that when the leading angle is less than 60 degrees
(deg.), the time-to-go calculated by the two methods is close to the actual time-to-go;
however, when the leading angle is greater than 60 deg., the time-to-go calculated by
the method proposed in this paper is almost the same as the actual time-to-go, while the
time-to-go calculated by the method in [32] is quite different from the actual time-to-go, so
the time-to-go estimation method proposed in this paper is more accurate.

5.2. Verification of the Bottom Non-Singular Sliding Mode Guidance Law

In order to fully verify the non-singular sliding mode guidance law with impact
time control designed in this paper, the following simulation examples are designed for
simulation verification.

5.2.1. Comparison of Non-Singular Sliding Mode Guidance Law (NSMG) Law and Sliding
Mode Control (SMC) Law

In this case, the performance of the NSMG law and the SMC law are compared. The
velocity of the UAV is 330 m/s, the initial position is (0, 0) m, the initial flight path angle is
0 deg. The navigation gain is set to N = 3. The maximum acceleration of the UAV is 5 g
and g = 9.8 m/s2. The target position is (10, 0) km and the designated impact time is set
to 45 s.

aM = aeq
M + adis

M

=

[{
1 +

.
r

VM

[
1 + σ2

M
2(2N−1)

]
+ −r

.
λσM

(2N−1)VM

}
× Csign

( .
λ
)
− 2

.
r

.
λ

r

]
/

[
cos σM

r − CrσMsign
( .

λ
)

(2N−1)V2
M

]
+ Kdis

M sign(S)
(49)

where

Kdis
M = M/sign

⎡⎣cos σM
r

−
CrσMsign

( .
λ
)

(2N − 1)V2
M

⎤⎦ (50)

C and M are positive constants, and the form of the guidance law is denoted as
SMC. The non-singular sliding mode guidance law denoted NSMG proposed in this paper
is compared with the guidance law denoted SMC proposed in [33] for simulation, and
the variation curves of the UAV’s flight trajectory, leading angle, impact time error and
acceleration command over time are obtained, as shown in Figure 4.

It can be seen from Figure 4c that the SMC law cannot make the UAV attack the target
at the designated time. At this time, the acceleration of the UAV is 0, and the UAV directly
flies to the target at a constant speed with a flight time of 30.3 s, which shows that when the
leading angle is 0, the SMC law cannot be started, while the NSMG law can attack the target
at the designated time. Therefore, when the initial leading angle is 0, the performance of
the non-singular sliding mode guidance law with impact time control proposed in this
paper is better than the SMC law.
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(a) Trajectory (b) Time-Leading angle 

(c) Time-Impact time error (d) Time-Acceleration 

Figure 4. Simulation results of the non-singular sliding mode guidance (NSMG) law and the sliding mode control (SMC) law.

5.2.2. Performance of the NSMG Law with Different Impact Time

To evaluate the performance of the NSMG law under different impact time, the
designated impact time is set to 45 s, 65 s, 85 s and 105 s, respectively. Other parameters are
the same as the parameters used in Section 5.2.1. Simulation results are shown in Figure 5.

The legends represent different simulation situations. For example, “td = 45 s” repre-
sents the simulation results obtained by using the NSMG law when the designated impact
time is 45 s.

As can be seen from Figure 5a, the UAV can attack the target at a designated time. The
longer the designated impact time is, the more obvious the lateral maneuverability of the
UAV will be. As can be seen from Figure 5b,c, in the initial stage, since the estimated value
of the UAV’s time-to-go is less than the desired time-to-go, the leading angle increases and
then gradually converges to zero. Therefore, the corresponding acceleration command
increases in the initial stage, and then converges to zero with the decrease of the leading
angle, as shown in Figure 5d. At the same time, when the designated time is small, that is,
the error of the initial impact time is small, although the acceleration command of the UAV
increases in the initial stage, it does not exceed the boundary of the acceleration command.
However, when the designated time is large, that is, the error of initial impact time is large,
the acceleration command of the UAV will reach the specified boundary in the initial stage,
and the larger the error of initial impact time is, the longer the duration will be.
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(a) Trajectory (b) Time-Leading angle 

(c) Time-Impact time error (d) Time-Acceleration 

Figure 5. Simulation results under different designated impact time.

5.2.3. Performance of the NSMG Law with Different Initial Leading Angles

The initial leading angles are set to 20, 40, 60 and 80 deg., respectively. The designated
impact time is set to 45 s. Other parameters are the same as the parameters used in
Section 5.2.1. Simulation results are shown in Figure 6.

The legends represent different simulation situations. For example, “” represents
the simulation results obtained by using the NSMG law when the initial leading angle is
20 deg.

It can be seen from Figure 6a that for different initial leading angles, including the
case of large initial leading angle, the UAV can reach the target in a designated time. It can
be seen from Figure 6b,c that the leading angle increases in the initial stage to extend the
flight time and reduce the impact time error. When the designated impact time is fixed, the
larger the initial leading angle is, the smaller the initial impact time error will be, the faster
the convergence speed of the impact time error will be, and the smaller the corresponding
acceleration command will be. When the impact time error converges to 0, the UAV will fly
with pure proportional guidance. When it reaches the target, the relative distance between
the UAV and the target is 0, the leading angle is 0, and the acceleration also converges to 0.
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(a)Trajectory (b) Time-Leading angle 

(c) Time-Impact time error (d) Time-Acceleration 

Figure 6. Simulation results under different the initial leading angles.

5.2.4. Salvo Attack on Maneuvering Target with the NSMG Law

The above simulation examples show that the non-singular sliding mode guidance
law NSMG can be applied to strike missions under different initial conditions and different
designated impact time. Therefore, the NSMG law can be applied to cooperative combat
scenarios. At the same time, in order to verify the effectiveness of the extended guidance
law for a maneuvering target, it is assumed that four UAVs with different initial conditions
attack the same uniformly moving target. The proportional guidance coefficients are all
3, and the initial launch time is consistent. The other simulation parameters are shown in
Table 1.

Table 1. Simulation parameters of multiple UAVs’ cooperative strike against maneuvering target.

UAVs/Target
Initial Position

(km)
Velocity (m/s)

Initial Flight Path
Angle (deg.)

Designated
Time (s)

M1 (0,0) 330 0

45
M2 (5,8) 320 30
M3 (15,5) 310 5
M4 (5,−8) 300 45

Target (10,0) 50 30

When all four UAVs adopt the extended form of guidance law under maneuvering
target in Section 3.2, the simulation results are shown in Figure 7.
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(a) Trajectory (b) Time-Leading angle 

 
(c) Time-Impact time error (d) Time-Acceleration 

Figure 7. The simulation results of cooperative attack on maneuvering targets with NSMG.

Figure 7a–d show the variation curves of the flight trajectory, leading angle, impact
time error and acceleration command of four UAVs over time when the NSMG law is
applied to a cooperative attack scenario. It can be seen from the figures that the four UAVs
under different initial conditions can strike the target at the same designated time, meeting
the demand of time coordination. The terminal leading angle of each UAV is 0, and the
corresponding acceleration command is also 0. At the initial moment, the estimated value
of the time-to-go of each UAV is less than the desired time-to-go. Under the action of the
acceleration command, the amplitude of the leading angle increases to extend the flight
time, and finally the impact time error gradually converges to 0.

In conclusion, the impact time control cooperative guidance law based on sliding
mode control theory has been fully verified, and the guidance law is suitable for strike
missions under different initial conditions and different designated impact times. For
maneuvering targets, the predictive collision point strategy is used to extend the form of
the guidance law, which can realize an accurate attack.

5.3. Verification of Upper Level Distributed Coordination Strategy

Let us assume that three UAVs form a network formation to attack the same fixed
target, and all UAVs are required to attack the target at the same time. The proportional
guidance coefficient of each UAV is 3, and the maximum acceleration is no more than 5 g.
The other simulation parameters are shown in Table 2.
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Table 2. Simulation parameters of upper distributed coordination strategy.

UAVs
Initial Position

(km)
Velocity (m/s)

Initial Flight Path
Angle (deg.)

Target Position
(km)

M1 (0,0) 330 0
(10,0)M2 (5,8) 320 30

M3 (15,5) 310 −120

Suppose that the network communication matrix of the UAV formation has the
following three forms.

S1 =

⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ S2 =

⎡⎣ 1 1 0
1 1 1
0 1 1

⎤⎦ S3 =

⎡⎣ 1 1 1
1 1 0
1 0 1

⎤⎦ (51)

The corresponding network topologies of the three communication matrices are shown
in Figure 8.

 

Figure 8. Different network topologies.

As can be seen from the figure, in the first network topology, the three UAVs can
exchange information with each other, which can be called the ring network topology.
However, in the second and third network topologies, all interconnections cannot be
realized. These two forms can be called chained network topologies. The following is the
simulation verification for different network topologies.

5.3.1. Ring Network Topology

Based on the double-layer cooperative guidance architecture, when the network
topology of the formation is a loop, the variation curves of the flight trajectory, the leading
angle, time-to-go and acceleration command of each member of the formation obtained by
simulation over time are shown in Figure 9.

As can be seen from Figure 9, the initial time-to-go of the three UAVs is different,
respectively, 30.29 s, 37.97 s and 22.96 s. However, after mutual coordination, they gradually
become consistent in about 12 s. In the later stage, the cooperative guidance law degenerates
into the UAV’s own control item, and finally the saturation attack on the target is carried
out simultaneously in 33.86 s. The leading angle and acceleration command converge to 0
at the terminal moment.
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(a) Trajectory (b) Time-Leading angle 

 
(c) Time-Impact time error (d) Time-Acceleration 

Figure 9. Simulation results of cooperative attack under ring network topology.

5.3.2. Chain Network Topology

Taking the chain network topology as an example, the simulation curves of the flight
trajectory, the leading angle, the time-to-go and the acceleration command of each member
of the formation are shown in Figure 10.

As can be seen from Figure 10, the initial time-to-go of the three UAVs is different,
namely 30.29 s, 37.97 s, and 22.96 s. However, after mutual coordination, they gradually
become consistent in about 8 s. In the later stage, the cooperative guidance law degenerates
into the UAV’s own control item, and finally the saturation attack on the target is carried
out simultaneously in 34.44 s. The leading angle and acceleration command converge to 0
at the terminal moment.
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(a) Trajectory (b) Time-Leading angle 

 
(c) Time-Impact time error (d) Time-Acceleration 
Figure 10. Simulation results of cooperative attack under chain network topology.

5.3.3. The Situation of Network Topology Switching

In order to verify the time characteristics of cooperative attack in the case of the switch-
ing network communication topology of a multiple UAV formation, it is assumed that
there is a switching network topology among the above three structures with a switching
period of 5 s and a switching sequence of (1) → (2) → (3) → (1). The simulation curves of
the flight trajectory, the leading angle, the time-to-go and the acceleration command over
time of each member of the formation are shown in Figure 11.

As can be seen from Figure 11, the initial time-to-go of the three UAVs is different
at, respectively, 30.29 s, 37.97 s and 22.96 s. However, after mutual coordination, they
gradually become consistent in about 11 s. In the later stage, the cooperative guidance law
degenerates into the UAV’s own control item, and finally the saturation attack on the target
is carried out simultaneously in 34.21 s. The leading angle and acceleration command
converge to 0 at the terminal moment. It is worth noting that from Figure 11d, it can be
seen that the acceleration commands of M1 at 10 s, M2 at 10 s and 15 s have obvious jumps.
This is mainly because the coordination information obtained by the UAV has obvious
changes when the network topology is switched.

Based on the simulation results of the above three different situations, it can be seen
that the upper-layer distributed coordination strategy and the lower-layer non-singular
sliding mode guidance law designed in this paper can realize the impact time cooperative
guidance under the fixed or switching network topology of the UAV formation through
the information exchange between them.
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(a) Trajectory (b) Time-Leading angle 

 
(c) Time-Impact time error (d) Time-Acceleration 

Figure 11. Simulation results of switching the network topology.

6. Conclusions

In order to solve the problem of system instability when the centralized cooperative
strategy is adopted, a distributed cooperative guidance law is designed based on the
consistency theory. The structure of the guidance law consists of two parts: the bottom
non-singular sliding mode guidance law and the upper distributed coordination strategy.
First, a new time-to-go estimation method is proposed, which is more accurate than
the existing methods when the leading angle is large. Second, a non-singular sliding
mode guidance law (NSMG) of impact time control with equivalent control term and
switching control term is designed, which still appears to have excellent performance
even if the initial leading angle is zero. Then, based on the predicted crack point strategy,
the NSMG law is extended to attack maneuvering targets. Finally, adopting hierarchical
cooperative guidance architecture, a terminal distributed cooperative guidance law based
on consistency theory is designed. The simulation results show that:

(1) The time-to-go estimation method proposed in this paper is more accurate than [27]
under large leading angles.

(2) The non-singular sliding mode guidance law with impact time constraint at the
bottom layer can be applied to strike missions under different initial conditions and
designated impact time. For maneuvering targets, the predictive collision point
strategy is used to extend the form of the guidance law, which can still achieve
precise strike.

(3) In this paper, the upper-layer distributed coordination strategy and the lower-layer
non-singular sliding mode guidance law are combined to make the formation mem-
bers exchange information with each other, so as to realize the time cooperative online
closed-loop guidance under the condition of fixed or switching network topology of
the UAV formation.
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Nomenclature

Acronyms
UAV Unmanned Aerial Vehicle
NSMG nonsingular sliding mode guidance
PNG Proportional Navigation Guidance
NTSMC nonsingular terminal sliding mode control theory
LOS line of sight
SMC Sliding mode control
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Abstract: Large-scale unmanned aerial vehicle (UAV) formations are vulnerable to disintegration
under electromagnetic interference and fire attacks. To address this issue, this work proposed a
distributed formation method of UAVs based on the 3 × 3 magic square and the chain rules of visual
reference. Enlightened by the biomimetic idea of the plane formation of starling flocks, this method
adopts the technical means of airborne vision and a cooperative target. The topological structure
of the formation’s visual reference network showed high static stability under the measurement of
the network connectivity index. In addition, the dynamic self-healing ability of this network was
analyzed. Finally, a simulation of a battlefield using matlab showed that, when the loss of UAVs
reaches 85% for formations with different scales, the UAVs breaking formation account for 5.1–6%
of the total in the corresponding scale, and those keeping formation account for 54.4–65.7% of the
total undestroyed fleets. The formation method designed in this paper can maintain the maximum
number of UAVs in formation on the battlefield.

Keywords: large-scale unmanned aerial vehicle formations; electromagnetic interference; 3 × 3
magic square; chain rules of visual reference; network connectivity; dynamic self-healing capacity

1. Introduction

In August 2018, the U.S. Department of Defense released the Unmanned Systems In-
tegrated Roadmap 2017–2042, which reemphasized that the development of autonomous
technology is of great importance for improving the efficiency and performance of un-
manned systems as well as soldiers [1]. The development of UAVs is an essential part of
studying unmanned military systems [2], of which UAV autonomous clusters have become
an important direction for the future [3]. Moreover, UAV clusters have begun to play a key
role in targeted attacking in the future battlefield with advantages including “defeating the
most enemy with the least resources”, a flexible and straightforward delivery mode, and
ease of avoiding enemy’s Air Defense Radar System (ADRS). With this attacking strategy,
the successful attack rate can be improved because attacking UAVs require expensive and
high precision strike weapons; furthermore, it is difficult for the enemy to find, defend
against, and destroy UAVs quickly. Therefore, studying the stable formation method of
large-scale UAV clusters has practical implications for military operation.

At present, there are five commonly used plane formation methods: the leader-follower
method [4–10], the behavior-based method [11–16], the virtual structure method [17–26],
the graph theory method [27–33], and the consistency method [34–45]. However, these
methods do not consider the stability of UAV formation planes when they are destroyed or
decoyed by the enemy on the battlefield. If the “Leading goose” UAV in the formation or a
UAV on a certain critical node faces such a situation, formations using the methods above
will be disrupted.
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The UAV cluster formations can be disrupted by strong electromagnetic communi-
cation or enemy fire attacks. To address these issues with ideal and mature formation
methods, this paper studied the bionic mechanism of the maturely evolved flocks and
compared the characteristics of the classical models proposed by scholars worldwide. For
example, Vicsek established an essential but straightforward cluster model—the Vicsek
model (VM) [46,47]—based on the assumption that the individual field of view (FOV) is
360°, which is not realistic given that this range for most creatures is limited.

Considering the limited FOV, Tian et al. [48] established the RFVN model by upgrading
the VM. The Couzin model also considered the FOV issue in studying cluster motion
modeling [49]. However, the RFVN model assumes that the direction of FOV is consistent
with the individual’s moving direction, which is inconsistent with the actual biological
perception mode. Therefore, based on the RFVN model, Calvao et al. [49] introduced
the limited FOV and the strategy of random line-of-sight (LOS) to establish the Random
LOSVM (RLosVM). Furthermore, based on the above models [3], Duan Haibin and Qiu
Xinhua et al. proposed a fixed neighborhood region (FNR) model and a fixed number
of neighbors (FNN) model according to the topological distance interaction rules of the
starling movement.

In the FNN model, when one individual refers to the motion state of another in
the perception range, its sight may be blocked by others in the formation, making it
unable to obtain information about its neighbors effectively. After improving the FNN
model, the MFNN model was built, with which individuals can dynamically sense the
motion of the nearest “neighbor” in all directions. In addition, Duan Haibin and Qiu
Xinhua et al. believed that the VM only considers the information of the previous moment
when updating, but the individuals in the actual cluster motion have “memories”. This
means that the individual decision-making considers not only neighbors’ information
at the current time, but also previous ones. Therefore, they introduced the fractional
calculus idea to the VM and established the fractional order VM (FOVM). The simulation
contrast experiments on the above models found that a higher number of neighbors is not
necessarily better for the interactions between individuals within a biological cluster. If
there are redundancies in the perception information among individuals, the cluster motion
cannot achieve faster synchronization, and the synchronised movement of the system will
also be interfered with. Therefore, the reasonable distribution of neighboring individuals
in space is helpful to reduce redundancies’ interactions and improve the information
utilization rate [3]. Furthermore, historical information also enhances the efficiency of
instant decision making for individuals. However, the above ideas about biomimetic
cluster formation models have not been applied to large-scale UAV formations.

In order to integrate the advantages of the VM and its improved models into a large-
scale UAV formation method, this paper summarized the advantages in each model and
proposed the 3 × 3 magic square formation method that is capable of anti-jamming and
anti-deception visually. This biomimetic formation method is enlightened by the plane
formation of starling flocks and is based on the chain rules for visual reference. It adopts
the technical means of airborne vision and cooperative targets and possesses strong anti-
electromagnetic interference and anti-deception capabilities. In addition, this formation has
strong network resilience and regeneration capabilities concerning its network topological
structure. With this method, the maximum number of UAVs can be kept in form on the
battlefield. The main contributions of this paper are as follows:

(1) A distributed formation method for UAVs based on the 3 × 3 magic square and the
chain rules of visual reference are proposed in this work;

(2) The biomimetic method is enlightened by the formation of starling flocks, and draws
on the strengths of the Vicsek model and its refinements [3,46–49], overcoming the dis-
advantages of poor resilience and regeneration capabilities of the existing formation
methods [4–45];

(3) Matlab simulations and the network connectivity test revealed the strong network
resilience and topological regeneration capabilities of this proposed method;
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(4) This proposed method will significantly improve the ability of formations to resist
electromagnetic interference and destruction in the battlefield environment.

The following sections are arranged as follows: Section 2 describes the relevant
formation work, such as the formation mechanism of the starling flocks, how a single UAV
simulates the distribution of starling’s visual sensors, and the cooperative targets’ division
in the fuselage. Section 3 details the proposed 3 × 3 magic square formation method
and describes the matlab simulation of the 11 × 11-scale UAV grid formations. Section 4
analyzes the topological structure stability of the visual reference network based on nested
loop nine-grids. Section 5 conducts the matlab simulation experiments and results analyses
on different scale UAV formations on the battlefield. Section 6 is the conclusion.

2. Relevant Formation Work

Before describing the specific formation methods, we need to explain various issues,
including the formation mechanism of starling flocks, the distributions of visual sensors,
and cooperative targets in the UAVs, etc. These explanations will specify the pre-conditions
of the proposed formation methods.

2.1. Characteristics of the Formation Mechanism of Starling Flocks

As the most widely distributed birds in the world, starlings are gregarious birds with
strong imitation abilities. Thousands of starlings often fly together with a small distance
between individuals, and their formations are complex and change frequently with frequent
splitting and merging, enabling them to evade predators. Biologists and physicists found
that, when a starling flock flies [50–52], there is a mutual reference between neighboring
individuals, and each starling only interacts with the surrounding 6–7 individuals, as
shown in Figure 1. In addition, scholars verified that the choice of reference neighbors is
based on the topological model rather than the Euclidean geometric model, as shown in
Figures 2 and 3. The position of each bird, i, and its velocity were represented by pi and Vi,
repetitively, and the dynamics model is

−→pi (t + 1) = −→pi (t) +
−→
Vi (t + 1) (1)

−→
Vi (t + 1) =

[
θi(t) + ∑

j
θj(t)

]
Ni + 1

(2)

where Ni is the the total number of individuals that bird i can interact with.
In the Euclidean geometric model, bird i interacts with all neighboring individu-

als within a fixed distance r̄, while in the topological model, bird i interacts with its nc
neighboring individual, i.e., Ni = nc. The specific mathematical model is as follows:

Let A = [aij] be the adjacency matrix among individuals; then, the Euclidean model is:

aij(t) =

{
1 if ||rij(t)|| ≤ r̄
0 if ||rij(t)|| > r̄

(3)

where rij(t) is the distance from individual i to j, and r̄ is the distance range established for
communication.

Additionally, the topological mode is:

aij(t) = aij(t0) ∀t ≥ 0, ||rij(t)|| ∈ R+ (4)

where aij(t0) is the flag bit of the communication at the initialization time aij. (t0) = 0
indicates no communication connection, and aij(t0) �= 0 means such a connection exists.

Second, when the predator is moving in the opposite direction to the flock and there
is a vertical offset d, the predator exerts a repulsive force on each bird, which attenuates as
the bird moves further away from the predator. As shown by a large number of simulated
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numerical experiments, under different initial conditions, the clusters of two models
present different grouping probabilities after being attacked by predators. Specifically,
under the Euclidean model, the flock is usually dispersed into five groups, indicating low
restoration capacity of the model. In contrast, it is highly possible for flocks to maintain a
complete group under the topological model, and the original group is not easily dispersed,
showing strong cohesion. Therefore, it is concluded that when flocks of starlings fly in
nature, the choice of reference neighbors is not based on the Euclidean geometric model,
but on the topological model [50].

Figure 1. Visual reference diagram of starlings A and B in a formation.

Figure 2. Euclidean model.

Figure 3. Topological model.

When starlings fly in flocks, the plane direction of the entire formation is integrated.
Specifically, the direction and speed of individual movements are initially haphazard,
but through continued local interactions between individuals, they eventually fly in the
same direction and speed as the movement of the entire flock. The Φ-order parameter is
generally used to characterize the synchronization index for the motion direction of all
individuals in the starling cluster system. The formula is as follows:

Φ = ‖ 1
N

n

∑
i=1

−→
Vi

‖Vi‖‖ (5)

where Vi represents the speed of the ith starling, and N denotes the total number of the
entire flock. The value of Φ will be zero if each starling flies in a different direction and
speed; conversely, it will be close to one if most starlings fly in the same direction. Scholars
analyzed 24 starling flocks and found that their flight direction has global orderliness [51].
When the perception is uncertain, interacting with the neighboring 6–7 starlings is an
optimal choice to balance the cohesion of the flock and individual cost. The plane status
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of starling flocks can change correlatively: the plane state change of a single starling will
affect all other individuals in the entire flock, regardless of the flock size.

2.2. The Distribution of Visual Sensors and Cooperative Targets in UAVs Based on the Bionics
of Starlings

As the whole plane formation system is based on the formation principle of starling
flocks, each UAV in the fleet shall have a similar visual function as a single starling. The
compared architecture between starling flocks and UAV fleets is shown in Figure 4:

Figure 4. Compared architecture between starling flocks and UAV fleets.

To enable the UAV to observe the flying posture of its surrounding UAVs as starlings
do, each UAV was equipped with visual sensors and high-precision ranging sensors on
the left side, right side, directly behind and in front (these items of equipment are not
necessarily on the directly above and below orientations because the plane formation was
conducted on a single plane). For a more visual indication of the orientation, we give a
top view of the FOV distribution of a 3 × 3 size UAV formation in Figure 5. As can be
seen, there are eight basic directional positions (see details in Figure 6a) determined by the
inertial navigation equipment. The flying postures on these positions can be observed by
the two sensors equipped. For example, the UAVs numbered 1, 6, 7, 2, 9, 4, 3, and 8 locate
the 8th, 1st, 2nd, 3rd, 4th, 5th, 6th, and 7th directions of the No.5 UAV, respectively.

Figure 5. Corresponding directions diagram for the visual range of a single UAV in a 3 × 3 magic
square.
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These directions were fixed after the UAV joined the formation. No matter how the
UAV turned during flying, the eight directions would always remain the initial state (as
shown in Figure 6b), so that each UAV can obtain a fixed reference versus the surrounding
UAVs. At the same time, the vision system of the UAV can collect the signal conditions of
cooperative signal lamps located on the UAV surface in different directions (as shown in
Figure 7), thus determining the flying posture of a referenced UAV in each direction. Each
UAV can also collect the real-time flying distance between the referenced UAVs and itself
together with the high-precision ranging sensors.

Figure 6. 8 Basic directions: (a) Schematic diagram of the eight directional positions of the UAV in
initial formation; (b) Schematic diagram of the eight directional positions of the UAV after turning.

Figure 7. Distribution of the cooperative signal lamps located on the UAV surface in different directions.

3. Formation Methods and Simulation

Based on the work above, this chapter elaborates the distributed formation method
based on the 3 × 3 magic square and the chain rules of visual reference. Using the method,
the advantages of the VM and its improved models are integrated into the large-scale UAV
cluster formation, so that the VM’s redundant neighborhood information can be avoided
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in its formation. Notably, this method is characterized by a more stable neighborhood
information collection than the RLosVM model and the memory function of the FOVM
model. In addition, the dynamic visual reference in the FNN model has been improved to
enhance the formation’s anti-jamming and anti-deception capacity.

First, the formation was divided into two areas, kept at a certain distance to be anti-
jamming. One was the unformatted UAV area, and the other was the formatted area. The
involved UAVs could fly freely in the first area and at a random position outside the formatted
area. When entering the formatted area, UAVs have their designated routes until arriving
at the terminal. However, the routes of all UAVs were constrained by the grid formation, in
which each UAV in flight maintained a certain distance, the same altitude and the same speed
between them, using airborne distance sensors and their vision system. Based on the 3 × 3
magic square and the chain rules of visual reference, the vision system determines which
drones in which directional positions can be referenced to guide the formation.

3.1. Distributed Formation Method Based on the 3 × 3 Magic Square and the Chain Rules of
Visual Reference

For the formatted areas, a suppositional 3 × 3 magic square grid was set. The size
of the square varied according to the scale of formation. Each square was marked with a
number to show its position. For instance, Figure 8 is a typical 3 × 3 magic square diagram.

Figure 8. 3 × 3 magic square formation code.

When the first UAV entered the formatted area, the very place it arrived was the
square numbered 5, as shown in Figure 9. Afterward, the second UAV flew from the
unformatted area to the square numbered 1.

Figure 9. 3 × 3 magic square formation.

As mentioned above, the visual sensor of each UAV could sense 8 basic directions in
the same plane (Figure 6). Thus, the eight directions of UAVs in grids 5 and 1 are shown in
Figure 10.

Figure 10. Eight directions of UAVs in square 5 and square 1.

According to Figures 9 and 10, the UAV in square 1 was in direction 8 of the UAV
in square 5, whose airborne visual sensor identified the cooperation signal of the UAV in
square 1. Thus, the poses of the UAV in square 1 could be obtained. The UAV in square 1
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could offer reference to that in square 5 in direction 8. Similarly, the UAV in square 5
was in direction 4 of the UAV in square 1, whose airborne visual sensor identified the
cooperation signal of the UAV in square 5. Therefore, the poses of the UAV in square 5
could be obtained. The UAV in square 5 was set as the reference for the UAV in square 1 in
its direction 4. Similarly, through this visual cross-reference, UAVs could be formatted in
other parts of the 3 × 3 magic square.

After the formation, a visual reference topological structure diagram of the 3 × 3
magic square was formed, as shown in Figure 11, where node numbers of the square
referred to individual UAVs, and the lines between nodes showed the visual reference
among UAVs.

Figure 11. A visual reference topological structure diagram of the 3 × 3 magic square.

According to the 3 × 3 magic square agreement and chain rules of visual reference,
UAVs to be referred must meet two prerequisites. First, the numbers of UAVs and their
reference must be in the same line in the topological structure diagram. Second, in the
same line, there must be three nodes in that direction, with each of their numbers adding
up to be 15. With these two prerequisites, UAVs at the nodes could be viewed as references.
For instance, in Figure 11, UAVs at square 8 would refer to UAVs in square 1 and square
6 in direction 2, UAVs in square 5 and square 2 in direction 3, and UAVs in square 3 and
square 4 in direction 4. In these three reference directions (2, 3, and 4), the sum of numbers
in the three nodes was 15, satisfying the 3 × 3 magic square agreement and chain rules of
visual reference. Thus, UAVs at square 8 could refer to squares 1, 6, 5, 2, 3, and 4. UAVs
at square 3 could refer to squares 8, 4, 5, and 7. Similarly, we could get the reference for
UAVs at other squares based on this principle. For example, 6 UAVs could be the reference
for UAVs at squares 2, 4, 6, and 8, 8 for UAVs at square 5, and 4 for UAVs at square 1, 3, 7,
and 9.

3.2. Visual Reference Topological Structure Diagram of the Nesting 3 × 3 Magic Squares

To expand the scale of the UAV formation, we expand the magic square by nesting
under the exact mechanism of the first 3 × 3 magic square (circling the black dotted
bordered rectangle in Figure 12). 3 × 3 magic squares were nested, forming a 7 × 7 magic
square formation.

Figure 12. 7 × 7-scale nested magic square formation.
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For the convenience of studying the formation of UAV clusters, the formation structure
after each expansion should be in line with magic squares. For different scale square arrays,
the grid numerical codes can be described by the following Equations (6) and (7):

n5 = (2n + 1)2, (n = 0, 1, 2, . . .) (6)

M = [3 + 2(
√

n5 − 1)] (7)

where M refers to the number of clusters and n5 refers to the number of 3 × 3 magic
squares.

Based on the above formation mechanism and the above equations, we could achieve
11 × 11, 15 × 15, . . . expanded UAV formations. The expanded versions were more complex
than the topologies of 3 × 3 magic squares, whose nesting structures made UAV formation
more closely related, enhancing the formation stability. For instance, in the 7 × 7 visual
reference topological structure diagram of UAV formation, UAVs at square 4 in the red
dotted bordered rectangle (Figure 13) satisfied the 3 × 3 magic square agreement and
the chain rules of visual reference, as shown in Figure 14. According to the 3 × 3 magic
square agreement and chain rules of visual reference, the UAV at square 4 in the red-dotted
bordered rectangle could refer to UAVs at squares 5, 9, 5, 3, 5, 9, 5, and 3 (as marked by the
blue dashed box in Figure 13) in direction 1–8 as well as squares 6, 2, 6, 8, 6, 2, 6, and 8 (as
marked by the green dashed box in Figure 13) in direction 1–8 of the extended nodes. In
total, there are 16 UAVs in line with the prerequisites of UAVs for reference, as shown in
Figure 14. If they were destroyed, the UAV at square 4 in the red dotted bordered rectangle
would be out of the formation.

Figure 13. 7 × 7 visual reference topological structure diagram of UAV formation.

Figure 14. Reference for UAV at square 4.

Similarly, for the UAV at square 1 (as marked by the red dashed box in Figure 15),
4 UVAs meeting the 3 × 3 magic square agreement and the chain rules of visual reference,
as shown in Figure 16, respectively, were at neighboring squares 8, 6, and 5 (as marked by
the blue dashed box in Figure 15) in direction 2, 6, and 8, as well as square 9 (as marked
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by the green dashed box in Figure 15) in direction 8 of the extended node. Without these
4 UAVs for reference, the UAV at square 1 will be out of formation. It could be seen that
nodes with fewer reference UAVs were located at the margin of the formation. Such is the
case of Figure 15, where the UAV at square 1 in the dotted bordered rectangle was in an
individual 3 × 3 magic square without nested relation with others.

Figure 15. A visual reference topological structure diagram of a 7 × 7 nested magic square UAV
formation.

Figure 16. Reference for the UAV at square 1.

3.3. 11 × 11 Matlab Simulations of UAVs Magic Square Formation
3.3.1. UAV Model

In real UAVs with different model parameters, there are multiple aerodynamic con-
figurations, causing the variance of mathematical modeling. To simplify the algorithm of
upper control, we suppose that the UAV internal-loop is controlled by autopilot. Thus, the
model could be built with the UAV position and velocity external-loop model as the upper
control algorithm, as shown in Figure 17.

Figure 17. UAV model.
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The mathematical model of the UAVi is expressed as Equation (8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi = Vi cos γi cos χi

ẏi = Vi cos γi sin χi

ḣi = V sin γi

V̇i =
Ti − Di

mi
− g sin γi

γ̇i =
L cos Φi − mig cos γi

miVi

χ̇i =
Li sin Φi

miVi cos γi

(8)

where i = 1, · · · , N. xi, yi, and hi correspond to the down-range, cross-range, and altitude
displacement. Vi refers to the airspeed of UAVi, γi is the plane path angle, and χi represents
the heading angle. Ti is the engine thrust, Di refers to drag, mi is the quality of UAVi, and g
represents the gravity acceleration. Furthermore, Li refers to lift, and Φi is the bank angle.

Equation (9) can be achieved with the transformation of the mathematical model.⎧⎪⎨⎪⎩
ẍi = uxi

ÿi = uyi

z̈i = uhi

(9)

uxi, uyi, and uhi are the subjunctive control input, and the transformation relationship be-
tween the executive order and subjunctive control input can be expressed as Equation (10),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Φi = arctan

(
uyi cos χi − uxi sin χi

(uhi + g) cos γi − (uxi cos χi + uyi sin χi) sin γi

)

Li = mi
(uhi + g) cos γi − (uxi cos χi + uyi sin χi) sin γi

cos Φi

Ti = mi[(uhi + g) sin γi + (uxi cos χi + uyi sin χi) cos γi] + Di

(10)

where tan(χi) = ẏi/ẋi, and sin(γi) = ḣi/Vi. Therefore, the subjunctive control input is
designed as Equation (9), and the real input of the UVA could be calculated through
Equation (10), which can be expressed as the state place:⎧⎪⎨⎪⎩

żi = Azi + Bui

pi = Cpzi

vi = Cvzi

(11)

where zi = [pi
T , vi]

T , pi refers to the position vector, vi is the speed vector, and ui =
[uT

xi, uT
yi, uT

hi]
T shows the subjunctive control input.

Ai =

[
0 1
0 0

]
⊗ I3, Bi =

[
0
1

]
⊗ I3, Cp =

[
1 0

]⊗ I3, Cv =
[
0 1

]⊗ I3 (12)

I3 ∈ R3×3 refers to the identity matrix, and ⊗ is the Kronecker product.
In Equation (10), the air resistance Di can be expressed as Equation (13).

Di = 0.5ρ(Vi − Vwi)
2SCD0 +

2kdk2
nL2

ρ(Vi − Vwi)2Sg2 (13)

where ρ refers to the air density, CD0 represents the zero-lift drag coefficient, Vwi refers to
gust, S is the wing area, kd is the induced drag, and kn refers to the load-factor effectiveness.
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The mathematical modeling of gust can be expressed as Equation (14).{
Vwi = Vwi + δVwi

Vwi = 0.215Vm log10(hi) + 0.285Vm
(14)

where Vwi is normal wind shear, Vm refers to the mean wind speed and δVwi is the wind
gust turbulence. The zero mean equals 0, and the standard deviation was 0.9Vm for this
Gaussian random variable.

3.3.2. Design of UAV Controller

Through an algorithm based on the 3 × 3 magic square grid, which was illustrated in
Section 3, the expected position pdi and expected speed of every UAVi could be calculated.
Thus, the controller form of individual UAVs can be expressed as Equation (15).

ui = kp(pdi − pi) + kd(qdi − qi) (15)

where kp > 0 and kd > 0 are parameters of UAV PID controllers.
The values of each item in simulations are as shown in Table 1.

Table 1. Settings of UAV Parameters.

Symbol Value Unit

mi 20 kg
g 9.81 kg/m2

ρ 1.225 kg/m3

S 1.37 m2

CD0 0.02 Non-dimensional
kd 0.1 Non-dimensional
kn 1 Non-dimensional
Vm 4 m/s (at hi = 80 m)
Ti [0, 125) N
Li (−294.3, 392.4) N
Φi [−80, 80] N
χi [−180, 180] deg
γi [−90, 90] deg

3.3.3. Simulations of Scale UAV Grid Formations

Considering different scales of nested magic squares, this study will not illustrate them
one by one. However, they share the same formation rule and topological structure, so
the 11 × 11-scale UAV grid formation (121 UAVs) was used as an example. Its simulation
results are as shown in Figures 18–20.

Figure 18. 121 UAVs’ flight trajectories.
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Figure 19. Speed curves of UAV swarms.

Figure 20. Position curves of UAV swarms.

According to the UAV flying trajectory in the simulation results, it could be concluded
that the UAV cluster initially moved from the unformatted sector to the formatted one.
In addition, the initial flying orientation was along the x axis. From the curve graph, the
cluster converged to 200 m in height within 5 s and soon entered the formatted sector.
Based on the speed graph, all UAVs achieved uniform convergence in axis x, y, and z at
15 s, when the curve graph of controller output, controller input, and executive output
achieved convergence. Thus, it can be seen that the 121 UAVs in that formation generally
realized convergence in speed and completed the formation in 15 s. This formation is large
in scale, stable in plane, and swift in convergence compared with other formations.

4. An Analysis on the Stability of the Visual Reference Topological Structure

In this chapter, the network connectivity index of graph theory was introduced to
analyze the static stability of the visual reference topological structure of the nested magic
squares. Meanwhile, a detailed description of the self-healing dynamic visual reference
grid of UAV formations will be given based on the principle and argument mentioned in
this study.

In this analysis, only nodes with close relations would be taken into account. For
instance, in Figure 21, the UAV at square 3 in the red-dotted bordered rectangle could only
refer to the UAVs at squares 4, 5, 8, and 5 in directions 8, 2, 4, and 6, respectively. If these
nodes were destroyed, the UAV at square 3 would be out of the topology.
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Figure 21. A visual reference topology diagram of nested 7 × 7 magic squares.

In this analysis, its basic concepts include network connectiveness, network resistance
to destruction, network cutpoint, network vertex cutpoint, minimum vertex cutpoint,
vertex impact, network impact, and network connectivity. Their specific definitions are
given as follows:

Definition 1 (network connectiveness). In the network G(V,E), if there is a path from vertex v
to v’, the two vertexes are connected. If for every pair of vertexes (vi,vj ∈ V) in the network G(V,E),
vi and vj are connected, then G is connected.

Definition 2 (network resistance to destruction). Several vertexes or chains should be destroyed
to impede the connectivity of certain vertexes. The cohesion strength and connectivity degree are
often used to show the resistance to destruction.

Definition 3 (network cutpoint). In the network G(V,E), if, for vertex v, its connected lines
are deleted, the connected component of the network will be divided into two or more connected
components. The vertex v will be called a cutpoint of G.

Definition 4 (network vertex cutpoint). In the network G(V,E), suppose V’⊆V; if G-V’ are
disconnected, V’ will be called G’s cutpoint or vertex cutpoint. The vertex cutpoint with k vertexes
will be called the k vertex cutpoint.

Definition 5 (minimum vertex cutpoint). In the network G(V,E), the vertex with the least points
is called G’s minimum vertex cutpoint.

Definition 6 (vertex impact). In the network G(V,E), suppose that di (i = 1,2,· · · , n). For the
degrees of vertex vi, the vector L = ( 1

d1
, 1

d2
; then, · · · , 1

dn
) is called the vertex impact, showing the

influence of vertexes on adjacent ones.

Definition 7 (network impact). In the network G(V,E), suppose A is the adjacent matrix of
network G, and D is the vector showing the impact degree between adjacent vertexes. The network
impact can be expressed as P = D·A, which indicates the influence of other vertexes on the network G.

Definition 8 (network connectivity). G(V,E) is an n-order connected network. If vertex cutpoints
exist at G, the point of G’s minimum vertex cutpoint is called its connectivity. Otherwise, n − 1
will be its connectivity. In other words, the sub-graph is still connected after k − 1 vertexes are
eliminated in a network with n vertexes (1 ≤ k ≤ n − 1). However, when k vertexes are removed,
the graph will be disconnected or become a trivial graph. In this way, k refers to the connectivity of
G, expressed as k(G) = k.
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4.1. Calculation of Network Connectivity in the Undirected Topological Diagram

To calculate the network connectivity of the visual topological diagram for different
scale UAV clusters, we adopted the algorithm mentioned in the Reference [53], which is
more straightforward than the traditional algorithm. The flow chart of the algorithm is as
shown in Figure 22. Condition: Suppose that G has n vertexes vi (i = 1, 2, · · · , n); then, the
adjacent matrix is C = (cij)n×n. If vi and vj are adjacent, cij = 1. Otherwise, cij = 0. Here, di
refers to the degree of the vertex vi.

Figure 22. The algorithm flow chart of the undirected network connectivity.

4.2. Matlab Simulations of Network Connectivity of Nested Magic Squares’ Topological Structure
under Different-Scale UAV Formations

This chapter employed the matlab simulation of the network connectivity of the
topological structure from 3 × 3 to 83 × 83 nested magic squares formation according
to the connectivity algorithm. The regression curve equation of the connectivity was
concluded, as shown in Table 2, and Figure 23.
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Table 2. Network connectivity values of different-scale UAV formations.

UAV Cluster Number Network Connectivity Value

9 3
49 11

121 20
225 33
361 37
529 46
729 51
961 61
1225 70
1521 75
1849 85
2209 96
2601 100
3025 109
3481 115
3969 124
4489 135
5041 140
5625 150
6241 156
6889 166

Figure 23. Connectivity regression curve of different-scale UAV clusters.

This study used the least square method to establish the regression model curve via
the network values of different-scale network topological diagrams, as shown in Figure 23.
Thus, the network connectivity values of topological structures of any scale nested magic
squares can be calculated.The regression model curve equation is:

K(G) = −30.7292 − 0.0146(Mn) + 26.3306 log10(Mn) (16)

where K(G) represents the network connectivity index and Mn refers to the UAV cluster
number.

According to the simulation results, the 95% confidence intervals of the gradients were
[0.0131, 0.0161] and [21.9585, 30.7027], and the 95% confidence interval of the intercepts
was [−41.4515, −20.0070]. The intercepts and gradients of the regression model curve
equation satisfied the requirement. The network connectivity index of the visual reference
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topological diagram had an R2 variance-explained rate of 0.9937, proving the significance
test of the regression equation with excellent fitting.

According to the fitted curve equation, the cluster accelerated in expanding, but
the network connectivity increased rather slowly. However, the network connectivity
is an index to evaluate the trivial graph formed after deleting k nodes in the network
topological diagram. Thus, applying nested magic squares’ network topological diagrams
into large-scale formations could help to greatly enhance the stability of UAV formations.
The simulation results show that, at a formation size of 961 UAVs, the resulting visual
reference network topology subgraph is still connected after the loss of a random 60 UAVs.

4.3. Dynamic Self-Healing of Grid Formation Based on the 3 × 3 Magic Square and the Chain
Rules of Visual Reference

We calculated the network connectivity and concluded that the topological structure
of nested magic squares has relatively high static stability. Still, the formation based on the
3 × 3 magic square and the chain rules of visual reference could lead to better stability. For
instance, the UAV at square 4 in the dotted rectangle in Figure 13 has 16 planes that satisfy
the reference principle, as shown in Figure 14. If the adjacent UAVs at squares 5, 9, 5, 3,
5, 9, 5, and 3 (UAVs in the blue dashed box) in directions 1–8 were destroyed due to fire
attacks, the UAV at square 4 could seek reference from 8 UAVs (UAVs in the green dashed
box) in its periphery. In this way, the formation could be maintained, and the regenerated
topological structure diagram is shown in Figure 24. The general visual reference topology
graph changes, but the UAV at square 4 in the dotted rectangle will be kept in the formation.
Therefore, the formation based on the 3 × 3 magic square and the chain rules of visual
reference not only has great stability but enjoys dynamic self-healing ability.

Figure 24. Regenerated topological structure diagram of 7 × 7 nested magic squares formation.

5. Simulations and Analysis in Battlefields

5.1. The Procedure of Matlab Simulations of UAV Formations in Battlefields

To evaluate the survival rate of a formation based on the 3 × 3 magic square and the
chain rules of visual reference in battlefields, we used matlab to simulate the attacks on
UAV formation in battlefields. There are six premises of the simulation experiments. First,
different-scale UAV clusters will enter the enemy region and will be attacked after the
formation. Second, once the grid formation is completed, all UAVs’ plane height, speed,
and relative distance will remain unchanged until they reach the destination. Third, each
fire attack on UAVs has a random aim and is completed once it is exerted. The number of
UAVs to be destroyed can be set before simulation. Fourth, UAVs out of the formation are
those which lose all reference planes in the grid formation. Fifth, surviving UAVs are those
which are not destroyed and for which there is at least one reference UAV. Sixth, the UAV

237



Appl. Sci. 2021, 11, 11560

clusters will not defend or dodge, so the stability of the formation in worst-case scenarios
can be obtained. Figure 25 is the flow chart of the detailed simulation.

Figure 25. Flow chart of simulation experiments of attacking the UAV formation in battlefields.

Although the number of drones set to be destroyed is the same, there will be some
variation in the number of drones out of formation as the aimed destructed areas were
randomly set. For this reason, the simulation experiments were conducted 100 times with
the same fight loss for the same-scale formation to obtain the average values of the UAVs
which were out of formation and those which survived. Next, this study simulated the
3 × 3 to 83 × 83 grid formations and calculated the number of UAVs out of formation and
surviving UAVs at 85% fight loss.

5.2. The Procedure of Matlab Simulations of UAV Formations in Battlefields

To test and verify the survival rate of formations with nested magic square topological
structures based on the 3 × 3 magic square and the chain rules of visual reference in
battlefields, we adopted matlab simulations to obtain the regression curve of UAVs out of
the formation and surviving UAVs in different-scale formations with the fight loss set at
85%. These values can be expressed in the following equation:

Hn = Mn − Dn − Iso (17)

where Hn is the remaining UAVs, Mn refers to the UAVs before entering the battlefield, Dn
represents the total destructed UAVs, and Iso stands for the undestroyed UAVs that get
out of formation.

The simulation results are as shown in Table 3 and Figure 26.
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Table 3. Simulation results of UAV formations with 85% fight loss.

UAV Formation
Scale (Planes)

UAVs Out of
Clusters (Planes)

Surviving UAV
Clusters (Planes)

49 3 4
121 7 10
225 12 21
361 20 34
529 29 50
729 39 71
961 51 94

1225 62 122
1521 79 150
1849 96 182
2209 116 216
2601 136 255
3025 156 298
3481 179 344
3969 204 392
4489 230 444
5041 258 499
5625 291 553
6241 320 617
6889 355 679

Figure 26. UAVs out of clusters and surviving UAVs in different-scale formations with the fight loss
set at 85%.

The least square method was adopted to make the curve fitting simulations of UAVs
out of clusters and surviving UAVs clusters with 85% fight loss, and the results are as
shown in Figures 27 and 28.
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Figure 27. The regression model of the number of UAVs out of clusters under 85% fight loss in
different-scale formations.

The regression model equation of UAVs out of clusters can be expressed as:

Ra = 0.0512Mn + 1.1267 (18)

where Ra is the number of UAVs out of clusters, and Mn refers to the number of clusters.
According to the simulation results, the 95% confidence interval of gradients in

the curve model was [0.0510, 0.0515], and that of intercepts was [0.3620, 1.8914], so the
intercepts and gradients of the regression model curve equation satisfied the requirement.
The R2 variance explained rate was 0.9999, proving the significance test of the regression
equation with excellent fitting.

Figure 28. The regression model of the number of surviving UAVs under 85% fight loss in different-
scale formations.

The regression model equation of UAVs out of clusters can be expressed as:
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Rb = 0.0989Mn − 1.1704 (19)

Rb is the number of surviving UAVs, and Mn refers to the number of clusters.
According to the simulation results, the 95% confidence interval of gradients in the

curve model was [0.0987, 0.0992], and the confidence interval of intercepts was [−1.9811,
−0.3596], so the intercepts and gradients of the regression model curve equation satisfied
the requirement. The R2 variance explained rate was 0.9999, proving the significance test
of the regression equation with excellent fitting.

Based on the simulation results, in the 20 different-scale formation clusters based on
the mentioned method, even when the fight loss accounts for 85% in each formation, only
5.1–6% UAVs would be out of the formation. In the remaining 15% undestroyed clusters,
54.4–65.7% of the surviving UAVs could continue fighting.

6. Conclusions

This study proposed a UAV formation method based on a 3 × 3 magic square and the
chain rules of visual reference. The formation mainly adopted visual references in diverse
directions, which greatly enhanced its anti-electromagnetic interference ability and the
regeneration capacity of topological structures. Matlab simulations of real fights showed
that when the fight loss of different-scale formations reached 85%, 5.1–6% of UAVs would
be out of the formation. More importantly, in the remaining 15% undestroyed clusters,
54.4–65.7% of the surviving UAVs could continue fighting. The simulation results verified
that the formation of this study has faster convergence and a larger scale in formation.
Moreover, with the expansion of formation scales, the network resistance to destruction
increases, leading to a higher survival rate of UAVs to maintain the formation.

Moreover, the simulation experiments were conducted without defensive measures.
Otherwise, combat losses would be significantly reduced if the UAV clusters fire weapons
at the enemy or have interception or attack capabilities. The formation approach in this
study can provide some insight into future large-scale UAV formations for military use.
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Abstract: The need for civilian use of Unmanned Aerial Vehicles (UAVs) has drastically increased
in recent years. Their potential applications for civilian use include door-to-door package delivery,
law enforcement, first aid, and emergency services in urban areas, which put the UAVs into obstacle
collision risk. Therefore, UAVs are required to be equipped with sensors so as to acquire Artificial
Intelligence (AI) to avoid potential risks during mission execution. The AI comes with intensive
training of an on-board machine that is responsible to autonomously navigate the UAV. The training
enables the UAV to develop humanoid perception of the environment it is to be navigating in. During
the mission, this perception detects and localizes objects in the environment. It is based on this AI that
this work proposes a real-time three-dimensional (3D) path planner that maneuvers the UAV towards
destination through obstacle-free path. The proposed path planner has a heuristic sense of A�

algorithm, but requires no frontier nodes to be stored in a memory unlike A�. The planner relies on
relative locations of detected objects (obstacles) and determines collision-free paths. This path planner
is light-weight and hence a fast guidance method for real-time purposes. Its performance efficiency
is proved through rigorous Software-In-The-Loop (SITL) simulations in constrained-environment
and preliminary real flight tests.

Keywords: vision-based navigation; cluttered environment; three-dimensional path planner; obstacle
avoidance; machine learning

1. Introduction

The cost-effectiveness, ease of access, and mission versatility are the primary com-
pelling qualities of UAVs that attract many aerospace and related sectors. Hence, UAVs are
being integrated into tasks such as package delivery, first aid, law enforcement, disaster
management, infrastructure inspection, agriculture mechanization, rescue, military intelli-
gence, and many more. As low-altitude aerial vehicles, however, UAVs often encounter
obstacles such as trees, mountains, high storey buildings, electric poles, and so on during
their missions. Therefore, these aerial vehicles should be equipped with sensors to perceive
the environment around them and avoid potential dangers.

To leverage the use of UAVs in cluttered environments, studies have been conducted
on the types and ways of integrating various sensors for autonomous navigation. Vehicle
localization is one of the pillars of autonomous navigation. In an open-air space, Global
Positioning System (GPS) is often used for UAV localization. However, GPS-based UAV
localization in cluttered environment is unreliable. In such environment, sensors onboard
the UAV are used for localization as well as collision avoidance. Ivan Konovalenko et al. [1]
fused inputs from visual camera and Inertial Navigation System (INS) to localize a UAV.
Based on computer simulation, the team analyzed various approaches to vision-based UAV
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position estimation. Jinling Wang et al. [2] combined inputs from GPS, INS, and vision
sensors to autonomously navigate UAVs. In their report, the inclusion of GPS input reduces
vision-based UAV localization errors and hence enhances the accuracy of navigation. Jesus
Garcia et al. [3] presented a methodology of assessing the performance of sensors fusion
for autonomous flight of UAVs. Their methodology systematically analyzes the efficiency
of input data for accurate navigation of UAVs.

Computer vision technology has evolved over the years to the stage that enables
not only UAV localization but also obstacle detection and avoidance. This is realized
through the advent of high-performance computers with the ability to process data and
perform complex calculations at high speeds. With the promising progress in computer
vision technology, many vision-based navigation algorithms have been developing. A
comprehensive review of computer vision algorithms and their implementations for UAVs’
autonomous navigation was presented by Abdulla Al-Kaff [4]. Lidia et al. [5] provided a
detailed analysis on the implementation of computer vision technologies for navigation,
control, tracking, and obstacle avoidance of UAVs. Wagoner et al. [6] also explored various
computer vision algorithms and their capabilities to detect and track a moving object such
as a UAV in flight.

Alongside computer vision technology, Artificial Intelligence (AI) is being imple-
mented into UAVs navigation system to enable them to acquire humanoid perception. The
idea is to train the computer that is either onboard a UAV or integrated with ground-based
command system so that it takes control of UAV navigation with little to no human inter-
vention. Su Yeon Choi and Dowan Cha [7] reviewed the historical development of AI and
its implementation to UAVs with a particular focus on UAVs control strategies and object
recognition for autonomous flight of UAVs. They also considered machine-learning-based
UAV path planning and navigation methods.

The integration of AI and computer vision technology brings a remarkable importance
in civilian application of UAVs. Many challenging tasks such as wildlife monitoring, disas-
ter managment, and search and rescue are being addressed by UAVs equipped with AI and
computer technology. Luis F. Gonzalez et al. [8] reported how AI- and computer-vision-
enabled UAVs have solved the challenges of wildlife monitoring. The study reported by
Christos and Theocharis [9] reflects the importance of UAVs equipped with AI and com-
puter vision for autonomous monitoring of disaster-stricken areas. Eleftherios et al. [10]
combined AI with a computer vision system onboard a UAV to enable real-time human
detection during search and rescue operations.

The integration of the two aforementioned key technologies—AI and computer
vision—provides environment acquaintance to UAVs. This helps the UAVs to plan their
collision-free paths. For autonomous navigation, a UAV has to have either a predetermined
path or a capacity to plan a path in real-time. A mission with predetermined route requires
less number of sensors as compared to a mission with real-time path planning. The chal-
lenges with real-time path planning are the complexity of multiple sensors integration,
input data synchronization, and computational burdens thereof. Valenti et al. [11] devel-
oped techniques to enrich a UAV with capabilities of localizing itself and autonomously
navigate in a GPS-denied environment. In their report, stereo cameras on-board the
UAV-based vision data were used for UAV localization and to build a 3D map of the
surroundings. Based on this information, an improved A∗ path-planning algorithm was
implemented for autonomous navigation of the UAV collision-free along the shortest path
to the goal.

System-resource-intensive computational burdens on the companion computer on-
board a UAV is always a setback to real-time path planning for the UAV. The companion
computer has to deal with visual data processing for UAV localization, obstacle detection,
and path planning. A comprehensive literature review on vision-based UAV localization,
obstacle avoidance, and path planning was reported by Yuncheng et al. [12]. In their
study, the challenges of acquiring real-time data processing for safe navigation of the UAV
are reflected. They also reported the challenges of autonomous navigation of a UAV due
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to intensive computation and high storage consumption of 3D map of the surroundings.
Yan et al. [13] developed a computer-simulation-based deep reinforcement learning tech-
nique towards real-time path planning for UAV in dynamic environments. Although
this is a promising step towards real-time path planning in dynamic environments, the
assumption of predetermined global situational data and the absence of real flight test that
verifies the efficiency the technique may degrade its attention.

To ease the computational burden on a companion computer dedicated to UAV
localization, obstacle detection, and 3D path planning, we propose the integration of
the fastest object detection algorithm with a light-weight 3D path planner that relies
on few obstacle-free points to generate a 3D path. The proposed 3D path planner is
based on AI acquired through YOLO (You Only Look Once ), which is the fastest object
detection algorithm.

The study presented in this report is organized into sections. In Section 2, the problem
to be addressed in this study is stated and the implemented methodology is explained. In
Section 3, the overall descriptions of the implemented hardware and software components
and their configurations are given. The machine learning approach for object detection
is explained in Section 4. Then, the commonly known 3D path planning algorithms are
discussed with their advantages and disadvantages in Section 5. The developed real-time
3D path planner is detailed in this section, followed by its performance tests in Section 6.
Results and discussion are given in the final Section 7.

2. Problem Statement

The challenge in autonomous navigation of a UAV in urban environment is recogniz-
ing and localizing obstacles at the right time and continuously adjusting the path of the
UAV in such a way that it can avoid the obstacles and navigate to the destination safely.
To this end, it requires integrating effective object detection and path planning algorithms
that run on a companion computer onboard the UAV.

Most of the widely used object detection algorithms are based on scanning the entire
environment and discretizing the scanned region to create a dense mesh of grid points from
which objects are detected. This process requires a companion computer with high storage
capacity and intensive computational power. Moreover, the well-known path-planning
algorithms either randomly sample or exhaustively explore the entire consecutive obstacle-
free grid points to generate optimal path towards destination. This incurs additional
computational burden on companion computer and compromises the real-timeness of the
navigation commands . Liang et al. [14] conducted a comprehensive review on the most
popular 3D path planing algorithms. In their review, a detailed analysis of the advantages
and disadvantages of these commonly used algorithms is given. They reported that despite
the intensive applications of these algorithms, the problem of real-time path planning in a
cluttered environment remains unsolved.

Dai et al. [15] proposed light-weight CNN-based network structure for both object
detection and safe autonomous navigation of a UAV in indoor/outdoor environments.
However, the whole process of object detection and UAV path planning was performed
on a ground-based computer and communication with the UAV was through a Wifi
connection. This had a catastrophic drawback on the safe navigation of the UAV in indoor
environment where Wifi connection failure is likely. Moreover, the Wifi data transfer rate
may create a delay in navigation commands to be sent to the UAV. In an attempt to remove
the dependency of the UAV on ground-based commands, Juan et al. [16] proposed a
UAV framework for autonomous navigation in a cluttered indoor environment based on
companion computer on-board the UAV. The performance of this framework was validated
through hardware-in-the-loop simulation, and it appears to be promising to put an end
to ground-based navigation command. However, an occupancy map of the cluttered
environment in which the UAV navigated was pre-loaded on the companion computer.
This undermines the applicability of the framework in dynamic environment.
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To avoid computational burden on the companion computer, Antonio et al. [17]
applied a data-driven approach, where data about the cluttered environment must be
collected prior to the UAV mission. As proposed in their work, DroNet makes use of the
collected data and safely navigates a UAV in the streets of a city. However, this approach,
again, has limitations when it comes to dynamic or unknown environments.

This study, therefore, tends to address the challenges of computational burden sub-
jected to companion computer onboard a UAV by integrating the available fastest object
detection algorithm and the proposed light-weight real-time 3D path planner. Such an
approach by-passes the challenges of dynamic or unknown environments. In the pre-
liminary performance test, we assumed limited number of objects: pedestrian, window,
electric poles, tunnel, trees, and barely visible nets as plausible obstacles that the UAV
may encounter in a disaster monitoring scenario. Once the proposed 3D path planner is
validated in a complete real-flight tests, further objects will be included in the machine
learning process.

Methodology

To enable a companion computer onboard a UAV for simultaneous object detection
and 3d path planning in real-time, it is essential to integrate the fastest object detection
algorithm and 3D path planner that requires less computational burden. YOLO, as ex-
plained in Section 4.1, is selected as the fastest object detection algorithm. In addition to
object detection, this algorithm also localizes the object(s). The proposed 3D path planner
relies on the relative locations of the detected objects to calculate a collision-free path for
the UAV. Although the proposed 3D path planner resembles A∗ path planning algorithm
in implementing heuristic function for cost minimization, it avoids an exhaustive search
for consecutive collision-free nodes and storage method of A∗. Unlike A∗, the proposed
3D path planner maps the current location of the UAV to a few nodes between consecutive
obstacles. These few nodes are determined based on the size of the UAV and the gap be-
tween consecutive obstacles, as explained in Sections 5.1.1 and 5.1.2. A Euclidean function
is used as a heuristic function in this 3D path planner.

Prior to a real flight test, the performance of the proposed 3D path planner must be
checked in a simulated environment. For this performance test, software tools are essential
components. One of the software tools specifically designed for such task is Gazebo
3D dynamic environment simulator. This software was primarily designed to evaluate
algorithms for robots [18] and provides realistic rendering of the environment in which
the robot navigates. Moreover, it is enriched by various types of simulated sensors. We
designed a simulated cluttered 3D environment in Gazebo and used it to test performance
of the proposed 3D path planner during its successive development.

3. Utilized Tools and Their Integration

Various open-source software was implemented in both the gazebo-based simulation
and real flight tests for the development and validation of the 3D path planner. The type
and implementations of this software are explained in the following two subsections.

3.1. Setup for Software-In-The-Loop Simulation

It is very common that Software-In-The-Loop (SITL) simulation is often used for
testing the performance of an algorithm under development. This utility saves time and
cost of repair of probable crashes in real flight test scenarios.

Open-source software such as px4 flight control firmware, Gazebo simulator, and
Robot Operating System (ROS) were integrated and used for the development and perfor-
mance testing of 3D path planner. Gazebo is a dynamic 3d model simulation environment
particularly suitable for obstacle avoidance and computer vision. This simulation environ-
ment is enriched with simulated sensors that mimic the real sensors on-board the UAVs.
YOLO object detector, with its Darknet architecture wrapped with ROS, was also used to
publish information about obstacles in the UAV’s navigation environment. For training
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and validation of YOLO, images of the 3D models of the objects simulated in the gazebo
simulation environment were taken. The Images were taken under various backgrounds
and lighting conditions.

The 3D path planner algorithm that prompts px4 flight controller to send actuator
commands to quadcopter model in gazebo simulator was developed as an ROS node.
Hardware models implemented in this SITL Gazebo simulation are iris quadcopter, depth
stereo camera, three ultrasonic sensors, and LiDAR as shown in Figure 1.

Figure 1. SITL: quadcopter equipped with on-board components.

The camera is for the frontal environment’s image input, LiDAR is for quadcopter’s
altitude estimation in combination with GPS, and the ultrasonic sensors are used to de-
tect lateral obstacles that may be encountered during takeoff and rolling. The 3D path
planner acquires information from the aforementioned sensors in Gazebo simulator using
Gazebo_ros packages that enables sensors to publish their information. The whole process
runs on the desktop computer, whose software specifications are given in Table 1.

Table 1. Desktop Computer specification and software used for simulation.

Type Specification

Operating System Ubuntu 16.04
Memory 2 GB
Processor intel i7 CPU 972@2.67 GHz x 8
Graphics NV92
Gazebo version 7 with its dependencies
ROS Kinetic with dependencies
PX4 firmware version 1.9.2

3.2. Setup for Real-Flight Based Performance Test

Following SITL simulation-based performance validation, the 3D path planner was
uploaded onto NVIDIA Xavier companion computer. The computer was integrated with
Pixhawk 4 autopilot on-board Tarot 650 quadcopter platform. The platform components
and their specifications are given in Table 2.
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Table 2. Tarot quadcopter components specifications.

Parameter/Item Specification

Frame weight 750 g
Motor to motor length 600 mm
Payload weight 1665.5 g
4 motors MN4006-23 KV: 380 T-motor
4 propellers 13 × 5.5 Carbon Prop
Battery Poly-Tronics 14.8 V, 10,000 mAh
Electronic Speed Controller Arris Simonk 30 A

Hardware components used for real autonomous navigation are shown in Figure 2a.
The Tarot quadcopter was equipped with a forward-looking ZED mini stereo camera,

downward-looking LiDAR sensor, and upward-, right-, and left-looking ultrasonic sensors.
The tasks of these hardware are as mentioned in the SITL simulation counterpart. The
integration of the quadcopter, mounted sensors, and companion computer is shown in
Figure 3.

The autopilot board is Pixhawk 4, which is mounted on the quadcopter underneath
the companion computer: NVIDIA Xavier. The companion computer and LiDAR are
connected to the Telem 2 and I2C ports, respectively, of autopilot board. ZED mini stereo
camera and three ultrasonic sensors are connected to the companion computer.

(a) Hardware architecture (b) Software architecture

Figure 2. Architectures of hardware and software.
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Figure 3. Quadcopter equipped with on-board components.

System Calibration and Configuration

PX4 firmware version 1.9.2 was installed on Pixhawk 4, and x-configuration type
quadcopter airframe was selected. All the necessary sensors calibrations were done and
parameters were set in such a away that the autopilot could communicate with external
hardware. Quadcopter localization was enabled by GPS, LiDAR, and ZED mini stereo
camera fusion. Pixhawk autopilot supports a Micro Aerial Vehicle Link (MAVLink) protocol
that serializes messages. Telem 2 serial port of Pixhawk 4 was set to convey messages
to-and-from Pixhawk through MAVLink protocol.

Robot Operating Software (ROS) Kinetic version was installed on the companion
computer. ROS provides software tools that enable communication among hardware.
Communication between the autopilot and companion computer was enabled by MAVROS:
a ROS package that bridges ROS topics (message buses) with MAVLink messages. To
extract information from the ZED mini stereo camera and publish in the form of specific
message types through ROS topics, an open source, named ZED_ROS wrapper node,
was installed on the companion computer. YOLO version 3 (YOLOv3) object detection
algorithm and its framework Darknet_ROS were installed on the companion computer
for obstacle detection and localization. The 3D path planner module runs on companion
computer and communicates with autopilot through MAVROS. The configuration of
software components is shown in Figure 2b.

4. Machine Learning for Object Detection

In the machine learning process, a companion computer onboard a quadcopter was
trained to identify assumed obstacles that it may encounter during a disaster monitor-
ing mission. The assumed obstacles are pedestrians, windows, electric poles, tunnels,
trees, and barely visible nets. The companion computer can be trained to identify a large
number of objects once the performance of the proposed path planner is validated on the
assumed ones.

4.1. YOLO Object Detection and Localization

Object detection is a task in computer vision that involves identifying the presence and
type of one or more objects in a given image. There are various types of object detection
algorithms [19–25], and YOLO is one of them with its fastest detection and localization
mechanisms. Matija Radovic et al. [26] reported the preference of YOLO over the other
detection algorithms that runs on CNN. The key features underpinning YOLO as the
fastest detection means are applying a single neural network on the entire image and
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considering detected object localization as a regression problem. The architecture of this
neural network is called Darknet: a type of CNN. It has 24 convolutional layers working as
feature extractors and 2 dense layers for doing the predictions. A detailed discussion on
the neural network and its architecture is given by Joseph Redmon et al. [27]. There is a
configuration file with a given architecture. This file contains information about:

• layers and activations of the architecture
• anchor boxes
• number of classes
• learning rates
• optimization techniques
• input size
• probability score threshold
• batch size

Each configuration file has corresponding pre-trained weights. For training, YOLO
requires two files: a file with list of names of objects and a file with a list of training images
that contain desired objects with their corresponding labels. The labels are relative centers
and dimensions of objects in the image. The configuration file can be modified as per the
need of a user. For instance, increasing the batch value improves and speeds up the training
but at the cost of demanding more memory. Two of the most important parameters in the
configuration file that need to be checked are classes and final layer filters. The values of
these parameters should match with the total number of objects in the training.

Once the training is over, the configuration and corresponding weight files are in-
tegrated with YOLO Darknet ROS module for object detection and localization during
autonomous navigation of UAVs. Along with the detection of each object, there is a
bounding box, which is characterized by the following parameters.

• confidence score that the object is detected
• center of the bounding box (Uc,Vc)
• dimension of the bounding box (w, h)

where U and V are coordinate axes of an image frame in which U increases from left to
right and V increases from top to bottom. Both the center and dimensions of the box are
normalized to fall between 0 and 1. Based on these parameters, the sides of the bounding
box can be calculated as:

Umin = Uc − w
2

and Umax = Uc +
w
2

(1)

and
Vmin = Vc − h

2
and Vmax = Vc +

h
2

(2)

where Umin and Umax are the locations of left and right sides of the bounding box along the
U-axis. Similarly, Vmin and Vmax are the locations of upper and lower sides of the bounding
box along the V-axis. The coordinate transformation from the image frame to camera frame
follows the procedure shown in [28]. Since the path planner was written as the ROS node
that follows a reference frame FLU (Forward (x), left (y), and upward (z)), coordinate
transformation from camera frame to ROS frame (FLU) was done. Moreover, PX4 uses FRD
(Forward (x), right (y), and Down (z)). The ROS package MAVROS handles coordinate
frame transformation from ROS frame to PX4 frame.

5. Three-Dimensional Path Planning Algorithms

The top challenge in autonomous navigation of UAVs is planning an obstacle-free
route from the start to the destination. Encountering obstacles is possible, especially for
missions like law enforcement, package delivery, and first aid in urban areas. Most of the
path planning algorithms for UAVs are derived from pre-existing algorithms designed
for ground robots. These algorithms are often 2D and need to be modified into 3D for
aerial vehicles. The complexity to design and the demand for high performance computers
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on-board the UAVs are challenges that incurred by the 3D path planners. The obstacle-free
3D path planning process demands an intensive computational burden that often limits
the maximum cruising capability of the UAV. The effect of this computational burden is
true for both free and cluttered environments as long as image processing has to occur.

Commonly known 3D path planning algorithms are A� with its variants, Rapidly–
Exploring Random Tree (RRT) with its variants, Probabilistic RoadMaps (PRM), Artificial
Potential Field (APF), and Genetic or Evolutionary algorithms. These algorithms can be
categorized into two: sampling-based and node/grid-base algorithms. Sampling-based
algorithms connect randomly sampled points (subset of all points) all the way from start
to the goal points thereby creating random graphs from which a graph with shortest
path-length is selected. The algorithms include RRT, PRM, and APF.

Node/grid-based algorithms, unlike sampling-based algorithms, exhaustively explore
throughout consecutive nodes. These algorithms include A� and its variants. In search for
an obstacle-free path, the algorithm takes in an image of the environment and discretizse it
into grid cells that includes the current (start) location of the UAV and the goal location.
The A� algorithm has two functions to prioritize the cells to be visited. These two functions
are the cost function, which calculates the distance from the current cell to the next cell,
and the heuristic function, which calculates the distance from the next cell to the cell that
contains the goal. With the objective of minimizing the sum of these two functions, the
cells to be visited are heuristically prioritized. In the case of 3D search, the cost function
calculates distances from the current cell to all 26 neighboring cells, and the heuristic
function calculates distance from the 26 cells to the cell that contains the goal. In a cluttered
environment with complex occlusion, highly dense grid cells are required, which in turn
increase the computational burden, and thus the selected path may not be optimal.

5.1. Machine Learning-Based 3D Path Planner

Training an on-board computer to quickly identify objects and avoid collision with
them in an environment in which UAV is set to navigate can be taken as a paradigm shift as
it inherits the mechanism that a human being takes to avoid collision. The computational
intelligence of a human brain is the degree that it is trained to, as is the artificial intelligence
of the computer onboard a UAV. This is why intensive training of on-board computer is
compulsory.

Apart from the capabilities of ensuring the presence of objects and their relative
locations from the UAV, the companion computer may be required to know the type of
objects it detected. The YOLO object detection algorithm installed on the companion
computer has such a capability. Strategies to avoid collision with an object may depend on
the type of the object. For instance, the avoidance mechanism for a window (open obstacle)
is different from the mechanism for a tree (closed obstacle). Our 3D path planner includes
those capabilities, as explained below.

5.1.1. Open Obstacles

In this type of obstacle, there is a possibility in which the UAV has no other option
but to pass through the opening, such as in the case when the mission is to enter or exit a
closed room through open window. Missions like in-house first aid or disaster monitoring
may encounter such a scenario. In this case, the algorithm determines the relative position
of the UAV with respect to the center of the bounding box around the obstacle. The center
of the bounding box, as shown in Figure 4, has coordinate axes (xc, yc, zc) with respect to
the ZED mini stereo camera frame, whose origin is located at the center of left camera.

The x, y, and z axes of this frame point forward, right-to-left, and upward, respectively.
Therefore, x represents the depth of the detected object (e.g., xc depth of the window). The
depth information is directly extracted from the ZED mini camera, whereas y and z are
derived from the (U,V) coordinate values through coordinate transformation. Information
obtained with respect to image frame, including Equations (1) and (2), are transformed to
the camera frame.
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Figure 4. Open obstacle passing strategy.

The UAV’s local position (xl , yl , zl) is acquired from GPS embedded in the Pixhawk
4 autopilot, LiDAR and ZED mini stereo camera. Before the UAV tries to pass through
the window, it has to align itself with a vector normal to the plane of the window through
appropriate attitude and altitude changes. In the figure, the setpoint (xl , ys, zs) is sent by
the 3D path planner to the autopilot to command the UAV to adjust itself before advanc-
ing forward. The variables ys and zs are the y and z axes’ setpoint values, respectively,
obtained as follows:

ys = yl − yc and zs = zl − zc (3)

While the UAV is responding to the command, the ultrasonic sensors mounted on
the sides of the UAV check whether there are objects or not in the way. Once alignment is
done, the UAV advances through the window with the setpoint (xs, ys, zs), where xs is the
relative depth of the bounding box with clearance.

xs =| xl − xc | + objclr (4)

The variable objclr is a minimum object clearance or distance of the UAV behind the
window that ensures the UAV has completely passed through the window with clearance.
Moreover, to confirm the passage of the UAV through the window, the readings from the
ultrasonic sensors mounted on the left and right sides of the UAV are considered. This
method is implemented in cases like passing through tunnels or holes alike.

5.1.2. Closed Obstacles

If the obstacle is closed, our path planner considers the pass-by option with a minimum
side clearance from the obstacle. The 3D path planning algorithm takes in bounding boxes
information of all detected objects and assigns an identity index to each of them based on
the locations of their centers along the y-axis. All information about the bounding box are
with respect to the camera frame onboard the UAV. As shown in Figure 5a, the index value
increases towards the increasing y-axis of the ZED min stereo camera (in this case, from
right to left).
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(a) Avoidance strategy (b) Optimal path selection.

Figure 5. Obstacle-free optimal path selection

There are three conditions to be considered to determine next setpoint for the UAV.
These are searching for

• Wide primary gaps: gaps between consecutive obstacles;
• Narrow primary gaps but with proximity difference: depth difference between con-

secutive obstacles; and
• Narrow primary gaps with small or no proximity difference.

Based on Figure 5a, the algorithm calculates the primary gap (between the ith and
(i + 1)th) and secondary gap (between ith and (i + 2)th). The importance of calculating the
secondary gap is that if the primary gap is narrow (less than twice UAV width) but with
proximity difference more than twice the UAV length, there is the possibility that the UAV
can advance forward but should check whether the secondary gap is wide enough or not to
let the UAV pass in between. The gaps and proximity differences are calculated as follows:

Yi+1
min − Yi

max primary gap

Yi+2
min − Yi

max secondary gap

| Xi+1 − Xi | proximity difference

(5)

The pseudo-algorithm of our 3D path planner in the presence of multiple detected
obstacles, as shown in Figure 5b, is given below.

• index the bounding boxes of the obstacles based on y-axis values of their centers. The
box with the smallest y-axis value is indexed as the ith box;

• calculate Ymin and Ymax for each bounding box;
• calculate the primary gap between the ith and (i + 1)th

• if the gap is greater than or equal to twice UAV width;

– calculate the midpoint of the gap;
– calculate distances from the current location of the UAV to the midpoint and

from the midpoint to the goal point. Save the sum of these two distances as
path-length;

• else if the primary gap is smaller, calculate the proximity difference of the two consec-
utive bounding boxes ith and (i + 1)th;

– if proximity difference is greater than or equal to twice UAV length, calculate the
secondary gap;

– if secondary gap is greater than or equal to twice the UAV width, check the
following conditions:

* if the ith obstacle is closer than the (i + 1)th, then set (Xi, Yi
max + objclr, Zi) as

a potential setpoint;
* else, set (Xi+2, Yi+2

min − objclr, Zi+2) as a potential setpoint;
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– calculate distances from the current location of the UAV to the potential setpoint
and from potential setpoint to the goal point. Save the sum of these two distances
as path-length;

• apply the above steps for the remaining bounding boxes;
• compare the path-lengths and set the setpoint that leads to a minimum path length as

the next setpoint for the UAV;
• else if the secondary gap is less than twice the UAV width, hover at a current altitude

and yaw to search for any possible path applying the above procedure;
• if no path is discovered, land the UAV.

6. Path Planner Performance Tests

Performance tests were carried out during the developmental stage of the the path
planner. Prior to real flight performance tests, rigorous computer-simulation-based tests
were conducted. The implemented software tools and their integration as well as real flight
test procedures are described in the following subsections.

6.1. SITL Test

Gazebo simulation environments shown in Figure 6 (front view) and Figure 7 (top
views) were built, in which the path planner was to be tested.

Figure 6. Front view of gazebo environment

The gazebo world has left and right sections. Each section has a width (y-axis) of
10 m and a length (x-axis) of 30 m. The UAV located in the left section has to avoid the
obstacles on its mission to arrive at landing pad, which is located in the right section.
During path planner performance tests, the poles and trees were randomly re-located in
the simulation environment. Every time the arrangements of these obstacles are changed,
the path followed by the UAV changes. Figure 7c,d shows two traced trajectories for the
obstacles’ arrangements shown in Figure 7a,b, respectively.

The 3D models of the obstacles imported to gazebo world were pedestrian, open
window, poles, tunnel, trees, and two consecutive nets. The obstacles were designed
in consideration of UAV mission for in-house first aid, law enforcement during suspect
monitoring and door-to-door package delivery services in urban areas where the afore-
mentioned obstacles are assumed to be potential threats in such missions. The UAV is
supposed to pass by or through these obstacles on its way to a targeted location, in this
case, the landing pad.
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(a) Top view of environment 1 (b) Top view of environment 2

(c) Traced trajectory for environment 1 (d) Traced trajectory for environment 2

Figure 7. Top views of two simulation environments and traced trajectories.

The overall simulation infrastructure is shown in Figure 8. The 3D path planner
written as ROS node communicates with the PX4 module named Mavlink_main. MAVROS
bridges the ROS topics of the path planner with MAVLink messages of PX4 firmware. In
addition to bridging ROS topics with MAVLink messages, MAVROS has extra-advantage
in taking care of coordinate transformation between the ROS frame and PX4 Flight Control
Unit (FCU) frame. ROS works with the East–North–Up (ENU) frame, and FCU works with
the North–East–Down (NED) frame. PX4 firmware has a module called simulator_mavlink
that lets the firmware interact with the 3D model of the UAV in the Gazebo world. The
message exchanges between the PX4 firmware and gazebo simulator are handled by
simulator MAVLink protocol.

As part of the 3D path planner’s efficiency verification tests, video (named as Video S1)
is submitted with this manuscript. The livestreamed videos on qgroundcontrol (a ground
control station for UAVs) were recorded, and the snapshots of a video at the instants of
attitude or altitude changes, to avoid obstacles, are displayed in Figure 9.
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Figure 8. Software_In_The_Loop infrastructure.

(a) Pass-by pedestrian (b) Pass-through window

(c) Pass-through tunnel (d) Pass-by poles

(e) Pass-through trees (f) Net under/over pass

Figure 9. Instant snapshots during obstacle avoidance phases.
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The position and attitude accuracy for the environments Figure 7c,d are shown in the
first and second columns of Figure 10, respectively.

(a) Environment 1: position x (b) Environment 2: position x

(c) Environment 1: position y (d) Environment 2: position y

(e) Environment 1: roll (f) Environment 2: roll

(g) Environment 1: pitch (h) Environment 2: pitch

Figure 10. Simulation: position and attitude accuracy tests.

6.2. Real Flight Test

The real flight test requires us to do an intensive machine learning or training the
companion computer to identify the obstacles simulated in the gazebo environment. This
training process is not over yet: at least up to the report of this work. To get the sense of
the efficiency of the path planner, real flight tests were conducted for the first obstacle pass,
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as shown in Figure 11. As the quadcopter approaches the pedestrian, it has to evaluate the
best route based on the conditions given in the pseudo-algorithm Section 5.1.2. For this test
phase, short videos (named Videos S2 and S3) accompany this manuscript.

Considering the fact that building a real constrained environment as the simulated one
requires time and money, a ROS node that sequentially publishes the simulated locations
of obstacles was developed. The node publishes all the information that the 3D path
planner requires from ZED mini stereo in a real scenario. Based on this, the quadcopter
was deployed to arrive at a given destination, avoiding collisions with the obstacles. The
effectiveness of the path planner is validated as shown in Figure 12, where the setpoints
sent by the path planner and the estimated positions of the quadcopter throughout the
whole mission overlap.

(a) Pedestrian pass test 1 (b) Pedestrian pass test 2

Figure 11. Pedestrian as obstacle pass tests.

Figure 12. Estimated position and position setpoint comparison in real flight test.
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Furthermore, Figure 13 shows component-wise position and attitude accuracy validation.

(a) position x (b) attitude: roll

(c) position y (d) attitude: pitch

Figure 13. Real flight test for path planner efficiency validation.

7. Results and Discussion

The validation of the developed 3D path planner was conducted through both SITL
and preliminary real flight tests. Gazebo 3D model simulation environment was thoroughly
used to develop and validate our 3D path planner prior to its upload into Pixhawk autopilot.
The Gazebo environment shown in Figure 6 was set in such a way that it has obstacles
like human, window, poles, tunnel, trees, and nets. These obstacles implicate the plausible
encounters that the drone may face during missions such as package delivery, disaster
monitoring, law enforcement, and first aid. For a complete navigation from the left section
to the right section of the environment, the drone has to avoid collision with any of the
mentioned obstacles and safely land at the landing pad.

Rigorous simulation tests were done where the two randomly arranged environments
shown in Figure 7 are some of the environments in which the tests were done. The path
followed by the quadcopter in the environment in Figure 7a is shown in Figure 7c. Similarly,
the path followed in the environment in Figure 7b is shown in Figure 7d. As can be seen
in these figures, the quadcopter followed two different trajectories in response to the two
different arrangements of the obstacles in the environments. Moreover, the setpoints sent
by the path planner and the estimated locations of the quadcopter overlap throughout the
trajectories. This overlap validates the effectiveness of the path planner to autonomously
navigate the quadcopter in a cluttered and GPS-denied environment.

Components of position and attitude responses in the two environments, Figure 7a,b,
are shown in Figure 10. The well-traced setpoints of both position and attitude prove the
efficiency of the path planner. In the path planner, a setpiont acceptance radius is set to
0.30 m. The differences observed at setpoint nodes are due to this acceptance radius. The
quadcopter advances to the next setpoint assuming that the current setpoint is achieved
at the moment the quadcopter crosses the acceptance radius, though the quadcopter may
not reach the actual setpoint. This causes a gap between the estimated position and
position setpoint. The attitude estimates of the quadcopter in both environments conform
to the setpoints.
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The preliminary real flight tests were conducted for collision avoidance with pedes-
trians. Machine learning was done for a pedestrian with different posture, clothes, and
light exposures. As shown in Figure 9a, the quadcopter attempts to avoid collision with
the pedestrian by rolling either right or left, implementing the conditions given in the
pseudo-algorithm. For reference, the recorded two short videos on pedestrian collision
avoidance are submitted with this manuscript.

For a complete mission test, a real environment, similar to the simulated environment
shown in Figure 6, should have been constructed. This would take time and money. For
this report, the real environment was modeled by an ROS node that publishes required
information to the 3D path planner. This node publishes simulated locations of obstacles,
and the 3D path planner takes those locations and calculates an obstacle-free path. With
this, the UAV was commanded to autonomously head to the landing pad avoiding all
possible obstacles on its way. The path followed by the UAV during this mission is shown
in Figure 12. The overlap of the estimated quadcopter positions and intended setpoints
shows that the 3D path planner effectively executed the mission.

In the real flight test, which was conducted in an open field, the quadcopter local-
ization was limited to GPS and LiDAR. LiDAR is only for altitude estimation. ZED mini
stereo camera, combined with GPS for quadcopter localization, does not provide proper
localization of the quadcopter in an open field as it is required to get reflected rays from ob-
jects in its operation range. Therefore, for localization, the quadcopter in this circumstance
relies on GPS whose accuracy is about 2 m. Depending on the number of satellites accessed
and the environment in which the quadcopter is, the accuracy of the GPS drifts. The initial
location of the quadcopter before takeoff had high drifts as can be seen in Figure 13c.

The test results obtained so far show that the 3D path planning algorithm is effectively
guiding the UAV through collision-free paths. The future work includes the real flight tests
in the environment similar to the simulated one as well as in unconstrained environments.
Moreover, machine learning for various objects will be conducted based on the mission
profile of the UAV.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11104706/s1, Video S1: Performance of path planner in cluttered environment, Video
S2: Path planner in avoiding collision with pedestrian left pass, Video S3: Path planner in avoiding
collision with pedestrian right pass.
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Abstract: Finding an optimal/quasi-optimal path for Unmanned Aerial Vehicles (UAVs) utilizing
full map information yields time performance degradation in large and complex three-dimensional
(3D) urban environments populated by various obstacles. A major portion of the computing time is
usually wasted on modeling and exploration of spaces that have a very low possibility of providing
optimal/sub-optimal paths. However, computing time can be significantly reduced by searching
for paths solely in the spaces that have the highest priority of providing an optimal/sub-optimal
path. Many Path Planning (PP) techniques have been proposed, but a majority of the existing
techniques equally evaluate many spaces of the maps, including unlikely ones, thereby creating time
performance issues. Ignoring high-probability spaces and instead exploring too many spaces on maps
while searching for a path yields extensive computing-time overhead. This paper presents a new PP
method that finds optimal/quasi-optimal and safe (e.g., collision-free) working paths for UAVs in a
3D urban environment encompassing substantial obstacles. By using Constrained Polygonal Space
(CPS) and an Extremely Sparse Waypoint Graph (ESWG) while searching for a path, the proposed PP
method significantly lowers pathfinding time complexity without degrading the length of the path
by much. We suggest an intelligent method exploiting obstacle geometry information to constrain
the search space in a 3D polygon form from which a quasi-optimal flyable path can be found quickly.
Furthermore, we perform task modeling with an ESWG using as few nodes and edges from the
CPS as possible, and we find an abstract path that is subsequently improved. The results achieved
from extensive experiments, and comparison with prior methods certify the efficacy of the proposed
method and verify the above assertions.

Keywords: constrained polygonal space; path length; path planning; obstacles; maps; unmanned
aerial vehicles; urban environments; time complexity; extremely sparse waypoint graph

1. Introduction

Unmanned aerial vehicles (UAVs) are highly useful for executing diverse missions
not only in urban environments but also in hazardous areas that are not easily reachable,
such as forests, deserts, and hilly areas. UAVs (being lightweight, low-cost, and with
the abilities to fly at lower altitudes) are now extensively used for a wide range of both
military and civilian tasks. Owing to military and civilian investments in UAV technology,
this field continuously advances with the passage of time. Based on a forecast by the
Teal Group, the market for UAVs is constantly growing globally, and yearly spending on
this technology is expected to be higher than US $12 billion by 2024 [1]. Advancements
in the technology, such as improved computation capacity, low-cost sensors, artificial
intelligence-based algorithms, and fuzzy logic–based decision-making abilities, enable
UAVs to easily perform many practical applications in complex environments that oth-
erwise would take a long time and require significantly high costs. The economic and
potential applications of UAVs in the real world are most lucrative, including distribution
of vaccines [2], tourism security and safety [3], vegetable inspection [4], document delivery
for libraries [5], industrial applications [6], forest and urban firefighting [7], sensing of large
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areas [8], forestry applications [9], aerial forest fire detection [10], estimating forest struc-
ture [11], traffic monitoring [12], retrieving tree volumes in forests [13], scientific research
data collection [14], optical remote sensing [15], disaster assessment and management [16],
mountain anti-terrorism combat [17], crust detection on steel bridges [18], vehicle detection
in real-time, tracking and speed estimation [19], and ocean exploration assignments [20],
among others. Moreover, the UAVs’ next generation will offer more unique advancements
that may increase their use in military applications around the globe [21,22].

In the majority of civilian or military applications, a UAV usually needs the ability
to search for the target location in a short time while avoiding collisions with obstacles it
may face during the mission. However, without human onboard control, UAV use brings
many challenges that need robust solutions, and, among those challenges, one is searching
for an optimal/quasi-optimal, safe, and time-efficient path between two locations in a 3D
map. Due to the large-scale utilization of UAVs in countless sectors, the Path Planning (PP)
problem has become a very vibrant research topic. PP is a method of finding a workable
path between two locations while safely bypassing obstacles present in the underlying 3D
environment map, simultaneously satisfying one or more optimization objectives, such
as distance, time, and consumption of energy [23]. PP is regarded as a Non-deterministic
Polynomial-time (NP)-hard optimization problem in the robotics field. Generally, there
are two types of PP problems: global PP and local PP. In global PP, finding a path that is
performed in an environment that is known. However, local PP is relatively complicated
because the UAV operating environment can be partially or fully unknown. Taking into
account the mission scenarios of UAVs, pathfinding problems can be divided into two
categories: single-agent and multi-agent. In the latter scenario, the number of deployed
UAVs is more than one, unlike the former in which only one UAV is deployed. The process
for finding a path generally begins with searching a waypoint/visibility graph from one
location and progressing until the target is found. The quality of a PP method usually
relies on choosing low-cost path waypoints from a given graph that contributes to an
optimal/quasi-optimal path with the fewest computations. This study focuses on a single-
UAV PP problem, and our aim is to lower the time complexity without degrading the
path quality.

Many global PP solutions have been designed for augmenting a UAV’s autonomy
in various practical missions in the airspace [24–28]. The pathfinding procedure mainly
encompasses three key steps: (i) modeling the operating environment (e.g., the environ-
ment’s representation with a graph), (ii) employing a search algorithm on the graph to
determine a path, and (iii) applying a heuristic function (e.g., smoothness, energy, distance,
or turns) that accompanies the path search. UAV operating-environment depiction with
precise geometry is imperative in order to determine a low-cost path. Roadmap [29], cell
decomposition [30], and potential field [31] are renowned environment representation
approaches for the configuration space. The search algorithm analyzes the graph for
low-cost pathfinding. Many algorithms for PP on graphs have been developed since 1959
such as Dijkstra’s algorithm [32] and best first search-based greedy algorithm [33]. Both
of these algorithms are regarded as pioneer pathfinding algorithms based on a graph
search. However, the A* algorithm [34] is known as the benchmark and is extensively
used for a low-cost path search. It is more robust than Dijkstra’s algorithm and its variants.
Aside from these famous algorithms, many improved versions of the A* algorithm such as
IDA* [35], Theta* [36], Lazy-theta* [37], LPA* [38], and D*-Lite [39] also have the ability to
find a working path.

Most of the prior PP methods for UAVs do not present deep insights into space
reduction with a good-quality path guarantee, specifically regarding the effective resolution
of the speed-versus-optimality trade-off in complex 3D urban environments. The prior PP
solutions mainly focus on constructing better heuristic functions, and, thereby, memory
overhead can occur. Most algorithms sacrifice either optimality or speed while finding
paths. Meanwhile, in many practical applications for a UAV, the trade-off on any of
the given metrics (e.g., speed or optimality) is not tolerable. Hence, it is mandatory to
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reduce exploration and modeling of low-probability spaces to overcome these computing
issues. Various space modification methods have been designed to increase the pathfinding
speed, such as abstractions in a hierarchical form [40], symmetry breaking [41], sub-
goal graphs [42], jump-point searches [43], accurate heuristics [44], compressed path
databases [45], pruning dominant states [46], swamp hierarchies [47], influence-aware
pathfinding [48], and constraint-aware methods for navigation [49]. Besides the validity
of these latest developments, in most cases, either many low-priority locations of a map
are searched uselessly or path quality significantly degrades. Recently, a number of
studies considered reducing computation times by dealing with pertinent obstacles that
are only crossed along a straight axis in the pathfinding process [50,51]. However, these
mechanisms have higher computational complexity and yield non-taut paths if obstacle
density is high. Hence, these methods are vulnerable to either returning longer paths or
demanding more computing power in determining a path. To address the above limitations,
this study presents a new PP method that significantly lowers pathfinding computing time
without impacting path lengths by leveraging a Constrained Polygonal Space (CPS) and
an Extremely Sparse Waypoint Graph (ESWG) while finding a working path from a 3D
urban environment.

The rest of this paper is structured as follows: Section 2 presents the background and
related work on renowned PP algorithms. Section 3 illustrates the proposed PP method
and describes its main steps. Section 4 explains the results obtained from the simulations.
Finally, the conclusions and future avenues for research are discussed in Section 5.

2. Background and Related Work

In this section, we briefly discuss the UAV operating environment’s modeling tech-
niques, the pathfinding algorithms, and geometric- and sampling-based PP methods.
The initial step of the global PP is to model the real environment with correct geometric
shapes. It is closely linked to the choice of search algorithm because most search algo-
rithms yield good performance when they are collectively employed with a particular
environment’s illustration. A comprehensive discussion about the performance impacts of
distinct environment modeling techniques collectively tested with their respective search
methods was given by Sariff et al. [52]. Many UAV operating environment methods have
been discussed in the published studies. These modeling methods are categorized as
RoadMap (RM), Cell Decomposition (CD), and Potential Fields (PF). Hyungil et al. [53]
presented a comprehensive survey on environment modeling techniques used in PP. Each
modeling method differs in terms of the scale of space/time complexity, the modeling
method’s accuracy, and the path quality. For example, when the cell sizes are relatively
small, CD-based methods yield poor path quality. In contrast, if the cells are too wide,
they are vulnerable to very high time and space complexity. The PF-based methods are
prone to getting trapped in local minima, and, thereby, solution quality can be degraded.
After modeling the environment with a visibility/waypoint graph, a search algorithm is
utilized for the graph’s exploration in order to find a path.

Most of the existing search algorithms explore and model whole maps during the
PP that can lead to various overheads, such as resource-hogging, needless exploration
of many parts of a map, and latency issues during pathfinding. Generally, they do not
take advantage of the available useful knowledge related to obstacles’ geometries from
underlying environments in order to lower the complications in path computing. While
finding a path from a provided graph, they mostly hold all edges that are visible in the
memory, thereby memory requirements of these algorithms are high. Current bio-inspired
search algorithms are vulnerable to pre-mature convergence by relying solely on the
specified parameters that can lead to poor path quality. In addition, they were mostly
tested in semi-urban environments, and their completeness property may yield infeasible
results in realistic-urban environments. To address these technical problems, we proposed
a new PP method for computing low-cost paths in order to facilitate UAV’s aerial missions
in urban environments.
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2.1. Geometric Path Planning Methods

A geometric PP method that assists in determining a good-quality path in a 3D envi-
ronment of relatively higher complexity was given in [54]. The environment is represented
by using a height reduction strategy to solve the trade-off between path-finding efficiency
and accuracy in environment modeling. Unfortunately, it does not reduce the searches in
the left-over parts of the area, and, thereby, computing time can be higher in most cases.
An incremental PP algorithm considering both local and global constraints for good quality
pathfinding was designed by Hu et al. [55]. It is fast, and it reduces the set of good-quality
path candidates to only four, with minimal computing time. However, the study ignores
space reduction to efficiently find a candidate solution. A geometric PP method consid-
ering the minimum turn radius of a UAV for optimal paths in a 3D space was designed
by Sikha et al. [56]. The suggested concept is reliable and assists in determining a path
with the least complexity. An enhanced heuristic-based PP method to find a good-quality
path efficiently by considering UAV flight limits was designed by Kun et al. [57]. A new
over-segmentation-based method to determine the free-space overlay of a connected region
set was suggested by Plaku et al. [58]. This method quickly finds a safe and good-quality
path. However, the approach does not take into account information about sharp turns,
narrow passages, and other environmental constraints, which may degrade the suggested
method’s utility. Furthermore, to augment both efficiency and accuracy, it is extremely
important to find irrelevant areas that can be discarded if they cannot help to find an
optimal/quasi-optimal path in an environment [59]. Several studies have designed closely
related PP methods with undoubtedly reduced time cost, such as the Approximation with
Visibility Line (ApVL) method [60]. The ApVL PP method [60] is an improvement of the
Base Line-Oriented Visibility Line (BLOVL) algorithm [50], and it is regarded as a highly
suitable algorithm for finding an approximate shortest path in 3D urban environments. It
reduces the obstacle count significantly (e.g., it processes obstacles that are on a straight
line only), and constructs visibility graphs from the chosen obstacles’ corners only to
incrementally find a low-cost path. Meanwhile, it has relatively higher time complexity.
In addition, it either yields longer paths or requires more processing to find a working path.
In some scenarios, it is even unable to find a flyable path owing to connected obstacles
with straight-line obstacles.

2.2. Sampling-Based Path Planning Methods

Sampling-based methods include the Probabilistic Road Map (PRM) [61], Rapidly
Exploring Random Trees (RRTs) [62], and their refined versions. These methods have
demonstrated effectiveness at quickly generating near-optimal/optimal global solutions.
Their algorithmic simplicity makes sampling-based methods applicable to solving both
real-time and single-query PP problems. The RRT PP method and its subsequent versions
such as informed RRT* [63], Transition-aware RRT (T-RRT) [64], RRT-connect [65], and
AnyTime-RRT (AT-RRT) [66] are all complete probabilistically. Most RRT-based methods
yield slow convergence rates in complex environments, and they mostly fail to resolve the
trade-off between length and time while finding reasonable-quality paths. Sertac et al. [67]
designed a better version of the original RRT, named RRT*. This method has a fast rate of
convergence compared to RRT, and it has an ability to find a quasi-optimal path with minor
post-processing. However, computing issues such as pre-mature convergence, high space
complexity, path searching from a whole map, and discarding beneficial samples while
converging into a solution pre-maturely make it unreliable for solving practical missions.
Jauwairia et al. [68] designed a new variant of RRT* named RRT*-Smart. It has a faster
convergence rate, compared to the traditional RRT* algorithm, by using smart-sampling
and optimization techniques. However, the main limitations of RRT*-Smart are higher
sensitivity to the operating environment, too many iterations, and extensive memory
consumption. Yanjie et al. [69] suggested a sampling-based PP method with improved
convergence rate. Iram et al. [70] presented a concept relatively closer to our PP method,
called RRT*-AB (Adjustable Bounds), to determine low-cost paths. It shows better results
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than the traditional RRT* method. However, it yields time performance issues due to the
near-neighbor search and extensive rewiring operations while optimizing the path lengths.
Hence, the shortest paths determined by the existing methods have higher time complexity.
Accordingly, a constrained space complexity analysis with in-depth complexity parameters
and an obstacle’s geometry information has not been simultaneously explored to find a
good-quality path with the least time cost.

3. The Proposed Method

A constrained polygonal space and an extremely sparse waypoint graph–based PP
method are imperative for addressing the time complexity issues that emerge due to unnec-
essary path exploration of low-probability spaces on an obstacles-rich map. The proposed
PP method limits path exploration to only the constrained spaces that have a higher proba-
bility of containing optimal/quasi-optimal paths, and it safely removes the unlikely spaces
in order to hasten the pathfinding computations. It removes the only spaces from a map
that likely cannot assist in finding a low-cost solution with high probability. It effectively
resolves the two competing goals of efficiency and path length while finding paths for
UAVs in urban environments. This section provides a brief overview of our proposed PP
method and outlines its workings. In Figure 1, we demonstrate the proposed PP method’s
conceptual overview.

Figure 1. The proposed PP method’s conceptual overview.

To find a path, P, between source s and target location t for a UAV, while safely by-
passing obstacles in UAV flying environment W, the following six key conceptualizations
are introduced: (i) operating-environment modeling by using data from a real environment
map; (ii) generation of a constrained polygonal space by exploiting obstacle geometry
information; (iii) determining and analyzing the complexity of the constrained polygonal
space using a multiple criteria-based method leveraging six different complexity parame-
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ters; (iv) providing need-based extension of the constrained polygonal space to the next
level; (v) task-modeling with an extremely sparse waypoint graph that has as few nodes
and edges as possible by utilizing the concepts of far distance reachability and direction
guidance; and (vi) abstract pathfinding with the A* algorithm from the CPS using an ESWG,
and enhancing the abstract path quality by generating additional nodes and edges in the
vicinity of abstract path nodes. Concise descriptions of each main component, with relevant
equations/procedures, are summarized below.

3.1. Representation of the Environment Where the UAV Operates

The initial step in the PP process is to represent the UAV’s moving/flying environment
from a real environment map with the help of relevant geometrical shapes. Generally,
it is a process of dividing W into obstacle-free regions (ξ f ree) and the obstacle regions
(ξobstacles). An example of ξ f ree and ξobstacles is presented in Figure 2, in which black and
yellow regions represent the ξ f ree and the ξobstacles regions, respectively. The obstacles
in W can be modeled with sufficient accuracy by leveraging geometric shapes, such as
cubes, rectangles, cylinders, circles, polygons, prisms, etc. In our work, obstacle modeling
from a raw environment map is carried out with the help of 3D convex polyhedrons
having six faces each. The minimum height (e.g., zmin) of each obstacle is 0, and the three
other dimensions are random. To generate a convex-obstacles set, we extract the digital
map’s elevation readings in accordance with digital environment elevation data standards,
and we find a convex-hull to accomplish the obstacle modeling task. After the real map’s
processing, we create a map with fixed convex-polyhedron 3D obstacles. The beginning
location of the mission is denoted with s (i.e., a 3D point), where s = (xs, ys, zs). The target
location is denoted with t (also a 3D point), where t = (xt, yt, zt). Taking into account W’s
representations, the UAV profile information, and path searching from a 3D environment,
the objective of the proposed PP method is to find good-quality paths with the least
computing complexity. The proposed PP method fulfills the stated assertions by finding
a path from high-probability regions of the map, and the UAV is considered a single 3D
point, just like s or t.

Figure 2. Example of obstacle-free (ξ f ree) and obstacles (ξobstacles) regions in environment map W.

3.2. Generation of the First Constrained Polygonal Space

Searching for a path by leveraging full map information can be very time consuming,
and it may result in serious computing overhead in complex and large urban environments.
To address these issues, we convert the full 3D map into a CPS that guarantees P from s to
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t, and at the same time makes pathfinding computations faster. The space can be reduced
using five main steps: (i) stipulating both s and t for a mission, (ii) sketching a straight-
line lo between s and t, (iii) extracting pertinent obstacles (i.e., only those obstacles where
edges/vertices cross with the lo), (iv) analyzing the geometry of the extracted obstacles, and
(v) drawing a minimum-span ζmin polygonal space S3

1 from the base vertices of pertinent
obstacles in such a way that a cross section of the reduced space (e.g., S3

1) is not completely
blocked by all of the pertinent obstacles’ cross sections. More specifically, the ζ is selected
in such a way that the path can be found in each scenario from the constrained space.
Obstacles that are on the lo between s and t are called pertinent obstacles. After receiving
the s and t locations for the flight, we sketch a lo from s to t. After sketching the lo, four
outputs can be derived, which are: (I) neither penetration nor collision, (II) not penetration,
but the possibility of a collision exists, (III) penetration, but all obstacles have a lower
height, and the UAV can go over them safely, and (IV) both penetration and collision. All
four results are demonstrated in Figure 3.

Figure 3. Results of sketching a straight line (lo) between s and t locations.

If the lo does not collide with any obstacle, and the collision possibility is zero, then
path P = lo, which is an optimal path (e.g., a straight line) as given in Figure 3a. Moreover,
if the lo does not penetrate any obstacles, but there remain some obstacles in close proximity
to the lo with which the UAV could collide with a higher probability, then we deal with
these obstacles to generate a safe P, as demonstrated in Figure 3b. In the third case, as given
in Figure 3c, few obstacles are penetrated by the lo, all obstacles have a lower height, and the
UAV can go over them safely. In the fourth case, as given in Figure 3d, some obstacles are
penetrated by the lo, and we need to bypass them at a lower cost to find a P between s
and t while fulfilling the stated objectives. Such obstacles are extracted from the map and
utilized for pathfinding from the CPS. The complete pseudo-code utilized for extracting
pertinent obstacles is illustrated in Algorithm 1. In Algorithm 1, map W encompassing N
distinct obstacles, s, and t, are given as input. The set E, where (E ⊆ N) of the pertinent
obstacles is retrieved as output. Line 2 can do lo sketching between s and t. Lines 3–7 can
do obstacles’ extraction that are crossed by the lo. At the end, set E of pertinent-obstacles is
collected. Moreover, if no intersection occurs between the obstacles and the lo, and, then,
E = ∅ will be the output.

After getting set E of pertinent obstacles, we enlarge the obstacles by a safe distance
(dsa f e), and apply the flying minimum and maximum limits, denoted as hmin and hmax,
respectively. Subsequently, we analyze the pertinent obstacle cross sections that are on the
lo between s and t. Then, we draw a bottom boundary, Ωb, around the bottom vertices of the
pertinent obstacles, and a top boundary, Ωt, from minimal height h with path guarantees
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keeping s and t as two endpoints. This forms a 3D constrained space where the shape can
resemble a 3D polygon, and we call this constrained region the CPS, represented with S3

1.
This CPS converts the more difficult problem of UAV pathfinding into the relatively easier
problem of pathfinding for a 3D point. A visual overview of S3

1 is demonstrated in Figure 4.
The S3

1 can be simply defined as full map W partitioned into a small space/region where
the outline is the same as a 3D polygon, with s and t as two endpoints. It is obtained by
drawing a boundary around the outermost vertices of the pertinent obstacles in such a way
that a path can be found from it regardless of its quality. The process of transforming a full
map into S3

1 is given in Figure 4a–c. In Figure 4a, environment map W is shown, which
will be converted into S3

1. Figure 4b shows the lo drawing, and identifies the corresponding
pertinent obstacles (e.g., yellow obstacles) that were crossed by it; these obstacles will be
used to subsequently generate S3

1. Figure 4c shows the outline of S3
1 in 2D form that is

obtained by drawing a boundary around obstacles identified in Figure 4b as a consequence
of lo penetration.

Figure 4. Overview of transforming a full 3D map W into a constrained polygonal space (S3
1)..

Algorithm 1: Extracting pertinent obstacles from a 3D obstacle map.
Input : (i) Environment map W with N distinct obstacles

(ii) Starting location (s)
(iii) Ending location (t)

Output :Pertinent obstacles’ set E
Procedure :

1 Initialize, E = ∅
2 Sketch straight line lo between (s) and (t) // Assuming case IV given in Figure 3
3 for every obstacle Oj, beginning from Oj = O1 to the On ∈ N do
4 if CROSSES (lo, Oj) then
5 E = E ∪ {Oj}
6 End if
7 End for
8 return E

The CPS can enclose the pertinent obstacles—just part of them or as a whole. In some
cases, due to complex 3D environments, S3

1 can enclose obstacles that do not belong to set
E but that are part of S3

1, either partially or completely, and we include such obstacles in
E and utilize them in pathfinding. The essence of S3

1 is that it guarantees a flyable path
between s and t. However, S3

1 may or may not be an ideal choice for a good-quality path
(e.g., optimal or quasi-optimal) due to several complexity parameters (as illustrated in
Figure 1) about obstacles. By considering such potential complexity parameters and a
probabilistic analysis of optimal paths, we conducted a CPS complexity analysis leveraging
six complexity parameters (also known as complexity constraints), prevailing in S3

1 that
relate to the obstacles’ geometries, and a low-cost path tends to lie outside S3

1, in most cases,
with a significantly higher probability.
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3.3. Determining and Analyzing the Constrained Polygonal Space Complexity Using a
Multicriteria-Based Method

In order to check whether S3
1 is good enough for optimal/quasi-optimal pathfinding

or not, we performed a multi-criteria–based complexity analysis of S3
1 using multiple com-

plexity parameters before task modeling and pathfinding. We computed the complexity,
χ, of S3

1 by leveraging detailed information regarding the obstacles’ geometries. We em-
ployed six complexity parameters: the proportion of free spaces, the obstacle occupancy in
distinct regions of the CPS, the complexity of obstacle–avoidance options, the proportion of
connected obstacles, the length deviations from the optimal path, and obstacles’ tendency
in the CPS that hinders the solution quality. Through extensive simulations and analysis, it
is found that there exists a very firm relationship between the complexity parameters of
the CPS and path quality. The total χ is the weighted sum of six parameters cited above.
Brief overviews of those six complexity parameters, with their procedures and equations,
are described below.

3.3.1. Free Spaces’ Ratio

To compute a feasible, safe, and smooth P, it is highly enticing that the amount of
free spaces must be high in the CPS. To measure the obstacle-free spaces in the CPS, we
first determine the size (ξ) of the S3

1, blocked-spaces (ξobstacles), and free-spaces (ξ f ree).
The overall size (ξ) of the CPS that is in the form of a polygon can be obtained by the Gauss
determinant using Equation (1):

ξ =
1
2

|g|
∑
i=1

(xiyi+1 − xi+1yi)× h (1)

where x, y are the coordinate values of the CPS boundary, |g| denotes total vertices of the
CPS boundary, and h is the height of the CPS. Out of the ξ-sized CPS, we find the amount
occupied by the obstacles (ξobstacles) using Equation (2):

ξobstacles =
n

∑
i=1

ωOi (2)

where n denotes total obstacles’ count present in a S3
1 and ωOi denotes the obstacles’

occupancy. The occupancy of an Oi obstacles can be determined using Equation (3):

ωOi = OH × OL × OW (3)

where OW , OH , OL denote the width, height, and length of an obstacle, respectively. The free
space (X f ree) amount, where UAV can fly safely, can be determined using Equation (4):

ξ f ree = ξ − ξobstacles (4)

The ratio (r f ) of the free spaces can be calculated using Equation (5):

r f =
ξ f ree

ξ
(5)

The value of r f ranges between 1 and 0. We represent this ratio as (1 − r f ) to compute
the occupied spaces value in overall CPS S3

1 complexity computation.

3.3.2. Deviation in Length from an Optimal Path

The proposed method is a global PP approach, and all information about the obstacles
geometries is known in advance. By utilizing the obstacles geometry information, we can
estimate the path length without calculating the actual path. We estimate length of an
optimal path Lo, where Lo = lo as an optimal path and estimate the deviation in it that can
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occur due to obstacles that are on lo. We call it deviation D
′

from the optimal path and
formalization used to estimate is explained below.

• Computing the optimal path Lo that is a straight line between s and t using Equation (6).

Lo =
√
(xt − xs)2 + (yt − ys)2 + (zt − zs)2 (6)

• Calculating the deviation D
′

in optimal path Lo due to the presence of obstacles on
the lo between s and t locations. The D in the paths length due to an obstacle (e.g., Oi)
is calculated using Equation (7).

Di = min(
OW

2
, OH) (7)

• Estimating the total deviation D
′

that can likely occur due to the presence of the
obstacles between s and t in the CPS using Equation (8).

D
′
=

n

∑
i=1

Di (8)

• Calculating the length of the estimated paths (L1) avoiding all obstacles that are on
the l0 using Equation (9).

L1 = Lo +
n

∑
i=1

Di (9)

where L1 denotes the lengths of the paths avoiding obstacles in the selected space,
L0 denotes the Euclidean distance between s and t locations, n represents obstacles’
strength in the selected space, and Di denotes the degradation in path length due
to obstacles.

• Computing the complexity Cp of the estimated path that can assist in analyzing the S3
1

complexity using Equation (10):

Cp =
Lo

L1
(10)

The value of the Cp ranges between 1 and 0. We use this value to represent the
estimated path complexity in terms of length in overall CPS S3

1 complexity evaluation in
Equation (20).

3.3.3. Complexity of the Obstacles’ Avoidance Options

There are usually four options in total to bypass any obstacle present in a W such as
right, left, up, and down (in the case of hanged obstacles or flying obstacles). Meanwhile,
after the space reduction, the number of options to avoid obstacle will likely be reduced,
and there can be an increase in the complexity of remaining options. Because of this,
a path may be taut and path length can be prolonged. Hence, while determining the CPS
complexity, we take into account the complexity of options needed to bypass obstacles.
To calculate the complexity (CAO) of each option, the entropy concept is employed. Entropy
is acknowledged as the most effective and accurate measurement for similar tasks in
numerous fields. In this work, we consider the urban environment; therefore, the P cannot
go beneath the obstacles since bottom height of each obstacle is zero, and, hence, there
are only three options in total to avoid any obstacle. The strategy below is employed to
calculate the CAO.

1. Find the proportion (pi) value of every avoidance option (i.e., AOl , AOr, AOt) category
using Equation (11).

pi =
AOi

b
(11)

where b denotes the total AO, and its value can be determined using Equation (12).
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b =
3

∑
i=1

AOj (12)

2. The complexity CAO of avoidance options can be calculated using Equation (13):

CAO = −
b

∑
i=1

pilog2 pi (13)

The normalized value of the CAO lies between 0 and 1, denoted as CAO ∈ [0, 1].
The CAO with 0 value means that avoidance complexity is low (e.g., all obstacles can be
avoided from the same side). In contrast, the CAO value 1 means that enough variations
exist in options to avoid all obstacles, and the path can contain many turns. In the CPS
analysis, we take into account the CAO values.

3.3.4. Occupancy of Obstacles at Distinct Regions of the CPS

Besides the other complexity parameters described earlier, another important param-
eter that can lead to genuine performance concerns while pathfinding is the obstacles’
occupancy at distinct regions of the CPS. If obstacles in large numbers are clustered at one
location (e.g., obstacles’ placement in the CPS is uneven), then the path quality likely de-
grades. The obstacle occupancy at one place introduces cycles/sharp-turns in a P because
the P revolves around boundaries of many obstacles before approaching t. To calculate
occupancy Πo of obstacles, we partition S3

1 into n sub-spaces {s1, s2, s3, . . . , sn} and find
the obstacles occupancy in each subspace si. The obstacles’ occupancy in a si subspace can
be determined by taking the ratio of the obstacles’ occupancy ξobstacles in the si divided by
overall obstacles’ occupancy in the CPS. To calculate occupancy, the S3

1 is partitioned in
five equal-size sub-spaces. The occupancy Πoi of the si can be mathematically expressed as

Πoi =
si

obstacles
ξobstacles

(14)

where ξobstacles denotes occupancy of all obstacles in total from the CPS as given in Equa-
tion (2) and si

obstacles represent the ith subspace’s obstacles occupancy, and its value can be
computed using Equation (15):

si
obstacles =

O
′

∑
i=1

ωO
′
i (15)

where ωO
′
i represents an obstacle’s volume, and O

′
denotes all obstacles count in the CPS.

After computing the occupancy of five sub-spaces, we determine the overall occupancy Πo
of the S3

1 using the following equation:

Πo = max{Πo1 , Πo2 , Πo3 , . . . , Πon} (16)

where Πo is the obstacles’ occupancy in the S3
1. The rationale to choose maximum values is

to effectively deal with the worst cases. The occupancy analysis assists with finding the
smooth paths by giving considerable attention to the regions of high occupancy.

3.3.5. Ratio of Obstacles’ Tendency in the CPS

In some scenarios, the CPS can enclose more obstacles compared to the W (e.g.,
the tendency of obstacles on lo is high compared to the whole W). Hence, it is viable
to assess the impact of obstacles’ tendency to yield a good quality path. To analyze the
obstacles’ tendency To, we find the number of obstacles in a CPS, and take a ratio with the
obstacles’ count present in a W. We denote the number of obstacles present in the CPS with
n and number of obstacles present in a full map with N, respectively. We determine the
value of To using Equation (17):
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To =
n
N

(17)

The value of To can lie between 0 and 1, To ∈ [0, 1]. The higher value of To means that
more obstacles are present in the CPS. In our work, we take into account the To value while
determining and analyzing the complexity of the S3

1.

3.3.6. Ratio of the Connected Obstacles

In some cases, some obstacles exist that are not directly penetrated with l0, but they
have connections with the pertinent obstacles (e.g., obstacles directly crossed with l0).
These obstacles can escalate the time of path computation and yield unnecessary turns in
the path. Hence, while analyzing the CPS complexity, it is paramount to take into account
the connected obstacles’ effect along with other five complexity parameters. The ratio of the
connected obstacles can be found by counting the connected obstacles in the CPS divided
by the obstacles’ count in the S3

1. The count of connected obstacles can be determined using
Equation (18):

n
′
=

n

∑
j=1

(Oj ∪ OCON) (18)

where Oj is the pertinent obstacle, and OCON denotes the connected obstacle with Oj (e.g.,
pertinent obstacles). The overall ratio of the connected obstacles (rco) can be computed
using Equation (19):

rco =
n
′

n
(19)

where n
′

represents connected obstacles’ strength, and n shows the number of obstacles
in E.

When all six complexity parameters’ values have been calculated, the total complexity
χ of the S3

1 can be quantified using Equation (20):

χ(S3
1) = w1 × (1 − r f ) + w2 × Cp + w3 × CAO + w4 × Πo + w5 × To + w6 × rco (20)

In Equation (20), 1 − r f denotes the ratio of spaces occupied by obstacles, Cp denotes
the deviation in path length from an optimal path, CAO means the complexity of options
while avoiding obstacles, Πo is the occupancy of the obstacles at the distinct region of
the CPS, To denotes the tendency of obstacles in the CPS in relation to a full map, and rco
denotes the ratio of connected obstacles. The drawing of all six complexity parameters
described in prior subsections (e.g., Sections 3.3.1–3.3.6) is given in Figure 5.

For calculation simplicity, we used complexity parameters values in normalized
form; therefore, the χ(S3

1) ranges between 0 and 1. In Equation (20), wi, where i =
1, 2, 3, 4, 5, 6 represents each complexity parameter’s weight, and they fulfill two conditions,
(i) w1 + w2 + w3 + w4 + w5 + w6 = 1, and (ii) wi > 0. We adjust each parameter weight by
taking into account the significance and influence of every parameter in the CPS complexity
analysis. The probability σ of a path P to be found from the S3

1 with good quality is given
as follows:

σ(P) =

{
1, if 0 < χ(S3

1) < T.
0, otherwise.

(21)

where χ(S3
1) represents the complexity of the S3

1, and T denotes a threshold. If σ(P) = 1,
no extension of space is required because S3

1 is appropriate for low-cost pathfinding.
Meanwhile, if σ(P) = 0, then an additional space will be needed to find good quality paths.
The threshold T value relies on numerous global factors of the W, and local constraints (e.g.,
related to the UAV). In simulations, we set the threshold value to 0.7 to make a decision
about the space expansion. We did substantial experiments to validate the T value using
P’s length as a main criteria. However, T’s value can be tuned flexibly based on the UAV’s
workspace and resources.
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Figure 5. Drawing of the complexity parameters employed to analyze the complexity of the S3
1.

3.4. Expansion of the First Constrained Polygonal Space

Although S3
1 always finds path P, it does not guarantee the quality of P in each

scenario due to higher complexity in the obstacles. To circumvent this issue and ensure
consistent quality for P in each scenario, the scenarios that require a bigger space are
identified carefully through the CPS complexity analysis utilizing the six different param-
eters. With the assistance of the complexity analysis of S3

1, for a good-quality P, we can
accurately identify the cases that require relatively more space than already in S3

1. Having
sufficient information about the obstacles connected with the boundary of S3

1 enables us
to flexibly expand the space to the next level. We adopted this method to expand the
space, since it yields less computing overhead and significantly enhances path quality.
Hence, by processing obstacles that are penetrated by the boundary of S3

1, and by marking
a polygonal boundary in an analogous way, the first CPS formation emanates into a second
CPS of a relatively bigger size, compared to the S3

1 as visually depicted in Figure 6b.
We denote this expanded space with S3

2, and it encompasses S3
1 fully. The S3

2 includes
pertinent obstacles fully, and it provides greater opportunities for P to be determined from
S3

2 solely. The utility of the S3
2 is that it is highly desirable space for producing P of shortest

lengths. The space can be extended to nested levels in identical manner. Meanwhile, we
expand the spaces only up to 2-levels because an optimal/quasi-optimal P tends to lie in
S3

1 and S3
2 with acceptable probability. After the selection of appropriate highest priority

space, an ESWG is constructed for pathfinding.
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Figure 6. Overview of constrained polygonal space (S3
1) and its expansion to the next level (S3

2).

3.5. Extremely Sparse Waypoint Graph Generation from the Selected CPS

Waypoint graph (WG) is one of the approaches for task modeling and pathfinding,
respectively. The WG constructs an indirect and compact graph connecting s with t
by catching the connectivity of the ξ f ree to form a multiple paths’ network. However,
generating a WG is very expensive in terms of computation. The overall time complexity
of generating a WG with n nodes is O(n3). Many studies that have focused on lowering
the complexity of the WG generation have been reported by joining adjacent obstacles,
altering obstacles’ shape, and ignoring small obstacles. More recent research [60] highlights
that WG’s time complexity in the 3D environments can be decreased to the O(n2) by only
considering the obstacles crossed by the lo. To expedite the time complexity reduction
of the WG, this paper suggests a new concept of an ESVG construction method which
does not compose a dense WG. This method forms an ESVG from the CPS like a roadmap
with connectivity between s and t through intermediate nodes. An ESVG is a double-edge
type graph G of reachable and mutually-visible locations, mathematically expressed as:
G = {X, Y}.

To construct a G from the 3D CPS, two steps are generally applied: making a nodes’ set
X and generating an edge set Y. The initial step is about creating nodes set X. We utilized
three vertices of obstacles, bottom, top, and mid to make an ESWG for the first time.
Both bottom and top vertices’ geometry values are known, and mid vertices can be found
leveraging the midpoint formula on top and bottom axis values. Every obstacle has total
eight vertices (e.g., four bottom and four top). An ith obstacle’s vertices and their respective
values can be expressed mathematically in a matrix as demonstrated in Equation (22).
The height of bottom four vertices of each obstacles are transformed to the hmin and top
vertices of the obstacles have the same height as of the CPS height (e.g., h). In below metrics,
the value of zmin is zero but after adjustment becomes hmin = zmin:

Oi =

⎡⎢⎢⎣
xmin ymin zmax; xmin ymin zmin
xmin ymax zmax; xmin ymax zmin
xmax ymin zmax; xmax ymin zmin
xmax ymax zmax; xmax ymax zmin

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1131 1632 241; 1131 1632 23
1131 1703 241; 1131 1703 23
1209 1632 241; 1209 1632 23
1209 1703 241; 1209 1703 23

⎤⎥⎥⎦ (22)

For example, an O whose original zmax is greater than the CPS height, and the bottom
and top vertices are fully known, the pair of mid-points’ two side faces denoted with f1
and f2 can be determined using Equations (23) and (24), respectively:

f1 = { xmax + xmin
2

, ymin, zmin}, { xmax + xmin
2

, ymax, zmin} (23)

f2 = { xmax + xmin
2

, ymin, zmax}, { xmax + xmin
2

, ymax, zmax} (24)

A similar procedure can be utilized to find the pair of vertices around all obstacles.
After computing set X from the pertinent obstacles, we add both s and t in a set X and
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generate set Y of edges through two novel strategies and visibility-checks. Any two nodes
u and v in X are inter-visible if a uv segment of line connecting them is collision free.
A function named-line-of-sight (LOS) determines the visible segments among pairs of
nodes through visibility analysis. The time complexity of this mechanism heavily relies
on the function of LOS checking, and number of nodes. Meanwhile, in our work, we
incorporate two additional strategies of far-reachability (FR) and direction-guidance (DG),
thereby time complexity is significantly reduced. In addition, it only adds the edge between
a vertices’ pair that are as far as possible from each other and that guide to the t’s direction.
We set the visibility to off/false using coordinate values for those pairs of vertices that
are on the same obstacle but do not favor the direction of the t. Hence, the visibility
checking function has less time complexity in making a G. The time complexity of an
ESWG formation is the O((n f l)2) time, where l denotes the number of levels, n denotes
obstacles’ count, and f represents the counts of obstacles’ facets. However, the upper-
bound of the l is constant (e.g., l = 3 ); therefore, ESWG’s time complexity is O(( f n)2).
With the help of X and Y, a G is obtained that has reliable connectivity between s and t,
and it encompasses all characteristic of a roadmap.

3.6. Path Finding from an ESWG and Enhancing Obtained Path Quality

Once an ESWG is modeled, a path searching algorithm is employed to search a P from
it. In this paper, we used A∗ algorithm for computing a P between s and t from an ESWG.
The A* is reliable algorithms for extracting a P of low-cost. The evaluation function utilized
by this algorithm is expressed in Equation (25):

f (n) = g(n) + h(n) (25)

In Equation (25), the f (n) denotes the estimated path cost in total between s and t via
a node n, the g(n) denotes the actual distance to reach node n, and the h(n) is a heuristic
function that computes the distance from node n to t. This algorithm was selected to make
P’s computing process fast. By exploring an ESWG using this algorithm, an abstract P
is found. We consider both length and time of the obtained P for evaluating its quality.
Meanwhile, in some cases, the P cannot be of minimal length, which needs post-processing
to shorten it. We present the working of the A∗ algorithm while finding a path between s
and t in Figure 7.

In many UAV practical applications, the length of the P is paramount, and to preserve
UAV resources, it should be minimum. To address this issue, we shorten P’s length by
including more nodes in close proximity of it, and refine the sharp turns. The path quality
improvements is mainly carried out by determining the adjacent P’s neighbor nodes,
find the proximity between the adjacent neighbor nodes and P nodes, and in the close
proximity of the P, we introduce new nodes with relatively denser resolution and add
smooth edges. The reason to add more nodes closely is to retain visibility to improve P
quality. After injecting additional nodes, a P of good quality is obtained by jointly using
the newly added and the P nodes. This path-refining method has the potential to improve
path quality significantly with reduced computing cost.
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Figure 7. Example about the working of an A* algorithm for low-cost pathfinding.

4. Results and Discussion

This section explains the simulation experiments and corresponding results. The per-
formance of the proposed PP method was analyzed using two criteria: time complexity
and path length compared to prior studies. To make the proposed PP method a bench-
mark, we compared the simulation results with randomized motion planning and visibility
graph–based algorithms. The simulation tests were performed and compared using Matlab
v. 9.8.0.1451342 (R2020a) on a computer running Windows 10 with 8 GB of RAM and a
2.6 GHz CPU. In the tests, we assumed a 25 kg fixed-wing UAV similar to ones used in
existing studies. We took into account both global and local constraints in the simulations.
The parameters of the local constraints (i.e., on the UAV) were a 1 m wingspan and a
maximum turning angle at a radius of π/6 . The minimum and maximum flying altitudes
were hmin = 23 m, hmax = 155 m. The global constraints belonged to the geometry of
obstacles in W. We consider six complexity parameters that can significantly hinder the
quality of a P and the UAV’s safety while selecting a space size. We assumed that the UAV
had enough battery power to complete the task in one flight. The safe distance to avoid
collisions with obstacles was 10m (dsa f e = 10 m). We assumed that wind was negligible
during the flight. The proposed method finds P using an ESWG that respects both global
and local constraints. The weights of space complexity parameters were w1 = 0.2, w2 = 0.1,
w3 = 0.2, w4 = 0.2, w5 = 0.1, and w6 = 0.2. We assigned values to these weights by consid-
ering the significance and influence of each parameter on the accurate space selection for an
optimal/quasi-optimal pathfinding. We tested our method with diverse combinations of
the weight values, and analyzed the accuracy of space selection for optimal/quasi-optimal
paths. Subsequently, we determined the best combination of these weight indexes’ values
that make accurate space selection consistently. Furthermore, these weight values were
validated via numerical analysis by computing optimal paths from numerous maps using
whole W, and analyzing the number of times optimal paths tend to lie in the selected space.
The locations for s and t were chosen randomly during experiments. We compared our
PP method’s performance with two existing algorithms: the ApVL algorithm proposed
by Guillermo et al. [60] and the RRT*-AB algorithm proposed by Noreen et al. [70]. Both
comparison algorithms are state-of-the-art for PP. We tested them on our maps to compare
the performance of our method with them. We show a sketch of the 3D maps employed in
the experiments and three exemplary paths from each method in Figure 8.
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(a) Overview of the 3D map (b) ApVL algorithm’s path

(c) RRT*-AB algorithm’s path (d) Proposed method’s path

Figure 8. Example of the paths produced by the proposed method, ApVL, and RRT*-AB algorithms.

The path produced by the proposed PP method was more smooth and shorter than
the paths from the other methods. To analyze and compare the proposed PP method’s
results, we designed three distinct scenarios with sufficient obstacles in the 3D environment
maps. Each scenario was tested with all three methods, and the results were analyzed.
All obstacles had a random width, depth, and height with a rectangular-shaped base.
Comprehensive details on maps counts, map sizes, s and t locations, numbers of obstacles
and their geometric information, etc. are given in each scenario description below.

4.1. Comparison with the Existing Approaches by Varying Map Sizes and Obstacle Counts

This scenario is defined with W at sizes ranging between 100 m × 100 m × 300 m–
1000 m × 1000 m × 400 m. It encompassed 50 maps with distinct obstacle counts (e.g.,
5–50). For the sake of simplicity and rational comparisons, we categorized all maps into
10 distinct groups considering both map size and obstacle strengths, as given in Table 1.
The locations for s and t were marked in alternate places for every test/map. Furthermore,
the obstacle density in W varied on each map. The ApVL algorithm [60] processed only
obstacles that were on the lo and generated a dense graph to find P. However, the ApVL
algorithm has higher complexity, and it produced a non-taut P in most scenarios due to the
connected obstacles in urban environments, as shown in Figure 8b. The RRT*-AB algorithm
restricts the space, but it explores many locations while finding P. The P generated by this
algorithm had a longer length, and computing time was immense. In contrast, the proposed
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PP method processed fewer obstacles and employed an ESWG to find a P with good quality.
The complete information about maps utilized in this particular scenario and the mean
computing time for task modeling by our PP method and its comparisons with the two
previous algorithms are given in Table 1.

The computing time for modeling the UAV environment shown in Table 1 is the total
time needed to constrain the space, an ESWG construction, and an ESWG’s expansion for
path-quality improvements. From Table 1, we can see that time surged with an increase
in the map size and obstacle counts. Through extensive comparisons with prior PP al-
gorithms, our method lowered computing time for task modeling by 15.05% on average.
The pathfinding results (i.e., time needed and path length) and their comparisons with the
two existing algorithms are depicted in Figure 9.

Figure 9. (Left) computing time: proposed method versus existing algorithms; (Right) path lengths: proposed method
versus existing algorithms.

Both computing time and path length are the mean of five maps in each map’s group
(given in Table 1) with arbitrary obstacles’ placement. The simulation results emphasize
that, for each method, there is a surge in the computation time with the increase in W’s
complexity. Moreover, the proposed PP method shows 15.4% and 33.6% curtailment in
mean computing time compared to the ApVL algorithm and the RRT*-AB algorithm,
respectively. In path lengths, the proposed method shows 5.34% improvements compared
to the ApVL algorithm. Moreover, average improvements in the path lengths compared to
the RRT*-AB algorithm are 6.34%. These results highlight that the proposed PP method is
superior in terms of both computing time and path length over prior algorithms.
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4.2. Comparison with the Existing Approaches by Varying the Number of Obstacles

This scenario is comprised of 10 maps with varying numbers of obstacles in a W of
1 km2 to analyze the impact on our PP method’s performance from increasing the number
of obstacles. The obstacles were clustered between s and t in such a way that all methods
would avoid them during pathfinding. Figure 10 presents the results of our proposed PP
method and a comparison with the other algorithms from varying the number of obstacles.
When W enclosed more obstacles, the suggested method could quickly determine a good-
quality and safe P from W. It was better than the ApVL and RRT*-AB algorithms, based
on the metrics, even when varying the number of obstacles in the CPS. The P determined
by the proposed method was the shortest and smoother than the other two algorithms.
Through simulation results and their comparison with previous methods on 10 obstacles’
counts-based maps, the proposed method decreased the computing time for pathfinding by
27.06%, on average. For path lengths, the paths generated by our PP method, on average,
were 4.6% shorter (i.e., produced at a lower cost) than the previous methods.

Figure 10. (Left) computing time: proposed method versus existing algorithms; (Right) path lengths: proposed method
versus existing algorithms.

4.3. Comparison with the Existing Approaches by Varying Source and Target Locations

This scenario was tested using a W at 150 m × 150 m × 400–1000 m × 1000 m × 400 m.
It encompassed five maps with obstacle counts of up to 25. We analyzed our method’s
performance through seven runs on every map with different coordinates for s and t in
each run. By varying the positions of s and t, the number of obstacles to be modeled in each
run/test can be distinct, and, accordingly, comparison metrics can vary with W complexity.
The proposed method’s averages, obtained from the seven runs on each map, are given in
Table 2. The results indicate that the proposed method yielded comparable performance in
all tests.

The proposed method yielded an average computing time of 0.71 s, compared to the
ApVL and RRT*-AB algorithms, which had mean computing times of 1.01 s and 1.37 s,
respectively. In addition, the proposed method lowered the path length, compared to both
prior algorithms, by 5.05%. Although the proposed method gave better results, a relatively
higher number of initial P nodes can degrade its performance in complex environments.
The worst-case complexity with our method was O(n3). However, the test results revealed
that time complexity did not accelerate like O(n3) in all test scenarios for finding good
quality paths. The results obtained from all these scenarios showed that our method
performed consistently better than the ApVL and the RRT*-AB algorithms. Aside from the
path lengths and computing times, we analyzed and compared its performance against
prior algorithms with respect to graph/tree nodes and path node counts. In Figure 11,
the results of the proposed method in terms of average path nodes and graph/tree nodes
for the above experiments are presented. As shown in Figure 11, both the graph nodes and
path points of our ESWG method were lessened, compared to the prior methods.
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Figure 11. (Left) Graph/tree nodes: proposed method versus the ApVL algorithm and the RRT*-AB algorithm; (Right)
path nodes: proposed method versus the ApVL algorithm and the RRT*-AB algorithm.

Analysis of the memory requirements: As shown in Figure 11a, the proposed PP method
generates a WG with fewer vertices. In addition, it does not register visibility of the
edges that contribute minimally in an optimal/quasi-optimal path due to less coverage
in terms of distance or they are not in the same direction as the target location while
generating an ESWG. Therefore, the memory requirements of proposed method are not
high compared to the existing methods and a complete graph. However, most global
PP methods keep all visible edges in the memory that significantly increase the memory
requirements. Furthermore, the visibility check function is called a substantial number of
times in visibility graph-based PP methods, thereby space complexity drastically increases.
The proposed method resolves these space complexity related issues through reduction
in search space, modeling tasks with an ESWG, producing far lower but relevant edges
and vertices, and reducing the visibility checks between vertices by incorporating far-
reachability and direction-guidance concepts while making an ESWG.

The proposed PP method is complete, and it can be used for many UAV practical
applications in urban environments. The proposed method gives good performance due to
two main concepts: (i) a new space reduction concept is proposed, which not only assists
in lowering the time complexity by restricting the path exploration in the space of highest
priority, but also assists in finding low-cost paths in most cases; and (ii) an ESWG, which
models the tasks with far lower edges and vertices that curtails the computing time of
path searching significantly by making a direction-guided search of the target location. It
effectively resolves the trade-off between optimality and efficiency in pathfinding from an
urban environment populated by various obstacles.

5. Conclusions and Future Directions

This article proposed a new PP method based on CPS and an ESWG to enable a UAV’s
safe navigation in 3D urban environments. The main objectives of the proposed PP method
are to lower the time complexity in both task modeling and pathfinding without degrading
the path quality for UAVs operating at lower elevations in urban environments with fixed,
convex obstacles. The main contributions of this article are listed as follows:
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• We propose a new PP method based on CPS and an ESWG that has the potential to
find an optimal/quasi-optimal path with considerably reduced time complexity.

• We propose a new space reduction method that abstracts the full map into a 3D
constrained polygonal space that guarantees a path for the UAV’s mission.

• We analyze the effectiveness of CPS for low-cost paths considering six complexity
parameters, including the ratio of free space, obstacle density in distinct regions of the
CPS, the complexity in the options for avoiding obstacles, deviation in the length from
the optimal path, the ratio of connected obstacles to pertinent obstacles, and obstacle
tendencies in the CPS.

• The proposed method enlarges the CPS to the next level/space by including obstacles
that are in close proximity to the first CPS if the first CPS fails to provide an opportunity
for low-cost solutions owing to a higher complexity from obstacles in it.

• The proposed method generates an ESWG from the CPS, leveraging the principles of
maximum distance reachability, having only a few nodes and edges, and direction
guidance, and it computes an abstract path that is further improved with the assistance
of more nodes and edges around it.

• This initial work makes use of obstacle information from an underlying environment
in order to lower the computing overhead for pathfinding without compromising
path quality in 3D urban environments.

The proposed method performance is substantiated through extensive tests, and, in
most cases, it performs consistently better than prior PP methods. It lowers pathfinding
time complexity considerably by restricting path exploration solely in the highest prior-
ity CPS that has the greatest chance of providing an optimal/sub-optimal path. While
conducting the tests, we considered numerous parameters related to the underlying op-
erating environment’s complexity and UAV’s safety. Meanwhile, during the PP at lower
elevations in urban environments, we may need to consider hanged/thin obstacles (e.g.,
electrical wires and poles in the streets). Another group of evaluation parameters can be
the wind/gust and wind/crosswind (e.g., wind’s direction and speed), especially when
passing through buildings. Hence, further testing with these parameters is yet to be in-
vestigated in future work. Finally, we intend to analyze the fidelity of our proposed PP
method with other task modeling methods (e.g., Voronoi diagrams, grids, and navigation
meshes, etc.).
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Abstract: The article presents a method of designing a selected unmanned aerial platform flight
scenario based on the principles of designing a reliable (Unmanned Aerial Vehicle) UAV architecture
operating in an environment in which other platforms operate. The models and results presented
relate to the medium-range aerial platform, subject to certification under the principles set out in
aviation regulations. These platforms are subject to the certification process requirements, but their
restrictions are not as restrictive as in the case of manned platforms. Issues related to modeling
scenarios implemented by the platform in flight are discussed. The article describes the importance
of Functional Hazard Analysis (FHA) and Fault Trees Analysis (FTA) of elements included in the
hardware and software architecture of the system. The models in Unified Modeling Language (UML)
used by the authors in the project are described, supporting the design of a reliable architecture of
flying platforms. Examples of the transformations from user requirements modeled in the form of
Use Cases to platform operation models based on State Machines and then to the final UAV operation
algorithms are shown. Principles of designing system test plans and designing individual test cases
to verify the system’s operation in emergencies in flight are discussed. Methods of integrating
flight simulators with elements of the air platform in the form of Software-in-the-Loop (SIL) models
based on selected algorithms for avoiding dangerous situations have been described. The presented
results are based on a practical example of an algorithm for detecting an air collision situation of
two platforms.

Keywords: Unmanned Aerial Vehicle (UAV); collision avoidance; safety procedures; reliable architec-
ture; Unified Modeling Language (UML)

1. Introduction

Unmanned aerial platforms for special tasks often move in an environment with an
increasing number of other threatening objects, including aerial platforms. That can be a
source of potential danger for UAVs. It should also be assumed that the air platform, pri-
marily used in rescue operations, will move in a hostile environment. Such an environment
can be understood as flight in conditions of GPS signal interference or flight in unfavorable
weather conditions. Such environments may include operations where the platform might
be destroyed due to intentional human activity (i.e., mainly due to military actions, etc.).

Designing a reliable UAV architecture operating in such an environment requires
compliance with modern standards for the safety of the flying systems. It is insufficient
to meet the requirements of a user who describes only his/her operational needs. Flight
safety is the responsibility of the system builders, who must consider the guidelines for the
safety of air systems that are in force in given countries.

Preparing a reliable and safe system is a comprehensive activity on many levels:

1. The development of hardware and software architecture that has the required reli-
ability determined based on the so-called Fault Tree Analysis (FTA), in particular
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designing the physical architecture of the system that ensures redundancy of the most
critical subsystems,

2. Meeting the functional requirements in the context of ensuring an appropriate level of
security, usually specified in the Functional Hazard Analysis (FHA) documentation,
which presents the decomposition of critical functions in the system,

3. Designing algorithms for the operation of the air platform per the principles of Model-
Based Systems Engineering (MBSE), which are verifiable with the use of selected
formal techniques,

4. Designing and describing algorithms that support the occurrence of emergency situa-
tions during flight, such as loss of radio link with the Ground Control Station (GCS),
loss of GPS signal, avoidance of platform collisions in the air,

5. Describing and proving the correctness of specific numerical algorithms that are used
during the implementation of the mission (e.g., algorithms determining the change
of the platform’s course after detecting the possibility of a collision in air-collision
avoidance algorithms),

6. Designing system testing procedures based on mission simulators and flight tests,
7. Developing documentation rules for the most critical procedures affecting flight safety

and documentation of the tests performed.

The hardware architecture is first determined in designing an unmanned platform.
The probability of damage to the elements is checked following the Fault Tree Analysis
methodology for the developed architecture. The probability of damage to the elements
is checked following the Fault Tree Analysis methodology for the developed architecture.
The purpose of the activity is to check which of the elements involved in implementing a
specific flight scenario is prone to failure and may lead to a potential system crash. The FTA
methodology is described in literature in [1]. The general principle of proceeding in the
construction of FTA trees is to arrange a series of devices that implement a given function.
Then, for each of such devices, Mean Time Between Failures (MTBF) is determined, based
on which the probability of failure of the entire system is verified. If the probability is
above the acceptable threshold, then the system must not be allowed to operate. It is a
fundamental step taken in designing an unmanned system. In a situation where the FHA
shows that some system elements are too unreliable, these elements must be replaced
before further design work because the platform will not meet the safety requirements.

After verifying the hardware architecture to be used in the designed unmanned
system, the decomposition of key processes directly impacts the platform’s safety in flight
should be made. Based on pre-defined scenarios of platform operation (scenarios can be
provided by the system contracting authority), a function decomposition called Functional
Hazard Analysis [2] is prepared in the literature. It concerns the fulfilment of functional
requirements in the context of ensuring an appropriate safety level, denoted in the ARP4754
methodology as Design Assurance Level (DAL) [3]. Each primary process (scenarios) is
decomposed into a set of component subprocesses (scenarios) up to the point where atomic
functions are defined (functions that are not worth decomposing because they describe a
specific single operation of the system assigned to one of the components).

The Software Level, also known as the Design Assurance Level (DAL) as defined
in ARP4754, is determined from the safety assessment process and hazard analysis by
examining the effects of a failure condition in the system. The failure conditions are
categorized by their effects on the aircraft, crew, and passengers.

(A) Catastrophic—Failure may cause deaths, usually also includes the destruction of
the airplane.

(B) Hazardous—Failure has a sizeable negative impact on safety. It may reduce the
ability of the crew to operate the aircraft due to physical distress or causes serious
or fatal injuries among the passengers.

(C) Major—Failure significantly reduces the safety margin. It may increase crew work-
load.
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(D) Minor—Failure slightly reduces the safety margin or slightly increases crew work-
load. Examples might include causing passengers inconvenience or a routine flight
plan change.

(E) No Effect—Failure has no impact on safety, aircraft operation, or crew workload.

In practice, instead of specifying the DAL values directly, it is enough to define the
most critical failure states that may occur during the execution of this function for each
of the decomposed functions. In such a case, proving that the system is resistant to the
occurrences of these emergency states means that its reliability level can be considered
sufficient to perform specific tasks. It should be remembered that the DAL also depends on
the hardware architecture, which significantly affects this parameter.

The preparation of a reliable and safe system requires designing following Model-
Based System Engineering (MBSE) standards [4,5]. In the case of air platforms, it is required
to introduce additional mechanisms to the design process, allowing for the preparation
of a design that is easy to expand, maintain and verify. In recent years, the use of UAV
functionalities based on the System Modeling Language (SysML) [6] and Unified Modeling
Language (UML) [7] models have become widely used. UML also uses the Object Con-
straint Language (OCL), which allows for additional detailing of the system’s functionality
and defining constraints that must always be met. The OCL is a declarative language
describing rules applying to UML. The Object Constraint Language provides a constraint
on the metamodel that cannot otherwise be expressed by diagrammatic notation. OCL
provides expressions that have neither the ambiguities of natural language nor the inherent
difficulties of using complex mathematics.

However, formal system description languages such as SysML or UML alone do
not guarantee the development of a secure aircraft platform architecture integrated with
the Ground Control Station (GCS). For this purpose, dedicated metamodels should be
developed to transform user requirements and the requirements of safety standards into
technical models. In practice, this means the manufacturer needs to develop such systems.
The set of metamodels describes the mapping of user requirements to system use cases.
Use cases can be mapped to system state machines or, in simpler cases, directly to activity
sequences (system function calls).

Due to the nature of the system, which is a close-to-real-time system, UML models
primarily describe the transition from Use Case models to State Machines, the most com-
monly used system dynamics modeling mechanisms with multiple concurrent processes.
Of course, the development of complete and consistent system models (GCS and UAV)
does not guarantee that the prepared models do not contain any errors. In recent years,
intensive work has been carried out on developing formal verification mechanisms for
models prepared in SysML or UML [8].

Based on the UML-based scenario description methodology and the previous FHA
decomposition, the process of designing and describing algorithms that support the occur-
rences of emergency situations during the flight takes place. Complex numerical algorithms
are often used, the correctness of which must be proven. An example of such an algorithm
is provided in the article [9]. The article presents the design of an algorithm for avoiding col-
lisions between aerial platforms. The algorithms supporting safety also include algorithms
for checking the correctness of the operation of GPS systems, algorithms for checking the
possibility of a potential collision with terrain or other platforms, etc. Depending on the
purpose of the air platform and the areas in which it can operate, the list of algorithms
handling emergency situations can be very long. Each of these algorithms can have high
computational complexity. Hence, appropriate onboard computers are selected depending
on the class of the air platform. The article presents a description of the algorithm for
avoiding collisions with another platform in the air, which is implemented on a medium-
range UAV. Due to the size of the platform, the algorithm is implemented not only on GCS
but also in the software of the platform itself. Due to its complexity, a separate thread of
the onboard computer processor is allocated. However, it is not possible to assign one
processor core to check the occurrence of each specified emergency situation (platforms of
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this type are too small). The article presents a formal way of modeling such an emergency
situation from the stage of definition of action in the form of a Use Case in UML, through
detailed State Machine models, to formal mathematical models.

The final step in the design process is to design system testing procedures based
on mission simulators and air tests. It is also necessary to develop the principles of
documentation of the most critical procedures affecting flight safety and the documentation
of the tests performed. An example of system tests is shown in the article. Testing guidelines
can be found in the DO-178 [10] methodologies.

This article presents the architecture concept for an unmanned aerial platform, which
must operate in unfavorable environmental conditions, such as flight in an area with a
large number of other air platforms.

The methodology of designing a reliable UAV architecture, which can be used for
autonomous flight, was presented. It is possible thanks to integrated algorithms such as
detections and avoidance of collisions with other UAVs or detection of collisions with
terrain obstacles. A method of modeling an unmanned platform operation scenario was
also presented, in which algorithms for detection and avoidance of situations threatening
the platform’s security are integrated. Formal methods based on UML notation are used to
describe the problem presented like the method of transforming the requirements described
in the so-called Use Cases in UML on diagrams describing the dynamics of the system. In
this article, we mainly rely on State Machines, which are the basic method for modeling the
operation of real-time systems.

A special case presented in the article is the automatic correction of the flight route to
eliminate the possibility of a potential collision in the air with another platform. The article
assumes that each of the platforms is equipped with the ADS-B (Automatic Dependent
Surveillance Broadcast) system, which allows identifying the platforms’ and the directions
and speed of their movement. Algorithms of this type are usually built into unmanned
platforms that fly long distances from the Ground Control Station, because flights at such a
distance generate the risk of losing communication with GCS.

The article shows how to integrate the described algorithms with the platform man-
agement algorithms described in the form of State Machines. An exemplary method of
managing the detected emergencies and UAV operations in the event of two situations
co-occurring is also presented.

In Section 2, reference was made to works on a similar subject. The concept of UAV
architecture modeling and the formal description of requirements for selected algorithms
used in systems of this class were presented. Reference was also made to verifying the
correctness of the developed models, although the discussion of these methods is not the
subject of this article. The types of mathematical methods that are used to implement
collision avoidance algorithms are also described. Particular attention was paid to ge-
ometric methods. Other optimization-based methods, including heuristic methods, are
also mentioned.

Section 3 covers models for modeling the system architecture, from user requirements
to modeling class diagrams. Particular attention was paid to modeling emergencies that
may occur during the platform’s flight. The principles of selecting emergencies in order to
minimize their number are discussed. Methods of verifying the consistency of a set of states
and the transitions between individual states in which the unmanned platform may be
found are presented. Reference was also made to the very important but often overlooked
topic of integrating formal optimization methods with UML or SysML models in unmanned
systems. The methods of checking the completeness and adequacy of mathematical models
for an exemplary emergency situation in flight are discussed.

The following part of the article shows an example of the physical architecture of the
UAV, based on which the described algorithms for handling emergencies were designed and
tested. The deterministic algorithm for handling collision avoidance to ensure separation
between air platforms is presented in detail in Section 4. The algorithms are presented in the
form of formal descriptions, which are verified on the simulator. Section 5 presents sample
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tests of the presented algorithms included in the system test plan and the results of testing
the algorithms on the simulator. In the last section, further directions of the development of
the presented models are discussed. Our experiences related to the preparation of formal
models and their verification were also presented.

The innovative elements presented in the article are:

(a) The methodology of building advanced UAV flight algorithms that fly in an envi-
ronment with a large number of obstacles, which has been adapted to designing
algorithms for small and medium air platforms;

(b) A complete and tested collision avoidance algorithm of an unmanned platform
equipped with ADS-B, for which methods of detecting situations in which the al-
gorithm shows erroneous results have been defined (detection of a potential collision
in a situation where there is no such collision);

(c) An example of a complete scenario that can be used as documentation in the certifica-
tion process;

(d) A simulator for the verifying the UAV collision avoidance algorithm, the results of
which are presented.

2. Related Works

In order to understand the importance of designing reliable UAVs, it is necessary to
understand the principles of operation of these systems and their architecture. An excellent
introduction to this is given in the article by Sanchez-Lopez, et al. [11]. The article describes
the relationship between tasks related to mission planning and their implementation.
The logical dependencies between the UAV control components and the payload control
components were presented. Atyabi, et al. [12] introduce the reader to aspects of UAV
mission planning and management systems and discuss selected future directions for the
development of such systems. An extensive study was also presented on the assessment of
UAV autonomy, including the provision of situational awareness and the development of
decision-making methods.

Generally speaking, technical literature contains many articles discussing particular
aspects of designing the hardware and software architecture of a safe UAV [13]. In fact,
papers containing a comprehensive description of the software design process itself and
the architecture of the unmanned system are difficult to access due to the complexity of
problems encountered in aviation. In particular, available literature lacks proposals for
methods that combine mathematical models with UAV operation models described in
formal languages such as UML. Such methodologies are currently being developed, also in
the form of methodologies such as DO-331, DO-332, and DO-333 [14–16].

Preparing a reliable and safe system is a comprehensive activity on many levels.
The first level is the development of hardware and software architecture that has the
required reliability determined based on the so-called FTA. This applies particularly to the
design of the system’s physical architecture that ensures redundancy of the most important
subsystems. The approach to modeling hardware and software architecture is described,
for example, in [1]. It is worth noting that in the case of designing unmanned platforms of
the MALE class and larger, the operation of FCC flight computers is particularly carefully
designed, the functionality of which covers most of the user’s requirements of this platform
class. However, it should be borne in mind that this element of the project is relatively
rarely presented in scientific articles due to the information it contains. It constitutes the
potential of the company producing unmanned systems. Hence, it is difficult to find studies
strictly related to the topic of the architecture of the entire system. Rather, UAV elements
such as FCC [13] flight computers are described.

Subsequently, the system to be designed must be verified in terms of meeting func-
tional requirements in the context of ensuring the appropriate level of safety, usually
defined in the FHA. Within the FHA, depending on the class of the air platform, several
primary groups of functions are defined that are subject to functional decomposition. In
the case of an unmanned aerial platform, the most important functional groups are:
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• Mission planning
• Ensuring the stability and control of the platform
• Provision of platform navigation
• Data link management
• Payload management
• Flight systems management.

Each group is a set of UAV operation scenarios. In each of the groups, a number
of emergency situations can be distinguished that should be taken into account when
modeling the platform’s behavior during the mission. The article describes the platform
collision avoidance algorithm, which is an emergency situation in the group of scenarios
”Ensuring the stability and control of the platform”. The models in UML presented in the
following sections of the article are elements of the mentioned group of scenarios.

Based on the precisely defined functional decomposition of the unmanned system
and the developed hardware and software architecture of such a system, the next step
is to design algorithms (scenarios) for the operation of the air platform in accordance
with MBSE principles. Models compliant with the MBSE methodology, widely used in
systems engineering, verify individual elements of the air platform flight scenario. The
MBSE approach used in the design of the air platform is described quite extensively in the
literature on the subject. Examples include [4,17].

Designing basic platform operation scenarios is not sufficient when designing a secure
platform. The FHA defines the so-called emergency situations, i.e., potential failures that
may occur during the flight in a given mode. Usually, for each function described in the
decomposition process, potential emergency situations that may occur are indicated. The
system designer’s task is to design and describe the algorithms handling the occurrence
of emergency situations during the flight so that the platform retains the possibility of at
least a safe return in the event of one or several such events occurring in a short period.
Examples of exceptional situations are the loss of a radio link with NSK, loss of a GPS
signal, a potential collision of two platforms in the air, or a collision of a platform with a
terrain obstacle. For many events of this type, there is literature that allows the analyst to
design software to protect the platform against emergency situations. An example is the
in-flight separation algorithm [9], the development of which is presented in this article.

In the case of building advanced unmanned platforms, functions related to the im-
plementation of missions during the flight are designed. These often require optimization
tasks to be solved. The UAV uses deep learning neural networks for image recognition,
algorithms for route planning, avoiding obstacles, etc. These algorithms require detailed
descriptions and formal proof of correctness. Among these specific numerical algorithms
are the algorithms used during the mission, for example, algorithms determining a change
of the platform’s course after detecting the possibility of a collision in the air, i.e., algorithms
ensuring the separation between [9,18] platforms.

In this article, we focus on the particular situation in flight related to the need to
maintain the separation between two platforms whose flight trajectories intersect (also
taking into account time). In such a situation, a deterministic algorithm should be designed
to ensure that the appropriate minimum distance between platforms is maintained. At
the same time, aircraft must be equipped with systems that communicate data about
their position to others. The presence of ADS-B modules on the platform is assumed,
working both as emitters and receivers. These devices broadcast flight parameters (plane
position, velocity, and heading) to nearby vehicles. Having minimal information on the
position and velocities of nearby airplanes allows for effective and suboptimal dodge
maneuver prediction.

There are three main approaches used in solving the task of separating platforms in
the air, described in the literature on the subject. The first approach, the most natural and
efficient, is based on determining the change in the direction of the UAV flight as well as
the speed and height of the UAV based on the available data using geometric methods.
These methods are characterised by a high speed of determining the solution. However,
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they require multiple repetitions in the case of minor modifications of the flight parameters
of one of the air platforms. Geometric approaches rely on the analysis of the geometric
attributes of the UAV to ensure that minimum distances between the air platforms are
maintained. This requires calculating the time to potential collision using the distance
between UAVs and their speed.

This article is mainly based on the geometric algorithm presented by Park, et al. [9].
The method proposed by Park is tested to ensure flight safety in various situations. Different
algorithm, described in [19], allows the UAV to avoid obstacles of various types (including
other UAVs) in 3D. Depending on the obstacle type identified and the information available
about the obstacle, the algorithm determines the time when the UAV should start avoiding
the obstacle. When the UAV reaches the point where obstacle avoidance begins, the
algorithm starts the avoidance operation for a specified period of time. The length of the
time window in which the UAV modifies the flight direction, is flexible and depends on the
size and distance from the obstacle. After completing the obstacle avoidance maneuvers,
the algorithm searches for new route points that will allow the UAV to return to the planned
route as quickly as possible. The work [20] also contains extensive literature review on
collision avoidance algorithms. Peng et al. [21] present a geometric model for UAVs where
horizontal maneuvers are only performed by varying the speed of the UAV. The direction
of flight remains constant. The model predicts the separation to be achieved by a horizontal
collision avoidance maneuver. In addition, they calculate the effects of the speed change
time and autopilot response on the horizontal miss distance and the reserved time to the
nearest potential collision point.

The second group of methods is methods based on optimization, in particular, methods
based on the principles of optimal control. Their description is out of the scope of this article
due to their complexity. The reader interested in the theory of optimization is referred to
the works of Pytlak [22] and Betts [23], who present direct and indirect methods in optimal
control. In the case of optimal control, it is worth emphasizing that the task to be solved
consists in determining the UAV flight trajectory between the starting and ending point,
assuming the knowledge of the air platform flight dynamics model. The dynamics model
is represented in the task in the form of state equations, which are subject to discretization
during the determination of feasible solutions using one of the aforementioned methods.
Ikeda et al. [24] describe the collision avoidance problem as an optimal control task. The
goal is to find a combination of safe maneuvers between the two UAVs that guarantees
the longest minimum separation distance among possible escape maneuvers. The optimal
control problem was formulated with quadratic performance criteria.

Many authors include among the set of algorithms that can be used in the process of
determining the separation of platforms, UAV route planning algorithms based on the general
VRP displacement planning task. For an example of the third group algorithm, see [25].
It seems, however, that the use of integer methods for this purpose does not guarantee a
short time of obtaining the result, because the general VRP problem belongs to the NP-hard
problems class. The authors of the article also believe that the use of heuristic methods in
the form of Genetic Algorithms or Particle Swarm Optimization (a good introduction can
be found in the article [26]) for this purpose, is also not a perspective path. For heuristic
algorithms, it is not possible to determine convergence, which makes their use in control in
the event of emergency situations very risky. In the case of system certification, it should
rather be assumed that the certification authority may prevent the operation of the system
with implemented algorithms of this class.

At this point, it is also worth noting that for several years there have been attempts to
formalize the methods of testing models based on languages such as UML or SysML, as
described, among others, in [8]. However, testing according to these methods is a design
task to which a separate team should be assigned. This topic is not covered in the article.
The interested reader is referred to the papers described in the article [8].

The final stage of the design work is the design of system testing procedures based on
mission simulators and air tests. This includes the development of documentation rules for the
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most critical procedures affecting flight safety and the documentation of the tests performed.
There are no clear guidelines for testing unmanned systems, but NATO and EU standards
and norms are emerging [8]. The most important standard in the design of unmanned aerial
vehicles is certainly STANAG 4586 [27], which presents general requirements for a UAV
that would cooperate with various Ground Control Stations (GCS) and operate in a swarm
with other platforms. Accompanying these standards are system design guidelines such as
DO-1878C (System Building Guidelines [10]), DO-331 [14], DO-332 [15] or DO-333 [16]. In
particular, the DO-331 standard-”Model-Based Development and Verification” is extremely
important. The standard is an attachment to DO-178C and DO-278A. The equivalent of these
guidelines is EMAR documents, which are also described in [8].

3. Modeling of UAV Architecture

This section describes a practical example of modeling a selected unmanned aerial
platform flight scenario, which considers the system’s response to selected emergency in
flight situations. An example of a scenario will be the problem of maintaining the separation
between two platforms, understood as a requirement not to exceed the minimum safe
distance between platforms. The algorithm described in the article is implemented in
the air platform Mission Computer and works automatically mainly when there is no
communication with the GCS. When the radio link is active, the pilot has priority in making
decisions on avoiding collisions with other platforms.

3.1. Selected Design Assumptions

The functional requirements and the requirements specified under the FHA are the
bases for developing the system architecture and the detailed description of the aircraft
flight scenarios. Each functional requirement is transformed, depending on the level of
detail, into a scenario or a single function of the designed system. In the further part of the
article, the operating models of the system in flight will be presented, taking into account
the detection of a potential air collision of two air platforms equipped with ADSB systems.
Figure 1 shows a Use Case diagram covering the scenario presented in the article. We
assume that the functional analysis of the system operation (FHA) has shown that a collision
with another aircraft equipped with ADSB may occur during the flight of the platform.
We also assume that the UAV may not be in contact with GCS at the time preceding the
collision. The UAV itself is equipped with ADSB with the option of receiving the signal
generated by other air platforms. Otherwise, the system should only prompt the pilot
on possible action, but the final decision must always be with the pilot. Based on these
assumptions, the model shown in the article was developed.

Figure 1. Use case scenario: UAV flight in WAYPOINT mode [27]. UAV can perform a flight in a
WAYPOINT mode with the handling of exceptional situations.
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Use Cases map to State Machine diagrams that best represent the interactions occur-
ring in concurrent systems. This modeling approach requires the determination of the
following data:

i. How many states are to be that model for the described scenarios?
ii. What are the transitions between states?
iii. What are the emergency situations in flight, when can they occur, and what do they

depend on?
iv. How to minimize the number of states describing emergency situations in flight so

that the pilot can easily manage the system (particularly UAV computers)?

3.2. The Modeling of an Emergency Situation

In this section, a practical example of modeling an emergency situation in the flight of
an unmanned platform will be presented, which concerns the response to a potential air
collision of two platforms.

Figure 1 shows an exemplary Use Case model that describes the flight of the UAV in
the WAYPOINT mode (flight along an a priori pre-set route consisting of many points). The
basic Use Case must include handling an emergency situation in flight, which concerns
the occurrence of a potential collision of air platforms that inform themselves about their
positions using the ADSB system. The same applies to the avoidance of collisions with a
terrain obstacle.

Figure 2 shows a general diagram of a State Machine for a Use Case that includes
testing for the possibility of collision between air platforms during flight. The state machine
model is shown, which describes the system’s operation during the flight in the WAYPOINT
mode (automatic flight after the a priori setpoints). All state changes occur within a single
thread, which allows the use of a Mission Computer with lower performance (and thus
smaller dimensions of the device). However, critical functions do not run in parallel, so the
method of implementation described by the model is unacceptable for larger platforms.

Figure 2. State machine diagram for a collision avoidance of UAV. Model for one core unit processor.
Actions within the states are presented.

Figure 3 shows the State Machine model, which describes the operation of the system
in flight in the same mode. The handling of the flight to the following points is separate
from checking for the occurrence of emergency situations. In this model, there are two
parallel threads, each affecting how the other works. The critical functions for testing
emergencies are performed serially in a separate thread. This implementation method is
acceptable for larger platforms and does not consume a significant amount of computer
resources (in this case, the Mission Computer).
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Figure 3. State machine diagram for collision avoidance of two UAVs. Model for two core units
processor. Actions within the states are presented.

Figure 3 shows a fragment of the State Machine model with selected actions in selected
states. From a formal point of view, each state must have an action with the stereotype
do: that describes the processing that is performed in that state. This processing can be
modeled as an activity or sequence diagram. In our case, the functions do:testCollision() and
do:findWPT() are given numerical algorithms that are used to implement them. Collision
testing is performed according to the Equations (1) and (2) (see Section 4). It is worth noting
that the determination of the collision situation takes a short time so that individual tests
can be performed sequentially without risk. Determining a new flight direction is based on
the Equations (3) and (4).

The basic scenario carried out by the UAV, which performs a flight in the route mode,
consists in going through the following states in sequence:

FWM1 → FWM2 → FWM3 → FWM2 → SUP → FWM1 (selection of the next
waypoint, flight to a point, the configuration of the recognition sensor, checking for an
emergency, and going to the selection of the next waypoint).

An alternative processing scenario will occur when a parallel process described in
the [exceptional situation] state will execute the testCollision() function, which will deter-
mine the UAV in a potential collision with the UAV. At this point, an alternative scenario
is realized:

FWM1 → FWM2 → SUP → FWM4 → FWM2 → SUP → FWM1 (following way-
point selection, flight to point, emergency test, emergency collision avoidance (do:findWPT()
function, which determines the point to which the UAV must fly to avoid a collision), a
continuation of the flight to a point, a test of the occurrence of an emergency, and selection
of the next waypoint).

As part of handling emergency situations, potential collisions between aerial platforms
and a collision with a terrain obstacle are tested. The reader may notice two entries from
the state ExS2 to the state ExS1. It is not accidental. Depending on whether the possibility
of a collision with a terrain obstacle was observed, the test of the potential collision of the
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aircraft may give different results. For example, in the event of a potential collision with a
terrain obstacle, UAV algorithms must determine a route point above the obstacle, which
ensures no collision with another UAV. By default, the platform can lower the flight altitude
in certain situations, which is not possible in the event of a potential collision with a terrain
obstacle. The processing itself is strictly dependent on the adopted rules and considerations
that go beyond the article’s scope. They are issues bordering on aviation law.

473 The system’s physical architecture is designed after designing scenarios that take
into account specific cases (emergency situations) in flight. A modern approach to the
construction of unmanned platforms in line with the so-called Open architecture makes
it possible to use commercial control systems even in military systems. Therefore, many
modern UAVs use commercial Flight Control Computers (FCC), the functionality of which
is extended by the use of a special Mission Computer (MC), which performs functions that
cannot be performed with the use of FCC. A diagram of the architecture of the discussed
unmanned system is shown in Figure 4. Systems of this class have redundant FCC and
MC computers.

Figure 4. Physical architecture of UAV with logical units depicted (collision avoidance modules). The
figure shows GCS components and UAV components with the radio data link marked.

Architecture refers to the physical components processing data in the system with
indicating the types/roles of these elements («HWCI» stereotype means Hardware Config-
uration Item). The figure shows selected subsystems embedded on platform computers.
In particular, the subsystems responsible for the specific situation described in the arti-
cle, related to the avoidance of air platform collisions, were indicated. In classic systems
equipped with ADSB, the FCC detects the collision situation, but the collision avoidance
algorithm itself can be performed as part of MC processes. It depends on the computational
complexity of the algorithm used.

3.3. System Architecture with SIL Elements

This section shows the extensions of the physical architecture that concern the prepara-
tion of additional components simulating the operation of those systems that cannot be run
during system tests in the laboratory. Due to the scope of the simulation performed and the
used UAV physical components (GPS / INS and ADSB), it was decided to use the Software-
in-the-Loop (SIL) simulation scheme. Software-in-the-Loop represents the integration of a
production code into a mathematical model simulation, providing engineers with a virtual
simulation environment for the development and testing of complex systems. SIL makes
it possible to test the software before the hardware prototyping phase and accelerates the
development cycle. SIL enables the earliest detections of system-level defects or bugs.

301



Appl. Sci. 2022, 12, 294

Testing of complex systems, in particular those that can cause harm to humans, must
be performed in conditions similar to reality. In this sense, simulators of real systems are
built. If most or part of the critical UAV systems is simulated by software, it is referred to
as SIL (Software-in-the-Loop) simulator testing. This approach has many disadvantages,
the main of which is the need to prove that the software simulator corresponds precisely to
the software embedded on the actual platform. In this respect, the most difficult thing is to
simulate the computing power, including the processors’ load. In addition, systems often
use a different architecture associated with differences in the interpretation of variables
and how some operations are performed. However, it is not easy to test a system other
than based on SIL in some situations. Examples include simulating collisions of unmanned
aerial vehicles, simulating a collision with a terrain obstacle, or simulating GPS/INS signal
interference. In the case of GPS/INS systems, modern systems are so intelligent that it is
impossible to substitute GPS position data to the device to simulate a flight. Therefore, in
most cases, GPS/INS signal interference is tested based on SIL. The presented approach
simulates the operation of GPS/INS spatial orientation systems and the ADSB system’s
operation, which generate information about UAVs whose flight trajectories may cause an
air collision with our UAV. The SIL scheme is sufficient in this case to test the correctness of
the designed algorithm. The SIL architecture integrated with GCS and UAV elements is
shown in Figure 5.

Figure 5. The physical architecture of UAV with additional simulation units. Simulation packages
replace FCC. The remaining UAV components remained unchanged.

When testing the collision avoidance procedures, one can use the software embedded
on the real Mission Computer (MC). The change in the platform’s position is still simulated
by software, but algorithms are used to determine new flight courses embedded in the MC.
At this point, we can talk about the Hardware-in-the-Loop (HIL) class simulation, in which
original elements of the air platform are used. However, in order to consider the simulation
environment to meet the requirements of the HIL test environment fully, an FCC would
have to be added to this environment, which would be fed with the necessary data about
the platform position and the status of onboard equipment. However, it is not necessary to
properly test the collision avoidance algorithm.

4. Collision Avoidance Algorithm

4.1. The General Model of Collision Avoidance

To present the algorithms supporting the UAV reaction to the occurrence of a critical
situation, an algorithm for avoiding the collision of two air platforms was selected. The
basic version of the algorithm is described in the article [9]. It defines a sequence of
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equations that allow the calculation of the minimum safe manoeuvres of two airplanes,
which restrains the platforms from violating the protection zone.

In brief, the article assumes that two UAVs fly with a constant speed and direction (see
Figure 6). Since the velocity vectors, �VA and �VB are known, the nearest approach vector is
defined as:

�rm = ĉ × (�r × ĉ) , (1)

where: �c = �VB − �VA, is defined in the Figure 6, ĉ is its normalized representation (ĉ = �c
‖�c‖ ).

If ‖�rm‖ < rsa f e, then separation distance will be violated. rsa f e is the safe distance.

Figure 6. Graphical representation of variables of the algorithm in a 3D cartesian coordinate system.
�VA and �VB are UAVs speed vectors. �UA and �UB are new UAVs speed vectors.

Next, the time of closest approach τ is calculated:

τ = −�r ·�c
�c ·�c . (2)

This enables to calculation of the positions of the UAVs for the closest approach. For
UAVA, these vectors can be calculated as presented in the Equation (3):

�rVSA = k · rsa f e −�rm

�rm
(−�rm) , (3)

where k =
�VB

‖ �VA‖+‖ �VB‖
represents coefficient forcing a slower airplane to take a bigger turn,

as higher speed reduces maneuverability. The resulting dodge vector �UA is calculated
as follows:

�UA = �VA · τ +�rVSA . (4)

Park, et al. [9] propose to calculate �UA as unit vectors to define the direction of
requested movement. However, for some reason, it is better to use the non normalized �UA
on some systems to infer the collision avoidance waypoint position.

4.2. Visualization of the Results of the Collision Avoidance Algorithm

The results for this algorithm are shown in Figure 7. Each picture contains the current
positions of the UAVs and their flight history and two markers defining the current target
waypoint. The two-color scheme represents two UAVs. Both are surrounded by red ellipses
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(as an equirectangular projection of WGS84 is used for coordinates around N54deg). They
represent the safety radius in the horizontal plane. Each UAV model of presents a vector
of (horizontal) speed, while the number represents altitude at that point. The simulations
assume very close speed values of both UAVs as it is the worst-case scenario.

Figure 7. Example of the working principle of the algorithm with visualization of a dynamic
environment. The red circles show the UAV’s safety zone. The numerical values in the figures show
the height of each UAV. (a) First detection of a long-distance collision of two UAVs flying in almost
parallel trajectories. (b) Slight target waypoints adjustment after 30 iterations. The trajectories are
corrected for the first time. (c) The end of the collision avoidance maneuver with visible target points.
A change in the trajectory of each UAV is presented.

4.3. Modifications to the Collision Avoidance Algorithm

The article proposes an additional set of conditions to improve the response of systems
in a realistic environment.

4.3.1. Time and Distance Limitations

The original algorithm does not consider the problem of detecting collisions of two
UAVs at very long distances (Figure 8). If we consider the situation of one UAV flying
in a straight line, while the other UAV turns with a constant turning radius around a
single point very far from the first UAV but of the same altitude, the algorithm has a high
probability of detecting a collision. This indicates a need to define an additional set of
conditions to limit launch cases for emergency situations.

The following additional condition (5) is proposed as a solution to this issue.

‖r‖ < (max (kmar · (UAVA.rsa f e + UAVB.rsa f e),

ΔT · (‖VA‖+ ‖VB‖)) ) ,
(5)

where kmar is the safety margin coefficient, proposed value is kmar = 2, ΔT is assumed time
of safety margin, proposed value is either 60 [s] or twice the time required for 180 [deg .] turn
of the UAV. These proposed values are suggested minimal values. Higher distances will
increase the number of algorithm launches and the smoothness of avoidance maneuvers.

566 To further limit the number of calls on the systems, additional conditions regarding
time (τ) and distance (VA · τ) to the collision can be added after the first calculation steps of
the algorithm. A very long time to collision may suggest that no intervention is needed.
However, the distance between UAVs must be monitored as there is a possibility that they
will be very close and running in almost parallel straight lines. This can break safety zones,
especially for airplanes with minimal vertical speed or low-altitude flight situations where
lowering the flight level is impossible.
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Figure 8. Example of the problematic situation after introduction of a collision time limit. (a) Detection
of collision over a very long time, (b) safe area violation after a short period.

4.3.2. Spheroid Separation Areas

576 Most airplanes measure altitude positions with higher accuracy than other coor-
dinates. Therefore most of the norms assume safe ellipsoid areas. For example, Reduced
Vertical Separation Minimum (RVSM) [28] introduces lowered 1000 ft. vertical separation
for flights under 41,000 ft. and 2000 ft. above that threshold. Meanwhile, horizontal
separation is defined as more complex due to different definitions. Usually, horizontal
separation requires a distance of 15 nautical miles (27.8 km—lateral separation) or 15 min
of flight (longitudinal separation) [29].

There are many definitions for the safety radii, varying for countries, heights, speeds
or weather conditions (e.g., [30], or [31] presented in Figure 9b). In this paper, separation
values, due to low altitude flights, is 9260 m for horizontal distance and 600 m for vertical
distance, defining spheroid presented in Figure 9a.

Additionally, the distances depend on object type (UAVs usually assume smaller
collision spheroids) or flight conditions (IFR-Instrument flight rules versus VFR-visual
flight rules).

To solve this problem, simple coordinate transformation can be used. The operations
on the ellipsoid or spheroid are more complex than for sphere (for example, requiring
iterative calculations for projections), and the original algorithm does not consider variable
rsa f e distance. It is the easiest to assume a spheroid separation zone (rsa f e−H , rsa f e−V) and

stretch the Z-axis with coefficient
rsa f e−H
rsa f e−V

before the appliance of the calculations for the
sphere. Afterward, the Z-axis has to be brought back.

That yields few profits: dodge maneuvers in the Z-axis are smaller than initially, so it
is simpler to test the algorithm and prove its efficiency. The rm still represents the violation
grade of the separation distance as it can be compared to rsa f e−H .
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Figure 9. Examples of separation space definitions: (a) Spheroid safety zone and definition of used
vectors in this paper, (b) Cylindrical safety zone from [31].

4.3.3. Multiple Obstacle Scenario

Precise analysis of multiple obstacle scenario is outside of the scope of this article. An
exemplary approach to such situation is presented in an article by Lin et al. [19]. When the
collision is detected with more than one object there might be 2 cases:

1. Only one object has overlap with initial path and possible dodge manoeuvre—a single
dodge manoeuvre is needed in order to avoid safe area violation.

2. Two or more objects overlap the initial path—authors propose the expansion of the
collision zone for new, single virtual target.

5. Results

5.1. Assumptions for the Testing Process

Several critical assumptions were made for the presented scenario of the system’s
operations. Firstly, it was assumed that it is not possible for more than two platforms to
be in the area of a potential collision in a short period. Secondly, it was assumed that the
algorithm determining a dodge maneuver for collision avoidance could be allotted any
direction, i.e., there are no no-fly areas in the flight area. Otherwise (as is the case in the real
system), a solution considering the above limitations should be determined at one stage
of the algorithm. The state machine model for such a case would be beyond the scope of
this article.

5.2. Testing of Emergency Situation in Flight

The article [9] shows the basic version of the algorithm for calculating a new UAV
course to avoid a collision with another UAV that is on a collision course. Two prominent
cases were considered: when the platforms are flying towards a head-on collision from two
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directions and when the courses of the platforms intersect in the near distance. For these
cases, a method of determining a new course of both platforms was shown.

Additionally, the real-life application requires consideration over a non-zero sampling
interval, which introduces delays and step changes of setpoints for the flight controllers.

The article presents the results of simulations of cases described in [9] and new cases
that the basic algorithm developed by Jung-Woo did not correctly detect.

Testing scenarios:

(a) The platforms are on a collision course, and the collision will occur at a short distance
(Figure 10a);

(b) The platforms are on a collision course, but the collision will occur at a considerable
distance from the actual position of the platforms (Figure 10b);

(c) The platforms fly to points close to each other, almost parallel, which creates a risk
of collision at any point in the route (Figure 10c,d).

Figure 10. Output images from the simulation. (a) Dodge maneuvers of two crossing airplanes.
(b) Dodge maneuvers of two semi-parallel airplanes. (c) Straight route with spherical safety zone—
original algorithm. (d) Straight route with limited vertical movement and spheroid safety zone.

5.3. Results from the Simulator and Calculations

The result of the algorithm is shown in Figure 10. Figure 10a presents two dodge
maneuvers need for two UAVs to dodge a safe area collision when given the same target
waypoints. Their vectors of approach differ considerably. Figure 10b presents a similar
situation, but the speed vectors of the UAVs are similar, which leads to more prolonged
dodge maneuvers. Figure 10c presents a dodge for the original algorithm. This case leads
to a terrain collision, as the lower UAV drops altitude to avoid conflict. Figure 10c presents
a modified algorithm, which leads to much lower altitude changes, but a bigger and slower
horizontal dodge.

6. Conclusions

The article discusses the methods of designing a reliable hardware and software archi-
tecture of unmanned aerial vehicles, that consider the modeling of emergency situations
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in the flight. The models and results are for a medium-range UAV system subject to cer-
tification regulations under current EU legislation. Therefore, it should be assumed that
these platforms will be subject to a certification process similar to that to which airplanes
are subject.

The article focuses primarily on the methods of modeling scenarios implemented by
the platform in flight, using the technique of functional threat analysis and failure trees
of elements included in the hardware and software architecture of the system. It will not
be an overstatement to say that this approach will soon dominate companies producing
flying systems.

Particular attention was paid to describing methods of modeling the collision avoid-
ance behavior in a flight of two platforms equipped with ADSB devices. One of the better
algorithms has been referred to, which gives a deterministic solution to the above problem.
Ways to test this algorithm are provided. It was shown that the descriptions of the algo-
rithm in the source article contained inaccuracies that could cause errors in the platform or
its unexpected reactions in real-world conditions. The simulation tests proved it, and an
analytical solution was given, an extension of the base algorithm. The article focuses on
the principles of designing system test plans and designing individual test cases to verify
the system’s operation in the event of emergency situations in flight. We also present the
air platform flight simulator that we use in practice in the form of a SIL model based on
selected algorithms for avoiding dangerous situations.

Further work will go in two directions. First of all, the model should be extended with
additional algorithms for reacting to emergencies, such as, for example, ensuring separation
from a terrain obstacle or maintaining the UAV flight in the permitted area. Secondly, the
described simulator should be expanded to a full HIL model using additional equipment.
However, this requires the construction of simulators of mechanical components such as
the engine, which is a separate project due to the complexity of the task.
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Abstract: This paper presents a software architecture for Unmanned aerial system Traffic Management
(UTM). The work is framed within the U-space ecosystem, which is the European initiative for
UTM in the civil airspace. We propose a system that focuses on providing the required services for
automated decision-making during real-time threat management and conflict resolution, which is
the main gap in current UTM solutions. Nonetheless, our software architecture follows an open-
source design that is modular and flexible enough to accommodate additional U-space services in
future developments. In its current implementation, our UTM solution is capable of tracking the
aerial operations and monitoring the airspace in real time, in order to perform in-flight emergency
management and tactical deconfliction. We show experimental results in order to demonstrate the
UTM system working in a realistic simulation setup. For that, we performed our tests with the
UTM system and the operators of the aerial aircraft located at remote locations with the consequent
communication issues, and we showcased that the system was capable of managing in real time the
conflicting events in two different use cases.

Keywords: UTM; system architecture; U-space; UAS

1. Introduction

In the last few years, there has been a clear trend to use Unmanned Aircraft Systems
(UAS), or drones, for many commercial and civil applications. There are studies [1]
estimating that up to 400,000 drones will be providing services in the airspace by 2050,
with a total market value of 10 billion euros per year by 2035. Last-mile delivery [2],
surveillance [3], infrastructure inspection [4], traffic monitoring [5], media production [6],
or managing health emergency situations [7] are just a few examples of the wide spectrum
of drone applications. Indeed, the integration of UAS in the civil airspace is probably one
of the most revolutionary events for Air Traffic Management (ATM) since the beginning of
its implementation. Although ATM has been traditionally based on voice communication
through an Air Traffic Control (ATC) entity, its bounded workload and communication
capacities turn this centralized resource into a bottleneck for system scalability. Therefore,
the rise of UAS operations brings the need for a new paradigm for airspace management,
where digital communication will play a key role, and the responsibilities will be shared
among different stakeholders instead of a single central actor.

There are already some initiatives to integrate UAS into civil airspace and fulfill their
operational requirements [8]. The National Aeronautics and Space Administration (NASA)
has created the concept for UAS Traffic Management (UTM) [9] to enable safe, large-scale
operations with UAS in low-altitude airspace [10]; whereas Europe has extended this UTM
concept by proposing the U-space ecosystem [11]. More specifically, an overview of the
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U-space ecosystem recently proposed by the European Aviation Safety Agency (EASA) [12]
is depicted in Figure 1. The idea is to have a U-space service Provider Platform, which is a
server running on the cloud, as the core component. There, the UTM system consists of a
software architecture that provides U-space services to the different actors in the U-space
ecosystem using as a bridge the U-space Service Manager (USM), which is a specific module
of this UTM system.

U-space ecosystem

U-space Service
Provider Platform 

Legal authorities

Fire-fighters

Stakeholders

Emergency corps

Common 
Information

Function

UTM system

UAS 1 UAS 2 UAS 3

Figure 1. Overview of the U-space ecosystem proposed by EASA [12]. The UTM system offers U-
space services to the different actors and runs on a remote server called U-space Service Provider Platform.

Currently, the community is in the process of further developing these U-space
services. In this paper, we take a first step and propose a novel software architecture
that aims to serve as a common framework for implementing and integrating U-space
services. Our solution is being developed within the context of the European project
GAUSS (https://projectgauss.eu, accessed on 26 April 2021), whose main objective is lever-
aging high-performance positioning functionalities provided by the Galileo ecosystem for
U-space operations, including a validation phase with actual fixed-wing and rotary-wing
UAS (see Figure 2). We present an architecture that is service-oriented and safety-centered,
and that allows the airspace actors to abstract from specific UAS technologies. Besides,
we implement a set of U-space services to manage complete UAS operations, but focus-
ing on in-flight services (i.e., those required to handle the operations during the flight
phase). Nonetheless, the architecture is modular and flexible enough to be extended with
additional functionalities as new services become functional.

Figure 2. The Atlantic I (left) and DJI M600 (right) UAS will be used to validate the UTM functionali-
ties developed in the GAUSS project.

Our main contributions are as follows. First, we introduce the main concepts and
the roadmap for the U-space initiative, and we review other relevant works about UTM
(Section 2). Second, we analyze the design properties for our UTM architecture (Section 3).
Given a series of desired architectural guidelines (Section 3.1), we propose the open-source
Robot Operating System (http://www.ros.org, accessed on 26 April 2021) as underlying
middleware for our UTM system (Section 3.2). Third, we contribute with a new UTM
system architecture implementing the U-space concept (Section 4). Our proposal represents
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a general framework for U-space services, which is modular, flexible, and technology-
agnostic; but we describe our specific implementation for a set of core in-flight services
dealing with unexpected UAS conflicts during their flight phase. Our software framework
integrates automated decision-making procedures, which is one of the main gaps for cur-
rent UTM solutions. Additionally, we show an actual realization of our UTM architecture
that is available as open-source software for the community, and we demonstrate its ca-
pabilities (Section 5). In order to showcase the correct integration of all our components
and services, we have defined use cases for UAS operations involving all the developed
functionalities (Section 5.1); and we have assessed our results in terms of performance
by running the whole system in a realistic simulation setup for multi-UAS operations
(Sections 5.2 and 5.3). Finally, we draw the main conclusions of this work and point at
future lines for further development (Section 6).

2. Background

In this section, we introduce the U-space initiative and its offered services, as well as
its development roadmap. Then, we review the related work about UTM systems.

2.1. U-Space

U-space is a collaborative effort among researchers, industry, and regulators to enable
the integration of UAS operations within the civil airspace, providing UAS situational
awareness and digital communication with manned aviation, the ATM service providers,
and the legal authorities. There exists a roadmap [11] to deploy U-space in Europe, consist-
ing of the four phases depicted in Figure 3. Each phase will propose a new set of services
with increasing complexity and integration level between UAS and manned aircraft, as well
as an upgraded version of existing services in the previous phases.

Level of 
automation

Level of 
connectivity

U-space 
Foundation

Services

U-space 
Initial

Services

U-space 
Advances
Services

U-space 
Full

Services

U1 U2 U3 U4

2019 2021 2025 2030+

Figure 3. The implementation roadmap for the U-space initiative [13], consisting of 4 deploy-
ment phases.

The detailed functional system architecture is still under development, but there
is already a list of services defined for each deployment phase [14], and a report with
the current progress of their implementation and deployment [15]. Table 1 depicts these
services and their current level of implementation in Europe.
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Table 1. The U-space services for each development phase, together with their current implementation level. Our system
focuses on in-flight services to handle unexpected events during the flight phase of the UAS.

Phase Service
Overall

Implementation
Level

Covered in Our
UTM System

U1 Foundation
Services

E-registration 19%

E-identification 17%

Pre-tactical geofencing 23%

U2 Initial
Services

Tactical geofencing 13%

Flight planning management 6%

Weather information 3%

Tracking 4% �

Monitoring 5% �

Drone aeronautical information management 18%

Procedural interface with ATC 20%

Emergency management 9% �

Strategic deconfliction 6%

U3 Advanced
Services

Dynamic geofencing 5%

Collaborative interface with ATC 8%

Tactical deconfliction 0% �

Dynamic capacity management 4%

U4 Full Services To be defined 0%

The U-space framework proposes a UTM system as the software architecture that
provides services to the different U-space actors. A possible classification for the services is
depending on whether they are activated in the UAS pre-flight phase or during the flight:

• Pre-flight services are those related with the functionalities needed to prepare and
schedule a UAS operation. The vehicle and the operator need to register (E-registration),
and the initial flight plan has to be handled before being accepted (Flight planning
management). Then, the pilot may get assistance through information about predefined
restricted areas (Pre-tactical geofencing) and the resolution of possible conflicts before
flying (Strategic deconfliction).

• In-flight services deal with the functionalities required to handle the operation af-
ter the UAS flight has started. This means the possibility to update the operator
(Tactical geofencing) or the UAS itself (Dynamic geofencing) with geofencing informa-
tion during the flight, and to track the current position and predicted trajectory for
each UAS (Tracking). This updated information is then used to create a situation of
the airspace (Monitoring) and to generate warnings and contingency actions under
possible threats (Emergency management). Alternative plans could also be suggested
in-flight to maintain the required separation between aircraft and with geofences
(Tactical deconfliction).

• There are other services that could be used either before flying or during the flight.
These are functionalities that aim to provide identification (E-identification), weather
forecasts (Weather Information), or more generic information (Drone Aeronautical Infor-
mation Management), to create an interface with the ATC (Procedural Interface with ATC
and Collaborative interface with ATC), and to control and manage the UAS density in
the airspace (Dynamic Capacity Management).

According to Table 1 and to our study of the state of the art, in-flight services have
been less addressed by UTM systems in general, with a notorious integration gap still
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existing. In this paper, we focus on in-flight functionalities to develop a UTM system,
although our architecture is general enough to cover all kinds of services. In particular, we
integrate those services related to the management of unexpected events while the UAS are
flying, namely tracking, monitoring, emergency management, and tactical deconfliction.
These services belong to the U2 and U3 implementation phases, which are scheduled to be
developed between 2021 and 2029.

2.2. Related Work

The development of completely operational UTM systems is still at an early stage,
even though it has recently become a growing field. The authors in [16] define what
a UTM system is, and they give an overview of both a physical UTM architecture and
a UTM software manager based on automated services. Big companies are one of the
major parties interested in boosting the deployment of UTM. For instance, Google has
proposed an ecosystem [17] where all UAS should be equipped with communication and
sense & avoid technologies in order to perform cooperative flights when encountering
other UAS or manned aircraft. In their proposal, the separation and planning services
would be provided by an Airspace Service Provider. Furthermore, Amazon has put forward
a one-operator-to-many-vehicle model [18], where the decision-making authority gets
significantly distributed among the operators.

Additionally, there exist several commercial UTM system applications in the market.
They implement most pre-flight services, but just partially a few in-flight services. For in-
stance, Airmap [19] has its focus on UAS registration, geographic information systems,
flight communication, traffic monitoring, and user interfaces. The Unifly platform [20]
connects authorities with pilots to safely integrate UAS into the airspace. On the one hand,
the authorities can visualize and approve the UAS flights, as well as manage No Flight
Zones in real time. On the other hand, the pilots can manage their UAS (e.g., with the
E-registration, E-identification, and Flight plan management services) and they can plan
and receive flight approvals aligned with international and local regulations. Another
framework is the Thales ECOsystem UTM [21], which integrates UAS and pilot regis-
tration. ECOsystem provides a flight planning functionality, using airspace rules and
situational awareness as guidelines. It also includes tools to manage map overlays and 3D
terrain views.

The aforementioned UTM applications offer pre-flight UTM services and some in-
flight capabilities such as UAS tracking. Even though they are capable of publishing
real-time information about the UAS, they do not manage operations autonomously during
the flight phase. Moreover, it is important to highlight that all those applications are
commercial products that are not available for the community as open software.

The scientific community has also been putting effort into functional UTM frame-
works; a recent review of related works can be seen in [22]. A prototype UTM for flight
surveillance has recently been proposed in Taiwan [23]. One of its core properties is the
capability to monitor vehicles, being the ADS-B (Automatic Dependent Surveillance Broad-
cast) technology used for surveillance. There is a pre-flight procedure to schedule and
approve flights, and then the UTM system can send surveillance alerts during the oper-
ation, though all the decisions for conflict resolution are up to the pilot. Another UTM
system has been presented in Sweden [24]. It incorporates a complete toolkit to manage
traffic, geofences, flight altitude segregation as in the general aviation, and complex vi-
sualization. This research has also identified problems that dense traffic in the low-level
airspace will bring to the city users, by simulating the future urban airspace. In general,
the functionalities of the aforementioned systems have only been demonstrated through
simplistic simulations, and quite a few works have been devoted to field flight campaigns
for preliminary tests [25,26]. We have also proposed in a previous work [27] a more realistic
simulator for UAS operations based on the ROS middleware and the 3D simulation suite
Gazebo (http://gazebosim.org, accessed on 26 April 2021). In that work, we introduced
a preliminary definition of our in-flight services and a tool for mission validation. In the
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current paper, we go beyond by implementing a complete UTM architecture. We integrate
in-flight services to handle unexpected conflicts that may occur while the UAS are flying,
and we showcase the performance of our system through heterogeneous use cases.

Finally, regarding the implementation of particular in-flight services, there are different
approaches for conflict resolution and emergency management. Many works [28–30]
have focused on flight planning and scheduling at a strategic level, i.e., in the pre-flight
phase; though in-flight automated decision-making has not been properly covered in
UTM systems. In general, given the massive search space to find optimal resolutions
for conflicts in Very Low-Level (VLL) airspace scenarios, approximate solutions based on
heuristic solvers [28] or lane maneuvers [30] predominate over optimal deconfliction
approaches. In [31], a probabilistic framework is proposed to formulate the risk involved
in UAS operations. That methodology could be integrated for automated, real-time data
analysis in an emergency management solution. We take methodological ideas from these
previous works, in order to implement conflict resolution and emergency management
in our system considering the specifics of UAS operations in a civil airspace. However,
the focus of this paper is more on the architecture design and integration, rather than on
the particular algorithms for conflict resolution.

3. Design Framework

This section settles the framework for our UTM architecture. First, we analyze the
desired properties and requirements for a UTM architecture from a design perspective.
Then, we introduce ROS, which is the open-source middleware that we use to implement
our architecture. We justify this selection by discussing the main features in ROS and how
they fit our UTM system requirements.

3.1. Guidelines for System Design

The Global UTM Association (GUTMA) is a non-profit consortium of worldwide UTM
stakeholders, and it has promoted a discussion about which key properties should be
present in future UTM systems [13]. After reviewing their technical report, we came up
with a summary of these key features for UTM systems. We believe that the following
aspects should be taken into account during the design phase of any UTM architecture:

• Digital. The process of system digitization consists of making the communication
between the different actors and components digital, and introducing automated
decision-making procedures. This is a key aspect in UTM to reduce the operators’
workload in an efficient and secure manner. Moreover, it enables the real-time ex-
change of data between the relevant parties for situation awareness and an easier
integration of the UTM services.

• Flexible and modular. A UTM architecture should be flexible and adaptable to
incorporate new actors (e.g., stakeholders) and functionalities (e.g., services), as they
appear. Besides, the system should be modular, i.e., made of composable and reusable
modules, in order to ease the process of creating more complex functionalities.

• Scalable. A scalable architecture is needed to grow with new actors and services.
In order to achieve that, not only is the aforementioned modularity desirable, but also
a paradigm with distributed responsibilities, rather than the obsolete scheme with a
centralized ATC.

• Safe and secure. These two features are top priorities in any UTM ecosystem. In this
sense, the system should know who is flying each unmanned aircraft, where they are
flying (or intend to fly) to, and whether they are conforming (or not) to mandatory
operating requirements.

• Automated. A UTM system providing automated services to assist the UAS operators
will be more efficient and secure. Therefore, the system should provide support
through automated functionalities for flight planning, monitoring, and real-time de-
confliction, in order to ensure safe operations for both manned and unmanned aircraft.
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• Open-source. The use of open-source technologies is preferable, as they offer a global
approach towards creating and evolving the necessary services and protocols for scal-
able operations. Moreover, open-source components can speed up the development
and the deployment of UTM services.

3.2. Robot Operating System

Robot Operating System (ROS) is an open-source framework for robot software devel-
opment. It consists of a collection of libraries, tools, and conventions to ease the creation of
complex applications in robot systems; including hardware abstraction, low-level device
control, implementation of commonly-used functionalities, message-passing between pro-
cesses, and package management. ROS is also well known among the UAS community, as it
allows drivers to communicate with a wide spectrum of both open-source and commercial
autopilots and onboard sensors. The use of ROS for multi-UAS systems is extending fast,
as it paves the way for integration of heterogeneous hardware and software systems. ROS
is a framework based on multiple processes (so-called nodes) that run in a distributed
fashion. These processes can be grouped into packages, and communicate with each other
by passing messages, which are typed data structures. On the one hand, ROS implements
asynchronous communication through a publish/subscribe paradigm where nodes can
stream messages over different topics. On the other hand, synchronous communication is
implemented through services for request/response interactions.

We decided to use ROS as middleware for our UTM architecture because it offers
multiple features that fit our design guidelines. First, ROS is designed to create modular
and reusable components, and its preferred development model is to write ROS-agnostic li-
braries with clean functional interfaces. Therefore, ROS yields flexible and scalable systems
that can be adapted easily to incorporate new functionalities. Second, ROS is open-source
and strongly supported by a large community. Its federated system of code repositories
enables collaboration and fast development for UAS complex systems. Communication
solutions and drivers for most popular autopilots (e.g., PX4, ArduPilot, DJI, etc.) are
already available in ROS. Moreover, ROS provides remarkable tools for system integra-
tion and testing, and there exist multiple options for multi-UAS simulation, including
Software-In-The-Loop (SITL) solutions for common autopilots [32].

ROS also presents some issues for multi-UAS systems. Mainly, its centralized nature
due to the existence of a single master node that handles all the procedures for node
registration, and its lack of proper Quality of Service (QoS) policies. However, there exist
efficient solutions for these issues. Multi-master architectures have already been used for
applications with multiple UAS [6]; and the adoption of ROS 2 is growing fast among the
community, with a smooth transition from primary ROS. ROS 2 proposes a fully distributed
scheme, where each node has the capacity to discover other nodes, without the need for a
central master. Since it is built on top of the industrial standards DDS (Data Distribution
Service) and RTPS (Real-Time Publish-Suscribe), ROS 2 is capable of offering multiple QoS
options for improved communication.

Even though we have chosen ROS to implement our UTM architecture, mainly due
to its advantages for system integration and realistic SITL simulation, it is important to
remark that the proposed UTM architecture is a more general concept, and it could be
adapted to alternative middleware solutions.

4. UTM System Architecture

This section describes our proposed UTM system architecture. Figure 4 depicts an
overview of all the software modules involved, as well as their interactions. The modules
in green implement specific U-space services. As it was explained in Section 2.1, we focus
on those services that are required to address unexpected events during the flight operation
of a UAS. In particular, we cover four services with their corresponding modules: Tracking,
Monitoring, Emergency Management (EM), and Tactical Deconfliction (TD). Besides, our system
includes additional software modules that provide support to the UTM architecture. First,
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there is a Data Base (DB) component that is in charge of handling all the relevant information
about the state of the airspace, for instance, the current flight plans and tracks for all UAS
operations (which are updated by the Tracking module) and the active geofences (which
can be activated externally by auxiliary stakeholders like fire brigades or internally by
the Emergency Management module). Second, the U-space Service Manager (USM) is a
key module that acts as an interface between the UTM system and the rest of the U-
space ecosystem. Basically, it receives state information and alerts from both the UAS
and the external auxiliary stakeholders, and it communicates back recommended actions
to deal with threatening events. These recommendations are generated by means of
the interaction between the Tracking, Monitoring, Emergency Management, and Tactical
Deconfliction modules.

U-space ecosystem

UTM System

UAS N

Tracking Monitoring

Emergency 
Management

Tactical 
Deconfliction

U-space 
Service 

Manager

Data Base

UAS 2
UAS 1

Data Base

Legend
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Services

Authorities (e.g.: 
fire-fighters) or

Stakeholders
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Figure 4. Overview of the proposed UTM system architecture. This system would be running
in a remote server named U-space Service Provider Platform. The red arrows indicate remote
communication links with other machines in the ecosystem.

Our system is built upon ROS (Section 3.2) and hence, each module consists of a
software process implemented as a ROS node. The communication between modules
takes place through ROS topics and services. In particular, the system is designed to use
services in a preferable manner, as they provide the possibility of acknowledging message
reception, which is crucial to reliably manage many of the UTM interactions. In those
cases, one of the modules acts as a server while others act as clients, which results in an
asynchronous communication between the modules. Upon a client request, the server
module will carry out the requested activity and then it will reply, indicating whether the
result was successful or not. Nevertheless, there are also a few cases where ROS topics are
needed. Topics provide a synchronous communication, and they are used by modules that
need to publish information at a constant rate.

In the following sections, we will provide a more detailed description of the differ-
ent modules in our UTM system. For each module, we describe its functionality and
interactions with other modules, as well as the methodology that we have used to imple-
ment them.

4.1. U-Space Service Manager

The U-space Service Manager is a key module in the UTM system, as it provides an
interface with the rest of the actors in the U-space ecosystem, i.e., the UAS operators and
auxiliary stakeholders like the airspace authorities, the fire-fighters or the police.
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First, the USM receives positioning measurements from the control station of each
UAS, which is transmitted by their onboard telemetry and ADS-B transceivers (if available).
This information is forwarded to the Tracking module in order to keep updated a list of
tracks for all the operational UAS. Second, the USM receives warning information that may
be relevant for the UTM system, coming from external stakeholders (e.g., a declaration
of a wildfire by the fire-fighters) or from the UAS (e.g., the detection of a jamming attack
or a technical failure due to a lack of power). A jamming attack consists of an attempt to
jeopardize the GNSS (Global Navigation Satellite System) signal of a UAS. These previous
events are treated as possible threats by the system and are forwarded to the EM, which is
in charge of processing them. Last, the USM communicates back to the UAS operators any
action determined by the EM (e.g., an immediate landing or an alternative flight plan). Due
to regulatory restrictions, the actions involving the variation of a UAS flight plan are just
recommendations that must be confirmed or rejected by the corresponding pilot. In case
of acceptance, the USM would notify the DB to update the state of that operation and its
flight plan.

4.2. Data Base

The function of the Data Base module is to handle a digital data base with the required
information to represent the situation of the current UAS operations, in the airspace
managed by the UTM system. Basically, this information is made up of active geofences
and UAS operations. The DB works as a server for the rest of the UTM system and hence,
other modules can read the database in order to carry out their tasks (e.g., the Monitoring
module uses the UAS predicted trajectories to detect events of lack of separation); or they
can write the database to update the airspace situation (e.g., the USM can notify new
accepted flight plans and the new EM geofences).

The DB manages two types of objects internally: geofences and UAS operations.
Tables 2 and 3 depict the data structures for each of these objects. A geofence is a 4D
portion of the airspace (a 3D geometrical space with an activation period of time) which
has special restrictions for UAS, like flight prohibition. In the UTM context, the term
dynamic geofence is used for those created during the UAS operation, while the static
geofences are set in a pre-flight phase. The DB stores for each geofence in the airspace the
following information: a unique identifier, its type (cylindrical or polygonal), its geometry
definition, its minimum and maximum altitude, and its starting and finishing time instants.
Besides, the DB stores each UAS operation, which consists of the following data: a unique
identifier for the UAS, given by its ICAO (International Civil Aviation Organization) address;
the priority level of the operation; its associated flight plan; the next waypoint assigned to
the UAS; the predicted trajectory of the UAS; a brief description of the UAS operation; and
the sizes of the Flight Geometry and the Operational Volume.

Table 2. Attributes of a geofence object.

Attribute Data Type Description

Identifier Integer Unique number for geofence identification

Type Enum Cylindrical or polygonal

Geometry List of 2D waypoints Definition of the horizontal shape, defined by a
circle or a polygon

Min/max altitude Float Altitude range where the geofence is active

Start/end time Float Time period in which the geofence is active
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Table 3. Attributes of a UAS operation object.

Attribute Data Type Description

Identifier Integer Unique identification of the aircraft

Priority Enum Priority of the operation in the airspace

Flight plan List of waypoints (x, y, z, t) Reserved 4D trajectory for the operation

Next waypoint Integer Waypoint index that the UAS is currently targeting

Predicted trajectory Float Prediction of the future UAS trajectory

ConOps String Description of the concept of the operation

Flight Geometry Float
Radius of the cylindrical volume where the UAS is
intended to remain during its operation

Operational Volume Float
Radius of the outer cylindrical volume to account for
environmental or performance uncertainties

4.3. Tracking

The Tracking module implements the U-space service with the same name. According
to the U-space definition (Section 2.1), the main functionality of this service is to track
the operational UAS in the airspace. These tracks contain information updated in real
time about the UAS current position and its predicted trajectory within a certain time
horizon. The module computes the tracks by fusing information from different sources
that it receives through the USM. In particular, measurements from the UAS telemetry and
ADS-B transceivers (when available) are integrated to achieve a more accurate estimation
of the UAS positions. Moreover, the future trajectory of each UAS is predicted given its
current position and velocity, as well as its flight plan. The tracking component keeps
updated the UAS tracks in the DB module, so that this information is available for the rest
of the system.

Mathematically, the Tracking module implements a stochastic filter that maintains a
list of objects to estimate the state of each UAS, as depicted in Figure 5. This filter allows
the system to cope with noisy and delayed measurements, as well as irregular sensor
rates. The state of each UAS consists of its 3D position and velocity (expressed in Universal
Transverse Mercator coordinates), and its current waypoint, i.e., the next waypoint of the
flight plan that the UAS is targeting. The continuous variables are estimated through a
Kalman Filter that integrates the measurements coming from the UAS telemetry and the
onboard ADS-B transceivers. These data are previously transformed from geographic to
Universal Transverse Mercator coordinates.

UAS N
UAS 1

Kalman filter

Data 
association

UAS 2

UAS 1

Trajectory
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ADS-B UAS 2
Kalman filter

UAS N
Kalman filter

Telemetry
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Figure 5. Scheme with the internal components of the Tracking module. The data association compo-
nent matches the measurements from the UAS with their tracks, to update the corresponding Kalman
filters. The future UAS trajectories are predicted using the tracks and the flight plans.

The procedures is as follows. At a constant rate, the list of operations is read from the
DB in order to identify the active UAS. The state of all those UAS is predicted and then
updated with the received observations. Each observation can be easily associated with its
corresponding track, since they all come with a unique UAS identifier. The observations

320



Appl. Sci. 2021, 11, 3995

with unknown identifiers are ignored by the filter, as they are considered non-cooperative
aircraft. Moreover, the current waypoint for each UAS is computed by searching for the
waypoint in its flight plan that is closest to its current position. The future trajectory
within a given time horizon is also predicted for each track. If the current position of the
UAS is close enough to its current waypoint (according to a given distance threshold),
the prediction of the future trajectory sticks to the flight plan. Otherwise, the Kalman
Filter is used to predict a trajectory given the current UAS position and velocity. Finally,
after each step, the Tracking module updates all the information about the tracks in the
DB module.

4.4. Monitoring

The functionality of the Monitoring module is to monitor the state of the airspace
and to detect potential conflicts or threats that need to be managed by the UTM system.
In particular, the module deals with conflicts related with UAS trajectories. Thus, it detects:
(i) whether a UAS gets out of its reserved flight volume; (ii) whether it is in conflict
with a geofence; or (iii) whether two UAS lose a minimum required separation. For that,
the Monitoring module periodically reads information from the DB about the UAS tracks
and the geofences, and it analyzes that information to determine when a threatening
situation should be reported to the EM. When the Monitoring notifies the EM, it indicates
the type of the detected threat, a prediction of the time instant when the event will occur
and a snapshot with the current predicted trajectories of the involved UAS. This last piece
of information is sent so that the modules resolving the conflicts use exactly the same data
to evaluate the situation and hence, time glitches and incoherent solutions are avoided.

The first type of issue that is evaluated by the Monitoring module is related to the
Operational Volume that is reserved by each UAS operation (see Figure 6). The Operational
Volume is a 4D space that consists of a 3D volume around the flight plan with a temporal
component representing the time that the volume, as part of an operation, will be reserved
in the U-space ecosystem. The Operational Volume is composed by: the Flight Geometry,
which defines the volume of airspace where the UAS is intended to remain during its
operation; and the Contingency Volume, which is an outer surrounding volume to account
for environmental or performance uncertainties. The closest distance between the current
UAS position and its flight plan is computed to determine whether the UAS is out of its
Operational Volume.

Flight plan

Operational
Volume

Fligth 
Geometry

Figure 6. Graphical representation of the Operational Volume of a UAS operation (the orange
arrow represents its radius). Given a flight plan, the green cylindrical volume around would
represent its Flight Geometry (the green arrow indicates its radius), whereas the outer volume is the
Contingency Volume.
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In addition, this module monitors possible intrusions in geofences. For that, every
waypoint belonging to the predicted trajectory of each UAS is compared against the active
geofences, to determine whether the UAS is already intruding a geofence or it is estimated
to enter one in a short future time. This check is carried out in 4D, i.e., the 3D volume of
the geofence and its activation time are taken into account. More specifically, apart from
checking the waypoint altitude with the minimum and maximum altitudes of the geofence,
an evaluation on the horizontal plane is done depending on the shape of the geofence.
If it is cylindrical, the distance of the given waypoint to the cylinder center is computed
and compared with the geofence radius. If the geofence is defined by a polygonal shape,
the signed angle method is applied. This method computes the sum of the angles between
the segments that connect the test waypoint and each pair of points in the polygon. If this
sum is 360◦, the waypoint is within the polygon, whereas it is outside if the sum is 0◦.
Figure 7 depicts an example.
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Figure 7. The signed angle method is used to evaluate whether a tested waypoint (black dot) is inside
or outside a polygonal geofence. (Left), an example where the angles of an external waypoint sum
up to 0◦. (Right), an interior waypoint whose angles sum up to 360◦.

Finally, the Monitoring module checks whether there is any loss of separation between
UAS that needs to be notified. This check is done with a geometrical approach whose
details can be seen in [33]. Basically, the idea is to discretize the airspace to model it as a
4D grid (see Figure 8), where each cell represents a 4D volume in space and time (dX, dY,
dZ, dT) and stores a list of all the UAS whose trajectory is estimated to be inside. Thus,
each waypoint of a UAS trajectory only needs to be compared with other waypoints within
the neighboring cells (space and time neighborhood). For each waypoint in the 4D grid,
the distances to the waypoints in the lists of its neighboring cells are calculated. If any of
these distances is shorter than a safe distance, a threatening event of loss of separation will
be reported.

Figure 8. A 4D grid representation of the airspace. The dark grey cells would be the neighboring
cells of the black cell.

4.5. Emergency Management

The Emergency Management module is the component of the UTM system that
handles the threatening or unexpected situations in the U-space ecosystem. The module
centralizes all the information related to the events that may become a threat, either due
to conflicting UAS operations or to external warnings (e.g., a jamming attack or a bad
weather situation). After analyzing the threatening events, the EM determines which are
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the recommended actions to resolve the conflicts, and it sends them to the corresponding
UAS operators.

The EM is a central module in the UTM architecture and, as such, it interacts with the
Monitoring, the USM, the DB, and the TD. The possible threats or conflicts are notified
to the EM by the Monitoring or the USM modules. The former reports about conflicts
related with the UAS flight plans, as it was explained in Section 4.4. The latter reports
about external warnings coming from UAS technical issues, UAS operators or auxiliaries
stakeholders in the U-space. For instance, this is the case of a jamming attack, a bad weather
forecast, the declaration of a wildfire by the fire brigades or any other threatening event
notified by emergency corps.

Depending on the severity of each threat, the EM executes a decision-making pro-
cedure to determine the best possible actions to solve the conflict [34]. In this procedure,
the EM takes into account the current flight plans for the involved UAS, the priority of their
operations, and other restrictions in the airspace like the geofences. As output, the EM can
decide to take three different types of actions: (i) to send a specific command to a particular
UAS to terminate the flight, to go back to the flight plan, etc.; (ii) to create a geofence to
isolate the detected threat; and (iii) to propose an alternative flight plan to one or several
UAS to resolve the conflict.

In the first type of action, the EM acts, sending a notification to the corresponding
UAS operator through the USM. In the second type of action, the EM creates a geofence
and it interacts with the DB in order to update the database with geofences. In the third
type of action, the EM sends the alternative recommended flight plans to the USM, which
is in charge of forwarding them to the corresponding UAS. For the computation of these
alternative plans, the EM receives the support of the TD module, which is requested to
compute a series of alternative routes for the involved UAS, depending on the situation.
The TD generates these routes by applying a set of predefined maneuvers for each UAS
(see Section 4.6). Then, the EM selects which are the best alternative routes for all the UAS
in conflict by minimizing the following value function:

N

∑
i=1

M

∑
j=1

α · cij + β · rij ; (1)

where N and M represent the number of conflicting UAS and the number of available
maneuvers for each UAS, respectively; cij is the cost incurred if the UAS i executes the
route j; rij is the riskiness associated with the route j executed by the UAS i; and α, β ∈ [0, 1]
are the optimization weights. Each type of UAS maneuver considered by the TD will
generate an alternative route for the UAS, with an associated cost and riskiness. The former
is related to the additional time that the UAS has to travel to execute the route, while the
latter measures the risk level of the route, e.g., how close it comes to other existing flight
plans or geofences. The values of the weights assigned to the two terms need to be tuned
by a human designer. In general, the system should favor safety over efficiency, so higher
values for β than for α are expected.

Finally, it is important to remark that all the actions sent by the EM to the UAS are just
recommendations. According to the current regulation of the U-space ecosystem, the UTM
can only suggest automatically possible correction actions, but those must be accepted or
rejected by each UAS operator eventually. Nonetheless, our approach would be able to
accommodate a UTM system where the whole process is executed autonomously without
the need for human intervention, which is the final objective in the U-space framework.

4.6. Tactical Deconfliction

The Tactical Deconfliction module provides support to compute alternative flight
plans for UAS that need to resolve a potentially threatening or conflicting situation. The TD
receives requests from the EM indicating the necessary information related to the event
to solve, i.e., the type of threatening situation and the data of the affected operations and
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the active geofences. Depending on the situation, the TD will attempt different types of
maneuvers to generate a list of alternative flight plans for the involved UAS. For each
possible solution, the TD will compute an associated cost and riskiness level, which will be
reported back to the EM, together with the generated alternative flight plans. Then, as it
was explained in Section 4.5, the EM is the module that makes a final decision about which
the best solution to resolve the conflict is.

The TD uses two different approaches to compute the alternative routes, depending
on whether the threat is a conflict between different UAS or a situation with a single UAS
involved. The first case occurs when the flight plans of several UAS are in conflict, e.g., due
to a loss of separation. In that case, a geometric approach based on repulsive forces is used
to modify the original flight plans. The details of the implemented algorithm can be seen
in [35], but it basically models the UAS trajectories as cords with electrical charges that
repel each other, in order to increase their separation. By applying vertical or horizontal
separation maneuvers between the involved UAS trajectories in an iterative procedure
(see Figure 9), the TD can generate several alternative solutions. The priorities of the
conflicting flight plans are also considered. The algorithm tends not to modify the flight
plans of those UAS whose operations present a higher priority in the U-space. For each
computed solution, its cost is calculated as the total distance traveled by the UAS, whereas
its riskiness is the length of the UAS routes that still get in conflict with other geofences.
Even though these types of conflicts are solved in an iterative manner, by applying the
tactical deconfliction procedure for each pair of UAS sequentially, the final solution could
still produce additional conflicts with geofences. In this case, the Monitoring module
would report those new pending conflicts in subsequent iterations.

Figure 9. Iterative procedure to solve a conflict in the case of a loss of separation (from left to right).
The flight plans of the two lower UAS are in conflict and need to be separated. Then, the middle
UAS enters in conflict with the upper UAS, so these two get separated again. As the plan of the
middle UAS gets modified, the lowest UAS is also adapted to achieve a final solution without loss
of separation.

A second approach is used to solve situations with a single UAS involved. This is the
case of a UAS that presents a technical problem, that is out of its Operational Volume, or
that has a conflict with a geofence. In all those cases, a heuristic path planner based on the
well-known A∗ algorithm is used. First, if the UAS flight plan goes through a geofence,
the path planner generates an alternative route avoiding that geofence (see Figure 10, left).
Second, if the UAS is already within a geofence, it gets out of the geofence through an
escape point, and then it avoids the geofence to resume with its flight plan afterwards (see
Figure 10, right). The TD also computes an alternative route from the current UAS position
to the last waypoint in its flight plan, in order to skip the conflicting part of the plan and fly
directly to the final goal. Third, if a UAS is out of its Operational Volume, two alternative
routes are computed: one from the current UAS position to the closest point of its flight
plan; and another from the current UAS position to its next waypoint in the flight plan,
regardless of how long the UAS remains out of its Operational Volume.

In the three cases, an alternative route to return back to the home station is also
computed. The EM could select this option if all the other solutions to continue with
the operation are too risky. In all the generated solutions, the cost is determined by the
total distance traveled by the UAS. The riskiness is determined by the minimum distance
between the alternative route and any geofence, or by the length of the route portions that
remain within a geofence, in case that the solution goes through any geofence partially. In
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case of a UAS out of its Operational Volume, the riskiness of the solution is determined by
the length of the route portion where the UAS stays out of its Operational Volume.

WP2WP1

Geofence

WP2

WP1

WP3

WP4

Geofence

Figure 10. (Left), a UAS with a flight plan crossing a geofence. The last waypoint of its flight plan
before entering the geofence (WP1) and the first waypoint after leaving it (WP2) are obtained, and this
portion of the flight plan is replaced by an alternative route (dashed line). (Right), a UAS that is
inside a geofence. The escape point (WP2) is that on the geofence’s border closest to the UAS (WP1).
From WP3, which is already at a safety distance from the geofence, to the first point of the flight plan
after leaving the geofence (WP4), an alternative route avoiding the geofence is inserted to modify the
original flight plan.

Finally, an alternative route where the UAS travels to its closest landing site can also
be computed in some cases, for instance, if the UAS presents a technical problem like a lack
of battery. In those cases, the riskiness is determined by the distance of the route that goes
through any geofence in the airspace.

4.7. Discussion

In this section, we discuss the functionalities implemented by the U-space services of
our UTM architecture, when compared to those expected in the current definition of the
U-space ecosystem. For that, we have summarized in Table 4 the expected functionalities
to be covered by each of the U-space services included in our system, according to the
bibliography studied in Section 2.1. In the following, we discuss which capabilities are
already covered by our system and the missing points for future implementations.

Table 4. Summary of the functionalities to be covered by the U-space services included in our UTM system.

U-Space Service Functionalities Covered in Our
UTM System

Tracking

Cooperative UAS tracking �

Non-cooperative UAS tracking �

Capability to exchange data with other services �

Real-time tracking with data fusion from multiple sources �

Tracking data recording �

Monitoring

Air situation monitoring �

Non-cooperative UAS identification �

Flight non-conformance detection �

Restricted area infringement detection �

Provision of traffic information for UAS operators �

Conflict alerts �

Emergency
Management

Emergency alerts �

Provision of assistance information for UAS operators �

Tactical
Deconfliction

Transmission of deconfliction information from the
USM to the UAS

�

Transmission of deconfliction information in real time �
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• Tracking. This service is supposed to consider cooperative and non-cooperative UAS,
but our current implementation only manages cooperative UAS. This is because
we have focused on enabling automated decision-making for the operating UAS,
which makes no sense for non-cooperative vehicles. Those should be treated as
uncontrollable intruders (i.e., threats) in the airspace. However, our Tracking module
does have the capability to update and record data in real time from different sources.
Other services can also access these data through the DB module if needed.

• Monitoring. As in the previous case, our current implementation does not consider
non-cooperative UAS. We did not establish a specific communication link to provide
traffic information to the UAS operators either, though this could be easily done
through the USM. However, our Monitoring module does accomplish all the other
expected functionalities, i.e., it detects and alerts in real time about conflicts related to
flight non-conformances, geofences, and inter-UAS separation.

• Emergency Management. This service is expected to provide the UAS operators with
notifications about alerts and any other emergency assistance. Besides, our EM module
includes automated decision-making capabilities, in order to manage threats in real
time by proposing safe and optimal actions to the UAS.

• Tactical Deconfliction. Although this service is supposed to provide deconfliction
information to the UAS operators through the USM, in our scheme this role is played
by the EM module. This is because the automated decision-making capability is
implemented in the EM module, which uses the TD module to get support generating
possible alternative plans. Then, the EM is the one in charge of deciding the best
option for real-time deconfliction.

5. Experiments

This section contains experimental results to showcase the capabilities of the proposed
UTM system. The objectives of these experiments are twofold: (i) we show the integration of
the complete architecture, with all its functional modules interacting together to accomplish
the specified UAS operations; and (ii) we demonstrate our system operating in real time in
a realistic setup, to test its capabilities to solve different types of conflicts in an automated
manner. For that, we have defined two use cases (Section 5.1) involving heterogeneous
UAS and several types of conflicts, in order to validate all the modules in our UTM system.
The tested use cases are realistic both in terms of the UAS operational parameters and the
experimental setup (Section 5.2). Our experiments were carried out by means of Hardware-
In-The-Loop (HITL) simulations where the UAS operators and the UTM framework ran at
different physical locations, with a real long-distance communication link in between. All
of the results of the tests are described in Section 5.3.

5.1. Use Cases Definition

We defined two use cases using the heterogeneous UAS that were depicted in Figure 2: the
multirotor DJI M600 and the fixed-wing Atlantic I. These UAS are used in the GAUSS
project to run tests integrating aircraft with different maneuverability and different propri-
etary autopilots. Both use cases involve a pair of UAS performing operations with different
or equal priorities, and both require the interaction of all the modules of the proposed
UTM system.

Figure 11 depicts a top view of each use case, with the corresponding initial flight
plans. Table 5 summarizes the operational parameters for the use case 1. UAS1 is a multi-
rotor performing an operation for precision agriculture, while UAS2 is a fixed-wing aircraft
that has to inspect an electrical power line. Given its easier maneuverability, the priority
of the UAS1 operation is set lower. The initial flight plans (see Figure 11, left) are such
that the UAS do not coincide in space and time throughout their operations. However, we
simulated an unexpected delay in the start of the UAS1 operation, which resulted in a later
violation of the minimum safety distance between both UAS. Thus, this use case is used to
test how the UTM is able to detect a loss of separation between the UAS and to perform
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real-time tactical deconfliction for an inter-vehicle conflict, deciding new flight plans for
both UAS.

Precision 
agriculture
(flight plan)

Powerline
inspection

(flight plan)

Loring 
aerodrome

(Madrid)
Wind turbine inspection

(vertical flight plan)

Forest 
surveillance
(flight plan)

Figure 11. Top views including the initial flight plans of the use case 1 (left) and the use case 2 (right).
All the operations were planned in an area of the Loring aerodrome in Madrid (Spain).

Table 5. Operational parameters for the use case 1.

Operation 1.1 Operation 1.2

ConOps Precision agriculture Powerline inspection

UAS type M600 (UAS1) Atlantic I (UAS2)

Cruising speed 3.3 m/s 30 m/s

Altitude (Above Ground
Level) 40 m 100 m

Operation priority Low High

Events involved Loss of separation Loss of separation

Table 6 summarizes the operational parameters for the use case 2. In this case, both
UAS1 and UAS2 are multi-rotors, performing two operations with equal priority. In their
initial flight plans (see Figure 11, right), UAS1 moves on a vertical line to accomplish the
inspection of a wind turbine, while UAS2 has to fly on a horizontal plane to survey a nearby
forest. During the operation, a jamming attack is simulated over UAS1. The objective of this
use case is to test how the UTM is able to react in an automated manner to an emergency
generated by an external source, creating a new geofence and adapting to the conflicting
flight plans.

Table 6. Operational parameters for the use case 2.

Operation 2.1 Operation 2.2

ConOps Wind turbine inspection Forest surveillance

UAS type M600 (UAS1) M600 (UAS2)

Cruising speed 1 m/s 1 m/s

Altitude (Above Ground
Level) 30–90 m 70 m

Operation priority High High

Events involved Jamming attack Geofence conflict

5.2. Experimental Setup

We have developed our UTM system architecture in ROS (Kinetic version), and the soft-
ware is available online (https://github.com/grvcTeam/gauss, accessed on 26 April 2021).
First, we used an airspace SITL simulation based on Gazebo [27] for system integration
and preliminary tests. Then, we setup a realistic environment to run experiments in real
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time with HITL simulations. These experiments were carried out within the framework of
the GAUSS project, with the configuration depicted in Figure 12.

   ATLANTIC I - RPS Computer (Microsoft Windows 10)

    UTM Computer (Ubuntu Linux)

UTM system 
application

ROS MQTT 
bridge

ROS 
messages 

   M600 - RPS Computer (Microsoft Windows 10)

Authorities (e.g.: fire-fighters) or
Stakeholders

Legend

RPS MQTT 
Broker

RPS Core 
Client 

Application
TCP/IP

Software 
Module

MQTTHIL telemetry
simulation

MQTT 

M2M Data 
Transmission

Figure 12. Setup for the experiments. The computers running the RPS for the two UAS and the
UTM system were placed at remote locations and communicated through the Internet via the
MQTT protocol.

The company EVERIS (https://www.everis.com/global/en, accessed on 26 April 2021)
ran on its headquarters in Madrid (Spain) a Remote Pilot Station (RPS) for each type of
UAS. Each RPS has an integrated HITL simulation producing real-time telemetry data
for the operating UAS, a graphical user interface to show this telemetry, and the opera-
tional information to the safety pilot (RPS Client Application), and an RPS MQTT Broker
to communicate data over the Internet. The RPS Client Application was developed by
the company SATWAYS (https://www.satways.net, accessed on 26 April 2021) and it can
be seen in Figure 13). Simultaneously, we ran our UTM system on a server located in
Seville (Spain), connected to the Internet via a ROS MQTT bridge. The UAS RPS communi-
cated with the remote UTM system exchanging JSON (JavaScript Object Notation) messages
sent over the MQTT (Message Queuing Telemetry Transport) transport protocol (We used
the open-source Apache Active MQ broker). Moreover, the time synchronization for the
exchanged data between the remote computers was achieved thanks to an NTP (Network
Time Protocol) server. It is important to highlight that this experimental setup is close to the
real U-space ecosystem, where the UTM system would be running on a server located at a
remote distance of the UAS operators.

Figure 13. Screenshot of the graphical user interface developed by SATWAYS running on the RPS Client Application.

5.3. Results

In this section, we present results of the experimental tests for the two proposed use
cases (an illustrative video with the use cases can be seen at https://grvc.us.es/downloads/
videos/UTM_System.mp4, accessed on 26 April 2021), with all the modules in our UTM
system working together. It is important to highlight that the experiments were carried out
in real time, with the UTM system monitoring the operations and managing the unexpected
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events properly. Moreover, the proposed solutions to solve the conflicts were executed in
an automated manner by the simulated UAS, and supervised by human safety pilots.

Figure 14 shows a timeline for the experiment of the use case 1. Both UAS were
supposed to start their operations simultaneously (t = 0 s) according to their pre-flight
generated plans, without conflicts. However, we simulated a delay of 3 s in the start of
the UAS1 operation. The Tracking module received periodically positioning information
from both UAS and it updated the DB accordingly. The Monitoring module checked for
conflicts periodically using the updated tracks from the DB and, at t = 24 s, it detected
a future loss of separation conflict between the UAS. This was communicated to the EM,
which ran an automated decision-making process (supported by the TD) to propose the
optimal conflict resolution. In this case, an alternative flight plan was sent to UAS1 through
the USM module. Figure 15 shows the initial flight plans for the UAS and their reserved
Operational Volume. Despite not having conflicts initially, the delay in the UAS1 operation
provoked an eventual loss of separation in the last part of its operation, which was resolved
with an alternative flight plan. Figure 16 depicts the three options generated by the TD
module and the optimal solution (in terms of risk and traveled distance) selected by the
EM. In the experiment, the conflict was detected by the UTM system well in advance,
and the total time between the detection and the communication of a solution to the USM
took 0.13 s.
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EM

TD
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DB
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UAS2  
operation  
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UAS2  
position
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UAS1  
tracks

Loss of separation 
conflict

T = 24
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T = 361 T = 364

Update flight 
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UAS2  
operation  
finished 

UAS1  
operation  
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Update 
tracks

UAS1  
operation  

started 

T = 24.13

Figure 14. Timeline of the experiment of the use case 1, where a loss of separation event is resolved.
Single arrows indicate isolated interactions between modules, whereas double arrows indicate
periodic communication.

Figure 15. A top (left) and a perspective view (right) of the initial flight plans in the use case 1.
The Operational Volumes are shown for both UAS. There are no conflicts given the UAS 4D trajectories.
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Figure 16. A perspective view of the conflict resolution in the use case 1. A new flight plan for
UAS1 (with a final go down maneuver) was selected to keep the safety distance with UAS2. The other
alternative maneuvers generated by the TD module (go left and go right) are also shown.

Figure 17 shows a timeline for the experiment of the use case 2. Both UAS started
their operations simultaneously (t = 0 s) following pre-flight plans without conflicts. The
Tracking module received periodically positioning information from both UAS, and it
updated the DB accordingly. The Monitoring module checked for conflicts periodically
using the updated tracks from the DB. We simulated a jamming attack over UAS1 (t = 12 s)
that was notified by the USM to the EM, which ran an automated decision-making process.
In this type of threat, due to the involved risks, the EM decided to suspend the UAS1
operation (notifying the USM) and to create a geofence around (updating the DB). Then,
the Monitoring module detected (t = 15 s) a future geofence conflict with the UAS2 flight
plan, which was resolved by the EM (with the support of the TD) with an alternative
plan avoiding the geofence. Again, the time between the detection of the conflict and the
communication of the optimal solution to the USM was less than 1 s. Figure 18 shows the
initial flight plans for the UAS and their reserved Operational Volumes, and the situation
right after the jamming attack. Despite not having conflicts initially, the creation of a new
geofence provoked an eventual conflict, which was resolved with an alternative flight plan
for UAS2 (see Figure 19).
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Figure 17. Timeline of the use case 2, where a jamming attack and a geofence conflict are resolved.
Single arrows indicate isolated interactions between modules, whereas double arrows indicate
periodic communication.
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Figure 18. (Left), top view with the initial flight plans in the use case 2. The Operational Volumes
without conflicts are also shown. (Right), situation after the detection of the jamming attack. A ge-
ofence (in red) is created around the attacked UAS, which generates a conflict with the flight plan of
the other UAS.

Figure 19. A top (left) and a perspective (right) view of the optimal solution in the use case 2.
An alternative flight plan for UAS2 is generated to avoid the geofence.

Finally, it is important to recall that the experiments were carried out with a setup
where the UTM system ran at a remote distance of the UAS stations. Despite that, the com-
munication delays and response times by the UTM system were adequate for a real-time
resolution of the unexpected conflicts. In particular, we measured a reception of the UAS
telemetry data at the USM of an average rate of 1 Hz with a maximum delay of 40 ms.

6. Conclusions

In this paper, we have presented a UTM system architecture framed within the U-space
ecosystem. Our software architecture is flexible and general, and it is built as an open-source
solution that could be easily extended with additional U-space functionalities. Nonetheless,
we have focused on in-flight services for automated threat management and conflict
resolution, which is a major gap in the current state of the art. In our realistic experimental
setup, with the involved systems running HITL simulations communicated through a
remote link with the UTM system, we have demonstrated that the proposed UTM solution
is capable of managing unexpected events in real time, proposing solutions in an automated
manner. In our experiments, the system was able to detect and resolve different types
of conflicts, reasoning about 4D UAS trajectories and Operational Volumes. Besides, we
have tested the feasibility of the system for the future U-space, integrating heterogeneous
types of UAS (fixed and rotary wing), heterogeneous positioning technologies (ADS-B
and telemetry from different autopilots), and a database to keep track in real time of the
different UAS operations and geofences.

Our system has still some practical limitations. First, it relies on a centralized UTM
server that requires continuous communication with the other actors. This bottleneck could
be addressed by splitting the UTM system into a set of distributed and interconnected
servers. Second, our approach does not consider non-cooperative vehicles in the VLL
airspace, such as ultralight planes, nor pre-flight services. However, the architecture is
flexible enough to integrate additional services, e.g., for flight operation pre-planning.
Besides, non-cooperative vehicles could be tackled by working with see&avoid systems
on board the UAS. As future work, we plan to develop further on the emergency manage-
ment functionality, analyzing the possible threats that could appear in the VLL airspace,
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and quantifying the involved risks of the alternative solutions proposed by our system.
Thus, we will be able to improve the capabilities of the system to solve more conflicts safely
and efficiently, and to test it in more varied use cases. Furthermore, we plan to adapt our
UTM system to ROS 2 and to validate it in field trials within the framework of the GAUSS
project, which will be a significant step toward a totally automated U-space environment.
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abbreviations

The following abbreviations are used in this manuscript:

ADS-B Automatic Dependent Surveillance Broadcast
ATC Air Traffic Control
ATM Air Traffic Management
DB Data Base
DDS Data Distribution Service
EASA European Aviation Safety Agency
EM Emergency Management
GNSS Global Navigation Satellite System
GUTMA Global UTM Association
HITL Hardware-In-The-Loop
ICAO International Civil Aviation Organization
JSON JavaScript Object Notation
MQTT Message Queuing Telemetry Transport
NASA National Aeronautics and Space Administration
NTP Network Time Protocol
QoS Quality of Service
ROS Robot Operating System
RPS Remote Pilot Station
RTPS Real-Time Publish-Subscribe
SITL Software-In-The-Loop
TD Tactical Deconfliction
UAS Unmanned Aircraft System
USM U-space Service Manager
UTM Unmanned aerial system Traffic Management
VLL Very Low Level
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Abstract: Airspace geofencing is a key capability for low-altitude Unmanned Aircraft System (UAS)
Traffic Management (UTM). Geofenced airspace volumes can be allocated to safely contain compatible
UAS flight operations within a fly-zone (keep-in geofence) and ensure the avoidance of no-fly zones
(keep-out geofences). This paper presents the application of three-dimensional flight volumization
algorithms to support airspace geofence management for UTM. Layered polygon geofence volumes
enclose user-input waypoint-based 3-D flight trajectories, and a family of flight trajectory solutions
designed to avoid keep-out geofence volumes is proposed using computational geometry. Geofencing
and path planning solutions are analyzed in an accurately mapped urban environment. Urban
map data processing algorithms are presented. Monte Carlo simulations statistically validate our
algorithms, and runtime statistics are tabulated. Benchmark evaluation results in a Manhattan, New
York City low-altitude environment compare our geofenced dynamic path planning solutions against
a fixed airway corridor design. A case study with UAS route deconfliction is presented, illustrating
how the proposed geofencing pipeline supports multi-vehicle deconfliction. This paper contributes
to the nascent theory and the practice of dynamic airspace geofencing in support of UTM.

Keywords: geofencing; unmanned aircraft systems; UAS traffic management; air traffic control;
UAS; low-altitude airspace; computational geometry; path planning; route deconfliction; separation
assurance; map processing

1. Introduction

Small Unmanned Aircraft System (UAS) operations are expected to proliferate [1,2]
for applications such as small package delivery, surveillance, and the visual inspection
of assets including wind turbines, construction sites, bridges, and agricultural products.
Several challenges must be overcome to enable routine small UAS operations. The aviation
community has proposed UAS Traffic Management (UTM) [3–5] to safely and efficiently
manage low-altitude airspace where small UAS are expected to operate. UTM services are
expected to be based on web apps and datalinks which facilitate the efficient definition and
coordination of UAS flight plans.

Airspace geofencing is one of the key capabilities required for UTM [3]. The envisioned
geofencing system will enable safe flight operations by dividing airspace into available
fly-zone (keep-in geofence) and no-fly zone (keep-out geofence) volumes with statically and
dynamically adjusted virtual barriers or “fences” designed to assure UAS separation from
obstacles, sensitive areas, and each other. Geofencing will facilitate safety management (i.e.,
Situational Awareness (SA) for trajectory monitoring, trajectory deviation alerts/geofence
breaches, and contingency plans) and flight management (i.e., route-planning, the selection
of take-off/landing sites, and mission priority adjustment) for UTM. Figure 1 illustrates
airspace geofence examples for UAS flight operations near the One World Trade Center in
Manhattan (left) and for wind turbine inspection (right).
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Figure 1. UAS airspace geofencing examples. The left figure shows a keep-out geofence (red) around
One World Trade Center in New York City. A transiting UAS keeps clear of this geofence with a
path wrapped by a trajectory or keep-in geofence (yellow). The right figure shows a wind turbine
being inspected by a small UAS. During inspection, the usual wind turbine keep-out geofence (red)
is expanded as depicted in green to also enclose the inspection UAS. Any other nearby UAS will keep
clear of this expanded keep-out geofence (green) during inspection activities. This geofence design
assures separation between the two illustrated UAS.

Researchers have previously investigated airspace geofencing systems for UTM. A two-
dimensional keep-in/keep-out geofence construction algorithm was developed in [6]. Real-
time geofence violation detection capabilities have been developed using Ray Casting [7]
and Triangle Weight Characterization with Adjacency (TWCA) [8] methods. Potential
intersections of 2-D geofences can be rapidly detected using a convex hull approach [9]. A
constrained control scheme was developed using an Explicit Reference Governor (ERG)
in [10]; this approach ensures a UAS does not violate geofence boundaries. This previous
research primarily focused on geofence definition, boundary violation detection, and UAS
avionics augmentation to support geofencing. Our work’s focus on 3D path planning with
geofence volumes in a realistically mapped urban environment is complementary.

Cooperative UAS flight tests were also evaluated using “separation by segregation”
geofencing features in [11]. To define a local geofence volume for applications such as
crop inspection, the maximum flight distance a UAS can travel after flight termination was
calculated using vehicle dynamics and position sensors in [12] to define geofence geometry.
This research demonstrated that a UAS stays within its prescribed keep-in geofence in both
nominal and off-nominal (e.g., flight termination) conditions.

A three-dimensional dynamic geofencing volumization solution was proposed using
“operational” and “inverse” volumization functions in [13]. Per [13], airspace operational
volumization is the process by which a requested flight plan is “wrapped” with a geofence
reserved over an approved flight time window. Inverse volumization is the opposite process
in which a flight is planned to always remain within a designated airspace geofence volume.
This paper extends our work in [13] in several ways. First, we integrate the individual
airspace volumization algorithms into a geofencing pipeline described in Section 3. This
geofencing pipeline is shown in Figure 2. We also construct simplified keep-in/keep-out 3-
D geofencing boundaries based on buildings and UAS flight plans, as illustrated in Figure 1.
This algorithm uses parameters such as vehicle speed, geofence boundary safety buffer
size, and polygon simplification parameters to generate a flight plan that does not violate
keep-in/keep-out geofences in the surrounding region. We define a trajectory keep-in
geofence as the airspace volume surrounding the planned flight path with constant ceiling
and floor safety buffers. Pathfinding logic is developed for different start and desired end
locations of a vehicle in the flight plan. The algorithms are built on computational geometry,
where obstacles, buildings, and flight path keep-in geofences are represented as sets of
3-D polygons. Path planning modules are computed efficiently based on a visibility graph
approach and set operations in a 3-D environment.
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Figure 2. Airspace and environment geofencing functionality and data flow.

This work is unique in its joint consideration of low-altitude mapped obstacles and
geofence volume requirements in 3D multicopter sUAS flight planning. Urban terrain and
building maps necessarily create more complex flight paths and safety constraints [14].
As an example, consider package delivery UAS in an urban canyon environment. Safe
operation requires obstacle-free path planning for all sUAS operating in this shared low-
altitude airspace. Planned sUAS paths must therefore treat both physical obstacles (e.g.,
buildings, power lines, and terrain) and keep-out geofences as impenetrable obstacles
that must be circumvented in a safe flight plan. Our work bridges the gap in the existing
geofencing literature by focusing on path planning solutions that assure the satisfaction of
keep-in/keep-out geofenced airspace volume constraints.

The contributions of this work are:

• The specification of formal algorithms to define keep-in/keep-out geofences for obsta-
cles to plan UAS paths with separation assurance;

• The integration of airspace and environmental geofencing processing pipelines with
user inputs to construct geofences and geofence-wrapped path plans in a real-world
urban environment;

• Map data processing to generate keep-out geofences around buildings and terrain and
a process to simplify a detailed map dataset to support a more compact representation
and improved path planning efficiency;

• A benchmark comparison of our geofenced path planning solutions with a fixed
sUAS airway flight corridor design, and a case study of sUAS route deconfliction in
shared airspace.

The remaining structure of this paper is organized as follows. Section 2 summarizes
previous work in UAS Traffic Management (UTM), sUAS and robotic path planning, and
computational geometry methods used in geofencing algorithms. Section 3 defines an
airspace geofence, states assumptions made in this work, and introduces sUAS geofencing
pipeline algorithms used in the generation of flight trajectory solutions. Section 4 describes
OpenStreetMap (OSM) data processing steps to minimize computational time in generating
solutions. Section 5 describes Monte Carlo simulation setups that integrate pipeline algo-
rithms with map data processing. Section 6 presents statistics comparing results from our
airspace volumization algorithm with a fixed airway flight corridor solution for a region of
Manhattan in New York City. Section 7 describes a case study for sUAS route deconfliction,
while Section 8 concludes the paper.
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2. Literature Review

This section presents related work in UTM, computational geometry, and path plan-
ning, all of which are relevant to our geofencing algorithms.

2.1. Unmanned Traffic Management and Geofencing

UTM has been identified as a critical capability for future small UAS operations due
to their unique operating profiles at low altitude, near complex infrastructure, and likely in
mixed-use airspace [3]. UTM-like concepts have been investigated by industry, government,
and academia across the globe. As an example, Single European Sky ATM Research
(SESAR) recommended UTM to the European Union (EU) to safely coordinate UAS [15].
Centralized and distributed UTM with airspace volumes distinguished by altitude layer
was investigated to deconflict UAS traffic in Sweden [16]. UTM was modeled using a
multiplayer network of nodes and airways at low-altitude airspace in Luxembourg [5]. The
National Aeronautics and Space Administration (NASA) perhaps first coined the term UTM
as a system architecture necessary to accommodate UAS in a low-altitude National Airspace
System (NAS) layer not frequently occupied by legacy manned aircraft [3]. Representatives
from industry have worked to establish adequate security protocols for managing UTM
datalinks [17]. NASA, in cooperation with industry, has pursued a series of flight test
events to evaluate cooperative UAS operations in beyond visual line of sight (BVLOS)
conditions with a “separation by segregation” geofence design [11]. Airspace capacity
estimation was analyzed using keep-in and keep-out geofences in [18]. A roadmap for
geofence implementation in urban areas with 5G networks and blockchain was introduced
in [19].

Dynamic airspace geofencing algorithms are novel to UTM. Two different but equally
important perspectives (i.e., local/global) exist in geofencing designs. One perspective
is a classical guidance/navigation/control (GNC) approach, where geofence layering is
only generated for the individual UAS that has full knowledge of its control system. This
vehicle-centered geofence perspective focuses on controlling UAS to ensure that the vehicle
does not violate the geofence boundaries (given expected trajectory tracing errors) [10,20].
In this work, each UAS monitors its real-time state vector relative to geofence boundaries
to detect and react to potential breaches given uncertainties due to sensor errors and wind
disturbances.

Vehicle-centered geofencing research is important but does not consider properties of
the operating area airspace or the ground-based environment. Geofencing has also been
researched from an airspace system perspective. With this viewpoint, geofences are managed
by UTM to organize airspace structure and improve Situational Awareness (SA). UTM will
not model individual UAS capabilities and uncertainties in detail, but it can conservatively
monitor UAS travel through an approved geofence to offer impending breach warnings to
the UAS and actual boundary violations to all traffic per [21].

SA is a fundamental requirement for all flight operations, autonomous or human-
piloted [22,23]; while legacy air Traffic Management (ATM) will remain distinct from UTM
in the near term, advanced air mobility (AAM) supporting increasingly to fully autonomous
flight will motivate the integration of ATM and UTM over the long term. UTM calls for the
automation of airspace management tasks. Airspace organization and protection through
geofencing can improve SA and in turn safety. Our algorithms can be integrated into both
GNC (onboard) and airspace system (UTM) geofencing realizations.

AAM operations, including but not limited to Urban Air Mobility (UAM), are envi-
sioned to have higher altitudes than 400 AGL, where current UTM is designed to serve.
Researchers at NASA and Uber investigated the applicability of UTM to coordinate UAM
routes safely and efficiently [24]. In their case studies, “Transit-Based Operational Volumes
(TBOVs)” were used to wrap the UAM flight path, a notion analogous to the trajectory
keep-in geofence discussed in this paper. Inspired by the static “UAM-authorized airspace”
active over a fixed duration [24] as an airspace management alternative to geofencing, in
our case studies, we designed fixed flight corridors and simulated sUAS flight missions
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operating in these flight corridors. This alternative solution offers a benchmark with which
our dynamic geofence volumization and path planning solutions are compared (Section 5).

2.2. Computational Geometry

Computational geometry has been used to construct and deconflict airspace geofence
volumes and to detect/prevent airspace boundary violations (onboard). A scaling algo-
rithm was developed for two-dimensional keep-in/keep-out concave polygon geofences
in [6]. This paper uses vehicle performance constraints and steady wind conditions to
generate scaled “warning” and “override” geofence boundaries. Once a UAS crosses
one of these boundaries, onboard GNC can trigger a corrective response [25] or flight
termination. In [26–28], algorithms for polygon set operations (i.e., polygon intersections
and unions), polygon clipping, convex hull, and point-in-polygon were developed. We
use these algorithms to detect and resolve geofence boundary conflicts and generate new
geofence volumes by merging conflicting boundaries. A UAS geofence violation detection
method was defined in [7] using Ray Casting [29]. A Triangle Weight Characterization
with Adjacency (TWCA) algorithm was developed as a faster real-time geofence violation
detection method in [8]. TWCA divides geofence into a finite number of triangles and then
finds UAS location in a pre-generated adjacency graph. In [9], a 3-D dynamic geofence
(“moving geofence”) was constructed using maximum cruise time, speed, and range of the
UAS as a pre-departure flight planning algorithm. This paper also proposes a convex hull
approach to find conflicts between current and newly submitted flight plans.

2.3. Path Planning

Determining a collision-free geofence-based flight trajectory is central to the design of
our geofencing volumization work. A variety of path planning algorithms were considered.
Grid-based path planning methods overlay a fixed-resolution grid on top of the configura-
tion space and find discretized line segment paths connecting start state to destination. This
search is fast in low-dimensional space but quickly becomes computationally intractable
with high-resolution maps and appreciable travel distance. The most notable grid-based
path planning algorithms are A∗ [30] and D∗ [31]. A family of roadmap-based path plan-
ning algorithms have been developed to offer a more compact search space optimizing a
specific cost metric. For example, a visibility graph [32] minimizes travel distance, while
a Voronoi diagram maximizes obstacle clearance distance [33]. The application of cell
decomposition [34] offers a compact map for discrete search path planning in an obstacle
field. Other path planning methods include potential-field algorithms [35] that efficiently
build plans with gradient descents but are subject to local minima issues. Sampling-based
path planning algorithms [36] have also been developed and are particularly well suited to
planning in uncertain environments. Our work utilizes a visibility graph approach to path
planning. This approach allows us to directly translate geofence volumes generated with
computational geometry into visibility graph roadmaps. As is discussed below, we scale
keep-out geofences to assure safe separation is maintained. Note that a visibility graph
does not require a rasterized map, enabling geofences to be represented without distortion
or approximation.

3. Definitions and Algorithms

The term airspace geofence was formally defined in [37] to support a common frame-
work for airspace volume reservation in UTM. Our work follows this definition:

Definition 1. A Geofence g = {n, v[], z f , zc, m, h[]} is a volume defined by a list of n vertices in
the horizontal plane v = [(x1, y1), (x2, y2), · · · , (xn, yn)], where n ≥ 3, and an altitude floor z f
and ceiling zc. The volume is defined relative to a set of home locations, hi = (xi, yi, zi, ti), where
h[] is a list of length m ≥ 2. Lateral home positions can be represented as latitude/longitude pairs
(φi, λi) or locally referenced Cartesian coordinates (xi, yi). zi is the altitude of the home location
above Mean Sea Level (MSL). ti is the activation time for home location i where 1 ≤ i ≤ m. tm is
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the deactivation time for geofence g. For consistency, Cartesian coordinates and altitudes are defined
in meters and activation/deactivation times are in seconds.

This data structure supports geofence types: static, durational, and dynamic. A static
geofence has a permanent fixed home location h[ ] and typically surrounds physical obstacles
such as buildings or sensitive areas (i.e., no-fly zones). A durational geofence is active over
a finite time interval with a fixed home location h[ ]. A dynamic geofence is active over a
specific time interval; its home location can move over time.

The following simplifying assumption is made in this paper to facilitate path planning
and eliminate the need for traffic deconfliction.

Assumption 1. One aircraft (e.g., UAS) is allocated to each local geofence volume. No other UAS
is permitted to cross into this volume. UTM efficiency therefore relies on minimizing each reserved
geofence volume and its duration.

Dynamic airspace volumization for geofencing will enhance safety by wrapping a UAS
in an airspace volume that assures separation from other traffic. The below subsections
describe our geofencing algorithm pipeline for UTM, where flight plans are designed with
keep-in/keep-out geofencing volumes on a low-altitude airspace map. Three-dimensional
trajectory keep-in geofence volumes safely wrapping UAS flight paths are described in
Section 3.1, keep-out geofence construction for a low-altitude urban map is described in
Section 3.2, and geofence-based path planning solutions are illustrated in Section 3.3.

3.1. Airspace Operational Volumization

Operational volumization constructs a trajectory keep-in geofence overlaid on a user-
defined 3-D flight trajectory. Climb and descent segments are first generated with vehicle dy-
namics inputs such as velocity and desired time to climb/descend. Then, three-dimensional
cruise operational volumes are created between the climb and descent geofence pair. This
assures a geofence volume always encloses the flight trajectory with the prescribed safety
buffer δvehicle. This algorithm integrates 2-D flight trajectory operational volumization with
the Multiple Staircase Geofence (MSG) algorithm per [13]. Three-dimensional trajectory
volumization is shown in Algorithm 1. Figure 3 shows an example of a 3-D trajectory with
its corresponding three-dimensional geofence volume. A sequence of geofence volumes is
constructed by connecting climb, cruise, and descent geofences with user-specified safety
buffers.

Algorithm 1 3D Flight Trajectory Operational Volumization (3dOperVol).
Inputs: 2-D Trajectory waypoints W , Velocity V , Time to Climb tclimb, Time to Descent tdesc,
Number of Geofence Ngeo, UAS Safety Buffer δvehicle, Cruise Altitude hcruise
Outputs: 3-D Flight Trajectory Ptraj, 3-D Geofence for 3-D Flight Trajectory G
Algorithm:

1: [Pclimb,Gclimb] ← MSG(W [1 : 2],V , tclimb,Ngeo, δvehicle) � generate climb geofence
2: [Pdesc,Gdesc] ← MSG(W [end − 1 : end],V , tdesc,Ngeo, δvehicle) � descent geofence
3:
4: Pcruise ← [Pclimb[end − 1 : end],W [3 : end − 2],Pdesc[1 : 2]] � 3-D Cruise flight
5: [Gcruise] ← MSG(2dOperVol(Pcruise, δvehicle), hcruise) � Generate cruise geofence
6: Ptraj ← [Pclimb;Pcruise;Pdesc]
7: G ← [Gclimb;Gcruise;Gdesc]
8: return [Ptraj,G]
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Figure 3. Example application of Algorithm 1. A sample 3-D flight path is shown on the left. A
corresponding flight trajectory keep-in geofence is shown on the right.

To minimize airspace volume reservation duration, we utilize the shrinking durational
geofence (SDG) and multi-stage durational geofence (MDG) algorithms in [13] for the
cruise segment. A shrinking durational geofence (SDG) removes a previously occupied
geofence volume at each time update in UTM. A multi-stage durational geofence (MDG) has
multiple volumes generated over the flight trajectory with temporal or spatial overlap. For
transitions between MDG regions, either temporal or spatial overlap is used to guarantee
the UAS is always enclosed by at least one MDG. Overlap offers a buffer in case the
UAS flies faster or slower than expected. Note that climb and descent segments utilize
multiple staircase geofences so that previously occupied staircase geofences can be removed
sequentially.

3.2. Constructing a Geofence Volume from an Urban Map

Keep-out geofences are constructed around obstacles (i.e., buildings) to assure sepa-
ration between UAS and obstacles or no-fly airspace zones. The construction of keep-out
geofence volumes from a building and terrain map must be efficiently carried out to con-
strain the computation time needed to generate geofence-based path planning solutions.
For this work, we utilize a visibility graph approach to path planning, as illustrated in
Section 3.3. The time complexity of visibility graph generation is O(n2log(n)), where n
is the total number of vertices in all polygons. In a real-world environment, the number
of keep-out geofences in the urban environment can be significant (i.e., 14,000 building
cluster geofence polygons in the southern Manhattan map). We utilize two algorithms to
achieve map simplification. First, we downsample geofence vertices in the map as shown
in Algorithm 2 per [38] with user-defined parameters nmaxVert and pdwnSmple. This updated
set of keep-out geofences is then used to construct a region of interest (ROI) visibility
graph. The ROI in the map is first constructed as a rectangular box surrounding departure
and destination points. Then, polygon intersection, point-in-polygon, and convex hull
operations are used to define the actual region of interest for which geofence-based path
planning solutions are generated. Generation of the flight planning visibility graph ROI is
shown in Algorithm 3. Figure 4 shows an example of polygon vertex set downsampling.
Figure 5 illustrates an initial rectangular ROI PrecROI example.
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Algorithm 2 Reduce Map Geofence Vertex Set.
Inputs: Set of Keep-out Geofences Sgeo, Downsample Threshold nmaxVert, Downsample
Tolerance In Percentage pdwnSmple
Outputs: Set of Downsampled Keep-out Geofences Sds
Algorithm:

1: Sds ← [] � initialize the output set
2:
3: for S ∈ Sgeo do
4: if len(S)/2 > nmaxVert then
5: Sout ← DecimatePoly(S , pdwnSmple) � downsample polygon vertices
6: k ← 1
7: for j = 1 : len(Sout) do
8: G[k : k + 1] ← Sout[j, 1 : 2] � obtain geofence data structure
9: k = k + 2

10: end for
11: end if
12: Sds ← Sds.add(G)
13: end for
14: return Sds

Algorithm 3 Compute Visibility Graph ROI.
Inputs: Departure Point Pstart, Destination Point Pend, ROI Inital Buffer δROI , Keep-out
Geofence Set Sgeo
Outputs: Keep-out Geofences in ROI SROI
Algorithm:

1: PrecROI ← getRecROI(Pstart,Pend, δROI) � get Rectangular ROI vertices
2:
3: //get convexhull ROI where geofencing solutions are generated
4: Sintersect ← [] � initialize the intersecting geofence set
5: for S ∈ Sgeo do
6: if searchIntersect(S, PrecROI) �= ∅ then
7: Sintersect ← Sintsct.add(S) � Append intersecting geofence
8: end if
9: end for

10:
11: //Search keep-out geofences inside the convex hull PROI
12: SROI ← [] � initialize SROI
13: PROI ← convexHull(Sintersect) � ROI where geofencing solutions are generated
14: for S ∈ Sgeo do
15: if searchIntersect(S, PROI) �= ∅ then
16: SROI ← Sintsct.add(S) � Append intersecting geofence
17: end if
18: end for
19: return SROI
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Figure 4. Example of reducing number of vertices to simplify the associated visibility graph. The left
illustration shows three original polygons. The right illustration shows the polygons after applying
the vertex downsampling algorithm. nmaxVert and pdwnSmple are 15 and 60%, respectively. The time
complexity of visibility graph generation is O(n2log(n)), where n is the total number of vertices in all
polygons. The number of vertices in the lower polygon illustrated here is reduced from 15 to 9.

Figure 5. Illustration of rectangular ROI generation. Start point, destination point, and ROI initial
buffer size δROI are used to initialize the rectangular ROI per Algorithm 3.

3.3. UAS Flight Planning in a Geofenced UTM Airspace

Flight plans are typically optimized over distance, energy usage, and flight time (delay)
cost metrics. A UAS configuration space is first obtained from user-defined safety buffers
δvehicle, δbuilding around the vehicle and obstacles, respectively. The UAS can then be treated
as a point mass in configuration space with obstacle boundaries expanded for safety by:

δsb = δvehicle + δbuilding. (1)

This safety buffer ensures the vehicle maintains sufficient clearance from any obstacles.
δvehicle and δbuilding are user-specified parameters in this work.

Our proposed geofencing pipeline applies three inverse volumization options per [13]
based on user-specified departure and destination locations. The first option is a “turn”
solution that calculates climb, cruise, and descent flight trajectories that turn away from
nearby obstacles, maintaining a minimum-distance path from start to end. For this module,
a low-dimensional visibility graph search with Dijkstra’s algorithm [39] plans paths around
obstacles (i.e., polygons) defined in a local Cartesian frame. We modeled keep-out geofences
on obstacles as open set 3-D polygons extruded from 2-D obstacles with fixed heights. Per
Section 2.3, an obstacle-free visibility graph or roadmap space can be constructed from
geofence and obstacle polygons without rasterization [32,40].

The second path planning option is a “constant cruise altitude climb” module for
which the UAS climbs over no-fly and obstacle volumes until a direct-heading route to the
destination is obstacle-free. For this option, a vehicle first climbs to a pre-determined cruise
altitude greater than the highest building en route to the destination. Then, the vehicle
flies directly to the destination at cruise altitude. As the vehicle approaches the end of its
cruise segment, it descends to the destination free of obstacles along the path. The third
path planning option is a “vertical terrain follower” module, where a UAS follows the
terrain altitude profile en route to the destination, flying as low as possible. This solution
minimizes the time a UAS will spend at a high altitude potentially in conflict with other
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transiting traffic, but it adds complexity to the altitude profile. Figure 6 shows examples of
turn, constant cruise altitude, and terrain follower climb solutions per [13].

Figure 6. Three candidate flight planning solutions respecting keep-out airspace geofence and
obstacle “no-fly” volumes. A turn solution uses a visibility graph to define a constant-altitude
path around no-fly zones (left). A cruise altitude solution climbs to an altitude greater than the
highest building enroute to the destination (center). The terrain follower defines an altitude profile
maintaining minimum safe clearance or greater from no-fly zones (right).

To determine which of three solutions is best, a weighted cost function over time,
distance, and energy is defined:

C = α ∗ dtravel + β ∗ Ptravel + γ ∗ twait. (2)

where dtravel , Ptravel , and twait are distance traveled, power consumption, and time delay
until durational geofences disappear, respectively. Weighting factors α, β, andγ are user-
defined. The path planning solution with minimum cost is then suggested to an operator
and/or automation. The flight planning process with geofencing is shown in Algorithm 4.
In this algorithm, the departure point, destination point, cruise altitude, and keep-out
geofence boundary coordinates are input along with cruise velocity and climb/descent
times. For the turn solution, a Rotational Plane Sweep (RPS) algorithm is used to find all
straight-line segments connecting line-of-sight vertices to form a visibility graph map. Then,
Dijkstra’s algorithm finds the minimum distance path from departure to destination point.
For constant altitude climb and terrain follower solutions, points of intersection between
a straight line solution path and obstacles are found using a polygon-line intersection
operator. Then, obstacle height at the intersection points are extracted from keep-out
geofence data. Three-dimensional flight trajectory “turn”, “constant cruise altitude”, and
“terrain follower” solutions are wrapped with geofences using Algorithm 1. The best
solution is the minimum cost module based on Equation (2). Note that geofence segment
duration is not explicitly considered in this paper. Instead, it is assumed the flight trajectory
keep-in geofence generated using Algorithm 4 remains active from UAS launch to landing.
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Algorithm 4 Flight Planning With Geofencing.
Inputs: Departure Point Rstart, Destination Point Rend, Cruise Altitude hcruise, Keep-out
Geofence Boundaries Sgeo, Aircraft Velocity V , Time to Climb tclimb, Time to Descend tdesc,
Number of Geofences Ngeo, UAS Safety Buffer δvehicle
Outputs: Planned Flight Trajectory Ptraj, Trajectory-wrapping 3-D Geofence Volumes G
Algorithm:

1: //turn solution module
2: RVG ← [Rstart;Sgeo;Rend] � Vertices of Visibility Graph
3: [edges, vert_ID] ← RPS(RVG) � get visibility graph edges on the map using RPS
4: [Rturn] ← dijkstraPath(Rstart,Rend, edges, vert_ID) � get min. distance path
5: [Pturn,Gturn] ← 3dOperVol(Rturn,V , [tclimb, tdesc],Ngeo, δvehicle, hcruise)
6: Dturn ← getDist(Pturn) � get turn module flight distance
7:
8: //climb solution modules
9: Rintersect ← searchIntersect(RVG) � get intersections from [Rstart;Rend] to Sgeo

10: if Rintersect �= ∅ then
11: hintersect ← extractHeight(Rintersect,Sgeo) � get heights at intersections
12: hmax ← max(hintersect)
13:
14: //constant cruise altitude
15: [Pconst,Gconst] ← 3dOperVol(Rintersect,V , [tclimb, tdesc],Ngeo, δvehicle, hmax)
16: Dconst ← getDist(Pconst) � get constant altitude cruise flight distance
17:
18: //terrain follower
19: [Pterr,Gterr] ← 3dOperVol(Rintersect,V , [tclimb, tdesc],Ngeo, δvehicle, hintersect)
20: Dterrain ← getDist(Pterr) � get terrain follower flight distance
21: end if
22:
23: //cost comparison
24: [Cmin, opt] ← costCompare(Dturn,Dconst,Dterrain)
25: if opt == 1 then
26: [Ptraj,Gtraj] ← [pturn,Gturn] � best sol: turn module
27: else if opt == 2 then
28: [Ptraj,Gtraj] ← [pconst,Gconst] � best sol: constant cruise altitude module
29: else
30: [Ptraj,Gtraj] ← [pterr,Gterr] � best sol: terrain follower module
31: end if
32: return [Ptraj,Gtraj]

4. Environment Modeling

Map Data Processing

To evaluate the proposed geofencing capability in a complex low-altitude environment,
we processed OpenStreetMap (OSM) data for the Manhattan Borough of New York City
(USA). OSM is a collaborative global mapping project that creates geographical data and
information [41]. OSM is frequently updated and provides map entities including airways,
roads, buildings, and more. To minimize map processing overhead for this work, we used
pre-processed georeferenced OSM Manhattan building data as described in Ref. [42]. This
raw data contain building coordinates represented as polygon vertices, building heights,
and street level in WGS 84/UTM zone 18N [43], where units are in meters with East,
North, Up (ENU) axes. We applied a combination of set and convex hull [32] operations to
simplify geofence geometry for flight planning. Figure 7 shows the flowchart for map data
post-processing. After post-processing, the dataset was partitioned into four categories:
buildings with heights greater than 20 m, 60 m, 122 m, and 400 m. Depending on sUAS
start and end altitude (i.e., roof of building, ground), flight planning utilizes one of these
four datasets to generate plans and associated geofence volumes.
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Figure 7. Flowchart of post-processing map data. OSM data were converted to a MATLAB for-
mat, then processed using polygon set convex hull operators to reduce the number of keep-out
geofences in the region of interest (ROI), the area between departure and destination points. If
the number of vertices in a geofence is greater than threshold nmaxVert, it is downsampled to
pdwnSmple. nmaxVert and pdwnSmple are user-defined parameters set to 15 and 60%, respectively,
in this work. Algorithms 2 and 3 are used in finding ROI and reducing number of map vertices.
Three-dimensional keep-out geofences around buildings are generated with safety buffer δbuilding.

Figure 8 shows a map of southern Manhattan with closely spaced building clusters
each enclosed by a single keep-out geofence to simplify the Manhattan urban canyon
map. Figure 9 shows an example of post-processed georeferenced data and its 3-D keep-
out geofence.

Figure 8. Post-processing map data for southern Manhattan. Buildings with heights greater than
20 m are shown. The rightmost plot shows keep-out geofences enclosing building clusters (black solid
lines), individual building keep-out geofences (black dashed lines), and building outlines (colored
lines). Geofence maps for 60 m, 122 m, and 400 m altitude cross-sections are constructed in the
same manner.

Figure 9. Post-processed georeferenced data for the One World Trade Center building in Manhattan.
The top left and right show raw OSM data side and top views, respectively. The bottom left and right
show post-processed keep-out geofence data (shaded in green) side and top views, respectively.
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A southern Manhattan, New York City map was defined by 14,000 building cluster
geofence polygons using the above procedure. To further simplify the map, we downsam-
pled geofence vertices and construct an updated set of keep-out geofences from the ROI
visibility graph per Algorithms 2 and 3 in Section 3.2. Figure 10 shows an example of the
rectangular ROI, ROI obstacle polygon, and visibility graph generation pipeline. The “turn”
flight planning visibility graph was constructed from keep-out geofences inside the ROI
along with departure and destination locations.

Figure 10. Keep-out geofence polygon extraction for UAS flight planning. The initial ROI (green
dashed line) is a rectangular box per Figure 5. Keep-out geofences (solid black lines) inside or
intersecting the rectangular ROI box are found using polygon intersection and point-in-polygon
operations. The final ROI (red dashed line) is the convex hull around these keep-out geofences. For
our simulation, δROI = 150 m.

5. Simulation Setup

Monte Carlo simulations were used to evaluate proposed airspace volumization
strategies on the Manhattan map. Figure 11 shows the flowchart of pathfinding logic in
our simulation setup. Pathfinding logic comprises four solution modules for the airspace
geofencing algorithm. Once the start and end locations were defined, the keep-out geofence
ROI polygons (Figure 10) were extracted from post-processed map data. Constant cruise
altitude and terrain follower modules were generated by searching the intersection points
between the buildings’ keep-out geofences and the line that connects UAS start and end
waypoints. A pure turn solution was generated if both start and end locations were on the
ground. If either start or end location was on the roof of the building (i.e., inside of the
keep-out geofence), a constant cruise altitude algorithm was first used to find the flight
path from the start/end point to the outside of the keep-out geofence, and the turn module
solution was used to calculate the remaining flight path, creating a combined solution.

Control parameters are shown in Table 1. To offer an experimentally grounded dataset,
a prototype quadplane’s power consumption model [44] was used per Table 2 to compute
Ptravel in climb, cruise, and descent segments. A quadplane is a hybrid quadrotor/fixed-
wing UAS designed to vertically takeoff and land in an urban environment. For our
simulations, the quadrotor motors were active in all phases of flight; cruise power would
otherwise be lower. Cost function weighting factors α = 0.6, β = 0.2, γ = 0.0 were chosen
to prioritize minimum-distance solutions. Note that γ was set to zero because building
obstacles have static or permanent geofences.
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Figure 11. Flow chart of pathfinding logic for different start and end locations. In the chart, V.G.
abbreviates visibility graph, and hbldg is the height of a geofence around a cluster of buildings. If the
departure/destination is not inside the keep-out geofence ROI box, hbldg at start/end point is set to
street/terrain altitude.

Table 1. Control parameters for geofenced flight planning case studies.

Vvehicle δvehicle δbuilding Ngeof ence zcruise

5 (m/s) 2 (m) 5 (m) 5 50 (m)

Table 2. Flight power consumption data from [44].

Climb Descent Forward Flight

312 (J/s) 300 (J/s) 328 (J/s)

6. Simulation Results

A total of 1010 Monte Carlo simulations were run with our Manhattan maps. For
each case, start and destination points were randomly defined. Selected start/end altitudes
ranged from 20 m above ground level to the highest building roof. The 20 m value
represents an above-ground vertical climb to hover waypoint to ensure the multicopter is
well clear of people on the ground when it begins executing its lateral flight plan. If both
start and end points had altitudes less than 50 m, the cruise altitude for the turn solution
was set at 50 m. Otherwise, cruise altitude was adjusted based on the following condition:

zcruise = max{hstart, hend}i f hstart > 50 m || hend > 50 m. (3)

Our airspace volumization algorithm used this condition to choose one of the fixed-altitude
datasets described in Section 4. As zcruise becomes larger, fewer obstacles were present,
so fewer calculations were needed to generate and plan a flight through the visibility
graph. For each case, cost values of the four planning options (“turn”, “constant cruise alt.”,
“terrain follower”, “combined (constant cruise altitude + turn)” ) were calculated using
Equation (2), and the minimum cost solution was selected as the best solution. Note in
the Manhattan data the “wait” solution was never used because buildings are permanent,
resulting in static geofence obstacles only.

Monte Carlo results offer an opportunity to compare our airspace volumization solu-
tions against a manual fixed airway or “flight corridor” airspace design. A conventional
fixed-altitude airway is permanently designated on a map to enable traffic “queues” to
organize in a way that can be managed by human air traffic controllers. It is unclear
whether UTM will benefit from this legacy design practice, motivating our comparison of
path costs for our airspace volumization and fixed airway solutions. Unlike our airspace
volumization, fixed airway/flight corridor maps only require a local search for the closest
airway to join. The UAS then follows fixed airway routes until exiting over a short final
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segment to the end state. We generated a pair of low-altitude horizontal and vertical
airways through our Lower Manhattan map to illustrate the airways concept and support
our evaluation.

The designed vertical airway in Lower Manhattan follows Broadway, the north–south
main thoroughfare, from its origin at Bowling Green to Houston Street. The horizontal
airway follows Chambers Street from River Terrance in the west to Municipal Plaza in the
east, and then follows the Brooklyn Bridge until it reaches the East River. We provided
two sets of the same cross airways at 150 m and 500 m to offer each UAS an altitude choice
since more obstacles are present at 150 m but the climb will be more substantial to 500 m.
Figure 12 shows our manually defined airway corridors. To offer a practical comparison,
only randomly generated start and end points that do not lie in the same quadrants (i.e.,
712 out of 1010 simulation examples) were considered. If randomly-generated start and
end points were located in the same quadrant, the airways were unused, thus offering no
benefit to efficiency or airspace organization.

Figure 12. Example horizontal and vertical airway corridors in Manhattan.

Figure 13 shows a top-down route view comparing our airspace volumization and
flight corridor solutions. Cost weights α = 0.6, β = 0.2, γ = 0.0 were again used, so dtravel
was prioritized in minimizing overall cost. For the illustrated case, the “turn” solution
is best. Flight corridor solution cost was in fact typically higher than any of our airspace
volumization solutions. For the same example, altitude vs. time plots for each solution are
shown in Figure 14. Examples of geofencing solutions are shown in Figures 15–17, where
three alternative trajectory solutions are generated, ensuring the avoidance of no-fly zones.
Building keep-out geofences are shown in green.

Figure 13. Top-down view of example flight paths for airspace volumization and fixed flight corridor
solutions. Distances traveled are 770 m (turn), 1051 m (constant cruise), 1139 m (terrain follower),
1528 (150 m flight corridor), and 1977m (500 m flight corridor).
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Figure 14. Flight altitude time histories for airspace volumization and flight corridor solutions for
Figure 13 example.

Figure 15. Example of a 3-D geofence wrapping a “turn” flight plan solution. Polyhedra in green
denote keep-out geofences around buildings near the trajectory’s keep-in geofence. The remaining
2-D polygons denote keep-out geofences around buildings that are more distant from the sUAS
flight path.

Figure 16. Example 3-D geofencing solution for a “constant cruise altitude” flight plan solution.
Polyhedra in green denote keep-out geofences around buildings near the trajectory’s keep-in geofence.
The remaining 2-D polygons denote keep-out geofences around buildings that are more distant from
the sUAS flight path.
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Figure 17. Example 3-D geofencing solution for a “terrain follower” flight plan solution. Polyhedra
in green denote keep-out geofences around buildings near the trajectory’s keep-in geofence. The
remaining 2-D polygons denote keep-out geofences around buildings that are more distant from the
sUAS flight path.

For each Monte Carlo simulation, the minimum-cost C solution was compared to flight
corridor solution costs at 150 m and 500 m per Table 3. Since the flight corridor at 150 m
was almost always better than the flight corridor at 500 m, benchmark data compare the
best solution obtained using dynamic airspace volumization with the flight corridor at
150 m. The results indicate our airspace geofencing volumization solutions generally have
lower cost than flight corridors at 150 m or 500 m do.

The average distance and power consumption of the two-dimensional straight-line
path between each start and destination location are shown in Table 4.

Table 3. Number of cases where airspace volumization vol has minimum cost (left) and number of
cases where the flight corridor at 150 m has lower cost than the corridor at 500 m.

# {Cvol.method < C150m} # {C150m < C500m}

698 out of 712 cases 702 out of 712 cases

Table 4. Average distance (d), power consumption (P), and minimum and maximum distances of 2D
straight-line paths between start and destination states for the Monte Carlo simulations.

μd2D path μP2D path min{d2D path} max{d2D path}
1391 (m) 91259 (J) 189 (m) 3003 (m)

The mean and standard deviation for dtravel , ptravel for the minimum cost airspace
volumization solution are summarized in Table 5. The percent frequency distributions of
the four solution options are shown in Figure 18.

Table 5. Mean μ and standard deviation σ of the minimum-cost airspace volumization solution.

μdtravel σdtravel μPtravel σPtravel min{dtravel} max{dtravel}
1595 (m) 606 (m) 94,338 (J) 39,609 (J) 254 (m) 3349 (m)
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Figure 18. Percent frequency distribution of minimum-cost solutions over Monte Carlo simulations.

A similar analysis was performed to compute travel distance and power consumption
statistics for the flight corridor solutions at 150 m and 500 m, as shown in Tables 6 and 7.

Table 6. Mean μ and standard deviation σ of 150 m flight corridor solutions.

μd150m σd150m μP150m σP150m min{d150m} max{d150m}
2303 (m) 820 (m) 149,084 (J) 53,449 (J) 479 (m) 4464 (m)

Table 7. Mean μ and standard deviation σ of 500 m flight corridor solutions.

μd500m σd500m μP500m σP500m min{d500m} max{d500m}
2796 (m) 788 (m) 179,363 (J) 51,502 (J) 1142 (m) 4836 (m)

Dynamic airspace volumization and flight corridor solutions at 150 m are normalized
by the two-dimensional straight-line path parameters, indicating the percent increase in
average travel distance and power consumption. A normalized benchmark comparison
is shown in Table 8. On average, our 3-D airspace geofencing solution increased travel
distance by 15% and power consumption by 3% compared to 2-D straight-line paths from
start states to destination states. On the other hand, the travel distance increased by 66 %
and power increases by 63% when comparing minimum-cost 3-D geofencing solutions with
150 m flight corridor solutions. This analysis indicates our airspace geofencing algorithm
generates routes that offer nontrivial distance (time) and power (energy) reductions relative
to flight corridor paths, at least for Manhattan.

Table 8. Normalized travel distance comparison between airspace geofencing and 150 m flight
corridor solutions.

μdtravel /μd2D path μPtravel /μP2D path μd150m /μd2D path μP150m /μP2D path

115 (%) 103 (%) 166 (%) 163 (%)

All simulations were executed on a standard laptop PC using uncompiled MATLAB
code. The mean runtime and standard deviation over all 1010 Monte Carlo simulations
were computed. The average runtime was 10.98 s with σ = 12.68. The minimum runtime
was 0.13 s, and the maximum runtime was 90.66 s. As the number of obstacles inside the
fly-zone increase, runtime also increased, as might be expected. A more computationally
efficient visibility graph algorithm could be implemented in future work [45], particularly
with a large obstacle set. Migration from uncompiled MATLAB to a compiled code (e.g., in
C++) will also improve performance.
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A Monte Carlo simulation generated a suite of random launch (start) and landing
(end) points for a single sUAS flying in Lower Manhattan. Start and end points were either
located on the ground or a flat building roof to simulate the diverse sUAS flight cases that
might be encountered in a densely populated urban environment. Keep-out geofences
were generated at each building or around blocks of clustered buildings, representing
no-fly zones for the sUAS. Our airspace geofencing pipeline successfully generated flight
plans and enclosing geofence volumes for four flight trajectory solution options for all 1010
Monte Carlo simulations. The minimum distance and energy cost was chosen as the best
solution. Our geofence-based path planning solutions outperformed a more traditional
fixed flight corridor routing option.

Our Monte Carlo simulations did not limit the maximum altitude for UAS flight, so the
trajectories for some solutions had cruising altitudes greater than 400 ft AGL, beyond the
UTM and sUAS ceiling. Our Monte Carlo results showed the “combined” solution option
(i.e., constant cruise and turn) was preferred most often. A maximum altitude constraint
would eliminate all solutions that climbed above UTM-managed airspace, likely resulting
in the more frequent use of visibility graph “turning” solutions. The results in Table 8
showed that our algorithm generates solutions that are 51% and 60% more efficient than
flight corridor solutions at 150 m altitude in terms of normalized average flight distance
and power consumption, respectively. It is likely that for AAM airspace corridors accessible
to sUAS, above 400 ft AGL will be designated. For longer-distance flights, a flight plan
might use an efficient dynamically geofenced route to/from a high-altitude transit tube,
potentially requiring a hybrid combination of dynamic flight planning and geofencing at
UTM-managed altitudes and fixed corridor transit at altitudes managed by legacy ATM.

7. Case Study with sUAS Route Deconfliction

The above results describe single geofenced sUAS routes through a complex urban
landscape. In general, UTM will manage multiple sUAS in shared airspace. This section
presents a case study illustrating how the proposed geofencing pipeline supports multiple-
sUAS deconfliction. For this study, we assume airspace is allocated first-come-first-served.
Suppose sUAS1 and sUAS2 request flight plans each defined by departure and destination
coordinates (WGS 84/UTM zone 18N), cruise speed, and targeted cruise altitude as defined
in Table 9. Further, suppose sUAS1 receives approval for its flight plan and associated
geofence volume before sUAS2 contacts UTM. sUAS2 will then need to plan a flight that
avoids the Manhattan terrain and building geofences as well as the flight trajectory geofence
wrapping the sUAS1 route. Figure 19 shows the resulting flight plans for sUAS2 as a top-
down route view comparing our airspace volumization and flight corridor solutions. For
this example, altitude vs. time plots for the sUAS2 solutions are shown in Figure 20.

Figure 19. Top-down view of sUAS2 sample solutions. Five flight trajectory solutions are generated
for sUAS2. Each solution provides route deconfliction from Manhattan terrain and building geofences
and from the sUAS1 flight trajectory geofence. Distances traveled are 2008 m (turn), 1585 m (constant
cruise), 1634 (terrain follower), 1983 (150 m flight corridor), and 2395 (500 m flight corridor). The
minimum-cost solution for sUAS2 is the constant cruise altitude option.
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Figure 20. Flight altitude time histories for airspace volumization and flight corridor solutions for
sUAS2 in Figure 19 example.

Table 9. Flight plan parameters for sUAS1 and sUAS2.

PDeparture (m) PDestination (m) VU AS (m/s) htargetCruise (m)

sUAS1 [584,085; 4,508,093; 0] [584,248; 4,506,598; 0] 30 50

sUAS2 [583,600; 4,507,000; 0] [584,460; 4,507,660; 0] 20 50

Since sUAS1 and sUAS2 have the same target cruise altitude, a maneuver was required
for sUAS2 to deconflict its “turn” route from the sUAS1 flight trajectory, making this the
longest distance solution option. On the other hand, the “constant cruise altitude” and
“terrain follower” solutions were not influenced by the sUAS1 trajectory because the
minimum building height along the straight line path from departure to destination for
sUAS2 was greater than sUAS1’s target cruise altitude. If building height placed sUAS2 at
sUAS1’s cruise altitude, sUAS2 would also need to climb over the sUAS1 geofence. Note
that if sUAS1’s airspace volume reservation duration was minimized using SDG or MDG,
sUAS2’s path had a lower probability of being impacted. Example 3-D sUAS2 in “turn”,
“constant cruise altitude”, “terrain follower” solutions are shown in Figures 21–23.

Figure 21. Example of a 3-D geofence wrapping a “turn” flight plan for sUAS2. The sUAS2 trajectory
is shown in black, and the sUAS1 trajectory is shown in blue. Polyhedra (green) denote keep-
out geofences around buildings. The remaining 2-D polygons denote keep-out geofences around
buildings that are outside the combined ROI.
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Figure 22. Example of a 3-D geofence wrapping a “constant cruise altitude” flight plan for sUAS2.
The sUAS2 trajectory is shown in black, and the sUAS1 trajectory is shown in blue. Polyhedra (green)
denote keep-out geofences around buildings. The remaining 2-D polygons denote keep-out geofences
around buildings that are outside the combined ROI.

Figure 23. Example of a 3-D geofence wrapping a “terrain follower” flight plan for sUAS2. The
sUAS2 trajectory is shown in black, and the sUAS1 trajectory is shown in blue. Polyhedra (green)
denote keep-out geofences around buildings. The remaining 2-D polygons denote keep-out geofences
around buildings that are outside the combined ROI.

8. Conclusions and Future Work

This paper applied airspace geofencing volumization and path planning to support
UTM management of low-altitude airspace. Layered durational geofences wrapping flight
trajectories ensure the UAS will fly without conflict in designated or reserved airspace
volumes. Our airspace volumization algorithms generated four conflict-free paths for any
keep-in/keep-out geofence volume set based on turn, constant cruise, terrain follower
and combination turn/cruise options. The algorithm ranked these paths using a weighted
distance, energy, and time cost function, then selected the minimum-cost solution. A city
map data of Lower Manhattan was used to construct keep-out geofences around buildings.
Monte Carlo simulation studies validate our geofence algorithms and support the statistical
characterization of performance including run time. A benchmark comparison of our
dynamically geofenced flight plans and conventional flight corridor solutions is provided,
showing that our solutions reduce flight distance and power compared to fixed corridor
solutions. A case study of two sUAS flight planning demonstrated how the proposed
geofencing pipeline supports multiple sUAS deconfliction. Algorithms and definitions
from this paper can contribute to future UTM dynamic airspace geofencing operational
standards.

This work simplifies flight planning to geometric paths. Future work will incorporate
aircraft dynamics into flight plans and geofence layer sizing, extend airspace volumization
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to enclose cooperative groups of sUAS. Additionally, the altitude constraint and other
factors such as day/night local population density, GPS dependency, air traffic volume,
and vehicle-specific parameters should be incorporated in the geofenced path planning
algorithm to generate solutions that are more realistic for UTM-specific applications. We
hope to apply machine learning to large-scale flight track data and urban maps to generalize
and optimize geofencing volume designs based on area topology, day/night occupancy,
infrastructure, and existing air traffic patterns. We will also explore auto-code generation
and Python/C++ implementations to improve path planning computational performance.
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Abbreviations

The following abbreviations are used in this manuscript:

AAM Advanced Air Mobility
AGL Above Ground Level
ATC Air Traffic Control
ATM Air Traffic Management
BVLOS Beyond Visual Line of Sight
dtravel Vehicle travel distance
ERG Explicit Reference Governor
GNC Guidance Navigation and Control
IoT Internet of Things
MDG Multi-staged Durational Geofence
MSG Multiple Staircase Geofence
NAS National Airspace System
nmaxVert Allowable maximum number of vertices in a geofence
OSM OpenStreetMap
pdwnSmple Downsampling percentage of the number of vertices in a geofence
Ptravel Power consumption over dtravel
ROI Region of Interest
RPS Rotational Plane Sweep
SA Situational Awareness
SBG Single Big Geofence
SDG Shrinking Durational Geofence
sUAS small Unmanned Aerial System
TBOV Transit Based Operational Volumnes
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TWCA Triangle Weight Characterization with Adjacency
twait Wait time until a geofence disappears
UAS Unmanned Aircraft System
UTM UAS Traffic Management
UAM Urban Air Mobility
VUAS UAS flight speed
δbuilding Safety buffer around a building
δsb Total safety buffer
δROI Safety buffer of initial ROI
δvehicle Safety buffer of vehicle
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Abstract: This paper addresses the estimation of accurate extreme ground impact footprints and
probabilistic maps due to a total loss of control of fixed-wing unmanned aerial vehicles after a main
engine failure. In this paper, we focus on the ground impact footprints that contains 95%, 99% and
99.9% of the drone impacts. These regions are defined here with density minimum volume sets and
may be estimated by Monte Carlo methods. As Monte Carlo approaches lead to an underestimation
of extreme ground impact footprints, we consider in this article multiple importance sampling to
evaluate them. Then, we perform a reliability oriented sensitivity analysis, to estimate the most
influential uncertain parameters on the ground impact position. We show the results of these
estimations on a realistic drone flight scenario.

Keywords: UAV; probabilistic maps of impact; ground footprints; Monte Carlo; importance sampling;
sensitivity analysis

1. Introduction

Assessing the risks and feasibility of unmanned aerial vehicle (UAV) operations for
outdoor inspection or monitoring missions has become a major challenge for regulatory
authorities and drone operators. This evaluation relies on risk analysis methods that can
be helpful in the process of flight authorization, but also in the design and the preparation
of the mission. Two main types of methods are classically used. The first one relies on the
qualitative evaluation of risks by applying some predefined methodologies or guides [1].
This is, for example, the case of classical methods such as failure modes and effects analysis
(FMEA) or, more recently and more specifically developed for UAV operations, SORA
(specific operation risk assessment) [2]. The second type of methods relies on the quan-
titative evaluation of risks, based on the use of models developed to represent the UAV
behavior, its environment, etc. This is the case of model-based probabilistic risk assess-
ment (PRA) approaches that have recently gained a huge interest for UAVs, see e.g., [1–5].
With these approaches, the accuracy of models used for risk probabilities’ computations is
of paramount importance. Indeed, being too conservative may prevent or restrict some
operational uses of UAVs, while not being conservative enough may lead to uses with
uncontrolled risks. A fundamental keystone in these methods, when considering ground
risk evaluation, is the computation of probabilities of impact of the UAV at ground level.
Accurate models should be developed to be able to compute representative predictions
of impact points’ locations and probabilities. Works from the literature have focused on
computing impact point locations, enabling to obtain estimates of impact footprints on the
ground level. In [6], impact footprints are computed by reachability analysis, considering
a gliding descent model for a fixed-wing UAV, composed of a turning and a straight line
phase. Different modes of failure (engine, engine+rudder+ailerons) are considered, as well
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as the effect of the altitude of the vehicle at the failure instant. This type of impact footprints
has also been obtained in [3], considering a 6 degrees-of-freedom dynamic model of a
fixed-wing aircraft. The effect of wind on impact footprints has been investigated in [7].
Computation of impact locations and footprints has also been performed in [8], for both
fixed-wing and multi-rotor UAVs considering different modes of failure. Some level sets
are computed to provide some insights on the distribution of the impact points inside
the footprint.

The generation of probability maps has been investigated in other works to provide
more information on the impact distributions on the ground that could be useful and reduce
conservatism in risk analysis or decision making. In [9], a ballistic model with drag force is
considered to represent the descent of a fixed-wing UAV and generate probability density
functions of impact points. Uncertainties on drag, initial speed at the instant of failure
and external wind are accounted for. Full flight dynamics of a Cesna 182 aircraft are used
in [10] to compute ground impact probability maps by Monte Carlo simulations. Total loss
of power is assumed and uncertainties on the initial conditions of the UAV at failure instant
as well as on the deflection of unactuated control surfaces are considered. A 6 degrees-
of-freedom flight mechanics model is also used in [11] for a fixed wing UAV to estimate
ground impact probability maps, taking into account the influence of wind direction
and speed. Real flight data have been used to model uncertainties on the turn rate and
flight path angle of the vehicles for cruise-like mode at constant altitude and straight line.
These uncertainties along with the ones on the actuators deflections at the instant of failure
are used in the Monte Carlo process. Influence of initial altitude, speed and wind (speed
and direction) are analyzed, and a full data basis has been obtained containing impact
probability maps for a sampled set of values for these quantities. This data basis can be
useful for risk evaluation along a given UAV flight trajectory, e.g., for mission preparation.

Since Monte Carlo simulations can be time-consuming, more recent works have
been dedicated to the development of surrogate models for the generation of ground
impact probability maps. K-Nearest neighbors models have been considered in [10] to
approximate impact probability distribution. Other techniques such as Krigging have been
investigated [7] regarding impact footprints or neural networks for both generation of
impact footprints [7] and probability maps [11].

In all these works, assumptions are made on the uncertainties on the variables used as
inputs of the computations. Uncertainty representations are mainly based on statistic mod-
els (probability distributions) and/or bounds (intervals with no statistical assumptions).
Accuracy of the resulting outputs (ground impact locations, footprints, probability maps)
strongly relies on the representativeness of these assumptions. Another important aspect in
these approaches is the computation method itself and the choice of its hyper-parameters.
For example, choice of simulation budgets in Monte Carlo approaches is crucial, as it may
strongly influence the probability density estimation and its confidence.

Moreover, Monte Carlo methods with a low number of samples lead to an under-
estimation of extreme ground impact footprints, which may be of interest to provide
more confidence in the risk assessment process for flight preparation and authorization.
Knowledge of UAV’s extreme fallout zones can also help defining safety levels at very low
thresholds, which can be critical for certain high-risk infrastructures.

This paper therefore addresses the estimation problem of accurate extreme ground
impact probability maps and footprints containing 95%, 99% and 99.9% of the impacts.
Multiple importance sampling (MIS) is considered to estimate density minimum volume
sets associated with these extreme quantiles.

In addition, a study of the sensitivity of hazard parameters is proposed to estimate
the most influential uncertain parameters on ground impact positions. This analysis may
enable both operators and drone constructors to better understand, design and anticipate
fallout zones in the event of a failure. All the results in this paper are obtained for the case
of a fixed wing UAV after main engine failure.
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This paper is organized as follows. The first section focuses on the simulation ap-
proach used to compute the ground impact points coordinates. The characterization of
uncertainties that are taken into account is discussed in Section 3. The estimation of
ground footprints by Multiple Importance Sampling is then presented in Section 4 and an
associated sensitivity analysis is proposed in Section 5.

2. Ground Impact Simulation

In this paper, we focus on impacts on the ground due to a loss of control of the UAV
(unmanned aerial vehicle) after a main engine failure. It is assumed that immediately after
the failure, the engine thrust becomes zero and the control surfaces remain stuck in their
equilibrium positions. The objective of this section is to present the models and approach
that are used to compute the impact points at ground by simulation, based on previous
studies by the authors in [7].

2.1. UAV Dynamics

The model used to simulate the trajectory of the UAV to the ground is a six de-
grees of freedom (6DOF) dynamic model, including full flight mechanics, and hence
enabling one to incorporate the influence of wind from a dynamical point of view (and not
kinematical compared to some approaches developed in the literature [12]). The model
considered here is a fixed wing aircraft such as the one presented in [13]. The control
input vector u =

[
δa δe δr δT

]� is composed of ailerons, elevators, rudder deflections,
and thrust command. The state of the dynamical system to be simulated is defined as

χ =
[
X� V� η� Ω�]� where X =

[
x y z

]� is the position vector defined in a local
NED (north east down) frame, V and Ω are the translation and angular velocity vectors in
the aircraft body-frame, and η =

[
φ θ ψ

]� is the vector of Euler angles (roll-pitch-yaw)
describing the attitude of the UAV. The origin of the (inertial) local NED frame is chosen to
correspond to z=0 (ground) and is arbitrarily chosen for x and y-components, as we are
only interested in the description of the motion of UAV during its descent to the ground
with respect to the vehicle position at the instant of failure (considered to be x = y = 0).

The rigid-body dynamics of the UAV is described as⎧⎪⎪⎨⎪⎪⎩
Ẋ = RηV
V̇ = −Ω × V + 1

m F
η̇ = TηΩ
Ω̇ = J−1(−Ω × JΩ + M)

(1)

where Rη is the orientation matrix parametrized in terms of Z-Y-X Euler angles given by

Rη =

⎡⎣ cθcψ sφsθcψ − sψcψ sφsψ + sθcφcψ

cθsψ cφcψ + sθsφsψ sθcφsψ − sφcψ

−sθ cθsφ cθcφ

⎤⎦ (2)

and Tη is the transformation matrix defined by

Tη =

⎡⎣ 1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤⎦ (3)

whith the notations cα = cos(α), sα = sin(α) and tα = tan(α) for any given angle α.
The inertia matrix of the UAV is denoted by J and its mass by m. Values used for the UAV
parameters are given in Appendix A.

The resulting force F expressed in the aircraft body-frame

F = Feng(δT) + Fg(η) + Fa(V, Vw, η, Ω, δa, δe, δr) (4)
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is composed of the thrust, due to the engine (Feng(δT)) which is zero after engine failure,
the gravity force (Fg(η)) and the resulting aerodynamic force Fa, which depends on the
true air speed of the UAV and then on the wind speed vector Vw. To compute this force,
a full aerodynamic model is used, such as the one described in [13] and is presented in
Appendix A. Similarly, the resulting torque expressed in the aircraft body-frame

M = Meng(δT) + Ma(V, Vw, η, Ω, δa, δe, δr) (5)

is composed of the torque component Meng(δT), due to the thrust of the main engine
(equals to zero after engine failure) and the aerodynamic torque Ma, which also depends on
the wind speed vector Vw. To compute this torque, a full aerodynamic model of the aircraft
is also considered (see Appendix A). The dynamic model of the UAV can be summarized
with the following state-space representation

χ̇ = f (χ, u, Vw) (6)

The simulation of the UAV descent trajectory is performed from an initial condition
χ0, defined at the engine failure instant t0, to ground impact, that corresponds to instant t f
such that the altitude h(t f ) = −z(t f ) = 0.

During a steady flight (coordinated turn, straight flight, pull-up/pull-over etc.), the ac-
cessible space through the initial condition (χ0, u0) is considerably reduced. Defining the
initial condition then consists of zeroing numerically the dynamic part of Equation (6),
while simultaneously considering kinematic constraints related to flight mode [14]. In this
case, the control vectors and the dynamic part of the state vector are entirely defined by
these constraints. This method is called trim algorithm. A simple way to represent a
trajectory is to consider the two following parameters:

• the turn rate R = dψ/dt, where ψ is the heading angle
• the flight path angle γ = ż/Va , where Va is the aerodynamic speed of the aircraft.

Therefore, the trim algorithm can be run to determine the initial condition (χ0, u0),
by assigning values R0, γ0, Va0 and h0 to the turn rate, flight path angle, aerodynamic speed
and altitude, which are representative of the UAV flight conditions. A straight cruise flight
mode at constant altitude can, for example, be considered by choosing R0 = 0 and γ0 = 0.
Note that the wind is not considered in the trim algorithm.

From this initial condition (χ0, u0), the trajectory of the UAV is simulated until the
impact time t f , by considering zero thrust (main engine failure) and taking into account
the wind speed Vw. The complete simulation process is represented in Figure 1.

(h0, Va0, R0, γ0)
Trim

algorithm

χ0

(δe0, δa0, δr0, δT0 = 0)

+

+

(Δδe0, Δδa0, Δδr0, ΔδT0 = 0)

u0

Vw

Flight
dynamics

simulation

Impact
point
(x, y)

Figure 1. Simulation flowchart used to generate ground impact points.

Using this approach, one can simulate a single trajectory and compute the coordi-
nates of the ground impact point. An example of the trajectory is provided on Figure 2,
corresponding to γ0 = 0 deg, R0 = 0.15 rad/s, Va0 = 30 m/s, h0 = 150 m and no wind.
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Figure 2. Example of simulated descent trajectory to ground (initial point in green corresponding to
main engine failure instant, ground impact point in red) [7].

Nevertheless, impact point coordinates are not deterministic in the sense that their
computation will suffer from different sources of uncertainties on the parameters of the
problem. The next section covers the characterization of these uncertainties, as well as the
Monte Carlo approach to handle them.

3. Uncertainties and Monte Carlo approach

The computation of an impact point involves a simulation relying on several parame-
ters. Some of them will be considered as fixed values, such as the initial ground altitude h0
and aerodynamic speed Va0 . Note that these quantities are affected by some uncertainties,
since the reference altitude and velocities commanded for the UAV are not exactly flown in
practice. However, the influence of their respective incertitude levels on the impact point
location is negligible. Uncertainties on the parameters of the UAV model (aerodynamic
coefficients) are also not taken into account in this paper. A robustness analysis with regard
to them should be carried out, especially since the descent phase to ground may lead to
aerodynamic behaviors different from the ones that can be identified. This is beyond the
scope of this paper and will be considered in future work. Uncertainties taken into account
in this article are described in the following subsections.

3.1. Uncertainties on R0 and γ0

Experimental data have been recorded on flights realized by Altametris, the drone
subsidiary of SNCF Réseau (French Railway Network) (see [7]). These data correspond to
a cruise-like flight mode in a straight line and constant ground altitude. This is the flight
mode of interest for the study in this paper. For this flight mode, R and γ should be zero,
which is not the case in practice.

For simplicity reason, a bi-variate normal distribution has been fitted on these experi-
mental data, after rejection of the outliers (see [7]). Its mean is given by μ =

[
μR μγ

]T

with μR = 7.47e − 5 rad/s and μγ = 1.03e − 1 deg and its covariance matrix by:

Σ =

[
7.40e − 4 1.75e − 3
1.75e − 3 8.53e − 1

]
(7)

This distribution will be used to sample points for R0 and γ0

363



Appl. Sci. 2021, 11, 3871

3.2. Uncertainties on Control Surface Deflections

As previously mentioned, a main engine failure is considered in this paper. A constant
zero thrust command is therefore assumed for the descent trajectory simulation, that is
δT(t) = δT0 = 0, ∀t ∈ [t0, t f ].

For the deflection of the control surfaces (elevators, ailerons and rudder), it is also
assumed that they remain stuck in their trim position (δe0 , δa0 , δr0) during the descent
trajectory. Some noise Δδi0 , i ∈ {e, a, r} , is nevertheless added to these trim values, since
in practice, a flapping behavior of these control surfaces has been observed on the UAV.
It is defined as a zero-mean Gaussian noise of variance σ2

i = ρi/30, where ρi stands for
the amplitude range of the control surface i. The coefficient 30 has been arbitrarily chosen,
but to define a variance small enough to make the new initial condition (χd0 , u0 + Δu0)
not to deviate too much from the computed trim point (χd0 , u0), which is an equilib-
rium point for the UAV dynamics. The notation Δu0 is used to define the noise vector[
Δδe0 Δδa0 Δδr0 0

]�.

3.3. Monte Carlo Simulations

Let us bring in the same vector U, the 5 uncertain variables R0, γ0 and Δδi0 , i ∈ {e, a, r},
with joint density f : R5 → R+ with respect to Lebesgue measure. The computation of
the impact points is then done with the deterministic process described in Section 2.1
synthesized by a scalar continuous function M : R5 → R2. The impact position vector
Z is such that Z = [x, y] = M(U). As U is a random vector, Z is also a random vector of
unknown density g : R2 → R+ with respect to the Lebesgue measure. If we consider N
independent and identically distributed (iid) samples Ui, i = 1..N, with density f , we can
generate N iid samples Zi of density g thanks to M. Figure 3 shows, for instance, 2000 iid
samples of Zi depending on the tuning of the wind in the function M.

(a) (b)

Figure 3. (a) 2000 Monte Carlo ground impact points with no wind (b) 2000 Monte Carlo ground impact points with a wind
of 5 m.s −1 with angle −90◦.

4. Density Minimum Volume Set Estimation for the Analysis of Ground
Impact Footprints

A volume set is a mathematical tool that enables one to analyse the density of drone
ground impacts. In this section, we describe how to define a multidimensional density
minimum volume set and how to estimate them in practice, with multiple importance
sampling to focus on rare events.

4.1. Definition of a Density Minimum Volume Set

The t-level set L(t) of the multivariate probability density g of Z is defined as follows:

L(t) =
{

z ∈ R
2 : g(z) ≥ t

}
(8)
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for t ≥ 0. The level sets of the probability density function (PDF) g are defined as the
mapping ε:

ε : [0, sup g] → [0, 1]

t →
∫

L(t)
g(z)dz = P(Z ∈ L(t)) = P(g(Z) ≥ t) = α

The t-level set L(t) of density g is the minimum volume set of probability α under
regularity conditions [15]. A density level set can be viewed in fact as a multidimensional
α-quantile estimation.

V(t) = inf
A∈Rr

{λ(A) : P(A) ≥ α}, α ∈ [0, 1] (9)

where A is a subset of Rr and λ is a real-valued function defined on A. If λ is the Lebesgue
measure, V is a minimum volume set of probability α.

4.2. Statistical Estimation of a Density Minimum Volume Set with MIS

In this article, we want to estimate the t-level set L(t) of density g for a given probabil-
ity α. The estimation principle is based on the following steps:

1. Propose an estimate ĝ of g from a given set of samples (Z1 = M(U1),...,ZN =
M(UN).

2. Estimate the threshold t̂ = ε−1(α) with a simple binary search and determine the
level set

L(t̂) =
{

z ∈ R
2 : ĝ(z) ≥ t̂

}
(10)

This estimator L(t̂) is a plug-in estimator of a minimum volume set [16]. To apply
this 2-step procedure, it is necessary first to estimate the unknown density g. This can
be done with classical Monte Carlo from samples Zi, i = 1, . . . , N, distributed with the
unknown density g, but also with importance sampling. The principle of importance
sampling is to modify the sampling distribution of Zi, in order to improve the accuracy of
the estimation of g on some part of its support. A comparison between Monte Carlo and
classical importance sampling estimates of g is indeed performed in [17]. Depending on
the value of α, a trade-off should be made. For this purpose, we consider in this article
multiple importance sampling [18] that behaves well in the heart of the distribution g,
because Monte Carlo and importance sampling samples can be taken into account in the
estimation of the density g. Moreover, the estimation of t̂ with binary search is often
intractable and cannot be applied in practice, since it requires the estimation of integrals
over a multidimensional domain. To avoid this difficulty, one also considers another
plug-in estimator of t described in [19], based on density quantile.

To estimate the density level set L(t̂) with multiple importance sampling, the following
computational steps are considered in this article:

1. Generate a set of N independent and identically (iid) distributed samples (U11, ..., U1N)
of density f , and apply the function M on these samples to determine a set of samples
(Z11 = M(U11), ..., Z1N = M(U1N)).

2. Estimate the output density ĝ1 from the samples (Z11, ..., Z1N) with multivariate
kernel density estimate [20].

3. Estimate the density h of the samples {U1i|ĝ1(Z1i) < γ} for i = 1, . . . , N where γ is
set by the user.

4. Generate a set of N iid samples (U21, ..., U2N) from density h, and applies the function
M on these samples to determine a set of samples (Z21, ..., Z2N) [20].

5. Estimate the density ĝMIS from the samples (Z11, ..., Z1N) and (Z21, ..., Z2N) with

weighted multivariate kernel density estimate. The weight of each Zij is
f (Uij)

1
2 ( f (Uij+h(Uij))

.
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6. Estimate the threshold t̂MIS as the (1− α)-quantile of the weighted samples (Z11, ..., Z1N ,
Z21, ..., Z2N).

7. The level set with MIS is then estimated with

L̂MIS(t) =
{

x̃ ∈ R
2 : ĝMIS(z) ≥ t̂MIS

}
(11)

The choice of γ can be made with a quantile of the samples ĝ1(Z1i), ..., ĝ1(Z1N). In this
article, γ is quantile of level 0.1 as, from our experience, it corresponds to a good trade-off
between Monte Carlo samples and extreme samples.

4.3. Application to Drone Ground Impact

An MIS algorithm for density minimum level set has been applied to the estimation of
drone ground impacts with N = 1000. In Figure 4, we present the estimation of minimum
density volume set for different probabilities α with MIS. Importance sampling with density
h has consequently increased the frequency of impacts with a high distance from the aim
without requiring a large number of simulations, and thus extreme level sets are more
accurate. A similar analysis is also performed in Figure 5, when a wind of 5 m.s −1 with
angle −90◦ is considered in the drone ground impact simulations.

(a) (b)

(c)

Figure 4. (a) 1000 Samples generated with the density f of MIS (b) 1000 Samples generated with the density h of MIS
(c) Minimum density volume set estimation for different probability values α (0.5; 0.8; 0.9; 0.95; 0.99; 0.999) with MIS.
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(a) (b)

(c)

Figure 5. (a) 1000 Samples generated with the density f of MIS (b) 1000 Samples generated with the density h of MIS (c)
Minimum density volume set estimation for different probability values α (0.5; 0.8; 0.9; 0.95; 0.99; 0.999) with MIS (wind of
5 m.s −1 with angle −90◦).

5. Reliability-Oriented Sensitivity Analysis

5.1. Definition of ROSA Sensitivity Indices

Reliability-oriented sensitivity analysis (ROSA) differs from classical sensitivity analy-
sis in the nature of the output quantity of interest under study. Indeed, sensitivity analysis
focuses on the model output, whereas ROSA analyses the impact of the input uncertainty
on a reliability measure. Two kinds of ROSA indices can be computed in practice [21]:

• first, target sensitivity analysis evaluates the impact of inputs over a function of the
output, typically the indicator function of a critical domain. In the drone impact
application, it answers the question: which uncertain inputs lead to extreme drone
impact?

• second, conditional sensitivity analysis, which aims at studying the impact of inputs
exclusively within the critical domain, namely, conditionally to the failure event. In the
drone application, this indice determines, conditionally to an extreme impact, which
uncertain inputs are the most influential.

In this article, we consider two recent target and conditional ROSA moment-independent
indices η̄i and δ

f
i [22] to analyse the influence of the ith component of U, U(i), on the scalar

output quantity Z̃ = ||Z||2 for a given failure event. We propose to define here the failure
event as Z �∈ L(t), that is, the ground impact is outside a given volume set and is thus
an extreme impact. The two ROSA indices are defined by the following equations for the
proposed drone fallout test case with i = 1, . . . , 5 as there are 5 random inputs:

η̄i =
1
2

∥∥∥ fU(i) − fU(i) |Z �∈L(t)

∥∥∥
L1(R)

. (12)

367



Appl. Sci. 2021, 11, 3871

and
δ

f
i =

1
2

∥∥∥ f(U(i) ,Z̃)|Z �∈L(t) − fU(i) |Z �∈L(t) fZ̃|Z �∈L(t)

∥∥∥
L1(R2)

=
1
2
‖ci − 1‖L1(R2). (13)

where fU(i) is the density of U(i), fU(i) |Z �∈L(t) is the density of U(i) conditionally to Z �∈ L(t),
fZ̃|Z �∈L(t) is the density of Z̃ conditionally to Z �∈ L(t), f(U(i) ,Z̃)|Z �∈L(t) is the density of

the couple (U(i), Z̃) conditionally to Z �∈ L(t) and finally ci the copula density (U(i), Z̃)
conditionally to Z �∈ L(t). The ROSA indices η̄i and δ

f
i take values in [0, 1] where the low

values of these indices mean this ith component of U is not influential on the failure event
analysis and conversely. The computation of these indices can be done with the samples
generated for density level set estimation (see Section 4) and thus requires no additional
calls to M. Moreover, this methodology can be applied even if the random inputs U are
dependent contrary to ROSA variance based indices [23].

5.2. Statistical Estimation of ROSA Sensitivity Indices

To practically estimate the ROSA indices η̄i and δ
f
i , the following steps are required [22]:

1. Obtain (V1, . . . , Vn) approximately i.i.d. from fU|Z �∈L(t) and their corresponding
value Zk = M(Vk) by M. From Zk, the value of Z̃k is then easily computed with
Z̃k = ||Zk||2.

2. Use the sample ((V(i)
k , Z̃k), k = 1, . . . , n, i = 1, . . . 5) where V(i)

k is the ith component
of Vk, to get estimates f̂U(i) |Z �∈L(t) and ĉi of the density fU(i) |Z �∈L(t) and of the copula
density ci respectively. In this article, they are both estimated with the non-parametric
method [20,24], but any other efficient density and copula estimation techniques can
be chosen.

3. Use the estimates f̂U(i) |Z �∈L(t) and ĉi to compute η̄i and δ
f
i as follows:

• for η̄i, estimate the one-dimensional integral ‖ fU(i) |Z �∈L(t) − fU(i)‖L1(R) either by
direct numerical approximation, or if fU(i) can be sampled from, by Monte Carlo
method via

ˆ̄ηi =
1

N′
N′

∑
k=1

∣∣∣∣∣∣
f̂U(i) |Z �∈L(t)(U

(i)
k )

fU(i) (U
(i)
k )

− 1

∣∣∣∣∣∣ (14)

where the U(i)
k are i.i.d. with common distribution fU(i) ;

• for δ
f
i , generate ((H1k, H2k), k = 1, . . . , N′) i.i.d. uniformly distributed on [0, 1]2

and estimate δ
f
i by

δ̂
f
i =

1
2N′

N′

∑
k=1

|ĉi(H1k, H2k)− 1| . (15)

The estimates ˆ̄ηi δ̂
f
i can be computed for different failure events Z �∈ L(t) for differ-

ent values of t = tα that correspond to several minimum volume sets of probability α.
N′ can be taken as large as possible, as it does not imply any calls to M and thus we set to
N′ = 104.

5.3. Application to Drone Ground Impact Sensitivity Analysis

The algorithm proposed in the previous section has been applied with MIS samples
and thus without any supplementary calls to M to determine the influence on the reach-
ability of extreme drone impacts of the different components of the random vector U.
The ROSA indices are computed in Table 1 for three different level sets of probability
α = 0.5, 0.8, 0.99. The most influential variables are the third and fourth components of
U, that is, the noise uncertainty on the UAV elevators and ailerons. The positions of the
drone ground impact are less sensitive to the other uncertain simulation parameters in the
heart of the impact position distribution. Nevertheless, when we consider more extreme
impacts (t0.99), these observations have to be mitigated. A parameter alone does not explain
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an extreme fallout, as the ROSA indices decrease for U(3) and U(4). A combination of
parameters leads to an extreme fallout. The comparison between ˆ̄ηi δ̂

f
i here is not really

relevant and does not provide much information. The sensitivity analysis gives similar
results when wind is taken into account in the simulation.

Table 1. ROSA indices for ground impact analysis. Bold numbers correspond to values greater
than 0.1.

(a) No Wind

ROSA indices t0.5 t0.8 t0.99
ˆ̄η1 0.07 0.06 0.06
δ̂

f
1 0.04 0.04 0.03

ˆ̄η2 0.05 0.03 0.03
δ̂

f
2 0.04 0.03 0.03

ˆ̄η3 0.34 0.31 0.11

δ̂
f
3 0.07 0.07 0.15

ˆ̄η4 0.41 0.17 0.06
δ̂

f
4 0.16 0.18 0.16

ˆ̄η5 0.06 0.04 0.04
δ̂

f
5 0.06 0.04 0.04

(b) Wind of 5 m.s −1 with angle −90◦.

ROSA indices t0.5 t0.8 t0.99
ˆ̄η1 0.06 0.07 0.07
δ̂

f
1 0.05 0.03 0.03

ˆ̄η2 0.13 0.08 0.06
δ̂

f
2 0.02 0.04 0.03

ˆ̄η3 0.40 0.24 0.05
δ̂

f
3 0.16 0.22 0.23

ˆ̄η4 0.34 0.13 0.06
δ̂

f
4 0.30 0.24 0.21

ˆ̄η5 0.10 0.06 0.05
δ̂

f
5 0.04 0.03 0.03

6. Conclusions

The generation of extreme ground impact footprints map has been addressed in this
paper for fixed-wing UAVs failure. In the proposed approach, the computation of impact
points is based on simulation of a full dynamic model, including aerodynamics of the UAV
and wind effect. Uncertainties accounted for in these simulations have been characterized,
based on some real flight data. Monte Carlo simulations have been performed to generate
footprints; however, it is not satisfying when we focus on extreme ground footprints.
For this purpose, we have presented a rare-event simulation technique called multiple
importance sampling to answer the issue of extreme drone ground impacts. We also show
that at low computational cost, it is also possible to derive sensitivity indices to interpret
the cause of extreme impacts.

Future work will include these characterizations of extreme drone impacts for the risk
analysis of UAV missions. Sensitivity and robustness analysis with regard to uncertainties
on some parameters of the UAV (aerodynamic coefficients) will also be considered.
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Appendix A. UAV Model

The aerodynamic force Fa in (4) and torque Ma in (5) can be expressed in the aerody-
namic reference frame (related to the aerodynamic speed of the drone) as:

F(w)
a = qdS

[
CX CY CZ

]� (A1)

M(w)
a = qdSL

[
Cl Cm Cn

]� (A2)

where qd = 1
2 ρV2

a is the dynamic pressure, ρ the air density, Va the airspeed, S the reference
surface and L = diag(La, Lo, La) a matrix with lateral and longitudinal reference lengths La
(wingspan) and Lo (mean aerodynamic chord).

In case of a non-zero wind speed vector Vw, the airspeed is Va = ‖V − Vw‖.
A linearized aerodynamic model is used in this paper, where the lift (CL), lateral (CY)

and drag (CD) coefficients are computed by

CL = CL0 + CLα α + CLα̇
α̇ + CLq

q
Va

+ CLδe
δe

CY = CYβ
+ CYP

p
Va

+ CYr

r
Va

+ CYδa
δa + CYδr

δr

CD = CD0 + CDCL
CL + CDCL2

C2
L + CDδe

δe

(A3)

with
[
CX CY CZ

]�
=
[−CD CY −CL

]�.
Similarly, the aerodynamic coefficients regarding the torque are computed according to the
following linearized model

Cl = Clβ
β +

La

Va
(Clp p + Clr r) + Clδa

δa + Clδr
δr

Cm = Cm0 + Cmα α + Cmα̇ α̇ +
L0

Va
Cmq q + Cmδe

δe

Cn = Cnβ
β +

La

Va
(Cnp p + Cnr r) + Clδa

δa + Clδr
δr

(A4)

with α the angle of attack, β the slideslip angle, Ω = [p, q, r]T the angular velocity vector
between the NED and body frames and (δa, δe, δr) the ailerons, elevators and rudder
deflections.

Numerical values of the aerodynamic coefficients and other UAV model parameters
used in this paper are given in Tables A1 and A2 below.
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Table A1. Numerical values of aerodynamic coefficients.

CL0 0.3243 Clβ
−0.0113

CLα 6.0204 Clp −1.2217
CLα̇

1.93 Clr 0.015
CLq 6.0713 Clδa

0.3436
CLδe

0.9128 Clδr
0.0076

CYβ
−0.3928 Cm0 0.0272

CYp 0 Cmα −1.9554
CYr 0 Cmq −5.286
CYδr

0.1982 Cmδe
−2.4808

CD0 0.0251 Cnβ
0.0804

CDCL
−0.0241 Cnp −0.0557

CDCL2
0.0692 Cnr −0.1422

CDδe
0.1 Cnδa

−0.0165
Cnδr

−0.0598

Table A2. UAV model parameters.

La 0.264 m
Lo 2.410 m
S 0.6360 m2

m 10.0 kg
J diag[1.00, 0.87, 1.40] kg·m2
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Abstract: Unmanned aerial vehicles (UAVs) are widely used in our modern society and their devel-
opment is rapidly accelerating. Flying Ad Hoc Networks (FANETs) have opened a new window of
opportunity to create new value-added services. However, the characteristics that make FANETs
unique, such as node mobility, node distance, energy constraints, etc., imply that several guidelines
need to be considered for their successful deployment. Although numerous routing protocols have
been proposed for FANETs, due to the wide range of applications in which FANETs can be applied,
not all routing protocols can be used. Due to this challenge, after breaking down and classifying
the different types of existing routing protocols for FANET, this paper analyzes and compares the
performance of several routing protocols (Babel, BATMAN-ADV, and OLSR) in terms of throughput
and packet loss in a real deployment composed of several UAV nodes using 2.4 and 5 GHz WiFi
networks. The results show that Babel achieves better performance in the studied metrics than
OLSR and BATMAN-ADV, while BATMAN-ADV delivers significantly lower performance. This
experimental study confirms the importance of choosing the proper routing protocol for FANETs
and their performance evaluation, something that will be extremely important in a few years when
this type of network will be common in our day-to-day life.

Keywords: ad hoc networks; experimental study; Flying Ad Hoc Networks; FANET; practical case;
routing protocols; testbed; unmanned aerial vehicles; UAV; WiFi

1. Introduction

Ad hoc networks are becoming an essential part of our modern technological infras-
tructure, expanding the range of available applications and their characteristics. On the
other hand, thanks to technological advances, unmanned aerial vehicles (UAVs) offer a
wide range of possibilities (extending wireless coverage, use in agriculture, search and
rescue, fire surveillance, etc.). The creation of an ad hoc network with UAVs also offers a
significant advantage over other networks due to the high mobility of its nodes and their
great versatility. This type of network is known as a Flying Ad Hoc Network (FANET) and
is considered a subtype of Mobile Ad Hoc Networks (MANETs) or Vehicular Ad Hoc Net-
works (VANET). Due to the particular characteristics of UAVs, they bring new challenges
for obtaining node mobility models, routing protocols, energy management, etc. Indeed,
FANETs present high mobility of their nodes, both in speed and 3D mobility, frequent
changes of network topology, or intense energy and weight restrictions. Consequently,
it is essential to carry out a study of the different protocols for FANETs to identify the
best ones to minimize the impact of the UAVs’ characteristics and create a dynamic, agile,
and efficient FANET network. A survey of mobility models, positioning algorithms, and
propagation models can be found in [1–3].

In this work, after analyzing the types of routing protocols designed for FANETs, we
focus on comparing, through a real deployment of a FANET using the IEEE 802.11 (WiFi)
standard in the 2.4 GHz and 5 GHz bands, the performance offered by several routing
protocols. We believe that a real deployment can provide much more reliable results than
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those obtained by simulators. Therefore, we consider that the highlight of this article is the
actual deployment of the FANET, something that, as we will see, very few articles do, which
limits their investigation to simulated experiments. The chosen protocols are Optimized
Link-State Routing (OLSR), Better Approach to Mobile Ad Hoc Networking Advanced
(BATMAN-ADV), and Babel. They are compared in terms of throughput and packet losses
in a network composed of several UAVs and an intermediate relay node. We chose these
proactive routing protocols because of their high mobility range, low latency, widespread
use in ad hoc networks, and good power consumption; similarly, they have relatively low
complexity and computational demands, allowing us to simplify and automate some of the
challenges mentioned in [1–3]. The results highlight the importance of the correct choice
of routing protocol for FANETs, showing that Babel achieves higher performance in the
studied metrics whereas BATMAN-ADV and OLSR show lower performance.

The rest of the article is organized as follows: in Section 2, we include a review of
state-of-the-art case studies with FANETs, and we break down the different types of routing
protocols proposed for ad hoc networks and FANETs. The FANET deployed for this study
and the tools used are detailed in Section 3. The results are discussed in Section 4. Finally,
conclusions and future works are presented in Section 5.

2. State of the Art

In this section, we will look at proposed works for FANETs. First, we will look at
the proposed studies that perform a real FANET deployment, and then we will see the
different routing protocols proposed for ad hoc networks and FANETs.

2.1. Real Experimental Studies

In this subsection, we will see a compilation of papers that analyze, by means of real
experimental studies, the performance of FANETs deployed by UAVs. Due to the high cost
and complexity of building large-scale networks with variable topologies, and the difficul-
ties related to the repetition of scenarios, it is challenging to find works that include real
deployments of FANETs. The vast majority of the work completed expects the simulators
used to be capable of simulating real conditions to ensure that the results they obtain or the
algorithms they propose can resemble what could be obtained. However, we believe that a
real deployment, controlling as many variables as possible and repeating the experiments
several times, can provide greater assurance. The results obtained are, by comparison,
more trustworthy. That is why we consider this work very interesting, helping the reader
to understand the impact of choosing a routing protocol on the FANET performance.

Analyzing works that focus on real FANET deployments, Rosati et al. [4] studied the
performance offered by Predictive-OLSR (P-OLSR) and OLSR in a FANET composed of two
small fixed-wing UAVs (called “eBee”). Their results showed that, because P-OLSR uses
GPS information, the performance obtained both in simulation and in experimental tests
improves that obtained with OLSR, reducing the number of communication interruptions.

Furthermore, the P-OLSR performance was compared against OLSR and Babel in [5].
The results showed that P-OLSR, for the scenario they proposed (up to three UAVs with a
highly dynamic ad hoc network), could provide more reliable multi-hop communication
than Babel and OLSR.

In [6], the authors compared two modes of operation of the 802.11 WiFi standard
(access point and ad hoc using BATMAN-ADV) in a real experimental scenario in terms
of coverage, throughput, and energy efficiency with up to two quadcopter UAVs. The
results revealed a better performance of the access point mode in terms of received signal
strength and throughput but worse performance in terms of power consumption than the
ad hoc mode.

The work presented by Lee et al. [7] proposed an approach similar to P-OLSR, in
which the UAV nodes employed GPS information to improve the routing protocol, called
Ground Control System-Routing (GCS-R). A real experiment was conducted with up to six
UAVs in a network-coverage application scenario. The results showed that their proposed
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routing algorithm outperformed OLSR and DSDV in terms of throughput, stability, and
network outage time. However, given that it suggests a centralized algorithm, it has a
single point of failure that could be critical because of the instability of the UAV nodes and
presents serious scalability problems.

On the other hand, in [8], the authors showed the deployment of a FANET using
BATMAN as the routing protocol, showing the capabilities that this type of network can
offer in terms of coverage and throughput. They used a UAV in three different scenarios,
and the results showed that the maximum distance they could transmit without packet
loss was 117 m.

Finally, the authors of [9] proposed a security protocol for FANETs called SUAP, which
incorporates geographical leashes, hash chains, and public-key cryptography into the
AODV routing protocol. Although SUAP proved to be effective in encrypting messages
exchanged between nodes against various attacks, it did not provide a robust mechanism
to recover from disconnections between nodes. According to the experimental result
performed with three nodes, the delay to re-establish a new route when a node failure
occurred was considerable, especially for real-time applications such as video capture,
monitoring, and aerial photography. Moreover, its performance should be evaluated in a
network with a high density of nodes. A summary of the reviewed papers can be seen in
Table 1.

Table 1. Related works that included a real FANET deployment. Also detailed are the routing
protocols employed and the number of UAVs.

Work Routing Protocols Number of UAVs

Rosati et al. [4] OLSR, P-OLSR 2
Rosati et al. [5] Babel, OLSR, P-OLSR 3

Guillen et al. [6] BATMAN-ADV 2
Lee et al. [7] GCS-R, DSDV, OLSR 6

Kaysina et al. [8] BATMAN 1
Maxa et al. [9] SUAP 2

2.2. Routing Protocols

Routing protocols are responsible for guaranteeing the delivery of a message from
a source node to a destination node. Routing protocols must adapt to the essential char-
acteristics of FANETs: high mobility, energy efficiency, constant changes in the topology,
etc. In addition, due to the wide variety of application fields, the requirements of routing
protocols in FANETs can be very diverse. For example, a constant jitter would be necessary
for real-time video applications, whereas a high level of reliability would be necessary in
applications that extend telecommunication coverage in case of disasters (regardless of
delay and jitter). Most FANETs’ routing protocols are extensions of well-known MANET
protocols, such as AODV, OLSR, or DSR [10]. However, there is still a lack of routing
protocols that fit all FANETs’ needs.

In this subsection, we will examine the different routing protocols proposed for
FANETs and group them into five main categories: (i) topology-based, (ii) position-based,
(iii) clustering/hierarchical, (iv) swarm-based, and (v) delay-tolerant network (DTN).

2.2.1. Topology-Based Routing Protocols

Topology-based routing protocols base their operation on using the links information
for data forwarding. Within this category, four types of protocols can be distinguished:
(i) static, (ii) proactive, (iii) reactive, and (iv) hybrid.

Static Routing Protocols

The nodes in this network have static routing tables which are configured at the
beginning of a task and do not change. Networks that implement these protocols must
have a constant topology, and therefore, being unable to adapt dynamically to changes, are
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susceptible to failures. The static routing protocols include Load Carry and Deliver Routing
(LCAD) [11], Multi-Level Hierarchical Routing (MLHR) [12], and Data-Centric Routing
(DCR) [13]. LCAD is based on the Store-Carry-Forward (SCF) paradigm [14]. The nodes
capture the data and transport it, physically moving the message to a relay or destination
node. It is usually used in DTN networks. MLHR solves the problem of scalability by
clustering the nodes of the network and allowing a head node to communicate with the
other head nodes of other clusters. Thus, the size and area of operation increase, but this
head node can be a bottleneck and is a single point of failure [15]. DCR bases the routing
on the information contained in the message. Thus, this protocol sends the information to
several nodes that want specific data.

Proactive Routing Protocols

Each node has its routing table which is periodically updated and shared with the
other nodes. The routing tables contain the routes to send a message from a source node to
any destination node in the network. The main advantage of these types of protocols is
their low delay in sending messages because the path is known beforehand. However, if
there are many nodes in the network, the periodic updating of the routing tables severely
consumes bandwidth and energy. In addition, proactive protocols react slowly to changes
in topology, having to update the routing tables of all nodes in the network. Due to these
disadvantages, these protocols are not usually used in applications with FANETs with
a large number of UAVs with high mobility or when energy consumption must be low.
The most important protocols proposed or adapted for FANETs are Optimized Link-State
Routing (OLSR) [16], Destination Sequence Distance Vector (DSDV) [17], Better Approach
to Mobile Ad Hoc Network (BATMAN) [18], and Directional OLSR (DOLSR) [19]. The
OLSR protocol is currently the most widely used routing protocol in ad hoc networks.
The approach of this protocol is to put a cost to each link (link-state) in the network. Each
node evaluates the cost of sending a message through a link that is directly connected
and shares it with its neighboring nodes using a flooding strategy. This cost can be the
distance, delay, losses, bandwidth, etc. Once the view of the network has been updated,
the route is searched applying the shortest path algorithm (Dijkstra). DSDV is a protocol
based on the Bellman-Ford algorithm. It adds two parameters to vector-distance routing,
which are a sequence number, to avoid loops and determine the freshness of the routes
and the Dampling parameter. In addition, it uses two types of packages for route updates:
full-dump and incremental. The full-dump packages contain all the information in the
routing table, and due to its size, it is not usually transmitted. The incremental packet is
used to update the routes in the last full-dump packet. DSDV has been used extensively
in the field of FANETs, as can be seen in [20–22]. The BATMAN routing protocol is a
relatively new proactive protocol that is used in MANETs. The BATMAN protocol does
not discover the entire network; the protocol only learns from the nodes directly connected
to them. In addition, BATMAN-Advanced (BATMAN-ADV) [23] is an improvement of the
original BATMAN protocol in terms of performance due to its integration in the protocol
stack. Numerous comparative studies of BATMAN-ADV performance in ad hoc networks
and FANETs have been carried out [23,24]. DOLSR was specifically designed for FANETs
and is a variant of OLSR. One of the most important performance factors in OLSR is the
selection of multipoint relay (MPR) nodes. Thus, in DOLSR the number of MPRs is reduced
to decrease the overhead. Each node selects a set of MPRs so that it can cover two-hop
neighbors. DOLSR has the advantage of minimizing end-to-end delay, which is crucial for
real-time applications and offers security improvements as it is resistant to jamming. In
addition to the protocols explained, there are a variety of protocols with variants that are
used in FANETs, such as Predictive-OLSR (P-OLSR) [5], Mobility and Load-Aware OLSR
(ML-OLSR) [25], Contention-Based OLSR (COLSR) [26], Modified-OLSR (M-OLSR) [27],
Cartography-Enhanced OLSR (CE-OLSR) [28], Topology Broadcast Based on Reverse-Path
Forwarding (TBRPF) [29], Fisheye State Routing (FSR) [30], and Babel [31]. Babel builds on
the ideas of DSDV, AODV, and other routing protocols to derive a loop-avoiding distance
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vector routing protocol that is designed to be robust and efficient in both relatively stable
and highly dynamic networks.

Reactive Routing Protocols

Due to the large bandwidth consumption that periodically occurs in the network dis-
covery process of proactive protocols, reactive protocols use on-demand network discovery
processes, which makes reactive protocols bandwidth-efficient. These protocols have a
great advantage over proactive protocols as it gives them a great dynamism, something
necessary in FANETs, but it has a great disadvantage in the latency produced by the
route-search process. The most important reactive routing protocols are Dynamic Source
Routing (DSR) [32], Ad Hoc On-Demand Distance Vector (AODV) [33], and Time-Slotted
AODV (TS-AODV) [34]. DSR is a source-routing protocol. The complete route that a packet
must follow is indicated in the header and only the source node can indicate the route.
AODV is the most popular reactive routing protocol and is typically used in MANETs,
VANETs, and FANETs. During the route lookup process, the source node searches its
routing table to see if a route to the destination node has been established in the past. If no
route exists, a route request process is initiated. TS-AODV is a time slot routing protocol
centered on FANETs and based on the AODV protocol. Due to the large number of UAVs
that may exist in FANETs, TS-AODV uses the time-division mechanism to avoid collisions
in the transmission of information, significantly reducing packet losses and increasing the
available bandwidth. In addition to the reactive protocols explained above, there are other
routing protocols used in the literature on ad hoc networks and FANETs, such as Multicast
AODV (MAODV) [35] and AODV Security (AODVSEC) [36].

Hybrid Routing Protocols

To solve the problems of bandwidth consumption of control messages and the low
dynamism of proactive protocols, as well as the long delay in the route search of reactive
protocols, hybrid routing protocols were introduced. These hybrid protocols are partic-
ularly suitable for large networks since they base their operation on the division of the
network into sub-networks or zones. Thus, a proactive routing protocol operates within
each zone and a reactive routing protocol is used for communication between zones. For
hybrid solutions, the Zone Routing Protocol (ZRP) [37] is the most popular. ZRP divides the
network into clusters of nodes in which their maximum separation distance is predefined.
Within the clusters, a proactive routing protocol is applied, and nodes in different zones are
routed to a subset that is common to both zones. There are other hybrid protocols designed
or modified for FANETs, such as the Temporarily Ordered Routing Algorithm (TORA) [38],
Rapid-reestablish TORA (RTORA) [39], Hybrid Wireless Mesh Protocol (HWMP) [40],
Sharp Hybrid Adaptive Routing Protocol (SHARP) [41], and Hybrid Routing Protocol
(HRP) [42].

2.2.2. Position-Based Routing Protocols

These routing protocols base their operation on the knowledge of the geographical po-
sition of the nodes. Therefore, they are the most suitable routing protocols for FANETs with
high mobility. Protocols in this category can be divided into (i) reactive-based, (ii) greedy-
based, and (iii) heterogeneous.

Reactive-Based Routing Protocols

These types of protocols are based on a reactive technique and use the position of the
nodes to obtain higher performance. In this category, we highlight the Reactive-Greedy-
Reactive (RGR) algorithm [43]. RGR is based on the reactive routing protocol AODV [33]
for the on-demand route lookup process, and for message delivery, it is based on the
Greedy Geographic Forwarding (GGF) protocol [44]. Other reactive-based protocols are
Ad Hoc Routing Protocol for Aeronautical Mobile Ad Hoc Networks (ARPAM) [45] and
Multipath Doppler Routing (MUDOR) [46].
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Greedy-Based Routing Protocols

This set of protocols searches the path with the least number of hops between nodes
through the Greedy Forwarding approach [47], minimizing message delay. One of the most
prominent protocols of this category is Geographic Position Mobility-Oriented Routing
(GPMOR) [48]. GPMOR was designed considering some characteristics of FANETs and
bases its operation on the predictive approach. Based on the Gauss–Markov mobility
model [1] and the geographical positions of the nodes, GPMOR predicts the node positions
and selects the next closest forwarding node to the receiver optimally, following the Greedy
approach. Other greedy-based routing protocols are Mobility Prediction-Based Geographic
Routing (MPGR) [49], Geographic Load Share Routing (GLSR) [50], Geographic Greedy
Perimeter Stateless Routing (GPSR) [51], Greedy-Hull-Greedy (GHG) [52], Greedy-Random-
Greedy (GRG) [53], Greedy Distributed Spanning Tree Routing 3D (GDSTR-3D) [54], and
UAV Search Mission Protocol (USMP) [51].

Heterogeneous Routing Protocols

This set of protocols is applied to networks where the nodes that form them are of
different natures, i.e., the network can be formed by fixed or mobile nodes on the ground
and the aerial nodes of a FANET. This architecture has several advantages including in-
creased coverage and performance. Within this set of protocols, Connectivity-Based Traffic
Density Aware Routing Using UAVs for VANETs (CRUV) [55] stands out. CRUV relies on
the existence of a DTN VANET supported by a FANET, which allows the interconnection
of the DTN. In addition, there are also the following: UAV-Assisted VANET Routing Proto-
col (UVAR) [56], Position-Aware Secure and Efficient Routing (PASER) [57], Cross-Layer
Link Quality and Geographical-Aware Beaconless (XLinGo) [58], and Secure UAV Ad Hoc
Routing Protocol (SUAP) [9].

2.2.3. Clustering/Hierarchical Routing Protocols

In this category, UAV nodes are grouped into clusters, in a hierarchical fashion, and
within each cluster, there is a node (cluster head) that enables inter-cluster communication
via other cluster heads. In these routing protocols, the selection of the node acting as
cluster-head is a critical task since the overall performance of the network will depend in
part on this node. Within this category of protocols, the Clustering Algorithm of UAV Net-
working (CAUN) [59], and Mobility Prediction Clustering Algorithm for UAV Networking
(MPCA) [60] may be mentioned. The operation of CAUN is quite simple: the initial cluster
is built on the ground depending on the mission application, and once the network is
deployed, the cluster adapts according to real-time conditions. On the other hand, MPCA
predicts network topology updates, and, in turn, determines cluster formation based on
UAV mobility, allowing for more stable clusters. In addition to the protocols described
above, there are other protocols belonging to the category of clustering/hierarchical routing
protocols, such as Landmark Ad Hoc Routing (LANMAR) [61], Multi-Meshed Tree Protocol
(MMT) [62], Cluster-Based, Location-Aided DSR (CBLADSR) [63], and Disruption Tolerant
Mechanism (DTM) [64].

2.2.4. Swarm-Based Routing Protocols

Swarm-based routing protocols are inspired by the behavior of animals and nature.
Thus, for example, as swarm-based routing protocols that are created for FANETs, we
highlight the BeeAdHoc [65] algorithm that bases its operation on the behavior of bees, as
well as AntHocNet [66], and APAR [67] algorithms, both inspired by the behavior of ants.

2.2.5. Delay-Tolerant Network (DTN) Routing Protocols

Delay-tolerant routing protocols are proposed for networks with constant outages,
partitions, and topology changes, such as FANETs. Thus, these protocols make use of the
Store-Carry-and-Forward (SCF) technique when nodes lose connectivity. This technique
eliminates the overhead since no control messages are transmitted but greatly increases the
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communication delay. The most widespread protocol of this group is Location-Aware Rout-
ing for Opportunistic Delay Tolerant (LAROD) [68]. LAROD is based on the combination
of two approaches: SCF and Greedy Forwarding techniques, depending on the situation,
and uses the beaconless strategy to reduce the overload of the network. In addition, within
this category, it is worth highlighting the following algorithms: AeroRP [69], Geographic
Routing Protocol for Aircraft Ad Hoc Network (GRAA) [70], Epidemic [71], Maxprop [72],
Spray and Wait [73], and Prophet [74].

Table 2 shows a summary of the different classes of routing algorithms, their subclasses
in this section, and their algorithms.

Table 2. A summary of routing algorithms and their classes and subclasses.

Type Subtype Routing Algorithm

Topology-Based

Static LCAD [11], MLHR [12], DCR [13]

Proactive

OLSR [16], DSDV [17], BATMAN [18],
BATMAN-ADV [23], DOLSR [19], P-OLSR [5],

ML-OLSR [25], COLSR [26], M-OLSR [27],
CE-OLSR [28], TBRPF [29], FSR [30], Babel [31]

Reactive DSR [32], AODV [33], TS-AODV [34],
MAODV [35], AODVSEC [36]

Hybrid ZRP [37], TORA [38], RTORA [39],
HWMP [40], SHARP [41], HRP [42]

Position-Based

Reactive-Based RGR [43], GGF [44], ARPAM [45], MUDOR [46]

Greedy-Based GPMOR [48], MPGR [49], GLSR [50], GPSR [51],
GHG [52], GRG [53], GDSTR-3D [54], USMP [51]

Heterogeneous CRUV [55], UVAR [56], PASER [57],
XLinGo [58], SUAP [9]

Clustering/Hierarchical CAUN [59], MPCA [60], LANMAR [61],
MMT [62], CBLADSR [63], DTM [64]

Swarm-Based BeeAdHoc [65], AntHocNet [66], APAR [67]

Delay-Tolerant
Network

LAROD [68], AeroRP [69], GRAA [70], Epidemic
[71], Maxprop [72], Spray and Wait [73], Prophet [74]

3. Materials, Methods, and Scenario

In this section, we will explain the testbed and tools employed in this study. By using
this deployment, we demonstrate the communication capabilities that FANETs can offer,
comparing the performance achieved with various proactive routing protocols, specifically
OLSR, BATMAN-ADV, and Babel. The 3 protocols were selected based on the criteria of
“state of the art” technology, experience working with them, suitability for the proposed
scenario, and compatibility with the communications module.

For this purpose, a WiFi network composed of several UAVs was deployed. Each UAV
had a specific communication module (WiTi [75]); see Figure 1a. These communication
modules had a dual 2.4/5 GHz communication band, using the IEEE 802.11g standard
for the 2.4GHz band and the IEEE 802.11a standard for the 5GHz band, and 2 antennas
for each frequency band. The tool iperf3 [76] was employed to evaluate the performance
of the different routing algorithms, analyzing throughput and packet losses. To analyze
packet losses in an efficient way, the UDP communication protocol was used. In the
deployed scenario (see Figure 1b), 5 communication nodes were placed: specifically, 2 UAVs
(quadcopters), 2 PCs, and 1 ground node. The 2 PCs were located under the UAVs to
simulate devices in a coverage extension scenario. They also allowed monitoring of the
network status. On the other hand, the ground node operated as a relay base station,
acting as an intermediate node between the drones when the distance between the nodes
required its use. The relay node was located at 35 m from PC1 (UAV1). Whereas UAV1 was
kept at a fixed location, UAV2 flew horizontally, stopping every 10 m to take performance
measurements. Each measurement had a duration of 60 s and consisted of sending data
between the 2 PCs through the UAVs. Both UAVs flew at an altitude of 10 m, calibrating all
distances, positions, and heights with the UAVs’ GPS modules. A representation of the
deployed scenario can be seen in Figure 2a,b. For instance, this scenario could simulate a
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situation where a coverage extension is required due to an emergency, to solve a specific
moment of overload of the communications network, or for remote surveillance.

 
(a) 

 
(b) 

Figure 1. (a) UAV with WiFi communication module (WiTi). (b) Flying field, “Los Halcones de la
Rambla”, Murcia, Spain.
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Figure 2. Real testbed FANET with relay node. (a) Communication before 35-m mark. (b) Com-
munication after 35-m mark. Note that after the 35-m mark, communication between the 2 UAVs
(UAV1 and UAV2) was performed through the relay node. Before this mark, the communication
was completed through a direct path. Performance measurements were taken between the 2 UAVs
every 10 m step and each measurement had a duration of 60 s. The PCs were used to monitor the
network and followed their UAV. The height of the UAVs was 10 m. The first UAV (UAV1) was
located at the 0-meter mark. The relay node was located at the 35-m mark. The second UAV (UAV2)
was positioned for 60 s at the measurement points located 10 m from the 0-meter mark. That is, the
first measuring point was located at 10 m, the second at 20 m, and so on.

4. Results

This section will analyze the results obtained in the tests detailed in the previous sec-
tion, comparing in terms of throughput and packet losses the different routing algorithms
presented.

The results showed that the Babel and OLSR protocols obtained higher throughput in
both the 2.4 GHz and 5 GHz bands. Besides, the expected inverse relationship between
packet losses and throughput was demonstrated since one increases while the other de-
creases. It was also observed that the 5 GHz band presented a faster throughput decay.
Because the received power is inversely proportional to frequency and distance, the 2.4 GHz
band will present a higher received power at equal transmitted power and communication
distance, which will allow the maintenance of a more stable and robust communication.
Only at 10 m, 40 m, and 50 m, the performance of both bands is comparable. For the 10 m
point, the communication between the UAVs was direct on both bands, so propagation
losses were low and communication was very stable. For the 40 m and 50 m points, the
communication for the 2.4 GHz band was still direct. However, for the 5 GHz band, the
communication made an intermediate hop through the relay node, decreasing the distance
between the communication nodes. Throughput results can be seen in Table 3 and Figure 3.
Likewise, packet loss results are shown in Table 4 and Figure 4.
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Table 3. Average throughput (Mbps) obtained between PCs-UAVs at different gap distances for
OLSR, BATMAN-ADV, and Babel, for 2 frequency bands: 2.4 and 5 GHz. Each measurement had a
duration of 60 s.

Routing
Protocol

Frequency
Band

Distance

10 m 20 m 30 m 40 m 50 m 60 m 70 m

OLSR
2.4 GHz 1.02 1.05 1.05 0.75 0.91 0.84 0.00
5 GHz 0.98 0.73 0.51 0.99 0.82 0.00 0.00

BATMAN-
ADV

2.4 GHz 1.05 1.05 0.90 0.82 0.51 0.27 0.75
5 GHz 0.89 0.16 0.03 0.82 0.58 0.00 0.00

Babel
2.4 GHz 1.05 1.05 1.05 1.05 0.93 0.67 0.86
5 GHz 0.96 0.66 0.49 0.88 0.71 0.00 0.00

Figure 3. Average throughput (Mbps) vs. distance (meters) for each protocol and frequency band.

Table 4. Average packet loss (%) obtained between PCs-UAVs at different gap distances for OLSR,
BATMAN-ADV, and Babel, for 2 frequency bands: 2.4 and 5 GHz. Each measurement had a duration
of 60 s.

Routing Protocol
Frequency

Band

Distance

10 m 20 m 30 m 40 m 50 m 60 m 70 m

OLSR
2.4 GHz 3.3% 0% 0% 27% 11% 19% 100%
5 GHz 6.6% 30% 44% 6% 20.4% 100% 100%

BATMAN-ADV
2.4 GHz 0% 0% 13% 22.1% 44% 73% 27%
5 GHz 14% 84% 97% 21.3% 43% 100% 100%

Babel
2.4 GHz 0% 0% 0% 0% 10% 35% 18%
5 GHz 8% 36% 45.9% 15% 29.7% 100% 100%

For the 2.4 GHz band, as shown in the results, especially in Figures 3 and 4, the routing
protocols present a different behavior. OLSR switches from direct communication to relay
communication between the measurement points located at 40 m and 50 m. However, both
BATMAN-ADV and Babel switch between 60 m and 70 m. This can be verified by the fact
that there is a change of trend in the metrics studied at these two measurement points and
the corresponding change in the routing table.

If we now focus on the 5 GHz band, the trend change occurs between the measurement
points located between 30 and 40 m. Between these two points, communication switched
from direct UAVs communication to relay mode. After this change in communication,
the metrics improved, to rapidly decline again with distance. Additionally, for the 5 GHz
frequency band, the maximum distance at which we were able to establish communication

382



Appl. Sci. 2021, 11, 4363

between two nodes was 40 m. This is again reflected above 40 m, which is the distance
at which the intermediate hop to the relay node existed. If the relay node had been
located more than 40 m away, it would have been impossible to use it as an intermediate
communication node in the 5 GHz band.

Figure 4. Average packet loss (%) vs. distance (meters) for each protocol and frequency band.

We can conclude that Babel and OLSR obtained better results than BATMAN-ADV,
given the results obtained. This may have been expected because BATMAN-ADV has
a too-high routing update period that was originally not intended for FANETs. Finally,
between Babel and OLSR, Babel offered the best overall performance, guaranteeing more
stable results in both frequency bands.

5. Conclusions

The potential of FANETs can increase in the coming years with the advent of new
communication technologies and standards such as 6G, the Internet of Things (IoT), and
connected autonomous vehicles (CAVs). The benefits that FANETs can offer are immeasur-
able (coverage extension, application in emergency communications, search and rescue,
agriculture, etc.). When deploying FANETs, it is essential to be able to find the path that
a packet must follow to reach its destination. Due to the characteristic constant changes
in the network topology of FANETs, the selection of the routing protocol is a crucial task
for effective deployment and successful operation. After detailing the different routing
protocols that have been proposed for FANETs, this paper performed a case study com-
paring the performance offered, in terms of throughput and packet loss, of three proactive
routing protocols: OLSR, BATMAN-ADV, and Babel. The scenario studied could simulate a
coverage extension scenario in emergencies, search and rescue, or remote surveillance. The
results obtained showed that Babel achieved higher performance in the studied metrics,
outperforming OLSR and BATMAN-ADV. Besides, it was shown that BATMAN-ADV per-
formed significantly worse than OLSR and Babel due to its low frequency of routing-table
updating. In particular, the sending period of messages in charge of finding alternative
routes in BATMAN-ADV is 1 s (OGM interval). In FANETs, the network topology can
vary a lot in 1 s, hence discouraging its use for FANETs. As future work, we consider
that an extension of the routing protocols to be evaluated would be a logical next step,
employing a more significant number of UAVs with different characteristics and comparing
experimental results and propagation models such as those presented in [77].
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Abbreviations

AeroRP Aeronautical Routing Protocol.
AODV Ad Hoc On-Demand Distance Vector.
AODVSEC AODV Security.
APAR Ant Colony Optimization-Based Polymorphism Aware Routing Algorithm.
ARPAM Ad Hoc Routing Protocol for Aeronautical Mobile Ad Hoc Networks.
BATMAN Better Approach to Mobile Ad Hoc Network.
BATMAN-ADV BATMAN-Advanced.
CAUN Clustering Algorithm of UAV Networking.
CBLADSR Cluster-Based Location-Aided DSR.
CE-OLSR Cartography-Enhanced OLSR.
COLSR Contention-Based OLSR.
CRUV Connectivity-Based Traffic-Density Aware Routing Using UAVs for VANETs.
DCR Data-Centric Routing.
DOLSR Directional OLSR.
DSDV Destination-Sequenced Distance Vector.
DSR Dynamic Source Routing.
DTM Disruption-Tolerant Mechanism.
DTN Delay-Tolerant Network.
FANET Flying Ad Hoc Network.
FSR Fisheye-State Routing.
GCS-R Ground Control System-Routing
GDSTR-3D Greedy Distributed Spanning Tree Routing 3D.
GGF Greedy Geographic Forwarding.
GHG Greedy-Hull-Greedy.
GLSR Geographic Load-Share Routing.
GPMOR Geographic Position Mobility-Oriented Routing.
GPSR Geographic Greedy Perimeter Stateless Routing.
GRAA Geographic Routing Protocol for Aircraft Ad Hoc Network.
GRG Greedy-Random-Greedy.
HRP Hybrid-Routing Protocol.
HWMP Hybrid Wireless Mesh Protocol.
LANMAR Landmark-Routing Protocol.
LAROD Location-Aware Routing for Opportunistic Delay Tolerant.
LCAD Load Carry and Deliver Routing.
MANET Mobile Ad Hoc Network.
MAODV Multicast AODV.
MLHR Multi-Level Hierarchical Routing.
ML-OLSR Mobility and Load-Aware OLSR.
MMT Multi-Meshed Tree Protocol.
M-OLSR Modified-OLSR.
MPCA Mobility Prediction Clustering Algorithm.
MPGR Mobility Prediction-Based Geographic Routing.
MUDOR Multipath Doppler Routing.
OLSR Optimized Link-State Routing.
PASER Position-Aware Secure and Efficient Routing Approach.
P-OLSR Predictive-OLSR.
RGR Reactive-Greedy-Reactive.
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RTORA Rapid-Reestablish TORA.
SHARP Sharp Hybrid Adaptive Routing Protocol.
SUAP Secure UAV Ad Hoc Routing Protocol.
TBRPF Topology Broadcast Based on Reverse-Path Forwarding.
TORA Temporarily Ordered Routing Algorithm.
TS-AODV Time-Slotted AODV.
UAV Unmanned Aerial Vehicle.
USMP UAV Search Mission Protocol.
UVAR UAV-Assisted VANET Routing Protocol.
VANET Vehicular Ad Hoc Network.
XLinGo Cross-Layer Link Quality and Geographical-Aware Beaconless.
ZRP Zone-Routing Protocol.
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Abstract: Unmanned aerial vehicles (UAV) have attracted increasing attention in acting as a relay for
effectively improving the coverage and data rate of wireless systems, and according to this vision, they
will be integrated in the future sixth generation (6G) cellular network. Non-orthogonal multiple access
(NOMA) and mmWave band are planned to support ubiquitous connectivity towards a massive
number of users in the 6G and Internet of Things (IOT) contexts. Unfortunately, the wireless terrestrial
link between the end-users and the base station (BS) can suffer severe blockage conditions. Instead,
UAV relaying can establish a line-of-sight (LoS) connection with high probability due to its flying
height. The present paper focuses on a multi-UAV network which supports an uplink (UL) NOMA
cellular system. In particular, by operating in the mmWave band, hybrid beamforming architecture is
adopted. The MUltiple SIgnal Classification (MUSIC) spectral estimation method is considered at the
hybrid beamforming to detect the different direction of arrival (DoA) of each UAV. We newly design
the sum-rate maximization problem of the UAV-aided NOMA 6G network specifically for the uplink
mmWave transmission. Numerical results point out the better behavior obtained by the use of UAV
relays and the MUSIC DoA estimation in the Hybrid mmWave beamforming in terms of achievable
sum-rate in comparison to UL NOMA connections without the help of a UAV network.

Keywords: hybrid precoding; millimeter wave; non-orthogonal multiple access scheme; massive
MIMO; unmanned aerial vehicles; direction of arrivals (DoA); MUSIC algorithm

1. Introduction

The explosive number of devices demands data traffic growth and new radio spectrum
resources in future 6G systems and the IoT context. Key enabling technologies are (i) the
underutilized millimeter wave (mmWave) band (between 30 GHz and 300 GHz), which
could be valuable for its wide bandwidth and higher spectral efficiency, and (ii) NOMA,
which could be valuable for simultaneously supporting multiple users on the same time-
frequency resources. The joint use of the large spectrum available in mmWaves together
with massive multiple-input-multiple-output (MIMO) strategies allows ultra-high data
rates to be guaranteed through spatial directional transmissions compensating for the high
propagation loss of mmWaves communications [1]. This directional nature of mmWaves
transmissions needs the support of one radio frequency (RF) chain for each user on the same
time-frequency resource. Therefore, the hardware complexity and costs of the mmWave
MIMO system increase with an increase in the number of users. Hybrid architectures,
which combine phase shifters based on analog precoding and digital precoding, reduce
the costs practically by selecting a reduced number of RF chains. However, even if hybrid
beamforming structures are implemented, the user’s channels are highly correlated in
mmWave communications, and thus, the users cannot be separated by linear operations.
Such a correlation facilitates integration with NOMA technology. NOMA can simultane-
ously serve multiple users on the same time-frequency resource by converting their channel
gains into multiplexed gains in the power domain and by using successive interference
cancellation (SIC) at the receiver to remove intra-channel interference with a decoding
order based on the channel conditions [2–4].
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In the literature, different papers analyze the spectral efficiency (SE) and the energy
efficiency (EE) maximization problem mainly for a downlink mmWave MIMO with hybrid
beamforming [5,6]. In [3], a power allocation (PA) problem to optimize EE is considered
for an uplink NOMA-assisted mmWave MIMO system under users’ quality-of-service
(QoS) and quality-of-experience requirements [7]. In [4], power allocation and beam-
forming are jointly considered to maximize the sum rate of a pair of users in a mmWave
NOMA system by using an analog beamforming structure indeed of a hybrid mmWave
beamforming structure.

Simultaneous wireless information and power transfer (SWIPT) techniques are inte-
grated in mmWave massive MIMO-NOMA systems to maximize the energy efficiency in [8],
and consequently, each user can extract both information and energy from the received RF
signals by using a power splitting receiver.

In the 6G vision, low Earth orbit (LEO) satellites and diverse aerial platforms, such
as UAVs, are considered to support IoT development in remote areas and in emergency
situations thanks to the mobility, flexibility and good channel conditions of UAVs. UAVs
have been developed for their monitoring capabilities, implemented by on board sensors,
for services in agriculture or security border controls. In addition, UAVs are used as a
flying base station (BS) to provide ubiquitous connectivity and effectively increase the
coverage and throughput of wireless systems through the optimization of UAVs’ positions
and trajectories [9].

Recently, UAVs have been considered to act as relays for cooperative communications
due to the high probability to establish LoS links with the ground terminals. UAV-assisted
relaying systems operate according to the two classical types of transmission protocols,
namely decode-and-forwarding (DF) and amplify-and-forwarding (AF) [10].

Several papers consider UAV communications combined with orthogonal multiple ac-
cess (OMA) to maximize the energy efficiency or throughput by optimizing the source/relay
transmit power and the UAV speed and trajectory design as, e.g., in [11]. The paper [12]
focuses on a UAV full duplex (FD) relay with joint beamforming and power allocation to
optimize the instantaneous data rate when the UAV flight follows a circular trajectory. FD
relaying allows for a relay node to simultaneously transmit and receive in the same band,
unlike half-duplex (HD) mode [10,13]. Therefore, a natural choice is to combine FD relays
with NOMA to enhance spectral efficiency.

A UAV-supported clustered-NOMA system for the 6G-enabled IoT is detailed in [14],
where the numerous terminals are partitioned into clusters and the UAV provides services
to the clusters by using wireless-powered communication (WPC) to optimize the uplink
average achievable sum rate of all terminals by designing the UAVs’ trajectory.

In [15], a multiple-UAV-aided NOMA scheme is proposed to improve spectral and
energy efficiency for cellular uplinks. In particular, half of users are partitioned in clusters
served by multiple UAV relays, and the other ones communicate with the BS directly. A
location-based user pairing (UP) scheme associates the clustered users with the multiple-
UAV-aided NOMA to minimize the resource allocation problem.

However, all the aforementioned works focus on UAV-relay-aided NOMA without con-
sidering mmWave communications. The severe signal power attenuation in the mmWave
band impacts UAV connectivity performance, especially when very long communications
distances exist between the ground users and the associated UAV which serves them.

Therefore, this paper addresses the design of a UAV-enabled FD relaying network in
the mmWave band to aid an uplink NOMA cellular system.

In detail, a multiple-UAV-relaying network supports NOMA technology, and hybrid
mmWave beamforming is considered at the base station (BS), which can estimate the DoA
information of UAVs to improve the overall sum rate of the system. Indeed, the DoAs are
unknown and the MUltiple SIgnal Classification (MUSIC) method [16] considered in this
paper estimates directly the DoAs at the hybrid mmWave beamformer.

In [17], a beamspace MUSIC algorithm is used to estimate path directions for mmWave
channel estimation problem showing that the hybrid precoding structure can avoid the
spectrum ambiguity and maximize the number of resolvable path directions. The mmWave
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channel estimation problem is also considered in [18] by using MUSIC for the hybrid
analog/digital beamformer with 2D co-prime arrays where the directions can be uniquely
estimated by finding the common peaks of the 2 decomposed subarrays.

Deep-learning approaches are considered to evaluate the angle-of-arrival (AoA) infor-
mation in the uplink of an mmWave communication system based on MUSIC to enhance
classification accuracy in [19]. The above papers use the MUSIC algorithm to derive the
DoA information in mmWave hybrid beamforming, but they do not deploy an UAV-relay
network, as in this paper.

To the best of our knowledge, this paper is the first contribution that considers jointly
(i) the UL mmWave communications, (ii) the hybrid beamforming with DoA estimation
based on the MUSIC method and (iii) multiple UAVs acting as an aerial BS to relay NOMA
transmissions and, consequently, achieve better data rate for users who can suffer severe
channel conditions. Moreover, a novel maximization design of the overall sum-rate is
proposed for the uplink mmWave transmission of the multiple-UAV-relay-aided NOMA
6G system.

The contributions of this paper can be summarized as follows:

• We consider a multiple-UAV-aided NOMA network where each UAV acts as a mobile
FD relay in mmWave UL for 6G cellular systems;

• We propose the use of the MUSIC algorithm at the hybrid beamforming to detect
the DoA estimations for each UAV and improve the performance of the UAV-aided
NOMA cellular system;

• We propose an optimization procedure in order to maximize the average achievable
sum rate of the UL mmWave UAV relay network by taking into accounts LoS obstruc-
tion, channel time-varying condition, the DoA information at the hybrid beamforming
due to the different spatial directions of UAVs, as well as the requirements in terms of
quality of service (QoS) for each user.

The paper is organized as follows. Section 2 presents the proposed system model,
channel model, the mmWave hybrid beamforming, the MUSIC algorithm and the problem
formulation to optimize the global UL sum rate of the UAV-network-aided NOMA cellular
system. In Section 3, the numerical results providing a comparison with the NOMA cellular
system without the use of multi-UAV relays are shown. Finally, Section 4 concludes the
paper and outlines future research activities.

2. System Model and Problem Formulation

A UAV-enabled full-duplex relaying system is considered to aid an uplink mmWave
NOMA cellular system consisting in a BS, with N users and K UAVs, as shown in Figure 1.
The N users are randomly distributed in the cell of radius R, and the BS is located at the
center of the cell.

We assume that the BS is unable to deliver the superimposed signals to the NOMA
users in a far subarea of the cell because the link between users and BS is negligible due to
severe blockage.

Each UAV acts as a DF relay to help data transmission between the BS and users and
operates in FD mode.

We suppose that K UAVs are flying at height Hk in such a way that all links from
UAVs to BS are LOS channels. The elevation angles between the BS and the UAVs are
denoted as (θ1, θ2, ..., θk), and ϕn,k is the elevation angle between the n-th user (named as
user equipment UEn) and UAVk, as shown in Figure 1.

2.1. Path Loss Model

The links from ground users and UAV are LOS or no LOS (NLOS) channels due to the
presence of buildings, vegetation etc., which can obstruct the signals propagation. In detail,
the channel gain between the k-th UAV and the BS is, according to [20–22],

ρk,BS = ζLOS(dk,BS)
−α, (1)
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and if the UAVk is in LOS with the n − th user, the channel gain is defined as

ρn,k = ζLOS(dn,k)
−α, (2)

where dk,BS and dn,k represent the distances between UAVk and BS and between UAVk and
UEn, respectively. ζLOS denotes the additional attenuation factor of the LOS channel at the
reference distance dre f = 1 m, and α is the path loss exponent at the air channel. UAVs
are in LOS with probability pLOS(d) = 1

1+Cexp(−(Bϕn,k−C)) , where B and C are constants
related to the environment, whereas UAVs are in NLOS according to the complementary
probability pNLOS(d) = 1 − pLOS(d).

Figure 1. Multiple-UAV-relay-network-aided mmWave NOMA cellular system.

2.2. MmWave Hybrid Beamforming

In mmWave communications, large phase arrays are usually adopted to overcome the
high propagation losses, and in combining with NOMA, mmWave beamforming is used to
increase beam gain and serve multiple users. Usually, hybrid analog/digital beamforming
is adopted in mmWave NOMA communications, where the precoding is performed in
hybrid mode by combining the digital baseband precoding with an analog RF beamforming
driven by a limited number of RF chains. This hybrid analog/digital beamforming is a
cost-effective solution due to the use of massive antennas with limited RF chains. It can
be easily implemented through the use of analog phase shifters together with the abilities
of digital precoding, which allow the beams to be directed towards the desired user and
remove inter-user interferences [23,24].

In particular, we consider the hybrid beamforming architecture at the BS with a
number NRF of RF chains exploiting NOMA in each RF chain and spatial division multiple
access (SDMA) between RF chains [8], as shown in Figure 2 .

From the angle domain perspective, the knowledge of DoAs plays a fundamental role.
In this paper, the UAVs’ angle information are discovered by using the MUSIC algo-

rithm implemented at the hybrid mmWave beamforming. We assume that the number of
UAVs does not exceed the number of available RF chains, i.e., K ≤ NRF.

The received signal at the BS after RF and digital beamforming combining can be
expressed as [19,24]

y = DHAHHs + DHAHw, (3)

where HNR×K is the channel matrix (detailed in Equation (6)), NR is the number of receiving
antennas at the BS, s denotes the transmit signal, w is the zero-mean independent and iden-
tically distributed (i.i.d.) Gaussian white noise vector with power σ2

w and ANR×NRF , DNRF×K
are the analog and digital beamforming matrices (see Equations (4) and (5)), respectively,
with NRF < NR.
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Figure 2. Hybrid mmWave beamformer with DoAs estimation.

In partially-connected hybrid mmWave beamforming, the antenna array with NR
elements can be organized into groups, called subarrays, and each subarray connected to
one RF chain processes each received signal by a phase shifter. Then, all of them are added
up as shown in Figure 2.

Therefore, the analog matrix ANR×NRF of Equation (3) is a diagonal matrix where

vA,j =
1√
NR

[ejφj,1 , ejφj,2 ...ejφj,NR ] (4)

is the vector of subarray j with j = 1, ..NRF; φ is chosen from a uniform distribution in
the range of [−π/2, π/2]. The RF signal passes through NRF parallel RF chains. It is
down-converted and then the digital beamforming operation follows. The zero-forcing
scheme can be used as a digital beamformer as

D = (HH
A HA)

−1HH
A (5)

where HA = AHH considers the actual channel matrix H filtered by the analog beamform-
ing matrix A.

2.3. Channel Model

We consider a ray-tracing channel model widely used in mm-Wave communications
with a limited number of L scattering paths, as, due to the spatial sparsity in the mm-
wave channel, it is expected that the propagation paths are along a small number of
directions [19,25,26].

Therefore, each column of the channel matrix H is defined as

hk =

√
1

Lρk,BS

L

∑
i=1

gk,ia(θk,i) (6)

where gk,i is the complex gain of the i-path due to small-scale fading, ρk,BS is the path loss
between the BS and the UAVk and θk,i ∈ [−π/2, ..., π/2] is the angle of arrival of the i − th
path of the k − th UAV.

Without loss of generality, we assume a uniform linear array (ULA) at the BS for
simplicity, and the steering vector can be expressed as:

a(θk,i) = [1, ej 2π
λ lsin(θk,i), ....ej(NR−1) 2π

λ lsin(θk,i)] (7)

where λ is the signal wavelength, and l is the distance among antenna elements, where
l ≤ λ/2.
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In the following, we assume that in Equation (6) the variations of the channel are
only caused by the path gains gk,i, and the path angles remain unchanged according to the
mmWave channel measurements in [27].

2.4. MUSIC Algorithm

The DoA information is estimated by MUSIC spectral estimation on the filtered version
of the received signal, as shown in Figure 2, [19,25,26]. The MUSIC algorithm developed
by Schmidt [16] is an eigenstructure-based DOA-finding method and, similar to other
parametric algorithms such as ESPRIT, has demonstrated a superior resolution with respect
to the non-parametric methods.

By considering a partially connected hybrid mmWave beamforming, after the analog
beamforming and the analog-to-digital conversion, the baseband signal is [19,28]:

y = AHHs + AHw (8)

By performing eigenvalue decomposition on the covariance matrix Ryy of the output
vector y of the virtual array, we have:

Ryy = ESΛSEH
S + σ2

wEwEH
w

where Es is the (NRF × K) matrix of the signal eigenvectors corresponding to the K largest
eigenvalues, Ew is the (NRF × (NRF − K)) noise subspace matrix with eigenvectors corre-
sponding to the smallest (NRF − K) singular values, and Λs is the (K × K) diagonal matrix
containing the K largest eigenvalues λ1 > λ2, ... > λK of Ryy. It is clear that the signal
subspace Es and the noise subspace Ew are orthogonal.

The MUSIC algorithm utilizes the orthogonality between the two complementary
spaces to estimate the spatial signal. Therefore, the DoA estimation θ̂k consists of finding
the values of θ, whereby the filtered vector AaD(θ) is related to the signal subspace of Ryy,
where

aD(θ) =
1√
NR

[1, ej 2π
λ lsin(θ), ....ej 2π

λ (NR−1)lsin(θ)]

is the array manifold vector of the virtual array.
By using the definition of a pseudo-spectrum of the MUSIC algorithm, the estimated

DoA of the emitter direction can be calculated by maximizing the function

PMU(θ̂) =
1

aH
D(θ)AEwEH

wAHaD(θ)
, (9)

which provides high resolution of angle separation.

2.5. Problem Formulation

Considering the NOMA method in each beam, intra-beam superposition coding at the
transmitter and SIC at the receiver are performed. In the case of uplink mmWave NOMA,
the users begin to transmit uplink signals x1 and x2 at the same time and in the same
frequency band. For the proposed multiple-UAV relay network shown in Figure 1, each
UAV decodes the mixed signals of the two users in its beam (called, for example, UE1 and
UE2) and then transmits the superimposed signal s to the BS according to

s =
√

P1 x̂1 +
√

P2 x̂2, (10)

where x̂1 and x̂2 are the decoded signals of UE1 and UE2, respectively, and E[|x̂1|2] =
E[|x̂2|2] = 1 and P1 + P2 cannot exceed the maximum transmission power of the UAV.

In the conventional NOMA with a single-antenna, usually the information of the
user with a lower channel gain is decoded first to maximize the sum rate. In contrast, in
mmWave NOMA, the decoding order depends on both channel gain and beamforming
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gain. Without loss of generality, assuming that UE1 has a better channel condition with
respect to UE2 in the area covered by UAVk [4,29], the achievable rates are

R1 = log2(1 +
|hH

1 U|2P1

|hH
2 U|2P2 + σ2

k
) (11)

R2 = log2(1 +
|hH

2 U|2P2

σ2
k

), (12)

and the achievable rate from UAVk is

RUAVk = log2(1 +
|hH

k W|2PUAVk

σ2
w

), (13)

where P1, P2 and PUAVk are the transmission power of UE1, UE2 and UAVk respectively,
h1, h2 are the channel response vector between the UE1, UE2 and UAVk, hk is the channel
response vector between the UAVk and the BS, U and W represent jointly the analog and
digital precoding matrices at the UAVk and at the BS, whereas σ2

k and σ2
w are the power of

the zero-mean additive Gaussian white noise at the UAVk and BS, respectively.
Therefore, the available rate received at the BS considering the UAVk acting as a relay is

Rsum = min(R1 + R2, RUAVk ). (14)

To maximize the uplink average achievable sum rate of all terminals of the multiple-
UAV-aided NOMA mmWave system by dynamically tracking the DoAs of multiple UAVs,
the optimization problem can be formulated as

Maximize
θk

K

∑
k=1

Rsum

s.t.

R1 ≥ r̃

R2 ≥ r̃

Rsum ≥ r̃

P1 + P2 ≤ PUAVk

PUAV1 + PUAV2 + ... PUAVk ≤ P

(15)

where r̃ denotes the minimal data rate constraint for each user and the last constraint indi-
cates the transmitted power constraint with P being the maximum total transmitted power.

This optimization problem is very complicated to be solved directly because the prob-
lem is non-convex and may not be converted to a convex problem with simple manipulations.
Consequently, in order to validate the effectiveness of the proposed optimization problem
and the accuracy of the derived analytical model, we resort to numerical simulations.

3. Simulation Results

In this section, we evaluate the performance of the proposed network of multiple UAV
relays supporting the uplink mmWave NOMA system. In the considered system, UAV
relays are located in different positions with different spatial directions with respect to the
BS, and hybrid mmWave beamforming with MUSIC technique is adopted to derive the
different DoAs in order to optimize the achievable uplink sum-rate. In detail, we simulate
three different scenarios, i.e., an UL mmWave NOMA without a UAV network, a single
UAV and a network of multiple UAVs supporting the UL mmWave NOMA. The cellular
network has an area of 300 × 300 m2 with the BS located in the center. A total of 32 users
are randomly and uniformly distributed in this area.
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The BS is equipped with an ULA of NR = 64 antennas and NRF = 4 RF chains to
simultaneously serve a number K of UAVs with K ≤ NRF. The UAVs deployed in the cell
have different DoAs at the BS uniformly distributed between [−π/2, .... π/2], and each
UAV covers a pair of users who have poor connections with the BS due to a severe blockage
condition. The UAV has NUR = 16 receiving antennas which transmits towards the BS
with one antenna.

We choose to associate the considered blocked user pair not to the closest UAV in term
of distance, but to the one offering the best communication performance, as especially in
a very dense urban scenario, the nearest available UAV may be in NLOS visibility. An
accurate DoA estimation at the BS can monitor the fluctuations of the UAV motion and
consequently improve the performance of the overall uplink sum rate.

The main parameters for an urban scenario are summarized in Table 1 [20,27].

Table 1. Simulation parameters.

Number of users N = 32

Number of UAVs K = 4

Urban LOS probability parameters C = 9.6117, B = 0.1581

The additional attenuation factor for LOS channel ζLOS = 10−6.14

The additional attenuation factor for NLOS channel ζNLOS = 10−7.2

The path loss exponent αLOS = 2 αNLOS = 2.92

UAV deployment height H [100–300] m

UAV transmit power PUAV = 20 dBm

User transmit power PUE = 10 dBm

Minimal rate constraint for users r̃ = 3 bps/Hz

In Figure 3, the achievable sum rate is shown in terms of the varying signal-to-noise
ratio (SNR) for the multi-UAV network with respect to a single UAV scheme in the case of
an LOS environment. The multi-UAV scheme outperforms the single UAV scheme even for
low SNR values, as the channels from users to each UAV are in LOS in these simulations
realizations and consequently demand low power to transmit towards the UAV.

In the same figure, the case of a multi-UAV scheme without DoA information acquisi-
tion is highlighted to validate the performance of the MUSIC method. Indeed, the DoA
estimation error is an important problem due to the UAV mobility and dynamic channel
variations. However, a more accurate DoA estimation occurs when the UAV is far from
the BS [30], and in particular the use of the MUSIC technique allows both the DoA and
received powers to be estimated more accurately with respect to other methods [19,24,31].

Figure 4 shows the achievable sum rate results with respect to SNR when multiple
UAVs are considered for both the case of LOS and NLOS environments. The MUSIC
method at the BS to acquire the DoA information of the UAVs is used. In these simulation
results, the heights of UAVs are not considered too high, because even if the links have
a higher probability to be in LOS, the impact of the increased distance between the pair
of users and the serving UAV decreases the overall link budget, and the links can have a
worse SNR. The results are compared with the performance of the UL NOMA mmWave
system without the multi-UAV network, i.e, the users can communicate directly by NOMA
mmWave link to the BS. The NOMA mmWave link to BS is considered only for evaluating
the performance comparison as, practically, the user pair covered by each UAV has a
severe blockage and cannot communicate with the BS. The achievable sum rate of the
multiple-UAV network achieves a considerably better performance than the direct NOMA
mmWave connection, as shown in Figure 4, providing a improvement of about 6 dB for
high SNR values.
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Figure 3. Achievable rate for multiple UAVs and a single UAV in LOS environment.

Figure 4. Comparison between multi-UAV-aided NOMA and terrestrial NOMA cellular systems.

4. Conclusions

The paper proposes a multi-UAV network where each UAV, acting as a relay, carries
out the NOMA method for users experiencing severe blocking to the BS in mmWave com-
munications. Hybrid beamforming architecture is commonly combined with mmWave
transmission. We have investigated how the angle of arrival information can be estimated
by the MUSIC technique performed after the analog part and the analog-to-digital conver-
sion in the hybrid beamformer to derive the DoA of each UAV. The estimation of DoAs
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allows the specific antenna multi-beam targeting to be formed to each UAV. This provides
an intrinsic mitigation of the UAV fluctuation effects, enhancing the UL signal reception,
and leads to the substantial improvement of the system sum rate, as confirmed by simu-
lation results. We have investigated the problem of how to maximize the sum rate of the
multiple-UAV-aided NOMA mmWave system, where each pair of users is served by an
UAV and where we need to find the hybrid beamforming vector to steer towards each
UAV. MUSIC allows DoAs and received power to be estimated more accurately. This
results in the enhanced overall sum rate (close to 50%) of the multiple-UAV-aided NOMA
network with respect to the NOMA cellular system without the UAV network. In the future,
research should investigate minimizing the energy consumption of a multi-UAV network
by discovering efficient power associations of ground users with UAV trajectories.
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Abstract: Aerial electrostatic spray technology for agriculture is the integration of precision agri-
cultural aviation and electrostatic spray technology. It is one of the research topics that have been
paid close attention to by scholars in the field of agricultural aviation. This study summarizes the
development of airborne electrostatic spray technology for agricultural use in China, including
the early research and exploration of Chinese institutions and researchers in the aspects of nozzle
structure design optimization and theoretical simulation. The research progress of UAV-based aerial
electrostatic spray technology for agricultural use in China was expounded from the aspects of nozzle
modification, technical feasibility study, influencing mechanism of various factors, and field effi-
ciency tests. According to the current development of agricultural UAVs and the characteristics of the
farmland environment in China, the UAV-based aerial electrostatic spray technology, which carries
the airborne electrostatic spray system on the plant protection UAVs, has a wide potential in the
future. At present, the application of UAV-based aerial electrostatic spray technology has yet to be
further improved due to several factors, such as the optimization of the test technology for charged
droplets, the impact of UAV rotor wind field, comparison study on charging modes, and the lack
of technical accumulation in the research of aerial electrostatic spray technology. With the contin-
uous improvement of the research system of agricultural aviation electrostatic spray technology,
UAV-based electrostatic spray technology will give play to the advantages in increasing the droplets
deposition on the target and reducing environmental pollution from the application of pesticides.
This study is capable of providing a reference for the development of the UAV-based agricultural
electrostatic spray technology and the spray equipment.

Keywords: agricultural aviation; UAV; plant protection; review; electrostatic spray technology;
droplet deposition; aerial pesticides application; charge to mess ratio

1. Introduction

Electrostatic spray technology for agricultural aviation is the application of traditional
electrostatic spray technology in an airborne platform. It is one of the research topics
that scholars in the field of agricultural aviation always pay attention to. Agricultural
aerial electrostatic spray technology is mainly based on induction, corona, and contact
charging methods to charge the droplets. Under the action of high voltage static electricity,
charged droplets make rapid directional deposition along the electric field line in the air
and settle on the target [1,2]. For this reason, aerial electrostatic spray can effectively reduce
drift loss during aerial pesticide application, improve droplet deposition, and mitigate
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environmental pollution [3,4]. Carlton et al. [5] from the Agricultural Research Service of
the United States Department of Agriculture (USDA-ARS) designed an electric rotating
electrostatic nozzle in 1966, which was the first scientific research institution in the world
to carry out research on aerial electrostatic spray technology for agriculture. Carlton
also obtained the invention patent of the aerial electrostatic spray technology in 1999 [6].
The patent was certified by the United States Department of Agriculture as the world’s first
and only commercially proven airborne electrostatic spray system for agriculture [7]. SES
(Spectrum Stack Sprayers, Inc., Houston, TX, USA) has been awarded an exclusive license
to manufacture and market this innovative technology. Subsequently, scientific research
institutions in the United States, Brazil, Canada, Switzerland, and China have conducted a
large number of studies to gradually improve the research and application of electrostatic
spray in agricultural aviation [8–10].

The research of electrostatic spray technology for agricultural aviation started rela-
tively late in China but developed rapidly. Especially in recent years, the rapid development
of plant protection UAVs in China has attracted scholars to make a lot of attempts on the re-
search and application of UAV-based electrostatic spray technology. This study introduced
the early exploration of aerial electrostatic spray technology in China from the aspects of
nozzle structure design optimization, theoretical simulation, and field experiment with
manned aircraft platforms. Then, the research progress of UAV-based electrostatic spray
technology in China was emphatically expounded upon, and the existing problems were
discussed as well. It is proposed that future research should be carried out in the measure-
ment technology for charged droplets, the influence of UAV rotor wind field on charged
droplets, comparative study of various charging methods, and other aspects, so as to
increase the accumulation of research on aerial electrostatic spray technology based on an
agricultural UAV platform. This study can provide a reference for the development of the
agricultural aviation electrostatic spray technology and the spray equipment.

2. Early Exploration of Aerial Electrostatic Spray Technology in China

In the 1970s, China began to study the new technology of electrostatic spraying for
agricultural application [11]. In 1977, Shenyang Spray Factory used hand-held sprayers
to carry out field spraying experiments on the seedlings and young trees of cloves and
found that the application of electrostatic spraying treatment could increase the amount of
pesticides applied per unit area of plants while reducing the labor intensity [12]. After the
application of electrostatic spray technology in hand-held and knapsack sprayers, it has
also achieved success in the application of ground agricultural machinery equipment in
greenhouses, orchards, and other operating scenarios [13,14]. A large number of studies
on the effects of electrostatic spray equipment have been carried out on droplet size,
droplet deposition distribution in each part of crop canopy, nozzle structure, and working
parameters on droplet quality, etc. [15–19].

In 2005, China introduced the electrical parts and nozzles of the aerial electrostatic
spray system from the SES company and carried out simulation tests and flight tests [20],
marking the beginning of China’s research in the field of aerial electrostatic spraying.
Two years later, universities and scientific research institutions in China began to com-
prehensively study the aerial electrostatic spray technology based on manned aircraft
platforms in aspects of hardware structure improvement, mechanism of influencing factors,
and theoretical simulation.

2.1. Hardware Structure Improvement

Hardware structure improvement research refers to the adjustment or structural
modification of system parameters such as electrode material, nozzle size, rotor number,
and nozzle position of aerial electrostatic spray systems [21].

In 2007, Ru et al. [22] introduced a structured design on a double-nozzle for an
aerial electrostatic sprayer and theoretically analyzed the space field induced by the
double-nozzle and the impact on the size and charging droplets from the space field.
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Zhou et al. [23] improved the design of an aerial electrostatic single-nozzle from the as-
pects of an electrostatic electrode, nozzle material, nozzle processing technology, connection
mode of high voltage wire and electrode, rotating screw joints, overflow valve body, and
so on, in order to meet the requirements for application and large-scale production.

In terms of the electrode of electrostatic nozzles, Ru et al. [24] modified the original
cylindrical electrode to a cone-shaped electrode according to the features of aerial electro-
static spraying. The effect of charging voltage on the charge to mass ratio and deposition
distribution of the new aerial electrostatic system was tested under simulated flight con-
ditions. It was found that the electrostatic spray was beneficial to increase the average
deposition of charged droplets on the lateral, bottom, and back sides of the neutral target
significantly. Jin et al. [25] improved the ring electrode of an aerial electrostatic nozzle and
conducted an experimental study on the droplet size and the charging effect of droplets
after the improvement. Results showed that droplet size was influenced by nozzle diam-
eter, spraying pressure, and charging voltage, of which the spray pressure indicated the
strongest effect, and charging voltage showed the weakest effect. The charge to mass ratio
increased with the increase in voltage, reaching a maximum of 2.09 mC/kg, and tends to
saturation at 8 kV. The charge to mass ratio decreased with the increase in droplet size,
but the change was not rapid.

2.2. Research on Mechanism of Influencing Factors

The settling process of charged droplets is restricted by environmental factors, control-
lable factors, and target parameters during spraying operation, thus affecting the operation
quality of the electrostatic spraying system. Among these influencing factors, environmen-
tal factors include temperature, humidity, wind speed, soil, etc.; controllable parameters
include charging voltage, spraying flow, spraying pressure, flight altitude, flight speed,
etc.; target parameters include crop objects, target morphology, leaf inclination, and insect
pest types and habits, and so on [21].

Yang et al. [26] studied the influence of different crosswinds wind speed conditions
and electrostatic voltage on charging characteristics through indoor simulation of natural
wind and constant wind environment, providing a basis for strengthening the anti-drift
ability of charged spray droplets in the settling process. Chen et al. [27] analyzed the
characteristics of the electrostatic field induced by the ring electrode with the help of Fluent
software (Version 6.3). It was found that the higher charging voltage or smaller electrode
spacing (when the distance between the induction electrode ring and the nozzle was less
than 10 mm) could effectively improve the charge effect and spray quality.

3. Rapid Progress of UAV-Based Electrostatic Spray Technology

3.1. Research Background

In 2014, China’s agricultural pesticide application was still dominated by large fixed-
wing aircraft, supplemented by rotary-wing UAVs [28]. However, since 2015, with the
urbanization process in China, the rural labor force population has become less and less.
Meanwhile, with the improvement of living standards, automatic pesticide application
tools have gradually been accepted by farmers [29]. Nowadays, plant protection UAVs
have maintained a booming trend in the field of agricultural plant protection. China has
taken an internationally leading position in terms of technology, quantity, and product
types of agricultural plant protection UAVs [30].

Figure 1 shows the increasing number of plant protection UAVs and operating areas
covered in China from 2014 to 2020. The number of plant protection UAVs has reached
106,000 units with an operation area covered of 64 million hm2 in 2020. In this context,
Chinese scholars began to put forward the idea of applying aerial electrostatic spray
technology to UAVs, while there are few reports on this topic worldwide.
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Figure 1. Increasing number of plant protection UAVs and operating area covered in China (2014–2020).

3.2. Beginning of the Research on UAV-Based Electrostatic Spray Technology

In 2015, Ru et al. [31] tried the first combination of electrostatic spray technology
and plant protection UAV with an XY8D unmanned helicopter and carried out field tests
in a rice field, as shown in Figure 2. A preliminary experiment on spray pressure, flow
rate, and charging voltage were conducted to determine the optimal parameters for field
tests. Field spraying test results showed that the droplet deposition and coverage rate on
the target crop was effectively improved by the UAV-based electrostatic spraying when
compared with non-electrostatic spraying. The influence of environmental factors and
physical properties of the liquid was not verified in this experiment. However, the first
study of carrying the electrostatic spray system on a UAV was of great value. Chinese
scholars then began to make continuous innovations and breakthroughs in UAV-based
electrostatic spray technology.

Figure 2. Rice field test with an XY8D UAV-based electrostatic spray system [31].
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3.3. Continuous Optimization of UAV-Based Electrostatic Spray Technology

Chinese researchers have carried out a series of optimization work from the aspects
of nozzle modification, test effect comparison, and mechanism of influencing factors in
order to meet the precise operation requirements of UAV-based electrostatic spray system
in practical application and to improve the droplet deposition on the target crops.

In terms of nozzles modification, Wang et al. [32] improved the conventional nozzles
for multi-rotor plant protection UAVs. An inductive type electrostatic centrifugal nozzle
was developed by combining agricultural electrostatic spray technology with a centrifugal
atomizing nozzle. Besides, the spraying flow stability test and droplet deposition effect of
the system were studied. When the charging voltage of the nozzle reaches 8 kV, the charge
to mass ratio reaches the maximum value of 0.59 mC/kg.

In terms of comparison with the test results of non-electrostatic spray, Jin et al. [33]
from Nanjing Forestry University designed an electrostatic spray system for the AF-
118 helicopter. Through the effective spraying width and droplets deposition character-
istics, it is found that the effective spraying width of electrostatic spray was smaller
than that of non-electrostatic spray. The total droplet deposition number of electrostatic
spray (9–36 drops/cm2) was higher than that of non-electrostatic spray (6–26 drops/cm2).
Lian [34] used YG-6 six-rotor UAV to carry an electrostatic spray system. Through an
indoor performance test, the optimal operating parameter combination of the system was
determined (spraying height is 50 cm, charging voltage is 9 kV, spraying pressure was
0.3 MPa). This parameter combination was used to test the electrostatic spray effect of
outdoor UAVs. The result showed that the average deposition density of droplets sprayed
above the target by electrostatic spray was 16.1 more/cm2, 13.6% higher than that by
non-electrostatic spray. The average sediment density in the middle was 28 more/cm2,
which increased by 32.6%. Cai [35] developed an aerial electrostatic spray system based
on an F-50 plant protection UAV. The spray system adopts contact charge, and the exper-
imental research is carried out according to the factors of the rotor wind field, such as
wind speed, charge to mass ratio, flight height, and flight speed. Through field spraying
experiments, as shown in Figure 3, it was found that the flight height is an important factor
affecting the deposition amount and the horizontal deposition uniformity but has little
effect on the vertical deposition uniformity. Zhao et al. [36] proposed a method of charging
the liquid in two isolated water tanks with positive and negative charges respectively
by a high-voltage electrostatic generator based on the contact charge mode to solve the
problem of insufficient adsorption rate of droplets on the target back when using an aerial
electrostatic spray. Aerial electrostatic spraying test stand and UAV electrostatic spray
system were designed, which proved that it was feasible to develop a charge transfer loop
in space to improve the adsorption performance of droplets. An electrostatic physical
model of aerial electrostatic spray based on charge transfer space loop is shown in Figure 4.
Zhang et al. [37] developed a fan-shaped induction electrostatic spray system based on a
six-rotor UAV and defined the corresponding operating parameters (spray height 50 cm,
spray pressure 0.3 MPa, and charging voltage 9 kV). Compared with non-electrostatic
spray, the electrostatic spray had more concentrated droplet deposition and smaller drift.
The average droplet deposition density at the top of the electrostatic spray sampling device
was 16.1 drops/cm2 higher than that of non-electrostatic spray, and the deposition density
in the middle was 28 drops/cm2 higher than that of non-electrostatic spray. Therefore,
aerial electrostatic spray could significantly improve droplet deposition and prevent drift.
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Figure 3. UAV paddy field spraying operations [35].

Figure 4. Electrostatics physical model of aerial electrostatic spraying based on charge transfer space
loop [36].

In terms of the mechanism of influencing factors, Bu [38] designed an electrostatic
spray system based on the FR-200 large-load unmanned helicopter with a maximum
load of 80 kg. The charge and spray characteristics of the electrostatic spray system were
studied, and the prediction models of the charge to mass ratio and droplet size were
established. The characteristics of deposition and drift of electrostatic spray of heavy load
unmanned helicopter were analyzed by field experiments. It was concluded that the charge
voltage, flight height, and crosswind wind speed were the main factors affecting the drift
and deposition of an electrostatic spray of FR-200. The results showed that the charge
voltage had the greatest influence, followed by the crosswind wind speed, and the flight
height had the least influence. Based on the research results, the mathematical model
was established between the center distance of droplet mass and droplet drift rate and
the charged voltage, flight height, and crosswind wind speed. Wu et al. [39] introduced
response surface analysis (RSM) into the optimization design of spray parameters of
Electrostatic spray system of UAVs. A response surface model with injection pressure
and nozzle diameter as design variables and droplet charge to mass ratio as optimization
objectives was constructed. The performance tests of the new electrostatic spray system
under different nozzle diameters, spray pressures, and electrostatic voltages were carried
out. It showed that the nozzle met the theoretical requirements of optimal biological particle
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size and the requirements of hydraulic spray control for most crop diseases and insect pests.
The validity of the model was also proved. In addition, multivariate analysis of variance
showed that nozzle diameter, spray pressure, and electrostatic voltage have important
effects on performance. The influence of the two factors on the deposition density and
uniformity is the spray pressure, the nozzle diameter, and the optimal combination of
the factor levels to obtain the best results. Chinese scholars also carried out research on
multiple operating parameters and their interaction effects on the performance of aerial
electrostatic spray systems. Lu et al. [40] simulated the spray performance of UAV-based
electrostatic spray systems at different flight heights by measuring the droplet diameter
under different nozzle apertures and system pressures and obtained the optimal flight
parameter combination. Zhao et al. [41] studied the spray deposition with three factors:
spraying duration, charging voltage, and flight height. The experimental results showed
that the back-front ratio of droplets on the back and front of leaf targets could reach 158.8%
under indoor conditions, and the droplet size on the back was smaller than that on the
front. The number of droplets increased with the accumulation of spraying time without
affecting the back-front ratio. Higher charging voltage and lower spraying height for the
aerial electrostatic spray system can achieve a better deposition effect and higher back-front
ratio. Wang et al. [42] established theoretical equations of droplet group charge based on
the water inductive charging theory and then studied the effects of electrode figuration
(electrode ring diameter, electrode spacing, spray pressure, and charge voltage) on droplet
charging and spray performance through experiments. Under the action of an electrostatic
field, the droplet size decreased obviously with the increase in charged voltage. The charge
performance improved with the decrease in electrode ring diameter. Lan et al. [43] studied
the impact of electrode materials on the deposition characteristics of an aerial electrostatic
system with different orifice sizes, system pressures, and charging voltages. The results
showed that red copper was the best electrode material. Li et al. [44] simulated five factors,
such as temperature, humidity, electrode ring diameter, electrostatic voltage, and nozzle
flow, using a BP model based on Neuroshell software and studied the effects on the charge
to mass ratio of airborne electrostatic droplets. The final linear regression model indicated
that the charging voltage and flow rate were the two main influencing factors on the droplet
charge to mass ratio.

3.4. Spray Efficiency Experiments of UAV-Based Electrostatic Spray Technology

Wang et al. [45] designed a bipolar contact oil-powered single rotor aerial electrostatic
spray system for plant protection UAVs. The static electricity system was used to spray
the static electricity oil agent and the conventional water-based chemical agent. Besides,
the spray droplet deposition distribution and the control effect of wheat aphid and rust
were tested. The result showed that the deposition per unit area was 0.0486 μg/cm2,
the standard deviation of deposition amounts was 0.015 μg/cm2, and the coefficient
of variation was 30.43%. The distribution uniformity of droplet deposition is obviously
better than the other two treatments, and the prevention and control of diseases and
insect pests in the wheat field showed a good control effect. The aphid control effect was
87.92% on the seventh day after spraying, which was significantly higher than that of the
conventional spray treatment (76.43% with the electrostatic oil agent and 66.47% with the
conventional water-based agent). Liu [46] designed a high-voltage electrostatic generator
with smaller volume and mass based on the optimized structure parameters of the cone-
shaped electrode and the determined dosage form of the special electrostatic liquid agent
for aviation. It was more suitable for plant protection UAVs, aimed at the current problems
such as the poor charging effect of droplets, poor applicability of aerial spraying agents,
complex high-voltage electrostatic generator system, and heavy high-voltage electrostatic
generator. In addition, a set of electrostatic spray systems that can be applied to six-rotor
and single-rotor plant protection UAVs was developed, as shown in Figure 5. The system
was mounted on the plant protection UAV and carried out the experiment in the cotton and
rice-growing areas of Changji, Xinjing, Shihezi, Xinjing, and Ledong, Hainan. The results of
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spraying operation of hybrid breeding rice growth regulator and defoliating cotton agent by
plant protection UAV showed that when spraying rice growth regulator by plant protection
UAV, the effect of electrostatic spraying could be up to 20% higher than that of non-static
spraying, and the effects of spraying different chemicals were different. When sprayed the
cotton defoliant, the coverage rate of droplet increased by 140%, the defoliation efficacy
increased by 12.22%, and the cotton boll opening rate increased by 18.55%.

Figure 5. HY-B-15L single-rotor plant protection unmanned helicopter for cotton defoliant spray (a) and TXA616 plant
protection UAV for rice growth regulator spray (b) [46].

3.5. Summary

To sum up, a large number of field experiments have been conducted in China to
test the actual performance of the electrostatic spray system based on UAVs. For the
convenience of comparative analysis, Table 1 summarizes the researches on UAV-based
electrostatic spray systems. From the perspective of the test scheme, the system pressure,
flight height and speed, charging voltage, rotor wind speed, and their effects on each
other were studied. Chinese scholars have also completed a lot of work using theoretical
simulations of the spray system, the improvement of the electrostatic nozzle, and the
optimization of the aerial chemicals. In terms of the mode of charge, most studies adopt
the induction mode of charge with the highest safety. The inductive charging voltage is
usually between 2 kV and 15 kV, and the electrode making and insulation methods are easy
to be realized, which is the most developed method of charging droplets at present [47].
In addition, contact charging has also been tried in China, which has also achieved good
results [34–36,41,45]. However, it needs to keep the absolute insulation of the spray system
in the charging process, which puts forward high requirements for the design method
and safety.

Figure 6 illustrates the key achievements of the aerial electrostatic spray technology
and the research groups over a timeline. Since 2015, China’s UAV-based aerial electrostatic
spray technology has developed rapidly. In general, although the UAV-based electrostatic
spray technology is a new technology, it is gradually being improved. Compared with the
electrostatic spray system on manned aircraft, plant protection UAVs have more develop-
ment prospects in China at present. With the operation area covered exceeding 67 million
hm2, the plant protection UAV has developed from an early experimental product into a
common agricultural production machine in China [48]. It is of great practical significance
to study the fusion and influence mechanism of UAV and aerial electrostatic spray systems,
which contributes to the field of agricultural aviation plant protection in the future.
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Figure 6. Key milestones and research groups working on aerial electrostatic spray technology.

4. Analysis and Prospects

The exploration of UAV-based electrostatic spray technology expands a new research
perspective for the research of agricultural aviation electrostatic spray technology. The con-
tinuous improvement of the technology brings new opportunities for the application of
aerial electrostatic spray systems on commercial plant protection UAVs in China. However,
according to the current research progress, still, the following key technical elements need
further exploration.

4.1. Measurement Technology of Charged Droplets

Droplet charge to mass ratio is a term associated with aerial electrostatic spray technol-
ogy, and the measurement results of charge to mass ratio provide a reference for the evalua-
tion of electrostatic spray system performance. In the absence of interference (e.g., indoors),
the droplet charge to mass ratio is positively correlated with the deposition effect [49].
However, when working in an outdoor environment, there is usually a big difference
between the droplet charge to mass ratios at the nozzle end and the terminal target, which
requires the terminal measuring device to evaluate the charge amount. However, due to
the absence of electrical grounding, the device that collects charged droplets often results in
an inconsistent result with the actual effect of settling on the target [50]. For the electrostatic
spray technology, the electric field intensity varies with the plant form, liquid conductivity,
and environmental factors. For example, the electric field near the tip or terminal part of
the leaf is the strongest [51]. Law [52] reported that gaseous discharges between sharp leaf
tips and incoming charged spray clouds had been shown to limit deposition.

In many studies, aerial electrostatic spray had a better deposition effect compared
with conventional electrostatic spray and non-electrostatic spray, but there are not a few
reports that the effect of electrostatic spray is not satisfactory [1,49,53]. However, it remains
to be further confirmed whether the difference in operation effect is caused by a sharp
reduction in the charge to mass ratio of charge droplets, faulty experimental design scheme,
or environmental influence. In recent years, more detection methods such as laser particle
size analyzer have been continuously applied to the measurement of droplets effect in
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China [54,55]. However, there are many problems such as high manufacturing cost, large
measurement error, and complex measurement process. Therefore, it is necessary to develop
a droplet characteristic detection technology suitable for aerial electrostatic spray systems
to monitor the real state of charged droplets.

4.2. Impact of UAV Rotor Wind Field on Charged Droplets

The wind field on a manned fixed-wing aircraft causes charged droplets to settle in the
direction of flight towards the area over which the aircraft passes. However, the wind field
of a multi-rotor plant protection UAV is chaotic and changeable. It is not a regular wind field
in a single direction. Moreover, due to the dual interference of ambient wind and rotor wind
field, the charged droplet deposition process is more complicated in the actual operation
scenario. Existing studies have basically ignored the working state of bipolar electrostatic
spray system under the action of multiple rotor wind fields, the attracting process of
positive and negative charged droplets, and the influence of droplets on the humidity of
inductive charging electrodes. However, the impact is huge in that the characteristic of
charged droplet property undoubtedly loses if the attraction of the charged droplets with
positive and negative polarity is affected. In addition, wet electrodes will also make the
electrically charged performance worse. Therefore, the influence of UAV rotor wind fields
on charged droplets should be paid more attention in future research.

PIV (Particle Image Velocimetry) and other techniques can be used to simulate the
droplet settling state under the influence of the rotor wind field, natural environmental
wind, multiple gradient crosswinds, and other factors, so as to establish a theoretical system
for reducing the influence of the rotor UAV downwash wind field and even utilizing the
wind field action.

4.3. Comparative Study of Various Charging Methods

The induction charging mode was determined from the early stage of aerial electro-
static spray technology research in the United States, and it has been adopted in commercial
electrostatic spray systems. Induction charging has the advantages of low charging voltage
and low application threshold. It is a safe and effective method for charging droplets.
Most Chinese scholars have also applied the induction charging method in their research.
However, in addition to induction, there are also contact and corona ways to charge
droplets. Corona charging voltage is very high, up to 30 kV. It can be used for conductive
and non-conductive liquids with low insulation requirements. The contact charging voltage
is required to be between corona type and induction type, but the insulation requirements
are higher. Although the corona type with high charging voltage and the contact type
with high insulation requirements still need a lot of basic research to clarify the charging
mechanism and eliminate application risks, the disadvantages of the induction charging
mode with poor charging effect cannot be ignored. Previous studies have shown that
the contact charging method is able to generate a larger target current when compared
with the induction charging method [47]. In recent years, there have been reports on
contact charging methods in the research of UAV-based electrostatic spray technology with
gratifying test results. In the future, it is necessary to carry out comparative studies of
various charging methods in order to evaluate the operation effect of aerial electrostatic
spray technology under different charging methods.

4.4. Accumulation of Aerial Electrostatic Spray Technology Research Based on Agricultural UAVs

During the early stage of China’s agricultural aviation electrostatic spray technology
research, the design and test were carried out on manned fixed-wing aircraft and heli-
copter platforms. In recent years, plant protection UAVs have provided Chinese growers
with a lower barrier to entry and a higher level of applicability. Chinese scholars have
carried on beneficial exploration for UAV-based electrostatic spray technology according to
different UAV models, field crops, operating parameters, and electrostatic nozzle parame-
ters, but the main research emphasis is still on the contrast test of electrostatic spray and
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non-electrostatic spray to verify the operation effect of charged droplets. The research accu-
mulation of airborne electrostatic spray technology based on agricultural UAV platforms is
still less. It is not mature at the application level because the morphological characteristics
of various crops and the farmland environment need more experimental data support.
For example, (1) Relevant studies on the system construction, composition, and weight
control of the electrostatic spray system lack continuity; (2) whether the operation with
aerial electrostatic spray system is affected by surrounding facilities such as high-voltage
lines, or whether it is incompatible with the flight control system of high-precision and
fully autonomous plant protection UAV, is still unknown; (3) at present, the practical
application of aerial electrostatic spray system in the field is limited to spraying water and
water-based pesticides, and there is a lack of in-depth discussion on the research of the
special electrostatic liquid pesticides and the electrical conductivity of pesticides for aerial
spraying application; (4) working parameters of the spray system, such as charging voltage,
system pressure and spraying speed, selection of flight speed and altitude, characteristics of
aviation agents, and environmental factors such as temperature, humidity, and wind speed,
all affect the settling process of charged droplets. Therefore, it is necessary to observe the
droplet characteristics by studying their interaction effects; (5) the development trend of
most commercial agricultural UAVs in China is integrating pesticide spraying, seed sow-
ing, and fertilizer spreading together with fully autonomous and high-precision operation.
Therefore, it is necessary to consider whether the integration of aerial electrostatic spray
system, UAV working systems, and flight control system will cause mutual interference.

5. Conclusions

The development of aerial electrostatic spray technology in China, especially UAV-
based aerial electrostatic spray technology, was analyzed in this review from nozzle mod-
ification, technical feasibility tests, mechanisms influencing each factor, and field spray
efficiency tests. According to the literature retrieved, the research of China’s aerial electro-
static spray technology in the past five years has focused on the innovative exploration of
UAVs as a platform. Combined with the current development of agricultural plant protec-
tion and industrial application practice, UAV-based aerial electrostatic spray technology
has wider developmental potential in China. In the future, the development plans should
be made around the basic research, field test, commercialization, demonstration, and ser-
vice guidance. In addition, researchers are recommended to pay attention to the integrated
design of UAV and aerial electrostatic spray systems and to formulate the application
standard of aerial electrostatic spray technology in China.
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