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Preface

In recent years, the field of unmanned aerial vehicles (UAVs) has witnessed remarkable

advancements, particularly in the area of UAV swarm systems. These systems, consisting of multiple

UAVs working together in a coordinated manner, have attracted significant attention due to their

potential to revolutionize various applications, ranging from disaster response and surveillance to

precision agriculture and logistics. The intelligent coordination of UAV swarm systems holds the key

to unlocking their full potential and achieving efficient and effective mission execution.

This special issue reprint, titled “Intelligent Coordination of UAV Swarm Systems,” aims to

explore the latest research and developments in this exciting field. It brings together researchers

and practitioners from diverse disciplines to share their insights, methodologies, and innovative

solutions related to UAV swarm systems. The issue covers a wide range of topics, including intelligent

perception and cognition, swarm navigation and localization, autonomous decision and planning,

cooperative guidance and control, UAV simulation and experiment, and swarm intelligence.

This special issue reprint provides a platform for researchers and practitioners to present and

discuss the latest advancements, challenges, and opportunities in the field of intelligent coordination

of UAV swarm systems. We hope that the contributions in this issue will inspire further research

and innovation, leading to the development of more robust, efficient, and intelligent UAV swarm

systems. We extend our gratitude to all the authors who have contributed to this special issue and

to the reviewers for their valuable insights and feedback. Together, let us explore the frontiers of

intelligent coordination in UAV swarm systems and shape the future of aerial robotics.

Xiwang Dong, Mou Chen, Xiangke Wang, and Fei Gao

Editors
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A GPS-Adaptive Spoofing Detection Method for the Small
UAV Cluster

Lianxiao Meng 1,2,3, Long Zhang 3, Lin Yang 3 and Wu Yang 2,*
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2 Information Security Research Center, Harbin Engineering University, Harbin 150000, China
3 National Key Laboratory of Science and Technology on Information System Security, Systems Engineering

Institute, Beijing 100000, China
* Correspondence: yangwu@hrbeu.edu.cn

Abstract: The small UAV (unmanned aerial vehicle) cluster has become an important trend in
the development of UAVs because it has the advantages of being unmanned, having a small size
and low cost, and ability to complete many collaborative tasks. Meanwhile, the problem of GPS
spoofing attacks faced by submachines has become an urgent security problem for the UAV cluster.
In this paper, a GPS-adaptive spoofing detection (ASD) method based on UAV cluster cooperative
positioning is proposed to solve the above problem. The specific technical scheme mainly includes
two detection mechanisms: the GPS spoofing signal detection (SSD) mechanism based on cluster
cooperative positioning and the relative security machine optimal marking (RSOM) mechanism. The
SSD mechanism starts when the cluster enters the task state, and it can detect all threats to the cluster
caused by one GPS signal spoofing source in the task environment; when the function range of the
mechanism is exceeded, that is, there is more than one spoofing source and more than one UAV
is attacked by different spoofing sources, the RSOM mechanism is triggered. The ASD algorithm
proposed in this work can detect spoofing in a variety of complex GPS spoofing threat environments
and is able to ensure the cluster formation and task completion. Moreover, it has the advantages of a
lightweight calculation level, strong applicability, and high real-time performance.

Keywords: GPS spoofing; collaborative positioning; rigid structure; complex scene; yaw

1. Introduction

The term unmanned aerial vehicle (UAV for short) refers to an unmanned aircraft
operated by radio remote control equipment and self-contained program control device,
which can provide services in places that are difficult for humans to reach. In the early
stage, the application of UAVs was limited to the military field. In recent years, with the
rapid improvement of sensing, remote sensing, flight control, computational vision, image
transmission, and other related technologies, the development of UAV has entered the fast
lane [1]. Especially since 2015, with the continuous improvement of civil UAV technology,
its application in agriculture, forestry and plant protection, power inspection, geographic
mapping, aerial photography, and other aspects has become more and more normal. After
2019, UAV autonomous control and application technology has made great progress,
showing some new development trends. Because a single UAV can only carry a single
mission load and has limited mission execution capacity, the efficiency of the whole system
can be improved through the complementary ability and action coordination of multiple
UAVs. Therefore, the application of UAVs is gradually developing from a single platform
to multiple platforms [2].

By learning from the self-organization mechanism of nature, UAV cluster consisting
of multiple UAVs with limited autonomous ability is able to achieve an overall perfor-
mance gain through mutual information communication without relying on centralized

Drones 2023, 7, 461. https://doi.org/10.3390/drones7070461 https://www.mdpi.com/journal/drones
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command and control. As a result, UAV cluster often possesses a higher degree of au-
tonomous cooperation and requires little human intervention to complete the expected task
objectives [3].

The wide application of UAV in different fields exacerbates its security issues, e.g., net-
work attack [4], channel attack [5], and signal attack [6]. Among these attacks, GPS spoofing
as a kind of signal attack has been the most urgent threat [7,8], given the fact that modern
UAV positioning and navigation systems have become highly dependent on GPS signals.
If the positioning and navigation information has been deceived, UAVs may deviate from
the normal flight route and in more serious cases end up in a catastrophic crash.

1.1. Problem Statement

Detecting a GPS spoofing attack is a challenging problem. In a confrontation envi-
ronment, the adversary usually causes a more complex and bad impact on the cluster by
deploying more spoofing sources. According to how many spoofing sources there are, the
possible GPS spoofing attach faced by an UAV cluster can be divided into two categories:
the single GPS spoofing source attack and the multiple GPS spoofing source attack, different
deployment strategies have different effects on clusters. When there is only one spoofing
source, it may attack only one UAV or multiple UAVs. Considering the case where only
one target UAV has been attacked, although the target UAV may have the capability to
detect the existence of spoofing by itself, the detection can hardly be reliable given the
uncertainty of the environment. If multiple UAVs have been attacked by one spoofing
sources, although the attack is obvious, it is still difficult to determine whether there is
only one spoofing source or not. When there are multiple spoofing sources, the problem
becomes even more challenging due to the complicated interactions of the spoofing sources.

1.2. Contribution

In this work, we aim at solving the GPS spoofing detection problem for the case
of multiple spoofing sources and we propose a cluster cooperative positioning-based
algorithm that can successfully detect the existence of spoofing for UAV clusters, no
matter how complex the threat environment is. The algorithm includes two mechanisms.
Under the guidance of distributed computing, we design the GPS spoofing signal detection
(SSD) mechanism. Furthermore, “no longer considering who is cheated, we should pay
attention to who is safe”, which is the core of the relative security machine optimal marking
(RSOM) mechanism. Thus, it is worth mentioning that in order to ensure the autonomous
recovery of the formation in an unsafe environment, we assume that not all members
of the UAV cluster are deceived and at least one UAV in the cluster is safe. The main
contributions of this paper can be summarized as follows:

• The GPS spoofing attacks for the UAV cluster are analyzed and classified, and the
various complex attack scenarios under a cluster environment are simulated. To the
best of our knowledge, research into the problem of spoofing attacks on the UAV
cluster from multiple spoofing sources, as considered in this paper, is novel.

• A novel GPS-adaptive spoofing detection (ASD) algorithm which includes two de-
tection mechanisms, GPS Spoofing Signal detection (SSD) mechanism and Relative
Security UAV Optimal Marking (RSOM) mechanism, is proposed. The algorithm can
switch between different detection mechanisms to effectively detect GPS spoofing
signals according to the characteristics of GPS spoofing attack initiated by the attacker
in different attack scenarios.

• A modeling and hardware simulation based technique has been studied to ensure the
mission safety of UAV cluster. In fact, how to ensure the mission safety of UAV cluster
in GPS spoofing environment is still in its infant stage. This work provides theoretical
support and an application guidance for the development and application of this new
task model.
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The rest of this paper is organized as follows: Section 2 mainly summarizes the relevant
research work. Section 3 discusses the establishment of the small smart UAV cluster model,
the principle of the GPS spoofing attack, and its impact on the cluster task state. Section 4
introduces the detailed design of ASD. Section 5 presents the simulation experiments and
compares with the latest results in the same domain. Section 6 summarizes this work and
concludes with the potential impacts and prospects.

2. Related Work

As reported in [reference to the Volpe report], the U.S. Department of Transportation
has performed a thorough security evaluation of civil GPS signal applications and con-
cluded that “GPS has further penetrated into civil infrastructure. It has become an attractive
target and can be used by individuals, groups or countries hostile to the United States”.
Malicious attacks on GPS signals mainly include intentional interference and deception,
where the consequence of deception is often considered more severe than that of intentional
interference. As a result, the detection of GPS deception has become a hot topic and been
investigated intensively [9,10].

Some recent research has shown that civil UAVs can be easily deceived [11–13]. A sim-
ple GPS spoofing attack has been successfully implemented by researchers from Los Alamos
National Laboratory [10]. Later, the Iranian army has claimed that they successfully con-
trolled an American rq-170 sentinel UAV, when it was flying about 140 miles from the
border between Iran and Afghanistan [14]. In [15], the authors showed that they can
deceive the UAV by sending false position data to their GPS receiver, thus misleading the
UAV to crash on the sand.

Regarding the detection and response schemes for GPS deception, the work in [16]
has made a complete overview of the effort on combating GPS deception and jamming.
A method to further improve the detectability of false GPS spoofing signal by encrypting the
signature of navigation message was proposed in [17]. An algorithm for monitoring GPS
deception based on power measurement and automatic gain control behavior observation
has been proposed in [18]. The effectiveness of this algorithm has been verified by using
commercial GPS receivers. In [19], the authors have proposed a GPS deception detection
and protection scheme, leveraging the calculation of moving variance based on Doppler off-
set and consistency test of PVT calculation. In [20], the authors claimed that the forged GPS
deception signal could not completely cover the real GPS signal, and proposed a method
to detect GPS deception in the signal tracking stage through the detection technology of
its residual signal. In [8], automatic gain control is used within the GPS receiver to detect
and flag potential spoofing attacks within a low computational complexity framework.
Moreover, [21] proposed a technique that allows UAVs to detect GPS spoofing by using
an independent ground infrastructure that continuously analyzes the contents and times
of arrival of the estimated UAV positions. The proposed technique is able to detect the
spoofing attacks in less than two seconds and further determine the spoofing location after
15 min of monitoring time with an accuracy of up 150 m.

Notably, some other work have studied the use of multiple receivers to detect GPS
spoofing attacks [11,22,23]. In [22], the authors demonstrated the ability of detecting GPS
spoofing using a dual antenna receiver. Their technique relies on observing the carrier
difference between different antennas under the same oscillator. In this configuration,
the attacker needs to add a transmitting antenna every time when a receiving antenna is
added, which makes the attacking task more complex. In [11], multiple receivers are used
to authenticate GPS signal by using the correlation between GPS signal and military GPS
signal. Among these receivers, a cross check receiver is used to determine whether its GPS
signal is true. The technique has been tested on stationary and mobile GPS receivers and
it can effectively detect spoofing attacks. In [23], multiple independent GPS receivers are
used to detect GPS spoofing attacks. This technique relies on fixing the distance between
receivers and then measuring the distance between the positions reported by the receivers.
Under the real GPS signal, the measured distance is similar to the previous fixed distance.

3
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However, under the GPS spoofing attack, the measured distance can be close to zero. This
is because all receivers are cheated of the same false position. Currently, there are still
some scholars who use machine learning methods to solve this problem. Their research
focus is mainly on extracting ground features, and they are committed to how to extract
the accuracy of features. Although it is equally effective in application, it does not have
strong interpretability [24–26].

There are not many existing research results based on cluster deployment to detect
deception signals and ensure the safety of drone missions. Among them, a game-based
detection method for drone clusters was proposed in reference [27], which utilizes the
relative position relationships of members in the cluster to effectively detect spoofing
attacks. However, there are strong limitations on the size and threat scenarios of the cluster.
Furthermore, a method based on task prior knowledge and formation rigid structure
proposed by Liang Chen takes 8 s to achieve spoofing detection [28]. The Euclidean distance
between members in a cluster calculated from different data sources in reference [29] is used
to determine deception. This paper enriches threat scenarios and adversary capabilities,
but has a strong dependence on security thresholds. Moreover, existing achievements all
share a common problem, as they do not provide a method to determine the true position
of drones or ensure the continuation of missions after detecting attacks [30]. In fact, these
previous works mainly focused on detection technology and did not provide mature and
effective autonomous attack mitigation or defense mechanisms.

3. System Models

3.1. The Small UAV Cluster Model

Given a set of UAVs, M, performing a common mission, each of which is equipped
with a GPS receiver, a wireless communication module, and some sensors for specific appli-
cations. According to the GPS signal characteristics, we use three-dimensional (3D) data to
specify their locations. Let the location of UAV m at time t be um(t) = [xm(t), ym(t), zm(t)]T ,
where m ∈ N+. The UAV cluster model uses the flooding broadcast mode, which is com-
monly used in an ad hoc network to realize the communication between UAVs. That is,
each UAV in the cluster shares the location information of all the others within the effective
distance of broadcast. As shown in Figure 1, dmax is the largest distance between UAVs in
the cluster, and emax is the maximum effective range of UAV broadcasting. When designing
the cluster formation, the condition dmax < emax ensures that each UAV in the cluster can
receive the location information from the other UAVs.

The relative position between UAVs is one of the key bases for the formation design.
When the navigation information of an UAV is detected to be dishonest, its position can be
obtained through the relative positions between the other UAVs. Therefore, when designing
the model, the relative position to the other UAVs is known to each UAV in the cluster.

Figure 1. Relationship between the largest relative distance in an UAV cluster and the maximum
effective distance of flooding communication.

4
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1. UAV Position representation in the Cartesian coordinate system
It is known that in the position calculation, the original output data of the GPS receiver
cannot directly be used in the calculation. Instead, it needs to be transformed from
the spherical coordinate system to the Cartesian coordinate system.
Suppose that D is a point on the Earth’s surface and the spherical coordinate of D is
(lat, lon, r), where r is the radius of the earth. It is shown in Figure 2 that ∠AOB = lat,
∠DOB = lon, and the point D is expressed as follows:

D =

⎡⎣ xD
yD
zD

⎤⎦ =

⎡⎣ r · cos(lon) · sin(lat)
r · sin(lon)

r · cos(lon) · cos(lat)

⎤⎦ (1)

If an UAV in the cluster reaches the specified position at H, which is vertically above
point D, then it broadcasts the position D′:

D′ =

⎡⎣ xD′

yD′

zD′

⎤⎦ =

⎡⎣ (r + H) · cos(lon) · sin(lat)
(r + H) · sin(lon)

(r + H) · cos(lon) · cos(lat)

⎤⎦ (2)

Figure 2. Schematic diagram of the conversion between the spherical coordinate system and ground
coordinate system.

2. Indication of the relative position between UAVs
The object of formation design is mainly to achieve a small cluster of UAVs. Thus,
the full connection mode is adopted for the information interaction between UAVs.
For model M={m ∈ N + |u1, u2, u3, . . . , um}, as shown in Figure 3, the position
relationship between any two UAVs can be expressed as a four-dimensional vector:

u1u2 =

⎡⎢⎢⎣
α
β
θ
l

⎤⎥⎥⎦ (3)

Figure 3. Schematic diagram of the relative position between UAVs in a cluster.

5
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Thus, if u1 = {x1, y1, z1}, the following equation holds:

u2 =

⎡⎣ x2
y2
z2

⎤⎦ =

⎡⎣ x1 + lcosα
y1 + lcosβ
z1 + lcosθ

⎤⎦ (4)

3.2. Adversary Model: GPS Spoofing Principle

The principle of GPS spoofing on the target UAV is as follows: the position spoofing
attack will not change the UAV’s position, but change the UAV’s belief in its position.
Thus, while the UAV is still in its real position when attacked, the perception of its location
by its navigation system will be given by the attacker. Then, the UAV plans its route
to the final destination according to the instructions transmitted to the controller by the
navigation cognition.

The purpose of a GPS spoofer is to control the GPS antenna, in order to send the
customized GPS positioning information to make the UAV navigation system believe that
it is deceiving the expected position. According to the concealment and strategy of the
attack, GPS spoofing attacks can be divided into the following two categories.

• Public: the spoofer does not try to cover up the attack, no matter whether the change
between the customized deceptive GPS positioning information and the real GPS
positioning information is within a reasonable range. It only tries to capture the
target faster.

• Covert: the spoofer tries to avoid detection by sending cleverly crafted deceptive
signals that match the actual signal in terms of output power and other parameters.
Thus, the spoofer can prevent the target from triggering a fault detection alarm.

Since the spoofer can attack the target publicly or covertly, we consider that UAV
is equipped with a fault detector, which can filter out the navigation signal with large
mutations. Therefore, for the spoofer design, we would like to keep its attack covert
by adjusting the parameters of the forged GPS signal, in order to avoid being found.
The specific setting rules for parameter requirements can be found in [31]. The main idea is
that the change between the spoofing signal sent by the spoofer and the signal received
by the UAV GPS receiver at the previous time will be limited to a threshold, so that these
applied positions will not trigger the fault detector in the UAV. Such a threshold between
the current position and the position where the spoofing is applied is called the instance
drift distance [32,33].

Let Emax be the instance drifted distance that limits the attack, ˆxm(t)=[x̂m(t), ŷm(t), ˆzm(t)]T

be the attacker’s imposed location on UAV m, and Em(t)=[Exm(t), Eym(t), Ezm(t)]
T be a vector

whose individual elements represent the distance difference between the UAV’s actual
location and the attacker’s imposed location. Then, we have the following equation:

‖Em(t)‖2 = ‖xm(t)− ˆxm(t)‖2 ≤ Emax (5)

Explanations of all variables mentioned in this section are summarized in Table 1.

Table 1. Explanations of all variables mentioned in Section 3.

Variables Explanation

M A set of UAVs
um One of the members in M
dmax The largest distance between each two UAVs in M
emax The maximum effective range of UAV broadcasting
D The parking position of UAV on the ground
D′ The hovering position of UAV in the air
u1u2 The position relationship between any two UAVs in M
Emax The instance maximum drifted distance
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4. Proposed Method

In this section, the ASD method based on UAV cluster cooperative positioning is
proposed, The workflow description is detailed in the Appendix A, which includes two
detection mechanisms: the SSD mechanism based on the cluster cooperative positioning
and the RSOM mechanism.

4.1. SSD Mechanism Based on Cluster Cooperative Positioning

During the execution of public tasks by the UAV cluster N, all members of the clus-
ter broadcast the real-time position obtained by GPS receiver to the team through their
respective wireless communication module at each time. The design principle of SSD is:
at each broadcast time, when the signals broadcast by the cluster have the same location
information, one can determine that there is at least one spoofing source in the mission
airspace, and the RSOM mechanism of the ASD algorithm is triggered at this time; when
the broadcast signals are different, we randomly select a submachine in the cluster, Un,
and extract its location information, PUn . Then, we use the real-time location information
broadcasted by other members and the relative location information between other mem-
bers and Un in the formation to calculate where the other members think Un should be.
For example, based on the location information broadcasted by U1, the position where
U1 thinks Un should be located can be obtained by Formulas (2)–(4). If there is only one
spoofing source in the mission airspace, the SSD mechanism can accurately locate the spoof-
ing attack submachine in the cluster; otherwise, the RSOM mechanism will be triggered.
Figure 4 shows the workflow of the SSD mechanism.

Figure 4. The workflow of the SSD mechanism.
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4.2. RSOM Mechanism

The RSOM mechanism is triggered when there are multiple spoofing sources in the
mission airspace and the GPS signal security status of each submachine in the cluster
cannot be accurately determined. Compared to the assumption of [27], i.e., “at least one
UAV in the cluster is safe”, our RSOM can detect the case of a full cluster spoof. However,
this assumption is still followed in our designed algorithm. Our purpose in doing so
differs from that of [27] in that their spoofing detection has to be implemented under this
assumption, whereas we do so to guarantee that the UAV cluster has the ability to recover
autonomously in case of a spoofing attack. By letting go of this restriction, RSOM can call
the ground station to achieve an artificial takeover of the cluster mission in the event of
a full overrun being detected. In this attack scenario, in order to ensure the self-recovery
capability of the cluster, the premise of RSOM is that at least one aircraft in the cluster is
safe. Therefore, the threats faced by the UAV cluster can be summarized as follows: if two
or more UAVs are attacked by different GPS spoofing signals, how can they be detected?

RSOM is designed with the idea that there is no need to face this problem directly.
Specifically, at least one aircraft in the cluster is safe, so in such a complex threat scenario,
we should accurately find the safe one. The details of the design idea are as follows:
RSOM selects a virtual central machine for the UAV cluster to provide us with reference
information representing the motion state of the whole cluster. Considering the loose
coupling between the GPS measurement and the strapdown inertial navigation system
(INS), the altitude dynamics of UAVs will not be affected by GPS spoofing attacks at the
fist moment of spoofing, which has been confirmed by Kerns et al. [34] through a field test.
At the same time, a large number of studies have shown that the relative controllability
of altitude dynamics can maximize the asymptotic stability of closed-loop systems when
applying optimal control signals in the event of GPS failure. Therefore, in the RSOM
mechanism, the optimal marking of relative security machine is realized by using the
deviation of the altitude information obtained by each member of UAV cluster from the
GPS relative to the flight altitude obtained by altitude dynamics of the virtual central
machine. In the RSOM mechanism, the yaw information is the core factor in determining
the altitude of the UAV, so we simplify and divide the altitude model of the UAV, and finally,
obtain the independent yaw model.

The RSOM mechanism includes three altitude models: the independent yaw model
of the submachine, the independent yaw model of the virtual central machine, and the
marking model. The workflow of the RSOM mechanism is shown in Figure 5.

Figure 5. The design and work principle of the RSOM mechanism.
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For each UAV, the yaw angle is given by the GPS receiver and the magnetometer,
which are expressed as ψGPS and ψmag, the obtain algorithm are shown as Algorithm 1 and
Algorithm 2, respectively [35].

Algorithm 1 Algorithm for obtaining obtainψGPS based on GPS receiver input data

1: Input the position information of the current time and the previous time:(lat1, lon1, alt1)
and(lat2, lon2, alt2);

2: Take (lat2, lon2, alt2) as the representation of a Cartesian coordinate system:(x2, y2, z2);
3: Based on (lat1, lon1, alt1), take (x2, y2, z2) as the representation of a ENU

system:(de2, dn2, du2);
4: Constraint ψGPS∈[-π, π];
5: ψGPS=arctan2(de2, dn2);

Algorithm 2 Algorithm for obtaining the ψmag based on magnetometer attitude measure-
ment data

1: Suppose that the measured value of the magnetometer in the body coordinate system,
(xb, yb, zb), is bmm=[mxb myb mzb ]

T

2: Considering that the magnetometer may not be placed horizontally during the UAV
mission, it is necessary to use the two axis inclination sensors to measure the pitch
angle, θ, and the roll angle, φ, and then project the measured values on the horizontal

plane. Therefore,

⎧⎪⎨⎪⎩
mxe = mxb cosθm + myb sinφmsinθm

+mzb cosφmsinθm

mye = myb cosφm −mzb sinφm
where mxe , mye∈R indicates the projection of the magnetometer reading on the hori-
zontal plane.

3: Constraint ψmag∈[-π,π]
4: ψmag=arctan2(mye ,mxe )

1. Independent yaw model of the submachine
In the independent yaw model of submachine, the yaw angle of the submachine in
the cluster is defined as:

ψ = (1− μψ)ψGPS + μψψmag (6)

where ψGPS and ψmag can be obtained by algorithms 2 and 3. μψ∈[0,1] is a weight-
ing factor.
The basic idea of the linear complementary filter is to use their complementary features
to obtain more accurate altitude angle. In this model, the linear complementary
filter [36–38] is only used as a known tool, so it is only briefly explained without
showing the detailed reasoning process. At time k, after obtaining ψ(k), the yaw angle
is estimated as:

ψ̂(k) =
τ

τ + Ts
(ψ̂(k− 1) + Tsωzb(k)) +

Ts

τ + Ts
ψ(k) (7)

where τ ∈ R+ represents the time constant, Ts ∈ R+ represents the sampling period
used by the filter, and ωzb represents the component of the angular velocity in the z
direction in the earth fixed coordinate system [39]. Take τ

τ+Ts
= 0.95, then Ts

τ+Ts
= 0.05.

The complementary filter of the yaw angle is expressed as follows:

ψ̂(k) = 0.95(ψ̂(k− 1) + Tsωzb(k)) + 0.05ψ(k) (8)

2. Independent yaw model of the virtual central machine
GPS provides external information to the UAV. It belongs to the experimental group
of this subject and needs to be verified. Therefore, we need a control group in the
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model. For the flight altitude estimation of the whole cluster, we only use the internal
information of the UAV, namely the magnetometer. The yaw representation of the
flight altitude of the whole cluster is realized by fusing the yaw altitude of each
member machine with a weighted average method to form a new yaw altitude model.
It can be considered that we have selected a virtual central machine for the cluster,
and the new yaw altitude model is the yaw representation of the virtual central
machine; its physical meaning is to represent the flight altitude of the cluster to the
greatest extent.
Here:

ψ′ = ψmag. (9)

Input ψ′(k) to Equations (7) and (8) to obtain ψ̂′(k). Then, the independent yaw model
of the virtual central machine, Ψ(k), can be expressed as follows:⎧⎪⎪⎨⎪⎪⎩

Ψ(k) =
m

∑
n=1

ψ′n(k)ρn(k)

ρ(k) =
1
2

log
1− ε(k)

ε(k)

(10)

where ε(k) is the error confidence obtained by the exponential standardization of the
so f tmax function to the current error of each submachine magnetometer, and ε1(k) +
ε2(k) + ε3(k) + . . . + εm(k) = 1. ρ(k) is the final weight coefficient of each submachine.

3. Marking model
The difference between the results of the independent yaw model of the virtual
central machine and that of the submachine is used as the basis for the results of the
calibration model:

dn = |Ψ(k)− ψ̂n(k)| (11)

Note that dmin = (d1, d2, . . . , dm), dmin corresponding to the submachine is the optimal
marking of the making model to the relative security of the UAV.

4.3. Time Complexity Analysis

According to the big O representation, O(n), the algorithm grows as the data size n
increases. The ASD algorithm designed in this paper does not contain loops and recursive
statements, so the time complexity is O(1). It should be noted that it does not fully represent
the actual execution time. The actual execution time of the algorithm is also closely related
to the performance of the hardware device.

To sum up, it can be concluded that the two mechanisms of the ASD algorithm have a
serial relationship in the working process. Last, but not least, at the end of the algorithm
design, we added a straightforward defense, the “Leader-follower mode”. This mode
is triggered when the ASD algorithm detects GPS spoofing. That is, the relatively safe
submachine selected by RSOM will enter the leader mode and the other submachines
will enter the follower mode. Generally speaking, under the premise that “at least one
submachine in the cluster is safe”, the ASD algorithm can solve various threats faced by
UAV cluster in the mission environment, and has the ability to guarantee the formation
and flight mission at the same time. This study proposes the constraint that “at least one
submachine in the cluster is safe”, and its application background is the fully autonomous
task of the UAV cluster. With manual monitoring and intervention during the task, this
restriction can be released and the cluster submachines can be switched to manual takeover
when all of them are under attack.

5. Simulation and Evaluation

To verify the effectiveness of the ASD algorithm proposed in this paper, simulation
experiments are carried out in this section. The experiments are performed on Gazebo
and MATLAB platforms. We built the UAV cluster system model on the Gazebo platform,
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and connected the MATLAB-based ASD algorithm to the Gazebo flight control through
cross-platform combination. The verification process and result analysis are as follows.

5.1. Experimental Configuration

In this experiment, during the task of the UAV cluster system model, the motion
heights of all submachines are always the same, and the subsequent spoofing signal
generation is only also based on longitude and latitude. Therefore, when designing the
formation, β = 0 and θ = 0 are in the relative position relationship between the cluster
submachines, and the overall structure is a pentagon. The specific motion parameters of
the small smart UAV cluster after entering the stable flight are as follows:

• Cluster size: 5;
• Relative position relationship between machines: [α β θ l];
• Cluster velocity: 5 m/s;
• Cluster motion height: 50 m;
• Cluster motion direction: all submachines are consistent;
• Maximum distance between machines: 20 m;
• Maximum effective range of communication: 500 Hz.

Correspondingly, to verify the detection efficiency of the ASD algorithm proposed
in this study, we modeled the enemy according to the GPS spoofing principle on the
Gazebo simulation platform. Five spoofing sources (S1, S2, S3, S4, S5) are set up; follow-
ing the movement of the cluster, they are randomly distributed around the cluster and
the distance from the cluster is always within the effective range of the spoofing signal.
Section 3.2 mentions both public and covert spoofing, but the detection principle of the
ASD proposed does not specifically target a certain type of spoofing. However, in the
experimental deployment, the enemy models all used covert deception, as it is a more
advanced spoofing ability.

5.2. Experimental Deployment

The initial state of the UAV cluster system model at the beginning of each scenario: the
submachines are lined up on the ground. The UAV cluster is manually controlled to take off
vertically one by one, reaching a specified altitude of 50 m. The cluster then enters the fully
autonomous mode. Each submachine adjusts its position according to the preset positional
relationship between the aircraft, forms a formation, and enters the flight mission.

• Scenario 1:Baseline model test: This case is to obtain the normal movement log of the
UAV cluster in the mission scenario without any attack or threat, which can be used
as a baseline to detect the threat later.

• Scenario 2: Adversary model test: Note that the five spoofing sources work exactly
the same, so only one of them is randomly selected for validity testing. In this
scenario, the deployment location of S4 is shown in Figure 6. In Figure 6a, there is
only one submachine in the signal radiation range of S4, while in Figure 6b, there are
more submachines in its signal radiation range. Such a setup can test not only the
effectiveness of the spoofing source, but also whether the spoofing source can spoof
all submachines within its signal radiation range. In the experiment, after the cluster
enters a stable mission state, we do not start the ASD algorithm, but we start S4, after
which we observe the movement state of the cluster and save the flight logs.

• Scenario 3: Contrast experiment of scenario 2: In this case, the deployment location of
S4 is shown in Figure 6a; that is, there is only one submachine in the signal radiation
range of S4. Different from the setting of scenario 2, after the cluster enters a stable
mission state, we first start the ASD algorithm and then start S4. After that, we record
the movement state of the cluster and save the flight logs.

• Scenario 4: Testing of two spoofing sources: In this case, the deployment locations of
the two spoofing sources (i.e., S1 and S2) are shown in Figure 6c. It can be observed
from Figure 6c that the signal radiation range of these two spoofing sources contains
three submachines. Here, we will use S1 and S2 to attack them. In the experiment,
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after the cluster enters a stable mission state, we start the ASD algorithm and turn on
the two spoofing sources. Then, the movement state of the cluster and the flight logs
will be recorded.

• Scenario 5: Testing of three spoofing sources: In this case, the deployment locations of
the three spoofing sources (i.e., S1, S2, and S3) are shown in Figure 6d. The rest of the
operation is the same as in Scenario 4.

• Scenario 6: Testing of four spoofing sources: In this case, the deployment locations of
the three spoofing sources (i.e., S1, S2, S3, and S4) are shown in Figure 6e. The rest of
the operation is the same as in Scenario 4.

• Scenario 7: Testing of the full cluster spoofed: In this case, we directly considered and
deployed the most complex attack scenario with five spoofing sources (i.e., S1, S2, S3,
S4, and S5); as shown in Figure 6f, after the cluster enters a stable mission state, we
start the ASD algorithm and the five spoofing sources. It can be observed that the
cluster suddenly oscillates in formation after a period of time, but soon returns to
its original form; however, the overall motion direction is off the expected trajectory.
At that point, the UAV cluster sent a distress signal to the ground station. Again, we
keep the flight logs.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Tactics of an adversary: deploying the deception source. (a) Deploy S4 to attack one of the
submachines to verify the effectiveness of the spoofing source. (b) Verify whether the S4 spoofing
source has the ability to spoof all submachines within its signal radiation range. (c) Deploy two different
spoofing sources to launch a GPS spoofing signal attack on three submachines in the cluster. (d) Deploy
three different spoofing sources to launch a GPS spoofing signal attack on three submachines in the
cluster. (e) Deploy four different spoofing sources to attack four submachines in the cluster. (f) Deploy
five different spoofing sources to attack five submachines in the cluster.
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5.3. Experimental Results and Analysis

Scenarios 1 and 2 of the experimental deployment belong to equipment testing and
the others belong to algorithm verification.

In each scenario, we conduct multiple sets of experiments. Throughout the experiment,
we observed that, in the state of cluster motion, at some point after the spoofing source
was turned on, individual submachines did shake abnormally or leave the team, but the
final observation result was that the cluster corrected the formation and finished the flight
mission. The specific result analysis can be obtained through the retained flight logs,
as shown below.

Model testing results

Figure 7a shows the state diagram of the UAV cluster system model completing a flight
mission in a safe environment, i.e., scenario 1. Figure 7b,c are the results of the verification
of the enemy model, i.e., scenario 2. Among them, Figure 7b shows the output of the GPS
receiver deploying a spoofing source and the S4 spoofing a submachine, No. 4. Figure 7c
shows the output of the GPS receiver deploying S4 to deceive two submachines, i.e., 4 and
5, simultaneously.

It can be seen that the formation of the UAV cluster has been disrupted and the output
conforms to the spoofing principle. This phenomenon implies that S4 does effectively
attack the submachines within its signal radiation range. Furthermore, it demonstrates that
the enemy model we designed is effective, which can support the construction of the GPS
spoofing countermeasure environment required for the experiment.

Algorithm verification results

Since no abnormality was observed in the overall motion state of the UAV cluster,
we chose to use the data for a more intuitive interpretation. In the table recording data
information, we use the same color to indicate the corresponding relationship between the
spoofing source and the target. Moreover, � marks the reference machine selected by ASD,
while � marks the target selected.

Table 2 shows the record of current spoofing sources, and the flight logs of each
submachine in scenario 3. According to the ASD algorithm design, the RSOM mechanism
will not be triggered when only one aircraft suffers a spoofing attack. In fact, the final
output of the ASD algorithm is the detection result of the SSD mechanism. According to
the log information of the submachine GPS receiver, it can be seen that No. 4 was attacked;
the SSD randomly selected No. 1 at this time, and only No. 4 had abnormal cognition of
the position of No. 1 of the other four racks. Furthermore, we can see from the logs that
after detecting a spoofing attack on No. 4, the system tells No. 4 to disable the GPS receiver
and go into the leader mode in the cluster. Similarly, we can also see in the logs that the
algorithm detected the threat at the second moment after being spoofed.

Table 3 shows the record of spoofing sources currently, and the flight logs for each
submachine in scenario 4. Unlike Table 2, the final output of the ASD algorithm is no longer
the result of the SSD mechanism, but rather RSOM. Based on the analysis of the spoofing
sources data and GPS receiver information, it is not difficult to see that No. 2 and 3 were
attacked by the same spoofing source, S2, and No. 4 was attacked by a different spoofing
source, S1, from the previous signal. This situation cannot be solved by SSD, which triggers
RSOM. In No. 1 and No. 5, which are safe in the cluster, RSOM finally chooses No. 5
as the leader of the safety machine according to the idea of algorithm design. Similarly,
in scenario 5, these three submachines are also subject to a spoofing attack, the difference
being that these three submachines receive spoofing signals from three different spoofing
sources, respectively, which can be obtained from Table 4. The RSOM mechanism also
works perfectly; it selected No. 1.

Scenario 6 is the most complicated of all. To ensure that each spoofing source deployed
achieves the expected efficiency, we iteratively adjust their location and signal strength,
and finally, achieve one-to-one spoofing, as shown in Table 5. Of course, scenario 6 is
also the strongest proof of the effectiveness of the ASD algorithm. In our deployment,
No. 1 is outside the effective range of all spoofing signals. From the table we can see
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that the RSOM does calibrate it accurately, making it the leader of the cluster. During the
experimental observation, we saw that the formation of the UAV cluster vibrated obviously
when attacking, but it quickly recovered and adjusted as before, and finally completed
the task.

Table 6 shows the record of spoofing sources and the flight logs for each submachine
in scenario 7. In the validation work of this scenario, we liberalized the “at least one
drone safe” restriction and deployed five different spoofing sources to spoof each of the
five submachines separately. As you can see from the information in Table 6, the RSOM
still selected the submachine it thought could be the leader out of the five submachines:
No. 2. However, the fact is that No. 2 has also been attacked by the spoofer S2. Its yaw
information relative to that of the virtual central machine was already far greater than
the normal drift range of the magnetometer. At this point, the UAV cluster no longer
had completely reliable navigation information and the ASD eventually sent a distress
command to the ground station.

(a) (b)

(c)

Figure 7. Illustration of effectiveness verification of the UAV cluster system model and the en-
emy model. (a) The trajectory information output by GPS receivers of the UAV cluster system model
in the safe mission environment. (b) Deploy spoofing source 4 to attack No. 4 in the cluster without
any detection and defense measures. The motion trajectory output by UAV cluster GPS receivers.
(c) Deploy spoofing source 4 to attack No. 4 and 5 in the cluster without any detection and defense
measures. The motion trajectory output by UAV cluster GPS receivers.
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From the above series of experimental results, the ASD algorithm can detect the attack
behavior at the second moment of spoofing. The acquisition frequency of UAV flight logs
is 5 Hz, which means that the time required to detect deception is 0.4 s. This is because the
ASD algorithm contains two mechanisms, which take time to judge, trigger, and switch.
From the information output frequency of the flight log, ASD is known as a very efficient
real-time detection algorithm, which is not affected by the time delay of one recording.
On the other hand, the RSOM mechanism does not seem to focus on detecting spoofing
intuitively, but this is not the case. When a secure submachine is selected, all information
it provides is trusted by default. Then, based on the geometric relationship between the
submachines, it is easy to obtain the location where other submachines should be. At this
time, if there is a non-negligible error between the information output by the GPS receiver
of which submachine and the information provided by the secure submachine, it can be
determined that the information has been spoofed. Because this problem is obvious, it is
not emphasized. The “Lead-follower” mode is a small defense set up for the cluster to
ensure that at least one submachine is safe to complete the task.

5.4. Comparative Analysis of the Method’s Performance

Regardless of whether used in a simulation environment or a real physical environ-
ment, it is difficult to fully reproduce the theoretical results of existing research in UAV
flight experiments due to the uncertainty brought by atmospheric disturbances and motion
time drift in the environment on the output of UAV sensors. Therefore, in this section,
the original authors’ analysis of the original performance data of the methods proposed by
them is directly referenced and compared with the methods proposed in this chapter in
different performance dimensions.

Comparing the ASD method proposed in this article with the detection method
proposed by Liang, Chen et al. [28] in Table 7, our method only took 0.4 s in a task, which
can be called a very effective real-time detection method that is not affected by the time
delay of a single record; concurrently, ASD is, without requiring prior knowledge, suitable
for random flight missions and also better at detecting accuracy.

AR Eldosouky, A Ferdowsi, et al. [27], when analyzing their proposed method, did
not analyze the performance of the method such as timeliness and detection accuracy. They
paid more attention to the effectiveness of a simulation experiment, and their method
can solve a narrow problem domain, which not only has strong limitations on the threat
scenarios where deception occurs, but also specifies the applicable cluster size. By relaxing
these limitations, the proposed ASD method can face complex threat scenarios with the
same detection capabilities.

The method Pavlo Mykytyn (2023) [29] proposed does not limit the types of threats
that occur, and also designs complex adversarial scenarios. However, the design of the
method to determine whether the spoofing attack occurs based on the distance difference
has a strong dependence on the security threshold, but there is currently no authoritative
setting rule for the security threshold. In addition, the infrared ranging method introduces
additional hardware equipment. In ASD method proposed, there is no such issue, as there
is no need for auxiliary values or equipment.

Finally, the confrontation environment that ASD proposed in this chapter can face
is complex, and it is worth mentioning that the ASD method does not require any prior
knowledge, and the assistance of any other additional equipment and does not increase
the load burden on unmanned aerial vehicles. Moreover, the ASD method has small
computational complexity, has high efficiency, and is timely and accurate.
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Table 7. Comparison of similar methods.

Methods
Detection
Accuracy

Detection
Time

Method Characteristics

Liang, Chen
(2019) [28] 98.6% 8 s Requires prior knowledge of a given task, and other members within

the communication range must be greater than 3

AR Eld. etc.
(2020) [27]

Undefined
and not
analyzed

Undefined
and not
analyzed

There is only one deception source, only one aircraft is deceived at a
time, and one aircraft is absolutely safe; the method is applicable to
clusters with a scale of 5 or more

Pavlo Mykytyn
(2023) [29]

Undefined
and not
analyzed

Undefined
and not
analyzed

One distance ranging technology; the execution of this method
strongly relies on security thresholds

method proposed 100% 0.4 s

1. The cluster size is greater than or equal to 3 and is suitable for
random flight missions;
2. There can be multiple deception sources in the flight environment
that launch indiscriminate attacks against the cluster;
3. There are no constraints required for the execution of deception
detection in the method, and during the task, after implementation of
detection, it follows the safe machine concept, but not a strong
constraint.

6. Conclusions

At present, in view of the impact of GPS spoofing on UAVs, the existing detection
methods mainly focus on the single-machine problem. Machine learning methods are
the most popular of these methods. In the practical application of UAVs, timeliness is an
issue that cannot be ignored. The detection mechanism in the ASD algorithm has good
detection efficiency in the simulation environment; accurate detection can be achieved
almost immediately when a spoofing attack occurs. On the other hand, at present, how
to solve the UAV cluster in the face of GPS spoofing attack is still a new problem. Among
the few research results that address the same problem [27,29], the execution of methods
requires the execution under various constraints.

Obviously, the confrontation environment faced by the ASD method proposed in
this study is more complex. It is worth mentioning that the ASD method does not use
any other equipment except the most basic airborne equipment, and the computation
sequence is simple. In the experimental design of this article, in order to accurately grasp
and analyze the objective performance of the method, atmospheric disturbance factors
were not added to the simulation environment. Furthermore, the autonomous performance
of ROSM mechanism is established under a constraint condition of “at least one secure
drone exists in the cluster”. Thus, in the next research step, we will find problems based
on practical applications, hoping to improve the robustness of ASD. In addition, in future
research, we will consider using visual ranging among UAV cluster members to determine
the true location of the submachines attacked by spoofing. In this way, the algorithm will
become more complete and intelligent, enabling better cluster control.
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Appendix A

This is the flowchart of our proposed method, ASD, and the mechanisms description
included is in the main text.

Figure A1. Flowchart: outline of the ASD’s process.
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Abstract: To improve the autonomous flight capability of endo-atmospheric flight vehicles, such
as cruise missiles, drones, and other small, low-cost unmanned aerial vehicles (UAVs), a novel
minimum-effort waypoint-following differential geometric guidance law (MEWFDGGL) is proposed
in this paper. Using the classical differential geometry curve theory, the optimal guidance problem of
endo-atmospheric flight vehicles is transformed into an optimal space curve design problem, where
the guidance command is the curvature. On the one hand, the change in speed of the flight vehicle is
decoupled from the guidance problem. In this way, the widely adopted constant speed hypothesis in
the process of designing the guidance law is eliminated, and, hence, the performance of the proposed
MEWFDGGL is not influenced by the varying speed of the flight vehicle. On the other hand,
considering the onboard computational burden, a suboptimal form of the MEWFDGGL is proposed
to solve the problem, where both the complexity and the computational burden of the guidance law
dramatically increase as the number of waypoints increases. The theoretical analysis demonstrates
that both the original MEWFDGGL and its suboptimal form can be applied to general waypoint-
following tasks with an arbitrary number of waypoints. Finally, the superiority and effectiveness of
the proposed MEWFDGGL are verified by a numerical simulation and flight experiments.

Keywords: waypoint-following guidance; varying speed; differential geometric curve theory; global
energy optimization; suboptimal form; flight experiments

1. Introduction

A key technology of endo-atmospheric flight vehicles, such as cruise missiles, drones,
and other small, low-cost unmanned aerial vehicles (UAVs), is the ability to autonomously
reach a destination via an expected path [1]. In terms of general multitarget missions, there
are two mainstream methods for endo-atmospheric flight vehicles to realize waypoint-
following guidance, by visiting multiple target points at a time. The first is to decompose
the waypoint-following task into two parts: path planning and path tracking [2–6]. The
second is to individually separate each waypoint on the desired path and transform the
path-tracking problem into countless point-to-point guidance problems, using closed-
circuit guidance. Missile guidance laws, which have been well-developed over the last few
decades, can also be adopted to solve waypoint-following problems. Recent developments
in advanced missile guidance laws resulted in many elegant solutions to problems related
to waypoint following, such as pure pursuit guidance (PPG) [7], proportional navigation
guidance (PNG) [8–11], and their variations [12–15].

Considering certain performance indexes, the first approach typically discovers the energy-
or time-optimal path using complex numerical trajectory optimization methods [16–20].
However, numerical simulations require large onboard computing power, so they may
not be suitable for the general growth of small endo-atmospheric flight vehicles, such as
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cruise missiles, drones, and other small, low-cost unmanned aerial vehicles (UAVs). The
guidance instructions produced using the second method can be simple and concise, thus
eliminating concerns about the capability of an onboard computer. However, under the
boundary conditions of multiple waypoints, even the use of the minimum-effort point-to-
point guidance law [21–24] between every two adjacent waypoints cannot guarantee the
optimal total energy consumption for the duration of a task.

For such problems, inspired by the above two methods, an optimal error dynamics
(OED) method for the design of guidance laws for UAVs that need to visit multiple way-
points was proposed in [25]. As mentioned in [25], the challenge of designing guidance
laws is defined, firstly, as a finite-time tracking problem in cybernetics. Later, a global
minimum-effort waypoint-following guidance law (MEWFGL) that can be applied to
situations of arbitrary waypoint numbers was analytically derived in [26]. For the first
time, the MEWFGL allowed for the development of a path-planning and tracking set in
one single step, and it effectively reduced the complexity of the initial task’s analysis and
design. However, the MEWFGL still assumed a constant speed and did not consider the
influence of a change in a UAV’s speed on the performance of the guidance. Although
a large number of numerical simulations and flight experiments showed that, under the
assumption of a constant speed, the designed guidance laws still work in most practi-
cal varying speed guidance scenarios, their performances are degraded to some degree,
since the speed of a UAV changes during the guidance process. In practical applications,
real-time speeds can be obtained and utilized in guidance and control systems, as almost
all endo-atmospheric flight vehicles are equipped with Doppler radars or accelerometers.
Therefore, if guidance laws can be directly designed without the assumption of a constant
speed, their performances must, hence, be assumed to be better.

In essence, the flight trajectory of an endo-atmospheric flight vehicle can be taken as a
space curve, which is more suitably depicted with a Frenet–Serret frame, curvature, and
torsion, using the classical differential geometry curve theory [27]. In addition to designing
and analyzing guidance laws in the time domain, differential geometry theory can be used
to design and derive a variety of guidance laws in the arc-length domain. In [28], the
performance of a PNG and the capture region of a missile with time-varying speed that
was directed at a stationary target were preliminarily explored in the arc-length domain.
In [28], by introducing the differential of the arc length, the influence of the time-varying
missile’s speed on the performance of the guidance law was eliminated for the first time.
In addition, in [29], the PNG’s performance in the arc-length domain was further analyzed
in detail, which revealed the essence of the guidance law design in theory, and this also
showed that the differential geometry curve theory is beneficial for reducing the influence
of time-varying speed on the performance of guidance law.

On the one hand, the computational capacities of small, low-cost endo-atmospheric
flight vehicles are not powerful enough for the computational burden of the complex
numerical calculations required to determine an optimal path. On the other hand, it is
difficult to design guidance laws for time-varying speed endo-atmospheric flight vehicles
because the remaining flying time cannot be estimated accurately, especially when the
time-varying speed of an endo-atmospheric flight vehicle is considered. Motivated by the
aforementioned observations, in this paper, a novel minimum-effort waypoint-following
differential geometric guidance law (MEWFDGGL) is proposed for endo-atmospheric
flight vehicles by combining the MEWFGL concept and the differential geometry curve
theory, which can be used to improve the autonomous flight capabilities of small, low-cost
flight vehicles. The nonlinear guidance model is presented in the arc-length domain. The
MEWFDGGL is derived using the linearized dynamics of a zero-effort miss (ZEM) and
adopting the optimal control theory. Next, numerical simulations of the MEWFDGGL
with varying-speed endo-atmospheric flight vehicles are conducted, and the results are
compared with the original MEWFGL to demonstrate the effectiveness and superiority of
the guidance law. Finally, flight experiments based on a small quadrotor UAV are conducted
to further verify the effectiveness of the proposed guidance law. For ease of presentation,
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we focus on small, low-cost UAVs in this paper, but it is worth emphasizing that the
guidance law proposed in this paper is designed for numerous endo-atmospheric flight
vehicles, including cruise missiles, drones, etc. The key contributions of the MEWFDGGL
are threefold:

1. The MEWFDGGL decouples the speed change in a UAV from the guidance problem
in theory, rather than directly adopting the constant speed hypothesis. With the help
of the classical differential geometry curve theory, the optimal guidance problem is
transformed into an optimal space curve design problem, which makes the speed
change in the UAV no longer a concern during the guidance law design process, and
the optimality of the space curve is independent of the UAV’s speed in the process of
the guidance law design.

2. The MEWFDGGL is globally energy-optimal. By linearizing the ZEM dynamics
and adopting the optimal control theory, the guidance curvature command of the
MEWFDGGL can be obtained by solving the linear-quadratic optimal control problem,
and then the energy consumption of a UAV throughout the whole guidance process
can be minimized.

3. The suboptimal MEWFDGGL can be applied to general waypoint-following tasks
with arbitrary waypoint numbers. By adopting just two waypoints at one time to
generate the guidance command, the formation of the original MEWFG becomes
much simpler, and the computation burden is greatly reduced.

The remainder of this paper is organized as follows: The backgrounds and prelimi-
naries of this paper are stated in Section 1. In Section 2, the derivation of the MEWFDGGL
and the suboptimal MEWFDGGL are given in detail. Finally, numeric simulations and
experimental verification results are offered.

2. Materials and Methods

2.1. Preliminaries
2.1.1. Nonlinear Kinematics

We begin by taking into account that the UAV needs to visit N-many waypoints. The
planar engagement geometry is shown in Figure 1, where XOY is the inertial coordinate
system. The UAV is expressed as the symbol U, and the i-th waypoint is represented as
Wi. The variables γ and σi signify the UAV’s flight path angle and LOS (Line-of-Sight)
angle, respectively. For the sake of simplicity, the UAV is assumed to be a particle model,
that is, the time delay of the autopilot is not considered. The variable ri, which cannot
be zero, denotes the relative range between the UAV and the i-th waypoint. The symbol
z represents the zero-effort miss (ZEM), which refers to the nearest distance during the
process that the UAV moves to the i-th target waypoint at the current speed without any
control input, namely, CWi, as shown in Figure 1. Based on the principles of dynamics, as
shown in Figure 1, the differential equations to describe the planar engagement geometry
in the arc-length domain can be formulated as

r′i = − cos(γ− σi),

σ′i = −
sin(γ−σi)

ri
,

γ′ = a
V2 = κ, i ∈ {1, 2, 3, . . . , N}.

(1)

where a and V represent the speed and acceleration of the UAV, respectively; κ is the
guidance curvature; and the prime symbol (′) indicates the derivative of the variables
with respect to s, the arc length of the UAV’s flight trajectory, such as how γ′ denotes the
derivative of γ with respect to s. In this paper, κ is used as the guidance input command
to design the guidance law, which can improve the performance of the guidance, to some
extent, by avoiding using the speed value of the UAV during the process of the guidance
law design, especially when the speed is time-varying.
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Figure 1. Planar engagement geometry.

Omitting the derivation process, the dynamic equation of the varying-speed missile is
directly given as follows [30]:

r”
i =

(
r”

i − riσ
’2
i

)
er +

(
riσ

”
i + 2r’

iσ
’
i

)
eθ = −κn. (2)

Decomposing the above formula in the LOS frame (er, eθ), we have{
r′′i − riσ

′2
i = κ sin(γ− σi)

riσ
′′
i + 2r′iσ

′
i = −κ cos(γ− σi)

. (3)

As mentioned before, the guidance command in the arc-length domain is κ. The
transformational relation between the curvature command and the lateral acceleration
command can be given directly as

κ = a/V2. (4)

2.1.2. Problem Formulation

Without losing generality, we can suppose that the order of the waypoints is numbered
according to the corresponding path length s f ,i as s f ,i < s f ,i+1. The corresponding path
length of the ith waypoint can be written directly as

s f ,i = s + sgo,i, (5)

where sgo,i stands for the corresponding remaining path length to visit the ith waypoint.
Since it is difficult to exactly calculate the value of the remaining path length, it is

generally replaced by its estimated value, ŝgo. As shown in Figure 2, since the purpose of
guidance design is to minimize the ZEM, that is, to make the leading angle tend to zero,
the next flight trajectory of the UAV is generally within ΔUCWi, which means that the path
to travel is larger than UWi. If UD is the estimated value of ŝgo, the remaining path length
is expressed by

ŝgo,i =
ri

cos(γ− σi)
. (6)
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Figure 2. ZEM geometric model.

As a matter of fact, energy consumption is extremely important for UAVs because it
determines the endurance of a UAV, that is, it determines how long a vehicle can fly. For
this reason, the performance index is taken into consideration as follows:

J =
∫ s f ,N

s
κ2(δ)dδ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ s f ,1
s κ2(δ)dδ +

N−1
∑

i=1

∫ s f ,i+1
s f ,i

κ2(δ)dδ, s ≤ s f ,1∫ s f ,2
s κ2(δ)dδ +

N−1
∑

i=1

∫ s f ,i+1
s f ,i

κ2(δ)dδ, s f ,1 < s ≤ s f ,2

...∫ s f ,N
s κ2(δ)dδ, s f ,N−1 < s ≤ s f ,N

. (7)

Similarly, minimizing the performance index is a valuable goal for the multi-objective
optimization problem. It is worth noting that the performance index is a sum of the
energy functions computed in each path length. Hence, finding an analytical solution
for this problem is the main purpose of this paper, that is, we are adopting the given
nonlinear dynamics model and finding the guidance curvature k, which ensures an optimal
performance index and perfect ZEM constraints, as follows:

zi

(
s f ,i

)
= 0, i ∈ [1, 2, . . . , N]. (8)

2.2. Guidance Law Design
2.2.1. Derivation

This section derives the energy-optimal differential geometric guidance law to solve
the generalized optimal waypoint-following problem. As can be seen from Figure 2, the
ZEM can be expressed as

zi =

⎧⎨⎩ ri sin(γ− σi), s ≤ s f ,i

zi

(
s f ,i

)
, s > s f ,i

. (9)
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Substituting the second Equation of (1) into (9), the ZEM is obtained as

zi =

⎧⎨⎩ −r2
i σ′i , s ≤ s f ,i

zi

(
s f ,i

)
, s > s f ,i

, (10)

Taking the arc length derivative of (10) results in

z′i =

{
−ri
(
2r′iσ

′
i + riσ

′′
i
)
, s ≤ s f ,i

0, s > s f ,i
, (11)

Substituting the second Equation of (3) into (11) provides

z′i =

{
ri cos(γ− σi)κ, s ≤ s f ,i

0, s > s f ,i
, (12)

Then, by combining (12) and (6), the nonlinear ZEM dynamics can be acquired as follows:

z′i =

{
ŝgo,i cos2(γ− σi)κ, s ≤ s f ,i

0, s > s f ,i
. (13)

Taking the assumption of a small leading angle into consideration, i.e., γ− σi is small,
we have the approximation as

sin(γ− σi) ≈ γ− σi, cos(γ− σi) ≈ 1, (14)

The linear ZEM dynamics can be obtained by substituting (14) into (13), as follows:

z′i =

{
ŝgo,iκ, s ≤ s f ,i

0, s > s f ,i
, (15)

Further, the system in (15) can be written as follows:

zi

(
s f ,i

)
− zi(s) =

∫ s f ,i

s
−
(

s f ,i − δ
)

κ(δ)dδ, s ≤ s f ,i. (16)

Introducing the terminal constraint terminal constraints in (8) and substituting them
into (16) provides

zi(s) =
∫ s f ,i

s

(
s f ,i − δ

)
κ(δ)dδ, s ≤ s f ,i. (17)

According to [27], if the guidance curvature command k is optimal in the energy
consumption, then there are N Lagrange multipliers (λi, i ∈ {1, 2, . . . , N}), so the guidance
curvature k can be expressed as follows:

κ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
∑

i=1
λi

(
s f ,i − s

)
, s ≤ s f ,1

N
∑

i=2
λi

(
s f ,i − s

)
, s f ,1 < s ≤ s f ,2

...
λN

(
s f ,N − s

)
, s f ,N−1 < t ≤ s f ,N

. (18)

By substituting (18) into (17) and solving the corresponding equation, the Lagrange
multiplier can be obtained. It is worth mentioning that this method can be regarded as
an extension of the Schwartz inequality method for any number of terminal constraints.
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Hence, we consider only the case of s ≤ s f ,1 in the following derivation, without the loss of
generality. Therefore, substituting (17) into (18) provides

zi(s) =
∫ s f ,i

s

(
s f ,i − δ

)
κ(δ)dδ

=
∫ s f ,1

s

(
s f ,i − δ

) N
∑

j=1
λj

(
s f ,i − δ

)
dδ +

∫ s f ,2
s f ,1

(
s f ,i − δ

) N
∑

j=2
λj

(
s f ,i − δ

)
dδ

+ . . . +
∫ s f ,i

s f ,i−1

(
s f ,i − δ

) N
∑
j=i

λj

(
s f ,i − δ

)
dδ

=
N
∑

j=1
λj

[
sgo,max(i,j)s

2
go,min(i,j)

2 −
s3

go,min(i,j)
6

]
.

(19)

Defining the Lagrange multiplier vector as λ = [λ1, λ2, . . . , λN ]
T and the ZEM vector

as Z = [z1, z2, . . . , zN ]
T , (19) can be given as a compact matrix format, as follows:

Gλ = Z, (20)

where the symmetric matrix G ∈ RN×N can be obtained as

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s3
go,1
3

sgo,2s2
go,1

2 − s3
go,1
6 . . . . . .

sgo,N s2
go,1

2 − s3
go,1
6

s3
go,2
3

sgo,3s2
go,2

2 − s3
go,2
6 . . .

sgo,N s2
go,2

2 − s3
go,2
6

. . . . . .
. . .

s3
go,N−1

3
sgo,N s2

go,N−1
2 − s3

go,N−1
6

. . .
s3

go,N
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

Then, the Lagrange multiplier vector is given by inverting both sides of (20), as follows:

λ = G−1Z. (22)

Substituting (22) into (18), the guidance curvature command k in the case of s ≤ s f ,1
can be written as

κ = λT[sgo,1, sgo,2, . . . , sgo,N
]T

=
(

G−1Z
)T[

sgo,1, sgo,2, . . . , sgo,N
]T .

(23)

Remark 1. Following a similar procedure, it is easy to obtain the solution in the case
of s > s f ,1. For instance, when s f ,1 < s ≤ s f ,2, the ZEM vector will be reduced by one
dimension and become Z = [z2, z3, . . . , zN ]

T , and then the matrix G ∈ R(N−1)×(N−1) will
reduce to

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s3
go,2
3

sgo,3s2
go,2

2 − s3
go,2
6 . . . . . .

sgo,N s2
go,2

2 − s3
go,2
6

s3
go,3
3

sgo,4s2
go,3

2 − s3
go,3
6 . . .

sgo,N s2
go,3

2 − s3
go,3
6

. . . . . .
. . .

s3
go,N−1

3
sgo,N s2

go,N−1
2 − s3

go,N−1
6

. . .
s3

go,N
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (24)
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Hence, the guidance curvature k in the case of s f ,1 < s ≤ s f ,2 can be written as

κ =
(

G−1Z
)T[

sgo,2, sgo,3, . . . , sgo,N
]T. (25)

Remark 2. In order to effectively eliminate the deviation caused by the linearization process,
the ZEM is written in a nonlinear form in practice, as follows:

zi = ri sin(γ− σi), (26)

By substituting (26) into (23), the guidance curvature command k, composed of the mea-
sured signals ri, γ, and σi, is obtained. It is worth noticing that (23) converts the linear
terms of the substitution of (26) into the nonlinear expressions, which provides support for
the engineering application of the guidance mentioned above.

2.2.2. Particular Cases
N = 1

When the UAV is only required to visit one waypoint, the problem is transformed into
an energy-optimal interception problem. For such special cases, the guidance curvature
(23) can be expressed as

κ = λ1

(
s f ,1 − s

)
. (27)

The matrix G can reduce to a scalar form when N = 1, as follows:

G =
s3

go,1

3
, (28)

and the Lagrange multiplier can easily be expressed as

λ1 =
3z1

s3
go,1

, (29)

Then, the clear guidance curvature command can be obtained by substituting (29) into
(27), as follows:

κ =
3z1

s2
go,1

. (30)

In order to more conveniently analyze the MEWFDGGL, the guidance acceleration
command can be given by substituting (4) into (30), as follows:

a =
3z1

t2
go,1

. (31)

In the time domain, the ZEM could be signified as the following form:

zi = V
.
σit2

go,i. (32)

Combining (32) and (31) results in

a = 3V
.
σ1. (33)
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This is consistent with the classical energy optimal PNG. According to the statement
in [31,32], the energy consumption of the PNG with a navigation gain of three is minimal
when there is only a single waypoint to be visited. However, it is also clear from the previous
derivation that when the number of waypoints is greater than two, merely adopting the
PNG to visit each waypoint in turn cannot ensure that the energy consumption is optimal
in the whole process of the guidance.

N = 2

Similarly, when a UAV is required to visit two waypoints, the guidance curvature
command k, in the case of s ≤ s f ,1, can be expressed as follows:

κ = λ1

(
s f ,1 − s

)
+ λ2

(
s f ,2 − s

)
. (34)

The matrix G can be written as

G =

⎡⎣ s3
go,1
3

sgo,2s2
go,1

2 − s3
go,1
6

sgo,2s2
go,1

2 − s3
go,1
6

s3
go,2
3

⎤⎦, (35)

and the corresponding Lagrange multiplier can be easily given from (22), as follows:

λ1 =
6
(

2s3
go,2z1+s3

go,1z2−3s2
go,1sgo,2z2

)
s3

go,1(sgo,2−sgo,1)
2
(4sgo,2−sgo,1)

λ2 =
6(sgo,1z1−3sgo,2z1+2sgo,1z2)

sgo,1(sgo,2−sgo,1)
2
(4sgo,2−sgo,1)

,
(36)

Then, substituting (36) into (34), the clear guidance curvature command can be ob-
tained as follows:

κ =
6
(

2s2
go,2z1−sgo,1sgo,2z1−s2

go,1z2

)
s2

go,1(sgo,2−sgo,1)(4sgo,2−sgo,1)

=
6(2sgo,2−sgo,1)sgo,2

s2
go,1(sgo,2−sgo,1)(4sgo,2−sgo,1)

z1

− 6
(sgo,2−sgo,1)(4sgo,2−sgo,1)

z2.

(37)

From (32), the ZEM can be denoted in the arc-length domain as

zi = σ′i s2
go,i, (38)

Then, substituting (38) into (30) and (37), the clear guidance curvature command, in
the case of N = 2, can be obtained as follows:

κ =

⎧⎨⎩K1σ′1 + K2σ′2, s ≤ s f ,1

3σ′2, s f ,1 < s ≤ s f ,2

, (39)

where
K1 =

6(2sgo,2−sgo,1)sgo,2

(sgo,2−sgo,1)(4sgo,2−sgo,1)

K2 =
6s2

go,2

(sgo,2−sgo,1)(4sgo,2−sgo,1)
.

(40)

In other words, when s ≤ s f ,1, the MEWFDGGL can be regarded as a biased propor-
tional guidance (BPN) that has a time-varying navigation gain. As mentioned earlier in
(39), the first term represents the proportional guidance term for the first waypoint, and the
second term represents the influence term of the second waypoint on the first one.
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Remark 3. Following a similar procedure, it is easy to obtain the solution, in the case of
N > 2. For instance, when N = 3, the clear guidance curvature command is given as

κ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K1σ′1 + K2σ′2 + K3σ′3, s ≤ s f ,1

K2′σ
′
2 + K3′σ

′
3, s f ,1 < s ≤ s f ,2

3σ′3, s f ,2 < s ≤ s f ,3

. (41)

According to Equation (41), the final form of the MEWFDGGL is a piecewise BNG law
based on the waypoints segment, and its proportional navigation gain changes with time.
This also shows that the MEWFDGGL is generic because it reduces to the classical PNG
when there is only one waypoint to be visited.

2.2.3. Improvement

For a waypoint-following task with N waypoints, it follows from Equation (21) that
implementing the MEWFDGG requires the calculation of the inverse of the matrix G. We
notice that the size of matrix G is proportional to the number of waypoints to be traveled.
Therefore, a large number of waypoints poses a great challenge to the computing power
of an airborne computer. Hence, an algorithm based on finite waypoint information is
proposed to improve the applicable scope of the guidance law and make it more suitable
for the general situation of an arbitrary number of waypoints.

Without losing generality, we can assume that the UAV has visited the previous
i-1th waypoint at the current moment and is required to visit the i-th waypoint to the
nth waypoint sequentially. After several simulation analyses, it is found that the energy
consumption is not significantly different from that of the MEWFDGG when adopting only
two waypoints at one time to generate the guidance command. Therefore, the method
proposed in this paper can be improved to design a suboptimal minimum-effort waypoint-
following differential geometric guidance law (SMEWFDGGL), by considering only two
waypoints.

Therefore, when i < N, the guidance command of SMEWFG considers only two
waypoints, and it can be expressed as follows:

k =
(

G−1Z
)T[

sgo,i, sgo,i+1
]T, (42)

where

G =

⎡⎣ s3
go,i
3

sgo,i+1s2
go,i

2 − s3
go,i
6

sgo,i+1s2
go,i

2 − s3
go,i
6

s3
go,i+1

3

⎤⎦, (43)

Z = [zi, zi+1]
T. (44)

In order to effectively eliminate the deviation caused by the linearization process, the
ZEM is written in a nonlinear form in practice, as follows:

Z = [ri sin(γ− σi), ri+1 sin(γ− σi+1)]
T, (45)

or
Z =

[
σ′i s2

go,i, σi+1
′ s2

go,i+1

]T
. (46)

The algorithm can be expressed as follows:
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Algorithm 1:

The suboptimal minimum-effort waypoint-following differential geometric guidance

Input: The relative range and LOS angle between the UAV and all waypoints,
r = [r1, r2, . . . , ri, . . . , rN ] and σ = [σ1, σ2, . . . , σi, . . . , σN ], and the UAV speed V.
Require: ri < ri+1.
Denote: k = 1.
Step 1: Compute the remaining path length sgo. If k < i, proceed to Step 2; otherwise, proceed to
Step 3.
Step 2: sgo,k = 0, k = k + 1. Return to Step 1.
Step 3: If k ≤ N, proceed to Step 4; otherwise, proceed to Step 5.
Step 4: Compute the remaining path length sgo,k using Equation (6) (k = k + 1). Return to Step 1.
Step 5: sgo =

[
sgo,1, sgo,2, . . . , sgo,N

]
, [N] � {1, 2, 3, . . . , N}

Step 6: Determine the UAV’s current position. If i < N, proceed to Step 7; otherwise, proceed to
Step 8.
Step 7: Compute the acceleration command k using Equation (42) and proceed to Step 9.
Step 8: κ = 3z1/s2

go,1 = σ′1s2
go,1

Step 9: Return k

According to Step 7 in Algorithm 1, when the UAV passes a waypoint, the guidance
command is updated, the information of this waypoint is discarded, and, hence, the
guidance command may experience an abrupt change at the very moment of passing.
However, this does not cause any unacceptably bad influence on the guidance law, because
the classical PN could also be used as a waypoint-following guidance law in contrast, and
it would only use the information of one waypoint each time (as its target). The guidance
command of PN definitely greatly changes when the UAV passes this waypoint. This is
seen in the simulation cases in Section 3.

3. Numerical Simulation Results

The MEWFDGGL designed in Section 2 is analyzed and demonstrated using numerical
simulations in this section. The numerical simulations are conducted for two different
scenarios: when the speed of the UAV changes periodically and when it is influenced by
randomly varying wind. In all the following simulations, the UAV’s initial flight path angle
is 30◦, and there are eight waypoints to be visited. The UAV’s initial location is at the origin
of the reference frame. The inertial positions of the eight waypoints to be visited are listed
in Table 1.

Table 1. Inertial positions of the eight waypoints.

Waypoint Number Inertial Position (m)

1 (1000, 500)
2 (2000, 750)
3 (2500, 1000)
4 (4000, 1500)
5 (6000, 2000)
6 (7500, 1500)
7 (9000, 1000)
8 (11,000, 0)

3.1. Performance of the UAV under Varying Speeds

This subsection primarily verifies the performance of the MEWFDGGL and the
SMEWFDGGL when the speed of the UAV periodically changes. As is known, due to
the effect of actuator delay or resistance, the speed of a UAV does not always remain
constant during flight. In practice, the actual speed of a UAV typically fluctuates around
the expected speed during the implementation of speed control. Hence, in the considered
scenario in this subsection, the UAV’s speed V = 30− 10 cos 0.8t periodically changes, as
shown in Figure 3.
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Figure 3. The real-time speed of the UAV.

3.1.1. MEWFDGGL

Figure 4a compares the flight trajectories of the UAV guided by both the MEWFDGGL
and the MEWFG. It can be clearly seen in Figure 4a that the UAV can follow the desired
waypoints when guided by these two guidance laws. Although the flight trajectories
largely coincided, it can still be seen that the MEWFDGGL is better than the MEWFG law,
especially near the fifth waypoint. The UAV’s flight path angle is presented in Figure 4b,
which clearly shows that the UAV guided by the MEWFG takes small, sharp turns, while
the flight guided by the MEWFDGGL has a smooth path. For comparison purposes, the
guidance curvature command in the arc-length domain is converted into the guidance
acceleration command in the time domain. A comparison of the acceleration commands
between the MEWFG and the MEWFDGGL is presented in Figure 4c. As exhibited in
the diagram, when the UAV guided by the MEWFG passes the waypoint, an acceleration
command occurs, which suddenly grows larger, whereas the variation in the command
obtained from the MEWFDGGL is quite gentle. The reason for this phenomenon can
be found in the comparison shown in Figure 4g,h. The periodic variation in the UAV’s
speed leads to the oscillation in the remaining flight time, while the linear variation in the
remaining path length ensures the stability of the calculation.

(a) (b)

Figure 4. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 4. Compared results of the MEWFDGGL and the MEWFG when the UAV’s speed changes
periodically. (a) Flight trajectory. (b) Flight path angle. (c) Guidance acceleration command. (d) Per-
formance index of a. (e) Guidance curvature command. (f) Performance index of k. (g) Remaining
flight time. (h) Remaining path length.

The guidance curvature command and its quantitative energy consumption obtained
from the MEWFDGGL are exhibited in Figure 4e,f. By comparing it to Figure 4c,e, we can
observe that the derivation that is completely independent of the UAV’s speed ensures the
smoothness of the guidance curvature command. The corresponding quantitative energy
consumption of the guidance acceleration commands obtained from the MEWFDGGL and
the MEWFG are compared in Figure 4d. As shown in Figure 4d, we can clearly observe
that the UAV guided by the MEWFDGGL requires less energy consumption than the flight
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guided by the MEWFG. Therefore, the UAV guided by the MEWFDGGL can be reasonably
considered to have better endurance in scenarios where its speed changes. The comparison
results of the performance of the proposed guidance laws are shown in Table 2.

Table 2. Performance comparison of the MEWFDGGL and the MEWFG under the varying speeds
of UAVs.

Guidance MEWFG MEWFDGGL

Maximum ZEM (m) 0.02 0.0018
Maximum acceleration command (m/s2) 10.17 1.891

Energy consumption 80.09 59.71

3.1.2. SMEWFDGGL

In order to better prove the effectiveness of the improved guidance law, the MEWFDGGL
and the optimal guidance law (OGL) of a single point are used as the control group for
comparative analysis. The OGL can be expressed as follows:

κi = 3zi/s2
go,i (47)

which is essentially the optimal proportional guidance law in the arc-length domain.
In this scenario, the flight trajectories of UAVs under the three guidance laws are

shown in Figure 5a. The UAVs guided by the different guidance laws can successively visit
the target waypoints, with small error, and they have largely coincident trajectories, which
indicates that the velocity variations along the velocity directions have little effect on the
performances of all the guidance laws in the arc-length domain. A comparison of the flight
path angles is shown in Figure 5b. As shown in Figure 5b, the UAV guided by the OGL
makes a sharp turn when passing through the current waypoint, while the UAVs guided
by the SMEWFDGGL and the MEWFDGGL show good performances, and all of them can
ensure smooth flight trajectories.

A comparison of the acceleration command and the curvature command between
the three guidance laws is presented in Figure 5c,e. As can be seen in Figure 5c,e, the
curvature command under the OGL shows discontinuity when passing through the way-
point. Although the UAV guided by the SMEWFDGGL cannot produce a continuous
curvature command compared with the UAV guided by the MEWFDGGL, the amplitude of
discontinuity is obviously smaller than that of the UAV guided by the OGL, which has little
influence on the implementation of the guidance. The quantitative energy consumption
levels of the three guidance laws are compared in Figure 5d,f. In Figure 5d,f, the UAV
guided by the OGL consumes the most energy—approximately three times as much as
the UAVs guided by the MEWFDGGL and the SMEWFDGGL. The energy consumption
levels under the MEWFDGGL and the SMEWFDGGL are not much different, with the
consumption under the SMEWFDGGL being slightly more (approximately 10%) than that
under the MEWFDGGL. The comparison results of the performances of the proposed
guidance laws are shown in Table 3.

Table 3. Performance comparison of the SMEWFDGGL under the varying speeds of UAVs.

Guidance OGL MEWFDGGL SMEWFDGGL

Maximum ZEM (m) 0.00001 0.0018 0.0015
Maximum acceleration command (m/s2) 4.552 1.891 2.271

Energy consumption 199.5 59.71 66.21
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The performance of the SMEWFDGGL under the varying speeds of the UAV. (a) Flight
trajectory. (b) Flight path angle. (c) Guidance acceleration command. (d) Performance index of a.
(e) Guidance curvature command. (f) Performance index of k.

3.2. Performance under the Influence of the Wind

This subsection primarily verifies the performance of the MEWFDGGL when the
speed of the UAV is influenced by randomly varying wind. As is known, for aerial vehicles,
a major factor that can affect their speed is wind. In this subsection, we simulate the
direction of the wind with a uniformly generated random number, i.e., east, south, west,
and north, and the size of the wind is simulated by a normally distributed random number
with a standard deviation of 5 and a variance of 1. The UAV’s speed, as influenced by
randomly varying wind, is shown in Figure 6.
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Figure 6. The real-time speed of the UAV, as influenced by randomly varying wind.

3.2.1. MEWFDGGL

Figure 7a compares the flight trajectories of the UAVs guided by the MEWFDGGL and
the MEWFG when the UAVs’ speeds are influenced by randomly varying wind. It can be
clearly seen in Figure 7a that, although both of the UAVs can follow the desired waypoints
guided by the two guidance laws, the flight trajectory obtained from the MEWFDGGL
is closer to an ideal approaching course, especially near the fifth and sixth waypoints.
This UAV’s flight path angle is presented in Figure 7b. Due to the influence of randomly
varying wind, both of the curves obtained from the MEWFDGGL and the MEWFG are not
smooth, which is inevitable. For comparison purposes, the guidance curvature command
in the arc-length domain is converted into the guidance acceleration command in the
time domain. A comparison of the acceleration commands between the MEWFG and the
MEWFDGGL is presented in Figure 7c. As can be seen in the chart, when the UAV guided
by the MEWFG passes the waypoint, an acceleration command occurs, which suddenly
grows larger, whereas the variation in the command obtained from the MEWFDGGL is
quite gentle. The reason for this phenomenon is similar to that in the previous section.

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

(g) (h)

Figure 7. Comparison of the results of the MEWFDGGL and the MEWFG when the UAVs’ speeds
are influenced by randomly varying wind. (a) Flight trajectory. (b) Flight path angle. (c) Guidance ac-
celeration command. (d) Performance index of a. (e) Guidance curvature command. (f) Performance
index of k. (g) Remaining flight time. (h) Remaining path length.

The guidance curvature command and its quantitative energy consumption obtained
from the MEWFDGGL when the UAV’s speed is influenced by randomly varying wind are
shown in Figure 7e,f, respectively. By comparing Figures 4e and 7e, it can be observed that
the guidance curvature commands show random sharp turns, because the directions of the
UAVs’ speeds are affected by randomly varying wind. The guidance curvature command
may require adjustments at any time to ensure that an optimal trajectory is generated. The
quantitative energy consumption levels of the guidance acceleration commands obtained
from the MEWFDGGL and the MEWFG are compared in Figure 7d. As exhibited in
Figure 7d, we can clearly observe that the UAV guided by the MEWFDGGL consumes
approximately 50% less energy than the UAV guided by the MEWFG in the considered
scenarios. Hence, it is reasonable to consider that the UAV guided by the MEWFDGGL
is good at overcoming the effects of randomly varying wind and has a better endurance
in the considered scenario. The comparison results of the performances of the proposed
guidance laws are shown in Table 4.

Table 4. Performance comparison of the MEWFDGGL and the MEWFG when the UAVs’ speeds are
influenced by randomly varying wind.

Guidance MEWFG MEWFDGGL

Maximum ZEM (m) 0.1507 0.0488
Maximum acceleration command (m/s2) 42.4 5.247

Energy consumption 802.2 388.1

3.2.2. SMEWFDGGL

When a UAV’s speed is influenced by randomly varying wind, the variation in the
UAV’s velocity is no longer limited to the direction of that UAV’s velocity. As shown in
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Figure 8b, under the influence of randomly varying wind, the velocity direction of the UAV
constantly changes, and the flight path angles of the UAVs under the three guidance laws
are in discontinuous fluctuation. As can be seen in Figure 8a, compared with the ideal
situation, the flight trajectory when a UAV’s speed is influenced by randomly varying wind
has obvious jitter and a small turning point, while the flight trajectories under the guidance
of the MEWFDGGL and the SMEWFDGGL are relatively smoother.

(a) (b)

(c) (d)

(e) (f)

Figure 8. The performance of the UAV guided by the SMEWFDGGL under the influence of randomly
varying wind. (a) Flight trajectory. (b) Flight path angle. (c) Guidance acceleration command.
(d) Performance index of a. (e) Guidance curvature command. (f) Performance index of k.

The guidance curvature command and its quantitative energy consumption obtained
from the MEWFDGGL are shown in Figure 8e,f, respectively. When a UAV’s speed is
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influenced by randomly varying wind, the curvature instruction of that UAV’s guidance
also shows discontinuity. If the sudden change value generated during the ill-conditioned
solution of the guidance command is ignored, then the guidance energy consumption
levels under the three guidance laws have little difference, which is consistent with the
theoretical conclusion that the MEWFDGGL’s guidance energy consumption level is the
lowest and that the SMEWFDGGL’s guidance energy consumption level is the second-
lowest, although both of them are far lower than the guidance energy consumption level of
the OGL. The comparison results of the performances of the proposed guidance laws are
shown in Table 5.

Table 5. Performance comparison of the SMEWFDGGL under the influence of randomly vary-
ing wind.

Guidance OGL MEWFDGGL SMEWFDGGL

Maximum ZEM (m) 0.001 0.04883 0.0532
Maximum acceleration command (m/s2) 9.79 5.247 7.336

Energy consumption 754.8 388.1 427.7

4. Experiment Verification

Using a small quadrotor UAV, the experimental verification of the proposed guidance
laws is presented in this section. The outdoor experimental field is shown in Figure 9.

Figure 9. The small quadrotor UAV and outdoor experimental field.

Considering the UAV’s performance and the limitations of the experimental site, the
UAV starts from the take-off point and successively visits three target waypoints. The
coordinates of the take-off point are (0,0), the initial flight path angle of the UAV is 60◦, and
the UAV’s initial velocity is 2 m/s. The specific position coordinates of all waypoints are
shown in Table 6.

Table 6. Inertial positions of the three waypoints in the experimental scenario.

Waypoint Number Inertial Position (m)

1 (30, 30)
2 (70, 25)
3 (90, 10)

4.1. MEWFDGGL

As can be seen in Figure 10a, the small quadrotor UAV guided by the two guidance
laws can successfully visit the waypoints in the actual flight scenario, but the trajectory
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of the UAV guided by the MEWFDGG is significantly smoother, and its ZEM is smaller.
A comparison of the acceleration commands between the MEWFG and the MEWFDGGL
is presented in Figure 10b. Theoretically, the guidance acceleration instructions obtained
by the two guidance laws are continuous. However, in the actual flight process, the UAV
cannot visit the target waypoint along the completely ideal trajectory, which makes the
UAV’s acceleration command discontinuous. It is worth emphasizing that both of the
guidance laws are applicable to small quadrotor UAvs, but the latter has a more stable
performance.

(a) (b)

(c) (d)

Figure 10. The performance of the MEWFDGGL in the experimental scenario. (a) Flight trajectory.
(b) Guidance acceleration command. (c) Performance index of a. (d) The real-time speed of the UAV.

The quantitative energy consumption levels of the two guidance laws are compared
in Figure 10c. As shown in Figure 10c, the energy consumption level of the UAV guided by
the MEWFDGGL is reduced by approximately 40% compared to that of the UAV guided
by the MEWFGL. The comparison results of the performances of the proposed guidance
laws are shown in Table 7.

Table 7. Performance comparison of the MEWFDGGL and the MEWFG in the experimental scenario.

Guidance MEWFG MEWFDGGL

Maximum ZEM (m) 0.25 0.06
Maximum acceleration command (m/s2) 0.843 0.1173

Energy consumption 0.4753 0.3176
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4.2. SMEWFDGGL

In this scenario, the flight trajectories of the UAVs under the three guidance laws
are shown in Figure 11a. From the flight trajectories, we can see that the UAV guided
by the MEWFDGG has a smoother flight trajectory than that of the UAV guided by the
SMEWFDGGL, which obviously consumes less energy than the UAV guided by the OGL.
The experimental results show that the energy consumption levels of the UAVs guided by
the MEWFDGG and the SMEWFDGG are similar, and they are much lower than that of the
UAV guided by the OGL. The experimental results are consistent with both the simulation
results and the theoretical conclusions.

(a) (b)

(c) (d)

(e) (f)

Figure 11. The performance of the SMEWFDGGL in the experimental scenario. (a) Flight trajectory.
(b) Flight path angle. (c) Guidance acceleration command. (d) Performance index of a. (e) Guidance
curvature command. (f) The real-time speed of the UAV.
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When carefully observing Figure 11d, it is not difficult to see that the guidance energy
consumption level and the track angle of the UAV under the guidance of the MEWFDGGL
remain in an approximately straight line for the last 20 s, while the guidance energy con-
sumption levels nearly stay the same and do not increase. This is because the MEWFDGGL
takes into account the influence of all waypoint constraints during the guidance process.
When the UAV reaches the second waypoint, the speed direction of the UAV is adjusted to
the direction of the last waypoint. However, the OGL cannot be used to adjust the flight
angle of the UAV between every two waypoints, which is the reason why the MEWFDGGL
can achieve global energy optimization. The performance comparison results of three
guidance laws are shown in Table 8.

Table 8. Performance comparison of the SMEWFDGGL in the experimental scenario.

Guidance OGL MEWFDGGL SMEWFDGGL

Maximum ZEM (m) 0.02 0.06 0.17
Maximum acceleration command (m/s2) 0.2086 0.2177 0.3029

Energy consumption 0.4146 0.3174 0.3423

5. Conclusions

A minimum-effort waypoint-following differential geometric guidance law (MEWFDGGL)
and its suboptimal form for varying-speed endo-atmospheric flight vehicles were proposed
in this paper. The optimal guidance problem was transformed into an optimal space curve
design problem using the differential geometric guidance model. The speed changes in
endo-atmospheric flight vehicles were theoretically decoupled from the guidance problem,
rather than the constant speed hypothesis being directly adopted. It was theoretically
proven that the proposed MEWFDGGL is a globally energy-optimal guidance law; the
suboptimal MEWFDGGL was proposed in order to solve the problems of complexity and
high computation burden, and it is advantageous for improving the autonomous flight
capability of small, low-cost endo-atmospheric flight vehicles. Finally, in comparison with
the original MEWFG law, the nonlinear numerical simulations and experimental verifica-
tions show that the MEWFDDGGL is more efficient for eliminating the adverse influences
on the guidance performance caused by a UAV’s speed changes. It is worth noting that
the MEWFDDGGL proposed in this paper does not break through some of the limitations
faced by the MEWFG. For example, the optimality of the MEWFDDGGL is affected by the
estimation accuracy of the remaining path length. However, for theoretical research, the
proposed guidance law may also be extended to maneuvering target interception scenarios
and salvo attack scenarios.
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Abstract: This paper proposes a hybrid intelligent agent controller (HIAC) for manned aerial vehicles
(MAV)/unmanned aerial vehicles (UAV) formation under the leader–follower control strategy. Based
on the high-fidelity three-degrees-of-freedom (DOF) dynamic model of UAV, this method decoupled
multiple-input-multiple-output (MIMO) systems into multiple single-input-single-output (SISO)
systems. Then, it innovatively combined the deep deterministic policy gradient (DDPG) and the
double deep Q network (DDQN) to construct a hybrid reinforcement learning-agent model, which
was used to generate onboard desired state commands. Finally, we adopted the dynamic inversion
control law and the first-order lag filter to improve the actual flight-control process. Under the
working conditions of a continuous S-shaped large overload maneuver for the MAV, the simulations
verified that the UAV can achieve accurate tracking for the complex trajectory of the MAV. Compared
with the traditional linear quadratic regulator (LQR) and DDPG, the HIAC has better control efficiency
and precision.

Keywords: MAV/UAV; formation control; hybrid reinforcement learning; hybrid intelligent agent

1. Introduction

Aiming at increasingly fast-paced and high-intensity air combat, the use of MAVs as
combat operations leaders with a certain number of UAVs as wingers to form a hybrid
formation of UAV/MAV has become the development trend for future air confrontations.
Among them, the two-aircraft formation consisting of an MAV and a UAV is one of the
most typical combat styles. In MAV/UAV formations, the unmanned system must be
able to share information and carry out cooperative operations with the manned systems
across systematic boundaries [1]. The Fast Lightweight Autonomy (FLA) Program by
the Defense Advanced Research Projects Agency (DARPA) has developed an advanced
algorithm that enables an MAV or a UAV to operate autonomously without a human
operator, the Global Positioning System (GPS), or any data resources. DARPA’s Lifelong
Learning Machines (L2M) Project also aims to develop new machine learning methods
that enable unmanned systems to continuously adapt to new environments and remember
what they have learned [2]. Meanwhile, the U.S. Air Force’s Loyal Wingman Program
aims to enhance the autonomy of UAVs and improve their combat capabilities in complex
war environments [3]. Moreover, the recently proposed Skyborg program is working on
the combination of manned and unmanned combat aerial vehicles. Therefore, improving
the capability of autonomous flight control has become an important direction for the
development of future UAV technology.

One of the research hotspots of UAV autonomous control capability is the formation
flight-control problem [4]. In terms of the traditional design of the formation controller,
Ref. [5] proposed a sliding mode controller for MAV/UAV formation flights based on a
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layered architecture. However, it makes extensive simplifications on the strong nonlinear
dynamic model of MAV/UAVs, and was only validated by simulations for flat trajectories.
Ref. [6] considered sensor noise and developed a leader–follower formation PID controller
for multi-robots, which can achieve better performance in limiting position deviations.
Furthermore, Ref. [7] proposed a parallel approach control law for fixed-wing UAV for-
mations under the leader–follower strategy. Ref. [8] referred to an idea of multi-channel
decoupling that split the MIMO system into multiple SISO systems and used sliding mode
control to track the reference trajectory, which can be further applied to formation-control
problems. Refs. [9,10] proposed a consensus-based multiple aircraft cooperative formation
control method, but the consensus theory analysis was highly dependent on the linearized
dynamic model, which limited its further application in a complex nonlinear dynamic
system. Refs. [11,12] developed a formation controller where the commands were gen-
erated independently of the dynamic model, decreasing the control precision in extreme
working conditions. Refs. [13,14] considered the confrontation situation and adopted pre-
defined maneuver strategy collections, taking typical maneuvers as the basic units and
building a collection of maneuver strategies with free combinations of various basic units.
However, due to the model uncertainty and non-cooperative environment, this method
hardly dealt with complex working conditions. Therefore, the intelligent agent method has
become a novel research trend because of its weak model dependence and strong ability in
terms of strategy exploration. Refs. [15,16] adopted deep neural networks to learn aircraft-
maneuvering strategies and made progress in enhancing the autonomous maneuvering
capability of UAVs. However, UAV formation control is a high-dimensional dynamical
control problem with tightly coupled variables. When traditional neural networks learn
such complex behaviors, they cause problems such as low training efficiency and difficulty
in stable convergence [17]. Among the novel neural networks, the double deep Q network
(DDQN) algorithm has shown good performance in control problems with discrete action
sets by fitting the value functions of state actions through neural networks [18–20], but it
cannot be applied to control problems with continuous variables. Based on the determinis-
tic policy gradient (DPG) algorithm, DeepMind proposed the deep deterministic policy
gradient (DDPG) algorithm which is proven to perform well on many kinds of continuous
control problems [21–23]. However, in the field of aircraft control, the large variation in the
angle of attack commands will increase the load on the attitude control loop [24]. Mean-
while, when it comes to complex tasks with multiple continuous control variables problems,
DDPG has problems with unstable networks and low exploration efficiency [25–28]. For
the above dilemma, some scholars have turned to hybrid reinforcement learning methods
in recent years. By adding discrete “meta-actions” to continuous control problems, Ref. [29]
partially solved the reinforcement learning traps and improved exploration efficiency. The
experiments verified its superiority to the traditional continuous strategy algorithm in
some cases. [30] proposed the parametrized deep Q-network for the hybrid action space
without approximation or relaxation, which provides a reference for solving the hybrid
control problem.

Based on the above analysis, it is obvious that the formation controller must be able to
better adapt to complex flight conditions in future confrontation situations, e.g., continuous
large overload maneuvers for the MAV, etc. Therefore, inspired by [29], we propose
a hybrid reinforcement intelligent agent controller based on the decoupling of multi-
channels, which can effectively solve the problem of formation-tracking under continuous
maneuvering conditions. It should be emphasized that when designing controllers based
on artificial intelligent methods, especially when the reinforcement learning controller
is directly applied to the generation of underlying flight-control commands, the lack of
flight dynamic constraints can easily bring about problems. Due to the lack of dynamic
constraints, the attitude control system cannot quickly track the commands, leading to
flight instability. Therefore, this paper introduced the dynamic inversion controller and the
first-order lag filter to the hybrid reinforcement learning agent to enhance the smoothness
and executability of control commands.
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In summary, the main contributions of this paper are as follows:
(1) A hybrid intelligent agent was designed based on the novel concept of “meta-

action” to further enhance formation control performance. The hybrid intelligent agent
combined DDPG and DDQN according to the specific formation control targets;

(2) The framework of the HIAC was developed that combined the dynamic inversion
controller and the first-order lag filter with the hybrid intelligent agent to effectively
overcome the common drawbacks of reinforcement learning;

(3) The superiority of the HIAC method was validated with experiments of nominal
conditions. Monte Carlo simulations with different initial conditions were then conducted
to verify the adaptability of the HIAC.

The organization of this paper is as follows: Section 2 establishes the UAV dynamic
model and formation-control targets. Section 3 designs the novel formation controller HIAC
based on the DDPG/DDQN hybrid intelligent agent. The dynamic inversion controller
and first-order lag filter are introduced to the framework of the HIAC as well. Section 4
conducts the experiments of nominal conditions and 100 Monte Carlo simulations with
varying initial conditions. Finally, we summarize the research conclusion of this paper in
Section 5.

2. Mathematical Modeling

2.1. UAV Dynamic Model

The main concern in dual aircraft formation flights is the real-time position, velocity,
and attitude of the two aircraft, so it is necessary to establish a dynamic model of the UAV
according to the forces on the mass as shown in Figure 1. To simplify the problem, the
constraints flight envelope is ignored.

Figure 1. The forces on the center of gravity of the aircraft.

In the ground inertial coordinate system o− xyz, V is the UAV flight velocity. γ and
ψ are the flight path angle and flight azimuth angle, respectively. The flight adopts the
Bank-To-Turn (BTT), which is considered to have no sideslip. α is the attack angle, and
σ is the bank angle. The engine thrust and drag of the aircraft are denoted by T and
D, respectively. n is the normal overload of the UAV in the velocity coordinate system

51



Drones 2023, 7, 282

o− xVyVzV . Ignoring the wind disturbance in the flight, the three-degrees-of-freedom of
the dynamic model for the UAV is established as follows [31–33]:

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
x = V cos γ sin ψ
.
y = V cos γ cos ψ
.
z = V sin γ
.

V = (T − D)/m− g sin γ
.
γ = g(n cos σ− cos γ)/V
.
ψ = −gn sin σ/(V cos γ)

, (1)

where m is the weight of the aircraft, which is considered constant in this paper, and g is
the local gravity.

The engine thrust T can be denoted by

T = ηTmax, (2)

where η is the throttle manipulator, and its range is defined as [0, 1]. Tmax is the maximum
thrust that the engine can achieve.

The air drag D consists of the parasite drag and the induced drag, which can be
expressed as follows [31]:

D = CDP ρV2S/2 + 2CDI n
2m2g2/

(
ρV2S

)
, (3)

where S is the reference area of the UAV. CDP is the parasite drag coefficient. CDI is the
induced drag coefficient. ρ is the atmospheric density, which varies with the altitude of the
aircraft in the stratosphere. It is calculated by [34]

ρ = ρ0 · e−z/z0 , (4)

where ρ0 = 1.225 kg/m3 and z0 = 6700 m.

2.2. Formation Control Targets

In this paper, the formation control target of the UAV was determined based on the
leader–follower formation strategy. Taking a typical dual aircraft formation flight as an
example, the formation configuration of the MAV/UAV was designed as shown in Figure 2.
Since the reference trajectory of the MAV as the leader aircraft is known, the flight velocity,
attitude, and position can be obtained from the sensors mounted within the MAV. The
winger aircraft can receive real-time flight data from the MAV through the onboard data
chain and complete the trajectory tracking and formation control autonomously. During
the flight, it is required that the UAV and MAV keep a specific formation throughout the
whole flight, as shown in Figure 2.

Figure 2. Dual aircraft formation for MAV/UAV.
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2.2.1. Flight Velocity Control Targets

The MAV and UAV keep the same formation flight velocity. The reference velocity of
the MAV is VL, and the UAV velocity is VW , then the velocity deviation ΔV is

ΔV = |VL −VW |. (5)

The MAV and UAV keep the same flight path angle in formation flight. The MAV
flight path angle is γL, and the UAV flight path angle is γW , then the flight path angle
deviation Δγ is

Δγ = |γL − γW |. (6)

The MAV and UAV keep the same flight azimuth angle in formation flight. The flight
azimuth angle of the MAV is ψL, and the flight azimuth angle of the UAV is ψW , then the
deviation of the flight azimuth angle Δψ is

Δψ = |ψL − ψW |. (7)

The flight velocity and attitudes of the UAV should be consistent with the MAV within
an allowable error

ΔV ≤ VΔmax, Δγ ≤ γΔmax, Δψ ≤ ψΔmax, (8)

where VΔmax, γΔmax, ψΔmax represent the error thresholds of the velocity, flight path angle,
and flight azimuth angle of the UAV, respectively.

2.2.2. Flight Distance Control Targets

The UAV is located around the MAV and maintains the specified formation distance.
ΔD denote the distance between the MAV and the UAV in the ground inertial coordinate
system. ΔDx, ΔDy and ΔDz denote the spatial distance of ΔD as follows:

ΔD =
√

ΔDx2 + ΔDy2 + ΔDz2. (9)

Summarily, the UAV should keep a distance larger than the safe flight distance from
the MAV, which is as follows:

DΔmin ≤ ΔD ≤ DΔmax, (10)

where DΔmin and DΔmax represent the thresholds of the safe distance.

3. Design of the HIAC

The HIAC first adopted a DDPG/DDQN hybrid reinforcement learning method to
train the agent model to generate the tracking commands. Then, we further designed a
dynamic inversion controller and a first-order lag filter to construct an improved formation
flight controller. Overall, the HIAC consists of three parts, i.e., desired state command
solver, dynamic inversion controller, and first-order lag filter. The framework of the HIAC
is shown in Figure 3.

 

Figure 3. The framework of the HIAC.
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In order to track the MAV, the HIAC adopted the current deviation between the states
of the UAV and the states of the MAV, i.e., ΔV, Δγ and Δψ as inputs, and outputs the
control commands of the thrust, normal overload, and bank angle, i.e., η, n and σ. The
main difference of the HIAC from other traditional controllers is that to further enhance
the control accuracy, the HIAC adopted a hybrid intelligent agent as the desired command
solver to generate the desired commands, Vc, γc and ψc. Then, these commands were sent
to the dynamic inversion controller to generate the control commands, ηc, nc and σc. Finally,
the first-order lag filter further smoothed ηc, nc and σc to improve the executability of these
commands. The three parts will be introduced in detail as the order of the information flow.

3.1. Desired Command Solver

Learning from the idea of “meta-action”, we partially discretized the control variables
in the continuous control problems and developed a continuous–discrete mixed action
space according to the characteristics of these control variables. Based on this process, we
constructed a hybrid intelligent agent based on DDPG and DDQN to control V, γ, ψ and D
of the UAV.

3.1.1. Framework of Hybrid Intelligent Agent Based on DDPG/DDQN

Based on the traditional Q-Learning algorithm, DDQN uses the neural network to fit
the value function. It adopts discrete action sets to define the strategy and evaluates the Q
value of the generated strategy through the Critic network. Compared with the traditional
DQN algorithm [18–20], DDQN decouples the action selection strategy of the Q value and
the calculation of the Q value and solves the problem of overestimation of the Q value
compared with the traditional methods.

DDPG adopts the Actor–Critic network based on DQN and uses continuous action sets
to define the control strategy. The model consists of the Actor–Critic network, where the
Critic evaluates the actions generated by the Actor, and the Actor feeds back the evaluation
results to the Critic for policy optimization [23]. More proofs and conclusions of the DDQN
and DDPG can be found in [18,23], respectively.

However, the DDQN and DDPG suffer from different drawbacks when applied in
practical engineering. Although the DDQN is easier to converge when compared with
DDPG, it can only deal with discrete and low-dimensional action spaces. However, most
of the practical targets, especially physical control targets, have continuous and high-
dimensional action spaces. Moreover, even though the continuous space can be transferred
into the discrete space, DDQN will generate high high-dimensional action space in this
process and finally cause quite low computational efficiency. Meanwhile, although DDPG
can solve the problem of continuous and high-dimensional action spaces, it is more likely
to diverge than DDQN. Therefore, learning from “meta-action”, we proposed a hybrid
intelligent agent combining the DDQN and DDPG according to their complementary
characteristics. Considering the value range and the control precision of V, γ and ψ,
we adopted the idea of multi-channel decoupling to perform partial discretization of
the action space. For the velocity control agent Vc, the DDPG was used to generate the
set of continuous state commands. Because the value range of Vc is larger than γc and
ψc, discretizing the continuous action space with high precision will lead to dimension
explosion. Meanwhile, for the angle control agents γc and ψc, the DDQN is used to generate
the set of discretized state commands. Combining the DDQN and DDPG can improve the
capability of convergence when these two agents are trained together.

The framework of the desired commands solver was designed as shown in Figure 4.
It includes three agents which process the variation of the state commands Vc, γc and
ψc, respectively. Based on the decoupling principles between different agents, each agent
calculates the action AV , Aγ and Aψ, and updates the desired state commands respectively.
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The outputs are executed by the flight-control system of the UAV and fed back the rewards
of each agent. The total reward function R∑ is expressed by

R∑ = R(D,V)
∑ + R(γ)

∑ + R(ψ)
∑ , (11)

where R(D,V)
∑ , R(γ)

∑ and R(ψ)
∑ are components of R∑ in each agent.

 

Figure 4. The framework of the desired commands solver.

To construct an intelligent agent based on the DDPG/DDQN hybrid reinforcement
learning network, it was necessary to transform the trajectory tracking problem into a
Markov decision process, which mainly includes three parts, i.e., the state space, the action
space, and the reward function.

3.1.2. State Space S

According to the targets of formation flight control, the state space S is designed as
follows:

S = [ΔV, ΔD, Δ
.

V, Δγ,
∫

Δγdt, Δ
.
γ, Δψ,

∫
Δψdt ,Δ

.
ψ], (12)

where ΔD equals

ΔD = ΔD0 +
∫

ΔVdt, (13)

where ΔD0 is the flight distance deviation between the MAV and the UAV at the initial
epoch. The integral items ΔV, Δγ and Δψ are the cumulative deviation from the initial
epoch till the current epoch. Δ

.
V, Δ

.
γ and Δ

.
ψ is the deviation rate of the velocity, flight

azimuth angle, and flight path angle.

3.1.3. Action Space A

The action space A is defined as follows:

A =
[
AV , Aγ, Aψ

]
, (14)

where the action AV denotes the correction value of the UAV velocity commands ΔVc, the
action Aγ denotes the correction value of the UAV flight path angle commands Δγc, and
the action Aψ denotes the correction value of the UAV flight azimuth angle commands
Δψc, i.e., {

ΔVc = AV , Δγc = Aγ, Δψc = Aψ

|ΔVc| ≤ λVcmaxc, |Δγc| ≤ λγcmax, |Δψc| ≤ λψcmax,
(15)
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where λVcmax, λγcmax and λψcmax are the maximum of corrections, respectively. AV is used
to generate the set of continuous velocity commands. Aγ, Aψ is used to generate the set
of discretized angle commands. Specifically, the discretization can be further expressed
as follows:

|Ωγc | = 2�λγcmax/∂γc	+ 1∣∣Ωψc

∣∣ = 2
⌈
λψcmax/∂ψc

⌉
+ 1

(16)

Ωγc = {Aγ|0,±∂γc,±2∂γc, · · · ,±(|Ωγc | − 1)∂γc/2,±λγcmax}
Ωψc =

{
Aψ

∣∣0,±∂ψc,±2∂ψc, · · · ,±
(∣∣Ωψc

∣∣− 1
)
∂ψc/2,±λψcmax

}
.

(17)

Then, the update of desired state commands is⎧⎨⎩
Vc ← Vc + ΔVc
γc ← γc + Δγc
ψc ← ψc + Δψc.

(18)

3.1.4. Reward Function R∑

According to the formation control targets of UAVs, the reward function R∑ was
designed as follows:

R∑ = RP + RN + RC (19)

where RP is the reward sub-function, which gives a positive response when the flight state
of the UAV meets the control targets. RN is the penalty sub-function, which gives a negative
response when the flight states exceed the allowable error of the control target. RC is the
command limiting function, which can limit the values of the control commands ηc, nc, σc.
More specifically, RC can smooth the variation of the control commands to finally reduce
energy consumption.

RP is calculated by
RP = 10×

(
ε2

D + ε2
V + ε2

γ + ε2
ψ

)
(20)

where εD, εV , εγ, and εψ are reward coefficients, which are defined as follows

εD =

{
1, DΔmin ≤ ΔD ≤ DΔmax

0, ΔD < DΔmin or ΔD > DΔmax
,

εV =

{
1− ΔV/VΔmax, ΔV ≤ VΔmax

0, ΔV > VΔmax
,

εγ =

{
1− Δγ/γΔmax, Δγ < γΔmax

0, Δγ ≥ γΔmax
,

εψ =

{
1− Δψ/ψΔmax, Δψ < ψΔmax

0, Δψ ≥ ψΔmax
.

(21)

RN is calculated by

RN = −100×
(

e2
D + e2

V + e2
γ + e2

ψ

)
(22)
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where eD, eV , eγ, and eψ are penalty coefficients, which are defined as follows:

eD =

{
1, ΔD < DΔmin or ΔD > DΔmax

0, DΔmin ≤ ΔD ≤ DΔmax
,

eV =

⎧⎪⎪⎨⎪⎪⎩
1, ΔV > 2VΔmax

ΔV/VΔmax − 1, VΔmax ≤ ΔV ≤ 2VΔmax

0, ΔV < VΔmax

,

eγ =

⎧⎪⎪⎨⎪⎪⎩
1, Δγ > 2γΔmax

Δγ/γΔmax − 1, γΔmax ≤ Δγ ≤ 2γΔmax

0, Δγ < γΔmax

,

eψ =

⎧⎪⎪⎨⎪⎪⎩
1, Δψ > 2ψΔmax

Δψ/ψΔmax − 1, ψΔmax ≤ Δψ ≤ 2ψΔmax

0, Δψ < ψΔmax

.

(23)

RC is calculated by

RC = −0.2(|ηc|/ηmax + |nc|/nmax + |σc|/σmax). (24)

3.2. Dynamic Inversion Controller

To realize tracking of the commands of a given flight trajectory, the dynamic inversion
control law was designed as follows [35]

.
Vc = �V(Vc −V)

.
γc = �γ(γc − γ)
.
ψc = �ψ(ψc − ψ)

(25)

where �V , �γ, and �ψ denote the bandwidth of the controller, respectively. Vc, γc, ψc
denote the desired state commands of the flight velocity, the flight path angle, and the flight
azimuth angle, respectively.

Since the UAV commands follow the dynamic constraints by Equation (1), considering
Equations (1), (2), and (25) yields

Tc = ηcTmax = [D + m�V(Vc −V) + mg sin γ],

Nγ = �γV(γc − γ)/g + cos γ,

Nψ = �ψV(ψc − ψ) cos γ/g,

(26)

where Nγ and Nψ denote the normal overload and lateral overload, respectively. The
throttle δc, normal overload nc and bank angle σc are selected as the control commands.
Then, the UAV control command was designed as follows:

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ηc = [D + m�V(Vc −V) + mg sin γ]/Tmax

nc =
√

Nγ
2 + Nψ

2

σc = arctan
(

Nψ/Nγ

) . (27)

Moreover, the control command must satisfy the constraints:

ηmin ≤ ηc ≤ ηmax, 0 ≤ nc ≤ nmax, |σc| ≤ σmax (28)
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where ηmin and ηmax is the minimum and maximum values of the throttle commands,
respectively. nmax is the maximum value of the normal overload, and σmax is the maximum
value of the bank angle.

3.3. First-Order Lag Filter

Considering the fact that the UAV cannot instantly complete the change of the engine
thrust, normal overload, and bank angle, a first-order lag filter model was constructed to
simulate the delayed variation processes of these three variables:

G =

⎧⎪⎪⎨⎪⎪⎩
.
η = (ηc − η)/τδ

.
n = (nc − n)/τn
.
σ = (σc − σ)/τσ

, (29)

where ηc, nc, σc represent the control commands of the throttle, normal overload, and bank
angle, respectively. τδ, τn, and τσ represent the response time of the UAV control system
accordingly.

Summarily, considering Equations (1), (27), and (29), the UAV flight process can be
presented by the control equations as follow:⎧⎪⎪⎪⎨⎪⎪⎪⎩

F(Vc, γc, ψc)
T = [ηc, nc, σc]

T

G(ηc, nc, σc)
T =

[ .
η,

.
n,

.
σ
]T

H(η, n, σ)T = [V, γ, ψ]T

. (30)

Equation (30) reveals the calculation process from the desired control commands to
the actual control commands. It is clear that the premise to realize the formation flight is to
acquire the desired control commands of the UAV Vc, γc, ψc under the specific formation
strategy. Then, the ultimate flight trajectory can be obtained by the Runge–Kutta method.

4. Simulation Validation

4.1. Simulation Design

Based on the 3-DOF dynamic model in this paper, the MAV was designed to make a
complex maneuver and provide the reference trajectory and control commands, accordingly.
Under the leader–follower formation strategy, the UAV adopts the HIAC, DDPG, and LQR
to track the MAV and keep the dual aircraft formation, respectively. LQR is a commonly
used guidance method for tracking multi-state trajectories in aerospace engineering and it
has been validated by extensive flight tests [36,37]. Therefore, we compared the proposed
method with LQR and DDPG to verify its superiority in the following Sections 4.2 and 4.3.
The design of DDPG is described in Section 3.1.

First, the experiment of nominal conditions was conducted to analyze the superiority of
the proposed method in detail. Meanwhile, the initial values greatly affect the performance
of the reinforcement learning models. Therefore, the generalization ability of the model
was required to be fully verified. Then, 100 Monte Carlo experiments were conducted to
verify the adaptability of this method to different initial conditions.

The simulations were conducted by Matlab2021a and the 3-DOF dynamic model was
built by Simulink. The total simulation time was T, the simulation interval was ΔT, and
the specific experimental parameters are shown in Table 1.

The training methods of DDPG and DDQN refer to [18,23], respectively. Learning rate,
max episode, discount factor, and experience buffer length were set as the same for both
DDPG and DDQN. In addition, the batch size of DDPG was set to 256, and the batch size
of DDQN was set to 64. The specific parameters are shown in Table 2.
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Table 1. The experimental parameter settings.

Parameters Settings Parameters Settings

T (s) 50 ηmin 0
ΔT (s) 0.1 ηmax 1

Tmax (lb) 25,600 nmax 6
m (kg) 14,470 σmax (rad) π/2

g (m/s2) 9.81 DΔmax (m) 600
S (ft2) 400 DΔmin (m) 100
CDP 0.02 VΔmax (m/s) 50
CDI 0.1 ψΔmax (rad) 0.2

τδ (s) 0.6 γΔmax (rad) 0.2
τn (s) 0.5 λVcmax (m/s) 50
τσ (s) 0.5 λγcmax (rad) π/2
�V (s) 0.3 λψcmax (rad) π/2
�γ (s) 0.2 ∂γc (rad) π/180
�ψ (s) 0.2 ∂ψc (rad) π/180

Table 2. The training parameters of DDPG/DDQN.

Parameters Settings

Learning Rate 0.0001
Max Episode 25,000

Batch Size (DDPG) 256
Batch Size (DDQN) 64

Discount Factor 0.99
Experience Buffer Length 1 × 106

4.2. Basic Principles of LQR

The implementation of LQR mainly includes three parts: linearization of the motion
model, design of the tracking controller for the reference trajectory, and solution of the
feedback gain matrix.

By linearizing the dynamic model of the UAV in Equation (1) with small deviations,
the linear system can be obtained as follows:

.
X = AX + Bu. (31)

Equation (31) can be expressed by⎡⎢⎢⎢⎢⎢⎢⎢⎣

δ
.
x

rδ
.
y

δ
.
z

δ
.

V
δ

.
γ

δ
.
ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16
A21 A22 A23 A24 A25 A26
A31 A32 A33 A34 A35 A36
A41 A42 A43 A44 A45 A46
A51 A52 A53 A54 A55 A56
A61 A62 A63 A64 A65 A66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

δx
δy
δz
δV
δγ
δψ

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13
B21 B22 B23
B31 B32 B33
B41 B42 B43
B51 B52 B53
B61 B62 B63

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣ δη

δn
δσ

⎤⎦. (32)

Set the given MAV trajectory as the reference, the state space is defined as follows:

δx = xW − xL, δy = yW − yL, δz = zW − zL,

δV = VW −VL, δγ = γW − γL, δψ = ψW − ψL.
(33)

The control commands are defined as follows:

δη = η − ηL, δn = n− nL, δσ = σ− σL, (34)
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where A and B are the partial derivative coefficient matrix calculated according to the mo-
tion differential equation and the feature points of the reference trajectory. The calculation
results are as follows:

A11 = A12 = A13 = 0,

A14 = cos γ sin ψ, A15 = −V sin γ sin ψ, A16 = V cos γ cos ψ,

A21 = A22 = A23 = 0,

A24 = cos γ cos ψ, A25 = −V sin γ cos ψ, A26 = −V cos γ sin ψ,

A31 = A32 = A33 = A36 = 0,

A34 = sin γ, A35 = V cos γ,

A41 = A42 = A46 = 0, A43 = Dz/m,

A44 = DV/m, A45 = −g cos γ,

A51 = A52 = A53 = A56 = 0,

A54 = −g(n cos σ− cos γ)/V2, A55 = g sin γ/V,

A61 = A62 = A63 = A66 = 0,

A64 = g sin σn/
(
V2 cos γ

)
, A65 = −gn sin σ sin γ/

(
V cos2 γ

)
,

B11 = B12 = B13 = B21 = B22 = B23 = B31 = B32 = B33 = 0,

B41 = Tmax/m, B42 = B43 = 0,

B51 = −Dn/m, B52 = g cos σ/V, B53 = −gn sin σ,

B61 = 0, B62 = −g sin σ/(V cos γ), B63 = −gn cos σ/(V cos γ).

(35)

where Dz, DV and Dn are the partial derivatives of the drag D on the feature point of the
reference trajectory to the flight height z, velocity V and normal overload n respectively.
Define the optimal control performance index from t0 to t f as follows:

J = 0.5
∫ t f

t0

[
XT(t)QX(t) + uT(t)Ru(t)

]
dt, (36)

where Q and R are the weight matrices of state and control respectively. Q is positive semi-
definite and R is positive-definite. Then, there exists an optimal control law u∗ = −K∗X to
minimize the above performance index, and the feedback gain matrix K∗ is

K∗ =

⎡⎢⎣Kη1 Kη2 Kη3 Kη4 Kη5 Kη6

Kn1 Kn2 Kn3 Kn4 Kn5 Kn6

Kσ1 Kσ2 Kσ3 Kσ4 Kσ5 Kσ6

⎤⎥⎦, (37)

K∗ = −R−1BTP (38)

where P is the solution of the Riccati equation. It is calculated by

−PA− ATP + PBR−1BTP−Q = 0. (39)

Define Q and R as follows:

Q = diag[Q1, Q2, Q3, Q4, Q5, Q6],

R = diag[R1, R2, R3].
(40)
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To reflect the impact of the flight relative distance in the dual aircraft formation flight.
Set Q1 = Q2 = Q3 and define δD2 = ΔD2 = δx2 + δy2 + δz2, then

J = 0.5
∫ t f

t0

[(
Q1δD2 + Q4δV2 + Q5δγ2 + Q6δψ2)

+
(

R1δη2 + R2δn2 + R3δσ2)]dt.
(41)

According to Bryson Law [38], Q and R are set as follows:

Q1D2
Δmax = Q4V2

Δmax = Q5γ2
Δmax = Q6ψ2

Δmax

= R1η2
max = R2n2

max = R3σ2
max.

(42)

Set Q1 = 1, then other parameters can be obtained. According to u∗, the control
commands can be obtained:

η = ηL −
(
Kη1δx + Kη2δy + Kη3δz + Kη4δV + Kη5δγ + Kη6δψ

)
,

n = nL − (Kn1δx + Kn2δy + Kn3δz + Kn4δV + Kn5δγ + Kn6δψ),

σ = σL − (Kσ1δx + Kσ2δy + Kσ3δz + Kσ4δV + Kσ5δγ + Kσ6δψ).

(43)

Since the feedback gains obtained at different feature points of the reference trajectory
are different, the monotonic flights can be selected as an independent variable, and the feed-
back gain coefficient of the offline design can be interpolated to obtain the corresponding
control commands.

4.3. Experiment of Nominal Conditions

In the experiment of nominal conditions, the initial position of the MAV was xL0 = 0
m, yL0 = 0 m, zL0 = 10, 000 m, VL0 = 400 m/s, γL0 = π/6, ψL0 = 0. The initial position of
the UAV was xW0 = 100 m, yW0 = 100 m, zW0 = 10, 000 m, VW0 = 400 m/s, γW0 = π/6,
ψW0 = 0.

The formation flight trajectories of MAV and UAV of the three methods are shown
in Figure 5. The MAV is designed to make continuous S-shaped large maneuver with a
maximum overload of about 4 g at 1 s, 11 s, 29 s and 41 s, respectively. Figure 5 indicates
that the LQR, DDPG, and HIAC can realize the stable tracking of the given trajectory of the
MAV under large, overloaded maneuvers and reach the target of the designed formation.

Figure 5. The formation flight trajectory of MAV and UAV of three methods.

Figure 6a–c shows the control commands of the UAV, i.e., the thrust, the normal
overload, and the bank angle, generated by the LQR, DDPG and HIAC, respectively,
with reference commands of the MAV. Figure 7a–c shows the errors between the control
commands of the LQR, DDPG, and HIAC and the reference commands of the MAV. Figure 6
illustrates that there are four peaks in the curves of the control commands due to the four
large, overloaded maneuvers. Moreover, compared with the LQR and DDPG, the trend
of the control commands of the HIAC can be better consistent with the MAV in thrust,
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normal overload, and bank angle. Especially in the control of the normal overload, the
HIAC has mitigated the sharp change of the commands generated by the reinforcement
learning controller to a certain extent. It can provide more smooth and executable control
commands under large maneuvers. However, during the large maneuver of the MAV, in
order to track the reference commands, it inevitably generates a certain amount of extra
adjustment for the thrust, overload, and bank angle for the three methods.

(a) (b) (c)

Figure 6. The control commands of the MAV generated by the LQR, DDPG, and HIAC, respectively,
with reference commands of the MAV. The results of the thrust, the thrust, the normal overload, and
the bank angle are presented in (a–c), respectively.

(a) (b) (c)

Figure 7. The errors between the control commands of the LQR, DDPG, HIAC and the reference
commands of the MAV. The errors of the thrust, the thrust, the normal overload, and the bank angle
are presented in (a–c), respectively.

Figure 8 shows the change of the three controlled states of the UAV, i.e., the velocity,
the flight path angle, and the flight azimuth angle, generated by LQR, DDPG and HIAC.
Figure 9 shows the deviation of the three controlled states and the relative distance. It can
be seen from Figure 8 that the change trend of the controlled state of the HIAC is basically
the same as that of the MAV, and the formation maintenance performance is obviously
better than that of the LQR and DDPG. Especially, the HIAC can keep up with most of
the fluctuations of the MAV in the flight velocity and the flight azimuth angle. Moreover,
Figure 9 shows that compared with the LQR and DDPG, the control precision of the HIAC
has been significantly improved, and the control deviation can rapidly decrease to nearly
0 under the large maneuver. Figure 9d indicates that the HIAC successfully limits the
formation distance within the safe distance between 100 m and 600 m while LQR and
DDPG fail. The LQR continuously accumulates distance deviation due to the velocity
deviation during the flight, and ultimately, the formation distance reveals a divergent trend.
Meanwhile, although the relative distance of the DDPG gradually converges, it still extends
beyond the safe distance at the end of the flight.
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(a) (b) (c)

Figure 8. The change of the three controlled state of the UAV generated by the LQR, DDPG and
HIAC. The results of the velocity, the flight path angle, and the flight azimuth angle are presented in
(a–c), respectively.

(a) (b)

(c) (d)

Figure 9. The deviation of the velocity, the flight path angle, the flight azimuth angle and the relative
distance are presented in (a–d), respectively.

Table 3 presents the root mean square (RMS) errors and maximum errors of the four
controlled states of the LQR, DDPG and HIAC. It is clear that both the RMS error and
maximum error of the HIAC are smaller than those of the LQR and DDPG. Moreover, the
HIAC has a reduction of 5.81%, 70.44%, and 64.95%, respectively, in the RMS error of the
velocity, flight path angle and flight azimuth angle compared with the LQR, and has a
reduction of 60.35%, 55.32% and 69.47% in the maximum error of velocity, flight path angle
and flight azimuth angle, respectively, compared with the LQR. The HIAC has a reduction
of 36.10%, 35.85% and 51.61%, respectively, in the RMS error of velocity, flight path angle
and flight azimuth angle compared with the DDPG, and has a reduction of 54.43%, 31.57%
and 55.01% in the maximum error of velocity, flight path angle and flight azimuth angle,
respectively, compared with the DDPG.
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Table 3. RMS and maximum errors of the four states of the LQR, DDPG, and HIAC in nominal
conditions.

Controller
Velocity

(m/s)
Flight Path
Angle (rad)

Flight Azimuth
Angle (rad)

Relative Distance (m)
Safe Distance [100, 600]

LQR
RMS 5.6957 0.4737 0.6202 516.7072
Max. 15.3307 0.8027 0.7833 710.2799

DDPG
RMS 8.3953 0.2183 0.4493 444.1190
Max. 13.3379 0.5241 0.5315 610.6078

HIAC
RMS 5.3647 0.1401 0.2174 460.0709
Max. 6.0780 0.3586 0.2391 552.1845

In summary, the proposed HIAC significantly improves the state control performance
and guarantees that the flight distance stays within a safe distance as well.

4.4. Monte Carlo Experiments

In order to further test how the HIAC adapts to various initial conditions, 100 Monte
Carlo simulations were carried out by adding random deviations to the nominal conditions.

The initial position of the MAV is xL0 = 0 m, yL0 = 0 m, zL0 = 10, 000 m, VL0 = 400 m/s,
γL0 = π/6, ψL0 = 0. The baseline of initial values of the UAV is xW0 = 100 m, yW0 = 100 m,
zW0 = 10, 000 m, VW0 = 400 m/s, γW0 = π/6, ψW0 = 0. Then, random deviations which
follow the uniform distributions were added to these six baselines, respectively. The specific
values of the deviations are presented in Table 4.

Table 4. Uniform distribution of deviations for the six initial values.

Numbers of Monte
Carlo Simulations

X (m) Y (m) Z (m) Velocity (m/s)
Flight Path
Angle (rad)

Flight Azimuth
Angle (rad)

100 [−50, 550] [−50, 550] [−1000, 1000] [−100, 100] [−π/18, π/18] [−π/18, π/18]

Figure 10 is the scatterplot of the Monte Carlo simulation results of the velocity errors,
flight path angle error, flight azimuth angle, and relative distance for the LQR, DDPG and
HIAC. For each evaluation index, the horizontal axis is the RMS error, and the vertical
axis is the maximum error. It can be seen that the HIAC can fulfill the control target in the
magnitude of velocity. Meanwhile, because the training threshold is set quite strictly in
order to achieve better control performance, the maximum error and RMS error of the flight
path angle and flight azimuth angle may extend out of the threshold when the extreme
deviations are added to the initial values. However, the HIAC can still present a satisfactory
control accuracy of the angle compared with the DDPG and LQR. Moreover, in terms of the
safety distance, the HIAC can stay within a safe distance of 100 m to 600 m from the MAV,
which reaches the distance control target. However, the DDPG and LQR gradually extend
out of the safe distance as the initial values vary. Statistically, compared with LQR and
DDPG, the HIAC has smaller values in both the RMS error and maximum error of these
four evaluation indices. In summary, the performance of the HIAC in formation control is
better than that of the other two methods, which is consistent with the simulation results
under nominal conditions. It is believed that the HIAC has significant adaptability to the
varying initial conditions.
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Figure 10. Monte Carlo simulation results of LQR, DDPG and HIAC.

5. Conclusions

In this study, a novel HIAC method was proposed, which is able to enhance the
smoothness and executability of control commands and improve the control performance
of the MAV/UAV flight formation. First, based on the idea of “meta-action” in hybrid
reinforcement learning, the formation control was modeled as a continuous–discrete space
control problem. Then, we proposed the framework of the HIAC, and the hybrid intelligent
agent model based on the DDPG/DDQN was designed through multi-channel decoupling.
Finally, we carried out simulations of nominal conditions and 100 Monte Carlo simulations
in varying initial conditions. The simulation results showed that, compared with the
traditional LQR and DDPG, the HIAC has better performance of high control precision and
rapid convergence. Meanwhile, the adaptability of HIAC to the varying initial conditions
was verified as well.

For further practical applications, HIAC can gradually support practical scenarios
such as formation military operations and terrain surveys. In particular, two aspects should
be considered when applying HIAC. The first is the reliability of the method. HIAC should
be preliminarily trained with a large number of ground tests before the real flights, to
ensure that intelligent control gradually takes authority over traditional flight-control
methods. The second is the portability of the method. At present, the method supports
the deployment of reinforcement learning on hardware such as DSP, and FPGA, and can
realize airborne portability and the online training of agent models.
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Abstract: A swarm of robots is the coordination of multiple robots that can perform a collective task
and solve a problem more efficiently than a single robot. Over the last decade, this area of research
has received significant interest from scientists due to its large field of applications in military or
civil, including area exploration, target search and rescue, security and surveillance, agriculture,
air defense, area coverage and real-time monitoring, providing wireless services, and delivery of
goods. This research domain of collective behaviour draws inspiration from self-organizing systems
in nature, such as honey bees, fish schools, social insects, bird flocks, and other social animals. By
replicating the same set of interaction rules observed in these natural swarm systems, robot swarms
can be created. The deployment of robot swarm or group of intelligent robots in a real-world scenario
that can collectively perform a task or solve a problem is still a substantial research challenge. Swarm
robots are differentiated from multi-agent robots by specific qualifying criteria, including the presence
of at least three agents and the sharing of relative information such as altitude, position, and velocity
among all agents. Each agent should be intelligent and follow the same set of interaction rules over
the whole network. Also, the system’s stability should not be affected by leaving or disconnecting an
agent from a swarm. This survey illustrates swarm systems’ basics and draws some projections from
its history to its future. It discusses the important features of swarm robots, simulators, real-world
applications, and future ideas.

Keywords: swarm intelligence; swarm behaviors; swarm robotics; industrial swarm; swarm
robotics applications

1. Introduction

A swarm of robots refers to the coordination of multiple individual entities, which
traditionally operate without centralized control and instead rely on simple local behaviors
to cooperate. Robot technology, particularly Unmanned Aerial Systems (UAS), is becoming
more affordable, efficient, and is boosting the transmission capacity of robots as solutions
to problems ranging from disaster relief to research mapping. Independent robots can
perform tasks that need simple, ready to go solutions and a consistent real time approach.
The autonomous robot can be a part of a robot swarm, if it fulfills at least three significant
characteristics. These characteristics include the following: the minimum number of
individual entities must be three or more, minimal or no human control, and cooperation
between these robots based on a simple set of rules as depicted in Figure 1. Swarm robotics
include a group of independent robots working collaboratively to complete a shared
task without relying on any external infrastructure or a centralized control system/robot.
Figure 2 illustrates how the fundamental concept of the swarm may be comprehended.
In Figure 2a, the system is a robot swarm which consists of three autonomous agents
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that cooperate in response to the orders received from a single ground control station.
Figure 2b indicates that the system is a sensor network rather than a swarm of robots. Each
sensor is neither a robot nor an intelligent agent, and is solely responsible for providing
data through readings without the capability of taking any actions. Figure 2c does not
depict a robot swarm since a swarm necessitates more than two agents. Despite the robots
working together towards a shared objective, each one has its own designated tasks to
accomplish, which are directed by a separate operator. Figure 2d depicts a software system
comprising multiple agents, which cannot be classified as a robot swarm as the agents are
not autonomous robots, despite their collaboration on a shared hardware platform.

3+ Group Size

It must contain three or more
entities 

Limited Human Control

Minimum or zero human
operated control system 

Cooperative

Entities within the swarm must
work cooperatively

Swarm Robotics 
Three characteristics for a system to be qualified as a swarm of robots  

Figure 1. Basic Characteristics of Swarm Robotics.

Swarm robotics involves a group of robots that collaborate to address problems
through the development of advantageous structures and behaviours that resemble those
observed in nature, such as birds, fish, and bees. These robots, which can be either homoge-
neous or heterogeneous, form an intelligent network of a swarm, enabling individual robots
to interact autonomously with each other and their environment by leveraging onboard
communication, processing, and sensing capabilities. Such behaviours can be classified
into four categories, namely navigation , spatial organization, intelligent and precise decision-
making, and miscellaneous [1]. This study offers an in-depth analysis and mathematical
comprehension of swarm intelligence algorithms. It also provides a comprehensive review
of the evolution of swarm robotics from its inception to the present day and highlights the
future ambitions of this field. Our aim is to present a broad overview of swarm robotics by
exploring its history, current research, and future directions. The main contributions are
as follows:

• To understand the fundamental difference between multi-agent and swarm of robots,
along with the natural behaviours of a swarm.

• Multiple swarm intelligence algorithms derived from the natural set of rules and
constraints for their transformation on multi-agent robots.

• Industrial and academic utilization of swarm robotics keeping in view the history and
future perspectives.

• The objective is to address the research gap that exists between theoretical and in-
dustrial research in the field of swarm robotics. Theoretical research mainly involves
simulating swarm behaviours using algorithms, while research in industrial settings
are primarily focused on designing and developing hardware capable of executing
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swarm behaviour. Therefore, it is imperative to deploy swarm algorithms using
specific hardware that can accommodate swarm behaviour functionality.

N1 N2

N3

N1 N2

R1

R2

Swarm Robotics: 
Is a Swarm

Sensor's Network: 
Not a Swarm 

Multi-Robots System: 
Not a Swarm

Multi-Agent Software System: 
Not a Swarm

This is a robot swarm containing 3 intelligent agents working 
cooperatively connected with ground control unit

This system is not a robot swarm rather a system of multiple 
sensors that are not intelligent and cannot perform physical actions 

individually

Sensors do not move or react

This is not a robot swarm rather it is a multi-agent software
system. The agents are not intelligent itself rather

dependent on single controlling system

This system is not a robot swarm. Although the robots
are intelligent but 2 are not enough agents to be

considered a swarm

Control Station

Control Station

(a) (b)

(c) (d)

Figure 2. Comparison of Multi-agent Systems and Robot Swarm [2]. (a) depicts swarm robotics
system, while (b–d) show non-swarm systems.

Figure 3 depicts the deployment of swarm behaviours in simulation and hardware,
which is thoroughly explored in Section 2 of this article. The behaviours are simulated using
existing and state-of-the-art swarm intelligence algorithms, as explained in Section 3 with
mathematical reasoning. The simulation results demonstrate high accuracy in replicating
natural animal behaviours. For the past two decades, the main research challenge in
swarm robotics has been to develop multi-robot systems that are robust, flexible, fault-
tolerant, and capable of incorporating self-organizing behaviours dynamically and by
design. The swarm robotics field has evolved from algorithmic studies to mature academic,
laboratory, and industrial-based solutions since the early 2000s. A comprehensive review
of swarm robotics and its applications is presented in Table 1 and Section 4, respectively.
Despite significant progress, cooperation and coordination in deploying the developed
swarming algorithms among swarm robots remain limited [3]. Section 5 provides a brief
overview of the era of swarm robotics, and the article concludes in the final section.

71



Drones 2023, 7, 269

Table 1. Era of Swarm Robotics: Past, Present, and Future Perspectives.

1990–2000 The first robot tests show self-organization through indirect and local interactions, clearly inspired by
swarm intelligence. SW

2000–2005
The ability to generate swarms of robots that work together has now been expanded to a variety of
additional tasks, including object handling, task allocation, and occupations that require significant

teamwork to achieve.
SW

2002–2006 Swarm-bots is a project that shows how robot swarms self-assemble. Robots can construct pulling
chains and massive constructions capable of transporting large loads and dealing with tough terrain. HW and SW

2004–2008 The evolving swarm robotics technique was devised after the first demonstrations of autonomous
assembly of robot swarms using evolutionary algorithms. SW

2005–2009 For swarm robotics research, the first attempts at building standard swarm robotics platforms and
small robots. HW

2006–2010 Swarmanoid showed heterogeneous robot swarms made up of three different types of robots: flying,
climbing, and ground-based robots for the first time. HW and SW

2010–2015
Advanced autonomous design methods such as AutoMoDe, novelty search, design patterns,

mean-field models, and optimal stochastic approaches are all employed in the creation of
robot swarms.

SW

2016–2020 Decentralized solutions have been investigated and deployed as swarms of flying drones become
available for investigation. HW and SW

2020–2025 The first example of robot swarms that may self-learn suitable swarm behaviour in response to a
specific set of challenges. SW

2025–2030 Marine and deep-sea robotic swarms will be utilized for ecological monitoring, surveillance, and
fishing,among other things. HW

2030–2040 Small rover swarms will be utilized for the first mission to the Moon and Mars to expand the
exploration area and showcase on-site construction capabilities. HW

2040–2045 Soft-bodied robot swarms measuring in millimeters will be deployed to explore agricultural fields and
aquatic areas to identify plastic usage and assist with pest control. HW and SW

2035–2050 Clinical research with human volunteers will begin after nanoscale robot swarms have been shown for
therapeutic objectives such as customized medication delivery. HW and SW

Behaviors

Swarm
Algorithms Swarm Robots

Simulation
Based

Hardware
Based

Precise and
Accurate

Not Precise and
Accurate all the

Time

Implementation Implementation

Results Results

Figure 3. Swarming Behaviours’ Deployment in Simulation and Hardware.
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2. Swarm Robotics Fundamental Behaviours

Swarm algorithms are characterized by individual entities following local rules, re-
sulting in the emergence of overall behaviour through swarm interactions. In swarm
robotics, robots exhibit local behaviours based on a set of rules ranging from basic reactive
mapping to complex local algorithms. These behaviours often involve interactions with the
physical environment, such as other robots and surroundings [4]. The interaction process
involves retrieving environmental values and subsequently processing them to drive the
actuators in accordance with a set of instructions. This recurring process is referred to as
the fundamental activity and persists until the desired state is attained. Figure 4 illustrates
a summary of several naturally occurring behaviours that are further elaborated in the
subsequent subsection.

Swarm Behaviours

Spatial Organization

Navigation Decision Making

Miscellaneous

Aggregation

Pattern Form
ation

Spatial O
rganization

O
bject C

lustering &
Assem

bly 

Self-H
ealing

Self-R
eproduction

H
um

an-Sw
arm

Interaction
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ollective

Exploration

C
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C
ollective Transport

C
ollective
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C
ollective

Perception

Synchronization

C
ollective Fault

D
etection

G
roup Size

R
egulation

Task Allocation

C
onsensus

Figure 4. Swarm Behaviours [1].

2.1. Spatial Organization

These behaviours allow robots in a swarm to move around the environment and
spatially arrange themselves around things.

Object Clustering and Assembly allow a swarm of robots to control geographically
dispersed things. These are critical for construction processes. Pattern Formation organizes
the robot swarm into a precise form. Chain Formation is a specific instance where robots
construct a line to establish multi-hop communication between two places [1,5]. Self-
assembly links robots to form structures. They can be connected physically or remotely
via communication lines [1,6]. Morphogenesis is a specific instance in which the swarm
grows into a predetermined form [1,7,8]. Aggregation pushes the individual robots to gather
spatially in a certain location of the environment. This permits swarm members to get
geographically near to one another for further interaction [1,9,10].

2.2. Navigation

These characteristics enable a swarm of numerous robots in the environment to move
in unison. Thus, a group of robots move in harmony from one location to another or from a
source to a final destination [1,11].

Collective Localization allows the swarm’s robots to determine their location and orien-
tation relative to one another by establishing a local coordinate system across the swarm [1].
In Collective Transport, a swarm of robots may collectively move things that are too heavy or
massive for individual robots [1]. Coordinated Motion moves the swarm in a configuration
that must have a well-defined shape or structure, such as a line, triangle, or arbitrary
formation of robots, as in flocking [1]. Collective Exploration navigates the environment
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to examine things, monitor the environment, or create a robot-to-robot communication
network [1,12].

2.3. Decision Making

This characteristic of swarm robotics facilitates collective decision-making for accom-
plishing specific tasks collaboratively. The Group Size Regulation feature empowers the
swarm’s robots to create groups of the required size, and if the swarm’s size exceeds the
required group size, it automatically divides into multiple groups or sub-swarms [1,13].
Additionally, the Collective Fault Detection feature detects individual robot shortcomings
inside the swarm, enabling the identification of robots that deviate from the expected
behaviour due to hardware or some algorithmic issues [1,14]. Furthermore, Synchronization
aligns the frequency and phase of the swarm’s oscillators, enabling the robots to share
a common perception of time and execute tasks in synchrony. The Collective Perception
feature aggregates the locally collected data from the swarm’s robots into a comprehensive
image. It allows the swarm to make collective decisions, such as accurately classifying
objects, allocating a suitable percentage of robots to a given task, or determining the best
solution to a global problem [1]. Moreover, the Task Allocation feature dynamically assigns
emergent tasks to individual robots, aiming to maximize the overall performance of the
swarm system. In cases where the robots possess diverse skill sets, the work can be as-
signed differently to further enhance the system’s performance [1,15]. Finally, the Consensus
feature allows the swarm of robots to converge on a single common point from multiple
available options [1,16].

2.4. Miscellaneous

The swarm robots exhibit additional behaviours beyond the previously discussed
categories. Self-healing behaviour allows the swarm to recover from individual robot
failures, improving the swarm’s reliability, resilience, and overall performance [1,17]. Self-
reproduction enables a swarm of robots to add new robots/agents or replicate the patterns
created by several individuals, thereby increasing the swarm’s autonomy by eliminating
the need for human intervention in the construction of additional robots. Human-swarm
Interaction facilitates communication between humans and the swarm of robots, either
remotely via a computer terminal or in a shared area using visual or auditory cues [1].

3. Swarm Intelligence Algorithms

Swarm Intelligence (SI) is a collective intelligence employed in various applications,
including self-organized and decentralized systems [18]. Some examples are collective
sorting, cooperative transportation, group foraging, and clustering. Self-organization and
division of work are two essential notions in SI. The ability of robots to evolve into a proper
pattern without external assistance is referred as self-organization. In contrast, division of
labor refers to the simultaneous execution of multiple tasks by individual robots. It enables
the swarm to execute a challenging task that requires individuals to collaborate. Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Particles Swarm Optimization (PSO),
Differential Evolution (DE), Artificial Bee Colony (ABC), Glowworm Swarm Optimization
(GSO), and Cuckoo Search Algorithm (CSA), are all examples of famous and currently used
swarm intelligence algorithms.

3.1. Genetic Algorithm

Genetic Algorithms (GA) were introduced in 1975 by John Holland [19,20]. This
type of algorithm mimics natural existing biological behaviours in order to evaluate the
survival of the fittest. In a genetic algorithm (GA), a specified number of individuals, also
known as members, comprise the population. Mathematical operators such as crossover,
reproduction, and mutation are used to manipulate the genetic makeup of individuals.
Based on these operators, the fitness value of each member is calculated and ranked
accordingly. The previous population’s traits, represented by chromosomes (or strings),
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are combined with new traits to generate a new population [21–24]. A GA algorithm
with five basic steps is shown in Figure 5. The fitness function evaluates population
members, which begins with an initial population that can be generated randomly or
through a heuristic search. After the population members are assessed, the lowest-ranked
chromosome is eliminated, and the remaining members are used for reproduction. The
final step is mutation, in which the mutation operator modifies genes on a chromosome
to ensure that every part of the problem space is explored. This process of evaluating and
generating new populations continues until the best solution is found.

It has a vast area as an application, which includes, navigation and formation con-
trol [25], path planning [26], scheduling [27,28], machine learning [29], robotics [30,31],
signal processing [32], business [33], mathematics [34], manufacturing [35] and routing [36].

Generate Initial Random
Population

Calculate Fitness of Individual

Satisfy Stop 
 Criterion?

Selection of the Individuals

Selection of the Individuals

Crossover Operator: 
Select two individuals and swap a

section of gene between them

Mutation Operator: 
Select one individual and mutate

the genes in it 

Start

End

Figure 5. Flow Chart of Genetic Algorithm [37] .

3.2. Ant Colony Optimization

Ant Colony Optimization (ACO) is a heuristic search-based algorithm that uses the
ant colony system to solve problems. It was proposed by Marco Dorigo as part of his
Ph.D. study in 1992 [38]. The four fundamental components of the ant-inspired foraging
algorithm are the ant, pheromone, daemon action, and decentralized control. The ant
acts as an imaginary agent which mimics the behaviour of exploitation and exploration
processes in a search space and produces a chemical substance called pheromones. Its
intensity varies with the passage of time due to the evaporation process and serves as a
global memory for the ant’s path of travel. Daemon activity is used to gather global data
whereas, the decentralized control is used for the robustness of the ACO algorithm and
to maintain flexibility within a dynamic environment. The Figure 6a–c show the initial,
mid-range, and final outcomes of the ACO algorithm, respectively [38,39]. Figure 6a shows
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the initial random environment in which the agent (or ant) from the nest begins the process.
When ants discover numerous viable paths from the nest to the source, they go through
many iterations of execution, as shown in Figure 6b. The ant has chosen the shortest
possible path, which contributes to the pheromone trail’s high intensity. Equation (1) below
is used as an initial step in determining the optimal solution to select the best node from
the current search space.

S S S

N N N

ab

(a) (b) (c)

Figure 6. Nest and Food-Source have been shown by letters N and S, respectively. (a) depicts the
early stages of the process, in which ants start to discover a passage between the nest and the source
and lay their pheromones. (b) depicts the intermediate phase, in which the ants took all available
pathways. (c) demonstrates that the majority of ants chose the road with the highest pheromone
concentration [36] .

pu
(n,m)(to) =

(
[τnm(to)]

α · [ηnm]
β
)

(
∑u∈Iu [τnm(to)]

α · [ηnm]
β
) (1)

The probability of travelling from node n to node m is p(n,m), Iu are the nodes to which
the ant is permitted to go from node n, whereas η(nm) adds to visibility between nodes
n and m and it indicates the quantity of un-evaporated pheromone between nodes at a
time to. α and β in Equation (1) regulate the impact of τnm(to) and ηnm, where, if α is larger,
the ant’s searching behaviour is more pheromone-dependent, and if β is higher, then the
ant’s searching depends on its visibility or knowledge.

In order to deposit a pheromone, the following equation is used:

Δτu
nm(t) =

⎧⎨⎩
Q
Lu
(t)

0
(2)

Q is a constant, L is the cost of the ant’s tour that represents the length of the cre-
ated path, t is the iteration number and u shows a specific ant. Another key factor is
pheromone evaporation rate, which shows exploration and exploitation behaviour of
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the ant. In Equation (3), s is the number of ants in the system and p is the pheromone
evaporation rate or decay factor.

τnm(t + 1) = (1− p).τ(n,m)(t) +
s

∑
k=1

[Δτu
n,m(t)] (3)

Compared to other heuristic-based approaches, ACO guarantees to converge, but the
time required for it is uncertain and for better performance, the search space should be
small [40,41]. Its applications include vehicle routing [42,43], network modelling prob-
lem [44,45], machine learning [46], path planning robots [47], path planning for Unmanned
Aerial Vehicles (UAVs) [48], project management [49] and so on.

3.3. Particle Swarm Optimization

Kennedy and Eberhart invented Particle Swarm Optimization (PSO) in 1995, and it
uses a simple method to encourage particles to explore optimal solutions [50]. It is based
on flocking bird and schooling fish behaviours [51], by exhibiting three simple behaviours:
separation, alignment, and cohesiveness. Separation is used to avoid congested local flock-
mates, alignment is the travelling of one flock-mate in the same average direction of the
other flock-mates, and cohesiveness is the movement of flock-mates toward the average
position. The PSO algorithm is as follows [50,52,53]:

vt+1
id = vt

id + c1 · rand(0, 1) ·
(

pt
id − xt

id
)
+ c2 · rand(0, 1) ·

(
pt

gd − xt
id

)
xt+1

id = xt
id + vt+1

id

(4)

where vt
id and xt

id are particle velocity and position, whereas d is search space dimension,
i represents particle index and t shows the iteration number. c1 and c2 depict the speed
and regulating length of the swarm when it travels towards the optimal particle position.
The optimal position attained by particle i is pi and the best position found by neighbouring
particles of i is pg. The process of exploration ensues if either or both of the differences
between the best of particle pt

id and the previous position of particle xt
id and between the

population all-time best pt
gd and the previous particle’s position xt

id are large. Similarly,
the process of exploitation happens when both of these values are small. PSO has been
demonstrated as an effective, robust, and stochastic optimization algorithm for high-
dimensional spaces. The key parameters of PSO include the position of the agent in space,
the number of particles, velocity, and the agent’s neighbourhood [54–56].

The PSO algorithm begins by initializing the population, and the second step is to
calculate the fitness of each particle. Whereas, the third step is followed by updating
the individual and global best. In the fourth step velocity and neighbourhood of the
particles are updated. Steps two to four keep repeating until the terminating condition is
satisfied [51,54,57,58].

Figure 7 shows the working of the PSO method, where the particles are spread out in
the first iteration to discover the best exploration. The best solution is identified in terms
of neighbourhood topology, and each member’s personal and global best particles are
updated. As indicated in the figure, the convergence would be determined by attracting all
particles towards the particle with the best solution.

PSO is simple to configure for efficient global search, has few parameters to set, is scale-
insensitive, and parallelism for concurrent processing is also easy. Population size is one of
the key factors that ensures precise and fast convergence for large population sizes [51,59].
Networking [60], power systems [61], signal processing [62], control systems [63], machine
learning [64], and image processing [65–67] are some of the applications.
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ITERATION 1 ITERATION 25

ITERATION 50 ITERATION 75

Particle
Best

Figure 7. The operation of the PSO algorithm and its progress towards global optima as measured by
iteration numbers [47].

3.4. Differential Evolution

Differential Evolution (DE) is similar to GA, using the same crossover, mutation,
and selection operators. The fundamental difference between the two algorithms is that
the DE utilizes the mutation operator while GA uses the crossover operator to produce a
superior solution. Price and Storn first introduced it in 1997 [68]. DE repeatedly generated
new populations using three properties: mutant vector, target vector, and trail vector
explained in Figure 8. A crossover process between the target and mutant vectors produces
the trailing vector. The mutant vector represents the mutation of the target vector, whereas
the target vector represents the vector holding the search space solution [69,70]. The DE
algorithm starts with population initialization and then evaluates the population to find
the fittest members. The weighted difference between the two population vectors is added
to the third vector to create new parameter vectors and this process is known as mutation.
The vector is blended within the crossover to perform a final selection.

N parameter vector mutation is generated by using the following equation:

vj,N+1 = xl1,N + F(xl2,N − xl3,N). (5)

i shows the index of the 2D vector. xl1, xl2, and xl3, are solution vectors selected
randomly and the values of l1, l2 l3 and i should not be equal to each other. F is the
scaling factor ∈ [0,1], while, a crossover procedure is employed to improve the variety of
the disconcerted parameter vectors. The parent and mutant vectors are combined in the
following method to create a trial vector:

ui,G+1 =

⎧⎨⎩ vi,G+1 if Rj ≤ CR

xi,G if Rj > CR
(6)

where CR denotes the crossover constant. Rj denotes a random real number ε [0,1] while j
depicts the resultant array’s jth component.

The primary distinction between DE and GA operations is that in DE, the probability
of being selected as a parent is not based on fitness value. Increasing the population size
can significantly improve DE performance.
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DE can be found in a variety of fields, including, robot path planning [71,72] engi-
neering [73], image processing domain [74], machine learning [75], and economics [76].

Target Vector Mutant Vector Trail Vector

Xi Vi, G+1 Ui, G+1

j=1
2
3
4
5
6
7

j=1
2
3
4
5
6
7

3
4

6

j=1

5

7

2

Figure 8. Demonstration of DE with a seven-vector dimension j. A target vector is a current approach;
however, a mutant vector is also an alternative. After the crossover operation, the trailing vector is a
new solution [55].

3.5. Artificial Bee Colony

Dervis Karaboga presented Artificial Bee Colony (ABC) as an important SI algorithm
in 2005 [77]. Its performance is thoroughly examined in [78], which concluded that ABC
outperforms other techniques. It is based on honey bees’ intelligent behaviour in locating
food and communicating information about that food with other bees. ABC is as straight-
forward as PSO, and DE [78], which divides artificial agents into three types: employed,
observer, and scout bees. Each agent bee is given a particular task to finish the algorithm
process. The employed bee concentrates and memorizes the food supply. The employed
bee provides the observer bee with the information about the hive’s food supply. The scout
bee is on the lookout for new nectar and its sources. Figure 9 presents the algorithmic
flow of the ABC. The ABC method’s overall procedure and specifications of each step are
explained below [77–79]:

Step 1. Initialization: Food sources, xi, are initialized with i = 1 ... N, where N is the
number of scout bees in the population. li and ui are the control parameters represent lower
and upper limits, respectively. The following Equation (7) represents the initialization phase:

xi = li + rand(0, 1) ∗ (ui − li) (7)

Step 2. Employed Bees: The search capacity for finding new neighbour food source
vi increases to accumulate more nectar around the neighbour food source xi. Once they
identify a nearby new food source supply, its profitability and fitness value are assessed.
The following formula is used to define the new nearby food source:

vi = xi + φi
(

xi − xj
)

(8)

where xj is a randomly selected food source. φi has random numbers of range between
[−a, a]. After the profitability of the new source vi is determined, a greedy selection is
used between −→xi and −→vi . The process of exploration occurs if xi − xj is greater, otherwise
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exploitation happens. The fitness value f iti(
−→xi ) is computed by the following Equation (9)

and objective function with solution value xi is fi(
−→xi ).

f iti(
−→xi ) =

⎧⎨⎩
1

1+ fi(
−→xi )

if fi(
−→xi ) ≥ 0

1 + abs( fi(
−→xi )) if fi(

−→xi ) < 0
(9)

Step 3. Onlooker Bees: After calculating the fitness value and by obtaining information
from employed bees, a probability value pi is computed by using Equation (10), and this
value is then shared with the waiting bees in the hives for selecting food sources. These
bees are known as onlooker bees.

pi =
f iti
(−→xi
)

∑SN
i=1 f iti

(−→xi
) (10)

Step 4. Scout Bees: Employed bees that cannot raise their fitness values after multiple
repetitions become scout bees. These unemployed bees choose sources at random.

Step 5. Best Fitness: The best fitness value and the exact position with an associated
value are memorized.

Step 6. Termination Checking Phase: The program terminates upon meeting the
termination condition. If the termination condition may not be reached, the program goes
back to step 2 and repeats the process until it is.

InitilizationStart Employed Bee Onlooker Bee Scout Bee End 
Condition End

Yes

No

GRO

Figure 9. Flow Chat of ABC Algorithm.

Since ABC has only two control factors, colony size and maximum cycle number,
it is straightforward to set up, robust and customize-able. It is also possible to add and
remove bees without re-initializing the algorithm [80,81]. The disadvantage of ABC is that
additional fitness tests for new parameters are required to increase the algorithm’s overall
performance. It is also slow when a large number of objective function evaluations are
required [82]. Path planning for multi-UAVs [83], engineering design difficulties [84,85],
networking [86], electronics [87], scheduling [87], and image processing [87] are some of
the disciplines where it is used.

3.6. Glowworm Swarm Optimization

Glowworm Swarm Optimization (GSO) is a new SI based approach presented by Kr-
ishnanad and Ghose in 2005 [88,89] to optimize multimodal functions. In GSO, glowworms
are real-life tangible creatures. There are three key parameters in a glowworm m condition
at time t: a search space position xm(t), a luciferin level lm(t), and a neighbourhood range
rm(t) [88–90]. These variables change over time, whereas the glowworms are distributed
throughout the work area at random initially, and then the other settings are set using pre-
determined constants. It is similar to earlier algorithms, where three phases are continued
until the termination condition is reached. The three steps of [88] are luciferin level update,
glowworm migration, and neighbourhood range update. The fitness value of glowworm
m’s current position of luciferin level is updated by using the following equation:

lm(t) = (1− p) · lm(t− 1) + γJ(xm(t) (11)
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where p is the luciferin evaporation factor and J represents the objective function. For posi-
tion update in the search space, the following equation is used:

xm(t) = xm(t− 1) + s
(xn(t− 1)− xm(t− 1)
||(xn(t− 1)− xm(t− 1)|| (12)

where s is the step size, and ||.|| is euclidean norm operator. Exploration and exploita-
tion behaviours occur on the basis of xn and xm difference. Greater difference leads to
exploration and smaller to exploitation behaviour.

If a glowworm has several neighbours to choose from, one is selected using the
following probability equation and the glowworm m is the neighbour of glowworm n only
if the distance between them is shorter than the neighbourhood range rm(t):

pm(t) =
lm(t)− ln(t)

∑k∈Ni(t) lk(t)− ln(t)
(13)

The following equation is used to compute the neighbourhood range:

rm(t + 1) = min{rs, max[0, rm(t) + β(nd − |nm(t)|)]} (14)

rs represents sensor range, nd is the desired number of neighbours, |nm(t)| is several
neighbours of the glowworm m at time t, and β is a model constant. The diagram below
demonstrates two hypothetical scenarios in which agents developing methods result in dis-
tinct behaviours depending on the agents’ placement in the search space and the accessible
nearby agents. The glowworm’s agents are represented by i, j, and k. Figure 10a signifies
agent j’s sensor range, whereas rj

d denotes agent j’s local-decision range. The same is true
for i and k, where ri

s and ri
d, rk

s and rk
d respectively denote sensor range and local-decision

range. It is applied in the circumstances where agent i is in the sensor range of agent j and
k. Only agent j uses the input from agent i because the agents have different local decision
domains. Glowworm agents are a, b, c, d, and e in Figure 10b. The glowworm agents are
ranked 1, 2, 3, 4, and 5, depending on their luciferin values.

a

c d

e5

3

2

4

1

b

Local Decision Range

Glowworm

Local Decision 
Domains

Radial sensor 
range of agent k

Radial sensor 
range of agent j

j

k

i

(a) (b)

Figure 10. GSO in two different scenarios. The glowworm agents are a, b, c, d, e, f, i, j, and k. Three
agents with varied sensor ranges and local-decision ranges are shown in (a). It demonstrates how
agents gravitate towards agents with higher luciferin values when they are in the same local decision
as another agent. Glowworm agent’s rating is according to their luciferin levels, as shown in (b).
Lower numbers indicate greater luciferin values and vice versa [67].
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The following modifications can be considered to improve the performance of GSO.
(i) To include all agents in the solution, consider increasing the number of neighbourhoods.
When the best solution has been identified, all the agents can travel in the direction of the
agent which has the best solution, because more agents will be within the optimal solution
range and it will also increase the efficiency of exploitation; (ii) In the neighbourhood range,
smallest possible number should be selected to increase the convergence rate of GSO. Since
there are fewer calculations needed to estimate the probability and direction of the GSO’s
movement, this action may decrease the GSO’s processing time.

GSO is useful in situations when only a small sensor range is required. It can detect
many sources and can be used to resolve problems of numerical optimization [88–90]. It is
also inaccurate and has a slow convergence rate [91,92]. 3-Dimensional path planning [93],
self-organization based clustering scheme for UAVs [94], routing [95], swarm robotics [96],
image processing [97], and localization [98,99] difficulties have all been solved using GSO.

3.7. Cuckoo Search Algorithm

Yang and Deb in 2009 proposed Cuckoo Search Algorithm (CSA) as one of the most
current meta-heuristic techniques. The behavior of cuckoos, i.e., brood parasites, and the
properties of Levy flights [100] inspired this algorithm. Three steps are followed throughout
the implementation of this approach. First, in each repetition, each cuckoo lays one egg,
and the nest in which the cuckoo lays its egg is chosen at random by the cuckoo. Quality
eggs and nests are passed down from generation to generation in the second step. In the
third step, the number of possible host nests are fixed, and a host bird uses probability pa ε
[0, 1] to find a cuckoo egg. In other words, the host can either reject the egg or depart the
nest and start over. These three major criteria are used to present the specifications of the
acts taken in CSA. The following Levy flight equation is used to construct a new solution,
u(i + 1) [100,101]:

um(i + 1) = um(i) + ∂⊕ Levy(β) (15)

Levy ∼ s = t−1−β(0 < β < 2) (16)

The product ⊕ is an indication of multiplication, follows the same rules as entry-wise
matrix multiplication, and ∂ is the step size and, in most circumstances, ∂ = 1. The step
size begins with a large value and gradually decreases until the last generation, allowing
the population to converge on a solution, similar to the processes involved in reducing PSO
linearly. Yang [102] introduces the additional component as follows:

um(i + 1) = um(i) + ∂⊕ Levy(β) ∼ 0.01
s

|v|1/β
(un(i)− um(i)) (17)

where s and v are selected using the normal distribution, which is defined as follows:

s ∼ N
(

0, σ2
s

)
, v ∼ N

(
0, σ2

s

)
(18)

where;

σu =

⎧⎨⎩
(

γ(1 + β) sin
(

πβ
2

))
(γ[1 + β)/2]β2

β−1
2

⎫⎬⎭
1/β

, σv = 1 (19)

γ is the standard gamma function [102]. Exploration happens when the difference
between un and um is high, while exploitation occurs when the difference is minor.

Compared to other approaches, CSA offers the advantage of multi-model objectives
and requires fewer parameters to fine-tune them. It is used in a variety of settings, including
path planning for UAVs [103], neural networks [104], embedded systems [105], electromag-
netics [106], economics [107], business [108], and the Traveling Salesman Problem (TSP)
issue [109].
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4. Applications of Swarm Robotics

Swarm robotics is an emerging area of research and development that has yet to gain
significant industrial adoption. Still, academics have created a variety of platforms to test
and analyze the algorithm. In [110], the authors mentioned that they are researching for
future industrial platforms. Swarm robotics research (see Figure 11), and industrial efforts
& products (see Figure 12), are the two areas of the survey which will be discussed later.
Industrial projects and products are examples of deployment in a real-time scenario. The
swarm robotics research platform assists researchers in demonstrating, verifying, and ex-
perimenting with swarming algorithms in a laboratory setting. The four categories for
both platforms are terrestrial, aerial, aquatic, and extraterrestrial. Robotic vehicles include
Unmanned Submarine Vehicles (UUV), Unmanned Aerial Vehicles (UAVs), Unmanned
Surface Vehicles (USVs), and Unmanned Ground Vehicles (UGVs).

4.1. Research Platforms

This section includes the application from swarm algorithms to swarm robots. Ad-
vanced robotics research platforms, such as the balboa robot and others, exist but are not
included in Figure 11 because, they are not designed to use in swarm applications.

Environments

Terrestrial

Aerial

Aquatic

Outer Space

Robot-Type

UGV UAV USVUUV

Kilobots [1]

Jasmine

Alice

AMiR

Colias

Mona

R-One

Elisa-3

Khepera IV

GRITSbot E-Puck

Xpuck Thymio II Pheeno Spiderino I-Swarm

APIS

APIS

Wanda

Droplet

Swarm-bot

Swarmanoid

Termes Symbrion PolyBot

M-Tran III ATRON CONRO Sambot Molecube

Marsbee

CoCoRo

Monsun

CORATAM

Swarmies

MAV

Distributed
Flight
Array

Crazyflie 2.1

FINken-III

Figure 11. Classification of different research platforms for swarm robotics .

4.1.1. Terrestrial

The kilobot swarm is widely considered the best swarm of robots ever produced
for educational and research purposes. They are little, measuring 33 mm in diameter.
For propulsion, vibration motors are employed, and for communication, infrared light
reflected from the ground is used. For swarming, 1024 robots are used and they are
well-known for their capacity to self-assemble into various forms [111]. It is open-source
and commercially accessible through K-Teams. Jasmin, an open-source platform, was
created with a large-scale swarm investigation that required touch, proximity, distance,
and color sensors. Alice [112] is another platform, with additional sensors, including
a linear camera, increases the functionalities of swarming. Similarly, AMiR [113] and
Colias [114] are open-source and commercially available swarm robots that provide a
foundation for a number of research platforms. Mona is a commercial product as well as an
open-source initiative. However, R-One may be used as a swarm robotics platform since
it comes with a camera for ground-truth localization and software to connect all devices.
The swarming platform Elisa-3 incorporates an Arduino with eight infrared sensors, three
accelerometers, and four ground sensors, all of which can be charged by a charging station
and communicate through infrared or radio waves. The Khepera IV [115] was created for
indoor use. K-Team is a tiny and unique swarming research platform with a linux core,
color camera, WLAN, bluetooth, USB, accelerometer, loudspeakers, gyroscope, three RGB
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LEDs, and it is also commercially available. The GRITSbot [116] is an open-source robot
found at Georgia Tech’s Robotarium in Atlanta. Researchers can utilize the resources by
uploading code, performing experiments, and gathering data using Robotarium’s remote
access. As the size and quantity of these robots increase, more maintenance and usability
aspects become crucial.

The e-puck and its successor, the e-puck2, are designed to make programming and con-
trolling robot behavior simple for research and education. It includes an infrared proximity
sensor, a CMOS camera, and a microphone. Both commercial and open-source versions
are available. Its new edition, Xpuck, introduces new features, including aggregation of
raw processing power, which is used in current mobile system-on-chip (SoC) devices with
roughly two teraflops of processing power.

ArUco marker tracking in image processing computations is another example [117].
Similarly, Thymio II [118] swarm robots offer a range of sensors, including temperature,
infrared distance, microphone, and accelerometer. Visual and text-based programming are
also available. Thymio II is open-source and commercially available at Thymio, whereas
Pheeno [119] is also a free and open-source swarm robotics platform for teaching and
research. Custom modules with three degrees of freedom may be employed, and an IR
sensor is used to communicate with the outside world. The open-source and locomotion-
capable Spiderino [120] has six legs and has a hexapod toy-like design with an Arduino
CPU, WLAN, and some reflected infrared sensors on a PCB.

I-Swarm (Intelligent Small-World Autonomous Robots for Tiny-Manipulation) is a
swarming microrobot. Its sizes are 3 × 3 × 3 mm, and it is solar-powered without a source.
It travels by vibrating and communicates using infrared transceivers to establish a swarm
of 1000 robots [121]. The prototype is on exhibit at the technology museum in Munich.
The Zooids [122] human-computer interface is a novel type of HCI that handles interaction
and presentation. It was built as a unique open-source robotics platform. Light patterns pro-
jected from an overhead projector regulate the swarming of Zooids. The APIS, or adaptable
platform for an interactive swarm, comprises several components, i.e., the swarm’s infras-
tructure and testing environment, software infrastructure, and simulation [123]. The focus
is to experiment with human-swarm interaction. The platform uses an OLED display and a
buzzer. With the help of the swarm, clean up the environment Wanda [124] is a robotics
platform that might be useful. The authors have built the entire tool-chain from robot
design and simulation to deployment. Droplet [125], a spherical robot that can organize
itself into complex shapes with the help of vibration locomotion, is another ideal platform
for education and study. The powered floor, which features alternating positive charge
and ground stripes, has been used for both charging and communication between swarm
robots. Swarm-bots [126,127] may automatically align themselves to various 3D shapes.
Its design is open-source, and robots are made up of various insect-like shapes. They are
built with low-cost, readily available components. They can adapt to any environment
due to their self-assembling and self-organizing capabilities. The swarm can move heavy
goods that would be too heavy for individual robots. Swarmanoid and its successor, are
the first study of integrated design, development, and control of heterogeneous swarm
robotics systems. It is open-source, and includes three types of autonomous robots. Eye-bots
(UAVs that can stick to an interior ceiling), Hand-bots (UGVs that can climb), and Footbots
(UGVs that can self-assemble) are among the varieties of UAVs that are developed [128].
Surprisingly, the termes robots [129] interact without the need for communication or GPS to
build huge constructions using modular components. It is based on how termites construct
their nests in nature, and they are block-carrying climbing robots that can also construct
similar structures in unstructured situations. Other swarming platforms for research are
symbrion and replicator [130]. They are two projects that are pretty much identical in terms
of developing autonomous platforms for swarms. By physically connecting to each robot in
the swarm, they may function individually or in a certain form and the goal was to devise
a strategy for achieving robot organism evolvability. PolyBots [131] are self-configurable
robots that can move in many ways. They have interchangeable object manipulation mod-
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ules that may take on a variety of shapes depending on the situation, such as an earthworm
for slithering over barriers or a spider for marching through hilly terrain. These robots are
ideal for multitasking and usage in new areas. M-TRAN I [132], M-TRAN II [133], and M-
TRAN III [134] are self-configurable robotics technologies. ATRON [135], CONRO [136],
sambot [137], and molecube [138] are all open-source robotic systems and robots.

4.1.2. Aerial

Miniature and micro unmanned aerial vehicles (μUAVs) for swarming are affordable
robots available for research and education [139] and Swetha et al. [140] both look into
small-scale UAVs. Several off-the-shelf Micro Air Vehicles (μAVs) are available and famous in
the gaming and commercial industries. Three rate gyroscopes and three accelerometers are
used in UAVs developed for swarming robots in μAVs in [141], together with one ultrasonic
sensor and four IR sensors. The Distributed Flight Array [142] is a popular platform used to
construct swarmanoid [128] on it. Each UAV adds a single rotor to a big array. The module
self-assembles into a multi-rotor system, in which all robots must exchange coordinates and
local parameters for coordinated flying. Crazyflies [143], which are available commercially
and open-source at Bitcraze, make use of a variety of sensors, including a high-precision
pressure sensor, an accelerometer, a magnetometer, and a gyroscope. It can conduct
experiments while minimizing the risk to humans because of its light weight of about 27 g.
In FINken-III [144], is a powerful copter equipped with a better communication module
(802.15.4) to communicate between ground station and other copters , and sensors like
optical flow, infrared distance, and four sonar sensors.

4.1.3. Aquatic

The Collective Cognitive Robotics (CoCoRo) project has been developed with 41 het-
erogeneous Unmanned Underwater Vehicles (UUVs). Electric fields and sonar sensors are
used to communicate, and the system applies to environmental monitoring, water pollution
assessment in rivers and oceans, and global warming consequences. The Monsun [145] has
two communication modes: a camera for identifying other swarm members and an under-
water acoustic modem for transmitting data. CORATAM (Control of Aquatic Drones for
Maritime Tasks) [146] has also been developed for swarms of USVs, with uses such as sea
border patrols, marine life localization, and environmental monitoring. This open-source
platform uses evolutionary computing to evaluate swarm methods [147].

4.1.4. Outer Space

NASA has developed swarmies to gather water, ice, and minerals on Mars. They have
also established a swarmathon to aid academics in developing an ant-based swarm algorithm.
In-situ Resource Utilization (ISRU) is the name given to this application. Twenty swarmies
cover a distance of 42 km in around 8 h. Another NASA Innovation Advanced Concept (NIAC)
program project aims to enrich knowledge on the Mars exploration swarm of Marsbees [148].
These have the size of the bumblebee for robotics flapping wing flyers. They can explore
and discover themselves in an unfamiliar place. With NIAC financing, a flapping flyer with
insect-like wings will be offered as a technical implementation.

4.2. Industrial Projects and Products

These include UAV, UGV, UUV, and USV swarm robots developed for industrial
projects and products. The available robot with respective type has been shown in Figure 12.

4.2.1. Terrestrial

Agriculture is essential to a country’s growth. Food demand is growing, but the
output is still insufficient [149]. SwarmBot 3.0 is being used to monitor fields autonomously
using Unmanned Ground Vehicles (UGVs). Before beginning the specified task, this swarm
collaborates via a centrally controlled timetable. The large area is automatically subdivided
into smaller fields and then allocated to an individual robot in the swarm [150]. Their tasks
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include sowing, applying fertilizers to the assigned areas, harvesting, and irrigation which
is the requirement of the agriculture sector. Another fascinating innovation from the Fendt
firm is the UGV Xaver, which is used for seeding and is powered by a battery [151].

Environments

Terrestrial

Aerial

Aquatic

Outer Space

Robot-Type

UGV UAV USVUUV
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Swarm Cluster II

Figure 12. Classification of different industrial projects and products of swarm robotics.

The GUARDIANS (Group of Unmanned Assistant Robots Deployed in Aggregative
Navigation by Scent) [152] has been used for emergency and rescue missions. They are
used in places where human presence is prohibited or where the environment severely
impairs human senses. This project assists in searching and warns against toxic chemicals
using mobile communication links. They can form and navigate using potential fields and
achieve the assigned task without explicit communication between the robots.

Another autonomous Ocado [153] warehouse has been developed that has a swarm of
homogeneous cuboids and is being utilized for grocery orders and dispatching. A total
of 1100 collaborative swarms of robots are used for the order and dispatch, where the
workers put the customer order together. Robots are controlled from a central location by a
cloud server, and data are exchanged via cellular technology between the robot and the
cloud. Amazon [154], which employs Kiva, is the most prominent player in the swarming
of robots in warehouses. An A* algorithm (with visual tags on the ground) searches for
humans who assemble the customer’s order. WLAN is used for the communication of
robots, and dispatching is organized centrally. A low battery of robots is handled by the
charging stations automatically. Alibaba [155] retailers are using a similar system for the
autonomous order of goods and dispatching.

4.2.2. Aerial

The OFFSET (OFFensive Swarm Enabled Tactics) [156] projects are mostly deployed
in military applications, although they can also be applied in other situations. This project
aims to improve intra-city observations using UAVs and UGVs. These swarms of robots
are capable of detecting hazards from the surroundings. Perdix [157], a military application
swarm supported by the business. It is capable of performing its tasks without human
piloting and has the ability to communicate with other drones to work collaboratively and
achieve a common goal. These drones operate in a swarm of 20 or more and coordinate
their actions to accomplish the desired outcome. Pentagon consisting of 103 drones, is
another military application swarm. This swarm is not controlled by a single leader and
can adapt to UAVs. They can fly in formation and make decisions as a group, making
them useful for covert operations and targeted assassinations. The autonomous swarm
is developed to install and manage WLAN network [158] as part of the Swarming Micro
Air Vehicle Network (SMAVNET) project [159] in the emergency and rescue application
sector. The project aims to gather rescue teams when disaster places have been explored
and located. SWARMIX [160] is a similar search and rescue initiative in which a swarm
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of heterogeneous agents, such as humans, dogs, and Unmanned Aerial Vehicles (UAVs),
create a swarm and engage in a search and eventually rescue operation.

Using a swarm of autonomous aerial vehicles, the Swarm robotics for Agricultural
Applications (SAGA) project [161] seeks to do weed-spread monitoring and mapping.
A swarm’s fitness is decided by trade-off exploration and weed detection time in smart
farming. Weeds and plants are detected and identified using a visual approach.

Nowadays, swarms are also providing entertainment in terms of light shows. The UAVs
are equipped with colorful LEDs and perform the formation of different patterns accom-
plished by music to create a beautiful scene. In Spaxels, Flyfire, Ehang, Intel [162], and Lucie
micro, 1000 Unmanned Aerial Vehicles (UAVs) are controlled from a central location and
follow pre-programmed patterns.

4.2.3. Aquatic

Swarms are commonly used in aquatic environments to monitor the environment.
Platypus [163] offers autonomous swarm robotics boats as USVs. They are utilized to
keep track of water quality, produce a dense map of defined bodies beneath the surface,
and stratify salinity and oxygen levels. Apium Data Diver is a prototype vehicle with a
maximum depth of 100 m. It is meant for swarm operations on the surface and underwater,
with temperature, pressure, and GPS among the sensors on board. It finds its application
areas in defense, oceanography, hydrographic survey, and aquaculture. This type of swarm
can be found in UUVs and USVs. It can accept high-level commands from a human
operator and build a wide range of patterns [164]. Hydromea’s Vertex Swarm is available in
UUVs and can assess water quality in various places up to 300 m deep. It generates 3D
data with great spatial and temporal resolution that is faster and more precise than manual
approaches. The major purpose of the SWARMs (Smart Networking Underwater Robots in
Cooperation Meshes) project [165] is to develop surface and underwater vehicles that can
operate in maritime and offshore operations. It is responsible for designing and developing
software and hardware components for the next generation of maritime vehicles, as well as
assisting in the improvement of autonomy, robustness, cooperation, dependability, and cost-
effectiveness. It uses offshore installations, chemical pollution monitoring, and plume
tracking. Research focus lies on reliable underwater communication [166] and leveraging
topology control [167].

The military has employed the CARACaS software kit, which is used in aquatic
environment. NASA developed CARACaS (Control Architecture for Robotic Agent Com-
mand and Sensing), which has now been upgraded by ONR (Office of Naval Research)
for autonomous Navy operations in the United States where USVs communicate with
one another [168]. It enables USVs to choose their courses, protect assets in the navel,
and intercept enemy boats as a group. In a demonstration at the James River in Virginia in
2014, CARACaS was installed on rigid-hulled boats and proved to be magnificent and suc-
cessful [169]. Based on the discoveries of the CoCoRo, Submarine Cultures (SubCULTron)
conduct long-term robotic exploration of unusual environmental niches. It is used on UUV
robots to assess factors such as learning and self-sustainability.

4.2.4. Outer Space

Swarm was launched in 2013 and is made up of three identical spacecraft, two of
which are side-by-side at 450 km and the third at 530 km above the ground. The mission of
each satellite was to research the earth’s magnetic field, and each was nine meters long [169].
Cluster II is a tetrahedral arrangement of four identical cylindrical spacecraft that was
launched in 2000. It was initially capable of sending three-dimensional solar wind data on
the earth’s magnetosphere to investigate the sun’s influence on the environment [170].
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5. Swarm Robotics: Past, Present and Future Perspective

Social insects, fish schools, and bird flocks are examples of naturally self-organizing sys-
tems that display emergent collective behavior based on simple local knowledge [171,172].
Swarm robotics emerged as a branch of swarm intelligence, or the computational modeling
of collective, self-organizing activity, which has yielded many successful optimization
methods [173,174] that are now used in fields ranging from telecommunications [175] to
crowd simulation, and prediction [176]. In contrast, swarm behavior in robots necessitate
the installation of swarm intelligence algorithms on current robotic systems. Because of
the expected ubiquity of autonomous robots in real-world applications and the challenge
of allowing them to interact with one another and with their human users while avoiding
the drawbacks of centralized control, swarm robotics research is gaining traction. Swarm
robotics research will be crucial in addressing complex coordination problems in future
robotics applications. It includes cooperative (i.e., robots working together to complete a
common task) and semi-cooperative (i.e., self-interested robots benefiting from a globally
efficient organization of activities, such as autonomous vehicles) scenarios. In the future,
it will become a new and powerful tool in precision medicine, allowing for personalized
therapies such as minimally invasive surgery or direct polytherapy delivery to malignant
cells inside the human body [177,178]. Large numbers of robots with limited computation
and communication capabilities, on the other hand, will push swarm robotics to its limits,
necessitating the development of new conceptual tools in addition to tiny hardware or
robotics devices [179].

In lab settings, robot swarms are shown using a small number of tiny robots [128,180].
Although technology advancements are pushing the bounds to ever-smaller sizes [177,181]
and greater numbers [6,7], but the road to real-world applications remains lengthy and
arduous. For example, group scale, from a few dozen to millions of people constituting the
swarm and physical scale, from micro/nanorobots to massive terrestrial, aerial, and aquatic
robots. Swarms that display prompt intervention and adaptability in a quickly changing
environment to robots that work on months-long missions are examples of temporal scale
(e.g., on a distant planet) from small-scale deployments to large-scale deployments and
geographical scale. Previous, current, and future robotics achievements in terms of software,
hardware, or a combination of the two are explained in the Table 1. Figure 13 shows the
evolution of swarm robotics, to the best of our knowledge, from algorithmic research to the
real-time best-performing swarm of robots.
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Figure 13. Evolution of swarm algorithms and swarm robotics.
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6. Conclusions

Swarm robotics aims to develop simple, autonomous or self-governing robots that
can cooperate to solve real-world problems collectively. Intelligent swarm algorithms are
needed to enable the robots to interact autonomously and coordinate together without
centralized control. The research on the swarm robotics domain started in the late 1900s,
and the development work started in the early 2000s, gradually evolving the previous
research and simulation work towards the actual real-world projection of swarm robotics.
But there is a gap between theoretical and industrial research in swarm robotics. Theoretical
research mainly focused on simulating swarm behaviours, while industrial research focuses
on designing hardware that can execute swarm behaviour. Therefore, it is crucial to deploy
swarm algorithms on hardware that can accommodate swarm behaviour functionality.

This article provides a comprehensive overview to new researchers of the swarm
robotics field. It classifies the definition of swarm robots and identifies the difference
between a multi-agent system and an actual swarm of agents. A detailed review of the
swarm’s most emerging swarm behaviors, and swarm intelligence algorithms is captured,
keeping in view the limitation and the transformation towards the industrial application
and development of the swarm robotic platform. In addition to the industrial applica-
tion, this paper reviewed several research hardware platforms specifically designed to
demonstrate or replicate any swarm behaviour. Finally, this paper concludes by reviving
the era of swarm robotics from the past, present, and future projections with expected
timelines of evolving the system and having real-world application, agnostic of swarm
robotics platforms.

This article provides valuable insights for researchers in swarm robotics by highlight-
ing various areas of research gaps, including algorithmic and hardware implementation.
It emphasizes the importance of addressing these gaps to enable effective collaboration
among robots. Researchers can bridge the gap between theoretical and industrial research
in swarm robotics, leading to advancements in the field.

Author Contributions: M.M.S.: contributes to the main part of the research focused on the hardware
including the swarm of robots, their limitations, future projections, and the overall organization of
the paper structure. Z.S.: researched on swarm intelligence algorithms, swarm behaviors, and paper
formatting. A.A.: review, rewriting, formatting and editing of the paper. H.M.: Supported in the
review of industrial application, abstract, and conclusion. M.H.Y.: researched on the era of swarm
robotics, allied applications and future projections. N.K.B. & F.H.: co-supervision of research work,
paper reviewing, editing and structural guidance. All authors have read and agreed to the published
version of the manuscript.

Funding: We acknowledge the Higher Education Commission (HEC) of Pakistan, for funding this
project through a grant titled “Establishment of National Centre of Robotics and Automation (NCRA)”
under Grant DF-1009-31.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors acknowledge the funding and support from National Centre of
Robotics and Automation (NCRA) Pakistan for this research work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm robotic behaviors and current applications. Front. Robot. AI 2020,
7, 36. [CrossRef] [PubMed]

2. Arnold, R.; Carey, K.; Abruzzo, B.; Korpela, C. What is a robot swarm: A definition for swarming robotics. In Proceedings of the
2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY,
USA, 10–12 October 2019; pp. 74–81.

3. Dorigo, M.; Theraulaz, G.; Trianni, V. Reflections on the future of swarm robotics. Sci. Robot. 2020, 5, eabe4385. [CrossRef]
[PubMed]

4. Floreano, D.; Mattiussi, C. Bio-Inspired Artificial Intelligence; MIT Press: Cambridge, MA, USA, 2008; Volume 5, pp. 335–396.

89



Drones 2023, 7, 269

5. Maxim, P.M.; Spears, W.M.; Spears, D.F. Robotic chain formations. IFAC Proc. Vol. 2009, 42, 19–24. [CrossRef]
6. Rubenstein, M.; Cornejo, A.; Nagpal, R. Programmable self-assembly in a thousand-robot swarm . Science 2014, 345, 795–799.

[CrossRef] [PubMed]
7. Slavkov, I.; Carrillo-Zapata, D.; Carranza, N.; Diego, X.; Jansson, F.; Kaorp, J.; Hauert, S.; Sharpe, J. Morphogenesis in robot

swarms . Sci. Robot. 2018, 3, eaau9178. [CrossRef]
8. Carrillo, D.; Sharpe, J.; Winfield, A.F.; Giuggioli, L.; Hauert, S. Toward controllable morphogenesis in large robot swarms. IEEE

Robot. Autom. Lett. 2019, 4, 3386–3393. [CrossRef]
9. Bayındır, L. A review of swarm robotics tasks. Neurocomputing 2016, 172, 292–321. [CrossRef]
10. Sion, A.; Reina, A.; Birattari, M.; Tuci, E. Controlling robot swarm aggregation through a minority of informed robots. In

Proceedings of the Swarm Intelligence: 13th International Conference, ANTS 2022, Málaga, Spain, 2–4 November 2022; Springer:
Cham, Switzerland, 2022; pp. 91–103.

11. Ducatelle, F.; Di Caro, G.A.; Förster, A.; Bonani, M.; Dorigo, M.; Magnenat, S.; Mondada, F.; O’Grady, R.; Pinciroli, C.;
Rétornaz, P.; et al. Cooperative navigation in robotic swarms. Swarm Intell. 2013, 8, 1–33. [CrossRef]
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Abstract: Rapidly completing the exploration and construction of unknown environments is an
important task of a UAV cluster. However, the formulation of an online autonomous exploration
strategy based on a real-time detection map is still a problem that needs to be discussed and op-
timized. In this paper, we propose a distributed unknown environment exploration framework
for a UAV cluster that comprehensively considers the path and terminal state gain, which is called
the Distributed Next-Best-Path and Terminal (DNBPT) method. This method calculates the gain
by comprehensively calculating the new exploration grid brought by the exploration path and the
guidance of the terminal state to the unexplored area to guide the UAV’s next decision. We propose
a suitable multistep selective sampling method and an improved Discrete Binary Particle Swarm
Optimization algorithm for path optimization. The simulation results show that the DNBPT can
realize rapid exploration under high coverage conditions in multiple scenes.

Keywords: exploration of unknown environment; UAV cluster; sampling and optimization; distributed
path planning; particle swarm optimization

1. Introduction

At present, unmanned aerial vehicles (UAVs) are widely used to perform tasks in
various environments, especially in complex and unknown scenes. One of the typical tasks
is to explore an unknown environment, which is widely used for search [1,2], rescue [3,4],
and dangerous area reconnaissance [5]. Unknown environment exploration means that
UAVs or a UAV cluster can make decisions on their own actions in real-time by relying
on their detection equipment under the condition that there is no prior environmental
information to achieve a fully independent construction of highly saturated environmental
information. Compared with other missions, unknown environment exploration lacks
prior map information. It is crucial to set the autonomous strategy of the exploration action
to complete the environmental construction of the whole region as soon as possible. The
coordination in the cluster and avoidance of repeated exploration must also be considered.

The traditional exploration of unknown environments adopts the ploughing method
for complete coverage path planning [6], but it only aims at specific conditions [7] with-
out obstacles in the environment. When encountering obstacles, the ploughing method
adopts a simple wall-following strategy [8] to avoid sudden obstacles in the path, which
also has great limitations. Yamauchi initiated a frontier-based exploration strategy [9]
and extended it to multiple robots [10], which is considered to be an important classical
method for unknown environment exploration. The frontier is defined as the boundary
between the unexplored grid and the explored grid while excluding the explored obstacle
grid. The frontier-based method obtains exploration information by navigating the robot
to the frontier grid. Many of the most advanced methods are based on frontier-based
exploration [11–13]. Ref. [14] developed a frontier-selection strategy that minimizes the
change in velocity necessary to reach it to achieve the high-speed movement of quadrotors.
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Ref. [15] proposed a hierarchical planning framework based on frontier information (FIS),
enabling a UAV cluster to quickly explore indoor environments.

The sampling-based method is another particularly effective method for exploration.
The central idea is to calculate the information gain of the sampled state and select the best
one to execute, which can adapt to various gain calculation forms and has strong flexibility.
The sampling-based method is also combined well with the frontier-based method. For
example, the SRT [16] algorithm drives the motion update of the robot through sampling in
the sensor safety space and the selection of random exploration angles. The Next-Best-View
(NBV) [17,18] is an exploration method introduced from 3D reconstruction and has become
a widely used sample-based exploration method. Authors in [19] proposed the Reced-
ing Horizon Next-Best-View, combining NBV with a path planning algorithm similar to
RRT [20] and RRT* [21], and obtained a fine effect in indoor exploration and reconstruction
mapping. Authors in [22] proposed a UFO exploration method. Based on the rapidly up-
dated map format called the UFO Map, the maximum information gain was not considered
but adopted the nearest point with the information gain as the exploration decision, which
achieved the effect of rapid exploration at a small cost of computing resources. In addition,
exploration methods based on machine learning are also considered to have great potential,
and many scholars are conducting relevant research [23–25]. However, its engineering
applications for unknown environment exploration are still relatively few, and it performs
poorly in the generalization ability to different environments, which still needs further
exploration and research [26,27].

For large scenes, such as in underground garages or large factories, to ensure that
the task can be completed quickly, the cluster is generally used. For the exploration of
the environment of a robot cluster, the distributed cluster structure is considered to be
better in this scenario [28]. It can not only avoid excessive pressure on central computing
resources but also flexibly handle the impact of poor communication in the cluster or
sudden failures [29–31] to minimize efficiency loss. However, for distributed clusters,
designing the exploration strategy of each platform to avoid repeated exploration and
complete the exploration quickly under the premise of cluster collision avoidance is still a
difficult problem.

The above method seems to simply consider the state of the next step to calculate its
gain, but the impact of its motion process on the exploration is considered to be negligible,
especially when the sensor is limited by the field of view (FOV) or is in the area near the
obstacle, and at the same time, dynamics should be considered to increase the efficiency.
Therefore, this paper proposes a distributed exploration framework for unknown environ-
ments considering the path and terminal gain. In this framework, multiple exploration
paths are obtained by considering the dynamic constraints of the state sequence, and the
optimal path is obtained by using optimization methods. The evaluation factors include the
energy loss of dynamics, the growth of map exploration in the path process, the benefits of
the terminal state to the next exploration, and collision avoidance in the cluster. The paths
are planned for a period of time in the future and take the frontmost path to implement
until the exploration coverage of the entire cluster meets the requirements. To ensure
the efficiency of online planning, a multistep selective optimal sampling method, a gain
calculation method of path exploration, and an efficient improved Discrete Binary Particle
Swarm Optimization (BPSO) algorithm are given. The results show the effectiveness and
superiority of the algorithm in the exploration of unknown environments of a UAV cluster
in multiple scenes.

The contributions of this paper are as follows:

1. A Distributed Next-Best-Path and Terminal framework for real-time path planning
for UAV cluster unknown environment exploration.

2. A multistep selective sampling method for the initial generation of the exploration
path with the calculation method of progress and terminal gain.

3. An improved Discrete Binary Particle Swarm Optimization algorithm to generate the
best exploration path.
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The remainder of this paper is organized as follows: Section 2 describes the problem of
unknown environment exploration and introduces our distributed unknown environment
exploration framework and the construction of the specific model. Section 3 discusses
the multistep selective sampling method we propose and the improved BPSO algorithm
of the optimal path solution. Section 4 presents the simulation to verify the algorithm
performance. Section 5 gives a summary and introduces further work.

2. Framework and Model Establishment

2.1. System Framework

In an unknown environment, the UAV cluster detects and builds the map using its own
sensors and independently plans the next path or action according to the real-time built
map. In the exploration process, UAVs intercept the global map separately at the ground
station and generate a local map for prediction and planning, while the new environmental
data obtained in the movement are sent to the ground station for the global map update.
The map is in the form of a grid map. Each grid has three states: unknown, known free,
and known obstacle. Position and attitude messages can be obtained for planning cluster
collision avoidance through communication.

For each individual in the UAV cluster, the critical factors for the decision behavior
include two aspects: the new situation of the possible exploration map after the path is
executed and the advantage of the terminal of the path for the next exploration action.
Among them, the map change comes from the increment in the grid in the unknown state
to the known state, which is calculated by the fast approximate method mentioned below.
Considering the tendency of the terminal state to the unexplored area and referring to the
generation method of the frontier, the frontier closest to the current position is generated
from the map before the path is executed, and the terminal state closer to the frontier
after the path is executed is considered the better terminal. Other factors that must be
considered in cluster exploration include path obstacle conflict, path energy loss, and
collision avoidance in the cluster, as shown on the right side of Figure 1.

 
Figure 1. Distributed Next-Best-Path and Terminal exploration framework.
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The left side of Figure 1 shows the DNBPT framework we propose. We set a prediction
horizon as the time domain for each plan and plan the series paths of the UAV with a fixed
length. We take a multistep sampling and preferential growth method, sample in a limited
state space, and inversely calculate the dynamic path through the terminal state to obtain
the path and terminal state. Considering the factors mentioned above to evaluate, we
select a certain number of action sequences with high evaluation. Due to the nonoptimal
solution by limited sampling, the series of paths obtained is used as the initial solution
of the improved BPSO algorithm to further optimize and finally obtain the optimal path
and terminal sequence. The controller responds to the first step of the optimal sequence to
address sudden obstacles or other situations in the actual movement. In this framework,
UAVs can join or leave the exploration mission freely without causing disorder in the
whole system.

2.2. Exploration Model in Unknown Environments

The dynamics of the UAV have the property of differential flatness [32]. In the planning
process, the flat output s =

[
px, py, pz, ϕ

]T is used as the planning quantity to reduce the
planning dimension and improve the timeliness. px, py, pz is the position of the UAV and ϕ
is the yaw angle.

The obtained detection area is fitted with the local grid map to obtain the index of the
grid map and bring it into the global map, as shown in Equation (1).

Grid(Mapnew) = Grid(explored) ∪ Grid(Mapold) (1)

Assume that k is the length of the prediction horizon and Sk = [s(t + 1|t), . . . , s(t + k|t)]
is the state sequence in the prediction horizon as the input of the predictive map update
and the evaluation function.

The UAV carries sensors with an observation field of view (FOV) to detect environ-
mental information. In this paper, the sensor mapping algorithm is not considered, and it
is assumed that the sensor can obtain the environment information within the angle range.
The sensor can be equivalent to a sector, and its detection range within the prediction
interval can identify the trajectory of the sensor’s sector area driven by the k segment
control for integration, as shown in Equation (2), where G(◦) represents the processing
program of the region on the grid map and Nincrease represents the number of new grids.

Nincrease =
k

∑
i=1

G
(∫ li+1

li
sector(FOV) dl

)
, FOV ∈ (0, π] (2)

Due to the complexity of the integral calculation and the grid form of the map, we
propose a simplification to predict the update of the map and calculate the number of new
detection grids, as shown in Figure 2. The sampling range and time interval are limited
to ensure that the state falls in the previous detection sector. For a state Si in the terminal
state sequence Sk, we connect the two points Pi−1 and Qi−1 of the previous sector and the
two points Pi and Qi of the current sector. A convex quadrilateral is formed, and each
convex quadrilateral is connected. The obtained convex quadrilateral is placed into the
local map to calculate the number of new exploration grids as the evaluation basis of the
path-terminal sequence, as shown in Equation (3).

Ñincrease = G

(
k

∑
i=1

Ai(Pi−1Qi−1PiQi)

)
(3)

This equivalent method improves the calculation efficiency to support online UAV planning.
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Figure 2. Detection model and approximate calculation of grid increase.

2.3. Construction of the Evaluation Function

In the process of exploring the unknown environment, the form of the solution is the
terminal state sequence of the predicted horizon and the path between the state transitions.
Its optimality evaluation includes two aspects: the path and the terminal state.

First, the path needs to be checked for obstacle conflicts, and it is necessary to ensure
that the planned path of the cluster will not collide with the obstacles that have been
explored. The path points in the process are extracted by interpolation, and the obstacle is
checked in the grid map. The results are accumulated for the evaluation function value, such
as Equation (4). Note that this is not applied in sampling but in the optimization algorithm.

J0 =

{
−100, collision

0, collision free
(4)

In the action space, under the constraint conditions, the average energy consumption
of the action sequence is smallest, as shown in Equation (5), where dim (u) is the dimension
of the action space.

J1 = 1−
∑k

i=1 ∑ uT
i diag

(
1

umax2

)
ui

k ·dim(u)
(5)

To ensure the continuity and smoothness of the front and back actions, it is necessary
to minimize the front and back deviation of each step in the action sequence, as shown in
Equation (6):

J2 = 1−
∑k

i=0 ∑l
j=0
‖uj+1−uj‖
‖uj+1‖

k
(6)

The exploration of unknown space during the UAV’s movement brings gain. The
calculation method of the number of new exploration grids is proposed above, and the
evaluation function is shown in Equation (7). Nre f erence refers to the number of exploration
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grids in the ideal state. The calculation method is shown in Equation (8), where r is the
sensor detection distance, d is the fixed maximum distance for sampling, and rev is the map
resolution (magnification).

J3 =
Ñincrease
Nre f erence

(7)

Nre f erence = 2krd sin
(

Fov
2

)
rev (8)

Because the environment is unknown, the exploration gain under different paths
may be similar. In the later stage of the exploration process, it may occur that the UAV’s
surrounding environment has been completely explored. It is easy to fall into the local
optimum, causing invalid and repeated paths. Therefore, the guidance of other factors is
needed to enable the UAV to move in the direction that the gain may increase. The rating
function of this part is shown as Equation (9):

J4 = 1− e
1−‖s0−sr‖
‖sk−sr‖ (9)

where sk is the state at moment k, s0 is the initial state, and sr is the reference guidance state.
We use frontier coordinates and straight orientation as references in this paper, and the
frontier is rapidly generated through the edge detection of OpenCV.

To improve the exploration efficiency of the cluster, the UAVs should be distributed as
far as possible. Therefore, the evaluation function is designed for the terminal state, as in
Equation (10), where rs is the set safety distance and n is the number of UAVs in the cluster.

J5 = ∑
rs

(n− 1)·‖srobot
(

px, py
)
− sother

(
px, py

)
‖ (10)

Based on the above evaluation factors, the total evaluation functions used in selective
sampling and improved BPSO, respectively, are designed as Equations (11) and (12), respectively:

Jsampling =
5

∑
j=1

ωj Jj (11)

JiBPSO = J0 +
5

∑
j=1

ωj Jj (12)

where ωjε[0, 1] is the weight value, which can be adjusted according to the actual situation,
while ∑5

j=1 ωj = 1.

3. Method and Algorithm

3.1. Multistep Selective Sampling Algorithm

To make UAVs better adapt to unknown environments, planning is often performed
in multiple steps. Planning the multipath within a certain planning horizon and executing
the first segment of the optimal path are needed. In the calculation process, the number
of samples will increase exponentially with the increase in the number of segments in the
planning horizon, and the calculation cost is unaffordable. Therefore, we design a multistep
selective sampling method. During each round of sampling, we sample the sequence with
high current evaluation in the next step. The pseudocode of Algorithm 1 shows more
details of the multistep selective sampling method.

An empty set X saves path and terminal sequences with lengths less than k, and an
empty set F saves sequences with lengths equal to k. In the sampling space under the
constraint conditions, m terminal states are randomly taken to be composed on the initial
state as the initial sequence, and then the loop begins while the sequence gradually grows.
In each loop, the best n solutions in the set X are selected for the next step of sampling.
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Each solution also takes m states randomly in the updated sampling space based on the
current state to make the sequence grow and update these sequences in X . The sequence
with a length of k is placed in F and will not be selected again for the next sampling. When
the evaluation value of the n th better sequence in F is greater than the best evaluation
value of the sequence in X , the sampling process is finished.

After multistep selective sampling, n path and terminal state sequences are obtained
as the basis of the next optimization algorithm.

Algorithm 1 Multistep selective sampling

Input: Grid Map, initial state x0, sample space U , other states xothers
Parameters: planning horizon k, number of samples m, n, safe distancers
Output: aggregate of terminal state sequence Xn

k with path
update U
X , F ← ∅

sampling random m in U , generate Xn
1 , X ← Xn

1
while X is not empty

select the best m sequences with length <k
update U
uniform sampling m in U based on the selected sequences Xn

i , i ∈ [1, k− 1]
Xn

i ·Xn
i+1

update the evalution value of Xn
i //according to the Equation (11)

if i < k then X ← Xn
i

else F ← Xn
k

if the nth best X in F better than the best X in X then

break

select the best n in X as output

3.2. Improved Discrete Binary Particle Swarm Optimization Algorithm

To select the optimal path from the generated multiple paths, we propose an optimal
path selection method based on improved BPSO. We propose a mutation strategy to
increase the diversity of the population, which can help the particle swarm jump out
of the local optimum trap. In addition, we introduce a contraction factor to ensure the
convergence performance of the algorithm [33], which controls the final convergence of
the system behavior and can effectively search different regions. This method can obtain
high-quality solutions.

The velocity and position update formulas of the particle swarm after introducing the
contraction factor is shown as Equations (13) and (14), respectively:

vt+1
id = λ

(
vt

id + c1r1
(

pbestt
id − xt

id
)
+ c2r2

(
gbestt

id − xt
id
))

(13)

xt+1
id = xt

id + vt+1
id (14)

where λ represents the shrinkage factor, as shown in Equation (15), t represents the current
iteration number, c1 and c2 are the learning factors [34–36], r1 and r2 are two random values
uniformly distributed in [0, 1], and pbestid and gbestid represent the individual optimal
position and the global optimal position of the particle, respectively.

λ =
2∣∣∣∣2− (c1 + c2)−

√
(c1 + c2)

2 − 4 ∗ (c1 + c2)

∣∣∣∣ (15)

Our mutation strategy introduces the idea of the dMOPSO [37] algorithm, and age is
used to represent the number of times that the individual optimal position (pbest) of the
current particle has not been updated continuously in the loop. When the local optimal
position of the particle has not been updated for a long time, it means that the particle
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is likely to have fallen into the local optimal position, and it is necessary to perturb the
particle. The specific perturbation example is shown in Figure 3.

do

Figure 3. Perturbing the particles that have been in the local optimum for a long time.

The state of particles is converted into binary form. In each coordinate, a bit of the
position is randomly selected for the mutation operation. After the mutation operation,
the particle’s age is reset to 0. If the particle’s age does not reach the age threshold, only
the particle’s age is increased. The pseudocode of the mutation operation is shown in
Algorithm 2:

Algorithm 2 Mutation strategy

Input: Pop(swarm), Pbest, N(size of the population), Ta(threshold of age)
Output: NewPop(new swarm)
for i = 1 : N do

if age(Pi) > Ta then

Pi
′ ← Mutation(Pi)

Fitness← CalculateFitness(Pi) //according to the Equation (12)
if fitness(Pi

′) > fitness(Pi) then

Pi = Pi
′

age(Pi) ← 0
else

age(Pi)← age(Pi) + 1
end if

end for

return NewPop

The proposed improved BPSO algorithm is mainly divided into two stages. The first
stage is the initialization stage. We encode and initialize the particle swarm according to
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the input path information, randomly initialize the speed and the age of the initialization
particle, and finally calculate the fitness value of the particle. The second stage is the main
loop stage. When the particle’s age exceeds the age threshold, the mutation operation is
performed. The loop is finished when the termination condition is met. The final returned
Gbest is the optimal sequence of terminals with paths. The pseudocode of the Algorithm 3 is:

Algorithm 3 Improved DBPSO

Input: original Pop, size of the population N, maximal generation number maxgen
Output: Gbest (optimal sequence of terminal state with path)

P← InitializeParticles(N)
Age← InitializeAge(N)
Fitness← CalculateFitness(N)
While NCT (Number of current iterations) <= maxgen do

for i = 1 : N do

Gbest←SelectGbest(Pop)
Pop← Updateparticles(N) //according to the Equations (13)–(15)
NewPop ← Mutation(Pi)
Fitness← CalculateFitness(N) //according to the Equation (12)
Pop← NewPop

Gbest ← SelectGbest(Pop)
end for

end while

return Gbest

4. Simulation and Analysis

4.1. Simulation in Fixed-Obstacle Scenes

We design three indoor scenes with fixed obstacles of different sizes based on the
interior of the building, and the number of UAVs in each scene is different. Due to the
indoor scene, we assume that the UAV is flying at a fixed altitude. The sizes of the scene
are 20 m long and 50 m wide, 50 m long and 50 m wide, and 100 m long and 100 m wide,
respectively. The numbers of UAVs are 3, 4, and 5. For each scene, simulations of a fixed
initial state and a random initial state are carried out. The initial states of all scenes are
shown in Figures 4a, 5a, 6a, 7a, 8a and 9a. More detailed parameters about the scenes and
algorithm are shown in Tables 1 and 2.

   
(a) (b) (c) 

Figure 4. Simulation results of the fixed initial state in Scene I. (a) The initial state of the simulation
and the obstacle; (b) the situation at a certain moment (10.8 s) in the exploration process; (c) the
situation of exploration results.
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(a) (b) (c) 

Figure 5. Simulation results of the random initial state in Scene I. (a) The initial state of the simulation
and the obstacle; (b) the situation at a certain moment (8.4 s) in the exploration process; (c) the
situation of exploration results.

  
(a) (b) (c) 

Figure 6. Simulation results of the fixed initial state in Scene II. (a) The initial state of the simulation
and the obstacle; (b) the situation at a certain moment (46.8 s) in the exploration process; (c) the
situation of exploration results.

  
(a) (b) (c) 

Figure 7. Simulation results of the random initial state in Scene II. (a) The initial state of the simulation
and the obstacle; (b) the situation at a certain moment (34.0 s) in the exploration process; (c) the
situation of exploration results.
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(a) (b) (c) 

Figure 8. Simulation results of the fixed initial state in Scene III. (a) The initial state of the simulation
and the obstacle; (b) the situation at a certain moment (20.0 s) in the exploration process; (c) the
situation of exploration results.

 
(a) (b) (c) 

Figure 9. Simulation results of the random initial state in Scene III. (a) The initial state of the
simulation and the obstacle; (b) the situation at a certain moment (25.6 s) in the exploration process;
(c) the situation of exploration results.

Table 1. Parameter setting for three scenes.

Scene I

Map Parameters: map size: 20 m × 50 m, resolution: 0.25 m × 0.25 m
Initialization

(
px, py, ϕ

)
*: UAV1:(4,0,90), UAV2:(10,0,90), UAV3:(16,0,90)

detection radius: 5 m, Fov: 104◦, rs: 3 m, max velocity: 2.5 m/s, end rate: 99.5%

Scene II

Map Parameters: map size: 50 m ×50 m, resolution: 0.4 m ×0.4 m
Initialization

(
px, py, ϕ

)
*: UAV1:(13,0,90), UAV2:(21,0,90), UAV3:(29,0,90), UAV4:(37,0,90)

detection radius: 5 m, Fov: 104◦, rs: 3 m, max velocity: 2.5 m/s, end rate: 99%

Scene III

Map Parameters: map size: 100 m ×100 m, resolution: 0.5 m ×0.5 m
Initialization

(
px, py, ϕ

)
*: UAV1:(34,0,90), UAV2:(42,0,90), UAV3:(50,0,90),

UAV4:(58,0,90), UAV5:(66,0,90)
detection radius: 5 m, Fov: 104◦, rs: 3 m, max velocity: 2.5 m/s, end rate: 99%

* Only for the fixed initial state.

Table 2. Parameter setting for three algorithms.

Parameters Value

predict horizon k = 5
sample num m = 10, n = 50

weight distribution ω1 = 0.1, ω2 = 0.1, ω3 = 0.5, ω4 = 0.2, ω5 = 0.1
learning factor c1, c2 = 1.46

threshold of age Ta = 3
population size N = 50

max number of generations maxgen = 100
simulation step t = 0.2 s
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1. Simulation in Scene I

Figure 4 shows the simulation results of three UAV explorations in Scene I, with fixed
initial UAV states to start. The exploration takes 36.8 s. It can be seen that the cluster can
realize well the exploration of the environment in a short time, and there are few repeated
paths, unless it is necessary to leave the impasse that is surrounded by obstacles. Figure 5
shows the results of random initial states, and the exploration takes 34.6 s. We can see that
the cluster can explore well in any initial state, with the same short time cost and fewer
repeated paths.

2. Simulation in Scene II

Figure 6 shows the simulation results of four UAV explorations in Scene II, with fixed
initial UAV states to start. The exploration takes 62.0 s. Figure 7 shows the results of
random initial states, and the exploration takes 63.2 s. In medium-size scenes, UAVs in the
cluster avoid repeated exploration in the same area through a distributed strategy. The
UAV can quickly return to exploring other areas after the exploration of corners or the
impasse. In the random initial state, the UAV’s performance is almost unaffected.

3. Simulation in Scene III

Figure 8 shows the simulation results of four UAV explorations in Scene III, with
fixed initial UAV states to start, and Figure 9 shows the situation of random initial states.
Exploration takes 190.0 s and 214.8 s, respectively.

With the expansion of the scale of the exploration scene and the increase in the
complexity of the internal structure, the difficulty of cluster exploration is also increasing,
and the UAVs show a complex movement. The random initial state brings uncertainty to
the exploration process. Under the above factors, whether the exploration efficiency can
be maintained is the key point of the exploration method. The proposed method can still
maintain the complete exploration of the area in large scenes, and there is less repeated
exploration. There may be a tendency for multiple UAVs to move in the same direction at
the end of the exploration. This is because we do not allow the UAV to be idle, to achieve
the fastest exploration speed. As the environment is unknown, it is difficult to define which
UAV can reach the unexplored area faster, so we keep every UAV in the cluster continuously
exploring until the area is fully explored. This ensures the shortest exploration time, but
may bring a waste of energy for engineering applications. It can be adjusted according to
the actual application, for example, using conditional judgments to make some UAVs idle.

4. Comparing the methods in three scenes

Due to the randomness of the environment exploration process, we conduct 100 simulations
for each situation (fixed initial state and random initial state in each scene) and count the
time cost of exploration and compare it with the two classical methods, as shown in Table 3.
The frontier-based method is a method with fixed results when the frontier generation,
map, and initial state are fixed. The NBV and DNBPT methods have some randomness in
the process for deeper exploration. The average exploration efficiency of a single UAV in
all scenes is also compared, as shown in Figure 10.

Compared with the frontier-based method and the NBV, the exploration efficiency
of the proposed method in each scene has a great advance. In Scene I, the exploration
efficiency is increased on average by approximately 85.7% and 34.4% with fixed initial states
and 71.4% and 33.1% with random initial states, respectively. In Scene II, the efficiency
is increased by approximately 107.0% and 36.0% with fixed initial states and 108.7% and
35.8% with random initial states, respectively. In Scene III, the efficiency is increased
by approximately 122.1% and 36.6% with fixed initial states and by 124.4% and 33.9%
with random initial states, respectively. For larger and more complex indoor scenes, the
improvement effect of the proposed method is more obvious.
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Table 3. Results and comparison of multiple simulation data samples in the fixed obstacle scenes.

Exploration Time (s)

Initial Method Mean Best Worst Std

Scene I

Fixed
Proposed 32.6 26.4 38.8 3.0

Frontier-based 61.2 - - -
NBV 44.3 36.8 62.6 6.0

Random
Proposed 35.9 30.4 42.0 3.1

Frontier-based 61.6 39.2 75.6 6.6
NBV 47.8 39.6 68.6 6.9

Scene II

Fixed
Proposed 65.9 60.8 76.4 4.0

Frontier-based 136.4 - - -
NBV 89.5 74.2 107.0 6.7

Random
Proposed 70.5 61.6 80.8 4.6

Frontier-based 147.1 95.2 185.6 16.9
NBV 95.7 80.8 112.4 7.4

Scene III

Fixed
Proposed 205.4 188.2 221.0 8.9

Frontier-based 456.2 - - -
NBV 280.5 247.4 302.6 14.7

Random
Proposed 211.9 193.2 249.2 10.0

Frontier-based 475.5 296.2 700.4 43.1
NBV 283.9 251.8 305.8 14.6

 
Figure 10. Comparison of the single UAV exploration efficiency of each method.

In the simulation process of algorithm comparison, it is found that the frontier-based
method has a good effect in the early stage of exploration. However, in the end stage, due
to its greedy strategy that tends to the nearest point, many omissions in the early stage need
to be explored in reverse, resulting in a waste of efficiency. This becomes more obvious
with increasing exploration rate requirements. The NBV method can carry out deeper
exploration locally, but it loses the directional guidance of the global environment and
produces repeated meaningless paths. The proposed method combines the advantages of
the two methods, including deep local exploration and global guidance, to improve the
exploration efficiency of UAV clusters and reduce repetitive paths.

This proves the effectiveness and superiority of the method in complex indoor scenes.
In addition, the proposed method shows a stabler exploration efficiency in uncertain scenes
and can complete the exploration quickly in any initial state.
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4.2. Simulation in Random-Obstacle Scenes

To explore the applicability of our method in other scenes, we design a random
obstacle scene for simulation. We simulate scenes with dense small obstacles such as trees,
where obstacles are randomly generated and their size is limited, as shown in Figure 11. We
also design the situations of a fixed initial state and a random initial state. The scene size is
set to be 100 m long and 30 m wide, and four UAVs form a cluster. The number of obstacles
in the scene is 40, and the maximum side length of obstacles is 3 m. The simulation is also
designed for constant-altitude flight. The initial state

(
px, py, ϕ

)
of the UAV in fixed scenes

is (0, 3, 0), (0, 11, 0), (0, 19, 0), and (0, 27, 0). The terminal condition for exploration is that
the map exploration rate reaches 99%.

  
(a) (b) 

Figure 11. Scene with randomly dense small obstacles. (a) The situation of the fixed initial UAV
states; (b) the situation of random initial UAV states.

Similarly, we conduct 100 simulations for a fixed initial state and a random initial state
and compare them with other algorithms. The simulation results of once in each scene
are shown in Figures 12 and 13, and the statistical data are shown in Table 4. Under the
condition of fixed initial states, the cluster can complete the exploration with few repeated
backtrackings and a high rate of coverage while crossing the obstacle area. The random
initial state has an impact on the exploration, leading to more possible backtrack and
repetitions, but it can still be handled well for reduction.

 
(a) (b) 

Figure 12. Simulation results of the fixed initial state. (a) The situation at a certain moment (41.2 s) in
the exploration process; (b) the situation of exploration results (64.0 s).

 
(a) (b) 

Figure 13. Simulation results of the random initial state. (a) The situation at a certain moment (36.0 s)
in the exploration process; (b) the situation of exploration results (72.4 s).

110



Drones 2023, 7, 246

Table 4. Results and comparison of multiple simulation data samples in random obstacle scene.

Exploration Time (s)

Initial Method Mean Best Worst Std

Fixed
Proposed 73.7 60.0 82.8 6.1

Frontier-based 101.3 90.2 131.4 9.7
NBV 92.4 82.8 109.2 9.0

Random
Proposed 74.8 64.8 86.4 6.2

Frontier-based 104.8 91.4 138.8 10.9
NBV 93.3 80.4 114.6 8.3

Regarding the exploration of areas with dense small obstacles, compared with the
frontier-based method and NBV, the exploration efficiency is increased on average by
approximately 37.4% and 25.2% with fixed initial states and 40.1% and 24.8% with random
initial states, respectively. The comparison proves the good performance in the environment
with dense small obstacles.

5. Conclusions

In this paper, we propose a DNBPT method for UAV clusters to explore unknown
environments. The gain is calculated by comprehensively considering the contribution
of the path process and the terminal state to the exploration, and the optimal path is
evaluated and selected by multistep optimal sampling and the improved BPSO algorithm.
The simulation results show that this method has advantages in different types and sizes
of scenes. In addition, this method has strong generality and can be transplanted to other
robot platforms.
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Abstract: The demand for autonomous UAV swarm operations has been on the rise following the
success of UAVs in various challenging tasks. Yet conventional swarm control approaches are inade-
quate for coping with swarm scalability, computational requirements, and real-time performance. In
this paper, we demonstrate the capability of emerging multi-agent reinforcement learning (MARL)
approaches to successfully and efficiently make sequential decisions during UAV swarm collaborative
tasks. We propose a scalable, real-time, MARL approach for UAV collaborative navigation where
members of the swarm have to arrive at target locations at the same time. Centralized training and
decentralized execution (CTDE) are used to achieve this, where a combination of negative and posi-
tive reinforcement is employed in the reward function. Curriculum learning is used to facilitate the
sought performance, especially due to the high complexity of the problem which requires extensive
exploration. A UAV model that highly resembles the respective physical platform is used for training
the proposed framework to make training and testing realistic. The scalability of the platform to
various swarm sizes, speeds, goal positions, environment dimensions, and UAV masses has been
showcased in (1) a load drop-off scenario, and (2) UAV swarm formation without requiring any
re-training or fine-tuning of the agents. The obtained simulation results have proven the effectiveness
and generalizability of our proposed MARL framework for cooperative UAV navigation.

Keywords: UAV cooperative navigation; multi-agent reinforcement learning; autonomous decision
making; centralized training and decentralized execution; curriculum learning

1. Introduction

A UAV swarm is a cyber-physical system consisting of multiple, possibly heteroge-
neous, UAVs that cooperate to execute a particular mission. A significant amount of swarm
applications involve making decisions on how the swarm members will maneuver to
cooperatively achieve their objective, such as load delivery [1,2], area coverage [3], search
and rescue [4], formation [5], path planning [6], and collision avoidance [7], among others.
There are various benefits of deploying swarms of UAVs to carry out cooperative tasks as
compared to a single agent, such as fault tolerance, task distribution, execution efficiency
and effectiveness, and flexibility, to name a few. This has paved the way for further devel-
opments of swarms, particularly through artificial intelligence. As opposed to conventional
approaches, learning-based decision-making involves less complex computations, requires
neither prior nor global knowledge of the environment, and exhibits better scalability.

Deep reinforcement learning (DRL) [8] is a cutting-edge learning paradigm that accom-
modates sequential decision-making capabilities and has proved effective in a plethora of
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robotic applications. By interacting with the environment, a DRL agent controlling a robotic
platform is able to learn a certain behavior through incentives and penalties provided by
the environment as a result of certain actions decided by the agent. DRL can be extended
to multiple agents through varying levels of centralization [9]. Centralized training and
centralized execution (CTCE) is the most direct extension, where a single DRL agent is
trained to control multiple platforms simultaneously. Although this approach exhibits high
efficiency, it is computationally expensive, susceptible to failure upon communication loss,
and hence is not robust. The second variant is the decentralized training and decentralized
execution approach which is definitely more scalable and robust to a communication fail-
ure. This is attributed to the fact that a separate agent is trained to control every entity in
the swarm which makes the approach less efficient and more computationally expensive.
An alternative approach that combines the advantages of both levels of centralization is
centralized training and decentralized execution (CTDE). In CTDE, agents are trained in a
centralized manner and hence they exhibit collaborative behavior while maintaining the
flexibility and scalability of the swarm. Various works in the literature have been carried
out to employ multi-agent reinforcement learning (MARL) in various formulations to solve
concurrent challenges concerning cooperative UAV applications. In the following section, a
synopsis of the most recent related work on MARL-based UAV applications is presented.

1.1. Related Work

In reference [10], reinforcement learning-based path planning of muli-UAV systems is
proposed using CTDE. A long short-term memory (LSTM) layer is used within a proximal
policy optimization (PPO) agent, to facilitate making decisions based on current and past
observations of the environment. Their reward function was designed as a weighted sum
of the objectives that the agent is expected to achieve. Model validation was carried out in
a simulated environment with three UAVs. By visualizing the reported results, the planned
paths for the UAVs are not very smooth. This behavior may result due to various factors,
such as oscillations in subsequent actions.

The work presented in [11] addresses the problem of flocking control of UAVs using a
CTDE approach based on PPO. The approach aimed at maintaining a flocking behavior
following the model suggested by Reynolds [12] and training was done using a simplified
UAV model. The task was defined in such a way that the UAV swarm safely travels as
fast as possible towards the goal with minimal distance to the swarm’s spatial center. The
reward formulation was in terms of the Euclidean distances to the goal, the obstacles, and
the swarm center. The UAVs in this work are assumed to fly at different altitudes and fixed
speeds. The former condition simplifies exploration by excluding swarm collisions from
the experiences, and the latter limits the control of the agent to the heading of the UAV.
Controlling the speed or the position of the UAV using the reinforcement learning agent
allows for more flexibility and efficiency, yet makes exploration much more challenging.
This approach also requires communication between the UAVs in the swarm members,
which makes the approach susceptible to communication failure. Simulation results were
demonstrated with swarms including up to ten UAVs.

In reference [13], a multi-agent UAV navigation approach was developed using an
extension of the original multi-agent deep deterministic policy gradient (MADDPG) [14].
The experiences collected by the agent during training are assigned priorities. Based on
these priorities, the experiences are sampled out of the buffer to update the trainable
parameters of the neural networks that constitute the MADDPG agent. This means that
better experiences have a higher chance of being selected to update the network. However,
it is also important for the agent to learn about undesired behaviors since it is highly likely
that the agent will encounter previously unseen experiences during real-time deployment.

Another CTDE multi-agent reinforcement learning approach was presented in [15] for
the application of collision avoidance of homogeneous UAVs. A PPO agent was adopted
to decide on the acceleration of the UAVs in the swarm to maintain safety by avoiding
collisions. Every UAV is aware of the positions and velocities of all other UAVs in the
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environment. This condition might be challenging to achieve in real-world scenarios and
may require strong communication if some UAVs are out of the observation range of others
in the environment. To circumvent the scalability issue, the algorithm uses an LSTM that
encodes the states of all the agents in the swarm into a fixed-size vector. Quantitative results
report a high success rate, however, the smoothness of the generated UAV trajectories could
be improved. In reference [16], a hierarchy of reinforcement learning agents was used to
achieve a multi-objective UAV swarm suppression of an enemy air-defense (SEAD) mission.
The top-level agent is concerned about pinpointing the target location to be attacked, while
the lower-level agent makes decisions on how the swarm will cooperatively attack the
target. Training the agents was done in a decentralized manner, without any experience
sharing between the two agent levels.

The work proposed in [17] addresses fixed-wing UAV formation using a leader–
follower approach through deep reinforcement learning. The leader UAV makes decisions
on how to maneuver, while the others (the followers) try to maintain a certain formation by
executing the control commands specified by the leader and communicating the resulting
states back. The swarm is rewarded based on defined relative positions between the UAVs
respective to a certain formation. The proposed algorithm requires communication between
the swarm members and for that, the authors proposed a communication protocol to ensure
every UAV has a communication link with at least one member in the swarm. However,
any loss of communication would result in undesired formation since the followers rely
completely on the leader. An improvement to the original PPO algorithm was proposed to
encourage better exploration.

A MARL-based multi-UAV decision making approach was proposed in [18]. A simple
UAV model was used to train a multi-agent UAV system for an air-combat mission. A
gated recurrent unit and an attention mechanism were used in the decentralized actor and
centralized critic networks, respectively, to train a policy that is robust to environmental
complexities. The action space combined continuous and discrete actions to make decisions
concerning the UAV motion and the combat activity, respectively.

Several other multi-UAV flocking and navigation approaches were proposed using
centralized reinforcement learning, such as [19,20]. However, such approaches require
communication between the UAVs, rely on global information about the environment, and
may not be flexible in terms of the size of the swarm.

An interesting research direction in MARL is credit assignment. When a reinforce-
ment learning agent interacts with the environment, it receives a single scalar value as a
reward/penalty for its action(s). In the case of cooperative tasks, multiple agents perform
the learning task by taking actions to optimize a single reward that represents them all. This
setting introduces a new challenge to MARL, in which agents become “lazy” [21]. In other
words, some agents may not perform well as everyone else in the team, and yet receive
the same reward collectively. Researchers have proposed several learning [21,22] and
non-learning [23–25] approaches to tackle this issue by assigning credit to each agent based
on their contribution to the success of the collaborative task. The learning-based methods
rely on training agent-specific critic networks in addition to the global critic network to
assist with factorizing the global reward into values that reflect the actual contribution of
each agent in the team. The other non-learning methods use no additional networks; rather,
they employ a difference-reward of various formulations to compute the advantage of each
agent’s contribution to the collaborative outcome. For instance, the advantage function
reflects the value of an agent’s actions [23,24] or the agent’s actions and observations [25].
Specifically, the approach in [25] implements a multi-agent collision avoidance approach
using CTDE. Upon updating the network parameters, the advantage of each agent in the
swarm is computed based on the contribution of their action and observation to the global
state. The objects used to represent the UAVs in the swarm were defined using primitive
kinematic equations, which are very simplistic and hard to transfer to reality. Furthermore,
the action space is the heading of the UAV, where UAVs are assumed to fly at a fixed
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speed. This simplifies exploration, since the action space is bounded and varies along a
single dimension.

1.2. Contributions

In this paper, a multi-agent reinforcement learning (MARL)-based cooperative naviga-
tion of a swarm of UAVs (as depicted in Figure 1) is developed through centralized training
and decentralized execution (CTDE). Curriculum learning is used to facilitate and expedite
convergence, in presence of various task complexities arising from partial environment
observability, multi-agent training, and exploration in continuous state and action space
scenarios. A reward function, combining positive and negative reinforcement, is formu-
lated to encourage cooperative behavior and to ensure that agents achieve their individual
goals simultaneously, although executed in a decentralized manner. The cooperative nav-
igation approach is scaled-up to work with a large number of agents without requiring
re-training or varying the number of agents during training, as opposed to the approaches
in the literature, such as [25], where changing the swarm size requires retraining the agent
since the observation space and hence the dimensions of the neural network inputs will
differ. Scalability of the proposed approach was also achieved in terms of the swarm
speed, and the size of the task environment. The generalizability of the proposed approach
was demonstrated through a load delivery application, where the mass of the platform
changes during the cooperative navigation task after the swarm drops off payloads (of
variable mass per UAV). The swarm was shown to continue the task, and arrive at the final
navigation goal (which is set during the task) at the same time, without fine-tuning the
parameters of the MARL agent. Extensive testing of the proposed approach was carried
out in simulations with varying swarm speeds, navigation goals, and environment sizes.
Sample UAV swarm formation scenarios are also showcased and the convergence of the
proposed approach is demonstrated.

Figure 1. UAV swarm cooperative navigation.

In summary, the contributions of this paper are listed below:

• The development of a scalable, real-time, autonomous MARL-based collaborative
navigation approach for a swarm of UAVs using centralized training and decentral-
ized execution.

• The training of the proposed collaborative navigation approach based on a combi-
nation of curriculum learning and early stopping using a reward formulation that
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encourages cooperative behavior during decentralized execution by means of posi-
tive reinforcement.

• Demonstration of the proposed collaborative navigation approach in a load delivery
scenario and in swarm formation.

• Extensive testing of the proposed approach across various initial conditions, swarm
sizes, UAV speeds, UAV loads, and environment sizes.

2. Methods

2.1. Task Description

The proposed MARL approach is designed for a cooperative navigation task in which
a set of agents, in this case, UAVs, are expected to navigate to a set of locations in the task
environment. Starting from an initial position, every UAV safely maneuvers to a specific
target, within a certain period of time. UAVs are expected to simultaneously arrive at
their target locations while operating independently in a decentralized manner. During
execution, each agent will only obtain access to local observations within a certain range
around the corresponding UAV. Cooperative behavior during decentralized execution is
achievable because policies are obtained through centralized training, based on a reward
formulation that encourages goal achievement at the individual and collaborative levels.
Particularly, training is done with access to global observations collected by all members
of the swarm and the parameters of the involved neural networks are updated based
on the rewards pertaining to the collective swarm behavior. Collaborative navigation
could be deployed in environments with various sizes, and consequently, the maximum
allowable speeds may need to be adjusted based on the available space. In addition, the
number of UAVs participating in the collaborative task varies based on the application.
Flexibility and scalability of the swarm are essential and need to be accounted for in any
swarm application.

2.2. Centralized Training and Decentralized Execution

Centralized training and decentralized execution (CTDE) [14] is an approach to MARL
where the computational complexity is offloaded onto the training process rather than
execution. A popular implementation of this approach is the centralized critic training
and decentralized actor execution (as illustrated in Figure 2), which is an extension of
the policy–gradient actor–critic model. Particularly, the critic network is trained offline,
without constraints on real-time performance. The main purpose is to facilitate obtaining
decentralized policies that could accomplish the cooperative multi-agent task through
access to global information obtained by multiple agents during training, but not execution.
In such a setting, every agent partially observes the environment and hence the problem
could be modeled using an extension of Markov decision processes for multiple agents.
This extension is referred to as a decentralized partially observable Markov decision process
(Dec-POMDP) and is formulated as a five-tuple (S ,O,A, R, T ) encapsulating:

• State space (S): the global setting of the environment including all the agents.
• Observation space (O): the set of individual observations that agents perceive from

the environment.
• Action space (A): a set of actions that the agents execute in the environment.
• Reward (R): the incentives that agents receive upon acting in the environment.
• Transition function (T ): defines how agents transition from one state to another.

While operating, each agent attempts to maximize its expected return R from the
ongoing task, as defined in (1).

R =
T

∑
t=0

γtRt+1 (1)

where T is the time horizon, and γ is a discount factor that determines the importance of
future rewards and falls in the range [0, 1).
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Figure 2. Overall centralized training and decentralized execution (CTDE) multi-agent reinforcement
learning (MARL) framework for collaborative UAV swarm navigation.

In a policy gradient method where neural networks are used as policy estimators, the
trainable parameters of the network are directly updated to maximize the objective of the
optimization which in this case is the agent’s total return. The update is carried out by
taking steps in the direction of the gradient of the objective function. The objective function
and its gradient for a deterministic policy are formulated in (2) and (3).

J(θ) = Es∼pμ [R(s, a)] (2)

∇θ J(θ) = Es∼D [∇θμθ(a|s)∇aQμ(s, a)|a=μθ(s)] (3)

where s ∈ S , pμ is the state distribution, a ∈ A is an action,D is a set of transitions collected
through experiences and stored in the experience buffer, and Qμ(s, a) is the action-value
function associated with the deterministic policy μ.

For the case of CTDE-based MARL, the policy gradient algorithm could be extended
to perform centralized critic training based on global observation (x) of N agents, each
following a policy μi with a set of trainable parameters θi, where i ∈ 1, ..., N. The updated
formulation of the policy gradient is shown in (4).

∇θi J(θi) = Ex,a∼D [∇θi μi(ai|oi)∇aiQ
μ
i (x, a1, ..., aN)|ai=μi(oi)

] (4)

where oi ∈ O is the observation of agent i. Every transition in the experience buffer D in
the multi-agent setting contains the current global state, the next global state, the individual
actions per agent, and the corresponding rewards. In the current work, the deterministic
policy and the corresponding value function and computed using neural networks, referred
to as the actor and critic, respectively.

2.3. Proposed Model
2.3.1. Actor and Critic Architecture

An actor–critic agent is adopted to perform the cooperative navigation task. The
critic is centralized and hence receives global input from the swarm, while the actor is
decentralized where it processes local observations. Figure 3 shows a detailed description
of the architecture of both the critic and actor. The critic consists of two input paths, one for
the global state and the other for the swarm actions. The states are passed through seven
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hidden dense layers, activated using the rectified linear unit (ReLU), while the actions are
passed through a single ReLU activated dense layer.

Figure 3. Architecture of the proposed actor and critic networks.

ReLU(x) = max(0, x) (5)

The outputs of the two paths are then concatenated and passed into two ReLU acti-
vated dense layers. Finally, a single-neuron layer outputs the value of an action (a) taken in
the state (s).

The actor-network, on the other hand, consists of four hidden dense layers activated
using ReLU, followed by a two-neuron layer activated using hyperbolic-tan (tanh) to output
actions in the range [−1, 1].

tanh(x) =
ex − e−x

ex + e−x (6)

However, since it is sometimes desired to fly UAVs at higher speeds, particularly when
the target locations are far apart, a scaling layer was used to set the maximum UAV speed
per task.

It is worth noting that the actor-critic agent contains duplicate networks of the actor
and critic, referred to as target actor and target critic, respectively. These networks are
initialized to the same parameters as the actor and critic but are updated less frequently to
achieve learning stability.

2.3.2. State Space and Action Space

At time step t, an agent i observes ot
i ∈ O which represents its local surrounding;

namely the relative distance to any other agent within the observation range, the speed of
the observed neighbor, and the relative distance to the target location. It is worth noting
that each agent is able to observe the environment up to certain spatial limits, and anything
outside this range is not perceived by the agent and hence does not affect its decisions.

The action space used in the proposed approach is continuous and two-dimensional.
More particularly, the actor-network outputs the reference velocities that will be passed to
the UAV’s low-level controller to guide each UAV in the swarm from its initial position to
its target location. At the time t, the action generated for agent i is denoted as ai

t ∈ A.
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2.3.3. Reward Formulation

Rewards are incentives that guide agent training to achieve a particular task, by
praising actions taken towards the goal achievement and penalizing actions that hinder
the completion of the task, such as collisions. For the cooperative navigation task, a major
component of the reward function is concerned with reducing the Euclidean distance to
the target location. This component was chosen to be continuous to ease exploration and
facilitate convergence as defined in (7).

reuclidean = −
√
(xtargeti − xuavi )

2 + (ytargeti − yuavi )
2 (7)

where (xuavi , yuavi ) is the position of the UAV controlled by the ith agent, and (xtargeti , ytargeti )
is the 2D target location set for this agent in the environment. It is assumed that UAVs fly
at a fixed altitude.

To achieve cooperative behavior, a large positive reward (rswarm_goal = 100) was
granted to the UAV swarm if all agents arrived at the goal position at the same time. During
training, it was observed that reaching the goal position was frequently achievable by the
agents individually at different time instances during the episode. However, staying at the
target location was challenging. To that end, positive reinforcement was used to reward
individual agents that arrive at the goal position (rindividual_goal = 10). To maximize its own
return, an agent will try to remain within the target area to collect as many rewards as
possible. This component of the reward facilitated achieving the sought swarm objective,
where all agents have to be at the target location at the same time. More specifically,
the agent generates actions to reduce the speed of the UAV around the goal position. In
case an action causes an agent to collide with other agents, a sparse negative penalty
(rcollision = −100) is used to discourage this behavior.

The global reward associated with a set of actions taken in a certain state at time t is a
weighted sum of these four components as indicated in (8).

Rt = ω
N

∑
i=1

ri
euclidean +

N

∑
i=1

ri
individual_goal +

N

∑
i=1

ri
collision + rswarm_goal (8)

where N is the number of agents, and ω was set to 0.01 to scale down the value of the
Euclidean distance since training was done in a 100 × 100 m2 environment.

2.4. Curriculum Learning

Curriculum learning is a training strategy in which a neural network is gradually
exposed to task complexity as originally proposed in [26]. The concept behind this strategy
is inspired by nature, where humans progressively learn the skills they need over their
lifespan. Curriculum learning has two major advantages: (1) it facilitates fast convergence,
and (2) it helps achieve better local minima when solving non-convex optimization. In the
context of neural networks, curriculum learning guides training toward convergence in a
timely manner.

In this work, training the proposed MARL framework was carried out in stages, in a
way that supports exploration. UAVs were placed in an environment and were expected
to navigate to a target position that required them to maneuver along a single dimension.
Given the decentralized nature of the actor training/execution, each UAV receives an action
based on its current local observation. Consequently, in every training step, every member
in the swarm contributes a different experience towards achieving a common goal. In view
of the fact that the action space is continuous, this has expedited the exploration of the
action space and has facilitated convergence towards the required cooperative goal. The
UAVs are considered to have achieved the goal if they arrive in the vicinity of the target
location up to a certain radius. This spatial threshold was set to a large value in the first
training stage (50 m) then gradually reduced to 2 m in the following stages.
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The complexity of the task was then increased to require UAV control in two dimen-
sions in order to arrive at the goal position. Instead of starting the training over, the neural
networks were initialized using the weights from the previous stage. This has significantly
accelerated convergence toward achieving the swarm goal. Due to the high variance of the
training process, early stopping was also adopted to terminate training after the model had
converged for a few hundred episodes.

2.5. UAV Dynamics

The UAV multirotor model that is used to train the proposed approach highly resem-
bles the dynamics of a physical multicoptor to facilitate transferability to real experiments at
later stages of this work. The model encapsulates various nonlinear dynamics [27], namely,
(1) nonlinear drag dynamics for which a linearized drag model [28] was used, as verified
in [29,30], (2) nonlinear propulsion dynamics for which electronic speed controllers (ESCs)
are used to linearly map ESC inputs to corresponding thrust, (3) nonlinearities arising
from motor saturation which are avoided through operation strictly in the non-saturation
regime, and (4) nonlinear kinematics caused by under actuation and gravity, which are
linearized using a geometric tracking controller [31] and hence a feedback linearization
controller is obtained.

The adopted altitude and attitude dynamics are shown in (9)–(11) and a summary of
the used transfer functions and symbols is provided in Table 1.

Gprop(s) =
Kprope−τacts

Tprops + 1
(9)

Gatt,alt(s) =
Kp

s(T1s + 1)
(10)

Gin(s) =
Keqe−τins

s(Tprops + 1)(T1s + 1)
(11)

Table 1. Linearized altitude and attitude dynamics.

Transfer
Function

Type Purpose Symbols

(9) First order plus
time delay

Maps ESC inputs
to force/torque

output

Kprop: propulsion static gain
τact: propulsion system delay
Tprop: propulsion time constant

(10)
First order

system with an
integrator

Models attitude
and altitude

dynamics

T1: time constant - drag dynamics
Kp: system inertia

(11)
Gatt,alt(s)

cascaded with
Gprop(s)

Maps ESC
commands to
UAV attitude
and altitude

Keq = KpKprop
τin: total inner dynamics’ delay

The work presented in [27] demonstrates the high resemblance of the UAV behavior
in simulations and experiments using this model. The lateral motion dynamics of the UAV
are adopted from [32] to describe the change in attitude in the direction of motion. The
equations are listed below (12)–(13) and explained in Table 2.

Gout(s) =
Keqe−τouts

s(T2s + 1)
(12)

Glat(s) =
Keq,l e−(τin+τout)s

s2(Tprops + 1)(T1s + 1)(T2s + 1)
(13)
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Table 2. Linearized lateral motion dynamics.

Transfer Function Purpose Symbols

(12) Maps the multirotor’s tilt
angle to its lateral position

Keq,l : overall lateral dynamics gain
τout: lateral motion sensor delay

T2: lateral motion drag.

(13) Maps ESC commands to
UAV lateral position -

The deep neural network and the modified relay feedback test (DNN-MRFT) identifi-
cation approach [32] is used to experimentally identify the presented model parameters.
First, a domain for the unknown time parameters is chosen for both the inner and lateral
dynamic parameters as in [30,32], respectively. The selected domains are discretized to
guarantee up to 10% performance sub-optimality. MRFT is then performed and the results
are passed to the DNN which will select the best-suited model parameters. The correspond-
ing controller parameters may then be obtained using the derivative-free Nelder–Mead
simplex algorithm.

3. Results and Discussion

3.1. Model Training

The proposed model structure was developed using the TensorFlow [33] library on a
Dell desktop, with Intel Xeon(R) W-2145 CPU @ 3.70 GHz × 16. The initial stage of training
extended for 10,000 episodes, each consisting of a maximum of 3000 steps. Every step runs
for 0.1 s, i.e., a new action is generated at the beginning of each step and the agent executes
the action for the remaining time in that step. It is worth noting that during execution on a
physical platform, the actor is capable of generating actions at 100 Hz by means of an Intel
NUC onboard computer. The episode was selected to be long enough to allow sufficient
exploration with various speeds in the task environment which spans 100 × 100 m2. It is
worth noting that the motion of the UAV swarm was restricted to the defined environment
boundaries, where actions that lead to exiting the environment were ignored. In case the
swarm goal is achieved or a collision occurs between the UAVs, the training episode is
terminated. In subsequent training stages where the complexity of the task was increased,
training was conducted with less exploration noise and a lower learning rate, and was
suspended when convergence was observed. The training was repeated many times to
ensure that the results are not affected by the initial random seed.

The plots depicted in Figure 4 show the cooperative navigation scenario on which the
agent was trained. Three UAVs were guided through a 100 × 100 m2 environment to stop
at the same time at set locations. The maximum speed of the swarm in this scenario was
1 m/s which is extremely slow for the total traveled distance per UAV. Hence, the swarm
arrived at their goal positions, which are 80 m away from the initial position in 2600 steps.

One of the common problems in the reinforcement learning literature is the oscillatory
behavior in consecutive actions generated by a trained agent [34]. Such oscillations may
result in undesired behavior and may lead to damaging the platform in case of aggressive
maneuvers. While testing the trained model, this behavior was not encountered in any
of the scenarios across various speeds, various locations, and initial conditions, as will be
shown in the next sections. Consecutive reference velocities generated by the MARL agent
gradually decrease upon approaching the goal. This has resulted in smooth flights for all
the members of the swarm.

The behavior exhibited by the agents upon approaching the goal is essential to achiev-
ing the swarm goal, particularly with decentralized execution, since agents are required to
be at the target locations at the same time. The sparse positive reward used to incentivize in-
dividual agents for reaching their goal locations has contributed to this behavior, especially
when agents have to traverse variable distances, as will be seen in the following sections.
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Figure 4. Result: cooperative navigation training scenario.

3.2. Testing with Variable Swarm Speeds

In this section, the same scenario presented in the previous section is used, however,
the swarm speed was much higher than in the training scenario. The maximum speed per
UAV was 12 m/s which is 12 times the speed in the previous section. The decentralized
policies were still able to successfully achieve the swarm goal and the three UAVs arrived
at their target locations at the same time, after gradually and smoothly slowing down near
the set locations. The swarm was at the target locations in less than 150 steps, which is
equivalent to 15 s. The trajectories and the corresponding UAV speeds at each time step are
shown in Figure 5.

Figure 5. Result: cooperative navigation with high swarm speed.

3.3. Testing with Different Goal Positions

In this example, the agents were assigned target locations at variable distances from
the UAVs’ initial locations, in both dimensions (x, y). Figure 6 shows the scenario and
the obtained results using the proposed approach. UAV1 (in orange) has to travel the
longest distance, followed by UAV2 (in green), and lastly UAV3 whose target location is
the closest. Because of the centralized training nature, the decentralized policies exhibit
collaborative behavior and are able to effectively achieve the goal of the swarm. In order
for the three UAVs to arrive at their goal locations at the same time, the agents generated
reference velocities based on each UAV’s distance from its target. Obviously, UAV1 was the
fastest, followed by UAV3, and then UAV2. In the y dimension, the generated reference
velocities were also different since the target locations were above, below, and along the
initial location for UAV 1, 3, and 2 respectively. The maximum swarm speed was 8 m/s
and the swarm goal was achieved after approximately 270 steps. The speed of each UAV
was drastically reduced near the goal position.
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Figure 6. Result: cooperative navigation with different goal Positions.

3.4. Load Drop-Off Scenario in a Large Environment

In this section, we demonstrate a load drop-off scenario using the proposed MARL-
based cooperative navigation framework. The scenario is demonstrated in a larger envi-
ronment than that used for training, involves changing the goal position during operation,
and requires the ability to handle the change in the platform mass to achieve successful
cooperative navigation, as depicted in Figure 7.

Starting from their initial positions, every UAV is assumed to carry loads weighing
10%, 20%, and 30% of the platform mass, respectively. The three UAVs are expected to
drop the load off simultaneously at locations 50 m, 70 m, and 90 m away from the initial
positions. To achieve that, UAV3 commanded the highest reference velocity (approximately
8 m/s), while UAV1 traveled at the lowest speed among the other agents (approximately
5 m/s). The agents were able to drop their loads off simultaneously after about 28 s. Right
then, the UAVs (with their reduced masses) were assigned updated target locations that are
120 m, 100 m, and 80 m apart from the drop-off locations of UAV 1, 2, and 3, respectively. It
is worth noting that the UAVs were not completely stopped at the drop-off location. To
arrive at the new target locations at the same time, the maximum speed for UAV1 was
10 m/s, while UAV2 and UAV3 traveled at lower speeds. All three UAVs arrived at the
new target locations simultaneously and gradually slowed down in the target vicinity.

The results obtained in this test have proven the scalability of the proposed approach
to a larger environment, its ability to handle changes in the platform mass in-flight, and its
ability to cope with dynamic target locations during the mission.

Figure 7. Result: load drop-off scenario in a large environment.
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3.5. Testing with Variable Swarm Sizes

The scenarios presented here show how the developed MARL cooperative navigation
framework can be used for any number of UAVs in the swarm, given that it was trained
to work for three only. In its original design, every agent observes its own distance to the
goal, its own speed, and its relative distance to the other members of the swarm and their
velocities if they fall within the observation range. Since the input to dense neural networks
has to be of fixed size, the size of the observation vector of each agent was set to always
fit the states of the two neighboring members of the swarm. In case they were out of the
observation range, the corresponding values in the observation vector are set to zero. To
make that work for a large swarm, we have added a function to check for the closest two
neighbors to every agent in the swarm during operation then included their states in the
observation vector of that agent. This has added flexibility to the number of allowable
UAVs in the swarm and facilitated testing with larger numbers of UAVs without requiring
retraining of the MARL agent. All agents demonstrated collaborative behavior and were
able to achieve the swarm goal collectively.

The results illustrated in Figure 8 show an example scenario where six UAVs have
maneuvered into a triangular formation starting from their initial positions where they
were lined up at y = 10. The target locations were set at various distances in x and y
dimensions. At any time instance, every UAV may observe the closest two members in the
swarm. The velocity plots in the same figure show how each decentralized agent generated
different reference velocities depending on the relative distance between the UAV and its
corresponding target, to allow all UAVs to achieve their goals at the same time.

Figure 8. Result: swarm formation example.

Figure 9 demonstrates another formation scenario where ten UAVs were assigned
colinear target locations starting from opposite sides in the environment. In this example,
the MARL agent was responsible for generating the magnitudes of the reference velocities
and an external function was used to decide the direction of the velocity based on each
agent’s relative position to its target. All ten UAVs were able to be within 2 m of the set
target locations at the same time and all the flights show a high level of smoothness. The
cooperative task was completed in 34 s.

3.6. Action Smoothness

In this section, a test with a swarm of 50 UAVs was conducted to demonstrate the
ability of the proposed approach to generate smooth actions across consecutive steps. Every
UAV started from a different position in the environment and was assigned a target location
at a different distance than the other members in the swarm. This test shows the flexibility
and the generalizability of the proposed approach and proves that oscillatory behavior is
not encountered over a large range of states and actions. The trajectories followed by the
UAVs are depicted in Figure 10 and the corresponding actions in the x direction are shown

127



Drones 2023, 7, 193

in Figure 11. The same test was repeated with much lower velocities and oscillations were
not encountered at all.

Figure 9. Result: swarm formation in two directions.

Figure 10. Result: collaborative navigation of a swarm of 50 UAVs.

Figure 11. Result: action smoothness with a swarm of 50 UAVs.

3.7. Training Convergence

Training the proposed approach was carried out in various stages starting from simple
tasks to more difficult ones. During training, the performance of the model was evaluated
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based on the episodic reward, as well as the performance of the agents in the environment.
Once the desired behavior was achieved by the proposed framework, training the model
in that stage was halted (a training strategy referred to as early stopping). Afterward,
the complexity of the problem was increased and the model retrained, where the neural
networks were initialized into the values obtained in the previous stage. In later training
stages, the learning rates of both the actor and critic are reduced to benefit more from what
the model has already learned earlier. Figure 12 demonstrates the convergence of the model
in the final training stages.

Figure 12. Proposed MARL training convergence in final stages of curriculum learning.

The adopted training strategy has expedited converge to a policy that exhibits coop-
erative behavior although is executed in a decentralized manner. In addition, the actions
generated by the policy resulted in smooth maneuvers as demonstrated in all the test results.

Without curriculum learning and early stopping, the convergence of the model is
much more challenging due to the large environment size, continuous action and state
spaces, multi-agent setting, limited observability, and the instability of the environment
in presence of multiple dynamic entities at the same time. Figure 13a,b show examples
of unstable training of the same model if exploration is performed in one shot. It is
worth noting that positive rewards were achieved in these cases because of the positive
component of the reward formulation that an agent receives when it arrives at its target
location. Larger positive episodic rewards mean that one or two agents were at their
target locations accumulating the positive rewards while waiting for the remaining two
or one agent, respectively, to arrive at their target location. The latter agents in such cases
would be exploring a different area in the environment and hence the episode was not
terminated, until the specified number of steps ended. Furthermore, Figure 13c shows the
episodic rewards of the same model with credit assignment as proposed in [25], where
decentralized agents do not use the global reward to update their parameters, but rather a
reward value that reflects their contribution to the success of the task. Every episode may
extend to 3000 steps if no collisions between the UAVs happened. It is worth noting that
the highest reward values, in this case, were achieved due to the early termination of the
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training episode, and hence the negative penalty corresponding to the Euclidean distance
to the target location was not accumulated for a long time. A sample testing scenario
with credit assignment where the collaborative navigation task was not achieved is shown
in Figure 14. These examples demonstrate the importance of curriculum learning to the
training convergence and task achievement.

Figure 13. (a,b): Sample learning curves by training the model without curriculum learning or early
stopping, (c) Episodic reward with credit assignment as proposed in [25] without curriculum learning
or early stopping.

Figure 14. Result: collaborative navigation with credit assignment.

In the future, the proposed MARL-based cooperative navigation approach will be
tested in real-world experiments. It is anticipated that the policy will transfer well to the
physical platforms in real environments. This was demonstrated in our previous work [35],
in which a single agent was trained to perform a goal oriented task and the transferability
to reality was seamless without any model retraining or finetuning. The same UAV model
was used for training the current approach, and hence we conjecture that no additional
tuning is required for simulation to reality transfer.

3.8. Centralized Collaborative Navigation

In this section, a centralized DDPG agent was trained to perform collaborative naviga-
tion in exactly the same settings as our proposed approach. The architecture of the actor and
critic networks and the reward formulation were not altered. However, in the centralized
approach, one actor network is used to generate the actions for all the UAVs in the swarm at
the same time. The centralized agent was trained for more than 2 M steps but convergence
was not achieved. The resulting behavior of the swarm after training is shown in Figure 15.
One of the UAVs left the environment, while the other two collided. In addition, the actions
demonstrate variations throughout the episode as opposed to the actions generated by our
proposed approach which demonstrate much higher smoothness. Extensive exploration is
yet needed for the centralized agent to achieve the sought performance. It is also worth
noting that changes to the size of the swarm would require retraining the actor since the
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size of the output vector will change. Our proposed approach is more flexible since the
decentralized nature of execution circumvents this problem.

Figure 15. Result: centralized collaborative navigation.

4. Conclusions

In this paper, a multi-agent reinforcement learning-based swarm cooperative navi-
gation framework was proposed. The centralized training and decentralized execution
approach was adopted with a reward formulation combining negative and positive re-
inforcement. The training was carried out using a high-fidelity UAV model to facilitate
simulation to reality transfer. In order to achieve the desired behavior and reduce the
complexity of exploration, training was performed in multiple stages where the difficulty
of the swarm goal was gradually increased. The proposed framework was extensively
tested in simulated scenarios which vary from the one used for training, and demonstrated
remarkable performance. It generalized well to larger environment sizes, a large number
of UAVs in the swarm, high speeds, various UAV masses, variable goal positions, and
changes to the target locations in flight. The effectiveness and scalability of the multi-agent
reinforcement-based UAV collaborative navigation were demonstrated through load drop-
off and UAV formation scenarios. The training convergence of the proposed framework
was demonstrated and the importance of curriculum learning was highlighted by analyzing
the stability of the learning-in-one-shot of the same framework and another variant that
uses credit assignment.

In the future, the proposed framework will be tested in real experiments and the
complexity of the swarm goal will be increased to make the environment more challenging.
In addition, navigation in 3D will be investigated to improve collision avoidance flexibility
in presence of obstacles that could be avoided by flying at varying altitudes.
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Abstract: Formation control is a prerequisite for the formation to complete specified tasks safely and
efficiently. Considering non-symmetrical communication interference and network congestion, this
article aims to design a control protocol by studying the formation model with communication delay
and switching topology. Based on the requirements during the flight and the features of the motion
model, the three-degrees-of-freedom kinematics equation of the UAV is given by using the autopilot
model of longitudinal and lateral decoupling. Acceleration, velocity, and angular velocity constraints
in all directions are defined according to the requirements of flight performance and maneuverability.
The control protocol is adjusted according to the constraints. The results show that the improved
control protocol can quickly converge the UAV formation state to the specified value and maintain
the specified formation with communication delay and switching topology.

Keywords: formation control; consistency theory; communication delay; constraints

1. Introduction

Due to their low cost, strong maneuverability, and wide application range, UAVs
have good application prospects whether in the civilian or military fields [1,2]. With the
complexity and diversification of mission requirements, the low efficiency of a single UAV
has emerged. In order to solve this problem, in addition to improving the function and
utility of a single UAV, UAV formation flight has also become a research focus [3]. Formation
flight means that drones can fly in an expected formation. When the environment or tasks
change, the formation can be changed according to the requirements [4]. The technology
of UAV formation has broad development and application prospects, and using drones
to fly in the expected formation can allow for the completion of more complex tasks and
significant improvement in the efficiency of tasks [5].

The studies on multi-UAV formation focus on formation control, formation reconfigu-
ration, real-time path planning, etc. Formation control is the basis and focus of formation
flight. Commonly used formation control methods mainly include the leader−follower
method, virtual structure method, and behavior control method. The virtual structure
method can simplify the assignment of tasks with high accuracy. The disadvantages are
that it is difficult to perform fault-tolerant processing and requires a lot of communication.
The most mature traditional formation control method is the leader−follow method [6–9].
The leader−follower method simplifies the control of the multi-UAV model [10]. However,
it still has certain limitations, for example, its tracking error will be propagated backward
step by step and thus be amplified. Other methods are combined with the leader−follower
method to solve the problems above [11–13]. Every aircraft receives the same information,
namely the trajectory of the virtual leader in the virtual−leader method. The advantages
of the virtual structure method are that it simplifies the description and assignment of
tasks, and has high formation control accuracy. The disadvantages are that it is difficult
to perform fault-tolerant processing and requires a large amount of communication as a

Drones 2023, 7, 185. https://doi.org/10.3390/drones7030185 https://www.mdpi.com/journal/drones
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centralized control method. The behavior-based method, which is based on the information
obtained from the sensor to determine the responses of the UAVs, has strong robustness
and flexibility, but cannot achieve accurate formation maintenance. The work of [14] studies
multi-UAV formation by applying the behavior control method.

REN indicates that the above three formation control methods can be unified under
the framework of the consistency theory; formation control based on the consistency theory
can overcome some shortcomings of these traditional methods [15]. The formation control
method based on the consistency theory is such that every agent can realize large-scale
and distributed formation control through the communication between neighboring UAVs
under a certain communication network without centralized coordination [16]. The impact
of interaction models on the coherence of collective decision-making is discussed in [17–19].

Formation control methods based on the consistency theory have yielded some valu-
able research results in recent years [20–23]. The work of [24] studied the problem of
time-varying formation control under the constraint of communication delay and designed
a consistent control method that can deal with communication delay. The work of [25]
studied the consensus formation control method based on time-varying communication
topology. The work of [26] considered the existence of random communication noise and
information packet loss constraints in the network and adopted the polygon method of
information exchange based on the consistency theory to realize formation control. The
work of [27] studied the cooperative formation control problem of the multi-aircraft system
based on the consistency theory with a fixed connectivity of the network topology.

Control laws based on consistency are often adopted to solve the problems of multi-
UAV formation, and the maneuvering performance and flight performance of UAVs will
impose restrictions on the control variables and flight states in different ways. In addition,
communication between aircraft is often affected by factors such as transmission speed and
network congestion, resulting in communication delay; due to communication interference
and complex terrain, the multi-aircraft system network topology changes. Therefore,
the research on multi-UAV formation considering communication constraints and flight
constraints has important value.

Aiming at the problems above, the main contributions of this paper are as follows:
(1) This paper adopts the three-degrees-of-freedom kinematics model of a drone which is
based on autopilot, and the lateral heading autopilot and the longitudinal autopilot are
decoupled. (2) This paper proposes an improved basic consistency algorithm. During the
flying process of drones, the communication constraints, such as topology switching and
non-symmetrical communication delay, are considered to design the consistency algorithm.
(3) In addition to communication constraints, mobility constraints are also considered to
improve the consistency algorithm. Compared with other existing methods based on the
consistency algorithm, the improved method considers the formation control in complex
conditions. The communication constraints and flight constraints are both considered. The
communication constraints include the communication delay and switching topology, and
the flight performance and maneuverability constraints include the speed, acceleration,
and heading angular velocity of the UAV. The improved algorithm can not only achieve
multi-UAV formation control when topology switching and communication delay exist,
but it also satisfies the constraints of UAV maneuverability and flight performance.

This article is organized as follows: The three-degrees-of-freedom kinematics model
of a drone which is based on autopilot is adopted, and the lateral heading autopilot and
the longitudinal autopilot are decoupled in Section 2. Section 3 proposes an improved
consistency algorithm that is effective with topology switching and communication delay.
The minimum adjustment is used to adjust for flight constraints. Then, the convergence
proof of the improved consistency algorithm is given. Section 4 discusses the simulation.
The results show that the consistency control protocol proposed can meet the mobility
requirements with communication delay and switching topology.
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2. UAV Dynamics Modeling and Consistency Algorithm

This section first establishes the coordinate system, describes the formation, and then
gives the kinematics model. The consensus algorithm is presented to prepare for the subse-
quent proposed multi-UAV control protocol with switching topology and communication
delay. Finally, the control protocol is adjusted considering the constraints of flight status
and maneuverability.

2.1. UAV Formation Description

Firstly, a coordinate system is created to express the position of the UAVs. The UAV is
considered a mass point. To describe the movement state of the drone, we use the ground
coordinate system. On the horizontal plane, the origin O can be arbitrarily selected.

There are two ways to describe the three-dimensional plane of the UAV formation,
the l − ψ method and the l − l method in [28]. In this paper, the method l − l is selected.
The positional relationship between UAVs can be described by the relative positional
relationship matrix Rx, Ry, Rz.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rx=

⎡⎢⎢⎢⎣
x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

...
...

xn1 xn2 · · · xnn

⎤⎥⎥⎥⎦

Ry=

⎡⎢⎢⎢⎣
y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

...
...

yn1 yn2 · · · ynn

⎤⎥⎥⎥⎦

Rz=

⎡⎢⎢⎢⎣
z11 z12 · · · z1n
z21 z22 · · · z2n

...
...

...
...

zn1 zn2 · · · znn

⎤⎥⎥⎥⎦

(1)

where
(

xij, yij, zij
)
(i, j = 1, · · · , n) describes the difference in position between two drones.

xii = yii = zii = 0.
The conditions when multi-UAV forms a stable, desired formation are as follows:⎧⎪⎪⎨⎪⎪⎩

∣∣xi − xj
∣∣→ xij∣∣yi − yj
∣∣→ yij∣∣zi − zj
∣∣→ zij∣∣vi − vj
∣∣→ 0

(2)

where xi, yi, zi are coordinates for UAVs. vi is velocity.

2.2. UAV Kinematics Model

In the UAV formation, the three-degrees-of-freedom kinematics model with autopilot is
usually adopted. The longitudinal and lateral movements of the basic kinematic equations
of UAV formation control are coupled. The work of [29] decouples the lateral heading
autopilot and the longitudinal autopilot and obtains a kinematic model of lateral and
longitudinal separation. The motion model of the UAV#i is given by Equation (3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
xi = vi cos θi.
yi = vi sin θi.
θi = ωi.
vi =

1
τv
(vci − vi).

θi =
1
τθ
(θci − θi)

..
zi = − 1

τ.
z

.
zi +

1
τz
(zci − zi)

(3)
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where vi is the velocity of the aircraft on the XOY-plane; θi is the heading; ωi is the
course angular velocity;

.
zi is the climb rate;

..
zi is the climb acceleration; τv is the speed

corresponding to the flight state constant; τθ is the flight state constant corresponding to
the heading angle; vci is the speed reference input for the UAV autopilot; θci is the course
angle reference input of the UAV autopilot; and zci is the altitude reference input for the
UAV autopilot.

In Equation (3), the relationship of θi,vi and the velocity component along the OX-axis
and the OY-axis is: ⎧⎨⎩ tan θi =

vyi
vxi

vi =
√

vxi
2 + vyi

2
(4)

where vxi,vyi are the velocity component.
The dynamic equation with the autonomous driver can be converted into Equation (5):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

.
xi = vxi.
yi = vyi.
zi = vzi.
vxi =

1
τv
(vc

xi − vxi)
.
vyi =

1
τv
(vc

yi − vyi)
..
zi = − 1

τ.
z

.
zi +

1
τz

(
zc

i − zi
)

(5)

where vzi is the speed of the drone along the OZ-axis.
The speed, acceleration, and heading angular velocity of the UAV must be changed

within a certain range: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

vi ∈ (vmin, vmax).
vi ∈ (amin, amax).

θi ∈ (ωmin, ωmax).
zi ∈

( .
zmin,

.
zmax

)
..
zi ∈

( ..
zmin,

..
zmax

) (6)

2.3. The Basic Principle of Consensus Algorithm

For any vehicle, its motion states are described by differential equations:{ .
ξ i(t) = ζi(t).
ζ i(t) = ui(t)

(7)

where ξi ∈ Rn is the coordinate vector of the drone; ζi ∈ Rn is the speed vector; ui(t) ∈ Rn

is the control input vector.
In [30], the basic consensus algorithm given by Equation (7) is:

ui(t) = −
n

∑
j=1

aij
[(

ξi(t)− ξ j(t)
)
+ α
(
ζi(t)− ζ j(t)

)]
(8)

where α > 0; aij is an element of the matrix An; matrix An is the communication topology;
and i, j are two different voyages. If UAV# j can send messages to UAV# i, then aij = 1, else
aij = 0.

For UAVs, the information exchange topology is Gn, the element lij in the Laplace
matrix Ln is defined as:

lij =

⎧⎨⎩
−aij i f i �= j

n
∑

j=1,i �=j,
aij i f i = j (9)
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We assume that the topology of ξi, ζi is consistent during the flight of the UAVs; then,
the condition for the consensus algorithm to converge is:

Lemma 1 [31] If Gn has a directed spanning tree, α > α , the state of the UAV formation can be
asymptotically consistent. If the n− 1 non-zero eigenvalues of −Ln are negative, thenα = 0 , otherwise:

α = max
∀Im(ηi)>0,Re(ηi)<0

√√√√ 2

|ηi| cos
(

arctan Im(ηi)
−Re(ηi)

) (10)

The lemma shows that, when the state is able to converge according to the consen-
sus algorithm, then, for any initial state such as xi(0) and vi(0), when t→ ∞ , there are∣∣xi(t)− xj(t)

∣∣→ 0 and
∣∣vi(t)− vj(t)

∣∣→ 0 .
It is necessary to set a reasonable communication topology and α value so that the

state of the drone converges to the same level.

3. Improved Consistency Algorithm

The above Equation (8) does not consider the network communication delay and
network topology switching in the formation flight of UAVs, nor does it consider the
constraints of UAV maneuverability and flight performance; therefore, the consensus
algorithm needs to be improved for the actual flight of UAVs.

Firstly, for the situation of non-symmetrical communication delay and topology switch-
ing in formation flight, we design the consensus control protocol for the formation flight.
Then, the designed control protocol is modified to make itself and the corresponding state
output meet the constraints of UAV maneuvering and flight performance.

3.1. Formation State Control

This section studies the consensus control protocol in the case of joint connectivity
communication topology.

The state of the dynamic equation of UAV#i is shown in Equation (7).
If the formation protocol can ensure that the states of the UAVs meet the conditions:[

ξi − ξ j
]
→ rij and ζi → ζi → ζ∗ , (rij is the expected difference in position between two

drones, and rij = −rji, ζ∗ is the desired speed vector). This shows that the control algorithm
can make the multiple UAVs form our expected formation and move forward according to
the expected flight speed finally.

The work of [31] gives a control protocol that can make the multi-aircraft system
form the desired formation and achieve a given speed, but only for fixed communication
topology, and does not consider the communication delay of the system.

This section refers to the control protocol idea of [15] for the multi-aircraft formation
flight control system with non-symmetrical communication delay and a communication
topology map that is jointly connected. The formation protocol for the UAV is Equation (11):

ui(t) = ∑
j∈Ni(t)

aij(t)
{

k1
[
ξ j(t− τij)− ξi(t− τii)− rji

]
+ k2

[
ζ j(t− τij)− ζi(t− τii)

]}
+

.
ζ
∗
− k3(ζi(t)− ζ∗)

(11)

uxi, uyi, uzi are shown in Equations (12)–(14), as follows:⎧⎨⎩
vxci = vxi + τvuxi

uxi = ∑
Vj∈Ni(t)

aij(t)
{

k1
[
xj − xi − xji

]
+ 2

k2

[
vxj − vxi

]}
+

.
v∗x − kx

3(vxi − v∗x) (12)

⎧⎨⎩
vyci = vyi + τvuyi

uyi = ∑
Vj∈Ni(t)

aij(t)
{

k1

[
yj − yi − yji

]
+ 2

k2

[
vyj − vyi

]}
+

.
v∗y − k3

(
vyi − v∗y

)
(13)
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⎧⎪⎨⎪⎩
zc

i = zi +
τz
τ.

z

.
zi + τzuzi

uzi = ∑
Vj∈Ni(t)

aij(t)
{

k1
[
zj − zi − zji

]
+ 2

k2

[
vzj − vzi

]}
+

.
v∗z − k3

(
vyi − v∗y

)
(14)

where τii is the time change in the UAV#i itself, a type of latency which is caused by measure-
ments or calculations; τij represents the time delay for UAV#j to receive the state information
from UAV#i; Ni(t) is a collection of neighbors of node i, and k1, k2, k3 > 0, k3 = k1k2.

Suppose there are M numbers of different time delay in total, it is expressed as
τm(t) ∈

{
τii(t), τij(t), i, j ∈ �

}
, m = 1, 2, 3, · · ·M, and satisfies Assumption 1.

Assumption 1. For specific normal values hm > 0, dm > 0, time-varying delay time τm(t),
m = 1, 2, 3, · · · , M satisfies 0 ≤ τm ≤ hm and

.
τm ≤ dm ≤ 1.

When the network topology is switched and there is a delay in communication, this
control protocol can realize the coordinated flight of multiple UAVs.

3.2. Formation Control Protocol Adjustment under Constraints

Section 3.1 does not consider the constraints of Equation (6) when designing the
formation control protocol, so the generated control commands and corresponding flight
states may not meet the requirements of UAV maneuverability and flight performance.
This section proposes a strategy called minimum adjustment to adjust the formation control
protocol in Section 2.1 so that both itself and the corresponding state output meet the
constraints of UAV maneuvering and flight performance.

The control command uxi, uyi is adjusted in the XOY-plane, so that it satisfies the
constraints of velocity vi, acceleration

.
vi, and heading angular velocity

.
ϕi. Then, the

values of uxi, uyi are fixed and the value of the control instruction uzi is adjusted to meet the
constraints of the OZ-axis direction of the climbing speed

.
zi and the climbing acceleration

..
zi.

Then, uxi, uyi are adjusted in Equations (12) and (13), then the related constraints
of speed vi, acceleration

.
vi, and heading angular velocity

.
ϕi, vi(t + Δt) can be obtained

through the current flight status:{
αi(t) =

√
u2

xi(t) + u2
yi(t)

vi(t + Δt) = vi(t) + αi(t)Δt
(15)

If vi(t + Δt) does not satisfy the constraint vi(t + Δt) ∈ (vmin, vmax), the following
variables can be defined as follows:{

α
′
min,i(t) =

vmin−vi(t)
Δt

α
′
max,i(t) =

vmax−vi(t)
Δt

(16)

where α
′
min,i(t) and α

′
max,i(t) are the accelerations of the UAV#i at time t.

When the speeds are vmin, vmax at t + Δt, αi(t) ∈
[
α
′
min,i(t), α

′
max,i(t)

]
. a

′
min,i(t) is

compared with amin and a
′
max,i(t) is compared with amax, respectively, to obtain the updated

constraints of acceleration: ⎧⎨⎩anew
min,i(t) = max

(
amin, a

′
min,i(t)

)
anew

max,i(t) = min
(

amax, a
′
max,i(t)

) (17)

where anew
max,i(t) is the upper limit of ai(t), and anew

min,i(t) is the lower limit of ai(t).
Equation (17) actually includes constraints on the vi(t + Δt). As long as the accelera-

tion ai(t) of the UAV# i satisfies Equation (17), the two constraints on the acceleration and
velocity in the XOY-plane can be satisfied at the same time. If vi(t + Δt) ∈ (vmin, vmax),
then the values of amin and amax do not need to be updated by Equation (16). Constraint
ai ∈

[
anew

min,i, anew
max,i

]
is used to adjust uxi, uyi so that it satisfies the constraints.
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The adjustment of uxi(t), uyi(t) needs to be carried out synchronously, and the in-
fluence on the original acceleration value should be as small as possible. The following
adjustments can be made to uxi(t), uyi(t):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u
′
xi(t) = anew

max,i(t)
uxi(t)
ai(t)

, u
′
yi(t) = anew

max,i(t)
uyi(t)
ai(t)

i f ai(t) > anew
max,i(t)

u
′
xi(t) = anew

min,i(t)
uxi(t)
ai(t)

, u
′
yi(t) = anew

min,i(t)
uyi(t)
ai(t)

i f ai(t) < anew
min,i(t)

(18)

Then, the values of u
′
xi, u

′
yi meet the constraints of acceleration and speed after the

above adjustments, and the adjustment range is the smallest.
After that, the heading angular velocity

.
θi(t) constraint is processed, and u

′
xi(t)u

′
yi(t)

will be adjusted in the next step.
According to the constraints of

.
θi ∈ (ωmin, ωmax), the allowable value range of the

heading angle θi at the next sampling time can be obtained as:{
θmin,i(t + Δt) = θi(t) + ωminΔt
θmax,i(t + Δt) = θi(t) + ωmaxΔt

(19)

The heading angle θi(t + Δt) at the next sampling time is:

θi(t + Δt) = arctan
vyi(t) + u

′
yi(t)Δt

vxi(t) + u′xi(t)Δt
(20)

where vxi(t) and vyi(t) are the speeds of the drone at time t.
If θi(t + Δt) /∈ [θmin,i, θmax,i], then u

′
xi(t), u

′
yi(t) should be adjusted by Equations (21)

and (22). ⎧⎪⎪⎨⎪⎪⎩
vyi(t)+u

′′
yi(t)Δt

vxi(t)+u′′xi(t)Δt
= tan(θmax,i(t + Δt))

u
′′2
xi (t) + u

′′2
yi (t) = a

′2
i (t)

θi(t + Δt) > θmax,i(t + Δt)

(21)

⎧⎪⎪⎨⎪⎪⎩
vyi(t)+u

′′
yi(t)Δt

vxi(t)+u′′xi(t)Δt
= tan(θmin,i(t + Δt))

u
′′2
xi (t) + u

′′2
yi (t) = a

′2
i (t)

θi(t + Δt) < θmin,i(t + Δt)

(22)

where Equations (21) and (22) are binary quadratic equations; usually, there are two
different sets of solutions, denoted as u

′′
xi1(t), u

′′
yi1(t) and u

′′
xi2(t), u

′′
yi2(t). Because both

sets of solutions satisfy the constraints of the heading angular velocity
.
ϕi, it is necessary

to further confirm which set is finally selected as the result according to the “minimum
adjustment” strategy.

Let γ
′
ai(t) = arctan

u
′
yi(t)

u′xi(t)
represent the direction of the acceleration a

′
i(t); the adjusted

values should not only keep the value of a
′
i(t) unchanged, but also the direction of a

′
i(t)

should change minimally.

γ
′′
ai1(t) = arctan

u
′′
yi1(t)

u′′xi1(t)
and γ

′′
ai2(t) = arctan

u
′′
yi2(t)

u′′xi2(t)
represent the directions of the

UAV#i‘s acceleration in the XOY-plane after adjustment by Equations (21) or (22).
Among these two sets of solutions, the set of solutions corresponding to

min
(∣∣∣γ′′ai1(t)− γ

′
ai(t)

∣∣∣, ∣∣∣γ′′ai2(t)− γ
′
ai(t)

∣∣∣) is selected as the values required.
The above procedure makes minimal adjustments to uxi(t), uyi(t) and satisfies the

constraints of the XOY-plane.
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For the constraints in the direction of the OZ-axis, the climbing rate
.
zi(t) and climb

acceleration
..
zi(t) of the drone are limited and uzi(t) is adjusted. First, the climbing rate of

the next sampling moment
.
zi(t + Δt) is calculated through the current time of the drone

flight status as
.
zi(t + Δt) =

.
zi(t) + uzi(t)Δt.

If
.
zi(t + Δt) /∈

[ .
zmin,

.
zmax

]
, then the updating constraints of the climbing acceleration

..
zi(t) are shown in the following formula:{ ..

z
′
min,i(t) =

.
zmin−

.
zi(t)

Δt
..
z
′
max,i(t) =

.
zmax−

.
zi(t)

Δt

(23)

where
..
z
′
min,i(t) and

..
z
′
max,i(t) are the lower limit and upper limit of the constraints after the

climbing rate constraints are converted to the climbing acceleration at time t, respectively.

If
.
zmin ≤

.
zi(t + Δt) ≤ .

zmax, then
..
z
′
min,i(t) and

..
z
′
max,i(t) do not need to be updated.

Through Equation (24), the constraints on the climbing rate are also converted into the

constraint on the climbing acceleration at time t. Then,
..
z
′
min,i(t),

..
zmin,

..
z
′
max,i(t), and

..
zmax

are compared, and the updated rising acceleration constraint conditions is determined as:⎧⎨⎩
..
znew

min,i(t) = max
( ..

zmin,
..
z
′
min,i(t)

)
..
znew

max,i(t) = min
( ..

zmax,
..
z
′
max,i(t)

) (24)

where
..
znew

min,i(t) and
..
znew

max,i(t) are the final lower limit and upper limit values of the climbing
acceleration, respectively, after the climbing rate and climbing acceleration constraints have
been considered.

Finally, we limit the current climb acceleration uzi(t) to the allowable range:

u
′
zi(t) = max

(..
znew

min,i(t), min
(

uzi(t),
..
znew

max,i(t)
))

(25)

where u
′
zi(t) is the adjusted climbing acceleration. From Equation (25), when

uzi(t) ∈
[..
znew

min,i(t),
..
znew

max,i(t)
]
, we have u

′
zi(t) = uzi(t); when uzi(t) <

..
znew

min,i(t), we have

u
′
zi(t) =

..
znew

min,i(t); when uzi(t) >
..
znew

max,i(t), we have u
′
zi(t) =

..
znew

max,i(t).

3.3. Convergence Proof of Improved Consistency Algorithm

Let ξ i = ξi − ξ0 − ri, ζ i = ζi − ζ∗, then Equation (11) can be transformed into:

ui(t) = ∑
sj∈Ni(t)

aij(t)
{

k1

[
(ξ j
(
t− τij(t)

)
− (ξ i(t− τii(t))

]
+ 2

k2

[
ζ j
(
t− τij(t)

)
− ζ i(t− τii(t))

]
+

.
ζ
∗
− k3ζ i(t)

(26)

If ζ̂i(t) = 2ζ i(t)/k1k2 + ξ i(t), ε(t) = [ξ1(t), ζ̂i(t), · · · , ξn(t), ζ̂n(t)]
T

, then:

B =

[−k3/2 k3/2
k3/2 k3/2

]
, Q =

[
0 0
0 2/k2

]
According to Equation (26), the closed-loop dynamic equation is Equation (27):

.
ε(t) = (In ⊗ B)ε(t)−∑M

m=1 (Lσm ⊗Q)ε(t− τm) (27)

In fact, if we have lim
t→+∞

ε(t) = 0, then lim
t→+∞

ξ j(t)− ξi(t) = rji, lim
t→+∞

ζ(t) = ζ∗.

Next, we show that the above closed-loop control system can achieve lim
t→+∞

ε(t) = 0.

Referring to the definition of switching topology, it is assumed that the time-invariant
topology Gσ in a certain sub-interval [tkb

, tkb+1
) has q(q ≥ 1) the numbers of connected
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parts, and its corresponding node set is denoted by ψ1
kj

, ψ2
kj

, · · · , ψdσ
kj

, and f is the node

number in ψi
kj

. Then, a permutation matrix Pσ ∈ Rn×n is obtained by satisfying:

PT
σ LσPσ = diag

{
L1

σ, L2
σ, · · · , Ldσ

σ

}
PT

σ LσmPσ = diag
{

L1
σm, L2

σm, · · · , Lq
σm

} (28)

εT(t)(Pσ ⊗ I2) =

[
ε
1 T
σ , ε

2 T
σ , · · · , ε

q T
σ

]
(29)

where Li
σ ∈ R f i

σ× f i
σ is the Laplacian matrix which corresponds to the part which is con-

nected, and Li
σm ∈ R f× f , Li

σ = ∑M
m=1 Li

σm. Therefore, in [tkb
, tkb+1

), it can be broken down
into q numbers of subsystems:

.
ε

i
σ(t) = (I f ⊗ B)εi

σ(t)−∑M
m=1 (Li

σm ⊗Q)εi
σ(t− τm), i = 1, 2, · · · , q (30)

where εi
σ(t) = [εi

σ1(t), · · · εi
σ2 f i

σ
(t)] ∈ R2 f i

σ .

Lemma 2. [32] If there is Dn = nIn − 11T, then there must be an orthogonal matrix
Un ∈ Rn×nwhich makes UT

n DUn = diag{nIn−1, 0}, where the last column Un is 1/
√

n .
We give a matrix D ∈ Rn×n and make it satisfy 1T D = 0 and D1 = 0 , then UT

n DUn =

diag
{

UT
n DUn, 0

}
.

Lemma 3. [33] For any function of actual cable vector x(t) ∈ Rn, any function of cable scalar
τ(t) ∈ [0, a], and any constant matrix 0 < H = HT ∈ Rn×n, there is:

1
a
[x(t)− x(t− τ(t))]T H[x(t)− x(t− τ(t))] ≤

∫ t

t−τ(t)

.
xT

(s)H
.
x(s)ds, t ≥ 0 (31)

where a > 0.

Theorem 1. Considering a multi -UAV system with non-uniform time delay and switching
topology, in any sub -interval

[
trb , trb+1

)
, if γ > 0, and Fi

σ ∈ R f× f , i = 1, 2, · · · , q, there is:

F
i T
σ Ξi

σFi
σ < 0 (32)

then there is lim
t→∞

ξ j(t)− ξi(t) = rji, lim
t→∞

ζi(t) = ζ∗.

where Fi
σ = diag

{
U2 f , I2M f

}
, and the definition of U2 f is as shown in Lemma 2.

where Ξi
σ =

[
Ξ11 Ξ12
ΞT

12 Ξ22

]
, and

Ξ11 = 2γ
(

I f ⊗ B
)
+ ∑M

m=1 hm

(
I f ⊗ B

)T(
I f ⊗ B

)
−∑M

m=1
1− dm

hm
I2 f

Ξ12 =

[
−γ
(

Li
σ1 ⊗Q

)
+ 1−d1

h1
I2 f −∑M

m=1 hm

(
I f ⊗ B

)T(
Li

σ1 ⊗Q
)
, · · ·

−γ
(

Li
σM ⊗Q

)
+ 1−dM

hM
I2 f −∑M

m=1 hm

(
I f ⊗ B

)T(
Li

σM ⊗Q
) ]

Ξ22 =
[
−diag

{
1−d1

h1
I2 f , 1−d2

h2
I2 f , · · · 1−dM

hM
I2 f

}
+

∑M
m=1 hm

[(
Li

σ1 ⊗Q
)
, · · ·

(
Li

σM ⊗Q
)]T[(Li

σ1 ⊗Q
)
, · · ·

(
Li

σM ⊗Q
)]
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Proof of Theorem 1. The Lyapunov−Krasovskii function for Equation (11) can be defined following:

V(t) = γεT(t)ε(t) + ∑M
m=1

∫ 0

−τm

∫ t

t+a

.
ε

T
(s)

.
ε(s)dsda,γ > 0 (33)

.
V(t) can be calculated as:

.
V(t) = 2γεT(t)

.
ε(t) + ∑M

m=1 τm
.
ε

T
(t)

.
ε(t)−∑M

m=1
(
1− .

τm
)∫ t

t−τm

.
ε

T
(s)

.
ε(s)ds

= 2γεT(t)
[(

I f ⊗ B
)

ε(t)
]
− 2γεT(t)∑M

m=1
[(

Li
σm ⊗Q

)
ε(t− τm)

]
+

∑M
m=1 τm

.
ε

T
(t)

.
ε(t)− ∑M

m=1
(
1− .

τm
)∫ t

t−τm

.
ε

T
(s)

.
ε(s)ds

(34)

According to Equation (33) and Assumption 1,
.

V(t) is changed to the following form:

.
V(t) ≤

q
∑

i=1

{
2γε

i T
σ (t)

[(
I f ⊗ B

)
εi

σ(t)− 2γε
i T

σ (t)∑M
m=1
[(

Li
σm ⊗Q

)
εi

σ(t− τm)
]]

+ ∑M
m=1 hm

.
ε

i T
σ (t)

.
ε

i
σ(t)−∑M

m=1 (1− dm)
∫ t

t−τm

.
ε

T
(s)

.
ε(s)ds

}
(35)

According to Lemma 3, the following can be obtained:

.
V(t) ≤

q
∑

i=1

{
2γεi

σ
T(t)
[(

I f ⊗ B
)

εi
σ(t)− 2γεiT

σ (t)
M
∑

m=1

[(
Li

σm ⊗Q
)
εi

σ(t− τm)
]]

+
M
∑

m=1
hm

.
ε

iT
σ (t)

.
ε

i
σ(t)

−
M
∑

m=1

1−dm
hm

[ .
ε

i
σ

T(t)
.
ε

i
σ(t)−

.
ε

iT
σ (t)

.
ε

i
σ(t− τm)− εi

σ
T(t− τm)εi

σ(t) + εiT
σ (t− τm)εi

σ(t− τm)
]

=
q
∑

i=1
δT

i Ξi
σδi

where δi =

[
ε
i T
σ (t), ε

i T
σ1 (t− τ1), ε

i T
σ2 (t− τ2), · · · ε

i T
σM (t− τM)

]
.

Ξi
σ = Ξ

i T
σ , and Ξi

σ

[
1T

2 f , 0T
2M f

]T
= 0. According to Lemma 2, we can conclude

Ξi
σ ≤ 0, when F

i T
σ Ξi

σFi
σ < 0, rank(Ξi

σ) = 2(M + 1) f − 1.

Let η =

[
ε
i T
σ (t)− h1T , ε

i T
σ1 (t), ε

i T
σ2 (t), · · · εi T

σM (t)

]
, h > 0, then Ξi

σ(δi − η) = 0,

and we can obtain

δT
i Ξi

σδi = ηTΞi
ση ≤ λ‖η‖2 ≤ λ

[∥∥∥εi
σ(t)− h1

∥∥∥2
+

M

∑
m=1

f

∑
K=1

(
εi

σmk

)2
(t)

]
(36)

where ‖·‖ is the Standard European norm and λ < 0 represents the maximum non-zero
eigenvalue of Ξi

σ.

Therefore,
.

V(t) ≤ λ
q
∑

i=1

[∥∥εi
σ(t)− h1

∥∥2
+

M
∑

m=1

f
∑

K=1

(
εi

σmk
)2
(t)

]
≤ 0.

Through the above analysis, Equation (11) is stable, and lim
t→+∞

V(t) = 0. Then, we can

obtain lim
t→+∞

ε(t) = 0, then lim
t→+∞

ξ i(t) = 0, lim
t→+∞

ζ̂i(t) = 0, and we can have lim
t→+∞

ξ j(t)−
ξi(t) = rji, lim

t→+∞
ζi(t) = ζ∗. That is, under the action of the control protocol of Equation

(30), the drones can eventually form the specific formation at an expected velocity. �

4. Simulation and Results

The effectiveness of the control protocol designed is verified by simulation. This
section verifies the improved control protocol of the existing constraints, indicating the ef-
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fectiveness of the strategies proposed. We assume that the formation has a non-symmetrical
communication delay and has the jointly connected topologies in the example below.

We assume that the formation consists of six UAVs. The topology structure and the
formation that we expect are shown in Figures 1 and 2.

1 2 3

6 6 4

1 2 3

6 5 4

1 2 3

6 5 4

1G 2G

3G

Figure 1. Communication topology.

1

4 65

400m

800m

300m

600m

2 3

500m

500m

600m  
Figure 2. Expected formation.

The communication topology is switched in the order of (G1, G2, G3, G1), and the
weight of each connected edge is 1. Assuming that there are three different time delays
in the system as τ1(t), τ2(t), τ3(t), for ∀i �= j, then τii(t) = τjj(t) = τ1(t); τ12(t) = τ23(t) =
τ34(t) = τ45(t) = τ56(t) = τ61(t) = τ2(t); τ21(t) = τ32(t) = τ43(t) = τ54(t) = τ65(t) =
τ16(t) = τ3(t).

The time delays satisfy 0 ≤ τ1(t) ≤ 0.01, 0 ≤ τ2(t) ≤ 0.07, 0 ≤ τ3(t) ≤ 0.08. The initial
state of the six UAVs and the parameters setting are listed in Tables 1 and 2.

Table 1. The initial state of the six UAVs.

Number 1 2 3 4 5 6

xi/m 20 60 10 90 43 60
yi/m 66 56 96 56 86 86
zi/m 50 10 40 330 350 240

vi/
(
m.s−1) 15 35 55 75 65 90

θi/(◦) 36 −36 45 −45 −20 45
.
z/(m.s−1) 4 3 2 1 5 3
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Table 2. Parameter settings.

Parameter vmin/
(
m.s−1

)
vmax/

(
m.s−1

)
amin/g amax/g

.
zmin/(m.s−1)

.
zmax/(m.s−1)

Value 10 600 −5 5 −30 30

Parameter
..
zmin/

(
m.s−1) ..

zmax/
(
m.s−1) ωmin/

(
rad.s−1) ωmax/

(
rad.s−1) ζ∗(m/s) z∗(m)

Value −5 5 −π/2 π/2 50 300

Parameter k1 k2 k3 τv τz τ.
z

Value 0.6 1.1 0.66 10 0.3 0.3

Under the improved control protocol, the position curves, speed curves, course angle
curves, and expected formation of the six UAVs are shown in Figure 3.

 
(a) (b) 

 
(c) (d) 

Figure 3. Cont.
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(e) (f) 

 
(g) (h) 

Figure 3. States of UAV formation. (a) Position curves (XOY-plane). (b) Height curves. (c) Position
curves. (d) Speed curves. (e) Course angle curves. (f) Error. (g) Unorganized formation (5 s).
(h) Final formation.

The figures show that, under the improved formation control protocol, the six drones
can achieve the expected formation with the expected speed under the complex condi-
tions of communication constraints and dynamic constraints; the composite error of the
formation is 0, as shown in Figure 3f. This indicates that the formation control protocol is
effective for UAV formation in the conditions of non-symmetrical communication delay
and topology switching.

When drones form a stable formation, assuming that the formation needs to be
changed during flight, the control protocol is still valid. The simulation results are shown
in Figure 4.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 4. Cont.
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(g) (h) 

Figure 4. States of UAV formation. (a) Position curves (XOY-plane). (b) Height curves. (c) Position
curves. (d) Speed curves. (e) Course angle curves (f) Error. (g) Formation (50 s). (h) Final formation.

The figures show that, under the formation control protocol, the six drones can achieve
the expected formation with the expected speed. When the formation needs to be changed,
under the control protocol, the new formation is formed. The drones can fly with the
new expected speed and the designed formation control protocol is still valid. The results
indicate that the improved control protocol is widely used.

5. Conclusions

This article studies the problem of formation control based on the consistency theory.
This article focuses on the research of drone formation, thus ignores the gesture control of
the drone. The three-degrees-of-freedom kinematics equation of the UAV is given by using
the autopilot model of longitudinal and lateral decoupling. Considering the communication
interference and network congestion, this paper designs the control protocol by studying
the formation model with non-symmetrical communication delay and switching topology.
Acceleration, velocity, and angular velocity constraints in all directions are defined accord-
ing to the requirements of flight performance and maneuverability. Both communication
and mobility constraints are considered in this paper. The improved control protocol is
adjusted according to the constraints. The results show that the improved control protocol
is effective and can quickly converge the UAV formation state to the specified value and
can maintain the specified formation with communication delay and switching topology.
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Abstract: The unmanned aerial vehicle (UAV) network has gained vigorous evolution in recent
decades by virtue of its advanced nature, and UAV-based localization techniques have been exten-
sively applied in a variety of fields. In most applications, the data captured by a UAV are only
useful when associated with its geographic position. Efficient and low-cost positioning is of great
significance for the development of UAV-aided technology. In this paper, we investigate an effective
three-dimensional (3D) localization approach for multiple UAVs and propose a flipping ambiguity
avoidance optimization algorithm. Specifically, beacon UAVs take charge of gaining global coor-
dinates and collecting distance measurements from GPS-denied UAVs. We adopt a semidefinite
programming (SDP)-based approach to estimate the global position of the target UAVs. Furthermore,
when high noise interference causes missing distance pairs and measurement errors, an improved
gray wolf optimization (I-GWO) algorithm is utilized to improve the positioning accuracy. Simulation
results show that the proposed approach is superior to a number of alternative approaches.

Keywords: unmanned aerial vehicles; three-dimensional localization; semidefinite programming;
flipping ambiguity avoidance; gray wolf optimization

1. Introduction

The flying ad hoc network (FANET) is evolving at a tremendous rate and emerging
technologies, and applications based on UAVs oriented toward 6G have received consider-
able attention [1,2]. UAV networks as a kind of FANET have promising applications in both
military and civilian areas (e.g., urban fire emergency rescue, forest wildfire monitoring,
enemy aircraft reconnaissance and air shows, etc.). UAV networks have many advantages
over traditional cellular networks (CN) and mobile ad hoc networks (MANETs). With
higher altitudes and wider coverage capabilities, the signal of line of sight (LoS) from UAVs
is effectively utilized by ground terminals and users. As a result, UAVs are regarded as
airborne base stations to service mobile users and ground stations by using air-to-ground
(A2G) channels [3,4]. In addition, UAVs with characteristics such as small size and high
mobility can be flexibly deployed. Therefore, rapid on-demand services can be provided in
hazardous and harsh environments. However, due to high mobility and dynamics, UAVs
suffer from end-to-end transmission delays because of frequent topology changes and
disconnections of communication links in UAV networks. As a result, it is critical to know
the precise, low-latency position information of each UAV [5].

Localization is an invaluable area for researchers in surveillance, path planning, wire-
less communication, and UAV networks [6,7]. In FANETs, most procedures (topology
control, position-aware routing, etc.) require knowledge of the precise physical location of
each UAV, because many actions and observations are implemented based on position. The
technology of UAVs becomes meaningless if the two cannot be correlated. UAV localization
is therefore a critical technology that requires in-depth exploration. Among the existing

Drones 2023, 7, 113. https://doi.org/10.3390/drones7020113 https://www.mdpi.com/journal/drones
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localization methods, the global positioning system (GPS) is widely used. However, there
are limitations (e.g., it requires higher costs and/or is not achievable to be deployed in
all scenarios). Moreover, since GPS requires light of sight (LoS) from a satellite, it cannot
provide a reliable localization scheme when the LoS is obstructed by obstacles. Therefore,
many UAV localization schemes that are non-GPS based have been proposed [8–10].

Distance-based UAV localization schemes are the focus of much current research,
which defines network localization as the problem of determining the physical coordinates
of unknown nodes given the anchors of coordinates and distance pairs between unknown
nodes and anchors. Target node localization using anchor information and pairwise
distance measurements among nodes is usually formulated as an optimization problem
with quadratic-constrained quadratic programming (QCQP). Usually, the problem is NP-
hard and nonconvex. Semidefinite programming (SDP) relaxation (a novel idea proposed
by researchers) has been applied to solve this issue. The basic principle is to first change the
nonconvexity of the problem, and the SDP relaxation causes the constraints of the original
problem to be relaxed to a semipositive definite form, which transforms the initial problem
into a convex optimization problem. The SDP-based problem is then solved by common
convex optimization techniques. However, in the actual scene, the measurement value will
be polluted by noise, which makes the measurement result inaccurate, and reduces the
positioning precision. For decades, computational intelligence (CI)-based methods have
been employed to improve the localization efficiency and accuracy. In [11], the numerical
solution is carried out by using a rank-relaxed approach based on SDP, and the results are
upgraded using the orthogonal Procrustes technique. The experimental results suggest
that the method is feasible when DOA measurements are noisy. Arafat et al. proposed
a bounding box model and applied it in swarm intelligent localization and hybrid gray
wolf optimization (HGWO) localization algorithms to narrow the particle search space and
estimate the location of UAVs, respectively [12,13].

The goal of this paper is to design an efficient localization optimization approach based
on inter-UAV distance measurement in a 3D dynamic scene. SDP is the typical method
for solving distance-based localization in general wireless communication networks. SDP
and graph theory-based localization method for sensor networks was proposed as early as
in [14], and its core philosophy is to derive error bounds by adding regularization terms to
the SDP. Instead, our proposal is to transform the localization problem into a maximum
likelihood estimation (MLE) problem with decreasing distance errors and to solve it by
relaxing the bound through a composite algorithm called SDP + RLT. Furthermore, in order
to improve localization accuracy at high noise levels, the I-GWO algorithm is inspired to
refine the SDP + RLT results. Simulation results verify that our scheme outperforms existing
localization schemes. Our contributions and innovations in this paper are summarized
as follows:

• A system model for the design and analysis of 3D UAV localization is developed.
We consider distance measurement-based UAV position estimation as an objective
optimization problem with quadratic constraints and formulate it as a maximum likeli-
hood estimation (MLE) problem. A localization model for the design of UAVs in a 3D
moving scene is developed. We consider the distance-based UAV position estimation
as an objective optimization problem with quadratic constraints and formulate it as an
MLE problem.

• The SDP and RLT relaxation constraints are established based on the distance con-
straints of the localization problem, and the solvability and tightness of the proposed
composite algorithm SDP + RLT are analyzed.

• In addition, our solution is extended to the case of noisy distance measurement errors
and loss, and an I-GWO algorithm is proposed, which greatly improves localization
accuracy. Finally, we validate the excellence of the proposed scheme by comparing
multiple sets of experimental results.

The remaining sections are as follows. Related work on UAV localization is introduced
in the next section. Section 3 introduces the network setting and problem formulation.
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Section 4 proposes a localization scheme based on the combination of SDP and RLT relax-
ation. Section 5 presents a bionic optimization algorithm I-GWO. Numerical simulations
are given in Section 6. Section 7 concludes this paper.

2. Related Works

The problem of determining the position of a UAV is called localization. According
to the technical means, the data collected by UAVs to achieve localization vary. We will
classify and describe UAV localization methods from the following aspects.

First, it can be divided into relative localization (RL) and absolute localization (AL)
according to the type of measurement. AL is usually implemented based on GPS technology,
but its performance is vulnerable to environmental factors. The technique of acquiring the
topological shape of a network through relative distance or angle measurements between
nodes is called RL. Guo et al. [15] estimated the relative positions of UAVs based on
graph theory and UWB RCM in a GPS-rejected environment, thus enabling distributed
formation control. Autopilot and guidance laws designed for fixed-wing UAVs without a
priori knowledge were studied in [16,17]. Secondly, there are centralized and distributed
algorithms based on the computational framework. The centralized approach is suitable
for static networks, as it requires the collection of all measurements and the calculation of
estimates at the fusion center, which requires powerful computational and communication
capabilities. Location estimation that iteratively extends to the overall framework based
on local information is called distributed localization, which has the advantage of load
balancing and efficiency of the network. Two different distributed algorithms are described
in [18,19]. Thirdly, we categorize them according to the use of anchors or not. Zhang et al.
propose a unique anchorless localization algorithm that uses a combined distance and
angle technique to establish a local coordinate system (LCS) and then estimates the relative
position from a fixed coordinate system [20]. This method effectively avoids reflection blur.
However, the high cost of angle measurements has resulted in few practical applications. A
new idea of using a mobile single anchor to locate target nodes was proposed in [21] that
employed the computational intelligence-based H-best particle swarm (HPSO) algorithm.
Liu et al. [22] proposed a distributed UAV relative positioning framework and used the
SDP method to obtain the global topology of the UAV cluster. The lower bounds of CRLB
with and without anchors were then analyzed separately. In addition, the localization
is classified according to the type of calculation (distance or hop count). An MDV-hop
algorithm based on the DV-hop algorithm is proposed in [23] for locating wireless sensor
nodes. Techniques based on distance information typically include SDP, least squares
(LS), gradient descent (GD), and multidimensional scaling (MDS) [24–26]. Among these,
SDP methods have the advantage of significantly better localization accuracy than other
closed-form solutions. However, it is less resistant to interference in large-scale networks.
Zou et al. [27] proposed a method that uses the initial estimation of the SDP to iterate the
position and velocity of target nodes to improve the localization accuracy. A distributed
gradient algorithm based on Barzilai–Borwein steps was applied to distributed distance
measurements, which enabled node localization accuracy to meet expectations [28]. Figure 1
shows the UAV localization algorithms under different classifications. The problem of
determining the location of a UAV node is called localization. Usually, distance-based UAV
localization requires the estimation of absolute position (relative to a local or global frame
of reference) from partial relative measurements between UAVs. That is, each UAV can
measure relative positions from a set of neighboring UAVs, and then infer the absolute
position of all UAVs from this information. UAV localization algorithms can be classified
from different perspectives.

We denote (·)T and (·)−1 as the transpose and inverse of a vector (or matrix). The rank
of A is denoted as Rank(A). ai stands for the ith element of a. ||·|| is the Euclidean norm.
1k and 0k are the all-one and all-zero vectors of length k. Ik is the k × k identity matrix.
A � B signify that A− B is positive semidefinite.
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Figure 1. Node localization algorithms in UAV networks.

3. Problem Formulation

Consider a scenario of dynamic swarms of UAVs. The 3D network space R3 con-
sists of m beacon UAVs (denoted as anchors and coordinates are known) and n target
UAVs (positions are unknown). Let Na = {1, 2, . . . , m} denote the set of anchors, and let
Nu = {m + 1, m + 2, . . . , m + n} denote the set of target UAVs, where NR = Na + Nu. There
exists a clock offset δi between the UAVi ∈ NR and the standard time. The UAVs have
certain communication capabilities that allow them to range with neighbor UAVs. The
coordinate of the anchor UAVs and target UAVs is defined as xi = [xi, yi, zi]

T ∈ R3 and
ak = [xk, yk, zk]

T ∈ R3, respectively.
It is assumed that the distance between UAVs is obtained by the signal time of arrival

(TOA). If the distance of UAV i and j is within communication range R, their distance can
be expressed by

dij =
∥∥xi − xj

∥∥
2, ∀i, j ∈ NR (1)

Furthermore, we regard the distance as symmetric, i.e., dij = dji. We denote T as the
time duration of the signal rij(t) from jth UAV to the ith UAV, given by

rij(t) = αijsj(t− τij) + nij(t), t ∈ [0, T] (2)

where αij denotes amplitude, sj(t) is the known waveform, τij is the transmit delay, and
nij(t) represents Gaussian noise.

Among the actual problems of UAV network localization, due to the limitation of
communication distance, not all the measurement pairs of distance are known. Therefore,
the pair distances of UAV/UAV pairs and UAV/anchor pairs are denoted as (i, j) ∈ N
and (k, j) ∈ M, respectively. Define dij as the true distance between target UAVs and d̂kj
as the true distance between the target UAV and anchor UAV. The measurement noise is
modeled to obey Gaussian distribution, and thus the corresponding distance measurement
of UAV is

dij = dij + εij, ∀(i, j) ∈ N
d̂kj = d̂kj + γij, ∀(k, j) ∈ M (3)

where dij and d̂kj are the measurements between UAV i and UAV j with Gaussian noise
εij ∼ N(0, σij

2), γij ∼ N(0, σkj
2), and N represents normal random variables with mean 0

and variance σ2, as well as those that are independent.
The final goal is to estimate the position of a large-scale UAV network in a dynamic

scene using distance measurements. Figure 2 depicts the network model of the UAV
network localization problem in a dynamic scenario. The nomenclature of used terms is
provided in Table 1.
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Figure 2. Localization model of UAVs in 3D space, in which green UAV and blue UAV represent
anchors and target nodes, respectively.

Table 1. Nomenclature of used terms in this paper.

Symbol Definition

Na, Nu, NR Set of anchors and target UAVs, where NR = Na + Nu
xi, ak

dij, d̂kj
N ,M

rij, αij, sj, nij
εij, γij
X, Y, Z

Coordinate of the anchor UAVs and target UAVs
Distance between target UAV and UAV (or anchor)
Set of distance pairs of UAV/UAV and UAV/anchor
Amplitude, waveform, and noise of UAV signal
Gaussian noise of distance measurements
X is UAV position matrix and Y = XTX, Z = [I3 X; XT Y]

l, u
φi, φj

U
a, r1, r2

Lower and upper bounds of variables in X
Variables greater than 1 and less than e
Population of gray wolves
Convergence factor and two random numbers of [0,1]

In the above figure, the distances between UAVs are represented by the corresponding
edges; thus, the UAV network localization problem is

Find x1, x2, . . . , xn ∈ R3

s.t.

∥∥xj − xi
∥∥2

= d2
ji, ∀(i, j) ∈ N∥∥xj − ak

∥∥2
= d̂2

kj, ∀(k, j) ∈ M
(4)

In general, the above problem is considered as a nonconvex problem (NP-hard), which
is tough to solve. Global optimization techniques have been widely used, such as MDS,
SDP, and nonlinear least squares (NLS). Projection and dimensionality reduction are the
main ideas of the MDS technique. NLS is usually resolved by direct derivatives, gradient
descent, and quasi-Newton methods. Semidefinite relaxation (SDR) is a computationally
efficient approximation to quadratically constrained quadratic programming (QCQP),
and the UAV localization problem proposed in this article is classified as QCQP. The
QCQP is approximated by semidefinite programming (SDP), in which reliable and efficient
algorithms have been studied by previous scholars.

In this paper, a novel idea for solving distance-based UAV localization has been
designed. We first transform the UAVs position estimation problem into an MLE problem
that reduces the error between the true and the estimated value of the position, and then
create relaxation constraints and derive an answer for the MLE problem via the composite
localization algorithm SDP + RLT.
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4. Proposed Localization Solution

4.1. System Model

Based on the above problem formulation, a UAV network consists of Nu target UAVs
and Na anchor UAVs. The distance measurement of UAVs is obtained by communicating
with their neighbor UAVs. We combine the 3D coordinates of all target UAVs into a matrix
X = [x1, x2, . . . , xn] ∈ R3×n, which needs to be settled. Due to the influence of UAV mobility
and noise during distance measurement, there exists an error between the measurements
and the accurate distance of UAVs. In order to account for noisy distance information, the
idea of maximum likelihood estimation (MLE) is utilized to set up optimization problems
that minimize the expected error in the UAV position estimation [29]. Therefore, an MLE
problem of UAV positioning can be expressed as

X̃ = argmin
X

{
∑(i,j)∈N wij

∣∣∣∥∥xi − xj
∥∥2 − d2

ij

∣∣∣+ ∑(k,j)∈M wkj

∣∣∣∥∥xj − ak
∥∥2 − d̂2

kj

∣∣∣} (5)

where wij > 0 are weights. The weights in Equation (5) are important to achieve precise
positioning. We tend to give higher weights to distance measures with high confidence,
which facilitates higher-quality estimator error reduction.

The position error is defined as

Σ = ‖x̃− x‖2 (6)

We further model the UAV localization problem as

Find X ∈ R3×n, Y ∈ Rn×n

s.t. eT
ij X

TXeij = d2
i,j, ∀(i, j) ∈ N

(ak; ej)
T

(
I3 X
XT Y

)
(ak; ej) = d̂2

kj, ∀(k, j) ∈ M

Y = XTX

(7)

Here, eij ∈ Rn is the vector with 1 at the ith position, −1 at the jth position, and zero
everywhere else; ej ∈ Rn is the vector of all zeros except an −1 at the jth position; I3 is the
3 × 3 identity matrix.

In the SDP approach, the constraint relaxation is Y � XTX, which means Y−XTX � 0,
the constraint is equivalent to the following linear matrix inequality:

Z =

(
I3 X

XT Y

)
� 0 (8)

Then formulate the relaxation problem as a standard SDP problem, that is, to find the
symmetric matrix Z ∈ R(3+n)×(3+n) such that:

maximize
Z

0

s.t. Z1:3,1:3 = I3

(0; ej)(0; ej)
T ·Z = d2

i,j, ∀(i, j) ∈ N
(ak; ej)(ak; ej)

T ·Z = d̂2
kj, ∀(k, j) ∈ M

Z � 0

(9)

where Z1:3 is the upper three-dimensional master submatrix of Z. After the SDP normaliza-
tion of the localization problem, the problem solvability will be analyzed. Then, whether
UAVs can be uniquely localized is considered, and the proof is given in the next section.
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4.1.1. SDP Solvability Analysis

We now analyze the solvability of Problem (9) through SDP pairwise relaxation theory.
The rank of any possible feasible solution matrix of (9) is highlighted in [30] as being at
least 3. Assume that (9) has a feasible solution. This happens when dkj and dij denote the

accurate values of the position X̃= [x̃ 1, x̃2, · · · , x̃n

]
. Then, Z̃ = QTQ, where Q = (I3; X̃)

T

is a feasible solution to (9). Since the original is feasible, the dual must have a minimum
value of 0. The dual of the SDP relaxation is represented below

minmize I3·C + ∑
(i,j)∈N

uijd2
ij + ∑

(i,j)∈M
vijd̂2

kj

s.t.
(

C 0
0 0

)
+ ∑

(i,j)∈N
uij(0; eij)(0; eij)

T + ∑
(i,j)∈M

vij(ak; ej)(ak; ej)
T � 0

Let U be a (3 + n)-dimensional dual relaxation matrix, that is

U =

(
C 0
0 0

)
+ ∑

(i,j)∈εuu

uij(0; eij)(0; eij)
T + ∑

(i,j)∈εau

vij(ak; ej)(ak; ej)
T

According to the dual theory of SDP, the matrices Z and U satisfy Rank(Z̃) ≥ 3 and
Rank(Ũ) ≤ n. The following theory can be derived.

Theory 1. If the optimal dual relaxation matrix has rank n, then each solution of (4) has Rank 3.
That is, Problems (4) and (9) are equivalent, and (4) can be solved in polynomial time as an SDP.

For the UAV localization problem, the SDP relaxation in (9) can find an accurate
solution to Problem (7). Note that localization is unique only in some cases where the
network map is generally rigid, while nodes are locatable when the graph is globally rigid.
The solvability of the UAV localization problem will be investigated by graph theory below.

The issue of the network location problem based on relative ranging measurement
pairs of distance is actually a general distance geometry and graphical implementation
problem. Suppose a set of wireless nodes are placed in a Euclidean space Rd and they
communicate with each other to form a certain topology. This topology can be abstracted
as an undirected connectivity graph GN, which contains vertices set V = {1,2, . . . ,n} and
a set of edges ε. The vertices and edges represent the nodes and communication links
(distance measurements) in the communication network, respectively. Thus, the goal of
network localization derives the location information of all unknown nodes based on
known anchor information xj, topological connectivity information of the graph GN, and
distance information dij. The proof process is omitted here. See [30] for details, and the
following theorem is valid.

Theorem 1. The network localization problem is just considered solvable if there exists a set of
positions {xm+1, . . . , xn} in Rd corresponds to the given data (GN, {x1, x2, . . . , xm} and dij).

Theorem 1 provides sufficient conditions for the UAV network 3D localization problem
of particular relevance in the case of global rigidity. Having solved the solvability, whether
localization is uniquely solvable is discussed below.

4.1.2. Unique Solvability Analysis

The optimal value in Problem (9) is 0 if the distance measurements of UAVs are exact.
However, the sufficient number of distance information is also a significant feature of the
challenge to achieve unknown node localization. Biswas et al. [29] have discussed this
problem in detail and provided a unique solvability condition. We repeat it here in terms of
localization in 3D space. Here, the matrix Z has 3n + n(n + 1)/2 unknown variables. Hence,
there are at least 3n + n(n + 1)/2 linear equations in the constraint. In addition, in case these
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equations are linearly independent, then there is a unique solution to Z. Therefore, we have
the following proposal: If there are 3n + n(n + 1)/2 distance pairs in 3D localization, each
distance pair has an exact distance metric. Then, Problem (7) has a unique feasible solution:

Z =

(
I3 X

XT Y

)
(10)

Now, it could be said that it equals the true position vectors of the target UAVs. That
is, the SDP relaxation solves the original problem exactly.

Theorem 2. If Problem (7) has a unique feasible solution X in R3×n and no xj (j = 1,2,· · · ,n) in Rh

, then (5) is uniquely locatable, where h > 3 (excluding the case of attaching all zeros to X), such that

∥∥xj − xi
∥∥2

= d2
ji, ∀(i, j) ∈ N∥∥xj − (ak; 0)

∥∥2
= d̂2

kj, ∀(k, j) ∈ M
(11)

The latter condition in Theorem 2 states that the problem cannot be confined to a higher-
dimensional space. In this space, the anchors are increased to (ak; 0) ∈ Rh, j = 1, . . . , M.
The results in [29] mean that the relaxation problem (4) solves (2) exactly when the problem
could be uniquely localized.

Based on the above SDP uniqueness analysis, we learn that it is extremely crucial that
the localization problem can be solved uniquely, especially for A2G communication. For
unique localization in 2D and 3D space, at least three points and four points are required,
respectively, and they are not collinear or on the same plane.

Figure 3 shows a typical network model for 3D localization. In these models, at least
four anchor nodes are required that need to locate the unknown node, and all four anchor
nodes cannot be on the same line or the same UAV on the same line. Figure 3a illustrates
the case where four nodes can locate an unknown node E with anchors (A, B, C, D). The
second case shown in Figure 3b shows that two potential positions (E, F) can be calculated
for nodes (A, B, C, D) in the same plane. In Figure 3c, four anchors are on the same line and
the exact position cannot be found because all anchor positions are on the same line, and
(α1, α2, . . . , αn) may be the correct position.

Figure 3. A network localization model in 3D space. The blue points represents the anchor nodes,
and the red point represents the unknown node to be located.

4.2. SDP Plus RLT Relaxation Scheme

RLT is an effective approach for continuous and discrete nonconvex or QCQP is-
sues [31]. As a linear programming method, the researched problem exhibits a nonconvex-
ity when there are second-order terms in the objective function and constraints. RLT can
transform the problem into a solvable convex-optimal form by introducing new variables
containing constraints to replace the constraints of the original problem in the reformulation
phase. Anstreicher et al. [31] demonstrated that for typical values of the original variables,
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the semidefiniteness constraint removes a large part of this feasible region. It has been
shown in [32] that using RLT plus SDP constraints can achieve better results than one
of the two. In this article, we introduce RTL into SDP to solve the distance-based UAV
localization problem.

First, determine the boundaries of each coordinate in the position matrix X of the UAV
target nodes The upper bounds are denoted as u= [u1, u2, · · · , un], and the lower bounds
are denoted as l= [l1, l2, · · · , ln]. Next, the boundary constraints are determined. With two
variables φi, φj ∈ X, four constraints are established φi − li ≥ 0, ui − φi ≥ 0, φj − lj ≥ 0,
uj − φj ≥ 0. Multiplying the new constraints containing φi and φj, at the same time using
Yij instead φiφj, we obtain ⎧⎪⎪⎨⎪⎪⎩

Yij − li ϕj − lj ϕi ≥ −lilj
Yij − ui ϕj − uj ϕi ≥ −uiuj
Yij − li ϕj − uj ϕi ≥ −liuj
Yij − lj ϕi − ui ϕj ≥ −ljui

(12)

It is clear that Yij = Yji, hence the last two constraints are equivalent.⎧⎨⎩
Yij − liφj − ljφi ≥ −lilj
Yij − uiφj − ujφi ≥ −uiuj
Yij − liφj − ujφi ≤ −liuj

(13)

Next, after adding the SDP constraint and RLT, (9) can be reformulated as

maxmize
Z

0

s.t. Z1:3,1:3 = I3

(0; ej)(0; ej)
T ·Z = d2

ij, ∀(i, j) ∈ N
(ak; ej)(ak; ej)

T ·Z = d̂2
kj, ∀(k, j) ∈ M

Yij − liφj − ljφi ≥ −lilj
Yij − uiφj − ujφi ≥ −uiuj, ∀i, j = 1, . . . , n
Yij − liφj − ujφi ≤ −liuj
Z � 0

(14)

The Tightness Analysis

Tightness analysis is performed to assess the impact of our proposed solution when
it comes to UAV localization performance. We concentrate on the variety of the feasible
regions of Yij when attaching SDP to it.

The RLT relaxation does not change the affine transformation of the initial constraint
factors. We suppose that l = 0 and u = e without loss of generality. We consider variables
φi, φj, and assuming i = 1, j = 2 and 1 < φi < φj < e. Then, the RLT constraints on Y11,
Y22, and Y12 become

0 ≤ Y11 ≤ φ1,
0 ≤ Y22 ≤ φ2,
0 ≤ Y12 ≤ φ1.

(15)

Next, we exert the SDP constraint on the RLT. The SDP can be written as follows⎛⎝ 1 φ1 φ2
φ1 Y11 Y12
φ2 Y12 Y22

⎞⎠ � 0 (16)
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For the specified values of x1 and x2, comparing the feasible region of Y11Y22 before
and after adding (15), the equivalent constraint can be derived as follows.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y11 ≥ φ2
1,

Y11 ≥ φ2
1,

Y11 ≤ φ1φ2 +
√(

Y11 − φ2
1
)(

Y22 − φ2
2
)
,

Y11 ≥ φ1φ2 −
√(

Y11 − φ2
1
)(

Y22 − φ2
2
)
.

(17)

It is straightforward that applying the SDP to RLT improves the lower bounds on Y11
and Y22, but has no effect on the upper bounds. Thus, combining the RLT constraint on the
SDP tightens the feasible region of Problem (13). Similarly, the feasible domain of (16) is
tighter than the feasible domain of (9). Therefore, it can be demonstrated that our approach
can speed up the localization convergence rate. Algorithm 1 shows the SDP + RLT method
for UAV localization.

Algorithm 1 SDP + RLT Method for UAV Localization

Input: ak, m, n, N ,M, d̂k,j, di,j, R, l, u, ε.
Output: positions of unknown UAV nodes x1, x2, . . . , xn.
1: begin

/*Initialization*/
2: Initialize the Euclidean distance matrix Z = [I3, X; XT,Y], where Y = XTX.
3: Z = Symmetrize (Z)
4: cvx begin

5: minimize norm(X, 2)
6: s.t.

Z � 0
Yij − liφj − ljφi ≥ −li lj
Yij − uiφj − ujφi ≥ −uiuj
Yij − liφj − ujφi ≤ −liuj

7: for each UAV i← 1 to n do

8: update Z by solving Problem (14).
9: end for

10: if Z ≤ 0 then
11: break;
12: end if

13: cvx end

14: end

5. Bionic Optimization Algorithm

In this section, we develop an improved strategy called I-GWO based on the classical
gray wolf optimization (GWO) to optimize the UAV localization results in the presence of
noise interference, such that the localization results have smaller errors and higher accuracy.

5.1. Motivation

As seen above, the exact resolution of the localization problem can be gained us-
ing SDP + RLT when the distance information between UAVs is accurate. However, the
localization problem suffers from measurement noise, and there is no scheme to satisfy
the constraints in (7). Bioinspired optimization algorithms have attracted the attention of
researchers who have attempted to solve UAV localization problems by employing them
because of their high precision and low complexity. Previous studies have proposed several
bionic-based localization algorithms. Arafat et al. [12] proposed an improved PSO algo-
rithm, which uses a grouping approach to achieve fast convergence. Raguraman et al. [33]
proposed a dimension-based hybrid algorithm (HDPSO) to reduce localization errors.
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Motivated by the bionic optimization algorithm, a bionic optimization algorithm I-
GWO is proposed in this paper for improving localization accuracy. Since the localization
results of UAVs are subject to errors when applying the SDP + RLT technique to distance
measurements containing noise, we consider the localization results of SDP + RLT as input
and then apply the I-GWO algorithm to improve the localization accuracy.

The localization of target UAVs can be regarded as an error optimization issue. Let
θi = [θxi, θyi, θzi]

T be the optimized position estimate of the unknown UAVs. The distance
between anchor ak and θi is d̃ki. Consequently, the objective function of the localization
optimization is denoted as

f (θi, ak) =
1
K

K

∑
K=1

√
(d̂ki − d̃ki)

2
(18)

where K is the number of anchors whose location is close to the target node (usually smaller
than R). d̂ki is the noise-measured distance between the target drone and anchor, and d̃ki is
the distance between them after calculation of optimization, defined as

d̃ki =
√
(θxi − axk )

2 + (θyi − ayk )
2 + (θzi − azk )

2 (19)

5.2. I-GWO Algorithm

The GWO algorithm is inspired by the unique hierarchy and hunting patterns of
wolves in nature. In the algorithm, the gray wolf population is divided into four classes,
including alpha, beta, delta, and omega (hereinafter will be omitted as α, β, δ, and ω) in
order from high to low. The position of each wolf is regarded as a potential solution for
the prey position (target node). The α wolf leads the wolves to proceed with the search,
encirclement, and hunting activities for the prey. In order to imitate the social hierarchy in
the design of I-GWO, the location of α wolf is taken as the best solution (optimal fitness
of individuals), β as the sub-optimal solution, δ as the third optimal solution, and the
remaining candidate solution is named ω. Within the prey searching phase, the movement
of lower-ranked gray wolves in the population is based on the top three ranks, and the
wolves’ ranks are constantly updated. When the algorithm reaches the maximum iterations,
the leader of the wolf population (α wolf) is considered to have caught the prey, at which
case the hunt is finished. Studies show that the I-GWO algorithm can dramatically reduce
the probability of being premature and falling into a local optimum.

Define U = [U1, U2, . . . , Uw] as the population of gray wolves and w denotes the

number of wolves in the population. The ith wolf is denoted as Ui = [Ui
1, Ui

2, Ui
3]

T
in the

3D situation. In the encircling prey phase, the gray wolf position update is defined as

U(t + 1) = Up(t)− A · D (20)

D =
∣∣C ·Up(t)−U(t)

∣∣ (21)

where t denotes the iteration, Up denotes the location of the prey, and D expresses the distance
vector between the individual wolf and prey. A and C are constantly varying coefficients.

A = 2a · r1 − a, C = 2r2 (22)

where r1 and r2 are random numbers of [0,1], and a is the convergence factor (decreases
from 2→ 0 with the t).

a = 2−
√

t2/(tmax + t)(tmax − t) (23)

It can be seen from the equation that the gray wolf group moves toward α wolf (who is
nearest to the prey as the leader). The wolf group’s movement is motivated by its position
Ui and the random vector C. The step length is determined by D and A. When |A| > 1, it is
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far from the target and shows stronger global seeking ability; On the contrary, if |A| < 1, it
approaches the prey and shows stronger local search ability.

During the hunting stage, gray wolves are assumed to identify the prey’s position
(which is set to the α wolf position at the first algorithm loop) and encircle it. However,
actually, the desired position of prey is unknown during the whole optimization phase.
Usually, it is assumed that the top three rank wolves (e.g., α, β, and δ) have a better
knowledge of the prey’s potential location. Therefore, we saved these three solutions so
far and asked other gray wolves (including ω) to update their positions with the iteration
based on the first three best-searched positions. Here, the following equation is proposed.

U1(t + 1) = Uα(t)− Aα|Cα ·Uα(t)−U(t)|
U2(t + 1) = Uβ(t)− Aβ

∣∣Cβ ·Uβ(t)−U(t)
∣∣

U3(t + 1) = Uδ(t)− Aδ|Cδ ·Uδ(t)−U(t)|
(24)

Ui(t + 1) =
1
3 ∑

j=1,2,3
Uj(t + 1) (25)

The step length and direction of wth individuals wolf in the group toward α, β, and δ
wolves are defined by (24), and the final position of ω and other wolves is defined by (25).
In order to achieve higher localization accuracy of prey (e.g., target UAV), the proposed
algorithm I-GWO has the following improvements.

(i) On the one hand, the particle initialization is refined. Since we have already
conducted a preliminary estimation of the UAV target node position by the SDP method
in the preliminary phase of localization, the α wolf position is assigned by the result of
SDP + RLT. We generate a regular polyhedron with the position of the α wolf as the center
and the Rw as the radius. Then, its individual vertices are assumed to be the initial positions
of β wolf, δ wolf, ω wolf, and other wolves.

(ii) On the other hand, to further enhance the exploration capability of the I-GWO
algorithm, the wolves’ positions are updated according to the mean value of the random
weight sum of α, β, and δ wolves, and the position updating is modified as

Ui(t + 1) =
1
3 ∑

j=1,2,3
qjUj(t + 1) (26)

where qi is the dynamic weight coefficient generated by random numbers of [0,1], and
q1 + q2 + q3 = 1. The update rule of I-GWO is described in Figure 4, and the optimization
procedure of I-GWO is exhibited in Algorithm 2.

Figure 4. Location update rule in I-GWO.
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Algorithm 2 I-GWO of UAV Localization Optimization

Input: Preliminary results Xi of SDP + RLT, population size U, max iterations tmax, dimension d,
and coefficients r1, r2, q1, q2, and q3.
Output: Optimal position of the unknown UAVs.
/*Initialization*/
1: Initialize the gray wolf pack U = [U1, U2, . . . , Uw] using Xi.
2: Initialize the GWO parameters (a, A, C).
3: Initialize the fitness value (Uα, Uβ, Uδ).
/*Computation*/
4: while (t ≤ tmax) do
5: for each wolf w = 1: W do

6: Update the current search agent position using (18)
7: end for

/*I-GWO loop*/
8: for each wolf w = 1: W do

9: Evaluate the fitness value and update (Uα, Uβ, Uδ)
10: Obtain the variable a based on (23).
11: end for

12: for each wolf w = 1: W do

13: Calculate A and C based on (19)
14: Update the position of wolf w by (24)(25)
15: end for

16: w = w + 1
17: t = t + 1
18: end while

19: Terminate the process and output the optimal position by Uα

20: end

6. Simulation

The performance of the proposed algorithms will be evaluated through MATLAB
simulator simulations when solving UAVs that cannot be localized or uniquely localized
because of limited measurements. First, the hybrid algorithm (named SDP + RLT) is
compared with the SDP + O algorithm by Russell et al. [11], the MDS method [18], and
the least squares (LS) algorithm [24]. Second, the performance of the I-GWO algorithm
is evaluated under noisy measurements and compared with PSO algorithms [12], HPSO
algorithms [21], and HGWO algorithms proposed by Arafat et al. [13].

6.1. Performance of Proposed Method

Let 50 target UAVs be randomly placed within the simulated area [−300m, 300m] ×
[−300m, 300m]. The altitudes of the UAVs are in the range [100m, 600m], and 6 anchor
UAVs are evenly placed. The UAV motions follow the Gaussian random walk model. In
addition, we set R = 300m, then the distance measurements can be made with the UAVs
within its communication range. For the noisy range measurement, the Gauss error with
fixed standard deviation is used. To be closer to the real scenario, it is also assumed that the
distance pairs between UAVs will be lost randomly by 1%. The localization error (LE) is
defined as the deviation of the estimated position of a UAV node from the actual position.

LEi =
√
(X ei − Xri)

2

=
√
(xei − xri)

2 + (yei − yri)
2 + (zei − zri)

2
(27)

where the 3D coordinates of the estimation and actual value of the target nodes are denoted
as Xe = (xe, ye, ze)

T and Xr = (xr, yr, zr)
T , respectively. We evaluate the UAV localization
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performance using the root mean square error (RMSE) as the evaluation metric, which is
averaged over 100 runs.

RMSE =

√
1
n∑n

i=1

(
Xei − Xri

)2
=

√
1
n
·∑n

i=1 LEi (28)

where Xri denotes the real position matrix of the target UAV node, and Xei denotes the
matrix of estimated positions. NMSE is given by the ratio of the matrix X− X̃ to the F-norm
of X. In addition, we evaluate the localization accuracy by referring to the mean absolute
error (MAE) of the nodes, which is also taken as the average of 100 runs.

MAE =
1

n× d∑n
i=1 ∑d

j=1

∣∣∣Xei,j − Xri,j

∣∣∣ (29)

where Xei,j , Xri,j , denote the estimated and true positions of UAV, respectively.

6.2. Simulation Results and Discussion

Figure 5 depicts the accuracy of different localization algorithms for the target node
under the measurement noise ratio (noise ratio is 10%) and loss ratio (loss ratio is 1%).
Figure 5a shows the LS-based localization effect, where the blue line represents the deviation
between the true and estimated positions. Since LS localization is carried out iteratively, the
localization deviation of previous nodes will affect the localization of subsequent nodes, so
the overall RMSE of localization is large. Figure 5b,c shows MDS localization and SPD + O
algorithm, in which 70% of nodes can estimate their positions well, while the rest of the
nodes have big deviations, and their MAEs are 4.236 m and 4.013 m, respectively. Figure 5d
shows that the proposed localization method SDP + RLT has an MAE of 2.082, which is
only half of the SDP + O algorithm. In conclusion, the performance of the SDP + RLT
algorithm can be demonstrated by other existing localization algorithms.

Figure 5. Comparison of LS, MDS, SDP + O, and SDP + RLT localization results in the same scenario
with m = 6, n = 50 and R = 300. The “Δ”represents the anchor node, the ”�” represents the actual
position of the UAV, and the “*”represents the estimated position.

166



Drones 2023, 7, 113

We further demonstrate the localization performance. Figure 6 and Table 2 describe
the RMSE of different algorithms when the number of target UAVs is increased with noise
ratio = 10%, distance loss ratio = 1%, and anchors = 6. Figure 6 clearly demonstrates that the
localization performance of our proposed algorithm incrementally improves by increasing
the number of UAVs, which is attributed to the fact that more neighbors are available. In
addition, the SDP + RLT algorithm outperforms the MDS by about 1.5 orders of magnitude
in terms of RMSE and by about 2 orders of magnitude over the LS and SDP + O algorithms.
However, the SDP + RLT algorithm costs more time since it uses the “CVX toolbox” to
semidefinite constraints on the distance matrix during the run. Table 2 provides accurate
numerical statistics. In future research, we consider applying a distributed method to
reduce the localization time.

Figure 6. Comparison of RMSE vs. UAV numbers.

Table 2. Number of UAVs as a function of RMSE for different localization algorithms.

Localization
Algorithm/RMSE

Numbers of Unknown UAV Nodes

50 60 70 80 90 100 110

LS 2.9912 2.8923 2.7633 2.5908 2.4648 2.3567 2.1435
MDS 2.7732 2.5243 2.3957 2.1894 2.0362 1.9533 1.6415

SDP + O 3.0796 2.9923 2.9617 2.8796 2.6695 2.3709 2.3474
SDP + RLT 1.5057 1.3809 1.3385 1.3196 1.2061 0.9921 0.9107

Figure 7 shows that the localization accuracy of the LS, MDS, and SDP + O algorithms
improves substantially when anchors increase while the target UAVs are fixed at 50. The
RMSE improvement is about 200%, which indicates that they are highly dependent on the
anchors and therefore not suitable for large-scale network applications. With increasing
anchors, the RMSE of the SDP + RLT algorithm improves by about 50%, so we infer that
our algorithm is more scalable and robust in the face of network expansion. In addition,
the relatively small number of anchors used implies a lower GPS cost.

Next, the noise factor during distance measurement was evaluated by considering the
effects of realistic factors (geography, weather conditions, or UAV’s own maneuverabil-
ity, etc.). Figure 8 shows that the RMSE of all the algorithms increases when the noise rate
increases. However, the SDP + RLT algorithm outperforms the others algorithms in terms
of interference immunity. It is notable that the RMSE is equal to 0 when the noise rate is 0.
This also justifies the conclusion in Theorem 2 that the SDP method can achieve unique
accurate localization.
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Figure 7. Comparison of RMSE vs. anchor numbers.

Figure 8. Comparison of RMSE vs. noise ratios.

Finally, the improvement of positioning accuracy of different optimization algorithms
is demonstrated through comparative experiments. Figure 9 shows the comparison of differ-
ent affine optimization algorithms applied for the initial localization results of SDP + RLT.
Table 3 details the numerical results of the different optimization algorithms. It means
that the convergence speed of the I-GWO algorithm is faster than that of PSO, HPSO,
and HGWO, and the RMSE is smaller. Therefore, based on the localization results of the
SDP + RLT method, the I-GWO algorithm can achieve the goal of high-precision localiza-
tion of UAVs.

Figure 9. Comparison of RMSE vs. iterations.
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Table 3. Number of iterations as a function of RMSE for different optimization algorithms.

Optimization
Algorithm/RMSE

Iterations

0 20 40 60 80 100 120 140 160

PSO 1.4602 0.6434 0.3061 0.1853 0.1302 0.0794 0.0337 0.0036 0.0015
HPSO 1.7132 0.7266 0.3068 0.0988 0.0287 0.005 0.0027 5.56 × 10−5 7.35 × 10−7

HGWO 2.2296 1.7022 0.9412 0.5926 0.2205 0.1899 0.0274 0.0038 0.0006
I-GWO 0.6757 0.1209 0.0395 0.0096 0.0061 0.0021 3.21 × 10−6 2.57 × 10−8 1.82 × 10−11

7. Conclusions

In this article, SDP + RLT and I-GWO algorithms have been proposed for solving the lo-
calization problem in 3D cyberspace for swarms of UAVs using only distance measurements
and a few GPS-equipped UAVs, which are essential for cooperative UAV swarm flying.
Then, the solvability and unique solvability have been analyzed theoretically. Further,
the I-GWO is proposed to improve the localization accuracy for distance measurements
that contain noise. Through simulation results exhibited in MATLAB, we compare the
performance of SDP + RLT with other advanced localization methods (i.e., LS, MDS, and
SDP + O) and demonstrate its efficiency in terms of RMSE, measurement error, and scal-
ability. I-GWO is compared with the classical optimization algorithms PSO, HPSO, and
HGWO. The RMSE and MAE results prove the superiority of the algorithms. Our study
still has limitations in terms of computational speed since the proposed approach is based
on SDP, where semidefinite constraints consume more time when the target UAVs increase.
Hence the proposed method is more suitable for centralized UAV routing schemes. Future
work includes the introduction of distributed methods for efficient and high-precision lo-
calization of UAV swarms in mobile scenarios to reduce the localization delay. In addition,
finding the optimal trajectory of a single mobile anchor UAV to achieve localization is also
a future research trend.
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Abstract: Flocking for fixed-Wing Unmanned Aerial Vehicles (UAVs) is an extremely complex
challenge due to fixed-wing UAV’s control problem and the system’s coordinate difficulty. Recently,
flocking approaches based on reinforcement learning have attracted attention. However, current
methods also require that each UAV makes the decision decentralized, which increases the cost
and computation of the whole UAV system. This paper researches a low-cost UAV formation
system consisting of one leader (equipped with the intelligence chip) with five followers (without
the intelligence chip), and proposes a centralized collision-free formation-keeping method. The
communication in the whole process is considered and the protocol is designed by minimizing the
communication cost. In addition, an analysis of the Proximal Policy Optimization (PPO) algorithm
is provided; the paper derives the estimation error bound, and reveals the relationship between
the bound and exploration. To encourage the agent to balance their exploration and estimation
error bound, a version of PPO named PPO-Exploration (PPO-Exp) is proposed. It can adjust the
clip constraint parameter and make the exploration mechanism more flexible. The results of the
experiments show that PPO-Exp performs better than the current algorithms in these tasks.

Keywords: fixed-wing UAV; formation keeping; reinforcement learning

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have been widely used in military
and civil fields, such as in tracking [1], surveillance [2], delivery [3], and communication [4].
Due to the inherent defects, such as fewer platform functions and a light payload, it is
difficult for a single UAV to perform diversified tasks in complex environments [5]. The
cooperative formation composed of multiple UAVs can effectively compensate for the lack
of performance and has many advantages in performing combat tasks. Thus, the formation
control of UAVs has become a hot topic and attracted much attention [6,7].

Traditional solutions are usually based on accurate models of the platform and dis-
turbance, such as model predictive control [8] and consistency theory [9]. This paper [10]
proposed a group-based hierarchical flocking control approach, which did not need the
global information of the UAV swarms. The study in [11] researched the mission-oriented
miniature fixed-wing UAV flocking problem and proposed an architecture that decomposes
the complex problem; it was the first work that successfully integrated the formation flight,
target recognition, and tracking missions into simply an architecture. However, due to the
influence of environmental disruption, these methods are difficult to accurately model [12].
This seriously limits the application scope of traditional analysis methods. Therefore,
with the emergence of machine learning (ML), the reinforcement learning (RL) [13,14]
method to solve the above problem has received increasing attention [15]. RL applies to
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decision-making control problems in unknown environments and has achieved successful
applications in the robotics field [16–18].

At present, some works have integrated RL into the formation coordination control
problem solution and preliminarily verified the feasibility and effectiveness in the simula-
tion environment. Most existing schemes use the particle agent model for the rotary-wing
UAV. The researchers [19] first researched RL in coordinated control, and applied the
Q-learning algorithm and potential field force method to learn the aggregation strategy.
After that, ref. [20] proposed a multi-agent self-organizing system based on a Q-learning
algorithm. Ref. [21] investigates second-order multi-agent flocking systems and proposed a
single critic reinforcement learning approach. The study in [22] proposes a UAV formation
coordination control method based on the Deep Deterministic Policy Gradient algorithm,
which enabled UAVs to perform navigation tasks in a completely decentralized manner in
a large-scale complex environment.

Different from rotary-wing UAVs, the formation coordination control of fixed-wing
UAVs is more complex and more vulnerable to environmental disturbance; therefore, dif-
ferent control strategies are required [23]. The Dyna-Q(λ) and Q-flocking algorithm are
proposed [24,25] for solving the discrete state & action space fixed-wing UAV flocking
problem under complex noise environments with deep reinforcement learning. To deal
with the continuous space, ref. [26,27] proposed a fixed-wing UAV flocking method in
continuous spaces based on deep RL with the actor–critic model. The learned policy can
be directly transferred to the semi-physical simulation. Ref. [28] focused on the nonlin-
ear attitude control problem and devised a proof-of-concept controller using proximal
policy optimization.

However, the above methods also assume that UAVs fly with different attitudes, so the
interaction (collision) between the followers can be ignored, and the followers in the above
methods are seen as independent. Under the independent condition, these single-agent
reinforcement learning algorithms can be effective due to the stationary environment [29].
However, in real tasks, even when the attitude is different, the collision still may happen
when the attitude difference is not significant, and the UAVs adjust their roll angles.

In real tasks, the followers can interact with each other, and it is also common for
them to collide in some scenarios, such as the identical attitude flocking task. However,
this scenario is rarely studied. Ref. [30] proposed a collision-free multi-agent flocking
approach MA2D3QN by using the local situation map to generate the collision risk map.
The experimental results demonstrate that it can reduce the collision rate. The followers’
reward function in MA2D3QN is only related to the leader and itself; however, other
followers can also provide some information. This indicates that the method did not fully
consider the interaction between the followers.

However, MA2D3QN did not demonstrate the ability to manage the non-stationary
multi-agent environment [29], and the experiments also show collision judgments with
high computation. With the number of UAVs rising, the computation time also increases.
Furthermore, some problems in the above methods on fixed-wing UAVs have not been
adequately solved, such as the generalization aspect and communication protocol; the most
concerning problem is the minimum cost of the formation.

To consider the communication protocol of the formation, this paper takes the maxi-
mum communication distance between the UAVs into consideration, with a minimum cost
communication protocol to guide the UAVs to send the message in the formation-keeping
process. Under this protocol, the centralized training method for the UAVs is designed;
only the leader needs to equip the intelligence chip. The main contributions of this work
are as follows:

1. Research the formation keeping task with continuous space through reinforcement
learning, and building the RL formation-keeping environment with OpenAI gym,
and constructing the reward function for the task.

2. Design the communication protocol for the UAVs’ formation with one leader who
can make decisions intelligently and five followers who receive the decisions from
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the leader. The protocol is feasible even when the UAVs are far away from each other.
Under this protocol, the followers and leader can communicate at a low cost.

3. Analyze the PPO-Clip algorithm, give the estimation error bound of its surrogate, and
elaborate on the relationship between the bound and hyperparameter ε: the higher ε,
the more exploration, the larger the bound.

4. Propose a variation of PPO-clip: PPO-Exp. The PPO-Exp separates the exploration
reward and regular reward in the task of formation keeping, and estimates the advan-
tage function from them, respectively. The adaptive mechanism is used to adjust ε to
balance the estimation error bound and exploration. The experiments demonstrate
this mechanism with effectiveness for improving performance.

This paper is organized as follows. The first section introduced the current research
on UAV flocking. Section 3 describes the background of the formation-keeping task and
introduces reinforcement learning briefly. In Section 4, the formation-keeping environment
is constructed, and the reward of the formation process is designed. Section 5 discusses
the dilemma between the estimation error bound and exploration ability of PPO-Clip, and
proposes PPO-Exp to balance the dilemma. Section 6 shows the experimental setup and
results. Section 7 provides the conclusions of the paper.

2. Related Work

This section reviews current research about fixed-wing UAV flocking and formation-
keeping approaches with deep reinforcement learning. According to the training architec-
ture, this paper divides the current methods into the following two categories: centralized
and decentralized. The difference between the two categories is as follows:

The centralized methods utilize the leader and all the followers’ states in the training
model, and the obtained optimal policy can control all of the followers so that they flock
to the leader. The decentralized methods only use one follower and the leader’s state to
train the policy, and the obtained optimal policy could only control one follower. If there
are several followers in the task, the policy and intelligence chip should be deployed on all
of the followers.

2.1. Decentralized Approach

The paper [24] proposed a reinforcement learning flocking approach Dyna-Q(λ) to
flock the fixed-wing UAV under the stochastic environment. To learn a model in the
complex environment, the authors used Q(λ) [31] and Dyna architecture to train each fixed-
wing follower to follow the leader, and combined internal models to deal with the influence
of the stochastic environment. In [25], the authors further proposed Q-Flocking, which is a
model-free and variable learning parameter algorithm based on Q-learning. Compared to
Dyna-Q(λ), Q-Flocking removed the internal models and proved it could also converge to
the solutions. For simplification, Q-Flocking and Dyna-Q(λ) also require that the state and
action spaces are discrete, which is inappropriate. In [26], the authors first developed a DRL-
based approach for the continuous state and action spaces fixed-wing UAV flocking. The
proposed method is based on the Continuous Actor-Critic Learning Automation(CACLA)
algorithm [32], with the experience replay technique embedded to improve the training
efficiency. Ref. [33] considered a more complex flocking scenario, where the enemy threat is
considered in the dynamic environment. To learn the optimal control policies, the authors
use the situation assessment module to transfer the state of UAVs to the situation map
stack. Then, the stack is input into the proposed Dueling Double Deep Q-network(D3QN)
algorithm to update the policies until convergence. Ref. [34] proposed the Multi-Agent
PPO algorithm to decentralize learning in the two–group fixed-wing UAV swarms dog
fight control. To accelerate the learning speed, the classical rewarding scheme is added to
the resource baseline, which could reduce the state and action spaces.

The advantage of decentralized methods is that these methods could be deployed on
the distribution UAV systems, which could extend to the large-scale UAV formation. The
disadvantage of the centralized methods is as follows:
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• These methods also require all of the followers to be equipped with intelligence chips,
which increase the costs.

• These methods do not consider the collision and communication problem, due to the
use of only local information.

The decentralized approaches also assume that UAVs fly at different heights, and then
the collision problem could be ignored. However, in real-world applications, the collision
problem must be considered [30].

2.2. Centralized Approach

Ref. [35] studied the collision avoidance fixed-wing UAV flocking problem. To man-
age collision among the UAVs, the authors proposed the PS-CACER algorithm, which
receives the global information of UAV swarms through the plug-n-play embedding mod-
ule. Ref. [30] proposed a collision-free approach by transferring the global state information
to the local situation map and constructing the collision risk function for training. To
improve the training efficiency, the reference-point-based action selection technique is
proposed to assist the UAVs’ decisions.

The advantages of the centralized methods are as follows:

• These methods could reduce the cost of the formation. Under the centralized archi-
tecture, the formation system only requires the leader to equip the intelligence chip.
The followers only need to send their state information to the leader and receive the
feedback commands.

• These methods could consider collision avoidance and communication in the forma-
tion due to their use of global information.

The disadvantage of the centralized method is the dependence on the leader. Ref. [36]
pointed out that the defect or jamming of the leader causes failure in the whole
formation system.

When the number of UAVs increases or the tasks are complex, the centralized methods
face the dimension curse and lack of learning ability problems. A popular approach is
learning the complex tasks with a hierarchical method [37,38], which divides the complex
tasks into several sub-tasks and uses the centralized method to optimize the hierarchies.
The hierarchical reinforcement learning approaches are applied in the quadrotors swarm
system [37,38], but are rarely used in fixed-wing UAV systems.

Even when using global information in training, the current centralized approaches fail
to consider communication in the formation. Compared to current centralized approaches,
the approach proposed in this paper considers the communication in formation, and
provides the communication protocol. Through the communication protocol, the formation
system could be considered as one leader with an intelligence chip and five followers
without intelligence chips; the leader collects the followers’ information, with a centralized
train on the intelligence chip. The followers receive the command from the leader through
this protocol and execute.

3. Background

This section will introduce the kinematic model of the fixed-wing UAV, restate the
formation keeping problem, and briefly introduce reinforcement learning.

3.1. Problem Description

The formation task can be described as follows: At the beginning, the formation is
orderly (shown in Figure 1), which is a common formation designed in [39]). The goal of
the task is to reach the target area (the green circle area) with the formation in as orderly a
way as possible; when the leader enters the target area, the mission is complete.
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Figure 1. Left: The Leader–Follower formation topology structure and the task schematic diagram.
Right: The action of UAV.

During the task, assume the UAVs are flying at a fixed attitude; then, each UAV in
the formation can also be described as a six-degree of freedom (6DoF) dynamic model.
However, analyzing the six-degree model directly is very complex; it will increase the
space scale and make control more difficult. The 6DoF model can be simplified to the 4DoF
model; to compensate for the loss incurred during this simplification, random noise is
introduced into the model [27], and the dynamic equations of ith UAV in the formation can
be written as follows:

ξ̇i =
d
dt

⎡⎢⎢⎣
xi
yi
ψi
ϕi

⎤⎥⎥⎦ =

⎡⎢⎢⎣
vi cos ψi + ηxi

vi sin ψi + ηyi

−
(
αg/vi

)
tan ϕi + ηψi

f (ϕi, ϕi,d)

⎤⎥⎥⎦ (1)

where (xi, yi) ∈ R2 is the planar position, and ψi ∈ R1, ϕi ∈ R1 represent the heading
and roll angle, respectively, (see Figure 1). The vi is the velocity, and αg is the gravity
acceleration. The random noise values ηxi , ηyi , ηϕi , ηψi are the normal distributions, its
means are μxi , μyi ,μϕi ,μψi , and its variances are σ2

xi
, σ2

yi
, σ2

ϕi
, σ2

ψi
, respectively, (the gray dotted

circles in Figure 1 show the area of influence, of random factors); they represent the random
factors introduced by simplification and environment noise.

A simple control strategy can make the formation satisfactory when the environment’s
noise is low. However, under a strong inference environment, such as one with strong
turbulence, the random factors will be apparent, leading the formation to maintain the
complexity of the task. If no effective control is provided, the formation will break up
quickly, (this is demonstrated in Figure 2), and a crash may happen.

Furthermore, even though there is an effective control policy for the formation, the
coupling between the control and communication protocol can also be an unsolved chal-
lenge. Because the communication range of UAVs is limited, if the UAV wants to know
others’ states, it has to wait for other UAVs out of range to send state information to UAVs it
can communicate with, which in turn send state information to it. If no harmonic protocol
is applied in the formation control, the asynchronous and nonstationary elements will be
introduced into the formation control, making the control strategy more complex.
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Figure 2. (a): The ablation experiment result of environment noise: track of formation with no control;
(b): The ablation experiment result of exploration balance point: PPO-Clip with ε = 0.05.

3.2. Reinforcement Learning

In the last part, the solution of differential Equation (1) can be represented as the
current dynamic parameters adding the integral items by difference equation methods
such as the Runge–Kutta method. So, the UAV formation control can be modeled as a
Markov Decision Process(MDP), which refers to the decision process that satisfies the
Markov property.

The MDP also can be described as the tuple (S ,A,P , r, γ). S represents the state space,
A represents the action space, and P : S ×A× S → R is the transition probability. The
reward function is r : S ×A → R, and γ ∈ (0, 1) is the discount factor, which leads the
agent to pay more attention to the current reward.

Reinforcement learning can solve the MDP well to maximize the discounted return, as
follows: Rt = ∑∞

t=0 γtr(st). The main approaches of RL are divided into the following three
categories: value-based, model-based, and policy-based. The policy-based methods have
been developed and widely used in various tasks in recent years. These methods directly
optimize the value function by the policy gradient:

∇Jπ(θ) = Eπθ

[
∇θ

T

∑
t=0

log πθ(st, at)Aπ

]
(2)

where Aπ is the advantage function that is equal to the state-action value function, and the
the state value function is subtracted, as follows:

Aπ(St, at) = Eπ

[
∞

∑
k=0

γkrt+k|St = s, at = a

]
− Eπ

[
∞

∑
k=0

γkrt+k|St = s

]
(3)

PPO (Proximal Policy Optimization) is one of the most famous policy gradient methods
in continuous state and action space [40]. In policy gradient descent, PPO updates the
following equation at each update epoch :

LClip,θ = Eπθold

[
min

(
rt(θ)Aπθold

, clip(rt(θ), 1− ε, 1 + ε)Aπθold

)]
(4)

However, using the constant clip coefficient ε, the PPO also proved its lack of exploration
ability and difficulty in convergence. Therefore, designing an efficient dynamic mechanism to
adjust ε and ensure greater exploration and faster convergence is also challenging.
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4. Formation Environment

This section constructs the fixed-wing UAV formation-keeping environment, the
formation topology, communication and control protocols, and collision. Communication
loss is also considered in the environment through the reward design.

4.1. State and Action Spaces

In the course of the formation task, based on the 4DoF Equation (1), it is modified
to a more realistic control environment. For the ith UAV, assume the thrust of the UAV
is controllable, and it will generate a linear acceleration αvi = v̇i. Moreover, assume the
torque of the roll angle is controllable too, and add the roll angle acceleration αϕi = ẇi = ϕ̈i
into the dynamic equations. Finally, the dynamic equations of ith UAV can be modified
as follows:

ξ̇i =
d
dt

⎡⎢⎢⎢⎢⎢⎢⎣

xi
yi
ψi
ϕi
vi
wi

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

vi cos ψi + αvi cos(ψi)t + ηxi

vi sin ψi + αvi sin(ψi)t + ηyi

−
(
αg/vi

)
tan ϕi + ηψi

ωi + ηωi

αvi

αϕi

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

To control the UAVs, linear acceleration and roll angle acceleration are input. For
control, we have the dynamic model of ith UAV:

ξ̈i =
d
dt

⎡⎢⎢⎣
ẋi
ẏi
ψ̇i
ϕ̇i

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
αvi cos ψi
αvi sin ψi

−αg f (ϕi ,ϕi,d)

vi cos2 ϕi
+

αvi αg tan ϕi

v2
i

αϕi

⎤⎥⎥⎥⎦ (6)

The state and action spaces for existing methods in UAVs controlled by reinforcement
learning are often discrete, but in the real world, the state space is continuous and changes
continuously as time goes on. Therefore, combining the analysis of the previous dynamics,
we define the state tuple of the ith UAV as ξi := (xi, yi, ψi, ϕi, vi, wi). The planar position
(xi, yi) ∈ R2, heading ψi ∈ S1, roll angle ϕi ∈ S1, line and angle velocity v, w ∈ R are
determined by solving the differential Equation (5).

In the action space, although the engine can produce fixed thrust, the real thrust acting
on the UAVs in the nonuniform atmospheric environment is not of the same value as the
engine product. So, we define the action space by ai := (αvi , αϕi ). Assume the UAVs can
also produce the same acceleration in positive and negative directions, where we have
αvi ∈ [−αvimax, αvimax], and αϕi ∈ [−αϕimax, αϕimax]. The action will influence ξ̇i through
Equation (6), and then influence the ξ̇i indirectly.

After defining the individual state and action of the UAV, we define the formation
system state and action by sticking to the individual state (action) as a vector. Define the
state of system ξ := [ξ1, · · · , ξ6], and the action of system a := [a1, · · · , a6].

4.2. Communication and Control Protocol

To ensure the UAV formation consumes less energy in the information send and
receive process, and ensure the reinforcement learning method can be helpful in the task,
the communication and control protocol for the UAV formation will be provided in this part.

As is shown in Figure 1, the formation is of a Leader–Follower structure; in terms of
hardware, all the UAVs are equipped with gyroscopes and accelerometers to monitor their
action and state parameters. Only the leader has the “brain” chip that can make decisions
intelligently; the followers only have the chips that can receive the control command signals,
take the command action and send the state signals.
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To describe this relationship, the graph model is introduced. Use the communication
graph Gt to describe the communication ability of the formation at time t [39]:

Gt = (6,Vt, Et) (7)

where Vt = {v1, · · · , v6} is the set of nodes that represent UAVs, the Et represent the arc
set at time t, e.g., ei,j ∈ Et denote an arc from node i to node j, which means the UAV i can
communicate with UAV j directly at time t. The adjacent matrix At = {ai,j} of graph Gt is
used to describe the communicated situation of formation in real-time, e.g., at the initial
time, the adjacent matrix is as follows:

A0 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

The adjacent matrix is symmetric, and its element aij indicates the communication situation
of UAV i and UAV j. If aij = 1, then aji = 1, and the ith and jth UAVs can share their state,
and the control command can be sent from i to j or j to i. The adjacent matrix is updated
in real-time. If the distance between two UAVs is greater than the communication limited
distance dcom, the corresponding elements of the adjacent matrix will be 0.

Additionally, at the initial time, the formation is connected, and the connected compo-
nentW is 1. l If the UAVs want to keep in communication with all the others, the graph G
should only have one connected component. In the graph model, this condition could be
transferred to G . The methods that judge whether an undirected graph is connected include
union-find disjoint sets, DFS, and BFS [41]. So, after DFS or BFS, the task fails when the
connected component numberW of graph G is more than 1. When the formation works,
W should be 1.

When the formation works, the protocol should be active to support the UAVs com-
municating with each other. The communication protocol’s primary purpose is to send
all the UAVs’ states to the leader for the decision; the control protocol sends the action
command to all the UAVs. When the formation is as orderly as it was at first, the infor-
mation only needs to obey the transfer route (shown in Figure 1), so the whole formation
can be controlled well. However, when the noise disturbs the position of UAVs, it makes
the connection between the UAVs that are not connected at the initial time. It breaks the
connection between the UAVs that are connected at the initial time. To handle the chaos
brought about by the noise, a communication and control protocol is shown in Figure 3.

In Figure 3a the communication protocol is shown, where the block in ith row repre-
sents the communication priority of the corresponding UAV. For the priority, the bigger the
number, the higher the priority. Priority 1, 2 determines the order of communication. If the
priority is 0, both parties have no communication probability. i.e., when the leader0 and
follower3 are within the communication range of follower5, the follower5 will send the
information to leader0 instead of follower3.

The protocol is designed based on the communication object: to send all the followers’
state information to the leader to support the decision. So, the principle of the protocol is to
give the followers closer to the leader higher priority, such as followers 1, 3 and 5.

Figure 3b has a similar meaning to the control protocol. The target of the control
protocol sends the control information to all the UAVs. The control protocol motivates
the leader to send the control information to the followers that connects as much as the
followers. Therefore, leader0, and follower1, 2, and 5 have priority 2 because they can
connect with up to 2 other followers.
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Leader0

Follower1

Follower2

Follower3

Follower4

Follower5

(a)

Leader0

Follower1

Follower2

Follower3

Follower4

Follower5

(b)

Figure 3. (a): The communication protocol of the UAVs formation; (b): The control protocol of the
UAVs formation.

4.3. Reward Scheme

The goal of the formation-keeping task is to reach the target area and ensure the
formation is as orderly as possible. At first, the orderliness of the formation is of primary
concern. So, some geometric parameters are defined to describe the formation. The
followers in the formation can be divided into two categories, one is on an oblique line
with the leader, like followers 3 and 4, and another is on a straight line with the leader.
Only follower 5 belongs to this category. The linear between the leader and the position
where the follower should be located is called the baseline (see the back lines in Figure 4).
Then, it is easy to know the first category followers have a baseline with a slope, and the
second follower’s baseline does not. For the follower i, the length of the initial baseline is li,
and the initial slope is ki = tan θ (the first category).

Leader

Follower1Follower3

Leader

Follower5
Figure 4. The communication and control protocol under the topology of the formation.

To make sure the UAV agent can return to the position that makes formation more
orderly, for ith UAV, the formation reward is designed as follows:

R f ,i = −max{disa,i, |disb,i − li|} (9)

where disa,i represents the distance between the follower i and the baseline along the vertical
line of the baseline, and disb,i represents the distance between the leader and follower i
along the baseline. The formation reward is R f ,i.

When the UAVs belong to the first category follower (e.g., follower 3), the distance
disa,3 can be calculated by the following formula:

disa,3 =
|x3 tan θ − y3 + (y0 − x0 tan θ)|√

1 + tan θ
(10)
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Followers 2 and 4 have the same disa as in the above equation. The distance disb also
can be obtained with the following formula:

disb,3 = (x3 − x0) cos θ + (y3 − y0) sin θ + l3 (11)

For the second category follower (follower 5), it is easy to know that the reward can
be represented as the following simple formation:

R f ,5 = −max{|x0 − x5|, |y0 − y5 − l5|} (12)

Furthermore, the main target of UAVs formation is to reach the target area, which is
a circle with center coordinates (xtar, ytar) and radius rtar. To encourage the formation to
reach the target area, a sparse reward is designed as the destination reward:

Rd =

{
0,
√
(x0 − xtar)2 + (y0 − ytar)2 ≤ rtar

10,000, otherwise
(13)

We only calculate the distance of the leader. Only when the formation reaches the target
area do the UAVs receive this sparse reward, and the learning process will halt. It leads to
the UAVs not only needing to take minor actions to ensure that the orderly formation is not
disorganized by the disturbance, but also needing to adjust direction to reach the target
area. From the reward design view, UAV agents need to try different actions to discover
and obtain a sparse signal. To accelerate the learning, the exploration rewards, as described
in the literature [42], are designed as the incentive reward:

Re,i = −max{|xi − xtar|, |yi − ytar|} (14)

When the formation is closer to the target area, it will receive a higher exploration reward,
leading the UAV agent to learn to reach the target area.

Meanwhile, some UAVs are too close and crash together, or they are too far and
cease communicating with each other. In that case, the formation will suffer permanent
destruction, and the task will halt.

Setting the minimum distance for crashes makes it easy to obtain the halt condition of
UAV crashes. Then, the penalty should be added to avoid the above situation. This penalty
is designed as a formal sparse reward as follows:

Rp =

⎧⎨⎩
−10,000, di,j ≤ dcra, ∀i, j = 0, 1, · · · 5

−10,000,W > 1
0, others

(15)

where the d·,j represents the minimum distance between the jth UAV and another five
UAVs: d·,j = mini{di,j}, ∀i = 1, · · · , 6, i �= j. The lowest communication distance is dcom,
once the minimum distance d·,j less than dcom, the jth UAV will lose the communication
ability with other UAVs. In addition, dcra is the crash distance; as long as the distance
between two UAVs is less than this, the two UAVs might crash.

Finally, the reward of the formation system at time T can be represented as the sum of
the following reward function:

R(T) =
6

∑
i=1

[
R f ,i(T) + Re,i(T)

]
+ Rd(T) + Rp(T) (16)

5. PPO-Exp

PPO is one of the most popular deep reinforcement learning algorithms in continuous
tasks that achieved outstanding performance. The PPO embedded the Actor–Critic algo-
rithm, which uses a deep neural network as an Actor for policy generation, and another
deep neural network as a Critic for policy estimating. The structure of PPO can be seen in
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Figure 5; the Actor interacts with the environment, collects the trajectories: {st, at, rt, st+1}
and stores them in the buffer, then it uses the buffer and the value function estimated by the
Critic to optimize the Actor network’s hyperparameter according to following surrogate:

LClip,θ
t =

⎧⎪⎨⎪⎩
(1 + ε)Aπθt−1

; Aπθt−1
> 0, rt > 1 + ε

(1− ε)Aπθt−1
; Aπθt−1

< 0, rt < 1− ε

rt · Aπθt−1
; otherwise

(17)

where the Aπθt−1
is the advantage function defined in Equation (3). The Critic network’s

hyperparameter φ is updated by minimizing the following MSE error:

LClip,φ
t = ∑

t

(
yt −Qφ(st, at)

)2 (18)

yt = rt + γ ·Qφ(st+1, πθold(st+1)) (19)

Formation
Environment

Actor network Critic network

Buffer

trajectories State, reward

advantage
function

optimize

action

Figure 5. The structure of PPO with experience replay.

The gradient of Equations (17) and (18) is computed and used to update the hyperpa-
rameters θ and φ until they converge or reach maximum steps. In surrogate (17), the PPO
restricted the difference between new and old policy by using the clip trick to restrain the
ratio rt =

πθ(st ,at)
πθold

(st ,at)
. It could be considered a constraint on updated policy; under it, the

ratio should satisfy the following constraint: 1− ε ≤ rt ≤ 1 + ε. Then, the updated policy
is restricted as follows:

|πθ(st, at)− πθold(st, at)|
πθold(st, at)

≤ ε (20)

The coefficient ε is also a constant in the range (0, 1) in PPO-Clip; from the inequal-
ity (20), it can be seen that the relative deviation is bound between πθold and πθ . When this

deviation is under ε, as the increase in rt is observed, the LClip,θ
t increase as well, but when

the deviation exceeds ε, even if the rt is increases, the LClip,θ
t maintains its value. It shows

the exploration within the constraint ε; however, when the relative difference is beyond ε,
the exploration is not encouraged by clipping the result to (1 + ε)Aπθold

. Figure 6 shows
the surrogate of PPO-Clip in different ε. The large ε could encourage the agent to explore
more and accept more policies. However, enlarging ε will lead to the estimated error of
the surrogate. The PPO-Clip is the off-policy algorithm. The data generated by the old
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policy will be used as new policy updates. When ‖rt − 1‖ ≤ ε, the estimated error bound
of LClip,θ will increase as ε increases. For convenience, denote the following assumption:

Figure 6. The surrogate of PPO-Clip in different ε. The relationship of different ε: ε3 > ε2 > ε1.

Assumption 1. In the previous t timestep of policy update, the ratio rk satisfies ‖rk − 1‖ ≤ ε,
∀k = 1, · · · , t.

Under Assumption 1, the following Lemma is given for auxiliary proof of the error bound:

Lemma 1. Under Assumption 1, the difference of state distribution resulting from the policy
satisfies the following inequality:

‖ρπθt − ρ
πθt−1 ‖ ≤ ε · γ

1− γ
(21)

Proof. The distribution ρπθ can be rewritten as [43]:

ρπθ = (1− γ)
∞

∑
k=0

γk · dk
πθ

(22)

where dk
πθ

is the distribution resulting from πθ at k timestep. Using the Markov property,
∀s′ ∈ S , the dk

πθ
(s′) could be decompose as follows:

dk
πθ
(s′) = ∑

s,a
dk−1

πθ
(s) · πθ(a|s) · P(s′|s, a) (23)

Using the decomposition, the following equation holds:

dk
πθt

(s′)− dk
πθt−1

(s′) = ∑
s,a

[
dk−1

πθt
(s) · πθt (a|s)− dk−1

πθt−1
(s)πθt−1 (a|s)

]
P(s′ |s, a)

= ∑
s,a

[
dk−1

πθt
(s) · πθt (a|s)− dk−1

πθt−1
(s)πθt−1 (a|s) + dk−1

πθt−1
(s)πθt−1 (a|s)− dk−1

πθt−1
(s)πθt−1 (a|s)

]
· P(s′ |s, a) (24)

= ∑
s,a

[
πθt (a|s)− πθt−1 (a|s)

]
· dk−1

πθt−1
(s) · P(s′ |s, a)

+ ∑
s,a

[
dk−1

πθt−1
(s)− dk−1

πθt−1
(s)
]
· πθt−1 (a|s) · P(s′ |s, a)

Using the triangle inequality, the following equation hold:

182



Drones 2023, 7, 28

∑
s,a
‖πθt(a|s)− πθt−1(a|s)‖ · dk−1

πθt
(s)P(s′|s, a) + ∑

s,a
‖dk−1

πθt
(s)− dk−1

πθt−1
(s)‖ · πθt−1(a|s) · P(s′|s, a)

≥ ‖∑
s,a

[
πθt(a|s)− πθt−1(a|s)

]
· dk−1

πθt−1
(s) · P(s′|s, a) (25)

+ ∑
s,a

[
dk−1

πθt−1
(s)− dk−1

πθt−1
(s)
]
· πθt−1(a|s) · P(s′|s, a)‖ = ‖dk

πθt
(s′)− dk

πθt−1
(s′)‖

Sum up the inequality (26) to calculate the expectation on s′:

‖dk
πθt
− dk

πθt−1
‖

= ∑
s′
‖dk

πθt
(s′)− dk

πθt−1
(s′)‖ ≤∑

s,a
‖πθt(a|s)− πθt−1(a|s)‖ · dk−1

πθt
(s)∑

s′
P(s′|s, a)

+ ∑
s,a
‖dk−1

πθt
(s)− dk−1

πθt−1
(s)‖ · πθt−1(a|s) ·∑

s′
P(s′|s, a)

= ‖πθt(a|s)− πθt−1(a|s)‖+ ‖dk−1
πθt
− dk−1

πθt−1
‖ (26)

≤ ‖
πθt(a|s)− πθt−1(a|s)

πθt−1(a|s) ‖ · ‖πθt−1(a|s)‖+ ‖dk−1
πθt
− dk−1

πθt−1
‖

≤ ‖
πθt(a|s)− πθt−1(a|s)

πθt−1(a|s) ‖+ ‖dk−1
πθt
− dk−1

πθt−1
‖ ≤ ε + ‖dk−1

πθt
− dk−1

πθt−1
‖

≤ 2ε + ‖dk−2
πθt
− dk−2

πθt−1
‖ ≤ kε

Using Equation (22), the following equation holds:

‖ρπθt − ρ
πθt−1 ‖ ≤ 1

γ− 1

∞

∑
k=0

γk‖dk
πθt
− dk

πθt−1
‖

≤ 1
γ− 1

∞

∑
k=0

γk · k · ε = ε · γ
1− γ

(27)

Using this Lemma, the estimation error of the PPO-Clip could be obtained:

Theorem 1. Under the Assumption 1, the estimation error of PPO-Clip is satisfied:

Err
[
LClip,θ

]
= Err

[
Eπθold

[
πθ

πθold

Aπθold

]]
≤ ε · γ

1− γ
Es∼UnifS ,a∼πθ

[Aπ(s, a)] (28)

Proof. When ‖rt − 1‖ ≤ ε, the surrogate of the PPO-Clip will be degraded [40]:

LClip,θ = Eπθold

[
πθ

πθold

Aπθold

]
, ‖πθ − πθold

πθold

‖ ≤ ε (29)

The above surrogate is the importance sampling estimator of the objective of the new
policy [44]:

Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]
≈ Eπθ

[Aπ(s, πθ(s))] (30)

However, the estimator uses the data generated by πθold , and the state distribution of LClip,θ

is derived from ρ
πθold . Therefore, the estimation error is satisfied:
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Err
[
Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]]

=

∥∥∥∥Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]
−Eπθ

[Aπ(s, πθ(s))]
∥∥∥∥

=

∥∥∥∥∥
∫

s
ρ

πθold (s)
∫

a∼πθold

πθ(a|s)
πθold(a|s) Aπ(s, a)dads−

∫
s

ρπθ (s)
∫

a∼πθ

Aπ(s, a)dads

∥∥∥∥∥
≤
∫

s

∥∥ρ
πθold (s)− ρπθ (s)

∥∥ ∫
a∼πθ

‖Aπ(s, a)‖dads (31)

Consider the positive advantage situation and expand the integral of a; the following
equation will hold:

Err
[
Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]]
≤
∫

s

∥∥ρ
πθold (s)− ρπθ (s)

∥∥ ∫
a

πθ(a|s)Aπ(s, a)dads (32)

Using the conclusion of Lemma 1, the following error bound could be obtained:

Err
[
Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]]
≤
∫

s

ε · γ
1− γ

∫
a

πθ(a|s)Aπ(s, a)dads

=
∫

s

ε · γ
1− γ

· |S| · 1
|S|

∫
a

πθ(a|s)Aπ(s, a)dads

=
ε · γ

1− γ
· |S| ·

∫
s

1
|S|

∫
a

πθ(a|s)Aπ(s, a)dads

=
ε · γ

1− γ
· |S| ·Es∼UnifS ,a∼πθ

[Aπ(s, a)] (33)

where the UnifS represents the uniform distribution of the state.

Theorem 1 confirms the positive relationship between the estimation error and ε. By
using it, a more clear conclusion could be obtained:

Remark 1. In PPO-Clip, the high ε could enhance the exploration but will result in a high
estimation error bound of the surrogate; the low ε could decrease the error bound but will restrict
the exploration.

Therefore, to deal with the exploration and estimation error problems mentioned in
Remark 1, this paper considers making the ε adaptive in different situations. The last part
designed the sparse reward Rd, and the exploration reward Re is designed as the incentive
reward. The agent should explore more in the task to receive a high-level Rd and Re. So,
when these rewards are too low, the agent should release the restriction on rt to encourage
the exploration. When these rewards are high and stable, the restriction on rt increases to
ensure the estimation of the surrogate is accurate.

So, the exploration advantage function Aexp
π (st, at) can be used to represent the advan-

tage function that is estimated by Rd and Re, which can reflect the exploration ability of
the agent:

Aexp
π (St, at) = Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
6

∑
i=1

Re,i(t + k))|St = s, at = a

]
−

Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
6

∑
i=1

Re,i(t + k))|St = s

]
(34)

According to the exploration function, an exploration PPO algorithm is proposed with
an adaptive clip parameter ε. When the exploration advantage function is lower than last
time, to improve the exploration ability, ε will be enlarged. Otherwise, the ε will be reduced,
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restraining the updated policy in a trust region. To sum up, the adaptive mechanism is
designed as follows:

ε(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ε(t− 1)− clip(

Aexp
πθt
−Aexp

πθt−1
Aexp

πθt−1

, 0, ε(t−1)
2 ); Aexp

πθt
− Aexp

πθt−1
> 0

ε(t− 1) + clip(
Aexp

πθt
−Aexp

πθt−1
Aexp

πθt−1

, 0, ε(t−1)
2 ); Aexp

πθt
− Aexp

πθt−1
< 0

ε(t− 1); otherwise

(35)

The clip function in the above equations is to restrict the adaptive mechanism and avoid
the ε being abnormal. Through the variation of the exploration advantage function, the
exploration-based adaptive ε mechanism is proposed. When simply replacing the constant
ε with the adaptive ε, the PPO will be PPO-Explorationε(PPO-Exp). With the restriction of
old policies, new policies will be adjusted automatically. The surrogate of the PPO-Exp is
as follows:

LExp,θ = Eπθold

[
min

(
rt(θ)Aπθold

, clip(rt(θ), 1− ε(t), 1 + ε(t))Aπθold

)]
(36)

The Algorithm of PPO-Exp in the formation environment could be seen in Algorithm 1.
The exploration and estimation error problem in PPO-Exp could be adapted without delay,
and the following Proposition will give the exploration range and the estimation error
decrease rate in different situations:

Algorithm 1 PPO-Exploration ε with formation keeping task.

Initialize π0,φ0.
for i = 0, 1, 2, . . . N do

for t = 1, · · · , T do
The leader0 collects state information {st,i|i = 1, · · · , 5} through the communica-

tion protocol (Figure 3a)
Run policy πθ , obtain the action {at,i|i = 0, 1, · · · , 5}, and send them using the

control protocol (Figure 3b).
The leader and followers execute the action commands and receive a reward as

follows: (R f (t), Re(t), Rd(t), Rp(t))
Store (st, at, st+1, Rt) at the buffer.

end for
Transitions data from buffer, and estimate Âπθt

, Âexp
πθt

, respectively.

if Âexp
πθt
− Âexp

πθt−1
> 0 then

ε(t) = ε(t− 1)− clip(
Âexp

πθt
−Âexp

πθt−1
Âexp

πθt−1

, 0, ε(t−1)
2 )

end if
if Âexp

πθt
− Âexp

πθt−1
< 0 then

ε(t) = ε(t− 1) + clip(
Âexp

πθt
−Âexp

πθt−1
Âexp

πθt−1

, 0, ε(t−1)
2 )

end if
for j = 1, · · · , M do

L̂θ = ∑T
t=1 min(rt · Âπθt

, clip(1− ε, 1 + ε, r)Âπθt
)

Update θ by SGD or Adam.
end for
Update critic network parameter φt by minimizing:
∑T

k=1(∑t′>k γt′−tRt −Vφ(st))2

end for
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Proposition 1. In PPO-Exp, when Âexp
πθt
− Âexp

πθt−1
< 0, the exploration range of next policy will

be expanded to
‖πθt−πθt−1

‖
‖πθt−1

‖ ≤ ε +
Âexp

t −Âexp
t−1

Âexp
t−1

≤ 3ε(t−1)
2 ; when Âexp

πθt
− Âexp

πθt−1
> 0, in next update,

the error bound of the surrogate will decrease to O( ε(t−1)
2 ).

Proof. When Âexp
πθt
− Âexp

πθt−1
< 0, according to Equation (35), it is easy to see the next

policy will be expanded to
‖πθt−πθt−1

‖
‖πθt−1

‖ ≤ ε + clip(
Âexp

t −Âexp
t−1

Âexp
t−1

, 0, ε(t−1)
2 ). Then, the following

inequality will hold:

0 ≤ clip(
Âexp

t − Âexp
t−1

Âexp
t−1

, 0,
ε(t− 1)

2
) ≤ ε(t− 1)

2
(37)

So, the following inequality is held:

‖πθt − πθt−1‖
‖πθt−1‖

≤ ε +
ε(t− 1)

2
=

3ε(t− 1)
2

(38)

When Âexp
πθt
− Âexp

πθt−1
> 0, and Assumption 1 is satisfied, it is obvious that the conclusion

of Theorem 1 could be used in PPO-Exp. So, using Equation (35) and Theorem 1, the
PPO-Exp’s decrease rate of the bound is as follows:

ΔErr
[
LExp

θ

]
= Err

[
Eπθt−1

[
πθt

πθt−1

Aπθt−1

]]
− Err

[
Eπθt−2

[
πθt−1

πθt−2

Aπθt−2

]]

≤ γ
ε(t)− ε(t− 1)

1− γ
· |S| ·

∥∥∥Es∼UnifS ,a∼πθt
[Aπ(s, a)]−Es∼UnifS ,a∼πθt−1
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ε(t)− ε(t− 1)
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· |S| · Γ
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Âexp
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Âexp
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2 ))− ε(t− 1)
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· |S| · Γ

≤ γ
3ε(t−1)

2
1− γ

· |S| · Γ = O(
ε(t− 1)

2
) (39)

where the Γ is the upper bound of advantage:

Γ = max
∀t

∥∥∥Es∼UnifS ,a∼πθt
[Aπ(s, a)]−Es∼UnifS ,a∼πθt−1

[Aπ(s, a)]
∥∥∥ (40)

Proposition 1 indicates that the PPO-Exp could encourage the agents to adjust the
exploration in different situations. The next section will validate it through numerical
experiments.

6. Numerical Experiments

This section compares the PPO-Exp with four common reinforcement learning algo-
rithms (PPO-Clip, PPO-KL, TD3, DDPG) in the formation-keeping task, and compared
the performace of PPO-Exp and PPO-Clip in the formation changing task and obstacle
avoidance task.

6.1. Experimental Setup

In terms of hardware, all the experiments are completed on the Windows 10 (64-bit)
operating system, Intel(R) Core i7 processor, 16 GB memory, and 4 GB video memory. As
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for software, OpenAI-gym [45] is used to design the reinforcement learning environment
and the physics rulers of the UAVs’ formation.

The formation task is modeled on the OpenAI gym environment. See Figure 1; the
position of the leader and followers can be seen in Table 1. The formation is updated by
the dynamic equations solved by the difference method per 0.5 s per time mesh grid. The
environment noises are set as N(0, 1) default. The target area is designed as a circle at
(200, 400) with a radius of 40.

Table 1. The initial position of UAVs’ formation.

Leader0 Follower1 Follower2 Follower3 Follower4 Follower5

Position X 160 190 220 130 100 160
Position Y 190 160 100 160 100 130

6.2. Experiments on PPO-Exploration ε

The following famous continuous space RL algorithms are explored in this section:
TD3, DDPG, PPO-KL, and PPO-clip; they are compared to the proposed method under the
formation-keeping task.

• PPO-Clip [40]: Proximal Policy Optimization with Clip(PPO-Clip) function.
• PPO-KL [40]: Proximal Policy Optimization with KL-divergence(PPO-KL) constrain.
• DDPG [46]: Deep Deterministic Policy Gradient(DDPG) algorithm, which is a contin-

uous action deep reinforcement learning algorithm that uses Actor–Critic architecture.
In DDPG, the deterministic policy gradient is used to update the Actor parameter.

• TD3 [47]: Twin Delayed Deep Deterministic (TD3) policy gradient algorithm, which is
a variant of DDPG. The TD3 introduced the delaying policy updates mechanism and
the double network architecture to manage the per-update error and overestimation
bias in DDPG.

The main hyperparameters of the contrast experiment are shown in Table 2. The blank
area in the above table means the algorithm does not include this parameter.

Table 2. The main hyperparameters of the algorithm used in the experiment.

Parameter Name TD3 DDPG PPO-KL PPO-Clip PPO-Exp

γ 0.9 0.9 0.9 0.9 0.9
ALR 0.00005 0.00005 0.00005 0.00005 0.00005
CLR 0.0002 0.0002 0.0002 0.0002 0.0002

Batch 32 32 32 32 32
AUS 10 10 10
CUS 10 10 10
EPS 10−8 10−8 10−8

DKL(target) 0.01
λ 0.5

εclip 0.1 0.1 0.1
τDDPG 0.01

VARDDPG 3
Explore Step 500

dimHIDDEN 32

Set the episode length be 200; the results of PPO-Exploration ε and other comparing
algorithms are shown in Figure 7a. As the learning curves indicated, the PPO series
methods achieved better performance; in all variations of PPO, the PPO-Exp has the best
performance. It is validated that the adaptive mechanism based on exploration makes
sense during policy updating. Figure 7b shows the change of ε; the series ε(t) is stationary,
and varies around 0.05, although the initial value is 0.1, which means 0.05 is the balance
point between exploration and exploitation found by PPO-Exp. Meanwhile, the episode
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reward curve of PPO-Exp is higher than PPO-Clip’s, validating the idea that exploration
from PPO-Exp is efficient.

(a) (b)

Figure 7. (a): Learning curves of TD3, DDPG, PPO-KL, PPO-Clip, and PPO-Exp; (b): The on of ε of
PPO-Exploration ε during the training process.

6.3. Experiments on Formation Keeping

Only the learning curve was unable to declare whether the algorithm works well, so
the trained PPO-Exp is used to perform 200s; the formation track can be seen in Figure 8.
In this way, there is only a slight distortion in the formation, indicating that PPO-Exp can
perform better in real tasks than PPO-Clip.

(a) (b)

Figure 8. (a): The flight track of formation that is controlled by trained PPO-Exp ; (b): The flight track
of formation that is controlled by trained PPO-Clip.

Furthermore, to evaluate the results, we plotted the heading ψ and the velocity v
during 200 s in Figure 9. Figure 9a shows that followers 1, 4, and 5 are approaching
gradually as time goes on. Followers 2, 3 and the leader, have no such trend to converge
gradually; however, all the heading deviations are no more than 10◦. In Figure 9b, the
velocity of each UAV is shown. The velocities of followers 1, 3, 4, and 5 diverge a little and
then converge. Corresponding to Figure 9a, followers 1, 4, and 5 are closer in terms of the
value of velocity and heading; the leader and follower 2 are far away from these followers,
but the velocity difference is not more than 1.5 m/s as well. This inspired us to design the
reward based on the velocity and heading.

To illustrate the influence of environmental noise on formation keeping, the results
show the formation track with no control in Figure 2a. To verify that the proposed cen-
tralized method saves time, this section further compares the decentralized version of
PPO-Exp: PPO-Exp-Dec, which, similar to MAPPO, needs all six UAV agents to learn the
control policy at the same time.

188



Drones 2023, 7, 28

0 50 100 150 200
t/s

-10

-5

0

5

10

/(°
)

Leader
Follower1
Follower2
Follower3
Follower4
Follower5

(a)

0 50 100 150 200
t/s

4.5

5

5.5

6

v/
(m
/s)

Leader
Follower1
Follower2
Follower3
Follower4
Follower5

(b)

Figure 9. (a) The test results in the heading angle of PPO-Exp; (b) The test results in the velocity of
PPO-Exp.

To validate that the protocol can reduce the communication cost and avoid placing
the UAVs out of the communication range, this section also compares the protocol-free
version: PPO-exp-pro. The results can be seen in Table 3. Γ represents the episode reward,
T represents time per episode, rcol and r f ai represents the collision rate and failure to
communicate rate, respectively.

Table 3. The experimental results in different algorithms.

Algorithm Γ T rcoll(%) r f ail(%)

PPO-exp −19,197.2 ± 1307.4 2.19± 0.04 0.93 ± 0.01 0.32± 0.02
PPO-exp-dec −20,374.7 ± 1926.4 10.06± 0.08 1.01± 0.02 0.35± 0.01
PPO-exp-pro −23,001.3 ± 2507.2 2.43± 0.03 0.98± 0.03 12.48± 1.76

PPO-clip −20,305.7 ± 1588.6 2.14± 0.06 0.97± 0.02 0.94± 0.03
Greedy −39,074.5 ± 3806.5 1.15± 0.04 12.32± 1.32 10.56± 0.65

To further verify the effectiveness of the proposed method, ablation experiments are
performed (see Figures 2a,b and 8b). Figure 8b shows the trained PPO-clip without the
exploration mechanism. Although there is no UAV crash, the leader and follower3 are very
close, and the formation is not as orderly as the PPO-Exp. Figure 2a shows the result of
no action taken, where the UAVs will crash, and the formation will break up. Figure 2b
shows the trained PPO-clip with ε = 0.05, which is the balance point in the PPO-Exp.
However, the experimental result shows it performs worse; there is one follower that loses
communication with leader, and one follower almost crashes with the leader. The result
illustrates that the PPO-Exp with adaptive ε is better than the PPO-Clip with a good ε. In
summary, the ablation experiments also indicated that PPO-Exp performs better than other
algorithms in terms of learning curves and the real-task.

6.4. Experiment on More Complex Tasks

To further show the efficiency of PPO-Exp in fixed-wing UAV formation keeping, this
part design two more complex scenarios: formation changing and obstacle avoidance task,
the UAV formation perform 120 s on each task. This part mainly compared the performance
of PPO-Exp and PPO-Clip on these tasks.

The goal for the formation changing task is changing the formation shown in Figure 1
to the vertical formation. The vertical formation also expects the differences between
leader and followers are as small as possible in coordinates on the x-axis. For guiding the
followers to change the formation, this paper utilizes the absolute difference value of x
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coordinates to modify the flocking reward. The modified flocking reward (9) and (12) could
be represented as follows:

R f ,i = ‖x0 − xi‖, ∀i = 1, · · · , 5 (41)

Then the total reward (47) can be rewritten as follows:

R(T) =
5

∑
i=0

[‖x0(T)− xi(T)‖+ Re,i(T)] + Rd(T) + Rp(T) (42)

where the x0(T), xi(T) represent the x coordinates of leader and ith follower at time T,
respectively. To encourage the UAV system to take more exploration on forming new
formation, the flocking reward is added to the exploration advantage function:

Aexp
π (St, at) = Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
5

∑
i=0

[‖x0(T)− xi(T)‖+ Re,i(t + k))]|St = s, at = a

]
−

Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
5

∑
i=0

[‖x0(T)− xi(T)‖+ Re,i(t + k))]|St = s

]
(43)

Training the task with PPO-Exp and PPO-Clip, the training parameters are kept as
same as in the previous part except episode length. After training, the test result of PPO-
Exp is shown in Figure 10a, and the PPO-Clip is shown in Figure 10b. To evaluate the
performance, this paper draws the plots of the x coordinates and timesteps of the leader
and followers in Figure 10c,d. The closer the x coordinates of followers to that of the
leader, the better the performance will be. The x coordinates of followers in (c) converge to
the leader faster than (d), representing that PPO-Exp can change vertical formation faster
than PPO-Clip.

To further evaluate the formed vertical formation. Denote the terminal time as tter,
calculate the average difference between the followers and leader in x coordinates in the
last ten timesteps, and denote the result as δx, which can be represented as follows:

δx =
1
5

5

∑
i=1

∑
t>tter−10

‖x0(t)− xi(t)‖ (44)

The low δx indicates the follower is close to the leader in x coordinates. In PPO-Clip,
the calculated δx ≈ 95.383, but in PPO-Exp, the calculated δx ≈ 43.816, which is nearly half
of the PPO-Clip.

Compared to the control strategy in formation keeping, the followers in formation
changing tasks perform good cooperation. All followers maneuver orderly to the position
where the leader’s x-coordinate is located. To avoid the UAVs collide each other, the
followers decided to move to different positions on the y-axis. The followers take different
maneuvers depending on their initial position to reach the position. e.g., follower 4, in
the initial time, is far away from the leader in x-coordinates. For follower 4, a collision
avoidance path is moving to the tail of the newly formed formation. Therefore, the follower4
achieves a large angle arc maneuver and moves to the tail of the formed vertical formation.

The target of the obstacle avoidance task is to reach the target area and avoid crashing
into the obstacle. This paper considers a circle area on the plane as an obstacle. Denote the
coordinates of the obstacle center is (xobs, yobs), and the radius is robs. A simple approach
to consider this situation is to add a penalty on the formation system reward when the
UAVs crash on the obstacle, the penalty effect. The penalty for crashing into the obstacle is
denoted as follows:

Ro,i =

{
0,
√
(xi − xobs)2 + (yi − yobs)2 ≤ robs
−10,000, otherwise

(45)
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(a) (b)

(c) (d)

Figure 10. (a): The performance of vertical formation changing task by PPO-Exp; (b): The perfor-
mance of vertical formation changing task by PPO-Clip (c): The x coordinate of formation system in
PPO-Exp; (d): The x coordinate of formation system in PPO-Clip

Similar to the exploration reward Re,i, to

Robs
e,i = min{|xi − xobs|, |yi − yobs|} (46)

Then the total reward (47) can be rewritten as follows:

R(T) =
5

∑
i=0

[
R f ,i(T) + Re,i(T) + Robs

e,i (T) + Ro,i(T)
]
+ Rd(T) + Rp(T) (47)

To encourage the UAV system to take more exploration on avoid obstacle, the ex-
ploration reward in avoid obstacle Robs

r,i is added to the exploration advantage function:

Aexp
π (St, at) = Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
5

∑
i=0

[
R f ,i(T) + Re,i(t + k) + Robs

e,i (T))
]
|St = s, at = a

]
−

Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
5

∑
i=0

[R f ,i(T) + Re,i(t + k) + Robs
e,i (T))]|St = s

]
(48)

Training the obstacle to avoid task with PPO-Exp and PPO-Clip, the training param-
eters are kept as same as the previous part except episode length. After training with
PPO-Exp and PPO-Clip, the test results of obstacle avoid task are shown in Figure 11a,
and the results of PPO-Clip can be seen in Figure 11b. A follower in the formation trained
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by PPO-Clip crashed on the obstacle at 94 timesteps. The formation trained by PPO-Exp
performed the arc maneuvers and avoided the obstacle. PPO-Exp performs better than
PPO-Clip because it can explore more policies to reach the target area and discover a good
path to avoid obstacles. However, the PPO-Clip still tries to reach the target area straight.

Compared to the formation keeping task without obstacles, the obstacle scenario
requires the formation system to explore more to avoid the obstacle. Therefore, in this
scenario, compared to the fixed ε PPO-Clip, the PPO-Exp shows better performance because
it could adjust their ε to balance exploration and estimation error. Then the PPO-Exp
explored the large-angle arc maneuvers and performed them to avoid the obstacle.

(a) (b)

Figure 11. (a): The performance of formation keeping with obstacle avoid task by PPO-Exp; (b): The
performance of formation keeping with obstacle avoid task by PPO-Clip.

7. Conclusions

This paper studies a flocking scenario consistent with one leader (with an intelligence
chip) and several followers(without an intelligence chip). The reinforcement learning
environment is constructed (continuous action and state space) with an OpenAI gym, and
the reward is designed as a regular part and an exploration part. A low-communication cost
protocol is provided to ensure the UAVs can communicate the state and action information
between leader and followers. In addition, a variation of Proximal Policy Optimization is
proposed to balance the dilemma between the estimation error bound and the exploration
ability of PPO. The proposed method can help UAVs adjust the explore strategy, and the
experiments demonstrate it has better performance than the current algorithms such as
PPO-KL, PPO-clip, and DDPG.
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Abstract: Trajectory planning and obstacle avoidance play essential roles in the cooperative flight of
multiple unmanned aerial vehicles (UAVs). In this paper, a unified framework for onboard distributed
trajectory planning is proposed, which takes full advantage of intelligent discrete and continuous
search algorithms. Firstly, the Monte Carlo tree search (MCTS) is used as the task allocation algorithm
to solve the cooperative obstacle avoidance problem. Taking the task allocation decisions as the
constraint, knowledge-based particle swarm optimization (Know-PSO) is used as the optimization
algorithm to solve the onboard distributed cooperative trajectory planning problem. Simulation
results demonstrate that the proposed intelligent MCTS-PSO search framework is effective and
flexible for multiple UAVs to conduct the cooperative trajectory planning and obstacle avoidance.
Further, it has been applied in practical experiments and achieved promising results.

Keywords: multiple UAVs; trajectory planning; task allocation; obstacle avoidance; intelligent search;
Monte Carlo tree search; knowledge-based particle swarm optimization

1. Introduction

Unmanned aerial vehicles (UAVs) have been extensively used in many areas, such
as surveying [1–4], military surveillance [5–8], disaster rescue [9,10], etc. Although a
single UAV can conduct the above-mentioned tasks, some disadvantages, including energy
and others, have placed severe limitations on its applications. That is the reason why
cooperative multiple UAVs have been further developed and utilized, which can overcome
the disadvantages of single UAVs and accomplish tasks more robustly and intelligently
with less time consumption [11].

Trajectory planning plays an essential role in the cooperative flight of multiple UAVs,
which can be seen as continuous search algorithms mathematically. Commonly with some
environmental constraints and UAVs’ own constraints, the trajectories that minimize the
cost function are seen as the best ones. Trajectory planning has been widely researched
for many years, and two classes of trajectory planning methods have been developed.
The first one is those traditional algorithms, including dynamic planning, the Voronoi
diagram [12,13], the Dijkstra algorithm [14,15], and the A* algorithm [16]. The other class is
swarm intelligence algorithms, such as the artificial bee colony (ABC) algorithm [17], the ant
colony optimization (ACO) algorithm [18], and especially, the particle swarm optimization
(PSO) algorithm [19–21]. In the literature [22], the trajectories of multiple UAVs were firstly
given out by an offline simulation software program and saved in a text file. Then, the
trajectories of all UAVs were transferred into the ground station software and displayed on
a map. Finally, the trajectories were downloaded to the UAVs through the ground stations,
and the UAVs completed the flight. The offline operation as in the literature [22] is now the
mainstream execution style for cooperative trajectory planning.

Obstacle avoidance plays another essential role in the cooperative flight of multiple
UAVs, for which the artificial potential field (APF) method is widely used [23,24]. To some
extent, cooperative obstacle avoidance of multiple UAVs can be seen as a task allocation
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problem [25], in which multiple UAVs have to choose one side or the other to pass through
the threat area. The Hungarian algorithm [22] and the auction algorithm [26,27] are two
mainstream algorithms for the task allocation of multiple UAVs. In the literature [28], a
two-step auction mechanism was first proposed to select the optimal action. Then, an
obstacle avoidance mechanism was designed by defining several heuristic rules. Finally,
a reverse auction mechanism was developed to balance the workload between multiple
UAVs.

Although a large amount of effort has been devoted to addressing the trajectory
planning and task allocation problems for multiple UAVs, there is still some room for
further improvement. For instance, traditional task allocation algorithms often require
that the input dimension must be equal to the output dimension, namely, the allocation
matrix has identical row and column numbers, which severely restricts the application
for more general task allocation problems. In addition, the efficiency and effectiveness of
trajectory planning algorithms for multiple UAVs are not satisfactory in some circumstances.
Meanwhile, the trajectory planning and task allocation for multiple UAVs are conducted
offline in some literature, which cannot meet the requirements in complex and intense
environments, where multiple UAVs must respond to commands rationally and quickly.

Taking the abovementioned issues into consideration, a unified framework for onboard
distributed trajectory planning is proposed in this paper, which takes full advantage of
intelligent discrete and continuous search algorithms. The main contributions of this paper
are as follows:

(1) The Monte Carlo tree search (MCTS) is used as a task allocation algorithm to conduct
obstacle avoidance, which does not require the equality of the row and column
numbers of the allocation matrix. Further, the obstacle avoidance for multiple UAVs
takes the energy constraint into account.

(2) Knowledge-based particle swarm optimization (Know-PSO) is used as the optimiza-
tion algorithm to solve the onboard distributed cooperative trajectory planning prob-
lem, in which the motion energies of a few good particles are used to improve the
velocities of those bad particles, and the information of the individual worst particles
and global worst particle are also used. Furthermore, the interaction among multiple
UAVs is utilized to avoid conflicts.

(3) The decisions of MCTS are taken as constraints for Know-PSO to form a unified
framework for onboard distributed trajectory planning.

(4) The method proposed in this paper has been verified by actual flights and achieved
good practical results.

The remainder of this paper is organized as follows: Section 2 formulates the trajectory
planning and obstacle avoidance problem. Section 3 presents the proposed intelligent
MCTS-PSO search framework. In Section 4, a series of simulations and actual experiments
were conducted to evaluate the performance of MCTS-PSO. Finally, Section 5 concludes the
paper and presents the future direction for the next work.

2. Mathematical Model

Cooperative trajectory planning driven by obstacle avoidance for multiple UAVs can
be presented in the following mathematical models:

(1) Task allocation to obstacle avoidance: As shown in Figure 1, m UAVs are configured
to go to the target area to conduct some important operations, in which the threat
area must be avoided. Regarding each UAV, there are two choices for it to avoid the
threat area, going through one side of the threat area or the other. Consequently, the
cooperative obstacle avoidance problem can be translated into the task allocation
problem, for which there are m decisions that have to be made. Generally, suppose
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there are n choices for each UAV, then the mathematical model for task allocation is as
below:

max
n
∑

j=1
wj[1−

m
∏
i=1

(1− eij)
xij ]

s.t.

⎧⎨⎩
n
∑

j=1
xij = 1, i = 1, 2, . . . , m

xij = 0 or 1, i = 1, 2, . . . , m, j = 1, 2, . . . n

(1)

where wj is the threat value of j choice, eij is the capacity evaluation of the i UAV to
pass through the j choice and can be seen as the energy constraints, xij is the final
decision, whether the i UAV passes through the j choice or not. The MCTS is used to
solve the model to obtain xij. All xij compose the task allocation matrix, which is a 0–1
matrix and has m rows and n columns. Each row has only one, which means that the
corresponding UAV can only make one choice.

(2) Cooperative trajectory planning driven by obstacle avoidance: The goal of cooperative
trajectory planning is to minimize the total distances of m UAVs from the start area to
the target area; in the meantime, m UAVs must avoid the threat area and not collide
with each other. The mathematical model is as below:

min
m
∑

i=1

n
∑

j=1
lijxij

s.t.
{

dmi,k > ds, i, k = 1, 2, . . . , m, i �= k
xij = 0 or 1, i = 1, 2, . . . , m, j = 1, 2, . . . n

(2)

where lij is the length of a trajectory that the i UAV pass through the j choice, dmi,k
is the margin distance between trajectories of two different UAVs, and ds is the safe
distance between two adjacent UAVs. xij is the final decision, whether the i UAV
passes through the j choice or not as in formula (1), which is solved by the MCTS
method.

Figure 1. Representative scene of cooperative obstacle avoidance and trajectory planning.
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3. MCTS-PSO Framework for Onboard Distributed Trajectory Planning

In this section, we elaborate on the cooperative trajectory planning driven by obstacle
avoidance, which can be conducted in an onboard distributed mode. Firstly, MCTS is used
as a task allocation algorithm to conduct obstacle avoidance, taking the energy constraint
into consideration; secondly, the decisions of MCTS are taken as constraints for Know-PSO
to conduct onboard distributed trajectory planning for multiple UAVs. The schematic
diagram of the MCTS-PSO framework is shown in Figure 2, and the Pseudo-code of the
MCTS-PSO Algorithm 1 is:

Algorithm 1: MCTS-PSO framework

Input: UAVs number m,
choices number n,
start position Ps and target position Pt,
Threat area center Pc and radius r,
the safe distance ds,

Output: best trajectories
1: for i← 1 to m do
2: for j← 1 to n do
3: Evaluate the threat values wj;
4: Evaluate the capacity values eij;
5: end for
6: end for
7: Use MCTS to solve formula (1) to get decisions xij;
8: Use Know-PSO to generate a trajectory for one UAV i;
9: for k← 1 to m do
10: if k == i
11: continue;
12: else
13: Use Know-PSO to generate a trajectory for UAV k with ds;
14: Check whether dmi,k is larger than ds or not;
15: end if
16: end for
17: Return m best trajectories;

The resulting m best trajectories obtained after the above steps is the optimal
solution for onboard distributed cooperative trajectory planning;

end
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Figure 2. The schematic diagram of the MCTS-PSO framework.

3.1. MCTS Task Allocation for Multiple UAVs

Task allocation plays an essential role in the cooperative flight of multiple UAVs.
In this paper, MCTS, as an intelligent discrete search algorithm, is used to conduct task
allocation. MCTS does not require the equality of the row and column numbers of the
allocation matrix, beyond the traditional mainstream Hungarian algorithm and auction
algorithm. The flow chart of MCTS task allocation is shown in Figure 3, whose specific
steps are presented as follows:
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Step 1: Input UAV number, choices number, threat values, UAV capacities, and iteration
number. The UAV capacities can be seen as the energy constraints:

eij =
1

α ∗ dist(UAVi, choicej)
(3)

where α is the energy coefficient.

Figure 3. The flow chart of MCTS task allocation.

Step 2: Construct a new search tree and initialize the root node.
Step 3: Iterate the search tree until the iteration number:

(1) Select the best child layer by layer to find a leaf node;
(2) Expand the tree from the leaf node;
(3) Conduct the default policy;
(4) Back up the score and update nodes’ attributes.
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Step 4: Update the allocation matrix.
Step 5: Repeat steps 2–4 for all UAVs.

The resulting 0–1 matrix obtained after the above steps is the optimal solution for
multiple UAV task allocation problems.

Pseudo-code of the MCTS task allocation Algorithm 2 is:

Algorithm 2: MCTS task allocation

Input: UAVs number m,
choices number n,
threat values w,
capacities e,
IterNum,

Output: Allocation matrix AlloMx
1: for i← 1 to m do
2: Create a new tree with root node and initialize root:
3: root.N ← 0 , root.Q← 0 ;
4: for j← 1 to IterNum do
5: node p← root ;
6: AlloMx_copy← AlloMx ;
7: i_temp← i ;
8: while(True)
9: if p is leaf
10: break;
11: end if
12: find the best child of p and its index ind;
13: p← best child o f p ;
14: AlloMx_copy[i_temp][ind]← 1 ;
15: i_temp← i_temp + 1 ;
16: end while
17: if i_temp ∼= m
18: Expand the node p;
19: end if
20: Conduct the default policy for AlloMx_copy and get the score;
21: Back up the score;
22: end for
23: find the best child of root and its index ind_best;
24: AlloMx[i][ind_best]← 1 ;
25: end for
26: Return AlloMx;

The resulting 0–1 matrix obtained after the above steps is the optimal solution for
task allocation;

end

3.2. Onboard Distributed Cooperative Trajectory Planning for Multiple UAVs

Trajectory planning plays another essential role in the cooperative flight of multiple
UAVs. PSO, as an intelligent continuous search algorithm, has been widely used to conduct
trajectory planning. Nevertheless, the standard PSO algorithm has some limitations such
as premature convergence. In this paper, knowledge-based particle swarm optimization
(Know-PSO) is proposed as the optimization algorithm to solve the onboard distributed
cooperative trajectory planning problem, in which the motion energies of a few good
particles are used to improve the velocities of those bad particles, and the information
of the individual worst particles and global worst particle is also used. Furthermore, the
interaction among multiple UAVs is utilized to avoid conflicts.
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The well-known standard PSO algorithm is{
Vk+1

i = ωVk
i + c1r1(pk

best,i − xk
i ) + c2r2(gk

best − xk
i )

xk+1
i = xk

i + Vk+1
i

(4)

Practically, it has been found that the information of individual worst particles and global
worst particle are also beneficial, which are introduced as⎧⎪⎨⎪⎩

Vk+1
i = ωVk

i + c1r1(pk
best,i − xk

i ) + c2r2(gk
best − xk

i )

−c3r3(pk
worst,i − xk

i )− c4r4(gk
worst − xk

i )

xk+1
i = xk

i + Vk+1
i

(5)

Further, the motion energies of a few good particles are used to improve the velocities of
those bad particles, which is defined as

Ek,m1 =
m1

∑
i=1

(Vk
i )

T
(Vk

i ) (6)

The energy loss is
ΔEk,m1 = Ek,m1 − Ek−1,m1 (7)

Consequently, the updated equation for bad particles is⎧⎪⎨⎪⎩
Vk+1

i = ωVk
i + c1r1(pk

best,i − xk
i ) + c2r2(gk

best − xk
i )

−c3r3(pk
worst,i − xk

i )− c4r4(gk
worst − xk

i ) + ΔEk,m1 /m1

xk+1
i = xk

i + Vk+1
i

(8)

The decisions of MCTS are taken as constraints for Know-PSO to form a unified
framework for onboard distributed trajectory planning. Specifically,

cost(xij) =

{
0, xij = 1
1000, xij �= 0

(9)

The flow chart of Know-PSO for onboard distributed cooperative trajectory planning
is shown in Figure 4, whose specific steps are presented as follows:

Step 1: Input particle number, point number, start position and target position, threat area
center and radius, task allocation matrix, iteration number, UAV number, the safe
distance, and the max velocity.

Step 2: Initialize the particles and best values.
Step 3: Iterate the particles until the iteration number:

(1) Compute the cost of particles;
(2) Update the best values;
(3) Update the velocities;
(4) Update the particles.

Step 4: Generate one best trajectory.
Step 5: Repeat steps 2–4 for all UAVs considering the safe distance between them.

The resulting best trajectories obtained after the above steps is the optimal solution for
onboard distributed cooperative trajectory planning.
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Start

End

Figure 4. The flow chart of Know-PSO cooperative trajectory planning.

Pseudo-code of the cooperative trajectory planning Algorithm 3 is:
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Algorithm 3: Onboard distributed cooperative trajectory planning

Input: particle number mp,
point number n,
start position PS and target position Pt,
Threat area center Pc and radius r,
AlloMx,
IterNum,
UAVs number m,
the safe distance ds,
Vmax,

Output: best trajectories
1: particles← rand(mp, n) ;
2: particlesBest← zeros(mp, n) ;
3: globalBest← zeros(1, n) ;
4: particlesV ← rand(mp, n) ∗ 2Vmax −Vmax
5: for iter ← 1 to IterNum do
6: for i← 1 to mp do
7: Compute the cost of particles[i, :] with decision AlloMx and Pc, r;
8: if cost is descending
9: particlesBest[i, :]← particles[i, :] ;
10: globalBest← particles[i, :] ;
11: end if
12: for j← 1 to n do
13: Update particlesV[i, j] according Formulas (5) and (8);
14: Adjust particlesV[i, j] into [−Vmax, Vmax];
15: particles[i, j]← particles[i, j] + particlesV[i, j] ;
16: end for
17: end for
18: end for
19: Here, we got the best trajectory for one UAV.
20: for i← 2 to m do
21: Repeat 1~21 considering the safe distance ds;
22: end for
23: Return m best trajectories;

The resulting m best trajectories obtained after the above steps is the optimal
solution for onboard distributed cooperative trajectory planning;

end

4. Experiments and Analysis

This section demonstrates the performance of the MCTS-PSO framework by conduct-
ing a series of experiments.

A cooperative processor was deployed for each UAV. The processor had a four-
core CPU, whose main frequency was 1.5G Hz and AI computational power was 20
TOPS(int8).

The experiments were all conducted in open environments, including plains and
mountainous areas. The environmental temperature was generally higher than −20 ◦C.

Wind has a very important influence on flight in open environments. According to all
experiments, UAVs could be controlled stably if the wind velocity was smaller than 15 m/s;
otherwise, there would be some accidents.

Firstly, a flight of two drones was conducted, whose trajectories were shown in Figure 5,
of which the red circle was a threat area. It can be seen that the two drones avoided the
threat area successfully and passed it by one side, respectively. The task allocation matrix
of them was shown in Table 1.
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Figure 5. MCTS-PSO framework for two drones.

Table 1. Task allocation matrix for two drones in Figure 5.

Top Channel Bottom Channel

UAV1 1 0
UAV2 0 1

Secondly, a flight of three drones was conducted, whose trajectories were shown in
Figure 6, of which the red circle was a threat area. It can be seen that the three drones
avoided the threat area successfully. The task allocation matrix of them was shown in
Table 2.

Thirdly, a flight of four drones was conducted in another environment, whose trajecto-
ries were shown in Figure 7, of which the red circle was a threat area. It can be seen that the
four drones avoided the threat area successfully. The task allocation matrix of them was
shown in Table 3.

 

Figure 6. MCTS-PSO framework for three drones.
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Table 2. Task allocation matrix for three drones in Figure 6.

Top Channel Bottom Channel

UAV1 1 0
UAV2 0 1
UAV3 0 1

 

Figure 7. MCTS-PSO framework for four drones.

Table 3. Task allocation matrix for four drones in Figure 7.

Top Channel Bottom Channel

UAV1 1 0
UAV2 1 0
UAV3 0 1
UAV4 0 1

It was shown in these experiments, when the number of UAVs changed, the trajectories
were slightly adjusted automatically. For example, comparing Figures 5 and 6, when the
green UAV joined in, the trajectory of the yellow UAV was automatically adjusted to leave
some space for the green one. This reflected the intelligent onboard adjustment ability of
the algorithm.

Cooperative flight in an open environment was shown in Figure 8, in which five
quadcopters were used. It must be noted that the MCTS-PSO framework can also be
applied to other kinds of UAVs, such as fixed-wing UAVs.
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Figure 8. Cooperative flying drones in open environments.

The further computational time of the proposed distributed framework and common
centralized framework were shown in Table 4.

Table 4. Computational time.

Distributed Framework Centralized Framework

2 UAVs 0.72s 2.2s
3 UAVs 0.73s 3.1s
4 UAVs 0.73s 4.2s

It is quite clear that the proposed distributed framework was more efficient than a
common centralized framework, especially when there were more UAVs, because each
UAV planned its trajectory using its own processor.

The distance between the start area and the target area was about 1.4 Km. Note that the
start area was where the proposed distributed framework conducted cooperative trajectory
planning, not the location where the UAVs were launched. The total distances were shown
in Table 5.

Table 5. Total distances.

Total Distances

2 UAVs 3.2 Km
3 UAVs 4.9 Km
4 UAVs 6.6 Km

In open environments, other factors could also influence the real flight trajectories,
such as maneuverability, wind, etc. Moreover, PSO variants could not always generate the
best trajectories. These were the reasons why the trajectories in Figures 5–7 were not very
close to the threat area.

Generally, the effectiveness, scalability, and adaptability of our framework were ver-
ified through the quantitative experiments with different UAV numbers. Moreover, it
realized the avoidance of conflicts between multiple UAVs. All experiments demonstrated
that the MCTS-PSO framework could be applied in dynamic and complex environments.

5. Conclusions

In this paper, the unified MCTS-PSO framework for onboard distributed trajectory
planning is proposed, which takes full advantage of intelligent discrete and continuous
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search algorithms. The effectiveness, scalability, and adaptability of our framework have
been verified through a series of experiments with different UAV numbers. Moreover, the
proposed framework can also be applied in other similar swarm systems.

In future work, large-scale UAVs will be tested with the MCTS-PSO framework.
Further, other intelligent algorithms such as multi-agent reinforcement learning will be
introduced into the framework. In addition, we would like to evaluate our framework in
intense confrontation applications.
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Abstract: Aiming at the problems of low detection accuracy and large computing resource con-
sumption of existing Unmanned Aerial Vehicle (UAV) detection algorithms for anti-UAV, this paper
proposes a lightweight UAV swarm detection method based on You Only Look Once Version X
(YOLOX). This method uses depthwise separable convolution to simplify and optimize the network,
and greatly simplifies the total parameters, while the accuracy is only partially reduced. Meanwhile,
a Squeeze-and-Extraction (SE) module is introduced into the backbone to improve the model′s ability
to extract features; the introduction of a Convolutional Block Attention Module (CBAM) in the
feature fusion network makes the network pay more attention to important features and suppress
unnecessary features. Furthermore, Distance-IoU (DIoU) is used to replace Intersection over Union
(IoU) to calculate the regression loss for model optimization, and data augmentation technology is
used to expand the dataset to achieve a better detection effect. The experimental results show that the
mean Average Precision (mAP) of the proposed method reaches 82.32%, approximately 2% higher
than the baseline model, while the number of parameters is only about 1/10th of that of YOLOX-S,
with the size of 3.85 MB. The proposed approach is, thus, a lightweight model with high detection
accuracy and suitable for various edge computing devices.

Keywords: object detection; Unmanned Aerial Vehicle (UAV) swarm; lightweight model; attention
mechanism; data augment

1. Introduction

In recent years, with the rapid development and wide application of Unmanned Aerial
Vehicle (UAV) technology in civil and military fields, there has been a tremendous escalation
in the development of applications using UAV swarms. Currently, the main research effort
in this context is directed toward developing unmanned aerial systems for UAV cooperation,
multi-UAV autonomous navigation, and UAV pursuit-evasion problems [1].

In modern wars, where UAVs are widely used, the technical requirements for anti-
UAV technologies are becoming increasingly significant [2]. However, existing anti-UAV
technologies are not enough to effectively deal with the suppression of UAV swarms [3]. For
a small number of UAVs, countermeasures such as physical capture, navigation deception,
seizing control and physical destruction can be used. But it is difficult to cope with a large
number of UAVs once they gather together to form a UAV swarm. It is imperative to be
able to detect the incoming UAV swarm from a long distance in time and then carry out
scale estimation, target tracking, and other operations.

Drones 2023, 7, 13. https://doi.org/10.3390/drones7010013 https://www.mdpi.com/journal/drones
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Therefore, the development of UAV swarm target detection and tracking, etc., is the
premise and key to achieving comprehensive awareness, scientific decision-making, and
active response in battlefield situations. Because anti-UAV swarm systems have high
requirements for the accuracy and speed of object location and tracking methods and radar
detection, passive location, and other methods experience significant interference from
other signal clutter, resulting in false detections or missing detection problems. Therefore,
using computer vision technology to detect and track the UAV swarm has significant
research value.

This paper focuses on UAV target detection for anti-UAV systems. Specifically, under
our proposed method, once the UAV swarm is detected, detectors are rapidly deployed
on the ground to obtain video, and quickly and accurately detect the target to facilitate
subsequent countermeasures.

Most of the existing object detection algorithms consider the object scale to be of
medium size, while a low-flying UAV accounts for a very small proportion of the image,
and there is little available texture information. It is difficult to extract useful features,
especially against a complex background, and, thus, it is easy to mistakenly detect or miss
the UAV target. Therefore, in order to improve the capability of UAV swarm detection in
different scales and complex scenes, and meet the application requirements in resource-
constrained situations, such as in terms of computing power and storage space, this
paper proposes a lightweight UAV swarm detection method that integrates an attention
mechanism. Data augmentation technology is applied to expand the dataset to improve
the diversity of the training set. In addition, depthwise separable convolution [4] is used to
compress the main structure of the network, with the aim of building a model that meets
the accuracy requirements and takes up as little computing resources as possible.

We train and test based on the UAVSwarm dataset [5], and the experimental results
show that the mAP value of the proposed method reaches 82.32%, while the number of
parameters is only about 1/10th of that of the YOLOX-S model and the model size is only
3.85 Mb. Under the same experimental conditions, compared with other YOLO series
lightweight models, the detection accuracy of the proposed method is 15.59%, 15.41%,
1.78%, 0.58%, and 1.82% higher than MobileNetv3-yolov4, GhostNet-Yolov4, YOLOv4-Tiny,
YOLOX-Tiny, and YOLOX-Nano models, respectively. At the same time, the total network
parameters and model size are excellent.

The main innovations of this paper are as follows:
(1) The depthwise separable convolution method is used to compress the model, and

a nano network is constructed to achieve the lightweight UAV swarm detection network.
(2) A Squeeze-and-Extraction (SE) module [6] is introduced into the backbone to

improve the network′s ability to extract object features. The introduction of a Convolutional
Block Attention Module (CBAM) [7] in the feature fusion network makes the network pay
more attention to important features and suppress unnecessary features.

(3) During the training process, Distance-IoU (DIoU) [8] is used instead of Intersection
over Union (IoU) to calculate the regression loss, which is beneficial for model optimization.
At the same time, Mosaic [9] and Mixup [10] data augmentation technologies are used to
expand the dataset to achieve a better detection effect.

2. Related Work

Swarm intelligence algorithms play an extremely important role in multiple UAV
collaborations such as collision avoidance, task assignment, path planning, and formation
reconfiguration. Object detection is an important computer vision task. Traditional object
detection methods are mostly based on manual feature construction [11], which has weak
generalization ability and takes up large computing resources. In recent years, with the
vigorous development and wide application of deep learning technology in various fields,
algorithms based on deep learning have been widely studied by researchers.

212



Drones 2023, 7, 13

2.1. Related Work for UAV Swarm

Currently, lots of researchers pay attention to the development of UAV systems for
UAV cooperation, multi-UAV autonomous navigation, and UAV pursuit–evasion prob-
lems. For successful communication among collaborating UAVs in a swarm, Cheriguene,
Y. et al. [12] proposed COCOMA, an energy-efficient multicast routing protocol for UAV
swarms. This method builds a multicast tree that can convey data from a single source
to the swarm’s UAVs in order to pick the shortest distance between UAVs, optimize total
network energy consumption, and extend the network lifetime. Tzoumas, G. et al. [13]
newly developed a control algorithm called dynamic space partition (DSP) for a swarm
system consisting of high payload UAVs to monitor large areas for firefighting operations.
Sastre, C. et al. [14] proposed and validated different algorithms to optimize the take-off
time of drones belonging to a swarm, and the experiments proved that the proposed al-
gorithms provide a robust solution within a reasonable time frame. Sastre, C. et al. [15]
proposed a collision-free take-off strategy for UAV swarms. Experimental results show
that the proposed method can significantly improve time efficiency and keep the risk of
collision at zero.

2.2. Related Work for UAV Detection

Object detection algorithms based on deep learning are mainly divided into two
categories: two-stage and one-stage detectors. In the former approach, first, a region
proposal network is used to estimate a candidate object bounding box. Then, in the second
stage, the network extracts features from each candidate box and performs classification
and bounding box regression. In this manner, several methods such as R-CNN [16], Fast
R-CNN [17], and Faster R-CNN [18] have been proposed. The latter object detector uses a
single deep neural network with a regression strategy to directly classify and detect objects.
It should be noted that, in this approach, the process of region proposal is avoided. In
this manner, several methods such as the You Only Look Once (YOLO) series, Single Shot
Detector (SSD) [19], and RetinaNet [20] have been proposed.

With the rapid development of computer vision technology, researchers have carried
out a lot of research on image-based UAV detection algorithms. Hu Y. et al. [21] introduced
an algorithm based on YOLOv3 into UAV object detection for the first time. In the prediction
process, the last four scale feature maps are adopted to conduct multi-scale prediction
to enrich the texture and contour information. At the same time, the size of the UAV
in four scales feature maps is calculated according to input data, and then the number
of anchor boxes is also adjusted. This approach improves the accuracy of small object
detection while ensuring speed. Sun H. et al. [22] proposed a UAV detection network
named TIB-Net, integrating a structure called cyclic pathway into the existing efficient
method Extremely Tiny Face Detector (EXTD) to enhance the capability of the model to
extract effective features of small objects. Furthermore, they integrated a spatial attention
module into the backbone network to better locate small-size UAVs and further improve
detection performance. Ma J. et al. [23] integrated the attention mechanism module into
the PP-YOLO detection algorithm and introduced the Mish activation function to eliminate
the gradient disappearance problem in the back-propagation process, which significantly
improved the detection accuracy. Yavariabdi A. et al. [24] proposed a multi-UAV detection
network named FastUAV-NET based on YOLOv3-tiny that can be used for embedded
platforms. By increasing the depth and width of the backbone network, local and global
features are extracted from the input video stream, providing higher detection accuracy
and saving computing time. Liu B. et al. [25] replaced the backbone with a lightweight
network Efficient-lite based on YOLOv5s to reduce the number of parameters of the model,
introduced adaptive spatial feature fusion technology to balance the loss of accuracy caused
by simplifying the network model, and, finally, introduced a constraint of angle into the
original regression loss function to avoid the mismatch between the prediction frame
and the real frame orientation during the training process in order to improve the speed
of network convergence. Wang C. et al. [26] used the Se-ResNet as a feature extraction
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network by introducing the SeNet attention mechanism into the backbone to improve the
correlation between feature channels and enhance the features of the target to solve the
problem of UAVs in low-altitude airspace being submerged in complex background clutter.
The differences between the proposed method and the existing UAV detection frameworks
are shown in Table 1.

2.3. Related Work for Lightweight Network

Although R-CNN, YOLO, and SSD series algorithms have excellent performance in
object detection, they generally have high computational complexity and large model
volume, which makes them unable to fully meet the application requirements in resource-
constrained situations such as limited computing power, storage space, and/or power
consumption [27]. With the development of intelligent mobile devices toward marginaliza-
tion and mobility, various lightweight object detection algorithms have been developed
successively. The goal is to keep good detection performance on devices with low hardware
conditions to adapt to the development trend of intelligent devices. The basic idea of
MobileNet [4,28,29], based on depthwise separable convolution, is to use depthwise convo-
lution to replace the filter in traditional convolution for feature extraction, and use point
convolution instead of filter to combine features while reducing the number of parameters
and amount of computation. ShuffleNet [30,31] was published by Zhang X. et al. in 2018,
the core of which is to reduce the computation of a large number of point convolutions
in MobileNet by using the strategy of combining group convolution and channel shuffle.
Tan M. et al. [32] proposed MnasNet in 2019. Its core innovation lies in the proposed
multi-objective optimization function and the decomposed hierarchical search space, which
correspond to the optimization accuracy and reasoning delay, and improve the diversity
between different layers. Han K. et al. [33] proposed GhostNet in 2020. First, they used
less convolution to check the input for conventional convolution, obtaining the output
features with fewer channels as the internal feature map. Then, they linearly transformed
each channel of the internal feature map to obtain its corresponding Ghost feature map.
Finally, they connected the internal feature map with the Ghost feature map to obtain the
final GhostNet convolution output feature. Xiong Y. et al. [34] proposed a lightweight
object detection network called MobileDets in 2021, based on a Neural Architecture Search
(NAS) network architecture for object detection tasks, and achieved the state-of-the-art in
mobile accelerators.

Table 1. A comparative overview of UAV detection methods.

Method Detection Strategy Backbone Dataset

Hu Y. et al. [14] YOLOv3-based DarkNet-53 self-built

Sun H. et al. [15] TIB-Net EXTD self-built

Ma J. et al. [16] PP-YOLO ResNet50-vd
Drone-vs-Bird,
TIB-Net, and

self-built

Yavariabdi A. et al. [17] FastUAV-NET Inception module self-built

Liu B. et al. [18] YOLOv5-based Efficientlite self-built

Wang C. et al. [19] Se-ResNet ResNet-18 Drone-vs-Bird and
LaSOT

Proposed Method YOLOX-based CSPDarkNet UAVSwarm [33]

3. Materials and Methods

3.1. Overview

The object detection model can generally be abstracted into backbone, neck, and head
networks, as shown in Figure 1. The backbone network performs feature extraction, the
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neck network performs multi-scale feature fusion on the feature layer obtained by the
backbone network, and the head network performs classification and regression analysis.

Figure 1. Overall structure of object detection model.

3.2. Backbone Network

CSPDarkNet [35] is used as the backbone of our UAV swarm detection model, con-
sisting mainly of convolution layers and a CSP structure, as shown in Table 2. First, a
640 × 640 RGB three-channel image is input into the network, and the image size and
the number of channels are adjusted through Focus. Then, four stacked Resblock body
modules are used for feature extraction. In the last Resblock body module, the image is
processed through the SPP module; that is, the max pooling operation with different kernel
sizes is used for feature extraction to improve the receptive field of the network. The final
output of CSPDarkNet is the feature maps of the 2nd, 3rd, and 4th Resblock body modules,
with the shapes of 80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024, respectively.

Table 2. The structure of CSPDarkNet.

Module Structure Output Valid Output

Inputs Inputs 640 × 640 × 3
Focus Focus 320 × 320 × 12

Conv2D-BN-SiLU Conv2D-BN-SiLU 320 × 320 × 64

Resblock body1
Conv2D-BN-SiLU 160 × 160 × 128

CSPLayer 160 × 160 × 128

Resblock body2
Conv2D-BN-SiLU 80 × 80 × 256

Output 1CSPLayer 80 × 80 × 256

Resblock body3
Conv2D-BN-SiLU 40 × 40 × 512

Output 2CSPLayer 40 × 40 × 512

Resblock body4
Conv2D-BN-SiLU 20 × 20 × 1024

Output 3SPPBottleneck 20 × 20 × 1024
CSPLayer 20 × 20 × 1024

In the Resblock body module, the CSPLayer is similar to the residual structure. The
input first passes through convolutional layers with a kernel size of 1×1 and 3×3 for
n times, then the result and the original input are concatenated as output, as shown in
Figure 2a. In order to further improve the detection of UAV swarm targets, referring to the
MobileNet V3 model [29], a Squeeze-and-Extraction (SE) module [6] is introduced into the
CSPLayer structure, as shown in Figure 2b. The UAV detection model uses SiLU as the
activation function. SiLU has the characteristics of no upper bound, with a lower bound
and smooth and non-monotone functions. It can converge faster during training and its
formula is as follows:

SiLU(x) = x·sigmoid(x), (1)
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Figure 2. (a) Original CSPLayer structure (b) CSPLayer structure with SE module.

Specifically, the SE module generates different weight coefficients for each channel by
using the correlation between feature channels, multiplies them with the previous features,
and adds them to the original features to enhance the features. As shown in Figure 3, the
detailed process of the SE attention mechanism is as follows: First, the extracted feature
X ∈ RH′×W ′×C′ is mapped to U ∈ RH×W×C through the conversion function Ftr. Then, the
global information of each channel is represented with a channel characteristic description
value through global average pooling Fsq(·); and then the channel characteristic description
value is adaptively calibrated by Fex(· , W) to make the weight value more accurate. Finally,
the enhanced feature is obtained by multiplying the weight value and the original feature
through Fscale(· , ·).

Figure 3. Diagrammatic sketch of the SE module.

3.3. Neck Network

The three feature layers obtained by CSPDarkNet are sent to the neck network for
enhanced feature extraction and feature fusion. The neck network of the UAV swarm
detection model is constructed based on the Path Aggregation Network (PANet) [36]. The
input feature map is resized through a convolution layer and then fused through up- and
down-sampling operations. The specific network structure is shown in Figure 4.
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Figure 4. The structure of the neck network.

In order to improve the detection performance of the model for UAVs, a Convolutional
Block Attention Module (CBAM) [7] is firstly applied to the three feature maps obtained by
the backbone network, and then sent to the neck network for feature fusion. The CBAM is
also applied after each up-sampling and down-sampling operation in the PANet. CBAM is
a simple and effective attention module for feedforward convolutional neural networks.
It combines the two dimensions of channel and spatial features. When the feature map is
input, it first goes through the Channel Attention Module (CAM) and then Spatial Attention
Module (SAM). The calculation formula is (2):{

Fc = Mc(F)⊗ F
Fa = Ms(Fc)⊗ F′c

(2)

As shown in Figure 5, in the CAM, for the input feature map F ∈ RC×H×W , first, Global
Average Pooling (GAP) and Global Maximum Pooling (GMP) operations are performed
based on the width and height of the input feature map, and then they are processed by
a shared neural network Multilayer Perceptron (MLP), respectively. The two processed
results are added together, and a one-dimensional channel attention vector Mc ∈ RC×1×1

is obtained through the Sigmoid function. Finally, the feature map Fc with channel weights
is generated by multiplying the channel attention vector Mc and the feature map F. In the
SAM module, for the feature map Fc obtained by CAM, a pooling operation is performed,
and then the 7 × 7 convolution and Sigmoid function to obtain a two-dimensional spatial
attention vector Ms ∈ R1×H×W . Finally, Fc and Ms are multiplied to obtain the final
feature map Fa.
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Figure 5. Diagrammatic sketch of the CBAM.

3.4. Head Network

After feature fusion and enhanced feature extraction are completed, the head network
conducts classification and regression analysis on the three feature layers of different scales,
and finally outputs the recognition results. Its network structure is shown in Figure 6. The
head network of the UAV detection model proposed in this paper has two convolution
branches [35], one of which is used to achieve object classification and output object
categories. The other branch is used to judge whether the object in the feature point
exists and regress the coordinates of the bounding box. Thus, for each feature layer, three
prediction results can be obtained:

Figure 6. The structure of the head network.

(1) Reg (h, w, 4): The position information of the target is predicted. The four parame-
ters are x, y, w, and h, where x and y are the coordinates of the center point of the prediction
box, and w and h are the width and height.

(2) Obj (h, w, 1): This is used to judge whether the prediction box is a foreground or a
background. After being processed by the Sigmoid function, it provides the confidence of
the object contained in each prediction box. The closer the confidence is to 1, the greater the
probability of the existence of a target.

(3) Cls (h, w, num_classes): Determine what type of object, each object is, give each
type of object a score, and obtain the confidence level after the sigmoid function processing.

The above three prediction results are stacked, and the prediction result of each
feature layer is (h, w, 4+1+num_classes). The first four parameters of the last dimension
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are regression parameters of each feature point and the fifth parameter is used to judge
whether each feature point contains an object, and the last num_classes parameter is used
to judge the category of the object contained in each feature point.

3.5. Lightweight Model

The essence of a lightweight model is to solve the limitations of storage space and
energy consumption on the performance of traditional neural networks on equipment with
low-performance hardware. Aiming at the problem that the traditional deep convolution
neural network consumes a large amount of computing resources, this paper pays more
attention to how to reduce the complexity of the model and the amount of computation,
while improving the accuracy of object detection. Considering that the depthwise sepa-
rable convolution method [4] can effectively compress the model size while retaining the
ability of feature extraction, this paper uses it to simplify and optimize the UAV swarm
detection network.

A standard convolution both filters and combines inputs into a new set of outputs
in one step. Depthwise separable convolution splits this into two layers, for filtering and
combining. While minimizing the loss of accuracy, this approach can greatly simplify the
network parameters and reduce the amount of calculation. The depth-separable convo-
lution operation divides the traditional convolution operation into two steps: depthwise
convolution and pointwise convolution. The depthwise convolution applies a single filter
to each input channel. The pointwise convolution then applies a 1 × 1 convolution to
combine the outputs of the depthwise convolution. The standard convolution operation
and the depthwise separable convolution operation are shown in Figure 7a,b, respectively.
The depthwise separable convolution is used to replace the traditional convolution in the
UAV detection network while reducing the network parameters and computation.

Figure 7. Comparison of the two convolution methods.

The total number of convolution kernel parameters and the total amount of convolu-
tion operations are analyzed to determine the amount of internal product operations. If
we assume that N groups of convolutions, having the same kernel size, Dk × Dk × C, are
taken to check the input image for convolution and that the required feature map size is
W×H×N, then the quantity of parameters and operation required by the two methods are
shown in Table 3. The depthwise separable convolution method can compress the network
size and reduce the amount of computation. In the process of obtaining a fixed-size feature
map using convolution kernels of the same width and height, by expressing convolution as
a two-step process of filtering and combining, we get a reduction in necessary computations
of 1/N + 1/Dk

2, which is the key to achieving light weight.
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Table 3. Comparison of the two convolution methods.

Method Parameters
Computational

Amount
Ratio

standard convolution Dk × Dk × C× N Dk × Dk × C× N ×
W × H 1

depthwise separable
convolution

Dk × Dk × C+
C× N

Dk × Dk × C×W ×
H + C× N ×W × H

1
N + 1

Dk
2

3.6. Model Training

In the training process of the UAV swarm detection model, Distance-IoU (DIoU) [8] is
used instead of Intersection over Union (IoU) to calculate regression loss, which is bene-
ficial for model optimization. In addition, Mosaic [9] and Mixup [10] data augmentation
technologies are used to expand the dataset to achieve better UAV detection.

3.6.1. Data Augmentation

Data augmentation is a means of expanding the dataset in computer vision. The
approach enhances the image data to compensate for the problem of insufficient training
dataset images and achieve the purpose of expanding the training data. As the UAV swarm
dataset UAVSwarm used for the experiment has few training samples and repetitive scenes,
the Mosaic and Mixup algorithms are used in the image data preprocessing process in
order to increase the diversity of training samples and enrich the background of the target,
to avoid, as far as possible, the network falling into overfitting during the training process
and improve the recognition accuracy and generalization ability of the network model.

The enhancement effect of the Mosaic algorithm is shown in Figure 8. First, the four
images are randomly cut, scaled, and rotated, and then they are spliced into a new image
as the input image for model training. It should be noted that the image during processing
contains the coordinate information of the bounding box of the target, so the new image
obtained also contains the coordinate information of the bounding box of the UAV. The
advantage of this is that, on the one hand, the size of the object in the picture is reduced
to meet the requirements for small object detection accuracy, and, on the other hand, the
complexity of the background is increased, so that the UAV swarm detection model has
better robustness toward complex backgrounds.

 

Figure 8. The enhancement effect of Mosaic.

The Mixup algorithm was originally used for image classification tasks. The core idea
is to randomly select two images from each batch and mix them up to generate new images
in a certain proportion. The Mixup algorithm is more lightweight than Mosaic, requiring
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only minimal computational overhead, and can significantly improve the operation speed
of the model. Its mathematical expression is as follows:⎧⎨⎩

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

λε[0, 1]
, (3)

where (xi, yi) and
(

xj, yj
)

are two randomly selected samples and their corresponding
labels, (x̃, ỹ) are the newly generated samples and their corresponding labels that will be
used to train the neural network model, and λ is a fusion coefficient. It can be seen from
Formula (3) that Mixup essentially fuses two samples through a fusion coefficient. The
enhancement effect of the Mixup algorithm is shown in Figure 9.

 
Figure 9. The enhancement effect of Mixup.

3.6.2. Loss Function

The goal of network training is to reduce the loss function and make the prediction
box close to the ground truth box to obtain a more robust model. The loss function of
object detection needs to indicate the proximity between the prediction box and the ground
truth, whether the prediction box contains the target to be detected, and whether the object
category in the prediction box is true. As predicted by the head network, the loss function
consists of three parts, which are given by Formula (4):

Loss = LossReg + LossObj + LossCls , (4)

(1) Regression loss (LossReg) is the loss of position error between the prediction box
and the ground truth. The x, y, w, and h parameters predicted by the model can locate the
position of the prediction box, and the loss is calculated based on the DIoU of the ground
truth and the prediction box. Figure 10 shows the principle for DIoU to calculate regression
loss, and the corresponding calculation Formula is (5):

DIoU = IoU − ρ2(b, bgt)
c2 = IoU − d2

c2 , (5)

where b represents the parameter of the center coordinate of the prediction box and bgt

represents the parameter of the center coordinate of the ground truth; d is the distance
between the center point of the prediction box and the ground truth; and c represents the
diagonal length of the maximum bounding rectangle of the union of the prediction box
and ground truth. IoU measures the intersection ratio between the prediction box and the
ground truth. However, if there is no intersection between them, the result of IoU will
always be 0. When one of the two boxes is inside the other, if the size of the box remains
unchanged, the calculated IoU value will not change, which will make the model difficult
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to optimize. If DIoU is used to calculate regression loss, this problem can be effectively
solved and a good measurement effect can be obtained.

 

Figure 10. Schematic diagram of DIoU.

(2) Object loss (LossObj) is to determine whether there is an object in the predicted box,
which is a binary classification problem. According to the result predicted by the head net-
work, whether the target is included can be known, while the feature points corresponding
to all ground truths are positive samples, and the remaining feature points are negative
samples. The Binary Cross-Entropy loss is calculated according to the prediction results of
whether the positive and negative samples include the target.

(3) Classification loss (LossCls) is applied to reflect the error in object classification.
According to the feature points predicted by the model, the predicted category results of the
feature points are extracted, and then the Binary Cross-Entropy loss is calculated according
to the category of the ground truth and prediction results.

4. Experimental Results and Analysis

The proposed UAV swarm target detection model is constructed based on the deep
learning framework Pytorch. The size of the input images needs to be adjusted to 640×640,
and the number of input images in each batch is set to 12 during the training process; a total
of 100 epochs are trained without using a pre-training weight. Furthermore, the Mosaic
and Mixup data augment algorithms are used for the first 70 epochs and canceled for
the last 30 epochs. The gradient descent optimization strategy adopts the SGD optimizer,
and the initial learning rate is set to 0.01. In this experiment, the mean Average Precision
(mAP), the number of parameters, model size, latency, and Frame Per Second (FPS) are
used as measurement metrics of the experimental results. We train and test on a computer
equipped with dual Intel Xeon E5 2.40GHz CPUs, a single NVIDIA GTX 1080TI GPU, and
32 GB RAM.

4.1. UAVSwarm Dataset

Wang C. et al. [5] collected 72 UAV image sequences and manually annotated them,
creating a new UAV swarm dataset named UAVSwarm for UAV multi-object detection
and tracking. This dataset contains 12,598 images in total, of which 23 are included in the
images with the largest number of UAVs, 36 image sequences (6844 images) are included in
the training set, and the remaining 36 sequences (5754 images) are included in the test set.
The dataset we used largely excludes all objects (flocks of birds, etc.) except UAVs but some
scenes are complex, leading to the UAVs being blocked. Figure 11 shows some images and
annotation information of the dataset.
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Figure 11. Samples of the UAVSwarm dataset.

4.2. Ablation Experiment

Firstly, the structure of YOLOX is simplified and optimized by depthwise separable
convolution to build a nano network. In order to verify the effectiveness of the lightweight
module, this paper uses the same training strategy to train three lightweight YOLOX
models, namely, YOLOX-S, YOLOX-Tiny, and YOLOX-Nano, and tests them on the same
test set to analyze their performance differences. It can be seen from Table 4 that the UAV
detection accuracy of the three differently scaled YOLOX models toward the test set is
more than 80%. As far as the network accuracy and scale of YOLOX of the same series are
concerned, the results of this experiment are consistent with the general law of the object
detection network—that is, the more layers and parameters of the convolutional neural
network, the stronger its feature extraction and generalization ability, and the higher its
recognition accuracy. When the DIoU threshold score is set to 0.5, the mAP scores of the
three networks are largely the same, but the size of the model and the total number of
parameters greatly differ Among them, the model size and the total number of parameters
of nano network are about 1/10th of those of the version S network. This shows that
under the same hardware conditions, the lightweight nano model can process more input
images and reduce the equipment cost on the premise of meeting the accuracy requirement.
Therefore, YOLOX-Nano is selected as the baseline model for research in this paper.

Table 4. Performance comparison of YOLOX models with different scales.

Model mAP@0.5 (%) Params (×106) Model Size/Mb

YOLOX-S 82.12 8.94 34.30
YOLOX-Tiny 81.74 5.03 13.70
YOLOX-Nano 80.50 0.89 3.70
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Table 5 shows that the mAP score of the proposed model on the UAVSwarm test set is
82.32%, which is about 2% higher than that of the baseline model, while the total number
of parameters and model size are only about 40 Kb higher. It can also be found that the
introduction of the SE and CBAM modules and the improvement of the loss functions have
brought about an increase in mAP compared with the baseline model, which proves the
effectiveness of the above three modules.

Table 5. Ablation experiment based on YOLOX-Nano.

SE CBAM Loss mAP@0.5 (%) Params (×106) Model Size/Mb

- - - 80.50 0.89 3.70
� - - 81.25 0.92 3.78
- � - 80.62 0.92 3.84
- - � 82.14 0.89 3.70
� � � 82.32 0.93 3.85

The Loss curves of the different network models during the training process are shown
in Figure 12. The abscissa and ordinate are the Epoch and Loss values, respectively. It can
be seen that in the training process, the convergence of different models of the YOLOX
series is similar. The loss of the training set decreases rapidly in the early stage. With the
increase in epoch, the loss value gradually decreases and tends to be stable. Finally, the
loss value of the proposed network model is the lowest, which proves that the training
strategy and parameter settings are reasonable and effective for improving the model
detection accuracy.

Figure 12. Loss curves of the different networks.

For the UAVSwarm dataset, as a typical small object, the network model proposed in
this paper has improved the Precision and Recall indicators of the baseline model by 0.63%
and 1.84%, respectively, when the threshold scores are both 0.5, as shown in Figure 13.
The improvement of Recall shows that the optimization strategy we used can effectively
increase the learning effect of the model on the target of positive foreground samples.
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(a) YOLOX-Nano Precision (b) Proposed Model Precision

(c) YOLOX-Nano Recall (d) Proposed Model Recall

Figure 13. Precision and Recall of UAV detection.

4.3. Comparison Experiment

In order to objectively reflect the performance of the UAV swarm object detection
network proposed in this paper, this study also uses the same settings to train other
lightweight YOLO models and conducts a comparative analysis. The comparison results
are shown in Table 6. It can be seen that under the same test set, the mAP value of the
proposed UAV detection model has reached 82.32%, which is 15.59%, 15.41%, 1.78%, 0.58%,
and 1.82% higher than MobileNetv3-yolov4, GhostNet-YOLOv4, YOLOv4-Tiny, YOLOX-
Tiny, and YOLOX-Nano, respectively. At the same time, the total network parameters and
model size are optimal.

Table 6. Comparison experiment of different networks.

Method mAP@0.5 (%) Params (×106)
Model

Size/Mb
Latency/ms FPS

GhostNet-
YOLOv4 66.91 11.00 42.40 83 12

MobileNetv3-
YOLOv4 66.73 11.30 53.70 90 11

YOLOv4-Tiny 80.54 5.87 22.40 45 22
YOLOX-Tiny 81.74 5.03 13.70 55 18
YOLOX-Nano 80.50 0.89 3.70 71 14

Ours 82.32 0.93 3.85 71 14

The experimental results that are obtained on the computational time are tabulated in
Table 6. It should be said that, due to limitations in the hardware platform, our experiment
did not achieve the effect in the original paper, but we believe that the proposed method will
have lower latency and higher processing speed under the condition of higher computing
power. Table 6 illustrates that, compared with the baseline model YOLOX-Nano, the pro-
posed model achieves higher recognition accuracy under approximately the same inference
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time. Thus, our model can also meet the requirements of being real-time and is suitable
for applications that require low latency. However, the YOLOX-Tiny and YOLOv4-Tiny
networks are quicker than the proposed model, as they run 18 FPS and 22 FPS, respectively.
Even though the proposed architecture is slower than these two models, significantly, it
provides higher detection accuracy. Therefore, the proposed model is a lightweight model
with high detection accuracy and suitable for various edge computing devices.

In order to verify the detection effect of the UAV detection model proposed in this
paper in actual scenes, some images in the dataset are selected for detection, and the
comparison diagram of the detection effect is shown in Figure 14. As shown in Figure 14a,
in an environment with a simple background, most models can successfully identify UAVs.
The proposed method can detect more small and distant objects than the baseline model
YOLOX-Nano. As shown in Figure 14b, when the background is complex or UAVs are
densely distributed, there are many undetected phenomena with the other models. The
algorithm in this paper shows better detection performance and can accurately detect UAVs
when occlusion occurs among objects. As shown in Figure 14c, when the image resolution is
low, the algorithm in this paper can still accurately detect UAVs with complex backgrounds
and provide higher confidence scores. Through comparison, it can be demonstrated that
our method has improved detection accuracy and confidence, which shows that it can
satisfy the requirements of being lightweight and providing higher accuracy, meeting the
requirements of industrial applications.

 
Figure 14. Comparison of detection results of different models.
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In addition to the construction of an anti-UAV system, the algorithm proposed in
this paper can also be applied as a swarm intelligence algorithm to achieve UAV swarm
formation, multi-UAV cooperation, etc. By deploying lightweight object detection methods,
UAVs in the swarm can quickly and accurately obtain the position and status of other
partners, so that they can adjust themselves in time according to the swarm intelligence
algorithm. Swarms of UAVs may have enhanced performance during performing some
missions where having coordination among multiple UAVs may enable broader mission
coverage and provide more efficient operating performance. Moreover, the proposed
method will greatly help to improve the performance of UAV swarm systems including
total energy, average end-to-end delay, packets delivery ratio, and throughput. According
to the analysis, the application of the lightweight model provided by this paper may reduce
the total energy demand and average end-to-end delay of the UAV swarm system, while
increasing the packets delivery ratio and throughput of the system. This means that the
UAV swarm system may be able to achieve higher data transmission efficiency at a lower
cost, thus, better performing tasks.

5. Conclusions

This paper proposes a lightweight UAV swarm detection model integrating an at-
tention mechanism. First, the structure of the network is simplified and optimized by
using the depthwise separable convolution method, which greatly reduces the total num-
ber of parameters of the network. Then, a SE module is introduced into the backbone
network to improve the model′s ability to extract object features; the introduction of a
CBAM in the feature fusion network makes the network pay more attention to important
features and suppress unnecessary features. Finally, in the training process, a loss function
based on DIoU can better describe the overlapping information and make the regression
faster and more accurate. In addition, two data augmentation technologies are used to
expand the UAVSwarm dataset to achieve better UAV detection. The proposed model is a
lightweight model with high detection accuracy and only 3.85 MB in size, which is suitable
for embedded devices and mobile terminals. In conclusion, the real-time performance and
accuracy of the UAV swarm detection model proposed in this paper meet the requirements
of rapid detection of UAVs in real environments, which has practical significance for the
construction of anti-UAV systems. In our future work, we will continue to study and
optimize the improvement strategy, so that it can achieve better recognition accuracy and
real-time performance under the premise of minimizing the complexity of the model.
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Abstract: Unmanned aerial vehicles (UAVs) are important in reconnaissance missions because of
their flexibility and convenience. Vitally, UAVs are capable of autonomous navigation, which means
they can be used to plan safe paths to target positions in dangerous surroundings. Traditional
path-planning algorithms do not perform well when the environmental state is dynamic and partially
observable. It is difficult for a UAV to make the correct decision with incomplete information. In
this study, we proposed a multi-UAV path planning algorithm based on multi-agent reinforcement
learning which entails the adoption of centralized training–decentralized execution architecture to
coordinate all the UAVs. Additionally, we introduced a hidden state of the recurrent neural network
to utilize the historical observation information. To solve the multi-objective optimization problem,
We designed a joint reward function to guide UAVs to learn optimal policies under the multiple
constraints. The results demonstrate that by using our method, we were able to solve the problem
of incomplete information and low efficiency caused by partial observations and sparse rewards in
reinforcement learning, and we realized kdiff multi-UAV cooperative autonomous path planning in
unknown environment.

Keywords: multi-UAV; path planning; incomplete information; multi-objective, reinforcement learning

1. Introduction

Multi-UAV perform well in complex tasks because of their robustness and high effi-
ciency [1]. When multi-UAV perform reconnaissance tasks cooperatively in an unknown
environment, they have to perceive the environment through their own sensors and plan
the optimal path online according to the current environmental state to reach the target
points safely. It is important for UAVs to be capable of autonomous navigation in complex
and unknown environments. Moreover, a greater coordination is needed between all UAVs.
Thus, we have to consider we can guide multi-UAV to achieve a common goal.

Multi-UAV path planning can be considered as a Multi-Agent Path Planning (MAPF)
problem [2], which is a model used to find the optimal path for multi-agents from the
starting positions to destinations without conflicts. In fact, MAPF is a relatively complex
joint objective optimization problem. The state space of this problem grows exponentially
with the number of agents, and it has been proved to be an NP-hard problem [3]. In the
reconnaissance tasks, multi-UAV not only have to avoid dangerous areas and reach the
target points safely, but they must also cover a larger area in a shorter time. However,
the time cost and coverage area are in conflict, as these are multi-objective optimization
problems, and we must make a trade-off between two or more conflicting goals to enable
optimal decision making. It is impossible to find a solution that can achieve the optimal
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performance of all objectives; therefore, for the multi-objective optimization problem, we
usually use a set of non-inferior solutions called the “Pareto solution set” [4].

Most of the previous research regarding multi-UAV path planning has focused on
intelligent optimization algorithms, such as evolutionary algorithms [5] including Particle
Swarm Optimization(PSO) [6–8]. Shao et al. [9] proposed a more accurate and faster
PSO algorithm to effectively improve the convergence speed and solution optimality, and
the proposed PSO was successfully used in UAV formation path planning under terrain,
threat, and collision avoidance constraints. Evan et al. [10] proposed a PSO algorithm for
use in navigating in an unknown environment, which was able to reach a pre-defined
goal and become collision-free. Ajeil et al. [11] proposed a hybridized PSO-modified
which was shown to minimize the distance and follow path smoothness criteria to form an
optimized path. Evolutionary algorithms based on swarm intelligence can iteratively search
for local optimal solutions, but this method is difficult to expand to online and real-time
optimization due to its limited speed, and it is not suitable for use in reconnaissance tasks.

In recent years, with the rapid development of Deep Reinforcement Learning (DRL),
its powerful representation and learning capabilities have enabled it to perform well
in decision-making problems [12]; therefore, researchers are beginning to explore the
application of reinforcement learning in multi-UAV path planning and navigation [13–15].
Compared with traditional algorithms, reinforcement learning performs better when the
environment is unknown and dynamic. Moreover, the inference speed and generalization
of reinforcement learning are advantages in real-time decision-making tasks.

In our research, the perception abilities of multi-UAV were limited, and only partial
observations of the environment were made, meaning that it was difficult for the multi-
UAV to make the optimal decisions when global states were lacking because the state
transitions were unknown. The action of each UAV could change the environment’s state,
especially in a learning-based algorithm, such as reinforcement learning, the incomplete
information will lead to poor efficiency and convergence. Moreover, it is vital to design
training architecture to coordinate multi-UAVs to achieve a common goal. It is unwise to
adopt a completely distributed training architecture to solve MAPF problems because of
the high complexity. The same applies to multi-objective optimization problems. Lowe,
firstly, proposed a framework of centralized training with decentralized execution [16],
allowing extra information to be used in policies to make training easier. This framework
has been proved to be capable of handling collaborative problems, such as multi-agent
path planning. For instance, Jose et al. [17] proposed a DRL model with a centralized
training and decentralized execution paradigm to solve vehicles routing problem, which
was shown to be able to produce near-optimal solutions through cooperative actions. Marc
et al. [18] adopted a distributed multi-agent variable framework to solve conflicts between
UAVs, and also to train agents using centralized learning. Wang et al. [19] adopted a
centralized training and decentralized executing framework to enable dynamic routing,
introducing a counterfactual baseline scheme to improve the convergence speed. Moreover,
the reward function of reinforcement learning should be reviewed in light of multi-objective
optimization problems. On the one hand, a reward function that is too simple maybe cause
“Reward Hacking” [20] and exacerbate the difficulties of policy learning due to incomplete
information. On the other hand, a reward function that is too complex will lead the worse
generalization. The most commonly used solution is to design a reward to satisfy multiple
objectives of different weights according to the prior knowledge, in which a multi-objective
optimization problem will be changed into a singe-objective optimization problem. In fact,
this solution is near-optimal. Li [21] proposed an end-to-end framework for use in solving
multi-objective optimization problems using deep reinforcement learning. Xu [22] proposed
prediction-guided multi-objective reinforcement learning for use in solving continuous
robot control problems. In multi-UAV path planning, some constraints, such as time cost,
security, and coverage, must be considered.

To solve these problems, we proposed an improved multi-agent reinforcement learning
algorithm based on centralized training and decentralized execution architecture. The
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policy learning algorithm is proximal policy optimization (PPO) [23]. It is a model-free
reinforcement learning algorithm, which can adapt to a dynamic environment and provide
good generalization. The critic network of PPO is used to coordinate all the UAVs to
maximize team returns through centralized training by receiving joint observations, and the
actor network of PPO is used to output actions. We also added a recurrent neural network
to the actor–critic network to gather the historical information from the hidden state of
the recurrent neural network [24], which solves the problem of incomplete information
caused by partial observations. In addition, we designed a joint reward function to guide
multi-UAV to learn optimal policies. When the training stage is completed, each UAV can
execute an action based on its local observations in the reference stage. The contributions
of our research are as follows:

1. We solved the problem caused by multi-UAV path planning with incomplete infor-
mation through reinforcement learning based on the centralized training and decentralized
execution architecture. We deeply explored the reasons why centralized training and
decentralized execution architecture improves model performance, and we explained the
benefits of centralized training compared to fully distributed methods.

2. When designing the reward function, we decomposed the multi-objective optimiza-
tion problem into multiple sub-problems based on the idea of decomposition, solving the
multi-objective optimization problem through reinforcement learning.

Experiments show that by using our method, the performance was significantly
improved compared with baselines, and we demonstrated the high application value of
reinforcement learning in multi-UAV path planning. In the execution stage, our method
could be used to plan paths online, far exceeding the speed of heuristic algorithms. Section 2
introduces the backgrounds of our research. Section 3 describes our methodologies in
details. Section 4 introduces the experimentation setup and results. We provide a conclusion
in Section 5.

2. Background

2.1. Problem Description

When multi-UAV perform reconnaissance missions, they need to make real-time deci-
sions based on current state information, and a collision-free path to reach the target points
must be planned. In addition, time cost and coverage need to be considered. Therefore,
multi-UAV autonomous path planning is a online decision-making problem under the
constraints of incomplete information. It has three characteristics: distributed decision-
making, partial observation and multi-objective optimization. Multi-UAV autonomous
path planning is considered to be a fully cooperative task. The objective of all the partici-
pants in such a task is to obtain the maximum team returns. Therefore, we could establish
a multi-agent real-time sequential decision-making model by the Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) theoretical framework [25].

Dec-POMDP is a general model used to solve multi-agent objective optimization
problems in cooperative environments, which generalizes the Partially Observable Markov
Decision Process (POMDP) to multi-agent environments. It allows for the distributed
control of multiple agents which may not be able to observe global states of environment. In
every step, each agent chooses an action based on local observations (all agents in parallel),
and then obtains its own reward from the environment, and all of agents cooperate to
obtain common long-term benefits and maximize returns. Generally, a Dec-POMDP model
is described by a tuple: 〈I, S, {Ai}, T, R, {Ωi}, O, h〉
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• I is a set of N agents.
• S is a set of states of the environment, and S0 is the initial state.
• {A} is a set of actions for the agents. It is an action tuple A1, A2, . . . , Ai.
• T is the state transition probability function P(S′|S, A).
• R is the reward when agents take actions {A} in state S, it depends on all the agents.
• {Ω} is a set of observations for the agents.
• O is a table of the observation probabilities, where O(o1, o2, . . . , oi|S′, A) is the proba-

bility that (o1, o2, . . . , oi)are observed by all the agents, respectively.
• h is the maximum number of steps in an episode which is called “horizon”.

However, the complexity of the optimal solution of this distributed model is

O

[(
|A|

|o|h−1
|o|−1

)n]
(1)

which is double exponential [26]; it is hard to compute directly, and reinforcement learning
is usually used to obtain the approximate solution.

2.2. Actor–Critic Algorithm

In reinforcement learning, an agent interacts with the environment continuously to
optimize the policy through the feedback (reward) given by the environment. Reinforce-
ment learning is mainly divided into value-based methods and policy-based methods. A
policy-gradient algorithm can easily select the appropriate action in the continuous action
space, while value-based algorithm cannot. However, the limitation of the policy-gradient
algorithm is its poor learning efficiency. Therefore, researchers proposed a method that com-
bines the policy-gradient and value-based algorithms, called the actor–critic algorithm [27].
The architecture of actor–critic is shown in Figure 1. Actor–critic uses a value-based net-
work and policy-based network as the critic network and the actor network, respectively.
The critic network can realize single-step updates to overcome the poor learning efficiency,
and the actor network outputs actions according to the current observation, while the
critic network can judge whether the current action is good or bad, which can lead the
actor network to output a better action. Currently, the algorithms based on the actor–critic
framework, such as DDPG, PPO, and A3C, are very popular.

Figure 1. Actor–critic algorithm.
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2.3. Centralized Training and Decentralized Execution Architecture

When there are multiple agents in a completely cooperative environment, we can
establish a Dec-POMDP framework. Reinforcement learning is a great method to seek
the optimal solution of a model. However, if we directly use single-agent reinforcement
learning algorithms to train agents independently, it is hard to converge them, because
the actions of each agent will change the environment, meaning the environment will be
unstable for each agent and lead to learning difficulties. The MADDPG trains multi-agents
through a centralized critic network, providing a good solution for the training of multi-
agent systems. As shown in Figure 2, the input of the critic network is the joint observation
of all of the agents in the environment in the training stage, and the actor network only
inputs its own local observations and output actions according to the observations in the
inference stage. This architecture enables each agent’s actions in the environment to be
observed by other agents, ensuring the stability of the environment. Therefore, multi-agent
reinforcement learning is mostly based on centralized training and decentralized execution
(CTDE) architecture, such as COMA [28].

Figure 2. Centralized training (left) and decentralized execution (right).

3. Methodology

3.1. Proximal Policy Optimization with CTDE

We choose proximal policy optimization (PPO) to guide UAVs in learning policies. The
PPO algorithm is based on the actor–critic architecture, which can more effectively achieve
continuous control in high-dimensional space, and it is also an on-policy reinforcement
learning algorithm. The learning approach of PPO is policy gradient. However, the policy-
gradient algorithm is unstable, and this makes it difficult to choose an appropriate steps.
If the difference between the old policy and new policy is too great during the training
process, it is not conducive to learning. Using the PPO algorithm, a new objective function
was proposed which can be updated in small batches in multiple training steps, which
solves the problem of steps being difficult to determine in the policy-gradient algorithm.
The algorithm takes into account the difference between an old network and an new
network when updating parameters. In order to avoid the difference being too great, a clip
is introduced to limit:

∇R(τ) = Eτ∼πθ(τ)[A
π(st, at)∇logpθ(at|st)] (2)

Aπ(s, a) = Qπ(s, a)−Vπ(s) (3)

Ex∼p[ f (x)] =
∫

f (x)p(x)dx =
∫

f (x)
p(x)
q(x)

q(x)dx = Ex∼q

[
f (x)

p(x)
q(x)

]
(4)
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LCLIP(θ) = Êt

{
min

[(
πθ(at|st)

πθold(at |st)

)
Ât, clip

(
πθ(at|st)

πθold(at |st)
, 1− ε, 1 + ε

)
Ât

]}
(5)

where A is an advantage function, indicating the return of the action a in the current state.
Based on the PPO algorithm, we adopted the training method of the CTDE architecture

and designed a multi-agent PPO algorithm in a multi-agent environment. Compared with
the single-agent environment, the critic network’s input is the joint observation of multi-
UAV, which is equivalent to a central controller, each drone can obtain more information.
The actor network is updated to maximize the objective:

L(θ) = 1
Bn

B
∑
i=1

n

∑
k=1

[
min
(

rk
θ,iAk

i , clip
(

rk
θ,i, 1− ε, 1 + ε

)
Ak

i

)
+ σ ∗ Sπ

]
(6)

where rk
θ,i =

πθ(ak
i |ok

i )
π

θold(ak
i |ok

i )
. The critic network is updated to minimize the value loss:

L(φ) = 1
Bn

B
∑

i=1

n
∑

k=1
max

[(
Vφ

(
sk

i

)
− R̂i

)2
,(

clip
(
Vφ

(
sk

i

)
,Vφold

(
sk

i

)
− ε,Vφold

(
sk

i

)
+ ε
)
− R̂i

)2
] (7)

The weights of two networks are updated in every episodes, the process is shown in
Figure 3.

Figure 3. The weights of actor–critic network are updating in every episodes.

3.2. Adding RNN Layer For Incomplete Information

One of the difficulties within multi-UAV autonomous path-planning tasks is partial
observation, which leads to limited information being obtained by UAVs. A solution to
this is the utilization of the previous state to avoid falling into a local optimum.

Recurrent neural networks can memorize the previous information and apply it to the
calculation of the current output. The nodes between the hidden layers are connected, and
the input of the hidden layer includes the current input and the previous output, as well
as the output of the hidden layer at the moment. The study of deep recurrent Q-learning
(DRQN) was the first to combine an RNN with reinforcement learning [29]. As shown
in Figure 4, DRQN essentially turns one of the linear layers of DQN into an RNN layer.
Due to the addition of RNN, DRQN has short-term memory, and it can achieve similar
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scores to DQN in “Atari Games” without frame stack technology. Taking inspiration from
this idea, we added the RNN layer to the PPO network, and we used the RNN layer
to process historical information to solve the problem of incomplete information in the
training process.

Figure 4. Adding LSTM layer have the same effect compared with frame stack, and reduce the
dimension of input.

However, RNNs suffer from short-term memory. If a sequence is too long, it is
difficult to transfer information from an earlier time step to a later time step. During back
propagation, the gradient easily vanishes. Long Short-Term Memory (LSTM) is a variant
of the RNN. It can select the information to be remembered or forgotten through the gate
mechanism. As shown in Figure 5, the forget gate determines which relevant information
in the previous step needs to be retained; the input gate determines which information in
the current input is important and needs to be added; the output gate determines what
the next hidden state should be. These “gates” can keep the important information in the
sequence and discard the useless information, preventing the gradient from vanishing.

Figure 5. LSTM structure: at timestep t, Xt is input, Ct is cell state, and ht is hidden state.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ft = σ
(

Wf • [ht−1, xt] + b f

)
it = σ(Wi • [ht−1, xt] + bi)

C̃t = tanh(Wc • [ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t
ot = σ(Wo • [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(8)

where Ct is the cell state, and ht is the current hidden state. Therefore, we added LSTM
layers to both the actor and critic networks of PPO. After adding the LSTM layer, the
historical information was remembered by updating the cell state and hidden state at each
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timestep T, and the problem of incomplete information caused by the local observations
was alleviated.

Batches of τ are used to update the parameters of actor and critic networks to maximize
L(θ) and minimize L(φ) through gradient descent. τ = [st, ot, at, rt, st+1, ot+1, at+1 . . .]
Add an LSTM layer to the network, two elements ht,π and ht,V are added to τ, which
changed into [st, ot, ht,π , ht,V , at, rt, st+1, ot+1, ht+1,π , ht+1,V , at+1 . . .], ht,π , ht,V are the hidden
state of timestep t in an LSTM layer of the actor network and critic network.

L(θ) = 1
Bn

B
∑
i=1

n

∑
k=1

[
min
(

rk
θ,iAk

i , clip
(

rk
θ,i, 1− ε, 1 + ε

)
Ak

i

)
+ σ ∗ Sπ

]
(9)

Moreover, we sought to establish the different roles of the critic network and actor
network in the multi-agent reinforcement learning algorithm based on the CTDE architec-
ture. We believe that the critic network acts as a central controller to process all observation
information, meaning that adding an RNN layer to the critic network can, theoretically,
greatly enhance the performance of the model in partially observable environments. The
actor network acts as a policy network for each agent, and adding the RNN layer to the
actor network has less of an effect on its performance. The experimental results prove our
analysis, it also confirms that the CTDE architecture is effective in this task.

3.3. Multi-Objective Joint Optimization

Multi-UAV autonomous path planning is a multi-objective optimization. The time
cost, coverage area, and security of multi-UAV systems need to be considered in Figure 6.
Multi-objective optimization is the optimal selection of decision variables in a discrete
decision space.

Figure 6. Multi-objective optimization seeks optimal solutions under the constraints of security, time,
and coverage.

The mathematical expression is as follows:

maxπ F(π) = maxπ [ f1(π), f 2(π), . . . , fm(π)] (10)

where m is the number of the objectives,and π is the policy.
This is very similar to the “action selection” of reinforcement learning, and the “offline

training, online decision-making” characteristic of deep reinforcement learning make it
possible for an online, real-time solution of a multi-objective optimization problem to be
achieved. Therefore, deep reinforcement learning methods are a good choice when used to
solve traditional multi-objective optimization problems, and the learning-based model has
a good generalizability.

We designed the reward function based on multi-objective optimization and com-
bined it with prior knowledge regarding navigation, decomposing the multi-objective
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optimization problem into multiple sub-problems. We shaped a joint reward function by
considering the constraints of security, time, and coverage. There are several ways for
multi-UAV to obtain feedback.

rtotal = α ∗ rtimecost + β ∗ rsecurity + γ ∗ rcoverage (11)

where rsecurity = ∑
∣∣distance

(
UAVi −UAVj

)∣∣− |distance(UAVi − targeti)| , which guides
the multi-UAV to reach the target points and avoid each other. The purpose of this design
is to achieve larger coverage by distributing all of the UAVs, ensuring that the drone does
not collide with other drones or obstacles. rcoverage = ∑ new areaUAVi, it means the UAV
will be rewarded if new areas are explored; this reward encourages multi-UAV to explore
an environment, not simply reach the required points. rtimecost guides the drone to reach
the target point with the shortest possible number of steps. These three different rewards
constitute the reward function that guides the multi-UAV autonomous path planning under
constraints.

Usually, we give these rewards different weights to change a multi-objective problem
into single-objective problem and to seek a solution. The advantage of this design is that the
aggressiveness of the agent’s learning strategy can be changed amending intended meaning
has been retrained the manually set rules, but this is a near-optimal solution under the
constraint. A multi-objective optimization problem can be solved through multi-objective
reinforcement learning, as shown in Figure 7.

Figure 7. The difference between reinforcement learning and multi-objective reinforcement learning.

A set of solutions called “Pareto front” can represent the optimal solutions in all of the
different weights. The differences between two methods are as shown in Figure 8.

Figure 8. Multi-objective optimization: obtaining the optimal solution under the constraints of
security, time, and coverage.

A multi-objective gradient optimizes the policy to maximize the weight–sum reward,
where w is the weight of every objective, meaning that the policy gradient has changed.
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J (θ, ω) = ωT F(π) =
m

∑
i=1

ωi fi(π) =
m

∑
i=1

ωi Jπ
i (12)

∇θJ (θ, ω) =
m

∑
i=1

ωi∇θ Ji(θ)

= E

[
T

∑
t=0

ωT Aπ(st, at)∇πθ(at | st)

]

= E

[
T

∑
t=0

Aπ
ω(st, at)∇πθ(at | st)

] (13)

4. Experiment

4.1. Experimental Setup

We built a simulation platform based on Unreal Engine 4 to support quad-rotor
dynamics simulation. In this platform, we created a scenario to simulate multi-UAV
reconnaissance missions, as shown in Figure 9. The reconnaissance area was 2 km × 2 km,
and the scenario contained four movable anti-drone devices. Once the drone entered the
coverage area of these devices, it would be destroyed. The perception radius of a drone
was 200 m × 200 m, and all of the drones communicated with each other by default.

Figure 9. Multi-UAV simulation platform.

Three UAVs started from the starting points and planed a collision-free path to three
target points online. The area covered by all of the UAVs was the final total coverage area,
and the total path length of the UAVs was the path cost. Figure 10 shows that three UAVs
started from different points, and there were four threat areas in the environment. By
default, the drones could only perceive dangerous areas within their capability radius.

In this simulation platform, low-level and high-level commands were used to control
the motion of a UAV. As shown in Figure 11, in order to simulate a real flight, we choose to
control the motion of the UAV through the underlying control method. The policy network
outputs (pitch, roll, yaw_rate, throttle, and duration) a five-dimension vector in every step,
where pitch, roll, and yaw_rate controlled the attitude and direction of a UAV, and throttle
and duration made the UAV to accelerate or decelerate for a period of time.
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Figure 10. Initial state when multi-UAV perform a reconnaissance task.

Figure 11. Kinematics of a quad-rotor.

4.2. Network Architecture

We used PyTorch to build a three layers neural network for the actor and critic net-
works of PPO, respectively. We used a centralized training and decentralized execution
architecture to coordinate all of the UAVs; the intuitive difference between centralized
training and independent training is the input of the value network. In this experiment,
we connected the local observations of all of the UAVs into a high-dimensional vector
as the joint observations, and then input the value network, called Ocenter, and the actor
network input was the observation Oi of each UAV itself as shown in Figure 12. We set up
four control experiments to compare the performance between CTDE and independent
training in this task. The first and third layers of the networks were fully connected layers,
and the second layer was an LSTM layer. In order to validate whether adding lstm was
effective, we use the same network architecture to build a network without an LSTM layer
as a comparison with the specific aim of verifying which one of critic and value was more
dependent on historical information, thus confirming the role of CTDE architecture.
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Figure 12. Actor network and critic network, and all of the agents that share the networks.

PPO outputs random policies, meaning that the outputs of the actor network are μ, σ,
which are the expectation and variance of a Gaussian distribution, and the output action
is randomly sampled by this Gaussian distribution. In the experiment, all of the agents
shared common networks parameters as shown in Table 1.

Table 1. Network parameter table.

Episode Episode length Rollout thread Clip Discount Entropy coefficient

625 200 16 0.2 0.99 0.1

Buffer size Batch size FC layer dim RNN hidden dim Activation Optimizer

500 32 128 64 Relu Adam

4.3. Results

After 1,000,000 steps of training, by analyzing the experimental results, we came to
the conclusion that the PPO algorithm based on the centralized training decentralized
execution architecture performed better compared to independent training in multi-UAV
autonomous path planning tasks. As the results show in Figure 13, it is difficult for
a completely independent and distributed training method to perform well in multi-
UAV tasks. The adoption of CTDE architecture obviously and significantly improved the
performance, the reward became positive, and the performance was even improved when
the number of UAVs was larger. This proves that CTDE architecture is effective in such
distributed tasks. A center controller can coordinate all of the UAVs. However, it does
not indicate the number of UAVs, which can be unlimited. In fact, we found when there
was more than six UAVs, the center controller could not effectively handle it, due to the
dimension of joint observation being too high.

Figure 13. Comparison of the CTDE and independent architecture.
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In addition, we carried out a set of control experiments to verify whether adding the
RNN layer could solve the problem of multi-UAV learning difficulties with incomplete
information. According to the experimental results in Figure 14, we found that adding the
RNN layer to both the actor and critic networks significantly improved the performance
of the model. Adding the RNN layer to the critic network also achieved practically the
same effect, with the convergence speed being slower. The method of only adding the
RNN layer to the actor network did not significantly improve the model performance,
and it failed to solve the problem caused by partial observations of multi-UAVs. This
result also verified our analysis: in the CTDE architecture, the critic network is the central
controller, it coordinates all of the UAVs to complete common goals through the input of
joint observations. The addition of the RNN layer to the critic network is effective, and the
problem of incomplete information is solved through the hidden state.

Figure 14. After the addition of the LSTM layer, better performance in an average reward
was achieved.

In order to solve the decision-making problem with incomplete information, we chose
CTDE architecture and added RNN layer to utilize historical information. In model-free
reinforcement learning algorithms, reward represent an important evaluation criterion.
Similarly, value loss, policy loss, and action entropy are also key components to evaluating
algorithm performance. Value loss evaluates a value output of critic network and deter-
mines whether the prediction is accurate, and the action entropy reflects the randomness
of the actor network strategy output. Here, we hoped that the action entropy would be
larger enough to facilitate adequate exploration. The experimental results prove that our
algorithm significantly improved the performance. As shown in Figure 15, after about
300 episodes, the loss function begin to stabilize, and the rapid convergence of value loss
also showed that the value predicted by the critic network was more accurate. Similarly,
after adding an LSTM layer, the critic loss was decreased, and the policy entropy value
descended smoothly, which was a good performance and meant that the agents did not
fall into a local optimum. We did not want this value to descend too rapidly or too slowly.
Policy entropy is the variance of the output actions, and a smooth curve shows that multi-
UAVs have learned a stable policy after a sufficient exploration, because exploration is
indispensable in reinforcement learning.

Moreover, we found that adding a LSTM layer greatly improved the performance of
the algorithm. After adding an LSTM, the average reward is significantly increased, which
proved that the agent could make more correct decisions, and the policy entropy and critic
loss converge faster, which shows that our method for adding an LSTM to the network
effectively utilized historical information. The parameters of the model were continuously
updated during the training phase.
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Figure 15. Critic loss, policy loss, and entropy.

Reinforcement learning is much faster than traditional swarm intelligence algorithms
in the execution phase, and it is suitable for real-time decision-making tasks, as shown in
Figure 16. Once the training stage was completed, the weight parameters of the networks
were frozen during the execution phase. When we performed the navigation task with the
trained model, the total average reward of our method was higher and stable.

Figure 16. Our improved algorithm performs better in test.

In the simulation platform, multi-UAV realized path planning online by the pre-model
in the inference stage as shown in Figure 17. We found that our method performs well
under the constraints of security, time, and coverage. As shown in Table 2, compared
with the state-of-the-art particle swarms optimization algorithms, our method has a better
performance in many aspects especially the speed of reference. Reinforcement learning
shows the powerful ability in real-time path planning task.

Figure 17. Multi-UAV path planning in three-dimensional environment through reinforcement learn-
ing.
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Table 2. Performance comparison between our method and other state-of-the-art algorithms.

Time Cost Coverage Success Rate Reference Speed

Our method 92 57.9% 92.7% 0.126 s
RL baseline 93 54.5% 90.1% 0.115 s

DPSO 97 41.2% 65.2% 1.35 s
GAPSO 95 43.7% 62.1% 1.16 s

5. Conclusions

In this study, we proposed a multi-UAV autonomous path planning algorithm based
on model-free reinforcement learning, which is able to adapt to dynamic environments. It
was shown that the algorithm coordinates all of the UAVs through centralized training,
which effectively lessens the difficulty of training distributed systems. When the training
stage is completed, each UAV can make optimal decisions based on its own observations.
We also introduced an RNN to remember historical information and prevent the model
from falling into the local optimum due to incomplete information caused by partial obser-
vations. Finally, we designed a joint reward function to cooperatively guide the UAVs. Our
experiments performs well in this type of task. Considering its communication capabilities
in the real world, we plan to constrain the communication range and communication
frequency between UAVs in follow-up research. The authors of [30,31] have contributed
new ideas regarding the security of UAV communication. We believe this algorithm can be
deployed to real drone swarms.
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Abstract: A decentralized swarm of quadcopters designed for monitoring an open area and detecting
intruders is proposed. The system is designed to be scalable and robust. The most important aspect
of the system is the swarm intelligent decision-making process that was developed. The rest of the
algorithms essential for the system to be completed are also described. The designed algorithms were
developed using ROS and tested with SITL simulations in the GAZEBO environment. The proposed
approach was tested against two other similar surveilling swarms and one approach using static
cameras. The addition of the real-time decision-making capability offers the swarm a clear advantage
over similar systems, as depicted in the simulation results.

Keywords: real-time decision making; decentralized monitoring; swarm surveillance algorithm;
autonomous quadcopters; swarm intelligence

1. Introduction

The decision-making capability is an important attribute, essential for designing
autonomous and intelligent systems. Agent-based real-time decision-making based on the
data collected by the swarm is proven that can increase the efficiency of the solution and
remain robust to dynamic changes and uncertainties. The aim of this work is to examine
the efficiency of a decision-making algorithm for swarms compared with other methods,
where the decision-making is not existing, and evaluate the methods with a series of metrics
in six different scenarios ensuring that the swarm can operate autonomously and safely
regarding the inter-agent collisions.

We present a scalable and robust swarm, designed for surveilling a specific area and
tracking intruders. The concept is based on that when the swarm starts its operations,
it does not have any knowledge about whether intruders exist or not in the monitored
area. The intruders spawn at random places in the world during initialization and then
there is a fixed time window in which new intruders spawn in the world. The main
algorithm behind the swarm’s operation is a stochastic optimization-based decision-making
algorithm, responsible for selecting the next task of each agent from a large total of options.
The selection criteria are designed so that decision- making is optimized in a system level
rather than in an agent level, since we consider that global optimization provides better
results for our system. The algorithms needed to support the operation of the swarm are
described as implemented.

The key findings of our work are that a swarm with key components such as Task
allocation, Collision Avoidance, V2V communications, and V2G communications can
perform precisely and robustly a series of tasks in contrast to swarms with no cognitive
intelligence, as proven by our experiments. We can observe that when the swarm activates
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the decentralized decision-making, the effectiveness of the system is increased significantly,
as measured by a group of metrics.

Section 2 contains a brief state-of-the-art review focusing on decision-making and task
allocation algorithms. Section 3.1 introduces the UAVs and sensors used in the system. The
rest of Section 3 presents the developed algorithms and the proposed system architecture.
Section 3.7 depicts the tools used to implement and simulate the designed system. In
Sections 3.8 and 3.9, the behavior of the simulated intruders and the parameters of the
experiment scenarios are presented accordingly. In Section 4, the metrics used to assess the
algorithm and the experiment results are provided, where in Section 5 we present the key
findings of our work. Finally, in Section 6 we present the conclusions we made conducting
these series of experiments.

2. Related Work

The state-of-the-art presents a plethora of different approaches to the use of decision-
making in the task allocation problem. According to [1], the multi-robot task allocation
problem is an example of a Discrete Fair Division Problem, as an Optimal Assignment
Problem, an ALLIANCE Efficiency Problem or a Multiple Traveling Salesman Problem.
The methods to solve the multi-robot task allocation problem can be categorized to be
auction based, game theory based, optimization based, learning based and hybrid, as they
are listed below.

Auction based: In this type of approach, tasks are offered via auctions, the agents
can bid for tasks and the agent with the higher bid is assigned the corresponding task.
Each agent bids a value representing the gain of the utility function in case the agent gets
assigned that task. The utility function is designed based on the criteria of each problem and
takes as inputs the agent’s current state, the task’s description, and the local environment
perception of the agent [2]. The auctioneer might be a central agent, or as it is more
common, the auction could be held in a decentralized manner, such as in [3]. The authors
in [4] address the task allocation problem for multiple vehicles using the consensus-based
auction algorithm (CBAA) and the consensus-based bundle algorithm (CBBA), which is
a modification of the first one to be applied in multi-vehicle problems. The Contract Net
Protocol (CNP) presented in [5] was the first negotiation platform used in task allocation
problems and constitutes the base for numerous task allocation algorithms. CNP was tested
in [6] using a variety of simulation environments to solve the task allocation problem for
multiple robots. The authors concluded that because of the interdependency of the tasks
in a multi-robot task allocation problem, the original CNP approach does not solve the
problem sufficiently.

Game theory based: Game theory-based approaches describe the strategic interactions
between the players of a game. Each decision-making agent is considered a player and
the game strategy of a player consists of the tasks that the player chose. When the task
allocation solution proposed has been optimized globally, all the players will stop changing
their strategies, since the optimal outcome has been reached; that condition is called Nash
equilibrium. In [7], the authors present several applications of game-theoretic approaches
to UAV swarms. Authors in [8] proposed a decentralized game theory-based approach
for single-agent and multi-agent task assignment for detecting and neutralizing targets by
UAVs. In their scenario, UAVs might not be aware of the strategies of other UAVs and a
Nash Equilibrium is difficult to achieve. Instead, they used a correlated equilibrium.

Optimization based; Optimization algorithms focus on finding a solution from a set
of possible solutions, so that the solution’s cost is minimized, or the solution’s profit is
maximized depending on the specific problem’s criteria. Optimization techniques can be
distinguished into deterministic or stochastic methods. Deterministic methods always
produce the same results for equal inputs, while stochastic methods produce with high
probability similar results for equal inputs. Probably the most famous deterministic opti-
mization method used for task allocation is the Hungarian Algorithm (HA) [9]. The HA
attempts to solve the General Assignment Problem (GAP) in polynomial time by maxi-
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mizing the weights of a bipartite graph. In [10], the authors approach the task allocation
problem as a Vehicle Routing Problem (VRP) in order to solve a multi-agent collaborative
route planning problem. In this case, HA is employed after it has been modified to be able
to consider constrains, and a detour resolution stage has been added.

A subcategory of stochastic algorithms with great interest for us is the metaheuristics
methods which include evolutionary algorithms, bio-inspired algorithms, swarm intelli-
gence, etc. [11] presents the Modified Distributed Bees Algorithm (MDBA), a decentralized
swarm intelligence approach for dynamic task allocation, which shows great results when
compared with the state-of-the-art auction-based and swarm intelligence algorithms. In [12],
three different algorithms are presented inspired from Swarm-GAP, a swarm intelligence,
heuristic method for the GAP. Authors in [13] use a genetic algorithm (GA) optimization
for decentralized and dynamic task assignment between UAV agents. The task assignment
includes an order optimization stage, using GA optimization, for ordering the tasks from a
single-agent point of view and a communications and negotiation stage for reallocating
tasks between neighboring agents.

Learning based: A commonly used learning-based method is reinforcement learning,
a machine learning subcategory. Reinforcement learning algorithms adjust their parameters
based on the data gathered from their experiences, to achieve better behaviors. Q-learning
is a model free reinforcement learning method, which describes the environment as a
Markov Decision Process (MDP). In [14], a Q-learning implementation for the dynamic task
allocation is presented, while the adaptability of Q-learning to uncertainties is showcased
in [15], where it is used for multi-robot task allocation for the fire-disaster response.

Hybrid: Hybrid approaches combine some of the methods listed above to solve the
task allocation problem. In [16], the authors study the Service Agent Transport Problem
(SATP), a problem in the family of task-schedule planning problems, using a Mixed-integer
linear programming (MILP) of the optimization-based category and an auction-based
approach. [17] proposes an improved CNP technique for solving the problem of task allo-
cation for multi-agent systems (MAS), combining CNP with an ant colony algorithm using
the dynamic response threshold model and the pheromone model for the communication
between agents. [18] uses a CBBA-based approach, combined with the Ant Colony System
(ACS) algorithm and a greedy-based strategy to solve the problem of task allocation for
multiple robots’ unmanned search and rescue missions.

The multi-agent surveillance and multi-target monitoring and tracking problem has
been studied by several researchers, and a variety of decision-making techniques have been
proposed. A gradient model for optimizing target searching based on beliefs regarding the
target’s location is presented in [19,20]. They propose a decentralized architecture for the
implementation of their algorithm, in which it is assumed that the agents’ belief is globally
known across the system, and each agent optimizes its own actions based on the global
belief. Authors in [21] present a decentralized approach, in which UAV agents are organized
in local teams, in which the target estimations are communicated. A particle filter is used
to track the targets and the estimations are approximated as Gaussian Mixtures using
the expectation-maximization algorithm. The leaders of the local teams are responsible
for dynamically assigning regions to the team members. A system of UAVs and ground
sensors is studied in [22] for surveillance applications. Targets are detected from both
the ground and aerial sensors and UAVs are assigned targets based on a decision-making
methodology, so that a multi-attribute utility function is maximized. Partially Observable
Markov Decision Processes (POMDPs) have been proposed to model surveillance missions
to deal with uncertainties. A methodology to use POMDPs in a scalable and decentralized
system is presented in [23], based on a role-based auctioning method. In [24], an integrated
decentralized POMDP model is presented to model the multi-target finding problem in
GPS-denied environments with high uncertainty.
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3. Materials and Methods

3.1. Drone Characteristics
3.1.1. Drone Kinematic Model

The vehicle used in our tests is a simple quadcopter, shown in Figure 1, that can be
controlled by linear velocity commands in the x, y and z axis. The yaw of the vehicle
remains constant with small variations at its initial value, yaw = 0. For all the experiments
we assume a constant flight altitude is used.

Figure 1. The iris drone as it is visualized in the GAZEBO simulator.

3.1.2. Sensors

The camera of the agent is directed vertically downwards, as presented in Figure 2.
The camera’s field of view (FOV) for every given moment is a rectangle defined by its
height, width, and center. The center of the rectangle coincides with the position of the
drone, while the height and width are given by the Equations (1) and (2).

height f ov = 2× altitude× tan
(

f ov vertical angle
2

)
(1)

width f ov = 2× altitude× tan
(

f ov horizontal angle
2

)
(2)

Figure 2. The field of view of the iris drone with downwards oriented optical camera. The dimensions
of the field of view in this figure are measured for a flight altitude of 20 m.
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In our case, the flight altitude of the drones was predefined to 20 m for all the simulations
and the camera in use has fov vertical angle = 0.785 rad and fov horizontal angle = 1.047 rad.

3.2. System Overview

The system is described as a surveillance system with decentralized decision-making
capabilities and a central entity acting as a single point of truth. Each agent runs the same
code separately and can make its individual decisions. Before each decision is made the
agent asks from the central entity to provide him with information about the map/world.
That information is gathered in the central entity as each agent sends the data that he is
collecting. For every agent an identification number, unique in the swarm, is allocated.
Figure 3 shows the main data exchange between the agents and the central entity.

Figure 3. Central entity and agent data exchange.

The messages exchanged between each agent and the central entity are listed below:

• From an agent to the central entity:
• Scan data: The scan data message includes the identification number of the agent, the

number of intruders caught in the square, the number of the intruders detected but not
caught while scanning and the 2-D coordinates of the square scanned. The message is
sent from the agent to the central entity every time that the agent transitions from the
“Scan” mode to the “Go to” mode.

• Path data: The path data message includes the identification number of the agent
and a list of the intruders that were detected and not caught while moving from the
previous target to the next. The message is sent from the agent to the central entity
every time the agent transitions from the “Go to” mode to the “Scan” mode, since
that is when the agent has completed its path to the new target. Moreover, the path
data message will be sent if in the process of following an intruder, another intruder
gets detected.

• Next-square target: The next target message includes the identification number of the
agent and the 2-D coordinates of the next target that the agent selected. That message
is sent from the agent to the central entity every time the agent decides on a next target.

• From the central entity to an agent:
• World map: The world map message is a 2-D matrix with the information about the

world, as described in Section 3.3.
• The agents’ behavior consists of three different modes:
• Scan: “Scan” mode is activated when the agent is in the boundaries of its square-target.

The agent delineates a zig-zag coverage pattern to surveille the whole square-target
and check for intruders in that square. If an intruder is detected, then the agent
will transit to “Follow intruder” mode. The algorithm used is described in detail in
Section 3.4.

• Go to: In this mode, the agent has decided on the next square-target and it moves
towards the target in a straight line connecting its current position and the vertex of
the square-target that is closer to the current position.
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• Follow intruder: Independent of the previous mode, when an intruder is detected the
agent changes to “Follow intruder” mode. If the agent is already following an intruder,
it will keep following the previous intruder and when the intruder is caught the agent
will follow the new intruder if the new intruder is still in the agent’s detection range
(in the FOV of the agent), otherwise the agent will change to “Go to” mode and move
towards the next square-target. In the case that another agent is in a distance that
allows him to detect the intruder as well, the agent will drop the “Follow intruder”
mode with a probability of 0.1. That characteristic is added to avoid agent congestion
over a specific intruder or small group of intruders. The drop probability used may
seem too small, but we need to consider that the algorithm runs in a ROS node with a
frequency of 5 Hz, so for every second each agent in that situation has a probability of
0.5 to drop the mode.

The agents’ modes and the trigger mechanisms for transitioning between modes are
summed up in Figure 4.

Figure 4. Agents’ mode sequence and change triggers. The three modes of the agent “Scan”, “Go
to” and “Follow” are visualized as rectangles and the transitions between the modes are arrows,
explaining the type of the cause that triggered the transition.

3.3. World Representation

The world is treated as a 2-D grid of n×n size, which consists of equal sized squares.
A similar approach to discretize the area search problem has been introduced in [25,26].
Each square corresponds to one task and each task can be assigned to one agent at any
given moment. Each agent is responsible for one task and only when that task is completed
or dropped, is when the agent can select a different task. If an agent has selected a task, the
central entity flags the square corresponding to that task, so that no other agent is able to
select the same task. If two or more agents select the same task simultaneously then the
central entity is responsible to inform one of them through a message asking to change
their task and repeat the selection process.

The central entity initializes a 2-D matrix containing the grid’s information. The
matrix is updated by the central entity based on the data that are received from the agents.
When an agent needs to select its next task considering the world information, the agent
receives the grid matrix from the central entity. Each node of the matrix includes the
following information:

• Time of last visit: that contains the time stamp of the last time that the corresponding
node was scanned by an agent.

• Probability: that expresses the estimated probability of finding an uncaught intruder
in that node. The probability is calculated based on the number of intruders that were
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detected and not caught in that node and in its neighboring nodes. The probability
value pi is initialized at 0.1 for all the nodes (Equation (3)). When a square-target is
selected by an agent, its corresponding node’s probability takes a negative value so
that no other agent selects that square-target until the current agent has completed
its task (Equation (4)). The probability is repaired to its non-negative value when
scanning is completed. When scan or path data are received, the probability updates
as described at Equations (6)–(10).

Initialize all square probabilities to 0.1:

pi = 0.1 ∀ i ∈ Grid (3)

When a next target message is received for square i as the target assigned to an agent:

pi = pi − 100 (4)

When a scan message is received after scanning square i:

I f pi < 0 : pi = pi + 100 (5)

• If no intruders were detected in the square i after a full scan:

pi = 0.1 (6)

• If N intruders were detected and not caught in the square i:

Find the neighborhood ni o f i (7)

∀ square j ∈ ni : vj =
1

1 + e−(dmax−dj)
(8)

∀ square j ∈ ni : pj = pj + N ∗
vj

∑ vk
(9)

I f pi > 1 : pi = 1 ∀ i ∈ Grid (10)

The value vj is computed for every square separately and it is dependent on its distance
di from the center, since intruders tend to move towards the center and the probability of
their next move to be in a square closer to the center has a higher probability. Where dmax is
the maximum distance computed from the neighborhood to the target (in our experiments
the center of the map). Before it is added to the probability of the square, the value vj is
divided by the sum of all values vj calculated for the neighborhood so that ∑k ∈ ni

vj
∑ vk

= 1,
where ni is the neighborhood of square i. The size of the neighborhood depends on the
speed of the intruders and the size of the squares. In our implementation, the neighborhood
consisted of only the squares adjacent to the square i, creating a neighborhood of nine
squares (3 × 3 square neighborhood), containing the square i.

3.4. Coverage Algorithm

The objective of the coverage path planning algorithms is to compute a path that
crosses over all points of an area of interest while avoiding obstacles [27]. As mentioned
above, each square of the grid corresponds to an agent’s task. The task to be implemented
is for the agent to scan the whole area of the square using a coverage algorithm. Since the
main objective of the system is to detect intruders, the scanning is dropped if an intruder
is detected, in which case the agent starts following the intruder, activating the “Follow
intruder” mode. If no intruder is detected, the task is completed when the area of the
square has been scanned.
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The scan mode is activated only after the “Go to” mode and the event that triggers
that transition is the arrival of the agent at one of the corners of the square to be scanned.
Since the FOV of the agent is considered to be a rectangle, the agent does not actually have
to be on the edges of the square for them to be scanned. We assume a rectangle smaller
than the square and with the same center (the inner rectangle as presented in Figure 5). The
height and width of the rectangle depends on the height and the width of the field of view
accordingly and is given by Equations (11) and (12).

heightrectangle = edgesquare − 2× 2
6
× height f ov (11)

widthrectangle = edgesquare − 2× 2
6
× width f ov (12)

where the heightrectangle and the widthrectangle represent the height and the width accord-
ingly of the inner rectangle, the edgesquare is the length of the edge of each square-target
and the heightfov and widthfov are the height and width of the Field Of View of the agents.

Figure 5. Scanning movement: The agent starts at the up-left corner of the inner rectangle. Then,
the agent moves to the right along the x axis until it reaches the right edge of the inner rectangle.
After, it moves downwards along the y axis for a distance equal to two thirds of the height of the
FOV. The agent continues its movement, moving to the left along the x axis until it reaches the left
edge of the inner rectangle. Finally, the agent repeats its downwards movement until it reaches the
down side of the inner rectangle and it moves to the right until it reaches the down-right corner of
the inner rectangle.

The agent moves in the boundaries of the inner rectangle, drawing a zig-zag shaped
route. The scanning movement starts with a repeating shift on the x axis until the right-side
or left-side (depending on the starting corner) boundary is reached and continues with a
shift at the y axis for 2

3 × heightfov. The sequence of shifts is repeated with the direction of
the shift on the x axis to be inverted for each repetition until the upper-side or downer-side
(depending on the starting corner) is reached. When the movement is completed, the agent
has visited all the corners of the inner rectangle, and by doing so, it has scanned the whole
area of the square.

3.5. Swarm Intelligence—Decision Making

The most important part of the system is the agents’ ability of decision-making to select
their next square-target. That is handled by a stochastic algorithm, partially inspired from
the ant colony pheromone deposition [28] idea. The decision-making process is activated
when an agent has completed a task and it needs to choose the next square-target as its
task. To make its decision, it uses the world information provided by the central entity as
a 2-D matrix, containing the probability and time of the last visit of all the square-targets

254



Drones 2022, 6, 357

of the grid. The decision-making process is depicted in Figure 6. The agent first decides
if it will stay in its current neighborhood or travel to another neighborhood of the map.
That decision is not deterministic, and the agent chooses its current neighborhood with a
probability of 0.7, the center neighborhood with probability of 0.06 or a random square-
target with probability of 0.24. The ability to travel across the map instead of staying in
neighboring squares is added to force the agents to move around the map; this helps to
escape local minima by exploring areas of the map that have not been explored recently or
detect intruders during the flight and add more information to the world’s matrix. After
the agent decides the neighborhood of its next square-target, it needs to select the exact
square-target. It computes the margin of every square of the neighborhood based on the
Equation (13):

margini = probability7
i ×

(time now− time o f last visit)
600

3
(13)

 

Figure 6. Flowchart of the proposed decision-making algorithm for the selection of the next square-target.

The sum of all the margins of the neighborhood gives the marginsum:

marginsum = ∑
i ∈ neighborhood

margini (14)
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Each margin computed is divided by the marginsum to compute the probability of
selecting each square-target.

selection probi =
margini

marginsum
(15)

Finally, the next square-target is selected in a non-deterministic manner and each
square-target has a probability selection probi to be selected. After the agent selects its next
target, it informs the central entity by sending a “Next square-target” message containing
its identification number and its selected target.

For the random selection based on probabilities, a simple wheel selection algo-
rithm similar to the one proposed in [29] was developed. The algorithm is presented
in Algorithm 1.

Algorithm 1. Random selection wheel

1: Choose a random number p in the range [0, 1]
2: Create a list prob_list containing all the probabilities
3: Initialize i as 0
4: Set prob as prob= prob_list[i]
5: If prob <= p
6: The i element is selected, and the algorithm is terminated
7: Else
8: p = p-prob
9: i++
10: Repeat from step 4

The decision-making algorithm uses the idea of pheromones and evaporation intro-
duced in the ACS, which in our case is implemented by saving the time of the last visit of
each square. The agent’s decision is based on how recently the square that it is considering
on selecting was visited. In that way, a square that has been scanned recently and hence
has higher probability of not having intruders has a lower probability to be picked by the
agent. It is clear that in our case the existence of pheromones acts as a suspending factor on
visiting an area, which is in contrast to the way that the pheromones are used in the ant
colony as described in [28], where the existence of pheromones increases the probability of
an agent to visit the area.

The probability of finding intruders in a square can also be described as an attractive
pheromone, which does not obey the evaporation phenomenon. The intruder-related
pheromone only increases until the agent scans the corresponding square, and if no intrud-
ers are detected it is decreased to its initialization value of 0.1.

We should note here that in the scenario under study the behavior of one intruder is
independent on the behavior of the rest of them. Under that assumption, it is not valid to
use the information of an intruder that has been caught to predict the behavior of the rest of
them. So, the probability of finding an intruder in a square is computed using information
regarding only intruders that were detected, but they were not caught. It would be prudent
to say that if the behavior of each intruder influences the rest of the intruders, the data
concerning the intruders that have been caught would also be useful in determining the
probability of finding an intruder in a specific area.

3.6. Collision Avoidance

The most crucial block when dealing with swarms is to ensure that each agent can
perform autonomously with safety. Hence, a collision avoidance algorithm is needed to
ensure that the agents do not collide on each other. In the literature, a variety of methods
exists with many different characteristics and capabilities. A potential field method [30]
was selected both for guiding the agents to a point of interest and for preventing inter-agent
collisions. The implemented collision avoidance method is decentralized and it requires for
every agent to be aware of the position of the other agents in a distance shorter or equal
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to 7 m by utilizing V2V communication. The collision avoidance block is enabled only at
the “Go to” and “Intruder following” modes. In the “Scan” mode, no conflicts occur, since
only one agent could be in the “Scan” mode on a particular square-target at every moment.
If two or more agents either in the “Go to” or in the “Intruder following” mode detect a
collision in their path, they all act to ensure deconfliction. If one or more agents not in the
“Scan” mode detect a possible collision with an agent in the “Scan” mode, the agents that
are not in “Scan” mode deconflict while the scanning agent continues its route.

In the “Go to” and the “Intruder following” modes, the objective is similar; navigate
to a specific point of interest while avoiding collisions with other agents. The difference
between the modes is the type of the point of interest, which is a constant point in the case
of the “Go to” mode and a moving ground target in the case of the “Intruder following”
mode. Thus, the calculation of the movement commands is conducted in the same way in
both modes.

The computed desired velocity of each agent is the sum of attractive velocity and
repulsive velocity. The attractive velocity is caused by an attractive force acting on the
agent and causing it to move towards the point of interest. The repulsive velocity is caused
by a repulsive force acting between agents, which is responsible for not allowing agents to
come too close, preventing the possibility of a collision.

The attractive velocity is analyzed at v_attri,x and v_attri,y as shown in Equations (16)
and (17) and it is dependent on the distance from the target. The coordinates of the target are
given as a 2-D point (goali,x,goali,y ), as is the position of the agent i (positioni,x, positioni,y).

v_attri,x =

{
2× goali,x−positioni,x

|goali,x−positioni,x| , i f |goali,x − positioni,x| ≥ 2

goali,x − positioni,x, i f |goali,x − positioni,x| < 2
(16)

v_attri,y =

⎧⎨⎩2× goali,y−positioni,y

|goali,y−positioni,y| , i f
∣∣goali,y − positioni,y

∣∣ ≥ 2

goali,y − positioni,y, i f
∣∣goali,y − positioni,y

∣∣ < 2
(17)

The repulsive velocity is also analyzed at v_repi,x and v_repi,y and it is calculated from
Equations (18) and (19), where the position of another agent j in the detection distance of
7 m is defined as (positionj,x, positionj,y), and distancei,j is the Euclidean distance between
the two agents.

v_repi,x =

⎧⎪⎪⎨⎪⎪⎩
∑
j
−2× positionj,x−positioni,x

distancei,j
∀ j : 2 < distancei,j ≤ 7

∑
j
−2× positionj,x−positioni,x

|positionj,x−positioni,x| ∀ j : distancei,j ≤ 2
(18)

v_repi,y =

⎧⎪⎪⎨⎪⎪⎩
∑
j
−2× positionj,y−positioni,y

distancei,j
∀ j : 2 < distancei,j ≤ 7

∑
j
−2× positionj,y−positioni,y

|positionj,y−positioni,y| ∀ j : distancei,j ≤ 2
(19)

The overall desired velocity is expressed in the x, y axes as vi,x and vi,y for each agent
i, and it is computed from Equations (20) and (21).

vi,x = v_attri,x + v_repi,x (20)

vi,x = v_attri,y + v_repi,y (21)

The computed velocity here is the desired velocity of the agent and it is sent to the
autopilot, who is responsible for achieving it in a robust and efficient manner. That provides
us with the freedom of not having to ensure the continuity of the velocity functions. If
the velocities computed here were fed directly to the motors, the continuity of the velocity
functions should be ensured, either by computing the velocity indirectly via computing the
attraction or repulsion forces, or by adding a maximum velocity change step.
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One of the main problems caused by the potential fields family of algorithms is the
existence of local minimum that cause the agents to immobilize before they reach their
goal [31]. Local minima could be resolved with three approaches: Local Minimum Removal,
Local Minimum Avoidance and Local Minimum Escape (LME) [32]. Since the environment
that we are working in does not contain any static obstacles, the agents could fall into local
minimum caused only by the existence of other agents nearby. We choose to resolve local
minimum using a local minimum escape method. In the LME approaches, the agents reach
a local minimum and then an escape mechanism is triggered to resolve it.

The local minimum detection and resolution is implemented in a decentralized manner
by each agent separately. After the agent has computed its desired velocity, it checks if
he is trapped in a local minimum. If the agent’s desired velocity is equal to zero (using a
threshold near zero) and his attractive velocity does not equal to zero, then the agent is
considered trapped. At that point, the agent assumes that all the other agents from which
the agent is currently deconflicting are also trapped in the same local minimum. The agent
computes the average position of all agents trapped in the same local minimum.

positionlocalminimum
=

∑
n_trapped
i=0 positioni

n_trapped
(22)

where n_trapped is the number of the agents trapped in that local minimum and i belongs
in the set of agents trapped in that local minimum. Each agent i performs a circular motion
around the positionlocalminimum

in an anti-clockwise direction with a constant speed. The
agent recomputes its desired velocity in every time step and it continues with the circular
motion until it is no longer trapped, in which case it continues with its path.

3.7. Implementation—Simulation

To validate our algorithms and the effectiveness of our system, we performed a series
of experiments in simulated worlds. To make our swarm more realistic and applicable to
real world scenarios, we decided to use the famous robotics framework ROS [33]. Using the
ROS architecture capabilities, we can add to our system all the desirable aspects for every
block we described. The nodes were developed at C++ and python and the ROS version
used was ROS melodic. The simulations were conducted using the GAZEBO 7 physics
engine [34], where the PX4 autopilot [35,36] was used to control the drones and the selected
vehicle was the iris quadcopter, as provided by the PX4.

The central entity is managed by a python script that creates a ROS node is named
the central_node, while a ROS node named drone_node was developed in C++ to control
the agents. For each agent, an instance of the drone_node runs, given different values
for each node. The essential data for each drone_node instance initialization are: the
identification number, and the x and y cartesian coordinates of the corresponding agent’s
spawn position. The drone_node instances also send control commands with the desired
velocity in the x, y and z axis to the PX4 autopilot. The intruders are managed by a python
script, which creates a ROS node named intruders_node. The intruders_node is responsible
for spawning them and moving them, as described in Section 3.8, and keeping logs of the
metrics presented under Section 4.2. All of the components described communicate with
each other by exchanging messages (publish or subscribe) to specific ROS topics. For the
communication of the node developed by our team, special message types were developed
to include the exact types of variables needed.

Figure 7 presents the overall system architecture of the implementation of a swarm
containing two agents only for demonstration purposes. The figure has been produced
from the rqt_graph ROS tool. The nodes are represented by eclipses, while the arrows
connecting them represent the topics which they use to exchange messages. The gazebo and
gazebo_gui nodes are related to the simulation and the simulation’s graphical user interface.
The uav0/mavros and uav1/mavros nodes’ purpose is to transfer information between
the ROS environment and the autopilot [37]. The MAVROS package [38] enables the data
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exchange between ROS nodes and autopilots equipped with the MAVLink communication
protocol [39]. The nodes central_node, drone_node0 and drone_node1 were implemented
by our team.

Figure 7. The rqt graph with the ROS nodes. The rqt graph includes two agents and the central entity
for simplicity. The ROS nodes are represented by ellipses while the ROS topics used for message
exchange between the nodes are the arrows connecting them. The/uav0/mavros and/uav1/mavros
nodes are created from the mavros ROS package to enable the communication of the ROS nodes with
the drones’ firmware.

3.8. Intruders’ Behavior

In this section, we will present the intruders’ behavior. An intruder in our simulations
can be ground moving objects (either people or robots with constant speed and smaller
in amplitude to the drone’s speed). An intruder’s goal is to reach the center of the world
and stay there for 10 s. The attributes defining the behavior of the simulated intruders are
summarized here:

• Spawn positions: It is assumed that the world was not being surveilled before the
simulation starts, so at the beginning of the simulation, five intruders are spawned at
random positions through the world. After that, the intruders are spawned only at the
edges of the world, randomly distributed along the four edges of the boundaries of
the world.

• Spawn time: Spawn time is defined as the time interval between the spawn of two con-
sequential spawning groups of intruders after the simulation starts. In our simulation,
that value was constant and equal to 10 s and the size of the spawning group was set
to two intruders, so every 10 s, two more intruders were spawned in the simulation.

• Movement type: The intruders’ goal is to reach the target, so each intruder’s average
movement is on a straight line starting from its spawn position and ending at the
target. To recreate a more realistic movement pattern, a stochastic element is added to
the constant velocity movement. For every four steps that the intruders make, three of
them are the right direction and one of them is in a random direction. After reaching
the target, the intruders stay over it for 10 s before they complete their mission. If an
intruder completes its mission, it is removed from the simulation.

• The intruders are simulated as non-dimensional points with holonomic movement.
Since the intruders are assumed to be non-dimensional, inter-intruder collision is
not considered.

• An intruder is considered caught after it has been tracked by an agent for a predefined
tracking time. When an intruder is caught, it is removed from the simulation and the
metrics related to the caught intruder are saved.

• An intruder is considered alive from its spawn time until it is caught, or it reaches
the target.

• An intruder is detected from an agent, if the intruder is in the FOV of the agent’s camera.
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3.9. Scenario

Six scenarios were designed to test the performance of the algorithm. Each scenario
has a different world size and swarm size to evaluate the scalability of the algorithm. The
parameters to describe each scenario are listed below:

• World size: the size of the simulated world.
• Grid size: the size of the grid applied in the world.
• Square size: the size of the individual square of the grid depends on the size of the

world and the size of the grid and is calculated based on the Equation (23).

square size =
world size
grid size

(23)

• Swarm size: the number of the agents of the swarm.
• Environment type: an empty environment was selected with no static obstacles that

would cause collision risks and visibility constraints.
• Simulation duration: the duration of the simulation remained constant for all three

scenarios at 33 min in real time simulation.
• Intruders spawned: the total amount of intruders spawned during the simulation;

that value is constant at 401 intruders for all the scenarios and experiments that
were conducted.

• Intruders’ average speed: That is computed by dividing the average time that the
intruders need to reach the target by the average distance between their spawn position
and the target.

• Target: The target is defined as the center of the world.
• Intruder tracking time: That is defined as the duration of time that an agent needs

to track an intruder for the intruder to be considered caught. That was set to 10 s for
all scenarios.

• Density of agents: That is defined as the number of agents of the swarm divided by
the world area.

Table 1 summarizes the different parameters used between the different scenarios.
Two sets of scenarios were designed, such that the density of the agents is maintained
constant for all scenarios of the set. The size of the surveilled area, the swarm size and the
speed of the intruders was changed in every scenario. The speed of the intruders changed
proportionally to the area size to maintain the time of the intruders’ life constant and test
the algorithms in increasingly difficult scenarios.

Table 1. Scenarios’ parameters.

Set 1 Scenario 1 Scenario 2 Scenario 3

World size 100 m × 100 m 140 m × 140 m 200 m × 200 m
Grid size 10 × 10 14 × 14 20 × 20

Swarm size 4 8 16
Intruders’ speed 0.28 m.s−1 0.39 m.s−1 0.56 m.s−1

Set 2 Scenario 1 Scenario 2 Scenario 3

World size 150 m × 150 m 210 m × 210 m 300 m × 300 m
Grid size 15 × 15 21 × 21 30 × 30

Swarm size 4 8 16
Intruders’ speed 0.42 m.s−1 0.59 m.s−1 0.84 m.s−1

In each scenario of the same set, the world size, number of agents and speed of the
intruders is increased proportionally, aiming to examine the scalability of our system.

4. Results

In this section, the results from all the experiments conducted are presented.
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4.1. Collision Avoidance

A separate scenario was designed for testing the collision avoidance algorithm devel-
oped. The scenario is simplified to focus on the collision avoidance. Each agent was given
a specific destination point, so that several conflicts would occur in different or in the same
position for multiple agents.

Figures 8 and 9 show the results of a collision avoidance simulation test using four
agents. The agents are spawned simultaneously at the vertices of a rhombus and are
assigned to go to the opposite vertex. All four of the agents detect the collision and
deconflict. Figure 8 presents the trajectories of the four agents, while they conduct their
individual mission and avoid collision with the other three agents. The trajectory of each
agent is slightly altered to ensure a collision-free path, but the added cost of the path is not
significant, considering that the agents replanned in real-time.

Figure 8. The agents’ paths during the collision avoidance experiment. For this experiment, four
agents were used and spawned simultaneously at the vertices of a rhombus. The agents were tasked
to travel to the opposite vertex while using collision avoidance to ensure a safe flight. As expected,
their paths intersected at the center and they adjusted their velocities to avoid collision.
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Figure 9. Minimum inter-agent distance in every moment where the red horizontal line is the 2 m
distance boundary, the minimum allowed inter-agent distance. The graph is based on the same
experiment that is presented in Figure 8.

Figure 9 is a diagram of the minimum inter-agent distance for every time step. The
minimum measured inter-agent distance decreases significantly around the time value of
20 s, since the agents were in the center area deconflicting at that time, but it remains higher
than the minimum allowed inter-agent distance, which for safety precautions was set to
2 m in our experiments.

4.2. Metrics

We propose a set of metrics that can be used to quantify the efficiency of our proposed
algorithm regarding the detection of intruders and the area coverage to assess the decision-
making process.

• Intruder-related metrics:
• Number of intruders caught: The sum of the intruders that the agents caught during

the simulation run.
• Number of intruders reached the target: The sum of the intruders that reached the

target during the simulation run.
• Average time of intruder’s life: The average alive time of all the intruders during the

simulation independently if the intruder was alive or not at the end of the simulation,
measured in seconds.

• Average time of intruder’s life for caught intruders: The average alive time of the
intruders which were caught during the experiment, measured in seconds.

• Average time of intruder’s life for reached intruders: The average alive time of the
intruders that successfully reached the target, measured in seconds.

• Decision metric: The decision metric is the average time interval between two succes-
sive decisions of one agent. It is measured in seconds.

• Coverage metric: The coverage metric is defined as the percentage of the world that
has been covered by the swarm. That metric is initialized every tcoverage seconds,
where tcoverage was set to tcoverage = 180 s for our simulations. That metric is an
indication of how effectively the area of interest is covered, but it is of less importance
than the intruder’s metrics in our case. We can easily understand that this metric
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ensures us about the correct functionality of the decision-making process. Figure 10
shows an example of the coverage metric.

Figure 10. Coverage example with 10 agents, 78.02% coverage. The grey area depicts the coverage
that the agents succeeded as a group in 180 s.

4.3. Competing Algorithms

Three competing surveillance methods were developed and implemented to compare
their results with our method.

• Map division: The area of interest is divided into n rectangles, where n is the number
of the agents of the swarm. Each agent undertakes the surveillance of one of the
rectangles. The first action of each agent is to compute their rectangle and to move to it.
After that, each agent changes to mode “Scan” and starts scanning the rectangle using
zig-zag-like coverage. If the agent detects an intruder, it changes to “follow intruder”
mode. When the intruder is caught, the agent carries on with scanning if the agent is
in the boundaries of its rectangle. Otherwise, the agent changes to the “Go to” mode
until it is in the boundaries of its rectangle and then changes to “scan” mode. Collision
detection and avoidance is only activated if the agent is out of the boundaries of its
rectangle since the rectangles do not overlap and there is no risk of collision when all
the agents are the boundaries of their own rectangle. Algorithm 2 is used to divide the
map into squares by setting the number of columns, nc, and rows, nr.

Algorithm 2. Map division

1: Set n the number of drones in the swarm
2: If the square root of n is an integer
3: root = nc = nr =

√
n

4: Else
5: nc = round (

√
n)

6: nr = 1
7: While nc > 0 and n% round(root) ! = 0
8: nc = round (root)
9: nr = n

nc
10: root = root -−1

After the number of rows and columns is computed, each drone calculates the vertices
of its square based on its ID, the world size, the coordinates of the center of the world and
the computed number of rows and columns.
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• Random decision: In this scenario, the agent’s modes are the same as in our proposed
algorithm, but the swarm intelligence has been removed. The agents do not make
decisions based on the world information and the central entity does not exist. The
agents select the next square-target at random each time.

• Static cameras: In this scenario, the agents take off and hover statically over a specific
predefined position, different for each agent acting as static cameras. They are not
allowed to follow intruders. Figure 11 presents the configuration of the static cameras
for each scenario.

 

(a) 

 

(b) 

 

(c) 

Figure 11. Positioning of the static cameras for scenarios 1, 2 and 3 accordingly at (a–c). The gray
rectangles represent the field of view of the agents.

4.4. Experiment Results

This section includes the experimental results of the simulations conducted to assess
the efficiency of our proposed algorithm and to compare the results with the competing
algorithms. Each experiment was run five times and the results were averaged to be
presented here. The number of intruders reached the target and the number of intruder-
caught metrics are the most indicative of all the metrics used to assess the algorithms, since
preventing the intruders from reaching the target is the main objective of the system.

In Figure 12, the results are presented for our first group of tests, where we maintain
a UAV density of 25 square-targets per UAV. To keep the density constant, the area is
increased linearly with the number of UAV agents. On the first graph of Figure 12, the
results for 4 UAVs indicate that our decision-making algorithm outperforms all other
algorithms, by letting just 10 intruders to reach their target. The random decision algorithm
and map division algorithm perform closely to each other with 35 and 40 intruders reaching
the target, respectively, and lastly, the static camera approach failed to catch most of the
intruders, as 328 reached their target. We can observe that the proposed algorithm performs
almost 350% better for the number of intruders reaching the target metric than the second
best, which is the random decision.
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(a) (b) 

 
(c) 

Figure 12. Intruder metrics for the first set of experiments. The three scenarios of set 1 correspond to
(a–c) accordingly. (a) Scenario 1 of Set 1. A total of 4 UAVs for a world of 100 m × 100 m. (b) Scenario
2 of Set 1. A total of 8 UAVs for a world of 140 m × 140 m. (c) Scenario 3 of Set 1. A total of 16 UAVs
for a world of 200 m × 200 m.

Our decision-making algorithm was able to catch 364 intruders, 22 more than the
random decision algorithm and 26 more than the map division approach, by allocating
resources in intruders’ clusters, mostly close to the map center, where intruders converge.
This in return increased the average alive time of caught intruders to 124 s, 22 more versus
both the random decision and map division approaches. In this scenario, the system is
stressed due to the low number of UAVs in comparison to the number of intruders, which
results to most of the time being spent following intruders instead of actively searching.
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When 8 and 16 UAVs are used as shown in the second and third graphs of Figure 12, we
see that the decision-making algorithm performs similarly to the random decision one,
with the map division approach performing a bit worse. The similar performance of the
first two algorithms is explained by the low density of 25 square-targets per UAV, which in
return minimizes the benefits of decision-making since a random approach still has a high
chance of finding intruders. In all tests, static cameras proved inefficient and map division
fell behind likely due to the inability of the system to migrate resources to hotspots.

In Figure 13, results are presented for the second experimental set, while we maintain
a UAV density of 56 square-targets per UAV, more than twice higher than in set 1. In
the first graph of Figure 13, the results for scenario 1 of set 2 are presented for four
UAVs. The decision-making algorithm outperforms the three competing algorithms, but
the performance is still rather poor, letting 33 intruders reach their target. The random
decision algorithm and map division algorithm perform closely with 90 and 84 intruders
reaching the target, respectively, and lastly, the static camera approach failed to catch most
of the intruders, as 319 reached their target. The decision-making algorithm was able
to catch 337 intruders, 48 more than the random decision and map division algorithm,
which performed equally in this metric, while static cameras caught only 36 intruders. The
problem described in the previous set of scenarios when four UAV agents are involved, is
furtherly amplified by the increase in map size to achieve 56 square-targets per UAV. The
average alive time of the caught intruders is 155 s, 42 more versus the random decision
and 23 more versus the map division approach. These critical metrics show the worst
performance than the first group of tests, attributed to the increased map size while still
using four UAV agents.

When 8 and 16 UAV agents are used, as shown in the second and third graphs of
Figure 13, the benefits of decision making are clearer when compared to other approaches
as the higher amount of squares per UAV agent allows for a significant chance of a random
decision being wrong. When 8 UAVs are involved, 20 intruders reached their target using
the decision-making algorithm, 46 for random decision, and 43 for map division, which
performed once again roughly equally. Static cameras once more proved to be significantly
worst in these tests, as 302 intruders reached their targets. The decision-making system
caught 355 intruders, 26 more when compared to random decision and 28 more when
compared to map division. The trend continues for 16 UAVs with decision making having
a large lead, catching 350 intruders, and missing just 24 intruders. In this case, the random
decision proved better than map division, as 40 intruders reached their goal and 337 were
caught, while the results were 58 and 321, respectively, for map division. Map division
underperforms, likely due to the inability of the system to migrate resources to hotspots.

In all of the experiments presented above, the intruder speed was increased propor-
tionally to the world’s dimensions in an attempt to keep the difficulty equal in that regard.
In Figure 15, the performance results of an extra scenario are presented for the case when
16 UAVs are deployed and 56 square-targets are assigned to each UAV, such as in the case
of the scenario 3 of set 2. In this experiment, the speed of intruders was not adjusted to the
world’s dimensions, and it had the value of 0.28 m.s−1. Intruders were not able to reach
their target for the decision-making, random decision and map division approaches, and
the average duration of their life is comparable for the three approaches. The excellent
performance of the three approaches was probably caused by the long life-time required
for an intruder to reach the target in this scenario. It seems that the increase in the world
size would create a severe advantage for all approaches, and the results would not give a
clear comparison between the approaches. Based on those results, an adjustable intruders’
speed has been selected for all the experiments presented above.
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(a) (b) 

 
(c) 

Figure 13. Intruder metrics for the second set of experiments. The three scenarios of set 2 correspond
to (a–c), accordingly. (a) Scenario 1 of Set 2. A total of 4 UAVs for a world of 150 m × 150 m.
(b) Scenario 2 of Set 2. A total of 8 UAVs for a world of 210 m × 210 m. (c) Scenario 3 of Set 2. A total
of 16 UAVs for a world of 300 m × 300 m.

Figure 14 focuses on the number of intruders that reached the target for the different
scenarios of each set. Plot (a) shows that the number of intruders to reach the target is
relatively stable across the scenarios of set 1 and maintained in low values for the decision-
making approach. That indicates that the system’s performance fits the specific density
used in set 1 of one UAV agent per 25 square-targets. The random decision and map
division approaches demonstrate similar results to the decision-making approach as the
size of the swarm increases, indicating that the number of UAVs is enough for monitoring
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the given area, even for systems with no decision-making capabilities. Plot (b) presents the
same metric for the second experimental set. In this case, the density of UAVs per square-
target is lower and the advantage of using agents capable of decision-making is clearer, as
the proposed decision-making approach outperforms the three competing approaches.

 

(a) 

(b) 

Figure 14. The intruders reached target metric depending on the number of UAVs for the four
approaches. Graphs (a,b) correspond to the experimental sets 1 and 2 accordingly. (a) Number of
intruders to reach target for scenarios of set 1. (b) Number of intruders to reach target for scenarios of
set 2.
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Figure 15. Intruders’ metrics for a scenario of 16 UAVs in a 300 m × 300 m world, with the intruder
speed at 0.28 m.s−1.

Table 2 sums up the decision-making metric average results for the six scenarios. The
time interval between two subsequent square-target selection is shorter for the decision-
making algorithm than for the random decision that is explained because the random
decision allows the agents to travel across the map in each decision, while the decision-
making algorithm urges agents to stay in their neighborhoods with a large probability. By
maintaining the decision-making metric small, the system will have a quicker reaction to
new intruder data.

Table 2. The average of the decision metric in seconds for all the experiments and scenarios for the
decision making and the random decision algorithms.

Set 1 Scenario 1 Scenario 2 Scenario 3

Decision making 40.9 s 33.8 s 38.7 s
Random decision 71.2 s 63.4 s 66.7 s

Set2 Scenario 1 Scenario 2 Scenario 3

Decision making 46.7 s 44.4 s 53.8 s
Random decision 75.4 s 75.8 s 93.6 s

Table 3 presents the average of the coverage metric for each scenario and implementa-
tion. It is noticeable that the random decision implementation offers a larger area coverage
for each scenario. Before extracting any conclusions concerning the efficiency of the algo-
rithms based on that metric, it should be noted that larger area coverage does not result
to more efficient area coverage. The reason behind the lower area coverage provided by
the decision-making algorithm is that agents tend to cluster over areas with high intruder
density, which enables the detection of a larger amount of intruders.
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Table 3. The average of the coverage metric for all the experiments and scenarios for the four
competing algorithms.

Set 1 Decision Making Random Decision Map Division Static Cameras

Scenario 1 68.41% 83.14% 73.89% 15.29%
Scenario 2 76.02% 87.2% 80.1% 15.59%
Scenario 3 82.64% 89.82% 87.23% 15.28%

Set 2 Decision making Random decision Map division Static Cameras

Scenario 1 42.7% 62.32% 38.78% 6.8%
Scenario 2 53.87% 68.95% 40.79% 6.9%
Scenario 3 59.34% 67.41% 53.1% 6.8%

We can see in Figure 16 that the swarm manages to cover a big size of the area to be
surveilled and is not biased in the selection of the next grid by selecting only certain areas
of the world, resulting in the even distribution of the selection across the map based on
the collected information. It is clear that of the two sequential coverage measurements
in Figure 16a,b, that the swarm covers all the map and does not show preference to
specific areas.

 

(a) 

 

(b) 

Figure 16. The coverage metric results for the decision-making algorithm in scenario 1 of set 1.
(a,b) are two sequential measurements of the coverage figure.

Even though mostly two of the proposed metrics (the Number of intruders caught,
and the Number of intruders reached the target) are used for the efficiency assessment of
the algorithms, the rest of the metrics are of importance as well. All the proposed metrics
are good indicators of how well tuned the decision-making algorithm is. It is a subject of
further research to determine the exact equations to compute all the algorithm’s parameters
based on those metrics.

5. Discussion

Decision making is a crucial ability for autonomous systems and especially UAV
swarms. It is an open-research area with most researchers in the field focusing on devel-
oping the theoretical background of the decision-making algorithms, while we propose
a new optimization based, stochastic algorithm for real time decision making, and we
describe the whole system implementation after testing it in SITL simulations. The literate
review presented in Section 2 shows that there are multiple methods to approach the task
allocation problem, offering a variety of solutions that provide different architectures and
benefits. The proposed UAV swarm shows great scalability results, is considerate regarding
the communication bandwidth, and reacts quickly to dynamic changes and uncertainties.
Our system’s nature is adaptable to information gathered from the environment and it
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dynamically reacts, facilitating global optimization. The decision-making algorithm has
been designed to be decentralized and scalable ensuring fault tolerance through the opera-
tion of the system if UAV agents of the system suffer failures. Moreover, it is designed as
a surveillance system for defense purposes of a friendly area, but it can be adapted to be
used in multiple fields such as research missions in the research and rescue field, wildlife
tracking missions, and wildfire monitoring missions. The algorithm can easily be modified
to be optimized depending on the specific behavior of each intruder, or any other type of
agent/object that the system is interested in observing and monitoring.

6. Conclusions

We present a system consisting of multiple UAV agents, designed for area surveillance
and intruder monitoring. In addition to the state-of-the-art decentralized decision-making
algorithm that is proposed, the supportive algorithms were also designed and implemented.
The system was originally fine-tuned for a scenario with a swarm of four agents and a world
size of 100 m × 100 m (scenario 1 of set 1). The results for this scenario are 363.6 intruders
caught over the 401 intruders introduced in the world for our decision-making algorithm
and 342.2, 337.6 and 24.4 accordingly for the random decision, map division and static
cameras implementations. The average value of the intruders reaching the target for this
scenario is 9.8 for our decision-making algorithm and 35.4, 39.4 and 328 accordingly for
the random decision, map division and static cameras implementations. Overall, the
system was tested in two experimental sets, maintaining a constant density of UAV agents
per monitored area across the set. Each set included three scenarios, varying in the size
of the swarm, the size of the world, and the intruders’ speed. In all six scenarios, the
proposed algorithm demonstrates superior results to the three competing systems. The
proposed approach demonstrated comparable results across the three experiments of each
set indicating that the UAV density is a stronger factor in the system’s performance than
the size of the monitoring area. That shows the scalability characteristic of the system. One
exception to the stable performance of the system was identified for the first scenario of
the second set, in which the system seems to have reached its limits, as the number of the
intruders and their relatively high speed caused agents to chase intruders for most of their
operational time, and the decision-making algorithm demonstrated a lower performance.
As a result, we conclude that the existence of cognitive intelligence in a swarm is crucial
and produces much higher situational awareness as opposed to the cases where the swarm
is selfish and each agent act on his own without utilizing any shared information. The
overall system was tested in real time simulations and demonstrated an improvement up to
350% when compared with similar systems that lacked the decision-making ability. Though
the proposed decision-making algorithm was designed to be decentralized, the presented
communication scheme of this work requires communication with a central agent, as the
necessary processing power of the described central agent is very low, and that processing
load may be allocated to the agents. Future work shall include the implementation of a
decentralized communication layer for the world map data.

The key contribution of the present paper is the description of a decentralized decision-
making algorithm designed for area monitoring and intruder tracking by a swarm of UAVs.
The overall system was implemented to support the testing of the algorithm, including
collision avoidance and area coverage algorithms. The system was developed in ROS and
simulated in GAZEBO with swarms of up to 16 quadcopters. Experiments of this study
included intruders incapable of planning to avoid UAV agents. Future research shall focus
on adding strategy to the intruders’ behavior and more elaborate models of estimating
the intruders’ near-future locations. It is of interest to investigate how the system will
perform when faced with smarter intruders upgraded with self and group strategies to
achieve their goal of reaching the target. We believe that the system’s performance can be
enhanced by the addition of alternative stochastic models describing the probability of an
intruder’s presence, especially in the case of intruders capable of strategic planning and
collaboration. Finally, future research will also include the development of object detection,
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target tracking and localization techniques for detecting and following the intruders. This
will allow us to study the uncertainties added during intruder detection and localization
and may demonstrate some of the limitations of the system.
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Abstract: UAVs have rapidly become prevalent in applications related to surveillance, military
operations, and disaster relief. Their low cost, operational flexibility, and unmanned capabilities
make them ideal for accomplishing tasks in areas deemed dangerous for humans to enter. They can
also accomplish previous high-cost and labor-intensive tasks, such as land surveying, in a faster
and cheaper manner. Researchers studying UAV applications have realized that a swarm of UAVs
working collaboratively on tasks can achieve better results. The dynamic work environment of UAVs
makes controlling the vehicles a challenge. This is magnified by using multiple agents in a swarm.
Resiliency is a broad concept that effectively defines how well a system handles disruptions in its
normal functioning. The task of building resilient swarms has been attempted by researchers for the
past decade. However, research on current trends shows gaps in swarm designs that make evaluating
the resiliency of such swarms less than ideal. The authors believe that a complete well-defined
system built from the ground up is the solution. This survey evaluates existing literature on resilient
multi-UAV systems and lays down the groundwork for how best to develop a truly resilient system.

Keywords: UAV; swarm; resiliency; multi agent system

1. Introduction

Deploying multiple agents as part of a larger swarm has its advantages. Cooperative
actions by several robots are a wide application domain [1]. Several possible advantages
can be visualized particularly in the case of unmanned aerial vehicles (UAVs). A swarm of
UAVs can search an area quicker than a single UAV making multiple passes over the same
area. Higher-level approaches, such as search grid decomposition for individual agents,
are more easily accomplished when multiple agents exist. Smaller size UAVs carry limited
equipment to reduce equipment power consumption and reduce overall aircraft weight.
It is possible to equip different agents in a swarm with different sensors. The result will
be richer data streams that will be generated once the different sensor data is combined.
Similar experiments can be envisioned where a swarm of UAV agents work at different
altitudes in order to survey ground subjects, thereby providing multiple perspectives on the
target. Such improvements in results by swarm agents are particularly useful considering
the highly dynamic environments in which UAVs operate. Situations on the battlefield may
already have changed by the time a single UAV makes a pass over the area and then moves
on to cover other areas, and then returns. Similar effects are noticed while measuring
large-scale phenomena such as red tide growth [2] or fish shoals [3]. Sensitive incidents
such as a search-and-rescue (SAR) mission may require multiple agents to be deployed. An
area may be too large for a single UAV to cover, and more agents improve the probability
that a victim can be found quickly.

A multi-vehicle system can be described as effective, efficient, flexible, and exhibit
higher tolerance to faults than a single agent [4]. This makes it more viable to have a swarm
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of UAVs attempt a particular task. However, the challenging environment they work in
makes creating resilient UAV swarms a challenge. Successful UAV swarm implementa-
tions have demonstrated exceptional ability in performing tasks in various fields such as
agriculture [5], natural resource surveying of water, soil, wildlife [6], search-and-rescue
operations [7,8], and the military [9].

Unanticipated events such as inclement weather, intrusion from enemy agents, col-
lision with foreign bodies or other swarm agents, loss of communication, or bugs in
controlling schemes and software are just some of the events that may impede swarm
function. Oftentimes, current multi-agent systems are interdependent to a high degree,
making the loss of even a single agent disastrous for the swarm as a whole and its mission
progress. However, failures can come in many different forms, both internal and external.
Communication, Navigation, and Surveillance (CNS) failures [10] are categorized as in-
ternal failures, while weather and obstacles are external events. This study is part of an
ongoing effort to improve resiliency in UAV swarms. To implement resiliency in swarms,
we first need to conceptualize it into behavior responses that can then be implemented.
Most modern systems exist and work in dynamic environments that are unpredictable in
terms of their properties, composition, or behavior. Moreover, they have dependencies
on input streams, power sources, and networks. Woods D.D in [11] perfectly condenses
resilient behavior into four concepts.

1. Resilience as a rebound
2. Resilience as robustness
3. Resilience as graceful extensibility
4. Resilience as sustained adaptability

An UAV swarm is a perfect example of a cyber-physical system that works in areas
that require it to exhibit resilient behavior. Networked, interdependent, and with limited
capacity, UAV swarms are extremely susceptible to cascading system failures. It would
be futile if an UAV swarm were to be brought down by the first disruption it faces. The
remainder of the paper is arranged in the following manner. Subsections to this section
discuss challenges faced while building resilient swarms and current research trends,
Section 2 discusses every identified UAV swarm component as well as the various modules
within them, Section 3 opens up directions for future research, while Section 4 presents
conclusions based on the study and discussed statements. We define acronyms as they
appear as well as provide a table of acronyms at the end of this article since some acronyms
are repeated much later than their initial appearances.

1.1. Challenges to Building Resilient Swarms

UAV swarms have many challenges, such as the fact that the environment in which
they operate is dynamic and unpredictable. During mission progress, external forces and
internal incidents might affect critical hardware or software components of the swarm,
leading to a reduction in performance, and perhaps an inability to perform a particular
task such as record, fly, or navigate. Most application-specific swarm deployments require
that the swarm be modified accordingly, and in situ adaptations are not uncommon [12].
Deploying and controlling even single UAV agent in the field has proven to be a challenge,
and system complexity increases as the number of agents in the swarm increase. Mission
needs might require specific sensors within the swarm but deploying such requirements to
all agents in the swarm increases costs substantially. Madani in [13] describes resiliency
engineering as the process of making a system capable enough to withstand disruptions.
“Failure, in this context, is simply the absence of this ability, when needed” [13].

A halt in system function or a reduction in performance followed by the inability of the
system to bounce back to the desired state is an indication of a non-resilient system [14–16].
Additionally, system intelligence must be capable of monitoring risk profiles for various
components to actively avoid potential disruptions before they occur. In current UAV
resiliency research, the authors have noted a stark lack of consideration of all UAV system
components. Many publications mention this as beyond the scope of research, choosing
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instead to focus on one component. UAV swarms, on the other hand, require a ground-up
integration of resilient behavior in all components to build a truly resilient system. The
components here are defined as the many different areas of UAV operations. The authors
here present a graphical visualization of these components in Section 1.3. Resilience is
a multifaceted capability [15] and therefore cannot be summarized by modifying some
aspects of system engineering while omitting the rest. We have observed that there are
three major omissions in many existing resilience integration methodologies:

1. All UAV components are not considered for resiliency incorporation
2. All disruptions in their operational space are not considered.
3. Resiliency concepts developed for individual agents are attempted to be scaled and

applied to a swarm.

Existing research does not address comprehensive resiliency requirements, instead
choosing to focus on a few modules. Simulations of such results might not fully consider the
dynamics of additional disruptions affecting system states. Article [16] discusses resiliency
situations wherein they highlight how hard-coded action-policy lists are often unsuitable
for environments they are not designed for. MANET (Mobile Ad-Hoc Network) topologies
in a survey conducted by them such as distributed optimization and relay chaining address
network problems in a specific context only. Labeled as the ‘no-free lunch dilemma’ [17],
this is described as how a method will often address a problem well but may fail in previously
unencountered scenarios. Article [18] reviews the research by Macek et al. in [19] where
solutions for robot navigation consider only single agents and their safety, but fail to
address collision-free navigation for robot swarms. This is our main argument in resilient
system design. Methods for individual agents may not scale well for multiagent systems
(MAS). Critical flaws in system design are not addressed in simulation scenarios that
measure system behavior. Article [20] describes their SHARKS protocol and states that its
motivation is security and resiliency. However, agents that run the security protocol alone
cannot be labeled resilient. Additional parameters should be conceived for the purpose.
Article [21] designs a control and optimization strategy for SAR missions, but takes certain
steps such as optimizing inputs onboard the UAVs rather than on-ground control to prevent
communication issues. They state resilient network design to be beyond the scope of their
study, and its application for the deployment of multi-agents in smart cities may have other
disruptions that can cause a swarm to go down. A cyberattack or network jam is not the
only cause for a swarm to cease function. Moreover, the SHARKS protocol describes only
circling stationary targets, and thus generalized assumptions on target mobility cannot be
made, since targets may have the ability to go mobile. Target tracking capabilities require
extensive algorithms for path planning, and optimized resource allocation, accounting for
the loss of communication capability while following targets in low signal strength areas.
A change in control design is needed for collision avoidance during dynamic formation
changes during target tracking and damaged agent recovery. It is difficult to realize the
large-scale aerial performance of UAV swarms because this process involves complex
multi-UAV recovery scheduling, path planning, rendezvous, and acquisition problems [22].
A survey conducted by [23] on routing protocols reports how most developments focus
on performance and not security. Unsecure protocols and networks, however resilient to
connectivity loss, are not an indication of a resilient swarm.

1.2. Analysis of Current Research Trends

To gain an understanding of the trends in current research, it was first necessary to
construct a database of related studies. The two most popular research databases were used,
Google Scholar and Scopus. IEEE and MDPI databases were also examined. However,
since the results from both are indexed by Google Scholar, mentioning it gets precedence.
While Google Scholar provides higher numbers for the i and h indices due to its wider
reach and slightly different citation trawl method, Scopus is more ordered and allows
better access to articles. The primary keywords used in the search process were UAV,
RESILIENCY, and MAS. Keywords were used to search the title and abstracts of articles.
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A time constraint of the past 10 years (2011–2021) was applied to search for articles plus
current work through June 2022. More than 1100 hits were generated on relevant research.
These were manually filtered to remove duplicates and incorrect entries. Incorrect entries
included resiliency recommendations for electric grids, outer space, and nonrelated cyber-
physical systems. An analysis of the remaining 258 papers provided us with seven different
sections that formed the UAV swarm components classified in Figure 1. All research was
then categorized individually into these seven components with cross-links established
for papers that had a combination of or covered multiple modules. The definition for
combination modules was defined as research making progress in multiple subcategories,
such as algorithms for heterogenous agents performing balanced path planning [24] or
management architectures for drone service platforms that provide mission planning and
resource handling for agents [25].

Figure 1. Examined research categorized into UAV swarm components.

An analysis of the final data set provided the number of articles that covered each
component for resiliency integration as a major part of their research proposal. Figure 1
shows the seven components and the number of research articles in each one.

Figure 2 shows the above research categorized by the number of components they
each cover. More than 50% of the research examined covered just one component as its
target for resiliency integration while excluding the others. Less than 15% of the research
covered three components of the recognized components for UAV swarm operations for
resiliency incorporation. Research work such as swarm management and control policies
were excluded from this count as it did not directly relate to any unique component. Thus,
an error of ±3% is assumed.

Figure 2. Research articles classified by the number of recognized UAV swarm components they cover.
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A generalized search using Dimensions.ai [26] for related research in the past decade
shows an increased uptrend. Figure 3 shows the number of research articles excluding
book chapters that were published each year on UAV swarm resiliency from the year 2011.
While research on swarm resiliency is certainly on the rise, the work is primarily focused on
certain components, while others are excluded or cited as beyond the research scope. This
study examines the resilience of UAV swarms from a broader perspective and recognizes
the need for system-wide integration of resilient characteristics in operations.

Figure 3. Number of publications on UAV swarms from 2011 to June 2022.

1.3. Scope and Contributions

This study examines UAV swarm resiliency research and creates a categorization of
the various modules in swarm operations that require an integration of resiliency principles.
The drawback of current resiliency research is that no single study addresses all types of
factors that contribute to disruptions in UAV flights. An analysis of literature as shown
in Section 1.2 supports author views. Existing research on UAV resiliency deals with
some of the modules classified in this study. Other modules are recognized, but simply
excluded for brevity, or recognized as beyond the scope of research. In this study, the
authors have made efforts to identify every aspect of swarm operations and to categorize
them. To our knowledge, this is among the very few studies that comprehensively address
the resiliency issue by recognizing swarm components into modules and studying how
resiliency features can be incorporated into them. Related existing research is discussed in
detail. The state-of-the-art for all individual modules is discussed, and current challenges
are highlighted.

Figure 4 categorizes UAV swarm operations into components and modules. The main
components identified are Communication, Movement, SAR, Security, Resource and Task
Handling, Agent Properties and Resilience Evaluation. Every component has subcategories
(i.e., modules) that further extend operations. There is a recognized need for resilience
engineering in all components and subcategories. Although it has been recognized that each
module needs resilient incorporation, the module functions are interdependent. Failure of
one can lead to a cascaded stop in operations. Every module is discussed as an important
aspect of building resilience in UAVs. The major research in these modules is examined with
their current implications and future possibilities. This study presents a classification-based
review of resiliency research and lays the foundation for our current work on building
comprehensive resilient swarms.
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Figure 4. A categorization of UAV swarm components and modules.

To create a novel study, we also examined recent surveys and discussions (2019–2022)
on UAV swarms. This list provides an idea of areas where UAV swarm research has been
well covered, and where research gaps remain. Table 1 below cites a list of review literature
on UAV swarms that was examined. The research focus section provides a general trendline
of study directions and indicates that a comprehensive study that provides an overview of
all UAV swarm components and modules was thus far not carried out.

Table 1. An examination of other related review and survey literature of UAV swarm components
sorted by their publication year.

Reference Research Focus Published

[27] A review of linear and model-based nonlinear controllers for UAV swarms
as well as general swarm characteristics 2019

[28] A review of ML-based techniques to improve UAV-based communication
modules such as resource management and security 2019

[23] A survey of swarm communication architectures and routing protocols and
their open research challenges 2020

[29] A categorization of swarm behaviors into organization, navigation, decision,
and miscellaneous modules 2020

[30] Studying issues in UAV swarm communications: Power issues, routing
protocols, and quality of service along with open research challenges 2020

[31] A survey of application-specific scenarios in internet of things (IoT) by
using swarm intelligence 2020

[32] A survey of UAV swarm intelligence based on hierarchical frameworks 2020

[33] A study of the path planning problem for interception of mobile targets
using an UAV swarm 2021

[34] Examining dynamic task allocation methods for UAV swarms 2021

[35] AI-backed routing protocols used for UAV swarms with an emphasis on
dynamic topology properties 2022

[36] A broad discussion on UAV, with an overview of swarms, agent
characteristics, and applications 2022

[37] A discussion on high-level swarm autonomy and the use of cellular
networks for swarm communication 2022

[38] A review of four main AI-based path planning methods in UAV swarms 2022
[39] A summary of swarm intelligence techniques for Multi UAV collaboration 2022

2. Resilient UAV Swarm Components and Modules

This section reviews previous literature on all of the recognized components and
modules in Figure 4. A tabular summary of the discussions is also provided in Table 2 below.

280



Drones 2022, 6, 340

Table 2. A summary major research focus for each module in the seven recognized components of
UAV swarm resilience.

Parent Component Module Major Focus

2.1 Communication

2.1.1 Connectivity Connectivity maintenance

2.1.2 Network coverage Efficient coverage of an area with
strongly interconnected agents

2.1.3 Network structure Types of network topologies

2.2 Movement

2.2.1 Area coverage Optimized area coverage by agents

2.2.2 Path planning Path planning protocols for agents

2.2.3 Obstacle avoidance Protocols to avoid agent interaction
with environmental obstacles

2.2.4 Collision avoidance
Protocols to avoid agent
interactions with other agents in the
same swarm

2.2.5 Navigation Navigation and localization
for agents

2.2.6 Flocking Flocking dynamics for
agent swarms

2.2.7 Formation control Formation control for agent swarms

2.3 Search and Rescue (SAR)

2.3.1 Search Searching for lost swarm agents

2.3.2 Rescue Rescue and connectivity of
located agents

2.4 Security
2.4.1 Physical security Ensuring physical security for

swarm agents

2.4.2 Network security Network security and intrusion
detection of swarm networks

2.5 Resource and
task handling

2.5.1 Task assignment Task assignment protocols for
agents in a swarm

2.5.2 Resource allocation Resource allocation and assignment
policies for swarms

2.6 Agent property 2.6 Heterogenous agents The inclusion of heterogenous
agents in swarms

2.7 Resiliency evaluation 2.7 Scalable and
generalized metrics

Development of scalable and
generalized metrics for evaluating
swarm resilience

2.1. Communication

The main modules of the communication component that need to be addressed are
connectivity, network coverage, structure, and characteristics. Each is a vital part of the
communication process required by agents in the swarm to maintain contact with the base
and each other. Important functionalities such as data transfer and action control take
place through the communication pipeline. Keeping complete communication is often
the first step towards resilient systems. Communication issues include communication
delays between swarm agents with one another or with external entities, such as ground
control [40]. Swarm agents may fail to communicate with each other due to a variety of
reasons. Some agents might stray out of the communication area as a result of path planning
and navigational actions. In such cases, the swarm as a whole must be flexible enough
to select the optimal agent deployment area by considering communication equipment
limitations. Communication at some point might be disconnected completely. This can be
due to failure of communication equipment or loss of critical swarm agents responsible for
handling connections. Certain UAV task algorithms might overwhelm agent computational
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capacities to the point that they become unresponsive and reduce the system to a standstill.
In-path obstacles might also result in a temporary loss of communication with the swarm.
Ongoing research on communication such formation control using ad hoc networks [40]
identifies issues and proposes solutions. If some agents in the swarm become disconnected,
flexible formation control can restructure swarm positions to bring back agents within the
connectivity sphere. Transmission delays can also be offset using formation switching to
alternate topology to position swarm agents closer to broadcast handling agents. Passive
beacons installed on the ground can help recover agents from failure by guiding them
to failsafe points. Section 2.6 discusses the addition of heterogeneous agents in a swarm
as a means of increasing operational resiliency. Ground vehicles can assist in providing
emergency communication to aerial swarms and vice versa, as well as perform functions
such as visual detection of navigation beacons to coordinate transmission to aerial swarms.

2.1.1. Connectivity

This section deals with maintaining connectivity between the swarm and commu-
nication systems at ground control, ground beacons, and the user. The communication
path from ground control to UAV agents in operational space has numerous vulnerabilities.
Swarms might go off course due to winds or might have to change path due to sudden
obstacles. This might affect the range of communication links used such as Wi-Fi and radio.
Additionally, obstacles might also block transmissions resulting in delay or loss. Swarm
agents with limited fuel capacity have additional problems. Attempts at reconnection
and prolonged communication at low signal strength might deplete power reserves more
quickly, reducing flight range on the mission. Adaptable connectivity protocols are needed
in this scenario [41]. Here, a hierarchical topology is described, where a master drone
controls a fleet of lower-level drones that can fly the search area. The master drone acts
as a data pathway to the control center. Single link topological frameworks such as this
always have the issue of data pathways failing. Since these are also agents that are exposed
to operational space dynamics, there is a probability of them failing as well. By assigning
different area restrictions to master and low-level drones, the study ensures that there is a
persistent data pathway between ground control and end agents. Figure 5 shows a high-
altitude fixed wing aircraft that has the equipment necessary to connect it to a ground-based
communication system. A low altitude leader-follower quadcopter swarm is connected
to the fixed wing aircraft. The swarm is able to communicate with ground-based stations
located at a considerable distance using the fixed wing. However, there is still a probability
that the master drone fails due to obstacles. Relay based connectivity maintenance [42] uses
a similar communication link that uses relay and articulation UAVs to connect surveillance
UAV agents in the swarm to a ground station.
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Figure 5. A high-altitude fixed-wing aircraft providing connectivity support to a low-altitude
quadcopter swarm arranged in a multi-level hierarchical tree topology.

Multi-hop communications are key to such models where relays are used to read a
wider range. While [42] designates articulation agents to balance mission with network
connectivity, it brings all nodes within the same operational space. Without an excellent
swarm defense and onboard intrusion detection system (IDS) in place, enemy agents can
focus their attack on mission-critical nodes and target them first to bring down swarm
operations. Spreading relay nodes over a wider range of topography can bring down the
ROF (rate of failure). For example, if the aircraft was flown at a sufficiently low flight
altitude, ground-based relay stations could be used. Figure 6 shows a multi-hop data
pathway selection process that can occur between a source agent and a destination agent to
relay messages. The routing protocol governing this transmission has to consider various
factors such as agent locations, energy required, transmission time, etc.

Figure 6. A multi-hop data pathway used by a source agent to communicate with the destination agent.

Routing protocols govern data transmission between network nodes. Hereby a swarm
of UAV agents is capable of forming an ad-hoc MANET, FANET (flying ad-hoc network), or
VANET (vehicular ad hoc network) depending on the topology and study in question. UAV
networks are more advanced than those mentioned above due to faster flight speeds and
energy constraints. High mobility and dynamic distribution of agents make the design of
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reliable communication links difficult [43,44]. The existing challenges to resilient protocol
design are furthered by considering the nature of the UAV agent and the environment.

Routing protocols depending on their design can be position-based, topology-based,
and cluster-based. A survey conducted in [9] summarizes several design considerations for
routing protocols such as topology, flight formation, latency, collision avoidance, and exter-
nal disturbances. Essentially, these factors are related to the resilience modules presented
in this study. Although they apply to agent communication, the same factors can be scaled
and considered as issues when designing a resilient UAV swarm. Routing frameworks such
as the one proposed in [45] claim resiliency in communication by using software-defined
networking (SDN) controllers. Connectivity graphs can be created by using available chan-
nels and relaying information for a particular area. However, this often requires knowledge
of operational space beforehand. If that is available, shortest-path algorithms determine
paths that allow agents in a swarm to be separated over a wide geographical area to prevent
jamming by an adversarial entity that seeks to block communication waves in one area.
Smart selection methods capable of switching data delivery schemes are required. The four
basic schemes among agents are unicast–between two agents, broadcast–from one agent to
all other agents, multicast–from one agent to several agents, and geocast–from one agent to
some agents in the swarm selected due to absolute location or relative positioning.

Another challenge with routing protocols is that most utilize unicast routing. Multicast
protocols assume dense and slow-moving node structures. Efforts to increase efficiency
in protocol design, such as in [46], design a multicast protocol based on predicting the
trajectory of agents. By selecting a node with higher priority metrics, which has a high
chance of encountering an agent that needs to forward information, messages can be
relayed faster. The calculated priority metric was dependent on start time and duration of
the encounter with the transmitting agent. A priority encounter graph was constructed
for this purpose. By equipping multiple modes of transmission depending on the position
density and velocity of agents, routing protocols can act efficiently and guarantee constant
connectivity and message delivery assurance despite disruptions.

2.1.2. Network Coverage

Optimal coverage of an area by a swarm of UAVs falls under the connectivity domain.
Network coverage involves using the agents in a swarm to blanket a particular area such
that all of the area is covered during application-specific purposes such as surveillance,
while at the same time maintaining a standard quality of connection with other agents in
the swarm. There is a tradeoff between coverage and connectivity that is recognized, and
metrics such as those proposed in [47] study it. Multiple UAV swarms have applications
in delivering persistent surveillance. However, features such as dynamic target tracking
can lead agents astray and out of connectivity limits, which can lead to the loss of data
and agents. Simulations on the exploratory problem using MAS show that to accomplish
covering a certain area, particularly in cases where high rewards are offered to explore
it, an agent might stray from the swarm thereby sacrificing connection with other agents
or the base while doing so. Optimized models designed to balance connectivity and cov-
erage such as those designed by [48] study the effects of network density on coverage
and performance. Swarms with a smaller number of agents thus need high-level models,
balanced with increased computational power, to handle more frequent formation control
than swarms with a higher number of agents. A model parameter that requires agents
to remain near each other might prevent agents from spreading out thereby restricting
coverage. Bio-inspired ant colony optimization algorithms try to imitate ant behavior for
communication and pathways based on pheromones. Chaotic ant colony optimization for
coverage-connectivity [47] uses repulsive pheromones to visit unexplored areas. Alterna-
tively, they were also used to avoid collisions between agents. With this approach, less
work exists on balancing connectivity and coverage decision processes for swarms.

These forces can be calibrated to consider network strength. Thus, areas that might
weaken connections between swarm components are assigned higher values to discourage
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single agents from attempting exploratory tasks. Intelligent algorithms can however assign
a group of agents to visit high force areas such that the entire network shifts in that
particular direction thereby maintaining network strength.

2.1.3. Network Structure and Characteristics

Network structure and characteristics play a major role in defining how resilient
an UAV swarm will be to disruptions. While security components protect swarms from
malicious intent, inherent network topographic structures, organization policies, and
characteristics such as jamming resilience and energy efficiency can reduce other disruption
margins and aid in strong connectivity [49]. While network structures typically define
how a network is built with regards to nodes and resources, topology, and hierarchies
for decision making, network characteristics deal with any intrinsic abilities that may
be built into its structures such as jamming resilience, energy efficiency, and self-healing
capabilities. This section examines both structure and characteristics in detail. Modified
network topologies can have a substantial impact on how a network responds to a disruption.
The most conventional of these is the hierarchical agent topology where some agents have a
higher-level designation and act as leaders of a swarm. These agents may differ in their nature
or hardware, leading to swarms being heterogeneous, perhaps even simply by their designation.

Article [41] created a similar topology in which agents are masters or followers. Each
follower drone is an explorer whereas master drones are data collectors and major com-
munication nodes. The master drones assign exploration areas to the follower drones.
One master is responsible for several follower drones. The duties of the master are to
maintain a set distance and signal strength with ground control at all times. Such tree
topology implementations are often the first step in developing structured network systems
that may increase swarm resiliency in a stepwise manner. Additional modifications to
these networks are possible such as the addition of heterogenous agents as discussed in
Section 2.6. Master drones are often high-altitude fixed-wing aircraft that control numerous
low-altitude quadcopters.

Additional network layer modifications can also influence vital factors of communi-
cation such as the transmission power. Article [50] proposes the addition of a new layer
between the data link and network layers. Each agent node has the ability to adjust its
transmission power for sending data while maintaining stable connections with other
nodes. The additional layer has decision constraints to prune unnecessary links and set
the transmission power based on the nearby agent range. The proposed network has
energy efficiency properties due to fine control of data transmission power. Depending on
the number of nodes in the network, the target area can be divided accordingly, and an
appropriate number of agents can be assigned to cover it. Article [51] proposes an advanced
model that can differentiate between an agent in standby mode or active flight. The amount
of energy consumed by an agent in active flight vs. being in standby mode is considerable.
A model inspired by [52] splits the power required by the agents into flight power and
standby power. Splitting energy demands allows for finer control over consumption as
well as other functions such as task assignments and agent callback/deployment functions.
Models that consider the state of agents and their energy consumption can be upgraded
to allow for additional functionality. An agent in active flight may consume more power
while performing certain tasks, allowing other idle agents to be on standby. This agent will
have a lower availability of flight power “e” than standby agents. During task assignment,
the control scheme can decide to recall this agent to redeploy a new agent or use the new
energy value as a constraint in determining task allocations to the swarm. While fine control
over energy consumption such as in [50] may not always enable superior performance,
the inclusion of energy-efficient features in all areas of agent control may extend swarm
flight time considerably. Conventional ad-hoc UAV networks do not have such flexibility,
and all nodes transmit at the same power level for a fixed transmission range. However,
transmitting at power levels higher than required can reduce network efficiency and impact
flight time.
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Solutions such as this can also solve the malicious attack problems discussed in
Section 2.1.3 where nodes are compromised and forced to transmit packets at lower trans-
mission powers to misdirect the attack or to cause latency issues. However, flexible power
transmission control can allow neighboring authentic agents to efficiently capture these
data packets and ensure that they reach the destination, making such attacks fail. The role
of blockchain implementations as a security upgrade to UAV swarm networks has been
discussed briefly in Section 2.4.2. However, their integration into network structure can
also have added benefits towards building resilient networks. An agile implementation [53]
defines an UAV network that is decentralized by using SDN and blockchain technology. It
has the usual application, control, and data planes. The data plane is present on the UAV
whereas the other two are at ground control.

The location of network planes is important. In [53] for example, the ground control
location of the control plane gives it a global view of the network that other routing
protocols lack. All agents in the network are aware of the swarm status. Control stations act
as the deployment of the blockchain. Multiple ground stations share and synchronize data
over the blockchain. An added advantage to this is the fact that the swarm has up-to-date
data on the shortest routes and destination status anywhere they go, as long as they are in
the range of a single ground station.

Swarm agents that act as the main creators of data on the data plane also add infor-
mation to the blockchain. Task scheduling and flow table information are maintained and
updated using smart contracts. Article [54] studies application-specific functionality of
drones for hybrid cellular network deployment. Studies show that prolonged use of UAVs,
particularly for drones as a service (DAS), has been in limited deployment due to factors
such as limited flight time, collision avoidance, and onboard hardware capacity. Examples
include the use of drones to provide emergency communications or vehicular micro-cloud
services [55]. Modified network systems are needed to improve agent performance, and
this study proposes a swarming strategy of agents based on continuously monitoring
swarm geometry and the environment. Langevin dynamics were used to study agent
interactions. Self-organizing characteristics were based on crystallization of molecular
structures in condensed matter physics. However, self-organization occurs in chemical,
robotic, cognitive, and natural systems as well. By allowing network nodes to develop a
self-imposed hierarchy based on external or internal factors, an order can be established
from an initially disordered system. By using external stimuli, or in this case demand
requests by activated end users, matching supply movements can be created.

Application-specific research such as [56], which provides solutions for a disaster-
resistant network by using UAV deployment, can also be used to make UAV swarms
inherently robust. Although the problem addressed is mainly UAV deployment and
formation to provide network services, these solutions can be applied to address network
coverage problems to create ad hoc resilient UAV networks.

The proposed approach has the deployed UAVs act as aerial base stations (ABS) and
estimates the position of user equipment in a disaster-struck region by using their uplink
signals. User and ABS locations go to a central location where the signal-to-interference
plus noise ratio values are calculated. Users are assigned to a particular ABS according
to the max user per ABS limit and a clustering algorithm deploys ABS to final locations.
Similar approaches can be used where agents can act as nodes in a network topology to
which a set number of other swarm agents connect. Once connected, by using range limits
of onboard communication equipment as a weight parameter, agents can be deployed to
create a multi-node UAV net where every agent in the swarm maintains a stable connection
with a specified number of swarm mates. Further upgrades to such networks such as
energy efficiency and jam resilience can be introduced. Jamming resilience is typically
used to defend against attacks that seek to disrupt routing protocols by compromising
selective nodes. Data sent through these nodes are then captured and analyzed for additional
information on how to compromise the network. Such attacks can be executed by corrupting
a valid node in the network or by the addition of a new foreign agent-based or ground
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node that the swarm assumes is a part of the network. Every drone is essentially a node in
the FANET that has localization capabilities. Link quality is measured using metrics such
as RSSI (received signal strength indication) and SINR (signal to interference plus noise
ratio). Additional schemes for traffic load and spatial distance are used to create a ‘jamroute’
protocol that has source nodes search their real-time changing routing tables for the shortest
routes to the destination node [57]. In the case that the node is busy, a broadcast request is
sent that has a packet of information such as source node, destination node, and max traffic
loads. Each node has unique identifiers that associate it with the network, thus making it
difficult to add malicious nodes to the network as a means of attack. Additional proposed
schemes for link quality and traffic load prevent attacks such as a limited transmission
power attack where the compromised node drops a data packet by transmitting it with
reduced power. Protocols those such as in [57] prevent the loss of data packets by creating
multiple forwarding paths. Even if one node attempts sabotage maneuvers, other paths
ensure all packets reach the destination node.

Based on the characteristics of the routing table, the protocols can be further cate-
gorized. In static routing protocols, once created, the routing table cannot be updated.
However, this is not suitable for dynamic formations and large swarms. Article [57] dis-
cusses other protocols, such as proactive tables, where tables are updated periodically.
Hybrid routing protocols combine proactive and on-demand routing. Fixed network
topologies are often an issue when it comes to improving ad-hoc networks. Ad-hoc net-
works are necessary to supplement higher costs and range-limited communication such as
cellular communication and Bluetooth. Fixed topology networks do not scale for ad-hoc
connections very well. Dynamic topology reconstruction protocol (DTRP) models such
as the one in [58] consider changes in UAV network topology. The DTRP uses a master
node and a worker node. The master controls the internal swarm network, and the worker
node is responsible for the transmission of sensing and flight information. The master
node transmits initialization messages to all follower nodes in the area. The worker nodes
then change the node information of the message from that of the master to their own
and forward the message to other workers that are out of direct reach of the master node.
If a set time elapses and an acknowledgement message is not received from the worker
node, the master node is converted to the lowest node in the link table. Minting link
information tables such as these assist in verifying the position of each node on the map,
as well as information control. The return messages contain location information, which
when overlaid on a map pinpoint the location of each node in an area and also areas where
no nodes are present. Therefore, such areas can be serviced by redeploying some agents in
the swarm to them.

2.2. Movement

This component covers the decision process that involves the movement of the swarm
agents in operational space, including flocking, optimized area coverage, path planning,
and obstacle avoidance. As such, these are the physical behaviors that a swarm might
exhibit during its operation. Major modules of the movement component are recognized
to be area coverage, path planning, obstacle avoidance, collision avoidance, navigation,
formation control, and flocking.

2.2.1. Area Coverage

While Section 2.1.2 discussed tradeoffs between network coverage and connectivity,
this section discusses area coverage as a part of the movement component. These problems
are often intermixed with each other. The coverage problem determines the success and
probability of when the area will be completely scanned. It is often defined as increasing
coverage while managing trajectories and disruptions. Article [59] defines swarm coverage
as a process to cover a selected region. Swarm area coverage is an important decision
process for swarm systems. Area coverage is often utilized in application-specific scenarios
to cover a region of interest (ROI) with a swarm of agents, particularly as a movement
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problem, with less regard for connectivity maintenance and more focus on completing a par-
ticular goal. A similar problem framework is discussed in [60]. “Chaos-enhanced mobility
models for multilevel swarms of UAVs” mentions how area coverage is an original problem
by describing it as “focusing on the mobility management of a swarm of autonomous
UAVs to maximize the coverage of a squared geographical area”. The resilient component
differentiates this from a simple path-planning objective. The two main objectives are for
the swarm to cover a given area as well as counter any unpredictable disruptions that
occur during the process. Considering the target area properties is an important input
for decision-making models for swarm operations. Network coverage and area coverage
differ in terms of how ROI is used. While network coverage focuses on making sure that
agents in the area are always optimally connected, area coverage addresses the coverage
problem and describes the actions taken by a swarm of agents to cover the ROI. The target
space may differ in terrain and ground cover, as well as the presence of water bodies,
wind channels, and stationary or dynamic obstacles. Current issues with area coverage
lie mostly in the dimensional space in which they are tested. Most existing simulations
portray coverage in a two-dimensional space. In [60], altitude information is not considered.
Formation deployment controls may require agents flying through constricted spaces to
fly in tighter formations thus requiring agents to vary in flight altitude rather than sweep
area. This is especially prevalent when reaching consensus after obstacle navigation and
post-deployment primary formations. The control methodology in which agents cover
an area can be categorized into different types and [61] offers a naming convention for
them as follows. Static coverage is a standard agent deployment method in which an UAV
examines a particular spot for its target. Several such agents examine individual spots.
Barrier coverage forms a perimeter that can detect the entry of any object through the
barrier. These are usually deployed on security-specific applications. Sweeping coverage is
the name the authors have given to the dynamic deployments of agents which can change
formation as they move through the area. This is the standard procedure followed across
any SAR protocols. Several coverage models have been described such as imposing grid
cells on the ROI to ensure that every cell is covered or dividing the area into small bits
that are assigned to the agent’s area decomposition [62,63] and sweep motions [64,65].
Article [59] mentions two primary methods for cooperating coverage, centralized, and
distributed decision-making. They propose a self-organized decision-making approach for
the problem modeled in velocity space. The approach is divided into perception, decision,
and actions. Multiple UAVs coordinate with each other for sharing position, velocity,
and obstacle information. Their decision uses a reciprocal coverage method that creates
collision-free optimal spaces. The swarm coverage decision model considers the above
parameters with collision avoidance with other agents, obstacle avoidance, and optimal
velocity decision in each iteration. This is carried out using the Monte Carlo method for
velocity-finding in confirmed space.

A different obstacle characteristic is considered by [66] while solving the area coverage
problem. Not all obstacles have the same threat levels, nor are all of them equal in terms
of dimensions and nature. Additionally, energy constraints on UAVs during coverage
problems have often not been addressed in complex scenarios. They propose a two-step
auction framework for energy-constrained UAVs in a given area. The agents evaluate the
threat levels of each area cell referred to in their paper as a module and bid in an auction
for the UAV to come to it. If two bidding prices match, energy loss is also considered. The
UAV determines the winning module. The second step is the obstacle avoidance strategy
for any obstacles that the UAV might face while traveling to the winning module. In the
case that an obstacle is unreachable by flying over it, the second-best module is selected.
Additional constraints for sleep mode and two UAV bid clashes are also designed. Such
strategies are also viable alternatives to reward-based ones where agents are rewarded for
considering a particular area. Additional parameters such as energy considerations can
thus be programmed.
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2.2.2. Path Planning

Efficient path planning for multi-agent systems is a prevalent challenge in swarm
development. Algorithms such as Particle Swarm Optimization (PSO) are developed to
find near-optimal solutions. Multiple iterations on a solution may provide better results.
Several biologically inspired heuristic algorithms have been proposed for path planning.
Bio-inspired algorithms have found remarkable success in the movement development of
multi-agent systems as they exist predominately in the animal world. The development
of such algorithms drew its inspiration from group behaviors in fish shoals, bees, and
ants [67]. Article [68] proposes a modified fruit fly optimization algorithm. The original
fruit fly swarming is inspired by fruit flies making their way to ripening fruit. The modified
algorithm divides the swarm into smaller subswarms. By allowing flexible search parame-
ters there is a shift from a global search to a local search as the mission timeline progresses.
This expands the search space considerably. The FOA (Fruit fly optimization algorithm)
uses two search parameters, sight, and olfactory. While the visual search is a greedy search,
the olfactory search is a directional search that examines the greatest concentration of the
target in a cell and proceeds in areas with increased concentrations. Both processes are
repeated until the termination stage is reached near the target destination. UAV inputs
can be used to program essential paths for individual agents. Paths to the destination
can be calculated by using terrain data, weather, and network signals as inputs. Based on
pre-established network availability from base to destination, each agent can move on a
path that has the best-preestablished parameters such as SINR. Secondary inputs such as
terrain can be analyzed using the visual input.

Distributed path planning for multi-UAVs works similarly, ref. [67] where SAI (Surveil-
lance Area Importance) values for each cell are analyzed and a connection is established
that shares each UAV’s location. The leader agent checks the area based on past SAI values,
and uncovered areas are subdivided. Individual trajectories for each agent are generated.
SAI is an intrinsic value generated and defined by [67] based on the probability of outside
agents entering a restricted airspace. Since this is an application-specific development,
such values are required. For general purpose use, however, the above-suggested values
such as network strengths can be used to establish the grid importance. An alternative
approach used by [69] uses external threat models to create channels through which agents
can travel. The weather threat model measures wind and rain states and the transmission
tower model calculates a safe path some distance away from transmission towers to prevent
their electromagnetic waves from disrupting agent navigation systems. An upland threat
model measures the terrain below the agents to maintain optimal distance between aircraft
and the ground. An adaptive genetic algorithm controls the path generation schema.

Modeling individual threats as functions that act as inputs to learning algorithms is an
efficient approach to creating low-cost shortest route solutions. By allowing models to scale
as per a particular environment, threat functions that are not present can be eliminated
thereby allowing quicker convergence on solutions. For example, the transmission tower
threat function will not be used in an area that does not have them, thereby reducing overall
model complexity.

While most research generically uses the term collision avoidance and categorizes
together all impacts of UAV agents with other agents or in-path obstacles, this study
classifies them separately. Obstacle avoidance deals with any static or dynamic obstacles
that might be present in the flight path. Examples include geographic terrain, buildings,
trees, birds, etc. Collision avoidance deals specifically with avoiding impacts with other
UAV agents in the same swarm. Each is discussed separately in the following sections.

2.2.3. Obstacle Avoidance

Movement systems of UAV swarms for path planning, obstacle avoidance, and general
navigation require comprehensive integration with each other to provide acceptable perfor-
mance. Article [18] discusses a unique system that develops drone reflexes to maximize
agent safety. They utilize a dynamic evolutionary algorithm to create drone routes, and a
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reinforcement-based learning algorithm to use system state data and create feedback loops.
Drone reflexes are labeled as reactive actions performed by agents to prevent collisions with
sudden in-path obstacles. Case studies such as this highlight the differences in modules
for obstacle avoidance and path planning while also demonstrating the need for these
modules to work closely together. Quick computation of alternate routes is required once a
collision is foreseen by the learning algorithms. Moreover, path planning has a sub-module
that calculates the trajectory progress of all agents in the swarm. While quick solution
methods to reach optimal performance in collision avoidance dictate that the trajectories
developed do not intersect, this is not an ideal solution. Real-world scenarios often require
agent trajectories to overlap during application-specific functions such as target search.
In such cases, the trajectory planner also has the responsibility of near real-time tracking
of all agent progress concerning their defined trajectories. Any overlapping paths must
not have agents present at the point of intersection. A wait-and-go action process must
be implemented where an agent waits in hover mode while the other passes the point of
intersection. Alternative solutions include introducing an altitude adjustment component.
Two agents may follow intersecting trajectories without waiting if they are separated by a
safe flight altitude.

The autonomous navigation system in [18] uses an offline component to generate
the shortest paths between start and end points based on standard information. The
online component is a dynamic monitoring system that utilizes a feedback mechanism
to detect changes in swarm reconfiguration and suggest reorganization of swarm routes
when necessary. Prediction features use monitoring data to predict drone movement and
collision. Additional modules for safe area computation and reflex computation are present.
The reflex module outputs reflexes for drones to avoid in-flight collisions.

The weighing mechanism in the hierarchical methodology in [70] is assigned levels
based on the distance from the master UAV for each sub-swarm. Obstacle avoidance is
inspired by occasion and behavior. If it is determined that the intended movement of the
swarm and the obstacle point positions satisfy constraints that make it impossible to avoid,
the master UAV then attempts to move in a direction tangent to the obstacle. The flocking
control uses a hierarchical model that labels master UAVs as information UAVS. These
decision-making agents act as the center for a flock of ordinary UAVs thus forming a sub-
swarm. The objective of the study is to ensure that ordinary agents follow the information
agent. Thus, by controlling the actions of the information UAV for obstacle avoidance and using
flocking control on ordinary UAVs, the sub-swarm is shown to successfully avoid obstacles.

2.2.4. Collision Avoidance

The collision avoidance problem has been recognized by research as being separate
from obstacle avoidance. While research such as [70] uses cooperative formation control to
avoid obstacles, ref. [71] uses predictive state space to generate collision free trajectories
for agents. The most prevalent way among current research of avoiding collisions is by
using agent state information and generating artificial potential fields. The mission-based
collision avoidance protocol (MBCAP) in [72] uses a similar strategy. Every agent broadcasts
its current and intended next stage position. A collision detection process receives them
and checks for coordinate matches of agents. In the case that a match is found, a stop signal
is sent to those agents. Upgrades such as agent priority are also included where each agent
has a priority level, where in the case of a collision threat, the lower priority agent gets a
stop command while the higher priority agent can pass.

Additionally, altitude adjustments are often used to avoid mishaps. On a collision
alert, the two agents can adjust their altitude for one to pass over the other. Article [73] uses
a modified trajectory modification such as the one described above to climb and descend
in order to provide vertical separation at the closest approach points. The global aim is to
have the least number of modifications overall. However, this necessitates a higher-level
integration into swarm motion to avoid collision with other agents in the same altitude
range. Higher-level decision models can be computationally expensive and take more time
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to reach the decision stage. The second method is the artificial potential field method and
several functions such as the flat-h function and hyper quadratic surface functions for the
shape of potential fields have been studied [74–76]. The method considers each swarm
agent as a charged particle and can set a potential field based on current configurations.
The two forces, attractive and repulsive, decide how surrounding agents behave. Potential
field models generally have higher computational costs than using location-based methods
but have the advantage of lesser offset and error rates than image-based detection and
avoidance of other agents. Moreover, using image sensing equipment for agent avoidance
may employ equipment that can otherwise be used for mission purposes. Potential field
generation and location tables can be handled at ground level and on unit, respectively.
Potential field functions set artificial barriers around an agent that another agent recognizes
and cannot cross. While these can be dynamic during the flight timeline, most current
studies discuss a static volume for the generated field. This is comparable to the generation
of a miniature no-fly zone around every agent. Article [71] divides the air space into
cubic grid cells as they are easier to use when calculating agent positions. The rolling
optimization algorithm they use estimates agent collision and offers updated trajectories
to avoid them. It uses heading direction concerning current positions and the distance
between two UAV agents as constraints for improved trajectory generation. Here, the
distance between UAV agents is calculated with protected spheres, which are state spaces
around agents with a radius greater than the safety distance. If two spheres were to overlap,
the UAV agents would collide.

Similar approaches construct dynamic collision avoidance zones around aircraft in the
horizontal [77,78] and vertical planes. These are used to detect flight conflict trends. The
construction of both planes to detect a collision is simulated in [79]. While their particular
method was applied toward a pursuit–evader scenario, similar scales can be applied to
swarm agents to detect and actively avoid other agents nearby.

2.2.5. Navigation and Localization

Localization and navigation are two important properties required during swarm
movement, as the two are closely interlinked. A navigation path cannot be established if
agents are unable to sense their position relative to important points on the map. Localiza-
tion is necessary for successful swarm navigation, as most multi-agent system applications
require that each agent has a level of awareness regarding its surroundings as well as an
ability to discover its location with respect to the local environment. Global navigation
satellite system (GNSS) modules on agents can handle the problem, however not all UAV
models are equipped with the necessary hardware. Low-cost agents often do not have
GNSS modules due to additional costs. Other constraints such as aircraft weight and fuel
constraints also prevent upgrades. Swarms equipped with GNSS may not work well in
indoor environments, varied geographical features, or underwater due to weak GNSS
signals. Additional methods need to be implemented especially if the swarm includes
heterogeneous agents that are spread out over varied operational spaces, for example, an
underwater submersible together with an UAV. While the addition of such agents has
resilient implications, it mandates the need for upgraded localization methods [80].

Additionally, as [9] mentions, even GNSS module inputs may be insufficient for
localization with smaller update intervals. Differential or assisted GNSS solutions were
examined and provided far more accurate results. Article [81] provides a combination
solution that uses GNSS, an inertial measurement unit, a baro-altimeter, and range radio
measurements if GNSS is available. A fused reading is obtained by integrating all four
sources. In case GNSS is unavailable due to any factor, the platform switches to an alternate
solution based on the other three. While this may not be as accurate, it provides an
estimated relative position estimate as well as reduces overall swarm drift that occurs in
an IMU-only type system. The study also progressively explores some members of the
swarm being resilient to GNSS interference, an observation can that can be utilized in the
development of heterogenous swarms.
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Localization methods can be of different types depending on how they function. There
are methods that do not rely on the range and methods that do. Article [80] classifies them
as range-free and range based. Range-free methods are more localized using techniques
such as nearest neighbor information or node information [82]. Range-free solutions
may be faster and computationally easier to process, however at the expense of reduced
accuracy [82–86]. Alternate solutions exist such as using vision systems equipped on
agents to estimate location. Image matching though is typically more suitable for indoor
environments due to computational costs and time delays. Moreover, persistent localization
may be a challenge as this might require vision sensors to be up to par with capture
requirements. Article [87] mentions an indoor localization process using image capture.
Passive beacons such as navigational pads can be assigned coordinates on a cartesian plane,
and all agents include image processing algorithms designed to recognize the mission pads.
A similar approach is used by DJI Tello drones [88] by capturing and recognizing quick
response (QR) codes. However, the range of camera sensors and their directional position
limit widespread adoption.

These methods use the vision sensors installed on the agents. Other methods may
use an externally located camera along with image processing to detect the agents and
estimate their location [89]. Such approaches have widely been used in indoor localization
techniques. The drawback with using these systems outside as opposed to indoors is that it
is much more difficult and processing-intensive to implement in an unknown environment.

Article [90] conducted an experiment where a cooperative path planning strategy
was implemented between agents that have GNSS coverage and with others that do not.
The agents with nominal or more GNSS coverage stay in the visual line of sight of agents
that lack it, thereby guiding them through an obstacle filled environment. Range-based
solutions [91–93] use actual distance values for unknown nodes, but additional hardware
is required on the nodes in exchange for more accurate results and equipment cost may be
an added factor.

Article [80] proposes a backtracking search algorithm (BSA) with multi-hop localiza-
tion that improves resilience if reference nodes are not recognized correctly. The BSA is an
evolutionary optimization algorithm that uses past solutions to find solutions with better
fitness. The proposed approach here uses each unknown node to first estimate its distance
from a preset point using multi-hop signals. A min-max method obtains coarse values
for node location. The last stage takes multiple such contributions of the estimated node
locations from the other nodes and provides a refined approach. Additional measures
such as a confidence factor evaluate accuracy and can be programmed in multiple ways.
The range of neighbors whose contributions are considered can be expanded or multiple
iterations of coarse readings can be taken to establish finer mean values. Agents in a swarm
act as nodes that broadcast their routing information periodically. Other nodes receive this
information, and every node maintains a table of other agents. Neighboring nodes are given
prevalence in terms of their receiving data packets. Prediction algorithms use the routing table
to predict the location of agents at every turn to estimate the location of the nodes. Agents in
sectors present in the direction of the destination node are naturally given preference [94].

2.2.6. Flocking

Flocking is a group behavior where all individuals in a large group exhibit consensus
in terms of movement, navigation, and obstacle avoidance. Local rules dominate swarm
decisions [95].

To realize flocking, all members must follow a similar trajectory often defined by
higher-level agents in the swarm. Article [96] provides the groundwork that assists in
classifying flocking in separate sub-modules from formation control and collision avoidance.
While flocking and formation control are both sub-modules for swarm control, they should
be categorized independently. Flocking dynamics are not particular in terms of the final
goal [97], but rather focus on substages in swarm movement such as before and after an
obstacle is avoided. Formation control may specify higher-level dynamics and control over
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agent hierarchy and the decision process that assists in creating swarm dimensionality in
terms of physical shape. Collision avoidance is usually defined between two members
of the swarm and requires active monitoring of agent location and trajectory. Formation
control maintains a set swarm formation shape throughout the navigation and path changes
of the flight process.

Flocking behavior is thus a combination of dynamic navigation and obstacle avoidance
with velocity matching. Such behavior has been observed in nature in swarms of bees,
fish, and birds. The global objective is often to move towards a region as a whole. Certain
formations may provide more aerodynamic qualities to the swarm reducing wind resistance
and providing longer flight durations. Article [96] notes how specific formations of fixed-
wing aircraft have a reduced overall drag coefficient. Several formation control methods
use a form of hierarchy such as leader-follower, or force methods by using potential fields
generated by agents [60]. These are less than optimal solutions that increase complexity due
to the addition of collision and obstacle avoidance. Bio-inspired pheromone based funneling
of a group of agents by herders as well as behavior-based methods are also prevalent [60].

2.2.7. Formation Control

Multiple formation strategies have been formulated by researchers such as leader-
follower and virtual structure [98]. Article [99] mentions the usefulness of high-fidelity
biological models in formation control and tracking. The grey wolf tracking strategy uses
the four-level division found in wolf packs, alpha, beta gamma, and omega. While alpha
agents are decision-making agents in tasks such as directional movement, division of labor,
and target pursuit, beta agents are for communication. Delta agents act as sentries for the
pack. Extending this concept, ref. [99] develops an adaptive formation tracking protocol in
a pursuit scenario inspired by wolf behavior. The agents follow the wolf tracking strategy
of tracking leaders and formation before encircling the target. Multiple modifications to
this control strategy are examined in [100–104]. A centralized control approach may have
higher computational costs with an increase in the number of agents. A decentralized
formulation such as by [98] called the Markov decision process describes the creation of
formations in short time ranges. The authors of [105] define a waypoint-based formation
control protocol called mission based UAV-swarm coordination protocol (MUSCOP). The
master UAV follows a set of defined waypoints during mission planning. The follower UAV
stays in formation between waypoints along with the master. Once a waypoint is reached
the master synchronizes its position with the follower UAV. Relative location is used by the
master to define formations. The center UAV is the master and follows mission parameters
whereas the surrounding UAV follows offset coordinates. The protocol scales well in with
large UAV swarms and has a negligible time delay in terms of the synchronization wait
required at each waypoint.

2.3. Search-and-Rescue (SAR)

SAR missions are usually defined as an exploration problem. Exploration approaches
can be used in a wide range of applications [21]. Target search applications can include
searching for an intended target such as an entity in danger or need of medical attention
or surveying the aftermath of an accident. The search function can also be expanded to
include other agents in the UAV swarm that might have malfunctioned and crashed. Two
major applications of the search function are discussed.

293



Drones 2022, 6, 340

1. Target search and tracking for entities that are not a part of the swarm.
2. Track and search for agents of the swarm to open further conditional processes related

to mission progress.

Rescue activity has additional decision parameters. If a crashed agent were located by
the swarm, the cost of additional time and fuel that would be required to recover the agent
should be incorporated into the model as a function that opposes the primary mission
function. Additional conditional statements must be programmed to gauge agent failure
in the first place. If the agent has failed due to a locally present disruption, deploying
additional agents may result in their loss too.

The search function is an application of UAV where the aerial vehicle hunts for a
particular target using vision ability or location information. Searching for a target using
an UAV has various challenges. Depending on the hardware used, UAVs may have limited
sensing and communication hardware onboard. Capturing raw footage and sending it to
the ground station to be processed is computationally costly and may introduce delay. Two
types of search algorithms are often used to enable autonomous search: (1) visual search
using learning-based detection algorithms [106], and (2) location-based search using active
or passive onboard sensor arrays. Search algorithms conventionally divide the area by
using a probability index of where the target is most likely to be present [107,108].

Similar to functions discussed in Sections 2.2.1 and 2.3, UAV swarms allocate multiple
agents in a cooperative problem formulation to each search a part of the grid. Path planning
and formation control modules keep agents from colliding while preventing explored areas
from being searched multiple times. Article [21] proposes a nonlinear MPC solution for
searching an area. Citing communication and delay concerns for the control, each UAV
optimizes self-control instead of processing at a ground station. A PSO algorithm is used
to find problem inputs such as airspeed and roll angle. A cost function is also associated
with the probability map to determine the effect of the search function on mission progress.
Article [109] proposed a vision-based search function for mobile ground targets by an UAV
swarm. Equipment challenges exist such as the agents having cameras with a limited field
of view. With vision-based functions, targets may also not be recognized accurately if low-
resolution equipment captures inputs from higher altitudes. Dealing with mobile ground
targets requires additional considerations as compared to a fixed target. While formulating
the target search, they use cooperative coverage control which is categorized under area
coverage in Section 2.2.1. For the probability map update, each agent is assigned its map for
the whole region and takes individual measurements of its assigned area for examination
before updating it on the other agents. The time delay that might occur due to this is
not addressed in their paper. Cooperative agent vision-based inputs creating dynamic
probability maps have a distributed nature, where complete network connectivity is not
required. The probability map uses a fusion of the Bayesian function with consensus from
multiple agents. A pigeon-inspired optimization proposed by [110] is inspired by birds
using geographic magnetic fields and landmarks to reach destinations [111]. Article [112]
uses a profit-driven adaptive moving targets search (PAMTS) which uses the familiar
decomposition technique for dividing the search area into equal cells for each agent. An
observation history map is created for each cell by the agent surveying it. This can then
be shared with other agents to create a global knowledge base. The two objectives here
have a tradeoff, the explore action wants to reach newer cells whereas the following action
needs to track already detected objects. Moving target search problems is computationally
intensive, as they are classified as NP-hard. A recent observation table allows agents to
change their behavior weights which in turn balances the tradeoff. The reward for each
cell creates the decision metric, where greater rewards are given to cells with a higher
probability of the target being located there. The neighboring cells thus require priority
in being explored. Similar strategies are used for the area coverage models discussed in
Section 2.2.1. The adaptive framework in [112] consists of 5 components: module-sensor
inputs, information merging, operation adjustment, profit calculation, and path planning.
Location-based search functions rely on the last known location of the targets that are to be
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tracked. However, they alone may be insufficient to pinpoint the target location. Typical
application scenarios are to locate fallen swarm agents. Agents failing due to any internal
or external disruptions have to be located and rescued. Often finding failed agents may
give an insight into the disruptions that caused them to fail in the first place, whether it
be due to territorial birds damaging the aircraft, entanglement of flight equipment with
foreign materials, or some other cause.

Location data is usually from active location broadcasting equipment that is present
onboard the agents. In several cases, the agent may be lost in the vicinity of where it last
broadcasted its location from. Swarm agents may collect this information and home in on
the location. Based on the accuracy of location equipment, a switch can be made to visually
search the area to locate the fallen agent. In case an active location is no longer available
due to loss of critical flight power, triangulation methods can be used. Based on swarm
formation, the nearest neighbors of the fallen agent can provide a rough area in which the
probability of agent crash is highest. Visual search patterns may be used to further refine the
search. Agents can be equipped with location tagging solutions that run on independent
power such as Apple AirTags [113] or other similar products. These are light and low-cost
sensors that can be added to the agents externally. They trigger location alerts using other
active equipment present nearby such as cellular towers, mobile phones, and modems to
find the agent. UAV target rescue scenarios are usually application-specific and combined
with target search scenarios such as in disaster management. Since the goal of this study is
to examine approaches for generalized resilient UAV swarms, developments are necessary
to facilitate retrieving fallen agents. There is a lack of research on the use of swarm agents
to recover fallen agents. Due to the nature of operational space, it is often necessary that
other agents with heterogenous capabilities are required. For example, in scenarios in
which a swarm contains both UAVs and unmanned water surface vehicles (UWSVs) such
as in [114], if the UAV agent fails, the water surface agents take up the responsibility of
recovering the fallen agent. On the ground, an unmanned ground vehicle (UGV) can be
deployed to try and recover the lost UAV agent. Apart from the physical recovery of agents,
there should be re-connectivity protocols in place that attempt to establish connections with
lost agents that have been found on the ground.

2.4. Security

Swarm security is divided into two main categories. Physical agent security and
protecting the swarm from cyber threats. Both are discussed in the following sections.

2.4.1. Physical Security

The physical security of agents deals with the detection of threats that might physically
impede swarm progress. Additionally, defense or escape countermeasures should be
designed as part of securing any multi-agent system. The counteraction from swarm agents
is a response of the agents once a threat is detected and can include the following.

• Counteraction of UAV swarms against malicious agents trying to take down agents in
the swarm

• Counterattack of UAV swarms against malicious agents trying to enter a
restricted airspace

In either case, a threat classifier is needed for UAV swarms to detect and recognize
potential threats. One defense approach to incoming malicious agents is to engage a
swarm of counter-attack drones to intercept intruders. The approach by [115] follows a
similar method by deploying a swarm of drones that approaches the intruder UAV. The
deployed defense agents form a cluster around the intruder and restrict its movement
while attempting to herd it to a non-threatening location. The assumption is that the
enemy agent is aware of other agents surrounding it and will take steps to prevent collision
with them. However, if an enemy agent is not equipped with such abilities, there is a
high possibility that it may collide with one or more of the defender agents and result
in damage or loss. UAV agents can also be used to jam network connections of enemy
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agents and stop their crucial operations. A GPS spoofing attack was proposed in [116]
where it attempts to take control of an enemy agent. This is considered accomplished when
it can successfully artificially specify the enemy agent’s perceived position and velocity.
By controlling the agent and providing false data it is possible to disable the enemy. For
example, the spoofer used in this study earlier demonstrated similar actions whereby it
falsely produced ascending actions on a captured UAV that was hovering. To compensate,
the agent started a descent and would have been catastrophic unless precautionary manual
control took over [116,117]. However, such solutions which involve the deployment of
additional drones for counterattack can be an expensive process considering the physical
interactions that might take place among these agents. Replacement and repair of damaged
defender aircraft can be costly. Such approaches should be deployed only, when necessary,
when the main swarm is deemed incompetent to defend itself. Other solutions exist that can
be accommodated onboard existing UAVs without the need for additional agents. Enemy
agent ability jamming and evasive maneuvers are often advised in UAV swarm defense [97].
For recognition of enemy agents, detection methods are necessary, especially to differentiate
between swarm agents and foreign agents. While this can be done using software in-loop,
network recognition, and unique hardware identifiers, vision-based frameworks are also
being studied. For example, ref. [118] uses a vision-based object detection method backed by
deep learning to detect and track a potential enemy UAV. In addition to detection, a tracking
system is implemented to keep the detected agent in a local bounding box and follow it.

2.4.2. Network Security

A large portion of control tasks for UAVs is dependent on a network structure. Any
device, node, or link over a network is susceptible to cyber-attacks. With recent develop-
ments of malicious agents attempting to dissuade swarms from functioning, damaging
the network capabilities of an UAV swarm is the primary method of executing attacks [57].
Moreover, the remote nature of UAVs, combined with limited battery power, fast switching
routing, formation topologies, and small onboard computing power has made securing
drone networks a challenge. As with any network, FANETs are susceptible to attacks as
well, more so because of their high mobility and reduced computational powers. Onboard
agents have reduced computational power, and most of the processor load might be ded-
icated to functions such as flight, navigation, and mission tasks. Any security measures
thus need to consume as little energy and computation resources as possible [51].

Although attacks such as eavesdropping can be prevented using encryption for trans-
mission, other attacks may still penetrate UAV networks. The encryption keys must be
secure themselves to guarantee performance. Current security and management deploy-
ments assume that UAV swarms may accomplish tasks on a single charge. If refueling is
needed, the subtraction of old agents and the addition of new swarm agents should be
considered. Article [45] creates a swarm broadcast protocol that accounts for rapid changes
in swarm numbers, such as the addition of new drones. It also accounts for agents leaving
the swarm for activities such as fuel recharge. The addition of new agents may require them
to use the encryption keys used to secure network transmissions. However, challenges
to this approach include offset delays that may be caused by validating new agents, the
transmission of keys, and unstable networks interrupting the key transfer process. A loss
of key transmission could cause new agents to be unable to decrypt transmissions [45]. The
requirements of the key management scheme proposed are also similar to the IDS require-
ments discussed in the next section. A lightweight management scheme that consumes
low network and CPU resources is desirable. Secure broadcast protocols work whereby
every time the swarm changes its agent composition a new secure key is created. This
is done to prevent the old key from being used by any attackers. The new agents have
separate identifiers that recognize them to be a part of the swarm, this identifier unlocks
the broadcast packet that contains the new key. The master maintains a list of all agent
identifiers actively connected, and every time an agent sends a leave or join request the
identifier table gets updated, and a new broadcast key is sent out. To prevent offset delays
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during key sharing, agents also receive an updated copy of the identifier table. They can
then verify that the nearest neighbor is a verified agent and send the key packet. In this way,
the master does not have to send the key to every individual agent. Intrusion detection
systems are a reliable and efficient way of securing computer networks. Recent studies
demonstrate they can be deployed on UAV networks as well [119].

As with a regular IDS, an UAV-IDS is created to detect any suspicious activity on the
network and prevent its execution. Intrusion detection systems can be developed based
on behaviors or anomalies. Bio-inspired particle detection IDS can also be used [120]. An
updated taxonomy of intrusion detection systems has been conducted by the authors in
previous research [121]. The IDS monitors network traffic such as data packets, transmission
power, and routes, as well as new incoming requests from nodes.

While traditional attacks for computer networks may not directly apply here, IDS
protocols can be easily modified to suit FANET requirements. An integration with Hyper-
ledger Fabric, a distributed ledger platform, is possible to maintain unique identifiers for all
acceptable nodes thereby blocking any unknown nodes from gaining access [122]. An IDS
functionality can also be influenced by its deployment location. Typically, an IDS located at
ground control may have access to higher resources than on-board implementations. The
placement can be determined depending on factors such as the level of protection required,
the type of IDS being used, as well as resource requirements of the IDS itself. Multi-layered
IDS are possible but require additional considerations of network and node capacity during
system development. A policy-based IDS can be created that sets distinct patterns of be-
havior that are allowed whereas all others are flagged and sent to a higher-level operation
for additional examination. Several research challenges as mentioned by [106] discuss
detection latency, IDS computational costs, and implementation overheads. A solution
is required that is multi-positioned (agents and ground control both), multi-layered, and
comprehensive in terms of attack detection and mitigation. Add to that the challenges
faced by current IDS implementations, such as bottlenecks due to higher bandwidth and a
lack of concrete defense policies [123], and attack classifiers contribute further challenges
to the problem. Articles [124,125] have a rule-based mechanism for the IDS. Detection
rules for some of the most notorious attack types are predefined. The location is at the
ground station and categorizes each agent in the swarm by its alleged threat. An intrusion
report message is generated by each agent and sent to the ground station, which assists
in verifying agent status as well as any foreign agents that might seek to infiltrate the
swarm. A verification check is conducted by using anomaly detection backed by learning
algorithms trained to identify and label behaviors.

The addition of learning algorithms significantly expands the capability of intrusion
detection systems, and blockchain-supported network security has also been recently
explored as a way of securing UAV swarms. Blockchain is a peer-to-peer (P2P) distributed
ledger that is secure, transparent, and flexible. It can store data in a chain of blocks that are
tamper-proof. Smart contracts can be developed on the chain to execute specific predefined
actions. Blockchain has widespread use in security, finance, and government applications [126].
Blockchain technology is a viable solution to issues with UAV network security.

Current UAV softwarization techniques are summarized in [122] such as the wide
range of attacks on control, application, and data plane. Several proposed blockchain-
based architectures are a comprehensive solution to these issues. Figure 7 demonstrates a
simplified blockchain based method for securing low level swarms. A blockchain instance
runs on a cloud and ground-based station. Every agent in the swarm has a hardcoded
unique identifier. A state table with the agents and their identifiers is maintained by the
blockchain and synced across the station nodes. Agents validate their existence at every
iteration and the blockchain is updated accordingly. A spoofed agent with an identifier
that is not present on the blockchain is unable to join the swarm, is denied communication
services and is recognized immediately.

297



Drones 2022, 6, 340

Figure 7. A blockchain based methodology for securing UAV swarms.

Integration benefits include communication data security and transparency in node
transactions. However current blockchain technology has scaling and latency issues [127].
A proper framework choice is needed that fits the stochastic requirements of UAV swarms.
The first step is the selection of an appropriate consensus algorithm for the blockchain
itself. Fast consensus algorithms instead of proof of work are required. Article [53] rec-
ommends PBFT (practical byzantine fault tolerance) consensus that has a frequency of
500 Hz. Such higher frequencies can satisfy the intensive demands of routing policies,
resource allocation, and mobility management in addition to deploying secure swarms.
Article [122] in particular focuses on the security and privacy of communication links for
UAVs via blockchain-supported softwarization architecture. By ensuring the authenticity
of virtual machines in the virtual infrastructure, it is also capable of protecting against
various security threats.

Software-defined networking (SDN) is a technique that offers configurations for net-
work monitoring and performance. By separating control and data planes and providing
intelligent control to network hardware, real-time dynamic decision-making is possible.
SDN architecture features are described as vendor-neutral and agile [128]. Article [129]
examines four areas where blockchain can efficiently secure system-communication, user
authentication, device configuration, and legitimacy.

A blockchain-based SDN controller is capable of resisting several attacks that normally
plague networked systems. It is possible to integrate fast chains as middleware between
the control planes and infrastructure layers. Blockchain ledgers can be used to verify agents
in a swarm as well, and a lightweight implementation can hold identifiers for all agents in
the swarm. Any additional deployments are checked with values present in the blockchain.
It would be difficult for malicious agents to gain access as only agents who are keyed
into the blockchain will be allowed to be a part of the swarm. Applications such as those
in [130] generate a blockchain receipt for each data record that a drone stores in a traditional
cloud server. Labeled as “DroneChain”, drone data uploads are captured as a blockchain
transaction and hashed. Such developments are easier to deploy as they can be readily
integrated with traditionally available services, such as the cloud, merely by adding an
additional layer of authentication to data that already had an established pathway. Usage of
Drones as a Service (DaaS) is also prevalent. Package delivery services are being explored
where package status and tracking data are available on a blockchain [131]. Passive tags
on customer endpoints verify packages being dropped in mailboxes. Since these records
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cannot be tampered with, denying that a package was received is difficult. Package tracking
information is available to both the customer and package sender for transparency.

Some interoperability issues with blockchain integrations do exist though. The
blockchain needs to work on network hardware that is often vendor specific and may
not support it [122]. Data latency issues exist due to a lack of efficient optimization proto-
cols between network routing and coverage protocols interacting with blockchain-provided
data sources. Computational complexity may increase due to actions such as validation and
block mining. Additional research and testbeds are needed to refine proposed solutions
into real-time deployments.

2.5. Resource and Task Handling

Resource allocation and task assignment are terms used by some researchers inter-
changeably. This is based on the premise that once a task is assigned to an agent or a group
of agents, their resources will be locked during the duration of task completion or until a
dynamic change is required in the decision-making capacity of the task assignment module.
However, not all studies incorporate higher levels into task assignments. The assumption is
that each agent in the swarm is a resource that is assigned to complete a particular task. The
problem is an interaction between resources and the environment, whereas the allocation
scheme is an incentivized function for the agents.

2.5.1. Task Assignment

UAV task assignment is an optimization problem [132]. It is needed to improve
computational efficiency and to provide faster solutions. Bio-inspired algorithms such as the
wolf pack algorithm (WPA) have been studied in great detail due to their success in reaching
optimal solutions at lower time rates [101,103,133]. In a general wolf pack algorithm, each
swarm is divided into subgroups that have freedom of evolution and emergent behavior.
Sub-swarm interactions are allowed. Common parameters include maximum iterations,
population size, and the number of subpopulations. After the initial population solution
is created, the fitness function evaluates it before creating the subpopulations. These act
independently to create solutions until the termination condition, which is when the best
solution is selected from the set of candidate solutions.

Article [133] proposes a modified wolf pack algorithm called the multi-population
parallel wolf pack algorithm that performed better than traditional implementations. Their
proposed solution allows the creation of virtual sub-populations that are created on the
existing layer. This is constructed of the best-derived agents from the overall subpopulation
and does not change until the migration stage. Every iteration first optimizes the virtual
group and then proceeds to the actual populations. The individuals of this virtual layer are
distributed among the actual population and help in accelerated convergence of optimal
solutions. Results showed that up to a certain threshold, the simulations with more
subpopulations reached convergence faster than those with fewer subpopulations in a
general scenario. Improved performance was observed over the genetic algorithm and
generic wolf pack.

The wolf pack algorithm formulated in [132] dynamically changes leaders based on
certain criteria. This can be scaled to UAV agents to examine the level of computational
resources being used by each agent in the swarm at a given moment, and the agent with
the most resources available is selected as the leader. In the case that the swarm has a fixed
hierarchy, instead of leader shifting, additional tasks can be assigned to the selected agent
to create a swarm-wide balance.

Efficient task allocation can allow simple agents to accomplish relatively complex
tasks. However, the task allocation problem (TAP) is nonlinear, multi-modal, and highly
adversarial. Selecting the right agent to perform a task in the instantaneous decision
process is a challenge. Task assignment and resource allocation are interchangeable in
terms of usage and considerations for researchers. Task allocation solving algorithms can
be centralized or distributed. Bio-inspired algorithms are centrally distributed and include
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wolf pack, ant colony, and particle swarm optimization. However, they are known to be
computationally intensive particularly when the number of agents increases, and they also
show poor performance in dynamic environments [134].

Distributed algorithms are top-down and bottom approaches. Top-down approaches
decompose problems into smaller optimization problems and solve them using cooperation
schemes among multiple contributors. The study uses a fixed response threshold model
based on ant colony labor division. It addresses how individual agents determine that a
task needs to be performed and how the swarm as a whole exhibits functionality based on
different tasks with varying complexities.

Each agent has individual capabilities and a response threshold to tasks. Each task
has a stimulus that motivates agents to take the task. Once the task stimuli cross the agent
threshold, the agent begins the task. If an agent stops the task, the task priority increases,
thus increasing the environmental stimuli.

Article [135] summarize the similarity between ants and a group of UAVs performing
tasks. Because of the similarity in their distributed command structure, FRT models are
ideal for implementation in UAVs encouraging emergency biological swarm behavior
that performs tasks efficiently. Like other bio-inspired algorithms, PSO is also a good
candidate to use for task assignments. Article [136] improves on it to overcome the deficits
of the original PSO method as it can only be used for continuous space optimization. The
improved PSO algorithm divides the swarm into overlapping subgroups. Each particle
corresponds to an agent UAV. The second dimension is the number of tasks that are assigned
to the swarm. A fitness function is created to evaluate the particles and reach the local
solution. These steps are repeated until a termination stage is reached or the max iteration
number is reached. However, the number of tasks cannot be assumed as constant. Actual
task assignment problems are evolutionary. Factors such as fuel constraints, threats, and
mobility have to be considered. These may vary across situations thereby varying the
assignment too.

In cases where ground station services are readily available for swarms, the stations
can have their strategies for task allocation in addition to decision models on the agents
themselves. Both work in coordination to assign and select tasks. Cooperation frameworks
combine them to provide efficient task servicing. Implementations such as [137] integrate
multi-layered decision models for tasks. These models consider base station capacities to
expand drone task maps from onboard to ground control.

Station strategies are examined such as round robin that distributes tasks cyclical to
available agents. However, such a simplified strategy may have offsets in agents returning
task results as well as bottlenecks in task queuing. Complex decision models consider
multiple parameters before an allocation is made. Agent status strategy examines the
well-being of an agent in terms of remaining fuel, network strength and proximity to other
agents, and ground control before assigning a task.

Article [137] relies on the agent’s ability to handle requests. One is distance-based
and the other is reward-based. Common factors in both to be considered are agent battery
life, the distance between client and drone (in delivery to client specific scenario), and
environmental factors such as visibility and pressure. In tasks that deal with delivery to
client scenarios such as in [137], the drone can be in either one of the four states: at the
station, on route to the client, serving the client, or back at the station.

2.5.2. Resource Allocation

The allocation problem balances shared resources among a group of swarm agents.
Each task that a swarm carries out such as path planning, target detection, or surveillance,
requires a combination of onboard and ground control resources and computation time.
Inefficient task queuing can result in bottlenecks and delays that may damage sensitive
operational parameters such as target detection within a particular time frame or instanta-
neous formation reconfiguration. Multiple functional hardware elements can be combined
to make modules that combine capability as well as attempt to solve the resource allocation
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problem. A novel system proposed in [138] provides a radar module for communication
and target detection. It also attempts to solve the resource availability problem in UAVs
using a learning-based method to optimize resources. The input parameters are channel,
power, and beam resource. A reward scheme is provided to incentivize agents when
they select a particular resource, thereby freeing up other resources. Application-specific
scenarios such as the one used in [139] examine offloading of computation-intensive tasks
to and from edge computing servers. UAVs are used to provide flexible computing services,
where such a process can be used to offload intensive UAV tasks such as image processing
and target detection in videos to centralized facilities rather than being processed on board.

2.6. Agent Property

The agent property component focuses on individual agents in the swarm. It is possible
to increase overall swarm performance by modifying individual agent capabilities [140,141].
The easiest way to do this is to introduce swarm heterogeneity. Heterogeneity is defined as
components of a system that are of dissimilar composition or properties. Heterogeneity
may be imbibed in a multi-agent system by using a variety of features. The following
studies focus on performance effects on a mission by the inclusion of heterogenous agents
in a previously homogenous swarm [140–142]. There is a marked increase in performance
observed by the introduction of varied agents. This performance might be in terms of time
taken to complete tasks or an increase in another measurement metric used to measure
swarm resilience. Our previous research provides a classification system for swarms labeled
as heterogeneous:

a. By operational space of agents
b. By nature of agents
c. By hardware of agents

In addition to aerial spaces, other varied operational spaces for the unmanned vehicle
in a swarm may include ground surfaces, water surfaces, underwater, or even underground.
Article [4] deploys a heterogenous team in an enclosed environment. The team comprises
robots classified as heterogenous by their operational space—an UGV and an UAV. The
authors mention how each vehicle brings different capabilities to the swarm. The UGV
is autonomous whereas the UAV is fast and provides greater motion flexibility. The UAV
can fly over obstacles that the UGV cannot cross. Challenges to the deployment of such
hybrid swarms are also mentioned. Air ground coordination and navigation are the
primary challenges. Deployment of such swarms is not limited to enclosed environments
only. Indeed, a wider operational space is available by the inclusion of agents on the
ground, water surfaces, or even at different altitudes in the air. Current deployments of
heterogenous agents have shown a marked increase in resilient behavior [140–142]. Such
swarms can be single or multi-space or heterogonous by nature or have hardware capability.
In pursuit–evader situations, the pursuit UAV often needs to be agile and lightweight to
be capable of faster flight speeds than the target UAV. However, a swarm that features a
mix of lightweight pursuit-capable agents along with heavier support agents that carry
additional equipment needed to support swarm operations is ideal. A military purpose
swarm such as the one in [143] where a mix of differently capable agents is used can be used.
Moreover, experiments by [141] observed a marked increase in swarm responsiveness to
external stimuli due to the inclusion of fast agents in swarms. Benefits are observed across
the whole range of UAV swarm components. A hierarchical structure of mixed agents
described by [144] includes high-altitude fixed-wing aircraft providing communication
and sensing support to a group of low-altitude quadcopters. They also note a difference in
computational resources, energy consumption, and communication systems among the
agents. The possibility of evolving capabilities among heterogeneous swarms has also been
observed. Implementing a different characteristic trait by modifying operational parameters
can change the way homogenous agents behave thereby allowing them to function better.
A change in the allowable range that some swarm agents can move from a fixed ground
target can allow them to become less cautious of external disruptions, thereby exhibiting

301



Drones 2022, 6, 340

different behavior. A coordination scheme by other non-modified agents to balance tasks
and resources is observed in such scenarios. The addition of differently capable agents
can also provide complementary capabilities [145]. Homogenous agents in a swarm may
have a particular weakness that may easily bring the whole swarm down. Such issues can
be varied such as bugs in the control system or routing protocols, detection and tracking,
or communication range. Such issues can be solved by introducing agents that might fix
such gaps in the overall swarm properties. For example, a relay drone that possesses extra
hardware to support multiple communication bands can aid in communication gaps and
delays. A similar deployment is described in [146], where some robots in the group have
higher sensor payload, processing power, and memory capacity. These are labelled as
leader robots, whereas child robots have more limited resources. These child robots rely
on leader robots for tasks such as localization. Data from the child robots can be used
for sensor fusion, global pose, and location estimation, which can then be used to modify
the swarm movement. The proposed distributed leader-assisted localization algorithm
can provide accurate localizations for child robots even when they are beyond the sensing
range of leader agents.

Application-specific improvements such as those in [145] show how a richer dataset
is created when a micro aerial vehicle (MAV) collaborates with an UGV in the creation of
detailed maps. The MAV recorded the top view dimensions whereas the UGV accounted
for the side view spread. Added considerations for implementation need to be accounted
for in this type of scenario though. Figure 8 shows how an UAV-UGV coordination can
produce higher detailed maps. The UGV maps the ground level dimensions while the UAV
maps the top view.

Figure 8. A multi space unmanned vehicle swarm working a mapping mission in tandem.

A study by [147] mentions how most current mission planning and control strategies
are for homogenous systems primarily. The added dynamics for different operational
spaces that the hetero swarm will be exposed to must be considered. For example, an
UAV-UWSV swarm needs to consider air and water environments to accommodate all
vehicles. Agent support and coordination protocols need to be updated as well. Marsupial
platforms such as [148] use water surface vehicles to recover and recharge UAVs.

Cooperative coevolution algorithms that support the evolution of heterogenous sys-
tems suffer from scalability issues. This can be overcome by creating partially heteroge-
neous systems called hybrid systems where groups of homogenous subswarms are present.
Each subswarm has identical controllers. By controlling the agents that need to be evolved,
the learning scheme improves scalability [149]. The inclusion of heterogeneous agents is
sometimes considered no more than just an upgrade to existing swarms, but it is a neces-
sity to aid in the development and evolution of resilient behavior in multi-agent systems.
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Despite the more challenging implementation considerations and a change in development
pipelines, the possible benefits are significant.

2.7. Resiliency Evaluation

Cyber-physical systems need testbeds for simulations before real-world deployments.
However, due to the extreme software-hardware interdependence, designing them is a
challenging task. UAV swarms are among those systems that require thorough testing but
are difficult to test in controlled environments. Simulations cannot mimic the varied and
extreme variables they might face [150]. Resiliency assessment is a process of observing
and evaluating the resilient behavior of UAV swarms to disruptions. An evaluation metric
system is needed to accurately recognize performance and its lack thereof. It is important
to devise feedback systems and metrics to measure resilience performance in the above
modules. Real-time feedback loops may allow decision-making models to follow an
iterative process in creating better outputs. Metrics created to evaluate system components
such as signal strength, target detection times based on varied inputs, and fuel saved based
on optimized path planning can provide insights and recognize tradeoffs.

Evaluation metric design is a less explored branch. It is a strategic process for eval-
uating multi-pronged decision models by measuring individual decision branches and
quantifying their outputs into a single value. Article [151] cites a flaw in the creation of
resilience evaluation metrics. Metrics often use the initial swarm performance as a baseline.
This may not be accurate, as certain onboard systems may need more time to exhibit full
performance capacity. The approach by [151] introduces variables that provide free space
for missions. By relaxing the condition that the swarm has to return to performance before
it is attacked, the authors argue that a flexible baseline that determines whether a system
is performing is needed. The swarm may have to take certain actions during the attack
process such as sacrificing a certain agent or reducing the number of agents assigned
to cover an area after an attack takes place. Article [151] lays out preliminary dynamic
evaluation parameters.

The second problem is that these metrics often use network connectivity as a basis of
evaluation. As long as the swarm maintains a connected state in terms of its required signal
strength or coverage, the swarm is deemed resilient. However, the presence or absence of
network and communication capabilities alone cannot determine the robustness of swarms.
Time values for the recovery process should also be measured. For example, in the case
of an attack scenario on a swarm described by [151], there are a few issues that the article
does not take into account:

• The swarm does not check for agent wellbeing after it determines that the attack
has ended.

• In the case that an agent is lost, there are no search and recovery procedures.
• Mission progress may be lost when swarm control completes task re-assignment. In

this case, depending upon the scenario tasks such as localization, area decomposition
and data collection may need to be restarted after the loss of data is examined.

A basic evaluation metric is the one proposed by [152] which measures performance
loss after a disruption with the time it takes for the system to return to normal levels.
This creates a baseline through which preliminary system performance can be maintained.
Additional application-specific constraints can be established. On the occasion that an
agent is lost, the time taken for the mayday signal of the agent to reach central command
can be measured along with the time it takes for other agents to locate the lost agent
and deploy rescue procedures. A secondary decision process is started where probability
models determine if it is safe to try and locate the lost agent or proceed with the task. If
the decision to proceed is made, the model then decides if additional agents should be
deployed to make up for lost agents or if task reassignment should distribute the workload
to other agents. The fundamental metric here is the time value which is measured for every
decision to be executed. Multiple time values can be fed into a measurement model to
produce one time-based value of system performance.
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Article [13] represents resiliency heuristics that are important building blocks of
evaluation metrics. Additionally, they note how heuristics complement each other, with
some becoming increasingly efficient if others are present. They define these heuristics as a
“function of the type of disruption, the type of system being architected, and the type of
resilience needed”. These heuristics act as a support framework for action statements that
can be framed for specific measurements. For UAV swarm systems, they can be collision
avoidance, localization and navigation, and fuel discharge rates.

The types defined by them can also help program system responses to a particular dis-
ruption. For example, in case an agent fails, additional agents should be on standby to take
over the task. Simulation using metrics should be all-encompassing. Researchers develop
fast algorithms for changes in swarm formation such as in [60] where computationally
efficient algorithms for coverage and flocking are developed. However, their robustness
test fails to consider scenarios where additional agents are added to the swarm to make
up for lost agents due to disruptions, thereby changing the number of active agents in the
swarm. A time-based metric that measures system reaction to the coverage problem is
ideal in this case. Accident model metrics such as in [153] can lead to new insights into
operational tradeoffs. Section 2.1.1 mentions one such balance between coverage and con-
nectivity. A “slider” metric designed into control algorithms can add autonomy in decisions
related to the same processes. Article [13] mentions how such tradeoffs can be recognized.
The measurement framework they present is comprehensive and accurately summarizes
resiliency metrics into time and cost functions. Additionally, integration into system design
must be completed. A time metric that measures the amount of time it takes for an UAV
swarm to recover from an attack should have feedback from agents that were affected. If
the agent assures its wellbeing, the time measured should be reconfiguration time only. If
the agent is unresponsive, the time measured should be the total of reconfiguration plus the
time it takes for an additional agent to be deployed from the base. This can be an indication
measurement of the adaptability of the system.

Application-specific descriptive metrics are usually designed by researchers to evalu-
ate their respective research. For example, path planning and collision avoidance [18] have
metrics such as route length, number of crashes, and frequency of route regeneration. Such
metrics scale well in terms of interoperability. However, some specific metrics might not
scale due to features being absent in other the research domains being compared. Learning-
based systems have different evaluation criteria than game theoretic methods. Similarly,
resilient methods for evolutionary algorithms cannot be compared with routing protocols
that make static assumptions during the planning stage. If the metric for resilience evolu-
tion is based purely on performance over time, let p(t) be the desired performance when no
disruptions exist. When a disruption occurs in time td, the performance function reduces to
p(tr). Recovery rate is defined as the amount of time taken for the performance function to
go back to the original level. Methods to measure the resiliency of interdependent systems
based on time and performance scales have been proposed [154]. A comparison metric that
compares system data before and after a disruption takes place is also required. A survey
conducted by [155] in 2019 shows the lack of research for applying metrics in UAV swarm
resiliency. They suggest the development of a metric that reflects differences between
performance after a single disruption event compared to the expected performance in the
absence of disruptions.

Current metrics are not suitable for decision-making when it comes to completing a
mission. The ability to compare current swarm performance with standard performance
is missing [155]. This can help decide if the mission should be continued, put on hold,
or aborted completely. Article [155] also highlights the necessity of a resilience metric by
citing reasons similar to those mentioned in this section. It recognizes shortcomings in
current studies and proposes a resilience evaluation method for UAV agents due to external
malicious disruptions. Essentially this can be labeled as a network-based approach to
measuring UAV swarm security because it does not consider the failure of nodes due to
malfunctions other than an attack. However, there are a multitude of reasons that a node
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can fail other than an attack. There can be failures of agents in areas where they are not
under threat from external enemy agents. Such failures include collision with obstacles,
other agents and fuel, and communication issues.

The framework described in [156] considers only the number of swarm agents avail-
able at a given moment in time due to an attack. Current position, speed, fuel, and
availability of secure resources are taken as inputs. The verification engine labels vul-
nerable agents and herds other agents to safety. Considering a wide range of inputs can
substantially improve the accuracy of solvers to label threats as they see them, however,
there is an increase in computational time taken to reach this decision. Furthermore, the
sacrifice of several agents should be considered. Depending on hardware and location,
agents may be difficult to replace and it may be an expensive process without some recovery
plans in place.

Similar to the need for dynamic programming in swarm operations, a flexible re-
silience assessment is beneficial. One such approach is used by [157], where dynamic
assessments do not use a fixed set of metrics. Rather, the evaluation parameters change
depending on mission progress across the timeline. Article [157] divides the process into
four parts, namely, to determine the mission objective, select evaluation attributes, propose
an evaluation method, and obtain results. Known parameters of the mission and envi-
ronment are collected in the first stage. Predefined evaluation attributes for the collected
data are selected. These attributes are added to a dynamic resilience method as constraints
for the problem. Evaluation results are obtained which can then be used as a frame of
reference for simulations and actual flights. The dynamic resilience method dictates that
the selected evaluation attributes determine the evaluation methods. Here the goal is to
preserve original data when doing so. Different attribute selections will result in a varied
method and thereby different results.

Analysis of mobility model performance impacts on mobile ad-hoc networks has been
proposed by researchers in as early as 2015 [158]. They mention the need for an accurate
evaluation of how mobility models affect routing protocol performance. Correctly deduced,
any conclusions drawn on performance based on simulations developed and measured
using incorrectly developed metrics will lead to errors. Metrics for the mobility models
described are network diameter, the average number of components, average coverage,
and average path length. Routing protocol metrics include end-to-end delay and routing
overheads. While naming conventions across research might be different, for network and
routing, an essential idea of network health needs to be developed. This can be deduced
from the number of individual nodes in the swarm. Each node is an UAV agent that is
actively participating in swarm activities. Path lengths are measured and compared, and
the success rate and time of delivery for a data packet following each path should be noted.
For network coverage, signal strengths at proposed network diameters should be measured
for expected versus actual values.

3. Open Issues and Future Research Directions

This section addresses current open issues and future research directions related to
UAV swarm resiliency. Swarm dynamics are expected to further evolve with advancements
in the field of UAVs as well as their associated peripheral equipment. Future developments
may resolve some of the issues that are prevalent in current swarm deployments, whereas
new issues may emerge.

With the gradual implementation of networks beyond 5G, the inherent ability to
communication may upgrade UAV swarm networks in a manner that they are more
efficient and secure. 6G networks are envisioned to address issues in node-based networks
such as latency, power usage, and transmission quality. Upgrades to infrastructure such as
the non-terrestrial components for 6G networks can aid UAV communications as well as
make use of UAV swarms to aid in further extending the range and strength of available
communication facilities [159]. These upgrades may naturally apply to any devices that
use the new protocols as well, with sectors such as UAV swarms benefitting greatly.
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Other techniques being explored such as the use of ground-mounted lasers to recharge
UAV agent batteries or wireless power transfer methods [36] may solve the low power issue
that is present in almost all small- to medium-scale unmanned aerial platforms. Future
exploratory studies are needed to know how improvements in such high-priority areas may
improve resiliency in swarms. Exploration of UAV swarms for application-specific purposes
can also lead to greater insights into UAV swarm resiliency needs and solutions. UAV
swarms have huge potential applications in surveillance, disaster management, remote
sensing, SAR, agriculture, and ecology monitoring, thus novel applications envisioned for
UAV swarms may open up further resiliency requirements for the swarms expected to
work in those environments.

Similarities exist between collision and obstacle avoidance in their interchangeability
and merging. However, these two issues need to be examined independently by focusing
on their definitions. While collision avoidance focuses on maintaining a safe distance
between swarm agents, obstacle avoidance deals with mechanisms to avoid in-path static
and dynamic obstacles. A similar research gap was noted in swarm coverage in terms
of network and area coverages. While this study addresses the coverage of operational
space separately into area coverage and network coverage, most other investigations do
not. While network coverage addresses the positioning of agents in an operational space
such that they maintain a standard connection strength at all times, area coverage focuses
on distributing swarm agents to cover the maximum area while making assumptions
about communication capacity [48]. The coverage type is often selected depending on the
application-specific uses of the swarm, however, resilient measures are needed in both.
Certain methods are being developed for UAV swarm network security leading to improved
resiliency. SDN and blockchain to secure UAV networks are still in the nascent phase and
under research or in the simulation phase. SDN has been widely applied to fixed networks,
but it has challenges when being implemented in MANETS and FANETS [53]. Routing
protocols continue to improve in dealing with the issue of intermittent connections due to
frequent changes in network topology [9]. Dispersed research for resilience engineering
for various modules in UAV swarms might be effective for particular scenarios, however,
it might be difficult to merge with other modules that are a part of a different study.
For example, it is not easy to combine resilient routing protocols with counter-defense
mechanisms for physical agent safety against external malicious agents.

Every resiliency integration has potential weaknesses. Blockchain has issues with
deployment and latency, whereas multiple decision process models for path planning,
navigation, and obstacle avoidance have computational cost and delay problems. There is
a development need for comprehensive testbeds and simulators for the testing of multiple
resilient framework interactions with each other. Current simulators have hardware or
software limitations, lack features, or face interfacing issues [150]. There is also a gap
between developed protocols and the availability of synthetic data to test them on. All of
these problems need to be addressed before a truly resilient swarm can be created.

4. Discussion and Conclusions

This study presents a systemic breakdown of UAV swarm components that affect
overall swarm resilience and discusses current research trends. Although previous studies
and experiments have attempted to address major challenges in UAV swarm research,
there are still prevailing problems that warrant future research before swarms can be
considered truly resilient. A general trend is observed where researchers often focus on
one facet of UAV development to create resilient behavior but neglect the rest. Integrating
multiple such developments is a novel challenge. Thirty percent of the research examined
mentioned that one or more components of swarm resiliency research was beyond the
scope of their study. Researchers often fail to consider all disruptions that might affect
their swarm implementations, choosing to focus on only some instead. This makes system
behavior unpredictable to unanticipated disturbances. Additionally, the lack of standard
resiliency evaluation metrics makes it difficult to compare system performance across
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varied implementations. Multiple studies do not accurately design feedback systems
in place. UAV swarm applications are increasing rapidly. Performance efficiency and
reduction in mission completion time are two major factors that promote multi-agent
systems. Heterogeneous agent swarms acting in multiple operational spaces, (UAV-UGV,
UAV-UWSV), etc., further increase the scope of applications. This recognizes the need for a
comprehensive resilient swarm solution that is built from the ground up while taking into
consideration all of the components discussed above. This study creates an identification
and classification taxonomy for components vital to UAV swarm operations. Analysis
of the current literature gave insights into the research focuses over the years, as well as
current trends in publishing. Research gaps in the current implementations of resiliency
in UAV swarms are identified and set the groundwork for future work toward building
resilient swarms.
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Abbreviations

ABS Aerial Base Station
BSA Backtracking Search Algorithm
CNS Communication, Navigation, Surveillance
DTRP Dynamic Topology Reconstruction Protocol
DaaS Drones as a Service
FANET Flying Ad Hoc Networks
FOA Fruit fly Optimization Algorithm
GNSS Global Navigation Satellite System
IDS Intrusion Detection System
IMU Inertial Measurement Unit
MANET Mobile Ad hoc Network
MAS Multi Agent system
MUSCOP Mission based UAV Swarm Coordination Protocol
MAV Micro Aerial Vehicle
MBCAP Mission Based Collision Avoidance Protocol
PAMTS Profit Driven Adaptive Moving Target Search
PSO Particle Swarm Optimization
P2P Peer to Peer
PBFT Practical Byzantine Fault Tolerance
QR Quick Response
RSSI Received Signal Strength Indication
ROI Region of Interest
SAI Surveillance Area Importance
SINR Signal to Interference plus Noise Ratio
SAR Search and Rescue
SDN Software Defined Networking
TAP Task Allocation Protocol
UAV Unmanned Aerial Vehicle
UWSV Unmanned Water Surface Vehicle
UGV Unmanned Ground Vehicle
VANET Vehicular Ad Hoc Network
WPA Wolf Pack Algorithm
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Abstract: Distributed task scheduling is an ongoing concern in the field of multi-vehicles, especially
in recent years; UAV swarm performing complex tasks endows it with new characteristics, such
as self-organization, scalability, reconfigurability, etc. This requires the swarm to have distributed
rescheduling capability to dynamically include as many unassigned tasks or new tasks as possible,
while satisfying tight time constraints. As one of the most advanced rescheduling methods, the
Performance Impact (PI)-MaxAss algorithm provides an important reference for this paper. However,
its task exchange-based strategy faces the deadlock problem, and the task rescheduling method
should not be limited to this. To this end, a new distributed rescheduling method is proposed for
UAV swarms, which combines the local task reordering strategy and the improved task exchange
strategy. On the one hand, based on the analysis of the fact that the scheduler is unreasonable for
individuals, this paper proposes a local task reordering strategy denoted as PI-Reorder, which simply
adds the reordering strategy to the recursive inclusion phase of the PI-MinAvg algorithm, so that
unassigned tasks or new tasks can be included without relying on the task exchange. On the other
hand, from the phenomenon that two or more vehicles occasionally get caught in an infinite cycle of
exchanging the same tasks, the deadlock problem of PI-MaxAss is analyzed, which is then solved
by introducing a deadlock-free task exchange strategy, where some defined counters are used to
detect and isolate the deadlocks. Then, a rescue scenario is used to demonstrate the performance
of the proposed methods, PI-Hybrid compared with PI-MaxAss. Monte Carlo simulation results
show that, compared with PI-MaxAss, this method can not only increase the number of allocations
to varying degrees, but also reduce the average waiting time, while ensuring deadlock avoidance.
The methods can be used not only for the secondary optimization of the existing task exchange
scheduling algorithms to escape local optima, but also for task reconfiguration of swarm tasks after
adding or removing tasks.

Keywords: performance impact method; multi-agent scheduling; task rescheduling; distributed
method; deadlock problem; search and rescue; UAV swarms

1. Introduction

In recent years, UAV swarms have attracted much attention due to their low cost,
scalability, wide-area distribution, etc. [1–3]. A team of homogeneous or heterogeneous
specialized UAVs can cover more ground and be more resilient to failures than a single
all-purpose UAV [4]. They have broad application prospects in post-disaster search and
rescue, pollution traceability, pick-up and delivery, logistics, and any scenario that requires
many urgent jobs to be completed in a minimum time by multiple UAVs. Different from
simple clustering behavior, which can be achieved with a stigmergy-based approach, the
complex tasks cannot be accomplished by a swarm without the assignment of tasks and
the arrangement of their timing, that is, multi-vehicle scheduling. It is nothing new, but the
swarm boom in recent years activates it again [5,6], and endows it with new characteristics,
such as self-organization, scalability, reconfigurability, etc.
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Multi-vehicle scheduling is a proven NP-hard combinatorial optimization problem;
therefore, obtaining the global optimal solution is computationally intensive [7]. Earlier
studies used a centralized approach to generate and distribute plans for all vehicles by
using a central server capable of gathering system-wide information (situational awareness),
either on the ground (the fleet’s ground control terminal) or on one of the vehicles selected
as the master. In this approach, the overall objective function of the problem concerned can
be explicitly minimized or maximized based on the collection of all vehicle information on
a central server. Therefore, the main advantage lies in the ability to optimize the overall
objective function (and thus obtain the approximate optimal solution) by some heuristic
algorithms (such as genetic algorithm, ant colony algorithm, etc.). However, there are
several disadvantages [8]: First, the computational requirements are high because the
computational operations are placed on a central server for global optimization of the
multi-vehicle scheduling problem; second, each vehicle is required to communicate with
the central server, and all vehicles need to communicate their situational awareness (SA)
to the central server, which will bring a heavy communication burden. Third, centralized
approaches are prone to single points of failure.

Given the individual low cost and self-organization of the swarm, the individual
cannot afford the computationally expensive centralized scheduling, and the central server
faces the communication pressure brought by information collection. To this end, the
swarm can only resort to distributed task scheduling [9–11], which is roughly divided
into three implementation approaches: redundant central computing, distributed parallel
optimization and market-based bidding. Redundant central computing instantiates the
centralized scheduler on each vehicle in order to achieve distribution, as well as eliminate
the single point of failure [12–14]. These approaches often assume perfect communication
links with unlimited bandwidth, since every vehicle must have the same SA. Inconsistencies
in SA can lead to allocation conflicts because each vehicle will perform a centralized
optimization using a different information set. Distributed parallel optimization divides the
global optimization problem into sub-problems, which are solved by parallel computation
to obtain higher optimization performance and computational efficiency [14–18]. These
methods rely on high-frequency and high-speed data exchange and seem to be more
suitable for gigabit connected server farms. Market-based bidding is where vehicles
bid on tasks in a greedy strategy, the higher bidder wins the task, and the suboptimal
solution can be obtained through multiple rounds of bidding [7,19,20]. In these types of
algorithms, vehicles bid on tasks with values based solely on their own SA. Even if there
are inconsistencies in their SA, they can naturally converge to a conflict-free solution. In
comparison, market-based bidding is more suitable for the low cost, self-organization, and
wide-area distribution of swarms.

The scalability of the swarm cannot be ignored; it means that the UAV can flexibly join
or withdraw. As the number of tasks and UAVs increases, it is usually too computationally
expensive to consider each combination of tasks for each UAV in order to find the optimal
solution. The computational limitations are particularly relevant in search and rescue
scenarios in which time and resources could be limited. Thus, heuristic methods are
employed to speed up the process of task scheduling while maintaining an efficient and
scalable algorithm. Consensus-Based Bundle Algorithm (CBBA) [19] and Performance
Impact (PI-MinAvg) [7,21] are two of the most representative heuristic methods, and many
methods are derived from them. CBBA is a popular solution that utilizes a heuristic
greedy strategy locally to select tasks and resolves task conflicts among multiple agents
through consensus rules. It has been shown that CBBA produces the same solution as the
centralized sequential greedy procedures, and guarantees 50% optimality, which means
that CBBA is still trapped into local optimization where each robot is striving for its own
optimal scheduling and cannot give up some local optimal tasks for the global optimization.
PI-MinAvg is an extension of CBBA, which introduces the ‘significance’ to prioritize task
assignments and updates the significance of the follow-up tasks in the respective task list
after any task is included or removed. It was shown empirically to solve time-critical
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task scheduling problems that CBBA could not, and was shown to find a lower average
start time compared with CBBA. Despite the improved performance, PI-MinAvg still
fails to solve some problems that are solvable due to converging to locally optimal but
globally suboptimal solutions. It can be seen that heuristic methods to solve combinational
optimization problems are prone to finding a local optimum and lack the flexibility to
escape from it [22]; nonetheless, a second search can perturb the first phase solution out
of local optima to reach an enhanced solution closer to a nondominated global optimum.
The procedure follows a two-phase task scheduling strategy that starts from a solution
generated with an existing scheduling algorithm that minimizes average waiting time; a
rescheduling method needs to be used in the second stage for maximizing task allocations.

In addition to the above features, the reconfigurability of swarms is meant to support
the dynamic addition or removal of tasks, which also requires the swarm to have the ability
to reschedule tasks. For instance, CBBA with Partial Replanning (CBBAPR) [20] enables
CBBA to respond quickly to new tasks that appear online. PI-MaxAss [23] can increase the
allocation number by exchanging tasks among robots and creating a feasible time slot for
unallocated tasks. Moreover, preliminary experiments running PI-MaxAss showed that
two or more UAVs occasionally get caught in an infinite cycle of exchanging the same tasks,
i.e., a deadlock problem. This phenomenon is intolerable for the swarm and will cause
the system to stagnate. Still taking search and rescue as an example, when multiple UAVs
conduct distributed scheduling, without the truncation of the algorithm, they will not be
able to jump out of the infinite loop of the algorithm, resulting in the failure to obtain and
execute the schedules in time, and ultimately leading to the failure of survivors obtaining
rescue. The paper [22] proposed a solution to limit the number of times that a robot can
remove the same task before it no longer attempts to include it. However, this method
relies heavily on the reasonableness of the maximum number of removals, with a lower
limit causing premature truncation of the algorithm, and a higher limit causing multiple
invalid bids. The above facts indicate that solving the deadlock problem arising from the
exchange mechanism and further improving the performance of task rescheduling methods
are worthy of research.

It can be seen that task rescheduling can be used not only for the secondary optimiza-
tion of the algorithm to escape local optima, but also for task reconfiguration after adding
or removing tasks. This paper proposes a novel distributed rescheduling method for UAV
swarms using local task reordering and deadlock-free task exchange. First, in terms of the
search and rescue scenario, a distributed tasks rescheduling problem is formulated as a
mathematical optimization problem coupled with some time, space or task constraints. Sec-
ond, based on suboptimal solutions obtained with a scheduling method such as PI-MinAvg,
a novel local task reordering strategy denoted as PI-Reorder is designed, which simply
adds the strategy to the recursive inclusion phase of PI-MinAvg, so that unassigned tasks
or new tasks can be included as soon as possible without relying on the task exchange
strategy (such as PI-MaxAss). Third, from the phenomenon that shifting tasks occasionally
falls into an infinite cycle, the deadlock problem of PI-MaxAss is analyzed, which is then
solved by introducing a deadlock-free task exchange strategy, where a removed task set, an
included task set, a task removed counter, a task included counter and a collection of task
included counters are introduced together to detect and isolate deadlocks. Fourth, the local
task reordering strategy and the deadlock-free task exchange strategy is integrated into
an algorithm called PI-Hybrid. Monte Carlo simulation results show that the proposed
local task reordering strategy PI-Reorder and the improved exchanging strategy PI-Hybrid
can both increase the number of allocated tasks and reduce the total task waiting time to
different degrees in the swarm search and rescue task. Pi-Reorder provides a new boost to
the result performance of the PI-MinAvg algorithm. Compared with PI-MaxAss method,
PI-Hybrid has a small improvement in the results, and overcomes the intolerable deadlock
problem of swarm distributed scheduling.

The rest of this paper is organized as follows. In Section 2, a formal description of a
typical task rescheduling problem is given and a classical distributed scheduling algorithm
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is introduced. Section 3 presents a distributed rescheduling method—Section 3.1 presents a
local task reordering strategy, Section 3.2 presents an improved task exchange strategy and
Section 3.3 presents an integrated reordering and exchange method. Numerical simulation
and analysis are presented in Section 4. Finally, some conclusions are drawn in Section 5,
followed by expectations for the future.

2. Preliminaries

2.1. Problem Formulation

Consider a variety of heterogeneous UAVs performing a search and rescue mission;
the purpose is to cooperate with each other to rescue a number of survivors discovered,
who require food supplies or medical provisions [22,24]. Each survivor must be visited by
one UAV in order to be deemed rescued. Every UAV always follows a minimum time path
to visit all of the unvisited survivors allocated to it, while not being required to return to its
initial location. The scenarios have similarities with the traveling salesman problem (TSP), a
well-known NP-hard combinatorial optimization problem. The objectives considered here
are comparable to the constraints of two variants of the TSP: the team orienteering problem
with time windows (TOPTW) [25] and the K-traveling repairmen problem (K-TRP) [26].
These objectives and constraints are applicable to a variety of scenarios such as those found
in target tracking, pick-up and delivery, logistics and any scenario that requires many
urgent jobs to be completed in a minimum time by multiple drones. One challenge in using
a swarm is to schedule them to perform tasks while optimizing one or more objectives, for
example, to minimize the average waiting time before their rescue, and to maximize the
number of rescued survivors.

To formulate the problem mathematically, a set of n heterogeneous UAVs is de-
fined by V = [v1, v2, . . . , vn], and a set of m tasks waiting to be conducted is defined by
T = [t1, t2, . . . , tm]. Each UAV vi selects its appropriate tasks from the task set T and ar-
ranges them in sequence to form its scheduler pi respecting time constraints. Whether
a task is appropriate for a UAV depends on two aspects: one is whether the UAV can
undertake this type of task, which is limited by the fact that low cost UAVs usually only
have single task capability; another aspect is whether the task is within the limited range of
the drone. The optimization objective J of the scheduling problem shown in the following
formula is to minimize the total waiting time C as much as possible under the premise of
allocating as many tasks N as possible.

J = min C(max N) (1)

where

C =
n
∑

i=1

|pi |
∑

k=1
ci,k(pi), N =

n
∑

i=1
|pi| (2)

in which the time cost of a task tk in pi, defined as ci,k(pi), is the predicted waiting time
taken by the drone to arrive at the location of the task tk. This time includes the duration
of earlier tasks in pi and travel time to and from those earlier tasks, but does not include
the duration of the execution of tk. The objective of minimizing waiting time measures the
cost of a task scheduling as the time it takes to start serving the task from the start of the
drone’s schedule, i.e., the total time the survivor must wait before being attended to. |pi| is
the number of assigned tasks for vi. Maximizing N measures the number of tasks assigned,
that is, the number of survivors rescued.

The corresponding constraints are listed below:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|pi| ≤ Ni, ∀i ∈ {1, . . . , n}
pi ∩ pj = ∅, ∀i �= j ∈ {1, . . . , n}⋂z

i pi ⊆ T, ∀i, z ∈ {1, . . . , n}
ci,k(pi) ≤ spi,K

, ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m}
hi,k ∈ H, ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m}

(3)
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where the first constraint represents the capacity Ni at which the UAV vi can perform tasks.
The second constraint ensures that each task is assigned to at most one UAV, or is left
unassigned because it is beyond the capabilities of all UAVs. The validity of scheduling is
promised by the third constraint where any scheduler’s combination is a subset of the task
set T. The fourth constraint guarantees that the time ci,k(pi) UAV vi to initiate the kth task
in its scheduler pi would be before their tasks’ deadlines spi,K

, after which it is too late for
the task to be executed successfully. It is therefore necessary to determine whether a drone
can arrive at the location of a task tk before the latest start time spi,K

. The last constraint
in the form of a compatibility matrix H expresses that each UAV can only undertake one
corresponding type of task, where hi,k is a Boolean variable.

Assume that a suboptimal solution in which additional tasks cannot be directly in-
cluded without violating time constraints is obtained with the scheduling method; the
UAVs rely on a decentralized rescheduling method to coordinate a rescue plan over mul-
tiple iterations to increase the allocation number simply. The main challenge is to reach
an optimal allocation where the allocation number is maximized and the waiting time
minimized while respecting time constraints.

2.2. Scheduling with PI-MinAvg

Whitbrook et al. [21] and Zhao et al. [7] proposed a distributed scheduling method
as an extension of CBBA; it was shown empirically to solve time-critical task allocation
problems such as search and rescue. In this method, a quantity called performance impact
is introduced to determine the priority of task allocation for the robot, which takes into
account not only the cost of task allocation, but also the impact of the task allocation
on other allocation costs in the robot scheduler. The method employs a heuristic greedy
strategy to enable robots to build a bundle of tasks sequentially and to optimize one or
more objectives indirectly with a consensus rule; for instance, the average waiting time
can be reduced by shifting tasks between robots. With PI-MinAvg, a robot does not release
a task until it is reassigned elsewhere at a lower cost; i.e., once a task is assigned it does
not become unassigned. Like CBBA, PI-MinAvg iterates over a task inclusion phase, a
communication and conflict resolution phase.

During the task inclusion phase, robots select a task at a time to include in their
schedulers until no more tasks can be added. Before including a task, the algorithm
computes the inclusion performance impacts (abbreviated as IPI-MinAvg) of all candidate
tasks tq at each position l according to Equation (4), where candidate tasks are those
compatible with vi’s capabilities and not already in pi. Here, the IPI-MinAvg of a task
represents the minimum impact of a task addition on the average waiting time of the
existing tasks in pi.

ω⊕q
(
pi, tq

)
=
|pi |+1
min
l=1

{|pi |+1

∑
z=l

ci,z
(
pi⊕l tq

)
−
|pi |
∑
z=l

ci,z(pi)

}
(4)

where ci,z(pi) denotes the start time of the task at position z in vi’s scheduler; ⊕l indicates
that the task tq is inserted into the lth position of pi. Since the inserted task tq only affects
the start times of its subsequent tasks in pi, the formula calculates the cumulative time
delay of the lth task and the tasks after it. A list to store the IPI-MinAvg of each task is kept
on each robot and is defined as γ⊕i =

[
w⊕1 , . . . , w⊕m

]
for robot vi.

After the IPI-MinAvg of all candidate tasks have been computed, vi selects for inclusion
the task whose IPI-MinAvg can improve upon the task’s removal performance impacts
(abbreviated as RPI-MinAvg) the most. The maximum difference between the RPI-MinAvg
of all tasks and the IPI-MinAvg of all tasks is computed as maxm

q=1{γi,q − γ⊕i,q} > 0. An
IPI-MinAvg of tq in pi lower than tq’s RPI-MinAvg in another robot’s task list pj indicates
that the global cost can be reduced if tq is reallocated to vi.
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w�k (pi, tk) =
|pi |
∑
z=b

ci,z(pi)−
|pi |
∑

z=b+1
ci,z(pi � tk) (5)

where b is the position of task tk in vi’s task list, ci,z(pi) denotes the time cost of the task at
position z in pi’s scheduler and pi � tk denotes pi with tk removed. The RPI-MinAvg of a
task tk is referred to formally as w�k and each robot stores the vector γi =

[
w�1 , . . . , w�m

]
.

During the communication and conflict resolution phase, robots share their schedulers
with neighboring robots and resolve conflicting allocations. As two or more robots may
be assigned the same task, the consensus procedure introduced in [19] is used to resolve
these conflicting assignments. A lower RPI-MinAvg indicates a more optimal schedule;
therefore robots with a higher RPI-MinAvg for a conflicting assignment release the task.
The above two phases are alternately repeated until the task assignment is agreed upon
within the swarm.

2.3. Rescheduling with PI-MaxAss

Turner et al. [22] proposed a distributed rescheduling method called PI-MaxAss as
an extension of PI-MinAvg. Starting from a suboptimal assignment in which additional
tasks cannot be directly included without violating time constraints, PI-MaxAss is able to
reschedule tasks to increase the allocation number simply through the cost-independent
allocation. The idea is to attribute a high cost to an assigned task when the release of this
task can permit an additional task to be inserted within the free time created. A schedule is
considered optimal and without cost if the release of any task does not permit another task
to be scheduled within the free time created.

PI-MaxAss follows the same algorithm process of PI-MinAvg, iterating over a task
inclusion phase, a communication and conflict resolution phase. However, it adopts
different definitions of inclusion performance impact and removal performance impact,
which are denoted as IPI-MaxAss and RPI-MaxAss, respectively. A task’s IPI-MaxAss is set
to be without cost if it can be included in a scheduler and satisfy time constraints.

w⊕q
(
pi, tq

)
= 0, ∃l ∀tz ∈

{
pi⊕l tq

}
, ci,z
(
pi⊕l tq

)
≤ min(sz, fi), tq ∈ ψi (6)

where the candidate tasks for inclusion in pi are formally defined as ψi = {tq|tq /∈ pi, w�q > 0},
which are those compatible with the robot’s capabilities and not already in pi, and with an
RPI-MaxAss greater than 0. The RPI-MaxAss of a task is formally defined as:

w�q =

{
U, i f tq /∈ pi
0, i f tq ∈ pi

(7)

where the formula shows that unassigned tasks are initially set to have a fixed highest
RPI-MaxAss, a constant defined as U, and the assigned tasks tk are initially set to have 0.

3. Proposed Rescheduling Method

In general, distributed scheduling is not necessarily reasonable for individuals; it
sacrifices local optimization to obtain a conflict-free global suboptimal solution while
limiting the number of assigned tasks. Moreover, the exchange strategy is prone to deadlock,
which is intolerable for the swarm and must be resolved. Below, we propose solutions to
the above two aspects. In this section, we apply two rescheduling strategies to improve
these problems: (1) One is the cost-dependent rescheduling strategy, which simply adds
a local task reordering strategy in the recursive inclusion phase of PI-MinAvg to include
unassigned tasks or new tasks directly; (2) the other is the cost-independent rescheduling
strategy, that is, the improved deadlock-free PI-MaxAss method, which relies on the task
exchange strategy without cost to create free time slots to contain unassigned tasks or new
tasks indirectly. Finally, we incorporate the task reordering mechanism of strategy 1 into
the recursive inclusion phase of strategy 2 to form a hybrid task rescheduling method.
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3.1. A Novel Local Task Reordering Strategy

For search and rescue missions, PI-MinAvg prioritizes minimizing the average start
time of all tasks, and then considers the number of tasks that can be accommodated, which
makes it difficult to further increase the total number of allocated tasks and is not the
most desirable for rescue. In order to achieve a consistent schedule, there is a mutual
compromize among agents, although each adopts a heuristic greedy strategy. This may
lead to the local scheduler possibly not being reasonable for individuals; either there is
a task to look far away, or there is a necessity to wait. In other words, on the individual
level, there is room for improvement in the local scheduler. Moreover, exchange-based
methods, such as CBBA and PI-MinAvg, have a common feature that once included tasks
that are not removed from the swarm in subsequent bidding rounds; they will only be
exchanged within the swarm and obtained by other UAVs at a lower price. Actually, it is
possible for the UAVs to form new slots to contain unassigned tasks or new tasks simply
by rearranging their respective tasks without violating time constraints. To this end, we
propose a novel distributed rescheduling method (denoted as PI-Reorder), which simply
adds the local task reordering strategy to the recursive inclusion phase of PI-MinAvg, so
that unassigned tasks or new tasks can be included as soon as possible without relying
on the task exchange strategy (such as PI-MaxAss). The following is an example where
the heuristic greedy strategy leads to non-ideal individual scheduling, and PI-MaxAss is
unable to further improve the scheduling results through cost-independent task exchange.

Example 1. An illustrative example of two mobile UAVs v1, v2 and five tasks t1, . . . , t5 distributed
in a common partitioned workspace is depicted in Figure 1a. Driven by the greedy strategy of
PI-MinAvg running on v1, the UAV will firstly select t1 due to its lower IPI-MinAvg and then
t3. Similarly, v1 will choose to undertake t2 and t4 subsequently. However, the remaining task t5
will not be selected by any UAV because neither v1 nor v2 can contain task t5 without abandoning
the existing task. Figure 1b depicts the timeline corresponding to the scheduling result in the left
figure. Intuitively, it is not possible to create a feasible slot containing t5 with a task exchange
mechanism such as PI-MaxAss. For example: v1 tries to pass t1 to v2 by raising t1’s significance,
thereby creating a slot that can contain t5; however, v2 is currently unable to take on additional
tasks, and t5 cannot be inserted into v2’s task list. That is, there is no way to obtain a boost in the
number of tasks by swapping methods.

(a) (b)

Figure 1. Illustration of task schedules in Example 1, where v1 executes tasks t1, t3 in turn, v2 executes
t2, t4, with remaining task t5 unallocated, and the rescheduling of PI-MaxAss cannot change this
situation. (a) Schedulers generated by PI-MinAvg, where the dots represent tasks, dashed lines
represent available time periods for tasks, red rectangles represent deadlines for task start, solid lines
with arrows represent task schedulers and diamond patterns represent the duration of task execution.
(b) Corresponding task timelines, where the red dotted lines indicate the tasks’ latest start time, the
diagonal boxes indicate the transition time of the drones, the color-filled box indicates the duration of
task execution.
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The following describes the basic principles of the task reordering strategy, and the
specific procedure is shown in Algorithm 1.

First, the UAV vi tries to sort its local scheduler in ascending order, according to the
deadlines of tasks in the scheduler (Algorithm 1, line 2).

p̃i = sort(pi), s.t. ∀j ∈ {1, . . . , |pi|}, sj,K < sj+1,K (8)

Second, the UAV vi updates the time costs ci,k(pi) of tasks in p̃i (Algorithm 1, line 2).
By adding tq to pi, vi will perform its remaining task assignments later. The time cost of
tasks in the task list earlier than tq is not affected by increasing tq.

Next, following PI-MinAvg, mentioned in Section 2.2, the UAV vi selects a task at a
time to include in its updated task lists p̃i until no more tasks can be added (Algorithm 1,
lines 4–8).

Once tasks are recursively included, subsequent work follows the same method as
PI-MinAvg, which is not described here.

Algorithm 1 Task Inclusion Procedure with Reordering running on vi.

1: while |pi| ≤ Ni do
2: Reorder pi according to tasks’ deadlines: p̃i ← sort(pi).
3: Update the time costs ci,k(p̃i) for the tasks in p̃i.
4: Compute the marginal significance list γ⊕i,q, ∀q ∈ {1, . . . , m}.
5: if maxm

q=1{γi,q − γ⊕i,q} > 0 then

6: Insert the task tq∗ into p̃i at position l∗.
7: Update γi,q∗ , βi,q∗ , ci,κ(p̃i).
8: end if
9: pi ← p̃i.

10: end while
11: Update significance list γi,k, ∀tk ∈ pi.

Continuing on Example 1, it is explained how the task reordering strategy achieves
the further incorporation of t5 while keeping the existing tasks t1, . . . , t4 unchanged when
PI-MinAvg and PI-MaxAss are incapable.

Example 2. Based on the schedulers {t1, t3} generated by PI-MinAvg, the UAV v1 reorders its
local scheduler according to tasks’ deadlines as shown in Figure 2a and it can create a new feasible
slot for t5. Thus, v1 is able to add t5 into its scheduler, increasing the allocation numbers further.
The task timelines corresponding to Example 1 (continued) are illustrated in Figure 2b. Intuitively,
utilizing the task reordering strategy, v1 reorders its local scheduler from {t1, t3} to {t3, t1}, despite
increasing time cost. The change can create a feasible slot for unassigned tasks, so that v1 adds a
task into its scheduler as {t5, t3, t1}.
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(a) (b)

Figure 2. Illustration of task schedules in Example 2, where v1 executes tasks t5, t3, t1 in turn, v2 still
executes t2, t4, with no remaining task. (a) Schedulers generated by PI-Reorder, where v1 creates
a new time slot to include t5 by reordering its existing task list {t1, t3}. (b) Corresponding task
timelines, where t5 can be inserted into a new time slot after {t1, t3} is reordered, although t1 can be
executed with the latest start time allowed.

The above example shows that without a swapping task, it is possible for each UAV to
further increase the allocation number by exploiting its local schedule potential.

3.2. A Deadlock-Free Task Exchange Strategy

The effect of simply using the task reordering strategy is limited, and the task exchange
strategy is still needed to obtain better schedules. Starting from a suboptimal assignment
in which additional tasks cannot be directly included without violating time constraints,
PI-MaxAss presented in [22] is able to reschedule tasks to increase the allocation number
simply through the cost-independent allocation. The idea is to attribute a high cost (RPI-
MaxAss) to an assigned task when the release of this task can permit an additional task
to be inserted within the free time created, to further increase the total allocation number.
However, PI-MaxAss occasionally falls into an infinite cycle of shifting the same task, i.e.,
the deadlock problem. In this section, we first analyze the deadlock phenomenon, and then
propose a deadlock-free task exchange strategy.

(1) Deadlock Analysis for PI-MaxAss. To explain the deadlock problem for PI-MaxAss
intuitively here an example of deadlock is exhibited in Table 1 and a similar situation
remains problematic.

Example 3. A representative example of three mobile UAVs v1, v2, v3 suffering from the deadlock
problem when bidding for six tasks t1, . . . , t6 with PI-MaxAss is depicted in Table 1, wherein
each bidding round task consensus (abbreviated as TC), task removal (abbreviated as TR), task’s
RPI-MaxAss update (abbreviated as RU) and task inclusion (abbreviated as TI) work in turn, but
the stage in which the intermediate results do not change is omitted here for simplification. With PI,
v1 obtains two tasks t5, t3, v2 also obtains two tasks t2, t4, v3 obtains the task t6 and the remaining
task t1 cannot be executed by any UAV. Next, the rescheduling process of PI-MaxAss is shown in
Table 1, where the symbol in the form of tk(c), k ∈ {1, . . . , m} indicates that tk is rescheduled to a
UAV with its RPI-MaxAss equal to c. For an unassigned task (abbreviated as Un task), such as t1,
its RPI-MaxAss is set to a high value U − n · r, where r is a decay factor; that is, each time a task is
rescheduled, its RPI value is subtracted by r. A task is regarded as an unassigned task if its RPI is
larger than a preset value such as U − 3r; that is, rescheduling is allowed for t1 at most three times.
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Table 1. Deadlock phenomenon for PI-MaxAss.

Rounds Phases v1 v2 v3 Unassigned

0 — 1 t5(0), t3(0) t2(0), t4(0) t6(0) t1(U)

1 TC t∅
1 (U), t2

2(0), t1
3(0), t2

4(0), t1
5(0), t3

6(0)

RU t5(U − r), t3(0) t2(0), t4(0) t6(U − r) t1(U)

2 TC t∅
1 (U), t2

2(0), t1
3(0), t2

4(0), t1
5(U − r), t3

6(U − r)

RU t5(U − r), t3(0) t2(U − 2r), t4(U − 2r) t6(U − r) t1(U)

3 TC t∅
1 (U), t2

2(U − 2r), t1
3(0), t2

4(U − 2r), t1
5(U − r), t3

6(U − r)

TI ~ 2 ~ +t2(U − 3r) ~

RU t5(U − r), t3(0) t2(U − 2r), t4(U − 2r) t6(U − 3r), t2(U − 3r) t1(U)

4 TC t∅
1 (U), t3

2(U − 3r), t1
3(0), t2

4(U − 2r), t1
5(U − r), t3

6(U − 3r)

TR ~ −t2(U − 2r) ~ ~

TI ~ +t2(0) ~ ~

RU t5(U − r), t3(0) t2(0), t4(0) t6(U − 3r), t2(U − 3r) t1(U)

5 TC t∅
1 (U), t2

2(0), t1
3(0), t2

4(0), t1
5(U − r), t3

6(U − 3r)

TR ~ ~ −t2(U − 3r) ~

RU t5(U − r), t3(0) t2(0), t4(0) t6(U − r) t1(U)

6 G2 t∅
1 (U), t2

2(0), t1
3(0), t2

4(0), t1
5(U − r), t3

6(U − r)
1 Not applicable. 2 No tasks have been removed or included.

According to the schedules of PI-MinAvg given in the first row of Table 1, the reschedul-
ing process of three UAVs bidding for six tasks is described in detail, which leads to an
infinite deadlock loop.

In round 1, since v1 and v2 can add the unassigned task t1 to their local scheduler on
the premise that their tasks t5 and t6 are removed, respectively, they both actively increase
t1’s RPI-MaxAss to U − r, so that t1 may be bid by other UAVs in the next round. The
RPI-MaxAss of the remaining tasks in the individual UAV schedulers remain the same
because even if they intend to remove any tasks from their schedulers, they cannot add any
unassigned tasks.

In round 2, after communicating with each other, v2 will find that the RPI-MaxAss of
tasks t5 and t6 belonging to v1 and v3, respectively, have increased. At this point, v2 has
the opportunity to bid t6 by removing t2 or t4, while t5 is not considered because it cannot
satisfy v2’s time constraints. Similar to round 1, the RPI-MaxAss of t2 and t4 need to be
raised to U − 2r, so that they can be outbid by other UAVs.

In round 3, after communication and consistency, v3 finds that v2 increases the RPI of
t2, so it can add t2 to its scheduler without removing any tasks. In the RPI-MaxAss update
stage, v3 finds that t4 can be added on the premise of removing t6, so t6’s RPI-MaxAss is
updated to U − 3r.

In round 4, v2 has to remove t2 which was outbid by v3. After removing t2, v2 selects
the task with the lowest cost among the current candidate tasks, which happens to be
still t2 here. Then, when v2 updates the RPI-MaxAss, it can still obtain t6 by increasing
the RPI-MaxAss of t2 or t4 as in round 2, but at this time, since t6’ RPI-MaxAss for v3
has reached the threshold value U − 3r, for this reason v2 cannot obtain t6 with a lower
RPI-MaxAss.

In round 5, v3 has to remove t2 which was outbid by v2. After removing t2, v3 finds
that there is a time margin to include t1, so it updates t6’s RPI-MaxAss to U− r, which goes
back to round 2 (abbreviated as G2) and gets stuck in an endless loop.
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Preliminary experiments running PI-MaxAss show that two or more UAVs occasion-
ally get caught in an infinite cycle shifting the same tasks. For a swarm system, this
phenomenon is intolerable and will cause the system to stagnate. For example, in a search
and rescue mission, when multiple UAVs perform distributed task scheduling, in the ab-
sence of algorithm truncation, they will not be able to get out of the algorithm’s infinite loop,
resulting in the inability to obtain schedules in time to carry out actions, and ultimately
causing survivors to be unable to obtain rescue. Therefore, it is necessary to find a way to
avoid this deadlock problem.

(2) A Deadlock-free Task Exchange Strategy. Ref. [22] proposed a solution to limit
the number of times that a UAV can remove the same task from its list before it no longer
attempts to include it. A removal task set Υi ∈ Z+ is created to record removed tasks, and
a counter vector �i is used to store the times each task has been removed from a UAV
vi’s task list. The precaution �i,k ≤ σ, ∀tk ∈ pi can prevent those tasks that are being
repeatedly swapped from being scheduled optimally, but it ensures that the system can
converge. However, this method relies heavily on the reasonableness of the maximum
number σ of removals, with a lower limit causing premature truncation of the algorithm,
and a higher limit causing multiple invalid bids. Here, based on the exchange mechanism
of PI-MaxAss, we introduce a removed task set Υi, an included task set Γi, a task removed
counter �i,q, a task included counter ϑi,q and a collection of task included counters Ξi to
achieve deadlock-free task exchange. The specific process is as follows:

As with PI-MaxAss, unallocated tasks are set initially to have a fixed highest RPI-
MaxAss, a constant defined as U, such that if tq is unassigned then w�q = U. The RPI-
MaxAss of assigned tasks tk are initially set to 0, such that w�k = 0.

In the task inclusion phase as shown in Algorithm 2, UAVs select tasks to include
in their schedulers until no more tasks can be added. The candidate task tq is the one
compatible with the functionality of vi and not already in pi, and with an RPI-MaxAss
greater than 0. In addition, tq either does not belong to the removed task set Υi, or it belongs
to Υi but �i,q < σ (Algorithm 2, line 4). This condition indicates that tq has never been
removed in the previous iteration, or the task removed counter �i,q is less than the set
threshold σ. The candidate tasks for inclusion in pi are formally defined as

ψi = [t1, . . . , tς], tq /∈ pi, w�q > 0, i f tq /∈ Υi or
(
tq ∈ Υi and �i,q < σ

)
(9)

If the condition in Algorithm 2, line 6, returns true for at least one position l, the
IPI-MaxAss w⊕q of tq in pi is recorded such that,

w⊕q
(
pi, tq

)
= 0, ∃l ∀tz ∈

{
pi⊕l tq

}
, ci,z
(
pi⊕l tq

)
≤ min(sz, fi), tq ∈ ψi (10)

Next, vi selects for inclusion the task whose IPI-MaxAss can improve upon the task’s
current RPI-MaxAss the most as shown in the following formula. An IPI-MaxAss of tq in
pi lower than tq’s RPI-MaxAss in another UAV’s task list pj indicates that the global cost
can be reduced if tq is reallocated to vi.

m
max
q=1
{γi,q − γ⊕i,q} > 0 (11)

After the most appropriate task tq∗ is included (Algorithm 2, line 11), tq∗ needs to be
added to the included task set Γi if tq∗ /∈ Γi, the corresponding task which included counter
ϑi,q∗ is instantiated with its initial value to be 1; otherwise, only the task which included
count needs to be incremented by one (Algorithm 2, line 13).{

Γi ← Γi ∪
{

tq∗
}

and ϑi,q∗ ← 1, i f tq∗ /∈ Γi
ϑi,q∗ ← ϑi,q∗ + 1, i f tq∗ ∈ Γi

(12)

Before the end of the task inclusion procedure, the RPI-MaxAss list, which keeps track
of which UAV is assigned to which task, needs to be updated; this differs from PI-MaxAss
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in that additional conditions need to be met (Algorithm 2, line 15). Refer to Algorithm 3 for
the specific process.

Algorithm 2 Task Inclusion Procedure running on vi.

1: while |pi| ≤ Ni do
2: w⊕q ← highest permissible cost, w⊕q ∈ γ⊕i .
3: Identify candidate tasks ψi satisfying tq /∈ Υi or (tq ∈ Υi and �i,q < σ) according

to (11).
4: for each task tq in ψi do
5: if pi⊕l tq is feasible then
6: Record the IPI-MaxAss w⊕q of tq in pi according to (10).
7: end if
8: end for
9: if maxm

q=1{γi,q − γ⊕i,q} > 0 then

10: Insert task tq∗ into pi at position l∗.
11: Update γi,q∗ , βi,q∗ , ci,κ(pi).
12: Γi ← Γi ∪ {tq∗} and ϑi,q∗ ← 1 if tq∗ /∈ Γi, else ϑi,q∗ ← ϑi,q∗ + 1.
13: end if
14: end while
15: Update significance γi,k with Algorithm 3 satisfying ϑi,k > λ or �i,k = 0, ∀tk ∈ pi.

In this paper, task tk’s RPI-MaxAss γi,k is the maximum significance change brought
by the insertion of a candidate task tq ∈ Ωi,k shifted from other UAVs in local scheduler
pi after tk is removed, where Ωi,k is the candidate tasks set consisting of unassigned tasks,
and tasks that would be released from other UAVs’ schedulers.

Ωi,k =
{

tq ∈ ψ̄i|∃l ∀tz ∈ {p�k
i ⊕l tq}, ci,z(p

�k
i ⊕l tq) ≤ min(sz, fi)

}
(13)

where ψ̄i is a list of the candidate tasks defined as follows:

ψ̄i =
[
t1, . . . , tζ

]
, tq /∈ pi, 0 < δ < γi,q, i f Ξi,k > λ or �i,k = 0 (14)

The candidate tasks follow the same constraints as the candidates in (11) with the
added constraint that the candidate task’s RPI-MaxAss is greater than δ. This constraint
is used to limit the number of reassignments permissible to allocate an additional task.
In addition, tasks that do not belong to the removed task set Υi or with a task included
counter ϑi,k greater than the threshold λ can only be updated with the RPI-MaxAss. That is,
if a task tk has never been removed, it can be freely updated with the RPI-MaxAss; if a task
tk has a removed record and the task included counter Ξi,k exceeds the threshold λ after
being included in Γi, then the task can be updated with the RPI-MaxAss.

If a task tk in pi can be replaced by two or more candidate tasks tq with different
RPI-MaxAss, the highest RPI-MaxAss is recorded. The RPI-MaxAss of tq in pi is formally
defined as

w�k (pi, tk) =
|Ωi,k |
max
q=1
{w�q − r}, tq ∈ Ωi,k, r ∈ R+ (15)

where the decay factor r subtracted is used for limiting the number of reschedules.
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Algorithm 3 Significance Update Procedure running on vi.

1: Maintain tasks in pi with the lowest RPI-MaxAss to 0: γi,k ← 0, i f tk ∈ qi.
2: Identify Candidate Tasks ψ̄i satisfying Ξi,k > λ or �i,k = 0 according to (14).
3: for each task tk in pi do

4: Create a temporary scheduler p�k
i = pi � tk.

5: Update ci,z(p
�k
i ) for tasks after tk.

6: Identify the list of candidate tasks Ωi,k according to (13).
7: Compute tk’s RPI-MaxAss w�k (pi, tk) according to (15).
8: end for

In the communication and conflict resolution phase as shown in Algorithm 4, except
for the following differences, this paper follows the same task removal process for PI-
MinAvg introduced in Section 2.2. When a task tk∗ has been removed from the UAV vi’s
scheduler pi for the first time, it will be added to Υi, and �i,k∗ is initialized to 1; otherwise,
only the removal count needs to be incremented by one.{

Υi ← Υi ∪ {tk∗} and �i,k∗ ← 1, i f tk∗ /∈ Υi
�i,k∗ ← �i,k∗ + 1, i f tk∗ ∈ Υi

(16)

Once the current round of removal while-cycle ends, the tasks just removed need to
be immediately deleted from the inclusion set Γi.

Γi ← Γi − {tk}, ∀ tk ∈ Γi ∩ Υi (17)

The corresponding task included counter ϑi,k ∈ Ξi also needs to be cleared.

Ξi ← Ξi −
{

ϑi,k
}

, ∀ ϑi,k ∈ Ξi and tk /∈ Γi (18)

For the detailed removal process of PI-MinAvg, please refer to [7].

Algorithm 4 Task Removal Procedure running on vi.

1: UAV vi forms its conflict tasks set di ← pi[βi[pi] �= i].
2: while max|di |

k=1{γ
♦
i [di]− γi[di]} > 0 and di �= ∅ do

3: Remove task tk∗ ← arg max|di |
k=1{γ

♦
i [di]− γi[di]} from pi and di.

4: Update costs ci,κ(pi) and significance γ♦i for the rest of the tasks in pi and di.
5: Υi ← Υi ∪ {tk∗} and �i,k∗ ← 1 if tk∗ /∈ Υi, else �i,k∗ ← �i,k∗ + 1.
6: end while
7: Remove task tk from the included task set Γi for any tk ∈ Γi ∪ Υi .
8: Remove the task included counter ϑi,k from Ξi satisfying tk /∈ Γi.
9: Update the local list βi(di)← i belongs to UAV vi.

3.3. The Integrated Method with Task Reordering and Task Exchange

Here, a decentralized rescheduling method for each UAV running independently
is presented, denoted as PI-Hybrid, which combines the local reordering strategy with
the modified task exchange strategy to improve optimization and avoid deadlocks. The
pseudocode of the entire iterative process is shown in Algorithm 5.

Before entering the loop iteration, the parameters Υi, �i,k, σ, Γi, ϑi,k, Ξi, λ need to be
initialized. After entering the while loop, Algorithm 1 is called to reorder the tasks in
the respective scheduler pi, and the unassigned tasks are added according to the greedy
strategy to allocate as many tasks as possible. Next, Algorithm 2 is called to try to exchange
the local task to other UAVs to free time slots for unassigned tasks. Subsequently, through
mutual communication, the UAV vi obtains the consistent assignments of its scheduler βi
and significance list γi using consensus rules [19]. This information is used to guide the
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call to Algorithm 4 to remove local conflicting tasks. The above phases repeatedly alternate
until a global conflict-free task allocation is agreed upon by all UAVs.

Algorithm 5 Distributed Scheduling Method running on vi

1: Initialize timer T ← 1 and converged← f alse.
2: Initialize parameters Υi, �i,k, σ, Γi, ϑi,k, Ξi, λ.
3: while converged is false do
4: Call Task Reordering Procedure with Algorithm 1.
5: Call Task Inclusion Procedure with Algorithms 2 and 3, in which.
6: Communication and Conflict Resolution using consensus rules.
7: Call Task Removal Procedure with Algorithm 4.
8: converged← Check Convergence.
9: T ← T + 1.

10: end while

4. Numerical Results

This section presents the numerical simulations conducted to test the performance of
the proposed PI-Hybrid compared with that of PI-MinAvg and PI-MaxAss. In addition,
PI-Reorder is also compared to independently reflect its impact on the overall performance.
Among the above methods, PI-MaxAss, PI-Reorder and PI-Hybrid are all initialized with
the PI-MinAvg solution. The results of simulations are analyzed from optimization and
deadlock-free, respectively.

4.1. Scenario and Simulation Setup

The scenarios adopted in this paper are consistent with those of the literature [7,21].
The setup uses a rescue team equally split into two UAVs rescuing two types of survivors,
who are likewise equally split into those requiring food and those requiring medicine.
Parameters related to the scenario are summarized in Table 2 and are illustrated as follows.
The UAVs are randomly distributed in 10 km × 10 km × 0 km ground space, where the
UAVs’ speeds are assumed to be constant and are set to 30 m·s−1 and 50 m·s−1, respectively.
The tasks take place in a 3D space spanning 10 km × 10 km × 1 km, with coordinates
drawn from uniform distributions randomly. The medicine tasks last for a duration of
300 s and the food tasks last 350 s. The deadlines for starting each rescue are uniformly
distributed on a timeline between 0 and 2000 s. Given the random initialization of tasks
and UAV locations and deadlines, it is sometimes impossible for some tasks to be started
by any UAV before their deadline. In these simulations, all task information is available to
all UAVs up front.

Table 2. Parameters related to the simulation scenario.

Properties Medicine Food

UAV speed 30 m·s−1 50 m·s−1

UAV initial position Random distribution in 10 km × 10 km × 0 km
Task duration 300 s 500 s
Task deadline Random distribution between 0 s and 2000 s
Task location Random distribution in 10 km ×10 km × 1 km

4.2. Results and Analysis

As elaborated here, the paper uses the Monte Carlo method to implement random
simulations, where each method is tested 1000 times for each pair of p ∈ {2, 3, 4, 5} and
n ∈ {2, 4, . . . , 16}. p is the ratio of the number of tasks to the number of UAVs, and n is the
number of UAVs.
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4.2.1. Optimization

First of all, the total allocation number obtained with four methods is compared and
analyzed, which can be said to be the most important optimization indicator. For example,
in search and rescue missions, saving one more survivor may be more important than other
things. Figure 3 depicts the allocation numbers using four methods in the same scenario.
When the proportion p is the same, as n increases, the total number of assigned tasks
tends to increase. PI-MinAvg as a scheduling method has the lowest allocation number,
and other rescheduling methods initialized with the PI-MinAvg solution all produce a
boost in the allocation numbers. PI-Reorder can increase the limited allocation number
by reordering UAVs’ local scheduler. PI-MaxAss as a typical task-swap method is able to
obtain an appreciable effect on the allocation number. PI-Hybrid has the best improvement
for the allocation numbers. Moreover, it should be explained that the deadline is randomly
distributed between 0 and 2000 s, which means that some tasks have a short random
deadline and it is impossible to complete them. Therefore, it is impossible to schedule all
the tasks in such a situation.
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Figure 3. Box plot comparison of total allocation numbers of four methods at p = 5 and
n ∈ {6, 8, . . . , 16}.

Since Figure 3 can only present the variation trend of the number of scheduled tasks
as increases and the approximate differences between methods, Figure 4 shows the box
plots of the allocation numbers under the conditions of two groups of p = 2, n = 6 and
p = 5, n = 16, respectively.
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Figure 4. Detailed comparison of the allocation number box plots for four methods at p = 5 and
n = 16. (a) p = 2, n = 6; (b) p = 5, n = 16.
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It can be seen from Figure 4a that PI-Reorder cannot increase the number of scheduled
tasks through local reordering based on the solution of PI-MinAvg, while PI-MaxAss
allocates one more task as a whole through task exchange. Similarly, PI-Hybrid’s total
allocation number is the same as PI-MaxAss. The reason for the above phenomenon is
that when the total number of tasks to be assigned is low and the number of UAVs is
small, the optimization of the PI-MinAvg solution is close to optimal, and the room for
improvement is small. At this time, since the local task switching cannot obtain a better
solution, PI-Hybrid actually works only by its task switching, which is equivalent to PI-
MaxAss. It can be seen from Figure 4b that as p and n increase, the median task assignment
of PI-Reorder increases from 66 to 69 compared to PI-MinAvg, which is due to the fact that
more UAVs have more tasks that can be chosen so that the total number of tasks for the
problem has more room for improvement. Of course, PI-Reorder that only relies on local
tasks reordering cannot obtain the effect of the PI-MaxAss method using task exchange,
but PI-Hybrid combining the two mechanisms can obtain a better solution than PI-MaxAss.
For example, the median assigned tasks increased from 73.5 to 74.

Since the solution performance of PI-MinAvg and PI-MaxAss is already very good,
it is not obvious from the improvement of the allocation numbers obtained in the above
experiments. Next, the number of times increasing allocation numbers in 1000 tests with
different combinations of p and n is counted as shown in Figure 5. Removing unnecessary
elaboration, here mainly PI-Hybrid and PI-MaxAss are compared. It can be found that,
when p is larger, more solutions of PI-MaxAss can be improved by PI-Hybrid. This is
because the larger p is, the larger the space for reordering tasks will be, and the hybrid
mechanism can achieve a better optimization effect that cannot be reached with a solo
task swap.
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Figure 5. Ratio of the allocation number increased by PI-Hybrid compared to PI-MaxAss.

Figure 6 summarizes the average increase of scheduled tasks in the improved solutions
in which the mean and standard deviation are shown. Obviously, PI-Hybrid has a good
effect on the increase of the number of allocated tasks compared with PI-MaxAss, where
the increase rate has reached about 7% when p and n are equal to 3 and 6, respectively.
When the number of UAVs increases, the space for swapping tasks is also enlarged, making
the difference between the two methods smaller. That is why PI-Hybrid has a weaker effect
compared with PI-MaxAss under the condition of n increasing but p remaining unchanged,
which can be seen in Figure 6.
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Next, let us look at another important indicator. Under the same total number of
tasks scheduled, the shorter the average waiting time, the better the method. Figure 7 is a
graph about the average waiting time of various methods to complete tasks in the same
scenarios. It is observed that PI-MinAvg has the shortest completion time because it also
completes the least number of tasks. PI-Reorder has the second short travel time, which
is also reasonable for its completed task number exceeds PI-MinAvg but not others. In
addition, carefully comparing PI-MaxAss and PI-Hybrid, whether it is the upper quartile,
the median or the lower quartile, PI-Hybrid is lower than PI-MaxAss to varying degrees,
which fully shows that the proposed method not only increases the total number of the
scheduled tasks but also reduces the average waiting time.
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Figure 7. Box plot comparison of average waiting time of four methods at p = 5 and n ∈ {6, 8, . . . , 16}.

Figure 8 shows the boxplot statistics of the average waiting time of the four methods
under the conditions of p = 2, n = 6, and p = 6, n = 16, respectively. It shows the
boxplot statistics of the average waiting time of the four methods under the conditions of
p = 2, n = 6, and p = 6, n = 16, respectively. As the number of assigned tasks increases,
the average waiting time of PI-MinAvg, PI-Reorder and PI-MaxAss also increases. It is
worth remembering that from the median, upper quartile and lower quartile of average
waiting time, PI-Hybrid is able to obtain less average waiting time while allocating more
total tasks. This performance improvement is obtained by mixing two strategies of the
task reordering and the task exchange, which is bound to be crucial for the swarm search
and rescue.
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From the above analyses, it can be seen that the combination of the local task reordering
and the task exchange can not only improve the allocation number but also have better
average waiting time.

4.2.2. Deadlock Avoidance

Another important issue addressed in this paper is to avoid the algorithm occasionally
falling into an infinite cycle of shifting the same task. Figure 9 shows the statistical deadlock
situation of different methods with various values of p, where the abscissa is the ratio
of task and UAV numbers, and the ordinate is the deadlock rate. The deadlock rate of a
method with each is its average under various conditions of n from 6 to 16, where each
situation is tested 1000 times with random initialization of UAVs and tasks.
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Figure 9. Deadlock ratio of different methods with various values of p.

It can be found that the deadlock situation only occurs in PI-MaxAss, and all the
other proposed methods do not exist in any deadlock. For the PI-MaxAss algorithm, when
p is equal to 2 or 3, its deadlock rate is very low, having not reached 1%. However, its
deadlock rate increases rapidly with the increase of p, which comes up to 6% approximately
at the condition of p = 5. This is because more participating UAVs and tasks will lead to
more conflict between UAVs, while PI-MaxAss does not consider the potential deadlock
avoidance. By contrast, PI-Hybrid is completely deadlock-free no matter what the values
of p and n are.
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5. Conclusions

Aiming at the new characteristics of multi-vehicle scheduling given by UAV swarm,
such as self-organization, scalability and reconfiguration, this paper proposes a task
rescheduling method that integrates local task reordering and improved task exchange
strategy, with the goal of secondary optimization of task scheduling suboptimal solution
and task reconfiguration. As a supplement to the task exchange-based strategy, local task
reordering is a new cost-related strategy to increase the number of allocation tasks. To
improve the task exchange-based strategy, deadlock detection and isolation mechanism are
introduced to avoid occasional task exchange falling into the deadlock problem. Based on
the swarm rescue mission, a large number of numerical simulation experiments show that
the integrated method can not only improve the number of allocation tasks but also have a
better average waiting time.

In the future, we will carry out research on scheduling and rescheduling methods
under the condition of ad hoc network communication. For large-scale clusters, we will
focus on architecture design, interaction mechanisms and algorithms. Field experiments
will be conducted in combination with the real UAV swarm system.
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Abstract: Based on the characteristics of drone swarm such as low cost, strong integrity, and frequent
information exchange, as well as the high cost of timely maintenance of traditional units. This paper
proposes a swarm maintenance method based on the reliability assessment of multi-layer complex
network missions, which combines the multi-layer complex network system evaluation method with
the group maintenance method. On the basis of considering the problem of maintenance grouping
cost, the failure mechanism of drones in different modes and the impact of drone maintenance on the
system are studied. According to the failure model of single node, the complex network method is
used to establish the swarm system’s topology model and evaluate the system mission reliability. The
maintenance grouping strategy is optimized by using the multi-objective planning of cost and system
mission reliability. Compared with the existing just in time maintenance methods, this method can greatly
reduce the total maintenance cost of the swarm system maintenance under the condition of ensuring the
high mission robustness of the swarm. In addition, a universal drone swarm mission scenario is used to
illustrate the method, and the results verify the feasibility and effectiveness of the method.

Keywords: swarm maintenance; drone swarm; complex network; system reliability; multi-objective
optimization

1. Introduction

The drone swarm has the characteristics of many nodes and complex interactions.
The completion of the internal missions of the system mainly depends on the control
structure and information exchange, which is dependent on mission networking. Drone
swarm is widely used in various fields to perform public security [1], military [2], and
industry due to its high flexibility, strong adaptability, and controllable economic cost.
With the improvement of swarm usage requirements, swarm maintenance has become
the focus of attention, and many maintenance theories and optimization design methods
are applied to this [3,4]. The research on the failure mode of the drone system in the
swarm [5] has been relatively mature. However, the concept of low-cost unmanned aerial
vehicles has been born in recent years. Under the swarm system, the problem of the drone
maintenance is no longer the primary factor limiting the ability of swarm missions. At the
same time, performing single-point maintenance on many units in the swarm according to
the timely maintenance method of traditional unit equipment will face problems such as
large maintenance magnitude and difficulty in taking into account the mission networking
connection. How to gradually transition from unit system maintenance to swarm system
maintenance has become the focus of researchers [6].

To solve the problem of swarm system maintenance, researchers first introduced group
maintenance into swarm systems based on the similarity of multi-level systems. The group
maintenance method is of great significance for ensuring system safety and restoring the
ability of multi-level systems [7]. The existing research’s maintenance models generally
conduct many analyses at the unit and system levels [8–10], group the maintenance informa-
tion at the unit level, and make system-level maintenance decisions. The general research

Drones 2022, 6, 269. https://doi.org/10.3390/drones6100269 https://www.mdpi.com/journal/drones
335



Drones 2022, 6, 269

method of unit maintenance [11] uses the unit-level failure rate to propose a grouping
strategy and combine the system maintenance cost to model the unit maintenance model.
In addition, there is a degradation model [12] used to describe intuitively. the health and
working conditions of the unit level, and then combined with the system-level maintenance
cost to carry out maintenance planning for the system. However, unlike other unit systems,
drone swarm communicate more frequently at the unit level and in the system. The swarm
network that relies on information transmission is likely to affect the reliability of missions
due to the maintenance of the unit level. The performance parameters are also closer to
the topology parameters of complex networks. It is difficult to guarantee the execution of
actual swarm missions based only on unit-level degradation parameters and system-level
cost functions. Therefore, in this study, we consider introducing complex network-related
methods to evaluate system-level reliability, As another optimization indicator for swarm
maintenance, the mission capability of the swarm is fully taken into account.

The complex network method constructs a network model of mutual information
interaction in the form of nodes and edges. According to this model, the system’s topology
structure and evolution law is studied from the perspective of the nodes, edges, and their
network evolution. Then the critical points of the system can be targeted. The system is
analyzed by vulnerability cascading effect, mission reliability, and other vital issues [13].
With the development trend of complex systems and unmanned cooperative systems in
recent years, complex network methods are widely used in swarm-like systems such as
transportation systems [14] and circuit systems [15]. At present, the complex network
methods mainly apply to cascade failure [16], seepage, phase transition [17], propagation
dynamics [18], and other mechanisms to evaluate network vulnerability [19], elasticity [20],
mission reliability and other characteristics.

To solve the optimization problem under multi-parameter constraints, the currently
recognized method in the academic circles is the multi-objective optimization theory [21].
Whether it is based on the traditional linear weighting method or the particle swarm
optimization algorithm based on the evolutionary algorithm, it has been widely and
standardized in various fields.

Therefore, because of the combination of mission capability and maintenance planning
of swarm systems, this paper proposes a maintenance method for drone swarm, which
adopts multi-objective optimization theory and a swarm system-level mission reliability
evaluation model to solve. This method provides a cognitive basis for the drone swarm
research of related projects, and also provides technical support for the follow-up more
complex cluster maintenance model research.

The remainder of this paper is as follows: Section 2 describes the mission characteristics
of drone swarm and the theoretical basis for evaluating the reliability of swarm systems
using complex network methods. Section 3 puts forward the basic assumptions of the
application scenarios for the swarm maintenance method proposed in this paper and gives
specific practical methods. Section 4 uses the drone swarm network model to verify the
feasibility and superiority of the method by comparing it with the traditional method of
timely maintenance of single aircraft. Section 5 illustrates the effectiveness of the application
of this method with a general case model as an example. In Section 6, we summarize this
paper and propose future work.

2. Preliminaries

2.1. Mission Characteristics of Drone Swarm

A drone swarm is a system unit composed of multiple drones with system mission
capabilities. However, the drone swarm is not a simple combination of numerous drones. It
also includes many structures such as data links between drones, mission network, ground
control platform, etc., as shown in Figure 1.
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Figure 1. Composition of drone swarm.

The distance between the individual drones is controlled by formation to ensure a
specific data transmission and communication capability. The ground control system or the
drone of the overall mission independently assigns the swarm mission. The submissions
are transmitted through the data link to form the mission execution. Links form an internal
mission network, and each drone performs the corresponding sub-missions according to
the assigned instructions and comprehensively completes the final mission of the swarm.

2.2. Complex Network Model of Swarm

In the theory of complex network topology, the network is composed of nodes and
edges, where edge represents the attribute parameters of edges in the form of weights.
When modeling drone swarm systems with complex networks, a drone is usually regarded
as a node, and the data link connection between drones is considered an edge. Both nodes
and edges are given corresponding attributes according to the actual swarm capability
values. Finally, transform the complex drone swarm system into a hierarchical network
model composed of interacting nodes for analysis.

Considering there are factors at different levels in the drone’s mission execution
process, such as communication interference, structural attack, mission system failure, etc.,
all of which are related to the degradation and unexpected collapse of the corresponding
system level of the drone. Therefore, multi-node network is introduced, considering the
changes in the capability indicators of different types of drones and thoroughly combining
the follow-up corresponding maintenance strategies. According to the characteristics of
drone and swarm interaction, the drone node is divided into three nodes of communication,
structure, and mission, corresponding to the three-layer system of communication data
link, drone carrier, and mission load in the network. Then, the relationship between the
layers is described on this basis, and the process of establishing a multi-layer complex
network is shown in Figure 2.
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Figure 2. Establishment of multi-layer complex network structure.

2.3. Relationship between Swarm Maintenance and Network

Swarm maintenance is based on stand-alone maintenance. The premise of stand-alone
maintenance is that the reliability of a certain level of single-machine structure cannot meet
the requirements of subsequent missions. Therefore, it is necessary to recall the drone
to be repaired during the mission execution process. At this time, the remaining swarm
continue to perform the predetermined mission. That is, the maintenance of a drone is
equivalent to the disappearance of the corresponding node in the swarm network. No
matter what level (communication, structure, and mission) fails for a drone, the entire
drone needs to be recalled for maintenance. The failure of a single-level node is equivalent
to the disappearance of the corresponding nodes at the three levels, As shown in Figure 3.

Figure 3. Relationship between swarm maintenance and network.

We pay more attention to the mission completion ability of the drone swarm, so
the node failures in the communication layer and the structure layer are mapped to the
disappearance of the corresponding nodes in the mission layer in the swarm network. At
this time, the reliability assessment for the mission network is to consider all levels.

2.4. Swarm Mission Reliability Evaluation Method

Network reliability refers to the ability of the network to maintain functional and
structural integrity when nodes and edges in the network are attacked. In the actual
maintenance scenario, the maintenance of a drone can also be regarded as removing the
mission node in the corresponding network model, and the corresponding connection
edges disappear. Based on this, the network reliability can be used to evaluate the reliability
of swarm missions.

The concepts of basic network parameters: node degree, average path length, and
swarm coefficient are introduced first. to establish network reliability evaluation indicators.
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The node degree ki is defined as the number of edges that node i is directly connected
to other nodes, and the average of the degrees of all nodes in the network is called the
average network degree, denoted as 〈k〉.

The shortest path between two nodes i and j in the network refers to the way with the
least number of edges connecting these two nodes, and the distance dij between node i and
j are defined as the edge of the shortest path connecting these two nodes. Calculating the
average path length L of the network is defined as the average of the distances between
any two nodes.

L =
1

1
2 N(N − 1)∑i≥j

dij (1)

where N is the number of network nodes.
The swarm coefficient C of the network is defined as the average of the swarm coeffi-

cients of all nodes in the network.

C =
1
N

N

∑
i=1

Ci (2)

Among them, the swarm coefficient Ci of a node i with a degree ki in the network is
defined as:

Ci =
Ei

ki(ki−1)
2

(3)

Here Ei and ki(ki−1)
2 are the actual number of edges and the possible maximum number

of edges between node i and its ki neighbor nodes, respectively.
Based on the above three fundamental indicators of a complex network, reference [22]

proposes network reliability indicators:
Assuming that the swarm system consists of N drones, the swarm system is ran-

domly removed by considering the network characteristics, and the reliability index value
sk(k = 1, 2, 3, . . . , m) of the remaining network is calculated at the same time.

For each index, a set of changes of the index with successive removal of nodes
Δski(i = 1, 2, 3, . . . , N) can be obtained. Then the variance of the change of the index
can be calculated, which is expressed as follows:

S2 =
∑N

i=1
(
Δski − Δski

)2

N
, k = 1, 2, 3, . . . , m (4)

Furthermore, by repeating this process n times, the mean value of the variance of the
variation of the indicator for n simulations can be obtained, which can be expressed as follows:

S2
k =

1
n

S2
k , k = 1, 2, 3, . . . , m (5)

By comprehensively comparing the network reliability index and network perfor-
mance index after sensitivity analysis, the weight of each index in the comprehensive
reliability evaluation index can be determined according to the mean value of the variance
of the index variation. The relationship between the weight and the mean variance is
expressed as follows:

wk =
S2

k

∑m
k=1 S2

k

, k = 1, 2, 3, . . . , m (6)

Finally, the index processing method of the literature [23] is introduced, and the
comprehensive evaluation index of network reliability can be obtained, which is expressed
as follows:

R =
m

∑
k=1

wk
sk −min(sk)

max(sk)−min(sk)
(7)
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Among them, s represents the structural topology parameters and network perfor-
mance parameter indicators, such as the average degree of the entire network node, the
network efficiency of the communication layer, etc. wk Represents the weight of the indica-
tor, and its value can be determined according to Equation (7); R represents the reliability
of the network, and its value range is [0, 1], and the closer the value is to 1, the better the
network reliability.

3. Swarm Maintenance Method

Aiming at the problem of how to formulate a swarm maintenance plan considering
both the reliability of swarm missions and the maintenance cost, this chapter proposes a
swarm maintenance method based on the reliability assessment of multi-layer complex
network missions. The framework of the method is shown in Figure 4. This method
integrates the primary method of group maintenance and a complex network analysis
method. Based on the existing group maintenance, the drone level uses the degradation
prediction method to evaluate the reliability of the drone, and the system level introduces
the mission network and mission reliability evaluation index, and finally uses the multi-
level maintenance method. The objective optimization method optimizes for maintenance
cost and mission reliability. The method includes four steps: unit reliability prediction based
on prevention, maintenance grouping strategy and cost, mission reliability evaluation, and
optimize grouping decision.

 

Figure 4. Basic theoretical flow chart.

3.1. Basic Assumptions

This paper makes the following assumptions about the mission scenarios and mainte-
nance behaviors of drone swarm applying this method:

Assumption 1. The theoretical maintenance time considering the reliability of system components
is based on a preventive strategy, allowing a lag in maintenance within a specific time frame.

Assumption 2. Failure maintenance includes preventive maintenance of two kinds of failures:
accidental failure maintenance and degradation failure maintenance. This method does not consider
other unknown failure maintenance caused by complex environmental stress during the mission.

Assumption 3. The drone in a maintenance state only affects the reliability of the swarm system in
the next mission stage.
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Assumption 4. After the maintenance is completed, the return swarm link remains unchanged. It
is assumed that the state parameters after the maintenance are the same as the initial parameters.

Based on the above assumptions, this paper introduces the basic theory of the mainte-
nance method decision in Sections 3.2–3.5.

3.2. Unit Reliability Prediction Based on Prevention

According to experience, for determining the drone reliability function distribution of
the system, empirical distributions, such as exponential distribution, normal distribution,
Weibull distribution, etc., can be used to represent the reliability function distribution under
its degradation failure. For the accidental failure in the drone mission, it is clarified that
based on the known empirical data, the drone with unexpected failure can also be obtained
using the observed distribution.

According to the above distribution theoretical basis, combined with the observation
data of the single machine, fit and estimate the reliability prediction, and obtain the single
machine life. For example, if the single machine structure life distribution obeys an exponen-
tial distribution, according to the reliability function formula of the exponential distribution:
R(t) = exp(−λt). Where λ is the failure rate constant, determined by empirical data.

From the above analysis, we can predict any single node’s life considering accidental
and self-degradation failure. For drone stand-alone equipment, preventive maintenance is
generally used. In the case of prevention, a small estimation of the lifespan can be obtained
to obtain the stand-alone maintenance time T based on prevention.

Considering the maintenance time T of a single machine based on prevention, a single
machine failure may occur before time T and after time T. If a single machine failure occurs
before time T, the single machine will not be able to perform the mission immediately and
enter the maintenance state. According to the reliability function, at time T, The probability
of failure before and after time T is respectively R(T) and F(T) = 1− R(T). Next, the total
maintenance cost is further calculated.

Because there is a demarcation point at time T, the cost of preventive maintenance
is different before and after time T. Cp and Cdp are defined as the maintenance cost and
downtime cost of maintenance before time T, respectively, and Cf and Cd f are defined as
maintenance costs after time T respectively. Maintenance cost and downtime cost, t is the
actual maintenance time. Therefore, the equivalent stand-alone maintenance cost at time t
is expected to be

TWC(t) =

(
Cp + Cdp

)
R(t) +

(
Cf + Cd f

)
F(t)

t
T

(8)

It can be seen from the calculation formula of TWC that the equivalent maintenance
cost brought by earlier maintenance is relatively large. It is consistent with the actual main-
tenance situation of the drone swarm; in addition, the formula does not involve accidental
failure and self-degradation failure. The difference can be applied to the maintenance cost
calculation in both cases.

In Section 2.2, we propose considering the different failure modes of a single drone.
The above life prediction and cost calculation methods of a single aircraft are also applied
to different structural ways of a single plane. The three nodes of communication, structure,
and mission are used for node life prediction and cost calculation. Calculated to get the
prevention-based node maintenance time and maintenance cost.

3.3. Maintenance Grouping Strategy and Cost

From Section 3.2, it can be seen that any node failure in a drone system requires drone
maintenance. Single-machine maintenance will inevitably lead to increased maintenance
costs, downtime, and reduced reliability at the swarm system level. Rest for maintenance
results in extremely high maintenance costs and low mission reliability for the swarm.

We propose a swarm maintenance method based on mission completion time. The
swarm system decomposes the total mission into sub-missions for different drone groups
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through mission allocation because of the characteristics of the completion time interval
between sub-missions and little influence on mutual system reliability. It is assumed
that there is a maintenance opportunity after each submission is completed, and the
maintenance time is determined by the mission time. The maintenance opportunity divides
the mission time of the entire swarm into multiple time intervals t1, t2, . . . , tn. According
to the comparison between the preventive maintenance time T of the stand-alone node
in Section 3.2 and the corresponding time t of the maintenance opportunity (that is, the
completion time of the submission), select the drone near the maintenance time to enter the
maintenance state at the corresponding maintenance time t, as shown in Figure 5. Unit 1
chooses to be repaired at the time t3. Unit 2 and unit 3 can choose to be repaired at the time
t1 And unit 4 and unit 5 can choose to be repaired at the time t2.

 
Figure 5. Maintenance grouping strategy.

At this time, according to Formula (8), the total cost of the equivalent maintenance of
the actual single machine is

TWCi
(
tj
)
=

(
Cp + Cdp

)
R
(
tj
)
+
(

Cf + Cd f

)
F
(
tj
)

Ti
tj

(9)

The total maintenance cost of all single-node nodes is accumulated to obtain the total
system maintenance cost TWC under this grouping strategy.

TWC =
n

∑
j=1

N

∑
i=1

TWCi
(
tj
)

(10)

where N represents the total number of nodes and n represents the total number of mainte-
nance opportunities.

The cost calculation function includes maintenance cost and downtime cost. The cost
function is related to the grouping strategy selection, the maintenance opportunity, and the
actual maintenance time of a single machine. In terms of maintenance strategy selection,
each node can choose to maintain in advance or lag. At this time, different combinations
form a variety of maintenance strategies.

3.4. Mission Reliability Evaluation

For different maintenance grouping situations, it is necessary to perform swarm
mission reliability evaluation on all maintenance opportunities under the grouping strategy
in the entire mission cycle. For example, for the maintenance grouping situation shown in
Figure 5, at maintenance time t1, remove maintenance nodes 2 and 3, evaluate the mission
reliability R11 of the remaining nodes to form a swarm network, remove maintenance
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nodes 4 and 5 at maintenance time t2, and evaluate the remaining nodes. The mission
reliability R12 of the swarm network is formed, and so on, to obtain the swarm mission
reliability R11, R12, . . . . . . , R1n under all maintenance opportunities under the first group of
maintenance strategies.

Among them, the swarm mission reliability R11, R12, . . . . . . , R1n under all mainte-
nance, opportunities may exist if the swarm mission reliability is lower than the mission
completion threshold at a particular maintenance time due to the centralized maintenance
of multiple nodes. To be eliminated, the n groups of data for grouping decisions without
abnormal data can be weighted and averaged, respectively, according to the weight value
of maintenance opportunities, and the final swarm mission reliability Ri the group strategy
of this group can be obtained:

Ri = w1Ri1 + w2Ri2 + · · ·+ wnRin (11)

Among them, wi is the weight value of swarm robustness under the maintenance
opportunity i, w1 + w2 + · · ·+ wn = 1.

The swarm mission reliability index under each grouping strategy is obtained and
combined with the total maintenance cost obtained according to the cost function un-
der each maintenance plan in Section 3.3. It provides an index basis for the subsequent
comprehensive optimization index and grouping decision.

3.5. Optimize Grouping Decision

In this method, the swarm maintenance grouping decision is a multi-objective opti-
mization problem that finally considers the total maintenance cost and the reliability of the
swarm mission. For the optimization problem of the two objectives of this method, we use
the linear weighting method to solve the problem and propose the final optimization index
V, which can be expressed as:

Vi = w1 ϕ(O1i) + w2 ϕ(O2i) + · · ·+ wn ϕ(Oni) (12)

Among them, wi is the weight value of the optimization target, w1 + · · ·+ wn = 1.
ϕ(O1i)~ ϕ(Oni) Represents the parameter value of each optimization objective. There

are only two parameter values in this method, but the value ranges of different optimization
objectives are different, such as the mission reliability index R ∈ [0, 1], But the total cost
TWC ∈ (0, ∞). Therefore, it is necessary to normalize the optimization target parameter values.

Oni =
θni

max(θn1, θn2, . . . , θnk)
=

θni
θ∗n

(13)

Among them, θni is the parameter value of the policy i of the n optimization objective:

Vi = w1 ϕ

(
θ1i
θ∗1

)
+ w2 ϕ

(
θ2i
θ∗2

)
+ · · ·+ wn ϕ

(
θni
θ∗n

)
(14)

In the normalization process of the above indicators, we default that the larger the
optimization target value, the better. For example, the closer the mission reliability index
is to 1, the better. However, not all indicators obey this assumption, such as the total cost
TWC in this method. Therefore, we add the ϕ function, which is defined as follows:

ϕ(Oni) =

⎧⎨⎩
θni

max(θn1,θn2,...,θnk)
, ϕ ∝ θ

− θni
max(θn1,θn2,...,θnk)

, ϕ ∝
(

1
θ

) (15)

Based on the above analysis, we establish the comprehensive optimization index of
system mission reliability index and total maintenance cost as:
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Vi = w1Ri − w2 ϕ

(
TWCi
TWC∗

)
(16)

where w1 and w2 are the index weights of system mission reliability and total maintenance
cost respectively and w1 + w2 = 1. When w1 > w2, the system mission reliability index is
the dominant factor in the final decision. When w1 < w2, the total maintenance cost is the
dominant factor in the final decision. When w1 = w2, the two have equal status.

4. Simulation Analysis

To verify the effectiveness of this method applied to drone swarm maintenance, taking
a typical case as an example, the total maintenance cost and swarm system reliability under
the application of this method is compared with the total cost and system reliability under
the timely maintenance strategy.

Assuming that multiple drone swarm with heterogeneous drones perform the overall
mission, the assumed sub-mission completion times are 500 min, 650 min, 800 min, and
950 min, respectively. Taking a swarm composed of 10 drones as an example, the estab-
lishment of the swarm model structure and communication link situation of the swarm
model are shown in Figure 6, and each drone reliability parameters are estimated based on
experience shown in Table 1.

Figure 6. Method to verify the 10-node swarm model.

Table 1. Parameters of each node.

Nodes
Life Distribution

Model
Reliability Function

Cost ($)
Cp Cdp Cf Cdf

A, B, C, D Index distribution R(t) = e−(e
6.75×10−4 t−1) 2840 150 26 150

E, F normal distribution R(t) = P
(

z > t−800
200

)
1200 150 3670 150

I, H Weibull distribution R(t) = e−(
t

700 )
3

960 150 7630 150

J, G Inverse Gaussian
distribution μ = 900, λ = 8× 105 1984 150 18 150

The established drone node is the minor node of the system and does not continue
to divide the three-layer network. In addition, the life distribution of the node is given
randomly, covering different empirical distribution functions as much as possible to verify
the universality of the method.
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4.1. Maintenance Time and Grouping Strategy

The reliability function under the empirical distribution of each node is given in the
Table 1. Under the condition that a large number of nodes obey the same distribution, the
maintenance time based on prevention can be generated by a random method. According
to the empirical data, we use its reliability for a single node to decrease. The preventive
maintenance time of the node is calibrated at the corresponding time of 0.6, and the
preventative maintenance time under the four life distributions is 611 min, 748 min, 559 min,
and 936 min, respectively. Considering that each drone unit does not start the mission in
the best state, there is an actual maintenance time ahead of schedule. Due to the possibility
of theoretical maintenance time, the exact maintenance time of a single machine earlier
than the academic maintenance time is randomly generated, as shown in Table 2.

Table 2. Maintenance time of nodes based on prevention.

Nodes A B C D E F G H I J

Actual maintenance
time(min)

584 603 536 555 689 720 930 496 523 871

Each maintenance opportunity is allocated according to the completion time of the
submissions, and the following maintenance grouping scheme will be obtained when
considering the maintenance in advance.

For each grouping strategy in the Table 3, the cost function can obtain the total
maintenance cost under the maintenance strategy. The complex network method is used to
evaluate the mission reliability of the swarm and adjust the maintenance plan.

Table 3. Swarm maintenance group.

Maintenance Plan 500 min 650 min 800 min 950 min

1© I, H, C A, B, D E, F J, G
2© I, H, D, C B, A, E F, J G
3© I, H, D A, B, C E, F J, G

4.2. Mission Reliability and Cost of a Swarm System

As shown in Section 2.4, the mission reliability assessment of a complex network
system requires establishing a complex network model. For the model structure in Figure 6,
the established complex network model is shown in Figure 7.

Figure 7. Complex network model.

Based on the complex network evaluation method, the corresponding nodes are
removed from the swarm network under the related maintenance opportunity, and the

345



Drones 2022, 6, 269

reliability changes of the system missions are evaluated. As shown in the Figure 7, since the
initial swarm network is not fully connected, the initial network mission of the evaluation
If the reliability is not 1, it is normalized. The mission reliability index values and total
maintenance cost results under each maintenance strategy are obtained as shown in the
Table 4, and the comparison of each maintenance scheme pair over time is shown in
Figure 8.

Table 4. Mission reliability and total maintenance cost under each maintenance strategy.

Maintenance
Strategy

Mission Reliability Total Maintenance
Cost ($)500 min 650 min 800 min 950 min

1© 0.803 0.735 0.892 0.933 23,620
2© 0.718 0.779 0.917 0.970 22,343
3© 0.819 0.714 0.906 0.937 22,864

(a) (b)

Figure 8. Graph of the change of indicators over time under different maintenance strategies for 10
nodes: (a) describes the change of mission reliability with mission time; (b) describes the change of
the total cost of swarm maintenance with mission time.

4.3. Comparison Summary

In the following, for the maintenance scenario considering timely maintenance, the
swarm model in Figure 6 is used to analyze the cost and system mission reliability. Under
the condition that convenient maintenance is considered, every drone needs to be shut
down immediately for maintenance at the expected maintenance time. Under the condition
of viewing the downtime cost, the complex network model is used to remove the nodes
corresponding to the four-time points, and the number of nodes with different numbers of
nodes is obtained. Figures 9–11 compares the system mission reliability changes and the
total maintenance cost with the results of group maintenance.
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Figure 9. Comparison of timely maintenance and group maintenance strategies under 10 nodes:
(a) describes the change of system mission reliability with mission time; (b) describes the change of
total maintenance cost with mission time.

Figure 10. Comparison of timely maintenance and group maintenance strategies under 50 nodes:
(a) describes the change of system mission reliability with mission time; (b) describes the change of
total maintenance cost with mission time.

Figure 11. Comparison of timely maintenance and group maintenance strategies under 100 nodes:
(a) describes the change of system mission reliability with mission time; (b) describes the change of
total maintenance cost with mission time.
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According to the comparison of the system mission reliability index and maintenance
cost under the timely maintenance strategy and the group maintenance strategy, the
following conclusions can be drawn:

(1) In terms of system reliability: (a) As the scale of the swarm increases, the impact of
node maintenance brought by timely maintenance strategy and group maintenance
strategy on the reliability of swarm missions will gradually decrease. This is because
there are many nodes, and the maintenance and removal of nodes have relatively
little impact on the reliability of the remaining swarm missions; (b) The average
mission reliability under the timely maintenance strategy is generally higher than
that under any group maintenance. Because timely maintenance only repairs one
node at a time, it has less impact on the reliability of the remaining swarm missions;
(c) The reliability of system missions fluctuates under the timely maintenance strategy.
Because the system is forced to be repaired during non-mission completion time and
many repair opportunities, the system mission reliability fluctuates wildly. Still, the
system mission reliability fluctuation will weaken with the expansion of the swarm scale.

(2) In terms of maintenance costs: (a) Considering the cost of downtime, the mainte-
nance cost of timely maintenance is far greater than the maintenance cost of group
maintenance under any strategy. The cost has a specific impact, that is, the cost of
maintenance in advance is reduced, whereas the cost of maintenance increases; (b) As
the scale of the swarm continues to expand, the cost of timely maintenance is higher
than the cost of any grouped maintenance. The scale has grown exponentially.

Based on the above conclusions, the group maintenance method considering mission
reliability has great advantages in maintenance cost control, but has no obvious advantages
in mission reliability. When considering the method selection in specific scenarios, the
timely maintenance strategy should be applied in scenarios with high requirements for
cluster task reliability, and the group maintenance method considering mission reliability
should be applied in scenarios with high requirements for maintenance cost.

In addition, under the group maintenance strategy, different group strategies can
be selected to meet the different requirements for maintenance cost and system mission
reliability during mission execution.

The time and space complexity of this method is calculated as follows: Assuming that
there are n drones in the whole mission cycle of the swarm that need to be maintained.
Then the nodes of the swarm need to be removed in sequence for a single calculation of the
robustness parameter under a limited number of maintenance opportunities, and the time
complexity is O(n) * O(n), so the total time complexity of the algorithm is O(1). The process
needs to establish a one-dimensional data space, and the space complexity is O(n).

5. Case Study

This section will take a widely used drone swarm performing a long-endurance tour
mission as an analysis case and formulate an optimal group maintenance strategy to
maximize the mission reliability of the swarm system.

In this case, the drone swarm adopts the control structure of the distributed pilot
method (wolves). The swarm system is divided into five sub-mission swarm, each with
20 single drones (including one central drone with communication relay and distributed
decision center functions and 19 mission execution drones), totaling 100. According to
the theory of each multi-layer complex network. There are a total of 300 unit nodes. The
distributed link relationship of the communication network between every single node is
shown in Figure 12.
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Figure 12. Distributed connection diagram between individual nodes.

Among them, one communication relay drone in each group of drones establishes a
communication link connection with all drones in the sub-swarm. The drones in the group
establish connections randomly, and five communication relay drones are used in pairs.
Establish connections to each other to form the network topology of the entire swarm.

The three-layer complex network model established according to the drone node
connection diagram is shown in Figure 13.

Figure 13. Three-layer complex network model.

This drone swarm performs three missions in its life cycle, with three mission profiles.
The missions will be performed in a particular order. The sequence is shown in Figure 14,
and missions 1, mission 2, and mission 3 are executed each cycle. Among them, the single
execution time of mission 1 is 60 min, the single execution time of mission 2 is 120 min, and
the single execution time of mission 3 is 180 min. The number of working cycles is 10, so
the working time limit is 3600 min, and the maintenance opportunities of the drone swarm
system are 60 min, 180 min, 360 min, . . . , 3600 min, a total of 30 maintenance nodes.

Figure 14. Mission profile sequence.
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According to empirical data and observation data, it is assumed that the structural
layer nodes, communication layer nodes, and mission layer nodes of the drone swarm obey
exponential distribution, Weibull distribution, and inverse Gaussian distribution, respec-
tively. Figure 15 shows the single-node prevention-based maintenance time distribution
map generated by random distribution.

Figure 15. The distribution of maintenance time based on prevention for a single node.

According to the prevention-based maintenance node distribution and maintenance
node time of each node, multiple groups of maintenance grouping decisions can be obtained.
Taking a group decision as an example, the number of drones for maintenance under each
maintenance opportunity is shown in Figure 16.

Figure 16. Distribution of maintenance nodes corresponding to maintenance opportunities.

In each maintenance opportunity, the maintenance node is regarded as the node
removed. Under the nodes with different maintenance times, the mission reliability value
of the swarm system with the maintenance node removed is considered. The mission
reliability change diagram of the swarm system under the total mission time is obtained, as
shown in Figure 17.
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Figure 17. Changes in system mission reliability under this grouping strategy.

According to the mission reliability evaluation results in the above figure, the mainte-
nance plan at 1800 min and 2880 min after the mission start leads to a sudden drop in the
mission reliability of the swarm system.

Given this problem, the diversity of group maintenance schemes is used to repair
some nodes in advance or lag in forming an optimized maintenance scheme and evaluate
the reliability of system missions, as shown in Figure 18.

Figure 18. Changes in mission reliability of maintenance plan before and after optimization.

Optimizing the maintenance plan has a significant positive impact on the reliability
of the drone swarm system. The maintenance plan can be further optimized for different
drone mission requirements, reflecting the critical advantages of swarm group maintenance.
Combined with the maintenance cost of the drone swarm, the optimal solution can be
formulated and applied to the actual swarm maintenance research.

6. Conclusions

Aiming at the problem that the traditional unit maintenance method cannot meet
the maintenance requirements of the complex swarm system, a mission-oriented system
maintenance grouping method is proposed in this paper. Based on many maintenance
groups proposed based on the failure model of drone functional nodes, complex network
modeling and evaluation methods are used as tools. According to the topology information
of the swarm network, the maintenance effects of the drone are spread to the mission
capability changes of the swarm system network. The cost and swarm system mission
reliability is the final objective function, and the grouping strategy is optimized.
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The method validation and case analysis results show that the complex network
method can effectively evaluate system-level reliability, solve the trade-off between cost
and system reliability, and ensure the drone swarm system maintenance during mission
execution. Swarm missions can be carried out effectively when the node part of the drone
maintenance is in progress. Compared with the traditional maintenance method, the
maintenance method can significantly save maintenance costs and reduce the number of
downtimes while ensuring that the reliability of system missions is less fluctuated. It has
the advantage of reducing maintenance costs. The cost increases exponentially. The method
is more effective in larger and more complex swarm scenarios.

There are still many challenges to be solved in the future for the research and improve-
ment of this method. For example, when setting the accidental failure model, the mission’s
real-time mission environment and accidental conditions can be considered, the failure
model information can be updated in real time, and the strategy can be adjusted.
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Abstract: Most of the recent research on distributed formation control of unmanned aerial vehicle
(UAV) swarms is founded on position, distance, and displacement-based approaches; however, a very
promising approach, i.e., bearing-based formation control, is still in its infancy and needs extensive
research effort. In formation control problems of UAVs, Euler angles are mostly used for orientation
calculation, but Euler angles are susceptible to singularities, limiting their use in practical applications.
This paper proposed an effective method for time-varying velocity and orientation leader agents
for distributed bearing-based formation control of quadcopter UAVs in three-dimensional space. It
combines bearing-based formation control and quaternion-based attitude control using undirected
graph topology between agents without the knowledge of global position and orientation. The
performance validation of the control scheme was done with numerical simulations, which depicted
that UAV formation achieved the desired geometric pattern, translation, scaling, and rotation in 3D
space dynamically.

Keywords: formation control; UAV swarm; quadrotor UAVs; VTOL UAVs; attitude synchronization;
orientation estimation; bearing-based formation control

1. Introduction

Nature has always inspired many great scientific triumphs and countless feats in the
advancement of technology. Observation of natural formations of creatures such as a flock
of birds, a school of fish, and formations of ants makes us realize that each entity in the
formation controls its place in the formation just by aligning itself with respect to each
other’s bearing angle without knowledge of its global position or orientation. The same is
true for aerobatic displays of piloted jet aircrafts in formation flying, where each aircraft
is flown at a specific angle with other aircrafts of the formation. Design and control of
distributed agent formations have become a keystone to solving multifarious complex
applications such as coordination of mobile robots [1], satellite formation flying [2], and
search and rescue [3]. A group or formation of UAVs, also referred to as a UAV swarm, has
received compelling attention in military and civilian applications [4–6]. The process in
which a group of agents obtains and maintains a predetermined geometric shape in space
is called formation control [7].
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UAV formations are all set to become one of the most essential tools for future military
and civilian operations [8]. Formation control strategies, in which spatial constraints are
defined among agents, are a powerful instrument in multi-robot systems [9]. Many kinds
of consensus algorithms related to formation control for multi-agent systems can be found
in the literature, mainly categorized as leader–follower [10], virtual structure [11], and
potential field methods [12]. The leader–follower configuration is a widespread technique
in formation control literature [13]. This configuration is ideal yet nontrivial in the case of
distributed multi-agent systems, where a central controller such as a ground station is not
present to centrally control all the agents. The leader follows a specific path or reference
trajectory while all the followers are bound to adjust their position with respect to the leader.
Because only knowledge about neighboring robots is required to define the formation, the
leader–follower architecture best fits distributed schemes by enabling formation control
relative to agent poses [14].

The current formation control methods, as per sensed and controlled variables, can
be categorized into three groups: (1) position-based, (2) distance-based, and (3) bearing-
based [9]. Position-based methods are currently most employed because they utilize
the fact that each agent in the formation can obtain its position with respect to the global
coordinate frame [15–17]. This means the agents rely on the global positioning system (GPS)
or other related sensor information, forcing them to rely on external information to help
conform themselves in a formation. However, in many situations, such as urban indoor or
subterranean environments, the external signals cannot be obtained and position accuracy
is uncertain, making it inadvisable to rely on such information. It is preferred to rely on an
agent’s onboard sensors rather than external sources for measurements. Trinh et al. [18,19]
have verified that distance-based rigid formation control could not achieve global stability;
furthermore, flip ambiguities commonly occur in distance-rigid graphs [20]. Additionally,
compared to other approaches, the bearing-only approach has some advantageous features,
such as relying less on the sensing ability of each robot [21]. The problem of bearing-based
formation control of non-holonomic robots was considered by Li et al. [21] in 3D space
using the Euler–Lagrange model using Euler angles to express 3D rotations of agents.
Initial research on bearing-based formation control [22,23] was restricted to 2D space and
primarily intended to control the bearing between agents to achieve the desired formation
configuration. As per the proposed bearing rigidity theory, an almost globally stable control
law was proposed for the single integrator robot with or without the inertial reference
frame [24]. It is also important to mention that most of the reported research [24–26] has
modeled their agents as a single or double integrator with randomly controlled velocity and
acceleration. Using bearing rigidity-based control architecture also uniquely determines
the formation’s shape [24]. Additionally, it is paramount that orientation dynamics are
independent of the position dynamics but not the other way around [24]. The bearing can
also be calculated by employing the agent’s onboard cameras [27] or vision sensors and
sensor arrays [28,29].

Complete formation maneuver control and time-varying formation control using
bearing-only measurements have not been realized yet [21]. Bearing rigidity theory to solve
nonlinear robotic systems has generally only used the Euler–Lagrange model [21], where
systems subjected to non-holonomic constraints are discussed. Quaternions are preferred
over Euler angles because the latter are prone to gimbal lock when two out of three axes
align during interpolation. Simple linearization using Euler angles overcompensates the
errors in environments susceptible to unknown errors. Furthermore, if the inclination in
disturbances is too large, the linear conditions are not met. However, using quaternions
instead of Euler angles, even hard inclinations can also be sustained. Robustness against
external disturbances is also a key factor for preferences of quaternions over Euler angles.
Furthermore, it has also been observed that conversion of quaternions into a matrix is also
efficient. Their mathematical simplicity comes from the fact that for modeling rigid body
dynamics, no trigonometric functions are required [30]. As per the reviewed literature,
directed graph topology takes less of a toll on the overall computation complexity of the
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formation but is not as robust as undirected graphs. In undirected graphs, bidirectional
control of relative bearing measurements makes the formation more robust.

Motivated by the above observations, the significance of this article is such that
we proposed a singularity-free novel quaternion-based relative attitude synchronization
control scheme to reinforce undirected bearing-based control of a UAV swarm. Each
agent’s relative attitude and bearing were measured locally with its neighbor; hence, the
dependence on the global coordinate frame was eliminated. The proposed approach
validated its effectiveness on time-varying velocity and time-varying orientation leader
agents in 3D space.

The main theoretical contributions of this article are:

1. A novel cascaded approach for distributed formation control of quadcopter UAVs
was presented, consisting of an undirected bearing-based controller and a quaternion-
based attitude synchronization controller working together in unison.

2. The distributed attitude synchronization and bearing-based formation control law
were designed for 3D formation control as compared to [22,23], which have only
designed bearing-based controllers for 2D space. Moreover, the proposed scheme
uses quaternion-based attitude control, which is much more robust than research that
has used Euler angles such as [21,31].

3. This work investigated and implemented the distributed formation control for time-
varying velocity and time-varying orientation leader agents, which has not been
accomplished yet in the domain of bearing-based formation control as compared
to [21,31,32].

4. We designed our control method based on dynamic models of UAVs and undirected
graph topology, a more robust technique as compared to [21,24,31], which only have
used directed graph communications and kinematic models. The practical validation
of the model was done using numerical simulations in MATLAB.

The remainder of this paper is organized as follows. In Section 2, preliminaries
and problem formulation are given. Section 3 presents the system model and proposed
control design. Section 4 covers the simulations and analysis, whereas discussion and the
conclusions are drawn in Sections 5 and 6, respectively.

2. Preliminaries

In this section, we discuss some necessary background concepts about quaternions,
the UAV quadcopter dynamical model, graph theory, and bearing rigidity theories that
form a basis for problem formulation and design of our proposed control scheme.

2.1. Quaternions

This section briefly covers the mathematical background of quaternions, which are four-
dimensional algebraic constructs that extend the concept of complex numbers. While quater-
nions are less comprehensible than Euler angles, quaternions lead to more efficient and accurate
computation of rotations [33]. A quaternion is expressed formally as q = q0+q1i+ q2j+ q3k,
where q0 represents the real part or the scalar part and q1i+ q2j+ q3k represents the vector
part in R3. Similarly, a pure quaternion’s real part is zero. The conjugate of a quaternion is
q∗= q0− q1i− q2j− q3k, whereas its norm is

‖ q ‖=
√

q⊗ q∗ =
√

q0
2+q1

2+q2
2+q3

2 (1)

The norm is calculated by taking the Kronecker product of a simple quaternion and its
conjugate. Similarly, the quaternion inverse can be given by

q−1 =
q∗

‖ q ‖ (2)
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The quaternion conjugate can also be expressed as q∗= q0 − q, and similarly, the
quaternion inverse can be obtained by q−1 =

q∗

‖q‖ hence q−1= q∗. We assumed that only
unit quaternions are used for quadrotor attitude representation for this work. Rotation
from one coordinate frame A to another coordinate frame B can be expressed by conjugate
operation; a quaternion expresses a rotation qR with an added condition that its norm is
equal to 1. Therefore, if qA is a quaternion expressed in frame A, then the same quaternion
can be expressed in frame B as:

qB= qRqAq∗R (3)

We compute the multiplication of quaternions to change a coordinate frame

qRqAq∗R= (q 0+q1i + q2j + q3 k)(xi + yj + zk)(q 0 − q1i− q2j− q3 k) (4)

The product collected in one quaternion gives us

qRqAq∗R= (x(q 2
0+q2

1 − q2
2 − q2

3) + 2y(q 1q2 − q0q3) + 2z(q 0q2+q1q3))i+
(2x(q 0q3+q1q2) + y(q 2

0 − q2
1+q2

2 − q2
3) + 2z(q 2q3 − q0q1))j+

(2x(q 1q3 − q0q2) + 2y(q 0q1+q2q3) + z(q 2
0 − q2

1 − q2
2+q2

3))k
(5)

Quaternions in formation control circulated around simply using quaternions for
representation of the orientation of each agent with respect to a global frame [34] or one of
the other agents serving as an orientation reference [35]. As per the Euler theorem for rigid
bodies [32], the rotation of a body around an axis in R3 can be expressed in quaternions.
The attitude of the ith quadrotor defined by the unit quaternion is given as

Q =

[
q
η

]
=

[‖ e ‖ sin θ
2

cos θ
2

]
(6)

where ‖ e ‖ represents a unit axis in Euclidean space on which the agent is rotated, and
θ is the magnitude of rotation. As the quaternion norm is equal to 1, it is used as the
rotation operator. q represents the vector part and gives the magnitude of rotation, and η
represents the scalar part and gives the axis of rotation. While some conventions also use
the representation where the rotation is expressed later than the axis such as Q =

[
η q

]T,
it is of less significance and varies from one method to another. The unit quaternion Q can
also be transformed into its equivalent rotation matrix by the Rodrigues formula which is

R(Q) =
(
η2 − q�q

)
I3+2qq� − 2ηS(q)

S(q) =

⎛⎝ 0 −q3 q2
q3 0 −q1
−q2 q1 0

⎞⎠ (7)

where S( .) is the skew-symmetric matrix operator.

Quadcopter UAV Attitude Dynamics

Considering a swarm of n number of UAVs, the dynamics of the ith agent can be given
as in [36].

.
pi= vi

mi
.
vi= migê3 − ΓiR(Q i

)Tê3.
Qi =

1
2 T(Q i)ωi

Jiώi= τ− S(ω i)Jiωi

(8)

For i ∈ N := {1, 2 . . . . . . , n}, pi denotes the position, vi denotes the velocity, mi de-

notes the mass of the ith UAV, Qi =
(
qT

i ηi
)T is the agent’s orientation, and

ωi = [ωx,ωy,ωz]T ∈ R3 is the angular velocity denoted by the skew-symmetric ma-
trix operator from R3 to a matrix in R3 × 3. The positive scalar Γ denotes the total thrust
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by all four rotors in the direction ê =
(
0 0 1

)T unit vector in the body coordinate frame,
and τ is the control input torque. T(Q) can be given as

T(Q) =

(
ηI3+S(q)
−q�

)
(9)

For a UAV leader–follower configuration, the relative attitude between the ith agent

(leader) and jth agent (follower) expressed by the unit quaternion Qij =
(

qT
ij ηij

)T
can be

defined as
Qij= Q−1

j �Qi (10)

The relative attitude between the two agents can be expressed as

.
Qij =

1
2 T(Q ij)ωij, T(Q ij) =

(
ηiI3+S(q ij

)
−qij

�

)
(11)

where ωij is the relative angular velocity of the ith agent’s body frame with respect to the
jth agent’s body frame expressed in the ith agent’s body frame given as

ωij= ωi − R
(

Qij

)
ωj (12)

where the rotation matrix R
(

Qij

)
represents the rotation from the jth agent’s body frame to

the ith agent’s body frame such as

R
(

Qij

)
= R(Qi)R

(
Qj

)�
(13)

Figure 1 shows the representation of a UAV in the inertial reference frame OW and
the body-fixed frame OB. Figure 1a shows a dynamic model of a quadrotor UAV in Euler
angles and depicts the different actuator level entities affecting flight dynamics. Each of the
four propellers rotates with an angular speed ωi, producing thrust force Fi upwards and
with opposite rotor spins. Figure 1b shows the quaternion representation of the same UAV
in 3D space.

Figure 1. (a) UAV dynamical model expressed in inertial and body reference frames with Euler
angles. (b) UAV model expressed with quaternions.
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2.2. Graph and Bearing Rigidity Theories

Consider an individual UAV n in which (n ≥ 2) can be considered as a swarm of
UAVs. An undirected graph G = (V, E) characterizes a dynamic undirected interaction
network among multiple UAVs in the swarm representing a set of nodes V = {1, 2, . . . , n}
representing UAVs, and the interaction among UAVs is represented by a set of edges
E = {e ij: i = 1, 2, . . . , n, j ∈ Ni

}
, with the neighbor set Ni of UAVs. The graph is directed

if (v i, vj) ∈ E, (v j, vi

)
/∈ E and undirected if otherwise.

It is problematic to inspect the distinctiveness of the formation shape determined by
distance rigidity because the rank condition of infinitesimal distance rigidity cannot assure
the formation shape to be unique [37]. However, in bearing rigidity theory, the rank condi-
tion and formation shape distinctiveness are considered adequate. In any coordinate frame,

pi(t) = [p x
i , py

i , pz
i
]T ∈ R3 being the position of the ith UAV C = [p T

1 , pT
2 . . . . . . pT

n

]T
∈ R3

shows the configuration of the formation, and similarly, the desired configuration can be
expressed as C∗= [p ∗T

1 , p∗T
2 . . . . . . p∗T

n
]T ∈ R3. A UAV formation, represented by (G, C), is

a blend of graph G and a configuration C, where every vi ∈ V is related to a position pi in
the configuration [38]. Therefore, for (G, C), define

eij � pj − pi

gij �
eij
‖eij‖

(14)

where eij denotes an edge vector and gij represents a unit vector, which gives the bearing
from pj to pi. This unit vector representation represents both the azimuth angle and altitude

angle in R3. The objective of a UAV formation is to transform into a desired geometrical
shape or final configuration by controlling the bearing constraints of its agents, where
bearing constraints can be defined as

βG =

⎧⎨⎩g∗ij =
(

p∗j − p∗i
)

‖ p∗j − p∗i ‖
(
vj, vi

)
∈ E

⎫⎬⎭ (15)

In a UAV swarm, the desired distance between two agents is given by d∗21 =‖ p∗1−p∗2 ‖,
while βG is a set of bearing constraints, and the target position of the next agent can be
defined as p∗2= p∗1−d∗21g∗21; here, d, p, and g represent distance, position, and bearing of the
agents, respectively. Inspired by [37], an orthogonal projection operator Pgij

is introduced
to geometrically project any vector at the orthogonal compliment of x; moreover, the
Null(P gij

) = span{x} and the eigenvalues of Pgij
are {0, 1 (d−1)

}
, such that for any vector

x > 0, x ∈ Rd(d ≥ 2), the operator Pgij
: Rd → Rdxd is defined as

Pgij
� Id −

(
x
‖x‖

)(
x
‖x‖

)T

Pgij
� I3 − gijg

T
ij

(16)

The orthogonal projection matrix provides an efficient way to define the parallel
vectors in bearing rigidity theory. To define the target formation, we introduce a bearing
Laplacian matrix as introduced in [24], which is

[B(G(p∗))]ij =

⎧⎪⎪⎨⎪⎪⎩
0dxd, i �= j, (i, j) /∈ ε

−Pg∗ij
, i �= j, (i, j) ∈ ε

∑
k∈Ni

Pg∗ik
, i = j, i ∈ V

(17)
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This bearing Laplacian matrix B describes the inter-agent topology and bearings
between agents. Similarly, the bearing Laplacian matrix can be explained as

B =

[
BLL BLF
BFL BFF

]
(18)

where every part can be explained as BLL ∈ RdnLxdnL , BLF ∈ RdnLxdnF , BFL ∈ RdnFxdnL ,
and BFF ∈ RdnFxdnF is significant and useful, being symmetric positive semidefinite. We
also need to ensure that the framework is unique and rigid; therefore, we employ the
infinitesimal bearing rigidity theory introduced by [24]. This theory states that: if a frame-
work (G, C) is infinitesimally rigid, it depicts two vital properties: (1) the positions of the
vertices can be distinctively calculated up to a translational and a scaling factor, and (2) the
configurations are infinitesimally bearing rigid in a d-dimensional space if and only if the
bearing rigidity matrix satisfies: Null

(
GB

ij (C)
)
= span{1n ⊗ Id, p} or

rank
(

GB
ij (C)

)
= dn− d− 1 (19)

where n number of agents in a swarm are expressed in Rd, comprising dn coordinates, d
specifying the centroid, and 1 specifying the scale and being subtracted, and if the resulting
value is equal to the rank of GB

ij (C), it means that the formation is infinitesimal bearing
rigid. Due to these two properties [24], infinitesimally bearing rigid configurations not only
have unique geometric shapes but can also be mathematically inspected. The centroid and
scale [38] can be defined as

c(p∗(t)) = 1
n

n
∑

i=1
p∗i (t)

s(p∗(t)) =
√

1
n ∑n

i=1 p∗i (t)− c(p∗(t))2
(20)

For bearing rigidity, it is vital to determine if two given bearings are equal; thus,
the orthogonal projection operator provides an upfront approach. Figure 2 illustrates the
difference between rigid and non-rigid graphs and shows the topology used in this work.

(a) 

 
(b) 

Figure 2. (a) Examples of non-rigid and rigid bearing formations. (b) Proposed Formation Topology.
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2.3. Problem Formulation

We designed a cascaded model for formation control of a UAV swarm, considering
the dynamic model of quadrotor UAVs. In the upper cascade, we gave the bearing-based
law, and in the lower cascade, we designed the attitude synchronization controller that
improves the performances of [21,24,31] by the use of quaternions instead of Euler angles.
This complete cascaded structure was then used to simulate a UAV swarm’s translation,
scaling, and rotation in 3D space.

We formulated the problem as follows.

Problem 1. Consider a UAV swarm with n number of agents in R3 under assumptions 1–3,
where the positions and velocities of leader agents are time-varying. Based upon relative bearing
measurements gij , relative distance measurements such as dij , and relative velocity measurements
vij(t) , design an acceleration input ui(t) for each agent such that gi

ij(t)→ g∗ij exponentially as
t→ ∞, ∀i= 1, 2, . . . , n .

Assumption 1. In this work, we assume that all UAVs are equipped with sensor packages, such
as onboard-calibrated vision-based sensors, rate gyroscopes, accelerometers, and magnetometers,
for accurate orientation calculation and also with communication modules to communicate with
neighboring UAVs.

Assumption 2. Only the leader agent has the right to use the inertial reference frame; therefore, we
assume other agents do not have this information. Another limitation on the leader agent is that it
can only use that data to calculate its attitude in Euclidean space.

Problem 2. Consider a UAV swarm with n number of agents in R3 with {p(0)}i∈V as initial
positions and {Q(0)}i∈V as initial orientations under assumptions 1–2, and design an attitude syn-
chronization law based on control inputs based on relative attitude and angular velocities of agents
such that {q ij(t)}i∈V

→ 0 , qi → qj and ωi → ωj exponentially as t→ ∞, ∀i= 1, 2, . . . , n .

3. Proposed Control Scheme

We designed a control scheme utilizing the information from both bearing and attitude
controllers to control a swarm of quadcopter UAVs to form a specific formation shape,
translate, and scale in 3D Euclidean space.

Figure 3 illustrates the block diagram of the proposed control structure depicting the
flow of control inputs and outputs as well as their interaction with both controllers. The
overall architecture of the control scheme and the designated operations of all UAVs are
depicted in Figure 4.

Figure 3. Block Diagram of Proposed Structure.
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Figure 4. Overall Architecture and Designated Operations.

The interaction between each UAV, the flow of information, and designed operational
tasks of all UAVs in a distributed manner are also explained in Figure 4. The formation
was designed in such a way that each agent in the formation aligns itself with the spawned
body frame of the leader agent. All control actions in 3D space such as formation ac-
quisition, translation, scaling, and rotation were achieved by employing both controllers
in unison. Therefore, bearing control and attitude synchronization were achieved in
seamless harmony.

3.1. Bearing-Based Controller

To compute relative bearing between quadrotors in Euclidean space, considering
assumptions 1–2, the position and velocity errors of agents are given as

δp(t) = pi(t)− p∗i (t), δv(t) = vi(t)− v∗i (t) (21)

Given problem 1, the control objective was to design a control law for all agents in
formation to make the complete formation do translational, rotational, and scaling maneuvers
by enforcing δp(t)→ 0 and δv(t)→ 0 as t→ ∞,∀i = 1, 2, . . . , n . It should be noted that only
leaders know the desired translational, rotational, and scaling maneuvering information.

To accomplish the control objective, we propose a control structure where the target
formation is tracked with time-varying velocity and time-varying orientation leaders. In
this sub-section, we only consider the case of time-varying velocity leaders, and in the
following sub-section (attitude controller), we consider the time-varying orientation leaders.
According to [26], when the leader’s velocity vl(t) is time-varying, formation tracking
errors might not converge to zero; therefore, a supplementary acceleration feedback term
is required to be added in the controller. The following controller is proposed for the
time-varying velocity leader case

ui= −ξ−1
i ∑

j∈Ni

Pg∗ij
[kp(pi − pj) + kv(vi − vj)−

.
vj] (22)

where ξi = ∑
i∈Ni

Pg∗ij
and Pg∗ij

= Id − g∗ij
(

g∗ij
)T

was defined earlier as an orthogonal projection

matrix, while kp and kv are position and velocity positive control gains, respectively, and
.
vj is the acceleration of the neighboring agent. The controller in (22) was inspired by
consensus algorithms proposed in [39]. It can be proved that ξi is non-singular because the
target formation to be tracked is unique.
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Lemma 1. The constant matrix ξi is non-singular for all follower agents if the acquired formation
is distinct and unique.

Proof of Lemma 1. Firstly, the matrix ξi is singular when the bearings g∗ij are aligned because

for any x ∈ Rd, xTξix = 0⇔ ∑
j∈Ni

xTPg∗ij
x = 0⇔ Pg∗ij

x = 0, ∀ j ∈ Ni . Null
(

Pg∗ij

)
= span

{
g∗ij
}

;

therefore, xTξix = 0 when x and g∗ij are aligned. If g∗ij is aligned, the follower position p∗i
cannot be estimated because p∗i moves on the straight line aligned with g∗ij. Resultantly, it can
be established that ξi is singular.
The stability analysis of control law (22) is given; hereby, �

Theorem 1. For the time-varying velocity leader, the position and velocity errors defined in (21)
converge exponentially to zero.

Proof of Theorem 1. Multiply ξi on both hand sides of the control law (22). ui =
.
vi; therefore,

ξi
( .
v i −

.
vj) = ξiξi

−1 ∑
j∈Ni

Pg∗ij
[−kp(p i−pj)− kv(v i − vj)]

∑j∈Ni
Pg∗ij

( .
vi −

.
vj
)
= ∑j∈Ni

Pg∗ij
[−kp(p i − pj)− kv(v i − vj)]

(23)

In terms of the bearing Laplacian matrix form,

BFF
.
vF+BFL

.
vL = −kp(BFFpF+BFLpL)− kv(BFFvF+BFLvL)

= −kpBFFδp − kvBFFδv
(24)

With this, it can be shown that
.
vF = −kpδp − kvδv − B−1

FF BFL
.
vL , and therefore, the

error terms are
.
δp =

.
δV and

.
δV =

.
VF + B−1

FF BFL
.
vL = −kpδp + kvδv, which can be shown in

state space form as [ .
δp.
δv

]
=

[
0 I
−kpI −kvI

][
δp
δv

]
(25)

The eigenvalue of this state matrix is λ = (− kv ±
√

k2
v±4kp)/2, which proves to be

in the left-half plane for any kp, kv > 0. Therefore, convergence is achieved. �

3.2. Attitude Synchronization Controller

The orientation of follower UAVs is determined with respect to the orientation of the
leader agent. As per problem 2, our objective was to guarantee attitude synchronization

when ωij → 0 , Qij → ±QI and R
(

Qij

)
→ I3 ∀ i, j ∈ N. As Qij =

(
qT

ij ηij

)T
is a unit

vector representing the attitude from the ith agent (leader) and jth agent (follower), its
inverse or conjugate can be written as

Q−1
ij =

(
−qij
η

)
(26)

such that
Qij �Qij

−1= Qij
−1 �Qij= QI (27)

where QI is the unit quaternion identity and can be expressed as

QI =

[
03
I

]
(28)
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Similarly, it can be seen that R
(

Q−1
ij

)
= R(Q ij

)T
. It is adequate to say that when

qij → 0 , it implies that the attitude synchronization or alignment between agents has taken
place. Furthermore, the relative attitude approximation is based on special orthogonal
groups SO(3), which guarantees accurate approximation for all UAVs in the formation.
For translation of a UAV swarm in 3D space, the UAVs must track a reference trajectory;
therefore, it is necessary to define an attitude tracking error. To do this, we define the
desired attitude Qd =

(
qT

d ηd
)T with components of the unit quaternion described as

.
Qd =

1
2

T(Q d)ωd (29)

where T(Qd) is defined similarly to Equation (9). The attitude tracking error Q̃i =
(

q̃�i η̃i

)T

can be defined as
Q̃i= Q−1

d �Qi (30)

Therefore, the relative attitude tracking can be written similarly to equation (11) as

.
Q̃i =

1
2 T
(

Q̃i

)
ω̃i, T(Q̃i) =

(
η̃iI3 + S(q̃i)

−q̃�i

)
(31)

where the angular velocity tracking vector can be defined as

ω̃i= ωi − R
(

Q̃i

)
ωd (32)

The rotation matrix associated to Q̃i is given as

R
(

Q̃i

)
= R(Qi)R(Qd)

� (33)

For attitude synchronization and alignment of all UAVs in the swarm, the control
input of each UAV has to be based upon relative attitudes and relative angular velocities
among neighboring agents. Inspired by [40] and with the aim that all UAVs in the swarm
align their attitudes and angular velocities in an undirected graph, the following attitude
synchronization controller is proposed

τi= ωi×Jiωi − Ji

n

∑
j=1

aij

[
kqqij+kω

(
ωi −ωj

)]
(34)

where aij is the value of a weighted adjacency matrix representing information exchange
between UAVs, kq and kω are positive scalar gains, and the value of inertia matrices
J ∈ R3x3 should be known for all UAVs in the swarm, which means that the controller can
be implemented on heterogeneous quadcopter UAV swarms.

Theorem 2. For a time-varying orientation leader under the action of control law (34), the relative
attitude and angular velocity between two neighboring UAVs should reach qij → 0 , qi → qj , and
ωi → ωj asymptotically as t→ ∞, ∀i = 1, 2, . . . , n .

Proof of Theorem 2. Select a Lyapunov candidate function, such as:

V =
1
2

n

∑
i=1

n

∑
j=1

aijkij ‖ qij − qI ‖2 +
1
2

n

∑
i=1

ωT
i ωi (35)
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Under the dynamics of unit quaternions, the derivative of V becomes

.
V =

1
2

n

∑
i=1

n

∑
j=1

aijkij
(
ωi −ωj

)Tqij +
n

∑
i=1

ωT
i (τ i −ωi×Jiωi) (36)

As ωT
i (ω i×Jiωi) = 0, and under the fact that in an undirected graph aij= aji,

.
V = 1

2

n
∑

i=1

n
∑

j=1
aijkij

(
ωi −ωj

)Tqij

= 1
2

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)
− 1

2

n
∑

i=1

n
∑

j=1
aijkijω

T
j qij

= 1
2

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)
− 1

2

n
∑

i=1

n
∑

j=1
ajikjiω

T
j qij

= 1
2

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)
+ 1

2

n
∑

j=1

n
∑

i=1
ajikjiω

T
j qij

= 1
2

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)
+ 1

2

n
∑

j=1
ωT

j

(
n
∑

i=1
ajikjiqij

)
=

n
∑

i=1
ωT

i

(
n
∑

j=1
aijkijqij

)

(37)

Resultantly, Equation (36) becomes

.
V =

n

∑
i=1

ωT
i

(
n

∑
j=1

aijkijqij+τi

)
(38)

n
∑

i=1
ωT

i

n
∑

j=1
aijkij

(
ωi −ωj

)
= 1

2

n
∑

i=1

n
∑

j=1
aijkij ‖ ωi −ωj ‖2; therefore, the derivative of V

becomes negative semidefinite

.
V =− 1

2

n

∑
i=1

n

∑
j=1

aijkij ‖ ωi −ωj ‖2≤ 0 (39)

By LaSalle’s invariance principle, it is established that qij → 0 , qi → qj , and ωi → ωj
asymptotically. �

4. Simulation Results

In this section, we share numerical simulation results demonstrating the effectiveness
of our proposed model on a swarm of quadrotor UAVs. This swarm of UAVs contained
four quadrotors depicting an undirected leader–follower topology. The formation consisted
of two leaders and two follower UAVs. To highlight the operations of the formation in a
simple way, a square-shaped geometric configuration was selected, and the communication
topology is described in Figure 3, which depicts leader agents as VL= {1, 2} and followers
as VF= {3, 4}. The model information and specifications are given in Table 1.

In this work, we assumed that the formation encounters various kinds of obstacles in
its path while translating in an underground environment, e.g., narrow passages, pipes,
tunnels, etc., and negotiates those obstacles while keeping the formation intact. Figure 5
depicts the entire time-lapse of the formation translation and different maneuvers. The
formation was designed to carry out four distinct actions, and the case-wise details of all
actions and maneuvers achieved by the formation are given below.
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Table 1. Model Information and specifications.

Parameter Value

m 0.80
J(kgm 2

)
[1,0.1,0.1; 0.1,0.1,0.1; 0.1,0.1,0.9]

aij [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,1,1,0]
kq 1
kω 10
kp 0.5
kv 2

Figure 5. Time-lapse of complete formation operation.

4.1. Case 1—Formation Acquisition

(1) Objective: a swarm of four UAVs at random positions takes off and acquires a specific
square shape under the control of proposed laws.

(2) Results: the target formation formed a designated square shape and was attained by
implementing pre-defined bearing constraints between the agents as g∗21 = −g∗12,

g∗31 = −g∗13, g∗12 =
[
−1 0 0

]T, g∗13 =
[
0 0 −1

]T, g∗14 =
[
−
√

2
2 0 −

√
2

2

]T
,

g∗41 = −g∗14, g∗23 =
[√

2
2 0 −

√
2

2

]T
, g∗32 = −g∗23, g∗42 =

[
0 0 1

]T, and g∗24 = −g∗42.
The formation trajectories are given in Figure 5. The formation tracking error ‖ δi ‖ is
shown in Figure 6 (section highlighted in blue), which asymptotically converged to
zero from t = 0 to 20 s.

4.2. Case 2—Formation Scaling

(1) Objective: to verify that formation can scale down (decrease size) and scale up (in-
crease size) while translating in 3D space by still keeping formation-bearing con-
straints, inter-agent distances, and heading direction intact.

(2) Results: the formation continued translation on the x-axis, scaled down at t = 40 s, and
scaled up at t = 80 s to negotiate imaginary obstacles. This was achieved by adjusting
and altering the distance and velocities of two leaders. Figure 5 depicts both scaling
operations, and Figure 6 shows the convergence of formation tracking errors to zero
(highlighted with yellow color for scaling down and with green color for scaling up).
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Figure 6. Formation tracking errors.

4.3. Case 3—Altitude Maneuver

(1) Objective: to verify that UAVs in the formation can also make an altitude descent
while staying in the desired formation to negotiate an obstacle or follow a specific
trajectory involving sudden altitude descent.

(2) Results: after the scaling operation while translating in the x-axis direction, the
formation abruptly descended its altitude in the z-axis direction in 3D space at t = 100
to 110 s by altering the velocity of leaders. The trajectory plot of UAVs is given in
Figure 5, and the formation tracking error converged to zero asymptotically as shown
in Figure 6 (highlighted with grey color).

4.4. Case 4—Formation Translational Rotation

(1) Objective: to verify that formation while translating in 3D space can rotate its heading
direction by altering the velocity of agents such that the swarm stays dynamically intact.

(2) Results: in Figure 5 at t = 150 to 180 s, it can be seen that the final formation was
rotated from the initial formation heading direction by altering the leader’s orientation
so that the formation takes a translational rotation. The formation tracking error also
converged to zero as shown in Figure 6 (section highlighted in orange color).

Both the bearing-based controller and attitude controller ensured the performance
of the formation during the entirety of the operation. The attitude controller aligned the
attitude of all follower UAVs as per the attitude of leader UAVs at every stage of formation
operation as shown in Figure 7. As can be seen in the figures, the different cases of formati
on operations are shown at different time intervals such as formation acquisition (t = 0 to
20 s), scale-down (t = 0 to 20 s), scale-up (t = 0 to 20 s), altitude descend (t = 0 to 20 s) and
translation maneuver (t = 0 to 20 s).

The linear velocity of all follower UAVs achieved consensus as per the linear velocity of
the leader UAV, as shown in Figure 8 for all cases. Figure 8a,b illustrates the linear velocity
profile of all agents in the x and y-axis where it can be noticed that Leader-2 (agent 2) had
the maximum deviation; this is because as per configuration, agent 2 lay at the farthest end
and had to align itself with the rest of the agents. Therefore, the controller action forced
agent 2 to rapidly align with the rest of the formation, ensuring the formation configuration
is intact. Similarly, in Figure 8c, it can be noticed that the velocity profile of agents 1 and 2
and agents 3 and 4 were identical; this is because of the formation configuration as can be
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seen in Figure 5. The angular velocity of all followers converged to that of the leader UAV,
as can be seen in Figure 9 for all cases, while the formation tracking error remained at zero
despite the hard inclination in maneuvers.

Figure 7. Attitude synchronization.

 

Figure 8. Linear velocity profile. (a) Magnified view of velocity peaks in x-axis at t = 160 s.
(b) Magnified view of velocity peaks in y-axis at t=160 s. (c) Magnified view of velocity peaks
in z-axis at t = 160 s.

Figure 9. Angular velocity profile.
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The orientation of the leader is time-varying because of changing maneuvers; therefore,
in Figure 10, it can be seen that all followers aligned their orientation to that of the leader
as per changing maneuvers; hence, the attitude error was maintained at zero. The same is
represented in Figure 11 in terms of roll, pitch, and yaw angles.

Figure 10. Attitude synchronization in quaternions.

Figure 11. Attitude synchronization as per yaw, pitch, and roll angles.

5. Discussion

From the results of the case studies and simulations above, it can be established that
the formation carried out the specified tasks efficiently. The leader aligned its body frame
with the inertial reference frame and moved in the 3D Euclidean space without any further
constraints while followers followed the leaders as per the designed topology. All UAVs in
the swarm were responsible for maintaining bearing vectors; hence, the desired formation
and maneuvers were done in an undirected manner. The formation could avoid narrow
obstacles and pass through tight corners and obstacles because the scale, orientation, trans-
lation, and velocity could be adjusted. Moreover, the attitude synchronization controller
was designed in such a way that it can be implemented not only on homogeneous quadrotor
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formations but can also support heterogeneous quadrotor formations. For bearing-based
UAV formation control problems, the orientation parameters are often neglected or cal-
culated using a primary de facto method of Euler angles for attitude representation. The
quaternion-based orientation approximation provides robust, unambiguous, and compu-
tationally efficient attitude calculation. Attitude calculations by quaternions ensure that
agents in the swarm do not suffer from gimbal lock and singularities, improving the control
scheme’s overall robustness. Calculating attitude and bearing in the local body frames of
each agent is advantageous because agents do not have to depend on the global frame, as
GPS signals may be faulty in subterranean environments (e.g., indoors, underwater, deep
space, etc.). Many previous works such as [31,41] have assumed that the body frame of the
UAV should coincide with the center of mass, while we suggested that it should coincide at
the geometrical center of the UAV for accurate position and orientation measurement.

6. Conclusions

This work investigated the joint operation of bearing-based and attitude synchroniza-
tion controllers to control a quadcopter UAV swarm in 3D space by using undirected graph
topology. This combination of controllers added to the overall robustness of formation
during complicated maneuvers. Since this work focused on the distributed formation
control by depicting various motions of the formation in 3D space, its limitation is that ob-
stacle avoidance was not considered during practical implementation. Further performance
improvement for more complex maneuvers such as curved trajectories and implementation
of this work on experimental platforms are treated as future works.
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Abstract: Reducing the total mission time is essential in wildlife surveys owing to the dynamic
movement of animals throughout their migrating environment and potentially extreme changes in
weather. This paper proposed a multi-UAV path planning method for counting various flora and
fauna populations, which can fully use the UAVs’ limited flight time to cover large areas. Unlike
the current complete coverage path planning methods, based on sweep and polygon, our work
encoded the path planning problem as the satisfiability modulo theory using a one-hot encoding
scheme. Each instance generated a set of feasible paths at each iteration and recovered the set of
shortest paths after sufficient time. We also flexibly optimized the paths based on the number of
UAVs, endurance and camera parameters. We implemented the planning algorithm with four UAVs
to conduct multiple photographic aerial wildlife surveys in areas around Zonag Lake, the birthplace
of Tibetan antelope. Over 6 square kilometers was surveyed in about 2 h. In contrast, previous
human-piloted single-drone surveys of the same area required over 4 days to complete. A generic
few-shot detector that can perform effective counting without training on the target object is utilized
in this paper, which can achieve an accuracy of over 97%.

Keywords: complete coverage path planning; few-shot object counting; multi-drone collaboration;
Tibetan antelopes; Hoh Xil nature reserve

1. Introduction

Located between the Tanggula Mountains and the Kunlun Mountains, Hoh Xil is one
of the main water sources of the Yangtze River and the Yellow River [1]. It is a significant
habitat for wildlife, such as Tibetan antelopes, black-necked cranes, lynxes, and wild yaks.
Hoh Xil National Nature Reserve (HXNNR) was established in 1995. It was majorly divided
into four national nature reserves, the Qiangtang, the Arjinshan, the Sanjiangyuan, and the
Hoh Xil, located in Qinghai province. Furthermore, HXNNR joined the World Heritage
List in 2017 for its unique biodiversity and environmental conditions [2], of which Tibetan
antelopes constitute a highly representative population.

However, wild Tibetan antelopes have been listed as endangered by the International
Union for Conservation of Nature (IUCN) [3]. Facing this heated issue, they are protected
by the Wildlife Protection Law of China, and the Convention on International Trade in
Endangered Species of Wild Fauna and Flora (CITES). Over the past century, hunting and
grazing have been the main threats to the survival rate of the Tibetan antelope population.
Worse, Tibetan antelopes’ poachers killed large numbers of antelopes for their hides and
skins due to the enormous financial profits. From 1900 to 1998, the Tibetan antelope
population declined from a million to less than 70,000, with a mortality rate of nearly 85%.
In recent two decades, the Chinese government and wildlife conservation organizations
have acted to constrain poaching, which has gained progress. Still, the deterioration of
the antelopes’ natural habitat and environmental degradation continue to threaten their
survival [4]. Owing to the shortage of funds and labor, reserve staff can only monitor
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limited areas but not the entire reserve. However, artificial ground investigation caused
potential damage to the protection of fragile regions [5].

Traditional survey methods mainly include field surveys by vehicle or on foot. Never-
theless, Tibetan antelopes, especially females in pregnancy, are sensitive to the appearance
of humans and vehicles, so surveys are usually conducted from a distance. This method can
be appropriate during the non-migratory season when small groups are evenly distributed
across the plateau. Still, it may lead to biased data where terrain features block sight
lines, or animals are herded [6]. Moreover, some population surveys were conducted by
land-based rovers remotely piloted within survey sites [7], but this method is not suitable
for surveys in larger areas or uneven, rocky, and steeply sloping terrain. It is arduous to
determine the population size with ground survey methods, as animal movements can
cause violent fluctuations in density estimates. In addition, severe weather conditions in
unpopulated areas often create much uncertainty at high altitudes, making it difficult for
observers to access investigation areas [8]. Moreover, some zoologists tracked individuals
through collars with global positioning system devices to identify calving grounds, migra-
tion corridors, and suitable habitats [1,9]. However, they cannot accurately and quickly
estimate the number of animals or their distribution range, so new observation methods
are needed.

In recent years, aerial surveys by UAVs in unpopulated areas, poor-developed trans-
portation, and a fragile environment have become promising options [5,6]. Compared to
full-size helicopters, small UAVs produce less noise flying at altitudes that can effectively
obtain ground information and significantly reduce the disturbance to wildlife [10]. Fixed-
wing UAVs have also been applied to wildlife surveys [11]. However, they are not suitable
for the large-area survey missions in this survey, considering the take-off and landing
environments and portability. Moreover, fixed-wing UAVs may also disturb wildlife as
they may be perceived as avian predators [12]. In contrast, rotary-wing UAVs are more
controllable and can obtain higher-resolution images, as UAVs can fly at lower speeds and
altitudes without disturbing Tibetan antelopes [6]. Besides, using commercial rotary-wing
UAVs can reduce the difficulty of flight operations for scientific investigations and allow
researchers to focus on data analysis [13]. Moreover, UAV airports have been successfully
applied in multiple fields recently [14], making regular unmanned aerial surveys possible.
Utilizing multiple UAVs in an autonomous system can reduce manual requirements and
conduct surveys with higher frequency and efficiency with the help of the short window
period of weather, environments, and animal migration.

The efficiency of UAVs in conducting aerial surveys depends largely on the strategies
the area coverage paths are planned. Generally, the complete coverage path-planning
(CCPP) problem of a single UAV can be solved by sweep-style patterns, which guide
the UAV back and forth over a rectangular space [15]. Other similar spatial sweep-style
patterns include spiral patterns [16] and Hilbert curves [17]. Robotics designed to solve
cyclic paths may encounter many tracebacks in sweep-style patterns [18]. Meanwhile,
some tracebacks also occur in graphic search methods, such as wavefront methods [19,20].
Approaches that focus on minimizing the number of turns are often improved based on
the minimum energy method [21,22], which is more suitable for fixed-wing or fast-moving
aircraft. In contrast, we pay more attention to rotary-wing UAVs, consuming less energy
during low-speed turns. In these path planning methods, the distance between the starting
and ending points of the trajectories is often long. At the same time, unnecessary tracebacks
may exist if the take-off and landing positions are far from the survey area. Moreover, it is
time-consuming and inefficient for multiple sorties by a single UAV to perform coverage
survey tasks in large areas. Presently, it is becoming a trend for multiple UAV formations
to accomplish tasks jointly [23].

Most multi-UAV CCPP algorithms are extended based on the single-UAV area cover-
age research [24]. The common multi-UAV CCPP can be divided into two ways according
to whether the task assignment is performed or not. In the multi-UAV CCPP without
task assignment, each UAV may avoid collision with others by communicating with or
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regarding them as moving obstacles. After that, they complete area coverage tasks wholly
and jointly. For instance, the path planning of each UAV is randomly generated by random
coverage methods [25] and with a high traceback rate. There is also an improvement in
the spanning tree coverage algorithm that employs multiple UAVs for complete coverage
of a task area where there is acquired environmental information [26]. However, this
method has poor robustness, and a planned trajectory’s quality depends on the robot’s
initial position. In contrast, the research idea of the task assignment-based multi-UAV
CCPP method is to divide a task area according to a certain way and assign the multiply
divided sub-regions to each UAV. Then, each UAV plans its sub-region coverage trajectory
within the region by a single UAV CCPP algorithm. For instance, task assignments of
the sweep-style pattern [18] and polygonal area coverage [27] have been widely studied
with high backtracking rates. Moreover, many of these methods are often used to find
UAVs that satisfy appointed duration requirements. Moreover, many of these methods are
often used to find UAVs that meet some endurance requirements. However, this paper
mainly emphasizes generating optimal paths that satisfy a maximum path length constraint
decided by UAV’s endurance conditions.

Therefore, we formulate the multi-robot CCPP problem according to the satisfiability
modulo theory (SMT), which is a generalization of Boolean satisfiability because it allows us
to encode all the specific survey-related constraints. Compared to the traditional traveling
salesman problem (TSP), our method focuses more on finding feasible paths that satisfy
a maximum path length constraint, allowing for vertex revisitation. Because the UAV’s
battery constraints dictate the maximum path length, we can find solutions tailored to the
limitations of the chosen UAV rather than finding a vehicle that would need to meet some
endurance requirement. Although, our planning method is inherently a non-deterministic
polynomial complete problem. The coverage problem can also be encoded as a MILP [28,29],
it takes 4 to 6 days to solve problems for the same area, even using the most advanced
solver on a powerful workstation. In contrast, the SMT method can generate available
solutions in a few hours on a laptop [30].

The raw image shot by UAVs were assembled to form a large patchwork map. Then,
this larger image is adopted for analysis. For example, ecologists leverage it to count
flora and fauna for population analysis [31] or wildfire risk assessment in forests and
grasslands [32]. However, most current counting methods can only be applied to specific
types of objects, such as people [33], plants [34], and animals [31]. Meanwhile, they usually
require images with tens of thousands or even millions of annotated object instances for
training. Some works tackle the issue of expensive annotation cost by adopting a counting
network trained on a source domain to any target domain using labels for only a few
informative samples from the target domain [35]. However, even these approaches require
many labeled data in the source domain. Moreover, obtaining this type of annotation is
costly and arduous by annotating millions of objects on thousands of training images,
especially when the photos of endangered animals are scarcer. The few-shot image classi-
fication task only requires learning about known or similar categories to classify images
without training in a test, which is a promising solution [36,37]. Most existing works for
few-shot object counting involve the dot annotation map with a Gaussian window of a
fixed size, typically 15 × 15, generating a smoothed target density map for training the
density estimation network. However, there are huge variations in the size of different
target objects, and using a fixed-size Gaussian window will lead to significant errors in
the density map. Therefore, to solve this problem, this paper uses Gaussian smoothing
with adaptive window size to generate target density maps suitable for objects of different
sizes. Once UAV aerial survey data have been collected and images have been analyzed to
acquire accurate survey data, which can provide information on species distribution and
population size, it also enables a deeper understanding of animals’ seasonal migrations
and habitat changes. That is critical for preparing proper wildlife conservation policies and
provides affluent data for ecologists. The focus of this paper is on the development of a
multi-UAV system for conducting aerial population counting.
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In this paper, we considered a path planning method with a set of aerial robots for
population counting, which plans the trajectories of these robots for aerial photogrammetry.
UAVs acquire a set of images covering the entire area with overhead cameras. It requires
the images to have higher resolution and ensure enough overlap to stitch the images
further together. Besides, aerial surveys should be conducted as soon as possible, owing to
changing weather, light, and dynamic ground conditions. So it is necessary to require all
UAVs to perform their tasks simultaneously. The collected UAV data and analyzed images
will promote the sustainable development of population ecology. This paper focuses on
developing a multi-UAV system for conducting aerial surveys to provide an autonomous
multi-robot solution for UAV surveys and planning suitably for most survey areas.

This research is aimed at: (1) developing and testing a multi-UAVs CCPP algorithm
for fast and repeatable unmanned aerial surveys on a large area that optimizes mission
time and distance. Meanwhile, it compensates for the short battery life of small UAVs
by minimizing tracebacks when investigating large areas. (2) Developing and testing a
population counting method applicable to various species that does not require pre-training
and large data sets.

The method in this paper is demonstrated in an extensive field survey of Tibetan
antelope populations at the HXNNR, China. In this task, the celerity and repeatability
of aerial surveys were conducted under extreme conditions on a large area. So, it can
demonstrate the effectiveness of our system in facilitating the development of population
ecology. In this paper, an investigating system of four UAVs observed a herd containing
approximately 20,000 Tibetan antelopes distributed over an area of more than 6 km2, which
reduced the survey time from 4 to 6 days to about 2 h. The method put forward in this
paper can complete aerial surveys in shorter distance and less mission time. For instance,
this method reduced the total distance and mission time by 2.5% and 26.3%, respectively.
Furthermore, the effectiveness increased by 5.3% compared to the sweep-style pattern over
an area of the same size for the Tibetan antelope herd survey described in this paper.

2. Materials and Methods

2.1. Survey Area

Situated in southwest Qinghai Province, China (top right of Figure 1), the unpopulated
areas of Hoh Xil are 83,000 square kilometers with an average altitude of 4800 m. The Zonag
Lake and Sun Lake in northwest HXNNR (lower left of Figure 1) have been identified
as the current principal calving grounds for Tibetan antelopes. The birth season reaches
its peak from mid-June to July every year, when tens of thousands of female Tibetan
antelopes from the TRHR (Three-Rivers Headwater Region), the Qiangtang Plateau of
Tibet, and Hoh Xil migrate about 300 km southwest to the Zonag Lake and the Sun Lake
for parturition [4]. Therefore, the Zonag Lake is also known as the “great delivery room of
antelopes”. After calving, the antelope population will return to the northeast and arrive at
the major overwintering pastures in mid-August.

Zonag Lake most frequently sees poachers. It is difficult to hunt antelopes because they
usually are strong and vigorous. Most poachers decide to besiege Tibetan antelopes during
the calving period around the Lake and kill them, which seriously affects the ecological
balance of Tibetan antelope reproduction and leads to a sharp decline in population quantity.
Tibetan antelopes are almost extinct.

One of the main calving grounds is presented in Figure 2. The water area of the Zonag
Lake shrank drastically by 39% after the flood occurred in 2011. The western, southern,
and eastern shorelines of the lake significantly altered, and the calving grounds of Tibetan
antelopes on the southwestern shore also changed [2]. Recently, the government and
organizations have gradually paid attention to conserving Tibetan antelopes. However,
specific conservation efforts are often accompanied by the danger of entry into unpopulated
areas, which requires high human costs and may cause unavoidable human interventions
on the antelopes. In order to reduce costs in antelope population conservation and human
interventions, we arranged a team of four rotary-wing UAVs to conduct aerial surveys and
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population counting in one of the main calving grounds of Tibetan antelopes located on the
southwestern shore of the Zonag Lake. Meanwhile, we can learn more about the Tibetan
antelope population’s reproduction and changes in calving grounds.

Figure 1. Survey area. Location of Zonag Lake and the migration route of Tibetan Antelopes.

 
Figure 2. One of the calving grounds of Tibetan Antelopes.

2.2. CCPP Methods
2.2.1. Path-Planning Problem Encoding

The multi-UAV CCPP problem was described as SMT in this paper, which is a popu-
larization of SAT, as it allows us to encode all the specific survey-related constraints. SMT
allows predicate logic in addition to the propositional logic used in the SAT solver.

379



Drones 2022, 6, 196

Bi,a,t ∈ {0, 1} was set to be a Boolean variable where i ∈ {1, . . . , Nrobots}, a ∈ A =
{1, . . . , Nvertex}, and t ∈ {0, . . . , Tmax}. The UAV i is at the vertex a ∈ A when the step is t if
Bi,a,t = 1. The parameter Tmax is the maximum trajectory allowed by any UAV. For instance,
a UAV will pass through a maximum of 20 vertices if Tmax = 20. For simplicity, it was
assumed in this paper that all UAVs share the same Tmax and there were enough UAVs to
cover the entire map. The Figure G(A, E) was constructed based on the survey areas, where
there are various types of logical statements to describe the expected behaviors allowed
by UAVs. The solver attempted to assign a value of 0 (False) or 1 (True) to each Boolean
variable. By doing so, the values of these statements formed in the predicate logic are true.
These logical statements can be considered constraints, like expression approaches to the
optimization problem.

To strengthen the physical constraints of coverage, it is required to define that

∀(i, t) ∃a Bi,a,t = 1 (1)

works only for an a. This expression confines the UAV i to the point a at any given step t.
Then, the UAV is only allowed to move to the vertex y at the step t + 1, given that it is in
the vertex a at the step t. Therefore, there is a line ( a ∼ y) between these two vertices.

¬Bi,a,tAa∼yBi,a,t+1 = 1 (2)

Only the starting/ending vertex is connected to itself, and all other vertices have no
self-loops. Next, it is defined that:

∀a ∃(i, t)Bi,a,t = 1 (3)

It enforces constraint requirements of the coverage task. For each vertex a in the figure,
there is at least a step t where there is at least a UAV i occupying the space. If there is
only a pair of (i, t) in a spot where the constrains must be satisfied, it will be equivalent to
traveling salesman problem. The anti-collision constraint between UAVs may be achieved
by, at most, one i as required.

∀a, t Bi,a,t = 1 (4)

At the end, the starting and the ending points were coded in this paper by setting a0
i as the

starting and ending vertices of the UAV i:

Bi,a0
i ,0 = Bi,a0

i ,Tmax
= 1 (5)

It is expected that there is a closed-loop trajectory to ensure that UAVs do not have to
return to the take-off location with repeated paths through the area. A separate boundary
condition can be set if a closed-loop trajectory is not required, for the maximum trajectory
length is determined by a UAV’s battery use. To find a feasible trajectory means that the
UAV has enough power to arrive at the end of the trajectory. In an emergency recall, the
UAV will have enough power to return, since the straight-line distance between any point
of the trajectory and its ending point is at most the length of its remaining part. This feature
allows the UAV to safely return to the starting point of the survey path when the vehicle
cannot safely complete the survey (e.g., adverse weather conditions or poor visibility). It
also encourages the UAV to end the survey at a spot near the starting point of the trajectory.

2.2.2. Model Optimization

1. Variables reduction

The number of Boolean variables and the computing time can be reduced by leveraging
the problem structure although these four constraints have fully encoded the multi-UAV
coverage problem on SMT. It is assumed that each UAV can only move to an adjacent vertex
at each time step, then the binary variables representing unreachable states can be removed
from the problem to reduce the problem-solving time. Algorithm 1 describes the method.
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2. Sequential SMT

An SMT instance does not directly optimize the objective function but only finds a
feasible solution at any time. The standard descending (or ascending) method was adopted
in this paper to solve the objective function until the problem is infeasible to transform the
feasibility framework into an optimization framework. Algorithm 1 performs this iterative
process by repeatedly solving an SMT instance to identify the shortest trajectory. Each step
is sequentially decremented by Tmax according to a certain search dispatch until the user
terminates the process or the problem is infeasible. Regarding problem structure, each
subsequent iteration guarantees that the generated trajectory is no longer than that in the
previous iteration if a solution is found. For instance, linear search dispatch for Tmax is
provided to Algorithm 1. However, in effect, any reasonable search dispatch is applicable.

3. Parameter optimization

A parameter optimization algorithm (POA) [38] was adopted for the optimal trajectory.
In this paper, the variational design of variables was performed by adding a normally
distributed random value to each design variable, based on the evolutionary strategy of
Schwefel’s [39] work. The goal of the POA is to minimize f (x). We use xi to denote the
candidate solution at the i-th generation. For each generation, we randomly mutate xi
to obtain x′i . If f

(
x′i
)
< f (xi), then we set xi+1 = x′i .If f

(
x′i
)
> f (xi), then we use the

following logic to determine xi+1. If we had set xk+1 = x′k at the previous generation k at
which f

(
x′k
)
> f (xk), then we set xi+1 = x′i with a 10% probability, and xi+1 = xi with a

90% probability. However, if we had set xk+1 = xk at the previous generation k at which
f
(

x′k
)
> f (xk), then we set xi+1 = x′i with a 50% probability, and we set xi+1 = xi with a

50% probability. This POA is greedy as it always accepts a beneficial mutation. However, it
also includes some exploration in that it sometimes accepts a detrimental mutation. The
probability of accepting a detrimental mutation varies, depending on whether or not the
previous detrimental mutation was accepted. The algorithm for this POA is shown in
Algorithm 1.

AcceptFlag indicates if the previous detrimental mutation replaced the candidate
solution. The function of Distance() refers to time steps required to return to two vertices.
In a linear grid, the function of Distance() refers to Manhattan distance required to return
to two points.

2.2.3. Evaluation Indexes

The focus of this study is to reduce the total survey mission time and the total course
flown by UAVs in order to accomplish a survey quickly while saving energy consumption.
Therefore, the total course length was regarded as a constraint, rather than the result of a
path planner’s calculation. The planning aims to satisfy the trajectory coverage requirement
while minimizing the distance of tracebacks. The efficiency of a set of planned trajectories
R is defined as:

ηpath =

R
∑
i

Si −
R
∑
i

Li

R
∑
i

Si

(6)

Si is the total course length flown by the UAV i, Li is the sum of the UAV’s i repeated
flight paths and the distance from the take-off point to the survey area (also called transit
distance). When the efficiency is 1, it means that the UAV took off within the survey area
and had no repeated flight path.
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Algorithm 1 Model optimization algorithm
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2.3. Counting Methods
2.3.1. Adaptation and Matching Counting Network

In Figure 3, the network architecture of the animal counting algorithm adopted in this
paper is depicted. Input to the network is the image X ∈ RH×W×3 and several examples
describing bounding boxes of the objects to be counted from the same image. Output from
the network is the predicted density map Z ∈ RH×W , and the counts of the interesting
objects are obtained by summing up all density values. The network consists of two crucial
modules: (1) a multi-scale feature extraction module; (2) a density prediction module.
These two modules were designed in this paper for them to handle new categories in a test.
ImageNet was adopted to extract features for such a network that can handle a wide range
of visual categories. The feature extractor consists of a multi-layer convolution operation
that maps the input into d-channel features. For the image X, it outputs a downsampled
feature map F(X) ∈ Rd×h×w. For an exemplar box a, the output feature map is further
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processed with global average pooling to form a feature vector F(a) ∈ Rd.The density
prediction module was designed to be incognizable to visual categories. The multi-scale
feature extraction module consists of the first four blocks from a pre-trained ResNet-50
backbone [40]. Images were represented in this paper by convolutional feature mapping in
the third and fourth blocks. In addition, ROI pooling was performed in this paper for the
convolutional feature mapping from the third and fourth Resnet-50 blocks to obtain the
examples’ multi-scale features.

 

Figure 3. Few-shot adaptation and matching network.

The features obtained from the feature extraction module were not directly adopted
in density prediction, in order to make the density prediction module incognizable to
visual categories. Instead, the correlation mapping between sample features and image
features was input to the density prediction module. The sample features were resized to
different scales given the target objects at different scales should be considered. The resized
sample features were associated with the image features to obtain multiple correlation
maps, each of which corresponds to one scale. Scales of 0.9 and 1.1, as well as the original
scales, were adopted in all experiments. The correlation maps were connected in series’
and fed to the density prediction module. The density prediction module consists of five
convolutional blocks and three upsampling layers placed after the first, second, and third
convolutional layers, respectively. The last layer is a 1 × 1 convolutional layer that predicts
the two-dimensional density map. The size of the predicted density map is the same as the
size of the input image.

2.3.2. Adaptative Window

The training images of a dataset were leveraged to train the network. Each training
image contains multiple target objects. Moreover, most objects were only annotated with
dots, while only the example objects were annotated with bounding boxes. However, it
is difficult to train the density prediction network based on the training losses defined by
dotted annotations. Most existing visual counting efforts, especially crowd counting [41],
use a fixed size Gaussian window (usually 15 × 15) to convolve dotted annotated maps,
thus generating smooth target density maps for training the density prediction network.
The selected training dataset consists of 147 different categories in which the object size
varies considerably [42]. Therefore, Gaussian smoothing with a self-adaptive window
size was employed to generate the target density map. Firstly, the object size was es-
timated with dotted annotations. In a given dotted annotated map, each dot is nearly
located at the center of the object. The horizontal distance xi and vertical distance yi be-
tween each dot i and its nearest neighbor were calculated. With the modes

�
x , ŷ of X and

X, Y(xi ∈ X, yi ∈ Y, i = 1, 2, 3 . . . n), the distance d =

√(
�
x
)2

+ (ŷ)2 can be calculated as

the size of the Gaussian window to generate the target density map. The Gaussian standard
deviation was set to be one quarter of the window size. The mean square error between
the density prediction map and the ground truth density map was minimized to train the
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network. To match it, we adopted Adam optimizer with a learning rate of 10−5 and a
batch size of 1. The height of each image was fixed at 384, and the width was accordingly
adjusted to maintain the aspect ratio of the original image.

2.3.3. Loss Function

The above network structure only uses the samples’ example bounding boxes to
extract their feature information. It does not fully use the position information provided by
the exemplar boxes, while annotations by human eyes are crucial in this process. So we
define the combination of two losses here to correct the model’s errors during the test.

• Count Loss

For each example bounding box, a, the sum of the density values within the box
should be at least 1 because the exemplar box may also contain parts of other objects or
overlap other objects with the same type to some extent. The following count loss was
defined to quantify the number of constraint violations.

Lcount = ∑
a∈A

max(0, 1− ‖Za‖1) (7)

In this equation, A is the set of bounding boxes, and ‖Za‖1 the sum of all values in Za.

• Perturbation Loss

The density prediction map Z in essence is a correlation map between a sample and
an image. Therefore, the density values near the sample should be similar to Gaussian
distribution in an ideal circumstance. Gh×w was set to be a two-dimensional Gaussian
window with the size of h× w. The perturbation loss was defined as follows:

Lp = ∑
a∈A
‖Za − Gh×w‖

2

2

(8)

• The Combined Adaptation Loss

The self-adaptation loss for testing is a weighted combination of the minimum count
loss and the perturbation loss.

LAdapt = λ1Lcount + λ2Lp (9)

In the equation, λ1 and λ2 are coefficients of the count loss and the perturbation loss
respectively. In testing, we referred to parameters setting [42], so as to perform 100 gradient
descent steps for each test image and optimize the weighted loss of Equation (9). The
learning rate adopted in this paper is 10−7. The values of λ1 and λ2 are, respectively, 10−9

and 10−4. The self-adaptation loss was only employed in testing. The loss function during
training is the root mean square error between the density prediction map and the actual
density map.

2.3.4. Evaluation indexes

The mean absolute error (MAE) and the root mean square error (RMSE) were adopted
in this paper to measure the accuracy of counting methods, which are defined as follows.

MAE =
1
n

n

∑
i=1
|ci − ĉi| (10)

RMAE =

√
1
n

n

∑
i=1

(ci − ĉi)
2 (11)

In these equations, n refers to the quantity of test images, ci and ĉi are the ground truth and
the predicted counts, respectively.
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3. Results

3.1. Multi-UAVs CCPP
3.1.1. Summary of the Surveys

Considering the altitude of the animal survey area is around 5000 m, we chose a
high-altitude low noise propeller. In this way, the UAVs can better adapt to the flight
conditions at high altitudes and meet the noise limits of animal surveys. During the
execution of the survey, the path spacing and flight altitude of the UAV are set according to
the camera parameters and image stitching requirements. During non-mission execution
(transit distance transit distance to and from the takeoff point and mission start point), the
flight speed of the UAV is 10 m/s, which is determined by the environmental conditions
and the specifications of the UAV. We want the speed to be as fast as possible under the
premise of ensured safety and low noise. In addition, considering the safety withdrawal
requirements and the actual hovering test results in abnormal weather, we set the safe flight
time of the UAV at 28 min. Its detailed parameters are shown in Table 1.

Table 1. Technical parameters of the aircraft.

Technical Parameters Description Technical Parameters Description

Safe endurance time 28 min Survey area flight speed 5 m/s
Maximum flight time 55 min Transit distance flight speed 10 m/s

Maximum takeoff weight 9 kg Maximum flight altitude 7000 m
Body weight with battery 6.3 kg Flight height from ground 200 m

Autopilot DJI flight control unit Size (folded, including paddles) 430 × 420 × 430 mm (L ×W × H)

During each survey, more than 6000 images were taken by a group of UAVs and
stitched together to form a large, stitched image covering the entire survey area, as pre-
sented in Figure 4d. In this paper, these stitched images were employed to identify the
number of Tibetan antelopes for estimating the population density of these groups. In our
work, CCPP methods and population counting were emphasized rather than ecology.

  
(a) (b) 

  
(c) (d) 

Figure 4. Planning workflow. (a) The coverage grides of survey area; (b) Planned flight path of UAV.
The planned UAV path is a solid line, and the transit route is a dotted line. The drone logo represents
the take-off and landing location; (c) The resulting photo coverage area allocated to the four UAVs
with different starting points in (b); (d) The last stitched image.
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Figure 4 shows the workflow of our system in the survey area (Figure 2). Firstly, we
specified the interested area and divided it into grids with the spacing of 100 m between
vertices, as shown in Figure 4a. Secondly, the CCPP algorithm is used to generate offline
trajectories and optimize the starting and ending positions of the UAVs, as shown in
Figure 4b. The four starting points are distributed in the vicinity of the survey area to
ensure the optimal total flight distance and mission time for a group of UAVs. Thirdly,
UAVs that execute these routes were activated to collect survey images at regular intervals.
Figure 4c shows the image coverage area of each UAV. The images are stitched according
to the UAVs’ time intervals and flight paths. The four different color blocks represent the
captured areas by each of the four UAVs. Finally, these images were stitched together to
generate a mosaic image, as shown in Figure 4d. The mosaic images will be used for animal
counts to estimate population size, as described in Section 3.2.

12~13 flights (the flight number depends on the UAV position) were required to survey
the area with four deployed UAVs in advance. It cost 2 days for a single manually piloted
UAV to survey. However, in this paper, the survey can be completed in about 2 h in some
regions of Zonag Lake by the proposed multi-UAV collaborative survey method. Using
the autonomous system reduces the burden on manual requirements and realizes faster
surveys with higher frequencies, thus enabling the exploitation of short windows in favor
of the survey. That makes it more likely to make arrangements in advance and perform
unmanned observation and data collection with the knowledge of animal migration routes.

The paths in Figure 4b were input to universal ground control software (UGCS) [43]
for arranging the interface between a route planner and the UAV on-board flight computer.
Although a trajectory is generated offline, its self-adaption allows a user to place the starting
node at any position on it without recalculating the entire path. The entire course of each
path is displayed in Figure 5. The UGCS will send a UAV command after it takes off so
that the drone can execute the route and automatically land back at the starting point for
recharging, thus preparing for the next flight.

 
Figure 5. Survey routes. All routes to the survey area are shown here. The blue-green lines are
routes, which are planned by the method in this paper, and are executed by four UAVs at different
starting points. The blue area is the optional takeoff and landing area. The red no fly zone marks the
mountainous area or flight interference area.
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3.1.2. Comparisons Ignoring Transit Distance

In this paper, we employed the SMT algorithm employed with the Z3 solver [44], the
experimental calculations, which are performed under CPU:12th Gen Intel(R) Core(TM) i9-
12900KF 3.20 GHz and the operating system of Windows11. Each computation takes about
15 s, and optimized calculation can get the best result in less than 100 epochs. We developed
the algorithms on python and the commercial software ISIGHT, and we eventually ported
them to python for ease of deployment and fast computation.

The proposed method in this paper was compared with both the common sweep-
style method in the literature [18] and recently cell decomposition polygon coverage path
planning method [27]. The sweep-style pattern was planned by using the area coverage
function already realized in the UGCS [43]. The polygon coverage method divides the
required region into polygons first, then plans coverage routes by using the sweep-style
method, and last stitches these paths together with the TSP solver at the end. Moreover,
Polygon division allows the solver to locally optimize the sweep direction of each polygon
cell, which leads to shorter trajectories in most cases.

The efficiency of the polygon coverage method is higher than that of the simple sweep-
style method, but there are still considerable tracebacks in both two methods because the
core planning strategy of two methods lies are the sweep-style pattern. We compared routes
of our trajectory planning algorithm, the standard sweep-style method, and the polygon
division method in Figure 6. Although the sweep-style method has covered enough areas,
it is influenced greatly by tracebacks, as presented in Figure 6b.

   
(a) (b) (c) 

Figure 6. Comparison of route planning methods. (a) Ours; (b) Sweep-style path; (c) Polygon
coverage. The red arrow is the flight path of backtracking.

The path efficiency of our method, the sweep-style method, and the polygon method
are demonstrated in Table 2. The most effective set of paths is presented in bold. Algorithms
in this paper realize the best efficiency in all but one case, with an average efficiency
improvement of 8.2% compared to the sweep planner and 8.1% compared to the polygon
coverage method. Without considering the transit distance of the planned trajectory, the
sweep-style method results in a total course that is about 700 m longer than the trajectory
generated by our method. The route generated by the polygon method is 400 m longer than
that planned by our method. In all cases, the method proposed in this paper can reduce
366 m and 1.5 min compared to the polygon method, which will be 666 m and 2.2 min,
compared to the sweep-style method.
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Table 2. Comparison of route efficiency. Bold entries indicate the most efficient set of routes.

Method Parameters Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Average

Ours

Length 5.9 km 4.7 km 4.4 km 3.6 km 2.5 km 1.5 km -
Nvertex 132 109 102 82 62 56 -
Npath 136 112 104 85 65 61 -
ηpath 0.971 0.973 0.981 0.965 0.954 0.918 0.960

Sweep
Length 6.5 km 5.5 km 4.9 km 4.5 km 3.4 km 1.8 km -

Backtrack 0.57 km 0.98 km 0.37 km 0.63 km 0.52 km 0.08 km -
ηpath 0.912 0.822 0.924 0.860 0.847 0.956 0.887

Polygon
Length 6.8 km 4.7 km 4.5 km 4.3 km 2.9 km 1.6 km -

Backtrack 0.80 km 0.51 km 0.38 km 0.61 km 0.33 km 0.17 km -
ηpath 0.882 0.891 0.916 0.858 0.886 0.894 0.888

3.1.3. Comparisons Considering Transit Distance

In an actual flight survey, there is a long distance between the UAV take-off point
and the survey area. In the event of regular multi-UAV surveys, the take-off point may be
flexibly arranged in advance before the survey window, which can reduce the impact of
tracebacks and the consumption of UAV power to a certain extent. The total UAV flight
distance was optimized in this paper within a given take-off area to make full use of the
advantages of multiple UAVs.

We demonstrated the actual survey results of our method, the sweep-style method,
and the polygon method in parts of the Zonag Lake (Figure 2) in Table 3, where the
effective set of trajectories are presented in bold. In Table 3, the take-off point is designated
at the geometric center of the take-off area, based on empirical judgment. It is evident
that the trajectory efficiency and the mission time are improved for different methods by
flexibly configuring take-off points (number of starting points, restrictions on the starting
area). Differences among the methods are few and finding the optimal set of paths is easy
when there are two different take-off points. As the differences among algorithms grow
when plans become more flexible, there are more starting points available for choosing.
Moreover even the take-off area is no longer restricted to be outside the survey area (which
is undesirable in animal surveys because the noise from the UAV may be perceived as a
threat). The method proposed in this paper demonstrates the best path’s efficiency and
the shortest time consumption under all three different plans, with a 22.72% increase in
trajectory efficiency and a 34.62% reduction in mission time with unrestricted starting area.
The method may reduce at most 54 min of the mission time, when compared to the manual
setting method (designate starting points according to experience), which is equivalent to
the time about twice as long as the maximum UAV endurance time.

Table 3. Comparison of route parameters (distance, efficiency, and mission time). Set the total flight
distance as the optimization parameter. Bold entries indicate the most efficient set of routes. The data
are the average of 50 experiments.

Take-Off Plan Method Distance Backtrack ηpath
Efficiency

Improvement
Mission Time

Time
Reduction

Two different
take-off points
within the area

restrictions

Manual setting 94.2 km 20.8 km 0.779 Control group 2.6 h Control group
Sweep 94.1 km 20.8 km 0.779 0.00% 2.6 h 0%

Polygon 94.0 km 20.7 km 0.780 0.13% 2.4 h 7.69%
Ours 94.0 km 20.7 km 0.780 0.13% 2.4 h 7.69%

Four different
take-off points
within the area

restrictions

Manual setting 94.2 km 20.8 km 0.779 Control group 2.6 h Control group
Sweep 91.8 km 18.4 km 0.799 0.00% 1.9 h 26.92%

Polygon 91.6 km 18.3 km 0.800 0.13% 1.9 h 26.92%
Ours 88.7 km 15.5 km 0.825 5.91% 1.7 h 34.62%

Four different
take-off points

without the
area restrictions

Manual setting 95.8 km 22.4 km 0.766 Control group 2.6 h Control group
Sweep 92.4 km 16.2 km 0.795 3.79% 1.8 h 30.77%

Polygon 89.0 km 15.6 km 0.825 7.70% 1.8 h 30.77%
Ours 78.0 km 4.7 km 0.940 22.72% 1.7 h 34.62%
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During short-term and quick surveys, the flight time of UAVs is a factor to be fully
considered to make full use of the valuable survey window. Shorter aerial survey time
can help accomplish more surveys and capture more data throughout the breeding season.
Based on the above methods, the total UAV flight distance and total mission time were
optimized in this paper within a given planned take-off area.

Table 4 shows the actual test results of our method and other methods in some parts
of Zonag Lake. If the configuration of starting points is more flexible (number of starting
points, restrictions on the starting area), the metrics of the different methods will improve
accordingly. This is similar to the results of the method mentioned above, that optimizes
only the total flight distance of a group of aircrafts. The variation between algorithms is
increasing as plans become more flexible, starting points become more selective, and even
take-off areas are no longer restricted to survey areas. Our method shows the best trajectory
efficiency and the shortest task time among all three different schedules, with a 23.63%
improvement in path efficiency and a 47.83% reduction in task time as the starting area
is unrestricted. Our method’s flight distance is unchanged, compared to methods only
optimizing the total flight distance while the total mission time decreases from 2.6 h to 1.2 h
at most, with an improvement of 19.23%. The method proposed in this paper witnesses
an average improvement of 12.82% with three different take-off plans. Meanwhile, it can
reduce mission times by up to 66 min, compared to manual setup methods, which are
about twice the safe endurance time.

Table 4. Comparison of route parameters (distance, efficiency, and mission time). Set the weighted
sum of total flight path and total mission time as optimization parameters. Bold entries indicate the
most efficient set of routes. The data are the average of 50 experiments.

Take-Off Plan Method Distance Backtrack ηpath
Efficiency

Improvement
Mission Time

Time
Reduction

Two different
take-off points
within the area

restrictions

Manual setting 94.2 km 21.6 km 0.771 Control group 2.6 h Control group
Sweep 95.0 km 21.7 km 0.772 0.13% 2.5 h 3.85%

Polygon 95.0 km 21.3 km 0.776 0.65% 2.3 h 11.54%
Ours 94.4 km 20.8 km 0.780 1.17% 2.2 h 15.38%

Four different
take-off points
within the area

restrictions

Manual setting 94.2 km 20.8 km 0.779 Control group 2.6 h Control group
Sweep 91.8 km 18.5 km 0.799 0.00% 1.9 h 26.92%

Polygon 92.7 km 19.0 km 0.795 2.05% 1.7 h 34.62%
Ours 89.5 km 16.1 km 0.820 5.26% 1.4 h 46.15%

Four different
take-off points

without the
area restrictions

Manual setting 95.8 km 22.4 km 0.766 Control group 2.5 h Control group
Sweep 90.8 km 21.2 km 0.866 11.55% 1.5 h 42.31%

Polygon 80.3 km 7.0 km 0.913 19.19% 1.4 h 46.15%
Ours 77.4 km 4.1 km 0.947 23.63% 1.2 h 53.85%

3.2. Population Counting
3.2.1. Comparison with Few-Shot Approaches

The performance of counting effects of our method was compared with that of other
methods. There are two common baselines, namely (1) always outputting the average object
quantity of the training images; (2) always outputting the mid-value counts of the training
images. The two popular algorithms are: feature reweighting (FR) few-shot detectors [36]
and few-shot object detection (FSOD) [37]. The method adopted in this paper is more
advance than others, as presented in Table 5.
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Table 5. Comparing our method to two simple baselines (mean, median) and two popular algorithms
(FR few-shot detector, FSOD few-shot detector). These are few-shot methods that have been adapted
and trained for population counting. Our method has the lowest MAE and RMSE on Tibetan antelope
dataset. Bold entries indicate the most efficient method.

Method MAE RMSE

Mean 48.7 146.7
Median 47.7 152.4

FR few-shot detector 41.7 141.0
FSOD few-shot detector 35.5 140.7

Ours 23.2 98.4

3.2.2. Comparison with the Object Detector

One of the other counting methods is to use detectors to count objects after they have
been detected, which is only applicable to certain categories of objects with pre-trained
detectors. In general, training object detectors requires thousands of examples, so it is
not a practical approach for general visual counting. The performance of the network
on a validation set with pre-trained object detectors and on categorized subsets of a test
set was evaluated in this paper. To be specific, we compared our method with Faster
R-CNN [45] and Mask R-CNN [46]. These two pre-trained detectors can be found in the
Detectron2 library [47]. The comparison results are shown in Table 6. It can be seen that
our method outperforms target detectors that have been pre-trained with thousands of
annotated examples.

Table 6. Comparing our method with pre-trained object detectors. Bold entries indicate the most
efficient method.

Method MAE RMSE

Faster R-CNN 36.5 79.2
Mask R-CNN 35.2 79.8

Ours 23.9 45.4

3.2.3. Qualitative Analysis

Figures 7–10 shows the visual prediction results of our algorithm. The input was the
image to be tested and several bounding boxes of counting objects. In order to analyze the
correctness of the density map expediently, we showed the input image and the density
map superimposed. Figures 7 and 8 show examples of Tibetan antelope images with
different densities from the aerial view of the UAVs, which has proved the algorithm works
well in the case of a flat background from an overhead view with more than 97% correct
counting rate. Furthermore, the model still has an accuracy rate of more than 97% in the
case of complex backgrounds (Figure 9), where both water and land are present in the
overhead view and the color of the land is close to that of Tibetan antelope. Figure 10
shows an example of a Tibetan antelope herd image taken from the side view of a UAV
flight, which has a correct counting rate of over 96%. The overhead and side view results
demonstrate the robustness of the method utilized in this paper for counting Tibetan
antelopes photographed from different viewpoints.
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(a) (b) (c) 

Figure 7. Low-density photos of Tibetan antelope taken by UAVs above. (a) Input image and a few
exemplar bounding boxes depicting the object to be counted; (b) Overlapping of the input image and
the predicted density map; (c) Predicted density map. The value in the yellow box represents the
predicted density value. The ground truth count is 34, the predicted count is 35, and the accuracy
is 97.1%.

   
(a) (b) (c) 

Figure 8. Medium-density photos of Tibetan antelope taken by UAVs above. (a) Input image and a
few exemplar bounding boxes depicting the object to be counted; (b) Overlapping of the input image
and the predicted density map; (c) Predicted density map. The value in the yellow box represents the
predicted density value. The ground truth count is 53, the predicted count is 52, and the accuracy
is 98.1%.

   
(a) (b) (c) 

Figure 9. Medium-density photos of Tibetan antelope with complex background taken by UAVs
above. (a) Input image and a few exemplar bounding boxes depicting the object to be counted;
(b) Overlapping of the input image and the predicted density map; (c) Predicted density map. The
value in the yellow box represents the predicted density value. The ground truth count is 45, the
predicted count is 46, and the accuracy is 97.8%.
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(a) (b) (c) 

Figure 10. Network prediction results of medium density photos of Tibetan antelope taken by UAVs
from the side. (a) Input image and a few exemplar bounding boxes depicting the object to be counted;
(b) Overlapping of the input image and the predicted density map; (c) Predicted density map. The
value in the yellow box represents the predicted density value. The ground truth count is 55, the
predicted count is 53, and the accuracy is 96.4%.

4. Discussion

The study demonstrates that daily monitoring in protected areas is greatly comple-
mented by surveys of wildlife, which are conducted by small, low-cost, multiple rotary-
wing UAVs in large areas. However, the influence of UAVs’ noise and appearance on
wildlife should be considered during surveys. As we only surveyed and analyzed Tibetan
antelopes, prior detailed testing on the UAV’s influence of noise and movements should be
conducted when this method is applied to other animals. Moreover, our method extends
the field of UAV application and provides an autonomous multi-robot solution for UAV
path planning, which is suitable for any size of the survey area. It can also select the
appropriate path according to the existing UAV parameters and allows them to optimize
the take-off point of each flight.

The flexible deployment of multiple UAVs can significantly improve the path efficiency
for completing area coverage missions and reducing manual survey time and manpower
consumption, especially in remote and unpopulated areas. The results of multi-UAV
trajectory planning (Tables 2 and 3) have been visualized in Figures 11–13. Regarding the
total distance and the mission time, our method has more edges over the current multi-UAV
CCPP methods. In one aspect, the shorter total distance means less energy consumption,
which indicates a group of recharged UAVs can complete more flights when deployed
at a UAV airport. In another aspect, a shorter mission time means that a quicker survey,
allowing more surveys to be done within a window period to reduce da-ta errors and learn
about timing-related issues. It can provide ecologists with more options for their survey
methods. Compared to the method where only the total distance is done, both the total
distance and mission time decline when these two indicators are optimized simultaneously.
This is because the planner divides and distributes the entire survey route task to each with
different take-off points evenly while acquiring the optimal solution for the area to survey
on its own.
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(a) (b) 

Figure 11. The total flight distance of a group of UAVs. (a) Set the total flight distance as the
optimization parameter; (b) Set the weighted sum of total flight path and total mission time as
optimization parameters.

  
(a) (b) 

Figure 12. The total mission time of a group of UAVs. (a) Set the total flight distance as the optimiza-
tion parameter; (b) Set the weighted sum of total flight path and total mission time as optimization
parameters.

  
(a) (b) 

Figure 13. Trajectory efficiency of a group of UAVs. (a) Set the total flight distance as the optimization
parameter; (b) Set the weighted sum of total flight path and total mission time as optimization
parameters.

The few-shot object counting method can be used without pre-training the model via
images of the target population. This improves the universality of the counting method to
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a certain extent, and it can be applied to many different fields. When using this method to
test the photos of Tibetan antelope taken by UAVs, it has good applicability to images of
different densities and perspectives. It can meet the requirements of population counting.
A particular animal can be repeatedly photographed when images are stitched together
because of the possible animal movements during a multi-UAV survey. Ecologists focusing
on data research need to correct the survey results to ensure the accuracy of data results,
which has become a necessary research subject [48]. Therefore, it is essential to reduce the
mission time of such investigations. The information obtained directly from traditional
ground surveys is often one-dimensional. The distribution of all animals may be visually
linear (Figure 14) if interpreted from an image perspective when surface observation is
conducted on the ground [49]. These factors often lead to significant errors in the results,
which is not conducive to animal counting. When compared with traditional field survey
methods by vehicle or on foot, UAV surveys have a better field of view (Figures 7–9) and
have reduced the impact of animal movements on the data to a large extent, which can
improve the survey accuracy.

 

Figure 14. Tibetan antelope was photographed on the ground. In the sun, four Tibetan antelopes
overlap, so there seem to be only three. Therefore, artificial ground measurement is not conducive to
accurate counting.

With the current development of commercial multi-rotary-wing UAVs and UAV air-
ports, an untrained layman may acquire the skills to control a rotary-wing UAV quickly.
The aerial animal counting system with multi-UAVs, developed by us, aims to enable
scientists to focus on experimental design and data analysis rather than flight control skills.
The survey deployment can be made before the survey window through a simple setup that
determines the surveyed areas, the take-off areas, and the UAVs’ information. The current
artificial intelligence methods can quickly assist humans in completing many of tedious
counting tasks. The approach proposed in this paper can replace humans in performing
uninterrupted unmanned count surveys, and we only need to ensure that UAVs will not
influence the ecology of the survey areas.

However, more sorties of UAVs are often required for conducting simultaneous sur-
veys of large areas, due to UAV endurance limitations. Besides, excessively high-flight
altitudes, which means reducing the impact of UAV noise on animals, may not be con-
ducive to animal counting in feature identification. It does harm to the applicability of
the multi-UAV survey method because of camera resolution. UAV aerial surveys will also
integrate more features by combining visible light and multispectral and thermal infrared
cameras to improve information accuracy further.
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5. Conclusions

A general and flexible CCPP method was provided in this paper for a group of UAVs
to count animals. This planning algorithm enables scientists to employ multiple drones
to conduct regular unmanned surveys in the uninhabited region in fragile environments
with poor access. Moreover, multiple UAVs allow faster surveys with higher frequencies,
lower costs, and greater resolution than helicopters and better leverage for rare obser-
vation opportunities by reducing wildlife disturbance from human activities. We have
implemented our algorithms on a set of UAVs and conducted field experiments. The rapid
and repeatable aerial surveys of large-scale environments demonstrated the utility of our
system in facilitating population ecology. The results unveil that, in this paper, a herd
containing approximately 20,000 Tibetan antelopes distributed over an area of more than
6 km2 was observed by a measuring system of four UAVs, which reduced the survey time
from 4 to 6 days to about 2 h. Our method can complete aerial surveys in shorter trajectories
and mission time. With this method, the trajectories and time were reduced by 2.5% and
26.3%, respectively, and the effectiveness increased by 5.3% when compared to sweep-style
paths over an area of the same size.

Different from the target detector methods commonly used in current counting meth-
ods, the current work mainly focuses on one specific category at a time, such as people, cars,
and plants. In this paper, we use a general few-shot adaptive matching counting method,
which can count effectively without pre-training through the objects to be measured. We
tested the photos of Tibetan antelope taken from the UAV, and the accuracy can reach more
than 97%. The survey data will facilitate the development of animal protection policies.
The results of the later survey can contribute to the development of animal protection
policy, which is conducive to protecting and promoting ecological sustainability. However,
animals may move in the process of multi-drone surveys, which makes photos of them
possible to be duplicated when stitched together. In the future, reasonable corrections based
on the survey results can further improve the accuracy of the survey. Other investigations
that require fast aerial surveys under unpopulated circumstances can also benefit from our
algorithms, such as surveys of other wildlife populations, forests, and shrublands.
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Abstract: Trajectory planning of multiple unmanned aerial vehicles (UAVs) is the basis for them to
form the formation flight. By considering trajectory planning of multiple UAVs in formation flight in
three-dimensional space, a trajectory planning method in four-dimensional space-time is proposed
which, firstly, according to the formation configuration, adopts the Hungarian algorithm to optimize
the formation task allocation. Based on that, by considering the flight safety of UAVs in formation, a
hierarchical decomposition algorithm in four-dimensional space-time is innovatively put forward
with spatial positions and time constraints both considered. It is applied to trajectory planning and
automatic obstacle avoidance under the condition of no communication available between UAVs in
the formation. The simulation results illustrated that the proposed method is effective in cooperative
trajectory planning and automatic obstacle avoidance in advance for multiple UAVs. Meanwhile, it
has been tested in a Swarm Unmanned Aerial System project and boasts quite significant value in
engineering applications.

Keywords: formation flying; formation transformation; Hungarian algorithm; trajectory planning;
task allocation; flight control; automatic obstacle avoidance

1. Introduction

In recent years, as the technology of unmanned aerial vehicles (UAVs) advances and
artificial intelligence (AI) develops, UAVs have been widely adopted in military fields,
such as intelligence reconnaissance and military exercises [1]. Combat by a single UAV has
been unable to meet the demand due to the increasing complexity of military combat tasks.
Therefore, combat by multi-UAV cooperative formations has gradually become the trend
in development [2].

Multi-UAV cooperative trajectory planning [3] is an indispensable part of multi-UAV
mission execution, which is essentially an optimization problem. First, the task is assigned,
then combined with flight safety UAV performance and other constraints [4], the optimal
trajectory [5] is planned for the UAV formation to meet the flight performance and environ-
mental constraints. Compared with single UAVs, trajectory planning for multiple UAVs to
form the formation needs to further consider position constraints and cooperative obstacle
avoidance among UAVs.

At present, the commonly-used UAV trajectory planning algorithms can be divided
into two categories: one is traditional algorithms for classical optimization [6,7], mainly
consisting of dynamic planning, rapidly exploring random tree (RRT), Voronoi diagram, A
* algorithm [8–13] and Dijkstra algorithm; and the other is modern intelligent optimization
algorithms [14], including differential evolution (DE) [15], ant colony optimization (ACO),
particle swarm optimization, and whale optimization algorithm (WOA) [16–18]. As plenty
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of researchers have studied and applied these two types of algorithms, they have suggested
a cooperative coevolutionary genetic algorithm in the literature [19], which solves the prob-
lem of trajectory planning of multiple UAVs in two-dimensional space. In the literature [20],
the artificial bee colony (ABC) algorithm and simulated annealing (SA) algorithm have
been combined to solve issues of cooperative trajectory planning in two-dimensional space.
A hierarchical potential field algorithm was designed in the literature [21], introducing
rotational force for the trajectory planning of multiple UAVs. However, this has the issue
that planning becomes slower as hierarchies increase. The Particle Swarm Optimization–
Hook Jeeves (PSO-HJ) algorithm was adopted in the literature [22]. As an integrated way
of multi-UAV trajectory planning, it improves planning effectiveness to some extent. How-
ever, with the increase of the number of UAVs, the calculation efficiency decreases. In the
literature [23], UAV formation was configured based on an improved consensus algorithm.
It introduced particle swarm optimization (PSO) and a model predictive control (MPC)
algorithm to deal with obstacle avoidance, which proved effective by numerical simulation.
In the literature [24], a time-varying formation was formed on the basis of a consistency
protocol. It then guided formation movement by setting virtual leaders, planned obstacle
avoidance by artificial potential field algorithm, and proved the stability of the closed-loop
system by using Lyapunov stability theory. In the end, a numerical simulation experiment
was performed and verified the effectiveness of obstacle avoidance during formation flight.

It can be seen from the above studies that: (1) some algorithms cover only two-
dimensional situations; (2) there is still room for further improvement in trajectory planning
and algorithm efficiency; (3) in some literature, only numerical simulations instead of actual
experiments are performed to verify algorithm feasibility.

To this end, this paper proposes a trajectory planning approach with automatic ob-
stacle avoidance for multiple UAVs to achieve formation flight, which is a way of prior
trajectory planning according to flight tasks. The main innovations of this paper are listed
as follows: (1) compared with the literature [19,20], the algorithm in this paper could be
applied to trajectory planning in three-dimensional space; (2) this method combined the
Hungarian algorithm with the hierarchical decomposition strategy, which is of significantly
better efficiency and can achieve planning the optimal trajectory in only a few hundred
milliseconds; (3) under the condition of no communication between UAVs in formation, the
method proposed in this paper could realize automatic obstacle avoidance and be able to
automatically generate an obstacle-free path through collision detection; (4) unlike previous
studies [23,24] without actual tests, the method proposed in this paper is verified by actual
tests and achieved good experimental results.

Problems related to automatic obstacle avoidance of multi-UAV cooperative formation
flying are studied in this paper. Considering the solution of multi-dimensional trajectory
cooperative planning and complex constrained optimization problems, the main content of
this paper is organized through the following parts: in Part 1, the shortest path and collision
judgments during the flight formation are converted into the corresponding mathematical
models; in Part 2, the Hungarian algorithm and the four-dimensional spatiotemporal
hierarchical decomposition algorithm are studied respectively according to descriptions
of the mathematical models; in Part 3, the effectiveness of the method is verified through
simulation software and a practical experiment. The results showed that the method is
outstandingly adaptable and applicable to multi-UAV cooperative planning.

2. Establishment of the Mathematical Model

Trajectory planning with automatic obstacle avoidance for multi-UAV cooperative
flight formation can be described in the form of a mathematical model:

(1) Mission assignment to formations: missions will be assigned to all UAVs according to
the initial waypoint information O(x1, y1, z1, . . . xn, yn, zn) of the given n UAVs and
the waypoint information T(x′1, y′1, z′1, . . . x′n, y′n, z′n) of the target point to plan the
shortest trajectory, to minimize the total flight distance on the premise that the mission
objective of a formation and flight constraints of the UAVs themselves are satisfied.
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The above problem can be translated into the following mathematical description:
Take the set of the total distance of trajectories of different waypoints corresponding
to different UAVs as D{d1, d2, . . . dn}, For any i ∈ {1, 2, . . . , n}, di < dn is always true.

(2) Trajectory planning for formations: when UAVs are performing corresponding tasks
in formation, it is necessary to ensure that all the UAVs do not collide with each other
when performing the tasks in formation, in addition to meeting the shortest trajectory
planning. Therefore, judgments should be made on trajectories assigned by missions
to make sure UAVs will not collide or the distance between UAVs is not too small. In
this case, the determination of whether UAVs collide is converted into the problem of
whether the minimum distance between two routes is greater than or equal to the safe
spacing between UAVs. The above problem can be transformed into the following
mathematical description:

Take the set of all routes of UAVs in formation as L{l1, l2, . . . ln}, for any i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . , n} and i �= j, the minimum distance between any two routes is set as dminli lj

,
dsa f e as the safe distance for UAVs, distance between routes should satisfy the condition of
dminli ,lj

≥ dsa f e.

3. Method to Plan Multi-UAV Trajectories during Flight Formation

Essentially, the problem with trajectory planning for multi-UAV formation is how to
distribute n UAVs to the next target waypoint from one waypoint and, in the meantime,
satisfy time constraints and safety constraints of formation flying. To address this problem,
a method to plan multi-UAV trajectories is proposed in this paper. Firstly, the Hungarian
algorithm is applied to roughly plan the multi-UAV trajectory; secondly, the collision
judgment algorithm is utilized to detect the collision situation; thirdly, precise planning
combined with the four-dimensional spatiotemporal hierarchical decomposition strategy is
contrived to generate the final collision-free flight trajectory. The schematic diagram of the
planning method flow is presented in Figure 1.

3.1. Method to Assign Tasks to Multiple UAVs in Formation Based on the Hungarian Algorithm

To enable multiple UAVs to realize the formation flight, trajectory planning according
to mission objectives is the first thing to do, which is usually difficult in calculation,
time-consuming in planning, and not efficient to meet actual demands. Therefore, it is
important to explore a path planning algorithm with simple calculation and high efficiency
for multiple UAVs.

Task assignment is of significance for multi-UAV trajectory planning, while for solving
assignment problems, the Hungarian algorithm happens to be a very effective method with
fast calculation and high efficiency. Therefore, this paper applies the Hungarian algorithm
for the task allocation (assignment) of multiple UAVs to achieve the objective of obtaining
the shortest total flight distance of all UAVs, as shown in Figure 2.

Trajectory planning for UAVs formation can be carried out based on the theorem of the
optimal solution of the Hungarian algorithm. The specific steps are presented as follows:

Step 1: Input the initial position matrix of n UAVs O(x1, y1, z1, . . . xn, yn, zn) and the target
position matrix T(x′1, y′1, z′1, . . . x′n, y′n, z′n).

Step 2: Calculate the distance between the initial position of n UAVs and n target waypoints
to form an n ∗ n distance matrix A. The element Aij represents the distance between
the UAVs numbered i and the jth target waypoint.

Step 3: Apply row transformation to the distance matrix A, where the smallest element of
each row is subtracted from the elements of that row in matrix A.

Step 4: Apply column transformation to the distance matrix A, where the smallest element
of each column is subtracted from the elements of that column in matrix A.

Step 5: The trial assignment:

(1) Find the row and column with the least number of zero elements without
lines, that is, traverse all the zero elements without lines to check how many
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zeros are in rows and columns where the elements are located, and finally
select the zero elements in the row and column with the least number of
zero elements;

(2) Find the zero elements without a line in that row and column, which is an
independent zero element. Draw a line for the row and column in which
those zero elements are located;

(3) Leave elements covered by lines alone for the moment and repeat steps (2)
and (3) until there are no lines to draw;

(4) Succeed when finding n independent zero elements according to the number
of zero elements found in (3) and execute the next step when the number of
independent zero elements is less than n.

Step 6: Draw a line to cover the zeros:

(1) Tick rows without an independent zero element;
(2) Tick the corresponding columns with one or more zero elements in the

ticked rows;
(3) Tick the corresponding rows with one or more independent zero elements in

all ticked columns;
(4) Repeat (3) and (4) until no more ticks can be made.

Step 7: Update the matrix:

(1) Find the smallest number among those without lines;
(2) Subtract the smallest number from those without lines;
(3) Add the smallest number to the numbers with two lines, ensuring that the

position of zero elements remains unchanged.

Step 8: Repeat steps 5–7 until success.

n n nO x y z x y z

n n nT x y z x y z{

i jl l safed d≤

i jl ld

{ i jl l safed d≤

 

Figure 1. Schematic diagram of the trajectory planning process for multi-UAV coordinated forma-
tion flight.
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Figure 2. Hungarian algorithm flow block diagram.

The resulting matrix obtained after the above steps is the solution matrix. Replace
all the independent zero elements in this matrix with 1 and all the elements except the
independent zero elements with 0. Such a 0–1 matrix is the optimal solution to the multi-
UAV allocation problem.

Pseudo-code of the task allocation Algorithm 1 is:
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Algorithm 1: UAV task assignment algorithm

function Edmonds (origin-position, goal -position) 
Input: origin-position: n n nO x y z x y z , 

Goal-position: 1 1 1 n n nT(x ,y ,z ,...x ,y ,z )′ ′ ′ ′ ′ ′ , 
origin-position/ goal-position size: n , 
output: ans X  

for i ←  to n  do 
for j ←  to n do 

Calculate the distance from the origin position to the goal position, and the result is 
stored in A n n  

for ( i ←  to n  do) 
Subtract the smallest element of each row from A n n  

for ( i ←  to n  do) 
Subtract the smallest element of each column from A n n  

n ← ; n ← ; M n n ←  
for i ←  to n  do 

for j ←  to n  do 
if ( A i j r i c j== == == ) 

←  
←  

M ←  
if ( sum c n== ) 

end 
else 

←  
While ( ← ) 

←  
While ( ← ) 

If ( A i j r i c j== == == ) 
Draw lines to the row and column where the 0 elements are located; 
Store 0 elements to  
if k < n then 

Pick the row that has no 0 elements, on this basis, Pick the columns that have 0  
       elements 

Check the row that contains the independent 0 elements in all checked columns; 
///Update matrix: 

r← ←  
b ← ←  

val A i j←  
A find r A find r val← ← ← +  
A find A find c val← ← ← −  

return X 
The resulting matrix obtained after the above steps is the solution matrix. Replace all inde-

pendent 0 elements in this matrix with 1 and replace all elements except independent 0 elements 
with 0. Such a 0-1 matrix is a multi-UAV optimal solution to the assignment problem. 
end 
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3.2. The Multi-UAV Trajectory Planning Method Based on the Four-Dimensional Spatiotemporal
Hierarchical Decomposition

According to the task assignment result, a trajectory can be designed for each UAV
from the current point to the target point, as shown in Figure 3. A collision situation would
occur if the mission is executed through the trajectory. To safely complete the formation
flight mission, all UAVs need to take the same time to traverse the trajectory and not collide
with each other, which satisfies the time coordination and safety of the formation. Therefore,
the planning of the final flight trajectory also needs to meet the time constraints and safety
constraints of the UAVs’ formation based on the task assignment.

Figure 3. Example diagram of a UAV formation.

(1) Time constraints

Time constraints require all UAVs to arrive at the corresponding target point simulta-
neously. In the time constraint of this paper, all UAVs are required to reach the navigation
point within the time constraint. In a formation mission, it is assumed in this paper that
the speed of all UAVs is maintained at a certain level, and the approximate time of arrival
at the target point is calculated based on the range of the UAVs to realize the cooperative-
ness in time for all UAVs during formation flying since each trajectory consists of a series
of waypoints which do not contain accurate time information. The approximate time is
employed as the benchmark to establish a time-constrained model for UAVs formation.

Pi =
{

pi
1(x1, y1, z1, t1), pi

2(x2, y2, z2, t2), . . . , pi
n(xn, yn, zn, tn)

}
(1)

Pi denotes waypoints of UAV i, n the total number of all waypoints of UAV i’s
trajectory, pi

n(xn, yn, zn, tn) the nth waypoint of the trajectory Pi, (x, y, z) the position
coordinates of the trajectory, and tn the flight time to reach the waypoint.

Based on the above representation of a trajectory, cooperative time constraints on
waypoints for a multi-UAV formation can be expressed as:

max(tn) (2)

(2) Safety constraints

Safety constraints require the distance between UAVs to be greater than or equal to
the safety distance until they arrive at the target point to avoid collisions. Due to the large
granularity of scattered waypoints, not only safety constraints at waypoints but also the
safety of the entire trajectory within the same period should be determined. Specifically,
M1N1 and C1D1 are set to represent the trajectories at the first and second waypoints of
UAVs i and j, respectively, and the coordinates of point M1 are set to be (x1, y1, z1), point
N1(x2, y2, z2), point C1(x3, y3, z3), and point D1(x4, y4, z4). Safety constraints between
the two UAVs are displayed in the following steps:
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Step 1: Set the safety distance between two UAVs to dsa f e meters according to UAVs’ control
accuracy and relevant external equipment;

Step 2: Determine whether the shortest distance between the line segments connecting the
adjacent waypoints corresponding to UAVs is less than the safe distance dsa f e in a
way shown as follows:

Set the line H to be a point on the line M1N1. The coordinates (X, Y, Z) of the point H
can be expressed as: ⎧⎨⎩

X = x1 + k(x2− x1)
Y = y1 + k(y2− y1)
Z = z1 + k(z2− z1)

(3)

When the parameter k satisfies the condition where 0 ≤ k ≤ 1, H is a point on the line
M1N1; when the parameter k < 0, H is a point on the extended line of N1M1; when the
parameter k > 1, H is a point on the extended line of N1M1.

Set the line Q to be a point on the line C1D1 and the coordinates (U, V, W) of the point
Q can be expressed as: ⎧⎨⎩

U = x3 + k(x4− x3)
V = y3 + k(y4− y3)
W = z3 + k(z4− z3)

(4)

When the parameter y satisfies the condition where 0 ≤ y ≤ 1, Q is a point on the line
C1D1; when the parameter y < 0, Q is a point on the extended line of D1C1; when the
parameter y > 1, Q is a point on the extended line of C1D1.

The distance between the point H and the point Q is:

HQ =

√
(X−U)2 + (Y−V)2 + (Z−W)2 (5)

The squared distance is:

f (k, y) = HQ2 = (X−U)2 + (Y−V)2 + (Z−W)2 (6)

The shortest distance between the line M1N1 and the line C1D1 is the minimum value
of f (k, y).

Deduce the partial derivatives of k, y for f (k, y), respectively, and set the partial
derivatives as 0. H falls on line M1N1 and Q falls on line C1D1, and HQ is the shortest
distance when the parameters obtained finally satisfy the condition where 0 ≤ k ≤ 1 and
0 ≤ y ≤ 1. Otherwise, it will be impossible to find a point H on the line M1N1 and a point

Q on the line C1D1 to minimize the distance HQ =
√
(X−U)2 + (Y−V)2 + (Z−W)2.

At this point, deduce the shortest distance from M1 to the line C1D1, and from N1 to the
line C1D1; the shortest distance from C1 to the line M1N1, and from D1 to the line M1N1.

Above is the method to determine whether two trajectories collide or not, and the
process of determination is presented in Figure 4.

A four-dimensional spatiotemporal hierarchical decomposition algorithm combined
with automatic obstacle avoidance trajectory planning is proposed in this paper to meet the
time constraints and safety constraints for UAVs’ formation. When the distance between
UAVs is too close, the procedure of automatic obstacle avoidance takes effect and plans a
route for the UAVs to avoid obstacles. Thenceforth, the UAVs will continue to perform their
original tasks. Targeting the specific tasks for formations, collision detection on trajectories
of all UAVs is conducted in a combination of time constraints to automatically contrive
routes for obstacle avoidance in the future. The specific implementation steps are as follows:

Step 1: Set the safety distance as dsa f e and the time required for UAVs to fly the safety
distance dsa f e as tsa f e;

Step 2: Step 2: Determine whether the shortest distances between the trajectory connecting
the initial and target points of the first UAV and that of the remaining (n− 1) UAVs
are greater than or equal to the safe distance s according to the initial point matrix
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O and the target point matrix T of a formation. Practice Step 3 if the shortest
distance is smaller than the safe distance, and perform Step 4 if it is greater than
the safe distance;

Step 3: Select the smaller serial numbers of UAVs, put them into the array E, and conduct
Step 4;

Step 4: Determine the distances between the trajectory connecting the initial and target
points of the nth UAV and that of the remaining UAVs and repeat Step 3 until all
the distances in a formation mission have been determined.

Step 5: Sort the array E in ascending order and copy the array E to the array F;
Step 6: Put all UAVs’ serial numbers in the formation mission other than those in the array

E into the array G in ascending order;
Step 7: Traverse the array F, copy the position information of all UAVs’ initial and target

points in the array, and at the same time increase the two points’ heights by dsa f e me-
ters, respectively. Insert the two points with increased heights into the middle of the
original points (for example, the initial and target points are at h1(x1, y1, z1, t1) and
h2(x2, y2, z2, t2), and there will four waypoints at h1(x1, y1, z1, t1) h1+(x1, y1, z1+
dsa f e · count, t1 + tsa f e · count), h2+(x2, y2, z2 + dsa f e · count, t2 + tsa f e · count),
h2(x2, y2, z2, t2) after the two new points are inserted. Count denotes the number
of times to carry out step 5, which will increase by 1 each time and whose initial
value is 0. Practice Step 8;

Step 8: Clear the array E and traverse the array F to redetermine whether the distances
between trajectories of all UAVs are greater than the safe distance s. Perform Step 9
after repeating steps 2 to 5;

Step 9: Traverse the array F and modify the altitude information of newly added UAV
waypoints in the array F into h1(x1, y1, z1, t1), h1+(x1, y1, z1 + dsa f e · count, t1+
tsa f e · count), h2+(x2, y2, z2 + dsa f e · count, t2 + tsa f e · count), h2(x2, y2, z2, t2). Count
means the number of times to practice Step 5, which will increase by 1 each time
and whose initial value is 0. Repeat steps 8 to 9 until the distances between UAVs
in the array F are greater than the safe distance;

Step 10: Traverse the array G and insert two new waypoints corresponding to the nth
segment of trajectories of all UAVs in the array G. In this case, the original
h1(x1, y1, z1, t1) and h2(x2, y2, z2, t2) become four waypoints of h1(x1, y1, z1, t1),
h1+(x1, y1, z1, t1 + tsa f e · count), h2+(x2, y2, z2, t2 + tsa f e · count), h2(x2, y2, z2, t2);

Step 11: Clear arrays E, F, and G, and move the positions of the initial and target points
to the next section of the trajectory (for instance, set the first and the second
waypoints of all UAVs as the initial and target points at the very beginning, and
then take the second and the third waypoints as the initial and target points).
Repeat steps 1 to 10 until the distances between trajectories of all UAVs have been
checked. At this point, the algorithm ends, and multi-UAV trajectory obstacle
avoidance is completed.

The schematic diagram of obstacle avoidance based on hierarchical decomposition is
shown in Figure 5, where trajectories of UAV1 and UAV2 are A1B1 and MN, respectively.
There is a crossover between A1B1 and MN, so automatic obstacle avoidance is required.
According to the algorithm, UAV1 automatically inserts waypoints A1′ and B1′, and
UAV2 automatically inserts waypoints M′ and N′, that is, the trajectory of UAV1 becomes
A1− A1′ − B1′ − B1; the trajectory of UAV2 trajectory becomes M−M′ − N′ − N. UAV1
has performed a hierarchically decomposed flight and automatically avoided obstacles.
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M x y z N x y z C x y z D x y z

H M N Q C D∈ ∈

HQ X U Y V Z W= − + − + −

safe safeS D HQ D

H X Y Z
Q U V W

Figure 4. Determine the trajectory collision flowchart.

Figure 5. Schematic diagram of hierarchical decomposition obstacle avoidance.
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Pseudo-code of the hierarchical decomposition and automatic obstacle avoidance
Algorithm 2:

Algorithm 2: High layered realization of UAV obstacle avoidance

Input:  
origin-position: n n nO x y z x y z  
Goal-position: 1 1 1 n n nT(x ,y ,z ,...x ,y ,z )′ ′ ′ ′ ′ ′ , 

UAV-count n  
safe distance: safed  
safe distance flight time: safet , 
output: Solution Y  
for i ←  to n  do 

for j ←  to n i  do 
Calculate the distance between UAV tracks; 

count count= + ; 
if distance < safed  then 
Select the top UAV serial number and put it in the array E ; 
Sort array E in ascending order, copy array E to array F ; 
Sort the serial numbers of other UAVs in the formation task except in array E  into array F in 

ascending order; 
for i ←  to F  do 

Insert two new positions: 
( ) ( )

( ) ( )
safe safe

safe safe

h x y z t h x y z d count t t count

h x y z d count t t count h x y z t

+

+

+ ⋅ + ⋅

+ ⋅ + ⋅
 

empty array E ; 
for i ←  to F  do 

Calculate the distance between UAV tracks; 
if distance < safed  then 
modify two new positions: 

( )
( )

safe safe

safe safe

h x y z d count t t count

h x y z d count t t count

+

+

+ ⋅ + ⋅

+ ⋅ + ⋅
 

for i ←  to G  do 
Insert two new positions: 

( )
( )

safe

safe

h x y z t t count

h x y z t t count

+

+

+ ⋅

+ ⋅
 

empty array E F G ; 
Return the best solution Y  in Pop; 

end  

4. Implementation of Algorithm, Comparison, and Simulation

4.1. Formation Task Allocation Algorithm Comparison

When compared to random matching and auction algorithms is shown in Figures 6–8,
to make the advantages of the method proposed in this paper much clearer, for task
allocation from “linear” to “circular” formation, we considered only two indicators: total
trajectory length and calculation time. In order to verify the effectiveness of the algorithm,

409



Drones 2022, 6, 192

1000 times, 10,000 times, and 100,000 times of calculations were carried out, and the results
are shown in Tables 1 and 2 below. By comparing and analyzing the data in the table, we
can tell from the results that the proposed method is able to achieve the formation flight
planning with the shortest total trajectory length in a comparatively shorter time.

Figure 6. Task assignment based on Hungarian algorithms.

Figure 7. Task assignment based on auction algorithms.
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Figure 8. Random task assignment.

Table 1. Average total track length comparison.

Times 1000 10,000 100,000

Hungarian algorithm assignment(m) 163.5636 163.5636 163.5636

auction algorithm(m) 169.2375 168.6958 167.9658

randomly assigned(m) 177.6276 174.3265 174.9328

Table 2. Calculated time comparison.

Times 1000 10,000 100,000

Hungarian algorithm assignment(s) 0.509003 0.5888016 1.3911980

auction algorithm(s) 0.5229998 0.7292022 2.8083982

randomly assigned(s) 0.53226971 0.8156322 2.95687235

4.2. Flight Simulation of Multi-UAV Formation

A simulation test of the multi-UAV formation was completed by writing relevant
programs on MATLAB R2019a developed by the Mathwork company of Natick, America in
the computers with the main frequency of 3.20 GHz, a memory of 32GB, and the operating
system of Windows 10. To verify the effectiveness of algorithms, a formation test was
conducted for 10 UAVs, and the initial and target coordinates of the 10 UAVs are shown in
Figure 9:

The following Tables 3 and 4 demonstrates the planned trajectory with the shortest
distance for 10 UAVs based on the initial and target positions, from ”one-line” to “circle”
and then to “triangle”, through the Hungarian algorithm. Graphical results of the task
allocation are displayed below. Row numbers of the matrix represent the UAV numbers,
and column numbers are markers of the target points. A 1 element in the matrix represents
that the row and the column where the 1 element is located match.
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Figure 9. Three initial positions of UAVs formation.

Table 3. The “One-line” to “Circle” task assignment results.

Serial Number 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 0 0 1 0

3 0 0 0 0 0 0 1 0 0 0

4 0 0 0 0 0 0 0 0 0 1

5 0 0 0 0 0 1 0 0 0 0

6 1 0 0 0 0 0 0 0 0 0

7 0 0 0 0 1 0 0 0 0 0

8 0 1 0 0 0 0 0 0 0 0

9 0 0 0 1 0 0 0 0 0 0

10 0 0 1 0 0 0 0 0 0 0

Table 4. The “Circle” to “Triangle” task assignment results.

Serial Number 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 1 0 0 0 0

2 0 0 0 0 0 0 1 0 0 0

3 0 0 0 0 0 0 0 1 1 0

4 0 0 0 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0 0 0 0

6 1 0 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0 0

8 0 0 1 0 0 0 0 0 0 0

9 0 0 0 1 0 0 0 0 0 0

10 0 0 0 0 1 0 0 0 0 0

Based on the results of allocation produced by the Hungarian algorithm, obstacles
were avoided through the method of hierarchical decomposition after the target points
were determined to ensure that all UAVs did not collide in the air. Results of obstacle
avoidance are listed in the following table.

Tables 5 and 6 shows the height hierarchy situation of the UAVs when the formation is
transformed from “one-line” to “circle”, “circle” to “triangle”. Table 5 shows that the UAV
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1, 5, the UAV 2, 4, 6, 9, and the UAV 3, 7, 8, 10 are at the same altitude respectively, and the
times of UAV rising represents a different height. Table 5 has the same meaning as Table 6.

Table 5. “One-line” to “circle” obstacle avoidance results.

UAV 1 2 3 4 5 6 7 8 9 10

Rising number of UAV 2 1 0 1 2 1 0 0 1 0

Table 6. “Circle” to “triangle” obstacle avoidance results.

UAV 1 2 3 4 5 6 7 8 9 10

Rising number of UAV 2 1 1 1 1 0 0 0 0 0

The above results suggest that the flight altitude of UAVs with different numbers
should be planned based on their different results of obstacle avoidance to avoid obstacles
in the air.

Trajectory planning is carried out according to the Hungarian algorithm and the four-
dimensional spatiotemporal hierarchical decomposition algorithm to realize the formation
flying from a “one-line” to the shape “circle”, and from the shape of a “circle” to “triangle”.
The simulation diagram is shown in Figures 10–12, where line segments with the same
color indicate flying on the same plane to the target points, while those with different colors
imply different flight altitudes.

Figure 10. Simulation of the flight of 10 unmanned aerial vehicles in formations of “one-shaped-
circle-triangle”.
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Figure 11. Simulation of 10 UAVs “one-shaped” to “circular” formations.

Figure 12. Simulation of 10 UAVs flying in “circular” to “triangle” formations.

4.3. Engineering Application and Flight Test

Quadrotor UAVs were employed to complete a formation flight test in this program to
verify the effectiveness and feasibility of algorithms. A quadrotor UAV is demonstrated in
the following figure, made from carbon fiber materials with a fixed foldable tripod of an
inverted shape, and featuring firmness and stability in Figure 13.

In the flight test, 10 UAVs were selected to complete the UAVs formation, flying in
three shapes, namely a “one-line”, the shape of a “circle”, and a “triangle”. Firstly, the
initial coordinates of the pattern to be formed and the final coordinates of the UAVs were
entered into the simulation software program. The waypoint information of all the UAVs
information were output after the program was successfully operated. The trajectory of
each UAV was saved in a text file, as shown in Table 7. Then, the trajectory information of
all UAVs was input into the ground station software and displayed on a map, as presented
in Figure 14. Finally, the information was downloaded to the UAVs through the ground
stations, and the UAVs performed the flight plan.
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Figure 13. Formation with quadcopter UAVs.

Table 7. Generated information about the location of the drone 1 relative to the track point.

Waypoint
Order

Waypoint
Type

Relative Latitude
(m)

Relative Longitude (m)
Waypoint

Altitude (m)
Fly Time (s)

1 1 −11.4839229583740234 4.81873273849487305 20 10

2 2 −11.4839229583740234 4.81873273849487305 30 15

3 2 −23.2751808166503906 24.2204875946044922 30 15

4 2 −23.2751808166503906 24.2204875946044922 20 10

5 2 −23.2751808166503906 24.2204875946044922 30 15

6 2 −16.0270156860351563 37.4085922241210938 30 15

7 2 −16.0270156860351563 37.4085922241210938 20 10

 

Figure 14. Imported UAV formation map into a ground station.

In Figure 15, each card in the above diagram represents a UAV, and the status related
to each UAV (including latitude and longitude information, battery voltage, and flight
mode) can be observed clearly.
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Figure 15. Ground station 10 UAVs’ communication.

The actual formation flying of UAVs is displayed in Figure 16. During the flight, each
UAV was able to arrive at a place near the designated location, and all of them could form
a predetermined pattern. However, the actual positions of the UAVs formation slightly
deviated from the target points due to GPS and environmental issues such as wind direction.
Nevertheless, the task assigned to each UAV was accurate, and no collision occurred during
the flight. Therefore, this experiment proved the feasibility of the algorithms.

 

Figure 16. Formation test flight.
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5. Conclusions

Targeting three-dimensional space trajectory planning for multi-UAV in cooperative
formation, the Hungarian algorithm is adopted in this paper based on formation control
under the virtual pilot to minimize costs of the total distance of trajectories during forma-
tion transformations, and a four-dimensional spatiotemporal hierarchical decomposition
strategy on flight altitude is put forward to avoid collisions during formation flying. This
method combines the Hungarian algorithm with the hierarchical decomposition strategy,
which is of significantly better efficiency and can plan the optimal trajectory in only a
few hundred milliseconds. Compared with the auction algorithm, the total track distance
and planning time are reduced by about 3%. Meanwhile, time constraints of the UAVs’
formation flying are combined to preplan a route for automatic obstacle avoidance with-
out other communication between UAVs. In the end, verification is conducted through
MATLAB simulation and test, and 10 UAVs formation have realized shape transformation
from a “one-line” to a “circle”, and then to a “triangle”. Tested in actual flight, each UAV
can reach the corresponding destination quickly and without collision, thus verifying the
effectiveness and reliability of this method stated in the paper.
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Nomenclature

A = n·n distance matrix
Aij = distance between the UAV number and the target waypoint j
A1′ = drone waypoint
A1B1 = drone track
B1′ = drone waypoint
count = number of waypoint modifications
C1D1 = line segment
C1, D1, M1, N1 = line segment C1D1 and M1N1 endpoints
D{d1, d2, . . . dn} = n UAVs’ initial waypoints to target waypoints route distance matrix
dsa f e = safe distance between UAVs
dmin li ,lj

= minimum distance between two routes

E =
serial number array of UAV whose route distance is less than
the safe distance

F = an ascending array of drone serial numbers

G =
serial number array of UAV whose route distance is greater
than the safe distance

h1, h2 = two waypoints
h1+, h2+ = new waypoints
H, Q = line intersection
i, j = serial number of array or matrix
k, y = slope of a line
L{l1, l2, . . . ln} = n UAVs’ initial waypoints to target waypoints route matrix
M1N1 = line segment
MN = drone track
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M′ = drone waypoint
N′ = drone waypoint
n = number of UAV
O(x1, y1, z1, . . . xn, yn, zn) = n UAVs’ initial waypoints matrix
Pi

n(xn, yn, zn, tn) = the i-th waypoint information of the UAVs
T(x′1, y′1, z′1, . . . x′n, y′n, z′n) = n UAVs’ target waypoints matrix
ti = flight time to the i-th waypoint
tsa f e = time required to fly dsa f e distance
(xn, yn, zn), n ∈ {1, 2, 3, . . .} = point coordinates
(X, Y, Z) = intersection coordinates
(U, V, W) = intersection coordinates
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Abstract: Micro aerial vehicle (MAV) fleets have gained essential recognition in the decision schemes
for precision agriculture, disaster management, and other coverage missions. However, they have
some challenges in becoming massively deployed. One of them is resource management in restricted
workspaces. This paper proposes a plan to balance resources when considering the practical use
of MAVs and workspace in daily chores. The coverage mission plan is based on five stages: world
abstraction, area partitioning, role allocation, task generation, and task allocation. The tasks are
allocated according to agent roles, Master, Coordinator, or Operator (MCO), which describe their
flight autonomy, connectivity, and decision skill. These roles are engaged with the partitioning based
on the Voronoi-tessellation but extended to heterogeneous polygons. The advantages of the MCO
Plan were evident compared with conventional Boustrophedon decomposition and clustering by
K-means. The MCO plan achieved a balanced magnitude and trend of heterogeneity between both
methods, involving MAVs with few or intermediate resources. The resulting efficiency was tested
in the GAMA platform, with gained energy between 2% and 10% in the mission end. In addition,
the MCO plan improved mission times while the connectivity was effectively held, even more, if the
Firefly algorithm generated coverage paths.

Keywords: area partitioning; connectivity; coverage mission; firefly algorithm; GAMA platform;
heterogeneity; Micro Aerial Vehicles; Voronoi-tessellation

1. Introduction

The participation of Unmanned Aerial Vehicles (UAVs) or drones in civil activities has
increased due to their versatility in any environment. Most commercial UAVs are classified
as Micro Aerial Vehicles (MAVs), restricted to up to 5 kg, a communication range of about
10 km, and a maximum altitude of 250 m [1]; they can be wing-based or multirotor, and
their cost is often less than other civil UAVs.

MAVs frequently are deployed to search, surveil, patrol, and perform other activities
which generate information to make decisions in agriculture, disaster management, and
other processes that require monitoring in space and time. These tasks are framed in the
CPP (Coverage Path Planning) problem [2] which usually has three stages; path planning,
allocation, and deployment [3]. The key to an efficient coverage plan is to visit all waypoints
of a workspace, avoiding obstacles or Zones of Low Interest (ZLIs). However, this type
of mission can fail in restricted (and large) workspaces since the MAVs have a limited
operational flight, around 15 to 30 min, which decreases by payload, angular acceleration
changes, maneuvers against the wind, and continuous deployments.

This limitation has been studied in research projects and some commercial initia-
tives using energy management through optimal paths and a global positioning [4], with
recharge stations in the middle of the course of the MAVs [5] and using a fleet of MAVs [6].

Drones 2022, 6, 181. https://doi.org/10.3390/drones6070181 https://www.mdpi.com/journal/drones
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Even though the latter approach has significant challenges, the current proposal is centered
on it, since optimizing the mission with a single MAV may not be enough to cover restricted
workspaces. The recharge stations require electric infrastructure in the workspace, which is
not available for most workspaces such as crops, forests, and other hostile areas.

A fleet of MAVs can be modeled based on the theory of multiple robotic agents
that can cooperate to accomplish a coverage mission [7]. The coordination model can
be centralized, hierarchical, decentralized, or hybrid. However, the last ones have a
significant preference because they are robust to faults and can combine local and high-
level control to solve complex tasks [8]. The no-centralized management has two paradigms:
the swarm-type and the heterogeneous systems. The coordination of a swarm involves
multiple homogeneous agents with behavior inspired by biological societies. For the
second paradigm, heterogeneity can be defined in behavior, morphology, performance, size,
or cognition. A heterogeneous system exploits the swarming coordination’s parallelism,
redundancy, and distributed solutions. Moreover, it can include mission specifications
because the agents have different skills and payloads [9].

From the previous context, this paper works with a decentralized model to deploy
multiple MAV agents for coverage missions in restricted workspaces. However, the multi-
drone technology is still not a part of the daily activities of users, possibly because most
alternatives work for environments and users in ideal conditions. A typical user does
not have the technical knowledge and is unprepared for a dynamic workspace’s cost and
possible risks. In answer, the first premise of the current solution is to consider simple MAVs,
easily acquired and adaptable, for example, Ardupilot, Parrot, and DJI. These commercial
MAVs facilitate use and maintenance and mitigate the risk of investment on possible missed
missions. From this approach, the question to solve is how to efficiently deploy multiple
MAVs for coverage missions conditioned to environments with restricted access.

The present research works on the off-line multi-CPP problem since online planning
would require continuous communication and processing resources that simple MAVs
and restricted environments cannot support [10]. The solution is a plan for area coverage
missions based on the balance of the heterogeneity of MAVs and the connectivity of the fleet
(Figure 1). Both are engaged with area partitioning inspired by the Voronoi-tessellation but
extended to heterogeneous polygonal sub-areas. The resulting tasks are profiled for agents
of type Master, Coordinator, and Operator (MCO). Then, tasks are allocated to the MAVs
using an auction mechanism. The main job of an agent is to follow a coverage path, which
is calculated with the Firefly algorithm, given as a near-optimal solution to the Traveling
Salesman Problem (TSP) for each area partition. The second task is to interact with near
neighbors, which is restricted by the role and the communication range.

Figure 1. Proposal summary.
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The GAMA platform [11] was selected to validate the hypothesis described in Figure 1
due to its extensive features to model physical agents and geographic environments. The
results show better resource management of the MCO Plan after comparing it with other
alternatives such as Boustrophedon-based and clustering-based planning. The experiments
state the performance of the MCO plan in three different workspaces throughout the
analysis of scores such as the task standard deviation, remaining energy in the end mission,
and the likely number of links. The mean values, 8% for standard deviation, 60% for saved
power, and five links per MAV, prove a balanced heterogeneity and connectivity skill.

The remaining paper is organized as follows: Section 2 describes related work on the
coverage mission for multiple heterogeneous MAVs. The subsequent problem statement
is defined in Section 3. Section 4 states the materials and proposed methods to plan a
coverage mission. Section 5 presents and analyzes the simulated results using the GAMA
platform. Finally, the conclusion and future research are described in Section 6.

2. Related Work

Some outstanding papers sorted by coverage planning mechanisms for multiple MAVs
were selected for this section. The following classification describes a timeline with specified
methods of world abstraction, area partitioning, and coordination.

2.1. Polygon-Based Coverage Plans

One of the pioneering works on this topic was found in [12]. The problem they tried
to solve was a cooperative search in areas while considering the computational complexity
required to implement in near real-time applications. Maza and Ollero defined a polygonal
decomposition of the region; every drone was assigned to one of the resulting polygons by
a ground coordinator based on deterministic scores. Next, they proposed optimizing the
UAV coverage path by minimizing the number of turns during a zigzag pattern, using the
optimal sweep direction (flight lines) of fixed-wing MAV for surveillance.

The work in [13] was representative of the 2D coverage solutions. Valente divided the
workspace into grid-like cells and planned the sub-areas with the best approximation to the
minimum line segment. The off-line planning considered the inherent limitations of a raster
and other constraints to be optimized. A heuristic wavefront was extended on a graph
generated by the neighborhood adjacency to calculate the coverage paths. Further, the
authors proposed task negotiations based on an auction mechanism only at the coverage
mission start. Following the line of optimal coverage with MAVs, the authors in [14]
decomposed the observed area into that of a regular grid, partitioning the area by equal
vertical segments. The area was rotated to find the optimal sweep direction and paths
with few flight lines. They compared the spiral, Zamboni, and lawnmower patterns to
calculate the coverage paths. The paths were complemented with the Dubbin curves to
optimize the agent energy. The work presented did not include a coordination mechanism
for the coverage mission; however, [15] proposed a one-to-one coordination algorithm for
area partition in patrolling missions that considered limitations of communication. This
decentralized strategy was aimed at minimizing the refresh time of the mission; every
MAV only exchanged information with nearby neighbors. They proposed a rectangular
decomposition and techniques of re-allocation using close links iteratively.

Balampanis et al. in [16] described a novel algorithm for heterogeneous coverage
missions in non-convex coastal regions with ZLIs. The Constrained Delaunay Triangulation
(CDT) was used to represent the workspace, and the paths were spirals centered in the
first cell labeled for an improved wave-front algorithm. The sub-regions were calculated
according to the MAV capabilities and a defined start position; then, the paths were
adjusted to solve deadlock situations. Ardupilot SITL instances validated the results
in the ROS framework. In recent proposals, area partitioning has token relevance for
maritime applications [17]. The work uses a polygon decomposition algorithm to carry
out complete search coverage. The strategy fixed the start positions on the edge to divide
the workspace through line segments that considered the areas and optimized with a
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‘maximizing-minimum angle’ mechanism. The numerical results showed the performance
and computational complexity of the proposed algorithm. The coverage path was a parallel
sweep search pattern that was improved by decreasing the turns and the traveled distance.
A critical approach was found in [18] to surveilling missions. They split the area of interest
given the number of MAVs, the requirements for the site to be covered, and the initial
position of each MAV. The coverage path was a back-and-forth pattern with a given cross-
track separation. The novel partitioning method was based on the directed graph of the
triangular sub-regions by a constrained Delaunay triangulation. Each sub-region was
adjusted with a pseudo-site to start the mission. The path assignment was centralized and
considered few turns. Finally, a generalized proposal of the polygon decomposition for any
robotic agent was presented in [19]. The basis of the proposal was to divide a polygon into
two parts for given area requirements in terms of the perimeter of the corresponding part.
The algorithm continued until it split the workspaces in the given number of vertices in
the polygon’s border. The authors only worked on the mathematical solution to divide a
polygon for any range of applications.

2.2. Clustering-Based Coverage Plans

The coverage mission based on polygons is frequently oriented in the area geometry
and ZLIs. Still, clustering is focused on dividing the workspace into homogeneous sub-
areas that could be heterogeneous with ZLIs-included. For instance, [20] decomposed
the total area using the K-means algorithm. A genetic algorithm calculated the coverage
paths for each cluster, and a single MAV was assigned for each group. They proposed two
variants of a method for offline and online coverage paths, and the analysis was done for
small, medium, and large areas.

Similarly, in [21], an area reconnaissance mission was deployed with offline planning to
start the task and a partial online re-planning. The pre-planning was based on the Spanning
Tree Coverage algorithm; then, a fuzzy C-means clustering algorithm was executed to
calculate the multiple paths and corresponding sub-areas. The online re-planning was
designed to distribute tasks in case of MAV failures.

Leng et al. in [22] presented a new proposal to optimize the paths and maximize the
ground visibility considering the natural occlusions in forests. The authors changed the
traditional grid abstraction by the Voronoi cells to represent the waypoints to be visited.
Each MAV was assigned to a cluster of Voronoi cells to carry out surveillance. The coverage
path for each MAV was calculated with a custom clustered spiral-alternating algorithm.
Following the balance between areas, paths, and number of MAVs, in [23], the coverage
mission was defined by solving the Multiple Traveling Salesman Problem (m-TSP). First,
collision-free sub-areas were generated by the αβ swap algorithm. The second part updated
the sub-areas to find the partitioning that minimizes the longest MAV path. They allocated
paths to MAVs which had nearly equivalent lengths.

The authors in [24] proposed a solution to solve the problem of multi-MAV coverage
path planning that divided the region based on Reinforcement Learning with a grid world.
The initial cell is random, and each agent has a camera to acquire information. The
global control of the fleet is defined by a mechanism of Deep reinforcement learning with
Double Q-learning Networks (DDQN). The coverage showed that different start positions
are independent of the capacity to cover all spaces. The results proved autonomous
collaboration in dynamic environments with energy constraints.

Inspired by the algorithm called Clustering by the Fast Search and Find of Density
Peaks (CFSFDP) [25], the regions were classified into clusters and obtained approximate
optimal point-to-point paths for UAVs. The simulated UAVs are heterogeneous in their
flying speed, energy supply, and scanning width of onboard sensors. The coverage path was
calculated under MILP formulation, although the waypoints were efficiently visited with
complementary optimization strategies. The Nearest-to-any policy to classify unallocated
regions into clusters and an Order optimization strategy to adjust the visiting order of the
areas classified into the same group resulted in a reduced task time of MAVs.
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Comparable to the previous works considering communication requirements, in [26], a
fleet of AI-driven MAVs was modeled to survey urban zones. The proposal mixed Artificial
Neural Networks and a modified version of the famous A* pathfinder to solve the coverage
path planning. The workspace was clustered by combining K-means and the Voronoi
Diagrams for a homogeneous distribution. The results with different complex areas were
computed on the Gazebo simulator using the ROS framework.

2.3. Heuristics-Based Coverage Plans

The mentioned works may be classified as medium to low computational requirements
for MAVs. In contrast, heuristics-based mechanisms require high computational capacity.

In [27], the overall goal was to quickly build overview mosaics from unknown areas
for emergency and disaster response cases. They focused on wireless communication
networks for the transmission and control of acquired images. The online path planning
was based on the parallel Clarke and Wright savings algorithm and clustering combined
with the Christofides algorithm. Specifically, the mission was for area coverage, but they
designed an architecture to acquire images with onboard processing, annotating with
other sensor data, and transferring by a prioritized scheme. In [28], the coverage planning
for multiple UAVs was assumed for a known region and divided into square cells. The
spiral algorithm was applied to the search for uncovering cells, and the A* algorithm was
used to find the shortest path. The main contribution was a contingency strategy when a
UAV failed; it skipped all next path planning for that UAV. The remaining un-surveyed
region was automatically assigned to the other UAVs from the base station. In [29], explicit
communication was also considered to become a fault-tolerant system. A multi-agent
system decentralized for field coverage and weed mapping was introduced with a re-
broadcast protocol to account for limited communication ranges. A stochastic exploration
strategy based on a reinforced random walk was used, and a mechanism to avoid re-visited
areas was defined. Each agent had a local map to store the information acquired from
onboard processing or received from other agents through communication. In this work,
the results showed that the decentralized, self-organizing nature of the solution led to
robustness against faults.

The most recent studies continue to improve the energy consumption of MAVs. In [30],
an imagery mission was described using a column generation framework. The authors
defined a flight profile to estimate the energy consumption in the mission. The shape was
calculated for each coverage path based on an algorithm called RBECOM that calculated
an optimal solution by minimizing both the length of a returning path and the number of
turns. The sub-regions were calculated by adding a constant to the same model to define
a combination of routes that required the least amount of total energy. Another case that
considered energy consumption was found in [31] for data collection missions. The paper
conserved energy by optimization of the trajectory plan of a cooperative fleet of MAVs. The
planning was based on an algorithm called Deep Learning Trained by Genetic Algorithm
(DL-GA). The GA received inputs from various scenarios and then the deep neural network
was trained while facing familiar scenarios; it could rapidly provide the optimized path
which satisfied continuous operations. The solution reached a speed to process a solution
better compared with the GA algorithm.

2.4. Conclusion of Coverage Plans

The review of multi-MAV systems for coverage missions denoted that offline planning
based on computational geometry had been more often implemented. This result could
be because practical work frequently requires campaign workers and infrastructure in the
field; therefore, simulated scenarios and/or experiments with few agents could accelerate
and cheapen the tests. The scope of the polygonal-based methods was to optimize the
division of areas with ZLIs, but it did not consider cooperation. The clustering strategy
resulted in an approach to plan optimal coverage with possible collaboration between
agents; however, little of the energy consumption heterogeneity was deepened. Finally, the
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alternative based on heuristics was closer to the goal of autonomous and robust multi-agent
systems, but they used high computational resources to compute sub-areas and paths.
In addition, continuous communication between all MAVs was delimited. In brief, few
works reached the resource balance between task allocation and communication challenges
in coverage planning. Further, none of the found results included user restrictions on
planning a mission with a MAV fleet.

3. Problem Statement and Principles

The research problem is centered on the coordination of a fleet of MAVs for coverage
missions in restricted workspaces. The challenge is to become effective in practical scenarios
where it is necessary to think about the investment, the technological usability, and the
usefulness of the information to make decisions. The current paper aims to reach a solution
considering the user context and the restrictions of workspaces. A user can be a farmer,
a security company, a forest manager, a search and rescue squad, an archaeologist, and
other persons who make decisions based on remote information. The typical user is not
interested in technological knowledge but in making decisions without loss. Therefore, a
restriction would be to deploy coverage missions with commercial and adaptable MAVs to
facilitate the use, maintenance, and data acquisition, and mitigate the risk in the investment
concerning the restricted workspace, including lack of electricity supply, rugged relief, and
changing weather.

In order to solve this problem, the research must obtain complete information on using
multiple MAVs. Complete information means the acquired data corresponds to the area of
interest; it tries the CPP problem in multiple regions with communication-enabled MAVs
to support future cooperation. Then, the statement to deploy a coverage mission starts
with a group of heterogeneous MAVs and a known polygonal area representing a restricted
workspace. The workspace is partitioned into sub-areas with corresponding sub-tasks
allocated to the MAVs.

Let A1, A2, . . . , An be a fleet of n MAV agents performing the coverage mission. Let S
be the total coverage area, and consider each sub-area as a set of S cells. Then, S1, S2, . . . , Si
are sub-areas of S, where Si is assigned to one MAV agent An. In Figure 2, each sub-area Si
is decomposed into cells as close as possible to the footprint size of the MAV remote sensor,
which is called world abstraction.

 

Figure 2. Coverage mission statement.
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Each MAV is modeled as an agent with skills to move, perceive its state and the
environment, follow a plan, reach a goal, interact, and adapt to a behavior. The MAV agent
is modeled with the Belief-Desire-Intention (BDI) control [32], and the interaction is based
on FIPA (Foundation for Intelligent Physical Agents) protocols.

According to previous studies, the research starts from the following principles:
P1. The total coverage area S is known, and it should have an extension at least three

times greater than the traveled nominal distance of a single MAV agent.
P2. The ZLIs can be identified in S. If a sub-area has ZLIs, the corresponding cells

should not be considered on the task. Then, each An should be allocated only with the free
cells cj of each Si (Figure 2).

P3. Each An should have basic communication capabilities to support the interaction.
The connectivity skill is required for possible cooperative tasks.

P4. All MAV agents on the mission have the same flight height and speed. In practice,
it will not happen, but the current interest is for bi-dimensional coverage and slow cruising
speeds.

P5. A Si sub-area corresponding to each MAV agent cannot be disjointed or intersected
with another sub-area; this principle is to avoid collisions during the mission.

P6. The number of MAV agents, n, is fixed by the user. The coverage planning
should be done with available MAVs without forcing the user to make a more significant
investment.

P7. There should be a ground station to monitor agents. Frequently, the station will be
close to buildings or an electric supply.

P8. The heterogeneity of MAV agents is given by the adequate flight time, decision
capacity, and communication skills.

P9. The MAV agents have the same remote sensor as the payload. The payload is a
user’s decision to obtain data related to the corresponding business.

4. Coverage Mission Planning

The proposed solution to deploy multiple heterogeneous MAVs is classified as a
polygon-based coverage mission plan. The decision is a result of contrasting the works
in Section 2. The techniques based on heuristics are discarded because they require high
computational capacity and persistent connectivity of the fleet, which could imply an
energy excess and additional time to complete the mission. The clustering-based category
was rejected because the resulting sub-areas become homogeneous, and the computational
complexity could restrict possible practical deployments of coverage missions. However,
the strengths of the focuses in the related works are integrated into a novel method of
coverage mission planning according to the principles in the problem statement (Section 3).

Consequently, the following content describes the technology to model MAVs as
agents and the proposed plan to solve the research problem, called MCO, by the agents’
roles (Master, Coordinator, and Operator). The method is stated step-by-step through five
components: world abstraction, area partitioning, role allocation, task generation, and task
allocation. The MCO Plan is assumed to run at the mission start.

4.1. Agent-Based Simulation

Different alternatives were found to model robotic agents, some more cited such as
NetLogo [33] and Repast Simphony [34], and others such as MAS-Planes [35] focused
only on UAVs. However, a physical engine and communication skills are required to
model MAVs. Both factors are found in the GAMA Platform [11]. The platform has a
friendly programming language (GAML), communication protocols for physical agents,
complete documentation, and a development community. In addition, the GAMA models
are spatially explicit and extended by including GIS (Geographic Information Systems).

Each MAV agent is implemented to move, perceive, follow a plan, interact, and adapt
behavior. The control of the skills is designed with BDI architecture as shown in Figure 3.
The beliefs are related to predispositions during the execution of a task. They can be
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updated according to world knowledge and self-knowledge; as an example, the MAV agent
can be believed to be at task target (4.At_target). The MAV agent should verify each belief
under logical rules from self-knowledge and the allocated task.

Figure 3. BDI Control for MAV agents.

Consequently, the MAV agent is motivated to reach some single goal; for the previous
example, the desire can be a return to home (4.Return_home). However, a MAV agent
cannot reach a goal without a plan. The library of plans considers the intentions and desires
to define the actions, which is going to affect the environment. From the example, when the
desire becomes an intention to 4.Return_home, a cruise flight is a possible plan to execute
such action.

Table 1 describes how the beliefs become actions of the MAV agents using steps 1 to
5 after any belief (On_takeoff, See_neighbors, Receive_msg, or At_target) is set. In brief, a
belief motivates a desire; then, the desire sets a goal to adopt an intention. The intention is
to run a plan that reflects actions.

Table 1. Rules for BDI Control.

Beliefs On Takeoff See Neighbors Receive Msg At Target

Step 1 Desire Go on a path Send a query Read message Return to home
Step 2 Goal Make a complete path Update fleet state Update fleet state State inactive
Step 3 Intention Go on a path Send a query Read message Return to home
Step 4 Plan Follow path steps Interaction as priority Interaction as priority Go to the setpoint
Step 5 Action Move to next waypoint Transmit message Reply message Fly as cruise mode

Concerning interaction skills, the current proposal only monitors the fleet state and
then tests the connectivity between agents. Each MAV agent uses a FIPA Query Interaction
protocol with a communicative act called query-if. This type of communication waits by
informing the neighboring state [36].

4.2. MCO Plan

MCO Plan is the solution to the problem described in Section 3. The known coverage
area (georeferenced raster) with ZLIs, the number of available MAVs, the return of MAVs,
and remote sensor parameters are inputs for planning. The outcome of the MCO Plan is
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allocated roles and coverage tasks to follow. The approach should become scalable and
near-optimal, looking for a balance between heterogeneity and connectivity. To reach that
goal, five components for coverage mission planning are represented in Figure 4 and are
described below.

Figure 4. Components of the MCO Plan. (1) world abstraction, (2) area partitioning, (3) role allocation,
(4) task generation, and (5) task allocation.

4.2.1. World Abstraction

The first step in coverage mission planning is to define how the MAV agent observes
the world. The world abstraction considers a MAV agent acquiring remote information
(through cameras, scanners, etc.). This payload type projects a footprint on the observed
workspace defining the cell shape to split the area. In the current case, a rectangular shape
represents the sensor’s approximate range.

Each cell center is the step or waypoint visited by a MAV agent (Figure 5). According
to the specification of the coverage mission, the centers should be so close as to overlap
more than 60%, according to photogrammetric fundamentals. The cell size is calculated
with Lx and Ly from Equation (1), where h is flight height, α is the angle of view from the
sensor, and the image size is defined by Ix and Iy. Then, the cell is interpreted into pixels
and split by Lx on height and Ly in width, ZLIs included. The final footprint is given by
Lx·(1− p) and Ly·(1− q), where p and q are respective percentages (0 to 1) of longitudinal
and cross overlap.

Lx = 2·h·tan
(α

2

)
, Ly = Ly

(
Ix

Iy

)
(1)
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Figure 5. Sensor footprint and overlap.

Some areas from the original workspace could not be included in the rectangular grid,
but if this is the case, the cell should be reduced as much as the application allows. The
world abstraction is implemented in four steps as seen in Figure 6: a georeferenced raster is
loaded, then the user identifies the coverage areas (coverages), and a raster with recognized
territories is segmented. Image processing extracts the ZLIs from the raster as in [4]. Finally,
the cells and waypoints based on the camera parameters are obtained. A screenshot of the
GUI for world abstraction is shown in Figure 6.

 

Figure 6. GUI for world abstraction.

4.2.2. Area Partitioning

The focus of offline coverage planning is how to split the total waypoints correspond-
ing with the number of MAVs. The waypoints are the free cells to visit calculated from the
world abstraction method.

In Section 2, the planning can be classified as polygonal from related works. The
polygonal mechanism uses segments on the area’s geometry, which results in heterogeneous
sub-areas, while the clustering-based distribution trends to homogeneity. Representants
of the polygonal-based partitioning can be the Boustrophedon approach and Voronoi-
tessellation, and clustering-based partitioning can be the K-means algorithm. Figure 7
shows partitioning by segments, clustering, and Voronoi-tessellation as an instance for four
MAV agents.
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(a) (b) (c) 

Figure 7. Area partitioning techniques (a) segments, (b) clustering, and (c) Voronoi-based.

Figure 7c shows Voronoi-tessellation as the initial candidate for this research because
the computational complexity can become less than clustering; the areas to connect with
neighbors are more than others in some related work. Frequently, the Voronoi-based
partitioning results in heterogeneous divisions. However, it is heterogeneous for small
numbers; the obtained result can become homogeneous if the number increases. An
extension is then proposed in the current research to conserve heterogeneity and solve the
Voronoi-tessellation generalization. The phases of the attachment are described below:

Phase I: a takeoff location, called p0, should be selected to generate the centroids of the
Voronoi-tessellation (it could be the center of the coverage area). Other centroids to generate
tessellations are centered in p0 and follow a circumference as in Figure 8. The circumference
radius is calculated by dividing the measured width of the workspace between the number
of MAV agents, n. The distribution of the initial centroids p1, p2, . . . , pn−1 inside the
circumference is random.

 

Figure 8. Base partition.

However, after calculating the first Voronoi-tessellation, some partitioning tests for
more MAV agents can become a homogeneous distribution. To solve it, a deterministic
mechanism is designed on the Base Partition that satisfies the following postulate.

Postulate 1: a Base Partition can have between two and four divisions. Therefore, a single sub-area
can have three connected sub-areas.

Phase II: If the MAV agents to deploy are more than four (n > 4), the centroids of
Base Partition are re-distributed based on the centroid pi of the detected largest sub-area
(p1 is the greatest sub-area in Figure 8). The centroid is moved one-third of the radius closer.
Consequently, the selected sub-area becomes larger after rerunning the Voronoi-tessellation.

The next sub-areas result from dividing the largest one using the Phase I method. The
new random circumference of centroids is calculated at the center of the largest sub-area.
The number of secondary centroids is updated to obtain the required sub-areas (Figure 9).
The result of Phase II is named Sub-partition k, which satisfies the following postulate.
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Figure 9. Sub-partition.

Postulate 2: a Sub-partition can have between two and four sub-areas. Then, if n > 4, the number
of divisions for a Sub-partition is (n − 3).

Phase III: an iterative process is run to determine Sub-partitions following postulate 2.
The movement of the secondary centroid of the largest sub-area concerns the closer p
centroid, and the cycle continues to complete the area partitioning until there are 16 sub-
areas. According to the problem statement for coverage missions, 16 is defined as enough
MAV agents. The deployment of 16 simple MAVs can be a great investment for the user,
and further, it can become complex to maintain. However, scalability is essential for the
research; hence the last phase is proposed below.

Phase IV: if the MAV agents to deploy are more than 16 (n > 16), the number of
divisions for the complete area, S, is calculated by multiples of 16. It means the number
of p0 to locate is the quotient between n and 16 plus 1 (n/16 + 1), called v. For each
new p0, Phases I, II, and III are applied to complete the Partition Levels. Each Partition
Level is centered in a new pv

0 (takeoff locations) as shown in Figure 10, satisfying the
following postulate.

 

Figure 10. A level of the partition.

Postulate 3: a Partition Level can have up to 16 sub-areas. Then, a new Partition Level is generated
when v ≥ 1.

4.2.3. Role Allocation

Most work on coverage mission planning describes the method to allocate sub-areas.
Nevertheless, the present proposal is projected for MAV agents with some interaction
during missions. Consequently, the proposed plan creates roles to define the behavior of
the agent model (Section 4.1), creating hierarchical coordination. The model is not designed
for continuous connectivity since it would exceed energy consumption. The strategy then
becomes managing the fleet’s energy during the mission with partial connectivity with
few neighbors (at a restricted time). Each MAV agent can only interact when neighbors
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are in the defined range. The next steps, when MAV agents interact to make decisions to
complete a mission, are not tried in the current paper, but they are in development.

The hierarchical model has three roles to manage heterogeneity and connectivity of
the fleet, according to the skill scores of flight time, communication, and decision. The
Master should have a high score in decision and communication, and an intermediate flight
time score. The Coordinators should have a middle score for decision and flight time, and a
high score for communication. In case a Master fails, coordinators must support decisions.
The Operators should have a low score for decision and communication, and a high score
for flight time.

The Master’s role is single for one Partition Level. The role is to take principal decisions
to complete the mission, and it should be the closest to a ground station (relative to the
takeoff location). A Master agent should have a short coverage path to save energy for
transmitting and receiving messages from Coordinators. The Coordinator role is for a
MAV agent that works as a router of communication between Agents and the Master. A
Coordinator can make secondary decisions, and its coverage path should be intermediate.
The Coordinators are the four agents closest to the Master. Finally, the Operator role has
the hard work of the coverage of the greater peripheral sub-areas. Table 2 summarizes
the specifications of roles requested to cover each sub-area and the possible interactions.
The roles determine the heterogeneity and connectivity that should be requested from
MAV agents for a coverage mission and are the result of the area partitioning method in
Section 4.2.2; as an example, Figure 11 shows each role in a partitioned area. To avoid
a possible overload of transactions on the network, it is proposed that the number of
neighbors for each role is four (as a consequence of the partition phases).

Table 2. Roles for a Partition Level.

Role Allocated Sub-Area Interact with

Master Sub-area closest to the takeoff location Coordinators and other Masters
Coordinator Sub-areas closest to the Master Master, Operators, and other Coordinators

Operator Sub-areas around the Coordinators Coordinators and other Operators

Figure 11. Hierarchical society related to a level partition.

4.2.4. Task Generation

After the requirements for coverage in each sub-area are defined, the next step is to
calculate the coverage task. Then, each MAV agent should be allocated with a path, and
its completeness should be guaranteed. The path generation component assumes that the
MAV agent will acquire data while visiting each waypoint.

According to the review in Section 2, the coverage paths for MAVs are frequently
zigzag or lawnmower movements with improvements in the flight line orientation and
smooth turns to optimize the task. However, the zigzag movements are indifferent to
ZLIs, and they could be inefficient because they do not consider the return home as part
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of the path. It means more flight time and high redundancy to achieve coverage planning
with included ZLIs. To overcome it, some restrictions such as ZLIs, irregular shapes in
workspaces, and only a practical runtime to compute missions should be considered. A
suitable runtime for the computation of coverage paths is in the range of hours since
practical assignments can require continuous deployments.

The literature describes alternatives to compute the coverage paths based on heuristics
and metaheuristics that solve the TSP. Some solutions were previously evaluated to decide
which accomplishes the previous requirements. The heuristics such as wavefront and
spanning tree are suitable for a few waypoints; if the scope increases, the optimization de-
creases. The found metaheuristics can be classified as trajectory-based or population-based.
The first ones are near-optimal, but the runtime was more significant than population-
based metaheuristics. Tests of those based on population versus the zigzag movement are
in Table 3.

Table 3. Metaheuristics vs. Zigzag movement.

Metaheuristics Runtime (s) Visited Waypoints

GA 1998 150
PSO 112188 200
ACO 37 120
BCO 6542 184
CS 0.953 168
FA 0.038 101

Zigzag 0.025 111

The scores used to compare are the runtime of the algorithm and the visited waypoints
to reach the start waypoint (target) again. The tests are for an area of 100 free cells homoge-
neously distributed, an initial population of 500 individuals, and 5000 iterations. Table 3
shows the results of the paths calculated using the general genetic algorithm (GA), Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), Bee Colony Optimization
(BCO), Cuckoo Search (CS), and Firefly Algorithm (FA). The FA [37] was then selected
based on the smallest values.

4.2.5. Task Allocation

Task allocation is the last component of the MCO Plan, and looks for each MAV agent
to have a role and a coverage path. To develop the method, the current paper considers the
taxonomy for task allocation from the reference in [38]. The taxonomy solves multi-robot
problems by relating the number of robots with the number and period of the tasks. The
current issue is of type single-task (ST); each task can be realized by a single MAV-agent
(SR) and an instantaneous allocation is programmed (IA). However, this setup will change
because future research wants to support task re-planning based on partial connectivity.

Task allocation adapts the FIPA English Auction Interaction Protocol Specification [39]
as in Figure 12. The initiator is a ground station, and the MAV agents are participants.
The initiator informs the auction and requires the confirmation of MAV agents to know its
bidders. The bid for each MAV agent is calculated with three scores by knowing its resume
concerning use history, battery and communication module specifications, type of autopilot,
and capacity to process on a small computer board. The initiator takes the information
from the role and the flight time to calculate the same three scores. Both calculate three
features: flight time, decision capacity, and communication skills, and the initiator gives a
value for the first thresholds (subtraction of scores). Table 4 presents the score sources used
in Equation (2) for each score.

Score = 3 ∗ X− Xmin
Xmax − Xmax

(2)
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Figure 12. Task allocation method.

Table 4. Task costs and bids.

X Parameter Ground Station MAV Agent

Flight time Estimated coverage time Estimated time by battery
Communication Start position for each path with respect to area Estimated from power of telemetry module

Decision Start position for each path with respect to area Autopilot and possible on-board computer

The scores range from zero (0) to three (3), where three means the maximum number
of resources. The initiator rejects the participants with Bids more minor than the calculated
Task cost and accepts the requests above. The initiator can increase the first thresholds and
re-auctions in case of multiple MAV agents with accepted bids. The task is allocated to the
agent with the better bid. When one task is assigned, the selected MAV agent saves it in its
memory and waits for the call to start the deployment. Then, the process in Figure 12 starts
over for another task allocation.

5. Simulations and Discussion

The validation of the proposal was done using three different ZLIs-included workspaces
in Cauca, Colombia. They were selected as areas for possible uses with multiple drones
(crops and building Zones). The cases of the study were selected to prove the efficiency
of three coverage mission plans in areas with different shapes of ZLIs and the number of
waypoints in free spaces. Such variations would impact the task heterogeneity and the
connectivity skill of the fleet. Figure 13a is the Rejoya Farm with 70 Hectares, has free space
in the center and some separate areas, and it is the largest workspace. Naranjos Farm in
Figure 13b is 27 Hectares, has a small free area, few ZLIs on edge, and is the smallest area.
Finally, the Urban Zone in Figure 13c is approximately 54 Hectares, has the broadest free
space, and has one large ZLI on the edge.
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(a) 

 

 

(b) (c) 

Figure 13. Workspaces selected in Cauca, Colombia: (a) Rejoya Farm, (b) Urban Zone, and
(c) Naranjos Farm.

Table 5 shows the number of ZLIs and the selected coverage area by image processing
as in Section 4.2.1. The number of waypoints was calculated according to camera parameters
such as angle of view (87◦), resolution (4000 × 3000 pixels), GSD (2 cm), and overlap
(75%). The number of minimum and maximum calculated sub-areas was limited from
Boustrophedon decomposition because the method does not deliberately allow selecting
the number of areas (ZLIs dependence).

Table 5. Selected workspaces to test.

Workspace ZLI Coverage Waypoints Sub-Areas (Min, Max)

Rejoya Farm 6 Coffee crop 2000 3, 12
Naranjos Farm 3 Mix of crops 315 2, 7

Urban Zone 2 Building lot 870 3, 10

The following results present the performance tests regarding proposed stages of the
MCO Plan, specifically, area partitioning, the role and task allocation with a zigzag pattern,
and paths generated by the Firefly algorithm. Every approach is analyzed for the resulting
coverage missions of the plan based on MCO, Boustrophedon, and K-means. For each plan,
the scope to manage heterogeneity and connectivity is tested. Metrics such as standard
deviation, heterogeneity trend, active MAVs, task time, battery per agent, and the likely
links between neighbors were used for evaluation.

Heterogeneity management is considered the main factor for efficient resource man-
agement in working with MAV fleets [40]. The MCO Plan defines the MAVs with three
features to manipulate heterogeneity, adequate flight time, decision capacity, and communi-
cation skill. Each one represents the primary source of waste energy for a MAV. The proper
flight time depends on the battery and the use history; the decision capacity depends on
the payload to process data on-board; and finally, the communication skill can change
based on the telemetry module and data flow support. Hence, the key is to manage the
heterogeneity in the tasks to satisfy the balance of resources for the agents, understanding
it as an intermediate effect between the three features in a coverage mission.
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The considered heterogeneity in this research is a transparent property for the user
since it is natural in practical deployments with MAVs. The users can decide on the invest-
ment in at least one equipped MAV and some basic ones, adapt capacities for some basic
MAVs, or, as an ideal, have all MAVs equipped with high processing and communication
resources. The user should not be limited to homogeneous MAVs for the coverage mission,
although they should be adaptable and have a similar remote sensor.

On the other hand, the MCO Plan involves the connectivity from the mission planning.
This issue is important since coordination could require interaction mechanisms to solve
failures diagnosed during deployment. The estimation of communication resources in
the coverage mission efficiently supports detecting any unexpected events and decisions
during the mission. The developed MCO Plan involves explicit communication between
agents to monitor the allocated tasks and the agent status. The connectivity is partial during
a short time while closer neighbors are inside a minimum range. Therefore, the key to
achieving possible decisions is that agents continually find neighbors, but interact with
limited resource expenditure.

5.1. Area Partitioning

This section shows how the area partitioning proposed in the MCO Plan reaches a
balanced heterogeneity of coverage sub-areas. The metrics to compare the MCO plan with
the Boustrophedon and the K-means-based plan are the magnitude and trend; both were
analyzed in the selected workspaces in Cauca.

Figure 14 shows the resulting sub-areas of each plan, which are the basis for a qual-
itative analysis of the maximum distribution of waypoints (last column on the right in
Table 5), and are grouped by color to differentiate the sub-areas in each coverage. On the
left column of the figure, Boustrophedon decomposition projected vertical rectangular
shapes in all ranges since ZLI corners are used to segment the geometry of the area. The
clustering by K-means on the center column launched pentagonal shapes since the minimal
distance between centroids is determined on world abstraction (grid). Non-regular forms
are obtained with the MCO Plan on the right column of the figure since it is based on
the Voronoi Tessellation that uses the geometric intersection of midwives. In brief, all
projections can change geometrically when ZLIs are included in the workspace, resolving
in heterogeneous sub-areas.

Figure 14. Partitioned workspaces to study.
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The next step is the quantitative analysis of the heterogeneity magnitude correspond-
ing to the standard deviation. Then, if the resulting divergence is compared for each
workspace as in Figure 15, it is evident that the clustering-based partition (red line) has
fewer minor deviations than other methods. Therefore, homogeneous sub-areas increase as
the number of MAV agents increases. In contrast, Boustrophedon decomposition shows the
highest divergence for the three study cases, as is expected from the literature, achieving a
better heterogeneity skill than the MCO plan (yellow line).

 
(a) 

(b) 

 
(c) 

Figure 15. Heterogeneity analysis for each workspace: (a) Rejoya Farm, (b) Urban Zone, and
(c) Naranjos Farm.
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In the results from Figure 15, the MCO plan states a maximum standard deviation of
7.9% for Naranjos Farm, 9.2% for Urban Zone, and 7.5% for Rejoya Farm. As it is observed,
the MCO plan reaches mean values between Boustrophedon decomposition and K-means
clustering, although the trend was not coherent between them. The Pearson correlation
coefficient was used between the traditional method and the MCO Plan (Tables 6–8) to
detail the trend.

Table 6. Correlation between MCO and other methods in Rejoya farm.

Correlation
Number of MAV-Agents

3 6 9 12

MCO vs. K-means 0.636 0.362 0.002 0.298
MCO vs. Boustrophedon −0.472 0.476 0.045 −0.061

Table 7. Correlation between MCO and other methods in Urban Zone.

Correlation
Number of MAV Agents

3 6 10

MCO vs. K-means 0.999 0,233 −0.254
MCO vs. Boustrophedon −0.967 0.104 0.315

Table 8. Correlation between MCO and other methods in Naranjos farm.

Correlation
Number of MAV Agents

2 4 7

MCO vs. K-means 1.000 −0.690 −0.708
MCO vs. Boustrophedon −1.000 −0.242 0.623

In brief, the correlations are higher while the number of MAV agents is slight, such as
2 or 3; it is consistent because, with fewer sub-areas, heterogeneity is not tangible. Mean-
while, the correlations show that the partitioning of the MCO plan is closer to the K-means
pattern in most study cases (Figure 15). In addition, in the Naranjos Farm (Table 8), the
correlations are higher than in other workspaces, even with the perfect association. The
result is given by the expansive workspace that forces the plans’ similitude. Another factor
could be the non-centered convex ZLIs, which restrict the ability to propagate sub-areas
towards the edges as MCO Plan proposes.

According to the observations above, the Boustrophedon decomposition reaches the
higher heterogeneity skill in the three evaluated workspaces, with more than 100 waypoints
of standard deviation. However, the resulting sub-areas could become small or large, as
the ZLIs limited them, which is considered an unbalanced heterogeneity. For instance, the
Boustrophedon-based plan for Rejoya Farm (upper left corner of Figure 14) had sub-areas
with just three waypoints and others twenty times greater. Consequently, resources are not
efficiently managed because, firstly, few MAV agents have greater responsibilities and may
make a non-completed mission. On the other hand, the requirement for shorter or longer
flight times restricts the user from investing in extra skilled MAVs. Different improvements
can be made to achieve a balanced heterogeneity with the Boustrophedon partitioning as
the heuristics. However, the effort has a limit due to heterogeneity caused by obstacles,
which will consume more computational resources to reach proper partitioning.

The plans’ divergences based on K-means show the lowest values between 2 and
50 waypoints (red lines in Figure 15). Despite the low magnitude, the clustering method
looks similar to the pattern of Boustrophedon decomposition, which notices a trend to
decrease the deviation for both strategies. The Boustrophedon pattern changed notoriously
for a smaller number of agents as Figure 15c, which could be a result of partitions dependent
on ZLIs. However, after eight divisions, K-means will linearly decrease the heterogeneity,
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and the Boustrophedon decomposition will stabilize by the fixed ZLIs in the workspace.
Hence, it is denoted that the MCO Plan engages the heterogeneity skill as Boustrophedon
decomposition without using ZLIs as a reference. It is compensated with the linear decrease
without reaching the homogeneity as partitioning based on K-means.

Further, in Figure 14, it is possible to see that the clustering by K-means and Bous-
trophedon decomposition resulted in disconnected sub-areas with complex ZLIs, such as
Rejoya Farm. Independent sub-areas do not support cooperative control. The MCO Plan
faces that weakness with sub-areas expanding from a take-off position to the edges. There-
fore, the sub-areas would converge, increasing the likelihood of a connection between them.

5.2. Role and Task Allocation with Zigzag Path

The previous description tried to describe heterogeneity according to the workspace
and its distribution of waypoints as just “divide and conquer”, however, it is necessary
to contrast the area partitioning with the MAV agent behavior when a coverage task is
allocated. The following results were obtained using the simulation environment (GAMA
Platform) and according to the role and task allocation mechanisms. In this experiment, each
MAV agent had an allocated role and a coverage path based on back-and-forth movements
(a zigzag path) using the method in Section 4.2.5, resulting in a maximum partitioning
distribution of each workspace as in Figure 16 (as an example to avoid extra figures).

The objective was to show how the MCO Plan can achieve better energy manage-
ment during a coverage mission using a balanced heterogeneity (magnitude and trend)
and connectivity.

Some metrics were calculated to measure the impact of heterogeneity in each workspace
and for the three plans mentioned above. The metrics are the time that each MAV fleet
requires to complete the mission (mission time), the number of active MAV agents per
time (MAV rate), and the percentage of remaining battery after the task (% remaining
battery). Figure 17 states coherence with the partitioning of each plan. Considering the
mission times, the allocation based on K-means had the lowest mission times. Still, complex
areas like Rejoya Farm expanded the mission times because the sub-areas were broad and
homogeneous, as shown in Figure 17a.

Conversely, to have the best mission times, the K-means allocation was based on
must-have agents active during longer times, as Figure 17b,d,f show in the red columns.
The result is that most MAVs would drain energy faster, risking the completeness of the
coverage mission (Tables 9–11). If some event required cooperation, few MAV agents could
support it.

The allocation based on Boustrophedon denotes a trend to stabilize mission times
in each case of study in Figure 16, due to the resulting tasks around the ZLIs. They
varied little and resolved in lighter tasks if the MAV agents increased. As an advantage,
the Boustrophedon allocation has the least number of MAVs per time unit, which is a
consequence of calculating many small tasks and only three or four long ones (with longer
task times). The Boustrophedon allocation transmits a message that most MAVs could have
significant excess energy at the mission end. At the same time, few MAV agents would
reach their limit of energy before the mission ended.

Concerning the MAV rates in Figure 17b,d,f, the allocation using the MCO plan has
a trend of managing active agents during less time than K-means allocation, despite the
high correlation demonstrated in the previous section. This triumph is reached because the
sub-area sizes increase exponentially for the MCO plan, while in the K-means allocation,
the growth is linear (compare the yellow columns in Figure 17b,d,f). The interpretation
of the result is that the MCO plan can balance managing missions using MAV agents
with minimal to intermediate resources, especially in those with few tasks, as shown
in Figure 17f.
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(a) 

(b) 

(c) 
Figure 16. Role and task allocation with zigzag paths for (a) Rejoya Farm, (b) Urban Zone, and
(c) Naranjos Farm.
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(a) (b) 

 
(c) (d) 

 

(e) (f) 

Figure 17. Mission times and active MAV rate in mission: (a,b) Rejoya Farm, (c,d) Urban Zone, and
(e,f) Naranjos Farm.

Table 9. Remaining battery in Rejoya Farm.

MAV-Agents Boustrophedon (%) K-Means (%) MCO (%)

1 99.98 93.46 99.47
2 99.98 93.52 97.44
3 99.62 93.2 95.9
4 99.5 93.22 93.88
5 97.2 93.82 93.49
6 96.7 91.3 92.55
7 93.26 90.9 85.83
8 91.49 88 86.83
9 89.20 83.23 84.07
10 88.83 82.31 84.08
11 66.88 79.28 83.09
12 66.61 70.83 82.52

The value of highlighted battery corresponds to Master for MCO Plan.
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Table 10. Remaining battery in Urban Zone.

MAV-Agents Boustrophedon (%) K-Means (%) MCO (%)

1 94.01 84.87 94.63
2 92.6 83.81 92.03
3 91.57 84.17 91.94
4 86.59 82.11 89.53
5 86.54 79.95 86.35
6 81.57 79.31 86.03
7 77.93 79.4 85.82
8 71.05 76.63 79.72
9 43.39 73.38 69.65
10 30.24 72.87 63.87

The value of highlighted battery corresponds to Master for MCO Plan.

Table 11. Remaining battery in Naranjos Farm.

MAV-Agents Boustrophedon (%) K-Means (%) MCO (%)

1 89.92 87.91 89.11
2 89.33 87.38 89
3 88.85 87.35 88.25
4 66.33 86.81 87.38
5 66.2 86.17 87.33
6 63.74 86.13 85.51
7 62.96 86.07 82.18

The value of highlighted battery corresponds to Master for MCO Plan.

Tables 9–11 show the remaining battery after the completed mission. This indicator
is essential for the current research because it allows MAVs with intermediate skills to
cooperate with their energy savings. The averages of saved energy obtained from all
agents for the Rejoya farm were 90.77%, 87.76%, and 89.93% with the Boustrophedon,
K-means, and MCO allocation, respectively. In the Urban Zone, the mean percentages
were 75.55%, 79.65%, and 83.96%, corresponding with the mentioned last order of methods.
In the same order, the percentages for Naranjos Farm were 75.33%, 86.83%, and 86.96%.
Therefore, the MCO plan reached higher values than other allocations, distributing the
resources efficiently regardless of workspace restrictions such as obstacles in the middle
of the free space. Moreover, the comparison of the methods shows a battery decrease
without exceeding 40% for the MCO plan, while Boustrophedon finished with an upper
reduction of 60%. It demonstrates that the heterogeneity pattern identified in the area
partitioning section effectively influences the removal of the energy consumption of the
fleet of MAV agents.

As a final inference, a result of the MCO Plan is that most MAV agents would have
sufficient remaining energy to be used in case of cooperation for non-completed tasks.
Although, area partitioning proved above that the chance of faults would be minimal
unless environmental causes exist. In contrast, the Boustrophedon allocation obtains a
higher case of defects in the deployment of missions by overloading a few agents. Finally,
the energy decrease for MAV agents with K-means allocation was up to 22.63%, with the
chance of faults lower than the Boustrophedon method and MCO. However, the result
would be subject to homogeneous agents with intermediate to high resource levels to
complete the mission.

After evaluating the effect of heterogeneity on task allocation, the following analysis
shows how the MCO Plan involves connectivity by studying the possible network topology
and the number of links when the MAV agents find neighbors in a defined range. For
the simulation experiment, the range was calculated with the fourth part of the diagonal
segment over space.

Figure 18 shows a likely network topology on the resultant sub-areas for each mission
planning and workspace with the maximum MAV agents to deploy. Previously, the
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Boustrophedon-based plan resulted in adjacent rectangular shapes (left column), and
consequently, the possible topology resembles a Bus. This means that an agent would
probably connect with side neighbors. The resultant topology for the K-means planning
resembles a mesh (center column), as an evident outcome from the homogeneous waypoint
distributions. The topology for the MCO plan has a hybrid focus based on multiple star
topologies centered on the centroids of the area partitioning method.

Figure 18. Static network topology for each studied workspace and each planning method.

Figure 18 is only an estimation of the likely links between MAV agents. Still, this trace
allows for detecting the skill to reduce faults during the mission and resolve them without
affecting the overall goal. The connectivity is low for the allocation based on Boustrophedon,
although it can have more connection time when it flies the waypoints at the intersections.
The K-means plan is better at managing cooperation, however, dynamic deployments in
restricted workspaces can have high data redundancy if a persistent connection is held.

The MCO wants to overcome these issues. The observed topology in the right column
of Figure 18 has characteristics that at least one MAV agent can have an overload of links
as a star, and the allocated agents on the edge can connect as a tree. In this order, that MAV
agent with an excess of communication has taken the role of Master, and the peripheral
MAVs have a role as Operators in the hierarchical society proposed in Section 4.2.3. As a
complement, Figure 19 shows the network topology at one instant of the simulation on
the GAMA Platform for each coverage area with the MCO Plan The numerical results
of total links between all fleets are in Tables 12–14, with the Master highlighted in each
allocation option to manage high data flow and shorter coverage paths. These tests confirm
that the efficient consumption of the fleet can be supported by data routing based on the
heterogeneity of the fleet.
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(a) 

 
(b) 

(c) 

Figure 19. Visualization on GAMA Platform of resulting networks with MCO in (a) Rejoya Farm,
(b) Urban Zone, and (c) Naranjos Farm.
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Table 12. Total links in Rejoya Farm.

MAV-Agents Boustrophedon K-Means MCO

1 49 337 146
2 102 70 105
3 91 57 141
4 137 107 243
5 66 123 124
6 22 55 55
7 105 224 140
8 62 73 125
9 56 58 57
10 39 58 75
11 56 123 73
12 64 95 279

The number of highlighted links corresponds to Master for MCO Plan.

Table 13. Total links in Urban Zone.

MAV-Agents Boustrophedon K-Means MCO

1 72 49 125
2 98 52 85
3 46 50 97
4 20 54 45
5 30 80 130
6 58 102 60
7 73 69 35
8 58 41 51
9 2 34 47
10 2 57 25

The number of highlighted links corresponds to Master for MCO Plan.

Table 14. Total links in Naranjos Farm.

MAV-Agents Boustrophedon K-Means MCO

1 20 28 75
2 0 23 29
3 33 39 24
4 38 45 52
5 33 39 18
6 15 40 28
7 9 23 17

The number of highlighted links corresponds to Master for MCO Plan.

The inferences above are confirmed by the number of links for each agent and the
average connectivity time during the mission. The Boustrophedon-based allocation for
Rejoya Farm, Urban Zone, and Naranjos Farm has the lowest link averages with 70.7, 47.9,
and 20.3 (blue areas in Figure 20) fronting to 130.2, 70.1, and 30.7 from the MCO plan,
respectively (yellow areas in Figure 20). On the other hand, the clustering method holds link
averages similar to the MCO Plan but with shorter mission time as it waits. The K-means
trend is to have a similar number of links for each MAV agent as Tables 12–14 show. At the
same time, the MCO plan proposes a centralized data flow with a few agents, resulting in a
substantial difference in interactions between the collaborators. As Tables 9–11 show, those
MAVs with the overload have enough energy to resolve it since the MCO Plan manages
to have fewer waypoints to visit with roles as Master or Coordinator. These are near the
take-off location, facilitating the monitoring with data flows around the ground station and
giving more control to the user.
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(a)

(b)

(c)

Figure 20. Links average during mission time for (a) Rejoya Farm, (b) Urban Zone, and (c) Naranjos Farm.

In brief, the MCO Plan has the highest link averages in Figure 18 for each workspace,
with values between 4 and 5 per time unit because of its connected sub-areas on a hybrid
topology. The power of a fleet with coordinated roles can be seen in the Rejoya Farm
case in Figure 20a, with ZLIs in the middle. The MCO plan can handle less mission time
while the connectivity of the fleet is held. The MCO plan converges to a connectivity skill
intermediate with larger free spaces such as the Urban Zone and Naranjos Farm.

5.3. Role and Task Allocation with the Firefly Path

Resource management of the proposed plan in previous sections illustrated the
roadmap to efficiently deploying MAVs fleet in outdoor workspaces, considering some
user requirements and the fieldwork. However, current research is working further to
manage the energy of the coverage path. Based on Section 4.2.4, it is possible to optimize
the coverage paths of the mission through the Firefly algorithm [37]. The motivation to
advance the study is because the zigzag movement used above and in most reviewed
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literature and mapping tools frequently includes the ZLIs in the cruise flight, acquiring
possible useless or redundant data to make decisions, in addition to increasing the data
processing costs.

Figure 21 shows the task allocation with Firefly paths for the experiment with maxi-
mum partitioning for each case of study with 12, 10, and 7 tasks, respectively (as an example
to avoid extra figures).

 
(a) 

(b) 

(c) 

Figure 21. Task allocation with firefly paths for (a) Rejoya Farm, (b) Urban Zone, and (c) Naranjos Farm.
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Figure 22 shows that energy consumption can improve with the coverage paths
calculated with the Firefly algorithm. In Rejoya Farm, the gained energy reached up to
10% (Figure 22a); in Urban Zone, it gained up to 2.5% (Figure 22c); and in Naranjos Farm,
it gained up to 1.9% (Figure 22e). Such performance seen in the bars of the figures is
consistent with the heterogeneity of the role allocation shown above. However, just the
Firefly algorithm can resolve tasks with small sub-areas more efficiently than the zigzag
pattern, gaining some cycles of time to complete the mission. As a complementary analysis,
Figure 22b,d,f displays graphs to show the link averages at mission time. The MCO Plan
has a higher number of alleged links per time unit, which can be explained because the
Firefly paths start to visit the peripheral waypoints of the sub-area and continue until
they are as close as they can to the starting location again, therefore increasing the chance
of connectivity.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 22. Energy and connectivity management for (a,b) Rejoya Farm, (c,d) Urban Zone, and
(e,f) Naranjos Farm.

The gained mission time is also argued in Tables 15–17 which show the active MAV
agents during the mission. The path based on the Firefly algorithm completed the missions
saving 2%, 9%, and 25% of released MAV agents in Naranjos Farm, Urban Zone, and Rejoya
Farm, respectively. This observation is highlighted in Tables 15–17 to contrast that runtime
changes the action of the MCO Plan.
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Table 15. Number of active agents during Rejoya Farm mission.

Method
Runtime

5 15 25 35 45 55 65 75 85 95 105 115

Firefly 11 8 8 6 4 2 1 1 1 1 1 0
Zigzag 11 8 8 7 4 3 2 1 1 1 1 1

The highlighted numbers denote the main changes for active agents between Firefly and Zigzag pattern.

Table 16. Number of active agents during Urban Zone mission.

Method
Runtime

3 6 9 12 15 18 21

Firefly 10 9 7 6 5 3 0
Zigzag 10 9 7 6 5 5 2

The highlighted numbers denote the main changes for active agents between Firefly and Zigzag pattern.

Table 17. Number of active agents during Naranjos Farm mission.

Method
Runtime

3 6 9 12 15

Firefly 6 1 1 1 1
Zigzag 5 2 1 1 1

The highlighted numbers denote the main changes for active agents between Firefly and Zigzag pattern.

6. Conclusions and Future Work

The MCO Plan is focused on resolving an efficient deployment of the MAV fleet,
considering user expectations and restrictions of the workspaces. An efficient deploy-
ment means that the coverage mission should be completed with balanced resources. A
novel area partitioning method was designed to include heterogeneous MAVs, data flow
close to the take-off location, and partial communication between neighbors to satisfy
these purposes.

The proposed plan created a hierarchical society with roles defined by adequate flight
time, communication skills, and decision capability. Master, Coordinator, and Operator
roles were allocated together with the coverage path through an auction mechanism.
The integrated strategy was tested in three different coverage areas to show the scope of
practical deployments.

The plan’s advantages were evident compared with traditional coverage plans such as
Boustrophedon decomposition and clustering by K-means. MCO achieved a magnitude and
trend of heterogeneity balanced between both methods, directly related to the intermediate
mission times reached during the deployment tests in the GAMA Platform. Further, the
plan managed fleet energy by decreasing the rate of active MAV agents during missions and
increasing the chance to connect with neighbors. Such likelihood was even higher because
the resultant coverage paths calculated with the Firefly algorithm followed movement
patterns that started on the peripherical waypoints until the start position was found again.
Therefore, the connectivity skill was incremented, beyond the clues, indicating reduced
energy consumption compared to the zigzag movements.

Consequently, the presented coverage mission planning can improve resource man-
agement even more if wind, MAV turns, and energy consumption from communications
are considered. Future research should incorporate new alternatives to generate coverage
paths beyond managing fault resolution. These facts contribute to the future design of
fault-tolerant cooperative MAVs for large and restricted workspaces.
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Abstract: Due to its structural simplicity and its strong anti-electromagnetic ability, landing guidance
based on airborne monocular vision has gained more and more attention. Monocular 6D pose tracking
of the aircraft carrier is one of the key technologies in visual landing guidance. However, owing to the
large range span in the process of carrier landing, the scale of the carrier target in the image variates
greatly. There is still a lack of robust monocular pose tracking methods suitable for this scenario.
To tackle this problem, a new aircraft carrier pose tracking algorithm based on scale-adaptive local
region is proposed in this paper. Firstly, the projected contour of the carrier target is uniformly
sampled to establish local circular regions. Then, the local area radius is adjusted according to the
pixel scale of the projected contour to build the optimal segmentation energy function. Finally, the 6D
pose tracking of the carrier target is realized by iterative optimization. Experimental results on both
synthetic and real image sequences show that the proposed method achieves robust and efficient
6D pose tracking of the carrier target under the condition of large distance span, which meets the
application requirements of carrier landing guidance.

Keywords: landing guidance; airborne monocular vision; large distance span; scale adaptive;
pose tracking

1. Introduction

As a necessary means to guarantee the onboard performance of carrier-borne aircrafts,
automatic landing technology plays a crucial role in promoting the development of the
carrier-borne aircraft [1]. Traditional landing guidance systems mainly rely on inertial navi-
gation, radar navigation, satellite navigation, and photoelectric navigation. These methods
require the support of carrier-borne equipment and aircraft–carrier communication link,
which are easy to be interfered with, leading to guidance delay or even failure in complex
electromagnetic environment.

Thanks to the rapid development of machine vision in recent years, visual landing
has gradually emerged and has become one of the important means of automatic carrier
landing [2]. According to different installation positions of the camera, visual guidance
methods can be divided into carrier-borne visual guidance method and airborne visual
guidance method [3]. The airborne visual landing guidance method mainly relies on
the image acquisition and processing equipment carried on the carrier-borne aircraft to
complete the calculation of the relative pose parameters between the carrier deck and the
aircraft. Then, the guidance information is transmitted to the aircraft control system, so as
to realize the autonomous navigation of the aircraft. Independent from the support of the
radar, photoelectric, and other external equipment, the landing guidance method based on
airborne vision has the advantages of simple structure, strong autonomy, high precision,
and electromagnetic interference resistance.

Drones 2022, 6, 182. https://doi.org/10.3390/drones6070182 https://www.mdpi.com/journal/drones
453



Drones 2022, 6, 182

Due to the large distance span of landing process, airborne monocular vision is gener-
ally adopted in airborne visual landing guidance schemes. Many researchers have carried
out relevant work, which can be summarized into two categories: the cooperative mode
and the non-cooperative mode. In the cooperative mode, cooperative signs are arranged
on the carrier deck, such as corner reflex mirror cross array [4], infrared cooperative sign
lamp array [5,6], infrared cooperative sign circle array [7], T-shaped infrared thermal ra-
diation sign [8], and other asymmetric cooperative signs [9,10]. By extracting point and
line features of cooperative signs, the relative pose between the aircraft and the carrier
are calculated according to the geometric characteristics and imaging relationship of the
cooperative sign so as to guide the aircraft. The guidance methods based on the cooperative
sign require the installation of additional signs such as light array on the carrier deck, which
will introduce modification to the original design of the carrier deck with poor concealment.
When the fixed-wing carrier-borne aircraft is landing, the angle between the optical axis of
the airborne camera and the deck surface is small. As the light array arranged in the carrier
deck area is narrow, the distribution of cooperative sign lights arranged on the deck is
extremely compact in the image, which makes it difficult to solve the pose. Therefore, this
paper focuses on the non-cooperative guidance mode based on airborne monocular vision.

The existing research work using non-cooperative mode mainly relies on the carrier’s
own characteristics to solve the pose, such as carrier deck runway line features [11–13],
structural point/line features in the carrier’s interior [14,15], etc. However, the carrier-
borne aircraft landing process can be started from as far as more than 5 kilometers. For
precise guidance, the runway line or internal structure features in images need to be clearly
visible, making these methods [11–15] unable to adapt to the large distance span. In robotic
operation, which is a similar application scenario involving large-span visual guidance, a
monocular pose tracking method based on the target’s own 3D model information is often
used to guide the manipulator to grasp objects [16]. The non-cooperative carrier-guiding
process based on airborne monocular vision mainly includes the carrier target detection,
the carrier pose detection, and the carrier pose tracking. This paper focuses on the pose
tracking part, aiming to propose a monocular pose tracking method merely based on the 3D
model of the carrier to track carrier target pose parameters with high precision and stability.

According to the different image information used, the existing 3D-model-based
monocular pose tracking methods can be classified into four categories [17]: direct method,
feature-based method, edge-based method, and region-based method. In the direct
method [18], the photometric consistency of continuous frames is the basis, and the pose
change of the target is estimated through direct image alignment. Therefore, this method is
extremely sensitive to dynamic light, noise, etc. For feature-based pose tracking methods,
sufficient and clear textures are needed to provide robust feature points or feature lines [19].
However, when the carrier-borne aircraft is far away from the carrier, the carrier target
in the airborne camera image is too small for this method to be applied. The edge-based
method [20,21] generally samples a group of control points along the projected edge of a
3D model. Then, a 1D search is conducted on each sampling point along the normal direc-
tion to determine the corresponding relationship. The pose is tracked by minimizing the
distance between the sampling edge point and its corresponding point. The region-based
method [22–24] combines pose tracking with image segmentation. The pose parameters
are optimized iteratively to maximize the segmentation energy. The region-based method
performs well in dealing with clutter background, dynamic illumination, motion blur, and
defocus. In the process of automatic landing guidance of carrier-borne aircraft, the aircraft
gradually approaches the carrier target from a far end. Affected by the change of visual
range, the carrier target in airborne imaging varies greatly in the whole process, as shown
in Figure 1. Both the edge-based GOS algorithm [21] and the traditional region-based RBOT
algorithm [24] fail to track the carrier in the scenario of large visual range changes in the
landing application.
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Figure 1. Pose tracking of aircraft carrier target during airborne monocular vision-guided landing.
Top: Schematic diagram of carrier landing based on airborne monocular vision guidance. First row:
Aircraft carrier targets in images captured by airborne camera. Second row: Pose tracking results of
the GOS method [21]. Third row: Pose tracking results of the RBOT method [24]. Forth row: Pose
tracking results of the proposed method.

Aiming at the problems illustrated above, this paper proposes a pose tracking algo-
rithm based on scale-adaptive local region to stably track the pose of carrier target with
large scale changes in the process of landing with large range span. The proposed method
adopts the non-cooperative mode only using the 3D model of the carrier target, relying on
the information of the local regions on the peripheral contour of the carrier, which is most
stable in the landing process. The proposed method gives full consideration to the scale
change of the carrier target, adaptively updating local region model parameters to realize
robust pose tracking of the carrier target under the interference of wave background, sea
reflection, and imaging blur.
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The contributions of this paper are as follows: (1) A new monocular pose tracking
method based on scale-adaptive local region is proposed, which achieves robust pose
tracking for the carrier target with large scale variation in landing application scenarios,
and achieves better performance than existing algorithms. (2) An innovative updating
mechanism of local region model parameters, considering the target scale change in the
image, is established to better maintain the continuity of color histogram distribution of
the sampled local region near the target contour in continuous frames.

2. Scale-Adaptive Local Region-Based Monocular Pose Tracking Method

Focusing on the application of visual guidance for carrier-borne aircraft landing, this
paper proposes a scale-adaptive local region-based pose tracking method to solve the
problem of robust 6D pose tracking of the carrier target in the large range span scenario.
As shown in Figure 2, on the premise that initial pose is given, firstly, the 2D contour of
the carrier is rendered based on its 3D model with the initial pose. Then, a number of
circular local regions are established from the uniformly sampled 2D image points on the
projected contour. Meanwhile, the local region radius parameters are adjusted according to
the pixel scale of the projected contour. Thus, a scale-adaptive local region pose tracking
model constrained by pose parameters is constructed. Finally, the pose parameters are
solved by iterative optimization so as to optimize the segmentation of the carrier target
by maximizing the energy function and the 6D pose tracking of the carrier target in the
consecutive frames with the cycle repeating.

 
Figure 2. Flow chart of monocular pose tracking based on scale-adaptive local region.

In this section, the 6D pose tracking problem of the carrier is described in detail first.
Then, the proposed pose tracking model based on scale-adaptive local region is introduced.
Finally, the pose optimization solution process is deduced for the energy function.

2.1. Monocular Pose Tracking Problem

In the monocular pose tracking problem, the initial pose of the carrier is considered
to be given. With the 3D CAD model of the carrier target, the problem is to continuously
estimate and update the 6D pose of the target in the subsequent video frames. Monocular
pose tracking is shown in Figure 3. The carrier’s 3D CAD model used in this paper is a
dense surface model (triangular mesh) composed of 3D vertices, which can be expressed as
Xm =

(
xm, ym, zm

)T ∈ R3, m = 1, . . . , n.
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Figure 3. Coordinate system transformation in monocular pose tracking problem.

In Figure 3, I stands for the input image. T is the rigid body transformation matrix
from model coordinate OW −XWYWZW to the camera coordinate OC −XCYCZC, which is
defined by rotation matrix R ∈ SO(3) and translation vector t ∈ R3.

T =

[
R t
0 1

]
∈ SE(3) (1)

In the continuous image sequence, the rigid body transformation matrix changes
constantly with the movement of the model relative to the camera, and pose tracking is
actually an iterative update of the transformation matrix. If the pose of the k-th frame
is Tk = ΔTTk−1, ΔT = TkT−1

k−1
is the pose update from the previous frame to the k-th

frame. During pose tracking, the pose of each frame can be obtained merely by calculating
the pose update between frames. In order to facilitate the nonlinear optimization of
the transformation matrix solution in continuous frames, the transformation matrix is
represented by 6D pose vector p, represented by Lie algebra [25].

p =

[
w
v

]
= (ω1, ω2, ω3, v1, v2, v3)

T ∈ R
6 (2)

The pose update of Lie algebra pose vector p̂ is mapped to the transformation matrix
ΔT as follows:

ΔT = exp(p̂) ∈ SE(3), p̂ =

[
ŵ v
0 0

]
∈ se(3), ŵ ∈ so(3), v ∈ R

3 (3)

where ŵ =

⎡⎣ 0 −w3 w2
w3 0 −w1
−w2 w1 0

⎤⎦ is the corresponding antisymmetric matrix of w.

Assume that the camera has been pre-calibrated and its intrinsic parameters are fixed.
The intrinsic parameter matrix K is shown below:

K =

⎡⎣fx 0 Cx
0 fy Cy
0 0 1

⎤⎦ ∈ R
3×3 (4)

After nonlinear distortion correction, the input image is considered undistorted. Per-
spective projection from 3D vertices to 2D image points can be described as

x = π

(
K
(

TX̃
)

3×1

)
(5)
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where x is the 2D projected point of the 3D model vertex X. X̃ = (x, y, z, 1)T is the homoge-
neous extension of X = (x, y, z)T = (X̃)3×1, and π(X) = (x/z, y/z)T. Based on the initial
pose, the projection mask Is is generated by rendering the 3D model. Then, the whole image
can be divided into foreground region and background region by extracting the contour on
the projection mask. Constrained by the 3D model of the carrier target, when the 6D pose
parameters are correct, the projected contour C can perfectly segment the carrier target in
the image.

2.2. Pose Tracking Model based on Scale-Adaptive Local Region

In the case of a given initial pose, region-based monocular pose tracking updates
the transformation matrix Tk by continuously solving the pose change ΔT in successive
frames. Existing region-based methods adopt a fixed local region model parameter, which
is difficult to adapt to the application concerned in this paper. In view of this, a new pose
tracking model based on scale-adaptive local region is proposed. The specific structure
of the proposed model is shown in Figure 4. For the local region-based method, the
target in the image is represented by the level set embedding function (or signed distance
function), as shown in Equation (6). The signed distance function Φ(x) computes the
(signed) Euclidean distance between a pixel x in an image and its nearest contour point.
Then, the projected contour C is defined as a set of zero elevation points C = {x|Φ(x) = 0}.

Φ(x) =
{−d(x, C), ∀x ∈ Ω f

d(x, C), ∀x ∈ Ωb
(6)

where, d(x, C) = min
c∈C
‖c− x‖2.

Figure 4. Pose tracking model based on scale-adaptive local region.

We define the region of Φ(x) < 0 in the image as the foreground region Ω f , while the
region of Φ(x) > 0 is the background region Ωb, and the foreground and the background
regions are divided by the projected contour C, as shown in the left graph of “Local Region
Establishing” in Figure 4. In order to ensure the correspondence of local regions in the image
sequence, we screen the region centers xCi in the 3D vertices Xm of the target model near the
projected contour C. The regional centers are selected to be as evenly distributed as possible
on the contour, so as to determine the local circular regions Ωi. Local circular regions
Ωi are then divided into the foreground part Ω fi

and the background part Ωbi
= Ωi\Ω fi

.
For each local region Ωi, the foreground and background statistical characteristics in the
region are usually represented by foreground color appearance model P

(
y | Mfi

)
and

background color appearance model P
(
y | Mbi

)
, where y = I(x) is the RGB value of a

pixel x in the image. The color appearance models describe the probability that the pixel
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color y meets the color distribution of the foreground local region and the background local
region, respectively, which are represented by the region RGB color histogram, as shown in
the right graph of "Local Region Establishing" in Figure 4.

For each local region, counting the foreground/background color appearance model of
the region, the posterior probability of local area pixels can be obtained, which is calculated
as follows:
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Pfi
(x) and Pbi

(x) are the foreground pixelwise posterior probability and the back-
ground pixelwise posterior probability of the pixel x in the i-th local region Ωi, respectively.
He is a smoothed Heaviside step function. s is the slope index; here, s = 1.2.

In the iteration of pose parameters in the consecutive frame sequence, the color his-
togram of the foreground and background corresponding to the local region of the same
center xCi possesses continuity in the adjacent frames. Based on this, we refer to the
recursive updating strategy of region appearance model in [13,15] in the practical imple-
mentation. After the (k-1)-th frame is successfully tracked, the color appearance models
PK
(

y | Mfi

)
and PK(y | Mbi

)
of the local background in the k-th frame are established

as partial inheritance of the color appearance model of the corresponding region in the
previous frame, and the update strategy is as follows:
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α f and αb are the learning rate of the foreground region and background region. To
effectively cope with imaging jitter and avoid the jump of pose parameters to improve the
tracking result, we set α f = 0.1, αb = 0.2.

In the fusion of statistical models of all local regions, pixels near the target contour
will belong to several local regions at the same time due to the overlap between different
local regions. Similar to [15], we choose to calculate the average posterior probability of
pixels in all local regions to which they belong. In the k-th frame, for each pixel x in the
image, the mean posterior probability of foreground and mean posterior probability of
background are calculated as follows:
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rk is the radius of the local region Ωk
i in the k-th frame. xCi is the corresponding

region center.
In order to adapt to the change of carrier target scale caused by the variation of

visual distance between carrier target and airborne camera, the size of the local region is
set to increase with the increase of target scale to maintain the continuity of foreground
background sampling in the image sequence within the regions. Too-small region radius
will not be able to cope with large target pose changes, while too-large area radius will lead
to poor pose convergence accuracy. Therefore, the adjustment of the region radius needs
to be within a certain range. Considering the complexity of the 3D structure of the carrier
target, the target scale is defined as the pixel length of the shorter side of the minimum
enclosing rectangle of the target’s projected contour. Assuming that the carrier target is
successfully tracked, the target scales in adjacent frames can be regarded as approximately
unvaried. First, the target scales of the carrier target in the previous frame are detected,
as shown in the “Region Radius Updating” part in Figure 4. Then, according to the
detected target scale, the region parameters are updated in the pose optimization of the
current frame.

Sigmoid function is utilized to design the updating mechanism of radius parameters,
which can not only limit the variation range of region radius, but also ensure the approxi-
mate linear relationship between local region radius and the change of target scale within a
certain range. The specific form is as follows:

rk =
c

1 + e−a[min(wk−1,hk−1)−b]
+ d (16)

wk−1 and hk−1 are the width and height of the minimum enclosing rectangle of the
projected contour of the target 3D model in the (k-1)-th frame. a is the sensitivity coefficient.
b is the scale offset. The higher the sensitivity coefficient is, the more drastic the radius
changes with the target scale. The sensitivity coefficient is normally set between 0.02 to 0.2.
Here, a = 0.04, b = 150. c is the length of radius variation interval, and d is the minimum
radius parameter. Here, according to the specific application scenario, the radius change
interval is set at [10, 70].

Then, the local region-based energy function for pose tracking can be expressed as

E(p) = − ∑
x∈Ω

log
[

He(Φ(x(p)))P f (x) + (1− He(Φ(x(p))))Pb(x)
]

(17)

This energy function takes the target pose parameters p as independent variables and
quantitatively describes the target segmentation performance under the constraints of the
3D model, that is, the degree of coincidence between the rendered 2D template and the
target region in the image. When the energy is maximum, the segmentation result of the
target region is best.

2.3. Pose Optimization

According to the construction of energy function given in Section 2.2, in order
to solve the optimal pose, this paper adopts the Gauss–Newton pose optimization
method to solve this complex nonlinear optimization problem by referring to [24]. First,
Equation (17) is reconstructed into a nonlinear iterative reweighted least squares problem
of the following form:

E(p) =
1
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ψ(x)F2(x, p) (18)

where
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]
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(19)
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In order to optimize the energy function, we first consider the weight coefficient ψ(x)
as the fixed weight and use the Gauss–Newton method to solve the pose parameters p,
then use the optimized pose parameters p to calculate the weight coefficient ψ(x) to update
the weight value and enter the next iterative solution.

Under the assumption of fixed weights, the derivative of the energy function with
respect to the pose p is obtained, and the gradient function is as follows:
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Since ψ(x)F(x, p) = 1, the Jacobian is computed as follows:
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in which, ∂He
∂Φ = δe(Φ) is the smoothed Dirac function. According to Equation (10),
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For the derivative of the level set embedding function with respect to pixel position
∂Φ
∂x , the central difference method is used:
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Since x(p) = π
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∂p can be deduced. Suppose that after tiny

motion, we perform piecewise linearization of the matrix exponential in each iteration, and
obtain exp(p̂) ≈ I4×4 + p̂:
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where X′ = (x′, y′, z′)T = (TX̃)3×1.
Through the derivation of the partial derivatives of the items in the Jacobian matrix

above, the Hessian matrix and the pose change can be obtained as follows,

H(x) = ψ(x)J(x)TJ(x) (26)

Δp = −
(

∑
x∈Ω

H(x)

)−1

∑
x∈Ω

J(x)T (27)

By iteratively solving the pose update Δp for each input frame of the image sequence,
the pose tracking of the target is realized.
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3. Experimental Evaluation

3.1. Experiment Setting

To validate the pose tracking performance of the proposed method in this paper on the
carrier target, this section simulates the imaging of the carrier target by the airborne camera
in the process of carrier landing. During landing, the flight attitude of the carrier-borne
aircraft needs to be controlled with high precision. In order to ensure a smooth landing
and a successful rope hanging, the aircraft flies at a fixed angle of descent, which is around
3–5◦, to maintain the angle of attack. Based on this, this section uses a synthetic simulation
image sequence generated by a simulation rendering software 3Ds max and a real image
sequence captured through a scale physical simulation system to verify the effectiveness of
the proposed algorithm in this paper.

We compared the proposed algorithm with the existing representative region-based
pose tracking method RBOT algorithm [24] and the edge-based pose tracking method GOS
algorithm [21] on the two image sequences, respectively. For the comparison algorithms,
we adopted the default parameter settings suggested in their papers. All experiments were
carried out on a laptop equipped with an AMD Ryzen 7 4800H processor (8-core) @ 2.9 GHz,
NVIDIA GeForce GTX1650 GPU and 16 GB RAM. The GPU was only used for the rendering
of the 3D model. The rest of the algorithm runs on the CPU. The proposed algorithm is
implemented in C++. For the synthetic image sequence with a resolution of 800 × 600
and the real image sequence with a resolution of 800 × 800, the proposed algorithm can
reach the processing speed of 30 fps, which can basically meet the requirements of high
efficiency of real-time pose tracking for the carrier target in the process of carrier-borne
aircraft landing.

3.2. Experiment on Synthetic Image Sequence

This section uses simulation rendering software to generate a synthetic image sequence
to simulate the imaging of the carrier target by airborne camera during the landing process.
To quantitatively measure the pose tracking accuracy, the metrics and corresponding results
and analysis are given in this section.

3.2.1. Synthetic Sequence Settings

The simulation software used in this section is Autodesk 3Ds Max, which is often used
in 3D modeling, animation, and scene rendering. In the simulation rendering of carrier-
borne aircraft landing, the carrier’s 3D model is the “Varyag” model downloaded on the
internet. Table 1 shows the 3D model size parameters and 3Ds Max simulation parameters.

Table 1. Parameter settings in 3Ds Max simulation.

3D Model Size Focal Length Field Angle Frame Size

94.36 m × 66.01 m × 304.51 m 12 mm 24◦ × 18◦ 800 × 600

Through the settings of the virtual camera parameter and its trajectory, as well as the
rendering of the of dynamic sea surface scene including dynamic light, sea waves, and
sea horizon simulation, we generated an image sequence consisting of 350 frames. The
synthetic sequence simulates aircraft approaching the ship deck from about 1120 m. With
the shortening of the distance, the ship target in the image becomes larger and larger, with
the details of the ship target clearer and clearer. The camera intrinsic parameters K, initial
pose T0, and the ship 3D model were used as input to initialize the pose tracking algorithm.
The proposed algorithm optimizes the pose variation of the ship target between successive
frames by establishing local region models on the projected contour of the 3D model to
maximize the energy function for the optimal segmentation, so that the pose parameters of
the ship target can be continuously solved in the image sequence to achieve pose tracking.
Examples of the synthetic images (the 2nd, 147th, 208th, 290th, and 335th frames) are shown
in the first row of the upper half in Figure 5.
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(a) 

 
(b) (c) (d) 

 
(e) (f) (g) 

Figure 5. Pose tracking results of carrier target in synthetic image sequence. (a) The reprojected results
(the first row shows the examples of the synthetic images (the 2nd, 63rd, 147th, 208th, 290th, and 335th
frame). The second to the fourth rows show the pose tracking results of GOS method, RBOT method,
and the proposed method). (b–g): Curves of three Euler angles and the translation parameters.

3.2.2. Experimental Results and Analysis

For visualization, the reprojected mask and the pose curves of the pose tracking results
are presented in Figure 5. The second to fourth rows are the reprojected results of GOS
algorithm [21], RBOT algorithm [24], and the proposed algorithm for the ship target pose
tracking. The bottom part of Figure 5 shows the pose curves of the three algorithms. As
can be seen from Figure 5, in the synthetic image sequence, the proposed method achieved
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whole-process stable pose tracking of the ship target. Owing to the ship target’s complex
interior structure, and its low color distinctiveness under the background of dynamic
sea surface, the GOS algorithm [21] failed to track the pose of the ship from the fifth
frame when the ship target is small. With the pose error accumulated in the process of
tracking, although the target increased gradually, the pose tracking result kept becoming
worse. The GOS algorithm [21] searches the corresponding points between frames on
the normal line segment for discrete points at the edge of the ship target. This method
is based on edge features, and strongly relies on the gradient information on the normal
line segment to achieve stable pose tracking for untextured or weakly textured targets.
For the ship target with complex internal textures, the 1D search on the normal lines in
the GOS algorithm [21] is easily disturbed by the maximum value of internal gradient
response, resulting in mismatching and errors in pose solution. The RBOT algorithm [24]
also tended to fail tracking in the first five frames of the image sequence. However,
according to the reprojected results, the problem centered on the segmentation of the stern
part of the ship target, while the segmentation of the bow and tower part behaved well.
Firstly, the interference of the aft waves of the ship weakens the foreground–background
distinctiveness in the stern regions. Secondly, although the RBOT algorithm [24] applies
the region features around the target contour, it adopts the local regions with fixed radius,
which fails to adapt to the scale variation of the ship target in the landing application.

Aiming at the specific scenario for carrier landing, we considered the scale variation
of the ship target caused by drastic changes in visual range. The proposed pose tracking
method adaptively adjusts the local region radius parameter according to the scale of the
ship target in the image, ensuring the continuity of the color histograms of corresponding
local regions between adjacent frames. In this way, the energy function optimization in
image sequence achieves better target segmentation effect by using the continuity infor-
mation between frames more effectively. Figure 6 shows the process of local region radius
adjustment with ship target scale. When the ship target is small, the smaller region radius
segments the ship more accurately in terms of the wave background interference. When
the scale of the ship target gradually largens with the decrease of the visual distance, the
proposed algorithm increases the region radius to better maintain the color distribution
characteristics of the front background in the local regions along the contour. As shown
in Figure 5, the blue reprojected mask corresponds to the ship target in the whole process.
Additionally, pose curves coincide with the ground truth curves. It is indicated that the
proposed algorithm realizes robust pose tracking of the ship target, adapting to the target
scale changes, the sea background, and the light interference.

 
Figure 6. Target scale and local region radius change curve in the synthetic image sequence.
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To quantify the accuracy of pose tracking results, the pose tracking results of the
algorithm were compared with the pose truth value to calculate the angular error eR and
relative position error et_relative, as shown below:

eR(tk) = cos−1

(
trace(R(tk)

TRGT(tk)− 1
2

)
(28)

et_relative(tk) =
‖t(tk)− tGT(tk)‖2
‖tGT(tk)‖2

(29)

R(tk) and t(tk) are the rotation matrix and translation vector of the pose tracking result
in tk moment.RGT(tk) and tGT(tk) are the ground truth value in tk moment.

Since the landing process is a large span approaching process between carrier-borne
aircraft and carrier target, the absolute displacement error is greatly affected by the distance,
so the relative error is chosen to measure the accuracy. The error of pose tracking results is
shown in Figure 7. In the synthetic image sequence test, the angle error of pose tracking
of the proposed algorithm is no more than 1◦ in the whole process, and the relative
displacement error does not exceed 1%. Synthetic image sequence experiments verify the
effectiveness of the proposed algorithm in pose tracking of the carrier target with high
precision during the landing process.

 
(a) (b) 

Figure 7. Error of the pose tracking results. (a) Angular error. (b) Relative position error.

3.3. Experiment on Real Image Sequence
3.3.1. Scale Physical Simulation Platform

In the synthetic image sequence, although the dynamic sea surface scene is simulated,
there is still a certain gap between the virtual synthetic images and the practical images
taken by the industrial camera, which includes noise interference, defocus blur, and motion
blur. In order to further test the performance of the algorithm in the actual image sequence,
according to the fixed slide angle setting in real carrier landing, we built the scale simulation
sliding platform of the carrier landing, as shown in Figure 8.
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Figure 8. Scale simulation experiment platform of carrier landing.

The industrial color camera is fixed on the electric slide trolley. One end of the track is
close to the seascape sand table with the carrier scale model. The other end is supported
on the electric lifting platform. The electric lift platform can adjust the angle of descent of
the glide track by changing the height of one end of the track. In this experiment, the track
length is about 4 m, and the gliding angle of the track is set as 3◦. The ratio of actual carrier
size to carrier model is 700:1. The scale simulation parameter settings are shown in Table 2.

Table 2. Experimental settings of scale simulation.

Carrier Model Scale Track Length Focal Length Frame Rate Frame Size

700:1 4 m 12 mm 30 fps 800 × 800

The CAD model of the carrier model was scanned and reconstructed by high-precision
3D scanning equipment, and the intrinsic parameters of the industrial camera were cali-
brated in advance using Zhang’s calibration method [26]. A total of 1190 frames of images
were captured by the industrial camera during the sliding process of the electric trolley
with a constant speed. In order to obtain the initial pose parameters of the carrier target,
a number of 2D feature points are selected in the image, and then the corresponding 3D
coordinates of the feature points are obtained by using the total station and converting
into the carrier model coordinate system. With the 2D–3D points correspondence, the
initial pose is solved by the PnP algorithm [27]. Similar to Section 2.2, initial pose and
camera intrinsic parameters were used as the input to initialize the algorithm. Since the
GOS algorithm [21] performs poorly, we only compare RBOT algorithm with our algorithm
in the real image sequence test in this section. The reprojected results and pose curves are
shown in Figure 9.
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(a) 

 
(b) (c) (d) 

 
(e) (f) (g) 

Figure 9. Pose tracking results of carrier target in real image sequence. (a) The reprojected results (the
first row shows the examples of the synthetic images (the 4th, 199th, 617th, 950th, 1043rd, and 1188th
frame). The second and the third rows show the pose tracking results of the RBOT method, and the
proposed method, respectively). (b–g): Curves of three Euler angles and the translation parameters.

3.3.2. Experimental Results and Analysis

As shown in Figure 9, in the real image sequence of scale physical simulation, the
actual imaging is degraded by defocus blur, motion blur, and environmental interference,
such as “sea surface” illumination reflection and cluttered background. According to
the pose tracking results, the reprojected mask of the proposed algorithm can accurately
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match the carrier target in the whole process of image sequence. However, for the RBOT
algorithm [24], the pose tracking results showed deviation after initialization immediately.
As the carrier target gradually become larger, it failed to timely correct the accumulated
tracking error, and the pose tracking deviation also further expanded. Figure 10 shows
the process of local area radius changing with the carrier target scale. In the real image
sequence, due to the large range span, the scale of the carrier target varies from 50 pixels to
600 pixels. The scale variation of the carrier target is larger than that in the synthetic image
sequence. In terms of the large scale variation, the proposed algorithm updates the local
area radius in real time according to the target scale, and still realizes the whole-process
stable 6D pose tracking of the carrier target. The scale physical simulation experiment
again verifies the effectiveness of the proposed algorithm in achieving robust pose tracking
for the carrier target in carrier landing application.

Figure 10. Target scale and local region radius change curve in the real image sequence.

4. Conclusions

Aiming at the carrier landing scenario with monocular airborne visual guidance, this
paper proposes a carrier target pose tracking method based on scale-adaptive local region.
By combining the carrier target scale variation characteristics caused by visual distance
change in the landing process, a pose tracking model based on local regions is set up with
the local region radius updating adaptively. Then, using the Gauss–Newton optimization
algorithm, the 6D pose tracking of the carrier target is achieved. Experiments on both
synthetic image sequence and real image sequence verify that the proposed method can
achieve accurate and robust pose tracking for the carrier target in the process of carrier
aircraft approaching and landing from far to near.
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Abstract: Arbitrary-oriented vehicle detection via aerial imagery is essential in remote sensing and
computer vision, with various applications in traffic management, disaster monitoring, smart cities,
etc. In the last decade, we have seen notable progress in object detection in natural imagery; however,
such development has been sluggish for airborne imagery, not only due to large-scale variations and
various spins/appearances of instances but also due to the scarcity of the high-quality aerial datasets,
which could reflect the complexities and challenges of real-world scenarios. To address this and
to improve object detection research in remote sensing, we collected high-resolution images using
different drone platforms spanning a large geographic area and introduced a multi-view dataset
for vehicle detection in complex scenarios using aerial images (VSAI), featuring arbitrary-oriented
views in aerial imagery, consisting of different types of complex real-world scenes. The imagery
in our dataset was captured with a wide variety of camera angles, flight heights, times, weather
conditions, and illuminations. VSAI contained 49,712 vehicle instances annotated with oriented
bounding boxes and arbitrary quadrilateral bounding boxes (47,519 small vehicles and 2193 large
vehicles); we also annotated the occlusion rate of the objects to further increase the generalization
abilities of object detection networks. We conducted experiments to verify several state-of-the-art
algorithms in vehicle detection on VSAI to form a baseline. As per our results, the VSAI dataset
largely shows the complexity of the real world and poses significant challenges to existing object
detection algorithms. The dataset is publicly available.

Keywords: dataset; vehicle detection; UAV; complex scenes

1. Introduction

Objection detection, as one core task in computer vision, refers to localized objects of
interest; predicting their categories is becoming increasingly popular among researchers
because of the extensive range of applications, e.g., smart cities, traffic management, face
recognition, etc. The contributions of many high-quality datasets (such as PASCAL VOC [1],
ImageNet [2], and MS COCO [3]) are immeasurable as part of the extensive elements and
efforts leading to the rapid development of object detection technology.

In addition to the above-mentioned conventional datasets, the datasets collected
by camera-equipped drones (or UAVs) for object detection have been widely applied in
a great deal of fields, including agricultural, disaster monitoring, traffic management,
military reconnaissance, etc. In comparison to natural datasets, where objects are almost
directed upward because of gravity, object instances in aerial images under oblique view
generally exist with arbitrary directions relying on the view of the flight platform and scale
transformation due to oblique aerial photography, as illustrated in Figure 1.

Numerous research studies significantly contributed to object detection in remote
sensing images [4–12], taking advantage of the latest advances in computer vision. Most
algorithms [6,8,9,12] experimented by converting object detection in natural scenes to the

Drones 2022, 6, 161. https://doi.org/10.3390/drones6070161 https://www.mdpi.com/journal/drones
471



Drones 2022, 6, 161

aerial image fields. It is not surprising that object detection in ordinary images is not
applicable to aerial images, as there are many differences (target sizes, degraded images,
arbitrary orientations, unbalanced object intensity, etc.) between the two. Overall, it is more
challenging for object detection in aerial images.

 

Figure 1. Examples of labeled images taken from VSAI (green box: small vehicles, red box: large
vehicles). (a) Typical image under slope view in VSAI including numerous instances; examples
exhibited in (b–d) are cut out from the original image (a). (b) Represents dense and tiny instances;
(c) diagram of various instance orientations; (c,d) exhibition of the scale change caused by oblique
aerial photography; (e,f) illustrate the distinctions of the same scene from different perspectives.

Figure 1 illustrates that object detection in aerial images is facing many challenges
(such as image degradation, uneven object intensity, complex background, various scales,
and various directions) distinguished from conventional object detection tasks:

• Large size variations of instances: this almost depends on the different spatial resolu-
tions of the cameras, which are related to the camera pitch angles and flight heights
of UAVs.

• Degraded images: The load carried by a small UAV platform is subject to severe
limitations, with respect to the size and battery. Complex external weather variations
(e.g., fog, rain, cloud, snow, light, etc.) and rapid UAV flights have led to vague UAV
imagery, namely image degradation [13].

• Plenty of small instances: Ground objects with areas smaller than 32 × 32 pixels (MS
COC dataset’s definition of small objects) account for the majority of all objects in UAV
images, as illustrated in Figure 1. Owing to the less diverse features of small targets,
they may yield more errors and miss detection objects.

• Unbalanced object density: Uneven densities of captured objects are extremely preva-
lent in UAV images. In the same image, some objects may be densely arranged, while
others may have sparse and uneven distribution, which are prone to repeated detection
and missed detection, respectively.
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• Arbitrary orientations: objects in aerial images usually appear in any direction, as
shown in Figure 1.

In addition to these challenges, the research on object detection in UAV images is also
plagued by the dataset bias problem [14]. The generalization ability (across datasets) is
often low due to some preset specified conditions, which cannot fully reflect the task’s
complexity, e.g., fixed flight altitude [15,16], fixed camera pitch angle [15,17,18], narrow
shooting area [16,19], clear background [20,21], etc. To improve the generalization ability of
an object detection network, a dataset that adapts to the demands of practical applications
needs to be created.

Moreover, compared to the object detection from a nadir image, the ability to identify
objects with multi-view (off-nadir) imagery enables drones to be more responsive to many
applications, such as disaster monitoring, emergency rescue, and environmental reconnais-
sance. To further unleash the potential of a drone’s multi-view observations, this paper
introduces a multi-view dataset for vehicle detection in complex scenarios using aerial
images (VSAI), to highlight the object detection research based on drones. We collected
444 aerial images using different drone platforms from multi-view imaging. The resolutions
of the pictures included 4000 × 3000, 5472 × 3648, and 4056 × 3040. These VSAI images
were annotated by specialists in aerial imagery interpretation, including two categories
(small vehicle and large vehicle). The fully labeled VSAI dataset consists of 49,712 instances,
48,925 of which are annotated by an oriented bounding box. The rest are marked with
arbitrary quadrilateral bounding boxes for instances at image boundaries, rather than
horizontal bounding boxes generally utilized as object labels in natural scenes. The major
contributions of this paper are as follows:

• To our knowledge, VSAI is the first vehicle detection dataset annotated with varying
camera pitch angles and flight heights (namely multi-view) rather than almost-fixed
heights and camera angles of other datasets for object detection. It can be useful for
evaluating object detection models in aerial images under complicated conditions
closer to real situations.

• Our dataset’s images c massive complex scenes (in exception for multi-view informa-
tion) from many Chinese cities, such as backlights, the seaside, brides, dams, fog, ice
and snow, deserts, tollbooths, suburbs, night, forest, Gobi, harbors, overhead bridges,
crossroads, and mountainous regions, as shown in Figure 1.

This paper also evaluated state-of-the-art object detection algorithms on VSAI, which
can be treated as the baseline for future algorithm development. We accomplished a cross-
dataset generalization with the DOTA [22] dataset to evaluate the generalization capability
of the VSAI dataset.

2. Related Work

In recent years, computer vision technology based on drones has gained much atten-
tion in many fields. As drones are excellent for acquiring high-quality aerial images and
collecting vast amounts of imagery data, different datasets have been created for learning
tasks, such as object detection, tracking, and scene understanding. Among these tasks,
object detection is considered a fundamental problem; datasets for object detection are very
important subsets of drone-based datasets. However, many drone-based datasets mainly
use nadir imagery (i.e., images taken by a camera pointing to the ground vertically) for
object detection and other computer vision tasks, without considering multi-view observa-
tions; the objects in scenes with high complexities are also insufficient, as they do not fully
reflect complex real-world scenes.

In this section, we firstly review the relevant drone-based benchmarks and then vehicle
target benchmarks collected by drones in object detection fields, similar to VSAI.

2.1. Drone-Based Datasets

To date, there are few drone-based datasets in the object detection field. Barekatain [23]
proposed the Okutama-Action dataset for human action detection with the drone platform.
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It consists of 43 min of completely annotated video sequences, including 77,365 representa-
tive frames with 12 action types. The benchmarking IR dataset for surveillance with aerial
intelligence (BIRDSAI) [24] is an object detection and tracking dataset captured with a TIR
camera equipped on a fixed-wing UAV in many African protected areas. It consists of
humans and animals (with resolutions of 640 × 480 pixels). The UAVDT dataset [25] is a
large-scale vehicle detection and tracking dataset, which consists of 100 video sequences
and 80,000 representative frames, overlapping various weather conditions, flying heights,
and multiple common scenarios, including intersections, squares, toll stations, arterial
roads, highways, and T-junctions. The VisDrone2018 [26] dataset is a large-scale visual
object detection and tracking dataset, which includes 263 video sequences with 179,264 rep-
resentative frames and 10,209 static images captured by multiple camera devices, using
various drones, in over 14 Chinese cities. VisDrone2018 covered some common object types,
such as cars, bicycles, pedestrians, and tricycles. VisDrone2019 [18,27], when compared to
VisDrone2018, increased 25 long-term tracking video sequences with 82,644 frames in total,
12 of them were taken during the day and the rest at night.

2.2. Vehicle Object Datasets

Hsieh et al. [15] proposed a dataset (CARPK) for car counting, which contained
1448 images shot in parking lot scenes with aerial views (with 89,777 annotated instances).
Multi-scale object detection in a high-resolution UAV images dataset (MOHR) [17] is a large-
scale benchmark object detection dataset gathered by three cameras with resolutions of
5482 × 3078, 7360 × 4912, and 8688 × 5792, respectively. MOHR incorporated 90,014 object
instances with five types, including cars, trucks, buildings, flood damages, and collapses.
The UAV-based vehicle segmentation dataset (UVSD) [28] is a large-scale benchmark object
detection–counting–segmentation dataset, which owns various annotation formats con-
taining OBB, HBB, and pixel-level semantics. The drone vehicle dataset [18] is a large-scale
object detection and counting dataset with both optics and thermal infrared (RGBT) images
shot by UAVs. The multi-purpose aerial dataset (AU-AIR) [29] is a large-scale object detec-
tion dataset from multimodal sensors (including time, location, IMU, velocity, altitude, and
visual) captured by UAVs, which are composed of eight categories—person, car, bus, van,
truck, bike, motorbike, and trailer—under different lighting and weather conditions. The
largest existing available aerial image dataset for object detection is DOTA [22], composed
of 2806 images with 15 categories and about 188,282 bounding boxes annotated with Google
Earth and satellite images. The EAGLE [30] dataset is composed of 8820 aerial images
(936 × 936 pixels) gained by several flight campaigns from 2006 to 2019 at different times
of the day and year with various weather and lighting conditions. It has 215,986 vehicle
instances (including large vehicles and small vehicles). To our knowledge, it is the largest
aerial dataset for vehicle detection.

2.3. Oriented Object Detection

Significant advances have been made in the last decade in detecting objects in aerial
images, which are often allocated with large changes and random directions. However,
most current methods are based on heuristically-defined anchors with various scales,
angles, and aspect ratios, and typically undergo severe misalignments between anchor
boxes (ABs) and axis-aligned convolution features, leading to the usual inconsistency
between the category score and localization correctness.

To solve this issue, a single-shot alignment network (S2A-Net) [31] is proposed, which
contains two units: a feature alignment module (FAM) for generating high-quality anchors
and adaptively aligning the convolutional features, and an oriented detection module
(ODM), with the goal of generating orientation-sensitive and orientation-invariant features
to reduce the discrepancy between the localization and accuracy classification score.

To address the misalignment, the feature refinement module of the R3Det re-encodes
the location parameters of the existing refined bounding box to the corresponding feature
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points through pixel-wise feature interpolation to accomplish feature reestablishment
and alignment.

Meanwhile, another solution named the ROI transformer is put forward to address
the above-mentioned problems. The key point of the ROI transformer is to exert spatial
transformations on regions of interest (ROIs) and to learn the conversion parameters under
the supervision of oriented bounding box (OBB) ground truth labels. To our knowledge,
there is no specific algorithm for object detection under multiple perspectives of aerial
images. So, we chose and altered the ROI transformer [32] as our baseline due to its higher
localization accuracy for oriented object detection. Its specific principle will be introduced
in Section 5.

Instead of directly regressing the four vertices, gliding vertices [33] regress four length
ratios, describing the relative gliding offset on each resultant side, which can simplify the
offset learning and avert ambiguity of sequential annotation points for oriented objects.

In general, there are abundant research studies [34–36] on down-view oriented object
detection, but multi-view object detection is still in its infancy, which is also one of the areas
we focus on in our follow-up research.

3. Overview of VSAI

In this section, we mainly explain the collection details of the entire VSAI dataset, the
basis for category selection (small vehicle or large vehicle), and the annotation methods of
the VSAI dataset.

3.1. Image Collection

Our dataset consists of 444 static images (specifically for vehicle detection tasks).
Images in our dataset were collected from DJI Mavic Air, DJI Mavic 2 pro, Phantom
3 Pro, Phantom 4, and a 4 RTK drone platform with a high-resolution camera; partial
critical technical parameters (including image sensor size, camera field angle, and imagery
resolution) of these drones are exhibited in Table 1.

Table 1. Some technical parameters of UAVs used in the VSAI dataset.

Version CMOS Field Angle Resolution

Mavic air 1/2.3 inch 85◦ 4056 × 3040
Mavic 2 pro 1 inch 77◦ 5472 × 3648

Phantom 3 Pro 1/2.3 inch 94◦ 4000 × 3000
Phantom 4 1/2.3 inch 94◦ 4000 × 3000

Phantom 4 RTK 1 inch 84◦ 5472 × 3648

To increase the divergence of data and overlay a wider geographical area, the VSAI
dataset gathered images taken in most Chinese cities (including Shenyang, Weihai, Yantai,
Weifang, Jinan, Lianyungang, Shanghai, Fuzhou, Xiamen, Zhengzhou, Luoyang, Yichang,
Changsha, Guangzhou, Yinchuan, Guyuan, Xian, Delingha, Bayingolin from east to west,
from north to south, etc.), as illustrated in Figure 2.

For shooting months shown in Figure 3a, this dataset covers the whole year. We
captured the images with all-weather conditions, even the rare ice and snow scenarios
as exhibited in Section 4.2. As for the shooting time displayed in Figure 3b, our dataset
also basically covers the time range from 7 to 24 o’clock, except for 9 to 10 o’clock and
21 to 23 o’clock. Therefore, the VSAI dataset owns different images of light conditions as
illustrated in Section 4.2, such as backlight, daylight, and night.
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Figure 2. Distribution of image acquisition locations over China.

  
(a) (b) 

Figure 3. Image statics information. (a) The statistical histogram of shooting month; (b) the statistical
histogram of shooting time from 7 to 24 o’clock.

3.2. Category Selection

Since vehicles photographed at high altitudes are difficult to classify, the VSAI dataset
focuses on the vehicle category, which constitutes two categories, as shown in Figure 4,
small vehicles (SVs include cars, minibuses, pickups, small trucks, taxis, and police cars)
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and large vehicles (LVs, such as buses and large trucks), similar to DOTA and EAGLE. The
VSAI dataset contains 47,519 small vehicles and 2193 large vehicles, which confirms the
uneven distribution of vehicles in the real world.

 

Figure 4. Samples of annotated images in VSAI (left to right, top to bottom). Large trucks belong to
LV, a large truck (LV), a bus marked with an arbitrary quadrilateral bounding box (LV), a car labeled
using an arbitrary quadrilateral bounding box (SV), cars densely arranged and mutually blocked
(SV), cars partially occluded by vegetation (SV), a taxi (SV), small trucks (SV), pickup (SV), car (SV),
SUV (SV), police car (SV), box truck (SV), minibus (SV).

3.3. Annotation Method

This paper considers several methods of annotating. In computer vision, many vi-
sual concepts (including objects, region descriptions, relationships, etc.) are labeled with
bounding boxes (BB) [37]. A popular presentation of bounding boxes is (xc, yc, w, h), where
(xc, yc) is the central location and (w, h) are the width and height of the bounding box,
respectively.

However, the BB method cannot precisely annotate and outline the crowded objects
with many orientations in aerial images because of the large overlap between bounding
boxes. To settle this, we required searching for an annotation method adapted to oriented
objects.

A choice for labeling oriented objects is the oriented bounding box, which is adopted
in some text detection benchmarks [38], namely (xc, yc, w, h, θ), where θ refers to the angle
from the horizontal direction of the normal bounding box. In fact, the VSAI dataset uses
the θ-based oriented bounding boxes (OBB) to annotate objects in the aerial images due to
excellent adaptability to rotating targets.

Another alternative is arbitrary quadrilateral bounding boxes (QBB), which can be
defined as {(xi, yi), i= 1, 2, 3, 4}, where (xi, yi) refers to the positions of the bounding box
apexes in the image. The vertices are arranged in clockwise order, choosing the left front
vertices of vehicles as starting points, namely (x1, y1). This way is widely adopted in
oriented text detection benchmarks [39]. In comparison with θ-based-oriented bounding
boxes, arbitrary quadrilateral bounding boxes could compactly enclose oriented objects
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with large deformations among different parts; the latter will also consume more time in
labeling due to a higher amount of parameters. Therefore, we only adopted QBB for the
instances at the image edges as illustrated in Figure 4, and chose the time-efficient way
(OBB) for the rest.

4. Properties of VSAI

This section depicts the major characteristics of the proposed dataset VSAI, which
consists of multi-view UAV images, object visibility information, and more instances in
each image. These properties (in comparison to other datasets) are sequentially described.

4.1. Multi-View

The original sizes of the images in VSAI were 4000 × 3000, 4056 × 3040, and
5472 × 3648 pixels, which are particularly huge in comparison to regular natural datasets
(e.g., PASCAL-VOC and MSCOCO are no more than 1 × 1 k). To approach the real appli-
cation scenario, the images in VSAI were shot at various camera pitch angles and flight
altitudes in the range of 0◦ to −90◦ (0◦ indicates that the camera points in the forward
direction of the UAV; −90◦ refers to the bird’s-eye view) and from 54.5 to 499.4 m, respec-
tively. As far as we know, extant drone datasets for object detection are rarely dedicated to
collecting and labeling pictures from multiple views, namely distinct camera pitch angles
and flight heights. This paper draws comparisons among MOHR [17], VisDrone2019 [27],
Drone Vehicle [18], Okutama-Action [23], and VSAI to show the differences (Table 2). Note
that, compared with our dataset’s multi-view drone images, for facilitating data acquisition,
the current UAV dataset is mostly fixed with several heights and camera pitch angles.

Table 2. Comparison of camera pitch angles and flight heights among VSAI and other object detection
datasets based on UAV.

Dataset Camera Pitch Angles Flight Heights

MOHR [17] −90◦ About 200, 300, 400 m
VisDrone2019 [27] Unannotated Unannotated
Drone Vehicle [18] −90◦ Unannotated

Okutama-Action [23] −45◦, −90◦ 10–45 m
EAGLE [30] −90◦ Between 300 and 3000 m

VSAI From 0◦ to −90◦ 55–500 m

We graphed the distribution histogram of the camera pitch angles and flight heights of
our dataset. As shown in Figure 5, due to careful selection, the distributions of the camera
pitch angles were relatively uniform. However, because of the law restricting flight above
120 m, in most Chinese cities, the flight altitudes were generally concentrated between
100 and 200 m in VSAI. In contrast, images taken from 200 to 500 m were mainly centered
in the suburbs, accounting for a relatively low proportion of VSAI. Moreover, due to
the scale and shape changes of objects attributed to multi-view UAV images as shown
in Figure 1, object detection tasks are closer to reality, but they simultaneously become
extremely difficult.

In the VSAI dataset, the instances with line of sight (LOS) angles of (−30◦, −25◦) were
the largest, as illustrated in Figure 6. Overall, the LOS angle distribution of the number of
instances was not balanced, mainly concentrating on small observation angles in the range
of (−45◦, −15◦).

The main reason for this distribution is that the camera pitch angle decreases; that
is, as the camera’s line of sight gradually approaches the horizontal plane, the larger the
ground scene range corresponding to the image area of the same size, the farther the
observation distance, and the more object instances can be included, resulting in more
objects corresponding to the smaller oblique line of sight angles when there is no significant
difference in the number of images at different pitch angles (Figure 7). This shows that the
object instances are unevenly distributed with the observation line of sight angle under
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the multi-view observation condition. At the same time, this observation method will
lead to large object scale variations and image blurring, which increases the difficulty of
object recognition.

  
(a) (b) 

Figure 5. Image view statics information in VSAI: (a) distribution histogram of camera pitch angles;
(b) distribution histogram of flight heights.

 
Figure 6. Statics histogram of the instances’ line of sight angles (LOS) in VSAI.

  
(a) (b) 

Figure 7. Examples of multi-view aerial images under the same scenario in the VSAI dataset: (a) the
view of a higher altitude and smaller observation angle; (b) the view of a lower altitude and larger
observation angle.
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4.2. Complex Scenarios

Apart from the more extensive regional distribution, as shown in Figure 8, VSAI
also covers six complicated scenes throughout China, including the desert, city, mountain,
suburb, riverside, and seaside, as illustrated in Figure 8. The six scenarios also contain
many subsets, such as cities, including the overhead bridge, crossroad, stadium, riverside
embracing dam, bridge, etc. Observing Figure 8, VSAI essentially covers the vast majority
of real-world complex scenarios, rather than the single urban scenario of other datasets.
Meanwhile, aerial images of the VSAI dataset in multiple views are totally different from
traditional down-view airborne imageries, because the former have more small targets,
instances of occlusion, and larger-scale transformations of targets (as exhibited in Figure 8),
which are closer to the complexities of the real-world.

 

Figure 8. Examples of multi-view annotated images from VSAI with complex scenes and distinct
terrains (left to right, top to bottom): seaside (120 m,−8.4◦); bridge (208.6 m,−31.3◦); desert (106.9 m,
−41.9◦); suburb (114.8 m, −49.9◦); Forest (291.5 m, −57.2◦); harbor (104 m, −37.1◦); overhead bridges
(112.2 m, −46.7◦); crossroads (203 m, −69.6◦); dam (118.8 m, −6.7◦); tollbooth (202.2 m, −89.9◦); Gobi
(356.6 m, −54.6◦); mountainous region (409.2 m, −35.4◦). The images in the first three lines have
resolutions of 4000 × 3000 pixels; the resolution of the last line is 5472 × 3648 pixels.

The statistical histogram of the VSAI scene distribution is shown in Figure 9. It is
obvious that the urban scenario accounts for half of the VSAI dataset. The other five
scenarios make up the other half. The histogram of the VSAI scene distribution exhibits the
complexities of the VSAI dataset.

Except for the weakness of a single scene, most existing datasets also ignored the
influence of the natural environment and variations in illumination. However, the VSAI
dataset considered complicated scenarios with diverse lighting conditions (such as daylight,
backlight, and night) and interference from harsh natural environments (fog, snow cover,
and sea ice), some examples of labeled images are shown in Figure 10.
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Figure 9. Distribution histogram of six complex scenes, including the desert, city, mountain, suburb,
riverside, and seaside.

 

Figure 10. Examples of multi-view annotated images from VSAI in complex scenes (left to right, top

to bottom): daylight; backlight that can never appear in a down-view aerial image; night; fog; snow
cover; sea ice.

4.3. Vehicle Statistics

We collected statistical information about the vehicles, including the vehicle’s orienta-
tion angles, instance length, and vehicle aspect ratio, as illustrated in Figure 11. Because of
careful selection, we gained relatively uniform distributions of rotation angles, as shown in
Figure 11a. Noting Figure 11b, the lengths of the vehicles were concentrated in the range
of 0 to 75 pixels, signifying that there were numerous small instances in the VSAI dataset.
At the same time, there was a considerable scale change in VSAI, as shown in Figure 11b.
In addition, distinct perspectives also resulted in a wider range of the vehicle aspect ratio
rather than the aspect ratio of 2 or so in traditional down-view aerial images.
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(a) (b) (c) 

Figure 11. Vehicle statistics information: (a) the distribution of the vehicle’s orientation angles;
(b) statics histogram of the instances’ lengths; (c) the distribution of the vehicle’s aspect ratio (AR).

4.4. Object Occlusion Ratio

Additionally, VSAI provides useful annotations with respect to the occlusion ratio
(the distribution of the occlusion ratio is shown in Figure 12). In this case, we used the
proportion of vehicles being blocked to represent the occlusion ratio and define four levels
of occlusions: no occlusion (occlusion ratio 0%), small occlusion (occlusion ratio < 30%),
moderate occlusion (occlusion ratio 30~70%), and large occlusion (occlusion ratio > 70%),
mainly for better reflecting the instance density of the instance location. The examples of
different occlusion ratios are exhibited in the second line of Figure 13.

 
Figure 12. Statics histogram of the instances’ occlusion ratios in VSAI.

Reasons for occlusion in multi-view and down-view aerial images are completely
disparate. There are a couple of block types in multi-view aerial images that will never
exist in down-view airborne imageries, such as occluded by a building, being blocked by
other vehicles, or being sheltered by shafts, such as flags (first line of Figure 13). Due to
more types of occlusions, there are more hardships for multi-view aerial images to detect
objects accurately in comparison with the down-view ones, which means the former is
closer to real-world complicacies.
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Figure 13. Examples of vehicle occlusion. The first line demonstrates different block reasons of
instances, from left to right, occluded by a building, blocked by other vehicles, sheltered by shafts,
such as flags, and occluded by vegetation, respectively. The second line illustrates different occlusion
ratios, from left to right, no occlusion, small occlusion, moderate occlusion, and large occlusion.

4.5. Average Instances

It is common for UAV images to include plenty of instances (but seldom for general
images). However, for aerial datasets, UAVDT images [25] only have 10.52 instances on
average. DOTA has 67.10. Our dataset VSAI is much larger in instances per image, which
can be up to 111.96. Figure 14 shows the histogram of the number of instances per image in
our VSAI dataset. Although the numbers of images and instances of VSAI are less than
most other datasets, the average number of instances in each image is much greater than
most other datasets, as illustrated in Table 3, except for DLR-3K-Vehicle [40], which only
has 20 images.

 
Figure 14. Histogram of the number of annotated instances per image in VSAI.
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Table 3. Comparison of statistics between VSAI and other object detection benchmarks.

Dataset
Vehicle Instances

per Image
No. of Images No. of Instances

Instances per
Image

Image Width
(Pixels)

UAVDT [25] 841,500 80,000 841,500 10.52 1080
DOTA [22] 43,462 2806 188,282 67.10 300–4000
EAGLE [30] 215,986 8280 215,986 26.09 936

DLR-3K-Vehicle [40] 14,232 20 14,232 711.6 5616
VSAI 49,712 444 49,712 111.96 4000, 4056, 5472

5. Method

We benchmarked the current object detection methods based on OBB with VSAI in
the evaluation section (below). Moreover, we selected and altered the ROI transformer [32]
as our baseline because of its higher localization accuracy for oriented object detection.

When detecting dense objects in aerial images, algorithms based on horizontal pro-
posals for natural object detection always lead to mismatches between regions of interest
(ROIs) and objects. The ROI transformer is proposed for addressing this; it contains two
parts, RROI learner and RROI warping. In this section, we briefly introduce two parts of
the ROI transformer and the ResNeSt backbone, the alternative to ResNet in this paper.

5.1. RROI Learner

The purpose of the RROI learner is to learn to rotate ROIs (RROIs) from the feature
map of horizontal ROIs (HROIs). We have HROIs in the form of (x, y, w, h) for predicted
2D coordinates and the width and height of a HROI; the corresponding feature maps
are defined as {Fi}. Because ideally a single HROI is the circumscribed rectangle of the
RROI, the ROI learner attempts to infer the geometric parameters of RROIs from Fi by
fully connected layers with dimensions of 5, regressing the offsets of rotated ground truths
(RGTs) relative to HROI; the regression targets are shown as

tgt
x = 1

wr

((
xgt − xr) cos θr + (ygt − yr) sin θr),

tgt
y = 1

hr

((
ygt − yr) cos θr −

(
xgt − xr) sin θr),

tgt
w = log wgt

wr , tgt
h = log hgt

hr ,

tgt
θ = 1

2π

((
θgt − θr)mod2π

)
(1)

where (xr, yr, wr, hr, θr) represents the location, width, length, and rotation of a RROI
and

(
xgt, ygt, wgt, hgt, θgt) stands for the ground truth parameters of an OBB. For deriving

Equation (1), the ROI learner utilizes the local coordinate systems bound to RROIs instead
of the global coordinate system bound to the image.

The output vector
(
tx, ty, tw, th, tθ

)
of the fully connected layer is represented as follows

t = C(F ; Θ) (2)

where C is the fully connected layer, F is the feature map for every HROI, and Θ represents
the weight parameters of C.

Once an input HROI matches with a ground truth of OBB, tgt is set by the description
in Equation (1). The smooth L1 loss function [41] is used for the regression loss. The
predicted t is decoded from offsets to the parameters of RROI. In other words, the RROI
learner learns the parameters of RROI from the HROI feature map F .

5.2. RROI Warping

Based on the RROI parameters learned by the RROI learner, RROI warping extracts
the rotation-invariant deep features for oriented object detection. The module of the rotated
position sensitive (RPS) ROI align [32] is proposed as the specific RROI warping, which
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divides the RROI into K× K bins and exports a feature map Y of the shape (K, K, C); for
the bin’s index (i, j)(0 ≤ i, j < K) of the output channel c(0 ≤ c < C), we have

Yc(i, j) = ∑
(x,y)∈bin(i,j)

Di,j,c(Tθ(x, y))
n

(3)

where Di,j,c is the feature map from the K × K × C feature maps. The n × n denotes
the number of sampling locations in the bin. The bin(i,j) represents the coordinates set{

i wr
k + (sx + 0.5) wr

k×n ; sx = 0, 1, . . . n− 1
}
×

{
j hr

k +
(
sy + 0.5

) hr
k×n ; sy = 0, 1, . . . n− 1

}
.

Moreover, each (x, y) ∈ bin(i, j) is transformed to (x′, y′) by Tθ , where(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x− wr/2
y− hr/2

)
+

(
xr
yr

)
(4)

Equation (3) is realized by bilinear interpolation.
The combination of the RROI learner and RROI warping replaces the normal ROI

warping, which provides better initialization of RROIs. In turn, it achieves better results in
rotating object detection.

5.3. Architecture of ROI Transformer

The main architecture of the ROI transformer is composed of three parts—the back-
bone, neck, and head networks. We chose the ResNeSt50 backbone to replace ResNet50 in
our baseline for extracting features, and the batch size was set to 2. FPN was selected as
the neck network to integrate the feature output of the backbone efficiently, whose input
channels were set as Cin = [256, 512, 1024, 2048], output channels Cout = 256. The
head network includes the RPN head and the ROI transformer head. We used five scales{

322, 642, 1282, 2562, 5122} and three aspect ratios {1/2, 1, 2}, yielding k = 20 anchors for
the RPN head network initialization. The ROI head adopted the ROI transformer described
in the previous subsection; we used the Smooth L1 loss [41] function for the bounding
box regression loss and the cross-entropy loss function for the category loss. The IOU
threshold was set as 0.5. We trained the model in 40 epochs for VSAI. The SGD optimizer
was adopted with an initial learning rate of 0.0025, the momentum of 0.9, and weight decay
of 0.0001. We used the learning rate warm-up for 500 iterations.

5.4. ResNeSt

ResNeSt accomplished an architectural alteration of ResNet, merging feature map split
attention within the separate network blocks. Specifically, each block partitioned the feature
map into multiple groups (along the channel dimension) and finer-grained subgroups or
splits with each group’s feature representation determined via a weighted combination
of the split representations (with weights determined in accordance with global context
information). The resulting unit is defined as a split attention block. By stacking some split
attention blocks, we gained ResNeSt (S means “Split”).

Based on the ResNeXt blocks [42] that divide the feature into K groups (namely “cardi-
nality” hyperparameter K), ResNeSt (Figure 15) introduces a new “Radix” hyperparameter
R, which means a split number within a “cardinality” group. Therefore, the total number of
feature-map groups is G = KR. The group alteration is a 1 × 1 convolution layer followed
by a 3 × 3 convolution layer. The attention function is composed of a global pooling layer
and two fully connected layers followed by SoftMax in the “cardinal” dimension.

ResNeSt combines the advantage of the “cardinality” group in ResNeXt and the
“selective kernel” in SKNets [43], and achieves a state-of-the-art performance compared to
all existing ResNet variants, as well as brilliant speed–accuracy trade-offs. Therefore, we
chose the ResNeSt backbone to replace ResNet in this paper.
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Figure 15. Schematic diagram of the ResNeSt Block and split attention. The left shows the ResNeSt
block in a cardinality-major view. The green convolution layer is shown as (no. of in channels,
filter size, no. of out channels). The right illustrates the split attention block. s (c′/k, ) and z (c′′ , )
stand for channel-wise statistics, as s ∈ Rc′/k generated by global average pooling and the compact
feature descriptor z ∈ Rc′′ created by the fully connected layer. FC, BN, and r-SoftMax mean the fully
connected layer, batch normalization, and SoftMax in the cardinal dimension. + and × represent the
element-wise summation and element-wise product.

6. Evaluations

6.1. Dataset Split and Experimental Setup

To ensure that the distribution of vehicles in the training, validation, and test sets was
approximately balanced, we randomly assigned images with 1/2, 1/6, and 1/3 instances to
the training, validation, and test sets, respectively. To facilitate training, the initial images
were cropped into the patches with two methods. For the single-scale segmentation method,
the size of the patch was 1024 × 1024 pixels, with 200-pixel gaps in the sliding window,
leading to 5240, 1520, and 2315 patches of the training, validation, and test sets, respectively,
set according to the input size of the DOTA dataset [22]. For the multi-scale segmentation
method, the original images were cropped into 682 × 682, 1024 × 1024 and 2048 × 2048
pixels with 500-pixel gaps, resulting in 33,872, 9841, and 14,941 patches of the training,
validation, and test sets, respectively. Moreover, this paper evaluated all of the models on
NVIDIA GeForce GTX 2080 Ti with PyTorch version 1.6.0.

6.2. Experimental Baseline

We benchmarked the current object detection methods based on OBB with VSAI. In
this research, based on the features of VSAI (such as numerous small instances, huge
scale changes, and occlusion), we carefully selected rotated Faster R-CNN [44], oriented
R-CNN [34], rotated RetinaNet [45], and gliding vertex [33] as our benchmark testing meth-
ods due to their wonderful performances on object detection with arbitrary orientations.
We chose and altered the ROI transformer [32] as our baseline. We followed the same
implementations of these models released by their original developers. Except for the ROI
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transformer, we modified the backbone network from ResNet50 [46] to ResNeSt50 [47]
to obtain better feature extraction results. All codes of the baseline selected in this paper
are based on MMRotate [48], available at https://github.com/open-mmlab (accessed on
27 April 2022).

6.3. Experimental Analysis

By exploring the results illustrated in Figure 16, one could see that the OBB detection
is still challenging in relation to tiny instances, densely arranged areas, and occlusions in
aerial images. In Figure 16, we provide a comparison of small and large vehicle detection
with different ROI transformer methods (distinct backbones and split ways). As shown in
Figure 16, the unbalanced dataset (the number of small vehicles being much higher than the
large vehicles) led to less accuracy of the algorithms in large-vehicle detection compared
to small-vehicle detection. Observing the first column in Figure 16, we notice that the
models with ResNeSt50, random rotation, and multi-scale split more accurately framed the
large vehicle, because the former owns the more powerful feature extraction capability in
contrast with ResNet50 and the latter possesses more large-vehicle instances. Whether it is
single-scale or multi-scale or ResNet50 or ResNeSt50 models—for large-size vehicles, as
shown in the middle column in Figure 16, it precisely detects (even in the shadows and
occlusions). As demonstrated in the last column, under reverse light conditions, although
the multi-scale split and ResNeSt50 are better than the single-scale split and the ResNet50,
the three models completely miss many minor targets. The results are not satisfying,
implying the high hardship of this task.

 

Figure 16. Test prediction samples of the ROI transformer trained on the VSAI dataset. The first
row is the result of the model with the ResNet50 backbone and single-scale split, the middle row
is the model with the ResNeSt50 backbone and single-scale split, and the third row is the result of
the model with ResNeSt50 backbone, random rotation, and multi-scale split. The blue dotted boxes
indicate significant differences between the pictures in the rows.
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In Table 4, we show the quantitative results of the experiments. Analyzing the results
exhibited in Table 4, performances in categories of small vehicles and large vehicles are far
from satisfactory, attributed to the former’s small size and the scarcity of the latter in aerial
images. Overall, a two-stage network is generally better than a one-stage network, except
for S2A-Net and SASM. The former relies on FAM and ODM units to achieve better position-
ing accuracy by reducing the misalignment between anchor boxes (ABs) and axis-aligned
convolution features. The latter obtains better sampling selection results through SA-S
and SA-S strategies. Therefore, these two single-stage networks achieve similar results to
two-stage networks. It is worth noting that simply replacing the ResNet50 backbone of the
ROI transformer with ResNeSt50 improved the mAP by 4.1% and 0.7% for single-scale and
multi-scale splits, respectively, which proves the effectiveness of the split-attention module
in the ResNeSt50 backbone. An unbalanced dataset contributed to the lower accuracy of
all the models in large-vehicle detection in comparison with small-vehicle detection. To
summarize, although our baseline of the ROI transformer (adopting ResNeSt50, multi-scale
split, and random rotation) achieved the best performances (64.9% mAP, 79.4% average
precision (AP) for small vehicles, and 50.4% AP for large vehicles), among the state-of-
the-art algorithms used in this paper, object detection in multi-view aerial images was far
from satisfactory. Object detection in aerial images under various perspectives needs to be
further developed.

Table 4. Benchmark of the state-of-the-art on the rotated bounding box (RBB) detection task trained
and tested on VSAI; mAP means mean average precision, higher is better. SS and MS mean single-
scale and multi-scale split. RR indicates random rotation. R50 stands for ResNet50, S50 repre-
sents ResNeSt50.

Method Backbone
Split and
Rotation

Type
AP [%]

SV LV Mean

Rotated RetinaNet [45] R50 SS One-Stage 67.1 32.6 49.9
R3Det [49] R50 SS One-Stage 69.6 38.5 54.0

Gliding Vertex [33] R50 SS Two-Stage 70.3 42.5 56.4
Rotated Faster R-CNN [44] R50 SS Two-Stage 70.7 44.0 57.3

S2A-Net [31] R50 SS One-Stage 73.6 41.9 57.7
Oriented R-CNN [34] R50 SS Two-Stage 76.9 43.1 60.0

SASM [36] R50 SS One-Stage 76.7 45.2 60.9
CFA [35] R50 SS Two-Stage 77.6 45.0 61.3

ROI Transformer [32]

R50 SS Two-Stage 77.4 38.4 57.9
S50 SS Two-Stage 77.7 46.2 62.0
R50 MS Two-Stage 78.9 48.2 63.6
S50 MS Two-Stage 78.8 49.8 64.3
R50 MS, RR Two-Stage 79.0 49.2 64.1
S50 MS, RR Two-Stage 79.4 50.4 64.9

In Figure 17, we provide several examples of fault detection and leak detection with
our baseline. As shown in Figure 17, it is still pretty hard for the state-of-the-art methods
to gain great detection results due to the complex scenes in the VSAI dataset. The model
misidentified the neon lights of buildings and blue blocks of roofs and arches, as large
vehicles. Motion blur vehicles at night, buses in close rows, and oblique photography of
tiny vehicles in the distance were not successfully detected.
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Figure 17. Test prediction samples of our baseline trained on the VSAI dataset. The first row is the
result of the fault detection and the second row is the result of the leak detection.

6.4. Cross-Dataset Validation

We completed a cross-dataset generalization experiment to validate the generalization
ability of the VSAI dataset. We chose DOTA [22] for comparison and its test set for
testing. We selected the ROI transformer models with the baseline of the VSAI dataset for
generalization experiments with OBB ground truth. Table 5 shows that a model trained
on VSAI generalizes well to DOTA, scoring 10% mAP over a model trained on DOTA
and tested on VSAI, which indicates that VSAI contains a wider range of features in
comparison to DOTA. At the same time, it reveals that VSAI is particularly more complex
and challenging than the current available down-view datasets, which makes it suitable for
real-world complicated vehicle detection scenarios.

Table 5. Comparison of results on VSAI and DOTA using the baseline of the VSAI dataset. The
comparison is on account of mAP. SL and LV stand for small vehicle and large vehicle, respectively.

Training Set Test Set SV LV mAP

DOTA VSAI 17.0 4.5 10.8
VSAI DOTA 35.5 6.1 20.8

7. Conclusions

We presented VSAI, a UAV dataset for targeting vehicle detection in aerial photogra-
phy, whose number of instances per image is multiple times higher than existing datasets.
Unlike common object detection datasets, we provided every annotated image with camera
pitch angles and flight height of drones. We built a dataset highly relevant to real-world
scenarios, which included multiple scenarios in aerial images, such as time, weather, illu-
minative situation, camera view, landform, and season. Our benchmarks illustrated that
VSAI is a challenging dataset for the current state-of-the-art orientated detection models;
our baseline achieved 64.9% mAP, which is 79.4% the average precision (AP) and 50.4% the
AP for small and large vehicles. The cross-dataset validation showed that models trained
with pure down-view images could not adapt to multi-angle datasets. On the contrary,
VSAI could cover the features of straight-down datasets, such as DOTA. We believe that
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VSAI contributes to remote sensing target detection (closer to reality). It also introduces
novel challenges to the vehicle detection domain.
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Abstract: Due to the nonlinear and asymmetric input constraints of the fixed-wing UAVs, it is a
challenging task to design controllers for the fixed-wing UAV formation control. Distance-based
formation control does not require global positions as well as the alignment of coordinates, which
brings in great convenience for designing a distributed control law. Motivated by the facts mentioned
above, in this paper, the problem of distance-based formation of fixed-wing UAVs with input
constraints is studied. A low-gain formation controller, which is a generalized gradient controller of
the potential function, is proposed. The desired formation can be achieved by the designed controller
under the input constraints of the fixed-wing UAVs with proven stability. Finally, the effectiveness of
the proposed method is verified by the numerical simulation and the semi-physical simulation.

Keywords: multi-UAV formation; velocity constraints; fixed-wing UAV

1. Introduction

Compared with the single unmanned aerial vehicle (UAV), multiple unmanned aerial
vehicle (multi-UAV) formations have several advantages, including improved execution
efficiency and capability, better fault tolerance and robustness and etc. [1–3]. In real-
ity, the multi-UAV formations have been frequently used in light shows, disaster relief,
and communication maintenance [4,5]. Thus, the study of multi-UAV formation has arisen
much attention in recent years.

To achieve the multi-UAV formation, a variety of control methods have been pro-
posed. The survey [6] classified the formation control from perception capabilities into
position-based [7,8], displacement-based [9,10], and distance-based [11,12]. Among them,
the distance-based formation control requires less individual perception capability. More
concretely, it can help design formation control laws in agents’ local coordinate frames,
which neither requires global position measurements nor the alignment of agents’ local
coordinate frames [11]. In practical applications the global coordinates are sometimes not
available (GPS-denied) and the alignment of coordinates is difficult for the multi-UAV
system. Due to the facts mentioned above, the distance-based formation control prob-
lem has become a research hotpot recently. Reference [12] derived a gradient controller
from the potential function based on an undirected infinitesimal rigidity graph. Then
the work [12] proved that the infinitesimal rigidity is a sufficient condition for the local
asymptotic stability of the equilibrium manifold. Based on the work of reference [12],
a new design strategy for formation control was proposed in reference [13], which can
achieve the local asymptotic stability for general infinitesimal rigid formations and the
global asymptotic stability for triangular infinitesimal formations. Reference [14] investi-
gated the local asymptotic stability of n-dimensional undirected formations with single
and double integrator models, and revealed that a rigid formation is locally asymptotically
stable even though the formation is not infinitesimally rigid. Reference [15] integrated the
different formation control laws proposed by the previous works into a unified convergence
analysis framework, and considered the case of minimally rigid target formation as well
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as non-minimally rigid target formation. Then the authors of [15] proved the exponen-
tial stability of the formation system under a generalized controller. Besides the work
mentioned above, different cases were studied for specific considerations, such as control
with disturbances [11,16–18], optimal formation control [19,20], and the formation control
combined with flocking [21–23].

Although a variety of distance-based formation control methods have been proposed
in many studies including the works mentioned above, most of them model the dynamics of
the agents in the system as a single integrator or double integrator. As a consequence, when
applying to the UAV system, the control method proposed in these works is unsuitable
because the UAV cannot move in any direction and the velocity in the head direction must
be greater than zero. More specifically, the dynamics of the UAVs are under-actuated
and input-constrained. In the current study of the formation control for the fixed-wing
UAVs, the kinematics of the fixed-wing UAV are modeled as a unicycle model, which is a
nonholonomic system. Thus, the study of formation control with nonholonomic constraints
and input saturation is of full meaning in practice. Existing nonholonomic constraint
studies can be found in references [23–26], whereas input saturation studies can be found
in references [27–31]. It is worth mentioning that the robust backstepping approach or the
sliding mode approach is a powerful approach for controlling the nonholonomic system
with input constraints [32–34]. However, there may be some problems such as introducing
more complex structures, relying on more system information, etc. Most of them are
based on the leader-follower structure, which is a simple and clear control architecture but
highly dependent on the motion of the leader agent. Reference [31] solved the distance-
based formation control problem under the nonholonomic constraint and the velocity
saturation constraints by employing the time-varying projection matrix and time-varying
scalar. However, the approach in reference [31] requires a minimum linear velocity to be
less than zero, which is unsuitable for the fixed-wing UAVs. Therefore, the problem of the
distance-based formation control for the fixed-wing UAVs is still an open problem.

The low gain design technique has been proved to be an effective idea in coping with
input-constrained problems of linear systems [35–38]. Although distance-based formation
control is considered a complex nonlinear problem, the idea of low gain techniques can still
bring new perspectives or new thinking. Meanwhile, for the multi-agent formation control
problem, it is usually a popular approach to design a controller based on the constructed
potential function [13–15].

Different from the previous works on the formation control problem, in this paper,
the dynamics of the UAV is modeled as a unicycle model with linear and angular velocity
constraints while the coordinates of the UAVs are not required to be aligned. Due to the
dynamic property of the fixed-wing UAV [28,30], the angular velocity is saturated while
its linear velocity is bounded within a positive interval. Taking both the linear and the
angular velocity constraints into consideration, the distance-based formation problem for
fixed-wing UAVs becomes more challenging. A potential-function-based controller is then
designed by utilizing the low gain design technique. Stability analysis is also provided.
Finally, the effectiveness of the proposed method is verified by using both the numerical
and the semi-physical simulations.

In summary, the main contributions of this article are as follows.

(1) We present a novel problem formulation for distance-based formation control of fixed-
wing UAVs. For fixed-wing UAVs with minimum forward velocity, we modify the
problem description of the general unicycle model, i.e., the formation is required to
keep moving at a uniform velocity simultaneously.

(2) We design a low-gain formation controller, which can keep the input of the system
from saturation. The proposed controller is a general gradient controller with a low
gain coefficient, which is designed based on the distance-based potential function.
Furthermore, we give the complete stability analysis to prove that the desired distance-
based formation can be achieved while the input constraints of each UAV are satisfied.
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(3) We simulate our proposed controller, including numerical simulation and semi-
physical simulation, and verify that the proposed method can effectively solve the
distance-based formation control problem under the input constraints of fixed-wing
UAVs.

The rest of the paper is organized as follows. In Section 2, the problem of distance-
based formation control of fixed-wing UAVs is formulated. Section 3 proposes the control
law with input constraints and gives the stability analysis. The simulation results are
presented in Section 4, followed by a conclusion of the paper in Section 5.

2. Problem Formulation

2.1. UAV Modeling

Consider a formation of N fixed-wing UAVs. For i = 1, . . . , N, the kinematic model of
UAV i is described by

ẋi = vi cos θi,
ẏi = vi sin θi,
θ̇i = wi,

(1)

where [xi, yi]
T ∈ R2 and θi ∈ (−π, π] are the position and orientation of the i-th UAV in

the inertial Cartesian frame, respectively. In this paper, the linear velocity vi ∈ R and the
angular velocity wi ∈ R are the control inputs of system (1).

Remark 1. It is worth noting that the models of UAVs are described in 2D instead of 3D. It is
based on the fact that when the fixed-wing UAVs are performing formations, the UAVs usually
fly at constant altitudes [16,17,20,23]. For example, in practical implementations, the UAVs are
usually controlled to fly at different altitudes to avoid collisions. In this sense, by setting a given
altitude, each UAV performs a fixed altitude flight.

Suppose that the UAV i is subject to the following velocity constraints:

0 < vi,min ≤ vi ≤ vi,max,
−wl

i,max ≤ wi ≤ wr
i,max, (2)

where vi,min and vi,max are the minimum and maximum forward linear velocities of the i-th
UAV, respectively, and wl

i,max and wr
i,max are the maximum left-turn and right-turn angular

velocities, respectively.

Remark 2. Although there are some existing works that address the distance-based formation
control problem of the unicycle model, they do not consider the velocity constraints of fixed-wing
UAVs. That is, the velocity constraints (2) are not present in the general unicycle model [23–26].
To tackle this challenge, a novel controller is designed to implement distance-based formation control
of the fixed-wing UAVs in this paper.

Remark 3. It is worth noting that the velocity constraints can be different for each UAV, which
relaxes the requirement to use the same type of the UAV in the formation [30].

2.2. Desired Formation

In this paper, the undirected graph G Δ
= (V , E) is used to represent the interaction

of UAVs, where V = {1, 2, . . . , N} is the set of N vertices and E ⊂ V × V is the set of
m edges. Each vertex represents a UAV and the neighbor set of vertex i is defined as
Ni(E) = {j ∈ V|(i, j) ∈ E}. The edge (i, j) ∈ E means that the UAV i, j can sense the

relative position with respect to each other. Then, let pi
Δ
= [xi, yi]

T ∈ R2, and denote

pij
Δ
= pi − pj as the relative position between the UAV i and j. The distance and the desired

distance between the UAV i and j are denoted by dij
Δ
= ‖pij‖ and d∗ij, respectively.
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The distance-based formation usually defines the desired formation based on the
distances among the UAVs. When the distance between the UAVs reaches the desired
distance, the formation goal will be considered to be achieved. However, fixed-wing
UAVs cannot stay still after reaching the desired distance and usually have to keep flying
at a uniform velocity. Therefore, different from the distance-based formation control in
reference [31], the desired formation requires not only that the desired distance between
the UAVs be maintained, but also that the UAVs keep moving at a preset uniform velocity.

Therefore, the desired formation control objective can be described as follows:∥∥pi(t)− pj(t)
∥∥→ d∗ij as t→ ∞, ∀(i, j) ∈ E ,

ṗi(t)−�v0 → 0 as t→ ∞, i = 1, . . . , N,
(3)

where �v0 ∈ R2 is a constant vector.
Figure 1 illustrates the process of achieving the desired formation consisting of three

fixed-wing UAVs. It can be observed that the three UAVs maintain the desired distance
from their neighbors while moving at the same velocity �v0.

1
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*
23d

23d

*
23d

*
13d

*
12d

*
13d

*
12d

0v

2 2

3 3

1 1

x
y

z

Figure 1. The desired formation of three UAVs.

2.3. Problem Statement

Two assumptions are posed before the problem statement.

Assumption 1. The velocity constraints of all UAVs have a common range and the uniform velocity
�v0 lies within this velocity range, i.e., ∃vmin, vmax, wr

max, wl
max ∈ R+, for ∀i ∈ {0, 1, ..., N} it

holds that
0 < vi,min ≤ vmin < ‖�v0‖ < vmax ≤ vi,max,
−wl

i,max ≤ −wl
max < 0 < wr

max ≤ wr
i,max. (4)

Assumption 2. The distances between all UAVs are bounded, and they are all less than a known
constant dM, i.e.,

dij ≤ dM, ∀(i, j) ∈ E . (5)

Thus, the formation problem is described as follows.

Problem 1. Under Assumptions 1 and 2, the control inputs vi and wi are designed so that each
UAV reaches the desired distance from its neighbors while the entire formation maneuvers at a
consistent velocity, i.e., Equation (3) holds while the velocity constraint of Equation (2) is satisfied.

Remark 4. It is obvious that Assumption 1 is a prerequisite for a formation mission to be achievable.
Only if assumption 1 is satisfied, it is possible for all UAVs to be in formation at a uniform velocity.
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Remark 5. Assumption 2 is reasonable since the communication range of UAVs in reality is
usually limited, and once the distance between UAVs is farther than their communication range,
their interaction topology will be broken and the formation will not be implemented.

3. Controller Design

In this section, the concept of distance-based potential function is first proposed, then
the designed potential function is used to design the low-gain-based controller so that the
velocity constraints can be satisfied. Finally, the stability analysis of the proposed controller
is presented.

3.1. Distance-Based Potential Function

Let eij = dij − d∗ij. Then, the vector e = [..., eij, ...] ∈ Rm consists of all eij where
(i, j) ∈ E .

Definition 1. For each UAV i, define a distance-based potential function Fi : R2|Ni |+1 → [0, ∞)
as follows:

Fi(pi, . . . , pj, . . . ) Δ
= γ ∑

j∈Ni

G(
∥∥pi − pj

∥∥), (6)

where γ > 0 and the function G is to be determined such that Fi satisfies the following assumption:

Assumption 3. The funtion Fi satisfies the following conditions:

• Fi ≥ 0 always holds, where Fi = 0 if and only if
∥∥pi − pj

∥∥ = d∗ij for all j ∈ Ni;

• For the function g(x) Δ
= Ġ(x)

x , if ‖x‖ ≤ xM, it holds that ‖g(x)‖ ≤ gM, where Ġ(x) denotes
differentiation of the function G;

• Denote

fi
Δ
= −∇pi Fi = −γ ∑

j∈Ni

g(
∥∥pij
∥∥)pij, (7)

and there exists r0 such that fi = 0⇔ Fi = 0 in {p : Fi(p) ≤ r0}.

In this paper, the function G(·) is designed as

G(
∥∥pij
∥∥) = 1

2

[(∥∥pij
∥∥2

+
d∗4ij∥∥pij
∥∥2

)
− d∗2ij

]
. (8)

Correspondingly, the function g(·) is

g(
∥∥pij
∥∥) = 1−

d∗4ij∥∥pij
∥∥4 . (9)

Remark 6. The second term of Assumption 3 implicitly implies that the function G is differentiable.
Further, the properties of the function Fi are related to the ones of the function G, which means that
the function G needs to be suitably selected. In fact, the function G can take many forms which were
summarized in reference [15]. Furthermore, similar to Assumption 1 of reference [31], Assumption
3 is satisfied by most of the cooperative control laws including the distance-based formation control
law. In addition, r0 indicates the size of the attraction domain. In other words, it determines whether
the system is globally or locally stable.

Remark 7. The distance-based potential function is a cornerstone of the controller proposed in this
paper. On the one hand, the distance-based potential function can be used as the Lyapunov function
candidate for proving the stability of the closed-loop system, as the Lyapunov functions are usually
difficult to find for nonlinear systems. On the other hand, for the multi-agent formation control
problem, distance-based potential function is more visual and intuitive, which makes it easier to
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understand the action of the controller. In fact, it is a popular approach to design a controller based
on the constructed potential function [13–15]. In addition, it has been pointed out by reference [15]
that the attractive property of ensuring collision avoidance for the formation system can be obtained
by choosing a suitable potential function.

3.2. Low-Gain-Based Controller

On the basis of the distance-based potential function Fi, the controller for UAV i
without velocity constraints is designed as[

vi
wi

]
=

[
cos θi sin θi
− sin θi cos θi

]
( fi(γ) +�v0), (10)

where fi(γ) is defined in Equation (7) and indicates that fi is related to the low gain
coefficient γ.

For the convenience of notation, let

hi =
[

cos θi sin θi
]T , h⊥i =

[
− sin θi cos θi

]T , h0 =
[

cos θ0 sin θ0
]T . (11)

Thus, Equation (10) can be rewritten as

vi = hT
i ( fi(γ) +�v0),

wi = h⊥i
T
( fi(γ) +�v0).

(12)

Remark 8. hi and h⊥i are widely used in reference [31,39,40], where hi is the unit vector in the
heading direction of the UAV i and h⊥i is the unit vector pointing to the vertical heading direction
to the right. A graphical explanation for hi and h⊥i is shown in Figure 2.

ih

ih
iv

iw

Figure 2. The illustrations of hi and h⊥i .

Then, based on Equation (12), the low-gain-based controller with velocity constraints
is designed as

vi = satvi

(
hT

i ( fi(γ) +�v0)
)
,

wi = satwi

(
satw1i ((h

⊥
i )

T fi(γ)) + (h⊥i )
T
�v0

)
,

(13)

where

satvi (x) =

⎧⎪⎨⎪⎩
vi,min, x ∈ (−∞, vi,min)

x, x ∈ [vi,min, vi,max]

vi,max, x ∈ (vi,max,+∞)

,

satwi (x) =

⎧⎪⎨⎪⎩
−wl

i,max, x ∈ (−∞,−wl
i,max)

x, x ∈ [−wl
i,max, wr

i,max]

wr
i,max, x ∈ (wr

i,max,+∞)

,

satw1i (x) =

⎧⎪⎨⎪⎩
−wl

i,1 max, x ∈ (−∞,−wl
i,1 max)

x, x ∈ [−wl
i,1 max, wr

i,1 max]

wr
i,1 max, x ∈ (wr

i,1 max,+∞)

,

(14)
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and the function fi(γ) is defined in Equation (7) while hi and h⊥i are defined in Equation (11).
The variables wl

i,1 max and wr
i,1 max are the controller parameters satisfying

− wl
i,max ≤ −wl

i,1 max < 0 < wr
i,1 max ≤ wr

i,max. (15)

Remark 9. On the basis of Equation (12), Equation (13) is designed to incorporate the saturation
function to accommodate the input constraints. Furthermore, in the later analysis, Equation (13)
will degenerate to Equation (12) when the gain γ is small enough, which is why the controller is
called “low-gain-based”.

3.3. Stability Analysis

In this part, the stability of the system with the designed controller will be analyzed.

Theorem 1. Consider a formation of N fixed-wing UAVs with unicycle dynamics (1) and input
constraints (2). Suppose that Assumption 3 holds. Then, Problem 1 can be tackled with the contol

inputs given by Equation (13). That is, for all init angle θi0 ∈ (−π + θ0 + arcsin
wr

i,1 max
‖�v0‖ , π + θ0−

arcsin
wl

i,1 max
‖�v0‖ ), there exists a constant γ∗ > 0 such that, for each given γ ∈ (0, γ∗], the following

equalities hold ∥∥pi(t)− pj(t)
∥∥→ d∗ij as t→ ∞, ∀(i, j) ∈ E ,

ṗi(t)−�v0 → 0 as t→ ∞, i = 1, . . . , N,
(16)

where both the linear and the angular velocity constraints are satisfied.

Proof. The proof can be divided into three parts.
Firstly, it will be proved that the angle of each UAV under the angular velocity con-

troller in Equation (13) will converge to a certain region. Consider the derivative of the
heading angle of the UAV i

θ̇i = wi = satwi

(
satw1i ((h

⊥
i )

T
fi) + (h⊥i )

T
�v0

)
= satwi

(
satw1i ((h

⊥
i )

T
fi)− ‖�v0‖sin(θi − θ0)

). (17)

Let wiδ = satw1i ((h
⊥
i )

T fi) ∈ [−wl
i,1 max, wr

i,1 max], then

θ̇i = wi = satwi (−‖�v0‖sin(θi − θ0) + wiδ). (18)

The right-hand side of Equation (18) is regarded as a function of angle θi and its
graphical explanation is shown in Figure 3.

Without loss of generality, consider θi ∈ [−π + θ0, π + θ0]. Then it holds that

θ̇i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
> 0, θi ∈ [−π + θ0 + arcsin

wr
i,1 max
‖�v0‖ , θ0 − arcsin

wl
i,1 max
‖�v0‖ )

−−, θi ∈ [θ0 − arcsin
wl

i,1 max
‖�v0‖ , θ0 + arcsin

wr
i,1 max
‖�v0‖ ]

< 0, θi ∈ (θ0 + arcsin
wr

i,1 max
‖�v0‖ , π + θ0 − arcsin

wl
i,1 max
‖�v0‖ ]

, (19)

which means that [θ0 − arcsin
wl

i,1 max
‖�v0‖ , θ0 + arcsin

wr
i,1 max
‖�v0‖ ] is an atracting set for (−π + θ0 +

arcsin
wr

i,1 max
‖�v0‖ , π+ θ0− arcsin

wl
i,1 max
‖�v0‖ ), i.e., θi → [θ0− arcsin

wl
i,1 max
‖�v0‖ , θ0 + arcsin

wr
i,1 max
‖�v0‖ ] as t→

∞ while the symbol “−−” denotes that the positive or negative sign is uncertain.
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Figure 3. The explanation of Equation (18).

Then, the existence of γ which makes the velocity of the UAVs unsaturated is discussed,
when the angle θi converges to a certain region.

It can be observed that the linear and angular velocity controllers are the projections
of vector �v0 and vector fi(γ) in the direction of hi and h⊥i , respectively, with the saturation
function added. More intuitively, a scheme of the controller is drawn as Figure 4 for the
i-th UAV in the local coordinate frame.

As shown in Figure 4, the two red vertical dashed lines represent the linear velocity
constraints in the forward direction, while the two red horizontal dashed lines and the two
yellow horizontal dashed lines represent the maximum angular velocity constraints for
{wl

i,max, wr
i,max} and {wl

i,1 max, wr
i,1 max}, respectively. The blue arrow shows the vector �v0,

and the dark red arrows in four directions show the “shortest” vector fi(γ) that reaches
the saturation condition. That is, if the “shortest” vector exists in all four directions, there
exists γ that makes all the saturation functions in Equation (13) not work due to the fact
that limγ→0 fi(γ) = 0.
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iw
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iw
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iw

,max
l
iw

ih
ih

if0v

Figure 4. An intuitive presentation about the proposed controller with input constraints.

Let the “shortest” vectors in the four directions be f up
i , f down

i , f le f t
i , and f right

i , respec-

tively. Clearly as shown in Figure 4, f right
i reaches a minimum when the vector �v0 and the

vector hi are in the same direction, i.e.,∥∥∥ f right
i

∥∥∥
min

= vi,max − ‖�v0‖. (20)
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Obviously, as the angle between the vector �v0 and the vector hi changes, the “shortest”
vector fi in each of the four directions changes. Consider the two extreme cases (i.e.,
the angle reaches its maximum) as shown in Figure 5a,b below:

,1max
0

0

arcsin
r
iw
v

,1max
0

0

arcsin
l
iw
v

,miniv ,maxiv

,1max
l
iw

,1max
r
iw

,max
r
iw

,max
l
iw

ih
ih
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0v

(a)

,1max
0

0
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iw
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0

0
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l
iw
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,max
l
iw

ih
ih if0v

(b)

Figure 5. Two extreme cases where the angle reaches its maximum. (a) An extreme case where θi is

equal to θ0 − arcsin
wl

i,1 max
‖�v0‖ . (b) Another extreme case where θi is equal to θ0 + arcsin

wr
i,1 max
‖�v0‖ .

From Figure 5a, the length of f up
i and f le f t

i in this case reaches the minimum, respec-
tively. Further, the minimum can be obtained by the following equations, respectively:∥∥∥ f up

i

∥∥∥
min

= wl
i,max − wl

i,1 max,∥∥∥ f le f t
i

∥∥∥
1 min

= ‖�v0‖ cos(arcsin
wl

i,1 max
‖�v0‖ )− vi,min.

(21)

Furthermore, from Figure 5b, the length of f down
i and f le f t

i in this case reaches the
minimum, respectively. Further, the minimum can be obtained by the following equations,
respectively: ∥∥∥ f down

i

∥∥∥
min

= wr
i,max − wr

i,1 max,∥∥∥ f le f t
i

∥∥∥
2 min

= vi,max − ‖�v0‖ cos(arcsin
wr

i,1 max
‖�v0‖ ).

(22)

Now, let Mi = min{
∥∥∥ f up

i

∥∥∥
min

,
∥∥∥ f down

i

∥∥∥
min

,
∥∥∥ f le f t

i

∥∥∥
min

,
∥∥∥ f right

i

∥∥∥
min
}, where

∥∥∥ f le f t
i

∥∥∥
min

=

min{
∥∥∥ f le f t

i

∥∥∥
1 min

,
∥∥∥ f le f t

i

∥∥∥
2 min
}. Then M = min{ · · · ,Mi, · · · }. Obviously M > 0. Further-

more, for fi, since the distance between the UAVs is bounded combined with Assumption 3,
it follows that ∑

j∈Ni

g(
∥∥pij
∥∥) is bounded, so there exists a sufficiently small γ such that

fi(γ) < M always holds.
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Since fi(γ) < M always holds, the following inequality will hold for each UAV i

vi,min < hT
i ( fi +�v0) < vi,max,

−wl
i,1 max < (h⊥i )

T fi < wr
i,1 max,

−wl
i,max < (h⊥i )

T fi + (h⊥i )
T�v0 < wr

i,max,

(23)

where Equation (13) degenerates into Equation (12) which does not involve the saturation
function. This means that all velocity constraints are satisfied.

Finally, consider the Lyapunov function candidate

V =
1
2 ∑

i∈V
Fi + ∑

i∈V
‖�v0‖(1− cos(θi − θ0)). (24)

Taking the differential of Equation (24) yields

V̇ =
1
2 ∑

i∈V

[
γ ∑

j∈Ni

g(
∥∥pij
∥∥)pT

ij( ṗi − ṗj)

]
+ ∑

i∈V
‖�v0‖ sin(θi − θ0)wi

= ∑
i∈V

[
γ ∑

j∈Ni

g(
∥∥pij
∥∥)pT

ij ṗi

]
− ∑

i∈V
‖�v0‖h⊥i

T
h0wi

= ∑
i∈V

[
γ ∑

j∈Ni

g(
∥∥pij
∥∥)pT

ij ṗi − ‖�v0‖h⊥i
T

h0wi

]

= ∑
i∈V

[
− f T

i ṗi − ‖�v0‖h⊥i
T

h0wi

]
= ∑

i∈V

[
− f T

i hihT
i ( fi +�v0)− ‖�v0‖h⊥i

T
h0h⊥i

T
( fi +�v0)

]
(25)

= ∑
i∈V

[
− f T

i hihT
i fi − f T

i hihT
i �v0 − h⊥i

T
�v0h⊥i

T
fi − h⊥i

T
�v0h⊥i

T
�v0

]
= ∑

i∈V

[
− f T

i hihT
i fi − f T

i hihT
i �v0 − f T

i h⊥i h⊥i
T
�v0 − h⊥i

T
�v0h⊥i

T
�v0

]
= ∑

i∈V

[
−(hT

i fi)
2 − (h⊥i

T
�v0)

2
− f T

i �v0

]

= ∑
i∈V

[
−(hT

i fi)
2 − (h⊥i

T
�v0)

2
+ γ ∑

j∈Ni

g(
∥∥pij
∥∥)pT

ij�v0+

]

= ∑
i∈V

[
−(hT

i fi)
2 − (h⊥i

T
�v0)

2
]
≤ 0,

which implies that the system is stable. The equality V̇ = 0 yields that hT
i fi = 0 and

h⊥i
T
�v0 = 0, which further implies that θi = θ0 or θi = θ0 + π. However, θi = θ0 + π is

impossible because the first part proves that the angle θi will converge to a certain region
near θ0. On the other hand, the former can be considered in the following two cases:

1. fi = 0;
2. hT

i fi = 0 but fi �= 0.

For the case 1, the desired formation is obviously achieved. The case 2 is discussed
below. Consider the dynamics of UAV i’s position:
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ṗi = hivi

= hisat
(

hT
i fi(γ) + hT

i �v0

)
= hihT

i fi(γ) + hihT
i �v0

= hihT
i fi(γ) +�v0 − h⊥i h⊥T

i �v0

= �v0

, (26)

which means that θi = θ0, i.e., the vector hi is invariant. Whereas considering the dynamics
of the UAV i’s angle, it holds that

θ̇i = satwi

(
satw1i ((h

⊥
i )

T
fi(γ)) + (h⊥i )

T
�v0

)
= (h⊥i )

T fi(γ) + (h⊥i )
T�v0

= (h⊥i )
T fi(γ)

�= 0

, (27)

which means that θi is always changing, so the contradiction arises and the case 2 is
not valid.

With the discussion mentioned above, the system will converge to the desired forma-
tion, i.e., Equation (3) holds and the proof is complete.

Remark 10. The effect of low gain γ is to disable all saturation in the controller given by
Equation (13). In practice, it works well to protect the fixed-wing UAV from being saturated
all the time. Note that all saturation functions will not work after the angle θi converges to a
certain region.

Remark 11. Although Theorem 1 requires the initial angle of all UAVs to be within a certain
region, in practice the angle is usually unstable outside of that range, and it has a tendency to enter
a certain region. Therefore practically the initial angle can be arbitrary, as can be verified in the
experimental results in the following part.

4. Simulations

In this section, the effectiveness of the proposed low-gain-based controller is verified
in numerical and semi-physical simulations, while the corresponding simulation results
are analyzed as well.

4.1. Simulation Setup

In the simulation, a formation of five fixed-wing UAVs is considered. Furthermore,
the desired formation shape is a regular pentagon whose underlying graph as shown in
Figure 6a where d∗12 = d∗23 = d∗34 = d∗45 = d∗15 = 2rdsin(π/5) and d∗25 = d∗35 = 2rdsin(2π/5).
Additionally, the velocity constraints for each UAV i are given as follows:

vi,max = 16 (m/s),
vi,min = 10 (m/s),
wl

i,max = π/3 (rad/s),
wr

i,max = π/3 (rad/s).

(28)

Meanwhile, the direction of the uniform velocity�v0 is shown by the arrows in Figure 6b
with constant magnitude 13 m/s. In Figure 6b, the total time is divided equally into five
periods, (t0, t1), (t1, t2), (t2, t3), (t3, t4) and (t4, t5), and the desired uniform velocity �v0

during these five periods are �v(0)0 , �v(1)0 , �v(2)0 , �v(3)0 , and �v(4)0 , respectively.

503



Drones 2022, 6, 159

*
12d

*
23d

*
34d

*
45d

*
15d

*
25d

*
35d

(1)
0v (3)

0v

(2)
0v

0 5( )t t

1t2t

3t

4t

(4)
0v

(0)
0v

(a) (b)

Figure 6. The illustration of some simulation settings. (a) The underlying graph of five fixed-wing
UAVs. (b) The setting of �v0.

Next, for each UAV i, choose the following potential function:

Fi = γ ∑
j∈Ni

1
2

[(∥∥pij
∥∥2

+
d∗4ij∥∥pij
∥∥2

)
− d∗2ij

]
. (29)

Then

fi = −∇pi Fi = −γ ∑
j∈Ni

(
1−

d∗4ij∥∥pij
∥∥4

)
pij. (30)

Let wl
i,1 max = wr

i,1 max = π/4 for each UAV i. It is then easy to obtain
∥∥∥ f up

i

∥∥∥
min

=

0.2618,
∥∥∥ f down

i

∥∥∥
min

= 0.2618,
∥∥∥ f le f t

i

∥∥∥
min

= 1.9807,
∥∥∥ f right

i

∥∥∥
min

= 4. Furthermore, note that

∑
j∈Ni

(
1−

d∗4ij∥∥pij
∥∥4

)
≤ 4

(
1−

d∗4ij

d4
M

)
< 4. (31)

Assuming that dM = 10, then γ is set as 0.0064.

4.2. Numerical Simulation

In the numerical simulation, the initial positions of the five UAVs are [20, 8]T , [8, 8]T ,
[4, 0]T , [14,−10]T , [24, 0]T(m), and heading angles are 0 (rad), respectively. The parameter
rd is set to be 10.

To better illustrate the impact of the input constraints on the controller design, we sim-
ulate the control algorithm proposed in the reference [23], where the controller parameters
are given in the simulation part of reference [23]. It should be noted that reference [23] does
not perform stability analysis of the control algorithm in the case of the presence of input
constraints. Figure 7c,d illustrate the control inputs vi and wi of the algorithm proposed in
reference [23] without the velocity constraints. Although the angular velocities can satisfy
the constraints after saturating all velocities, it can be observed that the linear velocities
still exceed the input constraints defined in Equation (2).

504



Drones 2022, 6, 159

-100 0 100 200 300 400 500

0

100

200

300

400

500

(a) (b)

(c) (d)

Figure 7. Numerical simulation results of the method proposed in [23] without input constraints.
(a) The illustration of trajectory of the five UAVs controlled by the method proposed in [23] without
input constraints. (b) The illustration of distance errors and θi controlled by the method proposed
in [23] without input constraints. (c) The linear velocity inputs vi of the five UAVs controlled by the
method proposed in [23] without input constraints. (d) The angular velocity inputs wi of the five
UAVs controlled by the method proposed in [23] without input constraints.

Then, to verify the effectiveness of the control algorithm proposed in this paper, we
simulate the method proposed in [23] and our algorithm in the same situation where the
constraints (2) are enforced on the UAVs. Figure 8 illustrates the numerical simulation
results of the two methods. It can be seen that although the algorithm proposed in ref-
erence [23] performs well when there exists no input constraints as shown in Figure 7,
the control algorithm fails when the constraints (2) are enforced on the UAVs, as shown in
Figure 8. Instead, under the control of our method, the input constraints of each UAV are
satisfied while the desired distance-based formation is achieved.
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Figure 8. Cont.
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Figure 8. The method in reference [23] vs. our method. (a) The illustration of trajectory of the five
UAVs controlled by the method proposed in [23]. (b) The illustration of trajectory of the five UAVs
controlled by our method. (c) The illustration of distance errors and θi controlled by the method
proposed in [23]. (d) The illustration of distance errors and θi controlled by our method. (e) The
illustration of control input vi and wi controlled by the method proposed in [23]. (f) The illustration
of control input vi and wi controlled by our method. (g) The illustration of the norm of f controlled
by the method proposed in [23]. (h) The illustration of the norm of f controlled by our method.

Figure 9 illustrates that the value of the Lyapunov function converges to zero. It can
also be seen that there is a sharp peak in its Lyapunov function when the uniform velocity
�v0 changes. The reason for this phonomenon is that it is the uniform linear velocity rather
than the uniform angular velocity that is considered in this paper.

506



Drones 2022, 6, 159

0 50 100 150 200
0

20

40

60

80

100

120

Figure 9. The illustration of Lyapunov function controlled by our method.

To further illustrate that our algorithm can tackle the case of non-identical input
constraints, we modify the velocity constraints of each UAV as

9 ≤ v1 ≤ 15, |w1| ≤ 0.95,
9.5 ≤ v2 ≤ 15.5, |w2| ≤ 1,

10 ≤ v3 ≤ 16, |w3| ≤ 1.05,
10.5 ≤ v4 ≤ 16.5, |w4| ≤ 1.1,

11 ≤ v5 ≤ 17, |w5| ≤ 1.15,

(32)

where the units of velocity and angular velocity are m/s and rad/s, respectively.
Figures 10 and 11 show the simulation results for the case of non-identical input con-

straints. It can be seen that the input constraints are still satisfied although the convergence
time becomes longer. This is the result of a trade-off in the control algorithm.
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Figure 10. Numerical simulation results for the case of non-identical input constraints. (a) The
illustration of trajectory of the five UAVs controlled by our method with non-identical input con-
straints. (b) The illustration of distance errors and θi controlled by our method with non-identical
input constraints.
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Figure 11. Numerical simulation results for the case of non-identical input constraints. (a) The illustra-
tion of control input vi and wi controlled by our method with non-identical input constraints. (b) The
illustration of Lyapunov function controlled by our method with non-identical input constraints.

4.3. Semi-Physical Simulation

To prove that our method can be apllied to the physical UAV system, the proposed
formation controller is further validated in a semi-physical simulation system.

4.3.1. Semi-Physical Simulation System

The semi-physical simulation system consists of four main parts: onboard computer,
autopilot, ground station, and switch. The relationships among them are shown in Figure 12.
The functional details of each component are introduced in references [41,42].

0

X-PlaneQgoundcontrol Formation Controller

0

X-PlaneQgoundcontrol Formation Controller
X-Plane Formation ControllerQGoundControl

i

Figure 12. The components of semi-physical simulation system.

In this simulation system, the software X-plane is used to simulate the dynamics of
UAVs as well as the flight environment, which is a professional flight simulation software
with powerful features, providing high precision dynamics models of UAVs and realistic
3D simulation scenarios. Meanwhile, the autopilot is used for the hardware-in-the-loop
(HIL) experiment, which will further narrow the gap between the simulation and the
physical reality.

In this paper, we select the HiLStar17 as the model for the semi-physical simulation as
shown in Figure 13.
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Figure 13. The UAV model used in this paper.

4.3.2. Semi-Physical Simulation Results

In the semi-physical simulation, the parameter rd will be adjusted to 100 to accommo-
date the realistic formation formation flight. Then, the semi-physical simulation results are
shown as follows.

Figure 14 shows the initial position of the UAV displayed in the ground station and
the evolution of the trajectory, and a more detailed trajectory is shown in Figure 15a.

(a) (b) (c)

Figure 14. The evolution of the trajectory. (a) Initial positions. (b) Positions at 583 s. (c) Positions at
1248 s.
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Figure 15. Cont.
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Figure 15. Semi-physical simulation results. (a) The illustration of trajectory of the five UAVs in the
semi-physical simulation. (b) The illustration of distance errors and θi in the semi-physical simulation.
(c) The illustration of control input vi and wi in the semi-physical simulation. (d) The illustration
of Lyapunov function in the semi-physical simulation. (e) The illustration of the norm of f in the
semi-physical simulation.

Figure 15b shows the distance error and the angle of the UAVs, which converge to the
desired values. Figure 15c illustrates the variation of the control input of the UAV labeled by
the number 1 during the simulation. Figure 15d then indicates that the value of Lyapunov
function converges to zero. Finally Figure 15e indicates that the norm of f is gradually
decreasing, which means that the control input energy of the formation is reduced.

5. Conclusions

With the idea of the low gain technique, this paper proposes a low-gain formation
controller to solve the formation control problem of distance-based fixed-wing UAVs subject
to the input constraints. The proposed controller is designed based on the potential function
and can achieve the formation of fixed-wing UAVs while satisfying the velocity constraints.
The numerical simulations and the semi-physical simulations are carried out to vefify the
effectiveness of the proposed algorithm.

In the future, the formation with the uniform angular velocity will be further con-
sidered, and the obstacle avoidance algorithm will also be incorporated to consider the
formation and obstacle avoidance problem as a whole.
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Abstract: The cooperation of multiple unmanned aerial vehicles (Multi-UAV) can effectively solve
the area coverage problem. However, developing an online multi-UAV coverage approach remains
a challenge due to energy constraints and environmental dynamics. In this paper, we design a
comprehensive framework for area coverage with multiple energy-limited UAVs in dynamic en-
vironments, which we call MCTA (Multi-UAV Coverage through Two-step Auction). Specifically,
the online two-step auction mechanism is proposed to select the optimal action. Then, an obstacle
avoidance mechanism is designed by defining several heuristic rules. After that, considering energy
constraints, we develop the reverse auction mechanism to balance workload between multiple UAVs.
Comprehensive experiments demonstrate that MCTA can achieve a high coverage rate while ensuring
a low repeated coverage rate and average step deviation in most circumstances.

Keywords: multi-UAV; two-step auction; area coverage; obstacle avoidance; energy constraint

1. Introduction

Unmanned aerial vehicles (UAV) have the characteristics of low operating cost, good
maneuverability, and no risk of casualties [1,2]. Accordingly, it has been applied to many
fields, such as surveying and mapping [3], surveillance [4], bathymetry [5–9], and disaster
rescue [10,11]. As a typical application, area coverage with UAVs has attracted great
attention in robotics. Its main objective is to move single UAV or a group of UAVs to
cover a given area [12]. Compared with single UAV, area coverage with multiple UAVs has
significant advantages. First, due to the workload distribution and collaboration, multi-
UAV can efficiently complete the task. Second, it enhances robustness against component
failure due to redundancy. Therefore, multiple cooperative UAVs are expected to play an
important role in the area coverage field.

Although considerable efforts have been devoted to addressing the area coverage prob-
lem for multi-UAV, there are still some challenges that need to be resolved. For instance, most
of the existing studies assume that different obstacles are equal and insurmountable [13].
However, the real environment may contain obstacles with different threat levels. In ad-
dition, existing studies do not consider energy constraints, and their effectiveness is only
verified in simple scenarios. Furthermore, some studies ignore the interaction among
multiple UAVs, which may lead to conflicts between UAVs [14].

In light of this, we further investigate multi-UAV for cooperative area coverage. Com-
pared with the previous work, we take the energy constraint and workload balance of
multi-UAV into consideration and solve a more challenging coverage problem.

1.1. Related Work

In the field of robotics, much work has been done to solve the area coverage problem.
Khamis et al. [15] proposed an auction algorithm for multi-robot systems. Xin et al. [13]
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proposed an auction-based spanning-tree coverage algorithm, which ensures the connectiv-
ity of each spanning tree and tries to balance the workload between robots. However, the
above algorithms are difficult to achieve online planning of area coverage actions due to
the lack of global information.

To address the limitation above, Viet et al. [14] proposed an online method based
on boustrophedon motions. After reaching the critical point, the intelligent backtracking
mechanism based on the suggested A* search was applied to reach the starting point
with the shortest collision-free path. Khan et al. [16] used a reputation-based auction
mechanism to model the interaction between the UAV operators serving in close-by areas,
achieving a strategic balance of control. It should be noted that the environment they
considered was too simplistic, making their algorithm unable to adapt to the naturally
dynamic environment.

In addition, the setting of dynamic obstacles is also crucial to adapt to the real envi-
ronment in the field of area coverage. Gabriely and Rimon [17] proposed a spanning tree
coverage algorithm based on a grid network. Sonti et al. [18] extended the set of path
planning in an environment with static obstacles. Gorbenko et al. [19] studied an effective al-
gorithm for multi-robot forest coverage underweighted terrain, which is suitable for solving
synthetic terrain with real-world weight and special hard terrain. Roi Yehoshua et al. [20]
divided the obstacles’ threat to UAVs into five levels. They proposed a spanning tree-based
coverage algorithm to meet the complexity of the real environment and the decision makers
requirements for different targets. Nevertheless, most of these studies ignore the influence
of energy constraints.

At the same time, the introduction of energy constraints is suitable for practical
application scenarios [21–25]. Strimel et al. [26] introduced a new full-coverage planning
algorithm that considers the robot’s fixed fuel or energy capacity. Dutta et al. [27] proposed
a constant-factor approximation algorithm for real-time coverage path planning with energy
constraints. They studied the coverage planning problem of mobile robots with a limited
energy budget, aimed to minimize the total travel distance covered by the environment
and the number of visits to the charging station. However, covering as many low-risk areas
as possible under energy constraints is still a challenge.

1.2. Contributions

In this paper, we presents a novel online planning solution of area coverage for multi-
UAV in dynamic environments. The main contributions of this paper are as follows:

• We design the comprehensive MCTA framework for area coverage with multiple
energy-limited UAVs in dynamic environments.

• We propose the two-step auction mechanism to select the optimal next action and
avoid dynamic obstacles.

• We develop a reverse auction mechanism to avoid conflicts and balance workloads
between UAVs.

The remainder of this paper is organized as follows: Section 2 formulates the area
converage problem. Section 3 presents our MCTA framework. In Section 4, a series
of experiments are conducted to evaluate the performance of MCTA. Finally, Section 5
concludes the major findings and outlines the potential direction for future work.

2. Problem Formulation

As illustrated in the left of Figure 1, we employ v energy-limited UAVs to simultane-
ously cover a given square area with potential threats. The square area is rasterized into m2

basic square units with side length D (Figure 2). Each unit has a threat level η ∈ [0, 1]. The
unit with η = 0 means a safe unit, and the UAV can pass freely. The unit with 0 < η < 1
means there is a potential threat to UAVs, but the UAV can still pass. The unit with η = 1
means an extremely dangerous obstacle which the UAV cannot pass. We assume that each
UAV can only acquire the threat level of the units within its sensing scope, and it can move
in four base directions, i.e., up, down, left, and right. As shown in Figure 2, we define a
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module as a square composed of four units and treat the center point of the module as an
equivalent replacement. Then, we define the modules that the UAV can reach in one time
step as the auction scope.

Figure 1. The proposed MCTA framework. The scenario on the left depicts the multi-UAV coverage
process. The blocks on the right list key modules of MCTA.

Figure 2. A square area is rasterized into m2 basic square units with side length D. A module is
composed of four basic units.

Let a set of continuous units { fi,k,1, fi,k,2, . . .} denote the trajectory Fi,k of UAVi
(i = 1, 2, . . . , v) in the kth step, where fi,k,p is the pth in the kth time step of UAVi’s position
on the sequence. Denote the flight mileage (i.e., the number of accumulated passed units)
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of UAVi in time step k as li,k. The total flight mileage Li of UAVi at the end of the coverage
task can be defined as:

Li = ∑
k

li,k. (1)

In the coverage process, the remaining energy Bi,k of UAVi in the kth time step is
related to its current flight mileage ∑k

k=0 li,k. The initial energy of each UAV is set as B, i.e.,
Bi,0 = B. Introducing different initial energy to the problem is sure to be more challenging,
but in this paper, we only consider the case where each individual is equivalent to better
analyze the completion of the coverage task. The UAV has two modes: work mode and
sleep mode. In the process of coverage, the UAV is in work mode. In sleep mode, UAV will
not perform the coverage task.

Our goal is to develop an online planning strategy of area coverage that enables
multiple energy-limited UAVs to cover as many passable units as possible while avoiding
collisions with other UAVs and obstacles. In other words, we expect to complete this
coverage task with a higher coverage rate Cr, lower repetitive coverage rate Rr, and lower
average flight deviation AD. The optimization objective is defined as:

min
[
−Cr, Rr, AD

]
, (2a)

s.t. ∀i ∈ {1, 2, . . . , v}, Li ≤ B, (2b)

∀i, j ∈ {1, 2, . . . , v}, i �= j, fi,k,p ∩ f j,k,p = ∅, (2c)

where constraint (2b) means the UAV cannot continue searching after its energy is ex-
hausted. Constraint (2c) means no collision between UAVs.

3. MCTA Framework

In this section, we introduce the multi-UAV coverage through two-step auction frame-
work. We first elaborate the two-step auction algorithm, which gives the bidding result of
four adjacent modules to the UAV. Then, we focus on obstacle avoidance and multi-UAV
conflict resolution. The UAV may take those strategies when the auction process ends. After
that, we introduce the energy constraint model and loop-check mechanism. Finally, by
assembling those modules above, we develop our framework. The details of each process
are described in the following subsections.

3.1. Two-Step Auction

In the online environment, the UAV only knows the local information within its
exploration scope. To achieve the optimal coverage result with the limited information, we
design the two-step auction algorithm (Algorithm 1).

To distinguish the effect of obstacles in different positions, we divide the auction scope
of the UAV into three areas and set different weights Wd (d = 1, 2, 3) for areas S1, S2, and
S3. As shown in Figure 2, area S1 is a set of units in the current module that are close to the
adjacent module. Area S2 is a set of basic units in adjacent modules that are closest to the
module center where the UAV is located. Similarly, area S3 is a set of basic units in adjacent
modules that are far away from the module center where the UAV is located. Considering
that the obstacles which are extremely close or far away from the UAV have relatively little
influence on covering the neighbor module, we set W2 > W1 > W3.

In order to reduce the risk during the coverage process, the UAV will evaluate the
threat level ζ of the module to determine the future flight trajectory [20]. ζ is given
as follows:

ζ = ∑(ηWd), (3)

where η is the threat level of the unit. The UAV will give priority to covering modules with
lower ζ and then cover modules with higher ζ to reduce risks.

To make the UAV “see” farther, we design the two-step auction mechanism. In
this mechanism, module centers in the auction scope bid to the UAV according to the
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distribution of obstacles in the corresponding two-step auction area. The auction result of
four modules can be written as set C = {c1, c2, c3, c4}. Here, we define the bid value ci of
module mi as:

ci =
1

ζi + ζm
. (4)

The bid value ci consists of two parts. First, we calculate ζi of module mi according
to Equation (3). Then, we assume that the UAV is in module mi, then calculate the ζ of
module m1, m2, and m4 corresponding to module mi and record the maximum value as ζm.
To make the UAV preferentially cover modules with lower threat levels, the bidding value
of modules should be negatively related to their threat levels. When the bidding price of
adjacent module centers is the same, the energy loss will be considered: the greater the
turning angle, the greater the energy loss [28]. To reduce the negative effect of turning, we
set the module priority level m1 > m2 > m4 > m3.

After obtaining the auction result from all adjacent modules, the UAV will determine
the winning module, that is, the module corresponding to m

′
1 (Algorithm 1, line 7). Then, the

UAV plans to reach the winning module. In other words, the two-step auction algorithm
informs the desired position for the UAV.

Algorithm 1 Two-step Auction.
Input: UAV position p, orientation o
Output: Four models sorted by bidding price ci and orientation o
1: for i← 1 to 4 do
2: ci ← ζi;
3: Assume that the UAV is in module mi;
4: Based on module mi, calculate ζm = max(ζ1, ζ2, ζ4);
5: ci ← 1

ci+ζm
;

6: end for
7: {m′1, m

′
2, m

′
3, m

′
4} ← sort({c1, c2, c3, c4}, o);

8: return {m′1, m
′
2, m

′
3, m

′
4}

3.2. Obstacle Avoidance and Multi-UAV Conflict Resolution

After determining the winning module that it plans to arrive at, the UAV may not
actually reach the module due to obstacles or multi-UAV conflicts. Even if a module is
accessible, the UAV also has to choose a suitable way to reach it. Therefore, the avoidance
of obstacles and the resolution of multi-UAV conflicts should be taken into consideration.

First, we introduce the obstacle avoidance strategy. Assume that the UAV is not able
to overcome an obstacle by going over it. As shown in Figure 3, we give the specific path
selection method based on obstacles in different locations. When the UAV cannot enter the
next module, it does not fly to the corresponding module center. At this time, the UAV will
re-select the second-best module in the current auction bidding process. If the UAV can
access none of the four module centers involved in the bidding, it enters sleep mode and
stops covering.

Then, we develop a conflict resolution strategy to solve this situation in that two or
more UAVs bid a certain module at the same time. The key insight behind this strategy is
the conflicting module center selects the UAV reversely, which can be regarded as a reverse
auction. When the conflict occurs, the module will give priority to choosing the UAV that
has encountered “unfair” treatment: the one that has the least flight mileage L. After the
UAV is selected, other UAVs will pause for one time step and wait for the winning UAV to
pass. Finally, all UAVs continue to execute the two-step auction process, select the module
plan to reach, and continue the covering process.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Six obstacle distributions and the UAV’s corresponding path selection method. (a) The
obstacle is located in area S1. The UAV will turn into the next module. (b) The obstacle is located in
area S2. The UAV turns into the next module. (c) The obstacle is located in area S3. The UAV goes
straight into the next module. (d) Double obstacles located in area S2. The UAV cannot enter the next
module. (e) The obstacle is located in the neighbor unit of the unit where the UAV of the current
module is located. The UAV cannot fly to the next module. (f) The obstacle is located in the neighbor
unit in the direction of the winning module and the opposite unit in the current module. The UAV
cannot fly to the next module.

3.3. Energy Constraint and Loop-Check

In addition to a higher coverage rate, the framework also has requirements for reducing
the repetitive coverage rate and the average flight deviation. If the UAV cannot enter the
sleep mode at an appropriate time, the convergence of the framework cannot be guaranteed,
and it will also cause a higher repetitive coverage rate and average flight deviation. Based
on this, we proposed the energy constraint model and the loop-check mechanism.

In the energy constraint model, the energy of the UAVi decays as the flight mileage Li
increases. The remaining energy Bi,k of UAVi in the kth time step is defined as:

Bi,k = B−
k

∑
k=0

li,k, (5)

where B is the initial energy of the UAV, that is, the UAV is allowed to travel at most
B units.

Moreover, if the UAV’s surrounding obstacles are distributed similarly during the
flight process, it may fly back and forth. We define the trajectory generated by the back and
forth flying as a loop. This loop increases the repeated coverage rate and leads to energy
waste. To avoid the two negative effects, the UAV should do a loop-check. If the UAV
enters the loop, it will enter into sleep mode.

In summary, for UAVi, if its remaining energy Bi,k = 0, or it is judged to enter the loop,
or there are no passable modules, it will enter into sleep mode. That is, the UAV no longer
participates in the auction process and stops covering. This theoretically guarantees that
our framework will converge.

3.4. MCTA Framework

Combining those mechanisms above, each UAV cooperates to complete the coverage
task in a complex dynamic environment (Algorithm 2). During the multi-UAV coverage
process, if all UAVs enter into sleep mode, the whole coverage will end. It is worth men-
tioning that our framework is also suitable for the single-UAV or fixed obstacle situation,
which is a degraded version of solving multi-UAV and dynamic environment problems. In
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the following section, we will conduct related experiments to evaluate the performance of
our framework.

Algorithm 2 MCTA.
Input: pi[k], orientationi[k], plan_poses, i = 1, 2, . . . , v

1: {m′1, m
′
2, m

′
3, m

′
4} ← Two-step Auction (pi[k], oi[k]);

2: plan_ f lagi ← 0;
3: for j← 1 to 4 do

4: if module m corresponding to m
′
j is reachable then

5: orientationi[k + 1]← direction of module m;
6: plan_ f lagi ← 1;
7: break
8: end if
9: end for

10: if plan_ f lagi = 1 then
11: Judge if there is a multi-UAV conflict;
12: if no conflict occurs or win the conflict then
13: Check the remaining energy Bi,k and the loop;
14: if Bi,k > 0 and not in the loop then
15: Choose a suitable way to reach module m;
16: pi[k + 1]← the position of module m;
17: else
18: modei ← sleep;
19: end if
20: else
21: Stay in place for next step;
22: end if
23: else
24: modei ← sleep;
25: end if

4. Experiments and Analysis

This section demonstrates the performance of MCTA by conducting a series of exper-
iments. We first show the effectiveness of MCTA in a typical environment with a single
UAV and four UAVs. Then, the adaptability and the scalability are verified through the
quantitative experiments with different UAV numbers and energy constraints.

4.1. Qualitative Evaluation

We first evaluate the feasibility of MCTA for only one UAV. In the experiment, we
set 10% obstacles in the given environment (N = 10%×M) and allow obstacles to move
randomly. We assume that obstacles of different η have different mobility capabilities:
the higher the η, the smaller the obstacle’s moving range. Specifically, the position of
the obstacle is (x, y) before moving and changes to (x + m, y + m) after moving, where
m is a random integer generated from the closed interval [−a, a]. The specific mapping
relationship between η and a is given in Table 1.

Table 1. The mapping of η and a.

η 0.2 0.4 0.6 0.8 1

a 4 3 2 1 0 (obstacles cannot move)

Figure 4 shows the coverage process with single UAV under a 20 × 20 dynamic
environment. Different colors represent different η of obstacles: the darker the obstacle, the
higher the threat level. Figure 4a illustrates the initial situation: obstacles with different η
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are distributed in different positions and the UAV is ready to perform its coverage mission.
Figure 4b shows the coverage performance when the time step = 20. At this time, there are
about 1/5 green units (units covered for the first time) and no brown units (units covered
twice or more), which means that the UAV is actively exploring the new area. The coverage
result is given in Figure 4c. Obviously, only few units are not covered.

Figure 4. The evolution of coverage with a single UAV. The area covered for the first time is filled in
green, and the area covered twice or more is filled in brown. After the UAV performs related flight
actions, it will generate its own flight trajectory (the black line).

Then, we test the performance of MCTA with four UAVs in the same environment. In
Figure 5a, the position of UAV2 is (1, 2), and the position of UAV3 is (1, 1); therefore, they
may encounter a conflict in the next time step due to their adjacent positions. However,
from the trajectories of two UAVs in Figure 5b, the conflict did not happen, which indicates
our reverse auction mechanism works. In addition, compared with Figure 4b, Figure 5b
has significantly more green units. It shows the advantages of multi-UAV coverage in
terms of efficiency. In the final time step (Figure 5c), we extract and compare the length
of each UAV¡’s trajectory and find that they are almost the same (Figure 5d). This means
the balanced workload between UAVs. Although the coverage rate of four UAVs is almost
same with that of the single UAV, the whole coverage process of four UAVs ends faster. As
a result, the coverage with multiple UAVs is more efficient.

Figure 5. The evolution of coverage with four UAVs. Compared with single UAV, in a similar initial
environment (a), multiple UAVs can achieve better coverage performance before the framework
converges (b). In the final time step (c), different trajectories are shown in different colors. The pie
chart (d) illustrates the proportion of each UAV’s trajectory length.

In summary, the MCTA framework can obtain a high coverage rate regardless of single-
UAV or multi-UAV situations. Moreover, it realizes the avoidance of conflicts and balances
the workload between multiple UAVs. This indicates the adaptability and effectiveness of
our framework in dynamic and complex environments.

4.2. Quantitative Evaluation

In this subsection, we introduce the following metrics to further evaluate the quantita-
tive performance of MCTA:
• Coverage rate: The coverage rate Cr is defined as the ratio between the area of covered
modules and the area of the entire environment:

Cr =
|F1
⋃

F2
⋃ · · ·⋃ Fv|
M

× 100%, (6)
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where Fi is the set of Fi,k, | · | represents the number of elements in a set, and F1
⋃

F2
⋃

. . .
⋃

Fv
represents the union of all UAV flight trajectories.
• Repeated coverage rate: The repeated coverage rate Rr is defined as:

Rr =
∑i,k
(
li,k −

∣∣Fi,k
∣∣)

|F1
⋃

F2
⋃ · · ·⋃ Fv|

× 100%, (7)

where ∑i,k
(
li,k −

∣∣Fi,k
∣∣) represents the difference between the flight mileage of all UAVs

and the number of units passed by the flight trajectory, that is, the units that are repeatedly
covered are accumulated by the frequency of coverage.
• Average flight deviation: To investigate the degree of deviation of the flight path of each
UAV from its average path, the average flight deviation AD is defined as follows:

AD =
1
v ∑

i
abs(Li − L̄), (8)

where L̄ is the average flight mileage. AD measures whether the workload of each UAV
is balanced.

After that, we enrich the environments to challenge the adaptability of our framework
quantitatively. As shown in Figure 6, env-free is the simplest environment. It is also the
environment of the previous subsection; env-strip illustrates the staggered distribution of
obstacles and its passable routes are less than env-free; In env-convex, we set a regular border,
which brings a challenge to achieve complete coverage; on the basis of env-convex, we set
up a non-convex env-ring. Its passable area is similar to the loop; in env-honeycomb and
env-maze, the border becomes more complicated and both of them increase the risk of UAVs
falling into loops.

(a) (b) (c)

(d) (e) (f)

Figure 6. Configuration spaces of the (a) free, (b) strip, (c) convex, (d) ring, (e) honeycomb, and
(f) maze.
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Table 2 provides part of quantitative experimental results. In simple environments
(i.e., env-free, env-strip, and env-convex), increasing the number v of UAVs will increase Rr
but makes little contributions to Cr. In this case, if the convergence time is not considered,
single UAV performs better than multiple UAVs. However, in complex environments (i.e.,
env-ring, env-honeycomb, and env-maze), increasing the number of UAVs can increase Cr
obviously. At this time, multiple UAVs have more advantages. Then, we compared the Cr,
Rr, and AD in static and dynamic environments separately and found that they were almost
the same. This shows that the MCTA framework can overcome the negative effects of
uncertain factors caused by the dynamic environment. Moreover, most of Cr can reach more
than 90%, Rr are generally less than 50%, and AD are about 3. Therefore, our framework
can make the UAV complete coverage tasks efficiently in complex environments.

Table 2. Cr, Rr, and AD of MCTA under different configurations.

Environment Size v
Static Dynamic

Cr Rr AD Cr Rr AD

free
20 × 20

1 93.54% 15.66% 0 93.06% 14.87% 0
4 92.18% 23.37% 1.34 91.98% 23.32% 1.44
8 88.14% 25.11% 1.41 88.52% 24.66% 1.44

40 × 40 1 91.06% 19.30% 0 91.74% 19.75% 0
4 91.09% 23.39% 2.26 91.08% 23.92% 2.41

convex

20 × 20
1 96.34% 30.32% 0 96.52% 31.40% 0
4 95.59% 38.91% 1.58 96.28% 40.17% 1.6
12 92.42% 49.06% 1.4 92.70% 48.36% 1.36

40 × 40
1 94.58% 33.51% 0 94.73% 32.47% 0
8 95.39% 43.23% 3.9 95.40% 43.24% 3.86
12 95.08% 45.48% 2.74 95.20% 45.78% 2.74

maze
20 × 20 8 81.89% 33.32% 3.42 80.53% 35.26% 3.4

12 82.36% 38.42% 2.64 82.67% 41.01% 2.43

40 × 40 1 79.47% 29.80% 0 79.75% 29.97% 0
12 87.07% 45.11% 9.13 87.67% 45.29% 8.93

ring
20 × 20 1 83.02% 22.78% 0 83.44% 24.26% 0

12 86.82% 46.64% 1.35 86.43% 47.05% 1.43

40 × 40 1 81.27% 33.76% 0 80.81% 32.32% 0
12 89.09% 49.53% 2.95 88.42% 50.27% 2.97

honeycomb 20 × 20 1 75.74% 36.19% 0 75.75% 35.62% 0
8 80.75% 37.57% 3.27 80.45% 37.95% 3.33

strip
20 × 20

1 92.07% 28.82% 0 93.15% 29.16% 0
4 93.31% 39.58% 3.26 93.70% 39.52% 2.96
8 93.30% 45.57% 1.82 92.89% 44.94% 1.85

40 × 40 1 87.42% 28.94% 0 87.86% 30.27% 0
12 92.13% 46.28% 4.83 92.61% 45.93% 4.88

Of course, in individual environments, MCTA performs relatively poorly, such as
20× 20 env-honeycomb and 40× 40 env-maze. Regardless of the number v, Cr is typically
less than 90%, and Rr is also relatively high. This is probably caused by the complex-
ity and disconnectivity of the environment, where UAVs are prone to fall into the local
optimal solution.

Figure 7 shows the final Cr, Rr, and AD of different v under different 20× 20 environ-
ments. In Figure 7a, when v changes from 4 to 8, Cr increases very obviously. However,
when v changes from 8 to 12, Cr does not increase significantly, and sometimes even de-
creases. At the same time, we also noticed that in the three corresponding environments
in Table 2, AD usually increases significantly when the number v increases sharply. We
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attribute these two phenomena to frequent conflicts caused by excessive number of UAVs,
which leads to the reduction of coverage efficiency. As a result, for the environment of a
certain size, an appropriate increase in the number of UAVs can effectively improve the
coverage rate, but an excessive number of UAVs may have a negative effect, because excess
means diseconomy and poor coverage performance. Figure 7b,c show the Rr and AD of
four UAVs under different initial energy in 20× 20 dynamic env-free. From the trend of the
two histograms, it is clear that the larger initial energy of the UAV, the larger Rr and AD.
This is exactly what we are expected on energy saving: to complete the coverage task, the
UAV does not need too much initial energy.

(a) (b) (c)

Figure 7. The performance of the MCTA framework under different configurations. (a) The coverage
rate Cr under three complex environments (env-honeycomb, env-maze, and env-ring) in different
numbers of UAVs (1, 4, 8, and 12). (b,c) The number v of UAVs is fixed to 4 and the average flight
deviation AD and repeated coverage rate Rr are shown with different initial energy (B, 1.2B, 1.5B, and
2B) in two simple environments (env-free and env-convex) and two complex environments (env-maze
and env-ring).

Considering all factors, to achieve a better search coverage result, for env-freedom,
env-convex, and 20× 20 env-strip, the best number of UAVs is 1. For 20× 20 env-maze and
env-honeycomb, the best number of UAVs is 8. Then, for 40× 40 env-strip, env-maze, and
env-ring, the best number of UAVs is 12. In general, on the premise of achieving a high
coverage rate, MCTA minimizes the repeated coverage rate and average step deviation as
much as possible.

5. Conclusions

In this paper, we design an efficient framework for multiple UAVs in dynamic envi-
ronments. The framework can be executed online and realizes the optimal solution within
the exploration scope. A series of experiments have been conducted to demonstrate its
superior coverage rate, scalability to the number of UAVs, and adaptivity to the dynamic
environments. Note that the physical properties of the UAVs are not specified. The pro-
posed multi-UAV collaborative coverage framework is generally applicable for systems
with similar configurations.

In future work, we will take the non-linear change of the remaining battery into
account, e.g., a UAV spends more energy to take off than other stages (such as hovering
or moving sideways). Furthermore, another promising direction is to explore the upper
bound number of UAVs. In addition, we would like to evaluate our framework through
field experiments.
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Abstract: Inspired by the behaviour of animal populations in nature, we propose a novel exploration
algorithm based on Lévy flight (LF) and artificial potential field (APF). The agent is extended to the
swarm level using the APF method through the LF search environment. Virtual leaders generate
moving steps to explore the environment through the LF mechanism. To achieve collision-free move-
ment in an unknown constrained environment, a swarm-following mechanism is established, which
requires the agents to follow the virtual leader to carry out the LF. The proposed method, combining
the advantages of LF and APF which achieve the effect of flocking in an exploration environment,
does not rely on complex sensors for environment labelling, memorising, or huge computing power.
Agents simply perform elegant and efficient search behaviours as natural creatures adapt to the
environment and change formations. The method is especially suitable for the camouflaged flocking
exploration environment of bionic robots such as flapping drones. Simulation experiments and real-
world experiments on E-puck2 robots were conducted to evaluate the effectiveness of the proposed
LF-APF algorithm.

Keywords: bionic algorithm; swarm robotic; environment exploration; distributed control; Lévy flight

1. Introduction

The exploration problem is an important research area of robotics, which can be
applied to various tasks such as military reconnaissance [1], search and rescue [2],
foraging [3], and drug delivery [4]. In recent years, exploration using robots in complex
environments has attracted widespread attention. Currently, environmental exploration
methods often rely on recording the explored area or the marking of the environment using
sensors. Among them, some use the odometer method [5,6] (recording the area that has
been walked) and pheromone method [7,8] (marking the environment). However, the path
information recorded by the agents is often subject to significant errors, and sometimes
the agents have difficulties in labelling the environment. Therefore, the elimination of the
agent’s reliance on complex sensors when searching in an unknown environment, like
natural creatures, is crucial.

The ability of a single agent in cognition and action may be inherently limited, and
cooperation in a swarm can alleviate the impact of this limitation [9,10]. This kind of
problem-solving ability is abundant in nature, for example, swarms of ants search for
the shortest path [11] and honeybees choose the best food resources by dancing [12].
Therefore, it is specifically necessary to achieve effective coordination in a swarm robotic
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system [13,14]. Multi-agent swarm search can search targets in the environment more
effectively than is possible with single-agent exploration.

Many studies related to bionic UAVs have been reported in recent years [15–17].
Ramezani et al. used a series of virtual constraints to control an articulated, deformable
wing to achieve autonomous flight of a bat robot [16]. EPFL [15] optimized the aerodynamic
designs of winged drones for specific flight regimes. Large lifting surfaces provided
manoeuvrability and agility like the northern goshawk. Roderick developed a biomimetic
robot that can dynamically perch on complex surfaces and grasp irregular objects [17].
These latest studies show that research on bionic robots is crucial in the field of robotics,
together with suitable applications. If we assume that a group of biomimetic robots are
sent to perform a task of exploring the environment, then all of them as a group should
look like birds, including their appearance and movement, but if they fail to behave like a
natural cluster, the value of the stealth of the biomimetic robots is largely lost. Therefore, we
propose a new swarm intelligence task, so that agents can achieve efficient environmental
exploration of an area as much as possible like natural creatures without relying on complex
sensors or huge computing power.

To overcome the difficulties mentioned above, random movement, which is a common
search pattern for natural creatures, is introduced in this study. In some applications,
the agent needs to search for dynamic targets in a complex environment through a random
step generation mechanism [18]. Randomness plays a significant role in both swarm
intelligence motion control and swarm intelligence optimisation algorithm [19]. In the
swarm intelligence environmental exploration task in this study, due to the fact that the
target is moving, if the explored path is not repeated properly, that is, if the agent does
not go where it has gone, the dynamic target only needs to hide in the area where the
agents passed through to avoid being detected. Therefore, the agents must traverse the
area with some positions revisited occasionally. However, if a location is repeated many
times, the detection efficiency decreases. Therefore, when exploring the environment
with dynamic targets, agents must adopt a suitable random walk strategy to traverse an
area appropriately.

Natural creatures exhibit two well-known random movement mechanisms: Lévy
flight (LF) [18] and Brownian motion (BM) [20]. In animal foraging, when the prey in the
environment is abundant, BM is sufficiently efficient [21]. Fredy et al. proposed BM as an
exploration strategy for autonomous swarm robots [20]. This solution, to a certain extent,
solves the problem of swarm robots realising environmental exploration tasks through
bionic motion. As a more sophisticated alternative to BM, LF as a typical random walking
strategy has been introduced in many studies [22–25], especially in the literature of agents’
environmental exploration [26,27]. Vincenzo Fioriti et al. proved the LF’s superiority
to the random walk with simulations and applied the LF mechanism in the fish mass
model’s centre speed according to the Kuramoto equation [26]. Pang et al. pointed out
that the mean and variance of steps generated by LF are important parameters effecting
the searching efficiency and need to be optimised [25]. Even though these studies have
achieved improved results, they are all about single-agent exploration. In biomimetic
research of multi-agent exploration, Sutantyo et al. first presented the integration of LF
and an artificial potential field method to achieve an efficient search algorithm for multiple
agents applications [28]. However, in this study, the agent works in its own way and
does not search for targets together with other agents. In some specific task scenarios, it
may not be conducive to performing subsequent collaborative tasks such as entrapping
after a single agent has discovered the target. It is often too late to call on other agents to
collaborate when they are scattered too far away. In some situations, agents need to flock
to be prepared to perform following swarm tasks [28]. Therefore, we need to discover how
to make agents form flocks.

The artificial potential field (APF) method is widely used to realise the formation
control of swarm robots while achieving collision avoidance, such as UAVs [29], wheeled
mobile robots [30], and underwater robots [31]. Gabor Vásárhelyi et al. proposed an
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extensible motion control framework based on an improved APF method that takes into
account the motion constraints in swarms, which achieved a good flocking effect in real-
world experiments, demonstrating behaviour similar to that of natural creatures [32].
Motivated by [18,32], a method combining LF and an improved APF is proposed in this
work for swarm robots to form flocks and explore unknown environments with constraints
effectively and efficiently.

In this study, we propose a method that combines the LF mechanism and the improved
APF method to make swarms of agents flock and explore the environment in a manner
similar to natural organisms. In the swarm, there is an invisible virtual leader in the
arena moving with the LF algorithm. The agents follow the virtual leader in groups to
find targets in an unknown environment. The swarm system randomly allocates each
agent to a pre-specified priority. The leader—the agent with the highest priority in the
swarm—calculates the position of the virtual leader and broadcasts the information to other
agents in the swarm via WiFi. When the leader is destroyed, the agent with the highest
priority in the swarm becomes the leader and continues to broadcast the virtual leader’s
location. An improved APF method is then applied to enable the agents in the swarm to
follow the virtual leader in a flocking and to explore the environment. The agents flock to
explore the environment without relying on marking the environment and recording the
itinerary and achieve efficient exploration of the environment, only relying on a simple
random walk mechanism, just like natural creatures. This has the potential to facilitate the
stealthy mission of bionic drones. Specifically, this paper contributes the following:

(1) The proposed LF-APF algorithm applies the LF search mechanism at the swarm level.
Combining the advantages of LF and APF can enable agents to efficiently explore the
environment through simple and natural random walking like natural creatures.

(2) The improved APF method makes agents follow the virtual leader, maintain a cer-
tain distance from each other, and move in an orderly manner in the specified task
area, autonomously changing their formations to traverse complex obstacles without
colliding with them.

(3) Experimental validations on E-puck2 robots are conducted. In particular, the perfor-
mance of the agent’s swarm movement and the fulfilment of environmental explo-
ration tasks are evaluated in comparative studies.

The remainder of this paper is organised as follows. In Section 2, several problems for
environmental exploration tasks are defined. In Section 3, we introduce the LF algorithm
as the roaming strategy. In Section 4, we describe the flocking speed controller based on
an improved APF method. We conduct some simulation experiments and analyse the
experimental indicators in Section 5. In Section 6, we report on the real-world experiments
based on E-puck2 robots and the completion time of the experiments. Finally, Section 7
concludes the paper.

2. Problem Definition

The central research question in environmental exploration is how to effectively
traverse an unknown area. The task of exploring the environment often requires the
explorer to have superior target search capabilities and environmental coverage capabilities.
In the process of executing the task, the agent needs to consider avoiding collision with
other individuals in the swarm and avoid collision with obstacles or boundaries. At the
same time, the swarm robot needs to follow the virtual leader. The virtual leader walks
randomly with a bionic roaming strategy, and agents follow the virtual leader to achieve
the effect of environmental exploration.

Definition 1 (Repulsion). The distance between agents is maintained within a certain range,
and it can be adaptively and dynamically adjusted as the environment changes. When the distance
is less than rarep, a repulsion speed is generated. Similarly, when the distance between the agent and
target is less than rat, a repulsion speed of the target is generated. When they are far apart from each
other, there is no mutual repulsive speed effect.
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Definition 2 (Avoid obstacles and walls). Agents need to perform tasks within the specified task
area. Therefore, agents cannot go out of a specific area in the process of performing tasks, which is
equivalent to some virtual walls. In addition, agents need to avoid obstacles. The agent decelerates
smoothly when encountering obstacles or walls to avoid colliding with them. The agent needs to
slow down smoothly instead of stopping abruptly near obstacles or walls. Specifically, the closer the
agent is to the them, the faster it decelerates.

Definition 3 (Follow the virtual leader). All agents in the swarm follow the movement of the
virtual leader. The virtual leader does not actually exist in the arena, and its position is calculated by
the leader. When the agent moves to the position of the virtual leader, it needs to decelerate smoothly
as the distance decreases, similar to avoiding obstacles. The closer the agent to its expected stopping
point, the faster its speed should decay. When the distance is very close, its speed even needs to decay
at the rate of change of the exponential function.

Definition 4 (Roaming strategy). The virtual leader traverses the environment with a bionic
walking strategy, and the agents in the swarm follow the virtual leader. This traversal strategy
should have the following functionalities, i.e., the agents find all targets in the least possible time
t ∈ R. In addition, agents travel the arena with the largest possible coverage ratio r ∈ (0, 1].

3. Roaming Strategy: Lévy Flight

LF is named after the French mathematician Paul Lévy. It refers to the random walk
with a heavy-tailed distribution in the probability distribution of the step length, which
means that there is a relatively high probability of large strides in the process of random
walking. Natural creatures with LF mechanism tend to traverse a small place by generating
many small steps and then move to another area through a large step to continue traversing
to obtain higher search efficiency. The Lévy probability distribution is stable with infinite
second-order moments and has the following form [18]:

Pα,γ(l) =
1
π

∫ ∞

−∞
e−γqα

cos(ql)dq (1)

The distribution is symmetric with respect to l = 0 . The parameter α determines the
shape of the distribution. The shorter the parameter α (0 < α < 2 in Lévy distribution),
the bigger the tail region. When the parameter α = 2 , the distribution changes from a Lévy
distribution to a Gaussian distribution. In this study, the parameter α = 1.5 , and γ is the
scaling factor. Equation (1) can be approximated by the following expression [18]:

Pα(l) ≈ l−α (2)

Many scholars have proposed an implementation method for generating random
numbers subject to Levy distribution, including a method proposed by Mantegna in
1994 [33]. This study adopted the method proposed by Mantegna to calculate the LF
step size:

z =
u

| v |1/β
(3)

where β ∈ [0.3, 1.99]; u and v are two normal stochastic variables with standard deviations
σu and σv, respectively:

u ∼ N
(

0, σ2
u

)
v ∼ N

(
0, σ2

v

)

σu =

⎧⎨⎩Γ(1 + β) sin
(

πβ
2

)
βΓ
(

1+β
2

)
· 2 β−1

2

⎫⎬⎭
1
β

σv = 1 (4)
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where Γ(x) is the gamma function:

Γ(x) =
∫ ∞

0
e−ttx−1dt (5)

However, in practical applications, the control scale factor of the LF should be adjusted
as the environment changes [33]. We can multiply the stochastic process by an appropriate
multiplicative factor γ1/α. After the linear transformation, the result can be expressed
as follows:

Zs = γ1/αz (6)

From the perspective of the Lévy probability distribution, the LF algorithm produces a
large number of small step lengths and a few large step lengths. The agent traverses a local
area by generating multiple small steps; a few large steps may cause the agent to jump out
of the local area. Based on such a step size generation mechanism, organisms in nature can
efficiently traverse the unknown environment without relying on complex sensors.

4. Flocking Based on Improved Artificial Potential Field Method

4.1. Method of Following the Virtual Leader

The leader agent in the swarm continuously calculates the position of the virtual leader
and broadcasts its position to other agents in the swarm. When the agents identify a known
target point, they need to move to that point in the most reasonable way possible. Gabor
proposed a smooth speed decay mechanism through an ideal braking curve D(.) to make
their expressed motion resemble natural graceful movements, with constant acceleration at
high speeds and exponential approach in time at low speeds [32].

D(r, a, p) =

⎧⎪⎨⎪⎩
0 if r ≤ 0
rp if 0 < rp < a/p√

2ar− a2/p2 otherwise

(7)

The parameter r represents the distance between an agent and the expected stopping
point, p gain determines the crossover point between the two phases of deceleration, and a
is the preferred acceleration of the agent. We introduce D(.) function for the agents’ tracking
of the virtual leader. Here, vli decreases smoothly as rli decreases. It is easy to understand
that as you get closer to your target, you may slow down and stop gradually. When you are
far from the target, you need to speed up your pace and catch up. The agent can smoothly
approach its target position by the following equation:

vli = C f · D
(

rli, a f , p f
)
· −→rli (8)

where rli =| rl − ri | is the distance between the agent and virtual leader, and a f is the
maximal allowed acceleration in the optimal braking curve used for following the virtual
leader. p f represents the gain of the optimal braking curve. If this value is too large,
the braking curve exhibits a constant acceleration characteristic. When this value is small,
the final part of braking (at low speeds) with decreasing acceleration is elongated and
accompanied by a smooth stop. C f can linearly adjust the magnitude of the speed item of
the agent following the virtual leader. Higher values assume that agents can follow the
virtual leader more closely. −→rli =

rl−ri
|rl−ri | represents the agent’s moving direction toward the

virtual leader.

4.2. Repulsion

Agents must consider executing a task without collision when they move in swarms,
like flocks of birds in the sky, which flock but rarely collide. These agents need to consider
the collision avoidance between each other in the process of exploring the environment.
Agents do not need to worry about individuals who are relatively far away from them
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in the swarm. On the contrary, every agent should try to avoid all other agents within a
certain distance at the same time, and the closer a neighbouring agent is, the stronger the
repulsive effect should be from its neighbour. Agents can avoid collision with each other
through the following equation:

vrep
ij =

{
prep

a ·
(
rarep − rij

)
· −→rij if

(
rij < rarep

)
0 otherwise

(9)

where rij =| ri − rj | represents the distance between agent i and agent j, and rarep represents
the distance threshold for the speed influence at which agents start to interact and generate
repulsion. −→rij represents the direction of the speed from agent j to agent i. As a linear gain,
prep

a linearly adjusts the size of repulsion speed term. As the agent may have multiple
neighbours, it is necessary to consider the repulsive effects that may be caused by all other
agents in the swarm.

vrep
it =

{
prep

t · (rat − rit) · −→rit if (rit < rat)

0 otherwise
(10)

Similar repulsion occurs between the agent and the target. prep
t linearly adjusts the

size of repulsion speed term. When the distance between the two (rit) is less than the
desired separation distance (rat), the agent generates a repulsion speed away from the
target. The direction of the speed is −→rit , which is from the target to agent i. It is worth
noting that this repulsion is one-way, that is, the target will not move away from the agent
due to the proximity of the agent. Superimposing the repulsion speeds leads to the speed
item of the agent due to repulsion.

vrep
i = ∑

j �=i
vrep

ij + ∑
target

vrep
it (11)

4.3. Avoid Obstacles and Avoid Moving out of Boundaries

In some practical tasks, we assume that the agents will explore a certain area, that is,
we have defined the boundaries for the agents. They only need to explore such a specific
area, and it is not necessary to explore other places. To prevent the agent from moving
out of bounds, rwall is the safe distance between the agent and the field boundary. In other
words, when the distance between the agent and the boundary is less than rwall , the agent
should produce a speed away from the boundary. We place the agents into a square-shaped
arena with soft repulsive virtual walls and define virtual agents near the arena walls [32].
Virtual agents are located at the closest point of the given edge of an arbitrarily shaped
convex wall polygon relative to agent i. When the distance between the agent and wall is
less than rwall , this speed term will take effect:

vwall
id =

{
Cs · (vis − D(ris − rwall , as, ps)) · −→vis if (ris < rwall)

0 otherwise
(12)

Convex obstacles inside the arena can be avoided using the same concept. When
the agents are far away from the obstacle, they can ignore the influence of the obstacle
on their current movement. Here, we assume that when the distance between the agent
and obstacle is less than a certain value robs, the agent will generate the speed away from
the obstacle.

vobs
id =

{
Cs · (vis − D(ris − robs, as, ps)) · −→vis if (ris < robs)

0 otherwise
(13)
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In the above two equations, rs represents the position of the shill agent, located at the
closest point of the given edge of an arbitrarily shaped convex wall polygon relative to
agent i. ris = ri − rs represents the distance between agent i and its closest shill agent. vs is
the speed of the shill agent, pointing perpendicularly to the wall polygon edge inward of
the arena (vis = |vi − vs|). −→vis is the unit vector difference between the speed of the agent
and the shill agent which represents the obstacle avoidance direction of the agent after
encountering obstacles. as and ps are the same as a f and p f , respectively, but for staying
away from the obstacles and walls. Cs adjusts the gain of the two speed terms.

4.4. Final Equation of Desired Speed

When the agents perform environmental exploration tasks in the unknown environ-
ment, they may encounter many complex scenarios, so the above speed influencing factors
need to be considered at the same time. Agents should have all the velocities mentioned
above to produce the desired motion effects. In this way, we take the vectorial sum of all
the interaction terms.

vdesire
i = vrep

i + vli + vwall
is + vobs

is (14)

Agents should meet motion constraints, that is, their speed can not be unlimited, which
does not meet the needs of practical applications. When the speed generated by the above
speed controller is too large, the agents should adopt a maximum speed to meet the safety
requirements, but the speed direction should not be changed. In this way, after getting the
speed generated by our method, we set a cut-off to cope with motion restraint. If the speed
vdesire

i is over the limit, the direction of the desired speed is maintained but its magnitude
is reduced [32]:

ṽdesire
i =

ṽdesire
i

| ṽdesire
i |

·min
{
| ṽdesire

i |, vlimit

}
(15)

5. Simulation Experiments and Analysis

5.1. Simulation Experiments

In this section, the performance of the proposed LF-APF method is evaluated using
simulation based on MATLAB. In the simulation experiments, the agent can obtain the
location information of other agents in the swarm through communication and can detect
obstacles and calculate the distance from them. In addition, the agent can get the boundary
position of the arena. We set the size of the arena as 250 m × 250 m. To reduce the impact
of hardware computing power, we assume that the time for the agent to take a step is one
second (the true time is related to the computing ability of the computer). Depending on
the step size of the arena, it is necessary to adjust the size of the agent’s movement. Similar
to the albatross and bees in nature, although they both use the LF algorithm to search for
food, the step size corresponding to the Lévy distribution should be scaled according to
their different athletic abilities. To ensure fairness of comparison, we first optimise the BM
step to make the agents perform as well as possible in the 250 m × 250 m arena. Then,
we adjusted the parameters γ in LF to let the median step lengths generated by the two
algorithms match as closely as possible in the case of having the same size of the arena
(250 m × 250 m).

As shown in Figure 1, there are four small isolating islands at sea level in the blue sea.
Eight agents flocked to search for two moving targets in the complex obstacle environment.
The scenario where the agents are distributed at the initial moment is shown in Figure 1a.
Figure 1b shows agents in swarm having found one of the targets. Figure 1c,d shows
that the agents adaptively change their formation according to the environment and pass
through obstacles without any collision.

There are experimental videos for readers to watch in Appendix A. We can see that
the LF-APF method has the following performance on environmental exploration tasks:

(1) The agents do not collide with each other, keep a proper distance from each other, flexibly
change their formation, and shuttle in the task area, similar to a natural population.
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(2) The agents can flexibly avoid isolating islands in the ocean. On some special occasions,
the agents swim past obstacles in groups or pass through a limited space in a line.

(3) When the agents move near obstacles, their speed decreases smoothly, which complies
more with their dynamic constraints.

(4) The agents can follow the virtual leader to achieve efficient traversal of the task area.

(a) t = 0 (b) t = 70 steps

(c) t = 252 steps (d) t = 712 steps

Figure 1. Eight agents are flocking to explore the environment with our method. There are complex
unknown obstacles and two dynamic targets in the sea. Agents are blue, and targets are red. The arena
is 250 m on either side. The speed of the virtual leader and targets are 1 m/s and 0.3 m/s, respectively.
When the target is found (the distance between agent and target < 8 m), the target becomes stationary.

5.2. Indicator Statistics

In the experimental display discussed in the previous section, we can see from the
figure (please also refer to the video in the Appendix A for details) that the method
proposed in this study can enable a robotic swarm to achieve a good performance of
environmental exploration. Since swarm robots employing BM as the exploration strategy
to explore the environment scheme proposed in the previous study [20] also achieved
a good environmental exploration effect, we let the swarm agents perform LF and BM
for environmental exploration, respectively, and compared the results of both methods.
In an unknown environment, since the target is constantly moving, it may move to any
reachable place in the environment. Therefore, the evaluation index measures not only the
capability of the agents to find all the targets as soon as possible [34] but also their ability
to traverse the environment as much as possible. In addition, indicators of the quality of
swarm movement to describe different aspects of the agents’ motion are needed. The task
evaluation indicators used in this study are as follows:

(1) Time for the swarm to find target;
(2) The coverage area of the swarm in a period of time;
(3) The change of agents’ area coverage ratio over time;
(4) The correlation of agents’ speed, the average and minimum inter-agent distances

while agents are flocking.

We conducted an indicator analysis of the time to find all targets in the arena shown
in Figure 2. We counted the time of identifying the target when the virtual leader runs at
different speeds in 10 independent runs each. Figure 2 shows that when the agents follow
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the virtual leader, with the speed of the virtual leader at 3 m/s, the agents find the targets
faster. If the speed of the virtual leader is too slow, it may lead to more time for the agents
to search for the targets, but if the speed is too fast, it may cause the agents to track not
close enough and also lead to more time for the agents to find the target.

Figure 2. Time for the swarm to find target with LF-APF method for 10 experiments. The figure
shows the virtual leader moving at different speeds (speed 1 = 1 m/s, speed 2 = 2 m/s, speed 3 =
3 m/s, speed 4 = 4 m/s) in an area of 250 m × 250 m.

To prove the advantages of LF-APF in exploring unknown regions, we compile statis-
tics on the regions the agents walked. Let the virtual leader move at a speed of 2 m/s
under two algorithms (LF and Brownian motion), and the agents follow the virtual leader
to search for targets in the arena. We respectively show the coverage area in the arena
with obstacles in Figure 3 and without obstacles in Figure 4. In the arena with obstacles,
the obstacle areas (marked by yellow boxes) cannot be covered by the agents. Figure 5
shows how the area coverage ratio of agents varies with the time when the virtual leader
moves at different speeds with two different algorithms. From Figures 3–5, it can be found
that, in general, the LF has better area coverage ability than Brownian motion. At the same
time, we find that when the speed of the virtual leader is too fast, the agents do not follow
closely (the agents have a speed limit). If the speed is too slow, the time for the agents to
traverse the environment increases. In addition, we found that when the virtual leader
moves with LF at a speed of 2 m/s, the LF-APF method obtains the best area coverage
ability. The above indicators proved the superiority of the LF-APF method to perform tasks
in exploring unknown regions.

To make the method deploy successfully in practical applications, it is important to
evaluate the effect of flocking. Considering that the speed of the agents and obstacles in
the arena will affect the effect of flocking, we utilised some evaluation indicators such as
the correlation of speed between agents φcorr and the average and minimum of inter-agent
distances (rmin

ij and min(rij)) [32]. N represents the number of agents in the swarm; Ji
represents the set of individuals in the swarm except for agent i. The calculation formula
of φcorr is as follows. We evaluated the flocking effect of LF-APF at different speeds
and obstacles.

φcorr =
1
T

1
N

∫ T

0

N

∑
i=1

1
Ni − 1 ∑

j∈Ji

vi · vj

| vi | · | vj |
dt (16)

In Figure 6, the quality of eight agents flocking to follow the virtual leader with
different speeds or obstacles are digitised. In Figure 6a,b, the results are shown when there
are no obstacles in the arena. The distance between the agents is kept constant with only
very minor fluctuations, and the agents’ speed directions are highly correlated most of the
time. At some moments, the speed correlation drops due to the virtual leader’s sudden
turn. When obstacles appear in the arena, the quality of the swarm motion of the agents is
affected to a certain extent, as shown in Figure 6c,d. The index rij

min surges in cases when
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some agents are blocked by an obstacle accidentally in the arena, as shown in Figure 6c.
In general, the agents achieve a relatively flocking effect safely.

Figure 3. Display of the covered area with eight agents when the virtual leader performs Brownian
motion (left) and Lévy flight (right) at the speed of 2 m/s after 10,000 s. There are some randomly
distributed obstacles (yellow line) in the environment. Agents need to avoid obstacles automatically
when covering the area.

Figure 4. Display of the covered area with eight agents when the virtual leader performs Brownian
motion (left) and Lévy flight (right) at the speed of 2 m/s after 10,000 s. There are no obstacles in
the environment.

(a) Obstacle environment (b) Obstacle-free environment

Figure 5. For the two different algorithms of Lévy flight and Brownian motion, the area coverage
ratio of agents varies with the time.
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(a)

(b)

(c)

(d)

Figure 6. Order parameters as a function of time during experiments with eight agents in 10,000 s.
φcorr represents the correlation of agent’s speed in swarm. rij

min is the average distance of the closest
neighbours, whereas min (rij) is the minimum distance of the closest neighbours. The size of the
arena is 250 m × 250 m. (a) Agents flocking to explore environment in an obstacle-free arena (1 m/s).
(b) Agents flocking to explore environment in an obstacle-free arena (2 m/s). (c) Agents flocking to
explore environment with obstacles in the arena (1 m/s). (d) Agents flocking to explore environment
with obstacles in the arena (2 m/s).

6. Real-World Experiments

To evaluate the effectiveness of our method in real-world applications, we performed
experiments with E-puck2 robots. We added an expansion board with Raspberry Pi to
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the E-puck2 robots to increase their computing power. The E-puck2 robots communicate
with each other via WiFi. In the arena with random obstacles and targets, eight E-puck2
robots searched for two targets with the LF-APF method. The E-puck2 robots obtained
global information from the motion capture device above the arena, including the position
information of the robots and obstacles of the arena. The E-puck2 robot and the initial scene
of the task are shown in Figures 7 and 8, respectively.

We counted the time (Table 1) taken by the E-puck2 robot to search for the targets.
From the table, we can see that the E-puck2 robots can always identify all targets and
complete the task with the LF-APF method. We selected one representative experiment,
as shown in Figure 9. When the E-puck2 robots encounter obstacles, they adjusted for-
mations to bypass the obstacles without any collision. In addition, they can gather in the
obstacle-free area and automatically change the formation when it is necessary to disperse.
The E-puck2 robots kept a certain distance between each other during the entire flocking
without colliding while forming a tight whole and moved orderly in the task area without
running out of the boundary of the arena. From the above results and analysis, it can be
suggested that the E-puck2 robots can adaptively deal with the environment to perform
environmental exploration tasks in the arena using the LF-APF method.

Figure 7. E-puck2 robot platform. E-puck2 is the latest mini mobile robot developed by GCtronic
and EPFL, which is an evolution of the successful E-puck robot used in many research and educa-
tional institutes.

Table 1. Statistics of the time taken by the agents to find the two targets, respectively, in 6 real-world
experimental runs.

Experiments 1st 2nd 3rd 4th 5th 6th

The time of finding one target 174 s 62 s 235 s 419 s 311 s 283 s
The time of finding all targets 432 s 211 s 619 s 847 s 346 s 438 s

Figure 8. Initial scene of E-puck2 robots searching for the target in the arena.
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(a) t = 0 s (b) t = 72 s (c) t = 90 s

(d) t = 212 s (e) t = 340 s (f) t = 437 s

(g) t = 470 s (h) t = 516 s (i) t = 552 s

Figure 9. E-puck2 robots flocking to explore the environment. There are complex unknown obstacles
and two dynamic targets in the arena (3 m × 3 m). The agents are green, and the targets are red. When
the E-puck2 robots find the target (the distance between the agent and the target < 10 cm), the target
becomes stationary and its colour turns blue.

7. Conclusions

In this study, we proposed the LF-APF method combining APF and LF mechanisms to
achieve environmental exploration in swarms. The proposed method makes agents flock to
explore unknown environments, relying on little environmental information. Agents in the
swarm determine the position of the virtual leader, who performs LF, and form a flocking
to follow the virtual leader to traverse the area searching for the target. In the process,
the agents can adjust formations to adapt to the environment and incur no collisions
between the agents or between the agents and obstacles. The resulting movements of
the swarm robots are similar to those of the natural population, which suggests that
the proposed method can be well applied to the exploration task of the bionic robot
environment. Several simulations and real-world experiments have validated that the
method can achieve effective and efficient environmental exploration.
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Abbreviations

The following abbreviations are used in this manuscript:

LF Lévy flight
BM Brownian motion
APF Artificial potential field

Appendix A

The video of experiments: Search for two targets with eight agents.
Simulation experiments: https://www.bilibili.com/video/BV1Sr4y1S7Xi?spm_id_

from=333.999.0.0.
Real-world experiments: https://www.bilibili.com/video/BV1RT4y1h7vU?spm_id_

from=333.999.0.0.
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