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Preface

Due to the increasing importance of considering socio-environmental issues in the modern day,

modern critical systems should pursue sustainability-related objectives while meeting operational

goals. Furthermore, sociotechnical systems working with complex operations represent dynamic

complexity, relative ignorance, and intractability, which entail interactive and dependent social

elements and organizational and human activities. Considering the influence of and the relationship

between operational concerns such as risk, reliability, and resilience, and strategic concerns such as

sustainability, helps managers and policy-makers make more reliable and efficient decisions in a wide

range of engineering and management systems. This book aims to extend the available knowledge

on the extent and quality of such interactions and discusses how one can ensure that reliability

and resilience are maintained in dynamic conditions to achieve sustainable operation. Under these

conditions, most existing engineering and management systems in various industries (e.g., food,

mining, and construction) should be required to undergo adaptive improvements to become more

resilient to potential future typical or extraordinary circumstances. This book also sheds light on

the challenges and future directions which the research community should focus on and introduces

various approaches and applications to develop more sustainable and resilient solutions in both

engineering and management systems.

This book is a collection of 11 articles demonstrating the recent developments in risk,

resilience, and reliability analysis for sustainable management. Several novel analytical approaches

and fascinating applications of risk, resilience, and reliability analysis related to supply chain

management, project and construction management, health, safety, and environmental management,

sustainable food production, and safety engineering are introduced in this book.

Esmaeil Zarei, Samuel Yousefi, and Mohsen Omidvar

Editors
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Abstract: Accident models are mental models that make it possible to understand the causality of ad-
verse events. This research was conducted based on five major objectives: (i) to systematically review
the relevant literature about AcciMap, STAMP, and FRAM models and synthesize the theoretical
and experimental findings, as well as the main research flows; (ii) to examine the standalone and
hybrid applications for modeling the leading factors of the accident and the behavior of sociotechnical
systems; (iii) to highlight the strengths and weaknesses of exploring the research opportunities;
(iv) to describe the safety and accident models in terms of safety-I-II-III; and finally, to investigate the
impact of the systemic models’ applications in enhancing the system’s sustainability. The systematic
models can identify contributory factors, functions, and relationships in different system levels which
helps to increase the awareness of systems and enhance the sustainability of safety management.
Furthermore, their hybrid extensions can significantly overcome the limitations of these models and
provide more reliable information. Applying the safety II and III concepts and their approaches in
the system can also progress their safety levels. Finally, the ethical control of sophisticated systems
suggests that further research utilizing these methodologies should be conducted to enhance system
analysis and safety evaluations.

Keywords: accident analyses; AcciMap; STAMP; FRAM; safety-III; sustainable system

1. Introduction

The protection of human resources and environments along with reducing the risk of
losses are the major concerns of system managers all over the world. Safety management
has also shown to have a vital role in establishing the sustainable progress of a system [1].
The concept of sustainability refers to the effective management of the environment in short
and long-term procurement in order to ensure that resources and social provisions meet
the needs of future generations. It also takes into account the potential for long-term risk
reduction [2].

In that regard, establishing a sustainable organization requires proactively managing
risk in an integrated way to decrease unplanned chains of events and losses—particularly,
in order to promote the quality of performance and productivity. On the other hand,
one of the key elements for achieving sustainability, improving safety, and maintaining
low incident rates is to perform a comprehensive, accurate and detailed analysis of an
organization’s incidents and accidents [3].

An accident is defined as an unplanned chain of events resulting from inadequate
risk control or the application of safety constraints that causes injury, illness or damage to

Sustainability 2022, 14, 5869. https://doi.org/10.3390/su14105869 https://www.mdpi.com/journal/sustainability
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people, property, the environment, or credit [4]. The ILO states that occupational accidents
or illnesses cause the death of one worker every 15 s. It also declares that 153 accidents occur
due to work practices at the same time, and 6300 workers die every day from work-related
illnesses or accidents at work.

The ILO also declares that shortcomings in taking appropriate health and safety
measures at work lead to an economic burden equal to 4% of global GDP per year [5–7].
Illnesses and accidents induced by work activities have also proved to affect economic
growth much more than several other common illnesses and disorders, such as cancer,
cardiovascular disorders, Alzheimer, and HIV/AIDS [6]. It is worth noting that the socio-
economic costs of accidents are significantly higher than their financial ones and such costs
cannot be easily estimated. This highlights the importance of risk assessment, reliability
analysis and modeling of the causation of the accidents [8,9].

Occupational accidents usually occur due to several factors, such as human factors, job
design, environmental and economic conditions, lack of experience, long working hours,
fatigue, sleep disorders, noise, physical pressures, workload, role ambiguity and conflicts,
and demographic characteristics and lifestyle [10–18].

Some studies suggest that the human factors contribute to approximately 80% of
occupational accidents and that human error is a main contributing factor for workplace
accidents [13,19].

Most industrial facilities are complex engineered sociotechnical systems where the
social, human, organizational, and technical factors are considered in their design and
structure. Internal and external interactions between physical equipment and people also
exist in such facilities [20]. In other words, with the increasing advancement of technology
and complex engineering systems, accidents are not simply the result of a minor failure.
Although they emerge from complex interactions between system components, they are
usually related to latent factors such as human error, technical failures, external factors and
abnormal process situations [21]. Due to the complexity of modern industrial technological
systems, the risk of accidents involving such systems has become more concerning [22,23].
The continual recurrence of catastrophic events such as Bhopal, Piper Alpha, BP Texas
City, Bunce field, and Gulf of Mexico, as complex technological systems, has contributed
to serious losses and raised social and legislative stakeholders’ concerns over the last
decades [24,25]. The accident in the Gulf of Mexico highlighted some critical issues in
system safety and common thinking about defining the causality of accidents. It also
revealed that the linear models are incapable of determining the interaction between the
leading factors, and, despite their wide use in accident analysis techniques, do not enable
systems to reach the zero-accident target [24]. Therefore, as highlighted by Hollnagel et al.
(2006), in order to control the adverse consequences of these accidents, it is essential to
know the background, future complications, control measures, and resources that can
be achieved through using accident modeling strategies [26]. In other words, accident
models are mental models upon which it is possible to understand how and why accidents
occur in terms of causality. They are also used as a means of risk assessment to determine
appropriate safety measures for enhancing the stability of systems [27,28]. Therefore,
these concepts have been promoted in recent years as effective tools in enhancing safety
and preventing accidents through applying proactive rather than reactive methods. The
most important step necessary to achieve this goal is to enhance awareness about the
technological, organizational and human factors affecting the system [3].

Various classifications of the accident models have therefore been introduced and
evaluated in the literature [29–38]. Accident models are usually divided into sequential,
epidemiological and systemic models [39]. While the focus of the first two models is on
the linear investigation of accident causality, the systemic models mainly consider the
interaction among the major system components (technical, human, organizational, and
managerial). In other words, the interrelations among the causes of the accident according
to the systematic model are non-linear and include multiple feedback loops [40,41].
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Nonetheless, the application of these advanced models and their associated methods
have already been expanded and criticized at a number of different levels [42,43]. Therefore,
it is timely to systematically subject the studies of accident analysis models to a thorough
review. Furthermore, much of the research in this field, up to now has focused on the
review of the specific methodologies (e.g., AcciMap) or distinctive accident models [44].
Hence, we believe that broad review on systemic analysis methods should be conducted to
fully provide ample indications about how they can be more applicable to conduct practical
analysis as well as preventing the accidents.

Therefore, the principal objectives of this systematic review were defined as follows:
First, an overview of the papers that had applied the methodologies of AcciMap, STAMP,
FRAM in their analyses to synthesize the theoretical and experimental findings—particularly
for recognizing the main research flows. Second, to examine the application of the men-
tioned approaches combined with other methods for modeling causal factors of the acci-
dents and the behavior of sociotechnical systems. Third, highlighting the advantages and
disadvantages of these approaches to explore the opportunities for research and practice.
Fourth, to describe the safety and accident models in terms of safety-I (“as few things
as possible go wrong”) and safety-II (“as many things as possible go right”), as well as
safety-III (“freedom from unacceptable losses”). To describe these three paradigms of safety
in detail: In the safety-I paradigm, accidents occur due to system failures and performance
malfunctions, according to which safety management is reactive because the response is to
the time that events occurred and any contributory factors were identified. In the safety-II
paradigm, the system is adjusted to respond to events and to eliminate the problems before
they occurred and its effort is to make functions “go right”. Based on this concept, safety
management is proactive. The safety-III concept represents that inadequate hazards control
is the main cause of accidents. In this paradigm, safety management does not regard the
identification of the root cause. Instead, it investigates the reason for control malfunctions,
preventing accidents, and system performance auditing [4,45].

The final objective of this work was to investigate the impact of employing the systemic
models for enhancing the systems sustainability.

Accordingly, the following research questions were defined for this review:

What research flows in sociotechnical systems have been examined from the perspective of
these three systemic accident models?
How has previous research contributed to the three systemic accident models and what are
the needs and shortcomings in these studies?
How are the current problems best dealt with and what challenges do accident analysts face?
What is the role of systemic accident models in improving system sustainability?

1.1. Evaluation of Accident Models

Generally, there are three categories of accident models: sequential, epidemiological
and systemic models [46]. The classification of these models and their subset methods are
illustrated in Figure 1.

1.2. Sequential Accident Models

According to these models, the leading cause of an accident is a linear sequence of
events. In other words, the causes of these accidents stem from a series of separate events
that occur in a specific chronological order. Most of the traditional accident models such
as Domino theory, CCA, FTA, ETA, and FMEA are classified within this type. Domino
theory is different from domino effect as the second involves extensive resonance creating
events in the process and chemical industries [39,47]. This category, however, suffers from
some limitations in determining the contributing factors of the accidents in the complex
sociotechnical systems that were developed in the second half of the twentieth century [48].
Accidents have always proved to have more than just one single cause. Thus, the need for
more robust methods of overcoming the limitation of sequential models that explain the
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underlying causes of accidents lead to the development of epidemiological models in the
1980s [49].

 
Figure 1. Accident model classifications and subset methods [29,36,37].

1.3. Epidemiological Accident Models

In these models, accidents are considered to be caused as a combination of “latent”
factors such as management functions and organizational culture, as well as “active fail-
ures” [50]. Reason’s Swiss cheese model is one of the subsets of this category which regards
the critical role of organizational safety and the contributory factors of failures of the
relevant protective barriers. In this model, the human errors that directly interact with
the regulation of the process or technology are the first leading factors for inducing the
accidents [51]. In the Reason’s model, the dynamics of the accident causation states that fail-
ures are transient between barriers, and holes (latent errors) are moving continuously [52].
Bow-tie [53], Threat and Error Management [54], and Tripod [55] are other examples of
the models in this category where the use of protective barriers compatible with probable
failures is common. The epidemiological models are static and follow the causal pattern in
sequential models. Therefore, it may be difficult to also find the explicit factors or critical
causes [48,56]. In contrast, the interactions among organizational factors which lead to
accidents in the sociotechnical system are more complex and dynamic than the sequential
and epidemiological models [57].

1.4. Systemic Accident Models

The causes of new accidents in complex sociotechnical systems do not necessarily
result from simple defects, and leading factors for accidents occurring in such systems are
relevant to the interactions among the system components [21,58,59]. According to the
sociotechnical theory, since human and social identities are integral parts of the technical
systems, an organization can fulfil its objectives by optimizing the technical as well as the
social aspects of the system rather than by merely optimizing the technical aspects of the
system [60–62]. Therefore, in order to investigate the causes of accidents in sociotechnical
systems, it is necessary to understand the interactions among the principal aspects (e.g.,
social, technical, human, and organizational) of the system.

Modern sociotechnical systems have drastically modified human activities over the
past decades. One of the most noticeable examples of such a shift is the transition from
predominantly manual tasks to more cognitive and knowledge-based ones. In fact, various
failures and safety issues have already emerged and most of the accidents in such systems
cannot be analyzed sufficiently using traditional accident models. Therefore, a new model
for risk and safety management with the basis of systems theory was also introduced as a
systemic accident model [48].
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In systemic models, the study of accidents is based on the uncommon interrelationship
and unusual conditions related to accidents. This indicates that there is variability in the
system and in order to prevent uncontrollable variability, which is intolerable for the system
and leads to an accident, the system performance should be monitored continuously [63].
Some notable systems-modeling approaches of this type include STAMP [39], AcciMap, the
hierarchical sociotechnical framework [64] and FRAM [48]. Theoretically, these models are
similar; however, their development, methodology, and outputs might differ considerably.
These models are described further down.

1.4.1. Rasmussen’s Sociotechnical Framework and AcciMap Accident Analysis Technique
Overview

The concept of Rasmussen’s framework for risk management is based on the control
theory, in which the control of system processes is a main concern of safety. In other
words, in this framework view, accidents in the sociotechnical systems result from a control
problem. Rasmussen’s structure of risk management in the sociotechnical systems consists
of several levels, from the legislator to the operator (top-down) of the system, respectively
(Figure 2). This framework is the basis for the AcciMap accident analysis model [64,65].
Accordingly, the main approach in the AcciMap is the analysis of causal chains of events in
the selected accident scenarios using a cause-consequence chart with the aim of analyzing
the control layers of the sociotechnical system at the lowest level. On the other hand, in
order to extend the cause-consequence chart, a vertical analysis of the mapped accident
contributing factors at the hierarchical levels must be conducted [66].

Figure 2. Rasmussen’s Framework and AcciMap technique [65].

1.4.2. STAMP Analysis Approach Overview

STAMP is a new non-linear system-based accident theory established by Leveson
(2011). According to this model, system components are interrelated and enforced by the
specific safety constraints [42]. This theory allows for the determination of the dynamics of
the interrelationships between system components, as well as a better description of the
systems’ degree of complexity and technical originality [42].
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From the perspective of STAMP, the system is described as a control structure that
includes control and feedback loops, and the superior level controls the lower level by
applying safety restrictions. Controls and feedbacks are transmitted through every control
loop via a collection of relative channels (Figure 3). In the view of organization, controls
can be over economic practices and priorities, as well as feedback on reportages and requi-
sitions [42]. Accidents, according to STAMP, are caused by inadequate system components
controls which contribute to unsafe component interactions and failures [28].

Figure 3. General factors in unsafe control used to create STAMP model [42].

STPA and CAST are the two methodologies to be extended and developed from the
general STAMP theory. These techniques are usually employed in the analysis of hazards
and accidents, respectively [42].

1.4.3. FRAM Analysis Approach Overview

FRAM was first presented as a tool for analyzing accidents in complex systems—
particularly, with the aim of evaluating how the functions of a system can interact and
trigger accidents. The term “function” refers to the tasks, activities, or components that a
system performs or employs in order to achieve a goal [67]. FRAM enables the analysis
of the complicated non-linear relationships among functional activities. It also allows for
evaluation of the way that functions interact to induce an accident [48]. FRAM can also be
utilized for accident analysis and risk assessment based on the operational perspective and
the unpredictability of functions [68].

This model has been applied in accident analysis to determine the cause of the accident
by documenting typical system performances and their variability in order to manage them.
When the method is used with the aim of risk assessment, it examines how variability in
one function can affect the performance of other related functions, detects the disruptive
variability and finally, controls and minimizes risk levels [69]. Figure 4 demonstrates a
schematic of FRAM [48,67] in which each system function is represented by a hexagonal
shape with six aspects, representing I as an input, O as an output, P as a precondition, R
as a resource, T as a time, and C as a control. Analyzing system performance to develop
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models and conceptualize the variability and resonance according to FRAM approach can
also be performed using the computer-based tool ‘FMV’; http://functionalresonance.com/
14 June 2021) [70].

Figure 4. General model of FRAM [71].

2. Materials and Methods

2.1. Search Strategy

We began this investigation by formulating the title as a query in order to locate
all papers published in this context. The following question, ‘how many articles have
been published describing the application of systemic accident analysis models (AcciMap,
STAMP, and FRAM)?’ was then taken into account and according to the lines of our search,
several selected keywords and limiters were used as well: (“STAMP” OR “CAST” OR
“STPA” OR “FRAM” OR “AcciMap” OR “Rasmussen’s risk management framework”
OR “Rasmussen’s framework” OR “systemic accident models”) AND (“accident analysis”
OR “risk assessment” OR “hazard analysis”). Published studies from five international
databases (Scopus, Medline/PubMed, Web of science, Science Direct and Google Scholar)
were searched. When scanning databases, our search was limited to articles published in
the English language with publication dates from 1 January 1990 to 1 October 2021.

2.2. Research Screening and Eligibility Criteria

In order to select the studies for inclusion in the current systematic review, we used the
Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) method-
ology. In the identification phase of this method, after downloading the relevant studies,
the duplicates, non-English language research, review articles, letters, and conference
proceedings were excluded from our list. Following that, the titles and abstracts of the
papers were examined in order to identify those that were particularly relevant. For more
screening, full text articles were then retrieved.

The eligibility of the selected papers was then assessed according to predefined inclu-
sion and exclusion criteria.

The inclusion criteria were as follows: original articles that used the AcciMap, STAMP,
and FRAM methodologies in their analyses, studies conducting a systemic analysis with the
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goals of improving the system safety and resilience through system redesign, and articles
that combined other accident analysis methods with systemic methods.

Studies were excluded if they had different data sources, study dates and used addi-
tional analyses with either incomplete or insufficient coverage of the systemic models in
their methodologies.

In cases where it was not possible to select suitable papers according to the defined
criteria, we studied the full text of the paper and if appropriate, it was selected. Finally, we
reviewed the full text of the selected articles and extracted information and included them
in the tables with the relevant titles.

3. Results

3.1. Descriptive Results

According to the study plan, 527 records were collected, as shown in Figure 1. Prior
to performing screening, 125 duplicates and non-English papers, along with four letters
and conference proceedings were excluded from the first list. The anthology of results was
then reduced to 398. It should also be noted that this study focused on the research litera-
ture that were consistent with our methodology, study goals, and method of application.
Additionally, papers that combined alternative methodologies with systemic models to
improve their findings were considered. We excluded 167 studies after an examination of
the remaining abstracts in terms of relevance. A more thorough analysis of the selected
publications’ methods and results sections resulted in the elimination of a further 64 papers.
Eventually, 63 papers were selected for conducting the analyses in the current study. The
results of the search are depicted in the PRISMA flow diagram (Figure 5). Furthermore,
as shown in Figure 6, the frequency of 63 systemic methods studies were presented. Ac-
cordingly, among 25 AcciMap studies, seven papers were published from the years 2003 to
2010 and 18 works were published from 2011 to 2021. This frequency for 16 STAMP studies
in similar ranges was 1 and 16 with a higher frequency in 2018. For 22 FRAM studies, the
frequency was 1 and 21, with a higher frequency in 2021. Overall, considering the trend
of using these methods, the number of articles increased from 2016, which indicated their
capability to understand the behaviors of complex sociotechnical systems.

Figure 5. PRISMA 2020 flow diagram of the structured literature review.
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Figure 6. The frequency of use of per techniques in recent 20 years by researchers.

3.2. Key Findings of AcciMap Studies

As a result of searching the aforementioned databases, we found 25 publications that
employed the AcciMap approach to analyze an incident or accident and conduct a safety
or risk assessment. Of the AcciMap investigations, 44% (11 studies) and 24% (6 studies)
were, respectively, undertaken in the transportation and public health sectors.

Two of the six studies found in the context of healthcare systems had considered the
complex interactions among all levels of a complex sociotechnical system using the logic
gates or decision trees incorporated with AcciMap. This was to particularly demonstrate
the priority and sequence of determined causality for designing public policies by reducing
the risk levels in complex systems and investigating the disasters and outbreaks related to
the water distribution systems in Canada.

They found a distinction between low-level physical and individual variables, and
similar causes of events at the governmental and regulatory factors level [72,73].

Two additional studies conducted in the United Kingdom assessed the level of safety
and examined the major events and factors contributing to outbreaks in the food production
industry in order to proactively prevent accidents and improve the safety management
system [74,75].

One study within the scope of public health examined the factors that contribute to
infection outbreaks and provided strategies and interventions for limiting and prevent-
ing their occurrence [76]. Additionally, four studies employed AcciMap to connect risk
management, accident analysis, and learning from accidents in the context of outdoor
recreation. Two studies, on the other hand, utilized a hybrid method to better support
the implementation of the AcciMap technique. One of these studies used AcciMap in
combination with the CWA to identify accident-related variables and describe conditions
within which the accidents occurred. CWA also specified constraints that affect system
behavior [77]. Another study used AcciMap in conjunction with the fuzzy ISM and Matrix
of Cross Impact Multiplications in which fuzzy ISM was used with the aim of determining
the interactions and the hierarchical representation of contributing factors, and Matrix
of Cross Impact Multiplications was implied for categorizing and determining the most
important factors [78]. Furthermore, two other studies utilized a coding template for the
AcciMap technique to quantitatively assess the relationships among accident causes based
on the reported frequency of incidents [43,75]. In this regard, another paper was allocated
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the codes to accident contributing factors to create a contextual view of the event. They
demonstrated the time and place in which decisions and responses were performed [79].
Akyuz et al. applied ANP methods to determine the priority of accident related factors
via weighting factors [80]. Other publications were performed in the contexts such as
marine, disaster response, navigation, civil engineering, systems thinking principles, and
healthcare-related incidents. Overall, AcciMap was used in studies with six hierarchical
levels developed based on Rasmussen’s (1997) framework. A few works used the five
levels of AcciMap and one depicted the contributing factors in the outcome level [81–83].
Table A1 outlines the details of these works (Appendix A).

3.3. Key Findings of STAMP Studies

STAMP was found to be the subject of 16 studies, which are listed in Table A2.
These studies were carried out in a variety of contexts and with multiple objectives.

Three of the reviewed studies employed this methodology for the risk assessment and
identified abnormal system behaviors and potentially unsafe situations in terms of STAMP-
STPA. The results from the risk analysis were also utilized to improve and update situational
awareness and to prevent accidents through the introduction of safety limitations [84–87].
Moreover, with the aim of accident analysis, some studies used another form of STAMP
(CAST methodology) to model and investigate the control deficiency, flaws or missings
in a similar way, based on Leveson’s (2004) taxonomy, and suggesting corresponding
adjustments to increase system sustainability [84–86,88–93].

Additionally, some studies also utilized STAMP in conjunction with other approaches
to extend their research beyond the control flaws to fundamental patterns of failures and
their implications for the organization’s compliance and direction of functions [88,89,91,94].
For example, Lower et al. used HFACS combined with STAMP to improve the accident
analysis. This framework incorporated the HFACS levels into a controlling structure of
STAMP which can depict the interrelationship between human, technical, and the environ-
mental factors and can be used for hazard, safety and accident analysis [95]. Another study
used STAMP in conjunction with SD to provide an integrated framework for analyzing
and elaborating on the dynamics and interconnections of human error [86]. Generally, it is
clear from reviewing studies that they analyzed and investigated the existing components
of system structure(s) and did not elaborate on designing systems by relying on safety
properties and system resilience. Table A2 provides a summary of the studies (Appendix B).

3.4. Key Findings of FRAM Studies

The FRAM model was utilized in 22 studies and in terms of the contexts, aviation
accounted for 28% (6 studies) of the total reviewed papers. The model was also used
in other contexts such as the construction and transportation industries, hydrocarbon
release accidents, public health and chemical process, and hazard and resilience analysis
for complex sociotechnical systems and emergency response systems. Risk analysis, acci-
dent analysis, comparison with other approaches, and hybrid usage of FRAM combined
with other methods were among the main objectives of the papers that employed FRAM
methodology. According to Table A3, 16 studies were conducted with the objective of
conducting prospective analyses of risk, hazard, safety, and system behavior as a result
of complex interactions between sociotechnical system components. Additionally, they
provided controlling strategies for minimizing the risk of function variability or functional
resonance in order to improve system operation resilience and sustainability.

A group of researchers considered integrating FRAM with other methodologies such
as MCs, GMTA, fuzzy logic, and BN to conduct quantitative and more accurate analyses
for increasing the methods’ applicability [94,96–100]. For instance, MCs was applied for
the quantification of performance variability and the determination of critical couplings
through allocating score and probability distribution to each variability [96]. In addition, the
hybrid framework including TASM and the combination of FRAM and GMTA was applied
in aviation settings to provide the concept maps [101]. In another research, Q-FRAM
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provided quantitative concepts in which key indicators of performances were excluded
from FRAM and allocated to four concepts of resilience, including anticipate, response,
monitor and learn via an MSDM hierarchical approach [97]. Fuzzy logic was also used
by Slim et al., in which the performance couplings were weighted and variability of the
performances was evaluated with the aim of an aircraft de-icing simulation [98].

Furthermore, two retrospective studies employed FRAM-AHP to evaluate the acci-
dents by determining the main and important criteria to identify the essential functions and
relationships between them. These papers would ultimately offer recommendations for
enhancing the system operation sustainability [102,103]. Table A3 summarizes the findings
of these investigations (Appendix C).

4. Discussion

The primary goals of this work were to provide an overview of the papers that had
employed AcciMap, STAMP, and FRAM methodologies in their analyses—particularly, in
order to: identify the major research flows in terms of the accident analysis, risk assessment
and safety analysis of sociotechnical systems; to examine the applicability of hybrid meth-
ods for modeling the behavior of accidents and sociotechnical systems; to highlight the
advantages and disadvantages of these approaches; to describe safety and accident models
in terms of safety-I and safety-II as well as safety-III; and to investigate the impact of using
system models for enhancing the systems’ sustainability.

4.1. The Main Research Flows on Three Systemic Approaches
4.1.1. AcciMap Approach

According to the findings of the related studies, the advantages of the AcciMap
application for accident analysis are its ease of use, capability of recognizing factors related
to sociotechnical systems, and time-saving nature. Additionally, the most common accident
factors at the system’s lower levels were “physical practice and operator’s function” as
well as “instrument and environment”. Therefore, it can be concluded that the AcciMap
approach in almost all studies can effectively identify the leading factors of the accident,
especially at higher levels.

This would also highlight the role of regulatory and governmental bodies in creating
a safe environment, demonstrate the interaction of factors at different levels of the sys-
tem and recommend methods by which the system might be used to prevent accidents
proactively [79].

4.1.2. STAMP Approach

The results of related studies showed a similar pattern in which control deficiencies
such as “management and the operational process” and the “company” were identified at
lower levels of the system.

These contributory factors may be due to the information available to analysts instead
of a fixed feature of the accident’s leading factors. However, the detected factors at higher
levels of the system indicate that controllers at these levels employ strategies to design
and provide interventions on human and technical factors which highlight the need for
accident prevention.

4.1.3. FRAM Approach

A search of the literature revealed that this method has been used for analysis in
construction, transportation, hydrocarbon release accidents, public health, and chemical
process sectors. In the FRAM approach, the variability of depicting normal functions is
used to determine the emergent behavior of hazards and there is no need for an accident
occurrence [103,104]. The model’s outputs showed that FRAM has a complicated method-
ology and procedure and is a challenging model to interpret. As a result, researchers
employed novel and innovative techniques to circumvent this problem [99,101,105]. All
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reviewed studies which used each of the three mentioned methods also identified multiple
contributory factors, functions, and relationships.

4.2. Hybrid Use of the Systemic Methods

In this section, we discuss the utilization of systemic techniques integrated with other
methods or expanding to the larger methodology as the qualitative and (semi) quantitative
approaches. According to the theory of systemic analysis approach, these methods describe
and analyze the sociotechnical systems qualitatively. However, a shortcoming is that these
methods are only qualitative in nature, particularly due to focusing on constructing a
perception model [60]. QRA has shown to have a significant role in effective risk control, as
well as addressing the issue of a qualitative structure of systemic analysis methods, mainly
in complex sociotechnical systems. Several studies have already proposed quantifying
these methods using fuzzy AHP, SME and the MCs and MCMCs methods as the compli-
ment [96,99,106]. The proposed method represents the system more realistically with a
quantitative value [100].

MCs allows for reliability indicators to be estimated using real processes and random
system behavior simulation in order to make a reality-based scenario by employing a
computer-based model. One of the most important applications of MCs is in risk and
reliability analysis in the engineering systems. The outputs from MCs simplifies the
estimation of the PoFs [107]. According to our literature review, some studies have utilized
FRAM and MCs for the enhancement of the traditional safety assessment techniques. For
example, Patriarca et al. (2017) used MCs for the first time in their work for quantifying
the performance variability in a FRAM model. Their main objective was highlighting the
critical functions and links among these functions as well as facilitating the process of
safety analysis [96]. Similarly, Kaya et al. integrated MCs as well as a criticality matrix
with the FRAM to study how they may be used to enhance the quantification of a system-
based risk analysis and critical condition evaluation [94]. Kim et al. proposed a layout
to apply the FRAM quantitatively in order to perform the risk assessment. Such layout
regarded regulations for variability’s aggregation and allocated values for functions and
their interactions and therefore showed that the system was more realistic [100]. A FRAM-
based tool was also developed utilizing AHP to support in decision-making by quantifying
the resilience of urban planning systems [97,99,106].

Contrastingly, Slim et al. engaged predictive FRAM combined with Fuzzy logic to
generate numerical indicators for a more comprehensible representation of potential per-
formance variability with the aim of an aircraft system simulation [98]. Moreover, the
N-K model was recently introduced by Huang et al. (2021) with the aim of quantitative
evaluation of the FRAM model. This model uses the theory of risk pulse according to
which the severity of functional coupling can be calculated. According to the model, each
coupling with a higher frequency of operation is more likely to have an accident and poses
a greater risk. It is worth noting that, unlike earlier studies, this model is constructed on
historical data and was not affected by subject matter experts [105]. Furthermore, among
AcciMap studies, other authors utilized a coding template for the AcciMap technique to
quantitatively assess the accident related factors for assessing the level of safety, proactively
preventing the accident and improving the safety management system [43,75]. In order
to better support the implementation of this method, AcciMap was also used together
with the fuzzy ISM and Matrix of Cross Impact Multiplications to determine and classify
the interactions and hierarchical structure of the contributory factors of the accident [78].
Moreover, Wang et al. reported that the simultaneous use of the BN method and systemic
methods can provide a quantitative correlation between numerical calculation values and
the probability of occurrence [108]. Using the SD method, which explicitly highlights the
interrelated time processes, integrated with a BN modeling framework (Dynamic Bayesian
Network) for assessing and modeling accidents can overcome the limitations [109]. In this
regard, Rong et al. used SD modeling in conjunction with STAMP to demonstrate the dy-
namic processes which lead to the system changes and to generate safety control structures
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with STAMP [86]. Banda et al. also applied the STAMP and BN for the operational use and
design of the safety management system [110]. FRAM was also used along with DBN in
another study to quantitatively assess and model the system resilience that helps systems
to better adjust to unwanted events and restore from major losses. [99].

In the qualitative manner of developing a wider methodology, AcciMap was employed
in conjunction with the CWA that enhanced the identification of the causes of accidents and
their relationship with the management and system rules in term of the cultural, economic,
and social aspects. CWA also specified constraints that affect the system behavior [77].
Kontogiannis et al. investigated the patterns of organizational breakdowns in accidents
using the VSM along with STAMP—particularly, with the aim of creating a link between
control flaws and organizational breakdowns [85].

However, another study applied Rasmussen’s AH combined with FRAM and provided
a new structure of FRAM by functional analysis at the hierarchical layers of the system [104].
Additionally, Studic et al. used a hybrid approach including the TASM, the combination
of FRAM and GMTA to conduct a system-based modelling of the safety and to provide
concept maps in aviation settings [101].

Hence, using the mentioned methods together with systemic accident analysis models
as a compliment can improve the process of analysis by providing more reliable information
to decision makers. Therefore, future research should consider the dynamic aspects of
complex sociotechnical systems in their analysis and more studies should be performed in
the context of the resilience analysis of safety management and system behavior using a
systemic approach in a dynamic manner.

4.3. Advantages and Drawbacks of Systemic Methods

The field of systemic events and analytical modeling describes the system performance
and variation control by establishing connections between functions and components of
organizational accidents with multiple causes in line with the human factor at different
levels of the company in complex modern technologies [111]. They also highlight the
influences and possible effects of an unforeseeable occurrence of complex combinations of
events and the study of the interactions which exist among system elements. In the present
study, we carefully examined the various literature to present the most reasonable and fair
presentation of each method and to remain completely neutral in reviewing each method.
Moreover, we indicated that each method can be adapted (the mentioned drawbacks will be
addressed). According to the peer reviewed studies [39,69,111–113], the main advantages
and drawbacks of the three investigated accidents models are shown in Table 1.

It is worth noting that, in accordance with the control characteristics of systemic acci-
dent analysis approaches, the application of social, organizational, and managerial controls,
collectively referred to as non-technical controls, should be considered in addition to techni-
cal controls. As a result, the issue of accident analysis became even more crucial [113] and
the primary concern is how inadequate non-technical controls, in addition to the failures of
physical controls, can contribute to the occurrence of an accident.

4.4. Safety and Accidents Methods in Terms of Safety-I, Safety-II and Safety-III

“Safety” is commonly defined as the absence of an accident, or a system’s ability to
ensure that the number of harmful events is kept to a minimum and acceptable level [114].
In other words, the purpose of applying safety is to protect, maintain, and gain access to
significant and valuable objectives. As a result, safety and sustainability are inextricably
linked or even synonymous, as when a system is unsafe, it cannot be sustainable, and vice
versa [3].
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Table 1. The main advantages (Yes), and drawbacks (No) of systemic approaches.

Descriptions AcciMap STAMP FRAM

Description of accidents with a single diagram Yes No Yes
Proximal sequence of events and influences Yes Yes Yes
Simplicity of identifying the causes of accident Yes No Yes
Identification of contributing factors close to or far from the accident Yes Yes Yes
Provision of recommendations for the control structure Yes Yes Yes
Description of events and actions Yes Yes No
Description of components of system No Yes Yes
Providing enough information about system structure No No No
Focus on operators and functions No Yes Yes
Considering the environmental conditions (equipment and surroundings) Yes Yes Yes
Identifying singular root causes for accidents No No No
Definition of system boundaries Yes Yes No
Providing a context to identify system safety improvements Yes Yes Yes
Identification of the control and feedback inadequacies No Yes No
Empirical data are not required Yes Yes Yes
Minimized level of system information is required for analysis No No No
Easier to be implemented Yes No No
Providing adequate guidance regarding the methodology Yes No Yes
Appropriate for use in a variety of contexts Yes Yes Yes
Ability to quantify the accident occurrence and yield probabilities No No No
Is not affected by analyst bias No No No
Easy to disseminate results to non-experts No No No

From this perspective, the three concepts of safety (i.e., safety-I, II and III) in rela-
tion to accident analysis models are discussed in the following. In the traditional safety-
engineering paradigm, safety-I implies that as few things as possible should go wrong
during the design process [115,116]. As systems become more advanced and sophisticated,
it becomes increasingly vital to focus on enhancing safety while also maintaining the
performance modifications to an acceptable level [4].

Complex systems, however, present a different set of safety challenges due to their
inherent complexities, ambiguities, and potential for conflicts. Contrary to the apparent
significance of these challenges, the traditional management of safety has relatively over-
looked this issue [116–120]. According to a safety-I perspective, performance variability
should be prevented as it is harmful. In the safety-II approach, is it inevitable, but it may
also be useful, so it should be monitored and managed. Therefore, safety-I should progress
to a safety-II perspective, in which considerable improvements are established, and we
can rely on the system’s capacity to react to daily performance variations under varied
conditions and maintenance of safety [121]. Therefore, the effort is made for systems to
respond to or prevent the hazards by providing suitable controls and interfaces.

In addition, the perspective of the risk assessment “to identify causes and contributory
factors” in safety-I should become “understanding the conditions in which performance
variability occur” in safety-II [122]. Hence, companies were looking for techniques to
implement in varied circumstances according to a safety-II perspective. From a safety-II
perspective, since the focus is on monitoring and controlling the determined performance
variability, traditional methods are not considered to be sufficient. In that regard, ap-
proaches such as the FRAM model [123] were established to explain the system’s necessary
activities, their connectivity, variability, and resonance, as well as to offer strategies for
monitoring and dampening the variability that contributes to accidents [124].

More recently, Hollnagel advanced the concept of safety-III, while its properties re-
mained unspecified beyond those of safety-II. According to this system theory, Leveson
defines safety-III as “freedom from intolerable losses” [124,125]. Safety-III defines the
concept of accident casualty differently by shifting its focus on the inadequacy of hazard
controls as well as relying on the system theory. Considering the concept of sustainability,
it also refers to the maintenance of the safety constraints and prevention of losses upon
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exposure to the control inadequacy, hazards and unexpected events. Safety-III is primarily
concerned with engagement in the design of complex systems’ safety management struc-
tures in which an appropriate safety culture is created, effective information is available,
and the structure of safety management is extensively and carefully constructed. Thus, it is
critical to design a sustainable system that is achievable using STAMP, or other tools based
on the principle of STAMP (e.g., by using STPA and CAST). System theory approaches
identify and analyze controls, hazards, unplanned changes, and associated adaptations in
order to mitigate the risk and identify emerging hazards [126].

Nevertheless, it is worth noting that safety-III needs to be extended and improved. It
would be preferable if a comprehensive method were developed to analyze sociotechnical
systems holistically and to improve integration and communication between human factors
and technical aspects for engineers during the early stages of the complex design process,
as well as to be capable of being used for highly automated system analysis [126].

4.5. System Thinking and Improvement in Sustainability of Safety Management

A system is defined as a collection of interrelated elements that are structured to
accomplish a specific purpose. Understanding how system components interact and are
organized is critical at the system thinking level. Systems thinking was defined as the
science of gathering information about the systems’ behavior by creating a rising deep
awareness of their components [2]. Moreover, in the systems thinking concept, system
components and their environmental interactions have the same importance for the system
components behavior. This concept also attends to emergent features, regards complexity,
and determines feedback loops, hierarchy, and self-organization, as well as discovering
the dynamics and their outcomes [127]. Complex systems have dynamic behavior that
needs to be sustained in normal operations. They must also deal with the disturbances and
variability of their behavior in order to prevent accidents [26]. Depending on the level of
existing risk at work, each company has its own unique health and safety management
system. In order to prevent degradation of the system, despite proper design and policy, it
is necessary to manage and monitor the system continuously [1].

Therefore, the major element for establishing a sustainable safety management system
and ensuring the longevity of safe and healthy organizations is planning and engaging a
systemic approach to manage and control the risks. However, in order to execute this, the
application of effective methodologies, tools and principles is required. Systems thinking
concepts and approaches are able to provide awareness about systems and solve complex
issues and for this reason it has been used in a numerous type of fields and disciplines 6. To
present a thorough overview of scientists’ growing awareness of the notion of safety, and to
determine how safety has progressed over time, it is essential to approach these concepts
via a system thinking perspective. In order to develop an in depth understanding and
awareness of the various layers of the system, this perspective recommends opportunities
to act in accordance with one’s own human level of awareness. Basically, risk and safety
management sought to construct socio-technical systems capable of generating events in the
desired locations and preventing or omitting undesirable ones. Nowadays, safety science
is concerned with increasing the generation of sustainable systems through using proactive
rather than reactive approaches to system safety enhancement. Thus, through increasing
system and subsystem awareness, systems thinking approaches can create proactiveness.
This approach recommended intervening at the root-cause level rather than focusing on
observed symptoms and occurrences. Proposed approaches for this purpose are systemic
models that can be used for the analysis of a system’s resilience. In that regard, STAMP
methodology has already been employed to analyze and assess an organization’s sus-
tainable performance or the integration of sustainability in an organization—particularly,
by incorporating high-hazard and high-functional-requirement scenarios with predictive
objectives [26]. Some studies have used this method in different contexts. They identified
abnormal system behaviors and potentially unsafe situations that led to the improvement
and updating of system awareness, and the prevention of accidents through the intro-
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duction of safety limitations [84,85,88]. It was also employed in accidents analysis in a
variety of contexts for identifying insufficient system control limitations and suggesting
corresponding adjustments to increase system sustainability [88–93,95,128,129].

Accordingly, sustainable safety management can also be assessed and analyzed
through FRAM which is a performance-based risk identification method [48]. This model
was employed to evaluate the accidents as well as identify the essential functions and
relationships between them and ultimately, offered recommendations for increasing the
sustainability of system operations [102,103].

5. Conclusions

Our research provided a comprehensive review of systemic approaches of accident
analysis utilized in the field of safety investigations. According to the inclusion criteria
of this study, a total of 63 research publications employed the three systemic analysis
methodologies. AcciMap, STAMP and FRAM were included.

Considering our key findings, all the reviewed research that employed one of these
three methods discovered multiple contributing elements, functions, and interactions at
various system levels. For instance, for the AcciMap and STAMP methods, the majority of
contributing elements and controlling flaws were discovered at the system’s lower levels.

Furthermore, the FRAM framework demonstrates the normal functions of the so-
ciotechnical system, defines their variability and identifies the out-of-range variability as
the leading indicators of the accident. Due to the relative complexity and difficulty in the
interpretation of this model, various novel modifications need to be considered. In addition
to an investigation of the advantages and drawbacks associated with the systemic meth-
ods, the static and qualitative nature of systemic models and the dynamic structure and
ethical control of sophisticated systems were investigated. Safety and accidents analysis
methods were also described in terms of safety-I, safety-II and safety-III. Furthermore, this
research introduced certain approaches that may be employed in conjunction with the three
examined models—particularly, to optimize their applications.

Nonetheless, further research is required to elucidate the critical variables underlying
selected systems thinking methodologies for accident causation.
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Abbreviations

The following abbreviations are used in this manuscript:
ILO International Labor Organization
GDP global gross domestic product
STAMP Systems-Theoretic Accident Model and Processes
FRAM Functional Resonance Accident Model
CCA Cause-Consequence Analysis
FTA Fault Tree Analysis
ETA Event Tree Analysis
FMEA Failure Modes and Effect Analysis
STPA System Theoretic Process Analysis
CAST Causal Analysis based on STAMP
FMV FRAM Model Visualizer
CWA Cognitive Work Analysis
ISM Interpretive Structural Modeling
VSM Viable Systems Model
HEMS Helicopter Emergency Medical Service
SD System Dynamics
SMD Soma Mine Disaster
SMS Safety Management System
MCs Monte Carlo simulations
GMTA Goals-Means Task Analysis
BN Bayesian Networks
AH Abstraction Hierarchy
TASM Total Apron Safety Management
DBN Dynamic Bayesian Network
QRA Quantitative Risk Analysis
AHP Analytical Hierarchy Process
SME Subject Matter Experts
MCMCs Markov Chain Monte Carlo simulation
PoFs Probability of Failures
MCDM Multi Criteria Decision Making

Appendix A

Table A1. General information and findings from 25 AcciMap studies.

Objective Scope of the Study Main Findings Location Reference

To find the causes of the
disasters related to drinking
water distribution systems.

Public health

• Implies complex interactions among all levels
of a complex sociotechnical system for
designing the public policies to reduce risk in
complex systems.

• There was a distinction between low-level
physical and individual variables, as well as a
parallelism between high-level governmental
and regulatory factors.

Saskatchewan,
Canada [72]

Investigation of leading
factors of the water

transportation system
outbreaks.

Public health • Describes the causes of accidents.
• Specifies how to prevent an accident.

Walkerton,
Ontario,
Canada

[73]

Investigation of the
incidents/accidents
causality of space

programme’s launch vehicle.

Aerospace

• Provides a broad framework of leading
events, particularly at higher levels,
indicating the involvement of regulatory and
political authorities in accident formation.

São Paulo,
Brazil [128]
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Table A1. Cont.

Objective Scope of the Study Main Findings Location Reference

Assessing the food system
safety accidents. Public health • Identifies methods for preventing accidents

caused by similar sources of hazards.
UK [74]

Analysis of the contributory
factors for the infection

outbreaks.
Public health

• Demonstrates the strategies and interventions
that can be taken to limit and prevent the
occurrence of the outbreaks.

Maidstone and
Tunbridge Wells, UK [76]

Modeling the events leading
up to the Stockwell

Underground station
accident in July 2005

Public health
• Proposes a dynamic structure for

organization in response to the type of
operations and obvious events.

London, UK [79]

Evaluating the led outdoor
activity domain.

Led outdoor
recreation

• AcciMap is a comprehensive approach to the
risk management and accidents analysis
developed based on the concept of ‘learning
from the accident’.

Dorset, UK [129]

Comparing the AcciMap,
the HFACS and the STAMP

methods to analyze the
Mangatepopo gorge tragedy.

Led outdoor
recreation

• Describes the failures through the six levels of
the studied system.

New Zealand [130]

Assessment of
organizational factors in

aircraft accidents.
Transport (aircraft)

• The causal remoteness that interlinked to the
fatal accident increases as we move up the
vertical axis from the accident.

Australia [131]

Examining the incident of
rail level crossing system. Transport (rail)

• In addition to the primary cause of the
incident, various system-wide factors
contribute to the occurrence of an incident.

Victoria,
Australia [132]

Assessment of applicability
of systemic frameworks for

incident data analysis.

Led outdoor
recreation

• Capability of framework to classify
contributory factors at various levels of the
led outdoor activity was confirmed.

New Zealand [133]

Testing applicability of the
method for the analysis the

risks associated to the
studied case.

Disaster response • Provides more extensive comprehension of
the performance of the case.

Victoria, Australia [134]

Accident analysis using
AcciMap, STAMP and SCM

methods.
Transport (rail)

• Levels 4 and 5 had the most effective factors
in accident and Level 1 of the system, i.e.,
national government did not include
any factors.

Cumbria, UK [135]

Using AcciMap and
Analytical Network Process

for the assessment of the
contributory factors of the

marine accidents.

Navigation
• Reveals the main leading factors of accident.
• Essential precautionary measures have

already been proposed.
Turkey [80]

Identifying the factors that
contribute to the collapse of

a bridge.
Civil engineering

• Several levels of failure modes were detected.
• Demonstrated that human error is a leading

contributor element in the occurrence
of accidents.

China [136]

Developing a coding
template to quantitatively
analyze the causes of road

freight crashes.

Transport; (road
accidents)

• Highlighted the role of systemic approach in
enhancement of the safety knowledge.

• Recommended preventive measures in the
critical domain.

Australia [75]

Identifying the human and
systemic causes of outbreaks

in the food production
domain.

Public health • The contributory macro and micro factors and
their interactions were identified.

South Wales, UK [81]

Using AcciMap and CWA
approaches to systemic

analysis of a case.
Transport (off-road)

• Hybrid method enhanced the identifying the
causes of accidents and their relationship with
the management and system rules in term of
the cultural, economic, and social aspects.

Queensland; Australia [77]
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Table A1. Cont.

Objective Scope of the Study Main Findings Location Reference

Systemic analysis of South
Korea Sewol ferry accident. Maritime

• Highlighted the importance of allocating
resources to safety management in a
proactive manner, ongoing monitoring, and
having independent and well-informed
personnel in charge of continuously
monitoring risk to prevent safety migration.

South Korea [82]

Investigating the tragic
Sewol Ferry accident.

Maritime; Ferry
accidents

• Emphasized the significance of organizational
and human variables in the occurrence
of accidents.

South Korea [83]

Developing the incidents
reporting system as well as

emphasizing the importance
of learning from

the accidents.

Led outdoor
recreation

• Indicate the ability of Rasmussen’s method of
expansion through the safety critical domains.

Australia [43]

Assessing the factors for
systemic accidents

causation.

Ship grounding
accidents

• Used the fuzzy Interpretive Structural
Modeling, and Matrix of Cross Impact
Multiplications to overcome the limitations of
the present AcciMap technique.

China [78]

Performing the risk
management proactively. Road accidents

• Demonstrated that the effectiveness of good
management and concern for safety at
various levels of the sociotechnical system is a
key issue for managing the risks proactively.

Bangladesh [137]

Recognizing the principles
of systems thinking in a
range of varied systems

and events.

Systems thinking
tenets

• Declared that the systems thinking tenets can
be related to accident causation.

Australia [138]

Evaluating the formalized
AcciMap for assessing the

causation of accidents.

Healthcare
accidents

• Applied leading factors for formulation of
safety recommendations.

Scotland, UK [139]

Appendix B

Table A2. General information and findings from 16 STAMP studies.

Objective Scope of Study Main Findings Location Reference

Analyzing the railway
accidents and providing
improvement measures

Transport
(accident in

railway)

• Spread accidents analysis in wide sense.
• Made impressive urgent actions for case

of the study.
China [84]

Using joint STAMP–VSM
framework to systemic

accidents analysis.
Aviation (HEMS)

• Analyzed the control flaws.
• Reviewed the infrastructure of safety.
• Models loops and constraints

information.
• Regarded the conformity and direction

of organizational activities.
• Developed vast strength interventions

Greece [85]

Demonstration of practicality
and validity of the STAMP

model.

Industry (a case
study in the oil

and gas)

• Violations against existing safety
constraints that lead to accidents at any
level of the organization were identified.

USA [88]

Development of human error
causal analysis framework

through the STAMP-SD
based analysis.

Military

• In whole, 41 leading items related to a
broad view of sociotechnical systems
were identified and categorized into four
types of human errors.

USA [86]
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Table A2. Cont.

Objective Scope of Study Main Findings Location Reference

Demonstration of adaptive
and integrated safety

management based on
STAMP concept.

Maritime
Transport System

• The authors recommended using the
control loop of STAMP as a basis to
develop and implement the integrated
safety management.

Finland [87]

Analysis of Korean Sewol
ferry accident based on

STAMP.
Maritime

• The study developed some continuous
improvements and corrective actions to
prevent occurrences of catastrophic
accidents.

South Korea [89]

Evaluation of hazard control
measures effectiveness using

STAMP.

Maritime, safety
management of

traffic

• Determined the level of system hazards.
• Identified unsafe situations.
• Established control measures of

maneuvers.
• Updated the situational awareness.
• Implemented the real-time safety

restrictions.

Finland [126]

Investigated the patient
safety incident practices. Public health

• Offered insights to integration of
Human factors and Ergonomics into
current practice.

UK [90]

The STAMP was used for the
SMD analyzing. Mine accident

• Identified the inadequate system control
constraints.

• Suggested the related improvements.
• Demonstrated the robustness of method

for the cases with high degree of
uncertainty.

USA [91]

Analyzing the contributing
factors of pipeline leakage

and explosion accident.

Process industries
accident

• Expanded the causal analysis from a
systematic perspective.

• Illustrated the utility of model to
this case.

China [92]

Analyzing the human factors
and taxonomy of system. Accident analysis

• Analyzed the accidents that occurred
due to a major mismatch among
components.

Poland [95]

Designing maritime safety
management systems.

Safety
management

systems

• A descriptive process of analysis and
key performance indicators was
provided for designing maritime safety
management systems.

Finland [116]

Hazard analysis of
Software-Controlled Systems

based on STPA.

Software-
Controlled

Systems

• A new method HCAT-STPA was
proposed for analyzing the software
control systems hazards.

China [140]

Using of the STAMP and
Bayesian Networks to

operational use and design
of the safety SMS.

Maritime
• Developed maritime SMS auditing

processes. Finland [110]

Application of systemic
methods for the analysis of

coal mines accidents.

Coal mines
accident

• STAMP model was shown to be a
comprehensive and systematic
technique.

• The model characteristics and analysis
processes were complex.

China [127]

Identifying the contributing
factors of abnormal

behaviors of system that
cause process malfunctions

using STAMP.

Indoor
environment

safety

• STAMP effectively identified causes of
physical process anomalies. Japan [93]
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Appendix C

Table A3. General information and findings of 22 FRAM studies.

Objective Scope of Study Main Findings Location References

Analyzing aircraft
accidents induced by

automation autopilots.
Aviation

• Predicted the possible hazard occurrence
which may result from complex interactions
among human, technological and
organizational factors.

Japan [141]

Comparing the two
methods: STEP and

FRAM
Aviation

• FRAM demonstrated the dynamic
interactions of sociotechnical systems.

• Described non-linear interrelations among
the functions.

• Determined the conditions, variability and
performance resonance of the functions.

Norway [142]

Analyzing an accident
related to the ATM

system.
Aviation

• Proposed some recommendation on the
system operation resilience.

• Indicated that a more profound
understanding on the system function
is need.

Brazil [102]

Hazard analysis of
software system using

FRAM and System
Hazard Analysis.

Airline
• Established a requirements-based

methodology. Australia [143]

Assessing risk in
sustainable construction
via FRAM methodology.

Construction
• Control strategies were developed to reduce

the risk for function variability or functional
resonance.

Brazil [103]

Analysis of the hazards
attributed to the

sociotechnical system.
Maritime

• Determined the occurrence and aggregation
of functions variability.

• Illustrated the interactions of functions
of system.

• Determined how safety constraints
are violated.

China [144]

Investigating the
compatibility of FRAM
model and Rasmussen’s

AH

Transport
(railway)

• Provided a new structure of FRAM by
functional analysis at hierarchical layers of
the system.

UK [104]

Enhancement of the
traditional safety

assessment based on
semi quantitative FRAM

and MCs.

Aviation (ATM
system)

• Highlighted the critical functions and
critical links among these functions.

• Facilitated the safety analysis by considering
the system response to different operating
conditions and different risk conditions.

Los Angeles [96]

Using a hybrid approach
as combining FRAM and
TASM to system-based
modelling of the safety

Ground handling
services

• Advocated the benefits of systemic
approaches.

• Demonstrated the suitability of the TASM
framework for hazard and accident analysis.

UK [101]

Risk assessment and
modeling the

performance interactions
for the maintenance

of system.

Hydrocarbon
Release Accidents

• The event investigated by connecting
various activities and risk influencing
factors from a functional perspective.

Norway [145]
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Table A3. Cont.

Objective Scope of Study Main Findings Location References

Quantifying the FRAM. Resilience
Quantification

• The model excluded the main leading
indexes.

• Resilience bases of the FRAM (anticipate,
respond, monitor, learn) were
demonstrated.

• Overall system variability was
demonstrated.

Italy [97]

Predictive performance
assessment and

improvement of a
framework through the

integration of FRAM and
fuzzy logic.

Complex
Sociotechnical

Systems

• Generated numerical indicators for a more
comprehensible representation of potential
performance variability.

Canada [98]

Developing a theory of
change to support

intervention
development.

Public health; care
safety

• Supported the theory of change to develop a
guide for future safety interventions. UK [146]

To explore how tensions
and contradictions are
managed by people.

Public health;
patient safety

• Highlighted the main areas of performance
variability.

UK [147]

Qualitative risk analysis
of shipping operations. Maritime accident

• Determined the variability of events
underlying the accident.

• Provided suggestions to examine
these events.

Turkey [121]

Risk assessment of
highlyautomated

vehicles using FRAM.

Automated
driving

• The risk and safety assessment were
performed.

• Proposed recommendations for system
design.

• Required perspectives on work validation
were represented.

• Suitability of model was evaluated in detail.

Germany [148]

Analyzing human factors
and non-technical skills

by modeling the
performed activities.

Offshore drilling
operations

• Underlined the role of human factors and
non-technical skills for the productivity and
safety of the work in both normal and
critical operation situations.

Brazil [149]

Quantitative assessment
of resilience through

FRAM and DBN

Chemical process
systems

• An effective tool for the purpose of the
study was provided.

Kazakhstan [99]

Identifying the
challenges within the

case of the study
Transition process • It revealed some challenges affecting the

transition process.
Canada [150]

Investigating the
applicability of

quantified systemic
method for risk analysis
of the case of study using

FRAM and MCs.

Tram operating
system

• Systemic method determined functional
interactions of the system.

• Aggregation of variability was determined.
• Comprehensive risk analysis of the case of

study was performed.

Turkey [94]
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Table A3. Cont.

Objective Scope of Study Main Findings Location References

Use of quantitative
FRAM for risk

assessment.

System of
COVID-19
pandemic
emergency
response

• Potential risks and critical conditions were
assessed

• Highlighted the role of emergency response
strategies at the governance scale.

Republic of
Korea [100]

To survey the role of
resilience engineering in
identifying the system

requirements.

Software
• New strategies for meeting the requirements

of software for complex systems were
represented.

Brazil [151]
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Abstract: The Malaysian construction sector registers higher fatal accidents than the manufacturing
sector even though the latter has the highest cases of accidents. There is a need to implement
effective safety risk management. The main objective of this study is to explore the moderating
effect of risk level of accidents on mitigation measures implemented. For this purpose, the factors
causing safety risks and the practical measures taken by contractors to mitigate these risks were
identified, in addition to the operationalization of the likelihood and severity of accidents using
suitable rating scales. Descriptive analysis shows that a fall-related accident is the most likely and
the most severe safety risk at high risk level. Results from multivariate analysis using SmartPLS 4
show that safety risks have a significant positive relationship with mitigation measures, and risk level
actually heightens this relationship. As a result, the practical measures implemented on construction
sites to mitigate the impacts of accidents may be inadequate unless the moderating effect of risk
level is considered during the planning, design, and management of construction safety. Therefore,
mitigation measures taken by the contractors must take into account the types of factors causing
safety risks, as well as the likelihood and severity of these factors.

Keywords: accidents; likelihood; mitigation measures; risk level; safety risks; severity; SmartPLS 4

1. Introduction

According to [1], risk is defined as the “combination of the likelihood of occurrence of a
work-related hazardous event or exposure(s) and the severity of injury and ill-health that can be
caused by the event or exposures”. In addition, [2] defines “a risk as the potential of a situation
or event to impact on the achievement of specific objectives”. Risks are found in any business
undertaking. As a result, incidents are bound to happen in any occupation of any sector
which affects its smooth operation.

The construction industry is well-known for its complexity, dynamic nature, unique-
ness, and diverse environments which could create uncertainty and challenges because the
works involved nowadays could be high in the sky, deep underground, below water level,
or across the sea which often involve adverse surroundings and situations. According to [3],
risk may appear in any form and at any stage of the construction process. A construction
site is thus full of hazards due to many people working in various activities and the use
of heavy materials and moving machineries. Hence, the construction industry is highly
prone to various factors which could cause safety risks. Therefore, implementing safety
risk management in the industry is essential in anticipation of the unpredictable nature of
safety risks with the objectives to mitigate or manage their impacts. Table 1 summarises
the occupational accident statistics released by [4]. Among the industrial sectors listed,
the construction sector registers the highest number of fatal accidents with an average of
89 cases per year over seven years compared to the manufacturing sector, even though the
latter has the highest rate of accidents with an average of 3355 cases/year from 2015–2021,
which is almost 14 times higher than the construction industry.
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Table 1. Occupational accident statistics in Malaysia from 2015–2021.

Industrial Sector Type 2015 2016 2017 2018 2019 2020 2021
Total from
2015–2021

Average over 7 Years

Type
(per Year)

Sector
(per Year)

Manufacturing
Death 46 68 68 62 73 73 48 438 62.6

3355NPD 1906 2173 1985 2969 4661 4202 4015 21911 3130.1
PD 89 74 125 197 214 231 206 1136 162.3

Mining and Quarrying
Death 4 4 8 4 5 3 8 36 5.1

43.6NPD 32 20 37 34 52 35 44 254 36.3
PD 3 0 1 3 3 1 4 15 2.1

Construction
Death 88 91 111 118 84 66 65 623 89.0

240.0NPD 138 126 123 106 227 137 147 1004 143.4
PD 11 5 6 8 15 3 5 53 7.6

Agriculture, Forestry, Logging
and Fishery

Death 31 23 23 26 43 43 16 205 29.3
763.7NPD 440 435 488 709 1111 916 939 5038 719.7

PD 9 9 11 14 22 20 18 103 14.7

Utility (Electricity, Gas, Water
and Sanitary Services)

Death 6 2 10 5 9 3 8 43 6.1
161.7NPD 86 68 90 168 245 214 198 1069 152.7

PD 4 4 4 NA 4 3 1 20 2.8

Transport, Storage and
Communication

Death 22 12 16 12 21 11 6 100 14.3
215.6NPD 107 113 105 124 359 294 281 1383 197.6

PD 2 2 1 1 9 6 5 26 3.7

Wholesale and Retail Trade
Death 3 0 10 1 0 1 2 17 2.4

113.0NPD 102 107 86 69 85 126 182 757 108.1
PD 3 4 1 3 2 1 3 17 2.4

Hotel and Restaurants
Death 0 3 3 1 5 2 0 14 2.0

127.1NPD 62 85 110 120 227 137 125 866 123.7
PD 0 2 1 2 3 1 1 10 1.4

Financial, Insurance, Real Estate
and Business Services

Death 14 14 16 22 16 8 17 107 15.3
232.3NPD 105 101 124 190 384 312 264 1480 211.4

PD 0 11 6 5 6 7 4 39 5.6

Public Services and Statutory
Bodies/Authorities

Death 0 6 2 9 3 3 4 27 3.9
73.7NPD 31 101 64 48 93 73 68 478 68.3

PD 1 3 0 1 3 1 2 11 1.6

All industrial sectors combined
Death 214 223 267 260 259 213 174 1610 230.0

5322.9NPD 3009 3329 3212 4537 7444 6446 6263 34240 4891.4
PD 122 114 156 234 281 274 249 1430 204.3

Note: NPD = Non-Permanent Disabilities; PD = Permanent Disabilities; NA = Not Available.

Common safety risks in the construction industry, such as fall from height, being
struck by a moving object, or workers being buried in a landslide can be significantly
reduced if not eliminated by introducing safety management. Therefore, it should be taken
as a critical element for creating value and thus increasing a project’s overall performance
in terms of time, quality, and cost [5]. Realistically, achieving comprehensive and effective
safety management is a challenge to all project managers because they must anticipate
the risks that may occur and the resulting consequences. However, it has been found that
the level of safety management practices in Malaysia construction companies is relatively
low because of the lack of knowledge and understanding on the subject [5]. According
to [6], most construction companies in Malaysia fail to implement a systematic process of
risk management. It has been found that safety risks could be accepted, transferred, and
mitigated by implementing a systematic process in safety management.

To address the lack of knowledge and understanding on safety management practices,
this study set out to investigate the relationship between safety risks (SR) and the mitigation
measures (MM) implemented to mitigate the impacts of these risks, as shown in Figure 1.
It is hypothesised that there is a positive relationship between SR and MM. To achieve
this purpose, this study aims to: (a) determine the likelihood and severity of commonly-
occurred fatal construction accidents; (b) identify the factors causing safety risks; (c) identify
the practical measures taken by contractors to mitigate or manage these safety risks; and
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(d) explore the moderating effect of likelihood and severity, in terms of risk level, on the
mitigation measures implemented using the PLS-SEM technique.
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Figure 1. Path model on the relationship between safety risks and mitigation measures.

Likelihood and severity are expected to affect the relationship depicted in Figure 1.
Inherent in any risk are the likelihood of an accident to happen and the severity of its
impact when it happens. According to [7], risk increases when the probability of an
incident occurring increases or the severity of injury increases. The more likely it is for
an accident to occur, and the more severe the accident, the higher the risk level. Hence,
these twin characteristics of risks, working hand in hand, will determine the risk level of
an accident which is given by “risk level = likelihood × severity”. The moderating effect
of risk level on the relationship can be quantified by examining the R-squared value and
path coefficient between these two constructs when risk level acts as a moderator between
safety risks and mitigation measures.

2. Literature Review

Any industry which wants to succeed must operate safely, dependably, and on a long
term basis [8]. Risks that have not been identified and managed will undoubtedly threaten
a project’s objectives, resulting in high cost and schedule overruns [9]. To accomplish this
goal, the industry must first identify the dangers and assess the risks connected with them.
If an industry could identify and categorise risks before the commencement of a project,
they would be able to improve risk management and avoid any potential losses.

2.1. Commonly-Occurred Fatal Construction Accidents

Ref. [10] conducted a study in the United States based on the OSHA fatalities data from
1980, 1985, and 1990. They concluded that fall-related, struck-by, electrocution, and being
caught in-between are the most common forms of accidents. Table 2 shows the statistics
from 2016 to 2020 on the various types of fatal construction accidents provided by [11],
where nearly 50% of the fatal accidents that happened were due to workers falling from
height. Other studies have also revealed that fall-related accidents are the most common
fatal construction accidents [12–15], including in China [16].
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Table 2. Commonly-occurred fatal construction accidents.

Item Type of Accident

Period
Unavailable in [12]

From 2010–2015
in [13]

From 2013–2018
in [14]

From 2010–2018
in [15]

From 2016–2020
for this Study [11]

Cases Percent Cases Percent Cases Percent Cases Percent Cases Percent

1 Falling from height 17 56.7% 56 43.4% 63 43.4% 304 38.2% 40 48.8%

2 Struck-by accident (e.g., moving object,
moving vehicle, or by falling object) 4 + 2 20.0% 33 25.6% 49 33.8% 242 30.4% 25 30.5%

3 Fall into opening or drowning 2 6.7% 6 4.7% 8 5.5% 78 9.8% 5 6.1%

4 Buried 2 6.7% 8 6.2% — — — — 5 6.1%

5 Electrocution 3 10.0% 7 5.4% 7 4.8% 22 2.8% 3 3.7%

6 Road accident — — — — — — — — 1 1.2%

7 Caught in between — — 17 13.2% 11 7.6% 141 17.7% 1 1.2%

8 Fire or explosion — — 1 0.8% 2 1.4% 3 0.4% 1 1.2%

9 Insect pest — — — — — — — — 1 1.2%

10 Exposure to, or contact with,
harmful substances — — 1 0.8% 1 0.7% 6 0.8% — —

11 Environmental factors — — — — 4 2.8% — — — —

Total 30 100% 129 100% 145 100% 796 100% 82 100%

2.1.1. Fall-Related Accident

Fall-related accidents are the most common type of safety risk not only in Malaysia
but also in many other countries such as the United States, China, the United Kingdom,
Spain, Korea, Singapore and Taiwan [15]. When compared to other forms of safety risks in
the construction industry, fall-related accidents are believed to have the highest frequency
of occurrence [17]. Any object that might cause a person to lose their balance and fall is
considered to be a danger while working four feet or more above the ground. The majority
of workplace accidents involve falling from a working platform, scaffolding, ladder, or
structure. As a result, falls from height are still much more common in construction
accidents than in other kinds of accidents [18].

2.1.2. Struck-by Accident

Being struck by any objects or equipment is known to be one of the factors that led to
fatal injuries and deaths in the Malaysian construction industry from 2010 to 2018 [15]. A
struck-by accident happens when a worker encounters any moving, dropping, or rolling
material or object forcibly [19]. It shall also include incidents where the workers on-site or
in public get hit by any falling material, moving vehicle, or machinery [20].

(a) Struck by a Swinging or Slipping Object

When materials are mechanically raised, there is a possibility that they may swing
and harm the employees below. As the weight is lifted, the materials may swing, twist, or
spin in their respective positions. This movement has the potential to catch employees off
guard, and they may be struck by the swinging load. Windy circumstances are particularly
dangerous since the weight will swing more widely. If the worker is hit from behind and
falls to another level, the worker may receive even more severe injuries. This is dependent
on where the worker is positioned and the power behind the weight [21].

(b) Struck by a Rolling Object

When an object is rolling, moving, or sliding on the same level as the worker, this
is referred to as being struck by a rolling object. Incidents when the worker is hit or run
over by a moving vehicle without being trapped beneath it, as well as incidents where the
worker is struck by a sliding item or piece of equipment on the same level, are included
under this category [22].
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(c) Struck by Falling Object

Injuries sustained as a result of being struck by a falling object or equipment occurred
when the source of the injury is falling from a higher to a lower level. This includes
instances in which the injured person is crushed, pinned, or caught under an object falling
from a higher to a lower level [22].

2.1.3. Drowning and Asphyxiation

Drowning is considered as the world’s third highest factor causing fatal injury or
death [15]. Drowning occurs when a person dies as a result of suffocation caused by a
liquid that limits or blocks oxygen intake into the human body from the air, resulting in
asphyxia [12]. Asphyxiation, on the other hand, is a situation comparable to drowning in
which insufficient oxygen occurs in the human body as a result of poor breathing as a result
of working in a confined space or drowning [23].

2.1.4. Buried

Accidents may happen when construction workers are found buried due to cave-in
or collapse of earth during or after excavation work [24]. The author of [25] reported the
occurrence of a gruesome work accident which led to the death of a construction worker
after he was buried alive under a landslide.

2.1.5. Electrocution

Generally, an electrical hazard refers to the risk of getting burned, electrocution, shock,
arc flash, or other injury due to exposure to a lethal amount of electrical energy. Burns
could be defined as injuries due to contact or exposure to electricity, arc flash, or thermal
contact, while shock often results when the human body reflex responds to the passage of
electric current [26].

2.1.6. Road Accident

Road accident is one of the safety risks in the Malaysian construction industry. Ac-
cording to the Department of Occupational Safety and Health [11], a truck driver died in a
road accident due to a malfunctioning blinker at a sharp bend. Road accidents could also
happen due to the vehicle’s brake failure and hydroplaning. “Increasing number of highway
construction zones” in highway construction projects have disrupted regular traffic flows
which could cause traffic safety problems and accidents [27].

2.1.7. Caught in-between Accidents

Caught in-between accidents occurred when two or more objects or components of
an object are caught, squeezed, compressed, crushed, or pinched between one’s body [13].
There are times when a construction worker is too focused on their own tasks and fails
to see caught in-between hazards, such as standing between a heavy machine, such as a
trailer and a forklift, or an immovable structure, such as a brick wall [28]. According to [29],
incidents involving being squashed or crushed between rolling, sliding, or shifting things
are also regarded as one of the most common forms of accidents in the construction industry.

2.1.8. Fire or Explosion

The potential danger of fire outbreak is particularly severe on many construction sites,
especially during those high-risk activities such as hot work that generates heat, sparks
or flame, or even overheating of the plants and equipment [30]. In fact, fire would easily
break out with the presence of sufficient oxygen, fuel, and a source of ignition arising from
hot work, overheating plant and equipment, smoking, faulty electrical installation, bonfires
or arson [31].

The occurrence of explosions in construction sites, in fact, is not so frequent, but such
risks will lead to significant consequences: not only defects on the structure but also the
potential loss of a worker’s life. There was a case of explosion in 2017 at a Malaysian MRT
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construction site caused by an old bomb from the Second World War, which resulted in the
death of one construction worker while another two were critically injured [32].

2.1.9. Insect Pest

According to [11], there was one worker who died after been stung by hornets at the
Sarawak construction site. The employer was required to conduct HIRARC to identify such
a risk and provide risk control measures such as destroying the honeycomb to prevent the
safety risk from happening.

2.2. Factors Influencing Safety Risks

Accidents may happen on a construction site due to many reasons [33]. There are
many heavy plants, heavy materials, rough terrains, and people working at high places. As
a result, a construction site is a high-risk place.

2.2.1. Human Errors

Human errors, no matter how minor, may occasionally have a domino effect, resulting
in enormous economic or life loss [34]. Human errors are often related with improper
attitude, inadequate tools used, body effort and lack of experience [35]. Human errors
are considered to be the main cause of fall-related accidents. The contributing factors to
fall-related accidents include human errors and inappropriate use of a control [36]. Workers’
negligence in judgement accounts for approximately one-third of the fall accidents [37].

2.2.2. Failure to Use Personal Protective Equipment (PPE)

Every year, a large number of construction workers are killed or seriously harmed due
to the improper usage and wearing of personal protective equipment (PPE) [38]. According
to statistics from throughout the globe, 2 million individuals are predicted to be disabled
each year as a result of work-related accidents, with 25% or more of those injuries occurring
to the head, eyes, hands, and feet [39]. This is due to a lack of knowledge and use of safety
equipment, such as hard safety helmets, which are only worn by 16% of those who have
had occupational head injuries [40]. In addition, 23% of employees who had worn safety
boots suffered from foot injuries. Moreover, 40 percent of those who had suffered from eye
injuries had worn eye protection [39]. According to statistics, although there is no assurance
that personal safety equipment can prevent incidents resulting in injuries from occurring, it
may at least minimise the likelihood of such an incident occurring [41]. Ref. [42] believed
that precise safety applications may help to minimise construction site accidents, as well as
production costs, productivity development and profitability. Most significantly, he added,
lives could be saved.

2.2.3. Unsafe Act and Site Condition

The major fundamental factors of accident cases are unsafe acts and site circum-
stances [43]. In total, 99% of construction safety risks are caused by either risky conduct
or unsafe conditions, or both of these factors together [44]. These are regarded as the
primary causes of all forms of construction safety risks. Unsafe activities are defined as the
misuse of safety procedures, which increases the likelihood of an accident occurring on
the construction site [13]. An unsafe site condition is a physical condition or environment
that is surrounded by possible risks and might be the cause of a site accident [19]. The
dangerous act mostly deals with hazardous equipment or unsafe methods, such as working
without safety devices, equipment failure, inappropriate work process, worker knowledge
level, and failure to follow work procedures [19]. Unsafe circumstances, on the other
hand, include missing or inadequate guardrails on platforms, malfunctioning tools and
equipment, fire dangers, a bad fire alarm system, a lack of housekeeping, poor climatic
conditions, excessive noise, and insufficient light to operate.
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2.2.4. Lack of Progressive Training

To prevent safety risks on construction sites, proper training is required. Safety risks
sometimes occur when employers fail to provide sufficient training and knowledge on how
to carry out the job. One of the problems in safety practices is the lack of budget allocation on
safety management. The employers and workers need to attend safety training to improve
their skills and enhance their safety awareness. However, the cost for attending the training
course is high. Therefore, the company needs to allocate more budgets on safety to provide
safety equipment, training, and other measures to enhance the safety awareness of the
construction workers [45]. Safety training is a method of improving construction workers’
safety that focuses on the efficacy of the instructional delivery method. Effectiveness is
connected to the level of understanding of instruction and may be enhanced by improving
the instructional delivery method [46].

According to [47], most of the larger companies subcontract most of their work, which
results in a lack of workforce development and training. However, safety risks may occur
at any time. Employees bear the danger of being hurt while doing their jobs. A substantial
amount of responsibility is placed on the skilled construction worker. As a consequence,
the construction worker must be exceptionally brilliant and well-trained. Adequate safety
training assists in improving proficiency and lowering the occurrence of safety risks [46].
In summary, employees involved in high-risk activity must have access to training content
at all times.

2.2.5. Poor Communication

The term “communication” refers to the act of sending and receiving information
from one person to another in a way that both parties can understand [48]. Some common
poor communication examples on construction sites include language barrier, miscom-
munication and misunderstanding, and failure in conveying message. The construction
industry relies heavily on communication, and there is a need for every firm or professional
to get their messages through. Construction communication has gotten more difficult
since the number of parties engaged has increased substantially, including developers,
subcontractors, investors, members of the general public, and government organisations
participating in the process [49]. In the construction sector, bad communication may occur
on a big or small scale. In large-scale cases of bad communication, disagreements between
construction partners lead to project failure, while small-scale cases of poor communication
inside the company lead to delays, injuries, accidents and blunders [50]. A lack of project
information, such as lack of timely information, poor project documentation, inaccessibility
of project information, and unavailability of crucial information, could lead to performance
deficiency and unproductive practitioners [51].

Most of the construction workers in Malaysia are from different ethnic backgrounds,
as well as from different countries such as Indonesia, Myanmar, Thailand, Vietnam and
Bangladesh. The majority of them do not speak or comprehend the language of the locals.
This has made it difficult to communicate with each other. Messages may not be sent or
received in a timely manner, which might lead to an increase in the number of deaths
and injuries on the construction site [52]. For instance, there is a case in Malaysia where
the workers were unable to speak English and their employer had to translate all of the
information concerning the construction projects. Although the scaffolding at the building
site was partly removed, the employer neglected to inform the workers that it could not be
used due of the scaffolding’s dismantled status [53].

2.3. Practical Measures Taken by Contractors

When a risk event is identified and assessed, a decision must be made concerning
which response is appropriate for the specific event. The risk responses can be considered
in terms of elimination, control at source, minimization, and the use of appropriate personal
protective equipment [54].
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2.3.1. Personal Protective Equipment (PPE)

Death and injury always happen at the construction site due to failure to wear the PPE
provided and ineffective usage of PPE. To mitigate the safety risk in the Malaysian construc-
tion industry, wearing PPE while working on the construction site is necessary. PPE serves
to keep workers safe in the workplace by shielding them from possible dangers [55]. There
are many types of PPE, such as safety helmets, ear protection, high visibility clothing, safety
footwear, safety harnesses, etc. [56]. A severe accident can be avoided if the construction
labourer is wearing PPE.

Aside from that, employers must consider the physical dimensions of individual
employees, such as their body size and gender, while preparing PPE for them. PPE must be
adjustable so that when problems emerge, the advice provided must take into consideration
any medical conditions. The method, instruction, and training of PPE must be supplied by
the employer to all personnel on the construction site in order to prevent accidents [45].

Ref. [57] stated that one of the fundamental steps or mandatory requirements that the
construction company must provide for employees before beginning work is teaching them
to use PPE at the construction site. Furthermore, training is provided to employees to ensure
that they are well-equipped with the knowledge to carry out work on the construction site
with minimum safety hazards [58]. Training would be effective if there were two main
methods: informational-based training and a hands-on approach in which workers would
have to try the PPE on their own in order for the workers to gain a better understanding and
awareness of the PPE [59]. For example, the construction company would have to prepare
a test or observe the use of the PPE at the construction site for a period of time before the
workers are qualified in having full awareness of all of the aspects that are present in the
PPE at the construction site [60].

Ref. [60] mentioned that PPE awareness involves choosing the appropriate and rel-
evant PPE suitable of minimising the safety hazards that are threatening the employees’
health and safety. Safety masks, safety gloves, and protective gear must be provided
for construction workers engaged in jobs such as welding in order to protect them from
splatters of molten metal, as well as any other particles that may come into contact with
their skin [61].

Maintenance and supervision of the PPE is also critical at construction sites. As a
result, PPE must be of high quality and perform consistently in order to minimise the risks
that construction workers face on-site [62]. Workers and their supervisors must continually
inspect their PPE to verify that it is functioning properly. In order to keep the PPE in
excellent working order and ready for use by the various site employees, workers must be
aware of the various procedures for checking and maintaining the PPE.

2.3.2. Safety and Health Training

Safety and health training is essential in the construction industry’s safety manage-
ment practices, which are commonly acknowledged as standard performance. Safety
and health training in the construction site usually include the safety measures training,
machinery operator training, working at height training, and the others. Aside from that,
safety and health training are essential for occupational health and safety programmes in
order to improve the attitudes, abilities, and knowledge of new construction employees
and spot accidents on the construction site [63]. Ref. [64] found safety and health training
is one of the four interrelated dimensions in a safety programme, in addition to manage-
ment commitment and employee involvement, worksite analysis, hazard prevention and
control systems.

One of the current challenges in the Malaysian construction industry is the lack of
knowledge and skills of foreign workers, since most of these foreign workers originate from
various countries with poor skilled labour and a lack of training. When foreign migrant
workers came to Malaysia, they did not attend the safety and health training provided by
the relevant government agencies, which led to an increase in accidents on the construction
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site [65]. There is thus a need for foreign migrant workers to attend safety training package
in order to address the higher accident rates than the local skilled workers [66].

The majority of foreign workers lack knowledge and awareness since they did not
attend safety training. It is critical that the content of training uses more illustrations
to explain it in order to increase worker safety awareness [67]. Workers will be able
to understand and know how to manage the machine more effectively if the training
techniques use animation to display and explain the processes of operating machines [68].

2.3.3. Safety Meeting

A safety meeting is one of the ways that will be used to offer an opportunity for all
parties participating in the construction team to introduce and discuss the precautionary
safety concerns linked to safety and health on the construction site. Before beginning work,
a safety meeting must be held to ensure that all personnel are on the same page and may
review the previously provided information [69]. A safety meeting is an important aspect
of developing a workers’ safety culture in order to reduce accidents on the construction
site [45].

Before beginning a new project, kick-off meetings should be held to discuss the risks
and hazards, how to select and utilise personal protective equipment (PPE), safety precau-
tions, and safe work procedures that will be implemented at each stage of construction [70].

2.3.4. Proper Equipment

The construction company is responsible for supplying employees with suitable
equipment and a safe working environment in order to properly implement the construction
site safety culture among workers [40]. Poorly maintained equipment and machinery may
result in significant injuries and fatalities. It is critical to offer suitable equipment and
machinery that is in excellent working order. Machines must be serviced on a regular
basis to guarantee proper operation. Even just a tiny piece of the tools also need to be
handled well when carrying out the job in a construction site as it may extremely reduce
the opportunity for injury or the fatality of a construction worker. Scaffolding, for example,
must be built in the proper manner to provide construction workers safe access to the other
level of the structure. As a result, the employer must provide enough equipment at all
times while complying with OSHA’s safety regulations [28].

2.3.5. Promote Effective Communication

Promoting effective communication on-site by all construction parties is needed to
prevent accidents from happening. In order to avoid workplace accidents, workers, super-
visors, managers, contractors, and everyone on-site should be encouraged to communicate
with each other and with the employer [71]. Good and concise communication emphasis-
ing safety issues shall be practiced among everyone in the construction site so that any
misfortune may be avoided [72]. Ref. [73] found that it is important to promote safety com-
munication among construction workers because this will encourage workers to participate
actively in providing and receiving safety information.

Poor and ineffective communication can be due to many factors. Ref. [74] identified 33
factors which are responsible for poor communication in the construction industry. Of the 30
factors identified, [51] has categorized them under four dimensions, namely, organizational
and management factors, behavioural and cultural factors, project information factors,
and technology and method factors. A high accident rate has been found to be one of the
impacts of poor and ineffective communication by [50,74].
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3. Methodology

This study used the quantitative research approach for data collection and analyses.

3.1. Research Design

In this study, partial least squares structural equation modelling (PLS-SEM) using
SmartPLS 4 software [75] was employed as the multivariate analysis technique to explore
the moderating effect of risk level on mitigation measures taken. Hence, a survey ques-
tionnaire is suitable for data collection as long as the measurement scales are equidistant.
The basic conceptual model used for this study is shown in Figure 1: the safety risks
construct is conceptualized as a second order hierarchical latent construct consisting of five
categories of factors causing safety risks, and the mitigation measures construct is concep-
tualized as a second order hierarchical latent construct also consisting of five categories of
mitigation measures.

Sampling

The respondents, purposively selected for this study, comprised personnel working in
the construction industry from the Klang Valley, Malaysia. Three hundred (300) copies of
questionnaires prepared in Google Forms were distributed through emails and WhatsApp
messenger to the respondents from June 2022 to August 2022. A total of 83 completed
questionnaires were received with no missing data, giving a response rate of nearly 28%.

3.2. Research Instrument

The questionnaire consists of four main sections with closed-ended questions as
explained below.

3.2.1. Demographic Information

This section is designed to collect the demographic information of respondents such
as education level, current practice and the total number of years of working experience,
types of projects involved in, and familiarity with management of safety risks.

3.2.2. Likelihood and Severity of Commonly-Encountered Accidents

This section consists of a list of nine commonly-occurred fatal construction accidents
listed in Table 2. The respondents were requested to rate the likelihood and severity of
these safety risks based on their opinions and experiences according to 5-point rating scales
as shown in Table 3.

Table 3. Rating scales for likelihood and severity of commonly-occurred accidents.

Likelihood of Commonly-Occurred Accidents Severity of Commonly-Occurred Accidents

Rating Likelihood Definition Rating Severity Definition

1 Inconceivable Has never occurred 1 Negligible First aid, minor
abrasions, cuts

2 Remote Has not been known to
occur after many years 2 Minor Outpatient, medical leave

not more than 4 days

3 Conceivable Might occur sometimes
in future 3 Serious Hospitalized, medical leave

5 days or more

4 Possible Chances to occur and
not unusual 4 Major Permanent disability,

single fatality

5 Most likely Happen extremely 5 Catastrophic Numerous fatalities

3.2.3. Factors Influencing Safety Risks

This section contains 18 questions grouped under five categories of factors influencing
safety risks. The respondents were requested to rate these factors measured on a 5-point Lik-
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ert scale from ‘1 = strongly disagree’, ‘2 = disagree’, ‘3 = neutral’, ‘4 = agree’ to ‘5 = strongly
agree’ based on their opinion and experiences.

3.2.4. Practical Measures Taken

This section contains 20 questions grouped under five categories of practical measures
taken to mitigate safety risks. The respondents were requested to rate the importance of
these practical measures measured on a 5-point Likert scale from ‘1 = not important at all’,
‘2 = slightly important’, ‘3 = moderately important’, ‘4 = important’ to ‘5 = very important’
based on their opinion and experiences.

4. Results

4.1. Descriptive Analysis

Table 4 presents the demographic information of the 83 respondents who participated
in the questionnaire survey. Out of the 83 questionnaires received, 62 of the respondents
are working in consultancy firms, while 21 respondents are from contractor companies. Of
the 83 respondents, 62 of them have more than 2 years of working experience. In terms of
educational background, 72 of them have at least a bachelor’s degree and above. Of the 83
respondents who participated in the questionnaire survey, 77 of them indicated they are
familiar with safety risks. In terms of projects involved, 36 respondents mentioned they are
involved with main building works, whereas 47 of the respondents mentioned they are
involved in infrastructure works, including highway and railway projects.

Table 4. Demographic information of respondents.

Item Response Category Frequency Percentage (%)
Total

Percentage (%)

Current practice Consultant 62 74.7
100Contractor 21 25.3

Types of projects
involved

Highway project 17 20.5

100
Infrastructure works 20 24.1
Main building works 36 43.4

Railway projects 10 12.0

Educational
level

SPM 1 1.2

100
Diploma 10 12.0

Bachelor’s Degree 60 72.3
Master’s Degree 10 12.0

PhD 2 2.4

Working
experience in the

construction
industry

2 years or less 21 25.3

100
3–6 years 24 28.9
7–10 years 24 28.9

11–14 years 9 10.8
15 years and above 5 6.0

Familiarity with
safety risks

Yes 77 92.8
100No 6 7.2

4.1.1. Likelihood and Severity of Commonly-Occurred Fatal Construction Accidents

Table 5 displays the results for the likelihood of fatal construction accidents commonly
happening in the Malaysian construction industry, with fall-related accidents having the
highest mean value of 3.96, and insect pest as a safety risk having the lowest mean value
of 3.18. The overall mean value is 3.57. In Table 5, the indicators for this construct have
skewness values ranging from −0.108 to −1.072, and kurtosis values ranging from −1.322
to 0.292, showing that these indicators do not depart from the normality requirements
according to Brown (cited in [76]).
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Table 5. Likelihood of commonly-occurred fatal construction accidents (n = 83).

Construct Indicator Commonly-Occurred Accidents Mean
Standard
Deviation

Skewness Kurtosis
Overall
Mean

Likelihood

Likelihood1 Fall-related accident (human
falling from height) 3.96 1.163 −1.072 0.292

3.57

Likelihood2
Struck-by accident (struck by
falling object, moving vehicle,
rolling machinery)

3.54 0.979 −0.640 −0.179

Likelihood3 Drowning and Asphyxiation
(insufficient oxygen) 3.31 1.352 −0.108 −1.322

Likelihood4 Buried (being buried under
the landslide) 3.51 1.108 −0.511 −0.483

Likelihood5 Electrocution (getting burn,
electrocution, shock, arc flash) 3.71 1.099 −0.866 0.099

Likelihood6 Road accident (hydroplaning,
brake failure) 3.73 1.149 −0.746 −0.247

Likelihood7
Caught in-between accidents
(caught, crushed, squeezed between
two or more objects on site)

3.51 1.173 −0.526 −0.637

Likelihood8 Fire or explosion (fire outbreak,
bomb explosion) 3.64 1.143 −0.652 −0.409

Likelihood9 Insect pest (for example: stung
by hornets) 3.18 1.354 −0.368 −1.159

Table 6 displays the results for the severity of the same fatal construction accidents
commonly happening in the Malaysian construction industry, with fall-related accidents as
the highest mean value of 4.18, and insect pest as a safety risk as the lowest mean value
of 3.19. The overall mean value is 3.73. In Table 6, the indicators for this construct have
skewness values ranging from −1.532 to −0.362, and kurtosis values ranging from −1.140
to 1.722, showing that these indicators, too, do not depart from the normality requirements
according to Brown (cited in [76]).

Table 6. Severity of commonly-occurred fatal construction accidents (n = 83).

Construct Indicator Commonly-Occurred Accidents Mean
Standard
Deviation

Skewness Kurtosis
Overall
Mean

Severity

Severity1 Fall-related accident (human falling
from height) 4.18 1.106 −1.532 1.722

3.73

Severity2
Struck-by accident (struck by
falling object, moving vehicle,
rolling machinery)

3.72 0.860 −0.842 0.706

Severity3 Drowning and Asphyxiation
(insufficient of oxygen) 3.57 1.139 −0.446 −0.561

Severity4 Buried (being buried under
the landslide) 3.76 1.043 −0.886 0.583

Severity5 Electrocution (getting burn,
electrocution, shock, arc flash) 3.87 0.985 −0.748 −0.013

Severity6 Road accident (hydroplaning,
brake failure) 3.61 1.188 −0.817 −0.118

Severity7
Caught in-between accidents
(caught, crushed, squeezed between
two or more objects on site)

3.83 1.069 −0.944 0.326

Severity8 Fire or explosion (fire outbreak,
bomb explosion) 3.82 1.038 −0.835 0.369

Severity9 Insect pest (for example: stung
by hornets) 3.19 1.339 −0.362 −1.140

4.1.2. Factors Influencing Safety Risks

Table 7 displays the results for the 18 indicators operationalizing the five categories
of factors influencing safety risks, with unsafe act and site condition having the highest
overall mean value of 4.31, and human error having the lowest overall mean value of 3.97.
In Table 7, the indicators for this construct have skewness values ranging from −2.017 to
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0.159, and kurtosis values ranging from −1.116 to 6.395, showing that these indicators do
not depart from the normality requirements according to Brown (cited in [76]).

Table 7. Factors influencing safety risks (n = 83).

Construct Indicator Factors Influencing Safety Risks Mean
Standard
Deviation

Skewness Kurtosis
Overall
Mean

Human Error (HE)

HE1 Improper attitude 3.93 0.921 −0.238 −1.080

3.97
HE2 Inadequate tools used 3.75 0.660 −0.199 0.097
HE3 Excessive physical exertion 4.18 0.587 −0.421 1.551
HE4 Lacks of experience 4.00 0.812 −0.140 −1.116

Failure to use
PPE (FPPE)

FPPE1 Failure to use safety helmets 4.52 0.722 −1.560 2.276

4.25
FPPE2 Failure to use face protection 4.07 0.640 −0.921 2.723
FPPE3 Failure to use safety boots 4.23 0.831 −1.238 2.139
FPPE4 Failure to use eye protection 4.17 0.730 −0.852 1.166

Unsafe act and site
condition (UA)

UA1 Unsafe equipment 4.47 0.721 −1.190 0.746

4.31
UA2 Unsafe methods 4.16 0.529 0.159 0.298
UA3 Hazardous environment 4.25 0.622 −0.229 −0.570
UA4 Improper work procedure 4.36 0.691 −0.847 0.469

Lack of progressive
training (LackT)

LackT1 Employer fail to offer
sufficient training 4.34 0.928 −1.481 1.821

4.13LackT2 Lack of budget allocation on
safety management 3.93 0.729 −2.017 6.395

LackT3 Lack of workforce due to
subcontract work 4.12 0.929 −1.273 1.908

Poor Communication
(PC)

PC1 Language barrier 4.22 1.048 −1.557 2.244

4.14PC2 Miscommunication and
misunderstanding 4.02 0.796 −1.084 2.249

PC3 Failure in conveying message 4.17 0.895 −1.284 2.260

Note: 1 = strongly disagree; 2 = disagree; 3 = neutral; 4 = agree; 5 = strongly agree.

4.1.3. Mitigation Measures Taken

Table 8 displays the results for the 20 indicators operationalizing the five categories of
mitigation measures, with proper equipment having the highest overall mean value of 4.47,
and safety meeting having the lowest overall mean value of 4.30. In Table 8, the indicators
for this construct have skewness values ranging from −3.752 to 1.025, and kurtosis values
ranging from −0.993 to 19.0722, showing that only one indicator, that is PPE1, departs from
the normality requirements according to Brown (cited in [76]).

4.2. Structural Equation Modeling

The Mann–Whitney U tests carried out earlier showed that there were no significant
differences between the two subgroups, namely 62 respondents from consultant practices
and 21 respondents from contractor companies for all the indicators of the twelve constructs.
The raw data for these two subgroups were then combined to test the conceptual model
shown in Figure 1. SmartPLS 4 software [75] was employed for partial least squares
structural equation modelling (PLS-SEM) purposes. The 2-step procedure recommended
by [77] was adopted for assessments of the measurement models and structural model.

4.2.1. Assessment of Measurement Models

The following are the quality criteria adopted for assessment of the measurement
models in Figure 1:

1. Internal consistency reliability: A construct with high Cronbach’s alpha value indicates
the indicators have similar range and meaning [78];

2. Composite reliability (CR): Values greater than 0.60 are acceptable in exploratory
study [79];

3. Indicator reliability: Loading values equal to and greater than 0.4 are acceptable if the
sum of loadings results in higher loading scores, contributing to AVE scores of greater
than 0.5 [80];
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4. Convergent validity: In order to achieve adequate convergent validity, each construct
should account for at least 50% of the average variance explained (AVE ≥ 0.50) [81–83];

5. Rho_A: The reliability of rho_A usually lies between Cronbach’s alpha and composite
reliability [84];

6. Discriminant validity: The square root of AVE of a construct should be larger than the
correlations between the construct and other constructs in the model [82]. According
to [85], HTMT.90 value of 0.90 indicates that there is a problem of discriminant validity.
Using cross loadings to assess discriminant validity, each indicator should load high
on its own construct but low on other constructs. Cross loadings of <0.1 should be
deleted [86].

Table 8. Practical measures taken to mitigate safety risks (n = 83).

Construct Indicator
Practical Measures to Mitigate
Safety Risks

Mean
Standard
Deviation

Skewness Kurtosis
Overall
Mean

Personal Protective
Equipment (PPE)

PPE1 Safety helmets 4.76 0.597 −3.752 19.072

4.45

PPE2 Ear protection 4.16 0.689 −0.672 0.970
PPE3 High visibility clothing 4.39 0.641 −0.841 1.047
PPE4 Safety footwear 4.41 0.716 −1.612 4.911
PPE5 Safety harnesses 4.53 0.591 −1.207 2.406
PPE6 Training of PPE 4.45 0.590 −0.517 −0.632

Safety and health
training (ST)

ST1 Safety measures training 4.55 0.737 −1.317 0.162
4.35ST2 Machinery operator training 4.20 0.435 1.025 0.337

ST3 Working at height training 4.30 0.745 −0.555 −0.993

Safety Meeting (SM)

SM1 Discuss the precautionary
safety concerns 4.48 0.755 −1.245 0.565

4.30
SM2 Communication between job groups 4.20 0.488 0.462 0.227
SM3 Report changes at the work site 4.36 0.531 0.081 −0.969

SM4 Update the existing safety plan
and procedure 4.17 0.640 −0.163 −0.579

Proper equipment
(PE)

PE1 Supplying employees with
suitable equipment 4.65 0.572 −1.419 1.081

4.47PE2 Safe working environment 4.30 0.535 0.124 −0.598
PE3 Machines serviced regularly 4.46 0.591 −0.925 1.881
PE4 Scaffolding with safe access 4.45 0.590 −0.517 −0.632

Promote Effective
Communication (EC)

EC1 Employee pay attention for
safety briefing 4.36 0.790 −0.897 −0.293

4.33EC2 Construction parties communicate
with each other 4.14 0.665 −0.169 −0.717

EC3 Rapid communication such as
walkie-talkies 4.48 0.549 −0.380 −0.980

Note: 1 = not important at all, 2 = slightly important, 3 = moderately important, 4 = important and 5 = very
important.

Figure 1 is a higher component model (HCM) with two second-order hierarchical
latent constructs. Hence, two-stage HCM analysis, a combination of repeated indicators
approach and the use of latent variable scores is needed [87]. First stage analysis shows
the following two indicators have to be removed for the lower order component models to
achieve quality criteria, namely:

(a) Indicator PPE1 which has cross loadings of <0.10 needs to be removed for the PPE
construct to achieve an AVE value > 0.50;

(b) Indicator HE3 which has cross loadings < 0.10 needs to be removed even though the
AVE value for the HE construct > 0.50.

In the second stage analysis, the latent variable scores from the first stage serve as
the manifest variables in the higher order component models. The AVE values for safety
risks construct and mitigation measures construct together with the outer loadings, path
coefficient, and p values are displayed in Figure 2.
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Figure 2. Higher order components with AVE values, path coefficients, and p values (n = 83).

The moderating effect of likelihood and severity is investigated with risk level as
a second order hierarchical construct as shown in Figure 3, which gives the graphical
output from first stage analysis. The AVE values of lower order constructs for safety risks,
mitigation measures and risk level together with the outer loadings, path coefficient and
p values are presented together.

 
Figure 3. AVE values, path coefficients, and p values from first stage analysis (n = 83).

The assessment results for lower order components from first stage analysis are sum-
marised in Table 9. Based on the quality criteria given earlier, the lower order components
achieve convergent validity with AVE > 0.50 for all the twelve constructs, indicator relia-
bility with outer loadings ranging from 0.473 to 0.915, as well as construct reliability and
validity with Cronbach’s alpha, Rho A and Rho C values well above 0.700.
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Table 9. Assessment results for lower order components from first stage analysis (n = 83; CI = 95%).

Lower Order Component Indicator
Outer
Loadings

Construct Reliability and Validity

Cronbach’s
Alpha

Composite
Reliability,
Rho_A

Composite
Reliability,
Rho_C

AVE
(≥0.50)

Likelihood of commonly-occurred accidents

Likehood1 0.776

0.919 0.923 0.933 0.610

Likehood2 0.709
Likehood3 0.753
Likehood4 0.807
Likehood5 0.851
Likehood6 0.793
Likehood7 0.850
Likehood8 0.806
Likehood9 0.663

Severity of commonly-occurred accidents

Severity1 0.758

0.907 0.915 0.925 0.582

Severity2 0.737
Severity3 0.730
Severity4 0.823
Severity5 0.791
Severity6 0.803
Severity7 0.855
Severity8 0.829
Severity9 0.473

Human Error (HE)
HE1 0.786

0.763 0.774 0.862 0.676HE2 0.810
HE4 0.869

Failure to use Personal Protective Equipment
(FPPE)

FPPE1 0.820

0.830 0.840 0.886 0.660
FPPE2 0.790
FPPE3 0.833
FPPE4 0.806

Unsafe act and site condition (UA)

UA1 0.750

0.741 0.753 0.837 0.563
UA2 0.698
UA3 0.714
UA4 0.831

Lack of progressive training (LackT)
LackT1 0.915

0.827 0.834 0.897 0.745LackT2 0.808
LackT3 0.862

Poor Communication (PC)
PC1 0.911

0.880 0.880 0.926 0.807PC2 0.886
PC3 0.897

Personal Protective Equipment (PPE)

PPE2 0.679

0.771 0.782 0.846 0.526
PPE3 0.839
PPE4 0.765
PPE5 0.666
PPE6 0.663

Safety and health training (ST)
ST1 0.806

0.711 0.734 0.841 0.641ST2 0.680
ST3 0.900

Safety Meeting (SM)

SM1 0.781

0.726 0.726 0.830 0.551
SM2 0.663
SM3 0.747
SM4 0.772

Proper equipment (PE)

PE1 0.741

0.735 0.740 0.835 0.559
PE2 0.672
PE3 0.788
PE4 0.784

Promote effective communication (EC)
EC1 0.897

0.738 0.747 0.852 0.659EC2 0.727
EC3 0.803

Table 10 shows the lower order components do not have any problem with discrim-
inant validity because there is no HTMT.90 value which is more than 0.90. In addition,
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Table 11 shows the lower order components achieve satisfactory discriminant validity
too because the square root of AVE (along the diagonal) is larger than the correlation (off
diagonal) for all the lower order components.

Table 10. Discriminant validity for lower order components using HTMT ratio of correlation.

Indicator EC FPPE HE LackT Likelihood PC PE PPE SM ST Severity UA

EC
FPPE 0.304
HE 0.168 0.486
LackT 0.485 0.517 0.440
Likelihood 0.217 0.399 0.698 0.351
PC 0.553 0.617 0.493 0.837 0.256
PE 0.659 0.357 0.309 0.258 0.313 0.454
PPE 0.783 0.286 0.335 0.406 0.350 0.494 0.865
SM 0.650 0.241 0.329 0.285 0.438 0.456 0.758 0.531
ST 0.451 0.406 0.436 0.506 0.330 0.704 0.751 0.507 0.684
Severity 0.221 0.391 0.476 0.442 0.700 0.483 0.322 0.441 0.413 0.376
UA 0.533 0.718 0.477 0.718 0.459 0.790 0.624 0.552 0.443 0.689 0.474

Table 11. Discriminant validity for lower order components using Fornell and Larcker criterion.

Indicator EC FPPE HE LackT Likelihood PC PE PPE SM ST Severity UA

EC 0.812
FPPE 0.247 0.812
HE 0.139 0.405 0.822
LackT 0.382 0.442 0.367 0.863
Likelihood 0.179 0.348 0.598 0.305 0.781
PC 0.450 0.541 0.416 0.716 0.229 0.898
PE 0.491 0.292 0.239 0.172 0.248 0.366 0.748
PPE 0.597 0.217 0.252 0.312 0.272 0.408 0.652 0.726
SM 0.477 0.136 0.252 0.221 0.355 0.365 0.561 0.406 0.742
ST 0.336 0.327 0.324 0.393 0.228 0.559 0.542 0.377 0.479 0.800
Severity 0.183 0.344 0.411 0.382 0.638 0.431 0.253 0.365 0.335 0.278 0.763
UA 0.399 0.577 0.376 0.574 0.355 0.648 0.452 0.406 0.317 0.504 0.381 0.750

In the second stage analysis for the moderating effect of risk level, the latent variable
(LV) scores for safety risks, mitigation measures, and risk level from the first stage analysis
serve as the manifest variables in the higher order components. The graphical output for
second stage analysis is shown in Figure 4, where the AVE values for safety risks, mitigation
measures, and risk level together with the outer loadings, path coefficient, and p values
are presented.

 

Figure 4. AVE values, path coefficients and p values from second stage analysis (n = 83).

The assessment results for higher order components from second stage analysis are
summarised in Table 12. Based on the quality criteria given earlier, the higher order
components achieve convergent validity with AVE > 0.50, indicator reliability with outer
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loadings ranging from 0.731 to 0.916, as well as construct reliability and validity with
Cronbach’s alpha, Rho A and Rho C values well above 0.700.

Table 12. Assessment results of higher order components (n = 83; CI = 95%).

Higher Order
Component Latent Variable Scores

Outer
Loadings

R-Squared,

R2

Construct Reliability and Validity

Cronbach’s
Alpha

Composite
Reliability,

Rho_A

Composite
Reliability,

Rho_C

AVE
(≥0.50)

Risk Level
LV Scores—Likelihood 0.894

— 0.779 0.786 0.900 0.819
LV Scores—Severity 0.916

Safety Risks

LV Scores—HE 0.606

— 0.837 0.882 0.885 0.609

LV Scores—FPPE 0.731

LV Scores—UA 0.846

LV Scores—LackT 0.803

LV Scores—PC 0.884

Mitigation
Measures

LV Scores—PPE 0.782

0.368 0.829 0.834 0.879 0.593

LV Scores—ST 0.745

LV Scores—SM 0.741

LV Scores—PE 0.837

LV Scores—EC 0.741

Table 13 shows the higher order components have no problem with discriminant
validity because there is no HTMT.90 value which is more than 0.90. In addition, Table 14
shows the higher order components achieve satisfactory discriminant validity as well
because the square root of AVE (along the diagonal) is larger than the correlation (off
diagonal) for all the constructs.

Table 13. Discriminant validity of higher order components using HTMT ratio.

Higher Order Component
Mitigation
Measures

Risk
Level

Safety
Risks

Risk Level × Safety Risks

Mitigation measures
Risk level 0.481
Safety risks 0.652 0.665
Risk level × Safety risks 0.165 0.114 0.470

Table 14. Discriminant validity of higher order components using Fornell and Larcker criterion.

Higher Order Component Mitigation Measures Risk Level Safety Risks

Mitigation measures 0.770
Risk level 0.386 0.905
Safety risks 0.577 0.516 0.780

4.2.2. Assessment of Structural Model

The following are the criteria adopted to assess the higher component model shown
in Figure 4:

Standardised root mean square residual (SRMR): A value less than 0.10 is considered
a good fit [88].

Normed fit index (NFI): A value above 0.9 usually represents acceptable fit [89].
The assessment results for model fit of higher component model are summarised in

Table 15, showing the higher component model has a good fit with SRMR = 0.094. However,
the NFI value < 0.90.
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Table 15. Assessment results of structural model (n = 83; CI = 95%).

Item
Saturated Model Estimated Model

Original Sample Sample Mean 95% 99% Estimated Sample Sample Mean 95% 99%

SRMR
(≤0.10) 0.094 0.071 0.088 0.099 0.095 0.073 0.093 0.104

d_ULS 0.696 0.403 0.604 0.760 0.700 0.429 0.681 0.840
d_G 0.328 0.258 0.380 0.452 0.328 0.328 0.385 0.458

Chi-square 153.132 153.258
NFI (≥0.90) 0.698 0.697

4.3. Moderating Effect of Risk Level

Table 16 summarises the results obtained in second stage analyses for Figures 2 and 4.
Without risk level as a moderator in Figure 2, the main effect between safety risks and
mitigation measures is β = 0.580 (p < 0.001) as shown in Figure 2, with R2 = 0.337 (p < 0.001)
and effect size = 0.508 (p < 0.05). With risk level as a moderator in Figure 4, the simple effect
is β = 0.611 (p < 0.001), with R2 = 0.368 (p < 0.001) and effect size = 0.339 (p > 0.05). The path
coefficient β increased to 0.611 from 0.580, which is an increase of 5.3% and the R2 value
increased to 0.368 from 0.337, which is an increase of 9.2%. The strength of the relationship
between safety risks and mitigation measures increases when the risk level increases in the
presence of risk level as a moderator. This is illustrated by the interaction plot shown in
Figure 5. The effect size is 0.038 (p > 0.05), which is small according to [90].

 

Figure 5. Interaction plot showing the moderating effect of risk level.
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Table 16. Moderating effect of risk level on mitigation measures (n =83, CI = 95%).

Case
Safety Risks Mitigation Measures

Path
Path

Coefficient
Total Effect

Effect Size,
f-SquareAVE R2 AVE

Figure 2
Base model 0.609, p = 0.000 0.337, p = 0.000 0.592, p = 0.000 Safety

risks → MM 0.580, p = 0.000. 0.580, p = 0.000. 0.508, p = 0.031.

Figure 4
Risk level as a

moderating
construct

0.609. p = 0.000 0.368, p = 0.000 0.593, p = 0.000

Safety
risks → MM 0.611, p = 0.000. 0.611, p = 0.000. 0.339, p = 0.099

Risk
level → MM 0.090, p = 0.422 0.090, p = 0.422 0.009, p = 0.788

Risk
level × Safety
risks → MM

0.170, p = 0.213 0.170, p = 0.213 0.038, p = 0.475

5. Discussion

Table 17 displays the results for composite reliability and validity of the initial con-
ceptual model which consists of all the indicators identified for this research which are
presented in Tables 5–8. The results show that the measurement instrument used for data
collection has a high internal consistency reliability with all the values well above 0.707.
With the deletion of two indicators, namely HE3 and PPE1, the results in Table 9 show that
the measurement instrument is further improved with good indicator reliability, adequate
convergent validity, and adequate discriminant validity.

Table 17. Composite reliability and validity of lower order components.

Construct
Indicators in Construct Cronbach’s

Alpha

Composite
Reliability,
Rho_A

Composite Reliability,
Rho_C(>0.50 but
<0.90)

Average Variance
Extracted Values,
AVENumber Reference

Likelihood of commonly-occurred
accidents 9 Table 5 0.919 0.938 0.931 0.602

Severity of commonly-occurred
accidents 9 Table 6 0.907 0.944 0.921 0.572

Human Error (HE) 4

Table 7

0.747 0.751 0.840 0.569
Failure to use Personal Protective
Equipment (FPPE) 4 0.830 0.839 0.886 0.660

Unsafe act and site condition (UA) 4 0.741 0.754 0.837 0.563
Lack of progressive training (LackT) 3 0.827 0.833 0.897 0.745
Poor Communication (PC) 3 0.880 0.880 0.926 0.807

Personal Protective Equipment (PPE) 6

Table 8

0.776 0.781 0.843 0.475
Safety and health training (ST) 3 0.711 0.736 0.841 0.642
Safety Meeting (SM) 4 0.726 0.726 0.830 0.551
Proper equipment (PE) 4 0.735 0.741 0.835 0.559
Promote effective communication (EC) 3 0.738 0.750 0.852 0.659

The risk levels for the nine commonly-occurred fatal construction accidents presented
in Tables 5 and 6 were calculated and the values are presented in Table 18. The results show
that fall-related accident is at a high risk level, confirming the finding from earlier studies
which mentioned falling from height is the number one killer in the Malaysian construction
industry [11–16]. All the other types of safety risks are in the medium risk levels, with
insect pest as a safety risk having the lowest risk level score. Table 18 also summarises
the ranking for all the nine commonly-occurred safety risks measured in terms of mean
likelihood score, mean severity score and risk level. The results show that fall-related
accident remains at the top, signifying that fall-related accidents are highly risky and the
most likely and severe risk to happen at the construction site; fatal accidents due to insect
pest is at the bottom of the ranking, confirming the data from [11].
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Table 18. Risk levels of commonly-occurred fatal construction accidents.

Item Commonly-Occurred Accidents
Likelihood Severity

Risk Level
(Mean Likelihood × Mean Severity)

Mean Value Rank Mean Value Rank Score Rank Description

1 Fall-related accident (human falling
from height) 3.96 1 4.18 1 16.6 1 High risk (≥15)

5 Electrocution (getting burn,
electrocution, shock, arc flash) 3.71 3 3.87 2 14.4 2 4 < Medium risk < 15

7
Caught in-between accidents (caught,
crushed, squeezed between two or
more objects on site)

3.51 6 3.83 3 13.4 5 4 < Medium risk < 15

8 Fire or explosion (fire outbreak,
bomb explosion) 3.64 4 3.82 4 13.9 3 4 < Medium risk < 15

4 Buried (being buried under
the landslide) 3.51 6 3.76 5 13.2 6 4 < Medium risk < 15

2
Struck by accident (struck by
falling object, moving vehicle,
rolling machinery)

3.54 5 3.72 6 13.2 6 4 < Medium risk < 15

6 Road accident (hydroplaning,
brake failure) 3.73 2 3.61 7 13.5 4 4 < Medium risk < 15

3 Drowning and Asphyxiation
(insufficient of oxygen) 3.31 7 3.57 8 11.8 7 4 < Medium risk < 15

9 Insect pest (for example: stung
by hornets) 3.18 8 3.19 9 10.1 8 4 < Medium risk < 15

Table 19 summarises that rankings for all the 18 indicators or factors of the five
construction safety risks mitigation measures. The results show that 15 factors have mean
scores well above 4, with the top 5 factors being failure to use safety helmets, unsafe
equipment, improper work procedure, employers failing to provide sufficient training,
and hazardous environment. Only three factors have mean scores slightly lower than
4, and they are improper attitude, lack of budget allocation on safety management, and
inadequate tools used. In terms of overall mean value, the ranking for the five construction
safety risks in descending order are: unsafe act and site condition, failure to use PPE, poor
communication, lack of progressive training, and human error.

Table 19. Ranking of factors influencing safety risks.

Construct Indicator Factors Influencing Safety Risks
Mean Overall Mean

Value Rank Value Rank

Human Error (HE)

HE1 Improper attitude 3.93 3

3.97 5
HE2 Inadequate tools used 3.75 4
HE3 Excessive physical exertion 4.18 1
HE4 Lacks of experience 4.00 2

Failure to use PPE
(FPPE)

FPPE1 Failure to use safety helmets 4.52 1

4.25 2
FPPE2 Failure to use face protection 4.07 4
FPPE3 Failure to use safety boots 4.23 2
FPPE4 Failure to use eye protection 4.17 3

Unsafe act and site
condition (UA)

UA1 Unsafe equipment 4.47 1

4.31 1
UA2 Unsafe methods 4.16 4
UA3 Hazardous environment 4.25 3
UA4 Improper work procedure 4.36 2

Lack of progressive
training (LackT)

LackT1 Employers fail to offer sufficient training 4.34 1
4.13 4LackT2 Lack of budget allocation on safety management 3.93 3

LackT3 Lack of workforce due to subcontract work 4.12 2

Poor Communication
(PC)

PC1 Language barrier 4.22 1
4.14 3PC2 Miscommunication and misunderstanding 4.02 3

PC3 Failure in conveying message 4.17 2

Note: 1 = strongly disagree; 2 = disagree; 3 = neutral; 4 = agree; 5 = strongly agree.
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Table 20 summarises the rankings for all the 20 indicators or factors of the five con-
struction mitigation measures. The results show that all the 20 factors have mean scores
well above 4, with the top 6 factors being the use of safety helmet, supplying employees
with suitable equipment, safety measures training, safety harnesses, discussion on the
precautionary safety concerns, and rapid communication such as walkie-talkies. All the
five construction mitigation measures have overall mean values between 4.30–4.47. The
construct on proper equipment has the highest overall mean score, and the measurement
indicators correspond to control the risks at the source and to design of safe work systems
to minimise risks.

Table 20. Ranking of practical measures taken to mitigate safety risks.

Construct Indicator Practical Measures to Mitigate Safety Risks
Mean Overall Mean

Value Rank Value Rank

Personal Protective
Equipment (PPE)

PPE1 Safety helmets 4.76 1

4.45 2

PPE2 Ear protection 4.16 6
PPE3 High visibility clothing 4.39 5
PPE4 Safety footwear 4.41 4
PPE5 Safety harnesses 4.53 2
PPE6 Training of PPE 4.45 3

Safety and health
training(ST)

ST1 Safety measures training 4.55 1
4.35 3ST2 Machinery operator training 4.20 3

ST3 Working at height training 4.30 2

Safety meeting (SM)

SM1 Discuss the precautionary safety concerns 4.48 1

4.30 5
SM2 Communication between job groups 4.20 3
SM3 Report changes at the work site 4.36 2
SM4 Update the existing safety plan and procedure 4.17 4

Proper equipment (PE)

PE1 Supplying employees with suitable equipment 4.65 1

4.47 1
PE2 Safe working environment 4.30 4
PE3 Machines serviced regularly 4.46 2
PE4 Scaffolding with safe access 4.45 3

Promote effective
communication (EC)

EC1 Employee pay attention for safety briefing 4.36 3
4.33 4EC2 Construction parties communicate with each other 4.14 3

EC3 Rapid communication such as walkie-talkies 4.48 1

Note: 1 = not important at all, 2 = slightly important, 3 = moderately important, 4 = important and 5 = very
important.

The goodness of fit (GoF) for the path model can be determined manually by using
the formula GoF = [(mean R2) × (mean AVE)]1/2 [91]. Based on the R2 value of 0.368 and
mean AVE value of 0.674 for risk level, safety risks and mitigation measures constructs
in Table 12, the GoF for the path model is found to be (0.368 × 0.674)1/2 = 0.497, which is
greater than 0.36 for large fit [92]. It can be concluded that the GoF for the model shown in
Figure 4 is large for global PLS model validity.

6. Conclusions

This study investigated the moderating effect of risk level on mitigation measures
implemented due to the numerous factors causing safety risks. In Table 16, the results
for Figure 2 show that safety risks have a significant positive relationship with mitigation
measures with β = 0.580, and p < 0.001. The effect size is large with f2 = 0.508, and p < 0.05.

The following conclusions can be made from the results for Figure 4 in Table 16:
Safety risks has significant positive relationship with mitigation measures with β = 0.611,

p < 0.001. The effect size is medium with f2 = 0.339, p > 0.05.
Risk level has a positive but insignificant relationship with mitigation measures with

β = 0.090, p > 0.05. The effect size is negligible with f2 = 0.009, p > 0.05.
The interaction term, risk level × safety risks has a positive but insignificant rela-

tionship with mitigation measures with β = 0.170, p > 0.05. The effect size is small with
f2 = 0.038, p > 0.05.
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The results for Figure 4 show that the relationship between safety risks and mitigation
measures increases in the presence of risk level as a moderator with path coefficient
β = 0.611, and p < 0.001. The interaction plot in Figure 5 actually illustrates that the
relationship between safety risks and mitigation measures is further heightened in the
presence of risk level as a moderator. Because of the positive moderating effect (β = 0.170),
the relationship between safety risks and mitigation measures becomes stronger with
higher levels of risk level. Even though the effect size of the interaction term (f2 = 0.038) is
small, under severe situations such as incidents that are categorized as ‘Acts of God’, the
sudden surge in risk level would result in an immediate change in β value. Therefore, it is
imperative to consider these extreme situations in the planning, design, and management
of construction safety because the consequential impacts of these sudden and unexpected
incidents could be disastrous, thereby disrupting the continuity of construction works.

It is important to note that uncertainty and severity are intrinsic/inherent properties
of safety risks. Mitigation measures are put into place to eliminate the likelihood of safety
risks from happening, and to reduce the severity and impacts of these safety risks when
they actually happen, which could lead to the loss of lives and hence emotional sufferings,
damage to property, disruptions to on-going works, stop-work orders, liquidated ascer-
tained damages and litigation cases. The mitigation measures implemented should always
consider the moderating effect of risk level of safety risks which may cause the practical
measures implemented on construction sites to be inadequate. The effect of risk level is
higher when either the likelihood or severity, or both, are higher. Therefore, mitigation
measures taken by the contractors must always take into account the types of factors caus-
ing safety risks, as well as the uncertainty or likelihood and severity of these factors for the
sustainability of development projects. According to [7], the likelihood of incidents and
their severity could be reduced by conducting effective pre-job safety analyses.

The findings from this study have practical values in view of Section 15 in the Occu-
pational Safety and Health Act 1994, which states “it shall be the duty of every employer and
every self-employed person to ensure, so far as is practicable, the safety, health and welfare at work
of all his employees”. The term ‘practicable’ should consider the following aspects, namely:
“(a) the severity of the hazard or risk in question, (b) the state of knowledge about the hazard or
risk and any way of removing or mitigating the hazard or risk, (c) the availability and suitability
of ways to remove or mitigate the hazard or risk, and (d) the cost of removing or mitigating the
hazard or risk” [93]. In this study, numerous factors which influence or cause safety risks
were identified and presented in Table 7; some of the practical measures which can be
implemented to mitigate or manage these safety risks in order to reduce their impacts
were presented in Table 8. The author of [94] asserted that all the factors that influence
safety on construction projects should be identified and categorized in order to prepare
a construction accident causation framework which maps out these factors in terms of
originating influences, shaping factors and immediate factors so that a comprehensive
plan for training, awareness and monitoring can be prepared. The mitigation measures
implemented should be able to manage or mitigate the impacts from accidents which are
categorized as high-risks. This study also has academic value in applying the PLS-SEM
method to analyse the data collected from the Malaysian construction industry. For gen-
eralization purposes, further research with larger sample size using the same technique
should be replicated to provide additional evidence on the effects of likelihood and severity
on mitigation measures taken for safety risks.
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Abstract: The concept of occupational risk assessment is related to the analysis and prioritization of
the hazards arising in a production or service facility and the risks associated with these hazards; risk
assessment considers occupational health and safety (OHS). Elimination or reduction to an acceptable
level of analyzed risks, which is a systematic and proactive process, is then put into action. Although
fuzzy logic-related decision models related to the assessment of these risks have been developed and
applied a lot in the literature, there is an opportunity to develop novel occupational risk assessment
models depending on the development of new fuzzy logic extensions. The 3,4-quasirung fuzzy set
(3,4-QFS) is a new type of fuzzy set theory emerged as an extension of the Pythagorean fuzzy sets
and Fermatean fuzzy sets. In this approach, the sum of the cube of the degree of membership and
the fourth power of the degree of non-membership must be less than or equal to 1. Since this new
approach has a wider space, it can express uncertain information in a more flexible and exhaustive
way. This makes this type of fuzzy set applicable in addressing many problems in multi-criteria
decision making (MCDM). In this study, an occupational risk assessment approach based on 3,4-
quasirung fuzzy MCDM is presented. Within the scope of the study, the hazards pertaining to the
flight and ground training, training management, administrative and facilities in a flight school
were assessed and prioritized. The results of existing studies were tested, and we considered both
Pythagorean and Fermatean fuzzy aggregation operators. In addition, by an innovative sensitivity
analysis, the effect of major changes in the weight of each risk parameter on the final priority score
and ranking of the hazards was evaluated. The outcomes of this study are beneficial for OHS decision-
makers by highlighting the most prioritized hazards causing serious occupational accidents in flights
schools as part of aviation industry. The approach can also be suggested and adapted for production
and service science environments where their occupational health & safety are highly required.

Keywords: 3,4-quasirung fuzzy set; multi-criteria decision making; risk assessment; Pythagorean
fuzzy set; Fermatean fuzzy set; flight school; occupational health and safety; transportation; system
safety; soft computing; uncertainty analysis

1. Introduction

Occupational risk assessment is a process that covers the evaluation, ranking, and clas-
sification of hazards arising within a production or service system and the risks associated
with these hazards from occupational health & safety (OHS) perspective [1]. This process
determines whether the emerging hazards and the risks associated with these hazards
are at an acceptable level and takes the necessary measures with a proactive approach [2].
While the primary purpose of the occupational risk assessment is to protect the employee
from the dangers that arise in and around the workplace, the safety of business operations
is also a secondary objective within the scope of the occupational risk assessment [3]. As
in the manufacturing industry, in all other industries, harmony and good management of
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the workplace environment, resources and employees is necessary for the activities to be
carried out according to OHS principles [4]. Occupational risk assessment is an essential
component of a coherent safety management system and organizations seeking applicable,
fast, and practical risk assessment.

Risk assessment with an OHS perspective is performed with some particular quan-
titative, qualitative, or hybrid methods that are a combination of these two. Many risk
assessment methods are mentioned in the content of IEC 31010:2019, an important stan-
dard of ISO [5]. These methods are used for some purposes such as defining the risks,
determining the source, cause, and trigger elements of the risk, allowing to choose be-
tween options and understanding the consequences of risk and probability. Multi-criteria
decision-making (MCDM) is one of the methods mentioned by ISO within the scope of this
standard. It is a sub-branch of Operations Research rather than a specific approach and
consists of many different methods. MCDM provides an innovative perspective that allows
selection, ranking, or classification among alternatives by considering multiple criteria in
decision making. It is frequently used in risk analysis studies conducted with an OHS
perspective. In this context, MCDM is used in integration with many well-known concepts
such as fuzzy logic, data analytics, and artificial intelligence/expert systems [6]. MCDM,
integrated with fuzzy logic, constitutes an important slice of the OHS risk assessment
literature and contributes to the OHS risk assessment literature, especially by eliminating
some of the drawbacks of traditional qualitative and quantitative risk assessment methods
mentioned in IEC 31010:2019. These disadvantages have been emphasized many times in
the literature [6] For example, in methods such as the risk matrix method, Fine−Kinney
method, Failure Mode and Effect Analysis (FMEA), Event Tree Analysis (ETA), Fault Tree
Analysis (FTA), Bow-tie analysis and Hazard and Operability Analysis (HAZOP), risk
parameters do not have importance weights, and the evaluation is not done precisely due
to the numerical scale defined for the parameters, logical problems and the insufficient
number of parameters are some of the drawbacks [7–13].

Since the fuzzy logic theory was first proposed by Zadeh [14], many versions have
been developed and integrated with many MCDM methods [15]. The 3,4-quasirung fuzzy
set (3,4-QFS) is a new extension of fuzzy set theory [16]. It is proposed as an extension
of the Pythagorean fuzzy sets [17] and Fermatean fuzzy sets [18]. Another study used
fuzzy sets among major accidents in human reliability analysis [19]. Pouyakian et al. used
fuzzy MCDM to assist in obtaining an optimum allocation of control measures [20]. In
this version, the sum of the cube of the degree of membership and the fourth power of
the degree of non-membership must be less than or equal to one. Since this new approach
has a wider space, it can express uncertain information more flexibly and exhaustively in
decision-making problems such as occupational risk assessment. Therefore, in this study, an
occupational risk assessment approach based on 3,4-quasirung fuzzy MCDM is provided.

The aviation industry is one of the industries that have grown in recent years, while it
plays a crucial role and is essential for developing countries. When the aviation sector and
flight school processes are examined, minor and major differences are observed after the
COVID-19 pandemic. According to the figures of the Turkey Directorate General of Civil
Aviation’s 2020 annual bulletin of safety incidents, although it is seen that the number of
traffic movements and the number of safety incidents decreased in 2020 compared to the
data of the previous two years, it is obvious that there will be an increase again in these
days when the effects of COVID-19 have decreased and the return to normal has been
experienced. While the aircraft traffic movement across Turkey was 1,544,169 in 2018 and
1,556,417 in 2019, it decreased to 855,833 in 2020. In 2020, there is a 45% decrease in traffic
movement compared to the previous year. While there was an increase in traffic movements
in January and February of 2020 compared to 2019, there was a serious decrease due to
the subsequent COVID-19 restrictions. Although the traffic movement has increased again
with the reduction of restrictions since June, it is seen that it is far behind 2019. The total
number of incident reports made during the year decreased from 2319 in 2018 and 2736 in
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2019 to 2073 in 2020. With the effect of the decrease in the number of traffic movements, the
number of incident reports decreased by 24% in 2020 [21].

Flight schools, which produce professional teams for the aviation industry, are one
of the most important pillars of the sector. It is important to develop an appropriate risk
assessment process by considering the activities carried out in these schools from an OHS
perspective. Delikhoon et al. [22] mentioned that systems thinking accident analysis models
can be utilized in different studies to increase the system’s sustainability of aviation safety.
In 1998, both a flight instructor and a student died in an accident on Lake Manitoba. In
August 2008, a C172 crashed in Toronto during an aviation training flight, killing one
person and seriously injuring two. In the accident that took place in Istanbul in 2020,
a piloting undergraduate student was rescued with injuries. In 2022, 2 pilots lost their
lives as a result of the crash of a single-engine training plane near Bursa Yunuseli Airport.
The examples given are only examples of the accidents that occurred before and after
the pandemic in flight schools and processes, and it is observed that there are a large
number of fatal and serious accidents. At first glance, it may seem like there is nothing in
common between these accidents. Observations and accident analyses reveal the lack of
a feasible and comprehensive risk assessment. Since both the flight and ground training
and training management activities, which are among the activities carried out by the
flight school, contain various risks and the existence of administrative and facility-related
hazards reinforces this need. Flight instructors are responsible for understanding and
taking precautions against a wide variety of risks, both for themselves and their students.
A consistent and comprehensive quantitative risk assessment before flight training can
systematically help you determine if the risk level is too high, and provide an opportunity
to reduce or reject risk before it is too late. For these reasons, the risk assessment model
proposed in this study was applied in a flight school risk prioritization process and it
was emphasized that it should include common features based on expert opinions to be
applicable in flight school risk assessment processes as well.

The 3,4-QFSs are superior to Pythagorean and Fermatean fuzzy sets in the MCDM
domain, but it has not yet been applied to the occupational risk assessment. Therefore,
this study remedies the gap and also improves the traditional risk assessment techniques’
limitations, thereby more accurately transforming expert opinions into computable quanti-
tative data. The characteristics and objectives of this paper are (1) to offer a risk assessment
method for the OHS field, (2) to use a new 5-point 3,4-QF linguistic scale in the approach,
and (3) to apply the proposed approach in a flight school risk assessment process. Along
with this real case application in a flight school, a comparative study is also performed to
confirm its adaptability to any other sector’s OHS process and its applicability.

2. Research Background

Since this research is an occupational risk assessment study based on 3,4-QF-MCDM,
initially the recent occupational risk assessment studies based on fuzzy MCDM are re-
viewed, then a summary of the newly proposed 3,4-QFS theory is given. Finally, the
research gaps and main contributions of the study in terms of research methodology and
application viewpoints are presented.

In recent years, there has been an increase and development in the application of the
combination of MCDM & fuzzy set to the field of occupational risk assessment, due to the
proposal of new methods in the field of MCDM and the gradual development of fuzzy logic
extensions. Since fuzzy MCDM has produced remedies for the deficiencies of traditional
risk assessment approaches such as “weighting of risk parameters” and “prioritizing
hazards more sensitively” and has succeeded in improving it continuously. Starting with
Zadeh’s initial fuzzy theory [14,23], triangular and trapezoidal fuzzy numbers [24], then
intuitionistic fuzzy number [25], type-2 fuzzy number [26], hesitant fuzzy number [27],
Pythagorean fuzzy number [17], Picture fuzzy sets [28], Spherical fuzzy numbers [29],
Fermatean fuzzy number [18], q-rung fuzzy numbers [30], and finally 3,4-quasirung fuzzy
numbers [16] are proposed and are ready to be implemented to many real-world problems.
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Many traditional occupational risk assessment methods have been made more effective
by jointly using with fuzzy MCDM. To cite recent studies, Marhavilas et al. [31] conducted
a study integrating Decision Risk-Matrix (also known as risk matrix) and HAZOP methods
with the Fuzzy Analytical Hierarchy Process (FAHP). They used the study to identify
and prioritize potential hazards at a sour crude oil processing facility. Celik and Gul [32]
performed a two-dimensional occupational risk assessment via BWM-MARCOS integration
under interval type-2 fuzzy sets for dam safety. While two risk parameters (severity
and occurrence) are weighted interval type-2 fuzzy BWM, hazards are prioritized via
interval type-2 fuzzy MARCOS method. Another classical method, the Fine−Kinney
method, is often integrated with fuzzy MCDM. A fundamental book on the subject, Gul
et al. [33], includes many approaches applied to different cases and provided their Python
codes in modeling. Similarly, there are many studies combining this method with fuzzy
MCDM [34–39]. Another important traditional method is FMEA. Many disadvantages of
FMEA such as the lack of weight of risk parameters, loss of information in evaluating failure
modes, not taking into account the relationship between failure modes in the calculation
of risk priority number, different scores of the parameters giving the same risk priority
number, and not considering additional parameters other than three parameters have been
eliminated by its usage with fuzzy MCDM [40–45].

On the other hand, almost all of the fuzzy set extensions mentioned above have
been applied in occupational risk assessment in an integrated manner with MCDM meth-
ods [20,46–52]. Mohandes et al. [48] developed a five-dimensional-safety risk assessment
model to improve construction safety. They used FAHP as a weighting tool for the five
dimensions, and FTOPSIS to obtain a precise prioritized ranking system for the identified
safety risks. Liu et al. [46] developed a new occupational risk assessment model by inte-
grating picture fuzzy sets and the Alternative Queuing Method (AQM) to assess and rank
the risk of occupational hazards for corrective actions. Gul et al. [53] proposed a Fermatean
fuzzy TOPSIS-based approach for occupational risk assessment in manufacturing. Ak
et al. [54] studied occupational health, safety, and environmental risk assessment in the
textile production industry through a Bayesian BWM-VIKOR approach.

The 3,4-QF-MCDM can express a wider field, imprecise information in decision-
making more flexible, applicable, and detailed [16]. The adequacy and suitability of the
proposed model are verified by solving a numerical problem concerned with the occupa-
tional risk assessment pertaining to the flight and ground training, training management,
administration, and facilities in a flight school. When the fuzzy logic-based MCDM meth-
ods in the literature are examined, it is seen that more consistent decisions can be obtained
and more consistent models can be modeled in OHS with the 3,4-QF-MCDM study. It
provides a higher degree of consistency to risk prioritization. The main advantage of
3,4-QFS is that it allows decision-makers to take advantage of additional areas such as flexi-
bility, and reduction of uncertainty when applying to MCDM problems [16]. Occupational
health and safety risk analysis studies require a detailed examination of the effectiveness in
decision-making processes due to the uncertainties in the scope and detail. The literature
has revealed that more detailed and flexible decision-making processes can be performed
with 3,4-QF-MCDM [16].

3. Research Method

3.1. Preliminaries on 3,4-QFSs

Before moving on to the detailed notation adapted from [16], it is useful to define the
3,4-QFS. For the universal set U, a 3,4-QFS (3, 4Q) is defined as 3,4Q ={〈

d, f3,4Q(d), h3,4Q(d)
∣∣d ∈ U

〉}
. Here, f3,4Q : U → [0, 1] and h3,4Q : U → [0, 1] represent

membership and non-membership degree by satisfying the condition of 0 ≤ ( f3,4Q(d))
3 +

(h3,4Q(d))
4 ≤ 1.

The term of ψ3,4Q(d) =
12
√

1 − ( f3,4Q(d))
3 − (h3,4Q(d))

4 is the hesitancy degree. 3,4-
QFSs can describe inexact data more precisely than Pythagorean and Fermatean fuzzy sets.
In addition, 3,4-QFS allows the decision maker to take advantage of more space in the use of
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membership and non-membership values when handling the MCDM problem. Therefore,
there are some decision-making situations that can be handled with 3,4-QFSs, but cannot
be expressed with Pythagorean and Fermatean fuzzy numbers and their corresponding
linguistic terms. As an example, suppose a decision maker sets a satisfaction degree of 0.8
and a dissatisfaction degree of 0.8. We cannot handle this situation with Pythagorean and
Fermatean fuzzy sets since 0.82 + 0.82 > 1 and 0.83 + 0.83 > 1. On the other hand, this can
be expressed with 3,4-QFSs (0.83 + 0.84 < 1). In such decision-making problems, 3,4-QFSs
are more useful to process uncertain information and better reflect this uncertainty [16]. A
comparison of the spaces of all three fuzzy set versions is given in Figure 1.

 

Figure 1. Comparison of the spaces of Pythagorean, Fermatean and 3,4-Quasirung fuzzy numbers.

In order to be used in the MCDM approach used for this study, the score and accuracy
functions should be formulated for this type of fuzzy extension. According to the Seikh
and Mandal [16], the following equations are suggested:

The score function Φ for the 3,4-QFS δ = ( fδ, hδ) is formulized as in Equation (1).

Φ(δ) =
1 + fδ

3 − hδ
4

2
, Φ(δ)ε[0, 1] (1)

The score function Θ for the 3,4-QFS δ = ( fδ, hδ) is formulized as in Equation (2).

Θ(δ) =
fδ

3 + hδ
4

2
, Θ(δ)ε[0, 1] (2)

For more detailed theorems which the score and accuracy functions have satisfied,
one can be referred the study [16]. Some basic arithmetic operations of 3,4-QFSs are given
in Equations (3)–(6).

Let A = ( fA, hA) and Z = ( fZ, hZ) be two 3,4-QF numbers.

A ⊕ Z =

(
3
√

f 3
A + f 3

Z − f 3
A f 3

Z, hAhZ

)
(3)

A ⊗ Z =

(
fA fZ, 4

√
h4

A + h4
Z − h4

Ah4
Z

)
(4)

λA =

(
3
√

1 − (1 − f 3
A
)λ, hA

λ

)
(5)

Aλ =

(
fA

λ, 4
√

1 − (1 − h4
A
)λ
)

(6)

Some aggregation operators are needed to combine the evaluations of the decision
makers and to inject the crisp criterion weights (the weights of the risk parameters obtained

61



Sustainability 2022, 14, 9373

with BWM for this problem) into the calculations in the form of 3,4-QF numbers. These
are the 3,4-Quasirung fuzzy weighted averaging aggregation operator (3,4-QFWA) and the
3,4-Quasirung fuzzy weighted geometric aggregation operator (3,4-QFGA). Formulas and
calculation details are given in Equations (7) and (8).

The aggregated value of a number of 3,4-QF numbers 3, 4Qr = ( f3,4Qr , h3,4Qr ),
r = 1, 2, . . . , k is calculated with the arithmetic operator as in Equation (7).

3, 4 − QFWA(3, 4Q1, 3, 4Q2, . . . , 3, 4Qk) = ⊕ k
r = 1

�r ∗ 3, 4Qr =

(
3
√

1 − ∏k
r=1 (1 − f3,4Qr

3)�r , ∏k
r=1 h3,4Qr

�r

)
(7)

Here � = (�1, �2, . . . , �k)
T is the weight vector of 3, 4Qr = ( f3,4Qr , h3,4Qr ), r = 1, 2, . . . , k.

�r > 0 and ∑k
r=1 �r = 1.

The aggregated value of a number of 3,4-QF numbers 3, 4Qr = ( f3,4Qr , h3,4Qr ),
r = 1, 2, . . . , k is calculated with the geometric operator as in Equation (8).

3, 4 − QFGA(3, 4Q1, 3, 4Q2, . . . , 3, 4Qk) = ⊕ k
r = 1

3, 4Qr
�r =

(
∏k

r=1 f3,4Qr
�r , 4
√

1 − ∏k
r=1 (1 − h3,4Qr

4)
�r

)
(8)

To provide an easy understanding of the readers, one small example is given in the
following to show how the QFWA is computed. Let A1 = (0.5, 0.2), A2 = (0.8, 0.3),
A3 = (0.8, 0.3), A4 = (0.7, 0.3), A5 = (0.4, 0.2), and A6 = (0.4, 0.8) be six values
provided under 3,4-QF numbers which are the ratings of an alternative regarding six
different decision criteria. Let the weights of these six criteria be as follows, respectively:
0.2, 0.1, 0.3, 0.15, 0.15 and 0.1. With QFWA, the membership value and non-membership
value of this alternative are calculated as follows:

membership value
= (1
−(((1 − 0.53)

0.2
) ∗ ((1 − 0.83)

0.1
) ∗ ((1 − 0.8)0.3) ∗ ((1 − 0.73)

0.15
) ∗ ((1 − 0.43)

0.15
)

∗((1 − 0.43)
0.1
)))

1
3 = 0.6876

non − membership value = 0.20.2 ∗ 0.30.1 ∗ 0.30.3 ∗ 0.30.15 ∗ 0.20.15 ∗ 0.80.1 = 0.2871

Then, finally the score function Φ for this alternative is computed as follows:

Φ =
1 + 0.68763 − 0.28714

2
= 0.6591

The similar procedure is followed for the QFGA computations.

3.2. Development of 3,4-QF MCDM-Based Occupational Risk Assessment Model

In this study, we propose an occupational risk assessment study based on 3,4-QF
MCDM. The structure of the OHS risk assessment problem dealt with in this study is
suitable for 3,4-QF-MCDM. For a 3,4-QF-MCDM problem, (1) evaluation criteria, (2) al-
ternatives, (3) criterion weights, and (4) performance values obtained by evaluating al-
ternatives against criteria are required. For the OHS risk assessment problem discussed
in the study, these four components are planned as follows: Evaluation criteria in an
occupational risk assessment study are the parameters that are effective in defining the
risk. In this study, we consider six risk parameters unlike the traditional risk assessment
methods such as the risk matrix method, Fine−Kinney method, and FMEA as follows:
(1) Probability: The frequency of occurrence of the hazard [11,48,54], (2) Severity: The
degree of hazard that the risk will pose on personnel, machinery-equipment, environment
and continuity of production/service [11,42,48,54], (3) Detectability: The detectability of
the risk with the eye or any digital device [11,48], (4) Cost: Percentage of the total annual
budget determined by the company for OHS measures [42,55], (5) Sensitivity to not using
personal protective equipment: To what extent the use of personal protective equipment
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affects the severity of the risk [56], (6) Applicability of preventive measures: Opportunities
for preventive measures and their degree of applicability [55,57]. The second component
considered as an alternative is the hazards and associated risks identified in the context
of OHS in the observed flight school. Criterion weights represent the relative importance
weights of six risk parameters and were calculated with Best-Worst Method (BWM) [58].
The performance values obtained by evaluating the alternatives according to the criteria
refer to the value obtained by scoring each hazard according to six different risk param-
eters. These ratings were made for different decision makers with relatively the same
level of experience, using a 5-point 3,4 quasirung fuzzy linguistic scale. This scale was
first proposed and used by the authors in this study. Here, the values named as criteria
in a usual MCDM problem and specified as “risk parameter” in our problem consist of
real numbers. These values were obtained by applying the BWM method. The details of
the BWM method have not been given here. Already, the steps of the traditional BWM
method can be followed by Rezaei [58]. The values expressing the performance values
of the alternatives against the criteria and showing the score given as a result of the eval-
uation of each hazard by the expert according to each risk parameter for our study are
expressed with 3,4-QF numbers. For our problem, let H = {H1, H2, . . . , Hm} be a set of
hazards emerged at the observed case study facility and RP = {RP1, RP2, . . . , RPn} be the
set of risk parameters considered. The number of risk parameters for this study is six.
Let � = {�1, �2, . . . , �n} be the weight vector of risk parameters obtained via BWM where

�j(j = 1, 2, . . . , n), �j > 0,
n
∑

j=1
�j = 1. Let A =

(
αij
)

mxn =
((

f3,4Qij , h3,4Qij

))
mxn

be the 3,4-

QF decision matrix. Here, αij =
(

f3,4Qij , h3,4Qij

)
shows assessment of an expert on the haz-

ard Hi with respect to risk parameter RPj. It should be noted that
(

f3,4Qij

)3
+
(

h3,4Qij

)4 ≤ 1
and f3,4Qij ∈ [0, 1] and h3,4Qij ∈ [0, 1]. In our proposed occupational risk assessment model,
both 3,4-QFWA and 3,4-QFGA operators are tested to find the priority values and orders of
each hazard. The steps of the suggested model are adapted from Seikh and Mandal [16]’s
study as in the following:

Step 1: Determine components of the occupational risk assessment model: the risk
parameters; hazard list; OHS experts who participate in the assessment (with their expertise
coefficient).

Step 2: In this second step, OHS experts make their individual assessments on the
hazards with respect to risk parameters, using the scale as suggested by the authors. It is a
new 5-point 3,4-QF linguistic scale and given in Table 1. Individual assessments of experts
are aggregated with the operators of 3,4-QFWA and/or 3,4-QFGA. Experts’ coefficients are
assumed to be equal in terms of experience in the sector. Here, we introduce the aggregated
decision matrix as B =

(
βij
)

mxn =
((

f3,4Qij , h3,4Qij

))
mxn

.

Table 1. 5-point 3,4-QF linguistic scale used for assessing hazards with respect to risk parameters.

Linguistic Term of Risk Parameter Corresponding 3,4-QF Number

RP1 RP2 RP3 RP4 RP5 RP6
Membership

Degree

Non-
Membership

Degree

Very Low Needs first aid Easy Very low cost Negligible Totally possible 0.11 0.99
Low Minor injury Highly possible Lower costs Low Highly possible 0.44 0.95

Medium Serious injury Sometimes possible Moderate cost Medium Medium 0.69 0.82
High Fatality Highly difficult High cost High Low possibility 0.92 0.51

Very High Many fatalities Extremely difficult Very high cost Maximum Not possible at all 1.00 0.00

Note: RP1: Probability; RP2: Severity; RP3: Detectability; RP4: Cost; RP5: Sensitivity to not using personal
protective equipment; RP6: Applicability of preventive measures.
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Step 3: Normalize the aggregated decision matrix B =
(

βij
)

mxn =
((

f3,4Qij , h3,4Qij

))
mxn

into a new matrix named by C =
(
γij
)

mxn =
((

f3,4Qij , h3,4Qij

))
mxn

the following two rules
in Equation (9):

γij =

⎧⎨⎩
(

f3,4Qij , h3,4Qij

)
, i f Hj is a bene f it risk parameter(

h3,4Qij , f3,4Qij

)
, i f Hj is a cost risk parameter

(9)

Step 4: Determine weights of risk parameters �j(j = 1, 2, . . . , n) via Rezaei’s BWM [58].
For the computations, two pairwise comparison matrix is required as called Best-to-Others
and Others-to-Worst. Then, optimal weights for each risk parameter is computed by solving
the mathematical optimization model. Also, the consistency of matrices should be checked
by the conditions in Rezaei [58].

Step 5: Compute the information ζk(k = 1, 2, . . . , m) of the hazard Hk(k = 1, 2, . . . , m)
via one of the Equations (10) and (11).

ζk = 3, 4 − QFWA(γk1, γk2, . . . , γkn) = ⊕ n
j = 1

�jγkj =

(
3

√
1 − ∏n

j=1(1 −
(

f3,4Qkj
γ)3
)�j

, ∏n
j=1

(
h3,4Qkj

γ
)�j

)
(10)

ζk = 3, 4 − QFGA(γk1, γk2, . . . , γkn) = ⊗ n
j = 1

(
γkj

)�j
=

(
∏n

j=1

(
f3,4Qkj

γ
)�j

, 4

√
1 − ∏n

j=1(1 −
(

h3,4Qkj
γ)4
)�j

)
(11)

Step 6: Compute the score function Φ(ζk) for each hazard with Equation (1).
Step 7: If the scores of Φ(ζk) for (k = 1, 2, . . . , m) be all distinct, then the most serious

hazard (the most priority one) is Hk if Φ(ζk) = max
1≤l≤m

{Φ(ζl)}.

Step 8: If there exists more than one hazard, Φ(ζk) (k = 1, 2, . . . , m) are equal, we
consider accuracy values of each hazard Θ(ζk) via Equation (2).

• If Φ(ζk) provides maximum value for one particular hazard, then this hazard has the
highest priority and is the most serious/riskiest.

• If Φ(ζk) provides maximum value for more than one particular hazard, then the most
serious/riskiest hazard is one which has the highest Θ(ζk) value.

• If the Θ(ζk) values are equal for two or more than two hazards, the decision maker is
free to select one of them. Both are possible and have the same priority orders.

4. Method Implementation and Results

4.1. Case Study Description

In this section, we applied the 3,4 QF MCDM-based OHS risk assessment in a real case
study concerned with the occupational risk assessment pertaining to the flight and ground
training, training management, administrative, and facilities in a flight school to verify the
validity and effectiveness of the proposed method. In direct proportion to the development
of aviation, the demand for airplanes and pilots is increasing. The demand for flight schools,
a total number of flight schools as well, has been increasing in recent years due to meet it.
The flight school, where the study was carried out, started its training activities as a flight
school in order to meet the pilot needs of the rapidly developing civil aviation industry.
The flight school has the authorization to give Modular ATPL(A), ATPL(A) Integrated, and
Multi Pilot License (MPL) Integrated into flight training.

Flight school activities contain occupational hazards and related risks in different cate-
gories in terms of occupational health and safety. Especially during the training phase, the
possibility and effects of risk require a more detailed examination and a proactive approach.
The processes in which occupational hazards and related risks occur in these activities are
as follows: flight training process, ground services training process, managerial training

64



Sustainability 2022, 14, 9373

processes, facility and related training processes, and training management process. Use of
equipment, Perception, Task management, Communication, and Personnel actions are the
five highest serious incidents according to European Aviation Safety Agency Report [59].

In this study, we consider six risk parameters unlike the traditional risk assessment
methods such as risk matrix method, Fine−Kinney method, FMEA as follows: (1) Probabil-
ity, (2) Severity, (3) Detectability, (4) Cost, (5) Sensitivity to not using personal protective
equipment, (6) Applicability of preventive measures. Scale for six parameters can be seen
in Tables 2–7. Probability refers to the frequency of occurrence of the hazard. Quantitative
value and qualitative value of the probability parameter, related explanations are given in
Table 2.

Table 2. Ratings of probability.

Quantitative Value Qualitative Value Description of Parameter

1 Very low Hardly ever
2 Low Once a year
3 Medium Once in a month
4 High Once a week
5 Very high Every day (very often)

Table 3. Ratings of severity.

Quantitative Value Qualitativevalue Description of Parameter

1 Very Light No loss of working hours, first aid
required

2 Light No lost workdays, outpatient treatment
3 Serious Minor injury, treatment in bed

4 Very serious Serious injury, loss of limb, occupational
disease

5 Disaster One or more deaths

Table 4. Ratings of detectability.

Quantitative Value Qualitative Value Description of Parameter

1 Very high Risk can be detected very quickly and
easily.

2 High Risk can be detected quickly and easily.

3 Medium Risk can be detected with reasonable
time and experience.

4 Low Determining the risk is very
time-consuming and difficult.

5 Very low Identifying the risk is almost impossible.

Table 5. Ratings of cost.

Quantitative Value Qualitative Value Description of Parameter

1 Very low cost Between 0% and 20% of the total annual
budget is allocated to OHS measures.

2 Lower costs Between 21% and 40% of the total annual
budget is allocated to OHS measures.

3 Moderate cost Between 41% and 60% of the total annual
budget is allocated to OHS measures.

4 High cost Between 61% and 80% of the total annual
budget is allocated to OHS measures.

5 Very high cost
Between 81% and 100% of the total
annual budget is allocated to OHS
measures.
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Table 6. Ratings of sensitivity to not using personal protective equipment.

Quantitative Value Qualitative Value Description of Parameter

1 Negligible Risk can be avoided without using PPE.
2 Low The use of PPE can reasonably reduce the risk.
3 Moderate The use of PPE reduces the risk.
4 High It is necessary to use PPE to reduce the risk.
5 Maximum PPE must be used.

Table 7. Ratings of applicability of preventive measures.

Quantitative Value Qualitative Value Description of Parameter

1 Quite possible Opportunities for preventive measures and their
applicability are entirely possible.

2 High Opportunities for preventive measures and their
feasibility are high.

3 Moderate Opportunities for preventive measures and their
applicability are moderate.

4 High Opportunities for preventive measures and their
viability are low.

5 Practically impossible Opportunities for preventive measures and their
applicability are not possible.

Severity refers to the degree of hazard that the risk will pose on personnel, machinery-
equipment, environment and continuity of production/service. Quantitative value and
qualitative value of the severity parameter, related explanations are given in Table 3.

Detectability refers to the detectability of the risk with the eye or any digital device.
Quantitative value and qualitative value of the detectability parameter, related explanations
are given in Table 4.

Cost refers to the percentage of the total annual budget determined by the company
for OHS measures. Quantitative value and qualitative value of the cost parameter, related
explanations are given in Table 5.

Sensitivity to not using personal protective equipment refers to what extent the use
of personal protective equipment affects the severity of the risk. Quantitative value and
qualitative value of the PPE parameter, related explanations are given in Table 6.

Applicability of preventive measures refers to opportunities for preventive measures
and their degree of applicability. Quantitative value and qualitative value of the PPE
parameter, related explanations are given in Table 7.

Risks and related processes within the scope of flight school activities are 1-Flight
Training, 2-Ground Training, 3-Administrative Process, 4-Training Management, 5-Facilities.
Five basic processes and risks in the processes are listed in Table 8.

In this study, an aviation management specialist, 2 assistant professor trainers, and 2 pilot
trainers evaluated the risks in the process on 6 determined parameters. Instructors have
more than 10 years of teaching and piloting experience. In this study, which includes risk
analysis and evaluation, the fact that the experts have industry experience makes the findings
valuable. The inclusion of experts with field experience and piloting training practice in the
determination process of the parameters provided a more detailed and consistent evaluation
of the problems, hazards, and related risk situations experienced in the flight school processes.
In addition, a format has been created that will allow the use of both the content of the study
and the method applied by other flight schools. In the application of the 3,4-QF MCDM-
based occupational risk assessment model, the provision of literature-supported content and
integration of expert opinions have allowed a comprehensive and consistent assessment of
the dangers and risks inherent in flight schools. A consistent and comprehensive quantitative
risk assessment before flight training can systematically help you determine if the risk level
is too high, and provide an opportunity to reduce or reject risk before it is too late. Flight
instructors are responsible for understanding and taking action against a wide range of risks,
both for themselves and their students. The study provides the opportunity to apply and
use risk assessments specific to flight schools, with information and evaluations obtained
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from instructors who have flight instructor experience, work at different flight schools and
continue their actual training. This study creates a baseline for risk assessing processes of
flight education and brings attention to the decisions makers on the highest priority risks.

Table 8. Description of hazards, associated risks and related process.

Hazard ID Hazard Related Risk Process

H1 Lack of flight safety Mid-air collusion Flight Training

H2 Mechanical: Engine Engine fails in flight Flight Training

H3 Mechanical: Control Mechanism Flight Control Mechanism Malfunction Flight Training

H4 Mechanical: Landing Gear Landing gear not deployed Flight Training

H5 Inadequate preflight planning Smoke, fire, and fumes Flight Training

H6 Mismanagement of fuel Critical level of fuel Flight Training

H7 Mechanical: Control Mechanism System malfunction Flight Training

H8 Misjudgment of distance and speed Excursion Flight Training

H9 Misjudgment of distance and speed Incursion Flight Training

H10 Improper in-flight decision Abandoned take-off Flight Training

H11 Improper in-flight decision Emergency declaration Flight Training

H12 Lack of flight safety Forced landing off track Flight Training

H13 Improper in-flight decisions Hard landing Flight Training

H14 Failure to maintain directional control Landing on the wrong runway Flight Training

H15 Inadequate preflight planning Tire damage and blowouts Flight Training

H16 Lack of flight safety Runway Crossing Incursion Flight Training

H17 Failure to see and avoid objects or
obstructions. Bird Strike Flight Training

H18 Improper in-flight decision Getting lost in flight (individual flight) Flight Training

H19 Physiological factors Pilot Incapacitation Flight Training

H20 Violation of aviation safety rules NOTAM Flight Training

H21 Violation of aviation safety rules Worksite Violation Flight Training

H22 Lack of flight safety Disobey ATC instructions Flight Training

H23 Work environment factors FOD on runway Flight Training

H24 Inadequate preflight controls Planning with a lack of Instructor
Authorization: Ground training Ground Training

H25 Inadequate preflight controls Lack of training of trainers certificate:
Ground training Ground Training

H26 Inadequate preflight controls Availability of staff/teachers who were
recruited without registration

Administrative
Process

H27 Insufficient practical training Ensuring the integration of theoretical
training and flight training

Training
Management

H28 Improper in-flight decisions
Uncertainty of communication in
emergency situations, course of action
in incidents or accidents

Flight Training

H29 Mechanical Injury in the candidate selection
process Facilities

H30 Human error Injury in the candidate selection
process Facilities

H31 Violation of aviation safety rules Candidate restricted area entry and
simulator use Flight Training

H32 Weakness of communication in
education

Distrust between candidate and
instructor

Administrative
Process

H33 COVID-19 virus COVID-19 transmission risk Administrative
Process

H34 COVID-19 virus Online course due to pandemic risk Training
Management
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Table 8. Cont.

Hazard ID Hazard Related Risk Process

H35 COVID-19 virus Continuation of flight activity in the
pandemic Flight Training

H36 COVID-19 virus Delay of the normalization process due
to the pandemic

Administrative
Process

H37 COVID-19 virus
The risk of mass transmission in
theoretical trainings made face-to-face
due to the pandemic

Training
Management

H38 COVID-19 virus Risk of virus transmission from
headphones

Training
Management

H39 COVID-19 virus
The need to give online lessons to
students during the full closure of the
pandemic

Training
Management

H40 COVID-19 virus Continuation of flight activity during
the full closure of the pandemic Flight Training

4.2. Results of 3,4-QF MCDM-Based Occupational Risk Assessment Model

In order to demonstrate the applicability of the adapted approach to the field of
occupational risk assessment, the step-by-step implementation results of the approach
detailed in Section 3.2 is presented below. Since detailed information is given in the
previous sub section about the preparation stage before the occupational risk assessment
and the components needed, it is useful to start with the steps in which direct numerical
calculations are made. This corresponds to the second step of the steps given in Section 3.2.
In this step, the evaluations of 40 hazards according to 6 risk parameters and the scale in
Table 1. The risk parameters were taken from 4 decision-making expert participants. These
evaluations taken are aggregated using both the operators given in Equations (7) and (8). It
should be noted here that the expert weights are taken equally as 0.25. Considering that
the geometric mean, which is one of the applied operators, reduces the information loss
relatively less, 3,4-QFGA was preferred in the calculation. The aggregated decision matrix
as B is computed as in Table 9. In the third step, the normalized aggregated decision matrix
is the same as the aggregated decision matrix, since all risk parameters are evaluated as
“benefit” and the scale is prepared accordingly. Fourth step is on the determination of six
risk parameter weights via BWM method. It is a recently proposed MCDM method based
on pairwise comparison [54]. It requires less pairwise comparisons when compared to the
most known and applied pairwise comparison-based MCDM method “Analytic Hierarchy
Process”.

It also provides a more consistent assessment of the subjective judgments of ex-
perts. Therefore, we used BWM to determine the importance weights of RP1−probability,
RP2−severity, RP3−detectability, RP4−cost, RP5−sensitivity to not using personal protective
equipment and RP6−applicability of preventive measures parameters. With the Saaty’s 1-9
scale on the Best-to-Others and Others-to-Worst evaluations (the OHS experts from the
facility make this assessment in a group consensus), we computed the weights of six risk
parameters by using the BWM solver (developed by Rezaei) as shown in Figure 2. More-
over, the consistency has been checked and found valid and consistent. With the proposed
risk assessment method, it will be possible to minimize the uncertainty of hazards and
risks, analyze, evaluate and examine them consistently. For the implementation of the
model, it is necessary to report in detail the experienced and possible cases and to ensure
data reliability. The flight school will be able to benefit from the proposed risk assessment
method during the curriculum formation, theoretical and practical training process.
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Table 9. The aggregated decision matrix.

Hazard
Aggregated Value in 3,4-QF Number

RP1 RP2 RP3 RP4 RP5 RP6

H1 0.11 0.99 1.00 0.00 0.77 0.78 0.83 0.71 0.55 0.91 0.69 0.82
H2 0.22 0.98 0.92 0.51 0.86 0.65 0.89 0.63 0.55 0.91 0.62 0.87
H3 0.44 0.95 1.00 0.00 0.86 0.65 0.83 0.71 0.55 0.91 0.62 0.87
H4 0.22 0.98 0.92 0.51 0.86 0.65 0.83 0.71 0.55 0.91 0.49 0.93
H5 0.11 0.99 1.00 0.00 0.86 0.65 0.83 0.71 0.62 0.87 0.62 0.87
H6 0.11 0.99 0.92 0.51 0.77 0.78 0.66 0.87 0.39 0.94 0.16 0.99
H7 0.11 0.99 0.55 0.91 0.86 0.65 0.83 0.71 0.28 0.96 0.49 0.93
H8 0.11 0.99 0.92 0.51 0.86 0.65 0.66 0.87 0.28 0.96 0.44 0.95
H9 0.11 0.99 0.94 0.48 0.86 0.65 0.74 0.81 0.28 0.96 0.49 0.93
H10 0.22 0.98 0.92 0.51 0.86 0.65 0.66 0.87 0.28 0.96 0.11 0.99
H11 0.11 0.99 0.92 0.51 0.92 0.51 0.98 0.36 0.28 0.96 0.44 0.95
H12 0.31 0.97 0.94 0.48 0.77 0.78 0.83 0.71 0.28 0.96 0.44 0.95
H13 0.25 0.97 0.92 0.51 0.86 0.65 0.66 0.87 0.28 0.96 0.49 0.93
H14 0.11 0.99 0.86 0.65 0.86 0.65 0.66 0.87 0.28 0.96 0.11 0.99
H15 0.11 0.99 0.92 0.51 0.86 0.65 0.66 0.87 0.28 0.96 0.49 0.93
H16 0.55 0.91 0.69 0.82 0.77 0.78 0.33 0.95 0.28 0.96 0.44 0.95
H17 0.55 0.91 1.00 0.00 0.77 0.78 0.66 0.87 0.28 0.96 0.49 0.93
H18 0.11 0.99 0.49 0.93 0.77 0.78 0.83 0.71 0.28 0.96 0.44 0.95
H19 0.11 0.99 0.92 0.51 0.86 0.65 0.83 0.71 0.28 0.96 0.31 0.97
H20 0.22 0.98 0.80 0.73 0.77 0.78 0.66 0.87 0.28 0.96 0.44 0.95
H21 0.31 0.97 0.69 0.82 0.77 0.78 0.66 0.87 0.28 0.96 0.44 0.95
H22 0.11 0.99 0.74 0.78 0.86 0.65 0.33 0.95 0.28 0.96 0.44 0.95
H23 0.16 0.99 0.69 0.82 0.86 0.65 0.33 0.95 0.28 0.96 0.44 0.95
H24 0.11 0.99 0.11 0.99 0.77 0.78 0.33 0.95 0.28 0.96 0.11 0.99
H25 0.11 0.99 0.11 0.99 0.77 0.78 0.33 0.95 0.28 0.96 0.11 0.99
H26 0.11 0.99 0.11 0.99 0.77 0.78 0.33 0.95 0.28 0.96 0.11 0.99
H27 0.11 0.99 0.11 0.99 0.77 0.78 0.33 0.95 0.28 0.96 0.44 0.95
H28 0.11 0.99 0.11 0.99 0.77 0.78 0.33 0.95 0.28 0.96 0.44 0.95
H29 0.11 0.99 0.69 0.82 0.77 0.78 0.33 0.95 0.28 0.96 0.69 0.82
H30 0.11 0.99 0.69 0.82 0.77 0.78 0.33 0.95 0.28 0.96 0.69 0.82
H31 0.11 0.99 0.11 0.99 0.77 0.78 0.33 0.95 0.28 0.96 0.44 0.95
H32 0.86 0.65 0.11 0.99 0.77 0.78 0.33 0.95 0.28 0.96 0.44 0.95
H33 0.86 0.65 0.44 0.95 0.77 0.78 0.33 0.95 0.28 0.96 0.62 0.87
H34 0.69 0.82 0.44 0.95 0.77 0.78 0.33 0.95 0.28 0.96 0.44 0.95
H35 0.44 0.95 0.44 0.95 0.77 0.78 0.33 0.95 0.28 0.96 0.44 0.95
H36 0.44 0.95 0.44 0.95 0.77 0.78 0.33 0.95 0.28 0.96 0.69 0.82
H37 0.44 0.95 0.44 0.95 0.77 0.78 0.33 0.95 0.28 0.96 0.69 0.82
H38 0.44 0.95 0.44 0.95 0.77 0.78 0.33 0.95 0.28 0.96 0.86 0.65
H39 0.44 0.95 0.44 0.95 0.77 0.78 0.33 0.95 0.28 0.96 0.69 0.82
H40 0.44 0.95 0.44 0.95 0.77 0.78 0.33 0.95 0.28 0.96 0.62 0.87

Figure 2. Weight determination of risk parameters via BWM. * note: the optimal value of Ksi.

In the fifth step, we have computed the information ζk(k = 1 to 40) of each hazard via
the Equation (11). Then, we have computed the score function Φ(ζk) for each hazard. The
results are demonstrated in Figure 3.
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Figure 3. Φ(ζk) values for each hazard.

According to the calculation results, the hazards H3 (0.4944) and H17 (0.4367) have
the highest Φ values, and they are in the first and second place. These are control failure
and bird strike hazards, respectively. These are followed by H2 (0.3701), H12 (0.3439), and
H4 (0.3410), respectively. These are related to engine failure, forced landing and failure of
landing gear. It’s important to see that all of these five top priorities relate to flight training.
To identify hazards with the same Φ value, H10 & H8 (0.227), H36 & H37 & H39 (0.1730),
H29 & H30 (0.1691), H27 & H28 & H31 (0.0487) and H24 & H25 & H26 (0.0407), the Θ
values of the relevant groups were examined. Since it was seen that the Θ values of all
these five groups, which were looked for in order to rank within themselves, were the same
(Figure 4), it was observed that there was no difference between their rankings. The final
rankings are presented in Table 10. According to the numerical results of the priority scores
of each emerged hazard in the flight school, the most important hazards and associated
risks are related to flight training such as control failure, engine failure and bird strike.
However, some of the flight training hazards that we will prioritize secondary are: forced
landing, landing gear not deployed, hard landing, fire and smoke, mid-air collision, fuel
criticality, and emergency declaration.

For H3, H17 and H2 hazards, training should be planned in a structure that will include
interpersonal activities such as optimizing the human-machine interface, building and
maintaining effective teams, problem solving, decision making and maintaining situational
awareness. In terms of flight school training, human factor-related errors will be integrated
into the curriculum, and practical and theoretical knowledge will be developed. Crew
Resource Management, Line Oriented Flight Training and Threat and Error Management
have been developed and mandated by the International Civil Aviation Organization
(ICAO). Safety management regulations are supplemented by ICAO [60] with manuals
such as; ICAO Bird Strike Information System Manual, Air Traffic Services Planning
Manual.
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Figure 4. Θ(ζk) values for each hazard.

Table 10. Final priority ranking of each hazard.

Ranking Order Hazard Ranking Order Hazard

1 H3 17 H8; H10
2 H17 18 H34
3 H2 19 H6
4 H12 20 H38
5 H4 21 H23
6 H13 22 H36; H37; H39
7 H5 23 H14
8 H1 24 H29; H30
9 H16 25 H40
10 H11 26 H22
11 H21 27 H7
12 H9 28 H35
13 H20 29 H18
14 H33 30 H32
15 H15 31 H27; H28; H31
16 H19 32 H24; H25; H26

4.3. Comparative Study and Discussion

In this section, the numerical results obtained by applying the 3,4-QF MCDM-based
occupational risk assessment model proposed in the article and numerical results obtained
by solving the same problem with the Pythagorean and Fermatean fuzzy aggregation
operators were compared. While the applied Fermatean fuzzy weighted geometric (FFWG)
operator is adapted from the works of Senapati and Yager [61] and Zhou et al. [62], the
Pythagorean fuzzy weighted geometric (PFWG) operator is used as in [63,64] These results
are given in Figure 5. According to the results obtained with all three collection operators,
the top five hazards have not changed. These are H3, H17, H2, H12 and H4 respectively.
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Figure 5. Comparison of final scores.

In fact, the Pearson correlation coefficient between the final scores of each hazard
solved with these three operators was also found to be quite high (Figure 6). Note that the
values obtained from the problem solved with PFWG are in the range of [−1, 1]. Because,
score function values can be negative in Pythagorean fuzzy set [65]. Similarly, the final
scores of the last eight hazards (H18, H32, H27, H28, H31, H24, H25 and H26) are the
same with respect to all three aggregation operators based MCDM models, and the same
measures can be arranged for the control measures to be taken for these eight least serious
hazards.

A sensitivity analysis is also needed for implementation. Sensitivity analysis is the
process of determining how changes in risk parameter weights will affect the final scores of
hazards. In many occupational risk assessment studies, this is an extra study. As a matter
of fact, it is an analysis that strengthens the robustness of the applied approach. In this
sensitivity analysis, one of the risk parameters was defined as the major parameter and the
others as the minor parameters. By highlighting the weight of the major parameter and
keeping the other minor parameters at the same weight, it can be observed how much the
results are affected by the major parameter. Three different scenarios listed in Table 11 are
discussed in this section. According to the first scenario, the major parameter is selected as
one of the six risk parameters one by one respectively (with a weight value of 0.20), while
the other parameters are determined as minor parameters (all the same and with a weight
value of 0.16).
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Figure 6. Pearson correlation analysis results.

Table 11. Scenario design of sensitivity analysis.

Scenario #
Weight of Major Risk

Parameter
Weight of Minor Risk

Parameter

Scenario 1 0.20 0.16
Scenario 2 0.40 0.12
Scenario 3 0.60 0.08

According to the results of scenario 1 as provided in Figure 7, it is seen that the H17
hazard is affected by the “RP1−Probability” risk parameter. The frequency of occurrence
of the H17 risk appears to be a priority hazard when very significant. Additionally, when
the weight of the “RP2−Severity” parameter is the highest, the hazard H17 falls one step
back and takes less priority. Instead, H4 becomes a priority hazard. Overall speaking, H3 is
the highest priority hazard, followed by H2, H4, H5 and H17. In addition, another striking
result is that the hazard H1 is not affected by none of the risk parameters’ weight increase.
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Figure 7. Sensitivity analysis on the results by Scenario 1.

The results of scenario 2 are given in Figure 8. Accordingly, when compared to Scenario
1 (Figure 7), it is seen that changes in risk parameter weights have more impact on the
priority rankings of hazards.

Figure 8. Sensitivity analysis on the results by Scenario 2.

According to the sensitivity analysis result of Scenario 3 presented in Figure 9, it is
seen that the ranking result is similar to the previous one.

Figure 9. Sensitivity analysis on the results by Scenario 3.

5. Conclusions

In this study, an occupational risk assessment approach based on 3,4-QF MCDM
was proposed as the first attempt in the literature. Risk parameters, which are one of the
basic components of occupational risk assessment studies, are modeled via six different
parameters, different from classical risk analysis methods with two or three parameters.
The weights of these parameters were obtained by [58]. The evaluations of the hazards
arising in the workplace environment depending on each risk parameter were made by
OHS experts and aggregated by the 3,4-QFGA operator. Comparative and sensitivity
analyzes were also performed to consolidate the results of the approach.
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5.1. Summary of Findings

According to the results of the risk parameter weight values determined by the BWM
model, the most important parameter for this occupational risk assessment is the “severity”
parameter with a weight value of 0.37. This is followed by “probability” with a significance
weight of 0.20. These two parameters are followed by “detectability” and “cost” with weight
values of about 0.14. The two least important parameters are “applicability of preventive
measures (0.10)” and “sensitivity to not using PPE (0.05)”, respectively. According to
3,4-QF MCDM risk assessment model, the most important hazards and associated risks are
stemmed from the processes of flight training such as control failure, engine failure and bird
strike. Moreover, secondary flight training hazards are forced landing, landing gear not
deployed, hard landing, fire and smoke, mid-air collision, fuel criticality, and emergency
declaration. According to the comparison analysis, there is not a significant difference
between the results of the model solved with the other two types of fuzzy version-based
aggregation operators (FFWG and PFWG) and the results of the current model. According
to the results of the sensitivity analysis, it is seen that the H33 hazard, which is the hazard
related to facilities, has the highest priority in increasing the weight of the RP1−probability
risk parameter. This result appeared in both Scenario 2 and Scenario 3. A similar case shows
that in the case of Scenario 3, H38 is the top priority hazard where the RP6−applicability of
preventive measures parameter has a weight of 0.60 and each of the other parameters has a
weight of 0.08.

5.2. Research Contributions

This study has made the following contributions from both a methodological and
practical perspective.

• A new extension 3,4-QFS with a broader space than the Fermatean and Pythagorean
fuzzy numbers has been adapted for the first time to an occupational risk assessment
study. The proposed 3,4-QF-MCDM based approach uses more risk parameters than
conventional risk assessments and calculates their weight values with Rezaei’s BWM
method.

• In addition, with the developed 3,4-QF scale, each hazard can be evaluated according
to the relevant risk parameter, and the subjective judgments given by all the experts
participating in the evaluation are aggregated with the 3,4-QFGA operator.

• Experts with field experience and pilot training practice were included in the process
of determining risk assessment parameters which allows for a more detailed and con-
sistent evaluation of problems, hazards, and related risk situations in the flight school
processes. It made model more sustainable and applicable model. An innovative
sensitivity analysis was conducted to analyze how the change in the weights of the
parameters used in the flight school occupational risk assessment affected the priority
score and, of course, the order of each hazard. In this respect, it is considered to make
an important methodological contribution.

• Risk assessment for flight schools, which constitute the education pillar of the aviation
industry, is undoubtedly extremely important in terms of serious hazards it contains.
In this context, the occupational risk assessment study carried out in a flight school
in order to test the applicability of the model contributes to the application as it is an
adaptable model.

5.3. Limitations and Future Remarks

Since the proposed fuzzy set extension is still new, it is seen that this set has not yet
been integrated into the MCDM methods that are widely applied in the field of occupational
risk assessment. For future studies, it is planned to develop new risk assessment approaches
such as 3,4-QFS-based TOPSIS and VIKOR. In addition, an approach can be suggested
in which each risk parameter can be modeled how the production or service facility will
be affected by some future states. With this approach, it can be considered how the risk
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parameter weights change in response to possible states and this change can be modeled
with a fuzzy stratified MCDM structure.
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Abstract: Due to the unavoidable operational risks and insufficient risk management capabilities
of beginner pilots in flight training, the challenge of risk control in aviation schools has become
increasingly prominent. To ensure the safety of flight training in aviation schools and to reduce
costs and increase revenue, the essential prerequisite for improving efficiency is risk management.
Therefore, it is necessary to explore risk identification and assessment methods. This paper adopts the
holographic modeling (HHM) method and risk filtering, rating and management (RFRM) theory. First,
the HHM idea is used to construct a risk identification framework (HHM-PAVE) for flight training.
Second, based on the dual criteria, multiple criteria and cloud model (CM) in the RFRM approach, an
improved risk assessment matrix-cloud model (IPC-CM) is proposed and combined with the N-K
model and Bayes’ theorem to propose a coupled risk scenario hazard measurement model (CR-HM)
based on the HHM-RFRM approach in risk assessment. In the assessment process, the impact of
risk factors on system stability as well as the uncertainty problem and coupling–risk quantification
problem in expert assessment are considered to obtain scientific and objective quantitative assessment
results. Finally, the risk identification and assessment experiments were conducted using HHM-
RFRM on the flight training. The results show that the method can more accurately identify critical
risk factors in a flight training system and provide a new perspective for risk prevention and control.

Keywords: safety engineering; flight training; HHM-RFRM; risk identification; risk assessment

1. Introduction

Safety is a top priority for the aviation industry. Aviation safety has significantly
improved from the development of the global aviation industry in the past seventy years.
From 2017 through 2021, the total number of accidents, the real accident rate and the
number of fatalities continued to decrease. However, the overall risk of death increased to
0.23 in 2021 due to the rise in fatal accidents in turboprops, and various types of accidents
still occur. Aviation Safety Network (ASN) data [1] indicated that 453 accidents have
occurred worldwide since 2020, causing widespread public concern as well as loss of
life and damage to property. Since 2010, 57% of the total accidents have been caused by
pilots. From the early training of pilots and throughout pilots’ lifecycles, pilot risk control
capability is lacking, and the risk control and management of flight training in flight schools
are becoming increasingly prominent. Therefore, it is crucial to perform comprehensive
and effective risk identification and assessment of risks in flight training, which is the key
to risk management for flight schools and pilots.

Risk management has always been an active area of research. It has penetrated all
walks of life. Evaluation methods have been developed and evolved in cross-discipline
integration. For example, Wenjun Zhang et al. [2] used the HHM-RFRM model in ship
navigation safety to analyze navigation risk management from the perspective of risk
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coupling. In addition, many studies [3,4] in various industries were conducted on risk
occurrence mechanisms, risk probabilities, and baseline risk functions. In civil aviation
flight safety, flight risk identification and assessment are critical to aviation risk manage-
ment, which is a topic with significant theoretical and practical significance. Domestic and
foreign scholars have conducted research on the theoretical model of risk management. The
current flight safety risk management is mainly based on several existing theoretical mod-
els of accident causation [5–10], such as the Software, Hardware, Environment, Liveware
model (SHEL), Reason’s “Swiss cheese” model, the functional resonance analysis method
(FRAM), the holographic modeling method and risk filtering, rating and management
theory (HHM-RFRM), and Event Tree Analysis (ETA). Based on those theoretical models,
scholars have researched the critical aspects of flight safety risk management. In the risk
identification part, Shi et al. [11] used data mining methods to identify and classify risk
factors in accident reports in the safety management system, which solved the cumbersome
and subjective problems of manual identification. Still, there are limitations in the overall
risk factor identification framework. Wu et al. [12] adopted the ETA method to identify
single risk factors affecting flight safety and established a risk factor identification system.
Paltrinieri et al. [13] proposed an atypical accident identification method, which showed
promising results in identifying uncommon and complex coupled risk scenarios. In the risk
assessment section, Gray et al. [14] utilized the 1% rule to assess the risk of aircrews with
established medical problems, classifying them into risk classes with red/amber/green
(RAG) colors. Tamasi et al. [15] proposed a methodology to determine risk qualitatively
and quantitatively, using a risk assessment matrix combined with the ETA model. However,
it still suffers from high uncertainty and lack of objectivity. Yong Gang et al. [16] used the
N-K model to analyze the coupling effect of flight operation risk factors and systematically
analyze the flight operation coupling while on the ground and in the air based on the
coupled risk values.

The above research indicates the presence of two challenges in current flight training
risk management. On the one hand, in the area of risk source identification, from the
perspective of risk identification objects, some studies [17,18] have focused on the impact
of single risk factors on the overall system risk, which is helpful for general system risk
assessment. Still, for complex system risks [19,20], it is easy to ignore the impact of multi-
factor coupling on flight training safety. For example, when the environment is poor and
there is a human factor of pilot error, coupling these two risk factors increases the likelihood
of an accident. Still, the risk of this multi-factor coupling has not been studied heavily.
Relevant researchers have proposed a scenario-based risk response framework [21], but
specific methods and measures for risk management are lacking. On the other hand, in the
area of risk assessment, from the perspective of qualitative assessment, the risk assessment
matrix [22] is an assessment method based on expert experience and cognitive level with
natural uncertainties and is greatly influenced by assessors. From the perspective of
quantitative evaluation, some studies [23–25] have only focused on the impact of coupling
risk. Still, few have analyzed the specific coupling risk sub-scenarios under the coupling
risk scenario.

When the flight instructor does not interfere as much as possible, and the flight student
has a certain knowledge of risk management theory, this paper proposes a coupled risk
scenario identification and assessment model based on HHM-RFRM theory. This model
utilizes the advantages of the CM and N-K models to solve the above-mentioned issues in
risk identification and assessment. First, in the risk identification section, the HHM method
is used to find risk factors hierarchically and systematically, emphasizing the concept of
coupled risk scenario and outputting flight training-related risk factors. Second, the risk
assessment proposes the coupled risk scenario–hazard measurement model (CR-HM). The
risk correction coefficient combines the multiple judgment criteria in RFRM with the risk
assessment matrix–cloud model (PC-CM), which considers system resistance problems and
human cognition’s ambiguity and randomness to screen out the critical risk factors. With
the IPC-CM model, the numerical characteristics of the risk factor cloud model (Ex, En,
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He) are output. Then, a new set of evaluation ideas is formed using the N-K model and
Bayesian theory to evaluate the coupled risk scenario quantitatively and output the final
risk values. The flow of the research method is shown in Figure 1. Finally, taking the flight
training of a domestic aviation school as an example, high-risk factors and key coupled
risk scenarios are identified and evaluated.

Figure 1. Schematic diagram of the proposed method.

2. Research Method

2.1. HHM-RFRM Method

The HHM-RFRM methodology [9] is a combination of hierarchical holographic mod-
eling (HHM) [26] and risk filtering, rating and management (RFRM) [27,28] and embodies
a philosophy of distinguishing “primary and secondary conflicts”, filtering secondary risks
through qualitative and quantitative assessment analysis and identifying primary risks.
This paper focuses on the HHM approach and the five main stages of the RFRM approach,
namely (1) scenario identification, (2) dual criteria filtering and rating, (3) multi-criteria
assessment, (4) quantitative assessment, and (5) risk management. Although the classical
HHM-RFRM method can help pilots better understand the possible risks in flight, it is
difficult to achieve a scientific qualitative and quantitative risk assessment. Therefore, it is
necessary to use the N-K model to filter out the key coupled risks by the probability of risk
factors. Using the cloud model, a more accurate quantitative assessment is achieved by the
numerical characteristics of the cloud model. In conclusion, the advantages of each model
are utilized to improve the traditional HHM-RFRM to obtain better risk assessment results.
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2.1.1. Risk Scenario Identification

Initially proposed by Kaplan and Garrick et al. [29], risk scenario identification is a
critical step in HHM-RFRM and consists of three components: risk scenario, probability of
occurrence and damage level. A comprehensive risk factor analysis is the starting point for
risk identification.

The analysis of flight risk factors is the basis of risk identification. This paper uses
the HHM model and the risk identification framework [30] (Pilot-in-Command, Aircraft,
Environment, External Pressures—PAVE) to identify risk sources, which requires construct-
ing a risk scenario framework for the risks encountered in flight. Based on the iterative
idea of the hierarchical holographic modeling process and the Delphi method, this paper
constructs the HHM-PAVE framework to identify the risk factors in flight training. The
specific process is shown in Figure 2:

Figure 2. HHM-PAVE framework flow chart.

Based on the construction of the HHM-PAVE framework in Figure 2, individual risk
factors are identified. However, in in-flight safety system risk, there is not only single-factor
risk but also multi-factor coupled risk. This paper emphasizes the multi-dimensional
risk factor coupling in flight training safety, as detailed in Section 2.3, the N-K model.
Assume that Tn(X1, X2 . . . Xm) denotes an N-dimensional risk scenario consisting of M risk
elements, which are defined as follows:

Tn(X1, X2 . . . Xm) = X1 	 X2 	 . . . 	 Xm (1)

where 	 represents the coupling effect, and the algorithm satisfies the commutative law
X1 	 X2 = X2 	 X1, T2(a, b) represents a risk scenario where the risk factors within the
two-dimensional risk subsystem a and b are coupled.

(1) Single-factor coupling risk
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Single-factor coupling risk refers to the risk caused by the coupling effect and influence
between the risk factors belonging to a single subsystem that affects flight training safety.
For example: T1(a); T1(b); T1(c); T1(d) . . .

(2) Two-factor coupling risk
Two-factor coupling risk refers to the risk caused by the coupling effect and influence be-

tween two subsystems that affect flight training safety. For example: T2(a, b); T2(a, c); T2(a, d);
T2(b, c); T2(b, d) . . .

(3) Multi-factor coupling risk
Multi-factor coupling risk refers to the risk caused by the coupling effect and influence of

three or more risk factors that affect flight training safety. For example: T3(a, b, c); T3(a, b, d);
T3(a, c, d), T3(b, c, d) . . .

2.1.2. Risk Scenario Assessment

Risk scenario assessment is the core part of the RFRM method. It systematically
evaluates and screens risk scenarios to screen out high-risk factors and their coupled risk
scenarios continuously. It mainly includes two assessment methods: double filtering criteria
and multiple judgment criteria, and the assessment steps are as follows:

Step 1: Double Filtering Criteria—Risk Assessment Matrix (PC)
The dual filtering criteria make up the first filtering step in the RFRM method, which

aims to initially screen and rank the risk factors according to the dual criteria. The double
filtering criteria and the civil aviation risk assessment matrix assess the probability and
severity of an accident. In this regard, this paper adopts a risk assessment matrix that is
more applicable to civil aviation [15] to obtain the distribution of likelihood (P), consequence
(C) and the corresponding five risk levels (R), as shown in Tables 1–3 below.

Table 1. Risk probability class distribution (P).

Possibility Description
Almost

Impossible
Rare Occasional Possible Frequent

Probability level A B C D E

Qualitative description Almost
never happen Rarely happen Occurs by

chance, infrequently
Very likely
to happen

Occurs
frequently

Table 2. Risk consequence degree distribution (C).

Consequence Description Ignorable Slight General Serious Catastrophic

Consequence level 1 2 3 4 5
Consequence score 0–0.3 0.3–0.5 0.5–0.7 0.7–0.9 0.9–1.0

Table 3. Risk rating (R).

Level Description Ignorable Slight General Serious Catastrophic

Rank I II III IV V
Risk value 1 3 5 7 9

Risk level matrix⎡⎢⎢⎢⎢⎣
I II II II II
I II III III IV
I III III IV V
II III IV IV V
II IV IV IV V

⎤⎥⎥⎥⎥⎦

Step 2: Multiple Judgment Criteria
The above risk assessment matrix only assesses the possibility and severity of the

consequences of risk factors from the perspective of the assessment object. However,
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it puts specific restrictions on the overall assessment. In this paper, the screened risk
factors are further analyzed from the perspective of global systems thinking. From a
systems theory perspective, the analysis focuses on the system’s resistance and resilience
to risk characteristics: stability, robustness and redundancy. Risks are further avoided by
comparing the risk resistance nature of the system. This paper introduces the 11 criteria
proposed by Matalas and Fiering et al. [31] revised on the defensive capability of risky
scenario knockdown systems. Based on the content of the criteria, the judging rules [26],
and the expert empirical determination, a multiple judgment matrix was obtained as shown
in Table 4, where Xi is the risk factor (Rf); I, II, III..., and XI is the standard serial numbers
(St) and Ax

a is the score of the risk factor x under the criteria.

Table 4. Multiple judgment matrix.

St\Rf X1 X2 . . . Xm Xm−1

I AX1
1 AX2

1 . . . AXm−1
1

AXm
1

II AX1
2 AX2

2 . . . AXm −1
2

AXm
2

III AX1
3 . . . . . . . . . AXm

3

IV AX1
4 . . . . . . . . . AX1

4

. . . . . . . . . . . . . . . . . .

X AX1
10 . . . . . . . . . AXm

10

XI AX1
11 . . . . . . . . . AXm

11

2.2. Cloud Model

In classical HHM-RFRM methods and risk assessment matrices, which often include
qualitative risk assessment processes, there are inevitably two of the most critical uncertain-
ties inherent to human cognition: randomness and ambiguity [32]. This paper applies a
new cognitive model-cloud model (CM) proposed by Li et al. [33], which can synthetically
describe the randomness and fuzziness of concepts, instantiate the uncertainty transforma-
tion between qualitative ideas and their quantitative concepts, and realize the uncertainty
transformation between qualitative concepts and their quantitative ones.

Three values represent the overall characteristics of qualitative concepts in the CM:
Expectation (Ex), Entropy (En), and Hyper Entropy (He). Ex represents a measure of the
elemental certainty of a qualitative picture, which can best represent the characteristics of
a qualitative concept. En represents a measure of the uncertainty range of the qualitative
concept, determined by the vagueness and randomness of the qualitative concept, and
reflects the degree of deviation of the actual affiliation Ex.He is a measure of En uncertainty,
reflecting the degree of cohesion of cloud drops of tension in the discourse world, which is
determined by the vagueness and randomness of En [33].

Improved P-C Cloud Model (IPC-CM)

Based on the above risk assessment matrix, multiple criteria, and the CM method, this
paper proposes an improved risk assessment matrix-cloud model (IPC-CM), which aims to
provide more accurate assessment results for quantitative risk assessment and obtain the
cloud model of each risk factor after screening. The IPC-CM model is the core assessment
model in the whole HHM-RFRM model. It mainly includes the above four steps, as shown
in Figure 3. Steps 1 and 2, the P-C concept cloud and rule base, are described detailed in
the literature [34,35]. This paper focuses on the uncertainty inference of the CM and the
optimization of the CM, where the uncertainty inference steps are as follows:
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Figure 3. Steps to improve the cloud model.

(1) Generate two-dimensional random numbers
Equation (2) is used to generate a two-dimensional random value

(
Xp, Xc

)
with a

two-dimensional normal distribution. At the same time, for each rule in the rule base,
Equation (3) is used to generate a two-dimensional random value

(
Xnpi, Xnci

)
(
xp, xc

)
= NORMINC

(
Rand(),

(
Exp, Exc

)
,
(
Enp, Enc

))
(2)(

Enpi, Enci
)
= NORMINC

(
Rand(),

(
Enp, Enc

)
,
(

Hep, Hec
))

(3)

(2) Calculate the activation strength μ matrix
Using

(
Xp, Xc

)
by Equation (2), the

(
Enpi, Enci

)
corresponding rules caused by Equa-

tion (3) are substituted into Equation (4) to find the activation intensity when the conditional
input of each direction in the rule base is

(
Xp, Xc

)
. A total of 25 rules generated 25 μ values,

which constitute the matrix μ.

μi = exp

[
−
(
Xp − expi

)2

2
(
Enpi

′)2 − (Xc − exci)
2

2(Enci
′)2

]
(4)

(3) Calculate cloud droplets (y, μ)
First, take the largest and second largest μi in the matrix. Then, use Equation (5) to

generate the hierarchical cloud model’s one-dimensional standard random value (EnR
′).

Use Equation (6) to calculate the four y values for the μ1 and μ2 conditions to obtain four
groups (y, μ)

EnR
′ = NORMINC(Rand(), EnR, HeR) (5)

μ = exp

[
− (y − Ex)

2

2(Ex ′)2

]
(6)

(4) Build virtual cloud
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First, select the two closest cloud droplets (y1, μ1) and (y2, μ2) and construct a virtual
concept with geometric methods. The three numerical characteristics of the virtual cloud are
(Ex, En, He), where (Ex,En) are calculated by geometric forms using Equations (7) and (8).
Ex can be designated as a critical parameter reflecting the risk value.

Ex =
y1
√−2 ln μ2 + y2

√−2 ln μ1√−2 ln μ2 +
√−2 ln μ1

(7)

En =
|y1 − y2|√−2 ln μ2 +

√−2 ln μ1
(8)

where x∈U, x is the expectation of Ex, and Ex
’ is a standard random variance number.

The CM obtained based on the risk assessment matrix is not quantitatively analyzed
from the perspective of system stability. In this regard, In this paper, the new optimization
method is proposed to use the correction coefficient Pi [36] combined with the multiple
judgment matrix to correct the numerical characteristics of the cloud model under the risk
assessment matrix to form the final IPC-CM, which can achieve the different scientific rank-
ing of risk scenarios under the same risk level. The correction factor in Equations (9)–(12)
is as follows:

Pi =

(
αi
βi

)εij

(9)

Exi
′ = Exi × Pi (10)

Eni
′ = Eni × Pi

2 (11)

Hni
′ = Hni × Pi

2 (12)

where Pi represents the correction coefficient under scenario i; ai represents the safety and
reliability of scenario i in the past period; βi represents the safety and reliability of scenario
i in the current period; εij represents the risk coefficient ratio between factors i and j; Exi,
Eni, and Hni represent the original parameter values under scenarios i; Exi

’, and Eni
’, and

Hni
’ represents the corrected value of the parameter.

2.3. N-K Model

Flight training is a complex system risk often involving multiple risk factors. Therefore,
this paper introduces the concept of coupling. In physics, the phenomenon of two or more
systems or two forms of motion interacting through various interactions to unite is called
“coupling” [37]. Flight training risk coupling refers to the degree of mutual influence and
dependence between or among various risk factors affecting aircraft flight during flight
training. The coupling between or among risk factors changes the local or overall state of
aircraft operation safety, resulting in flight accidents.

The N-K model consists of two parameters. N is the number of constituent factors
in the system; and K is the number of inter-factor dependencies, reflecting the system’s
adaptability. If the system consists of N factors, and there are n states of factors, then there
are nN possible combinations of all the elements, the factors are combined in a certain
way to form a network, and the range of K is [0, N−1]. Based on the evolutionary theory
of biology, the interaction information between factors is calculated based on the N-K
model to measure the coupling risk, and the coupling risk hazard is calculated according to
Equations (13)–(15).

T4 = T(A, B, C, D) = ∑
i

∑
j

∑
k

∑
m

Pijkm log2

(
Pijkm/

(
Pi... × P.j.. × P..k. × P...m

))
(13)

T3 = T(A, B, C) = ∑
i

∑
j

∑
k

Pijk log2

(
Pijk/

(
Pi... × P.j.. × P..k.

))
(14)
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T2 = T(A, B) = ∑
i

∑
j

Pij log2
(

Pij/
(

Pi... × P.j..
))

(15)

i ∈ {0, 1} , j ∈ {0, 1} , k ∈ {0, 1} , m ∈ {0, 1}
where i, j, k, m represent the status values of A, B, C, and D risk factors, respectively;
status value 0 means that the risk factor has not broken through the defense system, and
status value 1 means that the risk factor has broken through the defense system; Pijkm
represents the changing risk of the mutual coupling of ABCD risk factors probability;
Tx represents the coupling of X risk factors; T(A, B, C) represents the risk of the mutual
coupling of risk factors A, B, and C. A defense system is a complex system consisting of
“human–machine–environment–management” subsystems that prevent unsafe events or
accidents from occurring.

2.4. Quantitative Model Based on Bayes’ Theorem

Bayes’ theorem is a general form of the product rule for calculating the probability of
two (or more) independent events [38].

Assuming that there is a risk coupling between the two risk factors A B, without
considering the risk of B, the probability that risk factor A causes an accident is prior
probability P(A). The likelihood of occurrence of risk B with a known intelligence A risk
factor is conditional probability P(B|A). At the same time, considering the risk factor B,
P(A|B) is the posterior probability. The Bayesian Equations (16)–(18) are as follows:

P(AB) = P(A)P(B|A) = P(B)P(A|B) (16)

P(A|B) = P(A)P(B|A)

P(B)
(17)

P(A) = P(A|B)P(B) + P
(

A
∣∣B)P(B) (18)

From the perspective of quantitative risk assessment, this paper introduces Bayes’ the-
orem for quantitative calculation from the two dimensions of consequence and possibility,
which are defined as follows:

Drisk = Crisk × Prisk (19)

Based on the modified consequence level Crisk of the IPC-CM, the posterior probability
Prisk of each risk scenario is calculated by combining the coupling relationship between the
risk factors in flight training. Associating Equation (19), the final coupled risk scenario’s
hazard values are calculated.

3. Case Research

In the next section, this paper analyzes the accident investigation report of China’s
civil aviation safety management system from 2018 through 2021 and the aviation safety
briefing of an aviation school. Based on real data from actual scenarios, the flight school’s
risk focus is continuously adjusted in the event of unsafe events and accident experiences.
We take a flight school as an example and start from risk identification and assessment to
verify the risks in flight training.

3.1. Risk Identification
3.1.1. HHM Frame

Based on the accident report of China’s civil aviation safety management system and
the aviation safety briefing data, this paper completed the risk factor analysis through
Figure 2. From the pilot’s perspective, the PAVE framework [30] is adopted to cultivate the
critical thinking of pilot trainees. All risk factors are divided into four subsystems of P, A,
V, and E.

PAVE consists of four parts: P = Pilot-in-command (PIC); A = Aircraft; V = Environ-
ment; and E = External pressures.
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(1) P = Pilot-in-Command (PIC)
The pilot in command is one of the risk factors in flight. A pilot must conduct a multi-

faceted assessment of their risk profile as the controller of the aircraft. It mainly includes
the pilot’s physiological and psychological condition and provides comprehensive quality.

(2) A = Aircraft
As the carrier of the flight, the aircraft is also one of the risk factors in the flight. The

pilot must fully understand the aircraft’s performance, historical failures, and whether
the corresponding airworthiness instructions have been completed, and it must check the
maintenance of the aircraft.

(3) V = Environment
The flight environment is one of the flight risk factors, and the weather is a major

environmental factor. Terrain assessment is another essential component in analyzing the
flight environment, which is followed by airports, airspace, nighttime, and visual errors.

(4) E = External Pressures
External pressures are an effect outside of the flight, usually at the expense of safety,

that creates a feeling of pressure to complete the flight.
Based on the analysis of the above risk factors, this paper establishes the flight training

risk HHM-PAVE framework, as shown in Figure 4.

Figure 4. HHM-PAVE model block diagram.

3.1.2. Coupling Risk Scenario

According to the accident data of China’s civil aviation safety management system
from 2018 through 2021, the coupling theory is used to obtain the count and frequency of
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risk coupling in recent years, as shown in Table 5 below, where single-factor coupling risk
means only one risk factor is involved, two-factor coupling risk means two risk factors are
involved in risk coupling, and multi-factor coupling risk means three or more risks are
involved in risk coupling; 1000 means P risk coupling effect; 0100 means A risk coupling
effect; and 1110 represents PAV three-factor coupling effect.

Table 5. Number and frequency of risk coupling.

Risk Factor Count and Frequency

Single-factor coupling risk 0000 1000 0100 0010 0001
Count 0 22 5 8 1

Frequency 0.0000 0.4313 0.0980 0.1568 0.0196

Two-factor coupling risk 1100 1010 1001 0110 0101 0011
Count 0 8 4 0 0 1

Frequency 0.0000 0.1568 0.0784 0.0000 0.0000 0.0196

Multi-factor coupling risk 1110 1101 1011 0111 1111
Count 0 1 1 0 0

Frequency 0.0000 0.0196 0.0196 0.0000 0.0000

3.2. Risk Assessment–Coupling Risk Scenario–Hazard Measurement Model (CR-HM)
3.2.1. Risk Assessment Matrix Filtering

Through the identification of risk scenarios mentioned above, this paper identifies
23 risk factors and 16 main risk coupling scenarios, theoretically including 1630 risk cou-
pling scenarios, from which key risk factors are identified, and the priority analysis of key
risks is performed. First, the 23 risk factors are analyzed qualitatively, and the two criteria
of likelihood and severity of consequences are filtered using a risk assessment matrix.
This filtering is accomplished by interviewing experts and administering questionnaires to
relevant people. Senior flight instructors made subjective judgments about the likelihood
and consequences of each factor based on their own flight experience and then asked the
opinions of 20 flight instructors based on a questionnaire asking for their judgments. The
results are shown in Table 6 below.

Table 6. Risk assessment matrix.

Risk Assessment Matrix

Possibility
Seriousness

Negligible 1 Slight 2 Normal 3 Serious 4 Catastrophic 5

Almost impossible A A2

Rare B A6 P4, A3, A4, A5 V3, V4

Occasional C P2 A1, P53 V5, V6, V7, V8

Possible D E2 P3, P1, P51, P52, E1 V1, V2

Frequent E

Here, green represents risk level I, blue represents level II, yellow represents level III,
orange represents level IV, and red represents level V.

The risk assessment matrix gives an initial rating and filtering of each risk factor. The
risk factors for grades I, II, and III were filtered out. There are 16 risk factors, P1, P3, P51, P52,
P53, A1, V1, V2, V3, V4, V5, V6, V7, V8, E1, and E2, which were retained for further analysis.

3.2.2. Multi-Criteria Assessment of Flight Risk

According to the detailed scoring criteria and scoring rules of multiple criteria, the
16 risk factors mentioned above are further evaluated, and the evaluation criteria are
divided into three levels: high (H), medium (M), and, low (L), which were expressed by
the values of 1, 0.5, and 0.2, respectively. The final multiple judgment matrix was obtained
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as shown in Table 7 below, where St represents standard, Rf represents risk factor; and H,
M and L represent the evaluation level respectively.

Table 7. Risk factor multiple judgment matrix.

St/Rf V3 V4 A1 P53 V5 V6 V7 V8 E1 P3 P1 P51 P52 E2 V1 V2

I L L L H M L M M H H L H H H L L
II L M L H M M M M H L L M H H M L
III L L M M M M M M M M M H H H M H
IV M H L H M M M L M M M M M M H H
V M M H M M M H M M M M M H H M M
VI M M M M M M M M H H H H H H H H
VII M M M M M H M L L M H H H L H H
VIII M M H H M M M L M M M H H H H M
IX M M M L M M M L L L L H H H H M
X M H M H L M H M M M M M H M H L
XI L L L L L L L L L L L L L L L L

3.2.3. IPC-CM Assessment

The conventional risk assessment matrix, which assesses risk only qualitatively, has
the problem of boundary uncertainty, and the rating process has no scientifically sound
uncertainty reasoning mechanism. This paper adopts the IPC-CM model for risk grading.
The method further evaluates and sorts the screened risk factors.

This paper uses the IPC-CM model to cloud R, P, and C to generate the expectation
(Ex), entropy (En), and super-entropy (He) numerical features corresponding to each rank.
The softened scores of the index levels were achieved. The clouding results are shown in
Table 8, and the corresponding cloud model is shown in Figure 5.

Table 8. P, C, and R grade cloud model.

P

Rank A B C D E

Ex 1 3 5 7 9
En 1/3 1/3 1/3 1/3 1/3
He 0.02 0.05 0.05 0.05 0.02

C

Rank 1 2 3 4 5

Ex 0.15 0.35 0.55 0.75 0.95
En 0.1/3 0.1/3 0.1/3 0.1/3 0.1/3
He 0.02 0.02 0.02 0.02 0.02

R

Rank I II III IV V

Ex 1 3 5 7 9
En 1/3 1/3 1/3 1/3 1/3
He 0.02 0.05 0.05 0.05 0.02

Figure 5. P, C, and R cloud model diagrams.
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Based on the multiple judgment data in Table 4 and the IPC-CM model, the new
numerical features and rankings were obtained using Equations (2)–(13). The results are
shown in Table 9:

Table 9. Numerical characteristics of risk factors.

Rf Ex En He Rank

V7 6.9871 0.0335 0.015 9
V1 8.9926 0.0410 0.014 1
V5 5.9324 0.0563 0.015 12
P3 7.0000 0.0104 0.014 8
A1 7.7486 0.0574 0.014 6
V8 2.890 0.0727 0.015 16
V3 4.9558 0.0402 0.015 15
V4 6.1573 0.0137 0.014 11
V2 8.3141 0.0375 0.013 2
P53 8.0109 0.0251 0.013 5
E1 5.5060 0.0811 0.014 13
V6 5.0004 0.0377 0.014 14
P1 6.6985 0.0133 0.013 10
P51 7.4925 0.0156 0.013 7
P52 8.2033 0.0697 0.013 3
E2 8.0865 0.0292 0.012 4

The cloud model of the above 16 risk factors is sorted and screened, and the standard
cloud plots before and after filtering are shown in Figure 6.

Figure 6. Before and after screening cloud map.

According to the sorting provided in Table 9 and the filtered data provided in Figure 6b,
the six most critical risk factors in flight training are selected, namely P3, P5, A1, V1, V2,
and E2. The other risk factors with low-risk values are screened out, which does not mean
that pilots are not concerned about them, but compared with risk factors with high-risk
values, pilots should follow the principle of attention distribution.

Based on this filtering, the coupled scenarios of key risk factors are further analyzed
and evaluated based on the HHM framework and holographic theory. The critical flight
risk HHM-PAVE sub-framework is shown in Figure 7.
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Figure 7. HHM-PAVE sub-framework.

3.2.4. N-K Coupling Risk Scenario Assessment

Risk coupling is performed according to the six key risk factors under the above HHM
sub-framework. This paper considers the coupling of four subsystems and obtains 16
coupling scenarios. The coupling probabilities of risk factors are calculated by Table 5. The
results are shown in Table 10.

Table 10. One-factor, two-factor, multi-factor coupling probability.

O-C Pr O-C Pr O-C Pr O-C Pr

P0 . . . 0.2941 P1 . . . 0.7058 P..0. 0.6471 P..1. 0.3529
P.0.. 0.8824 P.1.. 0.1176 P . . . O 0.8431 P . . . 1 0.1569

T-C Pr T-C Pr T-C Pr T-C Pr

P00.. 0.1961 P01.. 0.0980 P10.. 0.6862 P11.. 0.0196
P0.0. 0.1176 P0.1. 0.1765 P1.0. 0.5294 P1.1. 0.1764
P0..0 0.2549 P0..1 0.0392 P1..0 0.5882 P1..1 0.1176
P.00. 0.5294 P.01. 0.3529 P.10. 0.1176 P.11. 0.0000
P.0.0 0.7451 P.0.1 0.1373 P.1.0 0.0980 P.1.1 0.0196
P..00 0.5294 P..01 0.1176 P..10 0.3137 P..11 0.0392

M-C Pr M-C Pr M-C Pr M-C Pr

P000. 0.0196 P001. 0.1765 P010. 0.0980 P011. 0.0000
P100. 0.5098 P101. 0.1765 P110. 0.0196 P111. 0.0000
P.000 0.4314 P.001 0.0980 P.010 0.3137 P.011 0.0392
P.100 0.0980 P.101 0.0196 P.110 0.0000 P.111 0.0000
P0.00 0.0980 P0.01 0.0196 P0.10 0.1569 P0.11 0.0196
P1.00 0.4314 P1.01 0.0980 P1.10 0.1569 P1.11 0.0196
P00.0 0.1569 P00.1 0.0392 P01.0 0.0980 P01.1 0.0000
P10.0 0.5882 P10.1 0.0980 P11.0 0.0000 P11.1 0.0196

Here, O-C represents one-factor coupling, T-C represents two-factor coupling, M-C rep-
resents multi-factor coupling, Pr represents probability, and P00.. represents the probability
of occurrence when the pilot and aircraft are not involved in the coupling.

According to the risk coupling probability data in Table 10 and Equations (14)–(16), the
risk values of each coupling scenario are calculated, respectively, as follows: T(PA) = 0.3635;
T(PV) = 0.4173; T(PE) = 0.0395; T(AV) = 0.1953; T(AE) = 0.0067; T(VE) = 0.0914; T(PAV) = 0.6939;
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T(PVE) = 0.4194; T(PAE) = 0.3572; T(AVE) = 0.2480. From the ranking result of risk coupling,
T(PAVE) > T(PAV) > T(PVE) > T(PAE) > T(AVE) > T(PV) > T(PA) > T(AV) > T(VE) > T(AE)
> T(VE), where the coupling risk value is the largest T4, followed by T3 and finally T2.

3.2.5. Quantitative Evaluation of Bayesian Probabilities

Based on the above-identified risk coupling situation, an example analysis is carried
out for a pilot of an aviation school to perform a specific flight mission. First, by collecting
relevant historical data and consulting the flight safety accident statistical database, the
frequency of various accidents and the influencing factors leading to them are analyzed
to determine the prior probability of risk factors. For example, the priori probability of a
flight accident occurring when a pilot is poorly trained is 0.80. Second, from the system
theory perspective, combined with the PAVE hazard identification framework and decision
makers, expert experience strengthens comprehensive judgment. When a pilot is well
trained, the likelihood of a flight accident due to operational error or lack of knowledge is
still higher, with a conditional probability of 0.25. According to Equations (17)–(19), the
posterior probability is calculated as 0.5714, and the posterior probabilities of the other risk
factors are obtained similarly, as shown in Table 11:

Table 11. Flight training risk probability.

Risk Factor Priori Probability Conditional Probability Posterior Probability

P5 0.80 0.25 0.5714
P3 0.35 0.04 0.0219
A1 0.80 0.15 0.4138
V1 0.65 0.30 0.4432
V2 0.55 0.25 0.2895
E1 0.40 0.04 0.0270

The coupling effect of the six risk factors under the HHH sub-frame is analyzed
through Table 11. This paper mainly evaluates the two-dimensional risk coupling scenario.
According to Equation (20), the risk degree of the two-dimensional risk scenario is obtained,
as shown in Table 12. Generally, a risk degree higher than 0.05 is considered high for
two-dimensional risk scenarios.

Table 12. Risk of two-dimensional risk coupling scenarios.

Risk Scenario Sub-Scene Dangerous Risk Scenario Sub-Scene Dangerous

P	A
P5	A1 0.23644

A	V
A1	V1 0.18339

P3	A1 0.00906 A1	V2 0.11979

P	V

P5	V1 0.25324 A	E A1	E1 0.01117
P5	V2 0.16542

V	E
V1	E1 0.01196

P3	V1 0.00970 V2	E1 0.00781
P3	V2 0.00634 P	E P5	E1 0.01542

P3	E1 0.00059

From the above calculation, it can be seen that there are five risk scenarios with a risk
degree exceeding 0.05, which, respectively, reflect the three main risk coupling scenarios
of risk management in this flight mission, namely pilot human factors–environmental
factors, human factors–aircraft factors, and aircraft factors–environmental factors. The
main risk scenario includes a total of five risk coupling sub-scenarios, of which the top
three key coupling sub-scenarios are P5	V1, P5	A1, and A1	V1, with risk degrees of
0.25324, 0.23644, and 0.18339, respectively. Pilot training, wind, and aircraft conditions are
the critical risk factors for coupling, indicating that in flight training, the quality of pilot
training will directly affect the risk value. In the case of poor flight training and other risks,
the risk value in this scenario is high, and flight accidents are very likely to occur.
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4. Results and Discussion

The proposed model firstly obtained all risk factors by risk identification, secondly
ranked risk screening by the IPC-CM model, and finally output the final risk values by the
N-K model and Bayesian formula. The following results were obtained and discussed.

(1) Regarding the research involving screening filtering and ranking in the RFRM
method, the IPC-CM model is proposed, which abandons the traditional purely qualitative
way of risk matrix assessment and takes advantage of the cloud model in terms of the
uncertainty of subjective perception. Based on cloud theory, cloud vertices, ranges and
thicknesses are used to show the risk value of risk factors visually. The cloud model
obtained by this method is scientific, intuitive, and easy to understand. Figure 8 shows
the results based on the IPC-CM, which achieves a further division of the same level
in the traditional risk matrix assessment [15]. Figure 8a–f reflects the risk value of risk
factors under different levels. As a result, a preliminary screening assessment algorithm for
systemic risk is formed.

Figure 8. Risk factor cloud model.

(2) Regarding the quantitative assessment of coupling scenarios in RFRM, Table 13
shows that the risk value increases with the increase in coupling factors, T4 > T3 > T2.
Table 12 reveals the key coupled risk scenarios and their hazard levels in flight training risk
management. The results show that when P5	V1, P5	A1, and A1	V1 factors are coupled,
the risk values are large, 0.25324, 0.23644, and 0.18339, respectively—much higher than the
high-risk level of 0.05. Among them, the pilot and environment coupling have the highest
number and enormous risk value, which fully confirms that the pilot is still the primary
cause of current flight training accidents [39]. At the same time, the findings show that the
number of aircraft conditions involved is low, but the risk value is also high. Although
the leading cause of flight accidents is no longer early mechanical failures, the degree of
severe consequences caused by aviation equipment has not decayed in the slightest [40], so
the risk value is still high. In addition, when pilot-related risk values are high, the quality
of trainee flight training should be subsequently enhanced, and when environmental
involvement risk values are high, the meteorological safety of training flights should be
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strengthened. In conclusion, the assessment results guide the key direction of flight training
risk management.

Table 13. Risk coupling value at risk.

Risk Coupling Scenario Risk Value Risk Coupling Scenario Risk Value

T (a c) 0.4173 T (a b c d) 0.8257
T (a b) 0.3635 T (a b c) 0.6939
T (b c) 0.1953 T (a c d) 0.4194
T (c d) 0.0914 T (a b d) 0.3572
T (a d) 0.0395 T (b c d) 0.2480
T (b d) 0.0067

In terms of overall flight training risk management, according to the final assessment
results in Table 12, it is evident that the pilot training situation participates in a high number
of couplings and has an increased risk of the coupled with other threats, implying that
the management of the pilot training situation at the flight school is becoming more and
more critical. In the study results, wind and aircraft condition factors also have higher
risks of coupling with other threats. However, in the actual training process of domestic
flight schools, the focus is still only on the operational skills of the aircraft, and most of
the risks are often managed by the instructors on behalf of the pilots, although the risk
values are significant. The perspective is prone to cause pilot dependency psychology [41]
and to cause the Dunning–Kruger effect [42]. As China has entered the stage of high-
quality development, reducing costs, increasing revenue, and improving efficiency will
inevitably lead to the emergence of the adverse effects of risk overlap. In civil aviation
flight safety, without a set of scientific risk identification and assessment methods, it is
difficult to truly grasp the policy of moving forward the gate, controlling at source, and
implementing prevention-oriented and comprehensive management to conduct scientific
risk management. This paper fully demonstrates the existence of such critical risks from
risk management identification and assessment. It also reflects the inadequacy of risk man-
agement in domestic flight schools. The aim is to systematically learn risk identification and
assessment methods from the initial training theory stage, develop pilots’ risk management
capabilities, and enable them to autonomously identify risks, assess them, and eventually
control them. This paper provides a new risk identification and assessment methodology
to facilitate pilots’ scientific risk management. More importantly, as risk management is
one of a pilot’s core competencies for flight school, the method can provide a positive
reference for the development of risk management core competency of pilots by continuous
identification, screening and assessment.

5. Conclusions

In this paper, a new HHM-RFRM risk identification and assessment method has been
proposed. Based on the assessment results, the conclusions are as follows:

(1) Research on risk identification in HHM proposes the HHM-PAVE framework
construction method. HHM iterative ideas address the holistic, logical aspects of system
risk. The Delphi method reduces individual cognitive errors (randomness), while the
PAVE framework enables pilots to reduce their workload and identify risk factors more
clearly. The HHM-PAVE framework solves the fuzzy logic problem between risk factors
in the existing text classification, making the identified risk factors more comprehensive
and objective.

(2) Research on risk assessment, based on the uncertainty of qualitative evaluation and
system resistance, proposed the CR-HM model, which uses the IPC-CM model to complete
a more scientific ranking of risk factors and screening. The method based on risk factors
can more objectively integrate system resistance. This method takes into account not only
the likelihood of accidents caused by risk factors and the severity of the consequences but
also the resistance of the overall system to the risk factors. The CM model obtained by this
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method is significantly lower than the traditional CM algorithm in En and He, solving the
uncertainty of human cognition in the qualitative risk assessment matrix and making the
assessment results more scientifically segmented and intuitive. The introduction of the N-K
model and Bayes’ theorem in the coupled risk scenario is utilized to realize the quantitative
assessment of the coupled scenario hazard degree.

(3) A new HHM-RFRM methodology is proposed for the overall risk identification and
assessment. A case study including a flight training mission is conducted to identify key risk
factors and coupled risk scenarios, assess their hazard levels, and identify weaknesses in
risk management. The method can help pilots identify key risk factors; evaluate the degree
of risk; help pilots establish a scientific approach to risk management; effectively improve
the efficiency of risk prevention and control management; improve the development of
core competency of pilots; and enhance risk management in domestic flight schools.

Future research will start with the risk identification of specific scenarios and further
analyze the intrinsic mechanism of coupled risk scenarios and the impact on critical aspects
of pilots. Based on the digital risk management platform, a pilot-oriented risk assessment
and decision support model will be constructed to ensure flight training safety further.
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Abstract: Due to their unique nature, construction projects are considered one of the world’s most
hazardous and incident-prone industrial sectors. The present study aimed to analyze health, safety
and environmental (HSE) risks relating to construction projects based on the project management
body of knowledge (PMBOK) and sustainability approach. This study was conducted with the
participation of 30 experts, using the semi-quantitative risk assessment technique, in nine areas of the
project management’s body of knowledge, based on the fuzzy analytic hierarchy process. Risk, in
this study, was estimated using a two-dimensional matrix of incident probability and severity, each of
which has four sub-parameters. The HSE risks pertaining to each of the nine areas of PMBOK were
identified. After that, the two dimensions of risk, including incident probability and severity, were
measured. Thirty-seven risk sources associated with nine areas of the PMBOK were identified. Risk
analysis revealed that 20 sources were at an unacceptable risk level, and 17 risks were at a tolerable
risk level. Identifying HSE-related risk sources in accordance with the nine areas of PMBOK, and
using FAHP to assess the risk of these hazards in construction projects, can lead to a more realistic
estimate of risk in construction projects. The presented method in the current study can create a novel
perspective in terms of the construction industry’s risk management and assessment.

Keywords: construction project; risk; project management body of knowledge; safety; sustainability;
fuzzy analytic hierarchy process

1. Introduction

Construction projects are generally complex and sometimes unsafe for workers and
environments, thus affecting sustainable development [1]. They are one of the most
hazardous workplaces because of the high number of accidents that occur. Consequently,
construction safety can be regarded as one of the most severe problems in the construction
industry worldwide, particularly when large construction projects are underway. This is
because of the involvement of many workers, construction techniques, numerous large
and heavy plants, the large amount of materials and equipment utilized, the complex
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construction operations, the multi-interfaces, and the different disciplinary aspects of
the project’s workforce. These measures eventually lead to higher accident rates during
construction projects. Accidents that tend to occur during construction projects include
falling from a height, collisions, collapsing, and electric shocks; of these, falling from height
and collapsing are the most prevalent [2,3].

Due to their unique nature, construction projects are considered to be part of one of the
most hazardous and incident-prone industrial sectors in the world [4–7]. The construction
industry has always faced challenges in terms of risk factors and health, safety, and envi-
ronmental (HSE) risks. The number of incidents and injuries in the construction industry
has increased daily, making the construction industry one of the world’s most hazardous
industries [8]. Indeed, 25–50% of catastrophic and fatal incidents in industrialized countries
are related to the construction industry [9]. A previous study has shown that the construc-
tion industry in the USA, South Korea, and China have consistently high fatal occupational
injuries, and the most common accident types were “fell from a higher level” and “struck
by an object”. China recorded the highest average number of fatal occupational injuries in
construction sites at 2328, followed by the U.S. at 881, and South Korea at 533; however,
South Korea had the highest average mortality rate at 17.9, followed by the U.S. at 9.4, and
China at 5.3 [10].

The presence of harmful occupational incidents in construction projects, such as falls
and slips, thrown objects, abrasions, and collisions, are among the major incidents that
tend to occur in this sector. These incidents have other consequences associated with them
in addition to direct and indirect costs and adverse social consequences, such as legal
prosecutions, damage to the organization’s credibility, a reduction in the quality of the
project, and so on. As such, paying due attention to these factors can play a very important
role in the promotion and productivity of organizations [11].

Construction safety, as a result, continues to represent a severe problem, and it poses
a challenge for researchers and practitioners. In Iran, society and the economy have
suffered human and financial losses due to poor safety performance in the construction
industry [2,3].

Today, one of the main reasons behind the economic development of any society is
its success in advancing construction projects and creating the necessary infrastructure
in that society. Realizing this requires the necessary technology and expertise during
the management of these projects. There are several approaches and standards in this
regard, one of which is the project management body of knowledge approach. The PMBOK
approach emphasizes nine main areas of project management: project integration manage-
ment, project scope management, project schedule management, project cost management,
project quality management, project human resource management, project communication
management, project risk management, and project procurement management [12].

In its PMBOK guide to the project risk management process, the Project Management
Institute (PMI) defines six phases: risk management planning, risk identification, qualitative
risk analysis, quantitative risk analysis, risk response planning, and risk monitoring and
control [12]. Analyses of incidents in construction projects shows that improper risk
management processes have caused many of these projects to encounter severe problems.
Consequently, many organizations implementing construction projects have been removed
from the competition cycle due to the lack of proper risk management of occupational safety
and health (OS and H). Furthermore, supposing the root cause of the abovementioned
issue is found, it then becomes apparent that the majority of problems are caused by
the inadequate project management structure, chiefly, the occupational safety and health
(OS and H) management of the project. In addition, there seems to be no coherent and
appropriate method or algorithm to mitigate this issue.

In addition to management concepts that are appropriate to the nature of industrial
risks, using accurate and reliable mathematical approaches, such as the Fuzzy Analytic Hier-
archy Process, can be a practical step when assessing the risk factors in this industry [13,14].
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Sustainable organizations persist in balancing the triple bottom line of people, planet,
and profit to acquire long-term success and viability. This implies that organizations
cannot be sustainable without protecting their human resources’ safety, health, and welfare.
Sustainability is not just about what is done but how it is done. It is a mindset that demands
leadership, and not settling for second best in any aspect of the operation. Moreover, it
requires setting and achieving goals beyond regulatory compliance measures [1,15].

Worldwide, organizations have assumed this mindset to showcase their values, to
measure effects and consequences, and to increase their competitive benefit; however,
workplace safety and health are often underemphasized or ignored entirely. Integrating
safety and health into sustainability offers an opportunity to better protect employees and to
create a sustainable organization. Although many worker points are embedded within the
concept of sustainability, there is a unique chance to progress O and H using this framework.
In this context, OS and H promotes workers’ safety, health, and welfare. Employing a
sustainability framework provides a way to reimagine approaches for protecting workers,
it introduces new issues to analyze, and it offers opportunities that aid innovation [16].

Unexpectedly, this is not often the case, as little attention is given to safety concerns
when a sustainable approach is being developed. Organizations’ sustainability programs
usually only focus on environmental and financial situations. Safety should be given
suitable attention in order to create truly sustainable practices as it preserves human
resources. Moreover, sustainability is about conserving resources such as the environment
and measuring how socially responsible an organization has been when conducting its
operations, including its ability to protect employees (human resources) from incidents and
occupational injuries [15,17,18].

Experts argue that occupational safety and health fit squarely within the social respon-
sibility component of sustainability [19].

One of the most important ways to decrease incidents and consequences in construc-
tion projects is to use risk assessment methods that are adapted to the working conditions.

One of the ways to achieve sustainability is to preserve the safety of employees,
especially in high-risk work environments. This involves assessing the relevant risks
associated with the dangers of work environments, and forming management plans with
forward-looking and proactive approaches. To achieve this, all existing potential hazards
must first be identified and assessed. Then, appropriate controls and corrective measures
should be taken to obtain the following [11]: risk management and assessment, as an
essential element to identify all HSE risks. Indeed, this can help the construction industry
detect critical hazards [1,20,21]. All of the abovementioned issues call for the creation of an
appropriate scientific and operational algorithm that is commensurate with the nature of
HSE risks in the construction industry. As one of the highest-risk sectors in the occupational
community, in both developed and developing countries, a scientific approach, such as a
fuzzy analytic hierarchy process, could be beneficial. As such, this study was designed
and conducted in order to analyze the HSE risks of construction projects, in accordance
with the nine areas of the project management body of knowledge, using the fuzzy analytic
hierarchy process approach.

2. Materials and Methods

2.1. Study Design

The current study was a descriptive–analytical, cross-sectional study that was con-
ducted within one of the largest construction macro-projects in Iran, in 2020. This study
used a semi-quantitative technique to assess HSE risks based on the sustainability ap-
proach and fuzzy analytic hierarchy process (FAHP) methodology. Risk, in this study,
was estimated based on a two-dimensional matrix of incident probability and severity,
each of which has four sub-parameters. In the present study, HSE risks related to the
9 area project management body of knowledge were identified and assessed in a large
construction project with the participation of 30 experts in project management, health,
safety, and environment (HSE), as well as construction.
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All participants were male and employed in the largest construction project hub in
Iran—Tehran. Among the participants, ten experts had a master’s degree, and twenty
experts had a bachelor’s degree. The mean and standard deviation of the age and work
experience of the participants were 41.6 ± 10.32 and 12.14 ± 8.10 years, respectively.
Moreover, 50% of the participants had a degree in safety engineering, 35% had a degree in
HSE engineering, and 15% had a degree in industrial management. In order to collect data,
checklists to measure the two components of probability and severity, and eight parameters
to determine the values of the mentioned components, were designed and given to experts
for evaluation. In order to evaluate the reliability of the collected data, the most skilled
and experienced experts in Iran were used. Additionally, at the beginning of the study, a
training class was held to familiarize the participants with the evaluation model. During
the study, the performance of participants was monitored by researchers. Implementation
steps of the present study are presented in Figure 1.

1 • Study Design

2 • Taking nine areas of PMBOK into consideration

3 • Hazard Adentification based on PMBOK

4 • Determining the parameters related to the probability and severity of risks

5 • Performing Fuzzy Analytic Hierarchy Process

6 • Determining the weighted values of the parameters 

7 • HSE risk analysis of the sudied construction projects

Figure 1. Implementation steps of the present study.

Project Management Body of Knowledge

PMBOK is the most well-known global standard in project management, and it is the
most common benchmark for assessing project management systems (in other words, it is
a familiar language in project management). The PMBOK guide is defined based on the
following processes.

The three processes include:
Inputs (documents, maps, designs, etc.);
Tools and techniques (how to use inputs);
Outputs (documents, productions, etc.).
The nine areas of the PMBOK guide include the following items:

1. Integration;
2. Scope;
3. Time;
4. Cost;
5. Quality;
6. Human Resources;
7. Communications;
8. Risk;
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9. Procurement.

Process groups categorize PMBOK processes according to their conceptual sequence.
There is a process in five of the PMBOK groups:

The planning process group is in charge of project planning.
The implementation process group is responsible for the implementation of project

plans.
The monitoring and control process group evaluates how well the project is being

implemented and programmed.
The termination process group performs some of the final tasks for the project.
The PMBOK is a general term that describes a body of knowledge in the project

management profession.
The PMBOK global standard is one of the best project management standards in

the world, and it is revised every four years by the project management institute (PMI).
The purpose of PMBOK is to provide its audience with an integrated approach to project
management practices. In this study, we used the 6th edition of PMBOK.

This study was conducted in accordance with the following steps:

2.2. Identification of HSE-Related Risks

Identifying HSE risks in this study was based on the nine areas of PMBOK. These nine
areas include: (1) project integration management, (2) project scope management, (3) project
schedule management, (4) project cost management, (5) project quality management, (6)
project human resource management, (7) project communication management, 8) project
risk management, and (9) project procurement management [12]. Identifying the HSE risks
in this large construction project was performed using a risk identification checklist that
was related to construction projects. Moreover, a description and analysis of the various
activities that were undertaken for this project were also used to identify HSE risks, as was
a brainstorming approach that was employed by the panel of experts in the study.

2.3. Measurement of Sub-Parameters of Risk Dimensions

This study used the guide in order to perform the semi-quantitative risk assessment
technique to calculate and estimate the sub-parameters of risk dimensions, including
incident probability and severity. The dimension of risk repeatability in this study included
the parameter of incident probability, which was measured based on four sub-parameters,
including technical inspection, incident experience, detection probability, and human
reliability (Table 1). The incident severity parameter was estimated as the dimension
of risk outcome using the sub-parameters of human harm, cost imposition, damage to
the organization’s credibility, and impact on project time and operational interruption
(Table 2) [3].

Table 1. Guide to the determination of incident probability [3].

Score
Technical
Inspection

Incident Experience Detection Probability Human Reliability (HR)

1 Weekly

Incident data are available in
similar projects and root

analysis has been performed
on them.

The risk is detected and
revealed via the existing

controls.

Regarding this risk, HR is
assessed, BBS is implemented,

a training program is
implemented, and training

outcomes are evaluated.

2 Monthly

Incident data are available
through employer/contractor
records, and root analysis has

been performed on them.

The probability (>50%) is that
the risk is detected and

revealed via the existing
controls.

Regarding this risk, a training
program is implemented and

training outcomes are
evaluated.
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Table 1. Cont.

Score
Technical
Inspection

Incident Experience Detection Probability Human Reliability (HR)

3
Once in every
three months

Incident data are available
through employer/contractor

records. Only a descriptive
analysis has been performed

on them.

The probability (<50%) is that
the risk is detected and

revealed via the existing
controls.

Regarding this risk, a training
program is implemented.

4
Once in every six

months

Incident data are available
through the

employer/contractor records.
No analysis has been
performed on them.

It is unlikely (<10%) that the
risk is detected and revealed

via the existing controls.

Regarding this risk,
compulsory and official

training programs have been
incompletely performed.

5
At least once

during the project
lifetime

No incident data is available.
There is no control, and in the
case of any risk being present,

it is not detectable

Regarding this risk, no
measure is taken for HR

assessment, BBS
implementation, training, or

evaluation.

Table 2. Guide to the determination of incident severity [3].

Score Human Harm
Cost Imposition

(Financial Damage, Legal
Fine)

Damaging
Organization

Credibility

Impact on Project Time
and Operational

Interruption

1
Minor harm, injury,

and trauma requiring
first aid.

Less than USD 2500 Imperceptible
repercussions

Operational interruption of
less than 2 h

2

Moderate harm, lower
trauma, and injury,

leading to short-term
hospitalization (up to

three days).

USD 2500–5000 Repercussions among
the stakeholders

Operational interruption of
up to one day

3

Severe harm, and
multiple traumas and

injuries, leading to
long-term

hospitalization (more
than three days).

USD 5000–10,000
Repercussions among
the stakeholders and

social networks

Operational interruption
ranging from one day to

one week

4

Harm leading to
disability, amputation,

and permanent
disability.

USD 10,000–25,000

Repercussions among
the stakeholders, social

networks, and
widely-circulated

newspapers

Operational interruption
ranging from one week to

one month

5
Death of one person or

more. More than USD 25,000

Repercussions among
the stakeholders, social

networks, and
widely-circulated

newspapers, both at the
national and

international level

Operational interruption
lasting more than one

month

2.3.1. Probability of Occurrence

The probability feature that relates to the concept of risk is defined as the probability
of an incident happening within a specific period, which, in this study, was determined
using the following parameters.
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• Detection probability;
• Human reliability;
• Technical inspection;
• Accident experience;
• Severity of occurrence.

2.3.2. Severity of Occurrence

The severity component that relates to the concept of risk is defined as the range of
losses and injuries caused if the risk comes to fruition, and harm occurs. It is clear from
this concept that this parameter can be calculated and specified through the following
important factors:

• human injury;
• financial loss;
• operational interruption;
• reputational damage.

2.4. HSE Risk Analysis of Construction Projects

An analysis of the HSE risks that are related to the 9 PMBOK areas of this large
construction project was conducted in accordance with FAHP. These risks were analyzed
using a two-dimensional risk matrix (Figure 2). The weight factors presented in this figure
were calculated and presented for each of the sub-parameters of the two dimensions of the
risk matrix in accordance with FAHP.

Figure 2. Algorithm of Construction Risk Assessment [3].

The current study was performed using the method proposed by Chang; this is because
it is easier to perform and it yields accurate results [22,23]. As such, the construction risk
index (CRI), and the incident probability and severity parameters, were calculated based
on equations 1–3 and Figure 2 below. It should be noted that decision-making levels based
on these calculations have been classified into acceptable risk (CRI < 1), ALARP (as low as
reasonably practicable) (CRI = 1–3), and unacceptable risk (CRI > 3).

ALARP stands for “as low as reasonably practicable”. “Reasonably practicable” means
weighing a risk against the trouble, time, and money needed to control it; thus, ALARP
describes the level to which we expect to see workplace risks controlled.
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The ALARP concept can be used to define two sets of risk tolerance criteria: a mini-
mum requirement and a target value. Between the two sets of criteria, a tolerable level of
risk may be found. The residual risk should fall either in the acceptable region or close to
the bottom of the tolerable region. The ALARP concept arises within a regulatory frame-
work. Increasingly, it is used by companies around the world as it provides a reasonable
basis for managing risks [24].

CRI = [Probability × 0.486]× [Severity × 0.514] (1)

Probability = ∑ PiPWi (2)

Severity = ∑ SiSWi (3)

CRI: Construction risk index;
Probability: Incident probability;
Severity: Incident severity;
Pi: Numerical index of sub-parameters of incident probability (Table 1);
PWi: Normalized weight of each of sub-parameters of incident probability (Figure 2);
Si: Numerical index of sub-parameters of incident severity (Table 2);
SWi: Normalized weight of each of sub-parameters of incident severity (Figure 2) [3].

3. Results

The results of the HSE hazard identification, based on nine areas of the PMBOK,
revealed that a total of 37 risks in this project threaten the safety and health of human,
as well as economic and environmental investments (Tables 3–5). These risks include (1)
integrated project management (four risks), (2) project scope management (three risks), (3)
project scheduling (five risks), (4) project cost management (three risks), (5) project quality
(five risks), (6) human resources (four risks), (7) project risk management (four risks), (8)
project communication (three risks), and (9) project procurement (four risks). The factors
leading to the incident probability for each of the 37 risk sources have been presented in
Tables 3–5.
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The results of the HSE risk assessment for this construction project showed that the
risk index for 20 risk sources was estimated to be at an unacceptable level, and it was at the
ALARP level for 17 risk sources.

None of the risk sources had a risk index at an acceptable level. It is worth men-
tioning that ten risk sources, despite the estimated risk index of three, were placed at the
unacceptable risk level, thus requiring immediate corrective measures.

Based on the results, out of the four identified risks in the area of integrated project
management, the HSE risk level related to two risk sources was found to be at the ALARP
level, and it was found to be unacceptable for the other two risk sources. Table 3 also
revealed that the risk level of three identified risks under the project’s management was at
the ALARP level. In addition, the risk level of four risk sources which pertained to project
scheduling was at the ALARP level.

Moreover, the risk level regarding ‘not allocating time to make the environment safe
before starting work’ (such as installing a lifeline) was assessed to be at unacceptable level
(Table 3).

According to the results presented in Table 4, the level of risk of three risk sources
related to project cost management was unacceptable, whereas for two risk sources, it was
estimated to be at the ALARP level. The risk level of the five risk sources related to project
quality was estimated to be at an unacceptable level. The results in this table also showed
that the HSE risk of three sources regarding human resources in project management
knowledge was unacceptable (Table 4).

As is shown in Table 5, one risk source in the area of project risk management was at an
unacceptable level, whereas the risk level for the other three risks was estimated to be within
the ALARP range. The results of the risk assessment related to project communication
showed that the risk level of the two risk sources was assessed to be at an unacceptable
level. Furthermore, the risk level of two risk sources in the project procurement area was
found to be within the ALARP range, and it was assessed to be unacceptable for two
other sources.

4. Discussion

Construction projects are one of the most hazardous and incident-prone industries
due to their unique and dynamic nature [20,25,26]. A construction site is a dynamic, contin-
uously evolving workplace that accommodates multiple groups and suppliers working in
parallel. In addition, the impulsive nature of weather, deliveries, and unexpected events
put pressure on stakeholders to manage tight deadlines and limit costs.

Effective safety management in construction projects is a core consideration for all
types of organizations that are responsible for protecting and optimizing the efficiency
of human resources. Concerning construction, ensuring workplace safety is not an easy
task. Occupational accidents in the construction industry will have an impact on economic
and social issues in organizations, as well as countries. The growth of the construction
industry has been mitigated by accidents or injuries, which occur frequently. It has been
calculated that around 60,000 construction fatalities occur worldwide annually, equaling
one accident every nine minutes. Among all industries in the world, construction has the
highest accident rate, including deaths and disabling damages [2,3].

The severity of the damage caused by construction projects is so great that creating
a suitable platform for risk management and reducing incidents has become a national
priority in many developed and developing countries [27,28]. Despite the very favorable
turnover of construction projects, many construction worksites worldwide still do not
provide good, safe conditions. Studies have shown that construction projects have a wide
array of risk factors that lead to reduced safety levels and increased incident rates in the
industry [1,29,30]. In these projects, each worker is directly exposed to a high volume
of risk factors which contribute to incidents. In addition to causing human damage, the
hazards associated with these projects can impact various aspects of the industry, such
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as a project’s existing costs, the quality of work, time scheduling, and organizational
credibility [31].

Various studies revealed that the construction industry is one of the most dangerous,
due to its exceptional and dynamic nature [32–35]. The severity of losses and damages
caused by construction projects is such that creating a suitable platform for the risk manage-
ment process, in order to reduce accidents in many developed and developing countries,
has become a national priority [36]. In these projects, each person was directly exposed to a
high volume of risk factors which can cause accidents. In addition to generating harm to
human resources, the risks associated with these projects can affect various aspects of the
industry, such as current project costs, quality of work, time management, the credibility
of the organization, and so on. [37]. Other studies show that the mentioned risk factors
include personal risks, occupational risks, environmental risks (unsafe conditions), unsafe
acts, and managerial–organizational factors [38,39].

The study performed by O. Sanni-Anibire et al. revealed that the type of accident with
the highest risk score involved “falling objects”, whereas the most significant cause was
excessive winds on the project site. Their results showed that slips, trips, and falls had the
best safety performance. Furthermore, using a six sigma evaluation, the average project
safety performance was 2.33-sigma, which implies that 228,739 accidents may occur in
every million opportunities [40].

The results of the current study showed that the existing risks, based on nine areas
of the PMBOK, consist of integrated project management, project scope management,
project scheduling, project cost management, project quality, human resources, project risk
management, project communication, and project procurement. The results of the HSE risk
assessment that were related to the Project Management Body of Knowledge also revealed
that the risk index was estimated to be at an unacceptable level for 20 risk sources, and
it was at an ALARP level for 17 risk sources; however, none of the identified risk sources
were assessed as having an acceptable risk level, thus indicating the presence of high-risk
levels in this industry.

The results of the HSE risk analysis of the construction project in this study were
based on three areas of project management knowledge, including: integrated project
management, project scope management, and project scheduling. Moreover, the results
pointed to a lack of attention to the status and principles of HSE in all stages of the
construction project. This is the most important principle for controlling the risk factors
on the worksite, and one of the major reasons for the high frequency of incidents in the
construction industry. This issue implies that most construction employers pay the least
attention to the subject of HSE risk management in the initial and time scheduling phases
of the project. One consequence that can increase the risk index is the impact on the
scheduling of construction projects, which can create fundamental challenges for defined
project scheduling. Some of these challenges include the deaths of key members of the
project, and operational interruptions which occur until their replacements are found. The
death or disability of employees, equipment damage, and project interruptions until these
issues are resolved can cause a loss of employee morale. Moreover, long-term interruptions
of the project may also occur due to governmental organization intervention as a result of
non-compliance with HSE rules and regulations [27,28,41,42].

With regard to the importance of human resources, there are times when the incident
involving the worker is simple and non-technical; sometimes, the same happens to the
project manager or CEO. Obviously, the consequences of the incidents in the two cases are
different. As such, in risk assessment, it should be made clear which of these two groups
are exposed to incidents and how many human resources are exposed to them.

In addition, disregarding the issues related to risk management in financial manage-
ment and project procurement can impose direct and indirect costs on the project. Failure to
comply with safety precautions can cause high costs because of non-compliance with HSE
regulations, monetary compensation for death, medical expenses, an increase in insurance
rates, indirect costs due to reduced work efficiency, damage to equipment, and so on [5,29].
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The impact of incidents on the direct and indirect costs of the project is considered to be
only a minor part of the consequences related to HSE risks and project costs; therefore, one
of the most tangible ramifications of HSE risks lies with project costs. Failure to observe
safety measures and the improper management of existing risks can lead to heavy financial
costs for the project [42,43]. The results of this study also showed that paying attention to
costs is of paramount importance in risk assessment and prioritization.

According to several studies of this nature, various factors affect the levels of HSE
risks. The effect of HSE risks on quality in the study by Husin et al. [44], the effect of HSE
risks on cost in the study by Ikpe et al. [45], and the effect of HSE risks on human resources
in JW Garrett and Teizer [46], are examples of such studies.

In a study conducted by Debasish Majumder et al., the results revealed that FRA and
FAHP approaches could evaluate the worksite’s actual status, and important hazards can be
identified to motivate proprietors to invest in safety in their industry. With this technique,
all the input parameters are measured in terms of fuzzy numerals (accident percentage,
accident severity, and expenses of safety measures). The overall risk is calculated as the sum
of the products of the RS and the weight of each body part in terms of damage sustained
in an accident [13]; therefore, the use of management principles, as well as different and
reliable mathematical methods, such as the fuzzy analytic hierarchy process, can lead to a
more accurate estimation of the risk levels in construction projects.

In today’s world, sustainability is attracting considerable attention as many govern-
ments have integrated it into their economic development strategies. According to the
World Health Organization (WHO), sustainable development is defined as a strategy to
“meet the requirements of the present world population without generating an adverse
impact on health and the environment, and without consuming or endangering the global
resource, therefore without compromising the ability of future generations to meet their
needs.” Sustainable development depends on several regulations for preparing its actions,
many of which can be involved in occupational health and safety. These principles include
the necessity for attention to people’s health and quality of life, the prevention of known
risks, and the application of precautions when there is uncertainty concerning certain
dangers [16].

One of the ways with which to achieve sustainability is to preserve the safety of
workers, especially in high-risk work environments, by assessing the relevant risks in
accordance with the risks of work environments and in the form of management plans
using a prospective and preventive approach. In this study, practical steps were taken
to promote sustainable safety; a forward-looking approach was adopted by using project
management concepts that addressed the types of risk in the construction industry.

The results of the study performed by Jilcha et al. revealed that innovations in
workplace safety and health bring sustainable development via healthy people, a safer
workplace, decreased costs associated with accidents, a controlled environment, managed
workplace accidents, and improved workplace safety knowledge [47].

Hui Zhou et al. indicated that safety accidents cause significant losses of life and prop-
erty, which expose the problems in construction management and hinder the sustainable
development of society [1]. This issue reveals the need for innovation in the field of safety
assessment and management in this industry.

However, the authors of the current study, in their literature review, found that no
study deals with the various aspects of risk assessment, namely, the impact of risk on cost,
quality, project scheduling, damage to the credibility of the organization, legal and criminal
penalties, the importance of human resources, and the impact on human resources. It
should be mentioned that since the present study was conducted in Iran (a developing
country) and the safety levels observed in the construction industry in developed countries
are much higher, it is suggested that the method used in these countries should be used
with caution. It is also recommended that researchers in developed countries conduct
studies in the future using a similar algorithm.
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Considering that the issue of risk assessment is at the heart of the risk management
concept, it is suggested that future studies consider the present method when making
management decisions during construction projects.

The present study was performed in order to introduce and implement a unique
approach that assesses construction projects’ safety risks, in accordance with the dynamic
and specific characteristics of construction projects and activities that are based on the
PMBOK and FAHP. This study determined the most critical factors affecting construction
projects’ occupational accident frequency and severity. The present technique could be
a practical step toward decreasing occupational accident risk levels in the construction
industry and developing control plans, especially in developing countries, where there
exists lower risk management performance.

One of the limitations of the current approach is that there is no quantitative method
to calculate and evaluate the effective parameters pertaining to the construction industry’s
probability and severity of risks; thus, it is suggested that researchers in the future develop
and apply quantitative methods with the same algorithm as the present study. They should
ensure that such methods are developed in line with safety management systems via
international management guidelines.

5. Conclusions

The results of the current study indicate that the integration of HSE and PMBOK can
improve the effectiveness of the risk assessment and management process. Identifying
HSE-related risk sources in accordance with the nine areas of PMBOK, as well as using a
fuzzy analytic hierarchy process to assess the risk of these hazards in a construction project,
can help provide a more realistic estimation of the risk index in construction projects. Using
the existing guidelines in various areas of project management knowledge, and integrating
it with practical methods such as FAHP, can be an effective step toward creating a suitable
and specialized operational algorithm. Using the developed model in the present study can
be a practical step in evaluating risk sources and implementing effective control measures.
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Abstract: An environment of turbulence in the market in recent years and increasing inflation, mainly
as a result of the post-COVID period and the ongoing military operation in Ukraine, represents a
significant financial risk factor for many companies, which has a negative impact on managerial
decisions. A lot of enterprises are forced to look for ways to effectively assess the riskiness of the
projects that they would like to implement in the future. The aim of the article is to present a new
approach for companies with which to assess the riskiness of projects. The basis of this is the use of
the new Crystal Ball software tool and the effective application of the Monte Carlo method. The article
deals with the current issues of investment and financial planning, which are the basic pillars for
effective management decisions with the goal of sustainability. The article has verified a methodology
that allows companies to make effective investment decisions based on assessing the level of risk.
For practical application, the Monte Carlo method was chosen, as it uses sensitivity analysis and
simulations, which were evaluated for two types of projects. Both simulations were primarily carried
out based on a deterministic approach through traditional mathematical models. Subsequently,
stochastic modeling was performed using the Crystal Ball software tool. As a result of the sensitivity
analysis, two tornado graphs were created, which display risk factors according to the degree of their
influence on the criterion value. The output of this article is the presentation of these new approaches
for financial decision-making within companies.

Keywords: financial risk; sustainability; Monte Carlo method; sensitivity analysis; investment
planning

1. Introduction

Creating the conditions for correct investment decisions is a key factor leading to the
sustainability of businesses in the future. A systemic approach focused on the sustainability
of businesses in the field of financial and investment planning can create a comprehensive
view of the issue of effective managerial decision-making.

Currently, several authors are interested in and draw relationships between financial-
ization and technological innovations, as well as analyzing the behavior of nonfinancial
enterprises in financing from both a macro and micro perspective [1–3].

Risk is generally perceived as the uncertainty of future development, the uncertainty
of whether the projects that the company invests in will be profitable or will make a loss.
The success or, on the contrary, the failure of business projects can significantly affect
the economic result of the company and, in the worst case, even the very existence of
the company [4–6]. For this reason, companies should pay attention to the assessment
of the risks of individual business projects before their implementation. Currently, risk
management is very neglected in practice, but globalization forces our entrepreneurs to
apply new methods of risk management to their businesses in order to be competitive [7,8].
Risk analysis is usually understood as a process of defining threats, the probability of their
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occurrence, and the impact on assets, i.e., determining risks and their severity [9–11]. Other
authors [12–15] describe risk analysis as part of five basic phases of risk management: the
determination of project risk factors, the determination of the significance of risk factors, the
determination of project risk, the assessment of project risk and the adoption of measures
to reduce it, and the preparation of a corrective action plan.

We currently know several risk management methods for each business activity or
strategy. In general, we distinguish between deterministic and stochastic (probabilistic)
approaches to risk measurement. Deterministic approaches assume that a certain value of
one variable is assigned a certain value of the second variable. In stochastic approaches, it
is assumed that a certain value of one variable corresponds with certain probabilities of
different values of the other variable. Stochastic approaches incorporate variability into
the risk measurement model itself by specifying a probability distribution for the random
variables. In particular, the following types of probability models can be used to measure
risk: models based on an expert determination of subjective probability distributions,
analytical models, and simulation models [4,8,9,16].

For new business plans, the greater part of the required probability distributions of risk
factors must be determined by subjective estimation based on expert evaluation. It is usually
easier to determine them in the form of a discrete probability distribution for three decision
variants: pessimistic, most probable, and optimistic. In the second type of probabilistic
model, an analytical approach is used using standard theoretical probability distributions
for the continuous and discrete variables. The result of the solution is the determination of
the consequences of risk variants in the sense of determining the probability distribution
of the values of the evaluation criteria for individual risk variants. The third type of
probabilistic model—simulation models–is used when the problem is too complex for the
use of the previous methods. The main phases of simulation studies are the definition of the
problem, the creation of a simulation model, the specification of input variable parameters
and their mutual relations, and the simulation and design of new experiments. Currently,
the use of simulation models is associated with the application of Monte Carlo computer
simulations [4].

Large portfolios of financial assets or commodities with high variability, which can
significantly affect the financial stability of the company, will require more sophisticated
techniques, including statistical analyses based on the value at risk and cash flow at risk
models. VaR models make it possible to estimate the value of the risk in the portfolio as
a maximum loss in the event that the portfolio had to be held for a fixed period with a
predetermined level of significance—usually with a probability of 95% or 99% based on
past experience [17].

The categorization of individual methods for risk analysis is presented in Table 1.

Table 1. Overview of risk analysis methods [16,18–20].

Group of Risk Analysis Methods Types of Methods

Qualitatively

What-if method, scenario analyses, failure mode and consequence
questionnaires, criticality analyzes (FMEA / FMECA), hazard and operability
analysis (HAZOP), human error analysis (HEA), block reliability scheme, fault
tree analysis (FTA), event tree analysis (ETA), probability risk analysis and
safety assessment (PRA &PSA), survey questionnaires

Quantitatively
Statistical, cost and efficiency analysis, expert systems, analysis of the relative
value of risk, sensitivity analyses, Monte Carlo simulations, critical point
analysis; reduced standard methods, cost–benefit analysis, the Delphi method

Combined (qualitative and quantitative
approaches) Fault tree analysis, the Delphi method, value chain analysis
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Table 1. Cont.

Group of Risk Analysis Methods Types of Methods

Qualitative methodologies used in nuclear and
chemical processing plants

Preliminary hazard analysis (PHA), hazard and operability analysis (HAZOP),
failure mode and consequence analysis (FMEA/FMECA)

Tree techniques used to quantify the probability
of occurrence of accidents and other adverse
events leading to loss of life or economy

Fault tree analysis (FTA), event tree analysis (ETA), cause and effect analysis
(CCA), fault tree risk management (MORT), organizational safety management
by assessment technique (SMORT)

Techniques for a dynamic system Dynamic event logic analytical method (DYLAM), dynamic event tree
analytical method (DETAM), Markov model, transition method

Updated (positive) risk Market research, prospecting, test marketing, research and development,
business impact analysis

Downside risk (negative) Approach analysis, fault tree analysis (FTA), failure mode and consequence
analysis (FMEA)

Both

Dependency modeling, swot analysis (strengths, weaknesses, opportunities,
threats), tree and event analysis (ETA), business continuity planning, bpest
analysis (business, political, economic, social, technological), real option
modeling, decision making under conditions of risk and uncertainty, statistical
inference, measures of central tendency and dispersion PESTLE (political,
economic, social, technological, and legal environment)

Intuitive technique Guided discussion (brainstorming)

Inductive technique (What if?)
Preliminary hazard analysis (PHA), checklists, human error analysis (HEA),
hazard and operability analysis (HAZOP), criticality failure mode and
consequence analysis (FMECA)

Deductive method (so how?) Events and fault trees

The basis of risk management is a certain systematic procedure for working with risk
and uncertainty aimed at increasing the quality of project preparation and evaluation. The
first three phases of risk management include determining the risk factors, determining
their significance, and determining project risk [21–23]. These three phases are collectively
referred to as project risk analysis. The next two phases are referred to as the project’s own
risk management [10,24,25]:

• The 1st stage of risk management is the determination of risk factors. The content
of this phase is the determination of risk factors as quantities whose possible future
development could affect the economic results, the criteria of the economic efficiency
of the project (profit, return on capital, and net present value), and its financial stability;

• The 2nd stage of risk management is the determination of project risk. The importance
of the risk factors can basically be determined in two ways, namely expertly or by
using sensitivity analysis;

• The 3rd phase determines the risk of investment projects. Project risk can be deter-
mined numerically or indirectly. In numerical form, the risk is determined using
statistical characteristics (dispersion, standard deviation, coefficient of variation),
which serve as a measure of risk in financial management. Project risk is indirectly
determined using certain managerial characteristics, which, in their summary, provide
information on a greater or lesser degree of risk.

Hertz and Thomas [26] prescribe the content of risk analysis, which includes the
analysis of input variables (resulting in the determination of the risk factors and their
distribution functions), Monte Carlo simulation (generation of risk situations), and the
evaluation of outputs based on the obtained probability distributions. Berkowitz [27]
divides the risk analysis into two basic parts: the identification of risk factors and their
impact on the value of the portfolio and a model that connects the risk factors with the
observed output quantity.
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Savvides [28] presents a risk analysis model, which consists of a sequence of seven
basic steps, ensuring the processing of a certain number of inputs (random variables, i.e.,
risk factors, deterministic variables, and parameters) for the calculation of the outputs
(selected criteria for evaluating business projects).

Several authors [29–31] discuss the procedure for determining the significance of risk
factors in two ways, namely, the expert assessment of risk factors or sensitivity analysis.

The expert assessment of the significance of risk consists of a professional evaluation
by managers who have the necessary knowledge and experience in the areas where the
individual risk factors fall. The significance of the risk is assessed from two points of
view. The first is the probability of the occurrence of the risk factor, and the second is the
intensity of the negative impact that the occurrence of the risk factor has on the results of
the project [32].

The purpose of the sensitivity analysis is to determine the sensitivity of the project’s
economic criterion, such as its net present value, profit, and profitability of invested funds,
depending on the factors that influence this criterion. So, it means determining how certain
changes in these factors, for example, changes in the volume of production, or utilization of
production capacity, reflect changes in the selling prices of products, the prices of the basic
raw materials, the materials and energy, the investment costs, the interest and tax rates, the
exchange rates, the project lifetime, and the discount rates that affect the chosen economic
criterion of the project [18,33]. For those factors in which certain changes, e.g., a deviation
in the size of 10% from the most probable value, cause only a small change in this criterion,
we then can consider them to have little importance because the sensitivity of the chosen
criterion to changes in these factors is small.

On the contrary, those factors in which the same change causes significant changes
in the chosen criterion will certainly be significant for us. The given criterion is highly
sensitive to changes in these factors. However, in the case of risk factors with smaller
impacts on the project’s profit, it is necessary to remember that the percentage changes in
profit refer to an increase in these factors by a specified percentage. However, if possible,
changes in some risk factors with a small impact on profit can be significantly greater (e.g.,
in the case of energy prices); it is also necessary to consider such a factor as a significant
risk factor. Therefore, not only the results of the sensitivity analysis but also the possible
range of these factors are essential to define unimportant risk factors that can be neglected
and work only with their most probable estimates [34].

The main goal of these methods is to allow those managers who are responsible
for risk management to have more transparent access to information about threats and
to ensure integrated risk management throughout the enterprise at the level of strategic
management. In the current conditions of business uncertainty, simple deterministic
models are not sufficient; we need to focus more on the use of probabilistic methods for
measuring risk, which provide greater possibilities in terms of information security of
decision-making processes.

In our opinion, these methods most accurately determine the extent of risks and allow
investors to more easily decide on which investment project to invest in, as well as help
them decide on reducing or transferring risk to another entity.

The basic shortcoming of the traditional methods for evaluating investment projects
is a single-scenario approach based on an optimistic assumption of the development of
the business environment. An increase in the quality of investment decision-making, in
terms of respect for risk and uncertainty, can be brought about by probabilistic approaches,
a significant representative of which is the Monte Carlo simulation [35].

This tool requires the identification of risk factors affecting investment projects and,
thus, their evaluation criteria. The result of the application of Monte Carlo simulation is
the distribution of the probability of these quantities and, subsequently, an easier decision
for the investor to accept or reject investment projects based on valuable information about
the size of the project’s risk obtained by this method [19,36].
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The Monte Carlo method originated in the 20th century. Even so, this method is
currently considered one of the most advanced methods today. The wide application of
this method results from its simple modification to current conditions and the usability of
modern software tools. For this very reason, this method has become a multidisciplinary
method used in various scientific branches, such as the field of physics and electrical
engineering [37–40], chemistry [41,42], safety assessment [43], industry [44,45], the public
sector [46], economics [36,47–49], and many other fields. Practice has shown that the use
of the Monte Carlo method leads to a significant reduction in variance but, above all, to a
reduction in computing time [50,51].

The goal of our contribution is to apply Crystal Ball software tools and Monte Carlo
simulation in the evaluation of investment projects, which creates prerequisites for expand-
ing the applied use of simulation software tools in risk management in practice. The article
is aimed at solving the issue of financing the investment activities of companies in order to
decide on a more effective project. The modeling process was based on the evaluation of
the economic efficiency of the investment and a decision about which of the two projects is
more advantageous and less risky in terms of future sustainability.

The secondary goal was to integrate the use of new classical and modern economic-
statistical methods, which are an effective tools for the sustainability of businesses [1,3,52].
The application verification was based on the methodology presented by us in our pub-
lished article [19]. The methodology shows two approaches to eliminating risk in enter-
prises in Slovakia. The first approach represents the modeling of financial risks using the
principles of financial mathematics in order to optimize them. The second approach is
stochastic modeling, which is based on the use of simulations.

The purpose of the article is to present new approaches to assessing the riskiness of
projects and investment decisions. At the same time, the aim of the article is to verify, using
a practical example, the methodology created by us aimed at achieving the sustainability of
businesses in the territory of the Slovak Republic. The problem is primarily that businesses
in the territory of the Slovak Republic use traditional and outdated methods that do not
take risks and the factor of time into account in decision-making processes and in the
processes of assessing projects and investments. The purpose of this contribution is to
provide guidance for these companies on how to integrate new modern approaches into
decision-making processes. The article applies the methodology of assessing project and
investment decisions to the environment of a real company with the aim of introducing
new software tools to companies that will facilitate the decision-making processes of the
company’s management and, thus, make the decision-making about the future investments
of these companies more efficient.

Despite the wide applicability of the Monte Carlo method in published studies, there
is no guide for the simple integration of this method into decision-making processes in
companies. A methodology was therefore created for the conditions of companies in
the territory of the Slovak Republic, which provides simple instructions for companies
on how to integrate new approaches in the form of the Monte Carlo method into their
internal processes.

The use of the Monte Carlo method through the software environment creates space for
companies to implement simulations that integrate risk assessment, especially when taking
time into account. The businesses will obtain a realistic idea of the future development of
their investments. The main advantage of the methodology is the fact that the introduction
of such an approach for companies in the conditions of the Slovak Republic does not
represent high initial investments and will contribute to their sustainability.

2. Materials and Methods

The article deals with the issue of investment decision-making in enterprises in the
territory of the Slovak Republic. The basic principle of the article is the verification of the
methodology that was presented in the authors’ previous publications [19]. The method-
ology is aimed at solving the investment decisions of the company when implementing

123



Sustainability 2023, 15, 1006

modern software tools. Several companies operating in the territory of the Slovak Republic
were chosen to verify the methodology. To fulfil the objective of the presented article, the
article presents the outputs obtained from the methodology verification process within the
company, which acts as a partner company ensuring security in transport sector companies,
such as airports and transport companies. We will not name the company due to GDPR.
Among other things, the analyzed company provides a number of products for companies
in the transport sector that are essential as part of a security solution. The list of products is
shown in Figure 1.

Figure 1. Products of the analyzed company.

The analyzed company was forced to make a decision in 2022 to modernize their tech-
nological procedures in production manufacturing. The company considered purchasing
two types of lines:

• A project: the purchase of a new sheet metal ringer SIHR 6/3, 2050 × 6 mm. The
amount of this investment is EUR 47,422.08;

• B project: the purchase of a new welding machine, amounting to EUR 88,000.

For research purposes, the lifetime of both devices was 12 years in the company’s
accounting records. The introduction of full automation brings with it an increase in
production in direct proportion to the requested quantity, a reduction in labor costs, and a
reduction in nondelivery. However, an increase in the variable costs associated with energy
consumption is also expected.

It is focused on the use of the Monte Carlo method applied through the Crystal Ball
software tool in the MS Excel environment. The sequence of steps is shown in Figure 2.
As the algorithm of the methodology shows, the first step is to develop mathematical
apparatus, which was processed in the MS Excel environment. The mathematical apparatus
represents the modeling of deterministic variables that do not take into account changes in
time. The basic monitored value was the profit.
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Figure 2. The assessment methodology algorithm for the investment decisions [19].

The following relations have been used in the calculation:

1. Depreciation: The company primarily uses linear depreciation, and this has also
been modeled for the purpose of verifying the methodology, while the value of such
depreciation is expressed by the following relationship:

Depreciation =
Asset entry price

Period of depriciation
(1)

2. The value of operating costs has been calculated according to the following relation-
ship:

Operating cost = ∑(DC + IC + D + OC) (2)

where DC Direct cost; IC Indirect cost; D Depreciations; OC Other costs.
3. Revenues are calculated using the following relationship:

R =
n

∑
i=0

(P + S) (3)

where R Revenue; P Price; S Sale (quantity of sales).
4. The financial risk assessment model also took into account the tax burden in the

form of income tax calculation. According to § 15 letter (b) of the Income Tax Act, the
corporate income tax rate in Slovakia is 21% and is calculated from the tax base after the
deduction of the tax loss [53]. The tax base is calculated according to this relationship:

Taxbase = ∑ earlytaxbase − parto f non − taxable tax base, (4)

5. Profit after tax is calculated according to the relationship:

EAT = EBT − incometax f orordinaryactivity − incometax f orextraordinaryactivity, (5)

where EAT earnings after taxes; EBT earnings before taxes.

125



Sustainability 2023, 15, 1006

In order to perform the necessary analyses, defining the basic parameters of the Monte
Carlo simulation was required. The criterion value that has been assessed is profit before
tax (EBT). Fixed costs, variable costs, sales price, and production are considered to be risk
values (given that risk mapping has shown that they are the riskiest financial risks).

3. Results

3.1. Risk Mapping

As part of the risk mapping, a risk factor assessment matrix has been created. The
matrix is based on an expert risk assessment. The essence of the expert assessment of a
risk’s significance when using risk assessment matrices is that this significance is assessed
by two aspects. First of all, the probability of the occurrence of the risk was defined, and
then the intensity of the negative impact that the occurrence of the risk had on the company
was assessed.

The significance of the risk was assessed on the basis of a higher probability of oc-
currence and the higher intensity of the negative impact of this risk on the company. The
output is a semiquantitative assessment of the significance of the company’s risks based on
the risk assessment matrix or its graphic display. The resulting risk assessment matrix is
shown in Figure 3.

Figure 3. Matrix of risk.

The risk matrix interprets a graphical representation of the probability of occurrence
of a risk and its intensity. The significance of the impact of the risk is shown by a color
scale: red, orange, and green. The risks that are the highest for the company are marked
in red. On the contrary, the least risks are those marked in green. The yellow color
indicates the risks with a medium level of riskiness. From the risk matrix, it can be stated
that red risks are unacceptable for the company, and the company must immediately
minimize them. The orange risks are temporarily acceptable risks, which require the clean
implementation of measures within the company. The green risks are acceptable risks and
do not require immediate action. It is clear from the elaborated risk matrix that financial
risks are considered the riskiest for the company. For this reason, a profit was set for the
criterion value in the simulations.

3.2. Sensitivity Analysis in the Simulation Model

The software tool Crystal ball, which was used for the Monte Carlo simulation, enables
a sensitivity analysis to be performed through a tornado plot and a spider plot. The goal of
this analysis was to get a basic idea of the impact of individual risk factors on the criterion
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value: profit and cash flow, and thus also a kind of control, whether the impact makes sense
and whether there is, by chance, an error in the model. The principle of this analysis is that
the resulting values of the criterion value are calculated based on the selection of the values
from the predefined intervals of the possible values of the risk factors.

The output of the analysis is a tornado graph, which displays the individual risk
factors in descending order according to the degree of their influence on the criterion value.
The degree of influence is calculated according to the resulting values that the criterion
variable achieves in the values of the considered risk factor intervals. For the needs of
the sensitivity analysis in the simulation environment, the quantiles of 10% and 90% were
chosen. Even in this case, the influence of only one risk factor is always considered without
taking into account the simultaneous influence of other risk factors. The tornado graphs for
both monitored projects—the A project and the B project—are shown in Figures 4 and 5.

Figure 4. Tornado graph of the A project.

As can be seen from both graphs, the main risk factors are the fixed costs and the
selling price of the P6Te product. The figures show that the 10% quantile of the risk factor
in the form of the fixed costs in project A has a value of EUR 59,614.91, and in the B project,
EUR 177,866.91. Subsequently, the 90% quantile reaches a value of EUR 65,979.09 and a
value of EUR 196,855.09 in the B project for the fixed costs in the A project. It follows from
the above that the range of values of the criterion value is the highest between the 10%
and 90% quantile of the considered fixed costs. This means that if the fixed costs of the A
project are only 10%, the value of the profit will be EUR 34,585.09. This can interpret the
other values from the tornado charts of both projects in the same way.

The spider chart is also part of this analysis. The principle of this graph is practically
identical to that of the tornado graph, with the difference that the resulting values of the
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criterion value are monitored not only in the interval values of the risk factors, but also
between them. The spider charts of both projects are shown in Figures 6 and 7.

Figure 5. Tornado graph of the B project.

The spider chart shows the degree of influence of the risk factors using the slope of
the lines. The advantage of this graph compared to the tornado graph is that it can also
capture the possible nonlinear influence of the risk factor in the observed quantile interface
precisely because the recalculation of the criterion value is carried out at several points from
the interval of the possible values of the risk factor and not just from two. Additionally, in
this case, the results of both charts confirmed the results obtained from the tornado charts.

3.3. Monte Carlo Simulation

If the behavior of the model seems “reasonable”, it is possible to proceed to the Monte
Carlo simulation itself in the Crystal Ball software environment. Setting the number of
simulation steps is important when starting the simulation. For the needs of the simulation
in the analyzed company, the number of simulation steps was set to 10,000, which means
that a total of 10,000 values were generated within the simulation for each of the risk factors,
for which, of course, 10,000 values were also obtained for each criterion quantity.

The primary result of the Monte Carlo simulation is the frequency histogram of the
criterion variable and its automatic recalculation—normalization of the probability distribu-
tion. This fact enables the calculation of a whole range of statistical data. The main meaning
of the number/probability distribution from the point of view of risk analysis is the overall
view of the possible values of the criterion quantity and their number/probability. The
results of the Monte Carlo simulation and the statistical analysis of the selected company
for the A project are shown in Figure 8, and for the B project, in Figure 9.
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Figure 6. Spider chart of the A project.

Figure 7. Spider chart of the B project.
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Figure 8. Probability/numerical distribution of profit for the A project.

Figure 9. Probability/numerical distribution of profit for the B project.

Both graphs show that the distribution for both projects is symmetrical according to
the mean value and the probability. At the same time, it follows from both graphs that in
the case of the A project and the B project, the company will achieve a positive value for
the criterion value with a 100% probability, i.e., profit.

Another important analysis was obtained using the Monte Carlo simulation: the
Monte Carlo sensitivity analyses. It should be noted that although these results are similarly
interpreted as per the classic sensitivity analyses mentioned above, the sensitivity analysis
using Monte Carlo simulation is based on a completely different principle. This means that
individual risk factors are analyzed from the point of view of their contribution to the total
variance of the distribution of the criterion quantity. The graphic outputs of these analyses
for the A project are shown in Figure 10, and for the B project, in Figure 11.
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Figure 10. Profit sensitivity analysis—Monte Carlo Simulation in the A project.

Figure 11. Profit sensitivity analysis—Monte Carlo Simulation in the B project.

Crystal Ball calculates the sensitivity by computing the rank correlation coefficients
between every assumption and every forecast while the simulation is running. Correlation
coefficients provide a meaningful measure of the degree to which assumptions and forecasts
change together. If an assumption and a forecast have a high correlation coefficient, it
means that the assumption has a significant impact on the forecast (both through its
uncertainty and its model sensitivity). Positive coefficients indicate that an increase in
the assumption is associated with an increase in the forecast. Negative coefficients imply
the opposite situation. The larger the absolute value of the correlation coefficient, the
stronger the relationship. It is important to note that the “Contribution To Variance”
method is only an approximation and is not precisely a variance decomposition. Crystal
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Ball calculates Contribution To Variance by squaring the rank correlation coefficients
and normalizing them to 100%. Both the alternate “Rank Correlation View” and the
Contribution To Variance view display the direction of each assumption’s relationship to
the target forecast. Assumptions with a positive relationship have bars on the right side of
the zero line; assumptions with a negative relationship have bars on the left side of the zero
line [54].

The influence of risk factors on the criterion value described in this way is very
illustrative and can be shared mainly by laymen. However, from an analytical point of view,
it is necessary to bear in mind that this is a derived and not completely accurate calculation.
The principle of this sensitivity analysis is a rank correlation, within which the values of
individual risk factors are generated, and the resulting criterion values are calculated. This
is a kind of contribution to the variance based on squaring the rank correlation values and
normalizing them to 100%. Subsequently, all the generated values are ranked, and the
degree of rank correlation between the risk factors and criterion variables is calculated. In
this way, the influence of individual risk factors on the criterion value is proven through the
correlation value while simultaneously including the influence of all the other variables.

Despite the fact that a problem may arise when comparing both sensitivity analyses,
in the case of the A project and the B project, the results are uniform in the identification of
the riskiest factors, i.e., the fixed costs and selling price.

4. Discussion

Applying risk analysis to financial and investment decision-making is not easy due to
the fundamental differences between deterministic and probabilistic approaches. Important
barriers to successful implementation include, above all, the fact that it requires a change in
thinking and a change in the traditional, long-established system processes for decision-
making, and it is necessary to overcome resistance to changes.

An important limiting factor within sensitivity analysis in a simulation environment is
that it analyzes the impact of individual risk factors in isolation, i.e., without including the
dependencies between risk factors. Therefore, there is a danger arising from the exclusion of
one of the risk factors, which, based on this sensitivity analysis, appears to be insignificant
due to the neglect of its influence in connection with another risk factor. However, if we
summarize the conclusions from the sensitivity analysis in the simulation environment,
whether in the form of a tornado or spider web graph, it is significant mainly because of
the following reasons:

1. A certain first visual check of the consistency of the relationships between the risk
factors and the criterion value;

2. Evaluation of the significance of individual assumed risk factors in relation to the
criterion value and a compilation of a certain possible list of risk factors that are
unlikely to be important for further analyses;

3. Detection of the possible nonlinear relationships between risk factors and the
criterion value.

The sensitivity analysis is a relatively complex method, which is the result of
two influences:

1. The sensitivity of the model—in general, the sensitivity of the criterion quantity is
to the risk factor, which results from the relationships defined in the mathematical
model, e.g., how the criterion value changes when the value of the risk factor changes
by 1%;

2. Uncertainty of risk factor values—possible values the risk factor can reach.

If the sensitivity of the model is high, even small changes in the values of the risk
factors will lead to significant changes in the resulting criterion value. On the contrary, if
the sensitivity of the model is relatively small, even with larger deviations in the values of
the risk factors, significant changes in the criterion value may not occur.
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As the sensitivity analysis showed, fixed costs and selling prices can be considered the
riskiest factors. The correctness of the methodology was also confirmed by the fact that
both sensitivity analyses—classical (in the simulation environment) and sensitivity analysis
(in the Monte Carlo method)—demonstrated the significance of the same risk factors for
the criterion variable EBT.

The core of the presented methodology is the Monte Carlo method. Monte Carlo
simulation requires much more complex analysis than traditional deterministic models.
The objective of the verifiability of the methodology was the assessment of the profitability
of the projects in the selected company. The probability of project implementation within
the given time limit is determined after completing the total number of cycles. The statistical
metrics derived from these iterations are useful for determining the resulting decision for
the success of the project [55,56]. Monte Carlo simulation involves choosing a statistical
distribution representing the risk factor, which, in our case, is the duration of each activity,
and then running a large number of iterations, creating the same number of different
schedules for the project and calculating its total duration [57].

In order to assess the profitability of the projects, the profit output values and statistical
indicators were obtained through Monte Carlo simulation. A comparison of the outputted
statistical indicators is presented in Table 2.

Table 2. Comparison of the A project and the B project statistics.

Statistic A Project B Project

Base Case 31,403.00 96,761.50
Mean 31,402.49 96,810.06

Median 31,413.23 96,740.08
Standard Deviation 3573.40 10,759.20

Variance 12,769,151.90 115,760,336.76
Skewness 0.0123 −0.0054
Kurosis 2.79 2.83

Coefficient of Variability 0.1138 0.1111
Minimum 19,183.93 57,997.06
Maximum 43,339.7 139,061.57

The most interesting value is the difference between the mean value and the median,
which is given by the skewness of the distribution. The distribution of the B project is
skewed to the disadvantage of the company to the left (skewness is negative), i.e., the
probability of significant negative profit values is greater than the analogous probability
of positive values. In the case of the B project, the difference between the minimum and
maximum values generated by the simulation is significant.

When deciding on two projects, the following characteristics were applied:

• If two projects have the same average value of expected revenues, the project with a
lower standard deviation is preferred;

• If two projects have the same standard deviation, the project with a higher average
value of expected revenues is preferred;

• In each project, a higher mean value and a lower standard deviation are preferred;
• If the project has a higher mean value and a lower deviation than all the other projects,

it is optimal;
• If the projects have a different mean value and a different deviation, the project with a

lower coefficient of variation is preferred.

On the basis of the above-mentioned findings, it can be concluded that the A project is
a more advantageous and less risky project for the analyzed company.

Many companies today rely on well-known traditional methods for decision-making
processes. However, in order for the decisions of the company’s management to be effective,
it is necessary that they take into account individual risks and provide management with
information about developments over time. For this reason, it is necessary to imply new
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approaches not only in decision-making processes but also in the system procedures of
individual companies.

In professional contributions, it is possible to find studies dealing with the application
of the Monte Carlo method in partial calculations or in the solution of partial problems.
Despite the multidisciplinary nature and wide applicability of the Monte Carlo method,
there is no study that could provide guidance to companies on how to imply this method in
decision-making processes. The research carried out enabled the creation of a methodology
that integrates this method into decision-making processes in companies in the transport
sector in the territory of the Slovak Republic. At the same time, the article demonstrated the
applicability of such an approach in practice. The application of this approach in enterprises
in the territory of the Slovak Republic, thus, becomes unique.

However, the methodology is limited by the conditions of the market environment of
the companies in the territory of the Slovak Republic. It is primarily about the legislative
conditions or the financial and educational possibilities of individual companies. However,
with sufficient knowledge of the Monte Carlo method, its wide applicability provides scope
for use in other types of businesses as well. However, the feasibility of such an approach
needs to be subjected to future research.

5. Conclusions

Our methodology for evaluating investment projects was focused on solving the
financing of investment activities in transport companies, where simulations and calcula-
tions in the MS Excel software environment were chosen as a tool to achieve this goal. The
simulation tool used was the Crystal Ball simulation software, which is based on the Monte
Carlo method. As part of the verification of the methodology, two approaches that focused
on the analysis and evaluation of financial risks of investment projects were implemented.
In order to fulfill the goal of the article, deterministic calculations were used to assess the
riskiness of two projects using mathematical apparatus based on the principle of financial
mathematics. The resulting ranking was used to assign an uncertainty to activity duration
and estimate the probability of a project being completed on time, employing the Monte
Carlo simulation approach. The main contribution of this article is the development of an
innovative framework that co-ordinates an established qualitative and quantitative risk
classification approach with a powerful simulation approach to effectively predict time
deviations while executing complex projects under uncertainty [55,56]. The integration
of new software tools into investment decisions is represented by the simulations of the
Monte Carlo method based on the stochastic approach in the Crystal Ball software environ-
ment. The simulation is based on the modeling of the criterion value in the form of profit,
taking into account risk factors defined as the distribution functions of input variables. The
application of such an approach to managerial decision-making when assessing investment
projects is unknown in Slovak companies and thus becomes unique. The uniqueness of the
project assessment lies in the integration of various multicriteria approaches. The outputs of
the article form part of the research into the VEGA project, which verifies the methodology
on a sample of 100 enterprises in the transport sector in the Slovak Republic. The transport
industry is an investment-intensive industry, and the question of how to mitigate risks in
this sector is currently being discussed intensively. This article presents the verification
of the effective assessment of the investment projects of enterprises. The goal is to ensure
the sustainability of businesses based on the integration of new approaches to managerial
decision-making. The application of probabilistic approaches in financial decision-making
is negatively affected, mainly by a lack of the necessary knowledge or the weak support of
sophisticated computer methods in the practice of companies. It is, therefore, necessary
for companies, in their future research, to focus attention on the education of managers
and the use of sophisticated modern tools for managing the risk of business projects. The
result of such an effort should be a gradual change in corporate culture that supports expert
work with risk. The possibility of applying the procedure in specific Slovak companies
can be considered a practical contribution of the article. The proposals presented in the
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thesis form a system of solutions and are applicable under certain conditions in the practice
of other industrial enterprises through the selected selection of individual methods and
models by supplementing, replacing, or expanding with other specific characteristics and
processes, according to a specific type of industry [52,58]. The basis of this will be the ability
of colleges, universities, and scientific and research institutions to transmit the widest
possible spectrum of the latest knowledge and findings in the field of risk management,
with the aim of creating a platform for business practice for further development in this
area. It is possible to state that, even at present, many of the methods that are defined
have shortcomings and errors, which are pointed out by several authors dealing with this
issue. These shortcomings often limit the application of these models in the practice of the
companies themselves [2,3]. Therefore, it is advisable for every expert, evaluator, and risk
manager to use not only the results of a risk analysis but to use several methods for such an
evaluation at the same time and draw conclusions from their results that will bring them
objective, more correct results. The implementation of the methods and models built in this
way will enable Slovak companies, as well as other companies in the European region, to
create space for the further rationalization and streamlining of business processes, increas-
ing economic efficiency and performance and establishing their own business strategies for
the future. At the same time, such methods of risk analysis could be an impetus (mainly
for medium-sized enterprises) for the application of not only traditional, already proven
methods but also modern researched methods and approaches, which will bring them a
new perspective on the field of risk management and the possible complete elimination of
risks, from which they will start their business development potential.
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Abstract: Fault diagnosis and prognosis methods are the most useful tools for risk and reliability
analysis in food processing systems. Proactive diagnosis techniques such as failure mode and effect
analysis (FMEA) are important for detecting all probable failures and facilitating the risk analysis
process. However, significant uncertainties exist in the classical-FMEA when it comes to ranking the
risk priority numbers (RPNs) of failure modes. Such uncertainties may have an impact on the food
sector’s operational safety and maintenance decisions. To address these issues, this research provides
a unique FMEA framework for risk analysis within an edible oil purification facility that is based on
certain well-known intelligent models. Fuzzy inference systems (FIS), adaptive neuro-fuzzy inference
systems (ANFIS), and support vector machine (SVM) models are among those used. The findings of
the comparison of the proposed FMEA framework with the classical model revealed that intelligent
strategies were more effective in ranking the RPNs of failure modes. Based on the performance
criteria, it was discovered that the SVM algorithm classifies the failure modes more accurately and
with fewer errors., e.g., RMSE = 7.30 and MAPE = 13.19 with that of other intelligent techniques.
Hence, a sensitivity FMEA analysis based on the SVM algorithm was performed to put forward
suitable maintenance actions to upgrade the reliability and safety within food processing lines.

Keywords: fault diagnosis; risk analysis; risk priority number; support vector machine; food industry;
maintenance; sustainability; uncertainty

1. Introduction

With the increasing automation and development of smart technologies in modern
food industries, the higher guarantee of functional safety and reliability is poised to be
the major challenge towards sustainable food production [1–3]. In this context, the in-
telligent platforms provide the hardware and software solutions for process control and
safety management within many food manufacturing systems [4,5]. They attempt to rep-
resent the novel fault diagnostic and prognostic methods for risk predicting and analysis
processes [6,7]. One of the most essential parts of risk in analyzing system reliability and
safety is the risk analysis procedure [8–10]. In general, the novel methods are mainly
classified into the knowledge-based and data-driven approaches for risk and reliability
analysis and prediction under various situations [11–13].

In such circumstances, there are many types of knowledge-based approaches that refer
to fault diagnosis and risk analysis, such as fault tree analysis (FTA), hazard analysis, critical
control points (HACCP), root cause analysis (RCA), etc. [14–16]. Among them, the failure
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mode and effect analysis (FMEA) technique is widely used in numerous industries to assess
and mitigate the risk of unexpected failures [17]. Besides, it has been a well-established
procedure for upgrading the production quality and reducing the severity and occurrence
of failure using corrective tasks [18]. A complete FMEA dominated by experts’ knowledge
includes the following four main steps: identifying the failure modes, determining their
causes and effects, ranking the risk of failure modes, and finally suggesting the maintenance
activities for the high-risk failures [19]. A risk priority number (RPN) is frequently inserted
in a traditional FMEA to evaluate the risk level of a process, rank failures, and prioritize
maintenance operations [20]. The RPN value is calculated by multiplying the following
three risk parameters: occurrence (O), severity (S), and detection (D). They are ranked from
1 to 10 on a discrete ordinal scale. Ultimately, by arranging the RPNs in a descending order,
the most critical failures can be identified [21].

The classical-FMEA has been particularly effective in detecting system bottlenecks
and assessing the risk of failure modes in food production systems. They include the
possibility of having the same RPN values, failing to assess the relative importance of
risk parameters, and estimating the precise value of risk parameters incorrectly. Such
major fluctuations in the real situation may not only affect the accuracy of estimated
risks, but also the proposed maintenance and safety functions within food processing
systems [21–23]. The main objective of this study is to take such uncertainties into account,
particularly when ranking the RPNs of failure modes to supplement the current classical-
FMEA in the food sector. The key contribution is a new systematic FMEA framework
for risk analysis procedure based on certain well-known intelligent models to overcome
RPN issue classification within an edible oil purification plant. The intelligent techniques
include the fuzzy inference systems (FIS), adaptive neuro-fuzzy inference systems (ANFIS),
and support vector machine (SVM) models. The findings of the current study could help
managers to establish practical functional safety and maintenance programs in the edible
oil industry.

The remainder of this research is organized as follows: A description of the literature
linked to various types of FMEA in the food sector and its associated uncertainties in the risk
analysis process is included in the part “Literature review.” The “Research methodology”
section compares the traditional and intelligent-FMEA risk analysis methodologies to
come up with an upgraded fault diagnosis framework. The “Results and Discussion”
section contains the key comparison data of traditional and intelligent-FMEA risk analysis
approaches, as well as how to use the results to propose appropriate maintenance tasks.
Finally, the “conclusion” section is provided, along with further remarks and perspectives.

2. Literature Review

Over the years, various types of FMEA, such as process-FMEA (PFMEA), design-
FMEA (DFMEA), and total-FMEA (TFMEA) have been conducted within a wide range
of applications in food processing industries. Table 1 presents a summary review of the
applied FMEAs in the food sector. The PFMEA is known as the main practical solution
tool for analyzing various risks in food processing. For example, a PFMEA framework
was performed to recognize the main critical points and analyze the risk by determining
the RPN in the processing of potato chips. The results revealed that packaging, storage,
potato receiving, frying, and distribution were the main critical points with the highest
RPN, respectively [23]. In another study, a combined structure of PFMEA and ISO22000
was carried out on poultry slaughtering and manufacturing. In their work, the critical
failure modes with high risks were identified by determining the RPN. [24]. Following
this study, analyzing the risk of salmon processing has been conducted using PFMEA
and its conjunction with the ISO 22000. The research findings could be beneficial for
the manufacturers and their customers [25]. One of the FMEA applications is to control
the quality and safety of food products. For example, the high quality of products has
been a major challenge in the tea manufacturing industry. In this direction, a TFMEA
model combined with the total quality management (TQM) technique was theoretically
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explored [26]. Following this, a FMEA structure for risk management in the confectionery
industry has been designed to control system safety and quality [22]. In another work,
a practical safety improvement plan for dairy product manufacturing under PFMEA
analysis was suggested [27]. The results could be used by the manufacturers to produce
safer dairy products. Another practical aspect of FMEA methods is its application to
fault detection and optimization in food industries. For instance, the FMEA model was
dedicated to allowing precise identification of food safety in verified HACCP systems.
The incorporation of FMEA was verified to the procedure of the HACCP system in the
bakery industry for better food safety assurance and fault detection [28]. Furthermore,
a general structure of FMEA was suggested to detect the potential faults and their effects in
primary food processing [29].

Table 1. A summary of literature review for FMEA applications in food industries.

Ref. Year
Plant/

Process

Fault Diagnosis-Based Model
Maintenance

ActivityFMEA Model
Computational/

Intelligent Model
Sensitivity
Analysis

[23] 2007 Chips manufacturing plant Classical PFMEA - - -
[30] 2007 Corn curl manufacturing Classical PFMEA - - -

[25] 2008 Salmon processing
and packing Classical PFMEA - - -

[24] 2009 Poultry product processing Classical PFMEA - - -
[26] 2011 Tea processing plant Classical TFMEA - - -

[22] 2012 Confectionery
manufacturing Classical PFMEA - - -

[27] 2013 Dairy products
manufacturing Classical PFMEA - - -

[28] 2014 Bakery critical equipment Classical PFMEA - - -
[29] 2016 General study PFMEA Fuzzy set theory - -
[31] 2017 Vegetable processing PFMEA Fuzzy set theory - -

[32] 2018 Meat production
and processing PFMEA Fuzzy inference system - -

[33] 2019 General study Classical PFMEA - - -

Current study Edible oil industry PFMEA Fuzzy inference system,
ANFIS & SVM � �

A summary of the literature, the application of FMEAs in the food sector can be
divided into several topics such as analyzing the risks, finding the critical points, improving
the quality and safety, and selecting the maintenance activities. Despite the advantages
of classical-FMEAs in the food industry, they have been criticized for several flaws and
limitations that may affect proposed maintenance and safety decisions. The majority of
epistemic uncertainties are included in the new systematic FMEA framework to improve
the prior classical-FMEA in the food business. Intelligent approaches, on the other hand,
have been deemed a very valuable alternative to enhance the accuracy of classical-FMEA
for risk analysis under various uncertainties [34,35].

During the last few years, intelligent techniques such as support vector machine
(SVM), fuzzy inference systems (FIS) and, adaptive neuro-fuzzy inference systems (ANFIS)
have given great attention to modeling the FMEA and risk analysis processes. The FIS
model, for example, has been used in the field of FMEA due to its software programming-
based approach and its capacity to avoid cumbersome computations [19,36,37]. Currently,
a comprehensive survey on the FIS-FMEA model was conducted with various rules and
membership functions [MFs]. Based on the results, the combined MFs and model with
a 10-class of fuzzy numbers have a higher possibility to create the larger risk cluster of
failure modes [17]. Simşek and Ic [38] conducted an FMEA using a FIS model to evaluate
and eliminate potential failure modes in a ready-mixed concrete plant. Their findings
revealed that the fuzzy-rule-based system was effective in identifying and eliminating
potential failure modes. Yucesan et al. [39] proposed a holistic FMEA approach based on a
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fuzzy-based Bayesian network and the best–worst method to deal with uncertain failure
data. The proposed model might resolve the uncertainty in failure data and give a strong
probabilistic risk analysis logic to represent the dependency between failure events in a
manufacturing plant. The FUCOM and CoCoSo approaches were considered by Yousefi
et al. [40] to improve the classical-FMEA technique in an unpredictable setting. Furthermore,
Z-number theory was used to combine the ideas of reliability and uncertainty in evaluating
the weight of risk variables. In an actual case study, the Z-FUCOM-CoCoSo approach was
compared to the Fuzzy FMEA technique and a fuzzy variant of this approach. It was found
that the Z-FUCOM-CoCoSo approach could provide the most feasible separation among
failure modes when compared to traditional techniques. Rezaee et al. [41] presented a
hybrid approach based on the Linguistic FMEA, FIS, and fuzzy data envelopment model
to calculate a score for covering some RPN shortcomings and the prioritization of risks
within the chemical industry. The results demonstrated that the proposed approach was
very effective in prioritizing risks by taking uncertainty into account. In addition, to handle
the uncertainties of classical-FMEA in other literature, the hybrid perception of fuzzy
rule-based theories has been given a lot of attention [42–44].

On the other hand, the ANFIS model, with the benefits of both neural networks (NNs)
and FIS principles in a single framework, has been used to reinforce the FMEA capabilities
and manage the uncertainties in risk analysis [45–47]. For instance, an ANFIS model was
developed to improve risk management and manage the uncertainties in risk variables.
The proposed model was more convenient and efficient concerning risk management for
single and clustered station facilities in transportation systems [48]. Moreover, the SVM
algorithms constitute powerful regression and classification capabilities with that of FIS,
neural networks (NNs), or genetic algorithms (GAs). They generally suffer from the pres-
ence of multiple local minima, structure selection problems, and overfitting issues [49–51].
Meanwhile, the SVMs have been approved as validation methods for failure mode analyses,
fault detection as well as risk assessment in industrial fields [52–55].

Based on the literature, the performance comparison of such intelligent models in risk
analysis, especially in food processing systems has not been previously evaluated. Hence,
as the main motivation and innovation, we have contributed to proposing a new FMEA
framework by intelligent techniques and comparing their outcomes with the classical
model within food processing systems. In addition, given the need for monitoring the
complex processes in the food sector, the proposed framework was implemented in the
edible oil purification process. The outcomes were used to help the engineers to establish
convenient safety and maintenance programs. Therefore, the main objective of this study is
to propose a novel FMEA framework under intelligent techniques for analyzing the risks
of the edible oil purification process.

3. Materials and Methods

An improved fault diagnosis framework for risk analysis with three main steps is
shown in Figure 1. The first step includes process description such as main functions,
potential failure modes as well as failure effects for the edible oil purification process.
The main risk factors are defined in the second step using a knowledge-based approach,
and the factors are then used as the main inputs of diagnostic models such as classical and
intelligent-FMEAs. The multiplication and rule-based methods are used to determine the
interaction of risk factors. The final step is to estimate RPN and use sensitivity analysis to
investigate the impact of risk factors on RPN as well as suggest the convenient maintenance
activities for the failure modes with the highest RPN. The details of the first and second
steps are provided in the next sub-sections. The last one will be discussed in Section 4.
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Figure 1. The proposed framework of the FMEA model.

3.1. First Step: Process Description

This study focuses on an edible oil purification facility and its processes in Iran to apply
the proposed intelligent framework. Investigating the operational risk of such a process
would provide a great opportunity to achieve higher reliability and safety guarantee.
Figure 2 depicts the fundamental procedure for purifying the following two types of
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edible oils: liquid and solid. The basic stages of edible oil purification are neutralization,
decolorization, winterization, deodorization, hydrogenation, and bleaching, as illustrated
in Figure 2.

Figure 2. Production and processing of edible solid and liquid oils.

3.1.1. Neutralization Process

A process of neutralization or alkaline purification is shown in Figure 3 in which
sodium hydroxide is used to react with free fatty acid to produce soap. To ensure the
removal of soap and liquids, the outlet oil enters into the exchanger and is heated to 80 ◦C
and then enters into a mixer where water is added to allow the soap to be completely
discharged. Finally, the oil is inserted into a dryer to completely remove its moisture
contents. The most important equipment for neutralization operations include separators,
centrifugal pumps, heaters, mixers, hydraulic-pneumatic valves, vacuum dryers, and their
attached pipes and fittings. So, the importance of their proper maintenance program for
safe operation and high reliability is inevitable.

Figure 3. A schematic of the neutralization process: storage oil tank (1), exchanger (2), mixer (3),
pump (4), separator (5), valve (6), dryer (7), water tank (8), sulfuric acid tank (9).
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3.1.2. Discoloration Process

According to Figure 4, the color of the oil is reduced through decolorized soil and
some particles of oil-based paint are removed. The decolorized soil is dissolved in oil or
colloidal, and attractive colored particles are separated from the oil by a press. In general,
decolorization is a physical absorption activity that removes pigments and impurities from
the oil by absorption. The non-continuous [batch] system is used to decolorize the liquid
oil, which has a larger volume and stronger stirrers than the solid oil tank, and the shelf life
of the oil is much longer. After this step, the oil is transferred into the winterization process.
The most important equipment in this phase includes hydraulic-pneumatic valves, pumps,
mixing tanks, electrical systems, etc.

Figure 4. A schematic of the discoloration process: storage oil tank (1), exchanger (2), mixer (3),
pulverizing tank (4), filtering tank (5), discoloration oil tank (6).

3.1.3. Winterize Process

During the winterizing process, the discolored oil is stored for 24 h at a relatively low
temperature, usually, 9 ◦C, to remove all possible solids that freeze the oil. These solids
include high-melting glycerides and waxes. Thereafter, the high-pressure oil is pressed into
the crystallized tanks with the help of air pressure to remove all solids from the oil, after
which the pure oil is transferred into the deodorizing process of oil by filtrate operation
Figure 5.

3.1.4. Deodorizing Process

Figure 6 shows a deodorizing process of oil in which the undesirable odor of oil is
caused by ketones, lactones as well as free fatty acids. For removing these, first, the high-
pressure oil is sprayed from the bottom into the odorless tower, which is used simultane-
ously to heat, steam, and vacuum to prevent oxidation and hydrolysis of the oil. The main
purpose is to decrease the oil acid content to the standard level. After that, the oil enters to
exchanger until it reaches a temperature of 30 to 40 ◦C. Then, turns into another exchanger
until the oil temperature finally reaches 14 or 12 ◦C.
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Figure 5. A schematic of the winterizing process: storage oil tank (1), exchanger (2), crystallization
(3), exchanger tube shell (4), filtering tank (5), heater (6), keratinization (7), winterize oil (8).

Figure 6. A schematic of the deodorizing process: exchanger (1), deaerator (2), deodorizing bridge
(3), scrubber (4), a vacuum system (5), CIP tank (6), antioxidant tank (7), deodorized oil tank (8).

3.1.5. Potential Failures and Their Effects

In an edible oil purification plant in Iran, functional failures, causes, and their effects
were discovered. To survey such items, a group of FMEA experts totally between 4 to
6 members is needed [21,56,57]. In this study, we have received the knowledge and
experiences of four experts [two process engineers and two mechanical and electrical
engineers], who were related and engaged in the whole process in edible oil-producing.
So, based on the expert’s knowledge and experiences, 67 failure modes of the process
were derived. These failures are mainly caused by pumps, separators, chillers, boilers,
dryers, compressors, valves, converters, mixers, electronic circuits, pipes, filters, tanks,
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and vacuum systems. Ultimately, this obtained information was used for estimating risk
factors and RPN value.

3.2. Second Step: Knowledge-Based Approach

In this step, first, the risk parameters, e.g., S, O, and D are defined by the FMEA expert
team and then the FIS structure, ANFIS, and SVM models based on FMEA models for risk
analysis were programmed by MATLAB vR2020b (Math works Inc., Natick, MA, USA).

3.2.1. Risk Parameters Definition

The FMEA is a well-known risk analysis tool that is frequently used by RPN to assess
the risk level of a process, rate failures, and prioritize maintenance actions [20]. To calculate
the RPN value, a discrete ordinal scale of 1-10 is used to multiply three crisp values of
the risk characteristics, namely occurrence (O), severity (S), and detection (D). Finally,
the most critical failures can be found by sorting the RPNs in ascending order [21]. In the
classical-FMEA, the risk parameters can be divided into five-linguistic terms including
remote (R), low (L), moderate (M), high (H), and very high (VH). This attitude will help
the FMEA team to prioritize the failure mods and their effects [58–60]. The linguistic scale
of the risk characteristics and their fuzzy numbers in three class levels (3,5, and 10) for
the present investigation was also provided by Soltanali et al. [17] in the FIS structure.
The FMEA expert team also provided the necessary information on the severity of the
failure and the inability to detect it. Finally, the failures were prioritized using the fuzzy
risk numbers.

3.2.2. FIS Structure

FIS is a well-known intelligent risk analysis technique. Figure 7 depicts the FIS
structure. The FIS environment is built in the first step using key elements including “and
method,” “or method,” “implication method,” and “aggregate method.” The membership
function of the input variables “risk parameters” was constructed in the second stage.
The third step is to create the membership function for the output variable “FIS-RPN.”
Finally, the output control rules were defined. The Mamdani approach, which has been
frequently utilized by others to build FIS boundaries which is used to evaluate the rules in
the rule base [61]. The fuzzy logic system theory can be stated formally as Dağsuyu et al. [19]
and Kumru and Kumru [37]. X be a nonempty set. A fuzzy set A in X is characterized by
its membership function, i.e., μA : X → [0, 1] and μA (x) is interpreted as the degree of
membership of element x in the fuzzy set A for each x ∈ X. It is clear that A is completely
determined by a set of tuples A = ([u, μA [u])/u ∈ X). Frequently, A (x) is used instead of
μA (x). The family of all fuzzy sets in X is denoted by F(x). If X = ( x1, x2, . . . , xn ) is a
finite set and A is a fuzzy set in X, the following notation can be used:

A =
μ1
x1

+
μ2
x2

+ . . . +
μn
xn

(1)

where the term μi/xi, i = 1,.., n signifies that μi is the grade of membership of xi in A and
the plus sign represents the union.

In this work, we looked at many types of membership functions such as Trim, Trapmf,
Pimf, and Gaussmf, Gauss2mf, Gbellmf, Psigmf, and Dsigmf to produce fuzzy numbers
using linguistic terms and fuzzy numbers for the risk parameters in the 10-class. Experts in
the edible oil purification process determined the required rules such as 3, 5, and 10-class,
appropriately, 27, 125, and 1000 rules. We used five defuzzification algorithms in the
FIS environment’s last stage to analyze the aggregating process and calculate the explicit
RPN values.
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Figure 7. The structure of the FIS environment was adapted from MATLAB Software vR2020b.

3.2.3. ANFIS Network

Another intelligent approach used for risk analysis was the ANFIS network. During
the training phase, it corrects the settings of each node to find the rules regulating the
interactions between the input and output [62]. A fuzzify layer (first layer), a product layer
(second layer), a normalized layer (third layer), a defuzzifier layer (fourth layer), and a
total output layer (fifth layer) make up AN-FIS, as shown in Figure 8.

Figure 8. ANFIS network structure.

If three membership functions are assumed for three risk inputs S, O and D then the
ANFIS is called first-order TSK. The ith rule is given as:

Rule i: If (S is A i), (O is B i) and (D is C i) then (yi = piS + piO + piD + ri), i = 1, 2, 3, . . . , n (2)

where n is the number of rules and ri, qi, and pi are parameters whose optimum values are
determined in the training phase. In the first layer, the membership degree of membership
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function (μ) is calculated for the linguistic variables Ai, Bi, and Ci (μAi(S), μBi(O), μCi(D)).
In the present study, the Gaussian membership function for the variables Ai, Bi, and Ci was
used. For example, for Ai we have:

μAi(S) = exp

(
−1

2

(
S − ci

ai

)2
)

(3)

where ai and ci are the membership function’s form-determining parameters. During the
training phase, their optimum levels were adjusted. The product layer is the second layer,
and its output can be calculated as follows:

cwi = μAi(S)μBi(O) μCi(D) (4)

The normalized layer is the third layer, and it calculates the ratio of each weight to the
total weight as follows:

wi =
wi

n
∑

i=1
wi

(5)

The fourth layer contains adaptive nodes, whose output may be calculated using
following equation, where wi is the ith rule’s normalized firing strength.

wiyi = wi(piS + piO + piD + ri) (6)

The output layer (fifth layer) adds up all received signals and outputs them as the
output compared to their corresponding input:

y =
n

∑
i=1

wiyi (7)

3.2.4. SVM Algorithm

In addition, the feasibility of using an SVM algorithm for risk analysis was investigated
in this work (Figure 9). This model is founded on statistical learning theory and employs
supervised learning techniques such as neural networks. The model’s suppression of the
over-learning problem is one of its features. It seeks to find a function, f(x), for the training
set with the largest allowable bias, so that higher biases are made undesirable [63]:

f (x) =
N

∑
i=1

(αi − α∗i )K(xi, x) + b (8)

where αi and α∗i are the Lagrange multipliers, and K(xi, x) is the kernel function. In this
work, we evaluated the Gaussian kernel function as follows:

K(xi, x) = x′i x (9)

K(xi, x) =
(
1 + x′i x

)p, p = 2, 3 (10)

K(xi, x) = exp
(
−γ|xi − x|2

)
(11)

Two essential parameters in the SVM algorithm are the regularization parameter and
the size of the error-insensitive zone (ε), both of which are typically determined using
tri-al-and-error techniques.
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Figure 9. SVM algorithm structure.

3.2.5. Performance Criteria

Some metrics, such as mean absolute percentage error (MAPE), root mean square
error (RMSE), efficiency (EF), and coefficient of variation (CV), are used in the literature
to evaluate the performance of intelligent models for risk analysis [64,65]. These are
their definitions:

MAPE =
1
n

n

∑
j=1

∣∣∣∣∣dj − pj

dj

∣∣∣∣∣× 100 (12)

RMSE =

√
∑n

j=1 (dj − pj)
2

n
(13)

EF =

n
∑

j=1
(dj − d)2 − n

∑
j=1

(pj − dj)
2

n
∑

j=1
(dj − d)2

(14)

CV =
σ

μ
× 100 (15)

where dj is the ith value of the desired (actual) output for the jth pattern; pj is the predicted
(fitted) output for the jth pattern, μ is the mean value and σ is the standard deviation.

4. Results

4.1. Classical FMEA Result

The results of the classical-FMEA model for three risk parameters and RPN values,
based on experts’ judgment, for an edible oil purification process, are addressed in Table 2.
One of the model’s drawbacks is its inability to rank the failure types in a unique and
non-repetitive manner, as shown in Table 3. As a result, detecting high-risk failure modes
and assigning appropriate maintenance duties is challenging. For example, (1st and 2nd),
(5th and 10th) failure modes, and so on, all have the same RPNs and ranks, according
to the first expert’s assessment. According to the second expert, the failure modes are
ranked in the same order for the (6th, 8th, and 9th), (4th and 25th), and so on. This issue
can also be seen by third and fourth experts, resulting in a fundamental flaw in the risk
analysis process.
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Table 2. The classical FMEA result of S, O, D, RPN values.

SystemFM
Expert 1 Expert 2 Expert 3 Expert 4

S O D RPN S O D RPN S O D RPN S O D RPN

Ta
nk

s 1 4 2 4 32 3 1 5 15 3 2 4 24 4 3 4 48
2 4 2 4 32 5 1 5 25 3 4 4 48 5 2 4 40
3 8 6 7 336 10 7 8 560 6 5 7 210 7 5 6 210
4 2 2 4 16 5 3 2 30 2 2 2 8 3 2 5 30

Pu
m

ps

5 10 6 8 480 10 4 8 320 8 7 8 448 9 6 8 432
6 10 4 8 320 10 5 8 400 8 7 8 448 9 6 8 432
7 10 10 5 500 10 8 2 160 8 8 2 128 8 9 3 216
8 10 5 2 100 10 8 5 400 8 6 4 192 9 7 2 126

Se
pa

ra
to

rs

9 10 5 8 400 10 5 8 400 10 5 8 400 10 6 9 540
10 10 6 8 480 10 6 6 360 10 4 6 240 8 5 4 160
11 10 3 8 240 7 1 5 35 10 1 6 60 8 2 5 80
12 10 5 5 250 10 8 3 240 10 4 5 200 9 6 5 270
13 10 5 8 400 9 3 8 216 10 4 8 320 8 4 7 224

Fi
lt

er
s 14 10 3 4 120 10 3 5 150 10 6 3 180 9 7 3 189

15 10 7 5 350 10 5 5 250 10 5 3 150 9 6 2 108
16 10 2 1 20 10 4 1 40 9 4 3 108 9 3 2 54

C
hi

lle
rs

17 10 3 2 60 8 4 5 160 8 3 8 192 9 3 7 189
18 10 3 7 210 9 5 7 315 8 5 7 280 9 3 8 216
19 10 6 9 540 9 5 10 450 9 3 8 216 8 4 8 256
20 8 4 4 128 10 7 5 350 10 8 4 320 9 4 4 144

M
ix

er
s 21 1 9 5 45 10 4 7 280 10 5 7 350 10 6 6 360

22 2 7 4 56 8 4 7 224 7 3 3 63 8 7 2 112
23 3 6 5 90 5 1 7 35 5 1 7 35 8 7 6 336
24 4 9 4 144 10 4 2 80 10 5 3 150 8 6 5 240

D
ry

er
s

25 7 3 1 21 10 3 1 30 8 2 3 48 8 2 2 32
26 7 3 3 63 8 3 1 24 8 2 3 48 9 2 2 36
27 7 3 5 105 9 5 5 225 6 4 3 72 7 3 2 42
28 7 3 2 42 10 3 1 30 5 4 1 20 8 2 1 16
29 5 3 1 15 5 3 1 15 6 2 1 12 5 3 1 15
30 6 3 3 54 10 5 3 150 6 2 2 24 7 4 2 56
31 6 2 1 12 10 1 1 10 6 2 1 12 8 2 1 16
32 5 3 3 45 5 1 1 5 6 4 2 48 5 3 2 30

Bo
ile

rs

33 4 1 1 4 10 3 1 30 10 3 2 60 8 2 1 16
34 4 1 1 4 5 3 1 15 10 3 2 60 5 1 3 15
35 10 3 1 30 10 3 1 30 10 3 2 60 10 2 4 80
36 7 2 2 28 10 3 5 150 10 3 2 60 8 5 4 160
37 7 2 4 56 5 1 2 10 7 3 3 63 8 3 3 72
38 9 4 3 108 5 2 5 50 7 3 4 84 4 2 4 32
39 8 3 4 96 10 4 5 200 8 3 4 96 10 4 5 200
40 10 5 3 150 10 7 5 350 8 5 4 160 10 7 4 280
41 2 2 1 4 2 1 1 2 5 3 2 30 2 1 3 6
42 10 6 2 120 10 7 1 70 10 7 1 70 10 7 2 140
43 10 4 2 80 10 3 1 30 10 3 1 30 10 5 1 50

C
om

pr
es

so
rs

44 10 2 1 20 9 3 1 27 9 3 1 27 9 2 2 36
45 10 2 8 160 10 3 8 240 10 3 6 180 10 3 5 150
46 8 3 1 24 10 3 4 120 9 3 3 81 8 2 2 32
47 6 2 3 36 8 5 3 120 8 6 1 48 7 6 2 84
48 6 1 2 12 8 1 1 8 6 4 1 24 7 5 3 105
49 8 3 4 96 8 5 4 160 8 4 2 64 9 3 4 108
50 7 6 6 252 10 5 8 400 9 4 6 216 8 5 6 240
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Table 2. Cont.

SystemFM
Expert 1 Expert 2 Expert 3 Expert 4

S O D RPN S O D RPN S O D RPN S O D RPN

V
ac

uu
m

sy
st

em

51 6 4 2 48 10 5 2 100 9 7 1 63 6 6 3 108
52 7 5 3 105 10 7 4 280 9 8 2 144 7 7 3 147
53 6 1 3 18 5 2 1 10 6 3 2 36 6 2 1 12
54 10 3 3 90 10 5 4 200 8 8 2 128 8 6 3 144
55 10 4 1 40 10 5 1 50 9 8 2 144 9 4 2 72
56 8 6 4 192 10 5 3 150 9 8 2 144 8 6 2 96
57 8 5 5 200 10 5 5 250 9 8 4 288 8 6 4 192

Ex
ch

an
ge

rs 58 10 10 1 100 10 7 1 70 9 8 1 72 9 7 2 126

59 10 6 5 300 10 5 7 350 7 4 3 84 8 6 5 240

Pi
pe

s 60 3 3 1 9 3 5 1 15 2 8 3 48 2 6 4 48
61 3 3 1 9 5 7 4 140 2 8 4 64 2 6 4 48

PL
C

s 62 9 7 7 441 9 8 6 432 9 5 8 360 9 5 5 225
63 8 5 7 280 9 6 6 324 10 6 8 480 9 7 6 378

V
al

ve
s 64 8 5 2 80 10 5 1 50 8 4 3 96 5 3 2 24

65 8 5 4 160 8 5 4 160 8 5 4 160 5 4 7 140
66 5 8 2 80 5 8 2 80 5 8 3 120 8 3 3 72
67 8 4 2 64 8 4 2 64 8 4 3 96 4 3 2 24

Table 3. The same RPN value issue of classical FMEA.

FM
RPN

Expert 1
FM

RPN
Expert 2

FM
RPN

Expert 3
FM

RPN
Expert 4

(6, 8, 9, 50) 400 (6, 8, 9, 50) 400 (5, 6) 448 (5, 6) 432
(20, 50, 40, 59) 350 (20, 40, 59) 350 (13, 20) 320 (24, 50, 59) 240
(21, 52, 15, 57) 280 (52, 21) 280 (19, 50) 216 (7, 18) 216

(15, 57) 250 (15, 57) 250 (8, 17) 192 (14, 17) 189
(12, 45) 240 (12, 45) 240 (14, 45) 180 (10, 36) 160
(39, 45) 200 (39, 54) 200 (40, 65) 160 (20, 54) 144

(7, 17, 49, 65) 160 (17, 49, 56) 160 (15, 24) 150 (42, 65) 140
(38, 55, 64) 50 (14, 30, 36, 56) 150 (52, 55, 56) 144 (15, 49, 51) 108

(11, 23) 35 (46, 47) 120 (7, 54) 128 (11, 35) 80
(4, 25, 28, 33, 35,

43) 30 (24, 66) 80 (39, 64) 96 (37, 55, 66) 72

(42, 58) 70 (38, 59) 84 (1, 60, 61) 48
(1, 29, 34, 60) 15 (27, 58) 72 (26, 44) 36

(31, 37, 53) 10 (49, 61) 64 (25, 38, 46) 32
(22, 37, 51) 63 (4, 32) 30

(11, 33, 34, 35, 36) 60 (28, 31, 33) 16
(2, 25, 26, 32, 47, 60) 48 (29, 34) 15

(41, 43) 30
(1, 30, 48) 24

(29, 31) 12

Using the geometric average method (GAM) to prioritize high-risk failures is one
of the most common strategies to solve this issue in traditional FMEA. Figure 10 shows
the results of the conventional RPN based on GAM-FMEA from the expert’s assessment.
Although this method has been able to address some of the shortcomings of the classical-
FMEA (67 failure modes categorized into 59 classes), several of the failure modes still have
the same RPN and rank values. The 4th and 33rd, 32nd and 60th, 1st and 44h failure modes,
etc. are in the same classes. Therefore, to solve this outcome of classical and GAM- FMEAs,
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we have examined the potential of the intelligent models based on FMEA for classifying
the failure modes during the risk analysis process.

Figure 10. The results of RPN value based on GAM- FMEA.

4.2. Intelligent- FMEA Results

In this subsection, the ability of three intelligent models such as FIS, ANFIS, and SVM-
based FMEA to create a maximum class of risks for the edible oil purification process
are examined. The results of the FIS-FMEA model based on three fuzzy scale classes are
provided in Table 4. First, among the several defuzzification strategies, the centroid method
was chosen as having the most potential for producing a maximum fuzzy number class.
Various MFs combinations for the three-risk metrics and FIS-RPN (FRPN) of three classes
were investigated as a result of this. The CV factor was used as the primary performance
criterion to select the optimal combined MFs from 4096 combinations. The average CVs in
all MFs for the three, five, and ten classes were 60.70, 53.64, and 50.76, respectively. It means
that the 3-class with a high CV can provide maximum risk class numbers while avoiding
repetitive clustering. As highlighted, two combinations of MFs in 3-class (27-rule) have
greater potential to create 67 class numbers for 67 failure modes than other classes.

Table 4. The optimal MFs combination for risk clustering based on the FIS-FMEA model.

Number of
Classes

Number of
Rules

S O D FRPN CV (%)
Number of

Cluster

3-class (27)
Psigmf Gauss2mf Dsigmf Trimf 58.30 67
Dsigmf Gauss2mf Dsigmf Trimf 58.30 67
Trapmf Dsigmf Gaussmf Dsigmf 56.94 66

5-class (125)
Trimf Gauss2mf Psigmf Trimf 56.77 66
Trimf Gauss2mf Psigmf Trapmf 56.77 66
Trimf Gauss2mf Psigmf Gaussmf 56.77 66

10-class (1000)
Trimf Gbellmf Gaussmf Gbellmf 56.42 64

Trapmf Gbellmf Gaussmf Gbellmf 56.42 64
Gauss2mf Gaussmf Gaussmf Trapmf 57.44 64

In the next step, the ability of the ANFIS-FMEA model for risk clustering of failure
modes in the oil purification process was investigated in Table 5. For this purpose, the de-
fault values of the ANFIS network such as influential radius (IR), squash factor (SF), accept
ratio (AR), and reject ratio (RR) in ANFIS are assumed as 0.5, 1.25, 0.5, and 0.15, respectively.
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Additionally, in this study, two optimization methods such as hybrid and backpropagation
were used for parameter training of membership functions. Following this, the perfor-
mance of the ANFIS-FMEA model for risk clustering, under some well-known performance
criteria, was evaluated. As seen, although most of the ANFIS optimization methods can
create maximum risk clusters (67 failure modes in 67 clusters) in different fuzzy number
classes, the hybrid model considering 5-class (125-rule) and 30 number epochs has been
very successful in predicting the actual valves with the lowest errors (RMSE = 4.01 and
MAPE = 4.25). To get better insight, Figure 11 shows that the total values of RMSE and
MAPE (%) for the hybrid model with 5-class are lower than other fuzzy number classes
and ANFIS models.

Table 5. The optimal performance criteria for risk clustering based on the ANFIS-FMEA model.

Optimization
Method

Number
of

Class

Number
of

Rule

Number
of

Epoch

RMSE MAPE (%) EF (%) Number
of

ClusterTrain Test Total Train Test Total Train Test Total

H
yb

ri
d

m
od

el

3-
cl

as
s (27) 10 5.84 5.75 7.08 11.85 12.15 13.09 99.00 99.00 99.00 67

(27) 20 4.79 4.57 6.27 10.60 10.01 11.88 99.00 99.00 99.00 67
(27) 30 3.84 3.23 5.19 8.43 6.92 9.30 99.00 99.00 99.00 67

5-
cl

as
s (125) 10 3.92 4.31 6.03 6.08 7.19 6.19 99.00 99.00 99.00 67

(125) 20 3.14 3.69 5.08 4.60 8.27 5.30 99.00 99.00 99.00 67
(125) 30 2.11 3.02 4.01 1.81 7.78 4.25 99.00 99.00 99.00 67

10
-c

la
ss (1000) 10 1.35 3.80 6.33 2.62 8.16 6.49 99.00 99.00 99.00 67

(1000) 20 1.08 3.61 6.57 1.98 8.05 6.13 99.00 99.00 99.00 67
(1000) 30 0.91 3.29 5.51 1.61 7.75 4.81 99.00 99.00 99.00 67

Ba
ck

pr
op

ag
at

io
n

3-
cl

as
s (27) 10 7.50 7.13 8.95 8.80 19.46 16.29 99.00 99.00 99.00 67

(27) 20 6.45 8.61 9.03 7.71 20.25 15.19 99.00 99.00 99.00 67
(27) 30 6.03 9.21 9.20 7.23 21.09 15.10 99.00 99.00 99.00 67

5-
cl

as
s (125) 10 7.39 7.40 7.56 9.53 16.23 9.71 99.00 99.00 99.00 67

(125) 20 5.32 6.61 6.48 7.11 15.01 8.00 99.00 99.00 99.00 67
(125) 30 4.72 6.80 6.37 6.20 14.92 7.42 99.00 99.00 99.00 67

10
-c

la
ss (1000) 10 2.66 2.55 4.91 6.76 2.99 6.15 99.00 99.00 99.00 67

(1000) 20 2.57 2.69 4.88 6.49 3.13 5.97 99.00 99.00 99.00 67
(1000) 30 2.49 2.82 4.86 6.22 3.24 5.80 99.00 99.00 99.00 67

Figure 11. Total values of RMSE and MAPE (%) for two ANFIS models in three fuzzy classes.
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Furthermore, the results of the SVM-FMEA algorithm as another intelligent model
for risk analysis and to create the maximum risk clustering are presented in Table 6.
As observed, the SVM algorithms such as sequential minimal optimization (SMO) and
iterative single data algorithm (ISDA) can classify the 67 failure modes into 67 risk clusters.
However, the ISDA algorithm using the polynomial-kernel function has higher accuracy
to predict the actual values. In other words, this algorithm has been very effective in
classifying the failure modes with the lowest errors (RMSE = 7.30 and MAPE = 13.19) and
the highest performance (EF: 99%).

Table 6. The optimal performance criteria for risk clustering based on the SVM-FMEA model.

Solver
Algo-
rithm

Kernel
Function

RMSE MAPE (%) EF (%) Number
of

ClusterTrain Test Total Train Test Total Train Test Total

SM
O

al
go

ri
th

m Gaussian 9.61 23.44 15.13 15.91 54.03 27.29 99.00 95.00 98.00 67

Linear 28.25 41.37 32.72 41.91 124 66.42 0.94 0.85 0.92 67

Rbf 9.65 23.70 15.26 15.94 55.52 27.67 99.00 95.00 98.00 67

Polynomial 9.43 18.18 12.69 14.05 68.91 30.43 99.00 97.00 99.00 67

IS
D

A
al

go
ri

th
m Gaussian 8.36 21.00 13.44 17.08 30.73 21.16 99.00 96.00 99.00 67

Linear 98.83 99.95 99.16 167.3 161.0 165.4 0.26 0.12 0.22 67

Rbf 7.77 19.48 12.47 15.37 26.18 18.60 99.00 99.00 99.00 67

Polynomial 7.30 7.31 7.30 14.04 11.17 13.19 99.00 99.00 99.00 67

4.3. Comparison Results

Figure 12 shows a comparison between the intelligent models such as FIS (Figure 12a),
ANFIS (Figure 12b) and SVM (Figure 12c), and classical-FMEAs to identify the best model
for raking the failures in an edible oil purification plant. As shown, the rank value of
the SVM algorithm overlaps fairly well with the rank value of the classic model for most
failure modes with that of other intelligent models. The error indices such as MAPE for FIS,
ANFIS, and SVM were obtained as 21%, 4.64%, and 3.02%, respectively, and the values for
RMSE were equal to 5.73, 2.85, and 1.12, respectively, to predict the classical rank value.
Hence, it can be concluded that the SVM-FMEA model has a great potential for ranking all
failure modes accurately with the lowest errors compared to other intelligent models. In the
following, through the feedback of such model, a sensitivity analysis of risk parameters
and alternatively the appropriate maintenance tasks were surveyed.

4.4. Sensitivity Analysis

To study the impact of risk parameters (S, O, D) on SVM-RPN in the edible oil pu-
rification process, a sensitivity analysis was performed. For example, in risk parameters,
the S index represents the severity of the failure on the equipment or its impact on the
entire process. The O index represents the chance of failure occurrence, and the D index
represents how likely it is to identify the occurred failures. Figure 13 depicts the findings of
the sensitivity analysis as surface plots. As shown in Figure 13a, the S index has a higher
impact on the risk parameter than the O index because the slope change of SVM-RPN due
to changes in the S (46◦) index is greater than that due to changes in the O (18◦) index.
It means that the D index is the meaningful factor on the risk changes in the edible oil
purification process. As a consequence, to improve the possibility of detecting the failures
and to reduce the probability of failures, fault diagnosis tools and warning signs could be
suggested for the edible oil purification process.

155



Sustainability 2022, 14, 1083

Figure 12. The comparison of failure mode ranking values between (a) classical-FMEA and Fuzzy
model, (b) classical-FMEA and ANFIS model, and (c) classical-FMEA and SVM model.

4.5. Maintenance Activity

In this section, based on the best intelligent-FMEA model, the appropriate maintenance
activities for the edible oil purification process were provided. Based on the results,
the failure of bearings in separators and the failure of vanes and shafts in pumps were
identified with the highest RPN values, e.g., 421, 409 and 391 as well as primary ranks,
e.g., 1, 2 and 3, respectively. Because bearings are critical to achieving high operational
dependability in separators, adopting robust inspection procedures and non-destructive
tests weekly could be recommended. Furthermore, the majority of the operations in the
purification process are associated with centrifugal pumps for moving fluids such as
water and oils. As a result, appropriate maintenance chores such as monthly services
such as checking lubricant levels and bearing operating temperature, vibration analysis
of shafts, and changing the vanes and axis of shafts could be performed from quarterly
to monthly. The failure of hydro-pneumatic valves and sensors in chillers, as well as the
failure of programmable logic controller (PLC) circuits, were ranked as the second class
and RPNs, respectively. The failure of O-rings and seals in hydro-pneumatic systems is
the main cause of leakages due to the high pressure in the process. As a result, the key
maintenance tasks may include increasing the frequency of O-ring and seal replacements
from monthly to twice-weekly, utilizing higher-quality materials. The majority of sensors’
failures in chillers are caused by excessive usage or function. As a result, a monthly
replacement could be appointed. Meanwhile, different capability tests and well-timed
inspections for PLCs, and timely replacement of the cables and wires could be taken before
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an irreparable fault occurs. As a result, the aforementioned maintenance operations would
assist engineers in detecting and preventing unforeseen problems, resulting in increased
safety and dependability in the edible oil purification process.

Figure 13. Risk parameters surface plots vs. SVM-RPN: (a) SVM-RPN slope change due to S
parameter variations, (b) SVM-RPN slope change due to O parameter variations, and (c) SVM-RPN
slope change due to D parameter variations.

5. Conclusions

This paper aimed to improve an intelligent-FMEA model for analyzing the risk and
comparing the outcomes with the classical-FMEA, in the edible oil industries. To overcome
the classical FMEA drawbacks, some well-known intelligent models such as FIS structure,
ANFIS, and SVM models were carried out for risk analysis. To evaluate the accuracy
prediction, the CV (%) factor for FIS structure, and some performance criteria such as
RMSE, MAPE (%), and EF (%) for ANFIS and SVM models, were performed. Additionally,
to determine the risk parameters and RPNs for the failure modes in the edible oil purifi-
cation process, a knowledge-based approach was adapted. The results revealed that the
3-class (27-rule) in the FIS structure, and the 5-class (125-rule) in the hybrid-ANFIS network
have high potential to create maximum risk number cluster of failure modes. Moreover,
the results of the SVM algorithm indicated the ISDA algorithm using polynomial-kernel
function has higher accuracy to predict the actual values and classify the failure modes.
Based on the performance indicators, the SVM-FMEA algorithm has a great potential for
ranking all failure modes accurately with the lowest errors compared to other intelligent
models. According to the results of the 3-D sensitivity study, the detection index is more
successful on SVM-RPN variation than on occurrence and severity. Finally, the authorita-
tive control for the equipment with the highest risk within the edible oil purification was
recommended through maintenance and inspection activities. In this study, knowledge-
based methods for diagnosing failures and risk assessment were proposed due to a lack
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of sufficient and reliable operational data. As a result, future research can be expanded to
evaluate and improve the accuracy of the proposed approach by establishing a trustworthy
database in edible oil purification plants. Furthermore, the use of other hybrid models with
data-driven based methods to automate risk monitoring within food processing systems
can be recommended.
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19. Dağsuyu, C.; Göçmen, E.; Narlı, M.; Kokangül, A. Classical and fuzzy FMEA risk analysis in a sterilization unit. Comput. Ind. Eng.

2016, 101, 286–294. [CrossRef]
20. Silva, M.M.; de Gusmão, A.P.; Poleto, T.; e Silva, L.C.; Costa, A.P. A multidimensional approach to information security risk

management using FMEA and fuzzy theory. Int. J. Inf. Manag. 2014, 34, 733–740. [CrossRef]
21. Soltanali, H.; Rohani, A.; Abbaspour-Fard, M.H.; Parida, A.; Farinha, J.T. Development of a risk-based maintenance decision

making approach for automotive production line. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 236–251. [CrossRef]
22. Ozilgen, S. Failure Mode and Effect Analysis [FMEA] for confectionery manufacturing in developing countries: Turkish delight

production as a case study. Food Sci. Technol. 2012, 32, 505–514. [CrossRef]
23. Arvanitoyannis, I.S.; Varzakas, T.H. Application of failure mode and effect analysis [FMEA], cause and effect analysis and

Pareto diagram in conjunction with HACCP to a potato chips manufacturing plant. Int. J. Food Sci. Technol. 2007, 42, 1424–1442.
[CrossRef]

24. Varzakas, T.H.; Arvanitoyannis, I.S. Application of ISO22000 and Failure Mode and Effect Analysis [fmea] for Industrial Processing
of Poultry Products. In International Conference on Computer and Computing Technologies in Agriculture; Springer: Boston, MA, USA,
2008; pp. 1783–1795.

25. Arvanitoyannis, I.S.; Varzakas, T.H. Application of ISO 22000 and failure mode and effect analysis [FMEA] for industrial
processing of salmon: A case study. Crit. Rev. Food Sci. Nutr. 2008, 48, 411–429. [CrossRef] [PubMed]

26. Ebenezer, I.A.; Devadasan, S.R.; Sreenivasa, C.G.; Murugesh, R. Total failure mode and effects analysis in tea industry: A theoreti-
cal treatise. Total Qual. Manag. Bus. Excell. 2011, 22, 1353–1369. [CrossRef]

27. Kurt, L.; Ozilgen, S. Failure mode and effect analysis for dairy product manufacturing: Practical safety improvement action plan
with cases from Turkey. Saf. Sci. 2013, 55, 195–206. [CrossRef]

28. Trafialek, J.; Kolanowski, W. Application of failure mode and effect analysis [FMEA] for audit of HACCP system. Food Control
2014, 44, 35–44. [CrossRef]

29. Özilgen, S.; Özilgen, M. General Template for the FMEA Applications in Primary Food Processing. In Measurement, Modeling and
Automation in Advanced Food Processing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 29–69.

30. Varzakas, T.H.; Arvanitoyannis, I.S. Application of Failure Mode and Effect Analysis [FMEA], cause and effect analysis, and
Pareto diagram in conjunction with HACCP to a corn curl manufacturing plant. Crit. Rev. Food Sci. Nutr. 2007, 47, 363–387.
[CrossRef] [PubMed]

31. Varzakas, T.; Manolopoulou, E. Comparison of HACCP and ISO 22000 in the ready-to-eat fruit and vegetable industry in
conjunction with application of failure mode and effect analysis [FMEA] and Ishikawa diagrams. In Minimally Processed
Refrigerated Fruits and Vegetables; Springer: Boston, MA, USA, 2017; pp. 685–721.

32. Rezaee, M.J.; Yousefi, S.; Valipour, M.; Dehdar, M.M. Risk analysis of sequential processes in food industry integrating multi-stage
fuzzy cognitive map and process failure mode and effects analysis. Comput. Ind. Eng. 2018, 123, 325–337. [CrossRef]

33. Przystupa, K. The methods analysis of hazards and product defects in food processing. Czech J. Food Sci. 2019, 37, 44–50.
[CrossRef]

34. Joshi, A.V. Machine Learning and Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020.
35. Mello, R.F.; Ponti, M.A. Machine Learning: A Practical Approach on the Statistical Learning Theory; Springer: Berlin/Heidelberg,

Germany, 2018.
36. Kanimozhi, U.; Ganapathy, S.; Manjula, D.; Kannan, A. An intelligent risk prediction system for breast cancer using fuzzy

temporal rules. Natl. Acad. Sci. Lett. 2019, 42, 227–232. [CrossRef]
37. Kumru, M.; Kumru, P.Y. Fuzzy FMEA application to improve purchasing process in a public hospital. Appl. Soft Comput. 2013, 13,

721–733. [CrossRef]

159



Sustainability 2022, 14, 1083
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Abstract: Maintaining native rainforests as a sustainable ecosystem and their resilience to external
pressures involves their economic profitability as a natural resource of unique and renewable products.
For this purpose, new approaches have been developed and refined. This work seeks to contribute in
this direction in the context of occupational safety and health (OSH) by presenting a new method
for integrated assessment of risks for rainforests (MIARforest). The MIARforest is based on the MIAR,
a method that has shown promising results in occupational risk assessment in different industrial
sectors. Its parameters were discussed and assessed to improve their relevance, wording and risk
assessment through the Delphi methodology by a panel of 62 experts in forestry and OSH who
responded independently to questionnaires made available through Google Forms. A consensus of
over 79% among the experts was reached in two rounds. This result highlights the high objectivity
and the low percentage of dubious possible interpretations of the parameters and sub-parameters of
this occupational risk assessment method.

Keywords: risk assessment; occupational risk; native forest; forest management; MIAR; Delphi

1. Introduction

Tropical forests cover more than 9,300,000 km2, of which the Amazonian forest oc-
cupies around 6,700,000 km2, more than 70% of the total area. This vital forest occupies
significant areas of Brazil, Bolivia, Colombia, Ecuador, French Guyana, Guyana, Peru,
Venezuela and Suriname.

There are, however, other tropical forests that it is important to list. Of these, the
largest is the Congo rainforest, which covers more than 1,800,000 km2 between Cameroon,
the Central African Republic, Congo, the Democratic Republic of Congo, Equatorial Guinea
and Gabon. Other smaller but significant rainforests are the Papua New Guinea rainforest
of approximately 545,000 km2, the Borneo rainforest of approximately 290,000 km2, the
Xishuangbanna (China) rainforest of approximately 19,000 km2 and the Daintree (Australia)
rainforest of approximately 1200 km2.

The sustainable exploitation of native rainforests is necessary for their resilience to
external pressures and their maintenance as a unique and necessary ecosystem for the
future of humanity [1]. Native rainforest exploitation is distinguished from industrial forest
exploitation by its principles of biodiversity maintenance and respect for nature [2].

Sustainable forest management is a holistic approach that aims to ensure the use of
planning practices and conservation principles so that a forest can continuously supply a
given product or service [3]. It is believed to correspond to the management of the forest for
obtaining economic, social and environmental benefits by following planning practices and
nature conservation principles that guarantee that the forest is capable of supplying, on an
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ongoing basis, a specific product or service without jeopardising the sustainability of the
ecosystem while being subject to management. The sustainable exploitation of the native
rainforest is thus distinguished from industrial forest exploitation by following biodiversity
and sustainability principles.

Professionals who carry out their work in forest exploitation are undeniably exposed to
the risk of accidents and diseases inherent to the work [4–9]. Occupational risk assessment
is a process that allows organisations to implement a proactive management policy in
workplaces to prevent the occurrence of occupational accidents and diseases [10–12]. There
are several occupational risk analysis techniques and methods for their assessment, from
more generalist to more specific. The choice of the method to be used is typically based on
its suitability for the activities under analysis and their correlated specificities. However,
the use of matrix methods, generally not validated, has a weakness that emerges from
its subjectivity. That is, the assessment depends on the experience and perception of the
assessor [13,14]. In fact, to date, no well-established methodology in an aggregated form
allows for the complete and simultaneous identification of all occupational aspects of a
company’s activity. Perhaps this is why it is common for organisations to develop their
own safety management systems and, therefore, their own methods of occupational risk
assessment [15–21].

Different approaches and methods are applied in the particular context of forestry
activities. The most widely used are the AHP—analytic hierarchy process [10–21], the
MMR—method of the magnitude of risk [22] and the PARCF—process of risk assessment
in forest harvesting [23]. However, these methods are not specific to managing activities in
native rainforests.

A method that has shown promising results in occupational risk assessment in different
industrial sectors is the method for the integrated assessment of risk (MIAR) [24]. The MIAR
follows control banding (CB) principles. CB is a risk-management strategy used to control
occupational hazard exposure. It is a simplified approach which can be used to identify and
implement appropriate control measures based on hazard levels and potential exposure.

Creating a new version of the method, specially developed for the evaluation of
occupational risks in the native rainforest, will promote the sustainable use of these forests
and thus contribute to their preservation by allowing workers to work with greater safety
under the difficult conditions of this working environment.

Considering the above, it was defined as the objective of this work to identify the
parameters and sub-parameters and perform their validation. In this way, we aim to
contribute to the development of an occupational risk assessment methodology to sup-
port safety management systems in native rainforests by adopting the basic principles of
the MIAR.

2. MIAR’s Original Version—Short Presentation

The original version of the MIAR was developed to support the integration of man-
agement systems and allows the framing of the risk assessment of the environmental and
occupational components. Its focus was on industrial activities in the chemical industry,
creating synergies between the processes with the NP-EN-ISO 9001:2008—quality manage-
ment system standard and the HAZOP—hazard and operability study method [24]. In this
way, it allows organisations to improve their performance while at the same time being
simple to apply and with reproducible and reliable results.

The first version of the MIAR has been investigated and applied in different industrial
sectors such as metalworking [25], construction [26], industrial waste sorting [27], mining
industry [28,29] and slaughterhouses [30]. These applications of the method always point
towards high reproducibility, tending to be above 75%, and towards the reliability of the
results, i.e., with the MIAR, the risks are assessed identically by different experts, and the
results obtained are congruent with reality.

In the MIAR, the identification of hazards starts by identifying the sequence of in-
dustrial processes, sub-processes, activities and tasks, going down to the level considered
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adequate. It also includes the identification of materials and machinery used in activities,
working conditions and constraints, the characteristics of the spaces where the activi-
ties occur and the surrounding spaces. Existing accident- and risk-protection equipment,
minimisation procedures and potential failures are also checked [31].

In the MIAR, the risk is defined as a measure of the uncertainty of the occurrence of
an event in a situation involving exposure to a hazard. The risk level (RL) is obtained as
the product of two parameters, severity (S) and likelihood (Li), where Li is the product of
the extent of impact (Ei) and the frequency of exposure (Fe) (Equations (1) and (2)). These
parameters must be considered independently from each other.

Li = Ei × Fe (1)

RL = S × Li (2)

where accident severity corresponds to the likeliest consequence should the accident
materialise, accident extent refers to the number of workers affected, and the frequency of
exposure represents the time a worker is exposed to a given risk.

Within the scope of risk management, the prioritisation of interventions for risk
mitigation considers another parameter, risk control (RC), calculated according to the
ongoing organisational measures of accident prevention. Thus, after the valuation of the
risk level, it is possible to estimate the weighted risk level (WRL) as a result of dividing the
risk level by the risk control (Equation (3)):

WRL = RL/RC, (3)

In other words, WRL assesses the effectiveness of risk control processes (existing or
soon to be implemented) according to a control hierarchy.

In all parameters, the valuation of the possible occurrence of an occupational accident
is translated into the chromatic scale represented in Table 1.

Table 1. Association between colours and evaluation levels.

Absent/Very Low Low Moderate High Very High

3. Materials and Methods

The design of the new version of the MIAR for rainforests—the MIARforest (method
for the integrated assessment of occupational risks in native rainforests)—was based on
the MIAR’s concepts defined in ISO 31000:2018 [32], namely those related to the three
stages of the risk management program (identification, analysis and evaluation) and the
concepts of hazard and risk, in accordance with ISO 45001:2018—the occupational health
and safety (OHS) management system. Therefore, the MIARforest uses the equations of
the MIAR (Equations (1)–(3)) and follows the principles of control banding (CB) methods,
integrating information on potential hazards, levels of exposure and an assessment of
occupational health and safety performance management systems. It seeks the latter to
prioritise appropriate measures to minimise the impact of workers’ exposure to hostile
environments such as native rainforests.

To adapt the MIAR to the reality of native rainforest management activity, information
was collected face-to-face in the Brazilian federal government forest holdings in the eastern
Amazon. This data collection focused on the relevant hazards and risks at different stages
of the management process [33]. Subsequently, a first draft of the MIARforest was developed
based on this information and in the reference literature on this topic [7,13,14,34].

The validation process of each of the parameters and sub-parameters regarding their
relevance and clarity of wording, as well as the risk-assessment scale considered, followed
the premises of the Delphi methodology [35,36]. Therefore, a panel of experts, professionals
in the forestry and OHS area, was invited to respond anonymously to the following
questionnaire made available through Google Forms:
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Do you agree with the proposed parameters and sub-parameters? Do you consider
their description sufficiently clear?

• If you disagree with the presented proposal, what alternative wording do you propose?
• Do you agree with the assessment levels considered for the proposed parameters and

sub-parameters?
• What valuation levels do you propose if you disagree with the proposal that has been made?

Do you consider that other sub-parameters should be added? Which ones and why?
The experts were informed that, when answering the survey, each parameter/sub-

parameter should be assessed as if there were no influence on any other and that the
chromatic scale used to assess the possibility of the occurrence of an occupational accident
was chromatic (Table 1), with numerical assessment being performed at a later stage.

The answers obtained were analysed quantitatively and qualitatively, considering the
experts’ agreement with the proposals and their comments and suggestions. In accordance
with the assumptions of the Delphi methodology, the parameters that did not obtain a
consensus of opinions greater than 75% and/or received pertinent criticism regarding their
definition were adjusted accordingly. A new proposal for the wording of the parameters
and risk assessment was produced and submitted for consideration by the experts. In this
new questionnaire, the questions to the experts were created in the same way as in the
first round, with not only the new wording of the text to be evaluated being presented
with all the changes made duly evidenced but also the version of the first round and the
corresponding evaluation results.

This iterative process was stopped once the answers obtained reached a consensus of
opinions higher than 75% [35,36]. Ten factors with direct influence on the severity (S) of
accidents were identified:

• Two factors with global impact:

i. Worker protection (WP): whether the worker is protected by personal protec-
tive equipment or by a collective protection system;

ii. Forest typology (FT): tree density (in this research, only the ombrophilous
forest is considered).

• Two controllable factors:

iii. Machine- and tool-handling (MT): the level of protection that machines and
tools have and the training that workers must have to use them;

iv. Relationship between tasks (RBT): the number of and relationship between
tasks being performed simultaneously on the same site.

• Six uncontrollable factors:

v. Object fall (OF): the situation of a worker being hit not only by falling bro-
ken branches and/or trees but also by other objects such as logs and small
tools/utensils that can fall during road and yard operations;

vi. Terrain slope (TS): the ability/difficulty of maintaining the balance and the
progress of workers both on foot and by vehicle within the forest;

vii. Obstacles (Obst): the ability/difficulty of traversing vegetation, rivers and
streams, fallen trees and rocks during road and yard operations;

viii. Wild animals (WA): the presence of disease vectors, poisonous animals or
predators that can cause severe injuries or death.

ix. Precipitation intensity (PI): the feasibility of performing/or not performing
work in rain;

x. Wind intensity (WI): the feasibility of carrying out/or not carrying out work
in windy conditions that contribute to the shaking of treetops as well as the
falling of branches and objects onto the worker.

The parameters of exposure (E) and frequency (F) were renamed as, respectively,
extent of impact (Ei) and frequency of exposure (Fe).
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4. Delphi Rounds Results

The validation of the MIARforest was proposed to a group of 250 experts and was
performed according to the Delphi approach. For the first round, 65 experts agreed to
respond to the questionnaire; for the second round, there were 62 respondents. Of these pro-
fessionals in the forestry and/or occupational safety area, 94% had university qualifications,
and at least one had a postgraduate degree in occupational safety.

In the first round, the pertinence of the parameters, sub-parameters and respective
levels was questioned. Experts’ opinions and suggestions for changes were also collected.

The experts’ suggestions considered relevant for the second round were introduced
for the second version of the method. After this operation, the modified version was sent
back to the experts to confirm their opinion on items that lacked consensus and validate
the changes made.

The obtained results are shown in Table 2. All items with an approval rate greater
than 75% could be considered validated at the end of the first round. However, only the
sub-parameters of likelihood (Li)—(extent of impact (Ei) and frequency of exposure (Fe)),
as well as the parameter of risk control (RC), were considered closed at the end of the first
round and, due their pertinence, some changes suggested by the experts were introduced.
The proposed modifications include the introduction of the type of protection for workers
(individual PPE or collective cabin) and the subdivision of the sub-parameter “terrain
characteristics” (TC) into two, the slope of the terrain (TS) and obstacles (Obst).

Table 2. Percentage of agreement obtained in the rounds.

Parameter/
Sub-Parameter

1st Round 2nd Round

Consideration of
the Parameter

Writing of
Risk Levels

Parameter/
Sub-Parameter

Consideration of
the Parameter

Writing of
Risk Levels

S

WP 100.0 100.0

FT 89.2 83.1

MT 89.2 86.2 MT 82.3 82.3

RBT 89.2 86.2 RBT 82.3 83.9

OF 88.7 88.7

TC 93.8 93.8
TS 80.6 80.6

Obst 83.9 82.3

WA 95.4 90.8 WA 83.9 83.9

PI 95.4 89.2 PI 80.6 80.6

WI 96.9 89.2 WI 80.6 79.0

Li
Ei 89.2 84.6

Fe 95.4 89.2

RC 100.0 95.4

The introduced changes were presented to the experts in the second round, asking if
they preferred the original or the new version with the changes. Most experts opted for
the latest version (Table 2). The obtained results were considered sufficient to accept as
finalising the process of defining the parameters through the Delphi methodology.

5. MIARforest in Detail

With a consensus among experts of over 79%, the MIARforest allows for identifying
and assessing occupational risks arising from sustainable exploitation of native rainforests
in different stages. In its design, simplicity was sought in the application of the method,
associated with the quality of the results obtained from the risk assessment.
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In the MIARforest, the parameters/sub-parameters assessment must be carried out
considering the actual situation in which the work is performed. This means the tasks must
be classified considering all safety measures already implemented during the evaluation.

The method generates risk assessment based on three groups of parameters corre-
sponding to the severity, likelihood and capacity to control the risk of accident using the
occupational health and safety management systems implemented in the organisation.

5.1. Severity

The severity of occupational accidents in rainforests depends on worker protection,
which in turn depends on how the work is performed, that is, on whether the worker
executes the activity while protected only by personal protective equipment (pedestrian
work) or whether the worker executes the tasks while isolated from the environment (the
forest) by a collective protection system (such as the cabin of a harvesting machine). These
two scenarios will condition the accident’s potential severity due to either controllable or
uncontrollable factors. In addition, severity is also related to three classes of factors: meteo-
rological, edapho-biological (ground, animals and vegetation) and operational (machinery
and tools).

Thus, the MIARforest considers parameter severity (S) depending on ten sub-parameters
and can be computed according to Equation (4). This equation was designed by assuming
that all factors (“sub-parameters”) significantly influence the severity of occupational acci-
dents in native rainforests, each of them in their own particular way. Therefore, in order to
avoid instability in results, the traditional computation using multiplication and sums of
parameters was dropped, and a calculation that included a balance between median and
maximum values was used instead. This option allows greater stability in the results and
emphasises the sub-parameter with the highest potential for harm, whatever it may be.

The parameters used to assess the severity and the correspondent rating are sum-
marised in Table 3.

S = WP × FT × maximum (MT, RBT, OF, TS, Obst, WA, PI, WI) × median (MT, RBT, OF, TS, Obst, WA, PI, WI), (4)

Table 3. MIARforest Severity parameters.

Subparameter Level Description Rating

Individual protection 1Worker protection
(WP) Collective protection 0.25

Submontane dense ombrophilous forest. 16
Submontane open ombrophilous forest. 8
Alluvial dense ombrophilous forest. 4
Lowland dense ombrophilous forest. 2

Forest typology
(FT)

Lowland open ombrophilous forest. 1
Forest harvesting machine with a manual device, e.g., steel cable. 16
Forest harvesting machine with a hydraulic device, e.g., grapple, blade. 8
Portable forest harvesting machine, e.g., chainsaw. 4
Hand tool, e.g., machete, wedge, sledgehammer. 2

Machinery and tools
(MT)

No use of tool or machine—situation without injury or damage. 1
>3 different tasks running simultaneously. 8
Three different tasks running simultaneously. 4
Two distinct and dependent tasks running simultaneously but lagged. 2
Two separate and independent tasks running simultaneously. 1

Relationship between
tasks (RBT)

One task. 0.5
Precipitation intensity > 0.5 mm/h. 256
0 mm/h < precipitation intensity ≤ 0.5 mm/h. 2
Without precipitation, precipitation probability—60% < pp ≤ 100%. 1
Without precipitation, precipitation probability—0% < pp ≤ 60%. 0.5

Precipitation intensity
(PI)

No precipitation, precipitation probability 0%. 0.25
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Table 3. Cont.

Subparameter Level Description Rating

Wind intensity > 40 km/h. 256
20 km/h < wind intensity ≤ 40 km/h. 2
10 km/h < wind intensity ≤ 20 km/h. 1
0 km/h < wind intensity ≤ 10 km/h. 0.5

Wind intensity
(WI)

No wind. 0.25
Fall of an object with sufficient energy to cause death or total permanent disability. 48
Fall from an object with sufficient energy to cause severe injury with total temporary incapacity
or partial but low-percentage permanent incapacity. 24

Fall of an object with sufficient energy to cause minor injuries with partial temporary incapacity
but low severity. 8

Fall of an object with sufficient energy to cause minor injuries without any form of disability. 6

Object fall *
(OF)

Fall of an object without sufficient energy to cause injury to the worker. 3
Strongly sloping surface (30–45%). 4
Moderate sloping surface (8–30%). 2
Smoothly sloping surface (3–8%). 1
Flat surface (0–3%). 0.5

Terrain slope
(TS)

Flat surface 0%. 0.25
Surface with obstacles that are impossible to cross on foot. 4
Surface with obstacles that are difficult to cross. 2
Surface with obstacles that are easy to cross and/or remove. 1
Surface with obstacles that are very easy to cross. 0.5

Obstacles
Obst

Unobstructed surface. 0.25
Contact resulting in injury or damage by large mammals (e.g., Panthera onca), snakes with high
venom inoculation (e.g., Micrurus altirostris), venomous spiders (e.g., Loxosceles amazonica) and
swarms of bees.

4

Contact resulting in injury or damage by mid-sized mammals in flocks (e.g., Pecari tajacu),
snakes with moderate venom inoculation (e.g., Bothrops jararaca or Lachesis muta) and scorpions. 2

Contact resulting in injury or damage by small mammals, snakes with low venom inoculation
(e.g., Helicops angulatus). 1

Contact resulting in injury or damage by isolated insects (e.g., Paraponera clavata). 0.5

Wild animals
(WA)

There is no contact with animals. 0.25
* not submitted for validation.

5.1.1. Forest Typology (FT)

The severity (S) of occupational accidents in a native rainforest depends on the char-
acteristics of the forest where the worker carries out the activity. It was decided that S is
higher if the activity is carried out in a forest with a high density of trees and other plants
and at altitude. Since in the MIARforest only ombrophilous forest, characteristic of the At-
lantic forest and Amazon biomes, is currently considered, the severity levels were defined
based on the different characteristics that this type of forest may possess, depending on the
altitude at which they are located [37,38].

5.1.2. Worker Protection (WP)

Only two basic situations in which work is executed in forestry operations will be
considered for the work protection parameter. The first is pedestrian work, where the
worker is equipped with personal protective equipment (PPE). The second refers to work
inside a machine cabin. In addition to PPE, the worker can rely on the protection of the
cabin itself, which functions as collective protection equipment against hazards existing in
the surrounding environment.

5.1.3. Machines and Tools Handling (MT)

Regarding the use of machines and tools, the MIARforest states that the severity de-
pends on the type of machine or tool the worker uses when carrying out the activity. The
severity levels were defined according to the bibliography on this subject specifically ap-
plied to native forest exploitation [4,8,39–47]. In the valuation of this parameter, it was
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decided that the severity is higher if the activity is carried out with forestry machines
such as, for example, a loader, a forest tractor, a tracked tractor or a logging truck. These
machines may have steel cables, hydraulic clamps or other accessories attached. Only the
chainsaw was considered a portable forest-harvesting machine, and manual tools without
a motor, such as a machete, wedge or sledgehammer, were considered. The severity levels
of occupational accident occurrence according to the type of machine or tool used and/or
situations arising from their use were defined according to Roloff [48].

5.1.4. Relationship between Tasks of the Same Activity

In the MIARforest, the severity depends on the number of tasks that need to be per-
formed as part of the same activity and their degree of dependence. An illustrative example
of an activity with more than three distinct tasks running simultaneously is the activity
of cubage, which the following professionals traditionally perform: note taker, chainsaw
operator, loader operator, measurer and painter/planker. An illustrative example of an
activity with only one task is the felling activity, traditionally performed by the following
professionals: chainsaw operator and helper. The five levels of severity of occupational
accident occurrence as a function of the number of tasks involved in the same activity were
defined according to [33] and EMBRAPA guidelines [49].

5.1.5. Meteorological Conditions—Precipitation and Wind Intensity

In the MIARforest, two sub-parameters related to meteorology are considered—precipit
ation intensity (PI) and wind intensity (WI). For each of these sub-parameters, five severity
levels were defined in accordance with the World Meteorological Organization (WMO) [50],
the Beaufort wind scale [51], the specifications officially established by Brazilian Civil
Defense [52] and the recommendations of the Tropical Forestry Institute on this subject [53].

In addition to the above references, in defining the severity levels, the opinion of
experts in occupational safety in logging operations in native rainforests was also consid-
ered. According to the experience of these experts, activities should be wholly suspended
during precipitation greater than 0.5 mm/h, as terrain and road conditions, if unpaved,
become impractical for working safely. The same experts also stated the importance of
considering wind when assessing safety conditions. However, the wind speed value at
which safety conditions are compromised did not reach consensus (values ranged from
19 to 44 km/h). Thus, a 30 km/h speed was defined as the value at which the activities
should be suspended. It was decided that above this value, the larger branches of trees
become very agitated, and this agitation or resulting falls can cause severe accidents. The
same can occur when the wind changes direction.

5.1.6. Object Fall (OF)

Occupational accident severity depends on the forest’s characteristics where the
worker carries out the activity. As the MIARforest considers ombrophilous forest with
incidence of lianas or woody vines, this parameter is related to the movement of vegeta-
tion or parts of it (branch, trunk, etc.) and situations resulting from its movement in this
forest typology, distinguishing situations that may eventually cause death, disability or
superficial injury.

5.1.7. Site Characteristics—Terrain Slope (TS) and Obstacles (Obst)

The MIARforest states that severity is higher when work is carried out along a path with
irregular terrain with a slope and obstacles to overcome and lower if the activity is carried
out along a path on regular terrain with no slope and no obstacles to overcome. The severity
levels of the occupational accident according to the characteristics of the path were defined
according to specific bibliography on this topic, adapted to native forestry [8,39–46]. In the
valuation of this parameter, small bridges, such as a bush or a penguela, were considered
obstacles of difficult transposition. Trails constructed on waterlogged and unstable ground
were also considered with the same severity level as trails with difficult obstacles. On the
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opposite side and with the lowest valuation are obstacles such as rocky outcrops of small
size and/or fallen trunks/vegetation that can be easily transferred to another location,
clearing the path.

The sub-parameter terrain slope (TS) definition met the experts’ suggestions and the
New Brazilian Forest Code, Law 12.651, of 25 May 2012, which defines 45◦ as the maximum
slope limit allowed to operate in permanent preservation areas.

It was also decided that the severity is more significant in the case of the activity being
developed with obstacles to overcome and lower otherwise, so large rocky outcrops were
designated as obstacles of very complex transposition and occasionally requiring the use
of external supports to overcome them, small bridges, such as a culvert or a footbridge,
as obstacles of difficult transposition, small rocky outcrops and fallen trunks/vegetation
which can easily be transferred to another location, clearing the path, as obstacles of easy
transposition or removal and the paths performed on waterlogged and unstable ground as
obstacles of very easy transposition.

5.1.8. Wild Animals

Regarding the presence (or not) of wild animals (WA) in the forest where the worker
carries out the activity, it was decided that the severity is more significant if the activity is
carried out within the presence of animals that are large and/or have a high potential for
toxicity by bite or sting. The severity levels of the occurrence of occupational accidents due
to the presence of wild animals was defined according to support from the SINAN—Sistema
de Informação de Agravos de Notificação [54] and information from health professionals.
The possibility of the occupational accident occurring not only by contact with venomous
animals but also with other animals, such as mammals or birds, was considered.

5.1.9. Severity Bands

Severity is classified into five bands, as shown in Table 4. These bands comprise the
values obtained according to Equation (3) and the values in the scores column in Table 4.

Table 4. MIARforest Severity bands.

Severity Bands

Extreme S ≥ 192
High 96 ≤ S < 192

Medium-high 48 ≤ S < 96
Medium-low 24 ≤ S < 48

Low S < 24

To determine the limit of the bands, it was decided that all parameters would maintain
the second lowest level of their scales, varying only the most harmful factor, falling objects.

1. Upper limit for “low severity” (<24)—all sub-parameters at the 2nd level of the
respective scale;

2. Upper limit for “medium-low severity” (<48)—sub-parameter “object fall” at the
3rd level of the respective scale and the remaining parameters at the 2nd level of the
respective scale;

3. Upper limit for “medium-high severity” (<96)—sub-parameter “object fall” at the
4th level of the respective scale and the remaining parameters at the 2nd level of the
respective scale;

4. Upper limit for “high severity” (<192)—sub-parameter “object fall” at the 5th level
of the respective scale and the remaining parameters at the 2nd level of the respec-
tive scale;

5. Lower limit for “extreme severity” (≥192)—sub-parameter “object fall” at the 5th level
of respective scale and remaining parameters at the 2nd level of respective hierarchy.
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5.2. Likelihood

The exposure value results from the association of two sub-parameters, the Extent of
impact (Ei) and the Frequency of exposure (Fe), each with five bands (Table 5).

Table 5. MIARforest likelihood.

Exposure—Ex—(Description) Score

>5 workers. 5
4 workers. 4.9
3 workers. 4.7
2 workers. 4.4

Extent of Impact
Ei

1 worker. 4
Continuous (every day of the week). 5
Usual (≥3 days/week). 4.5
Partial (<3 days/week). 4
Sporadic (≤1 day/week). 3.5

Frequency of Exposure
Fe

Punctual (≤1 h/week). 3

The likelihood value is obtained by Equation (1) and is classified into five bands, as
shown in Table 6.

Table 6. Likelihood bands.

Likelihood Bands

Extreme E > 22
High 19.8 < E ≤ 22

Medium-high 17.6 < E ≤ 19.8
Medium-low 15.4 < E ≤ 17.6

Low E ≤ 15.4

5.2.1. Extent of Impact

The extent of impact is directly related to the number of workers that may be affected
by the same occurrence during the activity(ies) they are performing. In this sub-parameter,
five levels have been defined according to the number of workers potentially affected by
an accident [33].

5.2.2. Frequency of Exposure

This sub-parameter is related to the length of time the worker is exposed to the
risk of an occupational accident. Thus, allowing that the probability of an occupational
accident increases with the time of exposure to the hazard [55], the five bands were defined
considering different exposure periods in a continuous sequence. The attribution of the
exposure time should be performed by attending to the following criteria:

• Continuous—the same activity is performed continuously and daily throughout
the week;

• Usual—the same activity is performed for a period equal to or greater than half of the
worker’s weekly working hours;

• Partial—the same activity is performed during a period equal to or less than half of
the worker’s weekly working hours;

• Sporadic—the same activity is performed for a period equal to or less than one day
during the working week;

• Occasional—the same activity is performed during a period equal to or less than one
hour during the working week.

This classification is only valid for routine activities. Activities which are not included
in the worker’s weekly routine must be assessed separately.
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5.2.3. Likelihood Bands Explanation

The likelihood bounds were calculated considering a task performed by a maximum
of two workers for different exposure times, as explained below:

1. Upper limit for low likelihood—two workers exposed on an occasional basis (<1 h/week);
2. Upper limit for medium-low likelihood—two workers exposed on a sporadic basis

(≤1 day/week);
3. Upper limit for medium-high likelihood—two workers exposed about half of the

working week (<3 days/week);
4. Upper limit for high likelihood—two workers exposed about half of the working

week (≥3 days/week);
5. Lower limit for extreme likelihood—two workers exposed continuously (every day of

the week).

5.3. Risk Control

The risk to which workers are exposed when performing a task is not necessarily the
same whether the task is performed in a company with an efficient risk management and
control system or in a company without any risk control system. Therefore the MIAR and
the MIARforest take this into consideration when assessing risk. The MIARforest considers
various levels of implementation of risk management systems (Table 7) that should be
included in the risk level assessment.

Table 7. Risk Control—Performance of prevention systems.

Performance of Prevention Systems (Description) Score

There is no occupational health and safety management system or any control of
occupational health and safety. 0.50

There is no occupational health and safety management system in place, and there is an
occupational health and safety control system with visible flaws in its operation. 0.75

There is no occupational health and safety management system in place, but there is an
occupational health and safety control system with evidence of operational practices. 1.00

There is an occupational health and safety management system, but there is no objective
evidence of a continuous improvement culture. 1.50

There is a continuous improvement culture linked to an occupational health and safety
management system with evidence of its functionality. 2.00

5.4. Risk Level

The MIARforest states that the risk level (RL) is based on severity and likelihood.
However, it also states that the resulting value must be weighted by the performance of the
prevention systems existing in the organisation. Thus, the weighted risk level is determined
according to Equation (5).

WRL =
S × Li

RC
, (5)

The rationale for determining each of the different risk bands is based on the fact that
in native rainforest management operations, the vast majority of tasks are performed by
three or fewer workers on a non-continuous basis. Starting from this reality, risk level band
limits were calculated for these operational conditions of likelihood (maximum value—19.8)
combined with the band limits already defined for severity. For all the levels of risk, the
existence of an occupational health and safety control system, with evidence of operational
practices (score 1—Table 7) is considered.

1. Risk Level 1 (RL1)—the band’s upper limit represents the combination with a medium-
low severity level (maximum value—24). To the result of this combination (475.2), the
decimal digits have been truncated (475). Values lower than 475 obtained with other
configurations are also included in this band.

2. Risk Level 2 (RL2)—the upper limit of the band is the combination of the defined
likelihood ratio with a medium-low severity level (maximum value 48). To the result
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of this combination (950.4), the decimal digits have been truncated (950). Scores of
950 or lower obtained with other configurations are also accepted.

3. Risk Level 3 (RL3)—the upper limit of the band is the combination of the defined like-
lihood ratio with a medium-high severity level (maximum value—96). To the result
of this combination (1900.8), the decimal digits have been truncated (1900). Values
lower than 1900 obtained with other configurations are also included in this band.

4. Risk Level 4 (RL4)—the band’s upper limit is the combination of the defined likeli-
hood ratio with a high level of severity (maximum value—192). The result of this
combination (3801.6) has been rounded to 3800. Values lower than 3800 obtained with
other configurations are also accepted in this band.

5. Risk Level 5 (RL5)—This band represents the maximum level of risk and includes all
values above 3800.

The risk level bands and the respective assigned scores are presented in Table 8.

Table 8. MIARforest Risk level.

Risk Level 5 (RL5) RL5 > 3800
Risk Level 4 (RL4) 1900 < RL4 ≤ 3800
Risk Level 3 (RL3) 950 < RL3 ≤ 1900
Risk Level 2 (RL2) 475 < RL2 ≤ 950
Risk Level 1 (RL1) RL1 ≤ 475

5.5. Prioritisation of Control Measures

The prioritisation of control measures proceeds from risk level. That is, the highest
risk level is the primary priority, and lower risk levels correspond to lower priority, as
shown in Table 9.

Table 9. Prioritisation of control measures.

Priority Risk Level Description

V RL5 > 3800
Unacceptable conditions. The activity/task should be suspended immediately. The

activity/task should only be restarted after a detailed risk assessment and the definition
and implementation of corrective actions and control measures.

IV 1900 < RL4 ≤ 3800
Critical conditions which require urgent correction. A detailed risk assessment and the
short-term definition and implementation of corrective actions and control measures

are required.
III 950 < RL3 ≤ 1900 Conditions to improve. Preventive and control measures should be taken/revised.
II 475 < RL2 ≤ 950 Conditions subject to surveillance. Possible improvements should be considered.
I RL1 ≤ 475 Conditions in which no immediate intervention is required.

5.6. Control Measures

Mitigation and control of occupational risks resulting from native forest management
activities shall incorporate good occupational health and safety practices. The implementa-
tion of control measures shall be in accordance with the following hierarchy:

1. Application of administrative controls, including worker procedures and training,
emergency management and medical monitoring;

2. Implementation of missing personal protective equipment (PPE) as a complement to
other control measures;

3. Modification of the process or process conditions, where possible, to enclose or isolate
the worker from the environment to prevent exposure;

4. Implementation of engineering controls and external advice;
5. Elimination of the specific risks of a particular activity by avoiding carrying it out or

replacing it with one of lower risk.
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6. Conclusions

The process of timber forest management involves various risks related to the safety
and health of the worker, which is known to result in a high number of accidents, generally
serious ones. Workers’ physical safety and health can be safeguarded by complying with
legislation on health and safety at work and by implementing mechanisms for monitoring
the forest management activity itself.

Assessing occupational risks allows employers to effectively protect workers from
work accidents and occupational diseases. The MIARforest permits the assessment of occu-
pational risk associated with the process of timber forest management in native rainforests
in an appropriate way as it includes, among other aspects, the assurance that all relevant
risks are taken into account and verifies the effectiveness of the safety measures adopted.

According to the results, the MIARforest seems to be a promising method for occupa-
tional risk assessment with the potential to be implemented strategically and systematically
by the native rainforest industry.

The main added value of this method is that it is relatively simple to apply and
allows reliable conclusions to be drawn. However, the MIARforest is not a closed method.
Therefore, a website is being designed with two objectives, dissemination of the method
and collection of suggestions for change in order to achieve a continuous improvement of
the method.
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Abstract: Design errors have always been recognized as one of the main factors affecting safety and
health management and sustainable development in surface mines. Unfortunately, scant attention is
paid to design errors and the factors causing them. Therefore, based on expert opinions, this study
aimed to identify, rank, and investigate cause-and-effect relationships among variables influencing
human error in surface mine design in Iran. The study variables were identified by reviewing
previous literature on “latent human errors” and “design errors.” After specifying effective variables,
two rounds of the Fuzzy Delphi study were carried out to reach a consensus among experts. Nineteen
variables with an influencing score of 0.7 and higher were screened and given to the experts to be
analyzed for cause-and-effect relationships by the fuzzy DEMATEL method. The results of the study
revealed that the following variables were the major factors affecting human error as root causes: poor
organizational management (0.62), resource allocation (0.30), training level (0.27), and experience
(0.25). Moreover, self-confidence (−0.29), fatigue (−0.28), depression (−0.25), and motive (−0.23)
were found to be effect (dependent) variables. Our findings can help organizations, particularly
surface mines, to opt for effective strategies to control factors affecting design errors and consequently
reduce workers’ errors, providing a good basis for achieving sustainable development.

Keywords: design errors; sustainable development; accident; multi-criteria decision-making

1. Introduction

The mining industry is classified as one of the most dangerous and harsh work
environments [1–3]. The consequences of mining accidents include occupational deaths
and injuries, equipment damage [4], and environmental problems [5]. Besides, accidents
and incidents in such a harsh work environment are very high (about 7–10 times) compared
to other industries [1,6]. Identifying and eliminating the roots of mining accidents have
always been one of the most important priorities of organizations and governments [7].
The analysis of mining accidents has shown that human error is the direct cause of 85%
of these accidents. In recent years, many studies have been conducted to identify the
factors affecting human error in mines. In most cases, the root cause of accidents resulting
from human errors is a design error (DE), and thus the operator is just a victim of a poor
design [8,9]. Liao asserts that despite efforts to reduce instances of human error by raising
workers’ awareness, not much progress has been achieved thus far. He regards DE as the
main reason behind such a failure and states that it is one of the main causes of unsafe
behaviors on workers’ part in operational sectors [10]. DE is almost inevitable and can
influence the safety of projects and their costs and timing [11]. More than 80% of the failures
in buildings, bridges, hospitals, and civil engineering structures are caused by DE [12].
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DE are important in various industries such as aviation [13], nuclear energy [14],
process [15], and mining [16]. The diversity of mines, extensive operational space, and
the extent of its consequences (occupational and public health, environmental, safety,
social, and economic) have highlighted the role of design errors in this sector [17,18].
Unfortunately, the focus of human error studies for most of the 20th century has been on
operational errors, which have been ignored [9]. The study by Thompson on road accidents
in surface mines showed that design errors are the main causes of such accidents [19].

Flyrock is important in increasing the death rate and destroying mine equipment and
structures. One of the main reasons for Flyrock production in blasting is DE in the blasting
pattern [20]. Reason introduced this important construct as the latent human errors in
1998 because their consequences are not immediately known, and their identification takes
longer. In other words, their identification needs a systematic approach [21]. Cho defines
DE “as the result of a designer’s actions and decisions in product development that lead to
failure in the planned or intended outcome” [22].

Likewise, Mechlers believes that these latent human errors are cognitive processing
errors, arguing that even the simplest forms of designs require cognitive functions [23].
From a cognitive psychological point of view, human error results from one or more deficits
in human cognitive processes. Accidents happen due to perception, recognition, avoidance
ability, and decision-making failures. Thus, failure in cognitive processes can lead to human
errors and damage the system [24]. Studies show that design errors happen as a result of
cognitive failure (CF) [25] influenced by individual, environmental, organizational, and
task factors [26].

2. Review of Previous Research

In recent years, some studies have been conducted to find the effective factors behind
human error in design. The results of the study by Kerli et al. [22] on DE showed that process
(lack of design reviews), material (learning not shared amongst everyone), measurements
(incomplete project tracking), tools (poor document traceability), people (loss of information
and lack of making ability knowledge), and organization (scattered resources) are the main
causes of such errors. Lopez et al. [12] reported that personal factors (loss of biorhythm and
adverse behavior), organizational factors (training, experience, competitive professional
fees, poor quality assurance), and project (time limitations and poor coordination) have a
significant influence on DE in the construction sector. Some studies point out that errors
result from individuals’ tendency toward error or the conditions that induce error [27].
Also, some studies have classified the variables affecting DE into three groups: workplace,
information flow, and organizational factors [28]. The study by Robert [29] revealed that
designer knowledge, lack of standards, safety awareness, novel system, management of
change, procedure, and lack of qualified staff were the most effective factors in design
error. Zhaorong et al. [30] stated that defective workmanship, communication, lack of
skill, contract issues, and external factors could lead to latent error and design error.
Several studies have shown that these errors are influenced by individual, managerial, and
social factors related to work, workplace, work methods and processes, task demands,
workload, and physical work conditions [31]. However, DE has been considered as the
major causes of accidents in many organizations [32]. There are many variables that directly
or indirectly affect DE and are indeed the root causes of accidents. When a set of variables
with complex relationships impact on a target variable, determining the most important
variables requires extensive field studies, it is time-consuming and costly; and, moreover,
the simultaneous controlling of all variables is not logical in system safety management
and system safety engineering [33]. Therefore, using expert opinions to determine the most
important variables based on scientific methods is a suitable strategy [34].

Multi-Criteria Decision-Making (MCDM) techniques are often adopted to solve com-
plex problems based on experts’ judgment. Previous studies have shown that MCDM
methods, combined with a fuzzy set theory or other methods [35,36], can result in more re-
liable results. Several studies have used this approach in the areas of health [37], safety [38]
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and environment [39], and economy [40] for identifying and classifying relationships
among variables. According to Fam et al. [41], the combination of fuzzy Delphi and DE-
MATEL is the best risk control strategy because DEMATEL can provide a cause-and-effect
model. Similarly, in another study, Kumar et al. [42] reported that AHP and DEMATEL
cannot determine the importance of the criteria. Therefore, the fuzzy Delphi method is very
suitable to fill this gap. Renissa et al. [43] used the Delphi method and Fuzzy DEMATEL to
identify the barriers to university technology transfer. Singh and Sardar [44] also used the
Delphi method to determine the factors affecting sustainable product development and the
Fuzzy DEMATEL method to illustrate the interrelationships among key factors by drawing
a causal diagram in the automotive industry. The combination of these two methods can
provide a deep understanding of a phenomenon.

Given the advantages of using fuzzy Delphi and DEMATEL methods and the lack of
ample studies extensively surveying and prioritizing the factors affecting design error in
Iranian surface mines, this study aimed to identify, rank, and investigate cause-and-effect
relationships among variables influencing DE based on expert opinions.

Further, this study contributes to the literature in several ways:

(1) To our knowledge, this is one of the first studies investigating factors predicting DEs
and their interactions. Thus, this study can contribute theoretically to the existing
literature and fill the existing gaps in safety studies that addresses the role of latent
errors in accidents;

(2) The proposed methodology of the present study provides a visual cause-and-effect
model, which helps analyze DE. Mining managers and safety experts can update their
goals and plan based on the results of the study;

(3) As a practical contribution, the study suggests strategic measures that may reduce
DEs to avoid accidents; the study also presents evidence that helps improve health
and safety at mines.

This study is organized as follows: Section 2 has the theoretical fundaments on DE,
related literature gaps and the contribution of the study; in Section 3, the most impor-
tant variables of DE in the mining design process are presented, followed by introduc-
ing Fuzzy Delphi and DEMATEL methods. The results and discussion are described in
Sections 4 and 5; Section 6 specifies the conclusion and suggests future lines of research.

3. Materials and Methods

The methodology of this study comprised three phases: the identification of variables,
the determination of effective variables via the Fuzzy Delphi method, and the analysis of
cause-and-effect relationships among such variables via the Fuzzy DEMATEL method. The
framework combining the two methods includes the following three phases, as shown
in Figure 1.
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Figure 1. Research procedure.

3.1. Searching and Classifying the Variables Affecting DE

The important variables were first identified by a library research and literature review.
Next, a panel of five experts in surface mine design was assigned to screen the most
important variables and categorize them based on environmental, individual, external,
organizational, and task factors for employing the Fuzzy Delphi method (Appendix A).

3.2. Identifying the Variables Affecting DE Using the Fuzzy Delphi Method
3.2.1. The Fuzzy Delphi Method

This method is a powerful tool used to reach a consensus based on expert opinions
in a particular field of study [45]. In its classical form, the Delphi method makes use of
expert opinions stated in the form of definite numbers. In this method, experts do not use
their mental competence to state their opinions, showing a probability of uncertainty in
the decisions made. Thus, to compensate for this drawback, a fuzzy set is used to collect
the data in linguistic terms and interpret vague concepts stated by expert opinions [46,47].
Accordingly, the classical Delphi method was combined with fuzzy set theory to create
the more effective Fuzzy Delphi method [48]. The Fuzzy Delphi method enjoys some
advantages, including the unification of expert opinions to reach a consensus [49], the
reduction of time and cost compared to the classical Delphi method [50], and the reduction
of expert opinion collection rounds [41].

There are different types of fuzzy numbers, and this study used Triangular Fuzzy
Numbers (TFN). In this study, TFN was shown using three real numbers M = (l, m, u),
in which the upper bound is (u), lower bound is (l), infimum is (m), and ‘M’ is the most
probable value of a fuzzy number [51]. TFN reflects the membership by the function, which
can show the information of the experts more simply and accurately regarding a complex
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decision-making problem [52]. TFN has been applied in various domains, including risk,
evaluation, anticipation, and expert systems [53].

3.2.2. Selection of Experts

In the MCDM method, the selection of experts is very important and vital. Powerful
expert groups can ensure the accuracy of research results. Therefore, the expert panel in
the study went through a rigorous selection process. In the first step, a database of experts
active in surface mine design in Iran was collected. The inclusion criteria included being
inclined to participate, having comprehensive knowledge, ample operational experience,
and time adequacy. Due to the diversity of minerals, the difference in the size of the mines,
the geography of the design environment, and the variety of techniques and tools used
in the design, attempts were made to select decision-makers whose experience covered
the listed items. Finally, out of 150 Iranian Open Mines Designers Association members,
25 were purposefully selected. The number of experts in the panel varies in various valid
studies, and several studies have been conducted with fewer than 10 experts to higher
numbers [54–56]. Among the experts, there were people with academic bachelor’s degrees.
These people are among the most famous mining designers in Iran who have a lot of
experience in the field of exploration and extraction in surface mines. The demographic
characteristics of the experts are shown in Table 1.

Table 1. Demographic characteristics of the experts.

Delphi Study DEMATEL Study

Demographic Variables Total Percentage Total Percentage

Gender
Male 16 84.21% 9 90.00%

Female 3 15.79% 1 10.00%
Educational

Bachler 3 15.79% - -
Master 7 36.84% 2 20.00%

Doctoral 9 47.37% 8 80.00%
Experience in mine design

<5 years 2 10.53% - -
5–15 years 6 31.58% 3 30.00%
>15 years 11 57.89% 7 70.00%

In line with previous literature using the Fuzzy Delphi method, a questionnaire with
Likert-scale items was developed to be used in the study [50]. The expert panel was asked
to review the developed semi-closed questionnaire and revise it by adding any important
variables missing in the questionnaire.

3.2.3. First and Second Rounds Inquiry

Afterwards, the questionnaire was sent to three experts to be reviewed for face and
content validities. Eventually, the finalized questionnaire was sent to 25 experts with a
response rate of 76% (19 experts) in the first phase. In this phase, three new variables were
suggested to be added to the questionnaire. After collecting expert opinions, the linguistic
variables were changed into fuzzy numbers based on Table 2.

Table 2. Triangular fuzzy numbers corresponding to linguistic terms [54].

Linguistic Expressions Triangular Fuzzy Numbers

No effect (0, 0, 0.25)
Extremely weak effect (0, 0.25, 0.5)

Weak effect (0.25, 0.5, 0.75)
Strong effect (0.5, 0.75, 1)

Extremely strong effect (0.75, 1, 1)
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The triangular fuzzy numbers set was measured for each expert’s opinion based on
Equation (1) [55]:

Ã
(i)

=
(

a(i)1 ·a(i)2 ·a(i)3

)
i = 1, 2, 3, . . . , n. (1)

Next, the mean of fuzzy numbers set (Ã
(i)
m ) out of all sets (Ã

(i)
) was measured based

on Equation (2):

Ãm = (am1·am2·am3) =

(
1
n ∑n

i=1ai
1·

1
n ∑n

i=1ai
2·

1
n ∑n

i=1ai
3

)
. (2)

Then, the difference was calculated from the mean for each expert’s opinion. After
revisions and suggested variables were added, the questionnaire was re-sent to the experts
to review and revise if needed. After collecting expert opinions in the second round based
on Equations (1) and (2), expert opinions were aggregated, and their disagreements between
the two rounds reached the minimum level of 0.2 [51]. At the end of the second round, the
experts suggested that no new variable with disagreements reached the minimum level of
0.2. Accordingly, the Fuzzy Delphi study was stopped in this step [56].

3.2.4. Determination of the Most Important Variables

To defuzzy the numbers, the simple center of gravity method was used based on
Equation (3):

Sj =
lj + mj + uj

3
. (3)

The ranking and determination of the most important variables were based on de-
fuzzied scores: the higher the defuzzied score of a variable, the stronger the effect it exerted
on human error, and hence more important. In this study, the screening process was
conducted based on the 30–70 law, in which the threshold level for criterion acceptance
was 7 [57]. Thus, if the amount of the defuzzied triangular number was found to be 0.7 or
higher based on expert opinions, it was accepted as a criterion. Otherwise, it was removed
from the study.

3.3. Determining Cause-and-Effect Relationships between the Variables
3.3.1. Fuzzy DEMATEL Method

Gabus et al. introduced a method called decision-making trial and evaluation labo-
ratory (DEMATEL) in 1972 to analyze casual relationships and significant effects among
variables with a strong validity [58]. This method works based on expert opinions expressed
in linguistic terms; in order to avoid ambiguity and reach a unification of opinions, these
linguistic terms need to be turned into fuzzy numbers. In 2008, Lin was the first person who
used the DEMATEL method in a fuzzy environment [59]. The Fuzzy DEMATEL method in-
vestigates the relationships among criteria and sub-criteria and determines effective (cause)
and affected (effect) criteria by the total-relation matrix [60,61]. This method is a multi-index
decision-making technique [62]. One advantage of this method over other methods of
investigation is that the process of decision-making is based on pairwise comparisons and
the acceptance of relationships [63]. The Fuzzy DEMATEL method is frequently used in
different fields of inquiry such as human resource management, risk assessment, and safety
management system [24,64,65]. In this study, the following steps were taken to apply the
Fuzzy DEMATEL method [66].

3.3.2. Setting up the Expert Panel

The first step aimed to identify experts qualified to participate in the inquiry process of
the DEMATEL method. The respondent had to be a person who had adequate knowledge
or experience related to the research problem. In this study, 15 experts with prominent
experience and research history about mine design were selected, and the questionnaire
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was sent to them via email. Eventually, 10 experts collaborated in the study, performed the
evaluation, and submitted the evaluation forms later.

3.3.3. Preparing Fuzzy DEMATEL Questionnaire

The Fuzzy DEMATEL questionnaire comprised a 20 × 20 matrix, which is not a
symmetric matrix. The factors in these tables were assessed as a pairwise matrix. The
experts used a 5-point Likert scale (Table 2) to express their opinions about the relationship
among variables.

3.3.4. Analyzing the Data

(a) Based on experts’ responses, the initial direct-relation fuzzy matrix was calculated

Z̃k
ij =

⎛⎜⎝ 0 · · · X̃k
1n

...
. . .

...
X̃k

n1 · · · 0

⎞⎟⎠. K = 1, 2, 3, . . . , P. (4)

In this equation, P is the number of experts (10).
Then, using Equations (5)–(7) the aggregated mean of expert opinions was measured.

Z̃ij =
X̃1 + X̃2 + X̃3 + X̃4 + . . . + X̃P

P
. (5)

X̃1, X̃2, X̃3, and X̃P are the pairwise comparison matrixes of the experts (expert 1, 2, 3,
and P, respectively).

Z̃ij =

⎛⎜⎝ 0 · · · X̃1n
...

. . .
...

X̃n1 · · · 0

⎞⎟⎠, (6)

Z̃ij =
(
lij + mij + uij

)
. (7)

(b) Normalizing the direct-relation fuzzy matrix using Equations (8) and (9)

r = max
n

∑
j=1

u′
ij, (8)

H̃ij =
z̃ij

r
=

(
l′ij
r

.
m′

ij

r
.
u′

ij

r

)
=
(

l′′ij .m
′′
ij.u

′′
ij

)
. (9)

(c) Determining the total-relation matrix.

The total-relation fuzzy matrix (T) was measured by the following Equations (12)–(14):

T = limk→∞

(
H̃1 + H̃2 + H̃3

)
, (10)

t̃ij =
(

lt
ij.m

t
ij.u

t
ij

)
, (11)[

lt
ij

]
= Hl × (I − Hl)

−1, (12)[
mt

ij

]
= Hm × (I − Hm)

−1, (13)[
ut

ij

]
= Hu × (I − Hu)

−1. (14)
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(d) Defuzzying the total-relation fuzzy matrix base on Equation (15)

tij =
lt
ij + 2mt

ij + ut
ij

4
. (15)

(e) Measuring the D-value and R-value based on extracted variables from the total-
relation defuzzied matrix base on Equations (16) and (17):

D = ∑n
J=1tij.(j = 1, 2, 3, . . . , n), (16)

R = ∑n
i=1tij.(i = 1, 2, 3, . . . , n). (17)

To do so, the elements of each row (Di) and each column (Ri) were totaled out of the
total-relation defuzzied matrix. The total number of elements in each row (D) for each
factor shows the degree to which that factor affects other factors in the system. On the
contrary, the total number of elements in each column (R) for each factor shows the degree
to which that factor is affected by other factors in the system.

(f) In the end, D and R values were used to measure D + R and D − R values.

The D + R values show how much one factor affects and is affected by other factors.
In other words, the higher the D + R value, the more interaction between the factor and
other factors in a system. On the other hand, D − R values show how strongly one factor
affects other factors in a system. In general, if D − R is positive, the variable is considered
a cause variable, and if it is negative, it is considered an effect variable. After defuzzying
numbers, a Cartesian coordinate system is drawn in which the x-axis shows D + R values,
and the y-axis shows D − R values.

4. Results

First, the relevant literature on DE and human error variables was reviewed, and
important variables were identified and extracted. These variables were then screened
by experts and categorized into five factors: organizational, external, environmental, task,
and individual.

4.1. Ranking Variables Affecting DE Based on the Fuzzy Delphi Method

After specifying effective variables, the two phases of the Fuzzy Delphi study were
carried out to reach a consensus among experts. Accordingly, the semi-closed questionnaire
with Likert-scale items was developed and given to the experts. After collecting the
questionnaires, the mean triangular fuzzy value and defuzzied value were measured for
each of the phases based on Equations (1)–(3). Table 3 shows the absolute mean of experts’
agreement corresponding to the importance of each factor. The results revealed that the
following variables strongly affected human error in mine design: technical knowledge
(designing and safety), poor organizational management, resource allocation (hardware
and software), and experience. Environmental factors, noise, indoor air quality in the
workplace, and lighting exerted the strongest effects on DE.

As for task factors, mental workload, multitasking in designing projects, and an
unclear work process strongly influenced DE. Finally, technical knowledge, experience, and
depression were the most effective individual factors. Poor organizational management,
resource allocation (hardware and software), and a safe design culture were the most
effective organizational factors.
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Table 3. Selected variables of the Fuzzy Delphi study for cause-and-effect analysis.

Subgroup Identification Code Variable Defuzzied Number

Individual variable

Va1 Technical knowledge (safety
and designing) 0.81

Va2 Experience 0.78
Va3 Depression 0.74
Va4 Motive 0.72
Va5 Self-confidence 0.72
Va6 Financial satisfaction 0.72
Va7 Stress 0.71
Va8 Intelligence coefficient 0.71
Va9 Fatigue 0.70

Task variables
Va10 Unclear work process 0.76
Va11 Multitasking 0.70
Va12 Workload 0.70

Environmental variables
Va13 Noise 0.73
Va14 Poor indoor air quality 0.72
Va15 Inappropriate lighting 0.71

Organizational variables

Va16 Poor management 0.81
Va17 Resource allocation 0.79
Va18 Safe designing culture 0.73
Va19 Training 0.71

4.2. Determining Cause-and-Effect Relationships among Variables Affecting DE (CF)

In this phase, variables with an influencing score of 0.7 and higher were screened
from each variable group (individual, organizational, external, task, and environmental)
and given to the experts in the form of a pairwise-matrix questionnaire analyzed for
cause-and-effect relationships. Table A1 demonstrates the list of variables selected for the
Fuzzy DEMATEL study. After collecting expert opinions regarding the effects of variables
on each other, the mean of opinions was acquired by forming the direct-relation fuzzy
matrix. Next, the normalized direct-relation matrix was formed, followed by the total-
relation matrix (Appendix B). The variables in each row were added to measure the D value
(Figure 2), and the variables in each column were added to measure the R-value (Figure 3);
eventually, using D and R values, the interaction of variables (D + R) or dominance matrix
(Figure 4) and the relationship among variables or the influence of variables and their pure
influenceability (D − R) or relationship matrix (Figure 5) were determined. Factors with a
positive D − R relationship were considered effective (causes) and those with a negative
D − R relationship were considered affected (effects).

Based on D + R values, unclear work process, CF, multitasking, and fatigue had the
highest level of interaction with other variables; on the contrary, poor indoor air quality,
inappropriate lighting, and noise had the lowest level of interaction with other variables.
According to D − R values, poor organizational management, resource allocation (hardware
and software), training level, and experience were the most effective variables respectively,
less influenced by other variables. In other words, these variables had a strong guiding
power with minor dependence on other variables. Thus, if these variables are fortified,
failures in cognitive function are reduced, leading to a significant decrease in design errors.
On the other hand, CF, self-confidence, depression, and motive were the most affected
variables (effects) respectively, more affected by other cause variables.
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Figure 2. Influence of variable on other variables (D values).

 

Figure 3. Influenced impact index variables (R values).

 

Figure 4. Interaction among variables (D + R values).
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Figure 5. Cause-and-effect roles of the variables (D–R values).

According to the results of the cause-and-effect relationships presented in Figure 6,
the variables of the study can be divided into four groups located in four different zones.
The first group of cause (influencing) variables included poor organizational management,
resource allocation (hardware and software), training, experience, technical knowledge
(safety and designing), safe designing culture, and unclear work process. The second cause
variables included noise, poor indoor air quality, and lighting. The third and fourth groups
of variables were under the D + R axis including effect (influenced) variables. Financial
satisfaction was the only variables present in this zone.

Figure 6. Cause-and-effect relationships among the variables.
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This variable was affected by the variables of Zone 1 and Zone 2 but influenced
variables of the fourth group. The fourth zone, however, as the most important group
of effect variables, included CF, self-confidence, fatigue, depression, motive, workload,
stress, and multitasking. Generally, to improve CF and reduce design errors, it is better
to implement measures that consider Zone 1 variables followed by Zone 2 variables. If
problems persist, the variable of Zone 3 needs to be considered. Zone 4 variables are the
variables that are under the influence of variables present in previous zones, and thus
no direct corrective action is performed for them. The study results demonstrate that
environmental variables as one type of cause variables were the weakest variables in terms
of affecting and being affected by other variables. In contrast, organizational variables were
the strongest variables in terms of affecting other variables, showing that they are the most
important variables affecting DE.

5. Discussion

In accordance with our findings, previous research also shows that organizational
factors are one of the most important causes of DE [12,22]. Dedy et al. [67] named lack of
training/education (training about design), poor resourcing, poor strategy and leadership,
poor management, and lack of professionalism as the organizational factors affecting DE
in construction projects. The results of Hafezi’s study showed that organizational factors
such as lack of training program for designers and poor use of technology had the highest
priority in issues related to related to DE [68]. The results of Cho’s study also revealed that
poor management and lack of standard processes were the main organizational factors of
DE [69]. Moreover, many studies focusing on human error have emphasized organizational
factors, particularly management obligation [70–72], resource allocation [73], and safety
culture [74].

The results of this study demonstrated that technical knowledge and experience were
located in Zone 1; thus, these individual variables are the root cause of DE in surface mines.
Similarly, the results of the study by Philemon et al. [75] showed that the lack of knowledge
and experience of the design team was the most effective personal factor leading to DE
and omission in construction projects in Tanzania. Lopez et al. also believe that employ-
ing inexperienced designers with low technical knowledge and engaging underqualified
designers in important design projects are the main causes of DE in organizations [12].
Technical knowledge of designing, quality and quantity of training, and experience [76]
are personal variables that can strongly affect cognitive function, especially in the early
stages of detecting, noticing, understanding, and sense-making processes [77]. These two
criteria are the most significant factors influencing cognitive function [78]. Continuous and
adequate training and using experienced instructors are highly effective for preventing
and controlling human errors on the one hand and reducing the risk of accidents on the
other [79].

Environmental parameters such as noise, lighting, and indoor air quality were cate-
gorized into Zone 2 in this study, belonging to independent (cause) variables that could
influence Zone 3 and Zone 4. To the researchers’ knowledge, this important factor has
been overlooked in DE studies. These factors can negatively influence the physiological
balance of the human body; cognitive performance can cause stress, fatigue, depression,
and workload, which in turn can result in the loss of focus and more human error [80,81].
Noise exposure can act as a stressor and increase mental workload, eventually impairing
the mental performance required for one’s responsibilities [82,83]. Noise can also lead
to fatigue [84], significantly affecting one’s performance while performing complex tasks
requiring mental processing [85,86]. Appropriate lighting improves awareness and cogni-
tive performance [87]. On the other hand, inappropriate lighting can result in depression,
mental boredom, and sleep quality [88]. Research shows that indoor air quality in the work-
place influences cognitive performance as chemical pollutants in the air, such as particles,
and high levels of carbon dioxide in the air detrimentally affect cognitive performance [89].
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Another dependent (effect) variable is financial satisfaction (Zone 3), which can affect a
lot of variables in group 4, particularly cognitive function. For example, Tilley and McFallen
conducted a study on Australian designers. They reported that most designers believed
their payment was low despite their challenging job, which could eventually influence the
quality of their designing performance [90]. Based on the study by Vaiana et al. [91], the
contractor’s lack of payment and inadequate cash flow was an important factor in increasing
DE and accidents in Design and Build Projects in Malaysia. Financial dissatisfaction can
demotivate designers, and low payments suggested by organizations can pave the way for
inexperienced designers to take responsibility for important projects, increasing the risk of
errors [12]. As for the fourth group of variables, the most important dependent (Zone 4)
variables were located in this group, with the designer’s cognitive function as the variable
highly influenced by others. Other variables in this group, such as fatigue and depression,
can also affect DE. From a cognitive point of view, chronic fatigue can lead to a decrease in
the information processing capabilities of workers and designers and thus result in delayed
reaction time, reduction in the field of vision, carelessness, unawareness, and lack of
focus. Therefore, fatigue resulting from physical tiredness or insomnia negatively impacts
cognitive resources and awareness [92]. Research shows that cognitive dissonance and well-
being were the most important man factor of DE in the oil and gas industry [67]. Another
variable belonging to Zone 4 was the workload. The increased workload can reduce
mental health and stress, leading to cognitive overload, failures in cognitive performance,
and increased human error [93,94]. Failures in cognitive function forge an important
link between factors affecting performance and human error [26,95]. Thus, individual,
environmental, task and organizational factors exert direct and indirect effects (fatigue,
stress, demotivation, etc.) on the designer’s cognitive function and lead to DEs eventually.

The comparison of the results of the abovementioned studies with the current study
highlights some conflicting issues:

• Previous DE studies have focused on consequences such as rework, safety, and cost.
Still, in mines, due to the diversity and wide operating spaces of the mines and the
type and volume of equipment used, these consequences can be very significant. It can
also have environmental, social, cultural, political, security and public health effects.
Therefore, the role of design errors in this section is much more prominent than in
other sections;

• Past studies focus only on identifying and categorizing the factors affecting design er-
ror. Still, in the present study, in addition to identifying and categorizing these factors,
their relationships are also defined within a cause-and-effect model. This model aids
decision-makers in focusing on the most important risks in mine design projects.

Based on the presented results, DE is one of the most important threats to sustainable
development in mines. Therefore, identifying and prioritizing the factors affecting such
errors is vital due to the financial and time constraints of organizations in eliminating and
controlling them. This research proposes a comprehensive approach to managing design
error in mines that, in addition to covering the existing theoretical gaps such as the lack of
a comprehensive study in the field of design error and its factors affecting mines, provides
important practical recommendations at all levels of the organization, especially for top
management and mine safety experts. Concerning the findings of this study, inherently safe
design culture, hardware and software resources, and individual factors such as insufficient
experience and knowledge are the root causes of errors in mine design. Meanwhile, the role
of top management is very important in developing, leading, and promoting an inherently
safe design culture in the organization. The top management should be allocating the
resources needed (hardware and software) to control errors in the design process, ensuring
that engineers and designers are competent based on appropriate education, training,
or experience, providing a safe and comfortable work environment based on ergonomic
standards, and trying to improve the level of job satisfaction and motivation of the design
team. In addition, based on the results, mining safety experts should pay special attention
to design errors and predict the required resources in establishing objectives and planning
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to achieve them. They can reduce variables such as job stress, depression, and fatigue, and
improve the designer’s cognitive functions by conducting safe design training courses,
implementing risk management and ergonomic programs, and monitoring physical factors
in the workplace such as lighting and noise thermal comfort parameters. Moreover, the
study can help legal organizations in mining safety to understand the nature of accidents
and formulate strategic policies to implement safe design rules in the mining sector.

6. Conclusions and Future Research

Design error (DE), a latent human error, is a key factor behind many occupational
accidents. Limited research, however, has been carried out investigating the relationship
between the causes of human error and relevant negative consequences. This phenomenon
is important, especially for the Iranian mining sector, which holds 7% of the mineral
recourses in the world. Therefore, this study aimed to identify the most significant variables
influencing surface mine designers’ performance and investigate their cause-and-effect
relationships. For this purpose, common effective factors were taken from the literature
review and screened by the experts. One MCDM methodology, Fuzzy DEMATEL, was
applied to investigate the relationships among variables and develop a cause-and-effect
model. The results revealed that environmental variables (noise, lighting, and indoor air
quality) had the weakest effects on other variables and were least affected by other ones;
based on the cause-and-effect relationships model, it can be concluded that ‘organizational
factors’ are vital for the DE control plan within the mining industry due to their effect on
other factors.

Nevertheless, it should be noted that individual variables like training, experience,
and technical knowledge were also found to influence DE. Similar to other studies, this
study faced some limitations; therefore, this work can be extended in future studies. The
most noticeable limitation is that the study is one of the first to study the most significant
variables affecting DE in surface mines with the abovementioned methods. Hence it is not
easy to generalize the findings to other industries. However, future studies may extend the
research to different industries. In this study, the empirical analysis of the cause-and-effect
relationship among variables was not conducted. For future research, empirical studies can
be carried out to confirm the structural relationships found in the model. This study only
investigated 19 variables, which are not exhaustive. More research should be conducted
to determine the relationship between variables. Therefore, it is proposed that further
studies should be done, focusing more on MCDM and new tools and approaches such as
intuitionistic fuzzy set [96], type-2 fuzzy variable [97], and Rough interval [98], considering
the challenges and control strategies for reaching a consensus via a group decision-making
process [99,100]. In conclusion, the findings of this study can improve the status of health
and environmental indicators and help achieve sustainable development goals in surface
mines by identifying and prioritizing factors influencing DE and recommending practical
solutions to eliminate and control such errors.
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Appendix A

Table A1. The Results of the Fuzzy Delphi Study Regarding the Rank of Variables Affecting DEs.

Subgroup Variable

Individual factors

Technical knowledge (safety and designing)(0.81), Experience (0.78),
Depression (0.73), Self-confidence (0.72), Financial satisfaction (0.72), Stress
level (0.71), Intelligence coefficient (0.71), Work adaptation (0.69), Designing
style (0.67), Fear of failure (0.65), Risk-taking (0.64), Understanding roles and
responsibilities (0.62), Quality and quantity of sleep (0.62), Circadian rhythm

(0.62), Risk Perception (0.61), Nutrition (0.52), Determinism (0.49),
Disappointment (0.49), Personality type (0.35), Age (0.32), Lack of trust in

performance (0.28), Gender (0.28).

Task factors

Workload (0.7), Multitasking (0.7), Time pressure (0.68), Instructions and
procedure (0.67), Quality of human–system interaction (0.67), Lack of job

security (0.65), Task complexity (0.62), Work posture (0.61), Work innovation
(0.56), Freedom at work (0.55), Physical workplace (design) (0.51).

Organizational factors
Poor management (0.81), Resource allocation (0.79), Training (0.71), Employees’

sense of belonging (0.69), Supervision level (0.63), Agreement between
available and required information (0.62), Designers’ sense of belonging (0.61).

Environmental factors
Noise (0.73), Poor indoor air quality (0. 0.72), Inappropriate lighting (0.71), Air

circulation velocity (0.57), Hotness and coldness (0.56), Moisture (0.54),
Radiation exposure (0.21).

External factors Legal pressure (0.68), Conflict between work and family (0.51).

Appendix B

Table A2. Defuzzied Total-Relation Matrix.

CF Va19 Va18 Va17 Va16 Va15 Va14 Va13 Va12 Va11 Va10 Va9 Va8 Va7 Va6 Va5 Va4 Va3 Va2 Va1

0.07 0.05 0.06 0.04 0.02 0.02 0.01 0.01 0.05 0.06 0.03 0.05 0.02 0.05 0.04 0.05 0.05 0.04 0.04 0.02 Va1
0.06 0.05 0.05 0.03 0.01 0.01 0.01 0.01 0.05 0.06 0.03 0.05 0.03 0.05 0.03 0.07 0.04 0.04 0.01 0.05 Va2
0.05 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.04 0.03 0.02 0.04 0.02 0.03 0.02 0.05 0.05 0.03 0.02 0.03 Va3
0.05 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.05 0.03 0.02 0.05 0.02 0.03 0.03 0.04 0.02 0.02 0.03 0.04 Va4
0.05 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.03 0.04 0.02 0.03 0.03 0.03 0.02 0.01 0.03 0.03 0.02 0.03 Va5
0.06 0.02 0.06 0.04 0.05 0.01 0.01 0.01 0.05 0.06 0.05 0.04 0.03 0.04 0.02 0.05 0.05 0.04 0.05 0.06 Va6
0.06 0.04 0.02 0.01 0.01 0.02 0.01 0.01 0.05 0.06 0.03 0.06 0.03 0.02 0.03 0.04 0.05 0.05 0.02 0.03 Va7
0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.03 0.01 0.02 0.03 0.04 0.03 0.03 0.03 0.03 Va8
0.06 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.04 0.05 0.03 0.02 0.02 0.05 0.03 0.03 0.04 0.05 0.03 0.05 Va9
0.05 0.03 0.05 0.03 0.01 0.01 0.01 0.01 0.04 0.03 0.26 0.06 0.02 0.04 0.02 0.03 0.03 0.03 0.02 0.03 Va10
0.06 0.05 0.03 0.03 0.01 0.01 0.01 0.01 0.06 0.02 0.03 0.06 0.03 0.06 0.04 0.05 0.05 0.05 0.03 0.04 Va11
0.05 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.06 0.02 0.04 0.02 0.05 0.02 0.04 0.05 0.05 0.03 0.04 Va12
0.04 0.02 0.01 0.01 0.01 0.01 0.01 0 0.04 0.02 0.01 0.04 0.01 0.04 0.02 0.03 0.04 0.04 0.02 0.02 Va13
0.03 0.01 0.01 0.01 0.01 0.01 0 0.01 0.02 0.01 0.01 0.04 0.01 0.02 0.01 0.01 0.02 0.03 0.01 0.01 Va14
0.04 0.02 0.01 0.01 0.01 0 0.01 0.01 0.03 0.01 0.01 0.04 0.01 0.03 0.02 0.02 0.02 0.03 0.01 0.01 Va15
0.07 0.07 0.06 0.06 0.01 0.02 0.02 0.03 0.05 0.05 0.05 0.06 0.02 0.06 0.04 0.05 0.06 0.06 0.04 0.06 Va16
0.07 0.04 0.06 0.01 0.01 0.02 0.02 0.02 0.05 0.03 0.04 0.05 0.02 0.05 0.03 0.05 0.06 0.06 0.03 0.05 Va17
0.06 0.04 0.02 0.05 0.05 0.02 0.01 0.02 0.03 0.03 0.04 0.04 0.01 0.03 0.03 0.03 0.04 0.04 0.03 0.05 Va18
0.04 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.04 0.03 0.02 0.02 0.02 0.04 0.02 0.04 0.05 0.04 0.02 0.02 V19
0.02 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.05 0.02 0.04 0.01 0.04 0.03 0.02 0.02 0.02 0.02 0.02 CF
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Abstract: This paper develops a statistical framework to analyze the effectiveness of vegetation
management at reducing power outages during storms of varying severity levels. The framework
was applied on the Eversource Energy distribution grid in Connecticut, USA based on 173 rain and
wind events from 2005–2020, including Hurricane Irene, Hurricane Sandy, and Tropical Storm Isaias.
The data were binned by storm severity (high/low) and vegetation management levels, where a
maximum applicable length of vegetation management for each circuit was determined, and the
data were divided into four bins based on the actual length of vegetation management performed
divided by the maximum applicable value (0–25%, 25–50%, 50–75%, and 75–100%). Then, weather
and overhead line length normalized outage statistics were taken for each group. The statistics were
used to determine the effectiveness of vegetation management and its dependence on storm severity.
The results demonstrate a higher reduction in damages for lower-severity storms, with a reduction in
normalized outages between 45.8% and 63.8%. For high-severity events, there is a large increase in
effectiveness between the highest level of vegetation management and the two lower levels, with
75–100% vegetation management leading to a 37.3% reduction in trouble spots. Yet, when evaluating
system reliability, it is important to look at all storms combined, and the results of this study provide
useful information on total annual trouble spots and allow for analysis of how various vegetation
management scenarios would impact trouble spots in the electric grid. This framework can also be
used to better understand how more rigorous vegetation management standards (applying ETT) help
reduce outages at an individual event level. In future work, a similar framework may be used to
evaluate other resilience improvements.

Keywords: electric power distribution; power outages; reliability; resilience; severe weather; tree
trimming; vegetation management

1. Introduction

Trees are one of the leading causes of outages in electric distribution systems [1],
and the leading cause for some utilities [2,3]. One study over the Eastern United States
and Canada found tree growth to be the most frequent cause of preventable outages [3],
and these outages prove costly. A study from 2001 shows even a one-second outage can cost
individual businesses an average of $1477 [4], highlighting the benefit of improving system
resilience. Another report from 2015 reinforced the idea of high costs for short duration
outages, as it evaluated 34 datasets from 10 utilities across 1989 to 2012 and estimated the
cost of momentary outages to small commercial and industrial (C&I) customers (defined
as under 50,000 kilowatt-hours annually) as $412 per event, and medium and large C&I
customers as $12,952 per momentary outage event [5]. During storms in the Northeastern
United States (US), trees are responsible for a particularly high percentage of outages,
with Eversource (a major power utility that services more than 3 million electric customers
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in New England [6], and the utility whose data are used in this study) reporting about 90%
of outages on their electric system in storms with heavy wind or snow, as caused by trees [7].
This is in part due to the dense vegetation of the region. The state of Connecticut, which is
the domain for this study, has forest cover estimates ranging from 56% to 61% [8]. The state
can be considered heavily forested compared with the United States national average of
34% forest cover [9], but is comparable to other New England States [10]. The tree canopy
for the state of Connecticut compared with the rest of the contiguous United States can be
seen in Figure 1.

Figure 1. Percentage of Tree Cover over the United States and Connecticut.

When considering storm events, specifically over the Eversource Energy service terri-
tory in Connecticut, there is a large difference in impacts on the electric grid with small
events causing trouble spots in the tens or hundreds, and the largest storms such as hur-
ricanes or Tropical Storm Isaias causing trouble spots in the tens of thousands. It is of
note that resilience effort efficacy may vary with the large span in intensity level observed
for different storms. While the overall effectiveness of vegetation management has been
demonstrated in other works [11–13], the possibility of diminishing returns with increasing
storm strength exists and has yet to be evaluated. Improving system resilience for all
severity of storms, ranging from the more frequent, lower severity events, to extreme, less
frequent, events is important because in total, weather-related outages cost the US economy
in the range of 18–70 billion US dollars annually [14,15]. To reduce outages from trees across
the spectrum of weather from blue-sky days (nonstorm weather) to hurricanes, vegetation
management strategies are employed across the industry at the cost of billions of dollars
annually [16] and vegetation management is considered one of the largest recurring ex-
penses associated with overhead utility infrastructure in North America [2]. As such, there
is a good portion of existing literature that looks at understanding the reduction in trouble
spots in the electric grid due to vegetation management for various weather conditions.
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Some works focused on identifying areas with high vegetation risk [17–19] while oth-
ers addressed the issue of optimizing the maintenance schedule, or frequency, of vegetation
management [19–21]. The authors of [22] demonstrated that reducing the trimming cycle
time for the electric grid of a utility in the Southeastern United States (Duke Power) by a
year would reduce outages by approximately 0.9 outages/circuit/43 months for days with
normal (nonstorm) operating conditions. Another topic addressed by several studies is the
proposal of frameworks for analyzing system resilience including grid hardening strate-
gies [23–25]. The work of [3] looked at more rigorous vegetation management techniques,
examining the reduction in outages when individual hazardous trees are removed. Other
literature created models to predict outages during hurricanes and examine the impact of
tree trimming on reducing outages during the storms [11,26]. The authors of [26] created
partial dependence plots that show that more frequent trimming results in a reduction
of outages for a utility territory spanning two states in the central Gulf Coast region of
the US. In another study that addressed reducing outages during storms, the authors
of [27] developed a hybrid physics-based and data-informed Monte Carlo simulation
(MCS) to examine how pole replacements in the electric grid would have affected outages
in Connecticut during Hurricane Sandy, and suggested including vegetation conditions
as a future research path. Other aspects of the interaction between vegetation and reliable
power delivery that have been researched include comparing attitudes of residents about
roadside vegetation management programs [28] and developing methodologies to reduce
the expense of monitoring vegetation near power lines [29].

When considering vegetation management, while altering the frequency of tree trim-
ming is one technique to reduce outages, another is instituting more rigorous vegetation
management guidelines in terms of distance from electric wires. For instance, Eversource
has multiple vegetation management standards, which include Scheduled Maintenance
Trimming (SMT) and Enhanced Tree Trimming (ETT). SMT requires clearing any tree limbs
that intrude on the space 15 feet above, 8 feet to the side, and 10 feet below electric dis-
tribution wires, and is performed on all distribution circuits once every 4 to 5 years. ETT
is more rigorous, requiring the removal of all trees and brush to create an 8 foot buffer to
the side of distribution lines regardless of the height of the brush and trees. While SMT
is performed on roughly 10,000 miles of distribution lines each year, ETT is strategically
implemented on critical circuits in a more limited manner [7]. The study conducted in [11]
used Eversource data over Connecticut to analyze both ETT and SMT effectiveness during
Hurricane Sandy and, similarly to [26], implements partial dependence plots as a way to
measure their influence. The plots show decreases in outages for increased Enhanced Tree
Trimming (ETT) performed on backbone lines and covered lateral lines, but mixed results
for bare lateral lines [11]. Ref. [30] examines the effectiveness of ETT and SMT grouped
together into one class of tree trimming operations (TTOs) and analyzes their effectiveness
at preventing all outages of duration greater than five minutes. The results show that with
99% confidence, the outages in the distribution system were reduced by 0.117/mile of TTOs,
but this study did not control for storm intensity and evaluated all outages as opposed to
only those caused by storms.

There are a few other studies that, similarly to this study, focused on understanding the
effectiveness of ETT in reducing outages during storm events [12,13]. Ref. [12] performed
analysis by pairing segments of the electric grid where ETT was performed with nearby
segments where no ETT had been performed to act as controls for tree cover, wire type,
and weather. Excluding the year that trimming was performed, the outage rates for both
the control and ETT sections of line were calculated for the three years before and after
treatment. For the areas where ETT was performed, the results demonstrated a reduction in
trouble spots in the electric grid between 0.016–0.066 outages/mile/year. ETT effectiveness
was researched in [13], which included a statistical analysis evaluating circuits with various
levels of ETT. The statistical analysis results showed that ETT produces a reduction in
outages between 49% and 65%.
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This study focuses on grid resilience during storms as it is of critical importance to
understand any differences in the efficacy of vegetation management for different storm
severity (lower impact, more frequent storms versus stronger, less frequent events) in
order to conduct comprehensive resilience and economic analyses. This is the first of three
main contributions of this study to the existing literature, as to the authors’ knowledge,
it is the first study that looks at the effectiveness of vegetation management in reducing
trouble spots for varying storm severity. This study addresses the gap in the existing
literature by performing a statistical analysis that looks at the effectiveness of implementing
more rigorous vegetation management standards (by applying ETT) in reducing trouble
spots in the electric distribution grid while binning and normalizing storm events by
their severity. The second contribution this study provides is a quantitative tool that
provides the ability to retrospectively quantify return on investment by evaluating various
scenarios of ETT for historical events and also the approximate return on investment for
future climate storm scenarios. The tool can be used to analyze individual events, such
as hurricanes, as well as perform more comprehensive analyses such as evaluating the
total trouble spots reduced over the domain in a given year. This will help stakeholders
(municipalities, utilities, regulators) to more fully understand the impacts of vegetation
management, allow for more accurate economic analysis, and provide useful information
to help guide resilience planning and policy decisions such as optimizing resilience budgets
between activities, including reducing the time between regular maintenance tree trimming
(by applying SMT more frequently), enacting more rigorous vegetation management
standards (by extending ETT), performing pole upgrades, performing wire upgrades, and
undergrounding lines. The third contribution of this study is the framework developed,
as it is extendable to evaluate the effectiveness of other resilience and grid hardening efforts
such as pole replacements/upgrades and reconductoring wires.

2. Data and Methods

2.1. Study Area

The study area for this analysis is the Eversource Energy service area in Connecticut,
which serves 1.2 million electric customers [6] and covers over 4400 square miles across
149 of 169 towns in the state [31]. The topography of the state can be generally regarded as
hilly with elevation ranging from sea level to approximately 750 m [12].

2.2. Data
2.2.1. Outage Data and Storm Events

The outage data used in this study were provided by Eversource Energy from their
outage management system and includes starting time and grid circuit (operational units of
the distribution network) on which each outage occurred. Historical storms were identified
by using METeorological Aerodrome Reports (METARs) data collected at Connecticut
airport stations. The identified storms were dynamically simulated at 4-km grid spacing
using the 3.8.1 version of the Advanced Research (ARW) core of the Weather Research
and Forecasting (WRF) model, initialized with the North American Mesoscale Forecasting
System’s (NAM) initial and boundary conditions. The WRF model configuration used
in this study is described in detail in [32]. Outages were analyzed for 173 storm events
with varying type and size, and for each event, all outages that occurred during the
storm window were analyzed. The events occurred between the years of 2005 and 2020,
and include Hurricane Irene, Hurricane Sandy, and Tropical Storm Isaias. The additional
events display rain and wind conditions consistent with extratropical frontal systems.
The outage data from the utility have an assigned field for the circuit to which the piece of
infrastructure belongs, the start date , start time, and the duration, among other information.
The start date and time were used to assign outages to storm events. For each event,
a window for associated outages is created based on the timing of weather conditions and
the magnitude of the storms. The window length is 48 h for small events, which is increased
in length for more extreme events. The outage duration is increased as for larger events,
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with many outages, there are often nested outages that take some time to be discovered
and reported. Nested outages are those where an outage downstream (the nested outage)
in the electric grid is discovered when a trouble spot upstream is repaired, and not all of the
expected customers have power returned. For large storms, the window to count outages
is expanded until the active outages are reduced to a background noise level. The longest
window for recording outages is 240 h for Tropical Storm Isaias. To obtain the total outages
for each circuit for each event, the damage locations (trouble spots) associated with each
circuit during each storm window were summed.

As the focus of this study is on outage reductions due to vegetation management,
it is important to understand how many of the outages analyzed are in fact caused by
vegetation. Of the 118,227 trouble spots in the electric grid across the 173 storm events used
in this study, 100,956 or 85.4% had vegetation-related cause labels, which is comparable
to the 90% tree-caused outage value for storms with heavy rain or snowfall reported by
Eversource [7]. Of the remaining outages, only 1058 or 0.89% were assigned an outage
caused by lightning. The remaining outages had various causes including “unknown”,
“patrolled [and] nothing found”, and “miscellaneous”. As a high percentage of outages
were caused by vegetation, and knowing that some of the other outages in other categories
such as “miscellaneous” and “unknown” may have also been caused by vegetation, all
outages were used for the analysis conducted in this study. There were no outage data with
a missing value for outage cause.

2.2.2. Infrastructure, Vegetation, and Vegetation Management Data

Infrastructure data were provided by the utility including the precise geographic
position of the overhead power lines for the 957 circuits in the Eversource Connecticut
domain. Additionally, the utility (Eversource) provided the vegetation management data
for each circuit extending backward to the beginning of the ETT program (2009), meaning
no ETT had been performed on any circuits (all values of 0). The tree height data used
in the study are available at a 30 m-resolution and were developed through integration
between the Global Ecosystem Dynamics Investigation (GEDI) light detection and ranging
(lidar) data and Landsat analysis-ready data [33].

2.3. Methodology

For each circuit, the lengths of primary overhead lines, lateral lines, and backbone
lines were measured. The overhead line locations were used in combination with the raster
of vegetation height [33] to determine the maximum potential ETT length (maxETTlength)
for each circuit. A mask of the raster of vegetation height was created, only keeping those
cells with vegetation height above 6 m (19.69 feet), and buffering those cells out 20 m
(65.62 feet) to account for any potential imprecision in the data. The overhead lines were
overlaid with this raster and trimmed to keep only the overhead lines where they intersect
the tree height mask. We then measured the remaining length of overhead lines for each
circuit. This maximum trimmable length (maxETTlength) for each circuit is combined
with the vegetation management data to create the vegetation management variable used
for analysis. The vegetation management data were obtained from Eversource Energy in
two formats, as the collection methodology was updated during the life of the ETT program.
The length of ETT performed on each circuit was available at a monthly resolution for the
most recent years of data, 2016–2019. For the earlier years of ETT data (2009–2015), the ETT
data were available for each circuit at an annual resolution. These data were temporally
downscaled to monthly values using weights derived from the relative percentage of tree
trimming completed monthly in 2016. To perform the downscaling of the data, the miles
trimmed in each month during 2016 were divided by the total miles trimmed in 2016.
The monthly percentages were multiplied by the total annual trimming for each circuit
in the years 2009 to 2015, to approximate the portion of annual trimming completed in
each month.
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The full monthly ETT dataset (2009–2019) was then used to create a variable called
instETT. The instETT variable is the cumulative value of ETT that had been performed
on a given circuit between the start of the ETT program in 2009 and the starting time of
each storm, divided by the calculated maximum potential ETT length (maxETTlength) for
that circuit. The equation for instETT for a circuit for one event can be seen in Equation (1)
below, where ETTcumulative is the cumulative ETT that had been performed on the given
circuit at the time of the storm since the beginning of the program (at a monthly temporal
resolution), and maxETTlength is the maximum applicable length of the circuit over which
ETT can be applied, as previously described in this section of the paper.

instETT =
ETTcumulaive
maxETTlength

(1)

In order to account for any data irregularities where the cumulative ETT performed
on a circuit was greater than the calculated maximum potential ETT length for that circuit,
the instETT variable was capped at a value of 1.

Over the Eversource Connecticut domain, there exist 957 circuits. However, for the
purposes of this analysis, circuits with less than 1/4th of a mile of overhead line length
where ETT is applicable were removed as very little trimming on these circuits leads to large
swings in the instETT value, which may influence the statistical analysis. Due to having a
short span of wire where ETT is applicable, when only short stretches of wire are trimmed,
the instETT values for these circuits rapidly approach 100%. This results in a distribution
of instETT values that is more discrete in appearance—with large gaps between values—
than for the circuits with trimmable lengths above 1/4th of a mile. Moreover, below 1/4th
of a mile of trimmable length there is little signal, as despite making up 6.17% of the circuits
in the service territory, these low trimmable length circuits only account for 345 outages,
or 0.29% of all outages in the dataset. There is also a high density of instances of circuits
with less than 1/4th of a mile of trimmable length with instETT values close to 100%. Thus,
in order to create a more representative statistical analysis for those circuits in the highest
instETT bin (75–100%) and mitigate the analysis being skewed by an unrepresentative
subset of the data in terms of trimmable length, circuits with less than 1/4th of a mile of
overhead line length where ETT is applicable were removed. This results in 898 circuits
for use in the analysis after removing the aforementioned circuits with short overhead line
lengths where ETT is applicable.

In order to compare the effectiveness of various tree trimming levels for differing
storm severity, we divided the data in several ways. First, the data for the 173 storms were
split at the 90th percentile of exceedance probability in terms of trouble spots caused in
the distribution network. The top ten percent, or seventeen events, are considered the
high-severity events, with the other 156 classified as low-severity. The split point and
trouble spots for each event are displayed in Figure 2.

For each storm class (high- and low-severity), the data were subset three times based
on their instETT values to evaluate various percentages of applicable ETT performed.
Each of the three subsets compare the outage rates of circuits from the lowest instETT
bin (0–25%) to one of the higher ETT bins (25–50%, 50–75%, or 75–100%). In order to try
and make the comparison more fair in terms of data samples, only circuits were kept that
had instETT values in both bins at the time of one or more storms from the storm class of
interest (high- and low-severity). Only keeping circuits that have data samples in both bins
being compared helps to control for other factors such as location, tree cover, circuit size,
and infrastructure among other variables.
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Figure 2. Exceedance Probability by Trouble Spots per Event. Exceedance probability based on the
173 storms included in the dataset. The break point in classification between low- and high-severity
lines (the 90th percentile) is represented by the horizontal line.

This control is demonstrated by examining a comparison between two sample groups
in further detail, such as the comparison of circuits with 0% to 25% ETT versus those with
25% to 50% ETT for high-severity storms, which we will call Experiment A. First, the data
are subset to only include the data for each circuit from the seventeen high-severity events.
Next, the data are further subset to only keep circuits that have instETT values in both of
the ranges being compared (0–25% ETT and 25–50% ETT in this case). For example, if a
circuit has instETT values between 0% and 25% for seven of the seventeen high-severity
storms, and instETT values between 25% and 50% for another seven events, those fourteen
rows of data are included in the analysis, whereas the remaining three rows of data for the
given circuit where a high-severity event occurred but the instETT value was above 50%
are excluded.

For high-severity events, the same binning process was used to compare circuits with
instETT values between 0% and 25% to those with instETT values between 50% and 75%
(Experiment B), as well as to compare circuits with instETT values between 0% and 25%
to those with instETT values between 75% and 100% (Experiment C). Experiments A
through C were repeated for the low-severity events (Experiments D–F) where D, E, and F
correspond to the same instETT bin comparisons as Experiments A, B, and C, respectively.
The resulting bin sizes for each data subset for high- and low-severity events can be seen
in Table 1. For high-severity events, the number of rows of data in Experiment C, where
we compare circuits that have the lowest percentages of applicable ETT performed (0%
to 25%) against circuits with the highest levels of ETT (75% to 100%), is notably smaller
than the other data subsets in the comparison groups, but this imbalance is a result of the
available data. There are not many circuits that have had high-severity events occur at
both times when a low amount of ETT had been performed and again after significant
trimming. This is likely due to the fact that there are only seventeen events classified as
high-severity, and a minority of circuits have reached instETT values between 75% and
100%. The average amount of applicable ETT performed on circuits has risen significantly
in recent years, but was still only 32% at the time of Tropical Storm Isaias, which is the most
recent storm in the data.
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Table 1. Size of comparison bins for each Experiment, A-F, and average Kinetic Energy Proxies for
the instETT bins in each experiment.

Experiment Severity
instETT
Values

Rows of
Data

# of
Unique Circuits

% of
Circuits (of 898)

Kinetic Energy Proxy [(m/s)2]

A High 0–25% 4453 465 51.8% 130.1
A High 25–50% 2896 465 51.8% 145.6

B High 0–25% 1188 140 15.6% 117.5
B High 50–75% 854 140 15.6% 140.0

C High 0–25% 428 48 5.3% 123.4
C High 75–100% 347 48 5.3% 141.5

D Low 0–25% 31,408 486 54.1% 76.4
D Low 25–50% 36,196 486 54.1% 62.5

E Low 0–25% 6390 144 16.0% 77.0
E Low 50–75% 9299 144 16.0% 58.6

F Low 0–25% 2014 47 5.2% 78.6
F Low 75–100% 4153 47 5.2% 58.5

To mitigate any impacts that may come from the varying average overhead line
lengths in the ETT bins being compared, we normalize the outages in each circuit by miles
of overhead line length to generate an outage rate per unit of infrastructure. We do this
because if all else was equal, circuits with longer overhead line length would be at higher
risk of outages as there is more infrastructure with the potential to be damaged.

In addition to normalizing outages by overhead line length for each circuit, for some
results we also normalized by a proxy for the average kinetic energy of each storm using the
wind speed 10 m above the ground. This step was taken to help control for the differences
between the risk presented by various intensities of storms. This is particularly important
for high-severity events, as there are only seventeen total and the events inside the high-
severity category do not have homogeneous weather. Some high-severity events such as
the hurricanes have much stronger winds and weather, and an order of magnitude greater
impact than the other events in the same category.

The low versus high instETT cumulative density functions for each of the three
high-severity Experiments (A–C) can be seen in Figure 3. It can be seen in the figure
that for approximately the lower 80% of quantiles for each of the three comparisons,
the bins representing the higher instETT values have higher average kinetic energy proxy.
However, the data groups with lower instETT values have the higher kinetic energy proxy
for approximately the top 20% of quantiles.

Due to the difference in kinetic energy proxy distributions for the lower and higher
ETT bins in each comparison, we normalize outages by this proxy for each bin. To obtain
a value to normalize by, the mean of the squared maximum 10-m wind speeds for each
circuit is taken, where Equation (2) below represents the kinetic energy proxy for one
circuit. The average of the kinetic energy proxies for each circuit is then taken in a given
comparison bin:

KEproxy = (Vmax)
2 (2)

In the above equation, the 10-m wind speed (Vmax) is squared as velocity is in the
equation for kinetic energy. Values of the average kinetic energy proxy for each instETT
comparison bin for high- and low-severity events can be seen in Table 1.
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Figure 3. Cumulative distribution functions (CDFs) of Kinetic Energy Proxy. Comparisons between
low and higher ETT data subsets for each comparison group for Severe Storms. (a) 0–25% vs. 25–50%
ETT groups—Experiment A. (b) 0–25% vs. 50–75% ETT groups—Experiment B. (c) 0–25% vs. 75–100%
ETT groups—Experiment C.

Each of the data bins were also tested for the normality of the distribution, to confirm
which statistical test to use for determining if the difference between trouble spots in each
ETT group comparison is significant. The Shapiro–Wilk normality test was used [34–38].
For bins with under 5000 data samples, all data were used in the test. For the bins with
over 5000 samples, 5000 data points were randomly selected and used for the analysis. All
of the bins were found to not have normally distributed data. As the data subsets are not
normal in their distributions, a nonparametric Wilcoxon–Mann–Whitney test (alpha of 0.05)
was used to compare the means for significant differences [35,39–41].
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Figure 4. Percent decrease in normalized trouble spots from low instETT to higher instETT bins for
each experiment. The left (blue) three bars represent the percent change in average kinetic energy
proxy and overhead line normalized trouble spots from the 0–25% instETT bin to each higher instETT
bin for low-severity events (Experiments D–F). The right (red) three bars represent the percent change
in average kinetic energy proxy and overhead-line-normalized trouble spots from the 0–25% instETT
bin to each higher instETT bin for high-severity events (Experiments A–C).

To focus on the cases of the most extreme impacts, the percent changes in kinetic
energy normalized trouble spots were used to estimate trouble spot values for each circuit
for the three tropical storms (Irene, Sandy, Isaias) under two hypothetical conditions: 1, if
no ETT had been performed prior to the storms; 2, if every circuit had an instETT value
between 75% and 100% prior to the storms. For each circuit and for each of the three
storms, the actual instETT bin was determined. If the instETT value was between 0% and
25%, no adjustment was made. Otherwise, the expected outages if instETT was between
0% and 25% were calculated as follows. The trouble spot value for the given circuit and
event was divided by 1 minus the expected percentage decrease for the circuit’s instETT
value and the storm severity, where the expected decreases are the percentages shown in
Figure 4. Equation (3) outlines the trouble spot adjustment, where O is the outage value
for a single circuit for a single event, and Padj is the adjustment percentage derived from
previous analysis dependent on the circuit instETT value and the event severity. In this
case, the three storms being analyzed are all high-severity. The calculated values for each
circuit with 0% to 25% ETT were then used to obtain outage values if the instETT values
were 75–100% for each circuit by multiplying by 1 less 0.373, where 0.373 is the expected
percentage decrease in trouble spots for high-severity storms if instETT is increased from
0–25% to 75–100% (Experiment C), in decimal form.

Oadj =
O

(1 − Padj
100 )

(3)

This same calculation methodology is used for each of the 173 storms to determine the
trouble spots if no ETT had been performed prior to each storm, and determine the trouble
spots if every circuit had an instETT value between 75% and 100% before the storm.

206



Sustainability 2022, 14, 904

A representation of the domain and methodology can be seen in Figure 5, where
the data are split by event severity and then again by ETT levels to run six experiments.
The expected statistical reduction in outages is calculated for each experiment, and then
those values are applied on a circuit by circuit basis to evaluate the effectiveness of different
vegetation management scenarios in terms of reducing trouble spots in the electric grid.

Figure 5. Study framework. The left-hand figure depicts the domain, with the overhead lines colored
by circuit ID. The experiments correspond to the groups in Table 1. The statistical outage reductions
include controls for storm intensity (kinetic energy proxy) and overhead line length.

3. Results

From Experiments A–C in Table 1, it is evident that for high-severity events, the kinetic
energy proxies are higher for the bins of data with higher instETT values. This is important
to note, as stronger storms tend to produce more outages, so without normalizing for kinetic
energy, ETT impacts may appear less beneficial than they would if the storm strength was
equivalent across the comparison bins. The percentage changes in average kinetic energy
from the low (0–25%) to high instETT bins from Experiments A–C are displayed in Figure 6.
Conversely, for the lower-severity storms, all of the average kinetic energy proxies are
higher in the lower ETT bins versus their higher ETT comparison bins.

The differences in trouble spots between the lower and higher ETT bins that can be
seen in Figure 7 are significant when tested with a Wilcoxon–Mann–Whitney test, except for
Experiment C, which compares the lowest and highest levels of ETT. This is likely due to
the small size of the groupings compared in that experiment.

When looking at the results in Figure 4, there are several noteworthy findings. The first
is that for low-severity events (Experiments D–F), ETT is effective for each of the vegetation
management levels (instETT bins) analyzed, with normalized trouble spot reductions
ranging between 45.8% and 63.8%. This may be due to the utility having targeted particu-
larly vulnerable areas, or areas with particularly heavy tree cover first. Further, in smaller
storms, lower winds and kinetic energy are generally experienced, making it more likely
that branches fall, as opposed to entire trees uprooting and falling on power lines. As ETT
is more rigorous than other vegetation management strategies at clearing branches above
power lines, but not necessarily at removing entire trees that could fall on power lines
during more intense storms, this may partially explain the greater effectiveness of ETT for
lower-severity storms. While we do see a reduction in outages across all ETT levels for
high-severity storms as well, there is a large increase in effectiveness between the two lower
ETT Experiments (A,B) versus the highest ETT Experiment (C), with the results suggesting
that the highest ETT level reduces trouble spots by 37.3% while the lower bins reduce
outages by between 8–16.1%.
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Figure 6. Percent Change in Average Kinetic Energy Proxies. Percentage change from Low ETT
(0–25%) to High ETT Bins for Severe Storms (Experiments A–C).

Looking at the results of the percent decreases in trouble spots for each experiment
in Figure 4, the percent decreases are not monotonically increasing with higher instETT
for either high- or low-severity, despite normalizing outages by miles of overhead line
and kinetic energy proxy. However, this is likely due to the fact that a simple linear
normalization scheme was applied to account for kinetic energy while the relationship
between kinetic energy and outages is not linear [11,26], and that the interaction between
storm conditions and power outages is affected by many more variables than just the
kinetic energy of the storm. Some other variables that affect the number of outages in a
storm include precipitation, drought, and leaf area among others [11,13,26,32,42–46]. In the
case of severe storms, the results demonstrate a smaller reduction in trouble spots when
completing 50–75% of applicable ETT versus 25–50% of applicable ETT; however, this is
partly explained by Figure 6, which demonstrates that of the high-severity experiments,
the largest percent difference in average kinetic energy between the low and high instETT
bins of each experiment is for Experiment B. As the data in Experiment B have the highest
average increase in kinetic energy between its low and high ETT comparison groups,
a nonlinear relationship between kinetic energy and trouble spots may be driving the
results, which show ETT is less effective for Experiment B compared with Experiment
A, when only 25–50% of the applicable length of the circuit has ETT performed on it.
This is a logical result if the kinetic energy disparity is not fully compensated for by the
linear normalization.
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Figure 7. Average outages per mile of overhead line, normalized for kinetic energy proxy. (a) Com-
paring 0–25% instETT to 25–50% instETT—Experiments A and D. (b) Comparing 0–25% instETT
to 50–75% instETT—Experiments B and E. (c) Comparing 0–25% instETT to 75–100% instETT—
Experiments C and F.

4. Discussion

While the results do suggest that ETT reduces trouble spots by a greater percentage
for low-severity events when compared with high-severity events, particularly at lower
applicable ETT completion percentages, it is imperative to look at large and small storms
in combination to understand the comprehensive benefits of ETT, as demonstrated in
Figure 8. While the largest storms such as Hurricane Sandy, Hurricane Irene, and Tropical
Storm Isaias produce a large number of outages that can take over a week to fully restore,
these types of storms do not occur nearly as frequently as smaller storms. By improving
the reliability and resilience of the electric grid to smaller storms through ETT, outages
are reduced, which in turn reduces the necessary spending on crews to restore outages.
As utilities may have set annual budgets, by reducing spend on restoration for many
smaller storms, more resources are left available for preparing and responding to the most
extreme events when they do occur. Further, when outages occur, there is an economic cost
to society in addition to the utility costs, and by reducing outages for the more frequent
smaller storms, this cost is reduced. Figure 8 demonstrates the annual sums of trouble

209



Sustainability 2022, 14, 904

spots if no ETT had been performed before each storm, and the trouble spots if the instETT
value for each circuit was between 75–100% before each storm, where the values for each
scenario are calculated using the expected percent differences in trouble spots dependent
on the instETT value from Figure 4. Figure 8 demonstrates that when considering the
low and high severity events together, there is a sizable reduction in outages for each year
of the study, with annual reductions ranging between 37.3% and 57.1%. It is noted that
the reductions shown in Figure 8 represent an underestimation of the actual reduction of
outages, as the list of events used in the study is not comprehensive in that some storm
events that are small in magnitude are not included in the dataset. Further, the system
exclusively focuses on rain and wind storms, excluding thunderstorms and winter storms,
which also introduce significant outage events.

Figure 8. Sum of annual trouble spots. The left (black) bars represent the trouble spots if no ETT
was performed prior to each storm. The right (light green) bars represent if the instETT value was
between 75–100% before each storm occurred.

To examine the impact of high amounts of applicable ETT (instETT) on some of the
most extreme storms, we similarly use the expected change in trouble spots from Figure 4
to approximate how many outages would have occurred had no applicable ETT been
performed on each circuit before each storm, as well as if 75–100% of applicable ETT had
been performed on every circuit. These values are compared with the actual trouble spots
observed for the storms in Table 2. As seen in the table, there is not much difference between
the actual instETT trouble spot value and the trouble spot value if no applicable ETTs were
performed for Irene and Sandy since they took place in the early years of the study, when
not much ETT had been implemented. However, as Isaias took place much more recently,
we see a reduction of over 2500 trouble spots in the electric grid from the expected value
had no ETT been performed. There is also a large estimated reduction in trouble spots for
each of the three major storms had extensive ETT been performed for each circuit before
the storm. Information on reduced trouble spots for major events for various ETT scenarios
may be useful to utilities and regulators to optimize a resilience strategy between grid
hardening efforts, vegetation management, and increased crew response, helping to reduce
restoration times and save money. Additionally, the results give an ability to retrospectively
quantify return on investment. By looking at historical storms with various ETT scenarios,
it is possible to perform economic analyses on projected future return on investment under
different vegetation scenarios, which can aid in development of resilience plans. This study
acts as the first step in quantifying the return on investment of vegetation management
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while considering storm severity and provides a tool that can also be applied to future
climate scenario storm events.

While the results do show reductions in trouble spots for high and low storm severity,
as well as for individual extreme events, there are some limitations to the study that should
be noted. First, areas with different vegetation cover or predominant storm types may see
different results, as the reduction in outages is dependent upon the physical environment
and storm characteristics. Secondly, normalization for other hardening techniques that
may have been previously applied is not performed. Nevertheless, these techniques (pole
upgrades, undergrounding in previously nonundergrounded locations) have been applied
in much more isolated fashion and on a much smaller scale across the domain. Further,
the stress applied to electrical infrastructures is not only dependent on wind speed, and may
be dependent on other factors such as line length. To help account for this issue, the study
normalized outages by overhead line length. To help control for other factors that may
influence outages, such as infrastructure age or tree height in the surrounding area, each
binned comparison only includes circuits that had data in each bin. This means that for
the inclusion of a circuit into each binned analysis, at least one storm of the severity being
analyzed must have occurred over the domain when the instETT value for the given circuit
was inside each of the two instETT ranges being compared (0–25%, 25–50%, 50–75%, or
75–100%).

Table 2. Actual and Estimated Trouble Spots for Major Storms for Various ETT Scenarios.

Storm No ETT Actual ETT 75–100% ETT

Irene 15,980 15,932 10,012
Sandy 15,530 15,282 9703
Isaias 24,217 21,473 15,173

5. Conclusions

Through various statistical analyses, we have been able to demonstrate and statistically
model the relationship between vegetation management and outages in the electric grid for
storms of different severity. The results demonstrate that enhanced vegetation management
is particularly helpful in reducing trouble spots for lower severity storms, with reductions
between 45.8% and 63.8%, and substantially reduces trouble spots during the most severe
events when vegetation management is particularly comprehensive, demonstrating a 37.3%
reduction when compared with circuits with little to no enhanced tree trimming. These
reductions in power outages can be seen for individual storms as well as in annual totals.

When compared with previous studies in the effectiveness of vegetation management
activities, this analysis provides a better understanding of how more rigorous vegetation
management standards (applying ETT) help reduce outages at an individual event level,
for both the more frequent events and those less frequent, stronger storms, which may
also occur more frequently in the future due to climate change. This analysis may also
provide insight to be used when training machine learning outage prediction models,
as future models may see benefits from including vegetation management data and focusing
explicitly on low- or high-severity storms, or feature engineering new input variables
that combine storm intensity and vegetation management information. The results of
this study also provide useful information on annual trouble spots in the electric grid,
taking into consideration vegetation management data and storm intensity, to provide a
retrospective look at how different vegetation management levels and schemes would have
impacted trouble spots. This information is useful to various stakeholders in performing
cost-benefit analysis when developing vegetation management, or more broadly, resilience
plans or budgets. Specifically, outputs from this or a similar analysis can be used in
economic analysis to optimize vegetation management efforts and compare and contrast
short- and long-term costs versus other resilience efforts such as wire and pole upgrades,
or undergrounding wires, and is a recommended inclusion into such analyses. In future
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works, this model can be adapted for other types of storms such as thunderstorms and
winter storms.

Another potential research focus to expand on this work is controlling for possible
overlap in historical resilience upgrades to the distribution grid, including pole and wire
upgrades, which may have been performed in tandem with ETT in some locations. How-
ever, these other hardening techniques are more isolated and are typically applied much
less broadly than vegetation management by US power utilities. Additionally, a similar
statistical framework can be used to analyze the effectiveness of other resilience efforts for
varying storm intensities, where the data are similarly available at a circuit level, including
efforts such as reconductoring wires and pole upgrades or replacements. These results
may also be useful to stakeholders including utilities, regulators, and municipalities in
understanding if it is worthwhile to partake in expensive grid hardening measures such as
undergrounding wire, and where such activities may be the most impactful. In this way,
the results of this study and future works utilizing the same framework can be used to
optimize grid resilience to storms and climate changes ensuring the reliable delivery of
power long into the future.
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Abstract: Previous research has shown that an individual’s proximity to the epicenter can influence
their perception and response to risk. However, this aspect has been largely overlooked in the
supply chain risk literature. This paper aims to fill this gap by investigating the impact of distance
on the perception and response to supply chain disruption risk. An online survey was conducted
with 1055 managers working within the supply chain of ZTE, a Chinese multinational company
providing integrated communications and information solutions. The survey aimed to examine how
their distance from the disruption epicenter (i.e., ZTE) affected their risk perception and subsequent
managerial responses. The findings indicate that those closer to the epicenter perceive a lower
risk of disruption compared to those farther away, resulting in a reduced likelihood of taking
management action. This phenomenon is referred to as the “psychological typhoon eye” (PTE) effect
in supply chain disruption risk. Further analysis revealed that risk information quality mediated the
relationship between distance and risk perception, while an individual’s job position level moderated
the relationship between risk information quality and disruption risk perception. To mitigate the
PTE effect in the multi-tier supply chain, the focal firm must prioritize high-quality information
synchronization, extending beyond single-company initiatives.

Keywords: disruption risk perception; psychological typhoon eye effect; multi-tier supply chain; risk
information quality

1. Introduction

Today’s supply chains are increasingly vulnerable to disruption risk due to operational
shutdowns directly or indirectly caused by a wide array of events, including climatological
disasters, epidemics, political conflicts, terrorism, and financial scams [1,2]. To minimize
the high costs of supply chain disruptions, firms need to actively access and manage the
direct or indirect disruption risks from upstream or downstream of the supply chain [3].
A significant number of research studies on supply chain disruption risk management
have been carried out to date [4], and most of the literature has assumed that supply
chain managers can make optimal decisions based on objective risk assessment [5]. How-
ever, research has found that intuitive or emotional responses play a key role in human
decision-making, leading people to make biased decisions that systematically deviate from
rational judgment [6,7]. In addition, people usually rely on heuristic strategies (such as
availability heuristics, anchoring heuristics, and representativeness heuristics) rather than
a rational model to make judgments and decisions under uncertainty because risks cannot
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be accurately assessed [8]. Managerial responses to supply chain disruptions are triggered
by managers’ risk perceptions rather than by the disruptions themselves [9,10]. Moreover,
in decision-making, managerial risk perceptions are more influential than purely objective
risk assessments alone [11]. Disruption risk perception refers to an individual manager’s
subjective assessment of the risk inherent in a disruption [12]. In recent years, there has
been a surge in academic research on supply chain disruption risk perception [10], with
these studies underscoring the importance of risk perception in supply chain risk decision-
making. However, a thorough review reveals that most of the existing literature focuses on
buyers’ perceptions of supply disruption risk within two-tier supply chains (i.e., a dyadic
relationship between supplier and buyer), while a supply chain typically consists of a focal
firm and numerous upstream and downstream members in a multi-tiered structure.

When the focal firm of a supply chain experiences a disruption event or faces dis-
ruption risks (as illustrated in Figure 1), its upstream and downstream members may be
directly (tier-1 suppliers/customers) or indirectly (suppliers/customers at tier-2 and be-
yond) impacted [13]. For instance, when the Hynix memory maker in China experienced a
fire, computer manufacturers and parts suppliers perceived the risk and quickly purchased
as much inventory as possible to secure better prices, which pushed up prices and created
shortages [13]. Consequently, it is essential to understand not only how managers of the
focal firm perceive its disruption risk but also how managers of upstream and downstream
firms in the supply chain perceive the disruption risk.

Figure 1. Managers’ risk perception over manufacturer disruption in a multi-tier supply chain.

Subjective risk perception is not a direct reflection of objective danger or threat (such
as supply chain disruption), and individuals perceive the same danger differently [14,15].
Intuitively, closer proximity to the epicenter correlates with a higher perceived risk of the
threat. However, research has demonstrated that this is not always the case; field evidence
indicates that individuals closer to the epicenter are often less worried or fearful than
those farther away. This phenomenon is known as the “psychological typhoon eye” (PTE)
effect, as the epicenter of a typhoon is relatively calm. The phenomenon of the PTE effect
highlights the intricate interplay between risk perception and distance, which encompasses
various aspects such as the geographical distance from the epicenter [16,17], interpersonal
relationship distance from the affected party [18], and the level of involvement in the threat
of danger [19]. Hence, the primary objective of the present study is to gain insights into the
impact of distance on managers’ perception of supply chain disruption risk. We build on
the literature to investigate whether another version of the PTE effect (i.e., “supply chain
distance” version) exists in the context of supply chain disruption risk perception. In this
study, supply chain distance is conceptualized as the number of tiers between the disrupted
firm and its upstream or downstream members. For instance, the supply chain distance
between the disrupted firm and its first-tier suppliers/customers is 1, the distance between
the disrupted firm and its second-tier suppliers/customers is 2, and so on (as depicted
in Figure 1).

Numerous studies have demonstrated that risk information significantly influences
risk perception (e.g., [20,21]). People’s perceptions of risks are shaped by the information
available to them [22]. Firms facing greater environmental uncertainty must gather and
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process more information. Managerial perceptions of disruption risk depend on compre-
hensive and high-quality information about the disruption, and managers utilize relevant
information to assess disruption risk and make decisions [23]. As a result, disseminating
relevant information about the disruption to supply chain partners has become a critical
risk mitigation strategy [24]. Accordingly, research on the role of available risk-related
information in supply chain managers’ disruption risk perception is anticipated to raise
intriguing questions about risk perception mechanisms that warrant further investiga-
tion. Therefore, the second aim of the present study is to empirically test whether the risk
information can account for the supply chain distance version of the PTE effect.

Job position level can be another important factor affecting risk perception in the
context of supply chain disruptions. Higher-level managers may possess a more expansive
view of the supply chain and greater experience with potential disruptions, enabling them
to better identify risks and threats [25]. In contrast, lower-level managers may have a
more limited perspective and less experience with supply chain disruptions, leading to
a decreased sensitivity to disruption risks. Additionally, higher-level managers may be
responsible for making strategic decisions that have a greater impact on the organization,
leading to more cautious decision-making in the face of disruption risks [26]. However, it
is also possible that top managers perceive the risks as less threatening because they have
more resources and support. Based on the above analysis, it is worth studying whether
job position level will affect the relationship between risk information and managers’ risk
perception, which is also the third research objective of the present study.

Given the above, this study will investigate the following research questions:
RQ1:If a focal firm in a multi-tier supply chain is at risk of disruption, does a PTE effect exist

in the perception of this risk among managers in different tiers of the supply chain?
RQ2:What role does risk information play in the perception of disruption risk among supply

chain managers?
RQ3:Does job position level moderate the relationship between risk information and disruption

risk perception?
The answers to these questions will not only extend the existing literature by facilitat-

ing the understanding of managers’ risk perception mechanisms in the context of multi-tier
supply chains but also help broaden the application of psychological theory in operations
and supply chain management.

The remainder of this study is structured as follows: We first review the extant research
and develop our theoretical model and hypotheses. We then overview the methodology,
statistical analyses, and findings. Finally, we highlight the academic and managerial
implications of our finds, the limitations of the study, and opportunities for future research.

2. Theoretical Constructs and Hypotheses

2.1. Effect of Distance upon Risk Perception

Risk refers to the uncertainty and potential severity of consequences associated with
an activity that is valued by humans. Risk perception refers to the subjective judgment of
individuals regarding such risks. Traditionally, risk perception is measured by multiplying
the probabilities of risk occurrence by the magnitude of the risk impact [27]. This method
is considered rational, yet it has limitations. Sociologists and psychologists have shown
that laypeople tend to perceive risk based on emotions, intuition, and direct judgment,
whereas a rational risk assessment is typically processed by experts [28]. These emotional
and intuitive perceptions of risk can be irrational and influenced by factors such as risk
descriptions, previous experiences, effect, imagination, trust, values, and worldviews [29].

Recent behavioral supply chain research has only touched on the linkages between
various factors and how they impact people’s perception of and response to disruption risk.
For example, Sarafan et al. demonstrate how individualism–collectivism negatively affects
how individuals perceive risk and supplier-switching intention in the face of a supply
disruption [12]. Other researchers have emphasized the importance of attributions and
emotions in explaining differences in managerial decisions following the occurrence of a
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disruption [30]. Vanpoucke and Ellis examine the relationship between buyers’ perceptions
of disruption risk and their adoption of buffer- and process-oriented risk mitigation tac-
tics [31]. These limited studies have contributed to our understanding of the psychological
and social factors affecting people’s perception of disruption risk from the perspective of a
one-tier supply chain, but little attention has been paid to the effect of distance on disrup-
tion risk perception. Therefore, our present research aims to explore how distance affects
an individual’s perception of disruption risk in the context of a multi-tier supply chain.

There is an extensive body of literature demonstrating how distance affects individuals’
risk perception and behavior [32]. According to the PTE effect theory, people who are
closer to the center of an adverse event are less concerned or fearful about the event.
For example, Maderthaner et al. found that in a local attitude survey about a nuclear
reactor in Vienna, residents living farther from the reactor perceived it to be riskier than
those living closer [33]. Tilt discovered that industrial workers who labored under highly
polluted conditions provided lower risk ratings than farmers and commercial/service
sector workers who were farther from the polluting sources [34]. In a study by Li et al., a
convenience sample of 2262 adults was surveyed about their post-earthquake concerns
regarding safety and health after the Wenchuan earthquake, and their findings suggested
that people who were farther from the earthquake area (i.e., more remote) were more
likely to have a higher estimation of their post-earthquake concern [16]. During the SARS
epidemic, it was reported that the level of exposure to SARS was not a primary determinant
of experienced anxiety, and nearness to the center of the epidemic was negatively related
to anxiety levels [35]. Similarly, studies conducted during the COVID-19 pandemic have
come to similar conclusions (e.g., [17,36]).

Within the context of the supply chain disruption risk, the disrupted firm is the
epicenter of the risk (as the manufacturer in Figure 1), and the upstream and downstream
supply chain members’ reactions and responses to the disruption risk are enhanced with
the increment of supply chain distance, which increases the negative effect of the disruption
risk [13]. Previous studies have shown that individual managers’ disruption risk perception
has a positive correlation with their reactions and responses to the risk [12,37,38]. This
implies that the supply chain members’ level of risk perception may also increase with the
increment of supply chain distance.

Therefore, we hypothesize that:

Hypothesis 1 (H1): The distance between managers’ firms from the disrupted firm and their levels
of disruption risk perception are positively related.

H1 posits that as the upstream and downstream firms in the supply chain move closer
to the disrupted firm, their concern regarding the risk associated with the disruption of the
focal firm decreases. In other words, when the focal enterprise in the supply chain faces a
disruption risk, the perception of managers at different tiers of the supply chain towards
this risk is influenced by the proximity of their firms to the focal firm, demonstrating the
presence of the PTE effect.

2.2. The Mediating Role of Available Risk Information

Previous studies have shown that people’s perceptions about any risk are shaped
by the information available to them [22]. In most cases, individuals tend to perceive a
greater risk when they have more knowledge about the adverse event, as they are aware
that its consequences could be severe [39]. However, in many cases, people perceived
less risk when they had sufficient information about the adverse event, which was likely
driven by familiarity bias [40]. That is, people who are more familiar with the risks are
likely to perceive them as less frightening. As commonly acknowledged, individuals who
are located at a considerable distance from the epicenter typically receive second-hand
information regarding risks, while those who are in close proximity not only have access
to first-hand risk-related information but also have their own direct experiences to draw
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upon. Not surprisingly, this leads to a difference in their perception of risk. Based on this, it
is reasonable to speculate that the available risk-related information may be the underlying
mechanism for the PTE effect.

Information quantity and information quality are two important aspects of available
risk-related information [41]. More recently, Yang and colleagues discovered that the
proportion of risk information (RIP) played a significant role in explaining the PTE effect
concerning COVID-19 risk perception in Wuhan. Specifically, the RIP acts as a mediator
between the respondents’ distance from Wuhan and their level of concern and perception of
risk regarding the epidemic that took place in the city [42]. In their study, RIP was defined
as the ratio of “the amount of information related to the occurrence of risk events in a
certain area” and “the total amount of information about all events in a certain area”. Yang
et al.’s research [42] can be seen as an explanation of the PTE effect mechanism in terms of
the quantity dimension of the available information, while the present study attempts to
examine whether another dimension of the available information, i.e., information quality,
can explain the PTE effect in the supply chain disruption risk.

In the initial stages of a supply chain disruption risk, the available information is often
uncertain and ambiguous. As individuals move closer to the epicenter of the risk, the
information becomes more certain and less ambiguous [12,24]. This means that the dis-
rupted firm’s tier-1 suppliers/customers can relatively easily obtain disruption risk-related
information that is of high quality, but their distant (tier-2 and above) suppliers/customers
cannot [43]; they only have indirect access to the disrupted firm’s second-hand information
that is filtered, altered, and likely to be inaccurate via their partners, mass media, social me-
dia, etc. Additionally, firms typically postpone public announcements of disruptions [44],
underreport, or hide disruption information [45], which reduces the level of quality of
disruption information available to managers. Low information quality is characterized as
delayed, incomplete, and ambiguous, which prevents supply chain managers from having
a clear picture of what is actually happening in the disrupted firm [46], leading to supply
chain managers far from the epicenter overestimating the disruption risk [47]. In other
words, the PTE effect in the supply chain disruption risk may be caused by differences in
the quality of risk information. That is, with the increment of managers’ distance to the
disrupted firm, the quality of disruption risk information declines, which leads managers
to overestimate the disruption risk.

Therefore, we formulate the following research hypothesis:

Hypothesis 2 (H2): Risk information quality played a mediating role between distance and
disruption risk perception.

2.3. The Moderating Role of Job Position Level

When people make judgments or decisions, they may be influenced by their prior
beliefs, attitudes, and values [48]. Many studies have shown that people are susceptible to
the “belief bias” effect and tend to accept or reject conclusions based on their consistency
with everyday knowledge, regardless of whether these conclusions validly deviate from
their premises [49–51]. Pre-existing beliefs can cause bias for people’s perception of risk,
leading them to over- or underestimate the likelihood or severity of a risk based on their
existing beliefs [52,53]. For example, a person who strongly believes in the safety of a
particular technology may underestimate the risks associated with that technology, while a
person who strongly opposes that technology may overestimate the risks.

Most non-experts lack professional expertise and enough experience to assess risk [29].
As a result, they often rely on various cues available to them to aid in their judgment and
decision-making [21]. Experts, because of their training and experience, are more likely to
have knowledge (i.e., expertise and experience) about a certain hazard or adverse event
unavailable to the average citizen. Therefore, experts do not need too much information
about the adverse event in order to make their risk assessments [54]. The role of a supply
chain manager is highly analytical and typically involves tasks such as planning, scheduling,
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and coordinating supplies [38]. High-level supply chain managers have a large amount of
knowledge and experience in the field of supply chain risk management [55]. The more
knowledge and expertise they have about disruption risks, the more they feel certain about
their risk assessments, and the less disruption risk information from external sources they
use in the assessment process [23]. Based on this, it is reasonable to speculate that top
managers’ perception of disruption risk is less affected by risk information quality than
lower-level managers. Therefore, we hypothesize that:

Hypothesis 3 (H3): Job position level moderates the relationship between risk information quality
and disruption risk perception. Specifically, the effect of risk information quality on disruption risk
perception gets stronger among low-level managers, but it is attenuated among high-level managers.

2.4. Perceived Risk Influences Individuals’ Response

The risky decision-making theory provides an explanation for the relationship between
managerial risk perceptions and their subsequent behavioral response in the face of a supply
chain disruption [56]. This response includes the actions taken by managers to minimize the
impact of disruption. Zsidisin and Wagner demonstrated that managers who perceive the
extended supply chain as a potential risk source are more likely to take action to mitigate
such risks [57]. Meanwhile, Ellis et al. found that buyers who perceive high levels of
overall supply disruption risk tend to seek alternative sources of supply to mitigate such
risks [37]. In addition, Kull et al. revealed that cognitive and behavioral factors, inducing
risk perceptions in uncertain supplier selection situations, can lead to a higher preference
for suppliers with more certain outcomes [38]. Sarafan et al. conducted a scenario-based
experiment to investigate the effect of cultural value orientations on individuals’ perception
of risk and supplier-switching intention in the face of a supply disruption. They found that
higher levels of disruption risk perception led to significantly higher supplier switching
intention [12].

Therefore, we follow previous studies by offering the following hypothesis:

Hypothesis 4 (H4): Higher perceived disruption risk is associated with a higher propensity to take
action in the face of supply chain disruption.

Based on the above analysis, we depict the conceptual research model in Figure 2.

Disruption risk 
perception

Managerial
response

Risk information quality

Distance

Job position level

H1

H2

H3

H4

Figure 2. Theoretical model.

3. Methodology

3.1. Empirical Study Setting

To test the above hypothesis, we selected an information and communication tech-
nology supply chain with ZTE as the focal firm and conducted a scenario-based empirical
investigation according to the similarity study [37,58]. Specifically, we focused on managers
of ZTE and its upstream and downstream firms in the supply chain and how to perceive
ZTE’s disruption risk. This study setting is suitable for the hypotheses test for three reasons.
First, more and more companies, such as telecom equipment makers, are at a high level
of disruption risk caused by adverse events such as geostrategic conflict or COVID-19.
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Second, the company had been barred by the U.S. Commerce Department from purchasing
components from American companies in April 2018; therefore, professionals from the
ZTE supply chain have a better understanding of ZTE’s disruption risk and risky decision-
making. Third, ZTE is a prominent global telecom equipment manufacturer that strives
to deliver cutting-edge technologies and comprehensive solutions to a diverse clientele
comprising governments, enterprises, and consumers in over 160 countries. Due to ZTE’s
vast network of upstream and downstream companies, it is convenient for us to recruit
professionals affiliated with ZTE and its partners as research respondents.

3.2. Respondents and Data Collection

The survey was conducted on a computerized response system to facilitate the com-
pletion and collection of data throughout China from March to November 2020. We invited
professionals from upstream and downstream firms of the ZTE supply chain through the
authors’ personal social networks, CFLP (China Federation of Logistics & Purchasing),
and a web-based surveys platform (www.wjx.cn, accessed on 4 March 2020). A total of
1735 respondents engaged in our survey. Respondents were first asked to confirm their
network position in the ZTE supply chain (i.e., ZTE’s first-tier supplier/customer is 1,
second-tier supplier/customer is 2) and then answer a 24-item questionnaire on their
perceived psychological distances of ZTE’s disruption, subjective perception of ZTE’s dis-
ruption risk, disruption risk information quality, managerial response, risk propensity, and
demographic characteristics.

Finally, we received 1055 usable responses, and all questionnaires were valid because
we set the online survey system so it did not allow missing data. Among the sampled
firms, there were 295 from ZTE Corporation, 359 from ZTE’s upstream suppliers (tier-1 and
tier-2 suppliers), and 401 from ZTE’s downstream customers (tier-1 wholesalers and tier-
2 wholesalers/retailers). More than half of sampled firms are medium and large enterprises.
Characteristics of the sampled firms are presented in Table 1.

Table 1. Characteristics of sampled firms (N = 1055).

Frequency Percentage (%)

Supply chain position ZTE corporation 295 28.0
Tier-1 suppliers 193 18.3
Tier-2 suppliers 166 15.7
Tier-1 wholesalers 207 19.6
Tier-2 wholesalers/retailers 194 18.4

Number of employees ≤10 38 3.6
11–50 166 15.7
51–100 250 23.7
101–500 335 31.8
501–1000 129 12.2
≥1001 137 13.0

Annual sales revenue (CNY) <1 million 137 13.0
1–4.99 million 246 23.3
5–9.99 million 233 22.1
10–49.99 million 188 17.8
≥50 million 251 23.8

It is noteworthy that the participants from ZTE Corporation not only serve as its em-
ployees but also function as organizers and managers of the supply chain. As a result, they
hold a central position in relation to disruption risk and experience it directly, thereby being
the most directly impacted stakeholders. ZTE employees acquire pertinent information
regarding disruption directly, and function as disseminators of disruption risk information.
They communicate information pertaining to disruption risk through various channels,
such as news media, partners, and social networks.
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To ensure the external validity of results [38], the overwhelming majority of par-
ticipants had more than three years of experience in related operations or supply chain
management areas, approximately 52.5% of the respondents were men, and over 80% of
respondents held a bachelor’s degree or above. The detailed demographic information on
the respondents is presented in Table 2.

Table 2. Demographic data in the surveys (N = 1055).

Frequency Percentage (%)

Gender Male 554 52.5
Female 501 47.5

Age ≤30 404 38.3
31–40 423 40.1
41–50 160 15.2
51–60 64 6.1
>60 4 0.4

Education level Secondary education certificate 5 0.5
Senior school diploma 49 4.6
Three-year college diploma 178 16.9
Bachelor’s degree 691 65.5
Graduate degree 132 12.5

Work experience <3 years 155 14.7
3–5 years 222 21.0
6–10 years 295 28.0
11–20 years 219 20.8
>20 years 164 15.5

Job Function Planning and purchasing 313 29.7
Operations and production 233 22.1
Warehousing and logistics 179 17.0
Research and development 25 2.4
Sales and marketing 305 28.9

Job position level Executive-level manager 148 14.0
Middle-level manager 247 23.4
Low-level manager 326 30.9
Ordinary employee 334 31.7

It was found that the average age of ordinary employees was 32.14 years old, with
more than 80% having over 3 years of work experience. Junior managers had an average
age of 34.35 years, with 51.3% having more than 5 years of work experience. Middle
managers had an average age of 38.6 years, with 22.3% having more than 10 years of work
experience. Top managers had an average age of 47.26 years, with 29.1% having more than
20 years of work experience.

3.3. Measure Development

We conducted a comprehensive review of the literature on supply chain disruption,
risk perception, and behavioral decision-making to establish operational definitions and
survey measurement items. To ensure content validity, we adapted items from previous
studies to our research setting when applicable. The participants were asked to rate their
level of agreement on a 10-point scale (1 = Strongly disagree, to 10 = Strongly agree) in
response to a series of statements concerning their work experience and principles.

3.3.1. Dependent Variable

The dependent variable includes the focal dependent variable and the ultimate depen-
dent variable. The focal dependent variable is disruption risk perception, and the ultimate
dependent variable is the managerial response to ZTE’s supply chain disruption.

Disruption risk perception (DRP). We employed the psychometric paradigm as a
research framework to measure the risk perception of ZTE’s supply chain disruption. We
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adopted three items from Xie et al. [35] and Zheng et al. [19] to measure the disruption risk.
The participants were asked if they thought the negative performance impact caused by
ZTE’s supply chain disruption was serious, dreadful, and uncontrollable. The statements
of the three items are as follows: serious, “We will face a severe threat caused by ZTE’s
supply chain disruption” (DRP1); dreadful, “We extremely concern about the threat to
my company caused by ZTE’s supply chain disruption” (DRP2); uncontrollable, “We are
unable to avoid the threat caused by ZTE’s supply chain disruption” (DRP3). The higher
the values, the higher level of risk they perceived from ZTE’s supply chain disruption.

Managerial response to ZTE’s supply chain disruption (MR). We developed a three-
item scale to measure respondents’ managerial response regarding ZTE’s supply chain
disruption based on previous studies [37,59]. The items are: “We will take action immedi-
ately to ZTE’s supply chain disruption” (MR1); “We will take effective measures to ZTE’s
supply chain disruption” (MR2); “We will undertake an adequate response to ZTE’s supply
chain disruption” (MR3). Respondents were asked to rate each item based on the degree to
which they agreed with the statement. The higher the values, the more propensity to take
action regarding ZTE’s supply chain disruption.

3.3.2. Independent Variable

Supply chain distance. Supply chain distance was determined by the network position
of the respondent’s company in ZTE’s supply chain and was an objective distance. At the
beginning of the questionnaire, respondents were asked to confirm their company’s role in
the ZTE supply chain: the supply chain distance of ZTE’s first-tier supplier/customer is 1,
the second-tier supplier/customer’s supply chain distance is 2, and so on.

In addition to the objective distance (supply chain distance), we also measured the
subjective distance between the respondents and ZTE’s disruption risk, which was opera-
tionalized as psychological distance. In a range of risk domains—from climate change to
nuclear energy, from food safety to health—the association of psychological distance on an
individual’s perception and response to risk has been proven to be robust [60–62].

Psychological distance (PD). We created a set of four items to assess the participants’
perception of the psychological distance of ZTE’s disruption. This includes spatial distance,
temporal distance, social distance, and hypotheticality [63]. In this present study, spatial
distance is not the geographical distance between the supply chain actor and the location
where a disruption triggers but the supply chain distance instead. Supply chain distance
was defined as the “distance between actor and the disruptive incidents, or ‘position’ of
an actor in a supply chain network” according to Birkie and Trucco [64] and Ozkul and
Barut [65]. The distance was estimated subjectively by the participants, so it also can
be called subjective supply chain distance. Therefore, spatial distance (i.e., supply chain
distance) was measured by asking “My company’s ‘position’ in the ZTE’s supply chain
network determines we are far from ZTE’s disruption” (PD1). The items used to measure
temporal and social distance were based on Spaccatini et al.’s work [32], and the item
used to measure the hypotheticality of ZTE’s supply chain disruption was based on Ellis
et al.’s work [37]. Social distance was measured with “ZTE’s supply chain disruption will
have a little impact on my company” (PD2). Hypotheticality was measured by asking
“There is a low probability that ZTE will experience a supply chain disruption” (PD3).
The temporal distance was measured with “If ZTE’s supply chain would be disrupted by
adverse events such as COVID-19 and U.S.-China conflict, that will be something for a
long time to come” [66] (PD4). Each of these four items measured a distinct dimension of
psychological distance, with high values indicating greater psychological distance and low
values indicating less psychological distance.

3.3.3. Mediate Variable

Perceived risk information quality (PRIQ). Timeliness, credibility, and being easily
understandable are important dimensions of information quality, and they will affect the
individual’s judgment and decision [67]. Therefore, higher risk information quality would
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make participants suffer from less risk information illusion. PRIQ was operationalized from
four dimensions using four items, which refers to information that is readily accessible,
timely, credible, and understandable [68]. They are: “Information about ZTE’s supply chain
disruption is easy access” (PRIQ1); “Information about ZTE’s supply chain disruption is
timely” (PRIQ2); “Information about ZTE’s supply chain disruption is credible” (PRIQ3);
“Information about ZTE’s supply chain disruption is understandable” (PRIQ4). The higher
values represented a lower degree of information illusion.

3.3.4. Moderate Variable

Job position level (JPL) includes four levels: executive-level manager, middle-level
manager, low-level manager, and ordinary employee.

3.3.5. Control Variables

In addition to the above-mentioned key variables, respondents’ risk propensity (RPr)
was measured for validation and control variables [12]. Four items for measuring partici-
pants’ risk propensity were chosen from the risk propensity scale developed by Hung and
Tangpong [69]: “I like to take chances, although I may fail” (RPr1); “I like to try new things,
knowing well that some of them will disappoint me” (RPr2); “To earn greater rewards,
I am willing to take higher risks” (RPr3); “I seek new experiences even if their outcomes
may be risky” (RPr4). The higher the values, the more likely individuals have a greater risk
propensity. We also controlled a series of factors to maximize internal validity and rule out
other explanations, such as age, gender, educational background, and work experience.
Other than these individual-level control variables, we also controlled for the firm size
(measured by the number of employees and annual sales revenue). All of the above control
variables were kept as categorical variables.

3.4. Construct Validity and Reliability

Since some measurement items are used for the first time in the context of operational
and supply chain management, we examined the reliability and validity of scales through
exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), as suggested by
Anderson and Gerbing [70]. First, EFA is used to evaluate whether the measurement items
are consistent with theoretical expectations, and then the internal structure of the scale is
further confirmed by CFA.

We used SPSS 22.0 to perform the EFA. Results indicate the presence of five factors
based on the criteria of eigenvalues greater than 1 (72.72% of total variance explained). The
criterion we followed to determine whether to keep an item on a factor was that the item
should have a loading of at least 0.40 on the primary factor and not have significant dual
loadings (i.e., >0.30 on more than one factor) [71]. One item was problematic: PD4 had
a loading of 0.542 on factor 2 and 0.559 on factor 4, and was excluded. Five factors and
16 items were prepared for the subsequent CFA, as shown in Table 3.

To further assess the reliability and validity of the constructs, we performed CFA
and employed four tests to evaluate the convergent validity and internal consistency of
the reflective constructs: Cronbach’s alpha, average variance extracted (AVE), composite
reliability (CR), and item loading of the measures. The goodness of fit of the measurement
model was evaluated through five common indices, including the ratio of Chi-square to
the degree of freedom (χ2/df), comparative fit index (CFI), the goodness of fit index (GFI),
Tucker–Lewis index (TLI), and root mean square error of approximation (RMSEA). The
CFA was conducted using AMOS 22.0 software [72]. The fit statistics indicated a satisfactory
fit between the predicted and observed model with χ2/df = 4.80 [χ2(113) = 542.14 and
p = 0.00], CFI = 0.96, GFI = 0.94, TLI = 0.95, and RMSEA = 0.06 [73,74]. As shown in Table 4,
all Cronbach’s alpha and CR statistics exceeded the 0.7 cut-off recognized in the literature,
suggesting good construct reliability. The convergent validity of our multi-item scales is
adequate since the AVE was larger than 0.5 and most items had factor loading exceeding
0.7 on their construct [37,75]. We used Harman’s one-factor test to assess the presence of
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common method variance (CMV). This EFA result indicated that CMV was not a potential
issue in this study [76]. Moreover, discriminant validity was assessed by comparing the
correlation coefficient of each construct with other constructs to the square root of its AVE.
Our findings indicated that the square root of AVE for each construct was greater than its
correlation coefficient with other constructs, which supported the discriminant validity of
our measures [75].

Table 3. The items and factor loadings of the five-factor model.

Measurement Items
Factor 1
(PRIQ)

Factor 2
(MR)

Factor 3
(PD)

Factor 4
(DRP)

Factor 5
(RPr)

PRIQ 1 0.854 −0.029 −0.072 −0.252 0.095
PRIQ 2 0.858 0.089 −0.034 −0.202 0.047
PRIQ 3 0.898 0.013 −0.019 −0.118 0.073
PRIQ 4 0.719 −0.256 −0.014 −0.095 0.164
MR 1 −0.056 0.867 0.106 0.276 0.007
MR 2 −0.048 0.897 0.124 0.142 0.006
MR 3 −0.044 0.884 0.103 0.179 0.040
PD 1 −0.039 0.134 0.897 0.075 0.003
PD 2 −0.019 0.082 0.890 0.101 0.002
PD 3 −0.058 0.118 0.864 0.101 −0.012
PD 4 0.035 0.542 0.171 0.559 0.059

DRP 1 −0.260 0.158 0.048 0.731 −0.198
DRP 2 −0.268 0.239 0.131 0.774 −0.090
DRP 3 −0.251 0.229 0.108 0.785 −0.103
RPr 1 0.044 0.079 0.004 −0.212 0.709
RPr 2 0.084 0.038 −0.019 −0.060 0.787
RPr 3 0.068 0.129 0.024 −0.106 0.752
RPr4 0.142 −0.281 −0.019 0.115 0.637

Proportion variance (%) 29.246 16.525 10.832 10.122 5.993
Cumulative (%) of
variance explained 29.246 45.771 56.603 66.725 72.718

Table 4. Measures used in proposed constructs.

Construct Item Cronbach’s α AVE CR Loading t-Value SE

Psychological Distance (PD)

0.88 0.71 0.88
PD1 0.88 - -
PD2 0.84 31.35 0.03
PD3 0.80 29.74 0.03

Perceived Risk Information
Quality (PRIQ)

0.88 0.66 0.88
PRIQ1 0.86 - -
PRIQ2 0.85 34.55 0.03
PRIQ3 0.87 35.93 0.03
PRIQ4 0.64 22.88 0.03

Risk Propensity (RPr)

0.70 0.40 0.72
RPr1 0.61 - -
RPr2 0.74 15.12 0.06
RPr3 0.69 15.05 0.06
RPr4 0.43 10.97 0.06

Disruption Risk
Perception (DPR)

0.83 0.63 0.83
DRP1 0.70 - -
DRP2 0.84 23.47 0.05
DRP3 0.83 23.36 0.05

Managerial Response (MR)

0.92 0.81 0.93
MR1 0.89 - -
MR2 0.90 41.05 0.03
MR3 0.91 41.76 0.03
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4. Results

Data analysis consisted of three steps. In the first step, we performed descriptive
statistics and examined Pearson’s product–moment correlations among sociodemographic
characteristics, firm size, and the five factors in Table 4, which include psychological dis-
tance, disruption risk information quality, disruption risk perception, risk propensity, and
managerial response. The second step was a mediation analysis: to investigate the indirect
effect of distance on disruption risk perception via disruption risk information quality. The
third step was a multivariate analysis: we conducted hierarchical moderated regression
analyses in order to test the moderating effect of risk propensity and job position level.

4.1. Descriptive Analyses

Table 5 displays the variable means, standard deviations, and correlation coefficients
between variables for this study. The demographic profile of the respondents was shown
in the first five rows of the table.

Table 5. Means, SDs, and pairwise correlations of the measures.

M SD 1 2 3 4 5 6 7 8 9 10 11

1 Gender 0.47 0.50
2 Age 1.90 0.90 0.12 ***
3 Educational
background 3.85 0.71 0.07 * −0.10

**
4 Work experience 3.01 1.28 0.17 *** 0.82 *** −0.15

***
5 Job position level 2.20 1.04 −0.04 0.00 0.03 0.09 **
6 Number of
employees 3.72 1.33 −0.02 −0.04 0.25 *** −0.05 0.01

7 Annual sales
revenue 3.16 1.36 0.03 −0.10

** 0.23 *** −0.07 * 0.02 0.67 **

8 Risk propensity 5.02 1.37 0.05 −0.02 0.04 −0.03 0.04 −0.02 -0.05
9 Psychological
distance 5.94 1.92 −0.01 −0.19

*** 0.08 ** −0.19
*** 0.04 0.05 0.09 ** −0.02

10 Perceived risk
information quality 4.88 1.68 0.01 0.09 ** 0.04 0.11 *** −0.02 −0.02 −0.07 * 0.24 *** −0.11***

11 Disruption risk
perception 6.39 1.98 0.03 −0.18

*** 0.11 *** −0.18
*** −0.04 0.11 *** 0.18 *** −0.27

*** 0.24 *** −0.48
***

12 Managerial
response 5.45 1.93 −0.00 −0.18

*** 0.08 ** −0.17
*** 0.04 0.08 * 0.14 *** −0.02 0.26 *** −0.14

***
0.44
***

Note: M = mean; SD = standard deviation. Variables were coded as follows—Gender: 1 = female, 0 = male;
Age: 1 = below 30 years old, 2 = 31–40 years old, 3 = 41–50 years old, 4 = 51–60 years old, 5 = above 61 years
old; Education: 1 = secondary education certificate, 2 = senior school diploma, 3 = three-year college diploma,
4 = bachelor’s degree, 5 = graduate degree; Work experience: 1 = less than 3 years, 2 = 3–5 years, 3 = 6–10 years,
4 = 11–20 years, 5 = more than 20 years; Job position level: 1 = ordinary employee, 2 = low-level manager,
3 = middle-level manager, 4 = executive-level manager; Number of employees: 1 = fewer than 10 employees,
2 = 11–50 employees, 3 = 51–100 employees, 4 = 101–500 employees, 5 = 501–1000 employees, 6 = more than 1001
employees; Annual sales revenue: 1 = fewer than CNY 1 million, 2 = CNY 1–4.99 million, 3 = CNY 5–9.99 million,
4 = CNY 10–49.99 million, 5 = more than CNY 50 million. * p < 0.05, ** p < 0.01, *** p < 0.001.

4.2. Direct Effect of Distance on Disruption Risk Perception
4.2.1. Supply Chain Distance Affects Disruption Risk Perception

The risk perception ratings of the participants varied significantly depending on their
supply chain distance (F (4, 1055) = 41.16, p < 0.001, and η2 = 0.04, by ANOVA). The scores
for their risk perception from lowest to highest in the ZTE supply chain were: ZTE, ZTE’s
tier-1 supplier/customer, and ZTE’s tier-2 supplier/customer (see Figure 3). Fisher’s least
significant difference (LSD) post hoc test further revealed that the ZTE group reported the
lowest risk perception (M = 5.87, SD = 2.03), significantly lower than the ratings given by
tier-1 suppliers (M = 6.54, SD = 1.93) and tier-2 suppliers (M = 7.00, SD = 1.68) (F (2, 693)
= 9.45, p <0.001, η2 = 0.03), which was also significantly lower than the ratings given by
tier-1 customers (M = 6.26, SD = 2.13) and tier-2 customers (M = 6.67, SD = 1.82) (F (2, 651)
= 19.68, p <0.01, η2 = 0.06). In the upstream, tier-2 suppliers perceived more risk than tier-1
suppliers (p < 0.05). In the downstream, similarly, tier-2 customers perceived more risk than
tier-1 customers (p < 0.05). However, the rated risk perception between tier-1 suppliers and
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tier-1 customers had no significant difference (p > 0.05); likewise, no significant difference
was found between tier-2 suppliers and tier-2 customers (p > 0.05).
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Figure 3. Supply chain distance and disruption risk perception, Note: Bar heights indicate mean
values, and error bars indicate standard error.

The above results indicated that the greater the supply chain distance, the higher the
risk perception toward ZTE’s disruption risk. That is, in the supply chain with ZTE as
the focal firm, the farther away the upstream or downstream members were from ZTE,
the higher the risk they perceived from ZTE’s supply chain disruption. The hypothesized
“supply chain distance” version of the PTE effect was thus observed in the present study.
Therefore, the results supported H1.

4.2.2. Psychological Distance Affects Disruption Risk Perception

We respectively conducted a hierarchical regression analysis to reveal the impact of
psychological distance on disruption risk perception upstream and downstream of the
ZTE supply chain. Participants’ age, gender, educational background, work experience,
and firm size were entered as control variables in this analysis. Upstream supply chain
members consist of ZTE, tier-1 suppliers, and tier-2 suppliers; downstream supply chain
members consist of ZTE, tier-1 customers, and tier-2 customers.

The results of the hierarchical regression analysis for the upstream of ZTE’s supply
chain are presented in Table 6. When all variables were included in the model, it accounted
for 21.9% of the variance in the perception of a higher risk for ZTE’s disruption. In model 1,
demographical variables were entered as controls; the overall model was significant, and
R2 = 0.170, F (7, 646) = 18.879, p < 0.001. In model 2, the psychological distance was entered
as a predictor; the overall model remained significant, and R2 = 0.219, F (8, 645) = 22.659,
p < 0.001. The psychological distance was found to be a significant predictor of disruption
risk perception (B = 0.233, p < 0.001).

We conducted the same regression analysis to analyze the effect in the downstream
of ZTE supply chain, and the results are shown in Table 7. Overall, with all variables
entered, the model explained 15.8% of the variance in having a higher risk perception
of ZTE’s disruption. In model 1, demographical variables were entered as controls; the
overall model was significant, and R2 = 0.065, F (7, 688) = 14.579, p < 0.001. In model 2, the
psychological distance was entered as a predictor; the overall model remained significant,
and R2 = 0.094, F (8, 687) = 16.123, p < 0.001. The psychological distance was a significant
predictor of risk perception (B = 0.182, p < 0.001).
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Table 6. Hierarchical regression analysis of demographical variables and psychological distance on
disruption risk perception in the upstream of ZTE’s supply chain (N = 654).

Variable Model 1 Model 2

B SE β B SE β

Step 1
(Constant) 7.257 *** 0.534 5.643 *** 0.576
Gender 0.009 0.145 0.002 −0.008 0.141 −0.002
Age −0.084 0.142 −0.038 −0.036 0.138 −0.016
Educational background 0.243 * 0.107 0.086 0.240 * 0.104 0.085
Work experience −0.239 * 0.100 −0.155 −0.200 * 0.097 −0.129
Risk propensity −0.392 *** 0.051 −0.278 −0.377 *** 0.049 −0.268
Number of employees 0.061 0.075 0.040 0.063 0.073 0.041
Annual sales revenue 0.232 *** 0.072 0.160 0.213 *** 0.070 0.147

Step 2
Psychological distance 0.233 *** 0.036 0.228

F value 18.879 22.659
R2 0.170 0.219
Adj. R2 0.161 0.210
ΔAdj R 2 0.170 0.050

Note: * p < 0.05, *** p < 0.001.

Table 7. Hierarchical regression analysis of demographical variables and psychological distance on
disruption risk perception in the downstream of ZTE’s supply chain (N = 696).

Variable Model 1 Model 2

B SE β B SE β

Step 1
(Constant) 8.233 *** 0.542 7.139 *** 0.579
Gender 0.438 ** 0.148 0.108 0.440 ** 0.146 0.108
Age −0.223 0.139 −0.099 −0.179 0.137 −0.080
Educational background 0.127 0.105 0.045 0.099 0.103 0.035
Work experience −0.199 * 0.101 −0.124 −0.172 * 0.099 −0.107
Risk propensity −0.383 *** 0.054 −0.256 −0.382 *** 0.053 −0.255
Number of employees −0.080 0.071 −0.054 −0.069 0.070 −0.046
Annual sales revenue 0.184 ** 0.069 0.126 0.168 ** 0.068 0.115

Step 2
Psychological distance 0.182 *** 0.038 0.174

F value 14.579 16.123
R2 0.129 0.158
Adj. R2 0.120 0.148
ΔAdj R 2 0.129 0.029

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.

The aforementioned analysis results indicate that psychological distance has a signifi-
cant positive impact on disruption risk perception in both the upstream and downstream
of ZTE’s supply chain. Figure 4 depicts the diagram of the results. To better observe and
compare the results, the psychological distance scores of the upstream were converted
to negative values, and the left and right half of the diagram represent the results of the
upstream and downstream, respectively.

An interaction effect test was conducted in order to further test whether there is a
symmetrical relationship between the results of the upstream and downstream. The results
indicate that both the overall model (F (9, 1045) = 14.331, p > 0.05) and the interaction
coefficient (B = −0.016, p > 0.05) were not significant, which indicates that there is no
interaction effect between the upstream and downstream. In other words, the impact of
psychological distance on disruption risk perception is symmetric (consistent) between
the upstream and downstream. Due to this symmetry, the following analysis no longer
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distinguishes between the upstream or downstream. Therefore, the tier-1 supplier and
tier-1 customer are merged (hereinafter referred to as tier 1), and the tier-2 supplier and
tier-2 customer are also merged (hereinafter referred to as tier 2).

Figure 4. Scatterplot of the relationship between psychological distance and risk perception of supply
chain disruption. The best-fitting regression line is depicted in the center.

4.3. Indirect Effect of Distance on Disruption Risk Perception Via Perceived Risk
Information Quality

H2 predicted that objective distance and subjective distance would have a direct
impact on the perceived quality of risk information and disruption risk perception, as
well as an indirect impact on risk perception through perceived risk information quality.
We conducted two separate mediation analyses for objective distance (i.e., supply chain
distance) and subjective distance (i.e., psychological distance) on disruption risk perception.
In order to investigate the mediated impacts of the perceived risk information quality on
the relationship between distance and disruption risk perception, we utilized the PROCESS
V3.3 tool to test multiple mediators and analyze the overall effects.

4.3.1. The Mediated Effects of Objective (Tier) Distance on Disruption Risk Perception via
Perceived Risk Information Quality

The respondents’ ratings of perceived disruption risk information quality differed
significantly depending on their supply chain distance (F (2, 1052) = 89.078, p < 0.001, and
η2 = 0.145, by ANOVA). That is, their perceived risk information quality from highest to
lowest in the supply chain were: ZTE (PRIQ score = 5.876), ZTE’s tier-1 supplier/customer
(PRIQ score = 4.678), and ZTE’s tier-2 supplier/customer (PRIQ score = 4.883). Fisher’s
Least Significant Difference (LSD) post hoc test indicated that the ZTE group’s perceived
risk information quality was significantly higher than those of the tier-1 and tier-2 suppli-
ers/customers. (p < 0.001).

Supply chain distance (multi-categorical variable containing three groups: ZTE, tier 1,
and tier 2) was entered as the predictor and was encoded as a dummy variable (ZTE was
set as the control group), and perceived risk information quality was considered a mediator,
with ZTE’s disruption risk perception serving as the outcome or dependent variable. The
results of our analysis were assessed using a bootstrap estimation approach, which involved
5000 samples and is presented in Table 8. Specifically, we examined the total, direct, and
mediated effects of the supply chain distance on disruption risk perception.

Following Hayes [77], we began by examining the total effect of supply chain distance
on the risk perception of ZTE’s disruption (i.e., the effect of supply chain distance on
disruption risk perception without the presence of any mediating effects), and found a
positive and significant effect (the control group (ZTE) was used as the reference, group
of tier 1: B = 0.476, SE = 0.146, p < 0.001, 95% CI = [0.190, 0.762]; group of tier 2: B = 0.908,
SE = 0.150, p < 0.001, 95% CI = [0.614, 1.201]). Next, we examined the complete model,
which includes both the direct and mediated effects of supply chain distance on disruption
risk perception. As shown in Table 8, the relative direct effect of supply chain distance on
disruption risk perception in the presence of mediators becomes nonsignificant (the control
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group (ZTE) was used as the reference, group of tier 1: B = −0.167, SE = 0.136, p > 0.05, 95%
CI = [−0.434, 0.099]; group of tier 2: B = 0.057, SE = 0.143, p > 0.05, 95% CI = [−0.224, 0.338]),
indicating full mediation through perceived risk information quality. In addition, supply
chain distance showed a relative indirect effect on disruption risk perception through
perceived risk information quality (the control group (ZTE) was used as the reference,
group of tier 1: B = 0.643, SE = 0.085, 95% CI = [0.482, 0.813]; group of tier 2: B = 0.850,
SE = 0.093, 95% CI = [0.677, 1.033]). The bias-corrected bootstrap confidence intervals for
the indirect effects were entirely above zero, indicating significant mediation effects.

Table 8. Mediating effects of perceived risk information quality on disruption risk perception (ZTE
was set as the control group).

Path of Mediating Effect Point Estimate SE
95% CI

Low High

Group of Tier 1:
Relative total effect (Tier 1 → disruption risk perception) 0.476 0.146 0.190 0.762
Relative direct effect (Tier 1 → disruption risk perception) −0.167 0.136 −0.434 0.099
Relative mediating effect (Tier 1 → Perceived risk information

quality → disruption risk perception) 0.643 a 0.085 0.482 0.813

Group of Tier 2:
Relative total effect (Tier 2 → disruption risk perception) 0.908 0.150 0.614 1.201
Relative direct effect (Tier 2 → disruption risk perception) 0.057 0.143 −0.224 0.338
Relative mediating effect (Tier 2 → Perceived risk information

quality → disruption risk perception) 0.850 a 0.093 0.677 1.033

Note: “a” indicates mediating effect is significant.

4.3.2. The Mediated Effects of Subjective (Psychological) Distance on Disruption Risk
Perception via Perceived Risk Information Quality

We conducted the same analysis of the subjective (psychological) distance. In this
model, objective (tier) distance was entered as control. We first examined the total effect
of psychological distance on the risk perception of ZTE’s disruption (i.e., the effect of psy-
chological distance on disruption risk perception without the mediated effects) and found
a positive and significant effect (B = 0.208, SE = 0.031, p < 0.001, 95% CI = [0.147, 0.269]).
We then examined the direct and mediated effects. As shown in Figure 5, psychological
distance had a positive effect on perceived risk information quality (B = −0.080, SE = 0.027,
p < 0 0.01, 95% CI = [0.112, 0.219]), which was positively related to willingness to use
(B = −0.535, SE = 0.031, p < 0.001, 95% CI = [−0.595, −0.474]; indirect effect of psychologi-
cal distance: B = 0.043, SE = 0.017, 95% CI = [0.012, 0.077]), indicating a mediation effect.
The direct effect of psychological distance on disruption risk perception in the presence
of mediators was significant (B = 0.165, SE = 0.027, p < 0.001, 95% CI = [0.112, 0.219]). As
shown in Figure 5, the results suggest that perceived risk information quality partially
mediates the effect of psychological distance on disruption risk perception.

Disruption Risk 
perception

Perceived
risk information quality

Psychological 
distance

a: B = 0.080, p <0.01,
95% CI = [ 0.134, 0.026]

b: B = 0.535, p < 0.001,
95% CI = [ 0.595, 0.474]

Direct effect c: B = 0.165, p < 0.001, 95% CI = [0.112, 0.219]

Indirect effect c': B = 0.043, 95% CI = [0.012, 0.077]

Figure 5. The mediation model illustrates the effects of subjective (psychological) distance and
perceived risk information quality on the risk perception of ZTE’s supply chain disruption.
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Altogether, mediation analyses confirmed our H2, i.e., the effect of distance on disrup-
tion risk perception is mediated through perceived risk information quality.

4.4. The Moderating Effect of Job Position Level

We used the hierarchical linear regression model to examine the moderating effect of
job position level. Before performing the regression analysis, we centered all non-nominal
variables to alleviate the threats of multi-collinearity between the component measures [78].
Models 1–3 and 4–5, respectively, employed supply chain disruption risk perception to
take management response as dependent variables. For models 1–3, sociodemographic
and firm size were entered into the first layer as control variables (i.e., model 1), and then
the perceived risk information quality and job position level were entered as the second
layer (i.e., model 2). It should be noted that job position level is a categorical variable and
was encoded as a dichotomous variable (0 = low-level positions, 1= high-level positions).
In the final layer of the regression model, the interaction term between job position level
and perceived risk information quality was included (i.e., model 3). For models 4–5, the
first layer is the control variables (i.e., model 4), and the second layer is the supply chain
disruption risk perception (i.e., model 5).

Model 1: Supply chain disruption risk perception = B0 + Controls + e
Model 2: Supply chain disruption risk perception = B0 + B1(Perceived risk information

quality) + B2(Job position level) + Controls + e
Model 3: Supply chain disruption risk perception = B0 + B1(Perceived risk information

quality) + B2(Job position level) + B3(Job position level × Perceived risk information quality)
+ Controls + e

Model 4: Managerial response = B0 + Controls + e
Model 5: Managerial response = B0 + B1(Supply chain disruption risk perception)

+ Controls + e
When assessing the moderating effect, it is common practice to use the regression

coefficient and significance of interaction terms to determine the presence of such an effect.
According to the findings presented in Table 9, job position level serves as a significant
moderator in the association between perceived risk information quality and disruption
risk perception (B3 = 0.153, p < 0.05).

Table 9. Hierarchical linear regressions (for “Disruption risk perception” and “Managerial response”).

Dependent Variable: DRP Dependent Variable: MR

Model 1 Model 2 Model 3 Model 4 Model 5

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Layer 1: Control Variables
(Constant) −0.543 0.373 −0.887 ** 0.447 −0.847 ** 0.336 −0.097 0.381 0.131 0.348
Gender 0.265 * 0.116 0.197 † 0.105 0.197 † 0.104 0.060 0.119 −0.051 0.109
Age −0.183 0.112 −0.235 * 0.101 −0.243 * 0.101 −0.286 ** 0.114 −0.209 * 0.104
Education 0.184 * 0.085 0.262 *** 0.076 0.259 *** 0.076 0.100 0.086 0.022 0.079
Experience −0.168 * 0.080 −0.055 0.072 −0.049 0.072 −0.069 0.081 0.002 0.074
Rpr −0.393 *** 0.042 −0.240 *** 0.039 −0.234 *** 0.039 −0.033 0.043 0.132 *** 0.040
Number of employees −0.030 0.058 −0.009 0.052 −0.015 0.052 −0.034 0.059 −0.021 0.054
Annual sales revenue 0.213 *** 0.056 0.161 ** 0.051 0.160 ** 0.051 0.179 ** 0.058 0.089 0.053
Layer 2: Main effect
PRIQ −0.506 *** 0.032 −0.558 *** 0.038
JPL −0.211 * 0.107 −0.207 * 0.106
DRP 0.421 *** 0.029
Layer 3: Interaction effect
JPL × PRIQ 0.158 * 0.065
R2 0.140 0.311 0.315 0.051 0.212
Adjusted R2 0.134 0.305 0.308 0.044 0.206
R2 change 0.140 0.171 0.004 0.051 0.161
F-statistic 24.376 52.356 47.926 8.006 35.230

Note: † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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To simplify the interpretation of the interaction terms, we utilized the “pick-a-point”
technique to identify the conditional impact of perceived risk information quality on
disruption risk perception, based on low and high levels of job position level (where
0 = low level, 1 = high level), in accordance with the findings of the moderating effect
analysis. Subsequent simple slope tests revealed that the association between perceived
risk information quality and disruption risk perception remains significant in both low
and high levels of job position level (slope low job position level = −0.558, p < 0.001; slope
high job position level = −0.400, p < 0.001). As Figure 6 presents, in the case of a high job
position level, perceived risk information quality has a weaker negative effect on disruption
risk perception. Thus, H3 was supported.
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Figure 6. Spotlight analyses of moderating effect.

Finally, with regard to the influence of disruption risk perception on managerial
response, the outcomes displayed in Table 9 provide evidence in favor of Hypothesis
4, indicating that heightened disruption risk perception results in a markedly stronger
managerial response (B = 0.421, p < 0.001).

5. Discussion

5.1. Theoretical Contributions

The PTE effect has been observed in different risk areas such as earthquakes (e.g., [16]),
terrorist attacks (e.g., [79]), epidemic outbreaks (e.g., [35,36]), environmental pollution
(e.g., [19]), etc. Unlike these studies, where the risk perception was a function of geograph-
ical distance, the PTE effect in the present study is a function of a new type of distance,
i.e., supply chain distance. As far as we are aware, this is the initial empirical investigation
that examines the PTE effect in the realm of operations and supply chain management. Our
study addresses the need for research that incorporates psychological risk theories into
operations and supply chain management by extending upon previous research on supply
chain disruption risk [12,80].

This study investigates the risk perception of supply chain upstream and downstream
toward the focal firm’s disruption. We moved beyond the single-tier buyer–seller rela-
tionships towards a multi-tier supply chain context to provide empirical insights into
managers’ perception of disruption risk. Although there has been considerable research
on supply chain disruption risk perception, there is predominantly a focus on managers’
perception of supply disruption risk within the purchasing domain [10,12,37]. This dyadic
buyer–supplier perspective considers only the existence of direct relationships within a
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supply chain where most studies have drawn their research boundaries. However, such in-
vestigations fail to fully encompass the numerous, distinct, and interdependent interactions
that coexist throughout the supply chain [58,81,82]. A supply chain network is vulner-
able to disruptions not only because of the direct impacts of those disruptions but also
because of the risk propagation [1,83]. Therefore, if the lead firm is at risk of supply chain
disruption, the company itself and its first-tier and low-tier suppliers/customers would
assess and respond to the direct or indirect risk [84,85]. This requires us to understand not
only the focal firm’s disruption risk perception but also how upstream and downstream
firms perceive the disruption risk. The present study makes a preliminary exploration and
provides some inspiration for future studies in this area.

This study also contributes to our understanding of the mechanism of the PTE effect.
Risk perception is all about thoughts, beliefs, and constructs [86], and people’s perception
of risk is based on experience and available information [87]. Available information has a
significant impact on the assessments and judgments that are made, thereby influencing
the emotions and actions of supply chain participants towards the disrupted firm [88].
Yang et al.’s research [42] has explored the PTE effect mechanism in terms of the quantity
dimension of the available information in the context of the COVID-19 pandemic, while
the present study validated the PTE effect through the quality dimension of the available
information in the context of supply chain disruption risk. Specifically, supply chain
members who are close to the disrupted echelon have easier and more timely access to
first-hand disruption risk information, i.e., they have access to high-quality information
about the disruption risk. High-quality available information helps managers reasonably
assess the actual level of disruption risk so that they do not over- or underestimate the
risk. Supply chain members who are far away from the disrupted echelon can only receive
disruption risk information from media reports or their partners. However, the disruption
risk information has problems with distortion, delay, and untrustworthiness, i.e., supply
chain managers receive lower quality information about the disruption risk. Low-quality
information has the potential to lead to confusion and limit an individual’s capacity to
adequately process and react to the information presented [89], which makes it impossible
for supply chain managers to learn the truth of the disrupted firm, ultimately leading them
to overestimate the disruption risk [46,47].

We also found that job position level moderated the relationship between risk infor-
mation quality and risk perception. Senior supply chain managers, who are experts with
extensive risk management experience and expertise, are more inclined to use intuition to
assess risk and require less risk-related information [23,90,91], so they are less influenced by
external information and, accordingly, the level of risk information quality has less impact
on their disruption risk perception. As with the general public, supply chain managers at
lower levels conduct risk assessments based primarily on the risk information obtained,
or rather on the basis of information or evidence-based assessments [86,92], therefore,
the level of information quality has a greater impact on their perception of supply chain
disruption risk.

In uncertain environments, people rely on heuristic strategies to make judgments
and decisions [93]. According to the theory, supply chain managers are more likely to
believe information that they are exposed to. Managers of focal companies and their direct
trading partners observe or personally experience the disruption risk, and their assessment
of disruption risk will be closer to reality. However, upstream and downstream members
far from the focal company primarily learn about its disruption risk information through
media or other channels. They tend to use this distorted and amplified information to assess
risk, leading to a significant increase in their perception of disruption risk. Additionally,
senior managers tend to assess risk based on their experience rather than the information
they receive. In a word, supply chain managers often use heuristic strategies to assess
disruption risk. However, differences in information quality, experience, etc., result in a
perception bias of disruption risk known as the PTE effect.
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5.2. Managerial Implications

The theory of risky decision-making offers an explanation for the association between
managerial risk perceptions and their utilization of mitigation strategies [37]. A higher
perception of disruption risk would lead supply chain managers to take action on behalf
of their home organization in order to minimize the likelihood of being affected by a
supply-side or demand-side disruption. For instance, when the focal firm faces supply
chain disruption risk, its upstream partners will cut the exclusive supply capacity, and
downstream partners will implement alternative sourcing [57] or switch suppliers [12]. This
may exacerbate the focal firm’s overall operational risk. Therefore, how to alleviate the PTE
effect upstream and downstream is the key to supply chain disruption risk management
for the focal firm.

Supply chain disruption risk is characterized by information uncertainty and the gap
between the information available and the information needed to estimate and respond
to the risk [94]. The present study shows that the high-quality risk information perceived
by supply chain managers can reduce the proportion of disruption risk information so as
to reduce their focus illusion and would finally reduce the level of perception of the focal
firm’s disruption risk. As such, effective management of disruption risk within and between
firms necessitates a collective commitment to high-quality information synchronization,
which ensures that disruption risk information is readily accessible, timely, credible, and
comprehensible. This effort must extend beyond a single company initiative and involve
all firms in the supply chain [68,82,95].

Specifically, first, the focal firm must ensure that upstream and downstream enterprises
have easy access to real-time information related to disruption risk. It is widely acknowl-
edged that many companies lack adequate information about their lower-tier partners in
multi-tier supply chains [96]. This is compounded by narrow information sharing and
communication channels, which restrict the efficiency of supply chain risk management
efforts [82]. Therefore, the focal firm must take proactive measures to improve supply chain
risk visibility and communication, empowering lower-tier suppliers to easily obtain reliable
disruption risk information [97,98], making it difficult for them to gain misinformation
or illusory information about the disruption risk. Secondly, the focal firm should timely
release disruption risk-related information, disallowing a window of time for disruption
risk misinformation to spread. The timely release and updating of disruption risk-related
information is an effective measure to stop the spread of misinformation and avoid partners
being overly concerned about disruptions [99]. The focal firm can release information and
announcements through the official website, email, social media, and other channels so
that supply chain members can obtain timely disruption risk information. Thirdly, the
focal firm should enhance the credibility of the disruption risk information. Accurate and
reliable information helps to eliminate supply chain professionals’ information illusions
and reduce their concerns and misevaluation of the disruption risk [100,101]. Lastly, the
disruption risk information provided by the disrupted firm needs to be easy to understand.
Compared with unclear and ambiguous information, specific and easy-to-understand
information can reduce an individual’s risk perception [102]. This requires the disrupted
firm to release information relevant to the disruption risk in an easy-to-understand manner
(e.g., text combined with pictures or videos) to facilitate supply chain members to assess
the disruption risk properly.

Furthermore, it is important to note that definitions and interpretations of disruption
risk terms may vary across organizations due to differences in business contexts and
cultures [11]. This variation can lead to misunderstandings in shared disruption risk
information and can ultimately impede effective supply chain risk management efforts
within and between firms [98]. To address this challenge, it is recommended that a unified
risk information language be established within and between supply chain firms to ensure
consistent and clear communication about disruption risk. This approach will support
objective disruption risk assessment and effective disruption risk communication along the
entire supply chain of the focal firm.
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Compared to high-level managers, lower-level supply chain managers’ disruption
risk perception towards the focal firm is more likely to be affected by their perceived risk
information quality. So, it is more necessary to provide them with more timely, credible,
and understandable disruption risk information and make it easier for them to acquire
this information.

It is worth noting that different representations of the same information can lead
to different judgments and decisions [103]. Therefore, in addition to the disruption risk
information quality, the representation of disruption risk information can also affect man-
agers’ risk perception and decision-making. This inspires us that when focal companies
release disruption risk information, they can flexibly design the framework to reasonably
weaken the threat of disruption information, strengthen the information of disruption
mitigation and control, mitigate excessive concerns of supply chain members far from the
focal company about disruption risk, and reduce their irrational operational decisions.

6. Limitations and Future Work

Risk perception among managers in a multi-tier supply chain has received limited
attention. This current study provides initial insights into this area, but it still has several
potential limitations that must be highlighted to motivate future research. First, the supply
chain management literature identifies several factors that may also impact perceptions of
supply chain disruption risk [38]. The present study empirically examines the influence of
distance on risk perception within the context of a multi-tier supply chain. Other contin-
gency factors such as cultural value orientations [12,104], uncertainty [10,38], or trust [54]
would affect an individual’s disruption risk perception; future research could examine
whether there is a PTE effect, which may contribute to providing a richer understanding of
risk perception in the multi-tier supply chain. Second, the understanding of the underlying
mechanism of the PTE effect in the multi-tier supply chain raises a challenging question:
how can a disrupted focal firm enable its supply chain partners to receive high-quality
disruption risk information to mitigate the PTE effect? While the present study does not
focus on specific tactics, it does provide a rich avenue for future scientific research to design
and examine the PTE effect mitigation strategies. Third, it is worth noting that our data was
gathered through a cross-sectional survey, which is susceptible to respondents’ subjective
judgment and may involve some level of arbitrariness or variability. To further support
and validate our results, future research could utilize alternative data collection methods
and research designs, such as longitudinal studies (e.g., [14]) or laboratory experiments
(e.g., [38,105]). Additionally, it is important to acknowledge that this study was conducted
in mainland China, with its unique social norms and economic system. Thus, in order to
enhance the external validity of our findings, it is recommended that further research be
conducted in other countries/regions with different social and cultural norms.

7. Conclusions

The perception of disruption risks by supply chain managers can significantly im-
pact their subsequent management responses, particularly in an era where supply chain
disruption risks have become increasingly common due to events such as the 2011 Great
Tohoku Earthquake, the COVID-19 pandemic, and the Russia–Ukraine conflict. This study
investigates the risk perception of supply chain disruption in ZTE and its upstream and
downstream members. The results indicate that as supply chain members are farther from
the epicenter (i.e., ZTE), their risk perception of the disruption at the epicenter increases,
a phenomenon we refer to as the PTE effect in supply chain disruption risk. Further
research reveals that both supply chain distance and psychological distance influence
disruption risk perception through risk information quality, and job position level mod-
erates the relationship between risk information quality and disruption risk perception.
These findings suggest that the focal firm must go beyond single-company initiatives and
prioritize high-quality information synchronization to mitigate the PTE effect within the
supply chain.

235



Sustainability 2023, 15, 7507

Author Contributions: Conceptualization: S.L., M.-X.X. and L.-L.R.; Methodology: M.-X.X. and L.Z.;
Formal analysis and investigation: S.L. and M.-X.X.; Writing—original draft preparation: M.-X.X. and
S.L.; Writing—review and editing: M.-X.X., S.L., L.-L.R. and L.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (Grant
No. 71761167001), the MOE (Ministry of Education of China) Youth Foundation Project of Hu-
manities and Social Sciences (Grant No. 19YJC630194), the Natural Science Foundation of Fujian
Province (Grant No. 2020J01902), and the Major Projects of Fujian Social Science Research Base
(Grant No. FJ2020JDZ068).

Institutional Review Board Statement: All procedures performed in studies involving human
participants were in accordance with the ethical standards of the Institutional Review Board of the
Institute of Psychology of the Chinese Academy of Sciences and with the 1964 Helsinki Declaration
and its later amendments or comparable ethical standards.

Informed Consent Statement: Informed consent was obtained from all individual participants
included in the study.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reasonable request.

Acknowledgments: We thank our participants for their time and for responding to our survey, and
the four anonymous reviewers for providing valuable feedback.

Conflicts of Interest: All authors declare no competing interests.

References

1. Li, Y.; Zobel, C.W. Exploring supply chain network resilience in the presence of the ripple effect. Int. J. Prod. Econ. 2020,
228, 107693. [CrossRef]

2. Moosavi, J.; Fathollahi-Fard, A.M.; Dulebenets, M.A. Supply chain disruption during the COVID-19 pandemic: Recognizing
potential disruption management strategies. Int. J. Disast. Risk Res. 2022, 75, 102983. [CrossRef] [PubMed]

3. Kamalahmadi, M.; Shekarian, M.; Mellat Parast, M. The impact of flexibility and redundancy on improving supply chain resilience
to disruptions. Int. J. Prod. Res. 2021, 60, 1992–2020. [CrossRef]

4. Pournader, M.; Kach, A.; Talluri, S. A review of the existing and emerging topics in the supply chain risk management literature.
Decis. Sci. 2020, 51, 867–919. [CrossRef] [PubMed]

5. Heckmann, I.; Comes, T.; Nickel, S. A critical review on supply chain risk–Definition, measure and modeling. Omega 2015,
52, 119–132. [CrossRef]

6. De Martino, B.; Kumaran, D.; Seymour, B.; Dolan, R.J. Frames, biases, and rational decision-making in the human brain. Science
2006, 313, 684–687. [CrossRef]

7. Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of
thinking under uncertainty. Science 1974, 185, 1124–1131. [CrossRef]

8. Gigerenzer, G.; Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 2011, 62, 451–482. [CrossRef]
9. Chadist, P. Factors Underlying Companies Response to Supply Chain Disruption: A Grounded Theory Approach. Ph.D.

Dissertation, City University London, London, UK, 2012.
10. Sato, Y.; Tse, Y.K.; Tan, K.H. Managers’ risk perception of supply chain uncertainties. Ind. Manag. Data Syst. 2020, 120, 1617–1634.

[CrossRef]
11. March, J.G.; Shapira, Z. Managerial perspectives on risk and risk taking. Manag. Sci. 1987, 33, 1404–1418. [CrossRef]
12. Sarafan, M.; Squire, B.; Brandon-Jones, E. The effect of cultural value orientations on responses to supply-side disruption. Int. J.

Oper. Prod. Manag. 2020, 40, 1723–1747. [CrossRef]
13. Scheibe, K.P.; Blackhurst, J. Supply chain disruption propagation: A systemic risk and normal accident theory perspective. Int. J.

Prod. Res. 2018, 56, 43–59. [CrossRef]
14. Burns, W.J.; Peters, E.; Slovic, P. Risk perception and the economic crisis: A longitudinal study of the trajectory of perceived risk.

Risk Anal. 2012, 32, 659–677. [CrossRef] [PubMed]
15. Mitchell, V.W. Organizational risk perception and reduction: A literature review. Br. J. Manag. 1995, 6, 115–133. [CrossRef]
16. Li, S.; Rao, L.L.; Ren, X.P.; Bai, X.W.; Zheng, R.; Li, J.Z.; Liu, H. Psychological typhoon eye in the 2008 Wenchuan earthquake. PLoS

ONE 2009, 4, e4964. [CrossRef]
17. Chen, Y.; Feng, J.; Chen, A.; Lee, J.E.; An, L. Risk perception of COVID-19: A comparative analysis of China and South Korea. Int.

J. Disast. Risk Res. 2021, 61, 102373. [CrossRef]
18. Li, S.; Rao, L.L.; Bai, X.W.; Zheng, R.; Ren, X.P.; Li, J.Z.; Zhang, K. Progression of the “psychological typhoon eye” and variations

since the Wenchuan earthquake. PLoS ONE 2010, 5, e9727. [CrossRef]

236



Sustainability 2023, 15, 7507

19. Zheng, R.; Rao, L.L.; Zheng, X.L.; Cai, C.; Wei, Z.H.; Xuan, Y.H.; Li, S. The more involved in lead-zinc mining risk the less
frightened: A psychological typhoon eye perspective. J. Environ. Psychol. 2015, 44, 126–134. [CrossRef]

20. Ha, T.M.; Shakur, S.; Do, K.H.P. Linkages among food safety risk perception, trust and information: Evidence from Hanoi
consumers. Food Control 2020, 110, 106965. [CrossRef]

21. Guo, Y.; Li, Y. Online amplification of air pollution risk perception: The moderating role of affect in information. Inform. Commun.
Soc. 2018, 21, 80–93. [CrossRef]

22. Chisty, M.A.; Islam, M.A.; Munia, A.T.; Rahman, M.M.; Rahman, N.N.; Mohima, M. Risk perception and information-seeking
behavior during emergency: An exploratory study on COVID-19 pandemic in Bangladesh. Int. J. Disaster Risk Res. 2021, 65,
102580. [CrossRef]

23. Tazelaar, F.; Snijders, C. Operational risk assessments by supply chain professionals: Process and performance. J. Oper. Manag.
2013, 31, 37–51. [CrossRef]

24. Hult, G.T.M.; Craighead, C.W.; Ketchen, D.J., Jr. Risk uncertainty and supply chain decisions: A real options perspective. Decis.
Sci. 2010, 41, 435–458. [CrossRef]

25. Tse, Y.K.; Chung, S.H.; Pawar, K.S. Risk perception and decision making in the supply chain: Theory and practice. Ind. Manag.
Data Syst. 2018, 118, 1322–1326. [CrossRef]

26. Singh, N.P.; Hong, P.C. Impact of strategic and operational risk management practices on firm performance: An empirical
investigation. Eur. Manag. J. 2020, 38, 723–735. [CrossRef]

27. Aven, T.; Renn, O. On risk defined as an event where the outcome is uncertain. J. Risk Res. 2009, 12, 1–11. [CrossRef]
28. Rundmo, T. Associations between affect and risk perception. J. Risk Res. 2002, 5, 119–135. [CrossRef]
29. Slovic, P.; Fischhoff, B.; Lichtenstein, S. Facts and fears: Understanding perceived risk. In Societal Risk Assessment; Springer:

Boston, MA, USA, 1980; pp. 181–216.
30. Polyviou, M.; Rungtusanatham, M.J.; Reczek, R.W.; Knemeyer, A.M. Supplier non-retention post disruption: What role does

anger play? J. Oper. Manag. 2018, 61, 1–14. [CrossRef]
31. Vanpoucke, E.; Ellis, S.C. Building supply-side resilience–a behavioural view. Int. J. Oper. Prod. Manag. 2019, 40, 11–33. [CrossRef]
32. Spaccatini, F.; Pancani, L.; Richetin, J.; Riva, P.; Sacchi, S. Individual cognitive style affects flood-risk perception and mitigation

intentions. Appl. Soc. Psychol. 2021, 51, 208–218. [CrossRef]
33. Maderthaner, R.; Guttmann, G.; Swaton, E.; Otway, H.J. Effect of distance upon risk perception. J. Appl. Psychol. 1978, 6, 380–382.

[CrossRef]
34. Tilt, B. Perceptions of risk from industrial pollution in China: A comparison of occupational groups. Hum. Org. 2006, 65, 115–127.

[CrossRef]
35. Xie, X.F.; Stone, E.; Zheng, R.; Zhang, R.G. The ‘Typhoon Eye Effect’: Determinants of distress during the SARS epidemic. J. Risk

Res. 2011, 14, 1091–1107. [CrossRef]
36. Lateef, T.; Chen, J.; Tahir, M.; Lateef, T.A.; Chen, B.Z.; Li, J.; Zhang, S.X. Typhoon eye effect versus ripple effect: The role of family

size on mental health during the COVID-19 pandemic in Pakistan. Glob. Health 2021, 17. [CrossRef] [PubMed]
37. Ellis, S.C.; Henry, R.M.; Shockley, J. Buyer perceptions of supply disruption risk: A behavioral view and empirical assessment. J.

Oper. Manag. 2010, 28, 34–46. [CrossRef]
38. Kull, T.J.; Oke, A.; Dooley, K.J. Supplier selection behavior under uncertainty: Contextual and cognitive effects on risk perception

and choice. Decis. Sci. 2014, 45, 467–505. [CrossRef]
39. Wachinger, G.; Renn, O.; Begg, C.; Kuhlicke, C. The risk perception paradox—Implications for governance and communication of

natural hazards. Risk Anal. 2013, 33, 1049–1065. [CrossRef]
40. Wang, M.; Keller, C.; Siegrist, M. The less you know, the more you are afraid of—A survey on risk perceptions of investment

products. J. Behav. Financ. 2011, 12, 9–19. [CrossRef]
41. Letzring, T.D.; Wells, S.M.; Funder, D.C. Information quantity and quality affect the realistic accuracy of personality judgment. J.

Personal. Soc. Psychol. 2006, 91, 111–123. [CrossRef]
42. Yang, S.W.; Xu, M.X.; Kuang, Y.; Ding, Y.; Lin, Y.X.; Wang, F.; Li, S. An Agenda-Setting Account for Psychological Typhoon Eye

Effect on Responses to the Outbreak of COVID-19 in Wuhan. Int. J. Environ. Res. Public Health 2023, 20, 4350. [CrossRef]
43. Yoon, J.; Talluri, S.; Rosales, C. Procurement decisions and information sharing under multi-tier disruption risk in a supply chain.

Int. J. Prod. Res. 2020, 58, 1362–1383. [CrossRef]
44. Hendricks, K.B.; Singhal, V.R. An empirical analysis of the effect of supply chain disruptions on long-run stock price performance

and equity risk of the firm. Prod. Oper. Manag. 2005, 14, 35–52. [CrossRef]
45. Schmidt, W.; Raman, A. When Supply-Chain Disruptions Matter. Working Paper No. 13-006 (July 20, 2012); Harvard Business School:

Cambridge, MA, USA, 2012; Available online: www.hbs.edu/research/pdf/13-006.pdf (accessed on 13 November 2012).
46. Wang, L.; Foerstl, K.; Zimmermann, F. Supply chain risk management in the automotive industry: Cross-functional and multi-tier

perspectives. In Dynamic and Seamless Integration of Production, Logistics and Traffic; Springer: Cham, Switzerland, 2017; pp. 119–144.
47. Chatterjee, S.; Chaudhuri, R.; Vrontis, D. Role of fake news and misinformation in supply chain disruption: Impact of technology

competency as moderator. Ann. Oper. Res. 2022, 1–24. [CrossRef] [PubMed]
48. Albarracin, D.; Wyer, R.S., Jr. The cognitive impact of past behavior: Influences on beliefs, attitudes, and future behavioral

decisions. J. Personal. Soc. Psychol. 2000, 79, 5. [CrossRef]

237



Sustainability 2023, 15, 7507

49. Evans, J.S.B.; Barston, J.L.; Pollard, P. On the conflict between logic and belief in syllogistic reasoning. Mem. Cogn. 1983,
11, 295–306. [CrossRef] [PubMed]

50. Thompson, V.A. Reasoning from false premises: The role of soundness in making logical deductions. Can. J. Exp. Psychol. 1996,
50, 315–319. [CrossRef]

51. Torrens, D. Individual differences and the belief bias effect: Mental models, logical necessity, and abstract reasoning. Think.
Reason 1999, 5, 1–28. [CrossRef]

52. Thalmann, A.T.; Wiedemann, P.M. Beliefs and emotionality in risk appraisals. J. Risk Res. 2006, 453–466. [CrossRef]
53. Vaughan, E.; Nordenstam, B. The perception of environmental risks among ethnically diverse groups. J. Cross-Cult. Psychol. 1991,

22, 29–60. [CrossRef]
54. Siegrist, M.; Keller, C.; Kastenholz, H.; Frey, S.; Wiek, A. Laypeople’s and experts’ perception of nanotechnology hazards. Risk

Anal. 2007, 27, 59–69. [CrossRef]
55. Nikookar, E.; Yanadori, Y. Preparing supply chain for the next disruption beyond COVID-19: Managerial antecedents of supply

chain resilience. Int. J. Oper. Prod. Manag. 2022, 42, 59–90. [CrossRef]
56. Sitkin, S.B.; Pablo, A.L. Reconceptualizing the determinants of risk behavior. Acad. Manag. Rev. 1992, 17, 9–38. [CrossRef]
57. Zsidisin, G.A.; Wagner, S.M. Do perceptions become reality? The moderating role of supply chain resiliency on disruption

occurrence. J. Bus. Logist. 2010, 36, 70–90. [CrossRef]
58. Chae, S.; Lawson, B.; Kull, T.J.; Choi, T. To insource or outsource the sourcing? A behavioral investigation of the multi-tier

sourcing decision. Int. J. Oper. Prod. Manag. 2019, 39, 385–405. [CrossRef]
59. Durach, C.F.; Wiengarten, F.; Choi, T.Y. Supplier-supplier coopetition and supply chain disruption: First-tier supplier resilience in

the tetradic context. Int. J. Oper. Prod. Manag. 2020, 40, 1041–1065. [CrossRef]
60. Carmi, N.; Kimhi, S. Further than the eye can see: Psychological distance and perception of environmental threats. Hum. Ecol.

Risk Assess. 2015, 21, 2239–2257. [CrossRef]
61. Chung, M.; Lim, Y.S. When health organization answers the question: Differential effects of dialogic messages in website and

Twitter through social presence and psychological distance. Health Commun. 2020, 37, 685–695. [CrossRef]
62. Geng, L.; Liu, T.; Zhou, K.; Yang, G. Can power affect environmental risk attitude toward nuclear energy? Energy Policy 2018,

113, 87–93. [CrossRef]
63. Liberman, N.; Trope, Y. The psychology of transcending the here and now. Science 2008, 322, 1201–1205. [CrossRef]
64. Birkie, S.E.; Trucco, P. Do not expect others do what you should! Supply chain complexity and mitigation of the ripple effect of

disruptions. Int. J. Logist. Manag. 2020, 31, 123–144. [CrossRef]
65. Ozkul, A.; Barut, M. Measuring supply chain relationships: A social network approach. Int. J. Integr. Supply Manag. 2009, 5, 38–61.

[CrossRef]
66. Chu, H.; Yang, J.Z. Risk or efficacy? How psychological distance influences climate change engagement. Risk Anal. 2020,

40, 758–770. [CrossRef]
67. Keller, K.L.; Staelin, R. Effects of quality and quantity of information on decision effectiveness. J. Consum. Res. 1987, 14, 200–213.

[CrossRef]
68. Janjua, N.K.; Nawaz, F.; Prior, D.D. A fuzzy supply chain risk assessment approach using real-time disruption event data from

Twitter. Enterp. Inf. Syst. 2021, 17, 1959652. [CrossRef]
69. Hung, K.T.; Tangpong, C. General risk propensity in multifaceted business decisions: Scale development. J. Manag. Iss. 2010,

22, 88–106.
70. Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol.

Bull. 1988, 103, 411–423. [CrossRef]
71. Myers, M.G.; Stein, M.B.; Aarons, G.A. Cross validation of the Social Anxiety Scale for Adolescents in a high school sample. J.

Anxiety Disord. 2002, 16, 221–232. [CrossRef] [PubMed]
72. Hair, J.F.; Black, W.C.; Babin, B.J. Multivariate Data Analysis: A Global Perspective: International Version, 7th ed.; Pearson Education:

London, UK, 2013.
73. Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.

Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [CrossRef]
74. Iacobucci, D. Structural equations modeling: Fit indices, sample size, and advanced topics. J. Consum. Psychol. 2010, 20, 90–98.

[CrossRef]
75. Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res.

1981, 18, 39–50. [CrossRef]
76. Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of

the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [CrossRef] [PubMed]
77. Hayes, A.F. Methodology in the Social Sciences. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-

Based Approach; Guilford Press: New York, NY, USA, 2013.
78. Aiken, L.S.; West, S.G. Multiple Regression: Testing and Interpreting Interactions; Sage: Thousand Oaks, CA, USA, 1991.
79. Li, S.; Li, J.L.; Yang, S.W.; Wu, X.J.; Chen, J.F.; Ding, Y.; Zheng, R. The psychological typhoon eye effect in responses to terrorism. J.

Pac. Rim Psychol. 2020, 14, e21. [CrossRef]

238



Sustainability 2023, 15, 7507

80. Cantor, D.E.; Blackhurst, J.V.; Cortes, J.D. The clock is ticking: The role of uncertainty, regulatory focus, and level of risk on supply
chain disruption decision making behavior. Transp. Res. Part E Logist. 2014, 72, 159–172. [CrossRef]

81. Mena, C.; Humphries, A.; Choi, T.Y. Toward a theory of multi-tier supply chain management. J. Supply Chain Manag. 2013,
49, 58–77. [CrossRef]

82. Wang-Mlynek, L.; Foerstl, K. Barriers to multi-tier supply chain risk management. Int. J. Logist. Manag. 2020, 31, 465–487.
[CrossRef]

83. Ivanov, D.; Sokolov, B.; Dolgui, A. The Ripple effect in supply chains: Trade-off ‘efficiency-flexibility-resilience’ in disruption
management. Int. J. Prod. Res. 2014, 52, 2154–2172. [CrossRef]

84. Marchese, K.; Paramasivam, S. The Ripple Effect How manufacturing and retail executives view the growing challenge of supply
chain risk. Deloitte DEV LLC. 2013.

85. Park, Y.W.; Blackhurst, J.; Paul, C.; Scheibe, K.P. An analysis of the ripple effect for disruptions occurring in circular flows of a
supply chain network. Int. J. Prod. 2022, 60, 4693–4711. [CrossRef]

86. Sjöberg, L. Worry and risk perception. Risk Anal. 1998, 18, 85–93. [CrossRef]
87. Plapp, T.; Werner, U. Understanding risk perception from natural hazards: Examples from Germany. In RISK21-Coping with Risks

Due to Natural Hazards in the 21st Century; CRC Press: Boca Raton, FL, USA, 2006; pp. 111–118.
88. Sarkar, S.; Kumar, S. A behavioral experiment on inventory management with supply chain disruption. Int. J. Prod. Econ. 2015,

169, 169–178. [CrossRef]
89. Gao, J.; Zhang, C.; Wang, K.; Ba, S.L. Understanding online purchase decision making: The effects of unconscious thought,

information quality, and information quantity. Decis. Support Syst. 2012, 53, 772–781. [CrossRef]
90. Dane, E.; Pratt, M.G. Exploring intuition and its role in managerial decision making. Acad. Manag. Rev. 2007, 32, 33–54. [CrossRef]
91. Messina, D.; Barros, A.C.; Soares, A.L.; Matopoulos, A. An information management approach for supply chain disruption

recovery. Int. J. Logist. Manag. 2020, 31, 489–519. [CrossRef]
92. Kumar, S.; Himes, K.J.; Kritzer, C.P. Risk assessment and operational approaches to managing risk in global supply chains. J. M.

Technol. Manag. 2014, 25, 873–890. [CrossRef]
93. Mousavi, S.; Gigerenzer, G. Risk, uncertainty, and heuristics. J. Bus. Res. 2014, 67, 1671–1678. [CrossRef]
94. Bode, C.; Wagner, S.M.; Petersen, K.J.; Ellram, L.M. Understanding responses to supply chain disruptions: Insights from

information processing and resource dependence perspectives. Acad. Manag. J. 2011, 54, 833–856. [CrossRef]
95. Ellinger, A.E.; Chen, H.; Tian, Y.; Armstrong, C. Learning orientation, integration, and supply chain risk management in Chinese

manufacturing firms. Int. J. Logist-Res. App. 2015, 18, 476–493. [CrossRef]
96. Chopra, S.; Sodhi, M.; Lücker, F. Achieving supply chain efficiency and resilience by using multi-level commons. Decis. Sci. 2021,

52, 817–832. [CrossRef]
97. Basole, R.C.; Bellamy, M.A. Supply network structure, visibility, and risk diffusion: A computational approach. Decis. Sci. 2014,

45, 753–789. [CrossRef]
98. Cao, S.F.; Bryceson, K.; Hine, D. Improving supply chain risk visibility and communication with a multi-view risk ontology.

Supply Chain Forum 2020, 21, 1–15. [CrossRef]
99. Li, Y.; Zobel, C.W.; Russell, R.S. Value of supply disruption information and information accuracy. J. Purch. Supply Manag. 2017,

23, 191–201. [CrossRef]
100. Liu, M.; Zhang, H.; Huang, H. Media exposure to COVID-19 information, risk perception, social and geographical proximity, and

self-rated anxiety in China. BMC Public Health 2020, 20, 1649. [CrossRef] [PubMed]
101. Lu, P.; Kong, D.; Shelley, M. Risk perception, preventive behavior, and medical care avoidance among American older adults

during the COVID-19 pandemic. J. Aging Health 2021, 33, 577–584. [CrossRef] [PubMed]
102. Lee, S.; Lee, N.; Dockter, C.E. Effects of message presentation type on gm food risk perception, similarity judgment, and attitude.

Health Commun. 2021, 36, 1666–1676. [CrossRef]
103. Tversky, A.; Kahneman, D. The framing of decisions and the psychology of choice. Science 1981, 211, 453–458. [CrossRef]
104. Gupta, M.; Gupta, S. Influence of national cultures on operations management and supply chain management practices-a research

agenda. Prod. Oper. Manag. 2019, 28, 2681–2698. [CrossRef]
105. DuHadway, S.; Carnovale, S.; Kannan, V.R. Organizational communication and individual behavior: Implications for supply

chain risk management. J. Supply Chain Manag. 2018, 54, 3–19. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

239





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Sustainability Editorial Office
E-mail: sustainability@mdpi.com

www.mdpi.com/journal/sustainability

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-0365-8759-2


