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Preface

In recent years, the field of unmanned aerial vehicles (UAVs) has witnessed remarkable
advancements, particularly in the area of UAV swarm systems. These systems, consisting of multiple
UAVs working together in a coordinated manner, have attracted significant attention due to their
potential to revolutionize various applications, ranging from disaster response and surveillance to
precision agriculture and logistics. The intelligent coordination of UAV swarm systems holds the key
to unlocking their full potential and achieving efficient and effective mission execution.

This special issue reprint, titled “Intelligent Coordination of UAV Swarm Systems,” aims to
explore the latest research and developments in this exciting field. It brings together researchers
and practitioners from diverse disciplines to share their insights, methodologies, and innovative
solutions related to UAV swarm systems. The issue covers a wide range of topics, including intelligent
perception and cognition, swarm navigation and localization, autonomous decision and planning,
cooperative guidance and control, UAV simulation and experiment, and swarm intelligence.

This special issue reprint provides a platform for researchers and practitioners to present and
discuss the latest advancements, challenges, and opportunities in the field of intelligent coordination
of UAV swarm systems. We hope that the contributions in this issue will inspire further research
and innovation, leading to the development of more robust, efficient, and intelligent UAV swarm
systems. We extend our gratitude to all the authors who have contributed to this special issue and
to the reviewers for their valuable insights and feedback. Together, let us explore the frontiers of

intelligent coordination in UAV swarm systems and shape the future of aerial robotics.

Xiwang Dong, Mou Chen, Xiangke Wang, and Fei Gao
Editors
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Abstract: The small UAV (unmanned aerial vehicle) cluster has become an important trend in
the development of UAVs because it has the advantages of being unmanned, having a small size
and low cost, and ability to complete many collaborative tasks. Meanwhile, the problem of GPS
spoofing attacks faced by submachines has become an urgent security problem for the UAV cluster.
In this paper, a GPS-adaptive spoofing detection (ASD) method based on UAV cluster cooperative
positioning is proposed to solve the above problem. The specific technical scheme mainly includes
two detection mechanisms: the GPS spoofing signal detection (SSD) mechanism based on cluster
cooperative positioning and the relative security machine optimal marking (RSOM) mechanism. The
SSD mechanism starts when the cluster enters the task state, and it can detect all threats to the cluster
caused by one GPS signal spoofing source in the task environment; when the function range of the
mechanism is exceeded, that is, there is more than one spoofing source and more than one UAV
is attacked by different spoofing sources, the RSOM mechanism is triggered. The ASD algorithm
proposed in this work can detect spoofing in a variety of complex GPS spoofing threat environments
and is able to ensure the cluster formation and task completion. Moreover, it has the advantages of a
lightweight calculation level, strong applicability, and high real-time performance.

Keywords: GPS spoofing; collaborative positioning; rigid structure; complex scene; yaw

1. Introduction

The term unmanned aerial vehicle (UAV for short) refers to an unmanned aircraft
operated by radio remote control equipment and self-contained program control device,
which can provide services in places that are difficult for humans to reach. In the early
stage, the application of UAVs was limited to the military field. In recent years, with the
rapid improvement of sensing, remote sensing, flight control, computational vision, image
transmission, and other related technologies, the development of UAV has entered the fast
lane [1]. Especially since 2015, with the continuous improvement of civil UAV technology,
its application in agriculture, forestry and plant protection, power inspection, geographic
mapping, aerial photography, and other aspects has become more and more normal. After
2019, UAV autonomous control and application technology has made great progress,
showing some new development trends. Because a single UAV can only carry a single
mission load and has limited mission execution capacity, the efficiency of the whole system
can be improved through the complementary ability and action coordination of multiple
UAVs. Therefore, the application of UAVs is gradually developing from a single platform
to multiple platforms [2].

By learning from the self-organization mechanism of nature, UAV cluster consisting
of multiple UAVs with limited autonomous ability is able to achieve an overall perfor-
mance gain through mutual information communication without relying on centralized

Drones 2023, 7, 461. https:/ /doi.org/10.3390/ drones7070461 https://www.mdpi.com/journal /drones
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command and control. As a result, UAV cluster often possesses a higher degree of au-
tonomous cooperation and requires little human intervention to complete the expected task
objectives [3].

The wide application of UAV in different fields exacerbates its security issues, e.g., net-
work attack [4], channel attack [5], and signal attack [6]. Among these attacks, GPS spoofing
as a kind of signal attack has been the most urgent threat [7,8], given the fact that modern
UAV positioning and navigation systems have become highly dependent on GPS signals.
If the positioning and navigation information has been deceived, UAVs may deviate from
the normal flight route and in more serious cases end up in a catastrophic crash.

1.1. Problem Statement

Detecting a GPS spoofing attack is a challenging problem. In a confrontation envi-
ronment, the adversary usually causes a more complex and bad impact on the cluster by
deploying more spoofing sources. According to how many spoofing sources there are, the
possible GPS spoofing attach faced by an UAV cluster can be divided into two categories:
the single GPS spoofing source attack and the multiple GPS spoofing source attack, different
deployment strategies have different effects on clusters. When there is only one spoofing
source, it may attack only one UAV or multiple UAVs. Considering the case where only
one target UAV has been attacked, although the target UAV may have the capability to
detect the existence of spoofing by itself, the detection can hardly be reliable given the
uncertainty of the environment. If multiple UAVs have been attacked by one spoofing
sources, although the attack is obvious, it is still difficult to determine whether there is
only one spoofing source or not. When there are multiple spoofing sources, the problem
becomes even more challenging due to the complicated interactions of the spoofing sources.

1.2. Contribution

In this work, we aim at solving the GPS spoofing detection problem for the case
of multiple spoofing sources and we propose a cluster cooperative positioning-based
algorithm that can successfully detect the existence of spoofing for UAV clusters, no
matter how complex the threat environment is. The algorithm includes two mechanisms.
Under the guidance of distributed computing, we design the GPS spoofing signal detection
(SSD) mechanism. Furthermore, “no longer considering who is cheated, we should pay
attention to who is safe”, which is the core of the relative security machine optimal marking
(RSOM) mechanism. Thus, it is worth mentioning that in order to ensure the autonomous
recovery of the formation in an unsafe environment, we assume that not all members
of the UAV cluster are deceived and at least one UAV in the cluster is safe. The main
contributions of this paper can be summarized as follows:

e  The GPS spoofing attacks for the UAV cluster are analyzed and classified, and the
various complex attack scenarios under a cluster environment are simulated. To the
best of our knowledge, research into the problem of spoofing attacks on the UAV
cluster from multiple spoofing sources, as considered in this paper, is novel.

¢ A novel GPS-adaptive spoofing detection (ASD) algorithm which includes two de-
tection mechanisms, GPS Spoofing Signal detection (SSD) mechanism and Relative
Security UAV Optimal Marking (RSOM) mechanism, is proposed. The algorithm can
switch between different detection mechanisms to effectively detect GPS spoofing
signals according to the characteristics of GPS spoofing attack initiated by the attacker
in different attack scenarios.

e A modeling and hardware simulation based technique has been studied to ensure the
mission safety of UAV cluster. In fact, how to ensure the mission safety of UAV cluster
in GPS spoofing environment is still in its infant stage. This work provides theoretical
support and an application guidance for the development and application of this new
task model.
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The rest of this paper is organized as follows: Section 2 mainly summarizes the relevant
research work. Section 3 discusses the establishment of the small smart UAV cluster model,
the principle of the GPS spoofing attack, and its impact on the cluster task state. Section 4
introduces the detailed design of ASD. Section 5 presents the simulation experiments and
compares with the latest results in the same domain. Section 6 summarizes this work and
concludes with the potential impacts and prospects.

2. Related Work

As reported in [reference to the Volpe report], the U.S. Department of Transportation
has performed a thorough security evaluation of civil GPS signal applications and con-
cluded that “GPS has further penetrated into civil infrastructure. It has become an attractive
target and can be used by individuals, groups or countries hostile to the United States”.
Malicious attacks on GPS signals mainly include intentional interference and deception,
where the consequence of deception is often considered more severe than that of intentional
interference. As a result, the detection of GPS deception has become a hot topic and been
investigated intensively [9,10].

Some recent research has shown that civil UAVs can be easily deceived [11-13]. A sim-
ple GPS spoofing attack has been successfully implemented by researchers from Los Alamos
National Laboratory [10]. Later, the Iranian army has claimed that they successfully con-
trolled an American rq-170 sentinel UAV, when it was flying about 140 miles from the
border between Iran and Afghanistan [14]. In [15], the authors showed that they can
deceive the UAV by sending false position data to their GPS receiver, thus misleading the
UAV to crash on the sand.

Regarding the detection and response schemes for GPS deception, the work in [16]
has made a complete overview of the effort on combating GPS deception and jamming.
A method to further improve the detectability of false GPS spoofing signal by encrypting the
signature of navigation message was proposed in [17]. An algorithm for monitoring GPS
deception based on power measurement and automatic gain control behavior observation
has been proposed in [18]. The effectiveness of this algorithm has been verified by using
commercial GPS receivers. In [19], the authors have proposed a GPS deception detection
and protection scheme, leveraging the calculation of moving variance based on Doppler off-
set and consistency test of PVT calculation. In [20], the authors claimed that the forged GPS
deception signal could not completely cover the real GPS signal, and proposed a method
to detect GPS deception in the signal tracking stage through the detection technology of
its residual signal. In [8], automatic gain control is used within the GPS receiver to detect
and flag potential spoofing attacks within a low computational complexity framework.
Moreover, [21] proposed a technique that allows UAVs to detect GPS spoofing by using
an independent ground infrastructure that continuously analyzes the contents and times
of arrival of the estimated UAV positions. The proposed technique is able to detect the
spoofing attacks in less than two seconds and further determine the spoofing location after
15 min of monitoring time with an accuracy of up 150 m.

Notably, some other work have studied the use of multiple receivers to detect GPS
spoofing attacks [11,22,23]. In [22], the authors demonstrated the ability of detecting GPS
spoofing using a dual antenna receiver. Their technique relies on observing the carrier
difference between different antennas under the same oscillator. In this configuration,
the attacker needs to add a transmitting antenna every time when a receiving antenna is
added, which makes the attacking task more complex. In [11], multiple receivers are used
to authenticate GPS signal by using the correlation between GPS signal and military GPS
signal. Among these receivers, a cross check receiver is used to determine whether its GPS
signal is true. The technique has been tested on stationary and mobile GPS receivers and
it can effectively detect spoofing attacks. In [23], multiple independent GPS receivers are
used to detect GPS spoofing attacks. This technique relies on fixing the distance between
receivers and then measuring the distance between the positions reported by the receivers.
Under the real GPS signal, the measured distance is similar to the previous fixed distance.
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However, under the GPS spoofing attack, the measured distance can be close to zero. This
is because all receivers are cheated of the same false position. Currently, there are still
some scholars who use machine learning methods to solve this problem. Their research
focus is mainly on extracting ground features, and they are committed to how to extract
the accuracy of features. Although it is equally effective in application, it does not have
strong interpretability [24-26].

There are not many existing research results based on cluster deployment to detect
deception signals and ensure the safety of drone missions. Among them, a game-based
detection method for drone clusters was proposed in reference [27], which utilizes the
relative position relationships of members in the cluster to effectively detect spoofing
attacks. However, there are strong limitations on the size and threat scenarios of the cluster.
Furthermore, a method based on task prior knowledge and formation rigid structure
proposed by Liang Chen takes 8 s to achieve spoofing detection [28]. The Euclidean distance
between members in a cluster calculated from different data sources in reference [29] is used
to determine deception. This paper enriches threat scenarios and adversary capabilities,
but has a strong dependence on security thresholds. Moreover, existing achievements all
share a common problem, as they do not provide a method to determine the true position
of drones or ensure the continuation of missions after detecting attacks [30]. In fact, these
previous works mainly focused on detection technology and did not provide mature and
effective autonomous attack mitigation or defense mechanisms.

3. System Models
3.1. The Small UAV Cluster Model

Given a set of UAVs, M, performing a common mission, each of which is equipped
with a GPS receiver, a wireless communication module, and some sensors for specific appli-
cations. According to the GPS signal characteristics, we use three-dimensional (3D) data to
specify their locations. Let the location of UAV m at time t be w, (t) = [xp (t), Ym (1), zm (t)]T,
where m € NT. The UAV cluster model uses the flooding broadcast mode, which is com-
monly used in an ad hoc network to realize the communication between UAVs. That is,
each UAV in the cluster shares the location information of all the others within the effective
distance of broadcast. As shown in Figure 1, d;,x is the largest distance between UAVs in
the cluster, and ;4 is the maximum effective range of UAV broadcasting. When designing
the cluster formation, the condition d;;;y < €;4¢ ensures that each UAV in the cluster can
receive the location information from the other UAVs.

The relative position between UAVs is one of the key bases for the formation design.
When the navigation information of an UAV is detected to be dishonest, its position can be
obtained through the relative positions between the other UAVs. Therefore, when designing
the model, the relative position to the other UAVs is known to each UAV in the cluster.

Figure 1. Relationship between the largest relative distance in an UAV cluster and the maximum
effective distance of flooding communication.



Drones 2023, 7, 461

UAV Position representation in the Cartesian coordinate system

It is known that in the position calculation, the original output data of the GPS receiver
cannot directly be used in the calculation. Instead, it needs to be transformed from
the spherical coordinate system to the Cartesian coordinate system.

Suppose that D is a point on the Earth’s surface and the spherical coordinate of D is
(lat,lon,r), where r is the radius of the earth. It is shown in Figure 2 that ZAOB = lat,
ZDOB = lon, and the point D is expressed as follows:

xXp r-cos(lon) - sin(lat)
D=|yp | = r-sin(lon) @
Zp r - cos(lon) - cos(lat)

If an UAV in the cluster reaches the specified position at H, which is vertically above
point D, then it broadcasts the position D':

Xpr (r+ H) - cos(lon) - sin(lat)
D=|yp | = (r+H) -sin(lon) )
Zp (r+ H) - cos(lon) - cos(lat)

Figure 2. Schematic diagram of the conversion between the spherical coordinate system and ground

coordinate system.

2.

Y

Indication of the relative position between UAVs

The object of formation design is mainly to achieve a small cluster of UAVs. Thus,
the full connection mode is adopted for the information interaction between UAVs.
For model M={m &€ N + |uy,up,u3,...,uy}, as shown in Figure 3, the position
relationship between any two UAVs can be expressed as a four-dimensional vector:

o

Uy = g 3)

I

Figure 3. Schematic diagram of the relative position between UAVs in a cluster.
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Thus, if u3 = {x1,y1,21}, the following equation holds:

X2 x1 + lcosa
= | y2 | = | v+ Ilcosp 4)
Z> z1 + Icos6

3.2. Adversary Model: GPS Spoofing Principle

The principle of GPS spoofing on the target UAV is as follows: the position spoofing
attack will not change the UAV’s position, but change the UAV’s belief in its position.
Thus, while the UAV is still in its real position when attacked, the perception of its location
by its navigation system will be given by the attacker. Then, the UAV plans its route
to the final destination according to the instructions transmitted to the controller by the
navigation cognition.

The purpose of a GPS spoofer is to control the GPS antenna, in order to send the
customized GPS positioning information to make the UAV navigation system believe that
it is deceiving the expected position. According to the concealment and strategy of the
attack, GPS spoofing attacks can be divided into the following two categories.

e Public: the spoofer does not try to cover up the attack, no matter whether the change
between the customized deceptive GPS positioning information and the real GPS
positioning information is within a reasonable range. It only tries to capture the
target faster.

e Covert: the spoofer tries to avoid detection by sending cleverly crafted deceptive
signals that match the actual signal in terms of output power and other parameters.
Thus, the spoofer can prevent the target from triggering a fault detection alarm.

Since the spoofer can attack the target publicly or covertly, we consider that UAV
is equipped with a fault detector, which can filter out the navigation signal with large
mutations. Therefore, for the spoofer design, we would like to keep its attack covert
by adjusting the parameters of the forged GPS signal, in order to avoid being found.
The specific setting rules for parameter requirements can be found in [31]. The main idea is
that the change between the spoofing signal sent by the spoofer and the signal received
by the UAV GPS receiver at the previous time will be limited to a threshold, so that these
applied positions will not trigger the fault detector in the UAV. Such a threshold between
the current position and the position where the spoofing is applied is called the instance
drift distance [32,33].

Let E,qx be the instance drifted distance that limits the attack, 25, (£)=[xy (), Y (), 23 (£)] T
be the attacker’s imposed location on UAV m, and Ey (t)=[Ex,, (t), Ey,, (), E-,, (t)]" be a vector
whose individual elements represent the distance difference between the UAV’s actual
location and the attacker’s imposed location. Then, we have the following equation:

1Em (E)ll2 = ll%m (£) = % (£)[l2 < Emax ®)

Explanations of all variables mentioned in this section are summarized in Table 1.

Table 1. Explanations of all variables mentioned in Section 3.

Variables Explanation

M A set of UAVs

Uy One of the members in M

Amax The largest distance between each two UAVs in M
emax The maximum effective range of UAV broadcasting

D The parking position of UAV on the ground

D’ The hovering position of UAV in the air

uqp The position relationship between any two UAVs in M
Eax The instance maximum drifted distance
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4. Proposed Method

In this section, the ASD method based on UAV cluster cooperative positioning is
proposed, The workflow description is detailed in the Appendix A, which includes two
detection mechanisms: the SSD mechanism based on the cluster cooperative positioning
and the RSOM mechanism.

4.1. SSD Mechanism Based on Cluster Cooperative Positioning

During the execution of public tasks by the UAV cluster N, all members of the clus-
ter broadcast the real-time position obtained by GPS receiver to the team through their
respective wireless communication module at each time. The design principle of SSD is:
at each broadcast time, when the signals broadcast by the cluster have the same location
information, one can determine that there is at least one spoofing source in the mission
airspace, and the RSOM mechanism of the ASD algorithm is triggered at this time; when
the broadcast signals are different, we randomly select a submachine in the cluster, U,
and extract its location information, Pij,. Then, we use the real-time location information
broadcasted by other members and the relative location information between other mem-
bers and U, in the formation to calculate where the other members think U, should be.
For example, based on the location information broadcasted by U, the position where
U; thinks U, should be located can be obtained by Formulas (2)—(4). If there is only one
spoofing source in the mission airspace, the SSD mechanism can accurately locate the spoof-
ing attack submachine in the cluster; otherwise, the RSOM mechanism will be triggered.
Figure 4 shows the workflow of the SSD mechanism.

S$SD mechanism

Does the location information broadcast
in the cluster have the same value?

Y

Randomly select the location information of a At least one spoofing source exists in
sub machine:PUn the task environment

'

Calculate the PUn recognized by other sub
machines

.

calculate Pun/I using Pul and Lﬁu

calculate Pun/2 using Pu2 and Iﬂ'}l
calculate Pun/3 using Pud and Lﬁn

calculate Pn/n using Pran and UmUn

Is there abnormal datain m PUn values?
Yes

Number of abnormal datai
i=1

k.
There is an effective spoofing source in the task
environment, and the sub machine corresponding to the
abnormal data is spoofed

Trigger RSOC \_
End mechanism =

Figure 4. The workflow of the SSD mechanism.
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4.2. RSOM Mechanism

The RSOM mechanism is triggered when there are multiple spoofing sources in the
mission airspace and the GPS signal security status of each submachine in the cluster
cannot be accurately determined. Compared to the assumption of [27],i.e., “at least one
UAV in the cluster is safe”, our RSOM can detect the case of a full cluster spoof. However,
this assumption is still followed in our designed algorithm. Our purpose in doing so
differs from that of [27] in that their spoofing detection has to be implemented under this
assumption, whereas we do so to guarantee that the UAV cluster has the ability to recover
autonomously in case of a spoofing attack. By letting go of this restriction, RSOM can call
the ground station to achieve an artificial takeover of the cluster mission in the event of
a full overrun being detected. In this attack scenario, in order to ensure the self-recovery
capability of the cluster, the premise of RSOM is that at least one aircraft in the cluster is
safe. Therefore, the threats faced by the UAV cluster can be summarized as follows: if two
or more UAVs are attacked by different GPS spoofing signals, how can they be detected?

RSOM is designed with the idea that there is no need to face this problem directly.
Specifically, at least one aircraft in the cluster is safe, so in such a complex threat scenario,
we should accurately find the safe one. The details of the design idea are as follows:
RSOM selects a virtual central machine for the UAV cluster to provide us with reference
information representing the motion state of the whole cluster. Considering the loose
coupling between the GPS measurement and the strapdown inertial navigation system
(INS), the altitude dynamics of UAVs will not be affected by GPS spoofing attacks at the
fist moment of spoofing, which has been confirmed by Kerns et al. [34] through a field test.
At the same time, a large number of studies have shown that the relative controllability
of altitude dynamics can maximize the asymptotic stability of closed-loop systems when
applying optimal control signals in the event of GPS failure. Therefore, in the RSOM
mechanism, the optimal marking of relative security machine is realized by using the
deviation of the altitude information obtained by each member of UAV cluster from the
GPS relative to the flight altitude obtained by altitude dynamics of the virtual central
machine. In the RSOM mechanism, the yaw information is the core factor in determining
the altitude of the UAV, so we simplify and divide the altitude model of the UAYV, and finally,
obtain the independent yaw model.

The RSOM mechanism includes three altitude models: the independent yaw model
of the submachine, the independent yaw model of the virtual central machine, and the
marking model. The workflow of the RSOM mechanism is shown in Figure 5.

RSOM
mechanism

Calculate the independent yaw angle of the
submachine based on the output of GPS
receiver andmagnetometer respectively

v v
Yaw independent model of Yaw independent model of
submachine virtual central machine
[ |
¥

Marking model

END

Figure 5. The design and work principle of the RSOM mechanism.
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For each UAV, the yaw angle is given by the GPS receiver and the magnetometer,

which are expressed as gps and aq, the obtain algorithm are shown as Algorithm 1 and
Algorithm 2, respectively [35].

Algorithm 1 Algorithm for obtaining obtainyspg based on GPS receiver input data

1:

Input the position information of the current time and the previous time:(latq, lony, alt;)
and(laty, lony, alty);

. Take (laty, lony, alty) as the representation of a Cartesian coordinate system:(xy, y2,22);
: Based on (laty,lony,alty), take (x,y2,z2) as the representation of a ENU

system:(dep, dyo, di2);

: Constraint Ygps€[-7, 71;
: ¢Gp5=arctan2(de2,dn2);

Algorithm 2 Algorithm for obtaining the ¢, based on magnetometer attitude measure-
ment data

1:

2:

3:
4:

Suppose that the measured value of the magnetometer in the body coordinate system,
(Xp, Yo, 2p), is bmm=[mxb my, mzh]T
Considering that the magnetometer may not be placed horizontally during the UAV
mission, it is necessary to use the two axis inclination sensors to measure the pitch
angle, 6, and the roll angle, ¢, and then project the measured values on the horizontal
My, = My, €088y + My, SiNPySiny,
plane. Therefore, +1z,€08¢ SN0y,
My, = My, COSPy — Mz, SiNPy,
where 71y, 1y, ER indicates the projection of the magnetometer reading on the hori-
zontal plane.
Constraint g €[-71,71]
Ymag=arctan2(my,,my,)

Independent yaw model of the submachine
In the independent yaw model of submachine, the yaw angle of the submachine in
the cluster is defined as:

p=(1- .”I,U)wGPS + Uy Pimag (6)

where ps and e can be obtained by algorithms 2 and 3. py€[0,1] is a weight-
ing factor.

The basic idea of the linear complementary filter is to use their complementary features
to obtain more accurate altitude angle. In this model, the linear complementary
filter [36-38] is only used as a known tool, so it is only briefly explained without
showing the detailed reasoning process. At time k, after obtaining ¢ (k), the yaw angle
is estimated as:

Ts
T+ Ts

l'i)(k) - T—:Ts

(P(k —1) + Tows, (k) + (k) )
where T € R represents the time constant, Ty € R™ represents the sampling period
used by the filter, and w,, represents the component of the angular velocity in the z
direction in the earth fixed coordinate system [39]. Take ?TTS = 0.95, then TISTS = 0.05.
The complementary filter of the yaw angle is expressed as follows:

P(k) = 0.95(p(k — 1) + Tsw., (k)) + 0.059(k) 8)

Independent yaw model of the virtual central machine
GPS provides external information to the UAV. It belongs to the experimental group
of this subject and needs to be verified. Therefore, we need a control group in the
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model. For the flight altitude estimation of the whole cluster, we only use the internal
information of the UAV, namely the magnetometer. The yaw representation of the
flight altitude of the whole cluster is realized by fusing the yaw altitude of each
member machine with a weighted average method to form a new yaw altitude model.
It can be considered that we have selected a virtual central machine for the cluster,
and the new yaw altitude model is the yaw representation of the virtual central
machine; its physical meaning is to represent the flight altitude of the cluster to the
greatest extent.

Here:

l/J/ = lpmag- (9)

Input ¢’ (k) to Equations (7) and (8) to obtain ¢’ (k). Then, the independent yaw model
of the virtual central machine, ¥ (k), can be expressed as follows:

¥ = 3 yh(k)pn(h)

=1
P = plog 1"

where (k) is the error confidence obtained by the exponential standardization of the

softmax function to the current error of each submachine magnetometer, and ¢ (k) +

ea(k) +e3(k) + ...+ em(k) = 1. p(k) is the final weight coefficient of each submachine.
3. Marking model

The difference between the results of the independent yaw model of the virtual

central machine and that of the submachine is used as the basis for the results of the

calibration model:

(10)

dp = [¥ (k) = P (k)| (11)

Note thatd,,;;;, = (d1,da,...,dm), dpin corresponding to the submachine is the optimal
marking of the making model to the relative security of the UAV.

4.3. Time Complexity Analysis

According to the big O representation, O(n), the algorithm grows as the data size n
increases. The ASD algorithm designed in this paper does not contain loops and recursive
statements, so the time complexity is O(1). It should be noted that it does not fully represent
the actual execution time. The actual execution time of the algorithm is also closely related
to the performance of the hardware device.

To sum up, it can be concluded that the two mechanisms of the ASD algorithm have a
serial relationship in the working process. Last, but not least, at the end of the algorithm
design, we added a straightforward defense, the “Leader-follower mode”. This mode
is triggered when the ASD algorithm detects GPS spoofing. That is, the relatively safe
submachine selected by RSOM will enter the leader mode and the other submachines
will enter the follower mode. Generally speaking, under the premise that “at least one
submachine in the cluster is safe”, the ASD algorithm can solve various threats faced by
UAV cluster in the mission environment, and has the ability to guarantee the formation
and flight mission at the same time. This study proposes the constraint that “at least one
submachine in the cluster is safe”, and its application background is the fully autonomous
task of the UAV cluster. With manual monitoring and intervention during the task, this
restriction can be released and the cluster submachines can be switched to manual takeover
when all of them are under attack.

5. Simulation and Evaluation

To verify the effectiveness of the ASD algorithm proposed in this paper, simulation
experiments are carried out in this section. The experiments are performed on Gazebo
and MATLAB platforms. We built the UAV cluster system model on the Gazebo platform,

10
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and connected the MATLAB-based ASD algorithm to the Gazebo flight control through
cross-platform combination. The verification process and result analysis are as follows.

5.1. Experimental Configuration

In this experiment, during the task of the UAV cluster system model, the motion
heights of all submachines are always the same, and the subsequent spoofing signal
generation is only also based on longitude and latitude. Therefore, when designing the
formation, f = 0 and 8 = 0 are in the relative position relationship between the cluster
submachines, and the overall structure is a pentagon. The specific motion parameters of
the small smart UAV cluster after entering the stable flight are as follows:

®  Cluster size: 5;

®  Relative position relationship between machines: [« § 0 1];
e Cluster velocity: 5 m/s;

e (Cluster motion height: 50 m;

e (Cluster motion direction: all submachines are consistent;
e  Maximum distance between machines: 20 m;

e Maximum effective range of communication: 500 Hz.

Correspondingly, to verify the detection efficiency of the ASD algorithm proposed
in this study, we modeled the enemy according to the GPS spoofing principle on the
Gazebo simulation platform. Five spoofing sources (51, S2, S3, 54, S5) are set up; follow-
ing the movement of the cluster, they are randomly distributed around the cluster and
the distance from the cluster is always within the effective range of the spoofing signal.
Section 3.2 mentions both public and covert spoofing, but the detection principle of the
ASD proposed does not specifically target a certain type of spoofing. However, in the
experimental deployment, the enemy models all used covert deception, as it is a more
advanced spoofing ability.

5.2. Experimental Deployment

The initial state of the UAV cluster system model at the beginning of each scenario: the
submachines are lined up on the ground. The UAV cluster is manually controlled to take off
vertically one by one, reaching a specified altitude of 50 m. The cluster then enters the fully
autonomous mode. Each submachine adjusts its position according to the preset positional
relationship between the aircraft, forms a formation, and enters the flight mission.

®  Scenario 1:Baseline model test: This case is to obtain the normal movement log of the
UAV cluster in the mission scenario without any attack or threat, which can be used
as a baseline to detect the threat later.

®  Scenario 2: Adversary model test: Note that the five spoofing sources work exactly
the same, so only one of them is randomly selected for validity testing. In this
scenario, the deployment location of 54 is shown in Figure 6. In Figure 6a, there is
only one submachine in the signal radiation range of 54, while in Figure 6b, there are
more submachines in its signal radiation range. Such a setup can test not only the
effectiveness of the spoofing source, but also whether the spoofing source can spoof
all submachines within its signal radiation range. In the experiment, after the cluster
enters a stable mission state, we do not start the ASD algorithm, but we start 54, after
which we observe the movement state of the cluster and save the flight logs.

e  Scenario 3: Contrast experiment of scenario 2: In this case, the deployment location of
54 is shown in Figure 6a; that is, there is only one submachine in the signal radiation
range of S4. Different from the setting of scenario 2, after the cluster enters a stable
mission state, we first start the ASD algorithm and then start S4. After that, we record
the movement state of the cluster and save the flight logs.

®  Scenario 4: Testing of two spoofing sources: In this case, the deployment locations of
the two spoofing sources (i.e., S1 and S2) are shown in Figure 6c. It can be observed
from Figure 6c that the signal radiation range of these two spoofing sources contains
three submachines. Here, we will use S1 and S2 to attack them. In the experiment,

11
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after the cluster enters a stable mission state, we start the ASD algorithm and turn on
the two spoofing sources. Then, the movement state of the cluster and the flight logs
will be recorded.

Scenario 5: Testing of three spoofing sources: In this case, the deployment locations of
the three spoofing sources (i.e., S1, S2, and S3) are shown in Figure 6d. The rest of the
operation is the same as in Scenario 4.

Scenario 6: Testing of four spoofing sources: In this case, the deployment locations of
the three spoofing sources (i.e., S1, S2, S3, and S4) are shown in Figure 6e. The rest of
the operation is the same as in Scenario 4.

Scenario 7: Testing of the full cluster spoofed: In this case, we directly considered and
deployed the most complex attack scenario with five spoofing sources (i.e., S1, S2, S3,
54, and S5); as shown in Figure 6f, after the cluster enters a stable mission state, we
start the ASD algorithm and the five spoofing sources. It can be observed that the
cluster suddenly oscillates in formation after a period of time, but soon returns to
its original form; however, the overall motion direction is off the expected trajectory.
At that point, the UAV cluster sent a distress signal to the ground station. Again, we
keep the flight logs.

=-motion direction® =-motion direction®
72\ 72N
_®_ Q. _®_ QN
sS4 e @__ s 2. . s
AN 7N 4
(a) (b)

~motion direction® ™. =motion direction®

e -
e A A
e © 7N s @ Yy

(c) (d)

", =motion direction® o =*=motion direction-"»

(e) (f)

Figure 6. Tactics of an adversary: deploying the deception source. (a) Deploy 54 to attack one of the
submachines to verify the effectiveness of the spoofing source. (b) Verify whether the S4 spoofing
source has the ability to spoof all submachines within its signal radiation range. (c) Deploy two different
spoofing sources to launch a GPS spoofing signal attack on three submachines in the cluster. (d) Deploy
three different spoofing sources to launch a GPS spoofing signal attack on three submachines in the
cluster. (e) Deploy four different spoofing sources to attack four submachines in the cluster. (f) Deploy
five different spoofing sources to attack five submachines in the cluster.
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5.3. Experimental Results and Analysis

Scenarios 1 and 2 of the experimental deployment belong to equipment testing and
the others belong to algorithm verification.

In each scenario, we conduct multiple sets of experiments. Throughout the experiment,
we observed that, in the state of cluster motion, at some point after the spoofing source
was turned on, individual submachines did shake abnormally or leave the team, but the
final observation result was that the cluster corrected the formation and finished the flight
mission. The specific result analysis can be obtained through the retained flight logs,
as shown below.

Model testing results

Figure 7a shows the state diagram of the UAV cluster system model completing a flight
mission in a safe environment, i.e., scenario 1. Figure 7b,c are the results of the verification
of the enemy model, i.e., scenario 2. Among them, Figure 7b shows the output of the GPS
receiver deploying a spoofing source and the S4 spoofing a submachine, No. 4. Figure 7c
shows the output of the GPS receiver deploying S4 to deceive two submachines, i.e., 4 and
5, simultaneously.

It can be seen that the formation of the UAV cluster has been disrupted and the output
conforms to the spoofing principle. This phenomenon implies that S4 does effectively
attack the submachines within its signal radiation range. Furthermore, it demonstrates that
the enemy model we designed is effective, which can support the construction of the GPS
spoofing countermeasure environment required for the experiment.

Algorithm verification results

Since no abnormality was observed in the overall motion state of the UAV cluster,
we chose to use the data for a more intuitive interpretation. In the table recording data
information, we use the same color to indicate the corresponding relationship between the
spoofing source and the target. Moreover, » marks the reference machine selected by ASD,
while % marks the target selected.

Table 2 shows the record of current spoofing sources, and the flight logs of each
submachine in scenario 3. According to the ASD algorithm design, the RSOM mechanism
will not be triggered when only one aircraft suffers a spoofing attack. In fact, the final
output of the ASD algorithm is the detection result of the SSD mechanism. According to
the log information of the submachine GPS receiver, it can be seen that No. 4 was attacked;
the SSD randomly selected No. 1 at this time, and only No. 4 had abnormal cognition of
the position of No. 1 of the other four racks. Furthermore, we can see from the logs that
after detecting a spoofing attack on No. 4, the system tells No. 4 to disable the GPS receiver
and go into the leader mode in the cluster. Similarly, we can also see in the logs that the
algorithm detected the threat at the second moment after being spoofed.

Table 3 shows the record of spoofing sources currently, and the flight logs for each
submachine in scenario 4. Unlike Table 2, the final output of the ASD algorithm is no longer
the result of the SSD mechanism, but rather RSOM. Based on the analysis of the spoofing
sources data and GPS receiver information, it is not difficult to see that No. 2 and 3 were
attacked by the same spoofing source, 52, and No. 4 was attacked by a different spoofing
source, S1, from the previous signal. This situation cannot be solved by SSD, which triggers
RSOM. In No. 1 and No. 5, which are safe in the cluster, RSOM finally chooses No. 5
as the leader of the safety machine according to the idea of algorithm design. Similarly,
in scenario 5, these three submachines are also subject to a spoofing attack, the difference
being that these three submachines receive spoofing signals from three different spoofing
sources, respectively, which can be obtained from Table 4. The RSOM mechanism also
works perfectly; it selected No. 1.

Scenario 6 is the most complicated of all. To ensure that each spoofing source deployed
achieves the expected efficiency, we iteratively adjust their location and signal strength,
and finally, achieve one-to-one spoofing, as shown in Table 5. Of course, scenario 6 is
also the strongest proof of the effectiveness of the ASD algorithm. In our deployment,
No. 1 is outside the effective range of all spoofing signals. From the table we can see
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that the RSOM does calibrate it accurately, making it the leader of the cluster. During the
experimental observation, we saw that the formation of the UAV cluster vibrated obviously
when attacking, but it quickly recovered and adjusted as before, and finally completed
the task.

Table 6 shows the record of spoofing sources and the flight logs for each submachine
in scenario 7. In the validation work of this scenario, we liberalized the “at least one
drone safe” restriction and deployed five different spoofing sources to spoof each of the
five submachines separately. As you can see from the information in Table 6, the RSOM
still selected the submachine it thought could be the leader out of the five submachines:
No. 2. However, the fact is that No. 2 has also been attacked by the spoofer S2. Its yaw
information relative to that of the virtual central machine was already far greater than
the normal drift range of the magnetometer. At this point, the UAV cluster no longer
had completely reliable navigation information and the ASD eventually sent a distress
command to the ground station.

T T T T T T
25 30 35 40 45 50

Figure 7. Illustration of effectiveness verification of the UAV cluster system model and the en-
emy model. (a) The trajectory information output by GPS receivers of the UAV cluster system model
in the safe mission environment. (b) Deploy spoofing source 4 to attack No. 4 in the cluster without
any detection and defense measures. The motion trajectory output by UAV cluster GPS receivers.
(c) Deploy spoofing source 4 to attack No. 4 and 5 in the cluster without any detection and defense
measures. The motion trajectory output by UAV cluster GPS receivers.
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From the above series of experimental results, the ASD algorithm can detect the attack
behavior at the second moment of spoofing. The acquisition frequency of UAYV flight logs
is 5 Hz, which means that the time required to detect deception is 0.4 s. This is because the
ASD algorithm contains two mechanisms, which take time to judge, trigger, and switch.
From the information output frequency of the flight log, ASD is known as a very efficient
real-time detection algorithm, which is not affected by the time delay of one recording.
On the other hand, the RSOM mechanism does not seem to focus on detecting spoofing
intuitively, but this is not the case. When a secure submachine is selected, all information
it provides is trusted by default. Then, based on the geometric relationship between the
submachines, it is easy to obtain the location where other submachines should be. At this
time, if there is a non-negligible error between the information output by the GPS receiver
of which submachine and the information provided by the secure submachine, it can be
determined that the information has been spoofed. Because this problem is obvious, it is
not emphasized. The “Lead-follower” mode is a small defense set up for the cluster to
ensure that at least one submachine is safe to complete the task.

5.4. Comparative Analysis of the Method’s Performance

Regardless of whether used in a simulation environment or a real physical environ-
ment, it is difficult to fully reproduce the theoretical results of existing research in UAV
flight experiments due to the uncertainty brought by atmospheric disturbances and motion
time drift in the environment on the output of UAV sensors. Therefore, in this section,
the original authors” analysis of the original performance data of the methods proposed by
them is directly referenced and compared with the methods proposed in this chapter in
different performance dimensions.

Comparing the ASD method proposed in this article with the detection method
proposed by Liang, Chen et al. [28] in Table 7, our method only took 0.4 s in a task, which
can be called a very effective real-time detection method that is not affected by the time
delay of a single record; concurrently, ASD is, without requiring prior knowledge, suitable
for random flight missions and also better at detecting accuracy.

AR Eldosouky, A Ferdowsi, et al. [27], when analyzing their proposed method, did
not analyze the performance of the method such as timeliness and detection accuracy. They
paid more attention to the effectiveness of a simulation experiment, and their method
can solve a narrow problem domain, which not only has strong limitations on the threat
scenarios where deception occurs, but also specifies the applicable cluster size. By relaxing
these limitations, the proposed ASD method can face complex threat scenarios with the
same detection capabilities.

The method Pavlo Mykytyn (2023) [29] proposed does not limit the types of threats
that occur, and also designs complex adversarial scenarios. However, the design of the
method to determine whether the spoofing attack occurs based on the distance difference
has a strong dependence on the security threshold, but there is currently no authoritative
setting rule for the security threshold. In addition, the infrared ranging method introduces
additional hardware equipment. In ASD method proposed, there is no such issue, as there
is no need for auxiliary values or equipment.

Finally, the confrontation environment that ASD proposed in this chapter can face
is complex, and it is worth mentioning that the ASD method does not require any prior
knowledge, and the assistance of any other additional equipment and does not increase
the load burden on unmanned aerial vehicles. Moreover, the ASD method has small
computational complexity, has high efficiency, and is timely and accurate.
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Table 7. Comparison of similar methods.

Methods Detection Petectlon Method Characteristics
Accuracy Time
Liang, Chen 98.6% 8s Requires prior knowledge of a given task, and other members within
(2019) [28] e the communication range must be greater than 3
Undefined Undefined There is only one deception source, only one aircraft is deceived at a
AR Eld. etc. . . : . .
and not and not time, and one aircraft is absolutely safe; the method is applicable to
(2020) [27] )
analyzed analyzed clusters with a scale of 5 or more
Pavlo Mykytyn Undefined Undefined One distance ranging technology; the execution of this method
and not and not . .
(2023) [29] strongly relies on security thresholds
analyzed analyzed
1. The cluster size is greater than or equal to 3 and is suitable for
random flight missions;
2. There can be multiple deception sources in the flight environment
that launch indiscriminate attacks against the cluster;
method proposed 0.4s

3. There are no constraints required for the execution of deception
detection in the method, and during the task, after implementation of
detection, it follows the safe machine concept, but not a strong
constraint.

6. Conclusions

At present, in view of the impact of GPS spoofing on UAVs, the existing detection
methods mainly focus on the single-machine problem. Machine learning methods are
the most popular of these methods. In the practical application of UAVs, timeliness is an
issue that cannot be ignored. The detection mechanism in the ASD algorithm has good
detection efficiency in the simulation environment; accurate detection can be achieved
almost immediately when a spoofing attack occurs. On the other hand, at present, how
to solve the UAV cluster in the face of GPS spoofing attack is still a new problem. Among
the few research results that address the same problem [27,29], the execution of methods
requires the execution under various constraints.

Obviously, the confrontation environment faced by the ASD method proposed in
this study is more complex. It is worth mentioning that the ASD method does not use
any other equipment except the most basic airborne equipment, and the computation
sequence is simple. In the experimental design of this article, in order to accurately grasp
and analyze the objective performance of the method, atmospheric disturbance factors
were not added to the simulation environment. Furthermore, the autonomous performance
of ROSM mechanism is established under a constraint condition of “at least one secure
drone exists in the cluster”. Thus, in the next research step, we will find problems based
on practical applications, hoping to improve the robustness of ASD. In addition, in future
research, we will consider using visual ranging among UAV cluster members to determine
the true location of the submachines attacked by spoofing. In this way, the algorithm will
become more complete and intelligent, enabling better cluster control.
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Appendix A
This is the flowchart of our proposed method, ASD, and the mechanisms description

included is in the main text.
<UAV cluster mission starts >

Open SSD mechanism

No exceptions

found — -
Mission enviroment
security

At least two
submachines
broadcasted the
same location
information

/

Detected that only one aircraft is Detected that there was at least one Detected that there was More than
attacked by GPS spoofing signal spoofing source one spoofing source
trigger trigger
Switch to RSOM mechanism
The submachine shields the The selected safety machine enters the leader mode, and the other
external GPS signal and enters the submachines shicld the external GPS signal and enter the

following mode follower mode

Keep the formation and continue
the mission

<
<%

Figure A1. Flowchart: outline of the ASD’s process.
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Abstract: To improve the autonomous flight capability of endo-atmospheric flight vehicles, such
as cruise missiles, drones, and other small, low-cost unmanned aerial vehicles (UAVs), a novel
minimum-effort waypoint-following differential geometric guidance law (MEWFDGGL) is proposed
in this paper. Using the classical differential geometry curve theory, the optimal guidance problem of
endo-atmospheric flight vehicles is transformed into an optimal space curve design problem, where
the guidance command is the curvature. On the one hand, the change in speed of the flight vehicle is
decoupled from the guidance problem. In this way, the widely adopted constant speed hypothesis in
the process of designing the guidance law is eliminated, and, hence, the performance of the proposed
MEWEFDGGL is not influenced by the varying speed of the flight vehicle. On the other hand,
considering the onboard computational burden, a suboptimal form of the MEWFDGGL is proposed
to solve the problem, where both the complexity and the computational burden of the guidance law
dramatically increase as the number of waypoints increases. The theoretical analysis demonstrates
that both the original MEWFDGGL and its suboptimal form can be applied to general waypoint-
following tasks with an arbitrary number of waypoints. Finally, the superiority and effectiveness of
the proposed MEWFDGGL are verified by a numerical simulation and flight experiments.

Keywords: waypoint-following guidance; varying speed; differential geometric curve theory; global
energy optimization; suboptimal form; flight experiments

1. Introduction

A key technology of endo-atmospheric flight vehicles, such as cruise missiles, drones,
and other small, low-cost unmanned aerial vehicles (UAVs), is the ability to autonomously
reach a destination via an expected path [1]. In terms of general multitarget missions, there
are two mainstream methods for endo-atmospheric flight vehicles to realize waypoint-
following guidance, by visiting multiple target points at a time. The first is to decompose
the waypoint-following task into two parts: path planning and path tracking [2-6]. The
second is to individually separate each waypoint on the desired path and transform the
path-tracking problem into countless point-to-point guidance problems, using closed-
circuit guidance. Missile guidance laws, which have been well-developed over the last few
decades, can also be adopted to solve waypoint-following problems. Recent developments
in advanced missile guidance laws resulted in many elegant solutions to problems related
to waypoint following, such as pure pursuit guidance (PPG) [7], proportional navigation
guidance (PNG) [8-11], and their variations [12-15].

Considering certain performance indexes, the first approach typically discovers the energy-
or time-optimal path using complex numerical trajectory optimization methods [16-20].
However, numerical simulations require large onboard computing power, so they may
not be suitable for the general growth of small endo-atmospheric flight vehicles, such as

Drones 2023, 7, 369. https:/ /doi.org/10.3390/ drones7060369
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cruise missiles, drones, and other small, low-cost unmanned aerial vehicles (UAVs). The
guidance instructions produced using the second method can be simple and concise, thus
eliminating concerns about the capability of an onboard computer. However, under the
boundary conditions of multiple waypoints, even the use of the minimum-effort point-to-
point guidance law [21-24] between every two adjacent waypoints cannot guarantee the
optimal total energy consumption for the duration of a task.

For such problems, inspired by the above two methods, an optimal error dynamics
(OED) method for the design of guidance laws for UAVs that need to visit multiple way-
points was proposed in [25]. As mentioned in [25], the challenge of designing guidance
laws is defined, firstly, as a finite-time tracking problem in cybernetics. Later, a global
minimume-effort waypoint-following guidance law (MEWFGL) that can be applied to
situations of arbitrary waypoint numbers was analytically derived in [26]. For the first
time, the MEWFGL allowed for the development of a path-planning and tracking set in
one single step, and it effectively reduced the complexity of the initial task’s analysis and
design. However, the MEWFGL still assumed a constant speed and did not consider the
influence of a change in a UAV’s speed on the performance of the guidance. Although
a large number of numerical simulations and flight experiments showed that, under the
assumption of a constant speed, the designed guidance laws still work in most practi-
cal varying speed guidance scenarios, their performances are degraded to some degree,
since the speed of a UAV changes during the guidance process. In practical applications,
real-time speeds can be obtained and utilized in guidance and control systems, as almost
all endo-atmospheric flight vehicles are equipped with Doppler radars or accelerometers.
Therefore, if guidance laws can be directly designed without the assumption of a constant
speed, their performances must, hence, be assumed to be better.

In essence, the flight trajectory of an endo-atmospheric flight vehicle can be taken as a
space curve, which is more suitably depicted with a Frenet-Serret frame, curvature, and
torsion, using the classical differential geometry curve theory [27]. In addition to designing
and analyzing guidance laws in the time domain, differential geometry theory can be used
to design and derive a variety of guidance laws in the arc-length domain. In [28], the
performance of a PNG and the capture region of a missile with time-varying speed that
was directed at a stationary target were preliminarily explored in the arc-length domain.
In [28], by introducing the differential of the arc length, the influence of the time-varying
missile’s speed on the performance of the guidance law was eliminated for the first time.
In addition, in [29], the PNG’s performance in the arc-length domain was further analyzed
in detail, which revealed the essence of the guidance law design in theory, and this also
showed that the differential geometry curve theory is beneficial for reducing the influence
of time-varying speed on the performance of guidance law.

On the one hand, the computational capacities of small, low-cost endo-atmospheric
flight vehicles are not powerful enough for the computational burden of the complex
numerical calculations required to determine an optimal path. On the other hand, it is
difficult to design guidance laws for time-varying speed endo-atmospheric flight vehicles
because the remaining flying time cannot be estimated accurately, especially when the
time-varying speed of an endo-atmospheric flight vehicle is considered. Motivated by the
aforementioned observations, in this paper, a novel minimum-effort waypoint-following
differential geometric guidance law (MEWFDGGL) is proposed for endo-atmospheric
flight vehicles by combining the MEWFGL concept and the differential geometry curve
theory, which can be used to improve the autonomous flight capabilities of small, low-cost
flight vehicles. The nonlinear guidance model is presented in the arc-length domain. The
MEWEFDGGL is derived using the linearized dynamics of a zero-effort miss (ZEM) and
adopting the optimal control theory. Next, numerical simulations of the MEWFDGGL
with varying-speed endo-atmospheric flight vehicles are conducted, and the results are
compared with the original MEWFGL to demonstrate the effectiveness and superiority of
the guidance law. Finally, flight experiments based on a small quadrotor UAV are conducted
to further verify the effectiveness of the proposed guidance law. For ease of presentation,
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we focus on small, low-cost UAVs in this paper, but it is worth emphasizing that the
guidance law proposed in this paper is designed for numerous endo-atmospheric flight
vehicles, including cruise missiles, drones, etc. The key contributions of the MEWFDGGL
are threefold:

1.  The MEWFDGGL decouples the speed change in a UAV from the guidance problem
in theory, rather than directly adopting the constant speed hypothesis. With the help
of the classical differential geometry curve theory, the optimal guidance problem is
transformed into an optimal space curve design problem, which makes the speed
change in the UAV no longer a concern during the guidance law design process, and
the optimality of the space curve is independent of the UAV’s speed in the process of
the guidance law design.

2. The MEWFDGGL is globally energy-optimal. By linearizing the ZEM dynamics
and adopting the optimal control theory, the guidance curvature command of the
MEWFDGGL can be obtained by solving the linear-quadratic optimal control problem,
and then the energy consumption of a UAV throughout the whole guidance process
can be minimized.

3.  The suboptimal MEWFDGGL can be applied to general waypoint-following tasks
with arbitrary waypoint numbers. By adopting just two waypoints at one time to
generate the guidance command, the formation of the original MEWFG becomes
much simpler, and the computation burden is greatly reduced.

The remainder of this paper is organized as follows: The backgrounds and prelimi-
naries of this paper are stated in Section 1. In Section 2, the derivation of the MEWFDGGL
and the suboptimal MEWFDGGL are given in detail. Finally, numeric simulations and
experimental verification results are offered.

2. Materials and Methods
2.1. Preliminaries
2.1.1. Nonlinear Kinematics

We begin by taking into account that the UAV needs to visit N-many waypoints. The
planar engagement geometry is shown in Figure 1, where XOY is the inertial coordinate
system. The UAV is expressed as the symbol U, and the i-th waypoint is represented as
W;. The variables v and o; signify the UAV’s flight path angle and LOS (Line-of-Sight)
angle, respectively. For the sake of simplicity, the UAV is assumed to be a particle model,
that is, the time delay of the autopilot is not considered. The variable r;, which cannot
be zero, denotes the relative range between the UAV and the i-th waypoint. The symbol
z represents the zero-effort miss (ZEM), which refers to the nearest distance during the
process that the UAV moves to the i-th target waypoint at the current speed without any
control input, namely, CW;, as shown in Figure 1. Based on the principles of dynamics, as
shown in Figure 1, the differential equations to describe the planar engagement geometry
in the arc-length domain can be formulated as

i = —cos(y—07),

‘7,‘/ _ _sm(“r/i—(rl-)/ 1)

vy = v =xi€{1,23,..., N}

where a and V represent the speed and acceleration of the UAV, respectively; « is the
guidance curvature; and the prime symbol (') indicates the derivative of the variables
with respect to s, the arc length of the UAV’s flight trajectory, such as how y’ denotes the
derivative of y with respect to s. In this paper, « is used as the guidance input command
to design the guidance law, which can improve the performance of the guidance, to some
extent, by avoiding using the speed value of the UAV during the process of the guidance
law design, especially when the speed is time-varying.
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Figure 1. Planar engagement geometry.

Omitting the derivation process, the dynamic equation of the varying-speed missile is
directly given as follows [30]:

” ” 2 ” oy
r; = (rl- - ria,-)er + (rl-al- —|—2ric7i)e9 = —Kn. (2)

Decomposing the above formula in the LOS frame (e, ey), we have
r— rio'? = xsin(y — ;) 3
rio, 4 2rio] = —x cos(y — Ui)‘

As mentioned before, the guidance command in the arc-length domain is x. The
transformational relation between the curvature command and the lateral acceleration
command can be given directly as

Kk=a/V> (4)

2.1.2. Problem Formulation

Without losing generality, we can suppose that the order of the waypoints is numbered
according to the corresponding path length s¢; as s¢; < s, 1. The corresponding path
length of the ith waypoint can be written directly as

Sf,i =s+ Sgo,[r (5)

where s, ; stands for the corresponding remaining path length to visit the ith waypoint.

Since it is difficult to exactly calculate the value of the remaining path length, it is
generally replaced by its estimated value, 8¢,. As shown in Figure 2, since the purpose of
guidance design is to minimize the ZEM, that is, to make the leading angle tend to zero,
the next flight trajectory of the UAV is generally within AUCW;, which means that the path
to travel is larger than UW;. If UD is the estimated value of $,,, the remaining path length
is expressed by

s T
Sg(),l - COS(’)’—U'D' (6)
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Figure 2. ZEM geometric model.

As a matter of fact, energy consumption is extremely important for UAVs because it
determines the endurance of a UAYV, that is, it determines how long a vehicle can fly. For
this reason, the performance index is taken into consideration as follows:

N-1
[ a2 (8)ds + El fssf/;iﬂ K%(6)ds, s < sgq

N-1 .
[ — /sf,N 2(6)d6 = [ k2(6)dé + El fjf{;ﬂ K2(6)ds, spq <s <sfp @)
i -

f:f’N K2(5)ds, SFN-1 <8< SfN

Similarly, minimizing the performance index is a valuable goal for the multi-objective
optimization problem. It is worth noting that the performance index is a sum of the
energy functions computed in each path length. Hence, finding an analytical solution
for this problem is the main purpose of this paper, that is, we are adopting the given
nonlinear dynamics model and finding the guidance curvature k, which ensures an optimal
performance index and perfect ZEM constraints, as follows:

zi(sf,i) =0, ie[L2...,N] ®)

2.2. Guidance Law Design
2.2.1. Derivation

This section derives the energy-optimal differential geometric guidance law to solve
the generalized optimal waypoint-following problem. As can be seen from Figure 2, the
ZEM can be expressed as

risin(y — o), s <sg;

Zj (Sf,i>/ s > Sf,i (9)

Zi =
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Substituting the second Equation of (1) into (9), the ZEM is obtained as
—rl-zai’, s <sfi
zji = , (10)
Z; (Sf,i)/ s> Sfi

Taking the arc length derivative of (10) results in

Zi:

. { —ri(2rio] +1i0]), s <55, an

0,5 > sy,

Substituting the second Equation of (3) into (11) provides

r;cos(y —o;)x, s < S¢;
z'.:{’ (v =) i (12)

0,5 > sy,
Then, by combining (12) and (6), the nonlinear ZEM dynamics can be acquired as follows:

A . 2 _ . .
o { 8g0,i CO8” (Y — 07)K, s < s¢ . (13)

0,5 > sf,

Taking the assumption of a small leading angle into consideration, i.e., v — o; is small,
we have the approximation as

sin(y — o) =4 —0;, cos(y —0;) = 1, (14)
The linear ZEM dynamics can be obtained by substituting (14) into (13), as follows:
So0iK, S < S¢;
7= & e (15)
0,s>s i

Further, the system in (15) can be written as follows:

z; (sf,i) —zi(s) = /sz/i - (sf,,- — 5)K(5)d(5, s < s, (16)

Introducing the terminal constraint terminal constraints in (8) and substituting them
into (16) provides

zi(s) = /:f/i (sf,i = (S)K(é)d(S, s < s, (17)

According to [27], if the guidance curvature command k is optimal in the energy
consumption, then there are N Lagrange multipliers (A;, i € {1,2,...,N}), so the guidance
curvature k can be expressed as follows:

)\i(sf,i —S), s < Sf,l

A (sf,i — S), Sf1<S=Sf2 (18)

=z 1=

AN(Sf,N — S), SFN-1 < t < SFN
By substituting (18) into (17) and solving the corresponding equation, the Lagrange

multiplier can be obtained. It is worth mentioning that this method can be regarded as
an extension of the Schwartz inequality method for any number of terminal constraints.
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Hence, we consider only the case of s <'s £11n the following derivation, without the loss of
generality. Therefore, substituting (17) into (18) provides

zi(s) = 7 (sf,l- — (5)1(((5)515
= 7 (sgi- 5)]%1 Aj(sgi—6)ds+ NG (s - 5)]%2 Aj(sgi—6)ds

o ST (g 5)}% Aj(sgi —8)ds (19)

N
LA 6
j=1

2 3
SS”rmaX(f/j)sgo,min(i,j) o Sgo,mir\(i,j) :|
5 .

Defining the Lagrange multiplier vector as A = [A1, Ay, ..., AN}T and the ZEM vector
asZ =[z1,23,..., ZN]T, (19) can be given as a compact matrix format, as follows:

GA=2, (20)

where the symmetric matrix G € RN*N can be obtained as

re3 2 3 2 3 ]
Sgo,l sgﬂ/zsgo,l _ Sgo,l sgﬂ:ngu,l _ Sga,l
3 T 6 DY ... f
53 S 52 53 S 52 S3
0,2 80,3%¢0,2 _ 802 §0,N®g0,2 _ go2
3 2 6 e 2 6
G = : 21)
3 2 3
SeoN-1  SgoNSgoN-1  Sgo,N-1
3 2 5 6
. s 20N
L : 3 .

Then, the Lagrange multiplier vector is given by inverting both sides of (20), as follows:
A=Glz (22)

Substituting (22) into (18), the guidance curvature command k in the case of s <'s 1
can be written as

— AT T
K=A [Sgo,lz 5g02s- - - /Sgo,N]

T (23)
= (G_lz) [Sgo,lz 50,27+ -/ Sgo,N]

T

Remark 1. Following a similar procedure, it is easy to obtain the solution in the case
of s > syq. For instance, when sgq < s < sy, the ZEM vector will be reduced by one

dimension and become Z = [z;,z3,...,2zN] T, and then the matrix G € RIN-D*(N=1) i
reduce to

ro3 2 3 2 3 b
Sgo,Z Sgﬂ,3sg0/2 _ sgo/z SSU/ngu,Z . Sgo,Z
5 T ; ~“6 2... , 722 36

Sgo,S 580,45ga,3 o Sgo,S SgD,NSga,S o Sgo,S
3 2 6 T 2 6

G- |- . @4)
3 2 3
Sgo,N—l SgO,ngo,N—l o Sgo,N—l
3 2 s 6
.. SgD,N
L : 3 i
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Hence, the guidance curvature k in the case of sy y <'s < s, can be written as

T

T
K= (G_lz) [Sg0,2/5¢0,3/ -+ - 15go,N]| - (25)

Remark 2. In order to effectively eliminate the deviation caused by the linearization process,
the ZEM is written in a nonlinear form in practice, as follows:

z; = risin(y — 03), (26)

By substituting (26) into (23), the guidance curvature command k, composed of the mea-
sured signals 7;, 7y, and 0;, is obtained. It is worth noticing that (23) converts the linear
terms of the substitution of (26) into the nonlinear expressions, which provides support for
the engineering application of the guidance mentioned above.

2.2.2. Particular Cases
N=1

When the UAV is only required to visit one waypoint, the problem is transformed into
an energy-optimal interception problem. For such special cases, the guidance curvature
(23) can be expressed as

K=M (Sf,l — s). (27)
The matrix G can reduce to a scalar form when N = 1, as follows:
3
s
G =3 28
: 8)
and the Lagrange multiplier can easily be expressed as
3
M= (29)
Sgo,l

Then, the clear guidance curvature command can be obtained by substituting (29) into

(27), as follows:

g = A (30)

S§0,1 ‘
In order to more conveniently analyze the MEWFDGGL, the guidance acceleration
command can be given by substituting (4) into (30), as follows:

a= ?;i (31)
Foon
In the time domain, the ZEM could be signified as the following form:
z; = Vditgfo,i' (32)
Combining (32) and (31) results in
a=23Vo. (33)
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This is consistent with the classical energy optimal PNG. According to the statement
in [31,32], the energy consumption of the PNG with a navigation gain of three is minimal
when there is only a single waypoint to be visited. However, it is also clear from the previous
derivation that when the number of waypoints is greater than two, merely adopting the
PNG to visit each waypoint in turn cannot ensure that the energy consumption is optimal
in the whole process of the guidance.

N=2
Similarly, when a UAV is required to visit two waypoints, the guidance curvature
command k, in the case of s < s £,1, can be expressed as follows:

K= M <5f,1 — s) + A (Sf,z — s). (34)

The matrix G can be written as

3

2
Sgu,l 5g0,25ga,1 _

5 Sgu,l
G= 5. 52 3 3 $3 6 7 (35)
80,2 gol  “gol 90,2
6 3

and the corresponding Lagrange multiplier can be easily given from (22), as follows:

A — 6(2583,0/221+s§0’1zz—35§0/1sg0,222)
1=

Spol (3025501 )2 (453025501 (36)
Ay = 6(580,12173sgglzzl+2530,1zz)

Sgo,1 (sgo/z_sga,l )2 (4530/2_5550,1 ) ’

Then, substituting (36) into (34), the clear guidance curvature command can be ob-
tained as follows:
6 (25?20/221 —Sg0,15¢0,2%1 —sgo/] zz)
B nggu,l (5302~ 5g0,1) (45502 —5g0,1)
_ 6(25302—5g01)5502 (37)
N 5§0,1 (sgﬂllfsgo,l) (45g0/2*5gor1> “

6

" Ggor—s5501) (85502 —5501) 2

From (32), the ZEM can be denoted in the arc-length domain as

z; = 0ls2 (38)

i°go,i’

Then, substituting (38) into (30) and (37), the clear guidance curvature command, in
the case of N = 2, can be obtained as follows:

Kyop + Kooy, s <spq

303, sp1 <8 <spo
where
Ky = 6(25g0,275go/1)5g0,2
1 (Sgo/z_sgo,l ) (4Sgo,2 _Sgu,l)
o (40)
K2 _ Sgo,Z

(5302~ 5g0,1) (45g02—5g01) "

In other words, when s < sy 1, the MEWFDGGL can be regarded as a biased propor-
tional guidance (BPN) that has a time-varying navigation gain. As mentioned earlier in
(39), the first term represents the proportional guidance term for the first waypoint, and the
second term represents the influence term of the second waypoint on the first one.
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Remark 3. Following a similar procedure, it is easy to obtain the solution, in the case of
N > 2. For instance, when N = 3, the clear guidance curvature command is given as

Kl(T{ + Kz(fé + Kg,(fé, s < Sf1
K= KZIU’é + K3/(7'é, Sf1 <SS < Sf2- 41)
307}, Sp2 <8 <sp3

According to Equation (41), the final form of the MEWFDGGL is a piecewise BNG law
based on the waypoints segment, and its proportional navigation gain changes with time.
This also shows that the MEWFDGGL is generic because it reduces to the classical PNG
when there is only one waypoint to be visited.

2.2.3. Improvement

For a waypoint-following task with N waypoints, it follows from Equation (21) that
implementing the MEWFDGG requires the calculation of the inverse of the matrix G. We
notice that the size of matrix G is proportional to the number of waypoints to be traveled.
Therefore, a large number of waypoints poses a great challenge to the computing power
of an airborne computer. Hence, an algorithm based on finite waypoint information is
proposed to improve the applicable scope of the guidance law and make it more suitable
for the general situation of an arbitrary number of waypoints.

Without losing generality, we can assume that the UAV has visited the previous
i-1th waypoint at the current moment and is required to visit the i-th waypoint to the
nth waypoint sequentially. After several simulation analyses, it is found that the energy
consumption is not significantly different from that of the MEWFDGG when adopting only
two waypoints at one time to generate the guidance command. Therefore, the method
proposed in this paper can be improved to design a suboptimal minimum-effort waypoint-
following differential geometric guidance law (SMEWFDGGL), by considering only two
waypoints.

Therefore, when i < N, the guidance command of SMEWFG considers only two
waypoints, and it can be expressed as follows:

1 T T
k=(672) [sq0ir5g0in] ", (42)
where s . s
sgo,i 5ga,i+15g0,i _ sgo,i
G= 23 3 24 6 (43)
Sgori+1sgo,i - Sgo,i Sgo,i+1 !
2 6 3
Z=[zi,zi11]" 44
= [zi,zi41] - (44)

In order to effectively eliminate the deviation caused by the linearization process, the
ZEM is written in a nonlinear form in practice, as follows:

Z= [1’1' Sin(’)’ - 0-1')/ Tit1 Sin(')’ - Ui+1)]Tf (45)
or T

The algorithm can be expressed as follows:
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Algorithm 1:
The suboptimal minimum-effort waypoint-following differential geometric guidance

Input: The relative range and LOS angle between the UAV and all waypoints,
r=|[r,r2,...,t,...,rn]and o = [0q,09,...,0;,...,0N], and the UAV speed V.

Require: r; < rj;1.

Denote: k = 1.

Step 1: Compute the remaining path length sg,. If k < i, proceed to Step 2; otherwise, proceed to
Step 3.

Step 2: 5o = 0, k = k + 1. Return to Step 1.

Step 3: If k < N, proceed to Step 4; otherwise, proceed to Step 5.

Step 4: Compute the remaining path length s¢, s using Equation (6) (k = k + 1). Return to Step 1.
Step 5: s¢o = [sgo,l,sgo,z, . .,ng,N], [N] £ {1,2,3,...,N}

Step 6: Determine the UAV’s current position. If i < N, proceed to Step 7; otherwise, proceed to
Step 8.

Step 7: Compute the acceleration command k using Equation (42) and proceed to Step 9.

Step 8: k = 3z, /52, = U{séol1

go,1
Step 9: Return k

According to Step 7 in Algorithm 1, when the UAV passes a waypoint, the guidance
command is updated, the information of this waypoint is discarded, and, hence, the
guidance command may experience an abrupt change at the very moment of passing.
However, this does not cause any unacceptably bad influence on the guidance law, because
the classical PN could also be used as a waypoint-following guidance law in contrast, and
it would only use the information of one waypoint each time (as its target). The guidance
command of PN definitely greatly changes when the UAV passes this waypoint. This is
seen in the simulation cases in Section 3.

3. Numerical Simulation Results

The MEWFDGGL designed in Section 2 is analyzed and demonstrated using numerical
simulations in this section. The numerical simulations are conducted for two different
scenarios: when the speed of the UAV changes periodically and when it is influenced by
randomly varying wind. In all the following simulations, the UAV’s initial flight path angle
is 30°, and there are eight waypoints to be visited. The UAV’s initial location is at the origin
of the reference frame. The inertial positions of the eight waypoints to be visited are listed
in Table 1.

Table 1. Inertial positions of the eight waypoints.

Waypoint Number Inertial Position (m)

1 (1000, 500)
(2000, 750)
(2500, 1000)
(4000, 1500)
(6000, 2000)
(7500, 1500)
(9000, 1000)
(11,000, 0)

IO UGl Wi

3.1. Performance of the UAV under Varying Speeds

This subsection primarily verifies the performance of the MEWFDGGL and the
SMEWFDGGL when the speed of the UAV periodically changes. As is known, due to
the effect of actuator delay or resistance, the speed of a UAV does not always remain
constant during flight. In practice, the actual speed of a UAV typically fluctuates around
the expected speed during the implementation of speed control. Hence, in the considered
scenario in this subsection, the UAV’s speed V = 30 — 10 cos 0.8t periodically changes, as
shown in Figure 3.
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Figure 3. The real-time speed of the UAV.

3.1.1. MEWFDGGL

Figure 4a compares the flight trajectories of the UAV guided by both the MEWFDGGL
and the MEWFG. It can be clearly seen in Figure 4a that the UAV can follow the desired
waypoints when guided by these two guidance laws. Although the flight trajectories
largely coincided, it can still be seen that the MEWFDGGL is better than the MEWFG law,
especially near the fifth waypoint. The UAV’s flight path angle is presented in Figure 4b,
which clearly shows that the UAV guided by the MEWEFG takes small, sharp turns, while
the flight guided by the MEWFDGGL has a smooth path. For comparison purposes, the
guidance curvature command in the arc-length domain is converted into the guidance
acceleration command in the time domain. A comparison of the acceleration commands
between the MEWFG and the MEWFDGGL is presented in Figure 4c. As exhibited in
the diagram, when the UAV guided by the MEWFG passes the waypoint, an acceleration
command occurs, which suddenly grows larger, whereas the variation in the command
obtained from the MEWFDGGL is quite gentle. The reason for this phenomenon can
be found in the comparison shown in Figure 4g,h. The periodic variation in the UAV’s
speed leads to the oscillation in the remaining flight time, while the linear variation in the

i 40

remaining path length ensures the stability of the calculation.
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Figure 4. Cont.
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Figure 4. Compared results of the MEWFDGGL and the MEWFG when the UAV’s speed changes
periodically. (a) Flight trajectory. (b) Flight path angle. (c) Guidance acceleration command. (d) Per-
formance index of a. (e) Guidance curvature command. (f) Performance index of k. (g) Remaining

flight time. (h) Remaining path length.

The guidance curvature command and its quantitative energy consumption obtained
from the MEWFDGGL are exhibited in Figure 4e,f. By comparing it to Figure 4c,e, we can
observe that the derivation that is completely independent of the UAV’s speed ensures the
smoothness of the guidance curvature command. The corresponding quantitative energy
consumption of the guidance acceleration commands obtained from the MEWFDGGL and
the MEWEFG are compared in Figure 4d. As shown in Figure 4d, we can clearly observe
that the UAV guided by the MEWFDGGL requires less energy consumption than the flight
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guided by the MEWFG. Therefore, the UAV guided by the MEWFDGGL can be reasonably
considered to have better endurance in scenarios where its speed changes. The comparison
results of the performance of the proposed guidance laws are shown in Table 2.

Table 2. Performance comparison of the MEWFDGGL and the MEWFG under the varying speeds
of UAVs.

Guidance MEWEFG MEWFDGGL
Maximum ZEM (m) 0.02 0.0018
Maximum acceleration command (m/s?) 10.17 1.891
Energy consumption 80.09 59.71

3.1.2. SMEWFDGGL

In order to better prove the effectiveness of the improved guidance law, the MEWFDGGL
and the optimal guidance law (OGL) of a single point are used as the control group for
comparative analysis. The OGL can be expressed as follows:

K; = 3z;/ séo,i 47)
which is essentially the optimal proportional guidance law in the arc-length domain.

In this scenario, the flight trajectories of UAVs under the three guidance laws are
shown in Figure 5a. The UAVs guided by the different guidance laws can successively visit
the target waypoints, with small error, and they have largely coincident trajectories, which
indicates that the velocity variations along the velocity directions have little effect on the
performances of all the guidance laws in the arc-length domain. A comparison of the flight
path angles is shown in Figure 5b. As shown in Figure 5b, the UAV guided by the OGL
makes a sharp turn when passing through the current waypoint, while the UAVs guided
by the SMEWFDGGL and the MEWFDGGL show good performances, and all of them can
ensure smooth flight trajectories.

A comparison of the acceleration command and the curvature command between
the three guidance laws is presented in Figure 5c,e. As can be seen in Figure 5c,e, the
curvature command under the OGL shows discontinuity when passing through the way-
point. Although the UAV guided by the SMEWFDGGL cannot produce a continuous
curvature command compared with the UAV guided by the MEWFDGGL, the amplitude of
discontinuity is obviously smaller than that of the UAV guided by the OGL, which has little
influence on the implementation of the guidance. The quantitative energy consumption
levels of the three guidance laws are compared in Figure 5d,f. In Figure 5d,f, the UAV
guided by the OGL consumes the most energy—approximately three times as much as
the UAVs guided by the MEWFDGGL and the SMEWFDGGL. The energy consumption
levels under the MEWFDGGL and the SMEWFDGGL are not much different, with the
consumption under the SMEWFDGGL being slightly more (approximately 10%) than that
under the MEWFDGGL. The comparison results of the performances of the proposed
guidance laws are shown in Table 3.

Table 3. Performance comparison of the SMEWFDGGL under the varying speeds of UAVs.

Guidance OGL MEWFDGGL SMEWFDGGL
Maximum ZEM (m) 0.00001 0.0018 0.0015
Maximum acceleration command (m/s?) 4.552 1.891 2.271
Energy consumption 199.5 59.71 66.21
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Figure 5. The performance of the SMEWFDGGL under the varying speeds of the UAV. (a) Flight
trajectory. (b) Flight path angle. (c) Guidance acceleration command. (d) Performance index of a.

(e) Guidance curvature command. (f) Performance index of k.

3.2. Performance under the Influence of the Wind

This subsection primarily verifies the performance of the MEWFDGGL when the
speed of the UAV is influenced by randomly varying wind. As is known, for aerial vehicles,
a major factor that can affect their speed is wind. In this subsection, we simulate the
direction of the wind with a uniformly generated random number, i.e., east, south, west,
and north, and the size of the wind is simulated by a normally distributed random number
with a standard deviation of 5 and a variance of 1. The UAV’s speed, as influenced by
randomly varying wind, is shown in Figure 6.
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Figure 6. The real-time speed of the UAV, as influenced by randomly varying wind.

3.2.1. MEWFDGGL

Figure 7a compares the flight trajectories of the UAVs guided by the MEWFDGGL and
the MEWFG when the UAVs’ speeds are influenced by randomly varying wind. It can be
clearly seen in Figure 7a that, although both of the UAVs can follow the desired waypoints
guided by the two guidance laws, the flight trajectory obtained from the MEWFDGGL
is closer to an ideal approaching course, especially near the fifth and sixth waypoints.
This UAV’s flight path angle is presented in Figure 7b. Due to the influence of randomly
varying wind, both of the curves obtained from the MEWFDGGL and the MEWFG are not
smooth, which is inevitable. For comparison purposes, the guidance curvature command
in the arc-length domain is converted into the guidance acceleration command in the
time domain. A comparison of the acceleration commands between the MEWFG and the
MEWEFDGGL is presented in Figure 7c. As can be seen in the chart, when the UAV guided
by the MEWFG passes the waypoint, an acceleration command occurs, which suddenly
grows larger, whereas the variation in the command obtained from the MEWFDGGL is
quite gentle. The reason for this phenomenon is similar to that in the previous section.
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Figure 7. Cont.
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Figure 7. Comparison of the results of the MEWFDGGL and the MEWFG when the UAVs’ speeds
are influenced by randomly varying wind. (a) Flight trajectory. (b) Flight path angle. (c) Guidance ac-
celeration command. (d) Performance index of a. (e) Guidance curvature command. (f) Performance
index of k. (g) Remaining flight time. (h) Remaining path length.

The guidance curvature command and its quantitative energy consumption obtained
from the MEWFDGGL when the UAV’s speed is influenced by randomly varying wind are
shown in Figure 7e,f, respectively. By comparing Figures 4e and 7e, it can be observed that
the guidance curvature commands show random sharp turns, because the directions of the
UAVs’ speeds are affected by randomly varying wind. The guidance curvature command
may require adjustments at any time to ensure that an optimal trajectory is generated. The
quantitative energy consumption levels of the guidance acceleration commands obtained
from the MEWFDGGL and the MEWFG are compared in Figure 7d. As exhibited in
Figure 7d, we can clearly observe that the UAV guided by the MEWFDGGL consumes
approximately 50% less energy than the UAV guided by the MEWEFG in the considered
scenarios. Hence, it is reasonable to consider that the UAV guided by the MEWFDGGL
is good at overcoming the effects of randomly varying wind and has a better endurance
in the considered scenario. The comparison results of the performances of the proposed
guidance laws are shown in Table 4.

Table 4. Performance comparison of the MEWFDGGL and the MEWFG when the UAVs’ speeds are
influenced by randomly varying wind.

Guidance MEWFG MEWFDGGL
Maximum ZEM (m) 0.1507 0.0488
Maximum acceleration command (m/s?) 424 5.247
Energy consumption 802.2 388.1

3.2.2. SMEWFDGGL

When a UAV’s speed is influenced by randomly varying wind, the variation in the
UAV’s velocity is no longer limited to the direction of that UAV’s velocity. As shown in
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Figure 8b, under the influence of randomly varying wind, the velocity direction of the UAV
constantly changes, and the flight path angles of the UAVs under the three guidance laws
are in discontinuous fluctuation. As can be seen in Figure 8a, compared with the ideal
situation, the flight trajectory when a UAV’s speed is influenced by randomly varying wind
has obvious jitter and a small turning point, while the flight trajectories under the guidance
of the MEWFDGGL and the SMEWFDGGL are relatively smoother.
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Figure 8. The performance of the UAV guided by the SMEWFDGGL under the influence of randomly
varying wind. (a) Flight trajectory. (b) Flight path angle. (c) Guidance acceleration command.
(d) Performance index of a. (e) Guidance curvature command. (f) Performance index of k.

The guidance curvature command and its quantitative energy consumption obtained
from the MEWFDGGL are shown in Figure 8e,f, respectively. When a UAV’s speed is
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influenced by randomly varying wind, the curvature instruction of that UAV’s guidance
also shows discontinuity. If the sudden change value generated during the ill-conditioned
solution of the guidance command is ignored, then the guidance energy consumption
levels under the three guidance laws have little difference, which is consistent with the
theoretical conclusion that the MEWFDGGL's guidance energy consumption level is the
lowest and that the SMEWFDGGL's guidance energy consumption level is the second-
lowest, although both of them are far lower than the guidance energy consumption level of
the OGL. The comparison results of the performances of the proposed guidance laws are
shown in Table 5.

Table 5. Performance comparison of the SMEWFDGGL under the influence of randomly vary-

ing wind.
Guidance OGL MEWFDGGL SMEWFDGGL
Maximum ZEM (m) 0.001 0.04883 0.0532
Maximum acceleration command (m/s?) 9.79 5.247 7.336
Energy consumption 754.8 388.1 427.7

4. Experiment Verification

Using a small quadrotor UAV, the experimental verification of the proposed guidance
laws is presented in this section. The outdoor experimental field is shown in Figure 9.

Figure 9. The small quadrotor UAV and outdoor experimental field.

Considering the UAV’s performance and the limitations of the experimental site, the
UAV starts from the take-off point and successively visits three target waypoints. The
coordinates of the take-off point are (0,0), the initial flight path angle of the UAV is 60°, and
the UAV’s initial velocity is 2 m/s. The specific position coordinates of all waypoints are
shown in Table 6.

Table 6. Inertial positions of the three waypoints in the experimental scenario.

Waypoint Number Inertial Position (m)
1 (30, 30)
2 (70, 25)
3 (90, 10)

4.1. MEWFDGGL

As can be seen in Figure 10a, the small quadrotor UAV guided by the two guidance
laws can successfully visit the waypoints in the actual flight scenario, but the trajectory
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of the UAV guided by the MEWFDGG is significantly smoother, and its ZEM is smaller.
A comparison of the acceleration commands between the MEWFG and the MEWFDGGL
is presented in Figure 10b. Theoretically, the guidance acceleration instructions obtained
by the two guidance laws are continuous. However, in the actual flight process, the UAV
cannot visit the target waypoint along the completely ideal trajectory, which makes the
UAV’s acceleration command discontinuous. It is worth emphasizing that both of the
guidance laws are applicable to small quadrotor UAvs, but the latter has a more stable
performance.
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Figure 10. The performance of the MEWFDGGL in the experimental scenario. (a) Flight trajectory.
(b) Guidance acceleration command. (c¢) Performance index of a. (d) The real-time speed of the UAV.

The quantitative energy consumption levels of the two guidance laws are compared
in Figure 10c. As shown in Figure 10c, the energy consumption level of the UAV guided by
the MEWFDGGL is reduced by approximately 40% compared to that of the UAV guided
by the MEWFGL. The comparison results of the performances of the proposed guidance
laws are shown in Table 7.

Table 7. Performance comparison of the MEWFDGGL and the MEWEG in the experimental scenario.

Guidance MEWEG MEWFDGGL
Maximum ZEM (m) 0.25 0.06
Maximum acceleration command (m/s?) 0.843 0.1173
Energy consumption 0.4753 0.3176
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4.2. SMEWFDGGL

In this scenario, the flight trajectories of the UAVs under the three guidance laws
are shown in Figure 11a. From the flight trajectories, we can see that the UAV guided
by the MEWFDGG has a smoother flight trajectory than that of the UAV guided by the
SMEWFDGGL, which obviously consumes less energy than the UAV guided by the OGL.
The experimental results show that the energy consumption levels of the UAVs guided by
the MEWFDGG and the SMEWFDGG are similar, and they are much lower than that of the
UAV guided by the OGL. The experimental results are consistent with both the simulation
results and the theoretical conclusions.
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Figure 11. The performance of the SMEWFDGGL in the experimental scenario. (a) Flight trajectory.

(b) Flight path angle. (c) Guidance acceleration command. (d) Performance index of a. (e) Guidance

curvature command. (f) The real-time speed of the UAV.
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When carefully observing Figure 11d, it is not difficult to see that the guidance energy
consumption level and the track angle of the UAV under the guidance of the MEWFDGGL
remain in an approximately straight line for the last 20 s, while the guidance energy con-
sumption levels nearly stay the same and do not increase. This is because the MEWFDGGL
takes into account the influence of all waypoint constraints during the guidance process.
When the UAV reaches the second waypoint, the speed direction of the UAV is adjusted to
the direction of the last waypoint. However, the OGL cannot be used to adjust the flight
angle of the UAV between every two waypoints, which is the reason why the MEWFDGGL
can achieve global energy optimization. The performance comparison results of three
guidance laws are shown in Table 8.

Table 8. Performance comparison of the SMEWFDGGL in the experimental scenario.

Guidance OGL MEWFDGGL SMEWFDGGL
Maximum ZEM (m) 0.02 0.06 0.17
Maximum acceleration command (m/s2) 0.2086 0.2177 0.3029
Energy consumption 0.4146 0.3174 0.3423

5. Conclusions

A minimum-effort waypoint-following differential geometric guidance law (MEWFDGGL)
and its suboptimal form for varying-speed endo-atmospheric flight vehicles were proposed
in this paper. The optimal guidance problem was transformed into an optimal space curve
design problem using the differential geometric guidance model. The speed changes in
endo-atmospheric flight vehicles were theoretically decoupled from the guidance problem,
rather than the constant speed hypothesis being directly adopted. It was theoretically
proven that the proposed MEWFDGGL is a globally energy-optimal guidance law; the
suboptimal MEWFDGGL was proposed in order to solve the problems of complexity and
high computation burden, and it is advantageous for improving the autonomous flight
capability of small, low-cost endo-atmospheric flight vehicles. Finally, in comparison with
the original MEWFG law, the nonlinear numerical simulations and experimental verifica-
tions show that the MEWFDDGGL is more efficient for eliminating the adverse influences
on the guidance performance caused by a UAV’s speed changes. It is worth noting that
the MEWFDDGGL proposed in this paper does not break through some of the limitations
faced by the MEWEFG. For example, the optimality of the MEWFDDGGL is affected by the
estimation accuracy of the remaining path length. However, for theoretical research, the
proposed guidance law may also be extended to maneuvering target interception scenarios
and salvo attack scenarios.

Author Contributions: Conceptualization, K.L.; Methodology, X.Q., K.L., Y.L. (Yangang Liang) and
Y.L. (Yuanhe Liu); Software, X.Q.; Formal analysis, X.Q.; Investigation, X.Q.; Resources, X.Q.; Data
curation, X.Q.; Writing—original draft, X.Q.; Writing—review & editing, X.Q., K.L., Y.L. (Yangang
Liang) and Y.L. (Yuanhe Liu); Visualization, X.Q.; Supervision, K.L., Y.L. (Yangang Liang) and Y.L.
(Yuanhe Liu); Project administration, X.Q., K.L. and Y.L. (Yangang Liang). All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by [The National Natural Science Foundation of China] grant
number [No. 12002370] and the APC was funded by [The National Natural Science Foundation of
China] grant number [No. 12002370].

Data Availability Statement: The authors don't create a link to the research data for this study.

Conflicts of Interest: The authors declare no conflict of interest.

46



Drones 2023, 7, 369

References

1. He,S,; Lee, C.-H.; Shin, H.-S.; Tsourdos, A. Optimal Guidance and Its Applications in Missiles and UAVs, 1st ed.; Springer: Cham,
Switzerland, 2020; pp. 151-173.

2. Beard, RW,; Ferrin, J.; Humpherys, J. Fixed Wing UAV Path Following in Wind With Input Constraints. IEEE Trans. Control. Syst.
Technol. 2014, 22, 2103-2117. [CrossRef]

3. Ullah, N.; Mehmood, Y.; Aslam, J.; Shaoping, W.A.N.G.; Phoungthong, K. Fractional order adaptive robust formation control of
multiple quad-rotor UAVs with parametric un-certainties and wind disturbances. Chin. J. Aeronaut. 2022, 35, 204-220. [CrossRef]

4. Piprek, P; Hong, H.; Holzapfel, F. Optimal trajectory design accounting for the stabilization of linear time-varying error dynamics.
Chin. |. Aeronaut. 2022, 35, 55-66. [CrossRef]

5. Pang, B; Dai, W.; Hu, X; Dai, F.; Low, K.H. Multiple air route crossing waypoints optimization via artificial potential field method.
Chin. |. Aeronaut. 2020, 34, 279-292. [CrossRef]

6. Medagoda, E.D.B.; Gibbens, P.W. Synthetic-Waypoint Guidance Algorithm for Following a Desired Flight Trajectory. J. Guid.
Control. Dyn. 2015, 33, 601-606. [CrossRef]

7. Wang, X; Tan, G.; Dai, Y,; Lu, F; Zhao, J. An Optimal Guidance Strategy for Moving-Target Interception by a Multirotor
Unmanned Aerial Vehicle Swarm. IEEE Access 2020, 8, 121650-121664. [CrossRef]

8. Sun, G.; Wen, Q.; Xu, Z; Xia, Q. Impact time control using biased proportional navigation for missiles with varying velocity. Chin.
J. Aeronaut. 2020, 33, 956-964. [CrossRef]

9.  Li,K.-B.; Shin, H.-S,; Tsourdos, A.; Tahk, M.-]. Performance of 3-D PPN Against Arbitrarily Maneuvering Target for Homing
Phase. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3878-3891. [CrossRef]

10. Li, K.-B.; Shin, H.-S.; Tsourdos, A.; Tahk, M.-]. Capturability of 3D PPN Against Lower-Speed Maneuvering Target for Homing
Phase. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 711-722. [CrossRef]

11.  Kebo, L.I; Zhihui, B.A.L; Hyo-Sang, S.H.I.N.; Tsourdos, A.; Min-Jea, T.A.H.K. Capturability of 3D RTPN guidance law against
true-arbitrarily ma-neuvering target with maneuverability limitation. Chin. J. Aeronaut. 2022, 35, 75-90.

12. Zhao, Y.; Sheng, Y.; Liu, X. Trajectory reshaping based guidance with impact time and angle constraints. Chin. J. Aeronaut. 2016,
29,984-994. [CrossRef]

13.  Kim, Y.-W,; Kim, B.; Lee, C.-H.; He, S. A unified formulation of optimal guidance-to-collision law for accelerating and decelerating
targets. Chin. |. Aeronaut. 2022, 35, 40-54. [CrossRef]

14. Qi, N.; Sun, Q.; Zhao, J. Evasion and pursuit guidance law against defended target. Chin. |. Aeronaut. 2017, 30, 1958-1973.
[CrossRef]

15. He,S.; Lee, C.-H.; Shin, H.-S.; Tsourdos, A. Optimal three-dimensional impact time guidance with seeker’s field-of-view constraint.
Chin. J. Aeronaut. 2021, 34, 240-251. [CrossRef]

16. Kyaw, PT,; Le, A.V,; Veerajagadheswar, P; Elara, M.R.; Thu, T.T.; Nhan, N.-H.K.; Van Duc, P.; Vu, M.B. Energy-Efficient Path
Planning of Reconfigurable Robots in Complex Environments. IEEE Trans. Robot. 2022, 38, 2481-2494. [CrossRef]

17. Yin, Q.; Chen, Q.; Wang, Z. Energy-Optimal Waypoint-Following Guidance for Gliding-Guided Projectiles. In Proceedings of the
21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12-15 October 2021; IEEE:
New York, NY, USA, 2021; Volume 34, pp. 1477-1482.

18.  Chen, Y;; Yu, J.; Mei, Y.; Zhang, S.; Ai, X,; Jia, Z. Trajectory optimization of multiple quad-rotor UAVs in collaborative assembling
task. Chin. . Aeronaut. 2016, 29, 184-201. [CrossRef]

19. Wang, X,; Yang, Y.; Wang, D.; Zhang, Z. Mission-oriented cooperative 3D path planning for modular solar-powered aircraft with
energy optimization. Chin. J. Aeronaut. 2022, 35, 98-109. [CrossRef]

20. Zhou, Y;Su, Y,; Xie, A.; Kong, L. A newly bio-inspired path planning algorithm for autonomous obstacle avoidance of UAV. Chin.
J. Aeronaut. 2021, 34, 199-209. [CrossRef]

21. Jeon, L-S.; Lee, J.-I. Optimality of Proportional Navigation Based on Nonlinear Formulation. IEEE Trans. Aerosp. Electron. Syst.
2010, 46, 2051-2055. [CrossRef]

22.  Kim, T.-H.; Park, B.-G. Rapid Homing Guidance Using Jerk Command and Time-Delay Estimation Method. IEEE Trans. Aerosp.
Electron. Syst. 2022, 58, 729-742. [CrossRef]

23. Shaferman, V.; Shima, T. Linear Quadratic Guidance Laws for Imposing a Terminal Intercept Angle. J. Guid. Control. Dyn. 2008,
31, 1400-1412. [CrossRef]

24. Palumbo, N.E; Blauwkamp, R.A ; Lloyd, ].M. Modern homing missile guidance theory and techniques. Johns Hopkins APL Tech.
Dig. 2010, 29, 42-59.

25. He, S.; Lee, C.-H. Optimality of Error Dynamics in Missile Guidance Problems. ]. Guid. Control. Dyn. 2018, 41, 1620-1629.
[CrossRef]

26. He,S.; Lee, C.-H.; Shin, H.-S.; Tsourdos, A. Minimum-Effort Waypoint-Following Guidance Law. J. Guid. Control. Dyn. 2019, 32,
151-173. [CrossRef]

27. Kobayashi, S. Differential Geometry of Curves and Surfaces, 1st ed.; Springer: Cham, Switzerland, 2019.

28. Lu, P. Intercept of Nonmoving Targets at Arbitrary Time-Varying Velocity. J. Guid. Control. Dyn. 1998, 21, 176-178. [CrossRef]

29. Li, K,; Liang, Y;; Su, W.; Chen, L. Performance of 3D TPN against true-arbitrarily maneuvering target for exoat-mospheric

interception. Sci. China Technol. Sci. 2018, 61, 1161-1174. [CrossRef]

47



Drones 2023, 7, 369

30. Li, K.B,;Su, W.S,; Chen, L. Performance analysis of differential geometric guidance law against high-speed target with arbitrarily
maneuvering acceleration. Proc. Inst. Mech. Eng. Part G-]. Aerosp. Eng. 2019, 233, 3547-3563. [CrossRef]

31. Li, K.B,; Su, WS.; Chen, L. Performance analysis of realistic true proportional navigation against maneuvering targets using
Lyapunov-like approach. Aerosp. Sci. Technol. 2017, 69, 333-341. [CrossRef]

32.  Shin, H.S,; Li, K.B. An Improvement in Three-Dimensional Pure Proportional Navigation Guidance. IEEE Trans. Aerosp. Electron.
Syst. 2021, 57, 3004-3014. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

48



. drones

Article

A Dual Aircraft Maneuver Formation Controller for MAV/UAV
Based on the Hybrid Intelligent Agent

Luodi Zhao 123, Yemo Liu %, Qiangqiang Peng * and Long Zhao

Citation: Zhao, L.; Liu, Y.; Peng, Q.;
Zhao, L. A Dual Aircraft Maneuver
Formation Controller for MAV /UAV
Based on the Hybrid Intelligent
Agent. Drones 2023, 7,282. https://
doi.org/10.3390/drones7050282

Academic Editor: Shiva Raj Pokhrel

Received: 28 February 2023
Revised: 12 April 2023
Accepted: 18 April 2023
Published: 22 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2,3,%

School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
luodizhao@buaa.edu.cn

Digital Navigation Center, Beihang University, Beijing 100191, China

Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China
Beijing Aerospace Automatic Control Institute, Beijing 100854, China

*  Correspondence: buaa_dnc@buaa.edu.cn

=W N

Abstract: This paper proposes a hybrid intelligent agent controller (HIAC) for manned aerial vehicles
(MAV)/unmanned aerial vehicles (UAV) formation under the leader—follower control strategy. Based
on the high-fidelity three-degrees-of-freedom (DOF) dynamic model of UAV, this method decoupled
multiple-input-multiple-output (MIMO) systems into multiple single-input-single-output (SISO)
systems. Then, it innovatively combined the deep deterministic policy gradient (DDPG) and the
double deep Q network (DDQN) to construct a hybrid reinforcement learning-agent model, which
was used to generate onboard desired state commands. Finally, we adopted the dynamic inversion
control law and the first-order lag filter to improve the actual flight-control process. Under the
working conditions of a continuous S-shaped large overload maneuver for the MAYV, the simulations
verified that the UAV can achieve accurate tracking for the complex trajectory of the MAV. Compared
with the traditional linear quadratic regulator (LQR) and DDPG, the HIAC has better control efficiency
and precision.

Keywords: MAV /UAV; formation control; hybrid reinforcement learning; hybrid intelligent agent

1. Introduction

Aiming at increasingly fast-paced and high-intensity air combat, the use of MAVs as
combat operations leaders with a certain number of UAVs as wingers to form a hybrid
formation of UAV/MAV has become the development trend for future air confrontations.
Among them, the two-aircraft formation consisting of an MAV and a UAV is one of the
most typical combat styles. In MAV/UAYV formations, the unmanned system must be
able to share information and carry out cooperative operations with the manned systems
across systematic boundaries [1]. The Fast Lightweight Autonomy (FLA) Program by
the Defense Advanced Research Projects Agency (DARPA) has developed an advanced
algorithm that enables an MAV or a UAV to operate autonomously without a human
operator, the Global Positioning System (GPS), or any data resources. DARPA’s Lifelong
Learning Machines (L2M) Project also aims to develop new machine learning methods
that enable unmanned systems to continuously adapt to new environments and remember
what they have learned [2]. Meanwhile, the U.S. Air Force’s Loyal Wingman Program
aims to enhance the autonomy of UAVs and improve their combat capabilities in complex
war environments [3]. Moreover, the recently proposed Skyborg program is working on
the combination of manned and unmanned combat aerial vehicles. Therefore, improving
the capability of autonomous flight control has become an important direction for the
development of future UAV technology.

One of the research hotspots of UAV autonomous control capability is the formation
flight-control problem [4]. In terms of the traditional design of the formation controller,
Ref. [5] proposed a sliding mode controller for MAV /UAV formation flights based on a
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layered architecture. However, it makes extensive simplifications on the strong nonlinear
dynamic model of MAV /UAVs, and was only validated by simulations for flat trajectories.
Ref. [6] considered sensor noise and developed a leader—follower formation PID controller
for multi-robots, which can achieve better performance in limiting position deviations.
Furthermore, Ref. [7] proposed a parallel approach control law for fixed-wing UAV for-
mations under the leader—follower strategy. Ref. [8] referred to an idea of multi-channel
decoupling that split the MIMO system into multiple SISO systems and used sliding mode
control to track the reference trajectory, which can be further applied to formation-control
problems. Refs. [9,10] proposed a consensus-based multiple aircraft cooperative formation
control method, but the consensus theory analysis was highly dependent on the linearized
dynamic model, which limited its further application in a complex nonlinear dynamic
system. Refs. [11,12] developed a formation controller where the commands were gen-
erated independently of the dynamic model, decreasing the control precision in extreme
working conditions. Refs. [13,14] considered the confrontation situation and adopted pre-
defined maneuver strategy collections, taking typical maneuvers as the basic units and
building a collection of maneuver strategies with free combinations of various basic units.
However, due to the model uncertainty and non-cooperative environment, this method
hardly dealt with complex working conditions. Therefore, the intelligent agent method has
become a novel research trend because of its weak model dependence and strong ability in
terms of strategy exploration. Refs. [15,16] adopted deep neural networks to learn aircraft-
maneuvering strategies and made progress in enhancing the autonomous maneuvering
capability of UAVs. However, UAV formation control is a high-dimensional dynamical
control problem with tightly coupled variables. When traditional neural networks learn
such complex behaviors, they cause problems such as low training efficiency and difficulty
in stable convergence [17]. Among the novel neural networks, the double deep Q network
(DDQN) algorithm has shown good performance in control problems with discrete action
sets by fitting the value functions of state actions through neural networks [18-20], but it
cannot be applied to control problems with continuous variables. Based on the determinis-
tic policy gradient (DPG) algorithm, DeepMind proposed the deep deterministic policy
gradient (DDPG) algorithm which is proven to perform well on many kinds of continuous
control problems [21-23]. However, in the field of aircraft control, the large variation in the
angle of attack commands will increase the load on the attitude control loop [24]. Mean-
while, when it comes to complex tasks with multiple continuous control variables problems,
DDPG has problems with unstable networks and low exploration efficiency [25-28]. For
the above dilemma, some scholars have turned to hybrid reinforcement learning methods
in recent years. By adding discrete “meta-actions” to continuous control problems, Ref. [29]
partially solved the reinforcement learning traps and improved exploration efficiency. The
experiments verified its superiority to the traditional continuous strategy algorithm in
some cases. [30] proposed the parametrized deep Q-network for the hybrid action space
without approximation or relaxation, which provides a reference for solving the hybrid
control problem.

Based on the above analysis, it is obvious that the formation controller must be able to
better adapt to complex flight conditions in future confrontation situations, e.g., continuous
large overload maneuvers for the MAYV, etc. Therefore, inspired by [29], we propose
a hybrid reinforcement intelligent agent controller based on the decoupling of multi-
channels, which can effectively solve the problem of formation-tracking under continuous
maneuvering conditions. It should be emphasized that when designing controllers based
on artificial intelligent methods, especially when the reinforcement learning controller
is directly applied to the generation of underlying flight-control commands, the lack of
flight dynamic constraints can easily bring about problems. Due to the lack of dynamic
constraints, the attitude control system cannot quickly track the commands, leading to
flight instability. Therefore, this paper introduced the dynamic inversion controller and the
first-order lag filter to the hybrid reinforcement learning agent to enhance the smoothness
and executability of control commands.
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In summary, the main contributions of this paper are as follows:

(1) A hybrid intelligent agent was designed based on the novel concept of “meta-
action” to further enhance formation control performance. The hybrid intelligent agent
combined DDPG and DDQN according to the specific formation control targets;

(2) The framework of the HIAC was developed that combined the dynamic inversion
controller and the first-order lag filter with the hybrid intelligent agent to effectively
overcome the common drawbacks of reinforcement learning;

(3) The superiority of the HIAC method was validated with experiments of nominal
conditions. Monte Carlo simulations with different initial conditions were then conducted
to verify the adaptability of the HIAC.

The organization of this paper is as follows: Section 2 establishes the UAV dynamic
model and formation-control targets. Section 3 designs the novel formation controller HIAC
based on the DDPG/DDQN hybrid intelligent agent. The dynamic inversion controller
and first-order lag filter are introduced to the framework of the HIAC as well. Section 4
conducts the experiments of nominal conditions and 100 Monte Carlo simulations with
varying initial conditions. Finally, we summarize the research conclusion of this paper in
Section 5.

2. Mathematical Modeling
2.1. UAV Dynamic Model

The main concern in dual aircraft formation flights is the real-time position, velocity,
and attitude of the two aircraft, so it is necessary to establish a dynamic model of the UAV
according to the forces on the mass as shown in Figure 1. To simplify the problem, the
constraints flight envelope is ignored.

v

i...--s Horizon

-
s
eme
eee
en=
1

Figure 1. The forces on the center of gravity of the aircraft.

In the ground inertial coordinate system o — xyz, V is the UAV flight velocity. y and
 are the flight path angle and flight azimuth angle, respectively. The flight adopts the
Bank-To-Turn (BTT), which is considered to have no sideslip. a is the attack angle, and
o is the bank angle. The engine thrust and drag of the aircraft are denoted by T and
D, respectively. n is the normal overload of the UAV in the velocity coordinate system
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0 — xyyyzy. Ignoring the wind disturbance in the flight, the three-degrees-of-freedom of
the dynamic model for the UAV is established as follows [31-33]:

x = Vcosysiny

y =V cosycosip

z = Vsiny
V=(T-D)/m—gsiny’
¥y =g(ncoso —cosvy)/V

)

p = —gnsino/(V cos )

where m is the weight of the aircraft, which is considered constant in this paper, and g is
the local gravity.
The engine thrust T can be denoted by

T = n TmaX/ (2)

where 7 is the throttle manipulator, and its range is defined as [0, 1]. Tmax is the maximum
thrust that the engine can achieve.

The air drag D consists of the parasite drag and the induced drag, which can be
expressed as follows [31]:

D = Cp,pV28/2+2Cp,n*mg*/ (pV?s), 3)

where § is the reference area of the UAV. Cp, is the parasite drag coefficient. Cp, is the
induced drag coefficient. p is the atmospheric density, which varies with the altitude of the
aircraft in the stratosphere. It is calculated by [34]

p=po-e %, @
where pg = 1.225 kg/m? and zg = 6700 m.

2.2. Formation Control Targets

In this paper, the formation control target of the UAV was determined based on the
leader—follower formation strategy. Taking a typical dual aircraft formation flight as an
example, the formation configuration of the MAV /UAV was designed as shown in Figure 2.
Since the reference trajectory of the MAV as the leader aircraft is known, the flight velocity,
attitude, and position can be obtained from the sensors mounted within the MAV. The
winger aircraft can receive real-time flight data from the MAV through the onboard data
chain and complete the trajectory tracking and formation control autonomously. During
the flight, it is required that the UAV and MAV keep a specific formation throughout the
whole flight, as shown in Figure 2.

AD 7 IF_\/ Leader
Leader 14
s
. / VW
‘ Yw
Winger 7
Winger Winger

Figure 2. Dual aircraft formation for MAV /UAV.
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2.2.1. Flight Velocity Control Targets

The MAV and UAV keep the same formation flight velocity. The reference velocity of
the MAV is Vi, and the UAV velocity is Vyy, then the velocity deviation AV is

AV = VL = Vil ®)

The MAV and UAV keep the same flight path angle in formation flight. The MAV
flight path angle is 1, and the UAV flight path angle is v, then the flight path angle
deviation A+ is

Ay = [y —wl. ©6)

The MAV and UAV keep the same flight azimuth angle in formation flight. The flight
azimuth angle of the MAV is 1, and the flight azimuth angle of the UAV is iy, then the
deviation of the flight azimuth angle Ay is

Ap = YL — dwl. 7)

The flight velocity and attitudes of the UAV should be consistent with the MAV within
an allowable error

AV < VAmaX/ A’Y < Y Amax- Al/«’ < IPAmaX/ (8)
where Vamax, YAmaxs Pamax represent the error thresholds of the velocity, flight path angle,
and flight azimuth angle of the UAV, respectively.

2.2.2. Flight Distance Control Targets

The UAV is located around the MAV and maintains the specified formation distance.
AD denote the distance between the MAV and the UAV in the ground inertial coordinate
system. ADy, AD,, and AD; denote the spatial distance of AD as follows:

AD = \/ADXZ +AD,2 + AD,2. )

Summarily, the UAV should keep a distance larger than the safe flight distance from
the MAV, which is as follows:

DAmin <AD < DAmaxr (10)
where Damin and Damayx represent the thresholds of the safe distance.

3. Design of the HIAC

The HIAC first adopted a DDPG/DDQN hybrid reinforcement learning method to
train the agent model to generate the tracking commands. Then, we further designed a
dynamic inversion controller and a first-order lag filter to construct an improved formation
flight controller. Overall, the HIAC consists of three parts, i.e., desired state command
solver, dynamic inversion controller, and first-order lag filter. The framework of the HIAC
is shown in Figure 3.

. |_ _______________ ..
Leader Observation HIAC | Formation Flight
ANONVERR A R L2 o Yy 5
” T”| Desired ”| Dynamic ?|  First- > UAV >
7L 4 Ay C d 7e | Inversion M. | Order | 7 | Dynamic Tw N
v, X A % Solver v, "] Cotroller o, "] Lag Filter | & "l Model v, &
> > Agent » F > G T > H >

Figure 3. The framework of the HIAC.
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In order to track the MAV, the HIAC adopted the current deviation between the states
of the UAV and the states of the MAV, i.e,, AV, Ay and Ay as inputs, and outputs the
control commands of the thrust, normal overload, and bank angle, i.e., 7, n and o. The
main difference of the HIAC from other traditional controllers is that to further enhance
the control accuracy, the HIAC adopted a hybrid intelligent agent as the desired command
solver to generate the desired commands, V¢, 7y, and ¢.. Then, these commands were sent
to the dynamic inversion controller to generate the control commands, 7, 11 and o. Finally,
the first-order lag filter further smoothed 7., 1. and o, to improve the executability of these
commands. The three parts will be introduced in detail as the order of the information flow.

3.1. Desired Command Solver

Learning from the idea of “meta-action”, we partially discretized the control variables
in the continuous control problems and developed a continuous—discrete mixed action
space according to the characteristics of these control variables. Based on this process, we
constructed a hybrid intelligent agent based on DDPG and DDQN to control V, y, ¢ and D
of the UAV.

3.1.1. Framework of Hybrid Intelligent Agent Based on DDPG/DDQN

Based on the traditional Q-Learning algorithm, DDQN uses the neural network to fit
the value function. It adopts discrete action sets to define the strategy and evaluates the Q
value of the generated strategy through the Critic network. Compared with the traditional
DOQON algorithm [18-20], DDQN decouples the action selection strategy of the Q value and
the calculation of the Q value and solves the problem of overestimation of the Q value
compared with the traditional methods.

DDPG adopts the Actor—Critic network based on DQN and uses continuous action sets
to define the control strategy. The model consists of the Actor-Critic network, where the
Critic evaluates the actions generated by the Actor, and the Actor feeds back the evaluation
results to the Critic for policy optimization [23]. More proofs and conclusions of the DDQN
and DDPG can be found in [18,23], respectively.

However, the DDQN and DDPG suffer from different drawbacks when applied in
practical engineering. Although the DDQN is easier to converge when compared with
DDPG, it can only deal with discrete and low-dimensional action spaces. However, most
of the practical targets, especially physical control targets, have continuous and high-
dimensional action spaces. Moreover, even though the continuous space can be transferred
into the discrete space, DDQN will generate high high-dimensional action space in this
process and finally cause quite low computational efficiency. Meanwhile, although DDPG
can solve the problem of continuous and high-dimensional action spaces, it is more likely
to diverge than DDQN. Therefore, learning from “meta-action”, we proposed a hybrid
intelligent agent combining the DDQN and DDPG according to their complementary
characteristics. Considering the value range and the control precision of V, o and 1,
we adopted the idea of multi-channel decoupling to perform partial discretization of
the action space. For the velocity control agent V;, the DDPG was used to generate the
set of continuous state commands. Because the value range of V, is larger than 7, and
., discretizing the continuous action space with high precision will lead to dimension
explosion. Meanwhile, for the angle control agents . and ¢, the DDQN is used to generate
the set of discretized state commands. Combining the DDQN and DDPG can improve the
capability of convergence when these two agents are trained together.

The framework of the desired commands solver was designed as shown in Figure 4.
It includes three agents which process the variation of the state commands V;, 7, and
., respectively. Based on the decoupling principles between different agents, each agent
calculates the action Ay, A, and Ay, and updates the desired state commands respectively.
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The outputs are executed by the flight-control system of the UAV and fed back the rewards
of each agent. The total reward function Ry is expressed by

Ry = RV 4 R+ RY, (11)

where R)(:D’V), Rg ) and R(le ) are components of Ry in each agent.

D, v.| 7| w
k, -AV -
/‘J’ > [nputl 4 AV, +>< V. I_ .:
AV Signal ky, - ) AVdr +% Sub-Agent y "
—> Input2
Processor oAV P DDPG pon | Feedback | I
- Input3 ¢ | I
k, -Ay l Flight |
) Inputl 4 —)@—An ) —)7 | Control !
A B k, -| Ayde 4
7 Signal 2 .‘- 7 o Input2 Sub-Agent y System- I
Processor k A DDQN 0 | Feedback | Environ |
— Input3 = | ment |
. I
f, AV » Inputl 4 Ay, Y Y. l |
Ay Signal k,, [ Ayt N [ Sub-Agent y | |
Processor b Ay P DDQN i |feedback X |
(3 P Inpuf3 = [0 | 1

Figure 4. The framework of the desired commands solver.

To construct an intelligent agent based on the DDPG/DDQN hybrid reinforcement
learning network, it was necessary to transform the trajectory tracking problem into a
Markov decision process, which mainly includes three parts, i.e., the state space, the action
space, and the reward function.

3.1.2. State Space S

According to the targets of formation flight control, the state space S is designed as
follows:

S =[AV,AD,AV, Ay, / Aydt, Ay, AP, / Apdt AP, (12)

where AD equals
AD = ADy + / N2 (13)

where ADj is the flight distance deviation between the MAV and the UAV at the initial
epoch. The integral items AV, Ay and Ay are the cumulative deviation from the initial

epoch till the current epoch. AV, Ay and Ay is the deviation rate of the velocity, flight
azimuth angle, and flight path angle.

3.1.3. Action Space A

The action space A is defined as follows:

where the action Ay denotes the correction value of the UAV velocity commands AV, the
action A, denotes the correction value of the UAV flight path angle commands A+, and
the action Ay denotes the correction value of the UAV flight azimuth angle commands
A, ie.,

{ AVe = Ay, Aye = Ay, Djpe = Ay (15)

’AVC| < )\chaxc/ ‘A’}’c| < /\%maXr |Alpc‘ < )\tpcmaX/
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where Ay, max, Ay.max and Ay max are the maximum of corrections, respectively. Ay is used
to generate the set of continuous velocity commands. A, Ay is used to generate the set
of discretized angle commands. Specifically, the discretization can be further expressed
as follows:

|Q“rc| = 2M’chax/a')’(:1 +1

(16)
|Q¢C = Z{Awfmax/al/)c—‘ +1
Qy = {Ay]0, £07c, 2207, - -+, £(|Qy | = 1)07e /2, £ Ay max } a7)
Oy, = { Ap|0, £99pe, £209, - -+, £(|Qy.| — 1)09c/2, £Aymax -
Then, the update of desired state commands is
Ve <= Ve + AV,
Ye < Yo+ BYe (18)
Pe < P+ Atpe.

3.1.4. Reward Function Ry
According to the formation control targets of UAVs, the reward function Ry was
designed as follows:

R): = RP+RN+RC (19)

where Rp is the reward sub-function, which gives a positive response when the flight state
of the UAV meets the control targets. Ry is the penalty sub-function, which gives a negative
response when the flight states exceed the allowable error of the control target. Rc is the
command limiting function, which can limit the values of the control commands ¥, 1, o¢.
More specifically, R¢ can smooth the variation of the control commands to finally reduce
energy consumption.

Rp is calculated by

Rp=10x (& +e} +& +¢}) (20)
where ¢p, €y, €,, and ¢y are reward coefficients, which are defined as follows
1/ DArnin < AD < DAmax
ED =
0, AD < DaAmin 0r AD > Damax
{ 1- AV/VAmaX/ AV S VAmax

ey = /
0,AV > Vamax 1)
1= A7/ Yamax AT < Yamax
o { 0, AY > Yamax ,
| 1= 8¢/ Pamax AP < Yamax
v { 0, A > Pama '
Ry is calculated by
Ry = —100 x (e%) +ey+e+ 612/,) (22)
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where ep, ey, e,, and ey are penalty coefficients, which are defined as follows:

O/ DAmin < AD < DAmax
1,AV > 2Vamax

{ 1, AD < Dpmin 0r AD > Damax
ep —

ev =19 AV/Vamax =1 Vamax < AV < 2Vamax
0, AV < Vamax
LAY > 27Amax (23)
ey =9 AY/Yamax — L Yamax < A7 < 27Amax

0, A7 < Yamax
LAY > 2¢amax

ep =9 AP/ Pamax — L Pamax < AP < 2¢pmax -
0, A < Pamax

Rc is calculated by

Rec = _0-2(|7]c|/77max + |nc|/nmax + |(7c|/0'max)' (24)

3.2. Dynamic Inversion Controller

To realize tracking of the commands of a given flight trajectory, the dynamic inversion
control law was designed as follows [35]

Ye =@y (ve =) (25)
Y = @p(Pe — )

where @y, @,, and @y denote the bandwidth of the controller, respectively. V¢, ., ¥
denote the desired state commands of the flight velocity, the flight path angle, and the flight
azimuth angle, respectively.

Since the UAV commands follow the dynamic constraints by Equation (1), considering
Equations (1), (2), and (25) yields

Te = cTmax = [D +moy(V, — V) + mgsin ')/],
Ny = @,V (yc —)/g +cos, (26)
Ny = @y V(e — ) cos /g,

where N, and Ny denote the normal overload and lateral overload, respectively. The
throttle J., normal overload #, and bank angle o, are selected as the control commands.
Then, the UAV control command was designed as follows:

e = [D +m@y (Ve — V) + mgsiny]/ Tmax

F={ .= /N2 +Ny2 . (27)

0. = arctan(Ny /N,
Moreover, the control command must satisfy the constraints:

Nmin < e < Mmax, 0 < 711¢ < Aimax, |(7C| < Omax (28)
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where #pin and #max is the minimum and maximum values of the throttle commands,
respectively. max is the maximum value of the normal overload, and 0pmay is the maximum
value of the bank angle.

3.3. First-Order Lag Filter

Considering the fact that the UAV cannot instantly complete the change of the engine
thrust, normal overload, and bank angle, a first-order lag filter model was constructed to
simulate the delayed variation processes of these three variables:

n=(ec—1)/1
G=< n=mc—n)/w , (29)

c=(0.—0)/1

where 7., 1., 0. represent the control commands of the throttle, normal overload, and bank
angle, respectively. 75, T, and T, represent the response time of the UAV control system
accordingly.

Summarily, considering Equations (1), (27), and (29), the UAV flight process can be
presented by the control equations as follow:

F(Vm Ye, ch)T = [77C/ ne, UC]T
G ne, o) = [p,m,6]" (30)
H(pn,o)" = [V,,9]"

Equation (30) reveals the calculation process from the desired control commands to
the actual control commands. It is clear that the premise to realize the formation flight is to
acquire the desired control commands of the UAV V,, 7., ¥ under the specific formation
strategy. Then, the ultimate flight trajectory can be obtained by the Runge-Kutta method.

4. Simulation Validation
4.1. Simulation Design

Based on the 3-DOF dynamic model in this paper, the MAV was designed to make a
complex maneuver and provide the reference trajectory and control commands, accordingly.
Under the leader—follower formation strategy, the UAV adopts the HIAC, DDPG, and LQR
to track the MAV and keep the dual aircraft formation, respectively. LOR is a commonly
used guidance method for tracking multi-state trajectories in aerospace engineering and it
has been validated by extensive flight tests [36,37]. Therefore, we compared the proposed
method with LOR and DDPG to verify its superiority in the following Sections 4.2 and 4.3.
The design of DDPG is described in Section 3.1.

First, the experiment of nominal conditions was conducted to analyze the superiority of
the proposed method in detail. Meanwhile, the initial values greatly affect the performance
of the reinforcement learning models. Therefore, the generalization ability of the model
was required to be fully verified. Then, 100 Monte Carlo experiments were conducted to
verify the adaptability of this method to different initial conditions.

The simulations were conducted by Matlab2021a and the 3-DOF dynamic model was
built by Simulink. The total simulation time was T, the simulation interval was AT, and
the specific experimental parameters are shown in Table 1.

The training methods of DDPG and DDQN refer to [18,23], respectively. Learning rate,
max episode, discount factor, and experience buffer length were set as the same for both
DDPG and DDQN. In addition, the batch size of DDPG was set to 256, and the batch size
of DDQN was set to 64. The specific parameters are shown in Table 2.
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Table 1. The experimental parameter settings.

ox
réy
oz
5V
5y
5

Parameters Settings Parameters Settings
T (s) 50 Hmin 0
AT (s) 0.1 Hmax 1
Tmax (Ib) 25,600 flmax 6
m (kg) 14,470 Omax (rad) /2
g (m/s?) 9.81 DaAmax (M) 600
S (ft?) 400 DAmin (m) 100
Cp, 0.02 Vamax (m/s) 50
CD, 0.1 l/JAmax (rad) 0.2
75 (s) 0.6 YAmax (rad) 0.2
Ty (S) 0.5 AV,max (M/s) 50
To (S) 0.5 Asyemax (rad) /2
@y (s) 0.3 Ay.max (rad) /2
@ (s) 0.2 9 (rad) 7t/180
@y (s) 0.2 oY, (rad) 7t/180
Table 2. The training parameters of DDPG/DDQN.
Parameters Settings
Learning Rate 0.0001
Max Episode 25,000
Batch Size (DDPG) 256
Batch Size (DDQN) 64
Discount Factor 0.99
Experience Buffer Length 1 % 10°

4.2. Basic Principles of LOR

The implementation of LQR mainly includes three parts: linearization of the motion
model, design of the tracking controller for the reference trajectory, and solution of the
feedback gain matrix.

By linearizing the dynamic model of the UAV in Equation (1) with small deviations,
the linear system can be obtained as follows:

X = AX + Bu. (31)

Equation (31) can be expressed by

Ay Ap Az A As Age ox By Bia Bigs

Ay Ax;p Axz Ay Axs A dy By By B 5

Az Az Az Az Azs Asze 0z n B31 Bsx Bss 5Z (32)
Ay A Ay Ay Ags Ag| | OV By By Bas| | oo '

As1 Asy Asz Asy Ass Ase| | Oy Bs; Bs; Bss

Ag1 As2 Asz Ass Ass Asel L 0P Be1r Be2 Bes

Set the given MAV trajectory as the reference, the state space is defined as follows:

0x = xw — x1,0y = yw — YL, 0z = zw — Z[,

(33)
OV =Vw =V, 67y =9yw — 7L, 0¢ = Pw — PL.
The control commands are defined as follows:
517:17—17L,5n:n—1’lL,(50':0'—(TL, (34)
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where A and B are the partial derivative coefficient matrix calculated according to the mo-
tion differential equation and the feature points of the reference trajectory. The calculation
results are as follows:

A = Ap = Az =0,

Aqg = cosysiny, Ajs = —Vsinysiny, Ajg = V cosycosyp,
Apx1 = App = Az =0,

Apy = cosycosp, Aps = —V sin‘ycos P, Ay = —V cos ysinip,
Azl = Azp = Azz = Az =0,

Agy = sinvy, Ass = V cos 7,

Ap = Ap = Ay =0,A3 =D;/m,

Ays = Dy /m, Ays = —gcos?,

Asp = Asp = Asz = Ase = 0,

Asy = —g(ncoso —cosy)/V?, Ass = gsiny/V,

Ag1 = Ag2 = Agz = Aes = 0,

Ags = gsinon/(V2cosvy), Ags = —gnsinosiny/(V cos® ),

(35)

B11 = B1a = B13 = Ba1 = Byy = Bos = B31 = B3 = B33 =0,
Byy = Tmax/m, By = By =0,

Bsy = —Dy/m,Bsy = gcoso/V,Bsz = —gnsingo,

Be1 = 0,Bgy = —gsino/(Vcos7y),Bgg = —gncosc/(V cosvy).

where D, Dy and D, are the partial derivatives of the drag D on the feature point of the
reference trajectory to the flight height z, velocity V and normal overload n respectively.
Define the optimal control performance index from fj to ¢ as follows:

J=05 /t v [XT(t)QX(t) + uT(t)Ru(t)} dt, (36)

where Q and R are the weight matrices of state and control respectively. Q is positive semi-
definite and R is positive-definite. Then, there exists an optimal control law u* = —K*X to
minimize the above performance index, and the feedback gain matrix K* is

Ky Kpp Kpg Ky Kys Ky
K*= Ky K Kp Ku Kis K|, (37)
K1 Koo Koz Koy Kos  Kgs
K*=—-R'B'P (38)
where P is the solution of the Riccati equation. It is calculated by
—PA—A"P+PBR'BTP—-Q =0. (39)
Define Q and R as follows:

Q = diag[Q1, Q2, Q3, Q4, Qs, Qs),

(40)
R = diag[Rl, Rz, Rg} .
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To reflect the impact of the flight relative distance in the dual aircraft formation flight.
Set Q1 = Q2 = Q3 and define D? = AD? = 6x? + 6y + 622, then

J= 05/ [(Qi6D? + QudV2 + Qs67* + Qedy?)

(41)
+(R161? + Rpdn? + Rado?) ] dt.
According to Bryson Law [38], Q and R are set as follows:
QlDzAmax = Q4V2Amax = QS’)/ZAmax = Q6¢2Amax 42)

= R1772max = R2n2max = R302max-

Set Q1 = 1, then other parameters can be obtained. According to u*, the control
commands can be obtained:

n=nL— (K,ﬂéx + Kﬂzéy + K1735Z + K174(5V + K,75(5'y + K,76(51/)),
n =np — (Ky10x + Kypdy + K30z + KjpadV + K56 + Kpyed), (43)
o =0 — (Kaléx + Ko26y + K30z + KgadV + K56y + K0'6511[J>-

Since the feedback gains obtained at different feature points of the reference trajectory
are different, the monotonic flights can be selected as an independent variable, and the feed-
back gain coefficient of the offline design can be interpolated to obtain the corresponding
control commands.

4.3. Experiment of Nominal Conditions

In the experiment of nominal conditions, the initial position of the MAV was x7y = 0
m, Yo = 0m, zp = 10,000 m, Vo = 400 m/s, yro = 71/6, P19 = 0. The initial position of
the UAV was XWo — 100 m, Ywo = 100 m, ZW0 — 10,000 m, VWQ =400 m/s, YWo = 7T/6,
Pwo = 0.

The formation flight trajectories of MAV and UAV of the three methods are shown
in Figure 5. The MAV is designed to make continuous S-shaped large maneuver with a
maximum overload of about 4 g at1s,11s,29 s and 41 s, respectively. Figure 5 indicates
that the LOR, DDPG, and HIAC can realize the stable tracking of the given trajectory of the
MAV under large, overloaded maneuvers and reach the target of the designed formation.
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12,000 - ==UAV-LQR
~==UAV-DDPG
==UAV-HIAC
% Start

* End

10,000

8000 -

Z(m)

6000 -

4000 L
3000 T
2000 T _7_,_,.»»:[)*"' 2000
1000 T —  _¢
0 T 4 —ao00 2000
—6000
Y(m) X(m)

Figure 5. The formation flight trajectory of MAV and UAV of three methods.

Figure 6a—c shows the control commands of the UAYV, i.e., the thrust, the normal
overload, and the bank angle, generated by the LQR, DDPG and HIAC, respectively,
with reference commands of the MAV. Figure 7a—c shows the errors between the control
commands of the LQR, DDPG, and HIAC and the reference commands of the MAV. Figure 6
illustrates that there are four peaks in the curves of the control commands due to the four
large, overloaded maneuvers. Moreover, compared with the LQR and DDPG, the trend
of the control commands of the HIAC can be better consistent with the MAV in thrust,
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Thrust Error(Ib)

Thrust(lb)

normal overload, and bank angle. Especially in the control of the normal overload, the
HIAC has mitigated the sharp change of the commands generated by the reinforcement
learning controller to a certain extent. It can provide more smooth and executable control
commands under large maneuvers. However, during the large maneuver of the MAV, in
order to track the reference commands, it inevitably generates a certain amount of extra
adjustment for the thrust, overload, and bank angle for the three methods.
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Figure 6. The control commands of the MAV generated by the LQR, DDPG, and HIAC, respectively,
with reference commands of the MAV. The results of the thrust, the thrust, the normal overload, and
the bank angle are presented in (a—c), respectively.
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Figure 7. The errors between the control commands of the LQR, DDPG, HIAC and the reference
commands of the MAV. The errors of the thrust, the thrust, the normal overload, and the bank angle
are presented in (a—c), respectively.

Figure 8 shows the change of the three controlled states of the UAV, i.e., the velocity,
the flight path angle, and the flight azimuth angle, generated by LOR, DDPG and HIAC.
Figure 9 shows the deviation of the three controlled states and the relative distance. It can
be seen from Figure 8 that the change trend of the controlled state of the HIAC is basically
the same as that of the MAV, and the formation maintenance performance is obviously
better than that of the LQR and DDPG. Especially, the HIAC can keep up with most of
the fluctuations of the MAYV in the flight velocity and the flight azimuth angle. Moreover,
Figure 9 shows that compared with the LQR and DDPG, the control precision of the HIAC
has been significantly improved, and the control deviation can rapidly decrease to nearly
0 under the large maneuver. Figure 9d indicates that the HIAC successfully limits the
formation distance within the safe distance between 100 m and 600 m while LQR and
DDPG fail. The LOR continuously accumulates distance deviation due to the velocity
deviation during the flight, and ultimately, the formation distance reveals a divergent trend.
Meanwhile, although the relative distance of the DDPG gradually converges, it still extends
beyond the safe distance at the end of the flight.
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Figure 8. The change of the three controlled state of the UAV generated by the LQR, DDPG and
HIAC. The results of the velocity, the flight path angle, and the flight azimuth angle are presented in

(a—c), respectively.
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Figure 9. The deviation of the velocity, the flight path angle, the flight azimuth angle and the relative
distance are presented in (a—d), respectively.

Table 3 presents the root mean square (RMS) errors and maximum errors of the four
controlled states of the LQR, DDPG and HIAC. It is clear that both the RMS error and
maximum error of the HIAC are smaller than those of the LQR and DDPG. Moreover, the
HIAC has a reduction of 5.81%, 70.44%, and 64.95%, respectively, in the RMS error of the
velocity, flight path angle and flight azimuth angle compared with the LQR, and has a
reduction of 60.35%, 55.32% and 69.47% in the maximum error of velocity, flight path angle
and flight azimuth angle, respectively, compared with the LOR. The HIAC has a reduction
of 36.10%, 35.85% and 51.61%, respectively, in the RMS error of velocity, flight path angle
and flight azimuth angle compared with the DDPG, and has a reduction of 54.43%, 31.57%
and 55.01% in the maximum error of velocity, flight path angle and flight azimuth angle,
respectively, compared with the DDPG.
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Table 3. RMS and maximum errors of the four states of the LQR, DDPG, and HIAC in nominal
conditions.

Velocity Flight Path Flight Azimuth Relative Distance (m)

Controller (m/s) Angle (rad) Angle (rad) Safe Distance [100, 600]
LOR RMS 5.6957 0.4737 0.6202 516.7072
Max. 15.3307 0.8027 0.7833 710.2799
DDPG RMS 8.3953 0.2183 0.4493 444.1190
Max. 13.3379 0.5241 0.5315 610.6078
HIAC RMS 5.3647 0.1401 0.2174 460.0709
Max. 6.0780 0.3586 0.2391 552.1845

In summary, the proposed HIAC significantly improves the state control performance
and guarantees that the flight distance stays within a safe distance as well.

4.4. Monte Carlo Experiments

In order to further test how the HIAC adapts to various initial conditions, 100 Monte
Carlo simulations were carried out by adding random deviations to the nominal conditions.

The initial position of the MAV is x;9 = 0m, y;9 = 0m, z;9 = 10,000 m, V7o = 400m/s,
Yro = 7©/6, P19 = 0. The baseline of initial values of the UAV is xy = 100 m, ywo = 100 m,
zwo = 10,000 m, Viyo = 400 m/s, ywo = 7t/6, Pwo = 0. Then, random deviations which
follow the uniform distributions were added to these six baselines, respectively. The specific
values of the deviations are presented in Table 4.

Table 4. Uniform distribution of deviations for the six initial values.

Numbers of Monte . Flight Path Flight Azimuth
Carlo Simulations X (m) Y (m) Z (m) Velocity (m/s) Angle (rad) Angle (rad)
100 [-50,550] [—50,550] [—1000, 1000] [—100, 100] [—7t/18, /18] [—7/18, /18]

Figure 10 is the scatterplot of the Monte Carlo simulation results of the velocity errors,
flight path angle error, flight azimuth angle, and relative distance for the LQR, DDPG and
HIAC. For each evaluation index, the horizontal axis is the RMS error, and the vertical
axis is the maximum error. It can be seen that the HIAC can fulfill the control target in the
magnitude of velocity. Meanwhile, because the training threshold is set quite strictly in
order to achieve better control performance, the maximum error and RMS error of the flight
path angle and flight azimuth angle may extend out of the threshold when the extreme
deviations are added to the initial values. However, the HIAC can still present a satisfactory
control accuracy of the angle compared with the DDPG and LQR. Moreover, in terms of the
safety distance, the HIAC can stay within a safe distance of 100 m to 600 m from the MAYV,
which reaches the distance control target. However, the DDPG and LQR gradually extend
out of the safe distance as the initial values vary. Statistically, compared with LOR and
DDPG, the HIAC has smaller values in both the RMS error and maximum error of these
four evaluation indices. In summary, the performance of the HIAC in formation control is
better than that of the other two methods, which is consistent with the simulation results
under nominal conditions. It is believed that the HIAC has significant adaptability to the
varying initial conditions.
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Figure 10. Monte Carlo simulation results of LQR, DDPG and HIAC.

5. Conclusions

In this study, a novel HIAC method was proposed, which is able to enhance the
smoothness and executability of control commands and improve the control performance
of the MAV /UAV flight formation. First, based on the idea of “meta-action” in hybrid
reinforcement learning, the formation control was modeled as a continuous—discrete space
control problem. Then, we proposed the framework of the HIAC, and the hybrid intelligent
agent model based on the DDPG/DDQN was designed through multi-channel decoupling.
Finally, we carried out simulations of nominal conditions and 100 Monte Carlo simulations
in varying initial conditions. The simulation results showed that, compared with the
traditional LQR and DDPG, the HIAC has better performance of high control precision and
rapid convergence. Meanwhile, the adaptability of HIAC to the varying initial conditions
was verified as well.

For further practical applications, HIAC can gradually support practical scenarios
such as formation military operations and terrain surveys. In particular, two aspects should
be considered when applying HIAC. The first is the reliability of the method. HIAC should
be preliminarily trained with a large number of ground tests before the real flights, to
ensure that intelligent control gradually takes authority over traditional flight-control
methods. The second is the portability of the method. At present, the method supports
the deployment of reinforcement learning on hardware such as DSP, and FPGA, and can
realize airborne portability and the online training of agent models.
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Abstract: A swarm of robots is the coordination of multiple robots that can perform a collective task
and solve a problem more efficiently than a single robot. Over the last decade, this area of research
has received significant interest from scientists due to its large field of applications in military or
civil, including area exploration, target search and rescue, security and surveillance, agriculture,
air defense, area coverage and real-time monitoring, providing wireless services, and delivery of
goods. This research domain of collective behaviour draws inspiration from self-organizing systems
in nature, such as honey bees, fish schools, social insects, bird flocks, and other social animals. By
replicating the same set of interaction rules observed in these natural swarm systems, robot swarms
can be created. The deployment of robot swarm or group of intelligent robots in a real-world scenario
that can collectively perform a task or solve a problem is still a substantial research challenge. Swarm
robots are differentiated from multi-agent robots by specific qualifying criteria, including the presence
of at least three agents and the sharing of relative information such as altitude, position, and velocity
among all agents. Each agent should be intelligent and follow the same set of interaction rules over
the whole network. Also, the system’s stability should not be affected by leaving or disconnecting an
agent from a swarm. This survey illustrates swarm systems’ basics and draws some projections from
its history to its future. It discusses the important features of swarm robots, simulators, real-world
applications, and future ideas.

Keywords: swarm intelligence; swarm behaviors; swarm robotics; industrial swarm; swarm

robotics applications

1. Introduction

A swarm of robots refers to the coordination of multiple individual entities, which
traditionally operate without centralized control and instead rely on simple local behaviors
to cooperate. Robot technology, particularly Unmanned Aerial Systems (UAS), is becoming
more affordable, efficient, and is boosting the transmission capacity of robots as solutions
to problems ranging from disaster relief to research mapping. Independent robots can
perform tasks that need simple, ready to go solutions and a consistent real time approach.
The autonomous robot can be a part of a robot swarm, if it fulfills at least three significant
characteristics. These characteristics include the following: the minimum number of
individual entities must be three or more, minimal or no human control, and cooperation
between these robots based on a simple set of rules as depicted in Figure 1. Swarm robotics
include a group of independent robots working collaboratively to complete a shared
task without relying on any external infrastructure or a centralized control system /robot.
Figure 2 illustrates how the fundamental concept of the swarm may be comprehended.
In Figure 2a, the system is a robot swarm which consists of three autonomous agents
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that cooperate in response to the orders received from a single ground control station.
Figure 2b indicates that the system is a sensor network rather than a swarm of robots. Each
sensor is neither a robot nor an intelligent agent, and is solely responsible for providing
data through readings without the capability of taking any actions. Figure 2c does not
depict a robot swarm since a swarm necessitates more than two agents. Despite the robots
working together towards a shared objective, each one has its own designated tasks to
accomplish, which are directed by a separate operator. Figure 2d depicts a software system
comprising multiple agents, which cannot be classified as a robot swarm as the agents are
not autonomous robots, despite their collaboration on a shared hardware platform.

Swarm Robotics

Three characteristics for a system to be qualified as a swarm of robots

3+ Group Size

It must contain three or more
entities

Limited Human Control Cooperative

Entities within the swarm must
work cooperatively

Minimum or zero human
operated control system

Figure 1. Basic Characteristics of Swarm Robotics.

Swarm robotics involves a group of robots that collaborate to address problems
through the development of advantageous structures and behaviours that resemble those
observed in nature, such as birds, fish, and bees. These robots, which can be either homoge-
neous or heterogeneous, form an intelligent network of a swarm, enabling individual robots
to interact autonomously with each other and their environment by leveraging onboard
communication, processing, and sensing capabilities. Such behaviours can be classified
into four categories, namely navigation , spatial organization, intelligent and precise decision-
making, and miscellaneous [1]. This study offers an in-depth analysis and mathematical
comprehension of swarm intelligence algorithms. It also provides a comprehensive review
of the evolution of swarm robotics from its inception to the present day and highlights the
future ambitions of this field. Our aim is to present a broad overview of swarm robotics by
exploring its history, current research, and future directions. The main contributions are
as follows:

*  To understand the fundamental difference between multi-agent and swarm of robots,
along with the natural behaviours of a swarm.

e Multiple swarm intelligence algorithms derived from the natural set of rules and
constraints for their transformation on multi-agent robots.

e Industrial and academic utilization of swarm robotics keeping in view the history and
future perspectives.

®  The objective is to address the research gap that exists between theoretical and in-
dustrial research in the field of swarm robotics. Theoretical research mainly involves
simulating swarm behaviours using algorithms, while research in industrial settings
are primarily focused on designing and developing hardware capable of executing
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swarm behaviour. Therefore, it is imperative to deploy swarm algorithms using
specific hardware that can accommodate swarm behaviour functionality.

Swarm Robotics: b Sensor's Network:
(a) Is a Swarm ( ) Not a Swarm
Control Station

=S
@

B oo e
N o
=

This is a robot swarm containing 3 intelligent agents working
cooperatively connected with ground control unit

5

Sensors do not move or react

This system is not a robot swarm rather a system of multiple
sensors that are not intelligent and cannot perform physical actions

individually
Multi-Robots System: d Multi-Agent Software System:
(C) Not a Swarm ( ) Not a Swarm
) S
‘%y Control Station ?ﬁ? 0’@
= =
@ @ @
This system is not a robot swarm. Although the robots This is not a robot swarm rather it is a multi-agent software
are intelligent but 2 are not enough agents to be system. The agents are not intelligent itself rather
considered a swarm dependent on single controlling system

Figure 2. Comparison of Multi-agent Systems and Robot Swarm [2]. (a) depicts swarm robotics
system, while (b—d) show non-swarm systems.

Figure 3 depicts the deployment of swarm behaviours in simulation and hardware,
which is thoroughly explored in Section 2 of this article. The behaviours are simulated using
existing and state-of-the-art swarm intelligence algorithms, as explained in Section 3 with
mathematical reasoning. The simulation results demonstrate high accuracy in replicating
natural animal behaviours. For the past two decades, the main research challenge in
swarm robotics has been to develop multi-robot systems that are robust, flexible, fault-
tolerant, and capable of incorporating self-organizing behaviours dynamically and by
design. The swarm robotics field has evolved from algorithmic studies to mature academic,
laboratory, and industrial-based solutions since the early 2000s. A comprehensive review
of swarm robotics and its applications is presented in Table 1 and Section 4, respectively.
Despite significant progress, cooperation and coordination in deploying the developed
swarming algorithms among swarm robots remain limited [3]. Section 5 provides a brief
overview of the era of swarm robotics, and the article concludes in the final section.
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Table 1. Era of Swarm Robotics: Past, Present, and Future Perspectives.

The first robot tests show self-organization through indirect and local interactions, clearly inspired by

1990-2000 ) . SW
swarm intelligence.
The ability to generate swarms of robots that work together has now been expanded to a variety of
20002005  additional tasks, including object handling, task allocation, and occupations that require significant SW
teamwork to achieve.
2002-2006 Swarm—bots isa project that.shows how robot swarms self-assemble. Robots can cgnstruct pulhng HW and SW
chains and massive constructions capable of transporting large loads and dealing with tough terrain.
The evolving swarm robotics technique was devised after the first demonstrations of autonomous
2004-2008 : . : SW
assembly of robot swarms using evolutionary algorithms.
2005-2009 For swarm robotics research, the first attempts at building standard swarm robotics platforms and HW
small robots.
2006-2010 Swarmanoid showed hete.rog?neous robot swarms made up of three'z dlff'erent types of robots: flying, HW and SW
climbing, and ground-based robots for the first time.
Advanced autonomous design methods such as AutoMoDe, novelty search, design patterns,
2010-2015 mean-field models, and optimal stochastic approaches are all employed in the creation of SW
robot swarms.
2016-2020 Decentralized solutions have been mve.stlgated a%nd deployed as swarms of flying drones become HW and SW
available for investigation.
2020-2025 The first example of robot swarms that may self-learn suitable swarm behaviour in response to a SW
specific set of challenges.
2025-2030 Marine and deep-sea robotic swarms v.v1ll be utilized for e.cologmal monitoring, surveillance, and HW
fishing,among other things.
Small rover swarms will be utilized for the first mission to the Moon and Mars to expand the
2030-2040 : . . . HW
exploration area and showcase on-site construction capabilities.
2040-2045 Soft-bodied robot swarms measuring in mllhme.ters will be depI.C)yed' to explore agricultural fields and HW and SW
aquatic areas to identify plastic usage and assist with pest control.
2035-2050 Clinical research with human volunteers will begin after nanoscale robot swarms have been shown for HW and SW

therapeutic objectives such as customized medication delivery.

Behaviors

v

Swarm
Algorithms

Swarm Robots

Implementation Implementation

{

Simulation [
Based Based
Precise and Not Precise and
Accurate all the
Accurate )
Time

Figure 3. Swarming Behaviours’ Deployment in Simulation and Hardware.
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2. Swarm Robotics Fundamental Behaviours

Swarm algorithms are characterized by individual entities following local rules, re-
sulting in the emergence of overall behaviour through swarm interactions. In swarm
robotics, robots exhibit local behaviours based on a set of rules ranging from basic reactive
mapping to complex local algorithms. These behaviours often involve interactions with the
physical environment, such as other robots and surroundings [4]. The interaction process
involves retrieving environmental values and subsequently processing them to drive the
actuators in accordance with a set of instructions. This recurring process is referred to as
the fundamental activity and persists until the desired state is attained. Figure 4 illustrates
a summary of several naturally occurring behaviours that are further elaborated in the
subsequent subsection.
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Figure 4. Swarm Behaviours [1].

2.1. Spatial Organization

These behaviours allow robots in a swarm to move around the environment and
spatially arrange themselves around things.

Object Clustering and Assembly allow a swarm of robots to control geographically
dispersed things. These are critical for construction processes. Pattern Formation organizes
the robot swarm into a precise form. Chain Formation is a specific instance where robots
construct a line to establish multi-hop communication between two places [1,5]. Self-
assembly links robots to form structures. They can be connected physically or remotely
via communication lines [1,6]. Morphogenesis is a specific instance in which the swarm
grows into a predetermined form [1,7,8]. Aggregation pushes the individual robots to gather
spatially in a certain location of the environment. This permits swarm members to get
geographically near to one another for further interaction [1,9,10].

2.2. Navigation

These characteristics enable a swarm of numerous robots in the environment to move
in unison. Thus, a group of robots move in harmony from one location to another or from a
source to a final destination [1,11].

Collective Localization allows the swarm'’s robots to determine their location and orien-
tation relative to one another by establishing a local coordinate system across the swarm [1].
In Collective Transport, a swarm of robots may collectively move things that are too heavy or
massive for individual robots [1]. Coordinated Motion moves the swarm in a configuration
that must have a well-defined shape or structure, such as a line, triangle, or arbitrary
formation of robots, as in flocking [1]. Collective Exploration navigates the environment
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to examine things, monitor the environment, or create a robot-to-robot communication
network [1,12].

2.3. Decision Making

This characteristic of swarm robotics facilitates collective decision-making for accom-
plishing specific tasks collaboratively. The Group Size Regulation feature empowers the
swarm’s robots to create groups of the required size, and if the swarm’s size exceeds the
required group size, it automatically divides into multiple groups or sub-swarms [1,13].
Additionally, the Collective Fault Detection feature detects individual robot shortcomings
inside the swarm, enabling the identification of robots that deviate from the expected
behaviour due to hardware or some algorithmic issues [1,14]. Furthermore, Synchronization
aligns the frequency and phase of the swarm’s oscillators, enabling the robots to share
a common perception of time and execute tasks in synchrony. The Collective Perception
feature aggregates the locally collected data from the swarm’s robots into a comprehensive
image. It allows the swarm to make collective decisions, such as accurately classifying
objects, allocating a suitable percentage of robots to a given task, or determining the best
solution to a global problem [1]. Moreover, the Task Allocation feature dynamically assigns
emergent tasks to individual robots, aiming to maximize the overall performance of the
swarm system. In cases where the robots possess diverse skill sets, the work can be as-
signed differently to further enhance the system’s performance [1,15]. Finally, the Consensus
feature allows the swarm of robots to converge on a single common point from multiple
available options [1,16].

2.4. Miscellaneous

The swarm robots exhibit additional behaviours beyond the previously discussed
categories. Self-healing behaviour allows the swarm to recover from individual robot
failures, improving the swarm’s reliability, resilience, and overall performance [1,17]. Self-
reproduction enables a swarm of robots to add new robots/agents or replicate the patterns
created by several individuals, thereby increasing the swarm’s autonomy by eliminating
the need for human intervention in the construction of additional robots. Human-swarm
Interaction facilitates communication between humans and the swarm of robots, either
remotely via a computer terminal or in a shared area using visual or auditory cues [1].

3. Swarm Intelligence Algorithms

Swarm Intelligence (SI) is a collective intelligence employed in various applications,
including self-organized and decentralized systems [18]. Some examples are collective
sorting, cooperative transportation, group foraging, and clustering. Self-organization and
division of work are two essential notions in SI. The ability of robots to evolve into a proper
pattern without external assistance is referred as self-organization. In contrast, division of
labor refers to the simultaneous execution of multiple tasks by individual robots. It enables
the swarm to execute a challenging task that requires individuals to collaborate. Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Particles Swarm Optimization (PSO),
Differential Evolution (DE), Artificial Bee Colony (ABC), Glowworm Swarm Optimization
(GSO), and Cuckoo Search Algorithm (CSA), are all examples of famous and currently used
swarm intelligence algorithms.

3.1. Genetic Algorithm

Genetic Algorithms (GA) were introduced in 1975 by John Holland [19,20]. This
type of algorithm mimics natural existing biological behaviours in order to evaluate the
survival of the fittest. In a genetic algorithm (GA), a specified number of individuals, also
known as members, comprise the population. Mathematical operators such as crossover,
reproduction, and mutation are used to manipulate the genetic makeup of individuals.
Based on these operators, the fitness value of each member is calculated and ranked
accordingly. The previous population’s traits, represented by chromosomes (or strings),
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are combined with new traits to generate a new population [21-24]. A GA algorithm
with five basic steps is shown in Figure 5. The fitness function evaluates population
members, which begins with an initial population that can be generated randomly or
through a heuristic search. After the population members are assessed, the lowest-ranked
chromosome is eliminated, and the remaining members are used for reproduction. The
final step is mutation, in which the mutation operator modifies genes on a chromosome
to ensure that every part of the problem space is explored. This process of evaluating and
generating new populations continues until the best solution is found.

It has a vast area as an application, which includes, navigation and formation con-
trol [25], path planning [26], scheduling [27,28], machine learning [29], robotics [30,31],
signal processing [32], business [33], mathematics [34], manufacturing [35] and routing [36].

Generate Initial Random
Population

v

Calculate Fitness of Individual

A

Satisfy Stop
Criterion?

Selection of the Individuals

!

Selection of the Individuals

A

Crossover Operator: Mutation Operator:
Select two individuals and swap a Select one individual and mutate
section of gene between them the genes in it

rm‘
<

Figure 5. Flow Chart of Genetic Algorithm [37] .

3.2. Ant Colony Optimization

Ant Colony Optimization (ACO) is a heuristic search-based algorithm that uses the
ant colony system to solve problems. It was proposed by Marco Dorigo as part of his
Ph.D. study in 1992 [38]. The four fundamental components of the ant-inspired foraging
algorithm are the ant, pheromone, daemon action, and decentralized control. The ant
acts as an imaginary agent which mimics the behaviour of exploitation and exploration
processes in a search space and produces a chemical substance called pheromones. Its
intensity varies with the passage of time due to the evaporation process and serves as a
global memory for the ant’s path of travel. Daemon activity is used to gather global data
whereas, the decentralized control is used for the robustness of the ACO algorithm and
to maintain flexibility within a dynamic environment. The Figure 6a—c show the initial,
mid-range, and final outcomes of the ACO algorithm, respectively [38,39]. Figure 6a shows

75



Drones 2023, 7, 269

the initial random environment in which the agent (or ant) from the nest begins the process.
When ants discover numerous viable paths from the nest to the source, they go through
many iterations of execution, as shown in Figure 6b. The ant has chosen the shortest
possible path, which contributes to the pheromone trail’s high intensity. Equation (1) below
is used as an initial step in determining the optimal solution to select the best node from

the current search space.

(a) (b) (c)

Figure 6. Nest and Food-Source have been shown by letters N and S, respectively. (a) depicts the
early stages of the process, in which ants start to discover a passage between the nest and the source
and lay their pheromones. (b) depicts the intermediate phase, in which the ants took all available
pathways. (c) demonstrates that the majority of ants chose the road with the highest pheromone
concentration [36] .

([TnM(tO)]a : [an]ﬁ)
Yuel, [Tnm(to)]lx : [’7nm]ﬁ>

The probability of travelling from node 1 to node m is py, ,,), L are the nodes to which
the ant is permitted to go from node 1, whereas 77nm) adds to visibility between nodes
n and m and it indicates the quantity of un-evaporated pheromone between nodes at a
time t,. « and B in Equation (1) regulate the impact of T, (t,) and #,,, where, if « is larger,
the ant’s searching behaviour is more pheromone-dependent, and if § is higher, then the
ant’s searching depends on its visibility or knowledge.

In order to deposit a pheromone, the following equation is used:

ptln,m)(to) = ( (1)

Q
art (= B0 @

0
Q is a constant, L is the cost of the ant’s tour that represents the length of the cre-

ated path, t is the iteration number and u shows a specific ant. Another key factor is
pheromone evaporation rate, which shows exploration and exploitation behaviour of
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the ant. In Equation (3), s is the number of ants in the system and p is the pheromone
evaporation rate or decay factor.

S

Tum(t+1) = (1= p)-Tiumyr) + kE (AT (1)] (©)
=1

Compared to other heuristic-based approaches, ACO guarantees to converge, but the
time required for it is uncertain and for better performance, the search space should be
small [40,41]. Its applications include vehicle routing [42,43], network modelling prob-
lem [44,45], machine learning [46], path planning robots [47], path planning for Unmanned
Aerial Vehicles (UAVs) [48], project management [49] and so on.

3.3. Particle Swarm Optimization

Kennedy and Eberhart invented Particle Swarm Optimization (PSO) in 1995, and it
uses a simple method to encourage particles to explore optimal solutions [50]. It is based
on flocking bird and schooling fish behaviours [51], by exhibiting three simple behaviours:
separation, alignment, and cohesiveness. Separation is used to avoid congested local flock-
mates, alignment is the travelling of one flock-mate in the same average direction of the
other flock-mates, and cohesiveness is the movement of flock-mates toward the average
position. The PSO algorithm is as follows [50,52,53]:

o1 = ol cr - rand(0,1) - (ply — ) + ca - rand(0,1) - (pl — L)

TR S |
Xig = Xig T Vg

4)
where v}, and x!, are particle velocity and position, whereas d is search space dimension,
i represents particle index and t shows the iteration number. c¢; and ¢ depict the speed
and regulating length of the swarm when it travels towards the optimal particle position.
The optimal position attained by particle i is p; and the best position found by neighbouring
particles of i is pg. The process of exploration ensues if either or both of the differences
between the best of particle p!, and the previous position of particle x!, and between the
population all-time best p; ; and the previous particle’s position x!; are large. Similarly,
the process of exploitation happens when both of these values are small. PSO has been
demonstrated as an effective, robust, and stochastic optimization algorithm for high-
dimensional spaces. The key parameters of PSO include the position of the agent in space,
the number of particles, velocity, and the agent’s neighbourhood [54-56].

The PSO algorithm begins by initializing the population, and the second step is to
calculate the fitness of each particle. Whereas, the third step is followed by updating
the individual and global best. In the fourth step velocity and neighbourhood of the
particles are updated. Steps two to four keep repeating until the terminating condition is
satisfied [51,54,57,58].

Figure 7 shows the working of the PSO method, where the particles are spread out in
the first iteration to discover the best exploration. The best solution is identified in terms
of neighbourhood topology, and each member’s personal and global best particles are
updated. As indicated in the figure, the convergence would be determined by attracting all
particles towards the particle with the best solution.

PSO is simple to configure for efficient global search, has few parameters to set, is scale-
insensitive, and parallelism for concurrent processing is also easy. Population size is one of
the key factors that ensures precise and fast convergence for large population sizes [51,59].
Networking [60], power systems [61], signal processing [62], control systems [63], machine
learning [64], and image processing [65-67] are some of the applications.
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Figure 7. The operation of the PSO algorithm and its progress towards global optima as measured by
iteration numbers [47].

3.4. Differential Evolution

Differential Evolution (DE) is similar to GA, using the same crossover, mutation,
and selection operators. The fundamental difference between the two algorithms is that
the DE utilizes the mutation operator while GA uses the crossover operator to produce a
superior solution. Price and Storn first introduced it in 1997 [68]. DE repeatedly generated
new populations using three properties: mutant vector, target vector, and trail vector
explained in Figure 8. A crossover process between the target and mutant vectors produces
the trailing vector. The mutant vector represents the mutation of the target vector, whereas
the target vector represents the vector holding the search space solution [69,70]. The DE
algorithm starts with population initialization and then evaluates the population to find
the fittest members. The weighted difference between the two population vectors is added
to the third vector to create new parameter vectors and this process is known as mutation.
The vector is blended within the crossover to perform a final selection.

N parameter vector mutation is generated by using the following equation:

vj,N+1 = xX,N + F(x2,n — X13,n)- ®)

i shows the index of the 2D vector. x;1, x5, and x;3, are solution vectors selected
randomly and the values of /1, 12 I3 and i should not be equal to each other. F is the
scaling factor € [0,1], while, a crossover procedure is employed to improve the variety of
the disconcerted parameter vectors. The parent and mutant vectors are combined in the
following method to create a trial vector:

" 0i,G+1 if R]‘ < CR (6)
i,G+1 —
XiG if Rj > CR

where CR denotes the crossover constant. R; denotes a random real number € [0,1] while j

depicts the resultant array’s j component.

The primary distinction between DE and GA operations is that in DE, the probability
of being selected as a parent is not based on fitness value. Increasing the population size
can significantly improve DE performance.
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DE can be found in a variety of fields, including, robot path planning [71,72] engi-
neering [73], image processing domain [74], machine learning [75], and economics [76].

X; Vi, G+1 Ui, G+1
j=1 j=1 — =1 >
2 2 2>
3 3 3
4 4 £
5 5 5
6 6 6
7 7 7
Target Vector Mutant Vector Trail Vector

Figure 8. Demonstration of DE with a seven-vector dimension j. A target vector is a current approach;
however, a mutant vector is also an alternative. After the crossover operation, the trailing vector is a
new solution [55].

3.5. Artificial Bee Colony

Dervis Karaboga presented Artificial Bee Colony (ABC) as an important SI algorithm
in 2005 [77]. Its performance is thoroughly examined in [78], which concluded that ABC
outperforms other techniques. It is based on honey bees’ intelligent behaviour in locating
food and communicating information about that food with other bees. ABC is as straight-
forward as PSO, and DE [78], which divides artificial agents into three types: employed,
observer, and scout bees. Each agent bee is given a particular task to finish the algorithm
process. The employed bee concentrates and memorizes the food supply. The employed
bee provides the observer bee with the information about the hive’s food supply. The scout
bee is on the lookout for new nectar and its sources. Figure 9 presents the algorithmic
flow of the ABC. The ABC method’s overall procedure and specifications of each step are
explained below [77-79]:

Step 1. Initialization: Food sources, x;, are initialized with i = 1 ... N, where N is the
number of scout bees in the population. /; and u; are the control parameters represent lower
and upper limits, respectively. The following Equation (7) represents the initialization phase:

x; =1l +rand(0,1) % (u; — 1) @

Step 2. Employed Bees: The search capacity for finding new neighbour food source
v; increases to accumulate more nectar around the neighbour food source x;. Once they
identify a nearby new food source supply, its profitability and fitness value are assessed.
The following formula is used to define the new nearby food source:

v = Xit+ i (xi — x]‘) 8)

where x; is a randomly selected food source. ¢; has random numbers of range between
[—a, a]. After the profitability of the new source v; is determined, a greedy selection is
used between ¥; and ;. The process of exploration occurs if x; — x; is greater, otherwise
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exploitation happens. The fitness value f iti(fl?) is computed by the following Equation (9)
and objective function with solution value x; is f;(x7).

g if £i(%7) > 0

it _l> _ 1+£i (%) )
Fie) 1+ abs(fi(X])) if f;(xf) <0

Step 3. Onlooker Bees: After calculating the fitness value and by obtaining information
from employed bees, a probability value p; is computed by using Equation (10), and this
value is then shared with the waiting bees in the hives for selecting food sources. These
bees are known as onlooker bees.

fiti (%)
YN fiti (%)

Step 4. Scout Bees: Employed bees that cannot raise their fitness values after multiple
repetitions become scout bees. These unemployed bees choose sources at random.

Step 5. Best Fitness: The best fitness value and the exact position with an associated
value are memorized.

Step 6. Termination Checking Phase: The program terminates upon meeting the
termination condition. If the termination condition may not be reached, the program goes
back to step 2 and repeats the process until it is.

pi = (10)

No

Y

Initilization > Employed Bee > Onlooker Bee —>Scout Bee —> GRO

Figure 9. Flow Chat of ABC Algorithm.

Since ABC has only two control factors, colony size and maximum cycle number,
it is straightforward to set up, robust and customize-able. It is also possible to add and
remove bees without re-initializing the algorithm [80,81]. The disadvantage of ABC is that
additional fitness tests for new parameters are required to increase the algorithm’s overall
performance. It is also slow when a large number of objective function evaluations are
required [82]. Path planning for multi-UAVs [83], engineering design difficulties [84,85],
networking [86], electronics [87], scheduling [87], and image processing [87] are some of
the disciplines where it is used.

3.6. Glowworm Swarm Optimization

Glowworm Swarm Optimization (GSO) is a new SI based approach presented by Kr-
ishnanad and Ghose in 2005 [88,89] to optimize multimodal functions. In GSO, glowworms
are real-life tangible creatures. There are three key parameters in a glowworm m condition
at time t: a search space position xy,(t), a luciferin level I,,,(¢), and a neighbourhood range
rm(t) [88-90]. These variables change over time, whereas the glowworms are distributed
throughout the work area at random initially, and then the other settings are set using pre-
determined constants. It is similar to earlier algorithms, where three phases are continued
until the termination condition is reached. The three steps of [88] are luciferin level update,
glowworm migration, and neighbourhood range update. The fitness value of glowworm
m’s current position of luciferin level is updated by using the following equation:

In(t) = (1= p) - Im(t = 1) + 7] (xm(t) (11)
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where p is the luciferin evaporation factor and | represents the objective function. For posi-
tion update in the search space, the following equation is used:

(xp(F=1) —xp(t—1)
[(xn (= 1) = xm (t = 1]

where s is the step size, and | |.| | is euclidean norm operator. Exploration and exploita-
tion behaviours occur on the basis of x;, and x,, difference. Greater difference leads to
exploration and smaller to exploitation behaviour.

If a glowworm has several neighbours to choose from, one is selected using the
following probability equation and the glowworm m is the neighbour of glowworm 7 only
if the distance between them is shorter than the neighbourhood range 7, (t):

Xm(t) = xp(t—1) +s (12)

_ () —a(t)
" Trenico k() = In(t) (13)

Pm(t)

The following equation is used to compute the neighbourhood range:
rm(t 4+ 1) = min{rs, max|[0, r,, () + p(ng — [nm(t)])] } (14)

rs represents sensor range, 14 is the desired number of neighbours, |1, (t)| is several
neighbours of the glowworm m at time ¢, and 8 is a model constant. The diagram below
demonstrates two hypothetical scenarios in which agents developing methods result in dis-
tinct behaviours depending on the agents’ placement in the search space and the accessible
nearby agents. The glowworm’s agents are represented by i, j, and k. Figure 10a signifies
agent j’s sensor range, whereas r{i denotes agent j’s local-decision range. The same is true
for i and k, where 7 and rfi, K and r’; respectively denote sensor range and local-decision
range. It is applied in the circumstances where agent i is in the sensor range of agent j and
k. Only agent j uses the input from agent i because the agents have different local decision
domains. Glowworm agents are a, b, ¢, d, and e in Figure 10b. The glowworm agents are
ranked 1, 2, 3, 4, and 5, depending on their luciferin values.

Local Decision
Domains

Radial sensor
range of agent j

Radial sensor
range of agent k

(a)

Figure 10. GSO in two different scenarios. The glowworm agents are a, b, ¢, d, e, f, i,j, and k. Three
agents with varied sensor ranges and local-decision ranges are shown in (a). It demonstrates how
agents gravitate towards agents with higher luciferin values when they are in the same local decision
as another agent. Glowworm agent’s rating is according to their luciferin levels, as shown in (b).
Lower numbers indicate greater luciferin values and vice versa [67].
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The following modifications can be considered to improve the performance of GSO.
(i) To include all agents in the solution, consider increasing the number of neighbourhoods.
When the best solution has been identified, all the agents can travel in the direction of the
agent which has the best solution, because more agents will be within the optimal solution
range and it will also increase the efficiency of exploitation; (ii) In the neighbourhood range,
smallest possible number should be selected to increase the convergence rate of GSO. Since
there are fewer calculations needed to estimate the probability and direction of the GSO’s
movement, this action may decrease the G50’s processing time.

GSO is useful in situations when only a small sensor range is required. It can detect
many sources and can be used to resolve problems of numerical optimization [88-90]. It is
also inaccurate and has a slow convergence rate [91,92]. 3-Dimensional path planning [93],
self-organization based clustering scheme for UAVs [94], routing [95], swarm robotics [96],
image processing [97], and localization [98,99] difficulties have all been solved using GSO.

3.7. Cuckoo Search Algorithm

Yang and Deb in 2009 proposed Cuckoo Search Algorithm (CSA) as one of the most
current meta-heuristic techniques. The behavior of cuckoos, i.e., brood parasites, and the
properties of Levy flights [100] inspired this algorithm. Three steps are followed throughout
the implementation of this approach. First, in each repetition, each cuckoo lays one egg,
and the nest in which the cuckoo lays its egg is chosen at random by the cuckoo. Quality
eggs and nests are passed down from generation to generation in the second step. In the
third step, the number of possible host nests are fixed, and a host bird uses probability p, €
[0, 1] to find a cuckoo egg. In other words, the host can either reject the egg or depart the
nest and start over. These three major criteria are used to present the specifications of the
acts taken in CSA. The following Levy flight equation is used to construct a new solution,
u(i+1)[100,101]:

um(i+1) = um(i) + 0 @ Levy(p) (15)

Levy ~s=t17F(0< p<2) (16)

The product ¢ is an indication of multiplication, follows the same rules as entry-wise
matrix multiplication, and 0 is the step size and, in most circumstances, d = 1. The step
size begins with a large value and gradually decreases until the last generation, allowing
the population to converge on a solution, similar to the processes involved in reducing PSO
linearly. Yang [102] introduces the additional component as follows:

(i +1) = (i) + 9 & Levy(B) ~ 0.01 Ivli/ﬁ (1 () — 1 (i) (17)
where s and v are selected using the normal distribution, which is defined as follows:
5~ N(O,Usz),v ~ N(o,az) (18)

where;

. { (7(1 +B) sin(g;)l) }1//3’% » "
(v[1+B)/2]p2 7

7 is the standard gamma function [102]. Exploration happens when the difference
between u, and u,, is high, while exploitation occurs when the difference is minor.

Compared to other approaches, CSA offers the advantage of multi-model objectives
and requires fewer parameters to fine-tune them. It is used in a variety of settings, including
path planning for UAVs [103], neural networks [104], embedded systems [105], electromag-
netics [106], economics [107], business [108], and the Traveling Salesman Problem (TSP)
issue [109].
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4. Applications of Swarm Robotics

Swarm robotics is an emerging area of research and development that has yet to gain
significant industrial adoption. Still, academics have created a variety of platforms to test
and analyze the algorithm. In [110], the authors mentioned that they are researching for
future industrial platforms. Swarm robotics research (see Figure 11), and industrial efforts
& products (see Figure 12), are the two areas of the survey which will be discussed later.
Industrial projects and products are examples of deployment in a real-time scenario. The
swarm robotics research platform assists researchers in demonstrating, verifying, and ex-
perimenting with swarming algorithms in a laboratory setting. The four categories for
both platforms are terrestrial, aerial, aquatic, and extraterrestrial. Robotic vehicles include
Unmanned Submarine Vehicles (UUV), Unmanned Aerial Vehicles (UAVs), Unmanned
Surface Vehicles (USVs), and Unmanned Ground Vehicles (UGVs).

4.1. Research Platforms

This section includes the application from swarm algorithms to swarm robots. Ad-
vanced robotics research platforms, such as the balboa robot and others, exist but are not
included in Figure 11 because, they are not designed to use in swarm applications.
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Figure 11. Classification of different research platforms for swarm robotics .

4.1.1. Terrestrial

The kilobot swarm is widely considered the best swarm of robots ever produced
for educational and research purposes. They are little, measuring 33 mm in diameter.
For propulsion, vibration motors are employed, and for communication, infrared light
reflected from the ground is used. For swarming, 1024 robots are used and they are
well-known for their capacity to self-assemble into various forms [111]. It is open-source
and commercially accessible through K-Teams. Jasmin, an open-source platform, was
created with a large-scale swarm investigation that required touch, proximity, distance,
and color sensors. Alice [112] is another platform, with additional sensors, including
a linear camera, increases the functionalities of swarming. Similarly, AMiR [113] and
Colias [114] are open-source and commercially available swarm robots that provide a
foundation for a number of research platforms. Mona is a commercial product as well as an
open-source initiative. However, R-One may be used as a swarm robotics platform since
it comes with a camera for ground-truth localization and software to connect all devices.
The swarming platform Elisa-3 incorporates an Arduino with eight infrared sensors, three
accelerometers, and four ground sensors, all of which can be charged by a charging station
and communicate through infrared or radio waves. The Khepera IV [115] was created for
indoor use. K-Team is a tiny and unique swarming research platform with a linux core,
color camera, WLAN, bluetooth, USB, accelerometer, loudspeakers, gyroscope, three RGB
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LEDs, and it is also commercially available. The GRITSbot [116] is an open-source robot
found at Georgia Tech’s Robotarium in Atlanta. Researchers can utilize the resources by
uploading code, performing experiments, and gathering data using Robotarium’s remote
access. As the size and quantity of these robots increase, more maintenance and usability
aspects become crucial.

The e-puck and its successor, the e-puck2, are designed to make programming and con-
trolling robot behavior simple for research and education. It includes an infrared proximity
sensor, a CMOS camera, and a microphone. Both commercial and open-source versions
are available. Its new edition, Xpuck, introduces new features, including aggregation of
raw processing power, which is used in current mobile system-on-chip (SoC) devices with
roughly two teraflops of processing power.

ArUco marker tracking in image processing computations is another example [117].
Similarly, Thymio II [118] swarm robots offer a range of sensors, including temperature,
infrared distance, microphone, and accelerometer. Visual and text-based programming are
also available. Thymio II is open-source and commercially available at Thymio, whereas
Pheeno [119] is also a free and open-source swarm robotics platform for teaching and
research. Custom modules with three degrees of freedom may be employed, and an IR
sensor is used to communicate with the outside world. The open-source and locomotion-
capable Spiderino [120] has six legs and has a hexapod toy-like design with an Arduino
CPU, WLAN, and some reflected infrared sensors on a PCB.

I-Swarm (Intelligent Small-World Autonomous Robots for Tiny-Manipulation) is a
swarming microrobot. Its sizes are 3 x 3 x 3 mm, and it is solar-powered without a source.
It travels by vibrating and communicates using infrared transceivers to establish a swarm
of 1000 robots [121]. The prototype is on exhibit at the technology museum in Munich.
The Zooids [122] human-computer interface is a novel type of HCI that handles interaction
and presentation. It was built as a unique open-source robotics platform. Light patterns pro-
jected from an overhead projector regulate the swarming of Zooids. The APIS, or adaptable
platform for an interactive swarm, comprises several components, i.e., the swarm’s infras-
tructure and testing environment, software infrastructure, and simulation [123]. The focus
is to experiment with human-swarm interaction. The platform uses an OLED display and a
buzzer. With the help of the swarm, clean up the environment Wanda [124] is a robotics
platform that might be useful. The authors have built the entire tool-chain from robot
design and simulation to deployment. Droplet [125], a spherical robot that can organize
itself into complex shapes with the help of vibration locomotion, is another ideal platform
for education and study. The powered floor, which features alternating positive charge
and ground stripes, has been used for both charging and communication between swarm
robots. Swarm-bots [126,127] may automatically align themselves to various 3D shapes.
Its design is open-source, and robots are made up of various insect-like shapes. They are
built with low-cost, readily available components. They can adapt to any environment
due to their self-assembling and self-organizing capabilities. The swarm can move heavy
goods that would be too heavy for individual robots. Swarmanoid and its successor, are
the first study of integrated design, development, and control of heterogeneous swarm
robotics systems. It is open-source, and includes three types of autonomous robots. Eye-bots
(UAVs that can stick to an interior ceiling), Hand-bots (UGVs that can climb), and Footbots
(UGVs that can self-assemble) are among the varieties of UAVs that are developed [128].
Surprisingly, the termes robots [129] interact without the need for communication or GPS to
build huge constructions using modular components. It is based on how termites construct
their nests in nature, and they are block-carrying climbing robots that can also construct
similar structures in unstructured situations. Other swarming platforms for research are
symbrion and replicator [130]. They are two projects that are pretty much identical in terms
of developing autonomous platforms for swarms. By physically connecting to each robot in
the swarm, they may function individually or in a certain form and the goal was to devise
a strategy for achieving robot organism evolvability. PolyBots [131] are self-configurable
robots that can move in many ways. They have interchangeable object manipulation mod-
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ules that may take on a variety of shapes depending on the situation, such as an earthworm
for slithering over barriers or a spider for marching through hilly terrain. These robots are
ideal for multitasking and usage in new areas. M-TRAN I [132], M-TRAN II [133], and M-
TRAN I1I [134] are self-configurable robotics technologies. ATRON [135], CONRO [136],
sambot [137], and molecube [138] are all open-source robotic systems and robots.

4.1.2. Aerial

Miniature and micro unmanned aerial vehicles (WUAVs) for swarming are affordable
robots available for research and education [139] and Swetha et al. [140] both look into
small-scale UAVs. Several off-the-shelf Micro Air Vehicles (11 AVs) are available and famous in
the gaming and commercial industries. Three rate gyroscopes and three accelerometers are
used in UAVs developed for swarming robots in #AVs in [141], together with one ultrasonic
sensor and four IR sensors. The Distributed Flight Array [142] is a popular platform used to
construct swarmanoid [128] on it. Each UAV adds a single rotor to a big array. The module
self-assembles into a multi-rotor system, in which all robots must exchange coordinates and
local parameters for coordinated flying. Crazyflies [143], which are available commercially
and open-source at Bitcraze, make use of a variety of sensors, including a high-precision
pressure sensor, an accelerometer, a magnetometer, and a gyroscope. It can conduct
experiments while minimizing the risk to humans because of its light weight of about 27 g.
In FINken-III [144], is a powerful copter equipped with a better communication module
(802.15.4) to communicate between ground station and other copters , and sensors like
optical flow, infrared distance, and four sonar sensors.

4.1.3. Aquatic

The Collective Cognitive Robotics (CoCoRo) project has been developed with 41 het-
erogeneous Unmanned Underwater Vehicles (UUVs). Electric fields and sonar sensors are
used to communicate, and the system applies to environmental monitoring, water pollution
assessment in rivers and oceans, and global warming consequences. The Monsun [145] has
two communication modes: a camera for identifying other swarm members and an under-
water acoustic modem for transmitting data. CORATAM (Control of Aquatic Drones for
Maritime Tasks) [146] has also been developed for swarms of USVs, with uses such as sea
border patrols, marine life localization, and environmental monitoring. This open-source
platform uses evolutionary computing to evaluate swarm methods [147].

4.1.4. Outer Space

NASA has developed swarmies to gather water, ice, and minerals on Mars. They have
also established a swarmathon to aid academics in developing an ant-based swarm algorithm.
In-situ Resource Utilization (ISRU) is the name given to this application. Twenty swarmies
cover a distance of 42 km in around 8 h. Another NASA Innovation Advanced Concept (NIAC)
program project aims to enrich knowledge on the Mars exploration swarm of Marsbees [148].
These have the size of the bumblebee for robotics flapping wing flyers. They can explore
and discover themselves in an unfamiliar place. With NIAC financing, a flapping flyer with
insect-like wings will be offered as a technical implementation.

4.2. Industrial Projects and Products

These include UAV, UGV, UUYV, and USV swarm robots developed for industrial
projects and products. The available robot with respective type has been shown in Figure 12.

4.2.1. Terrestrial

Agriculture is essential to a country’s growth. Food demand is growing, but the
output is still insufficient [149]. SwarmBot 3.0 is being used to monitor fields autonomously
using Unmanned Ground Vehicles (UGVs). Before beginning the specified task, this swarm
collaborates via a centrally controlled timetable. The large area is automatically subdivided
into smaller fields and then allocated to an individual robot in the swarm [150]. Their tasks
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include sowing, applying fertilizers to the assigned areas, harvesting, and irrigation which
is the requirement of the agriculture sector. Another fascinating innovation from the Fendt
firm is the UGV Xaver, which is used for seeding and is powered by a battery [151].
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Figure 12. Classification of different industrial projects and products of swarm robotics.
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The GUARDIANS (Group of Unmanned Assistant Robots Deployed in Aggregative
Navigation by Scent) [152] has been used for emergency and rescue missions. They are
used in places where human presence is prohibited or where the environment severely
impairs human senses. This project assists in searching and warns against toxic chemicals
using mobile communication links. They can form and navigate using potential fields and
achieve the assigned task without explicit communication between the robots.

Another autonomous Ocado [153] warehouse has been developed that has a swarm of
homogeneous cuboids and is being utilized for grocery orders and dispatching. A total
of 1100 collaborative swarms of robots are used for the order and dispatch, where the
workers put the customer order together. Robots are controlled from a central location by a
cloud server, and data are exchanged via cellular technology between the robot and the
cloud. Amazon [154], which employs Kiva, is the most prominent player in the swarming
of robots in warehouses. An A* algorithm (with visual tags on the ground) searches for
humans who assemble the customer’s order. WLAN is used for the communication of
robots, and dispatching is organized centrally. A low battery of robots is handled by the
charging stations automatically. Alibaba [155] retailers are using a similar system for the
autonomous order of goods and dispatching.

4.2.2. Aerial

The OFFSET (OFFensive Swarm Enabled Tactics) [156] projects are mostly deployed
in military applications, although they can also be applied in other situations. This project
aims to improve intra-city observations using UAVs and UGVs. These swarms of robots
are capable of detecting hazards from the surroundings. Perdix [157], a military application
swarm supported by the business. It is capable of performing its tasks without human
piloting and has the ability to communicate with other drones to work collaboratively and
achieve a common goal. These drones operate in a swarm of 20 or more and coordinate
their actions to accomplish the desired outcome. Pentagon consisting of 103 drones, is
another military application swarm. This swarm is not controlled by a single leader and
can adapt to UAVs. They can fly in formation and make decisions as a group, making
them useful for covert operations and targeted assassinations. The autonomous swarm
is developed to install and manage WLAN network [158] as part of the Swarming Micro
Air Vehicle Network (SMAVNET) project [159] in the emergency and rescue application
sector. The project aims to gather rescue teams when disaster places have been explored
and located. SWARMIX [160] is a similar search and rescue initiative in which a swarm
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of heterogeneous agents, such as humans, dogs, and Unmanned Aerial Vehicles (UAVs),
create a swarm and engage in a search and eventually rescue operation.

Using a swarm of autonomous aerial vehicles, the Swarm robotics for Agricultural
Applications (SAGA) project [161] seeks to do weed-spread monitoring and mapping.
A swarm’s fitness is decided by trade-off exploration and weed detection time in smart
farming. Weeds and plants are detected and identified using a visual approach.

Nowadays, swarms are also providing entertainment in terms of light shows. The UAVs
are equipped with colorful LEDs and perform the formation of different patterns accom-
plished by music to create a beautiful scene. In Spaxels, Flyfire, Ehang, Intel [162], and Lucie
micro, 1000 Unmanned Aerial Vehicles (UAVs) are controlled from a central location and
follow pre-programmed patterns.

4.2.3. Aquatic

Swarms are commonly used in aquatic environments to monitor the environment.
Platypus [163] offers autonomous swarm robotics boats as USVs. They are utilized to
keep track of water quality, produce a dense map of defined bodies beneath the surface,
and stratify salinity and oxygen levels. Apium Data Diver is a prototype vehicle with a
maximum depth of 100 m. It is meant for swarm operations on the surface and underwater,
with temperature, pressure, and GPS among the sensors on board. It finds its application
areas in defense, oceanography, hydrographic survey, and aquaculture. This type of swarm
can be found in UUVs and USVs. It can accept high-level commands from a human
operator and build a wide range of patterns [164]. Hydromea’s Vertex Swarm is available in
UUVs and can assess water quality in various places up to 300 m deep. It generates 3D
data with great spatial and temporal resolution that is faster and more precise than manual
approaches. The major purpose of the SWARMs (Smart Networking Underwater Robots in
Cooperation Meshes) project [165] is to develop surface and underwater vehicles that can
operate in maritime and offshore operations. It is responsible for designing and developing
software and hardware components for the next generation of maritime vehicles, as well as
assisting in the improvement of autonomy, robustness, cooperation, dependability, and cost-
effectiveness. It uses offshore installations, chemical pollution monitoring, and plume
tracking. Research focus lies on reliable underwater communication [166] and leveraging
topology control [167].

The military has employed the CARACaS software kit, which is used in aquatic
environment. NASA developed CARACaS (Control Architecture for Robotic Agent Com-
mand and Sensing), which has now been upgraded by ONR (Office of Naval Research)
for autonomous Navy operations in the United States where USVs communicate with
one another [168]. It enables USVs to choose their courses, protect assets in the navel,
and intercept enemy boats as a group. In a demonstration at the James River in Virginia in
2014, CARACaS was installed on rigid-hulled boats and proved to be magnificent and suc-
cessful [169]. Based on the discoveries of the CoCoRo, Submarine Cultures (SubCULTron)
conduct long-term robotic exploration of unusual environmental niches. It is used on UUV
robots to assess factors such as learning and self-sustainability.

4.2.4. Outer Space

Swarm was launched in 2013 and is made up of three identical spacecraft, two of
which are side-by-side at 450 km and the third at 530 km above the ground. The mission of
each satellite was to research the earth’s magnetic field, and each was nine meters long [169].
Cluster II is a tetrahedral arrangement of four identical cylindrical spacecraft that was
launched in 2000. It was initially capable of sending three-dimensional solar wind data on
the earth’s magnetosphere to investigate the sun’s influence on the environment [170].
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5. Swarm Robotics: Past, Present and Future Perspective

Social insects, fish schools, and bird flocks are examples of naturally self-organizing sys-
tems that display emergent collective behavior based on simple local knowledge [171,172].
Swarm robotics emerged as a branch of swarm intelligence, or the computational modeling
of collective, self-organizing activity, which has yielded many successful optimization
methods [173,174] that are now used in fields ranging from telecommunications [175] to
crowd simulation, and prediction [176]. In contrast, swarm behavior in robots necessitate
the installation of swarm intelligence algorithms on current robotic systems. Because of
the expected ubiquity of autonomous robots in real-world applications and the challenge
of allowing them to interact with one another and with their human users while avoiding
the drawbacks of centralized control, swarm robotics research is gaining traction. Swarm
robotics research will be crucial in addressing complex coordination problems in future
robotics applications. It includes cooperative (i.e., robots working together to complete a
common task) and semi-cooperative (i.e., self-interested robots benefiting from a globally
efficient organization of activities, such as autonomous vehicles) scenarios. In the future,
it will become a new and powerful tool in precision medicine, allowing for personalized
therapies such as minimally invasive surgery or direct polytherapy delivery to malignant
cells inside the human body [177,178]. Large numbers of robots with limited computation
and communication capabilities, on the other hand, will push swarm robotics to its limits,
necessitating the development of new conceptual tools in addition to tiny hardware or
robotics devices [179].

In lab settings, robot swarms are shown using a small number of tiny robots [128,180].
Although technology advancements are pushing the bounds to ever-smaller sizes [177,181]
and greater numbers [6,7], but the road to real-world applications remains lengthy and
arduous. For example, group scale, from a few dozen to millions of people constituting the
swarm and physical scale, from micro/nanorobots to massive terrestrial, aerial, and aquatic
robots. Swarms that display prompt intervention and adaptability in a quickly changing
environment to robots that work on months-long missions are examples of temporal scale
(e.g., on a distant planet) from small-scale deployments to large-scale deployments and
geographical scale. Previous, current, and future robotics achievements in terms of software,
hardware, or a combination of the two are explained in the Table 1. Figure 13 shows the
evolution of swarm robotics, to the best of our knowledge, from algorithmic research to the
real-time best-performing swarm of robots.
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Figure 13. Evolution of swarm algorithms and swarm robotics.
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6. Conclusions

Swarm robotics aims to develop simple, autonomous or self-governing robots that
can cooperate to solve real-world problems collectively. Intelligent swarm algorithms are
needed to enable the robots to interact autonomously and coordinate together without
centralized control. The research on the swarm robotics domain started in the late 1900s,
and the development work started in the early 2000s, gradually evolving the previous
research and simulation work towards the actual real-world projection of swarm robotics.
But there is a gap between theoretical and industrial research in swarm robotics. Theoretical
research mainly focused on simulating swarm behaviours, while industrial research focuses
on designing hardware that can execute swarm behaviour. Therefore, it is crucial to deploy
swarm algorithms on hardware that can accommodate swarm behaviour functionality.

This article provides a comprehensive overview to new researchers of the swarm
robotics field. It classifies the definition of swarm robots and identifies the difference
between a multi-agent system and an actual swarm of agents. A detailed review of the
swarm’s most emerging swarm behaviors, and swarm intelligence algorithms is captured,
keeping in view the limitation and the transformation towards the industrial application
and development of the swarm robotic platform. In addition to the industrial applica-
tion, this paper reviewed several research hardware platforms specifically designed to
demonstrate or replicate any swarm behaviour. Finally, this paper concludes by reviving
the era of swarm robotics from the past, present, and future projections with expected
timelines of evolving the system and having real-world application, agnostic of swarm
robotics platforms.

This article provides valuable insights for researchers in swarm robotics by highlight-
ing various areas of research gaps, including algorithmic and hardware implementation.
It emphasizes the importance of addressing these gaps to enable effective collaboration
among robots. Researchers can bridge the gap between theoretical and industrial research
in swarm robotics, leading to advancements in the field.
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Abstract: Rapidly completing the exploration and construction of unknown environments is an
important task of a UAV cluster. However, the formulation of an online autonomous exploration
strategy based on a real-time detection map is still a problem that needs to be discussed and op-
timized. In this paper, we propose a distributed unknown environment exploration framework
for a UAV cluster that comprehensively considers the path and terminal state gain, which is called
the Distributed Next-Best-Path and Terminal (DNBPT) method. This method calculates the gain
by comprehensively calculating the new exploration grid brought by the exploration path and the
guidance of the terminal state to the unexplored area to guide the UAV’s next decision. We propose
a suitable multistep selective sampling method and an improved Discrete Binary Particle Swarm
Optimization algorithm for path optimization. The simulation results show that the DNBPT can
realize rapid exploration under high coverage conditions in multiple scenes.

Keywords: exploration of unknown environment; UAV cluster; sampling and optimization; distributed
path planning; particle swarm optimization

1. Introduction

At present, unmanned aerial vehicles (UAVs) are widely used to perform tasks in
various environments, especially in complex and unknown scenes. One of the typical tasks
is to explore an unknown environment, which is widely used for search [1,2], rescue [3,4],
and dangerous area reconnaissance [5]. Unknown environment exploration means that
UAVs or a UAV cluster can make decisions on their own actions in real-time by relying
on their detection equipment under the condition that there is no prior environmental
information to achieve a fully independent construction of highly saturated environmental
information. Compared with other missions, unknown environment exploration lacks
prior map information. It is crucial to set the autonomous strategy of the exploration action
to complete the environmental construction of the whole region as soon as possible. The
coordination in the cluster and avoidance of repeated exploration must also be considered.

The traditional exploration of unknown environments adopts the ploughing method
for complete coverage path planning [6], but it only aims at specific conditions [7] with-
out obstacles in the environment. When encountering obstacles, the ploughing method
adopts a simple wall-following strategy [8] to avoid sudden obstacles in the path, which
also has great limitations. Yamauchi initiated a frontier-based exploration strategy [9]
and extended it to multiple robots [10], which is considered to be an important classical
method for unknown environment exploration. The frontier is defined as the boundary
between the unexplored grid and the explored grid while excluding the explored obstacle
grid. The frontier-based method obtains exploration information by navigating the robot
to the frontier grid. Many of the most advanced methods are based on frontier-based
exploration [11-13]. Ref. [14] developed a frontier-selection strategy that minimizes the
change in velocity necessary to reach it to achieve the high-speed movement of quadrotors.
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Ref. [15] proposed a hierarchical planning framework based on frontier information (FIS),
enabling a UAV cluster to quickly explore indoor environments.

The sampling-based method is another particularly effective method for exploration.
The central idea is to calculate the information gain of the sampled state and select the best
one to execute, which can adapt to various gain calculation forms and has strong flexibility.
The sampling-based method is also combined well with the frontier-based method. For
example, the SRT [16] algorithm drives the motion update of the robot through sampling in
the sensor safety space and the selection of random exploration angles. The Next-Best-View
(NBV) [17,18] is an exploration method introduced from 3D reconstruction and has become
a widely used sample-based exploration method. Authors in [19] proposed the Reced-
ing Horizon Next-Best-View, combining NBV with a path planning algorithm similar to
RRT [20] and RRT* [21], and obtained a fine effect in indoor exploration and reconstruction
mapping. Authors in [22] proposed a UFO exploration method. Based on the rapidly up-
dated map format called the UFO Map, the maximum information gain was not considered
but adopted the nearest point with the information gain as the exploration decision, which
achieved the effect of rapid exploration at a small cost of computing resources. In addition,
exploration methods based on machine learning are also considered to have great potential,
and many scholars are conducting relevant research [23-25]. However, its engineering
applications for unknown environment exploration are still relatively few, and it performs
poorly in the generalization ability to different environments, which still needs further
exploration and research [26,27].

For large scenes, such as in underground garages or large factories, to ensure that
the task can be completed quickly, the cluster is generally used. For the exploration of
the environment of a robot cluster, the distributed cluster structure is considered to be
better in this scenario [28]. It can not only avoid excessive pressure on central computing
resources but also flexibly handle the impact of poor communication in the cluster or
sudden failures [29-31] to minimize efficiency loss. However, for distributed clusters,
designing the exploration strategy of each platform to avoid repeated exploration and
complete the exploration quickly under the premise of cluster collision avoidance is still a
difficult problem.

The above method seems to simply consider the state of the next step to calculate its
gain, but the impact of its motion process on the exploration is considered to be negligible,
especially when the sensor is limited by the field of view (FOV) or is in the area near the
obstacle, and at the same time, dynamics should be considered to increase the efficiency.
Therefore, this paper proposes a distributed exploration framework for unknown environ-
ments considering the path and terminal gain. In this framework, multiple exploration
paths are obtained by considering the dynamic constraints of the state sequence, and the
optimal path is obtained by using optimization methods. The evaluation factors include the
energy loss of dynamics, the growth of map exploration in the path process, the benefits of
the terminal state to the next exploration, and collision avoidance in the cluster. The paths
are planned for a period of time in the future and take the frontmost path to implement
until the exploration coverage of the entire cluster meets the requirements. To ensure
the efficiency of online planning, a multistep selective optimal sampling method, a gain
calculation method of path exploration, and an efficient improved Discrete Binary Particle
Swarm Optimization (BPSO) algorithm are given. The results show the effectiveness and
superiority of the algorithm in the exploration of unknown environments of a UAV cluster
in multiple scenes.

The contributions of this paper are as follows:

1. A Distributed Next-Best-Path and Terminal framework for real-time path planning
for UAV cluster unknown environment exploration.

2. A multistep selective sampling method for the initial generation of the exploration
path with the calculation method of progress and terminal gain.

3. Animproved Discrete Binary Particle Swarm Optimization algorithm to generate the
best exploration path.
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The remainder of this paper is organized as follows: Section 2 describes the problem of
unknown environment exploration and introduces our distributed unknown environment
exploration framework and the construction of the specific model. Section 3 discusses
the multistep selective sampling method we propose and the improved BPSO algorithm
of the optimal path solution. Section 4 presents the simulation to verify the algorithm
performance. Section 5 gives a summary and introduces further work.

2. Framework and Model Establishment
2.1. System Framework

In an unknown environment, the UAV cluster detects and builds the map using its own
sensors and independently plans the next path or action according to the real-time built
map. In the exploration process, UAVs intercept the global map separately at the ground
station and generate a local map for prediction and planning, while the new environmental
data obtained in the movement are sent to the ground station for the global map update.
The map is in the form of a grid map. Each grid has three states: unknown, known free,
and known obstacle. Position and attitude messages can be obtained for planning cluster
collision avoidance through communication.

For each individual in the UAV cluster, the critical factors for the decision behavior
include two aspects: the new situation of the possible exploration map after the path is
executed and the advantage of the terminal of the path for the next exploration action.
Among them, the map change comes from the increment in the grid in the unknown state
to the known state, which is calculated by the fast approximate method mentioned below.
Considering the tendency of the terminal state to the unexplored area and referring to the
generation method of the frontier, the frontier closest to the current position is generated
from the map before the path is executed, and the terminal state closer to the frontier
after the path is executed is considered the better terminal. Other factors that must be
considered in cluster exploration include path obstacle conflict, path energy loss, and
collision avoidance in the cluster, as shown on the right side of Figure 1.

|
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Figure 1. Distributed Next-Best-Path and Terminal exploration framework.
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The left side of Figure 1 shows the DNBPT framework we propose. We set a prediction
horizon as the time domain for each plan and plan the series paths of the UAV with a fixed
length. We take a multistep sampling and preferential growth method, sample in a limited
state space, and inversely calculate the dynamic path through the terminal state to obtain
the path and terminal state. Considering the factors mentioned above to evaluate, we
select a certain number of action sequences with high evaluation. Due to the nonoptimal
solution by limited sampling, the series of paths obtained is used as the initial solution
of the improved BPSO algorithm to further optimize and finally obtain the optimal path
and terminal sequence. The controller responds to the first step of the optimal sequence to
address sudden obstacles or other situations in the actual movement. In this framework,
UAVs can join or leave the exploration mission freely without causing disorder in the
whole system.

2.2. Exploration Model in Unknown Environments
The dynamics of the UAV have the property of differential flatness [32]. In the planning

process, the flat output s = [px, py, pz, ¢| Tis used as the planning quantity to reduce the
planning dimension and improve the timeliness. py, py, p: is the position of the UAV and ¢
is the yaw angle.

The obtained detection area is fitted with the local grid map to obtain the index of the
grid map and bring it into the global map, as shown in Equation (1).

Grid(Mappew) = Grid(explored) U Grid(Map,;4) 1)

Assume that k is the length of the prediction horizon and Sy = [s(t + 1t),...,s(t + k|t)]
is the state sequence in the prediction horizon as the input of the predictive map update
and the evaluation function.

The UAV carries sensors with an observation field of view (FOV) to detect environ-
mental information. In this paper, the sensor mapping algorithm is not considered, and it
is assumed that the sensor can obtain the environment information within the angle range.
The sensor can be equivalent to a sector, and its detection range within the prediction
interval can identify the trajectory of the sensor’s sector area driven by the k segment
control for integration, as shown in Equation (2), where G(°) represents the processing
program of the region on the grid map and Nj;cyens. represents the number of new grids.

k

li
Nincrease = Y < /l " sector(FOV) dl), FOV € (0, 7] @)
i=1 i

Due to the complexity of the integral calculation and the grid form of the map, we
propose a simplification to predict the update of the map and calculate the number of new
detection grids, as shown in Figure 2. The sampling range and time interval are limited
to ensure that the state falls in the previous detection sector. For a state S; in the terminal
state sequence Sy, we connect the two points P;_; and Q;_1 of the previous sector and the
two points P; and Q; of the current sector. A convex quadrilateral is formed, and each
convex quadrilateral is connected. The obtained convex quadrilateral is placed into the
local map to calculate the number of new exploration grids as the evaluation basis of the
path-terminal sequence, as shown in Equation (3).

N k
Nincrease = G <Z Ai(Pifl QilR’Qi)) (3)

i=1

This equivalent method improves the calculation efficiency to support online UAV planning.
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Figure 2. Detection model and approximate calculation of grid increase.

2.3. Construction of the Evaluation Function

In the process of exploring the unknown environment, the form of the solution is the
terminal state sequence of the predicted horizon and the path between the state transitions.
Its optimality evaluation includes two aspects: the path and the terminal state.

First, the path needs to be checked for obstacle conflicts, and it is necessary to ensure
that the planned path of the cluster will not collide with the obstacles that have been
explored. The path points in the process are extracted by interpolation, and the obstacle is
checked in the grid map. The results are accumulated for the evaluation function value, such
as Equation (4). Note that this is not applied in sampling but in the optimization algorithm.

4)

Jo= —100, collision
0= 0, collision free

In the action space, under the constraint conditions, the average energy consumption
of the action sequence is smallest, as shown in Equation (5), where dim (u) is the dimension
of the action space.

2
-1 i Umax 5
I k -dim(u) ©)
To ensure the continuity and smoothness of the front and back actions, it is necessary
to minimize the front and back deviation of each step in the action sequence, as shown in

Equation (6):

7Z§:12udeiag< 1 )ui

kooyl gl

ico Lj=0 Tl
h=1- 0 (6)
The exploration of unknown space during the UAV’s movement brings gain. The
calculation method of the number of new exploration grids is proposed above, and the

evaluation function is shown in Equation (7). Nieference refers to the number of exploration
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grids in the ideal state. The calculation method is shown in Equation (8), where r is the
sensor detection distance, 4 is the fixed maximum distance for sampling, and rev is the map
resolution (magnification).

N:
s = __‘increase @)
Nreference
F
Nreference = 2krd Sin(f) rev (8)

Because the environment is unknown, the exploration gain under different paths
may be similar. In the later stage of the exploration process, it may occur that the UAV’s
surrounding environment has been completely explored. It is easy to fall into the local
optimum, causing invalid and repeated paths. Therefore, the guidance of other factors is
needed to enable the UAV to move in the direction that the gain may increase. The rating
function of this part is shown as Equation (9):

_ lisg—srll

]4 =1—¢ [lsg=srl (9)

where sy is the state at moment k, s is the initial state, and s, is the reference guidance state.
We use frontier coordinates and straight orientation as references in this paper, and the
frontier is rapidly generated through the edge detection of OpenCV.

To improve the exploration efficiency of the cluster, the UAVs should be distributed as
far as possible. Therefore, the evaluation function is designed for the terminal state, as in
Equation (10), where 5 is the set safety distance and 7 is the number of UAVs in the cluster.

s
= 10
]5 Z (Tl - 1)'||Srobot(pm Py) — Sother (px: Py) H ( )

Based on the above evaluation factors, the total evaluation functions used in selective
sampling and improved BPSO, respectively, are designed as Equations (11) and (12), respectively:

5
]sampling = 2 wj]]' (11)
j=1
5
Jispso = Jo+ ) wjl; (12)
=1

where wjel0, 1] is the weight value, which can be adjusted according to the actual situation,
while 2/5:1 wj=1

3. Method and Algorithm
3.1. Multistep Selective Sampling Algorithm

To make UAVs better adapt to unknown environments, planning is often performed
in multiple steps. Planning the multipath within a certain planning horizon and executing
the first segment of the optimal path are needed. In the calculation process, the number
of samples will increase exponentially with the increase in the number of segments in the
planning horizon, and the calculation cost is unaffordable. Therefore, we design a multistep
selective sampling method. During each round of sampling, we sample the sequence with
high current evaluation in the next step. The pseudocode of Algorithm 1 shows more
details of the multistep selective sampling method.

An empty set X" saves path and terminal sequences with lengths less than k, and an
empty set F saves sequences with lengths equal to k. In the sampling space under the
constraint conditions, m terminal states are randomly taken to be composed on the initial
state as the initial sequence, and then the loop begins while the sequence gradually grows.
In each loop, the best n solutions in the set X’ are selected for the next step of sampling.
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Each solution also takes m states randomly in the updated sampling space based on the
current state to make the sequence grow and update these sequences in X. The sequence
with a length of k is placed in F and will not be selected again for the next sampling. When
the evaluation value of the n th better sequence in F is greater than the best evaluation
value of the sequence in X, the sampling process is finished.

After multistep selective sampling, n path and terminal state sequences are obtained
as the basis of the next optimization algorithm.

Algorithm 1 Multistep selective sampling

Input: Grid Map, initial state xo, sample space U, other states x,,0rs
Parameters: planning horizon k, number of samples m, 1, safe distancers
Output: aggregate of terminal state sequence X! with path
update U
X, F+ O
sampling random m in U, generate X, X' < X{
while X is not empty
select the best m sequences with length <k
update U
uniform sampling # in U based on the selected sequences X!, i € [1,k —1]
Xi Xl
update the evalution value of X' //according to the Equation (11)
ifi <kthen X < X
else F «+ X}
if the nth best X in F better than the best X in A’ then
break
select the best n in A" as output

3.2. Improved Discrete Binary Particle Swarm Optimization Algorithm

To select the optimal path from the generated multiple paths, we propose an optimal
path selection method based on improved BPSO. We propose a mutation strategy to
increase the diversity of the population, which can help the particle swarm jump out
of the local optimum trap. In addition, we introduce a contraction factor to ensure the
convergence performance of the algorithm [33], which controls the final convergence of
the system behavior and can effectively search different regions. This method can obtain
high-quality solutions.

The velocity and position update formulas of the particle swarm after introducing the
contraction factor is shown as Equations (13) and (14), respectively:

i | = Molg +cari (pbestiy — xiy) + cara (ghestly — xiy)) (13

Yia

t+1 ot t+1
Xig = Xjg Uy (14)

where A represents the shrinkage factor, as shown in Equation (15), t represents the current
iteration number, ¢ and ¢, are the learning factors [34-36], 71 and r, are two random values
uniformly distributed in [0, 1], and pbest;; and gbest;; represent the individual optimal
position and the global optimal position of the particle, respectively.

A= 2 (15)

‘2(01 +c2)—\/(cl + ) — 4% (01 + )

Our mutation strategy introduces the idea of the dAMOPSO [37] algorithm, and age is
used to represent the number of times that the individual optimal position (pbest) of the
current particle has not been updated continuously in the loop. When the local optimal
position of the particle has not been updated for a long time, it means that the particle
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is likely to have fallen into the local optimal position, and it is necessary to perturb the
particle. The specific perturbation example is shown in Figure 3.

- IR

ﬂhﬂ

Mutation

NN
1 1 0 0

- IR

Figure 3. Perturbing the particles that have been in the local optimum for a long time.

The state of particles is converted into binary form. In each coordinate, a bit of the
position is randomly selected for the mutation operation. After the mutation operation,
the particle’s age is reset to 0. If the particle’s age does not reach the age threshold, only
the particle’s age is increased. The pseudocode of the mutation operation is shown in
Algorithm 2:

Algorithm 2 Mutation strategy

Input: Pop(swarm), Py, N(size of the population), Ta(threshold of age)
Output: NewPop(new swarm)
fori=1: Ndo
if age(P;) > Ta then
P/ + Mutation(P;)
Fitness < CalculateFitness(P;) //according to the Equation (12)
if fitness(P;’) > fitness(P;) then

age(P;) «+ 0
else
age(P;) < age(P;) +1
end if
end for
return NewPop

The proposed improved BPSO algorithm is mainly divided into two stages. The first
stage is the initialization stage. We encode and initialize the particle swarm according to
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the input path information, randomly initialize the speed and the age of the initialization
particle, and finally calculate the fitness value of the particle. The second stage is the main
loop stage. When the particle’s age exceeds the age threshold, the mutation operation is
performed. The loop is finished when the termination condition is met. The final returned
Gpest is the optimal sequence of terminals with paths. The pseudocode of the Algorithm 3 is:

Algorithm 3 Improved DBPSO

Input: original Pop, size of the population N, maximal generation number maxgen
Output: Gy, (optimal sequence of terminal state with path)

P <« InitializeParticles(N)
Age < InitializeAge(N)
Fitness < CalculateFitness(N)
While NCT (Number of current iterations) <= maxgen do
fori=1: Ndo
Gpest <—SelectGbest(Pop)
Pop < Updateparticles(N) //according to the Equations (13)—(15)
NewPop < Mutation(FP;)
Fitness < CalculateFitness(N) //according to the Equation (12)
Pop < NewPop
Gpest < SelectGbest(Pop)
end for
end while
return Gy,g;

4. Simulation and Analysis
4.1. Simulation in Fixed-Obstacle Scenes

We design three indoor scenes with fixed obstacles of different sizes based on the
interior of the building, and the number of UAVs in each scene is different. Due to the
indoor scene, we assume that the UAV is flying at a fixed altitude. The sizes of the scene
are 20 m long and 50 m wide, 50 m long and 50 m wide, and 100 m long and 100 m wide,
respectively. The numbers of UAVs are 3, 4, and 5. For each scene, simulations of a fixed
initial state and a random initial state are carried out. The initial states of all scenes are
shown in Figures 4a, 5a, 6a, 7a, 8a and 9a. More detailed parameters about the scenes and
algorithm are shown in Tables 1 and 2.

50m 50m s0m
45 45 45
40 40 40 —
35 35 35 qu
30 30 30 S '__)

25 25 25

20 20 20

15 15 15

10 10 10

5

0 0
0 5 10 15 20m 0 5 10 15 20m 0

(a) (b) (c)

Figure 4. Simulation results of the fixed initial state in Scene I. (a) The initial state of the simulation

v -/kl/\\l_/_/’*
|

10 15 20m

and the obstacle; (b) the situation at a certain moment (10.8 s) in the exploration process; (c) the
situation of exploration results.
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Figure 5. Simulation results of the random initial state in Scene I. (a) The initial state of the simulation

and the obstacle; (b) the situation at a certain moment (8.4 s) in the exploration process; (c) the

situation of exploration results.
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Figure 6. Simulation results of the fixed initial state in Scene II. (a) The initial state of the simulation

and the obstacle; (b) the situation at a certain moment (46.8 s) in the exploration process; (c) the

situation of exploration results.
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Figure 7. Simulation results of the random initial state in Scene II. (a) The initial state of the simulation
and the obstacle; (b) the situation at a certain moment (34.0 s) in the exploration process; (c) the
situation of exploration results.
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Figure 8. Simulation results of the fixed initial state in Scene III. (a) The initial state of the simulation

0
0 10 20 30 40 50 60 70 80 90 100m

and the obstacle; (b) the situation at a certain moment (20.0 s) in the exploration process; (c) the
situation of exploration results.
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Figure 9. Simulation results of the random initial state in Scene III. (a) The initial state of the
simulation and the obstacle; (b) the situation at a certain moment (25.6 s) in the exploration process;
(c) the situation of exploration results.

Table 1. Parameter setting for three scenes.

Scene I

Map Parameters: map size: 20 m x 50 m, resolution: 0.25 m x 0.25 m
Initialization (px, py, ¢)* UAV1:(4,0,90), UAV2:(10,0,90), UAV3:(16,0,90)
detection radius: 5 m, Fov: 104°, r5: 3 m, max velocity: 2.5 m/s, end rate: 99.5%

Scene I1

Map Parameters: map size: 50 m x50 m, resolution: 0.4 m x0.4 m
Initialization (py, Py, ¢)* UAV1:(13,0,90), UAV2:(21,0,90), UAV3:(29,0,90), UAV4:(37,0,90)
detection radius: 5 m, Fov: 104°, r5: 3 m, max velocity: 2.5 m/s, end rate: 99%

Scene III

Map Parameters: map size: 100 m X100 m, resolution: 0.5 m x0.5 m

Initialization (px, py, ¢)*: UAV1:(34,0,90), UAV2:(42,0,90), UAV3:(50,0,90),
UAV4:(58,0,90), UAV5:(66,0,90)

detection radius: 5 m, Fov: 104°, r5: 3 m, max velocity: 2.5 m/s, end rate: 99%

* Only for the fixed initial state.

Table 2. Parameter setting for three algorithms.

Parameters Value
predict horizon k=5
sample num m=10,n =50
weight distribution w1 =0.1,wy=01,w3=05wy =02, w5 =0.1
learning factor c1,c =146
threshold of age Ta =23
population size N =50
max number of generations maxgen = 100
simulation step t=02s
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1. Simulation in Scene I

Figure 4 shows the simulation results of three UAV explorations in Scene I, with fixed
initial UAV states to start. The exploration takes 36.8 s. It can be seen that the cluster can
realize well the exploration of the environment in a short time, and there are few repeated
paths, unless it is necessary to leave the impasse that is surrounded by obstacles. Figure 5
shows the results of random initial states, and the exploration takes 34.6 s. We can see that
the cluster can explore well in any initial state, with the same short time cost and fewer
repeated paths.

2. Simulation in Scene II

Figure 6 shows the simulation results of four UAV explorations in Scene II, with fixed
initial UAV states to start. The exploration takes 62.0 s. Figure 7 shows the results of
random initial states, and the exploration takes 63.2 s. In medium-size scenes, UAVs in the
cluster avoid repeated exploration in the same area through a distributed strategy. The
UAV can quickly return to exploring other areas after the exploration of corners or the
impasse. In the random initial state, the UAV’s performance is almost unaffected.

3.  Simulation in Scene III

Figure 8 shows the simulation results of four UAV explorations in Scene III, with
fixed initial UAV states to start, and Figure 9 shows the situation of random initial states.
Exploration takes 190.0 s and 214.8 s, respectively.

With the expansion of the scale of the exploration scene and the increase in the
complexity of the internal structure, the difficulty of cluster exploration is also increasing,
and the UAVs show a complex movement. The random initial state brings uncertainty to
the exploration process. Under the above factors, whether the exploration efficiency can
be maintained is the key point of the exploration method. The proposed method can still
maintain the complete exploration of the area in large scenes, and there is less repeated
exploration. There may be a tendency for multiple UAVs to move in the same direction at
the end of the exploration. This is because we do not allow the UAV to be idle, to achieve
the fastest exploration speed. As the environment is unknown, it is difficult to define which
UAV can reach the unexplored area faster, so we keep every UAV in the cluster continuously
exploring until the area is fully explored. This ensures the shortest exploration time, but
may bring a waste of energy for engineering applications. It can be adjusted according to
the actual application, for example, using conditional judgments to make some UAVs idle.

4. Comparing the methods in three scenes

Due to the randomness of the environment exploration process, we conduct 100 simulations
for each situation (fixed initial state and random initial state in each scene) and count the
time cost of exploration and compare it with the two classical methods, as shown in Table 3.
The frontier-based method is a method with fixed results when the frontier generation,
map, and initial state are fixed. The NBV and DNBPT methods have some randomness in
the process for deeper exploration. The average exploration efficiency of a single UAV in
all scenes is also compared, as shown in Figure 10.

Compared with the frontier-based method and the NBYV, the exploration efficiency
of the proposed method in each scene has a great advance. In Scene I, the exploration
efficiency is increased on average by approximately 85.7% and 34.4% with fixed initial states
and 71.4% and 33.1% with random initial states, respectively. In Scene II, the efficiency
is increased by approximately 107.0% and 36.0% with fixed initial states and 108.7% and
35.8% with random initial states, respectively. In Scene III, the efficiency is increased
by approximately 122.1% and 36.6% with fixed initial states and by 124.4% and 33.9%
with random initial states, respectively. For larger and more complex indoor scenes, the
improvement effect of the proposed method is more obvious.
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Table 3. Results and comparison of multiple simulation data samples in the fixed obstacle scenes.

Exploration Time (s)

Initial Method Mean Best Worst Std
Proposed 32.6 26.4 38.8 3.0
Fixed Frontier-based 61.2 - - -
NBV 443 36.8 62.6 6.0
Scene |
Proposed 35.9 30.4 42.0 3.1
Random Frontier-based 61.6 39.2 75.6 6.6
NBV 47.8 39.6 68.6 6.9
Proposed 65.9 60.8 76.4 4.0
Fixed Frontier-based 136.4 - - -
NBV 89.5 74.2 107.0 6.7
Scene 11
Proposed 70.5 61.6 80.8 4.6
Random Frontier-based 147.1 95.2 185.6 16.9
NBV 95.7 80.8 112.4 7.4
Proposed 205.4 188.2 221.0 8.9
Fixed Frontier-based 456.2 - - -
NBV 280.5 2474 302.6 14.7
Scene 111
Proposed 211.9 193.2 249.2 10.0
Random Frontier-based 475.5 296.2 700.4 43.1
NBV 283.9 251.8 305.8 14.6
;.:;::i-elr-based
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Figure 10. Comparison of the single UAV exploration efficiency of each method.

In the simulation process of algorithm comparison, it is found that the frontier-based
method has a good effect in the early stage of exploration. However, in the end stage, due
to its greedy strategy that tends to the nearest point, many omissions in the early stage need
to be explored in reverse, resulting in a waste of efficiency. This becomes more obvious
with increasing exploration rate requirements. The NBV method can carry out deeper
exploration locally, but it loses the directional guidance of the global environment and
produces repeated meaningless paths. The proposed method combines the advantages of
the two methods, including deep local exploration and global guidance, to improve the
exploration efficiency of UAV clusters and reduce repetitive paths.

This proves the effectiveness and superiority of the method in complex indoor scenes.
In addition, the proposed method shows a stabler exploration efficiency in uncertain scenes
and can complete the exploration quickly in any initial state.
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4.2. Simulation in Random-Obstacle Scenes

To explore the applicability of our method in other scenes, we design a random
obstacle scene for simulation. We simulate scenes with dense small obstacles such as trees,
where obstacles are randomly generated and their size is limited, as shown in Figure 11. We
also design the situations of a fixed initial state and a random initial state. The scene size is
set to be 100 m long and 30 m wide, and four UAVs form a cluster. The number of obstacles
in the scene is 40, and the maximum side length of obstacles is 3 m. The simulation is also
designed for constant-altitude flight. The initial state (px, py, ¢) of the UAV in fixed scenes
is (0, 3,0), (0, 11, 0), (0, 19, 0), and (0, 27, 0). The terminal condition for exploration is that
the map exploration rate reaches 99%.

30m

50 60 70 80 90 100m 0 10 20 30 40 50 60 70 80 90 100m
(a) (b)

Figure 11. Scene with randomly dense small obstacles. (a) The situation of the fixed initial UAV
states; (b) the situation of random initial UAV states.

Similarly, we conduct 100 simulations for a fixed initial state and a random initial state
and compare them with other algorithms. The simulation results of once in each scene
are shown in Figures 12 and 13, and the statistical data are shown in Table 4. Under the
condition of fixed initial states, the cluster can complete the exploration with few repeated
backtrackings and a high rate of coverage while crossing the obstacle area. The random
initial state has an impact on the exploration, leading to more possible backtrack and
repetitions, but it can still be handled well for reduction.

30m

20

10

50 60 70 80 90 100m
(a)

Figure 12. Simulation results of the fixed initial state. (a) The situation at a certain moment (41.2 s) in
the exploration process; (b) the situation of exploration results (64.0 s).

30m

(b)

Figure 13. Simulation results of the random initial state. (a) The situation at a certain moment (36.0 s)

in the exploration process; (b) the situation of exploration results (72.4 s).
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Table 4. Results and comparison of multiple simulation data samples in random obstacle scene.

Exploration Time (s)

Initial Method Mean Best Worst Std
Proposed 73.7 60.0 82.8 6.1

Fixed Frontier-based 101.3 90.2 1314 9.7
NBV 92.4 82.8 109.2 9.0

Proposed 74.8 64.8 86.4 6.2
Random Frontier-based 104.8 914 138.8 10.9
NBV 93.3 80.4 114.6 8.3

Regarding the exploration of areas with dense small obstacles, compared with the
frontier-based method and NBYV, the exploration efficiency is increased on average by
approximately 37.4% and 25.2% with fixed initial states and 40.1% and 24.8% with random
initial states, respectively. The comparison proves the good performance in the environment
with dense small obstacles.

5. Conclusions

In this paper, we propose a DNBPT method for UAV clusters to explore unknown
environments. The gain is calculated by comprehensively considering the contribution
of the path process and the terminal state to the exploration, and the optimal path is
evaluated and selected by multistep optimal sampling and the improved BPSO algorithm.
The simulation results show that this method has advantages in different types and sizes
of scenes. In addition, this method has strong generality and can be transplanted to other
robot platforms.
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Abstract: The demand for autonomous UAV swarm operations has been on the rise following the
success of UAVs in various challenging tasks. Yet conventional swarm control approaches are inade-
quate for coping with swarm scalability, computational requirements, and real-time performance. In
this paper, we demonstrate the capability of emerging multi-agent reinforcement learning (MARL)
approaches to successfully and efficiently make sequential decisions during UAV swarm collaborative
tasks. We propose a scalable, real-time, MARL approach for UAV collaborative navigation where
members of the swarm have to arrive at target locations at the same time. Centralized training and
decentralized execution (CTDE) are used to achieve this, where a combination of negative and posi-
tive reinforcement is employed in the reward function. Curriculum learning is used to facilitate the
sought performance, especially due to the high complexity of the problem which requires extensive
exploration. A UAV model that highly resembles the respective physical platform is used for training
the proposed framework to make training and testing realistic. The scalability of the platform to
various swarm sizes, speeds, goal positions, environment dimensions, and UAV masses has been
showcased in (1) a load drop-off scenario, and (2) UAV swarm formation without requiring any
re-training or fine-tuning of the agents. The obtained simulation results have proven the effectiveness
and generalizability of our proposed MARL framework for cooperative UAV navigation.

Keywords: UAV cooperative navigation; multi-agent reinforcement learning; autonomous decision

making; centralized training and decentralized execution; curriculum learning

1. Introduction

A UAV swarm is a cyber-physical system consisting of multiple, possibly heteroge-
neous, UAVs that cooperate to execute a particular mission. A significant amount of swarm
applications involve making decisions on how the swarm members will maneuver to
cooperatively achieve their objective, such as load delivery [1,2], area coverage [3], search
and rescue [4], formation [5], path planning [6], and collision avoidance [7], among others.
There are various benefits of deploying swarms of UAVs to carry out cooperative tasks as
compared to a single agent, such as fault tolerance, task distribution, execution efficiency
and effectiveness, and flexibility, to name a few. This has paved the way for further devel-
opments of swarms, particularly through artificial intelligence. As opposed to conventional
approaches, learning-based decision-making involves less complex computations, requires
neither prior nor global knowledge of the environment, and exhibits better scalability.

Deep reinforcement learning (DRL) [8] is a cutting-edge learning paradigm that accom-
modates sequential decision-making capabilities and has proved effective in a plethora of
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robotic applications. By interacting with the environment, a DRL agent controlling a robotic
platform is able to learn a certain behavior through incentives and penalties provided by
the environment as a result of certain actions decided by the agent. DRL can be extended
to multiple agents through varying levels of centralization [9]. Centralized training and
centralized execution (CTCE) is the most direct extension, where a single DRL agent is
trained to control multiple platforms simultaneously. Although this approach exhibits high
efficiency, it is computationally expensive, susceptible to failure upon communication loss,
and hence is not robust. The second variant is the decentralized training and decentralized
execution approach which is definitely more scalable and robust to a communication fail-
ure. This is attributed to the fact that a separate agent is trained to control every entity in
the swarm which makes the approach less efficient and more computationally expensive.
An alternative approach that combines the advantages of both levels of centralization is
centralized training and decentralized execution (CTDE). In CTDE, agents are trained in a
centralized manner and hence they exhibit collaborative behavior while maintaining the
flexibility and scalability of the swarm. Various works in the literature have been carried
out to employ multi-agent reinforcement learning (MARL) in various formulations to solve
concurrent challenges concerning cooperative UAV applications. In the following section, a
synopsis of the most recent related work on MARL-based UAV applications is presented.

1.1. Related Work

In reference [10], reinforcement learning-based path planning of muli-UAV systems is
proposed using CTDE. A long short-term memory (LSTM) layer is used within a proximal
policy optimization (PPO) agent, to facilitate making decisions based on current and past
observations of the environment. Their reward function was designed as a weighted sum
of the objectives that the agent is expected to achieve. Model validation was carried out in
a simulated environment with three UAVs. By visualizing the reported results, the planned
paths for the UAVs are not very smooth. This behavior may result due to various factors,
such as oscillations in subsequent actions.

The work presented in [11] addresses the problem of flocking control of UAVs using a
CTDE approach based on PPO. The approach aimed at maintaining a flocking behavior
following the model suggested by Reynolds [12] and training was done using a simplified
UAV model. The task was defined in such a way that the UAV swarm safely travels as
fast as possible towards the goal with minimal distance to the swarm’s spatial center. The
reward formulation was in terms of the Euclidean distances to the goal, the obstacles, and
the swarm center. The UAVs in this work are assumed to fly at different altitudes and fixed
speeds. The former condition simplifies exploration by excluding swarm collisions from
the experiences, and the latter limits the control of the agent to the heading of the UAV.
Controlling the speed or the position of the UAV using the reinforcement learning agent
allows for more flexibility and efficiency, yet makes exploration much more challenging.
This approach also requires communication between the UAVs in the swarm members,
which makes the approach susceptible to communication failure. Simulation results were
demonstrated with swarms including up to ten UAVs.

In reference [13], a multi-agent UAV navigation approach was developed using an
extension of the original multi-agent deep deterministic policy gradient (MADDPG) [14].
The experiences collected by the agent during training are assigned priorities. Based on
these priorities, the experiences are sampled out of the buffer to update the trainable
parameters of the neural networks that constitute the MADDPG agent. This means that
better experiences have a higher chance of being selected to update the network. However,
it is also important for the agent to learn about undesired behaviors since it is highly likely
that the agent will encounter previously unseen experiences during real-time deployment.

Another CTDE multi-agent reinforcement learning approach was presented in [15] for
the application of collision avoidance of homogeneous UAVs. A PPO agent was adopted
to decide on the acceleration of the UAVs in the swarm to maintain safety by avoiding
collisions. Every UAV is aware of the positions and velocities of all other UAVs in the
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environment. This condition might be challenging to achieve in real-world scenarios and
may require strong communication if some UAVs are out of the observation range of others
in the environment. To circumvent the scalability issue, the algorithm uses an LSTM that
encodes the states of all the agents in the swarm into a fixed-size vector. Quantitative results
report a high success rate, however, the smoothness of the generated UAV trajectories could
be improved. In reference [16], a hierarchy of reinforcement learning agents was used to
achieve a multi-objective UAV swarm suppression of an enemy air-defense (SEAD) mission.
The top-level agent is concerned about pinpointing the target location to be attacked, while
the lower-level agent makes decisions on how the swarm will cooperatively attack the
target. Training the agents was done in a decentralized manner, without any experience
sharing between the two agent levels.

The work proposed in [17] addresses fixed-wing UAV formation using a leader—
follower approach through deep reinforcement learning. The leader UAV makes decisions
on how to maneuver, while the others (the followers) try to maintain a certain formation by
executing the control commands specified by the leader and communicating the resulting
states back. The swarm is rewarded based on defined relative positions between the UAVs
respective to a certain formation. The proposed algorithm requires communication between
the swarm members and for that, the authors proposed a communication protocol to ensure
every UAV has a communication link with at least one member in the swarm. However,
any loss of communication would result in undesired formation since the followers rely
completely on the leader. An improvement to the original PPO algorithm was proposed to
encourage better exploration.

A MARL-based multi-UAV decision making approach was proposed in [18]. A simple
UAV model was used to train a multi-agent UAV system for an air-combat mission. A
gated recurrent unit and an attention mechanism were used in the decentralized actor and
centralized critic networks, respectively, to train a policy that is robust to environmental
complexities. The action space combined continuous and discrete actions to make decisions
concerning the UAV motion and the combat activity, respectively.

Several other multi-UAV flocking and navigation approaches were proposed using
centralized reinforcement learning, such as [19,20]. However, such approaches require
communication between the UAVs, rely on global information about the environment, and
may not be flexible in terms of the size of the swarm.

An interesting research direction in MARL is credit assignment. When a reinforce-
ment learning agent interacts with the environment, it receives a single scalar value as a
reward/penalty for its action(s). In the case of cooperative tasks, multiple agents perform
the learning task by taking actions to optimize a single reward that represents them all. This
setting introduces a new challenge to MARL, in which agents become “lazy” [21]. In other
words, some agents may not perform well as everyone else in the team, and yet receive
the same reward collectively. Researchers have proposed several learning [21,22] and
non-learning [23-25] approaches to tackle this issue by assigning credit to each agent based
on their contribution to the success of the collaborative task. The learning-based methods
rely on training agent-specific critic networks in addition to the global critic network to
assist with factorizing the global reward into values that reflect the actual contribution of
each agent in the team. The other non-learning methods use no additional networks; rather,
they employ a difference-reward of various formulations to compute the advantage of each
agent’s contribution to the collaborative outcome. For instance, the advantage function
reflects the value of an agent’s actions [23,24] or the agent’s actions and observations [25].
Specifically, the approach in [25] implements a multi-agent collision avoidance approach
using CTDE. Upon updating the network parameters, the advantage of each agent in the
swarm is computed based on the contribution of their action and observation to the global
state. The objects used to represent the UAVs in the swarm were defined using primitive
kinematic equations, which are very simplistic and hard to transfer to reality. Furthermore,
the action space is the heading of the UAV, where UAVs are assumed to fly at a fixed
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speed. This simplifies exploration, since the action space is bounded and varies along a
single dimension.

1.2. Contributions

In this paper, a multi-agent reinforcement learning (MARL)-based cooperative naviga-
tion of a swarm of UAVs (as depicted in Figure 1) is developed through centralized training
and decentralized execution (CTDE). Curriculum learning is used to facilitate and expedite
convergence, in presence of various task complexities arising from partial environment
observability, multi-agent training, and exploration in continuous state and action space
scenarios. A reward function, combining positive and negative reinforcement, is formu-
lated to encourage cooperative behavior and to ensure that agents achieve their individual
goals simultaneously, although executed in a decentralized manner. The cooperative nav-
igation approach is scaled-up to work with a large number of agents without requiring
re-training or varying the number of agents during training, as opposed to the approaches
in the literature, such as [25], where changing the swarm size requires retraining the agent
since the observation space and hence the dimensions of the neural network inputs will
differ. Scalability of the proposed approach was also achieved in terms of the swarm
speed, and the size of the task environment. The generalizability of the proposed approach
was demonstrated through a load delivery application, where the mass of the platform
changes during the cooperative navigation task after the swarm drops off payloads (of
variable mass per UAV). The swarm was shown to continue the task, and arrive at the final
navigation goal (which is set during the task) at the same time, without fine-tuning the
parameters of the MARL agent. Extensive testing of the proposed approach was carried
out in simulations with varying swarm speeds, navigation goals, and environment sizes.
Sample UAV swarm formation scenarios are also showcased and the convergence of the
proposed approach is demonstrated.
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Figure 1. UAV swarm cooperative navigation.

In summary, the contributions of this paper are listed below:

®  The development of a scalable, real-time, autonomous MARL-based collaborative
navigation approach for a swarm of UAVs using centralized training and decentral-
ized execution.

e The training of the proposed collaborative navigation approach based on a combi-
nation of curriculum learning and early stopping using a reward formulation that
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encourages cooperative behavior during decentralized execution by means of posi-
tive reinforcement.

*  Demonstration of the proposed collaborative navigation approach in a load delivery
scenario and in swarm formation.

e  Extensive testing of the proposed approach across various initial conditions, swarm
sizes, UAV speeds, UAV loads, and environment sizes.

2. Methods
2.1. Task Description

The proposed MARL approach is designed for a cooperative navigation task in which
a set of agents, in this case, UAVs, are expected to navigate to a set of locations in the task
environment. Starting from an initial position, every UAV safely maneuvers to a specific
target, within a certain period of time. UAVs are expected to simultaneously arrive at
their target locations while operating independently in a decentralized manner. During
execution, each agent will only obtain access to local observations within a certain range
around the corresponding UAV. Cooperative behavior during decentralized execution is
achievable because policies are obtained through centralized training, based on a reward
formulation that encourages goal achievement at the individual and collaborative levels.
Particularly, training is done with access to global observations collected by all members
of the swarm and the parameters of the involved neural networks are updated based
on the rewards pertaining to the collective swarm behavior. Collaborative navigation
could be deployed in environments with various sizes, and consequently, the maximum
allowable speeds may need to be adjusted based on the available space. In addition, the
number of UAVs participating in the collaborative task varies based on the application.
Flexibility and scalability of the swarm are essential and need to be accounted for in any
swarm application.

2.2. Centralized Training and Decentralized Execution

Centralized training and decentralized execution (CTDE) [14] is an approach to MARL
where the computational complexity is offloaded onto the training process rather than
execution. A popular implementation of this approach is the centralized critic training
and decentralized actor execution (as illustrated in Figure 2), which is an extension of
the policy—gradient actor—critic model. Particularly, the critic network is trained offline,
without constraints on real-time performance. The main purpose is to facilitate obtaining
decentralized policies that could accomplish the cooperative multi-agent task through
access to global information obtained by multiple agents during training, but not execution.
In such a setting, every agent partially observes the environment and hence the problem
could be modeled using an extension of Markov decision processes for multiple agents.
This extension is referred to as a decentralized partially observable Markov decision process
(Dec-POMDP) and is formulated as a five-tuple (S, O, A, R, T') encapsulating:

®  State space (S): the global setting of the environment including all the agents.

e Observation space (O): the set of individual observations that agents perceive from
the environment.

*  Action space (A): a set of actions that the agents execute in the environment.

e Reward (R): the incentives that agents receive upon acting in the environment.

e  Transition function (7): defines how agents transition from one state to another.

While operating, each agent attempts to maximize its expected return R from the
ongoing task, as defined in (1).
T
R=) 7R @
t=0
where T is the time horizon, and + is a discount factor that determines the importance of
future rewards and falls in the range [0,1).
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Figure 2. Overall centralized training and decentralized execution (CTDE) multi-agent reinforcement
learning (MARL) framework for collaborative UAV swarm navigation.

In a policy gradient method where neural networks are used as policy estimators, the
trainable parameters of the network are directly updated to maximize the objective of the
optimization which in this case is the agent’s total return. The update is carried out by
taking steps in the direction of the gradient of the objective function. The objective function
and its gradient for a deterministic policy are formulated in (2) and (3).

J(0) = Espr [R(s,a)] (2)
VQ](()) = ESND[VGVG (a|s)V,1 or (S/ a) |a:y9(s)] 3)

where s € S, p# is the state distribution, @ € A is an action, D is a set of transitions collected
through experiences and stored in the experience buffer, and Q¥ (s, a) is the action-value
function associated with the deterministic policy .

For the case of CTDE-based MARL, the policy gradient algorithm could be extended
to perform centralized critic training based on global observation (x) of N agents, each
following a policy y; with a set of trainable parameters 0;, where i € 1,..., N. The updated
formulation of the policy gradient is shown in (4).

Vei](gz’) =Exo~p [Veilii(ﬂi 0:) Vg Qfl (x,a1,...,an) |ﬂi:Hz‘(0i)] 4

where 0; € O is the observation of agent i. Every transition in the experience buffer D in
the multi-agent setting contains the current global state, the next global state, the individual
actions per agent, and the corresponding rewards. In the current work, the deterministic
policy and the corresponding value function and computed using neural networks, referred
to as the actor and critic, respectively.

2.3. Proposed Model
2.3.1. Actor and Critic Architecture

An actor—critic agent is adopted to perform the cooperative navigation task. The
critic is centralized and hence receives global input from the swarm, while the actor is
decentralized where it processes local observations. Figure 3 shows a detailed description
of the architecture of both the critic and actor. The critic consists of two input paths, one for
the global state and the other for the swarm actions. The states are passed through seven
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hidden dense layers, activated using the rectified linear unit (ReLU), while the actions are
passed through a single ReLU activated dense layer.

Centralized Critic Architecture Decentralized Actor Architecture

| Inputs: 1- Global state (s) 2- Swarm actions (a) | | Inputs: Local observations
I Activation: ReLU, Size: 1280 | Activation: ReLU, Size: 256
| Activation: ReLU, Size: 1024 I Activation: ReLU, Size: 256
| Activation: ReLU, Size: 512 I Activation: ReLU, Size: 256
| Activation: ReLU, Size: 264 I Activation: ReLU, Size: 256

I Activation: ReLU, Size: 128 I Activation: Tanh,

Size: 2

I Activation: ReLU, Size: 64 I v
| Activation: ReLU, Size: 32 I I Activation: ReLU, Size: 32 Scaling layer

Output: actions (a)

Concatenate

Activation: ReLLU, Size: 256

Activation: ReLU, Size: 256

| Output (1) |

Output:  Q(s,a)

Figure 3. Architecture of the proposed actor and critic networks.

ReLU(x) = max (0, x) )

The outputs of the two paths are then concatenated and passed into two ReLU acti-
vated dense layers. Finally, a single-neuron layer outputs the value of an action (a) taken in
the state (s).

The actor-network, on the other hand, consists of four hidden dense layers activated
using ReLU, followed by a two-neuron layer activated using hyperbolic-tan (tanh) to output
actions in the range [—1, 1].

eX—e
tanh(x) = e (6)

However, since it is sometimes desired to fly UAVs at higher speeds, particularly when
the target locations are far apart, a scaling layer was used to set the maximum UAV speed
per task.

It is worth noting that the actor-critic agent contains duplicate networks of the actor
and critic, referred to as target actor and target critic, respectively. These networks are
initialized to the same parameters as the actor and critic but are updated less frequently to
achieve learning stability.

2.3.2. State Space and Action Space

At time step t, an agent i observes 0! € O which represents its local surrounding;
namely the relative distance to any other agent within the observation range, the speed of
the observed neighbor, and the relative distance to the target location. It is worth noting
that each agent is able to observe the environment up to certain spatial limits, and anything
outside this range is not perceived by the agent and hence does not affect its decisions.

The action space used in the proposed approach is continuous and two-dimensional.
More particularly, the actor-network outputs the reference velocities that will be passed to
the UAV’s low-level controller to guide each UAV in the swarm from its initial position to
its target location. At the time t, the action generated for agent i is denoted as a! € A.
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2.3.3. Reward Formulation

Rewards are incentives that guide agent training to achieve a particular task, by
praising actions taken towards the goal achievement and penalizing actions that hinder
the completion of the task, such as collisions. For the cooperative navigation task, a major
component of the reward function is concerned with reducing the Euclidean distance to
the target location. This component was chosen to be continuous to ease exploration and
facilitate convergence as defined in (7).

Teuclidean = —\/(xturgeti - xuﬂvi)Z + (]/fll"gffi - ]/WU;‘)Z (7)

where (Xyq0;, Yuav;) is the position of the UAV controlled by the ith agent, and (Xtarget;, Ytarget;)
is the 2D target location set for this agent in the environment. It is assumed that UAVs fly
at a fixed altitude.

To achieve cooperative behavior, a large positive reward (rsyarm_goat = 100) was
granted to the UAV swarm if all agents arrived at the goal position at the same time. During
training, it was observed that reaching the goal position was frequently achievable by the
agents individually at different time instances during the episode. However, staying at the
target location was challenging. To that end, positive reinforcement was used to reward
individual agents that arrive at the goal position (7;ugividual_goar = 10). To maximize its own
return, an agent will try to remain within the target area to collect as many rewards as
possible. This component of the reward facilitated achieving the sought swarm objective,
where all agents have to be at the target location at the same time. More specifically,
the agent generates actions to reduce the speed of the UAV around the goal position. In
case an action causes an agent to collide with other agents, a sparse negative penalty
(reottision = —100) is used to discourage this behavior.

The global reward associated with a set of actions taken in a certain state at time ¢ is a
weighted sum of these four components as indicated in (8).

N N

N

— i i i

Rt =w 2 Teuclidean + Z Vindividual_goal + 2 Teollision + T'swarm_goal ®)
i=1 i=1 i=1

where N is the number of agents, and w was set to 0.01 to scale down the value of the
Euclidean distance since training was done in a 100 x 100 m? environment.

2.4. Curriculum Learning

Curriculum learning is a training strategy in which a neural network is gradually
exposed to task complexity as originally proposed in [26]. The concept behind this strategy
is inspired by nature, where humans progressively learn the skills they need over their
lifespan. Curriculum learning has two major advantages: (1) it facilitates fast convergence,
and (2) it helps achieve better local minima when solving non-convex optimization. In the
context of neural networks, curriculum learning guides training toward convergence in a
timely manner.

In this work, training the proposed MARL framework was carried out in stages, in a
way that supports exploration. UAVs were placed in an environment and were expected
to navigate to a target position that required them to maneuver along a single dimension.
Given the decentralized nature of the actor training/execution, each UAV receives an action
based on its current local observation. Consequently, in every training step, every member
in the swarm contributes a different experience towards achieving a common goal. In view
of the fact that the action space is continuous, this has expedited the exploration of the
action space and has facilitated convergence towards the required cooperative goal. The
UAUVs are considered to have achieved the goal if they arrive in the vicinity of the target
location up to a certain radius. This spatial threshold was set to a large value in the first
training stage (50 m) then gradually reduced to 2 m in the following stages.
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The complexity of the task was then increased to require UAV control in two dimen-
sions in order to arrive at the goal position. Instead of starting the training over, the neural
networks were initialized using the weights from the previous stage. This has significantly
accelerated convergence toward achieving the swarm goal. Due to the high variance of the
training process, early stopping was also adopted to terminate training after the model had
converged for a few hundred episodes.

2.5. UAV Dynamics

The UAV multirotor model that is used to train the proposed approach highly resem-
bles the dynamics of a physical multicoptor to facilitate transferability to real experiments at
later stages of this work. The model encapsulates various nonlinear dynamics [27], namely,
(1) nonlinear drag dynamics for which a linearized drag model [28] was used, as verified
in [29,30], (2) nonlinear propulsion dynamics for which electronic speed controllers (ESCs)
are used to linearly map ESC inputs to corresponding thrust, (3) nonlinearities arising
from motor saturation which are avoided through operation strictly in the non-saturation
regime, and (4) nonlinear kinematics caused by under actuation and gravity, which are
linearized using a geometric tracking controller [31] and hence a feedback linearization
controller is obtained.

The adopted altitude and attitude dynamics are shown in (9)-(11) and a summary of
the used transfer functions and symbols is provided in Table 1.

Kprope_Tucts

G s) = 9
prop(5) Tprops + 1 ©)
K
Gattalr(s) = s(iflsirii—l) (10)
Keqefrins
G — 11
ln(S) S(Tpr0p5+1)(T1$+1) (1)

Table 1. Linearized altitude and attitude dynamics.

l;r:;r::lf:; Type Purpose Symbols
First order plus Maps ESC inputs Kprop: propulsion static gain
9) time delap to force/torque Tyet: propulsion system delay
y output Tprop: propulsion time constant
First order Models attitude T\: time constant - drae dvnami
(10) system with an and altitude I € CO. Sta rag cynamics
inteorat d . Ky: system inertia
grator ynamics
Gort.att(5) Maps ESC
att,alt
4 . commands to Keqg = KpKprop
(1) casccaded(sv;lth UAV attitude Tiy: total inner dynamics’ delay
prop and altitude

The work presented in [27] demonstrates the high resemblance of the UAV behavior
in simulations and experiments using this model. The lateral motion dynamics of the UAV
are adopted from [32] to describe the change in attitude in the direction of motion. The
equations are listed below (12)—(13) and explained in Table 2.

Keqe_Tauts
G = — 12
Keq,lef(Tin‘s’Tout)s (13)

G =
1at (8) $2(Tprops +1)(Tis +1)(Tos + 1)
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Table 2. Linearized lateral motion dynamics.

Transfer Function Purpose Symbols

Maps the multirotor’s tilt Keg,1: overall lateral dynamics gain

(12) . .. Tout: lateral motion sensor delay
angle to its lateral position Ty: lateral motion drag.
(13) Maps ESC commands to )
UAV lateral position

The deep neural network and the modified relay feedback test (DNN-MRFT) identifi-
cation approach [32] is used to experimentally identify the presented model parameters.
First, a domain for the unknown time parameters is chosen for both the inner and lateral
dynamic parameters as in [30,32], respectively. The selected domains are discretized to
guarantee up to 10% performance sub-optimality. MRFT is then performed and the results
are passed to the DNN which will select the best-suited model parameters. The correspond-
ing controller parameters may then be obtained using the derivative-free Nelder-Mead
simplex algorithm.

3. Results and Discussion
3.1. Model Training

The proposed model structure was developed using the TensorFlow [33] library on a
Dell desktop, with Intel Xeon(R) W-2145 CPU @ 3.70 GHz x 16. The initial stage of training
extended for 10,000 episodes, each consisting of a maximum of 3000 steps. Every step runs
for 0.1 s, i.e., a new action is generated at the beginning of each step and the agent executes
the action for the remaining time in that step. It is worth noting that during execution on a
physical platform, the actor is capable of generating actions at 100 Hz by means of an Intel
NUC onboard computer. The episode was selected to be long enough to allow sufficient
exploration with various speeds in the task environment which spans 100 x 100 m?. It is
worth noting that the motion of the UAV swarm was restricted to the defined environment
boundaries, where actions that lead to exiting the environment were ignored. In case the
swarm goal is achieved or a collision occurs between the UAVs, the training episode is
terminated. In subsequent training stages where the complexity of the task was increased,
training was conducted with less exploration noise and a lower learning rate, and was
suspended when convergence was observed. The training was repeated many times to
ensure that the results are not affected by the initial random seed.

The plots depicted in Figure 4 show the cooperative navigation scenario on which the
agent was trained. Three UAVs were guided through a 100 x 100 m? environment to stop
at the same time at set locations. The maximum speed of the swarm in this scenario was
1 m/s which is extremely slow for the total traveled distance per UAV. Hence, the swarm
arrived at their goal positions, which are 80 m away from the initial position in 2600 steps.

One of the common problems in the reinforcement learning literature is the oscillatory
behavior in consecutive actions generated by a trained agent [34]. Such oscillations may
result in undesired behavior and may lead to damaging the platform in case of aggressive
maneuvers. While testing the trained model, this behavior was not encountered in any
of the scenarios across various speeds, various locations, and initial conditions, as will be
shown in the next sections. Consecutive reference velocities generated by the MARL agent
gradually decrease upon approaching the goal. This has resulted in smooth flights for all
the members of the swarm.

The behavior exhibited by the agents upon approaching the goal is essential to achiev-
ing the swarm goal, particularly with decentralized execution, since agents are required to
be at the target locations at the same time. The sparse positive reward used to incentivize in-
dividual agents for reaching their goal locations has contributed to this behavior, especially
when agents have to traverse variable distances, as will be seen in the following sections.
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Figure 4. Result: cooperative navigation training scenario.

3.2. Testing with Variable Swarm Speeds

In this section, the same scenario presented in the previous section is used, however,
the swarm speed was much higher than in the training scenario. The maximum speed per
UAYV was 12 m/s which is 12 times the speed in the previous section. The decentralized
policies were still able to successfully achieve the swarm goal and the three UAVs arrived
at their target locations at the same time, after gradually and smoothly slowing down near
the set locations. The swarm was at the target locations in less than 150 steps, which is
equivalent to 15 s. The trajectories and the corresponding UAV speeds at each time step are
shown in Figure 5.
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Figure 5. Result: cooperative navigation with high swarm speed.

3.3. Testing with Different Goal Positions

In this example, the agents were assigned target locations at variable distances from
the UAVs’ initial locations, in both dimensions (x,y). Figure 6 shows the scenario and
the obtained results using the proposed approach. UAV1 (in orange) has to travel the
longest distance, followed by UAV?2 (in green), and lastly UAV3 whose target location is
the closest. Because of the centralized training nature, the decentralized policies exhibit
collaborative behavior and are able to effectively achieve the goal of the swarm. In order
for the three UAVs to arrive at their goal locations at the same time, the agents generated
reference velocities based on each UAV’s distance from its target. Obviously, UAV1 was the
fastest, followed by UAV3, and then UAV2. In the y dimension, the generated reference
velocities were also different since the target locations were above, below, and along the
initial location for UAV 1, 3, and 2 respectively. The maximum swarm speed was 8 m/s
and the swarm goal was achieved after approximately 270 steps. The speed of each UAV
was drastically reduced near the goal position.
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Figure 6. Result: cooperative navigation with different goal Positions.

3.4. Load Drop-Off Scenario in a Large Environment

In this section, we demonstrate a load drop-off scenario using the proposed MARL-
based cooperative navigation framework. The scenario is demonstrated in a larger envi-
ronment than that used for training, involves changing the goal position during operation,
and requires the ability to handle the change in the platform mass to achieve successful
cooperative navigation, as depicted in Figure 7.

Starting from their initial positions, every UAV is assumed to carry loads weighing
10%, 20%, and 30% of the platform mass, respectively. The three UAVs are expected to
drop the load off simultaneously at locations 50 m, 70 m, and 90 m away from the initial
positions. To achieve that, UAV3 commanded the highest reference velocity (approximately
8 m/s), while UAV1 traveled at the lowest speed among the other agents (approximately
5m/s). The agents were able to drop their loads off simultaneously after about 28 s. Right
then, the UAVs (with their reduced masses) were assigned updated target locations that are
120 m, 100 m, and 80 m apart from the drop-off locations of UAV 1, 2, and 3, respectively. It
is worth noting that the UAVs were not completely stopped at the drop-off location. To
arrive at the new target locations at the same time, the maximum speed for UAV1 was
10 m/s, while UAV2 and UAV3 traveled at lower speeds. All three UAVs arrived at the
new target locations simultaneously and gradually slowed down in the target vicinity.

The results obtained in this test have proven the scalability of the proposed approach
to a larger environment, its ability to handle changes in the platform mass in-flight, and its
ability to cope with dynamic target locations during the mission.
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Figure 7. Result: load drop-off scenario in a large environment.
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3.5. Testing with Variable Swarm Sizes

The scenarios presented here show how the developed MARL cooperative navigation
framework can be used for any number of UAVs in the swarm, given that it was trained
to work for three only. In its original design, every agent observes its own distance to the
goal, its own speed, and its relative distance to the other members of the swarm and their
velocities if they fall within the observation range. Since the input to dense neural networks
has to be of fixed size, the size of the observation vector of each agent was set to always
fit the states of the two neighboring members of the swarm. In case they were out of the
observation range, the corresponding values in the observation vector are set to zero. To
make that work for a large swarm, we have added a function to check for the closest two
neighbors to every agent in the swarm during operation then included their states in the
observation vector of that agent. This has added flexibility to the number of allowable
UAVs in the swarm and facilitated testing with larger numbers of UAVs without requiring
retraining of the MARL agent. All agents demonstrated collaborative behavior and were
able to achieve the swarm goal collectively.

The results illustrated in Figure 8 show an example scenario where six UAVs have
maneuvered into a triangular formation starting from their initial positions where they
were lined up at y = 10. The target locations were set at various distances in x and y
dimensions. At any time instance, every UAV may observe the closest two members in the
swarm. The velocity plots in the same figure show how each decentralized agent generated
different reference velocities depending on the relative distance between the UAV and its
corresponding target, to allow all UAVs to achieve their goals at the same time.
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Figure 8. Result: swarm formation example.

Figure 9 demonstrates another formation scenario where ten UAVs were assigned
colinear target locations starting from opposite sides in the environment. In this example,
the MARL agent was responsible for generating the magnitudes of the reference velocities
and an external function was used to decide the direction of the velocity based on each
agent’s relative position to its target. All ten UAVs were able to be within 2 m of the set
target locations at the same time and all the flights show a high level of smoothness. The
cooperative task was completed in 34 s.

3.6. Action Smoothness

In this section, a test with a swarm of 50 UAVs was conducted to demonstrate the
ability of the proposed approach to generate smooth actions across consecutive steps. Every
UAV started from a different position in the environment and was assigned a target location
at a different distance than the other members in the swarm. This test shows the flexibility
and the generalizability of the proposed approach and proves that oscillatory behavior is
not encountered over a large range of states and actions. The trajectories followed by the
UAVs are depicted in Figure 10 and the corresponding actions in the x direction are shown
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in Figure 11. The same test was repeated with much lower velocities and oscillations were

not encountered at all.
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Figure 9. Result: swarm formation in two directions.
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Figure 10. Result: collaborative navigation of a swarm of 50 UAVs.
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Figure 11. Result: action smoothness with a swarm of 50 UAVs.

3.7. Training Convergence

Training the proposed approach was carried out in various stages starting from simple
tasks to more difficult ones. During training, the performance of the model was evaluated
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based on the episodic reward, as well as the performance of the agents in the environment.
Once the desired behavior was achieved by the proposed framework, training the model
in that stage was halted (a training strategy referred to as early stopping). Afterward,
the complexity of the problem was increased and the model retrained, where the neural
networks were initialized into the values obtained in the previous stage. In later training
stages, the learning rates of both the actor and critic are reduced to benefit more from what
the model has already learned earlier. Figure 12 demonstrates the convergence of the model
in the final training stages.
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Figure 12. Proposed MARL training convergence in final stages of curriculum learning.

The adopted training strategy has expedited converge to a policy that exhibits coop-
erative behavior although is executed in a decentralized manner. In addition, the actions
generated by the policy resulted in smooth maneuvers as demonstrated in all the test results.

Without curriculum learning and early stopping, the convergence of the model is
much more challenging due to the large environment size, continuous action and state
spaces, multi-agent setting, limited observability, and the instability of the environment
in presence of multiple dynamic entities at the same time. Figure 13a,b show examples
of unstable training of the same model if exploration is performed in one shot. It is
worth noting that positive rewards were achieved in these cases because of the positive
component of the reward formulation that an agent receives when it arrives at its target
location. Larger positive episodic rewards mean that one or two agents were at their
target locations accumulating the positive rewards while waiting for the remaining two
or one agent, respectively, to arrive at their target location. The latter agents in such cases
would be exploring a different area in the environment and hence the episode was not
terminated, until the specified number of steps ended. Furthermore, Figure 13c shows the
episodic rewards of the same model with credit assignment as proposed in [25], where
decentralized agents do not use the global reward to update their parameters, but rather a
reward value that reflects their contribution to the success of the task. Every episode may
extend to 3000 steps if no collisions between the UAVs happened. It is worth noting that
the highest reward values, in this case, were achieved due to the early termination of the
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training episode, and hence the negative penalty corresponding to the Euclidean distance
to the target location was not accumulated for a long time. A sample testing scenario
with credit assignment where the collaborative navigation task was not achieved is shown
in Figure 14. These examples demonstrate the importance of curriculum learning to the
training convergence and task achievement.
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Figure 13. (a,b): Sample learning curves by training the model without curriculum learning or early
stopping, (c) Episodic reward with credit assignment as proposed in [25] without curriculum learning
or early stopping.
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Figure 14. Result: collaborative navigation with credit assignment.

In the future, the proposed MARL-based cooperative navigation approach will be
tested in real-world experiments. It is anticipated that the policy will transfer well to the
physical platforms in real environments. This was demonstrated in our previous work [35],
in which a single agent was trained to perform a goal oriented task and the transferability
to reality was seamless without any model retraining or finetuning. The same UAV model
was used for training the current approach, and hence we conjecture that no additional
tuning is required for simulation to reality transfer.

3.8. Centralized Collaborative Navigation

In this section, a centralized DDPG agent was trained to perform collaborative naviga-
tion in exactly the same settings as our proposed approach. The architecture of the actor and
critic networks and the reward formulation were not altered. However, in the centralized
approach, one actor network is used to generate the actions for all the UAVs in the swarm at
the same time. The centralized agent was trained for more than 2 M steps but convergence
was not achieved. The resulting behavior of the swarm after training is shown in Figure 15.
One of the UAVs left the environment, while the other two collided. In addition, the actions
demonstrate variations throughout the episode as opposed to the actions generated by our
proposed approach which demonstrate much higher smoothness. Extensive exploration is
yet needed for the centralized agent to achieve the sought performance. It is also worth
noting that changes to the size of the swarm would require retraining the actor since the
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size of the output vector will change. Our proposed approach is more flexible since the
decentralized nature of execution circumvents this problem.
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Figure 15. Result: centralized collaborative navigation.

4. Conclusions

In this paper, a multi-agent reinforcement learning-based swarm cooperative navi-
gation framework was proposed. The centralized training and decentralized execution
approach was adopted with a reward formulation combining negative and positive re-
inforcement. The training was carried out using a high-fidelity UAV model to facilitate
simulation to reality transfer. In order to achieve the desired behavior and reduce the
complexity of exploration, training was performed in multiple stages where the difficulty
of the swarm goal was gradually increased. The proposed framework was extensively
tested in simulated scenarios which vary from the one used for training, and demonstrated
remarkable performance. It generalized well to larger environment sizes, a large number
of UAVs in the swarm, high speeds, various UAV masses, variable goal positions, and
changes to the target locations in flight. The effectiveness and scalability of the multi-agent
reinforcement-based UAV collaborative navigation were demonstrated through load drop-
off and UAV formation scenarios. The training convergence of the proposed framework
was demonstrated and the importance of curriculum learning was highlighted by analyzing
the stability of the learning-in-one-shot of the same framework and another variant that
uses credit assignment.

In the future, the proposed framework will be tested in real experiments and the
complexity of the swarm goal will be increased to make the environment more challenging.
In addition, navigation in 3D will be investigated to improve collision avoidance flexibility
in presence of obstacles that could be avoided by flying at varying altitudes.
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Abstract: Formation control is a prerequisite for the formation to complete specified tasks safely and
efficiently. Considering non-symmetrical communication interference and network congestion, this
article aims to design a control protocol by studying the formation model with communication delay
and switching topology. Based on the requirements during the flight and the features of the motion
model, the three-degrees-of-freedom kinematics equation of the UAV is given by using the autopilot
model of longitudinal and lateral decoupling. Acceleration, velocity, and angular velocity constraints
in all directions are defined according to the requirements of flight performance and maneuverability.
The control protocol is adjusted according to the constraints. The results show that the improved
control protocol can quickly converge the UAV formation state to the specified value and maintain
the specified formation with communication delay and switching topology.

Keywords: formation control; consistency theory; communication delay; constraints

1. Introduction

Due to their low cost, strong maneuverability, and wide application range, UAVs
have good application prospects whether in the civilian or military fields [1,2]. With the
complexity and diversification of mission requirements, the low efficiency of a single UAV
has emerged. In order to solve this problem, in addition to improving the function and
utility of a single UAV, UAV formation flight has also become a research focus [3]. Formation
flight means that drones can fly in an expected formation. When the environment or tasks
change, the formation can be changed according to the requirements [4]. The technology
of UAV formation has broad development and application prospects, and using drones
to fly in the expected formation can allow for the completion of more complex tasks and
significant improvement in the efficiency of tasks [5].

The studies on multi-UAV formation focus on formation control, formation reconfigu-
ration, real-time path planning, etc. Formation control is the basis and focus of formation
flight. Commonly used formation control methods mainly include the leader—follower
method, virtual structure method, and behavior control method. The virtual structure
method can simplify the assignment of tasks with high accuracy. The disadvantages are
that it is difficult to perform fault-tolerant processing and requires a lot of communication.
The most mature traditional formation control method is the leader—follow method [6-9].
The leader—follower method simplifies the control of the multi-UAV model [10]. However,
it still has certain limitations, for example, its tracking error will be propagated backward
step by step and thus be amplified. Other methods are combined with the leader—follower
method to solve the problems above [11-13]. Every aircraft receives the same information,
namely the trajectory of the virtual leader in the virtual—leader method. The advantages
of the virtual structure method are that it simplifies the description and assignment of
tasks, and has high formation control accuracy. The disadvantages are that it is difficult
to perform fault-tolerant processing and requires a large amount of communication as a
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centralized control method. The behavior-based method, which is based on the information
obtained from the sensor to determine the responses of the UAVs, has strong robustness
and flexibility, but cannot achieve accurate formation maintenance. The work of [14] studies
multi-UAV formation by applying the behavior control method.

REN indicates that the above three formation control methods can be unified under
the framework of the consistency theory; formation control based on the consistency theory
can overcome some shortcomings of these traditional methods [15]. The formation control
method based on the consistency theory is such that every agent can realize large-scale
and distributed formation control through the communication between neighboring UAVs
under a certain communication network without centralized coordination [16]. The impact
of interaction models on the coherence of collective decision-making is discussed in [17-19].

Formation control methods based on the consistency theory have yielded some valu-
able research results in recent years [20-23]. The work of [24] studied the problem of
time-varying formation control under the constraint of communication delay and designed
a consistent control method that can deal with communication delay. The work of [25]
studied the consensus formation control method based on time-varying communication
topology. The work of [26] considered the existence of random communication noise and
information packet loss constraints in the network and adopted the polygon method of
information exchange based on the consistency theory to realize formation control. The
work of [27] studied the cooperative formation control problem of the multi-aircraft system
based on the consistency theory with a fixed connectivity of the network topology.

Control laws based on consistency are often adopted to solve the problems of multi-
UAV formation, and the maneuvering performance and flight performance of UAVs will
impose restrictions on the control variables and flight states in different ways. In addition,
communication between aircraft is often affected by factors such as transmission speed and
network congestion, resulting in communication delay; due to communication interference
and complex terrain, the multi-aircraft system network topology changes. Therefore,
the research on multi-UAV formation considering communication constraints and flight
constraints has important value.

Aiming at the problems above, the main contributions of this paper are as follows:
(1) This paper adopts the three-degrees-of-freedom kinematics model of a drone which is
based on autopilot, and the lateral heading autopilot and the longitudinal autopilot are
decoupled. (2) This paper proposes an improved basic consistency algorithm. During the
flying process of drones, the communication constraints, such as topology switching and
non-symmetrical communication delay, are considered to design the consistency algorithm.
(3) In addition to communication constraints, mobility constraints are also considered to
improve the consistency algorithm. Compared with other existing methods based on the
consistency algorithm, the improved method considers the formation control in complex
conditions. The communication constraints and flight constraints are both considered. The
communication constraints include the communication delay and switching topology, and
the flight performance and maneuverability constraints include the speed, acceleration,
and heading angular velocity of the UAV. The improved algorithm can not only achieve
multi-UAV formation control when topology switching and communication delay exist,
but it also satisfies the constraints of UAV maneuverability and flight performance.

This article is organized as follows: The three-degrees-of-freedom kinematics model
of a drone which is based on autopilot is adopted, and the lateral heading autopilot and
the longitudinal autopilot are decoupled in Section 2. Section 3 proposes an improved
consistency algorithm that is effective with topology switching and communication delay.
The minimum adjustment is used to adjust for flight constraints. Then, the convergence
proof of the improved consistency algorithm is given. Section 4 discusses the simulation.
The results show that the consistency control protocol proposed can meet the mobility
requirements with communication delay and switching topology.

136



Drones 2023, 7, 185

2. UAV Dynamics Modeling and Consistency Algorithm

This section first establishes the coordinate system, describes the formation, and then
gives the kinematics model. The consensus algorithm is presented to prepare for the subse-
quent proposed multi-UAV control protocol with switching topology and communication
delay. Finally, the control protocol is adjusted considering the constraints of flight status
and maneuverability.

2.1. UAV Formation Description

Firstly, a coordinate system is created to express the position of the UAVs. The UAV is
considered a mass point. To describe the movement state of the drone, we use the ground
coordinate system. On the horizontal plane, the origin O can be arbitrarily selected.

There are two ways to describe the three-dimensional plane of the UAV formation,
the I — ¢ method and the I — | method in [28]. In this paper, the method [ — [ is selected.
The positional relationship between UAVs can be described by the relative positional
relationship matrix Ry, Ry, R;.

X11 X120 Xin
Xp1 X2 ot Xop
Rx—
[ Xn1 Xn2 - Xpn
Vi Yz o Yin
Vo1 Y2 - You
Ry=1", : : : @
LYnl Yn2 - Yunl
211 Z12 cc Zin
221 Z22 ot Zon
RZ:
1Znl  Z2n2 " Znn

where (i, yij, zij) (i,j = 1,- - -, n) describes the difference in position between two drones.
Xii = Yii = zij = 0.
The conditions when multi-UAV forms a stable, desired formation are as follows:

|xi = x| = x5

\}/z‘ —}/j’ — Yij ?)
|z — 7| = 2
’Z)i *Z)]" —0

where x;, y;, z; are coordinates for UAVs. v; is velocity.

2.2. UAV Kinematics Model

In the UAV formation, the three-degrees-of-freedom kinematics model with autopilot is
usually adopted. The longitudinal and lateral movements of the basic kinematic equations
of UAV formation control are coupled. The work of [29] decouples the lateral heading
autopilot and the longitudinal autopilot and obtains a kinematic model of lateral and
longitudinal separation. The motion model of the UAV#i is given by Equation (3):

5(71' — U; COS 91'
y; = v;sinb;

0 = wj 3
?iZ%Uci—Uz‘) ®)
6; = 1 (6ci — 6;)

<’

_1
%

2+ = (2 — 21)
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where v; is the velocity of the aircraft on the XOY-plane; 6; is the heading; w; is the
course angular velocity; z; is the climb rate; z; is the climb acceleration; 7, is the speed
corresponding to the flight state constant; Ty is the flight state constant corresponding to
the heading angle; v, is the speed reference input for the UAV autopilot; 6,; is the course
angle reference input of the UAV autopilot; and z; is the altitude reference input for the
UAV autopilot.

In Equation (3), the relationship of 6;,0; and the velocity component along the OX-axis
and the OY-axis is: ,

yi

tan 61 - e
Xi

4)

i = [ Uxi® + Uy

where vy;,0y; are the velocity component.
The dynamic equation with the autonomous driver can be converted into Equation (5):

Xj = Uxi

Yi = Uyi

Zj = Uy

Uyi = %(U;i — Uyi) ©)
Z.Jyz %(U;i Uyz)

Bi=—1zi+L(£-2z)

where v,; is the speed of the drone along the OZ-axis.
The speed, acceleration, and heading angular velocity of the UAV must be changed
within a certain range:
v; € (Umin/ ZJmax)
i € (Amin, Amax)
0; € (wmin/ cUmax) (6)
Zi € (Zmin/ 2max)
ii € (iminr imax)

2.3. The Basic Principle of Consensus Algorithm

For any vehicle, its motion states are described by differential equations:

{éim =4(1) -
Li(0) = wi(t)

where §; € R" is the coordinate vector of the drone; {; € R" is the speed vector; u;(t) € R®
is the control input vector.
In [30], the basic consensus algorithm given by Equation (7) is:

ui(t) = —iaif[<¢i<t> —E(0) + @) - 5(0)] ®)
L

where & > 0; ajj is an element of the matrix A,; matrix A, is the communication topology;
and i, j are two different voyages. If UAV# j can send messages to UAV# i, then a;; = 1, else
al-]- =0.

For UAVs, the information exchange topology is Gy, the element [;; in the Laplace
matrix L, is defined as:

—ajj if i#j

o n

b=\ ay if i=j ©)
j=Li#j,
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We assume that the topology of ¢;, {; is consistent during the flight of the UAVs; then,
the condition for the consensus algorithm to converge is:

Lemma 1 [31] If G, has a directed spanning tree, x > w , the state of the UAV formation can be
asymptotically consistent. If the n — 1 non-zero eigenvalues of — L, are negative, thena = 0, otherwise:

2

(1)<0\| ] cos (arctan UL )

The lemma shows that, when the state is able to converge according to the consen-
sus algorithm, then, for any initial state such as x;(0) and v;(0), when t — oo, there are
|xi(t) — xj(t)| — 0 and |v;(t) — v;(t)| — 0.

It is necessary to set a reasonable communication topology and « value so that the
state of the drone converges to the same level.

(10)

o= max
VIm(1;)>0,Re

3. Improved Consistency Algorithm

The above Equation (8) does not consider the network communication delay and
network topology switching in the formation flight of UAVs, nor does it consider the
constraints of UAV maneuverability and flight performance; therefore, the consensus
algorithm needs to be improved for the actual flight of UAVs.

Firstly, for the situation of non-symmetrical communication delay and topology switch-
ing in formation flight, we design the consensus control protocol for the formation flight.
Then, the designed control protocol is modified to make itself and the corresponding state
output meet the constraints of UAV maneuvering and flight performance.

3.1. Formation State Control

This section studies the consensus control protocol in the case of joint connectivity
communication topology.

The state of the dynamic equation of UAV#i is shown in Equation (7).

If the formation protocol can ensure that the states of the UAVs meet the conditions:

[Ci — gj] —rij and ; — ; — £*, (rj; is the expected difference in position between two
drones, and tij = —"tji, (* is the desired speed vector). This shows that the control algorithm
can make the multiple UAVs form our expected formation and move forward according to
the expected flight speed finally.

The work of [31] gives a control protocol that can make the multi-aircraft system
form the desired formation and achieve a given speed, but only for fixed communication
topology, and does not consider the communication delay of the system.

This section refers to the control protocol idea of [15] for the multi-aircraft formation
flight control system with non-symmetrical communication delay and a communication
topology map that is jointly connected. The formation protocol for the UAV is Equation (11):

Y a(t) {ka [Gj(t — ) — Gilt — i) — 7ji] + k2 [t — 7ij) — Gt — )] }

JENi() (11)
+7 —ka(Gi(t) = %)

Uyi, Uyi, Uz; are shown in Equations (12)—(14), as follows:

Uxei = Uxi + Tollyi
—_ .k
U = % ”ij(t){kl [xj = xi = %ji] + £ [02) — 0xi] } +0  — k(o —vp) (12
viEni(o)
Oyci = Uyi + TolUyi

i = V/E%i(t) aij(t){kl [yj —yi— y].l} + & [oy; — vy } + "y — ks <in - v;) (13)
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-
zi =zi+ 7.2t Tl

= -k * 14
Uy = Vje%i(t) Lll‘j(t){kl [Z] —Z;— Zji} + é [vzj — vzi] } +0v,—k3 (vyi — Uy) (14)

where T;; is the time change in the UAV#i itself, a type of latency which is caused by measure-
ments or calculations; 7;; represents the time delay for UAV#j to receive the state information
from UAV#i; Nj(t) is a collection of neighbors of node 7, and ky, kp, ks > 0,k3 = kiky.

Suppose there are M numbers of different time delay in total, it is expressed as
Tu(t) € {Ti(t), 7(t),i,j € $},m =1,2,3,- - - M, and satisfies Assumption 1.

Assumption 1. For specific normal values hy, > 0,d,, > 0, time-varying delay time Ty (),
m=1,2,3,---,Msatisfies 0 < Ty < hyy and Tpy < dpy < 1.

When the network topology is switched and there is a delay in communication, this
control protocol can realize the coordinated flight of multiple UAVs.

3.2. Formation Control Protocol Adjustment under Constraints

Section 3.1 does not consider the constraints of Equation (6) when designing the
formation control protocol, so the generated control commands and corresponding flight
states may not meet the requirements of UAV maneuverability and flight performance.
This section proposes a strategy called minimum adjustment to adjust the formation control
protocol in Section 2.1 so that both itself and the corresponding state output meet the
constraints of UAV maneuvering and flight performance.

The control command u,;, u,; is adjusted in the XOY-plane, so that it satisfies the
constraints of velocity v;, acceleration v;, and heading angular velocity ¢;. Then, the
values of uy;, uy; are fixed and the value of the control instruction u,; is adjusted to meet the
constraints of the OZ-axis direction of the climbing speed z; and the climbing acceleration z;.

Then, uy;, u,; are adjusted in Equations (12) and (13), then the related constraints
of speed v;, acceleration v;, and heading angular velocity ¢;, v;(t + At) can be obtained
through the current flight status:

{ ai(t) = Ju; (1) +ug(t) (15)
Z)l‘(t + At) = Ui(t) + Déi(t)At

If v;(t + At) does not satisfy the constraint v;(f + At) € (Umin, Umax), the following
variables can be defined as follows:

! _ vminfvi(t)
amin,i(t) - At (16)
! t — Umavai(t)
‘Xmax,i( ) - At
where a;nin :(t) and uc/max :(t) are the accelerations of the UAV#i at time ¢.
When the speeds are Upin, Umax at t + At, a;(t) € {“;nini(t)'“;naxi(t)] a;nin’i(t) is

compared with a2, and a;nax ;(t) is compared with amay, respectively, to obtain the updated
constraints of acceleration:

!/
35 0) = (i i 1)

new !

i (t) = min (ﬂmax, “max,i(t)) 17)

a
where a7 (t) is the upper limit of 4;(t), and a]7 ;(t) is the lower limit of a;(t).

Equation (17) actually includes constraints on the v;(f 4+ At). As long as the accelera-
tion a;(t) of the UAV# i satisfies Equation (17), the two constraints on the acceleration and
velocity in the XOY-plane can be satisfied at the same time. If v;(t + At) € (Umin, Vmax),
then the values of 4, and amax do not need to be updated by Equation (16). Constraint

. new new : : i . . . (e .
a; € [amm’i, amax,z} is used to adjust uy;, uy; so that it satisfies the constraints.
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The adjustment of u,;(t), u,;(t) needs to be carried out synchronously, and the in-
fluence on the original acceleration value should be as small as possible. The following
adjustments can be made to 1y (t), 1y, (t):

=

uxi(t) — ghew (t) 1y (1) u/ (t) _ gnew (t) 1y (t

max,i () 7 Tyi max,i a;(t)

if a (t) > a0 ()

max, i
!

i (6) = ae (02900 o (1) = anew () et

min, i a;(t) ” min,i

if a4 (t) < al’? (t)

min,. i

(18)

Then, the values of ulxi, u/yi meet the constraints of acceleration and speed after the
above adjustments, and the adjustment range is the smallest.

After that, the heading angular velocity 6;(t) constraint is processed, and u;i(t)ulyi (1)
will be adjusted in the next step.

According to the constraints of 91- € (Wmin, Wmax), the allowable value range of the
heading angle 0; at the next sampling time can be obtained as:

{emin,i(t + At) = Gi(t) + WminAt (19)

emax,i(t + At) = Hi(t) + WmaxAt
The heading angle 6;(t + At) at the next sampling time is:

i (£) + 1, (£ At
0;(t + At) = arctan il ,yl( ) (20)
i () + U (H) AL

where vy;(t) and v;(t) are the speeds of the drone at time .
If 0;(t + At) € [Omin i, Omax.il, then u;i(t), u/yl-(t) should be adjusted by Equations (21)
and (22).

()"‘“ (DAL ‘
m o tan(emax,l(t + At))

2(6) + u2(t) = a(t)
6 (t + At) > Opmaxi(t + At)
% = tan(Opin i (t + At))
WA(E) + (1) = a (1)
0;(f 4+ At) < Opin,i(t + At)

(21)

(22)

where Equations (21) and (22) are binary quadratic equations; usually, there are two
different sets of solutions, denoted as um(t),u;ﬂ( ) and um(t),u;l?(t). Because both
sets of solutions satisfy the constraints of the heading angular velocity ¢, it is necessary
to further confirm which set is finally selected as the result according to the “minimum
adjustment” strategy.

/
(t
Let fy;i(t) = arctan u,y’it; represent the direction of the acceleration a;(t) ; the adjusted
u

values should not only keep the value of a;(t) unchanged, but also the direction of a;(t)

should change minimally.

" t ;
’yall( ) = arctan uylliti and azz( ) = arctan uy'ZEt;
xil ”
UAVH#i's acceleration in the XOY-plane after adjustment by Equations (21) or (22).

Among these two sets of solutions, the set of solutions corresponding to
" !
r)/lzl'] (t) - ,Ym(t) 7
The above procedure makes minimal adjustments to u.;(t), u,;(t) and satisfies the
constraints of the XOY-plane.

represent the directions of the

min( 'y;-z(t) - 'y;l-(t) ‘) is selected as the values required.
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For the constraints in the direction of the OZ-axis, the climbing rate z;(t) and climb
acceleration z;(t) of the drone are limited and u,;(t) is adjusted. First, the climbing rate of
the next sampling moment z;(t + At) is calculated through the current time of the drone
flight status as z;(t + At) = z;(t) + u,;(t)At.

If z; (£ 4+ At) ¢ [Zmin, Zmax] , then the updating constraints of the climbing acceleration
z;(t) are shown in the following formula:

{imm,xt) = St @)
- _ Zmax_zi(t)
Zmax,i(t) - At

! !
where z,;,, i (t) and zp,, ;(£) are the lower limit and upper limit of the constraints after the

climbing rate constraints are converted to the climbing acceleration at time ¢, respectively.
!

If Zmin < Zi(t + At) < Zmax, then z,, ;(t) and zp, ;(t) do not need to be updated.
Through Equation (24), the constraints on the climbing rate are also converted into the

!
constraint on the climbing acceleration at time t. Then, Z i (t), Zmin, Zmax,i (t), and Zmax
are compared, and the updated rising acceleration constraint conditions is determined as:

. . ../
{ i (£) = MaX (Zmin Zonin (1) ) o

. . . W
o (1) = 100 (2, Zmai() )

where znmefgl(t) and 21'1;";,1- (t) are the final lower limit and upper limit values of the climbing

acceleration, respectively, after the climbing rate and climbing acceleration constraints have
been considered.
Finally, we limit the current climb acceleration u,;(t) to the allowable range:

1y (t) = max (i (1), min (121 (1), Zas (1)) ) 25)

where u;i(t) is the adjusted climbing acceleration. @ From Equation (25), when

() € {2Kfﬁ,i(t),iﬁf§j(t)}, we have 1, (f) = u(t); when u(t) < Zmsw (t), we have

U, (£) = 2 (1); when uy; (1) > 2o i(t), we have u_(t) = Zpa i (1).

3.3. Convergence Proof of Improved Consistency Algorithm
Let & = & — & — 1i,{; = {; — {*, then Equation (11) can be transformed into:

wi(t) = T ay(t){k [t (1) — Gt — ()]
s;EN;(t) . B (26)
+%[Z]’(t—sz(t)) _Zi(t_fii(t))} +7 —kagi(t)

S

1£4() = 2Z;(8) /henka + (1), e(t) = [G1(8), (1), -+, &), Lu(1)], then:
| —k3/2 k3/2 100
b= { ks/2 kg/z]'Q = [o 2/k2}
According to Equation (26), the closed-loop dynamic equation is Equation (27):

é(t) = (In @ B)e(t) — Yoo (Lom ® Q)e(t — T) (27)

*

In fact, if we have tgrlloos(t) = 0, then tgrfmgj(t) —¢i(t) =rj, tgrfwg(t) ="

Next, we show that the above closed-loop control system can achieve tlir+n e(t) =0.
— 100

Referring to the definition of switching topology, it is assumed that the time-invariant

topology G, in a certain sub-interval [tk tk,,,) has q(g > 1) the numbers of connected
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parts, and its corresponding node set is denoted by w,%_, IPI%]_, cee, l[JZf’, and f is the node
j i

number in 1/1}( Then, a permutation matrix P, € R"*" is obtained by satisfying:
j

PTL,P, = diag{L;, 12, ,Lfiﬂ}

(28)
PILonPs = diag{ Lty 12, Ll }
1 T 2 T T
ET(t)(Pg®IZ): lgg €0 ,..-,gz ] (29)

where Li, € Rf o%fe is the Laplacian matrix which corresponds to the part which is con-
nected, and L{,, € RF*f, LI = Zf\le Lgy,- Therefore, in [ty i, ., ), it can be broken down
into g numbers of subsystems:

() = (I @ B)eb () = Y (L @ Qe (t—T), i = 1,2, -+ ,q (30)

where &) (t) = [e (1), ~£f72f$(t)] € R,

Lemma 2. [32] If there is D, = nl, — 117, then there must be an orthogonal matrix
U, € R"™"which makes U,IDU,[ = diag{nl,_1,0}, where the last column U, is 1//n .
We give a matrix D € R™" and make it satisfy 1'D = 0 and D1 = 0, then Ul DU, =

diag{UZDUn,O}.

Lemma 3. [33] For any function of actual cable vector x(t) € R", any function of cable scalar
7(t) € [0,a], and any constant matrix 0 < H = HT € R"™", there is:

t

%[x(t) — x(t — (1) TH[x(t) — x(t — T(1))] < / i (s)Hx(s)ds, t >0 (31)

t—7(t)

where a > 0.

Theorem 1. Considering a multi -UAV system with non-uniform time delay and switching
topology, in any sub -interval [t,,, ), if vy >0,and F, € Rf*f,i=1,2,---,q, there is:

trh+1
i T _. .
F. "B <0 (32)
then there is tli_}n;@(t) —¢i(t) =7, tli_}rggi(t) ="

where FL = diag{ Uzf, hom f}, and the definition of Uy is as shown in Lemma 2.

where E|, = {:lTl :12] ,and
i =22

i1 = 2V<If ®B) "‘Zﬁf:lhm(lf@B)T(If ®B) - Zr:l %sz

. T, .
Hip = [—Y(L§71®Q)+1hld112f—2%_1hm(1f®3) (L ®Q), -

_Y(LfTM ® Q) 4 ﬂbf — Zl\m/lzl hi (If ® B)T(LZ'TM ® Q) :|

hm

Exp = [—diag{ by, Yk by, - sz}+
b [(Lh Q)+ (Lo © Q)] [(Lh ® Q)+ (L © Q)]
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Proof of Theorem 1. The Lyapunov—Krasovskii function for Equation (11) can be defined following:

V() = H+YM /_ ) /ﬂ s)dsda,y > 0 (33)
V(t) can be calculated as:
V() = 2veT (1)é(t) + Ty Té' (HE(H) — T ( ) [}, € ()E(s)ds
= 2ve"() [ (1; @ B)e(t)] — 2veT ()TM, [(Lbw © Q) (t—rm)]+ (34)

YM el (De(t)— TN (1 ) ft_fm T(s)s(s)ds

According to Equation (33) and Assumption 1, V(t) is changed to the following form:

V@Sé%w;Tﬁ)

(o) -2ve’ T R (Lo e - 0]

i T ¥ T, .-
+ Zf,f:l hpéy (H)en (t) — Zf,f:l (1- dm)ftthm ¢ (s)e(s)ds}
(35)
According to Lemma 3, the following can be obtained:

Vm§£{m¢%ﬂ@®®¢m—mﬂm%[mm®@%wwwﬂ+§ﬁwﬂmw>
d

m=1

€T (¢ = el (1) €01 (£ = Tan)el (¢ — T

|
3
=7 M&
=
= |
3
=
—
o
oo
—
—
-~
N—
on
o
—
=
N—
|
o
S
—~
-~
N—
—
-~
|
r~]
3
SN—
|

I
—

i T, i T i T i T
where&i:[.sa (t),e,, (t—m)e,, (t—T2) - (t—TM)l.

i T . T
- ,and B [IZT fr OZTM f} = 0. According to Lemma 2, we can conclude

H =
—, — g

E <0, whenF, E/Fi <0, rank(E)=2(M+1)f —1.
T T i T T ,
Lety = [eff (t) —h1T, sfﬂ (t),a»:ff2 (), 'Ser (t)] ,h >0, then Z(6; — 1) =0,

and we can obtain

slale; =y 8y < Alpl> <A

lKl

e (1) h1H + ) 3 é (sf,mk)z(t)] (36)

where ||-|| is the Standard European norm and A < 0 represents the maximum non-zero
eigenvalue of Z,.

Therefore, V() <)\Z le h]H + Z Z (e (ka) (t )] <0.
Through the above analy31s, Equation (1 1) is stable, and t11r+n V(t) = 0. Then, we can
—r+00
obtain tEr-Poog(t) = 0, then tETooCi(t) =0, tgr&ogi(t) = 0, and we can have tEToon(t) -
i(t) = rji, tlir+n ¢i(t) = ¢*. Thatis, under the action of the control protocol of Equation
—r+0o0

(30), the drones can eventually form the specific formation at an expected velocity. []

4. Simulation and Results

The effectiveness of the control protocol designed is verified by simulation. This
section verifies the improved control protocol of the existing constraints, indicating the ef-
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fectiveness of the strategies proposed. We assume that the formation has a non-symmetrical
communication delay and has the jointly connected topologies in the example below.

We assume that the formation consists of six UAVs. The topology structure and the
formation that we expect are shown in Figures 1 and 2.

OO OO
H@

@@
©

Figure 1. Communication topology.

G

%)

()
60om \__/  600m

Figure 2. Expected formation.

The communication topology is switched in the order of (Gy, Gy, G3,G1), and the
weight of each connected edge is 1. Assuming that there are three different time delays
in the system as 71 (t), 2 (t), 13(t), for Vi # j, then 7;(t) = 7j;(t) = 71 (t); T2(t) = 3(t) =
T4(t) = Ts(t) = T6(t) = Te1(t) = w(t); () = () = ws(t) = T5a(t) = Tes(t) =
Ti6(t) = 13(1).

The time delays satisfy 0 < 71 (t) < 0.01,0 < 1o(¢t) < 0.07,0 < 13(¢) < 0.08. The initial
state of the six UAVs and the parameters setting are listed in Tables 1 and 2.

Table 1. The initial state of the six UAVs.

Number 1 2 3 4 5 6
x;/m 20 60 10 90 43 60
yi/m 66 56 96 56 86 86
zi/m 50 10 40 330 350 240

v;/(ms1) 15 35 55 75 65 90
6;/ (o) 36 —36 45 —45 —20 45
z/(ms™1) 4 3 2 1 5 3
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Table 2. Parameter settings.

Parameter Umin/ (m.s™1) Umax/ (m.s™1) Anmin/g Amaxlg Zmin/ (m.s71) Zmax/ (m.s 1)
Value 10 600 -5 5 —30 30
Parameter Zmin/ (m.s™1) Zmax/ (m.s™1)  wmin/ (rads ') wmax/ (rad.s™?) 7*(m/s) z*(m)
Value -5 5 —7/2 /2 50 300

Parameter k1 ko k3 Ty T T,
Value 0.6 1.1 0.66 10 0.3 0.3
Under the improved control protocol, the position curves, speed curves, course angle
curves, and expected formation of the six UAVs are shown in Figure 3.
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Figure 3. States of UAV formation. (a) Position curves (XOY-plane). (b) Height curves. (c) Position
curves. (d) Speed curves. (e) Course angle curves. (f) Error. (g) Unorganized formation (5 s).
(h) Final formation.

The figures show that, under the improved formation control protocol, the six drones
can achieve the expected formation with the expected speed under the complex condi-
tions of communication constraints and dynamic constraints; the composite error of the
formation is 0, as shown in Figure 3f. This indicates that the formation control protocol is
effective for UAV formation in the conditions of non-symmetrical communication delay
and topology switching.

When drones form a stable formation, assuming that the formation needs to be
changed during flight, the control protocol is still valid. The simulation results are shown
in Figure 4.
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Figure 4. States of UAV formation. (a) Position curves (XOY-plane). (b) Height curves. (c) Position
curves. (d) Speed curves. (e) Course angle curves (f) Error. (g) Formation (50 s). (h) Final formation.

The figures show that, under the formation control protocol, the six drones can achieve
the expected formation with the expected speed. When the formation needs to be changed,
under the control protocol, the new formation is formed. The drones can fly with the
new expected speed and the designed formation control protocol is still valid. The results
indicate that the improved control protocol is widely used.

5. Conclusions

This article studies the problem of formation control based on the consistency theory.
This article focuses on the research of drone formation, thus ignores the gesture control of
the drone. The three-degrees-of-freedom kinematics equation of the UAV is given by using
the autopilot model of longitudinal and lateral decoupling. Considering the communication
interference and network congestion, this paper designs the control protocol by studying
the formation model with non-symmetrical communication delay and switching topology.
Acceleration, velocity, and angular velocity constraints in all directions are defined accord-
ing to the requirements of flight performance and maneuverability. Both communication
and mobility constraints are considered in this paper. The improved control protocol is
adjusted according to the constraints. The results show that the improved control protocol
is effective and can quickly converge the UAV formation state to the specified value and
can maintain the specified formation with communication delay and switching topology.
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Abstract: The unmanned aerial vehicle (UAV) network has gained vigorous evolution in recent
decades by virtue of its advanced nature, and UAV-based localization techniques have been exten-
sively applied in a variety of fields. In most applications, the data captured by a UAV are only
useful when associated with its geographic position. Efficient and low-cost positioning is of great
significance for the development of UAV-aided technology. In this paper, we investigate an effective
three-dimensional (3D) localization approach for multiple UAVs and propose a flipping ambiguity
avoidance optimization algorithm. Specifically, beacon UAVs take charge of gaining global coor-
dinates and collecting distance measurements from GPS-denied UAVs. We adopt a semidefinite
programming (SDP)-based approach to estimate the global position of the target UAVs. Furthermore,
when high noise interference causes missing distance pairs and measurement errors, an improved
gray wolf optimization (I-GWO) algorithm is utilized to improve the positioning accuracy. Simulation
results show that the proposed approach is superior to a number of alternative approaches.

Keywords: unmanned aerial vehicles; three-dimensional localization; semidefinite programming;

flipping ambiguity avoidance; gray wolf optimization

1. Introduction

The flying ad hoc network (FANET) is evolving at a tremendous rate and emerging
technologies, and applications based on UAVs oriented toward 6G have received consider-
able attention [1,2]. UAV networks as a kind of FANET have promising applications in both
military and civilian areas (e.g., urban fire emergency rescue, forest wildfire monitoring,
enemy aircraft reconnaissance and air shows, etc.). UAV networks have many advantages
over traditional cellular networks (CN) and mobile ad hoc networks (MANETs). With
higher altitudes and wider coverage capabilities, the signal of line of sight (LoS) from UAVs
is effectively utilized by ground terminals and users. As a result, UAVs are regarded as
airborne base stations to service mobile users and ground stations by using air-to-ground
(A2G) channels [3,4]. In addition, UAVs with characteristics such as small size and high
mobility can be flexibly deployed. Therefore, rapid on-demand services can be provided in
hazardous and harsh environments. However, due to high mobility and dynamics, UAVs
suffer from end-to-end transmission delays because of frequent topology changes and
disconnections of communication links in UAV networks. As a result, it is critical to know
the precise, low-latency position information of each UAV [5].

Localization is an invaluable area for researchers in surveillance, path planning, wire-
less communication, and UAV networks [6,7]. In FANETs, most procedures (topology
control, position-aware routing, etc.) require knowledge of the precise physical location of
each UAV, because many actions and observations are implemented based on position. The
technology of UAVs becomes meaningless if the two cannot be correlated. UAV localization
is therefore a critical technology that requires in-depth exploration. Among the existing

Drones 2023, 7, 113. https:/ /doi.org/10.3390/drones7020113 https://www.mdpi.com/journal /drones
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localization methods, the global positioning system (GPS) is widely used. However, there
are limitations (e.g., it requires higher costs and/or is not achievable to be deployed in
all scenarios). Moreover, since GPS requires light of sight (LoS) from a satellite, it cannot
provide a reliable localization scheme when the LoS is obstructed by obstacles. Therefore,
many UAV localization schemes that are non-GPS based have been proposed [8-10].

Distance-based UAV localization schemes are the focus of much current research,
which defines network localization as the problem of determining the physical coordinates
of unknown nodes given the anchors of coordinates and distance pairs between unknown
nodes and anchors. Target node localization using anchor information and pairwise
distance measurements among nodes is usually formulated as an optimization problem
with quadratic-constrained quadratic programming (QCQP). Usually, the problem is NP-
hard and nonconvex. Semidefinite programming (SDP) relaxation (a novel idea proposed
by researchers) has been applied to solve this issue. The basic principle is to first change the
nonconvexity of the problem, and the SDP relaxation causes the constraints of the original
problem to be relaxed to a semipositive definite form, which transforms the initial problem
into a convex optimization problem. The SDP-based problem is then solved by common
convex optimization techniques. However, in the actual scene, the measurement value will
be polluted by noise, which makes the measurement result inaccurate, and reduces the
positioning precision. For decades, computational intelligence (CI)-based methods have
been employed to improve the localization efficiency and accuracy. In [11], the numerical
solution is carried out by using a rank-relaxed approach based on SDP, and the results are
upgraded using the orthogonal Procrustes technique. The experimental results suggest
that the method is feasible when DOA measurements are noisy. Arafat et al. proposed
a bounding box model and applied it in swarm intelligent localization and hybrid gray
wolf optimization (HGWO) localization algorithms to narrow the particle search space and
estimate the location of UAVs, respectively [12,13].

The goal of this paper is to design an efficient localization optimization approach based
on inter-UAV distance measurement in a 3D dynamic scene. SDP is the typical method
for solving distance-based localization in general wireless communication networks. SDP
and graph theory-based localization method for sensor networks was proposed as early as
in [14], and its core philosophy is to derive error bounds by adding regularization terms to
the SDP. Instead, our proposal is to transform the localization problem into a maximum
likelihood estimation (MLE) problem with decreasing distance errors and to solve it by
relaxing the bound through a composite algorithm called SDP + RLT. Furthermore, in order
to improve localization accuracy at high noise levels, the -GWO algorithm is inspired to
refine the SDP + RLT results. Simulation results verify that our scheme outperforms existing
localization schemes. Our contributions and innovations in this paper are summarized
as follows:

e A system model for the design and analysis of 3D UAV localization is developed.
We consider distance measurement-based UAV position estimation as an objective
optimization problem with quadratic constraints and formulate it as a maximum likeli-
hood estimation (MLE) problem. A localization model for the design of UAVs in a 3D
moving scene is developed. We consider the distance-based UAV position estimation
as an objective optimization problem with quadratic constraints and formulate it as an
MLE problem.

e The SDP and RLT relaxation constraints are established based on the distance con-
straints of the localization problem, and the solvability and tightness of the proposed
composite algorithm SDP + RLT are analyzed.

e Inaddition, our solution is extended to the case of noisy distance measurement errors
and loss, and an I-GWO algorithm is proposed, which greatly improves localization
accuracy. Finally, we validate the excellence of the proposed scheme by comparing
multiple sets of experimental results.

The remaining sections are as follows. Related work on UAV localization is introduced
in the next section. Section 3 introduces the network setting and problem formulation.
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Section 4 proposes a localization scheme based on the combination of SDP and RLT relax-
ation. Section 5 presents a bionic optimization algorithm I-GWO. Numerical simulations
are given in Section 6. Section 7 concludes this paper.

2. Related Works

The problem of determining the position of a UAV is called localization. According
to the technical means, the data collected by UAVs to achieve localization vary. We will
classify and describe UAV localization methods from the following aspects.

First, it can be divided into relative localization (RL) and absolute localization (AL)
according to the type of measurement. AL is usually implemented based on GPS technology,
but its performance is vulnerable to environmental factors. The technique of acquiring the
topological shape of a network through relative distance or angle measurements between
nodes is called RL. Guo et al. [15] estimated the relative positions of UAVs based on
graph theory and UWB RCM in a GPS-rejected environment, thus enabling distributed
formation control. Autopilot and guidance laws designed for fixed-wing UAVs without a
priori knowledge were studied in [16,17]. Secondly, there are centralized and distributed
algorithms based on the computational framework. The centralized approach is suitable
for static networks, as it requires the collection of all measurements and the calculation of
estimates at the fusion center, which requires powerful computational and communication
capabilities. Location estimation that iteratively extends to the overall framework based
on local information is called distributed localization, which has the advantage of load
balancing and efficiency of the network. Two different distributed algorithms are described
in [18,19]. Thirdly, we categorize them according to the use of anchors or not. Zhang et al.
propose a unique anchorless localization algorithm that uses a combined distance and
angle technique to establish a local coordinate system (LCS) and then estimates the relative
position from a fixed coordinate system [20]. This method effectively avoids reflection blur.
However, the high cost of angle measurements has resulted in few practical applications. A
new idea of using a mobile single anchor to locate target nodes was proposed in [21] that
employed the computational intelligence-based H-best particle swarm (HPSO) algorithm.
Liu et al. [22] proposed a distributed UAV relative positioning framework and used the
SDP method to obtain the global topology of the UAV cluster. The lower bounds of CRLB
with and without anchors were then analyzed separately. In addition, the localization
is classified according to the type of calculation (distance or hop count). An MDV-hop
algorithm based on the DV-hop algorithm is proposed in [23] for locating wireless sensor
nodes. Techniques based on distance information typically include SDP, least squares
(LS), gradient descent (GD), and multidimensional scaling (MDS) [24-26]. Among these,
SDP methods have the advantage of significantly better localization accuracy than other
closed-form solutions. However, it is less resistant to interference in large-scale networks.
Zou et al. [27] proposed a method that uses the initial estimation of the SDP to iterate the
position and velocity of target nodes to improve the localization accuracy. A distributed
gradient algorithm based on Barzilai-Borwein steps was applied to distributed distance
measurements, which enabled node localization accuracy to meet expectations [28]. Figure 1
shows the UAV localization algorithms under different classifications. The problem of
determining the location of a UAV node is called localization. Usually, distance-based UAV
localization requires the estimation of absolute position (relative to a local or global frame
of reference) from partial relative measurements between UAVs. That is, each UAV can
measure relative positions from a set of neighboring UAVs, and then infer the absolute
position of all UAVs from this information. UAV localization algorithms can be classified
from different perspectives.

We denote (-)T and (-)~! as the transpose and inverse of a vector (or matrix). The rank
of A is denoted as Rank(A). a; stands for the ith element of a. | | -1 | is the Euclidean norm.
1; and Oy are the all-one and all-zero vectors of length k. I is the k x k identity matrix.
A = B signify that A — B is positive semidefinite.
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Figure 1. Node localization algorithms in UAV networks.
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3. Problem Formulation

Consider a scenario of dynamic swarms of UAVs. The 3D network space R?® con-
sists of m beacon UAVs (denoted as anchors and coordinates are known) and # target
UAUVs (positions are unknown). Let N, = {1,2,...,m} denote the set of anchors, and let
Ny ={m+1,m+2,...,m+ n} denote the set of target UAVs, where Ng = N, + N,,. There
exists a clock offset §; between the UAV; € Ny and the standard time. The UAVs have
certain communication capabilities that allow them to range with neighbor UAVs. The
coordinate of the anchor UAVs and target UAVs is defined as x; = [x;, v, zi]T € R3 and
ag = Xk, Y, zk]T € R3, respectively.

It is assumed that the distance between UAVs is obtained by the signal time of arrival
(TOA). If the distance of UAV i and j is within communication range R, their distance can
be expressed by

dij = ||x; — x;

, Vi j € Ng (1)

Furthermore, we regard the distance as symmetric, i.e., dl-]- = dﬁ. We denote T as the
time duration of the signal r;j(t) from jth UAV to the ith UAV, given by

I'ij(t) = tXi]'S]'(t — Tl']') —l—nl-]-(t),t € [O, T} 2)

where «;; denotes amplitude, s;(f) is the known waveform, 7;; is the transmit delay, and
n;j(t) represents Gaussian noise.

Among the actual problems of UAV network localization, due to the limitation of
communication distance, not all the measurement pairs of distance are known. Therefore,
the pair distances of UAV/UAV pairs and UAV /anchor pairs are denoted as (i,j) € N
and (k, j) € M, respectively. Define d;; as the true distance between target UAVs and afkj
as the true distance between the target UAV and anchor UAV. The measurement noise is
modeled to obey Gaussian distribution, and thus the corresponding distance measurement

of UAV is
Adij = iiij + Sij,V(i,j) eN 3)
dkj = dk]‘ + ’)/i]',V(k,j) eM
where d;; and dAk]- are the measurements between UAV i and UAV j with Gaussian noise
eij ~ N(0, (Tijz), Yij ~ N(O, aka), and N represents normal random variables with mean 0
and variance 02, as well as those that are independent.
The final goal is to estimate the position of a large-scale UAV network in a dynamic
scene using distance measurements. Figure 2 depicts the network model of the UAV
network localization problem in a dynamic scenario. The nomenclature of used terms is

provided in Table 1.
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Figure 2. Localization model of UAVs in 3D space, in which green UAV and blue UAV represent
anchors and target nodes, respectively.

Table 1. Nomenclature of used terms in this paper.

Symbol Definition
Na, Nu, Ny Set of anchors and target UAVs, where Ng = Na + Nu
X, g Coordinate of the anchor UAVs and target UAVs
d; i d}q Distance between target UAV and UAV (or anchor)
N, M Set of distance pairs of UAV/UAV and UAV /anchor
rij, ®jj, Sj, Njj Amplitude, waveform, and noise of UAV signal
€ijr Vij Gaussian noise of distance measurements
XY, Z X is UAV position matrix and Y = X"X, Z = [I3 X; XT Y]
Lu Lower and upper bounds of variables in X
¢i, P Variables greater than 1 and less than ¢
u Population of gray wolves
a,rl, r2 Convergence factor and two random numbers of [0,1]

In the above figure, the distances between UAVs are represented by the corresponding
edges; thus, the UAV network localization problem is

Find  x1,%3,...,%, € R3
o ||xj—xi||z:dﬁ/\7(i,j) eN @)
%) = ae||” = dg; Y (k. j) € M

In general, the above problem is considered as a nonconvex problem (NP-hard), which
is tough to solve. Global optimization techniques have been widely used, such as MDS,
SDP, and nonlinear least squares (NLS). Projection and dimensionality reduction are the
main ideas of the MDS technique. NLS is usually resolved by direct derivatives, gradient
descent, and quasi-Newton methods. Semidefinite relaxation (SDR) is a computationally
efficient approximation to quadratically constrained quadratic programming (QCQP),
and the UAV localization problem proposed in this article is classified as QCQP. The
QCQP is approximated by semidefinite programming (SDP), in which reliable and efficient
algorithms have been studied by previous scholars.

In this paper, a novel idea for solving distance-based UAV localization has been
designed. We first transform the UAVs position estimation problem into an MLE problem
that reduces the error between the true and the estimated value of the position, and then
create relaxation constraints and derive an answer for the MLE problem via the composite
localization algorithm SDP + RLT.
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4. Proposed Localization Solution
4.1. System Model

Based on the above problem formulation, a UAV network consists of N, target UAVs
and N, anchor UAVs. The distance measurement of UAVs is obtained by communicating
with their neighbor UAVs. We combine the 3D coordinates of all target UAVs into a matrix
X = [x1,X2,...,%Xn] € R¥*" which needs to be settled. Due to the influence of UAV mobility
and noise during distance measurement, there exists an error between the measurements
and the accurate distance of UAVs. In order to account for noisy distance information, the
idea of maximum likelihood estimation (MLE) is utilized to set up optimization problems
that minimize the expected error in the UAV position estimation [29]. Therefore, an MLE
problem of UAV positioning can be expressed as

] 2
X = argrn)%n{Z(i,j)eN wij|[|xi — x;[|” = d?j

2
Y kjem wkf‘ I = ax |~ d?ki‘} ®)

where w;; > 0 are weights. The weights in Equation (5) are important to achieve precise
positioning. We tend to give higher weights to distance measures with high confidence,
which facilitates higher-quality estimator error reduction.

The position error is defined as

Y= |x—x|2 (6)
We further model the UAV localization problem as
Find X € R¥>"Y ¢ R
s.t. egXTXeij = d%j,V(i,j) eN

L X , @)
(ak;ej)T< oy )(ak,-ej) =d}, V(K j) e M

Yy = XTX

Here, ¢;; € R" is the vector with 1 at the ith position, —1 at the jth position, and zero
everywhere else; ¢; € R" is the vector of all zeros except an —1 at the jth position; I3 is the
3 x 3 identity matrix.

In the SDP approach, the constraint relaxationis Y = XTX, whichmeansY — XTX 3= 0,
the constraint is equivalent to the following linear matrix inequality:

2= (3 3)ro0 ®)

Then formulate the relaxation problem as a standard SDP problem, that is, to find the
symmetric matrix Z € RG+7)*5+41) sych that:

maxémize 0
s.t.  Ziznz =13
(0;¢/)(0;¢1)"-Z = d2,, (i, j) € N 9)
(ak;e]-)(ak;ej)T-Z = d%j,V(k,j) eM
Z =0

where Z;.3 is the upper three-dimensional master submatrix of Z. After the SDP normaliza-
tion of the localization problem, the problem solvability will be analyzed. Then, whether
UAVs can be uniquely localized is considered, and the proof is given in the next section.
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4.1.1. SDP Solvability Analysis

We now analyze the solvability of Problem (9) through SDP pairwise relaxation theory.
The rank of any possible feasible solution matrix of (9) is highlighted in [30] as being at

least 3. Assume that (9) has a feasible solution. This happens when dj; and d;; denote the

accurate values of the position X= [Xq,Xg, " - -,in}. Then, Z = QTQ, where Q = (I3; }~()T

is a feasible solution to (9). Since the original is feasible, the dual must have a minimum
value of 0. The dual of the SDP relaxation is represented below

minmize LC+ Y ”ijdlzj‘f' Y Uijd%
(if)eN (i,j)eM
c 0
St ( 0 0 > + L wi(0e)(0e) + L vilage)(age)” =0
(ij)eN (i,j)eM

Let U be a (3 + n)-dimensional dual relaxation matrix, that is

U‘(S 8)+ Y. ui(0e)(0e)  + Y, vijlape))(ape)”

(i,j)ESuu (i/j)esall

According to the dual theory of SDP, the matrices Z and U satisty Rank(Z) > 3 and
Rank(U) < n. The following theory can be derived.

Theory 1. If the optimal dual relaxation matrix has rank n, then each solution of (4) has Rank 3.
That is, Problems (4) and (9) are equivalent, and (4) can be solved in polynomial time as an SDP.

For the UAV localization problem, the SDP relaxation in (9) can find an accurate
solution to Problem (7). Note that localization is unique only in some cases where the
network map is generally rigid, while nodes are locatable when the graph is globally rigid.
The solvability of the UAV localization problem will be investigated by graph theory below.

The issue of the network location problem based on relative ranging measurement
pairs of distance is actually a general distance geometry and graphical implementation
problem. Suppose a set of wireless nodes are placed in a Euclidean space R and they
communicate with each other to form a certain topology. This topology can be abstracted
as an undirected connectivity graph Gy, which contains vertices set V = {1,2, ... ,n} and
a set of edges €. The vertices and edges represent the nodes and communication links
(distance measurements) in the communication network, respectively. Thus, the goal of
network localization derives the location information of all unknown nodes based on
known anchor information x;, topological connectivity information of the graph Gy, and
distance information d;;. The proof process is omitted here. See [30] for details, and the
following theorem is valid.

Theorem 1. The network localization problem is just considered solvable if there exists a set of
positions {x,1, ... , Xnlin R4 corresponds to the given data (G, {x1, X2, ..., Xy} and dij).

Theorem 1 provides sufficient conditions for the UAV network 3D localization problem
of particular relevance in the case of global rigidity. Having solved the solvability, whether
localization is uniquely solvable is discussed below.

4.1.2. Unique Solvability Analysis

The optimal value in Problem (9) is 0 if the distance measurements of UAVs are exact.
However, the sufficient number of distance information is also a significant feature of the
challenge to achieve unknown node localization. Biswas et al. [29] have discussed this
problem in detail and provided a unique solvability condition. We repeat it here in terms of
localization in 3D space. Here, the matrix Z has 3n + n(n + 1)/2 unknown variables. Hence,
there are at least 31 + n(n + 1)/2 linear equations in the constraint. In addition, in case these
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equations are linearly independent, then there is a unique solution to Z. Therefore, we have
the following proposal: If there are 3n + n(n + 1) /2 distance pairs in 3D localization, each
distance pair has an exact distance metric. Then, Problem (7) has a unique feasible solution:

7-(5 X 10

Now, it could be said that it equals the true position vectors of the target UAVs. That
is, the SDP relaxation solves the original problem exactly.

Theorem 2. If Problem (7) has a unique feasible solution X in R3*" and no X (j=12,--n)in R"
, then (5) is uniquely locatable, where h > 3 (excluding the case of attaching all zeros to X), such that

Hx] — xiHZ = djzl,V(l,]) enN

. (1)
lxj = (@;0)||* = d;, ¥ (k. ) € M

The latter condition in Theorem 2 states that the problem cannot be confined to a higher-
dimensional space. In this space, the anchors are increased to (a;;0) € R", i=1...,M.
The results in [29] mean that the relaxation problem (4) solves (2) exactly when the problem
could be uniquely localized.

Based on the above SDP uniqueness analysis, we learn that it is extremely crucial that
the localization problem can be solved uniquely, especially for A2G communication. For
unique localization in 2D and 3D space, at least three points and four points are required,
respectively, and they are not collinear or on the same plane.

Figure 3 shows a typical network model for 3D localization. In these models, at least
four anchor nodes are required that need to locate the unknown node, and all four anchor
nodes cannot be on the same line or the same UAV on the same line. Figure 3a illustrates
the case where four nodes can locate an unknown node E with anchors (A, B, C, D). The
second case shown in Figure 3b shows that two potential positions (E, F) can be calculated
for nodes (A, B, C, D) in the same plane. In Figure 3¢, four anchors are on the same line and
the exact position cannot be found because all anchor positions are on the same line, and
(o1, &g, ..., &n) may be the correct position.

Figure 3. A network localization model in 3D space. The blue points represents the anchor nodes,
and the red point represents the unknown node to be located.

4.2. SDP Plus RLT Relaxation Scheme

RLT is an effective approach for continuous and discrete nonconvex or QCQP is-
sues [31]. As a linear programming method, the researched problem exhibits a nonconvex-
ity when there are second-order terms in the objective function and constraints. RLT can
transform the problem into a solvable convex-optimal form by introducing new variables
containing constraints to replace the constraints of the original problem in the reformulation
phase. Anstreicher et al. [31] demonstrated that for typical values of the original variables,
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the semidefiniteness constraint removes a large part of this feasible region. It has been
shown in [32] that using RLT plus SDP constraints can achieve better results than one
of the two. In this article, we introduce RTL into SDP to solve the distance-based UAV
localization problem.

First, determine the boundaries of each coordinate in the position matrix X of the UAV
target nodes The upper bounds are denoted as u= [uq,uy,- - ,uy,], and the lower bounds
are denoted as I= [Iy,1, - - -, I]. Next, the boundary constraints are determined. With two
variables ¢;, P € X, four constraints are established ¢; —I; > 0, u; — ¢; > 0, P — l ;i >0,
uj — ¢; > 0. Multiplying the new constraints containing ¢; and ¢, at the same time using
Yj; instead ¢;¢;, we obtain

Yij = Ligj = ligi > —lil;

Yij —uipj —ujp; > —uju; (12)
Yij = Ligj — ujpi > —liu;

Yij — Ligi — uip; = —lju;

It is clear that Yj; = Yj;, hence the last two constraints are equivalent.

Yij = ligj = Ligi > —lil

Yij — uip; — ujpi > —uju; (13)
Yij = lipj — ujpi < —liu;

Next, after adding the SDP constraint and RLT, (9) can be reformulated as

maxzmize 0
s.t. Z1:3,1:3 =1
(05¢))(06)"-Z = dF, (i, j) € N
(ax; ¢j) (a;e))"-Z = dz, V(k,j) € M (14)
Yij = ligy = i = —li;
Yij — iy — ujppy > —uiu, Vi j=1,...,n

Yij — Lipj —ujpi < —liu;
Z =0

The Tightness Analysis

Tightness analysis is performed to assess the impact of our proposed solution when
it comes to UAV localization performance. We concentrate on the variety of the feasible
regions of Y;; when attaching SDP to it.

The RLT relaxation does not change the affine transformation of the initial constraint
factors. We suppose that [ = 0 and u = e without loss of generality. We consider variables
$i,¢j, and assuming i = 1,j = 2and 1 < ¢; < ¢; < e. Then, the RLT constraints on Y11,
Y55, and Y7, become

0<Yi <¢1,
0<Yyn<¢, (15)
0<Yip <¢1.

Next, we exert the SDP constraint on the RLT. The SDP can be written as follows

1 ¢ ¢
o1 Y Yo | =0 (16)
¢ Yo Yo
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For the specified values of x; and x;, comparing the feasible region of Y11 Y7, before
and after adding (15), the equivalent constraint can be derived as follows.

Y11 > ¢7,
Yi1 > 47,

Y11 < 12 + \/(Yn —¢7) (Y2 — ¢3),
Y11 > ¢1¢2 — \/(Yn —¢7) (Y2 — ¢3).

It is straightforward that applying the SDP to RLT improves the lower bounds on Y1;
and Y, but has no effect on the upper bounds. Thus, combining the RLT constraint on the
SDP tightens the feasible region of Problem (13). Similarly, the feasible domain of (16) is
tighter than the feasible domain of (9). Therefore, it can be demonstrated that our approach
can speed up the localization convergence rate. Algorithm 1 shows the SDP + RLT method
for UAV localization.

(17)

Algorithm 1 SDP + RLT Method for UAV Localization

Input: ay, m, n, N', M, dj, d;;, R, 1, u, €.

Output: positions of unknown UAV nodes xq, Xp, ... , X.

1: begin

/*Initialization*/

2: Initialize the Euclidean distance matrix Z = [I5, X; XT,Y], where Y = XTX.
3: Z=Symmetrize (Z)

4:  cvx begin
5: minimize norm(X, 2)
6 s.t.

Z =0

Yij — Ligj — Lii = — il
Yij —uipj —ujp; > —uju;
Yij = Lij — uji < —liu;

7: for each UAVi <+ 1ton do

8: update Z by solving Problem (14).
9: end for

10: if Z < 0 then

11: break;

12: end if

13: cvxend

14: end

5. Bionic Optimization Algorithm

In this section, we develop an improved strategy called I-GWO based on the classical
gray wolf optimization (GWO) to optimize the UAV localization results in the presence of
noise interference, such that the localization results have smaller errors and higher accuracy.

5.1. Motivation

As seen above, the exact resolution of the localization problem can be gained us-
ing SDP + RLT when the distance information between UAVs is accurate. However, the
localization problem suffers from measurement noise, and there is no scheme to satisfy
the constraints in (7). Bioinspired optimization algorithms have attracted the attention of
researchers who have attempted to solve UAV localization problems by employing them
because of their high precision and low complexity. Previous studies have proposed several
bionic-based localization algorithms. Arafat et al. [12] proposed an improved PSO algo-
rithm, which uses a grouping approach to achieve fast convergence. Raguraman et al. [33]
proposed a dimension-based hybrid algorithm (HDPSO) to reduce localization errors.
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Motivated by the bionic optimization algorithm, a bionic optimization algorithm I-
GWO is proposed in this paper for improving localization accuracy. Since the localization
results of UAVs are subject to errors when applying the SDP + RLT technique to distance
measurements containing noise, we consider the localization results of SDP + RLT as input
and then apply the I-GWO algorithm to improve the localization accuracy.

The localization of target UAVs can be regarded as an error optimization issue. Let
0; = [0, 0y,
between anchor g; and 6; is Jki. Consequently, the objective function of the localization
optimization is denoted as

6.:] " be the optimized position estimate of the unknown UAVs. The distance

1& /o 2
f6iar) = = YV (dii —di) (18)
K=1
where K is the number of anchors whose location is close to the target node (usually smaller
than R). d}; is the noise-measured distance between the target drone and anchor, and dy; is
the distance between them after calculation of optimization, defined as

G =\ (O, — )% + (O, — ay,)? + (05, — a2, (19)

5.2. I-GWO Algorithm

The GWO algorithm is inspired by the unique hierarchy and hunting patterns of
wolves in nature. In the algorithm, the gray wolf population is divided into four classes,
including alpha, beta, delta, and omega (hereinafter will be omitted as «, 5, §, and w) in
order from high to low. The position of each wolf is regarded as a potential solution for
the prey position (target node). The a# wolf leads the wolves to proceed with the search,
encirclement, and hunting activities for the prey. In order to imitate the social hierarchy in
the design of I-GWO, the location of & wolf is taken as the best solution (optimal fitness
of individuals), B as the sub-optimal solution, ¢ as the third optimal solution, and the
remaining candidate solution is named w. Within the prey searching phase, the movement
of lower-ranked gray wolves in the population is based on the top three ranks, and the
wolves’ ranks are constantly updated. When the algorithm reaches the maximum iterations,
the leader of the wolf population (x wolf) is considered to have caught the prey, at which
case the hunt is finished. Studies show that the I-GWO algorithm can dramatically reduce
the probability of being premature and falling into a local optimum.

Define U = [Uj, Uy, ..., Uy] as the population of gray wolves and w denotes the

number of wolves in the population. The ith wolf is denoted as U; = [Ul-l, uz, u? ] Tin the
3D situation. In the encircling prey phase, the gray wolf position update is defined as

U(t+1) = Uy(t) — A-D (20)

D =|C-Uy(t) - U(t)| (1)

where t denotes the iteration, Up denotes the location of the prey, and D expresses the distance
vector between the individual wolf and prey. A and C are constantly varying coefficients.

A=2a-rm—a, C=2nr (22)

where 11 and r, are random numbers of [0,1], and a is the convergence factor (decreases
from 2 — 0 with the ?).

0 =2/ 2/ (tmax + 1) (ax — 1) (23)

It can be seen from the equation that the gray wolf group moves toward a wolf (who is
nearest to the prey as the leader). The wolf group’s movement is motivated by its position
U; and the random vector C. The step length is determined by D and A. When |A| > 1, it is
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far from the target and shows stronger global seeking ability; On the contrary, if |[A| < 1, it
approaches the prey and shows stronger local search ability.

During the hunting stage, gray wolves are assumed to identify the prey’s position
(which is set to the &« wolf position at the first algorithm loop) and encircle it. However,
actually, the desired position of prey is unknown during the whole optimization phase.
Usually, it is assumed that the top three rank wolves (e.g., «, B, and J) have a better
knowledge of the prey’s potential location. Therefore, we saved these three solutions so
far and asked other gray wolves (including w) to update their positions with the iteration
based on the first three best-searched positions. Here, the following equation is proposed.

Up(t+1) = Un(t) — Ag|Ca - Ua(t) — U(1)]

Up(t+1) = Ug(t) — Ag|Cp - Ug(t) — U(t)] (24)
Us(t+1) = Us(t) — As|Cs - Us(t) — U(t)]
Uyt +1) = % Y ou(t+1) (25)
=123

The step length and direction of wth individuals wolf in the group toward «, 8, and &
wolves are defined by (24), and the final position of w and other wolves is defined by (25).
In order to achieve higher localization accuracy of prey (e.g., target UAV), the proposed
algorithm I-GWO has the following improvements.

(i) On the one hand, the particle initialization is refined. Since we have already
conducted a preliminary estimation of the UAV target node position by the SDP method
in the preliminary phase of localization, the & wolf position is assigned by the result of
SDP + RLT. We generate a regular polyhedron with the position of the & wolf as the center
and the Ry, as the radius. Then, its individual vertices are assumed to be the initial positions
of B wolf, § wolf, w wolf, and other wolves.

(ii) On the other hand, to further enhance the exploration capability of the L GWO
algorithm, the wolves’ positions are updated according to the mean value of the random
weight sum of «, B, and J wolves, and the position updating is modified as

1
U(t+1) =3 Y qU(t+1) (26)
=123

where g; is the dynamic weight coefficient generated by random numbers of [0,1], and
q1 + 92 + g3 = 1. The update rule of -GWO is described in Figure 4, and the optimization
procedure of I-GWO is exhibited in Algorithm 2.

moy qs3

Ds =
W’ prey

M awolf
M Bwolf

m | MR 8 wolf

M w or other wolf

Figure 4. Location update rule in -GWO.
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Algorithm 2 I-GWO of UAV Localization Optimization

Input: Preliminary results X; of SDP + RLT, population size U, max iterations t;;,y, dimension d,
and coefficients r1, 72, 41, 42, and gs.

Output: Optimal position of the unknown UAVs.
/*Initialization*/

1: Initialize the gray wolf pack U = [Uy, Uy, ..., Uy] using X;.
2: Initialize the GWO parameters (4, A, C).

3: Initialize the fitness value (U, Ug, Uy).

/*Computation*/

4: while (t < t,) do

5: for each wolf w=1: W do

6: Update the current search agent position using (18)

7: end for

/*I-GWO loop*/

8: foreach wolfw=1: Wdo

9: Evaluate the fitness value and update (Uy, Uﬁ’ Uy)
10: Obtain the variable a based on (23).
11: end for

12: foreach wolfw=1: W do
13: Calculate A and C based on (19)
14: Update the position of wolf w by (24)(25)

15: end for
16: w=w+1
17: t=t+1

18: end while
19: Terminate the process and output the optimal position by Uy,
20: end

6. Simulation

The performance of the proposed algorithms will be evaluated through MATLAB
simulator simulations when solving UAVs that cannot be localized or uniquely localized
because of limited measurements. First, the hybrid algorithm (named SDP + RLT) is
compared with the SDP + O algorithm by Russell et al. [11], the MDS method [18], and
the least squares (LS) algorithm [24]. Second, the performance of the I-GWO algorithm
is evaluated under noisy measurements and compared with PSO algorithms [12], HPSO
algorithms [21], and HGWO algorithms proposed by Arafat et al. [13].

6.1. Performance of Proposed Method

Let 50 target UAVs be randomly placed within the simulated area [—300m, 300m] x
[—300m, 300m]. The altitudes of the UAVs are in the range [100m, 600m], and 6 anchor
UAVs are evenly placed. The UAV motions follow the Gaussian random walk model. In
addition, we set R = 300m, then the distance measurements can be made with the UAVs
within its communication range. For the noisy range measurement, the Gauss error with
fixed standard deviation is used. To be closer to the real scenario, it is also assumed that the
distance pairs between UAVs will be lost randomly by 1%. The localization error (LE) is
defined as the deviation of the estimated position of a UAV node from the actual position.

Y Xei - X”i)z 27)

=/
= /(%o = %02+ (i = Y1) + (20 — 201)?

where the 3D coordinates of the estimation and actual value of the target nodes are denoted

LE;

as Xe = (Xe, Ye, ZE>T and X, = (xr, yr, zr)T, respectively. We evaluate the UAV localization
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performance using the root mean square error (RMSE) as the evaluation metric, which is
averaged over 100 runs.

1 2 1
RMSE = \/ 22?21 (xei - xﬂ.) = \/; Yo LE; (28)

where X,; denotes the real position matrix of the target UAV node, and X,; denotes the
matrix of estimated positions. NMSE is given by the ratio of the matrix X — X to the F-norm
of X. In addition, we evaluate the localization accuracy by referring to the mean absolute
error (MAE) of the nodes, which is also taken as the average of 100 runs.

1 n d
MAE = X dzz‘:l Zj:l ‘Xei/]' = Xr;;

where Xei’]., Xrl.,]., denote the estimated and true positions of UAV, respectively.

(29)

6.2. Simulation Results and Discussion

Figure 5 depicts the accuracy of different localization algorithms for the target node
under the measurement noise ratio (noise ratio is 10%) and loss ratio (loss ratio is 1%).
Figure 5a shows the LS-based localization effect, where the blue line represents the deviation
between the true and estimated positions. Since LS localization is carried out iteratively, the
localization deviation of previous nodes will affect the localization of subsequent nodes, so
the overall RMSE of localization is large. Figure 5b,c shows MDS localization and SPD + O
algorithm, in which 70% of nodes can estimate their positions well, while the rest of the
nodes have big deviations, and their MAEs are 4.236 m and 4.013 m, respectively. Figure 5d
shows that the proposed localization method SDP + RLT has an MAE of 2.082, which is
only half of the SDP + O algorithm. In conclusion, the performance of the SDP + RLT
algorithm can be demonstrated by other existing localization algorithms.

UAV Locations obtained by LS UAV Locations obtained by MDS
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% 200 i b & & N
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* LS Method 100 — A K ;E *__MDS
> P 200 T~ 3 = — 300
> e
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(a) (b)
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Figure 5. Comparison of LS, MDS, SDP + O, and SDP + RLT localization results in the same scenario
with m = 6, n = 50 and R = 300. The “A”represents the anchor node, the “O” represents the actual
position of the UAV, and the “*”represents the estimated position.
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We further demonstrate the localization performance. Figure 6 and Table 2 describe
the RMSE of different algorithms when the number of target UAVs is increased with noise
ratio = 10%, distance loss ratio = 1%, and anchors = 6. Figure 6 clearly demonstrates that the
localization performance of our proposed algorithm incrementally improves by increasing
the number of UAVs, which is attributed to the fact that more neighbors are available. In
addition, the SDP + RLT algorithm outperforms the MDS by about 1.5 orders of magnitude
in terms of RMSE and by about 2 orders of magnitude over the LS and SDP + O algorithms.
However, the SDP + RLT algorithm costs more time since it uses the “CVX toolbox” to
semidefinite constraints on the distance matrix during the run. Table 2 provides accurate
numerical statistics. In future research, we consider applying a distributed method to
reduce the localization time.

3.5

~ % = SDP+RLT
—O6—MDS
o -A-1s

RMSE(m)

1.5% <

05 . \ \ \ \
50 60 70 80 90 100 110
Number of unknown UAV nodes.

Figure 6. Comparison of RMSE vs. UAV numbers.

Table 2. Number of UAVs as a function of RMSE for different localization algorithms.

Localization Numbers of Unknown UAV Nodes
Algorithm/RMSE 50 60 70 80 90 100 110
LS 29912 28923 27633 25908 24648 23567  2.1435
MDS 27732 25243 23957 21894  2.0362 19533  1.6415
SDP + O 3.0796 29923 29617  2.8796  2.6695 23709 = 2.3474
SDP + RLT 15057  1.3809  1.3385  1.3196 12061  0.9921  0.9107

Figure 7 shows that the localization accuracy of the LS, MDS, and SDP + O algorithms
improves substantially when anchors increase while the target UAVs are fixed at 50. The
RMSE improvement is about 200%, which indicates that they are highly dependent on the
anchors and therefore not suitable for large-scale network applications. With increasing
anchors, the RMSE of the SDP + RLT algorithm improves by about 50%, so we infer that
our algorithm is more scalable and robust in the face of network expansion. In addition,
the relatively small number of anchors used implies a lower GPS cost.

Next, the noise factor during distance measurement was evaluated by considering the
effects of realistic factors (geography, weather conditions, or UAV’s own maneuverabil-
ity, etc.). Figure 8 shows that the RMSE of all the algorithms increases when the noise rate
increases. However, the SDP + RLT algorithm outperforms the others algorithms in terms
of interference immunity. It is notable that the RMSE is equal to 0 when the noise rate is 0.
This also justifies the conclusion in Theorem 2 that the SDP method can achieve unique
accurate localization.
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Figure 7. Comparison of RMSE vs. anchor numbers.
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Figure 8. Comparison of RMSE vs. noise ratios.

Finally, the improvement of positioning accuracy of different optimization algorithms
is demonstrated through comparative experiments. Figure 9 shows the comparison of differ-
ent affine optimization algorithms applied for the initial localization results of SDP + RLT.
Table 3 details the numerical results of the different optimization algorithms. It means
that the convergence speed of the I-GWO algorithm is faster than that of PSO, HPSO,
and HGWO, and the RMSE is smaller. Therefore, based on the localization results of the
SDP + RLT method, the -GWO algorithm can achieve the goal of high-precision localiza-

tion of UAVs.
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Figure 9. Comparison of RMSE vs. iterations.
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Table 3. Number of iterations as a function of RMSE for different optimization algorithms.

Optimization Iterations
Algorithm/RMSE 0 20 40 60 80 100 120 140 160
PSO 14602 0.6434 03061 0.1853  0.1302 0.0794 0.0337 0.0036 0.0015
HPSO 17132 07266 0.3068 0.0988  0.0287 0.005 0.0027 556 x 107> 7.35 x 107
HGWO 22296 1.7022 09412 05926  0.2205 0.1899 0.0274 0.0038 0.0006
I-GWO 0.6757 0.1209 0.0395 0.0096  0.0061 0.0021 321x107® 257x10°% 1.82x 101

7. Conclusions

In this article, SDP + RLT and I-GWO algorithms have been proposed for solving the lo-
calization problem in 3D cyberspace for swarms of UAVs using only distance measurements
and a few GPS-equipped UAVs, which are essential for cooperative UAV swarm flying.
Then, the solvability and unique solvability have been analyzed theoretically. Further,
the I-GWO is proposed to improve the localization accuracy for distance measurements
that contain noise. Through simulation results exhibited in MATLAB, we compare the
performance of SDP + RLT with other advanced localization methods (i.e., LS, MDS, and
SDP + O) and demonstrate its efficiency in terms of RMSE, measurement error, and scal-
ability. I-GWO is compared with the classical optimization algorithms PSO, HPSO, and
HGWO. The RMSE and MAE results prove the superiority of the algorithms. Our study
still has limitations in terms of computational speed since the proposed approach is based
on SDP, where semidefinite constraints consume more time when the target UAVs increase.
Hence the proposed method is more suitable for centralized UAV routing schemes. Future
work includes the introduction of distributed methods for efficient and high-precision lo-
calization of UAV swarms in mobile scenarios to reduce the localization delay. In addition,
finding the optimal trajectory of a single mobile anchor UAV to achieve localization is also
a future research trend.
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Abstract: Flocking for fixed-Wing Unmanned Aerial Vehicles (UAVs) is an extremely complex
challenge due to fixed-wing UAV’s control problem and the system’s coordinate difficulty. Recently,
flocking approaches based on reinforcement learning have attracted attention. However, current
methods also require that each UAV makes the decision decentralized, which increases the cost
and computation of the whole UAV system. This paper researches a low-cost UAV formation
system consisting of one leader (equipped with the intelligence chip) with five followers (without
the intelligence chip), and proposes a centralized collision-free formation-keeping method. The
communication in the whole process is considered and the protocol is designed by minimizing the
communication cost. In addition, an analysis of the Proximal Policy Optimization (PPO) algorithm
is provided; the paper derives the estimation error bound, and reveals the relationship between
the bound and exploration. To encourage the agent to balance their exploration and estimation
error bound, a version of PPO named PPO-Exploration (PPO-Exp) is proposed. It can adjust the
clip constraint parameter and make the exploration mechanism more flexible. The results of the
experiments show that PPO-Exp performs better than the current algorithms in these tasks.

Keywords: fixed-wing UAV; formation keeping; reinforcement learning

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have been widely used in military
and civil fields, such as in tracking [1], surveillance [2], delivery [3], and communication [4].
Due to the inherent defects, such as fewer platform functions and a light payload, it is
difficult for a single UAV to perform diversified tasks in complex environments [5]. The
cooperative formation composed of multiple UAVs can effectively compensate for the lack
of performance and has many advantages in performing combat tasks. Thus, the formation
control of UAVs has become a hot topic and attracted much attention [6,7].

Traditional solutions are usually based on accurate models of the platform and dis-
turbance, such as model predictive control [8] and consistency theory [9]. This paper [10]
proposed a group-based hierarchical flocking control approach, which did not need the
global information of the UAV swarms. The study in [11] researched the mission-oriented
miniature fixed-wing UAV flocking problem and proposed an architecture that decomposes
the complex problem; it was the first work that successfully integrated the formation flight,
target recognition, and tracking missions into simply an architecture. However, due to the
influence of environmental disruption, these methods are difficult to accurately model [12].
This seriously limits the application scope of traditional analysis methods. Therefore,
with the emergence of machine learning (ML), the reinforcement learning (RL) [13,14]
method to solve the above problem has received increasing attention [15]. RL applies to
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decision-making control problems in unknown environments and has achieved successful
applications in the robotics field [16-18].

At present, some works have integrated RL into the formation coordination control
problem solution and preliminarily verified the feasibility and effectiveness in the simula-
tion environment. Most existing schemes use the particle agent model for the rotary-wing
UAV. The researchers [19] first researched RL in coordinated control, and applied the
Q-learning algorithm and potential field force method to learn the aggregation strategy.
After that, ref. [20] proposed a multi-agent self-organizing system based on a Q-learning
algorithm. Ref. [21] investigates second-order multi-agent flocking systems and proposed a
single critic reinforcement learning approach. The study in [22] proposes a UAV formation
coordination control method based on the Deep Deterministic Policy Gradient algorithm,
which enabled UAVs to perform navigation tasks in a completely decentralized manner in
a large-scale complex environment.

Different from rotary-wing UAVs, the formation coordination control of fixed-wing
UAVs is more complex and more vulnerable to environmental disturbance; therefore, dif-
ferent control strategies are required [23]. The Dyna-Q(A) and Q-flocking algorithm are
proposed [24,25] for solving the discrete state & action space fixed-wing UAV flocking
problem under complex noise environments with deep reinforcement learning. To deal
with the continuous space, ref. [26,27] proposed a fixed-wing UAV flocking method in
continuous spaces based on deep RL with the actor—critic model. The learned policy can
be directly transferred to the semi-physical simulation. Ref. [28] focused on the nonlin-
ear attitude control problem and devised a proof-of-concept controller using proximal
policy optimization.

However, the above methods also assume that UAVs fly with different attitudes, so the
interaction (collision) between the followers can be ignored, and the followers in the above
methods are seen as independent. Under the independent condition, these single-agent
reinforcement learning algorithms can be effective due to the stationary environment [29].
However, in real tasks, even when the attitude is different, the collision still may happen
when the attitude difference is not significant, and the UAVs adjust their roll angles.

In real tasks, the followers can interact with each other, and it is also common for
them to collide in some scenarios, such as the identical attitude flocking task. However,
this scenario is rarely studied. Ref. [30] proposed a collision-free multi-agent flocking
approach MA2D3QN by using the local situation map to generate the collision risk map.
The experimental results demonstrate that it can reduce the collision rate. The followers’
reward function in MA2D3QN is only related to the leader and itself; however, other
followers can also provide some information. This indicates that the method did not fully
consider the interaction between the followers.

However, MA2D3QN did not demonstrate the ability to manage the non-stationary
multi-agent environment [29], and the experiments also show collision judgments with
high computation. With the number of UAVs rising, the computation time also increases.
Furthermore, some problems in the above methods on fixed-wing UAVs have not been
adequately solved, such as the generalization aspect and communication protocol; the most
concerning problem is the minimum cost of the formation.

To consider the communication protocol of the formation, this paper takes the maxi-
mum communication distance between the UAVs into consideration, with a minimum cost
communication protocol to guide the UAVs to send the message in the formation-keeping
process. Under this protocol, the centralized training method for the UAVs is designed;
only the leader needs to equip the intelligence chip. The main contributions of this work
are as follows:

1.  Research the formation keeping task with continuous space through reinforcement
learning, and building the RL formation-keeping environment with OpenAl gym,
and constructing the reward function for the task.

2. Design the communication protocol for the UAVs’ formation with one leader who
can make decisions intelligently and five followers who receive the decisions from
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the leader. The protocol is feasible even when the UAVs are far away from each other.
Under this protocol, the followers and leader can communicate at a low cost.

3. Analyze the PPO-Clip algorithm, give the estimation error bound of its surrogate, and
elaborate on the relationship between the bound and hyperparameter e: the higher ¢,
the more exploration, the larger the bound.

4. Propose a variation of PPO-clip: PPO-Exp. The PPO-Exp separates the exploration
reward and regular reward in the task of formation keeping, and estimates the advan-
tage function from them, respectively. The adaptive mechanism is used to adjust € to
balance the estimation error bound and exploration. The experiments demonstrate
this mechanism with effectiveness for improving performance.

This paper is organized as follows. The first section introduced the current research
on UAV flocking. Section 3 describes the background of the formation-keeping task and
introduces reinforcement learning briefly. In Section 4, the formation-keeping environment
is constructed, and the reward of the formation process is designed. Section 5 discusses
the dilemma between the estimation error bound and exploration ability of PPO-Clip, and
proposes PPO-Exp to balance the dilemma. Section 6 shows the experimental setup and
results. Section 7 provides the conclusions of the paper.

2. Related Work

This section reviews current research about fixed-wing UAV flocking and formation-
keeping approaches with deep reinforcement learning. According to the training architec-
ture, this paper divides the current methods into the following two categories: centralized
and decentralized. The difference between the two categories is as follows:

The centralized methods utilize the leader and all the followers’ states in the training
model, and the obtained optimal policy can control all of the followers so that they flock
to the leader. The decentralized methods only use one follower and the leader’s state to
train the policy, and the obtained optimal policy could only control one follower. If there
are several followers in the task, the policy and intelligence chip should be deployed on all
of the followers.

2.1. Decentralized Approach

The paper [24] proposed a reinforcement learning flocking approach Dyna-Q(A) to
flock the fixed-wing UAV under the stochastic environment. To learn a model in the
complex environment, the authors used Q(A) [31] and Dyna architecture to train each fixed-
wing follower to follow the leader, and combined internal models to deal with the influence
of the stochastic environment. In [25], the authors further proposed Q-Flocking, which is a
model-free and variable learning parameter algorithm based on Q-learning. Compared to
Dyna-Q(A), Q-Flocking removed the internal models and proved it could also converge to
the solutions. For simplification, Q-Flocking and Dyna-Q(A) also require that the state and
action spaces are discrete, which is inappropriate. In [26], the authors first developed a DRL-
based approach for the continuous state and action spaces fixed-wing UAV flocking. The
proposed method is based on the Continuous Actor-Critic Learning Automation(CACLA)
algorithm [32], with the experience replay technique embedded to improve the training
efficiency. Ref. [33] considered a more complex flocking scenario, where the enemy threat is
considered in the dynamic environment. To learn the optimal control policies, the authors
use the situation assessment module to transfer the state of UAVs to the situation map
stack. Then, the stack is input into the proposed Dueling Double Deep Q-network(D3QN)
algorithm to update the policies until convergence. Ref. [34] proposed the Multi-Agent
PPO algorithm to decentralize learning in the two-group fixed-wing UAV swarms dog
fight control. To accelerate the learning speed, the classical rewarding scheme is added to
the resource baseline, which could reduce the state and action spaces.

The advantage of decentralized methods is that these methods could be deployed on
the distribution UAV systems, which could extend to the large-scale UAV formation. The
disadvantage of the centralized methods is as follows:
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®  These methods also require all of the followers to be equipped with intelligence chips,
which increase the costs.

o These methods do not consider the collision and communication problem, due to the
use of only local information.

The decentralized approaches also assume that UAVs fly at different heights, and then
the collision problem could be ignored. However, in real-world applications, the collision
problem must be considered [30].

2.2. Centralized Approach

Ref. [35] studied the collision avoidance fixed-wing UAV flocking problem. To man-
age collision among the UAVs, the authors proposed the PS-CACER algorithm, which
receives the global information of UAV swarms through the plug-n-play embedding mod-
ule. Ref. [30] proposed a collision-free approach by transferring the global state information
to the local situation map and constructing the collision risk function for training. To
improve the training efficiency, the reference-point-based action selection technique is
proposed to assist the UAVs’ decisions.

The advantages of the centralized methods are as follows:

e These methods could reduce the cost of the formation. Under the centralized archi-
tecture, the formation system only requires the leader to equip the intelligence chip.
The followers only need to send their state information to the leader and receive the
feedback commands.

e These methods could consider collision avoidance and communication in the forma-
tion due to their use of global information.

The disadvantage of the centralized method is the dependence on the leader. Ref. [36]
pointed out that the defect or jamming of the leader causes failure in the whole
formation system.

When the number of UAVs increases or the tasks are complex, the centralized methods
face the dimension curse and lack of learning ability problems. A popular approach is
learning the complex tasks with a hierarchical method [37,38], which divides the complex
tasks into several sub-tasks and uses the centralized method to optimize the hierarchies.
The hierarchical reinforcement learning approaches are applied in the quadrotors swarm
system [37,38], but are rarely used in fixed-wing UAV systems.

Even when using global information in training, the current centralized approaches fail
to consider communication in the formation. Compared to current centralized approaches,
the approach proposed in this paper considers the communication in formation, and
provides the communication protocol. Through the communication protocol, the formation
system could be considered as one leader with an intelligence chip and five followers
without intelligence chips; the leader collects the followers” information, with a centralized
train on the intelligence chip. The followers receive the command from the leader through
this protocol and execute.

3. Background

This section will introduce the kinematic model of the fixed-wing UAV, restate the
formation keeping problem, and briefly introduce reinforcement learning.

3.1. Problem Description

The formation task can be described as follows: At the beginning, the formation is
orderly (shown in Figure 1), which is a common formation designed in [39]). The goal of
the task is to reach the target area (the green circle area) with the formation in as orderly a
way as possible; when the leader enters the target area, the mission is complete.
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Follower4 Follower2

Figure 1. Left: The Leader—Follower formation topology structure and the task schematic diagram.
Right: The action of UAV.

During the task, assume the UAVs are flying at a fixed attitude; then, each UAV in
the formation can also be described as a six-degree of freedom (6DoF) dynamic model.
However, analyzing the six-degree model directly is very complex; it will increase the
space scale and make control more difficult. The 6DoF model can be simplified to the 4DoF
model; to compensate for the loss incurred during this simplification, random noise is
introduced into the model [27], and the dynamic equations of ith UAV in the formation can
be written as follows:

X 0; COS i + 1,
- dlyi | _ v; sing; + 11y, )
Podt| g —(ag/v;) tan @; + 1y,
o (@i @ia)

where (x;,y;) € R? is the planar position, and y; € R!, ¢; € R! represent the heading
and roll angle, respectively, (see Figure 1). The v; is the velocity, and a, is the gravity
acceleration. The random noise values 1x;,77y., 11¢;, 1ly; are the normal distributions, its
means are fly;, tly,, Hg; by, and its variances are O Oyir Oy (75,1_, respectively, (the gray dotted
circles in Figure 1 show the area of influence, of random factors); they represent the random
factors introduced by simplification and environment noise.

A simple control strategy can make the formation satisfactory when the environment’s
noise is low. However, under a strong inference environment, such as one with strong
turbulence, the random factors will be apparent, leading the formation to maintain the
complexity of the task. If no effective control is provided, the formation will break up
quickly, (this is demonstrated in Figure 2), and a crash may happen.

Furthermore, even though there is an effective control policy for the formation, the
coupling between the control and communication protocol can also be an unsolved chal-
lenge. Because the communication range of UAVs is limited, if the UAV wants to know
others’ states, it has to wait for other UAVs out of range to send state information to UAVs it
can communicate with, which in turn send state information to it. If no harmonic protocol
is applied in the formation control, the asynchronous and nonstationary elements will be
introduced into the formation control, making the control strategy more complex.
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Figure 2. (a): The ablation experiment result of environment noise: track of formation with no control;
(b): The ablation experiment result of exploration balance point: PPO-Clip with ¢ = 0.05.

3.2. Reinforcement Learning

In the last part, the solution of differential Equation (1) can be represented as the
current dynamic parameters adding the integral items by difference equation methods
such as the Runge-Kutta method. So, the UAV formation control can be modeled as a
Markov Decision Process(MDP), which refers to the decision process that satisfies the
Markov property.

The MDP also can be described as the tuple (S, A, P, r,v). S represents the state space,
A represents the action space, and P : S x A x & — R is the transition probability. The
reward functionisr : S x A — R, and v € (0,1) is the discount factor, which leads the
agent to pay more attention to the current reward.

Reinforcement learning can solve the MDP well to maximize the discounted return, as
follows: Ry = Y i v'r(st). The main approaches of RL are divided into the following three
categories: value-based, model-based, and policy-based. The policy-based methods have
been developed and widely used in various tasks in recent years. These methods directly
optimize the value function by the policy gradient:

T

Vo Z log 7ty (st at) Ax
t=0

VJN(G) = ETC@ (2)

where Ay is the advantage function that is equal to the state-action value function, and the
the state value function is subtracted, as follows:

An(st/ ﬂt) =E;

kamkst:&ﬂt:a] —Enlz 'Ykrt+k|st251 ®3)

k=0 k=0

PPO (Proximal Policy Optimization) is one of the most famous policy gradient methods
in continuous state and action space [40]. In policy gradient descent, PPO updates the
following equation at each update epoch :

60 — B, fmin (ri(6) Ay, clip(re(0),1— &1+ ) Ar, )] @)
However, using the constant clip coefficient ¢, the PPO also proved its lack of exploration

ability and difficulty in convergence. Therefore, designing an efficient dynamic mechanism to
adjust £ and ensure greater exploration and faster convergence is also challenging.

176



Drones 2023, 7, 28

4. Formation Environment

This section constructs the fixed-wing UAV formation-keeping environment, the
formation topology, communication and control protocols, and collision. Communication
loss is also considered in the environment through the reward design.

4.1. State and Action Spaces

In the course of the formation task, based on the 4DoF Equation (1), it is modified
to a more realistic control environment. For the ith UAV, assume the thrust of the UAV
is controllable, and it will generate a linear acceleration «,, = v;. Moreover, assume the
torque of the roll angle is controllable too, and add the roll angle acceleration ay, = w; = ¢;
into the dynamic equations. Finally, the dynamic equations of ith UAV can be modified
as follows:

X; 0; COs P; + ty; COS(; )t + 1y,
Vi v; sin; + Ky, Sin(lpi)t + 1y,
- E ;i . _(ag/vi) tan @; + 17y,
=S| = | ©
dt | o Wi + N,
[ Ky,
w; Ko,

To control the UAVs, linear acceleration and roll angle acceleration are input. For
control, we have the dynamic model of ith UAV:

¥; &y, COS 1;

) d . Ky, SINP;

gl = a y.l' = _“gf((Pir(Pi/d) + ‘XU,- [ tan @i (6)
II.JZ v; cos? @; 0?
i Ao,

The state and action spaces for existing methods in UAVs controlled by reinforcement
learning are often discrete, but in the real world, the state space is continuous and changes
continuously as time goes on. Therefore, combining the analysis of the previous dynamics,
we define the state tuple of the ith UAV as &; := (x;,y;, ¥i, ¢;, v;, w;). The planar position
(x;,y;) € R?, heading y; € S!, roll angle ¢; € S!, line and angle velocity v,w € R are
determined by solving the differential Equation (5).

In the action space, although the engine can produce fixed thrust, the real thrust acting
on the UAVs in the nonuniform atmospheric environment is not of the same value as the
engine product. So, we define the action space by a; := (ay,, &y, ). Assume the UAVs can
also produce the same acceleration in positive and negative directions, where we have
Qy; € [—&vmax, Xo;max], and ag; € [—&g,max, Xg;max]. The action will influence ¢; through
Equation (6), and then influence the ¢; indirectly.

After defining the individual state and action of the UAV, we define the formation
system state and action by sticking to the individual state (action) as a vector. Define the
state of system ¢ := [{1, - - - , 6], and the action of system a := [ay, - - -, ).

4.2. Communication and Control Protocol

To ensure the UAV formation consumes less energy in the information send and
receive process, and ensure the reinforcement learning method can be helpful in the task,
the communication and control protocol for the UAV formation will be provided in this part.

As is shown in Figure 1, the formation is of a Leader—Follower structure; in terms of
hardware, all the UAVs are equipped with gyroscopes and accelerometers to monitor their
action and state parameters. Only the leader has the “brain” chip that can make decisions
intelligently; the followers only have the chips that can receive the control command signals,
take the command action and send the state signals.
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To describe this relationship, the graph model is introduced. Use the communication
graph G; to describe the communication ability of the formation at time ¢ [39]:

Gr = (6, V1, &) ()

where V; = {v1,- -+, 04} is the set of nodes that represent UAVSs, the & represent the arc
setattimet, e.g., ¢;; € &t denote an arc from node i to node j, which means the UAV i can
communicate with UAV j directly at time ¢. The adjacent matrix A; = {a;;} of graph G; is
used to describe the communicated situation of formation in real-time, e.g., at the initial
time, the adjacent matrix is as follows:

010101
17010 0 0
010000

A=110001 0 ®)
000100
1000 00

The adjacent matrix is symmetric, and its element 4;; indicates the communication situation
of UAV i and UAV j. If a;j =1, then a i =1, and the ith and jth UAVs can share their state,
and the control command can be sent from i to j or j to i. The adjacent matrix is updated
in real-time. If the distance between two UAVs is greater than the communication limited
distance do;, the corresponding elements of the adjacent matrix will be 0.

Additionally, at the initial time, the formation is connected, and the connected compo-
nent W is 1. 1 If the UAVs want to keep in communication with all the others, the graph G
should only have one connected component. In the graph model, this condition could be
transferred to G. The methods that judge whether an undirected graph is connected include
union-find disjoint sets, DFS, and BFS [41]. So, after DFS or BFS, the task fails when the
connected component number W of graph G is more than 1. When the formation works,
W should be 1.

When the formation works, the protocol should be active to support the UAVs com-
municating with each other. The communication protocol’s primary purpose is to send
all the UAVs’ states to the leader for the decision; the control protocol sends the action
command to all the UAVs. When the formation is as orderly as it was at first, the infor-
mation only needs to obey the transfer route (shown in Figure 1), so the whole formation
can be controlled well. However, when the noise disturbs the position of UAVs, it makes
the connection between the UAVs that are not connected at the initial time. It breaks the
connection between the UAVs that are connected at the initial time. To handle the chaos
brought about by the noise, a communication and control protocol is shown in Figure 3.

In Figure 3a the communication protocol is shown, where the block in ith row repre-
sents the communication priority of the corresponding UAV. For the priority, the bigger the
number, the higher the priority. Priority 1, 2 determines the order of communication. If the
priority is 0, both parties have no communication probability. i.e., when the leader(0 and
follower3 are within the communication range of follower5, the follower5 will send the
information to leader0 instead of follower3.

The protocol is designed based on the communication object: to send all the followers’
state information to the leader to support the decision. So, the principle of the protocol is to
give the followers closer to the leader higher priority, such as followers 1, 3 and 5.

Figure 3b has a similar meaning to the control protocol. The target of the control
protocol sends the control information to all the UAVs. The control protocol motivates
the leader to send the control information to the followers that connects as much as the
followers. Therefore, leader0, and followerl, 2, and 5 have priority 2 because they can
connect with up to 2 other followers.
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Figure 3. (a): The communication protocol of the UAVs formation; (b): The control protocol of the
UAVs formation.

4.3. Reward Scheme

The goal of the formation-keeping task is to reach the target area and ensure the
formation is as orderly as possible. At first, the orderliness of the formation is of primary
concern. So, some geometric parameters are defined to describe the formation. The
followers in the formation can be divided into two categories, one is on an oblique line
with the leader, like followers 3 and 4, and another is on a straight line with the leader.
Only follower 5 belongs to this category. The linear between the leader and the position
where the follower should be located is called the baseline (see the back lines in Figure 4).
Then, it is easy to know the first category followers have a baseline with a slope, and the
second follower’s baseline does not. For the follower i, the length of the initial baseline is [;,
and the initial slope is k; = tan 0 (the first category).

Leqder

Follower5

Follower3 Followerl

Figure 4. The communication and control protocol under the topology of the formation.

To make sure the UAV agent can return to the position that makes formation more
orderly, for ith UAV, the formation reward is designed as follows:

Rf,i = — max{disu,i, |dl‘Sb,i — ll|} (9)

where dis, ; represents the distance between the follower i and the baseline along the vertical
line of the baseline, and dis;; represents the distance between the leader and follower i
along the baseline. The formation reward is Ry ;.

When the UAVs belong to the first category follower (e.g., follower 3), the distance
dis, 3 can be calculated by the following formula:

|X3 tan® — y3 + (yo — X0 tan9)|

V14 tan6 (19

disa,g; =
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Followers 2 and 4 have the same dis, as in the above equation. The distance dis;, also
can be obtained with the following formula:

dl'Sb,3 = (X3 — XO) cos 0 + (yg — yo) sinf + I3 (11)

For the second category follower (follower 5), it is easy to know that the reward can
be represented as the following simple formation:

Rys5 = —max{|xo — x5, [yo — y5 — I5|} (12)

Furthermore, the main target of UAVs formation is to reach the target area, which is
a circle with center coordinates (X4, Yar) and radius ¢, To encourage the formation to
reach the target area, a sparse reward is designed as the destination reward:

_ 0, \/(XO - xfﬂ?)z + (yO - ytm’)z < Ttar
Ra= { 10,000, otherwise (13)

We only calculate the distance of the leader. Only when the formation reaches the target
area do the UAVs receive this sparse reward, and the learning process will halt. It leads to
the UAVs not only needing to take minor actions to ensure that the orderly formation is not
disorganized by the disturbance, but also needing to adjust direction to reach the target
area. From the reward design view, UAV agents need to try different actions to discover
and obtain a sparse signal. To accelerate the learning, the exploration rewards, as described
in the literature [42], are designed as the incentive reward:

Re,i = _max{|xi - xtur|/ ‘]/z - ]/tur|} (14)

When the formation is closer to the target area, it will receive a higher exploration reward,
leading the UAV agent to learn to reach the target area.

Meanwhile, some UAVs are too close and crash together, or they are too far and
cease communicating with each other. In that case, the formation will suffer permanent
destruction, and the task will halt.

Setting the minimum distance for crashes makes it easy to obtain the halt condition of
UAV crashes. Then, the penalty should be added to avoid the above situation. This penalty
is designed as a formal sparse reward as follows:

Ry = —10,000, W > 1 (15)
0, others

—10,000,d;; < dera, Vi, j =0,1,---5

where the d. ; represents the minimum distance between the jth UAV and another five
UAVs: d.; = mini{di,]-},Vi =1,---,6,i # j. The lowest communication distance is dcom,
once the minimum distance d.,j less than d¢o, the jth UAV will lose the communication
ability with other UAVs. In addition, d, is the crash distance; as long as the distance
between two UAVs is less than this, the two UAVs might crash.

Finally, the reward of the formation system at time T can be represented as the sum of
the following reward function:

[e)}

R(T) = Y [Rpi(T) + Res(T) | + Ra(T) + Ry (T) (16)

Il
_

5. PPO-Exp

PPO is one of the most popular deep reinforcement learning algorithms in continuous
tasks that achieved outstanding performance. The PPO embedded the Actor—Critic algo-
rithm, which uses a deep neural network as an Actor for policy generation, and another
deep neural network as a Critic for policy estimating. The structure of PPO can be seen in
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Figure 5; the Actor interacts with the environment, collects the trajectories: {s¢, at, r¢, 5141}
and stores them in the buffer, then it uses the buffer and the value function estimated by the
Critic to optimize the Actor network’s hyperparameter according to following surrogate:

(1+ S)A”f)t,l;Aﬂet,l >0, >1+¢
EtChp’B =< (1- 8)A7T9t,];A7Te,,1 <0,rn<l-—c¢ (17)
ri+- Ag, ;otherwise
01

where the Az, is the advantage function defined in Equation (3). The Critic network’s
hyperparameter ¢ is updated by minimizing the following MSE error:

Clip, 2
Lo =Y (yr — Qp(st,ar)) (18)
t
ye =11+ 7 Qp(si41, 7, (5¢4+1)) (19)
trajectoriesl State, reward
Buffer €——
optimize advantage
function
v
Formation
Environment
N Actor network Critic network

action

Figure 5. The structure of PPO with experience replay.

The gradient of Equations (17) and (18) is computed and used to update the hyperpa-
rameters 0 and ¢ until they converge or reach maximum steps. In surrogate (17), the PPO
restricted the difference between new and old policy by using the clip trick to restrain the

ratio ry = Tolsum) Tt could be considered a constraint on updated policy; under it, the
14 (5151)

ratio should satisfy the following constraint: 1 — e < r; < 1+ €. Then, the updated policy
is restricted as follows:
|7t (st ar) — 119, (¢, at)|
76, (St, at)

<e (20)

The coefficient ¢ is also a constant in the range (0, 1) in PPO-Clip; from the inequal-

ity (20), it can be seen that the relative deviation is bound between 714, and 719. When this

s . . . Clip,0 .
deviation is under ¢, as the increase in ; is observed, the £, P increase as well, but when

the deviation exceeds ¢, even if the r; is increases, the thp’e maintains its value. It shows
the exploration within the constraint ¢; however, when the relative difference is beyond ¢,
the exploration is not encouraged by clipping the result to (1 + S)An%m. Figure 6 shows
the surrogate of PPO-Clip in different e. The large e could encourage the agent to explore
more and accept more policies. However, enlarging ¢ will lead to the estimated error of
the surrogate. The PPO-Clip is the off-policy algorithm. The data generated by the old
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policy will be used as new policy updates. When ||r; — 1|| < ¢, the estimated error bound
of £&P8 will increase as ¢ increases. For convenience, denote the following assumption:

@ PP
A Lcllp Q/ Q/ ':’/ -
E[(1+ e, | P T
/ P
E[(L+e)Aq] |- ; E[(1 ~ e1)47] i
/ |
: :
A
E[(1 + 3)A] / i E[(1— £)47]
P
1 1
b B[~ 25)4,]
1 1
R Tt
X@x@ & " v LCllp
NN QX
A =0 Az =0

Figure 6. The surrogate of PPO-Clip in different . The relationship of different e: e3 > &5 > €;.

Assumption 1. In the previous t timestep of policy update, the ratio ry satisfies ||ry — 1| < e,
Vk=1,---,t

Under Assumption 1, the following Lemma is given for auxiliary proof of the error bound:

Lemma 1. Under Assumption 1, the difference of state distribution resulting from the policy
satisfies the following inequality:

T, _ ”6,1 <ﬂ
o7 = g™ < L @y

Proof. The distribution p™™ can be rewritten as [43]:
- k gk
7 =(1—79) ) 7 -dy, (22)
k=0

where d¥. , is the distribution resulting from 77y at k timestep. Using the Markov property,
Vs’ € S, the dk. ,(s") could be decompose as follows:

=L (5) molals) - P(s'ls,a) (23)
Using the decomposition, the following equation holds:

d, () —dt, 1<s/>=Z[d’;T;l(s)-n9,<a|s>—d’:f;;(s)nef,1<a|s>}P<s’\s,a>
|:dk 1

=) |, (s
- P(s'|s,a) (24)
Z[Tfet( |S

) 70, (als) —d5.1 ()70, , (als) + it (5)7mg, , (als) — 45,1 (s)7ms, , (als)]
)~ 716, ,(als)] -4 () P(s']s, )
) -

+y [d}fmtll (s

S

s/
s,a

dl ()] - 7o, (als) - P(5'|s,a)
,a

Using the triangle inequality, the following equation hold:
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Y li7te, (als) — g, , (als)|| - 45, (5)P(s'|s, a +led o, (S| 7ta,, (als) - P(s'|s, a)
> | Ll als) = ., (als)] -d’;;; )Pl (25)

+ Z[di;] $)—d! (5)] g, (als) - Ps'ls )| = 1, () —d, ()]

Sum up the inequality (26) to calculate the expectation on s’:

Hdﬂ'gt 7T9 1”
=Z||dn6, ) =iy (N < Ll als) = o, (als)]- 5, ' (5) L Pl )
S,
+Z”d 71'9 1( ) 7-[9,5 1 ZP |S a
=Hnet(aIS)fnet,l(aIS)IHHdng d’frefl\l (26)
7o, (als) — e, , (als) k k—1
< .
I I o)l + ey = i)
< R T () et gt <o it a1 |
= ngff] (ﬂ|s) 7'(9’71 — 7'[9 7'[9 1

k— k—
<26+ |ldi,? —dip? || < ke

Using Equation (22), the following equation holds:

[eo)

7T, 7T k k
lp70 — p 1] < o 1};)7 %, ,— Al
1 & €y
<= Y ke= (27)
1-15 1—7v

O

Using this Lemma, the estimation error of the PPO-Clip could be obtained:

Theorem 1. Under the Assumption 1, the estimation error of PPO-Clip is satisfied:

; 7T £ -
Err [;CCIZP’G} = Err {Ermom {;Arfe ” =1_ U ESNUnifs,ﬂ~7T9 [ATI(S/ a)] (28)
old

Proof. When ||r; — 1|| < ¢, the surrogate of the PPO-Clip will be degraded [40]:

LClipf — Eﬂg [ Ty Am) } H ~ T4 ” <e (29)
old | 7T, oid Gold
The above surrogate is the importance sampling estimator of the objective of the new
policy [44]:
T
]Enﬂald |: 7.[66 AT[(S/ neold (S)):| ~ ]ETL'(; [AT[(S/ 7-[9 (S))] (30)
old

However, the estimator uses the data generated by 774 ,,, and the state distribution of £Clip?
is derived from p”%ia. Therefore, the estimation error is satisfied:
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Err [Eﬂe y [719

Bo1d

Al (9| | = [ | 2

Oo14

/Sp”%zd (s)/ ne(a'S))An(s,a)dads - '/s.p”" (s) ./;Nng Az (s, a)dads

A~ T0014 7014 (ﬂ | 5

Anls, 0, (5)| = Byl (s, ()|

- /Supmzd(s)_png(s)H/MHHAH(S,Q)Hdads (31)

Consider the positive advantage situation and expand the integral of a; the following
equation will hold:

Err [Engald [TEMA”(S, Ty, (s))” < ./S.Hp”gold (s) —p™(s)] /ﬂ mto(als)Ar(s,a)dads (32)

Bo1d

Using the conclusion of Lemma 1, the following error bound could be obtained:

T An(s,rceold(s))H g/s18;1/an9(a|s)An(s,a)dads

Err |:E7T901d [ﬂ 0

Bo1d

- 1
:/sfjfy 151 @/uﬂe(aIS)An(s,a)dads

NI
=1 |S| /s|5| /Q719(a|s)A7T(s,a)dads

8 .
=1 _77 | S| - EstUnifg,ammy [Ar(s,a)] (33)

where the Unifg represents the uniform distribution of the state. [

Theorem 1 confirms the positive relationship between the estimation error and ¢. By
using it, a more clear conclusion could be obtained:

Remark 1. In PPO-Clip, the high € could enhance the exploration but will result in a high
estimation error bound of the surrogate; the low € could decrease the error bound but will restrict
the exploration.

Therefore, to deal with the exploration and estimation error problems mentioned in
Remark 1, this paper considers making the € adaptive in different situations. The last part
designed the sparse reward R, and the exploration reward R, is designed as the incentive
reward. The agent should explore more in the task to receive a high-level R; and R.. So,
when these rewards are too low, the agent should release the restriction on r; to encourage
the exploration. When these rewards are high and stable, the restriction on ; increases to
ensure the estimation of the surrogate is accurate.

So, the exploration advantage function A';Tx’” (s¢,a¢) can be used to represent the advan-
tage function that is estimated by R; and R., which can reflect the exploration ability of
the agent:

00 6
AZP(Sy,a1) = Ex [Z YE(Rg(E+K) + Y. Ros(t+K))[S = s,ar = a | —
k=0 i=1

Rei(t+K))[St = (34)
1

6
i=

[e9)
En [Z Y (Ry(t+4) +

k=0
According to the exploration function, an exploration PPO algorithm is proposed with

an adaptive clip parameter e. When the exploration advantage function is lower than last
time, to improve the exploration ability, € will be enlarged. Otherwise, the ¢ will be reduced,
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restraining the updated policy in a trust region. To sum up, the adaptive mechanism is
designed as follows:

exp exp
. o, T, =1
et —1) —clip( ;lexp SHE 5 ));A%f - A%il >0
701
e(t) = Az —Azg _ 35
®) (t = 1) + clip(— 2,0, ), AT — ATF <0 (39)
01

e(t —1); otherwise

The clip function in the above equations is to restrict the adaptive mechanism and avoid
the e being abnormal. Through the variation of the exploration advantage function, the
exploration-based adaptive e mechanism is proposed. When simply replacing the constant
e with the adaptive ¢, the PPO will be PPO-Exploratione(PPO-Exp). With the restriction of
old policies, new policies will be adjusted automatically. The surrogate of the PPO-Exp is
as follows:

LEWS — By, [min (rt(())Angom,clip(rt(G), 1—e(t),1+ s(t))Aﬂgomﬂ (36)

The Algorithm of PPO-Exp in the formation environment could be seen in Algorithm 1.
The exploration and estimation error problem in PPO-Exp could be adapted without delay,
and the following Proposition will give the exploration range and the estimation error
decrease rate in different situations:

Algorithm 1 PPO-Exploration € with formation keeping task.

Initialize 7t¢,¢p.
fori=0,1,2,... Ndo
fort=1,---,Tdo
The leader0 collects state information {s;;|i =1,- - - ,5} through the communica-
tion protocol (Figure 3a)
Run policy 7y, obtain the action {a;;|i = 0,1,---,5}, and send them using the
control protocol (Figure 3b).
The leader and followers execute the action commands and receive a reward as
follows: (Rg(t), Re(t), Ra(t), Rp(t))
Store (st,at,8¢11, R¢) at the buffer.
end for
Transitions data from buffer, and estimate A?Te, , A%f , respectively.

. ~ex rex
if An;: - A”qu > 0 then

e(t)=¢e(t—1)— clip(Aﬂi;Xp M, E(tz—l))
end if "
if A7) — A%/ < Othen
e(t)=e(t—1)+ clip(A”";;x:”"il ,0, 802*1))
end if "

forj=1,---,Mdo
Ly = 23:1 min(r; - Am,t,clip(l -1+ s,r)Am,t)
Update 6 by SGD or Adam.

end for

Update critic network parameter ¢; by minimizing:

b (Tesk 7 'R — Vp(s1))?
end for
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Proposition 1. In PPO-Exp, when A%’f - A%’: ., <0 the exploration range of next policy will
7o, 7o, 41l et AP AT

N T

be expanded to

3e(t—1) , pexp rexp .
< =5—, when Aﬂet — AHSH > 0, in next update,

the error bound of the surrogate will decrease to O( E(tgl) ).

Proof. When A%f - A%ﬁl < 0, according to Equation (35), it is easy to see the next

_ jexp _ pexp
policy will be expanded to w < e+clip( al Agx;‘t*l /0, e(t; D ). Then, the following
t—1 t—1
inequality will hold:
CATT AT e(t—1) _e(t—1)

OSdW(tA?flﬁ’ )<= (37)

So, the following inequality is held:
|| 7o, — 776, , || <et e(t—1) _ Be(t—1) 38)

7o, M~ 2 2

When A%f — A%f ) > 0, and Assumption 1 is satisfied, it is obvious that the conclusion

of Theorem 1 could be used in PPO-Exp. So, using Equation (35) and Theorem 1, the
PPO-Exp’s decrease rate of the bound is as follows:

X 7T Ty,
AErr {ES p} = Err |Er, %AHG,,] 1 —Err |Eq, 7‘1141719#2
t—1 —
e(t) —e(t—1
< ')’()1_(7) : |S| : ‘ ESNUnifs,aNT[gt [An(sr a)] - Es~Unif‘5,a~7'(9t71 [AH(S, a)] H
< 2D g p
(A AT o e(t=1)
(e(t —1) +clip( A ,0,=5=)) —e(t—1)
< = -S| T
<7 Ty S|
3e(t—1)
t—1)
< 2 . T = e
<y 18T = 0(t ) 9)
where the I' is the upper bound of advantage:
I'= %%X‘ ]Es~Unif_5,u~7r9t [AT[(S/ a)] - Es~Unifg,ﬂ~n9t71 [AH(S/ a)] H (40)

O

Proposition 1 indicates that the PPO-Exp could encourage the agents to adjust the
exploration in different situations. The next section will validate it through numerical
experiments.

6. Numerical Experiments

This section compares the PPO-Exp with four common reinforcement learning algo-
rithms (PPO-Clip, PPO-KL, TD3, DDPG) in the formation-keeping task, and compared
the performace of PPO-Exp and PPO-Clip in the formation changing task and obstacle
avoidance task.

6.1. Experimental Setup

In terms of hardware, all the experiments are completed on the Windows 10 (64-bit)
operating system, Intel(R) Core i7 processor, 16 GB memory, and 4 GB video memory. As
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for software, OpenAl-gym [45] is used to design the reinforcement learning environment
and the physics rulers of the UAVs’ formation.

The formation task is modeled on the OpenAl gym environment. See Figure 1; the
position of the leader and followers can be seen in Table 1. The formation is updated by
the dynamic equations solved by the difference method per 0.5 s per time mesh grid. The
environment noises are set as N(0,1) default. The target area is designed as a circle at
(200,400) with a radius of 40.

Table 1. The initial position of UAVs’ formation.

Leader0 Followerl Follower2 Follower3 Follower4 Follower5

Position X 160 190 220 130 100 160
Position Y 190 160 100 160 100 130

6.2. Experiments on PPO-Exploration ¢

The following famous continuous space RL algorithms are explored in this section:
TD3, DDPG, PPO-KL, and PPO-clip; they are compared to the proposed method under the
formation-keeping task.

e PPO-Clip [40]: Proximal Policy Optimization with Clip(PPO-Clip) function.

e PPO-KL [40]: Proximal Policy Optimization with KL-divergence(PPO-KL) constrain.

e DDPG [46]: Deep Deterministic Policy Gradient(DDPG) algorithm, which is a contin-
uous action deep reinforcement learning algorithm that uses Actor—Critic architecture.
In DDPG, the deterministic policy gradient is used to update the Actor parameter.

e TD3 [47]: Twin Delayed Deep Deterministic (ITD3) policy gradient algorithm, which is
a variant of DDPG. The TD3 introduced the delaying policy updates mechanism and
the double network architecture to manage the per-update error and overestimation
bias in DDPG.

The main hyperparameters of the contrast experiment are shown in Table 2. The blank
area in the above table means the algorithm does not include this parameter.

Table 2. The main hyperparameters of the algorithm used in the experiment.

Parameter Name TD3 DDPG PPO-KL PPO-Clip PPO-Exp
04 0.9 0.9 0.9 0.9 0.9
AR 0.00005 0.00005 0.00005 0.00005 0.00005
Crr 0.0002 0.0002 0.0002 0.0002 0.0002
Batch 32 32 32 32 32
Aus 10 10 10
Cus 10 10 10
EPS 1078 1078 1078
Dy (target) 0.01
A 0.5
Ectip 0.1 0.1 0.1
TDDPG 0.01
VARpDPG 3
Explore Step 500
dimyIpDEN 32

Set the episode length be 200; the results of PPO-Exploration ¢ and other comparing
algorithms are shown in Figure 7a. As the learning curves indicated, the PPO series
methods achieved better performance; in all variations of PPO, the PPO-Exp has the best
performance. It is validated that the adaptive mechanism based on exploration makes
sense during policy updating. Figure 7b shows the change of ¢; the series €(t) is stationary,
and varies around 0.05, although the initial value is 0.1, which means 0.05 is the balance
point between exploration and exploitation found by PPO-Exp. Meanwhile, the episode
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reward curve of PPO-Exp is higher than PPO-Clip’s, validating the idea that exploration
from PPO-Exp is efficient.

0.3
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0.2
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AE '] 3 I ¥
27500 i gorititns . v Tikiond: 5 0
— PPO-KL i : :
-30000 --- PPO-EXP

------- PPO-Clip 4
s 0.0
32500

—— DDPG

0 2000000 4000000 6000000 8000000 10000000
Timesteps

2000 4000 600 800 10000

timesteps
(a) (b)

Figure 7. (a): Learning curves of TD3, DDPG, PPO-KL, PPO-Clip, and PPO-Exp; (b): The on of ¢ of
PPO-Exploration e during the training process.

6.3. Experiments on Formation Keeping

Only the learning curve was unable to declare whether the algorithm works well, so
the trained PPO-Exp is used to perform 200s; the formation track can be seen in Figure 8.
In this way, there is only a slight distortion in the formation, indicating that PPO-Exp can
perform better in real tasks than PPO-Clip.

400 ; T . 450 T
Leader Leader
—&— Followerl 400 | —© Followerl
350 F —©— Follower2 ~—©— Follower2
> Follower3 ©— Follower3

—¢— Follower4 350 | —=— Follower4 4;&
—%—Followers /8

~—%— Follower$S
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300+ ) 300|
E . £ 250t
2250t L 2
% /i \ 200
200 / "N N

o \ 150 f /< ‘

150 - 100+
i . 50
50 100 150 200 250 50 100 150 200 250
(x/m) (x/m)
(a) (b)

Figure 8. (a): The flight track of formation that is controlled by trained PPO-Exp ; (b): The flight track
of formation that is controlled by trained PPO-Clip.

Furthermore, to evaluate the results, we plotted the heading ¢ and the velocity v
during 200 s in Figure 9. Figure 9a shows that followers 1, 4, and 5 are approaching
gradually as time goes on. Followers 2, 3 and the leader, have no such trend to converge
gradually; however, all the heading deviations are no more than 10°. In Figure 9b, the
velocity of each UAV is shown. The velocities of followers 1, 3, 4, and 5 diverge a little and
then converge. Corresponding to Figure 9a, followers 1, 4, and 5 are closer in terms of the
value of velocity and heading; the leader and follower 2 are far away from these followers,
but the velocity difference is not more than 1.5 m/s as well. This inspired us to design the
reward based on the velocity and heading.

To illustrate the influence of environmental noise on formation keeping, the results
show the formation track with no control in Figure 2a. To verify that the proposed cen-
tralized method saves time, this section further compares the decentralized version of
PPO-Exp: PPO-Exp-Dec, which, similar to MAPPO, needs all six UAV agents to learn the
control policy at the same time.
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Figure 9. (a) The test results in the heading angle of PPO-Exp; (b) The test results in the velocity of
PPO-Exp.

To validate that the protocol can reduce the communication cost and avoid placing
the UAVs out of the communication range, this section also compares the protocol-free
version: PPO-exp-pro. The results can be seen in Table 3. I" represents the episode reward,
T represents time per episode, 7., and 7, represents the collision rate and failure to
communicate rate, respectively.

Table 3. The experimental results in different algorithms.

Algorithm r T teo11(%) 7 fail (%)
PPO-exp —19,197.2 + 13074 2.194+0.04 0.93 + 0.01 0.32 +0.02
PPO-exp-dec —20,374.7 £ 1926.4 10.06 + 0.08 1.01+0.02 0.35+0.01
PPO-exp-pro —23,001.3 £ 2507.2 2.43+£0.03 0.98 +0.03 1248 +1.76
PPO-clip —20,305.7 £ 1588.6 2.14 +0.06 0.97 £0.02 0.94 +0.03
Greedy —39,074.5 £ 3806.5 1.15+0.04 12.32 +1.32 10.56 + 0.65

To further verify the effectiveness of the proposed method, ablation experiments are
performed (see Figures 2a,b and 8b). Figure 8b shows the trained PPO-clip without the
exploration mechanism. Although there is no UAV crash, the leader and follower3 are very
close, and the formation is not as orderly as the PPO-Exp. Figure 2a shows the result of
no action taken, where the UAVs will crash, and the formation will break up. Figure 2b
shows the trained PPO-clip with e = 0.05, which is the balance point in the PPO-Exp.
However, the experimental result shows it performs worse; there is one follower that loses
communication with leader, and one follower almost crashes with the leader. The result
illustrates that the PPO-Exp with adaptive ¢ is better than the PPO-Clip with a good e. In
summary, the ablation experiments also indicated that PPO-Exp performs better than other
algorithms in terms of learning curves and the real-task.

6.4. Experiment on More Complex Tasks

To further show the efficiency of PPO-Exp in fixed-wing UAV formation keeping, this
part design two more complex scenarios: formation changing and obstacle avoidance task,
the UAV formation perform 120 s on each task. This part mainly compared the performance
of PPO-Exp and PPO-Clip on these tasks.

The goal for the formation changing task is changing the formation shown in Figure 1
to the vertical formation. The vertical formation also expects the differences between
leader and followers are as small as possible in coordinates on the x-axis. For guiding the
followers to change the formation, this paper utilizes the absolute difference value of x
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coordinates to modify the flocking reward. The modified flocking reward (9) and (12) could
be represented as follows:

Rf/iI||XO*X1'H,VZ':1,"',5 (41)

Then the total reward (47) can be rewritten as follows:
5
2 [x0(T) = xi(T)|| + Rei(T)] + Ra(T) + Rp(T) (42)

where the xo(T), x;(T) represent the x coordinates of leader and ith follower at time T,
respectively. To encourage the UAV system to take more exploration on forming new
formation, the flocking reward is added to the exploration advantage function:

AZ"(Star) = En li 7 (Ra(t+k) + i[on(T) = Xi(T)[| + Rei(t +K))][Sr = s,ar = a | =
i=0

5
3 Y (Ra(t k) + Y [lxo(T) = xi(T) || + Rei(t 4 K))]ISe = s (43)

i=0

Training the task with PPO-Exp and PPO-Clip, the training parameters are kept as
same as in the previous part except episode length. After training, the test result of PPO-
Exp is shown in Figure 10a, and the PPO-Clip is shown in Figure 10b. To evaluate the
performance, this paper draws the plots of the x coordinates and timesteps of the leader
and followers in Figure 10c,d. The closer the x coordinates of followers to that of the
leader, the better the performance will be. The x coordinates of followers in (c) converge to
the leader faster than (d), representing that PPO-Exp can change vertical formation faster
than PPO-Clip.

To further evaluate the formed vertical formation. Denote the terminal time as t;.;,
calculate the average difference between the followers and leader in x coordinates in the
last ten timesteps, and denote the result as dy, which can be represented as follows:

—_

5
=Y Y x() - x()] (44)

i=1t>t1r—10

U‘I

The low Jy indicates the follower is close to the leader in x coordinates. In PPO-Clip,
the calculated J, ~ 95.383, but in PPO-Exp, the calculated J, ~ 43.816, which is nearly half
of the PPO-Clip.

Compared to the control strategy in formation keeping, the followers in formation
changing tasks perform good cooperation. All followers maneuver orderly to the position
where the leader’s x-coordinate is located. To avoid the UAVs collide each other, the
followers decided to move to different positions on the y-axis. The followers take different
maneuvers depending on their initial position to reach the position. e.g., follower 4, in
the initial time, is far away from the leader in x-coordinates. For follower 4, a collision
avoidance path is moving to the tail of the newly formed formation. Therefore, the follower4
achieves a large angle arc maneuver and moves to the tail of the formed vertical formation.

The target of the obstacle avoidance task is to reach the target area and avoid crashing
into the obstacle. This paper considers a circle area on the plane as an obstacle. Denote the
coordinates of the obstacle center is (X,ps, Yops ), and the radius is 7yys. A simple approach
to consider this situation is to add a penalty on the formation system reward when the
UAVs crash on the obstacle, the penalty effect. The penalty for crashing into the obstacle is
denoted as follows:

;= 0, \/ - xObS (yl - yobs)z < Tops
Roi = { —10,000, otherwise (45)
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Figure 10. (a): The performance of vertical formation changing task by PPO-Exp; (b): The perfor-
mance of vertical formation changing task by PPO-Clip (c): The x coordinate of formation system in
PPO-Exp; (d): The x coordinate of formation system in PPO-Clip

Similar to the exploration reward R, ;, to

Rg,’?s = min{|xi — Xops |, |yi — ]/ohs|} (46)
Then the total reward (47) can be rewritten as follows:
> b
R(T) = Y [Ryi(T) + Roil(T) + R (T) + Ros(T)| + Ra(T) + Ry(T)  (47)
i=0

To encourage the UAV system to take more exploration on avoid obstacle, the ex-
ploration reward in avoid obstacle R%S is added to the exploration advantage function:

00 5
A7V (St ar) = Ex [Z Y(Ra(t+k)+ Y [Rf/i(T) + Rei(t+k) + Rg§S(T))] St =s,a; = a] -
k=0 i=0

e

Ex li YRRy (t+K) + (48)

k=0 i=0

[Rpi(T) + Reit + k) + RO (T)))|Se = s

Training the obstacle to avoid task with PPO-Exp and PPO-Clip, the training param-
eters are kept as same as the previous part except episode length. After training with
PPO-Exp and PPO-Clip, the test results of obstacle avoid task are shown in Figure 11a,
and the results of PPO-Clip can be seen in Figure 11b. A follower in the formation trained
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by PPO-Clip crashed on the obstacle at 94 timesteps. The formation trained by PPO-Exp
performed the arc maneuvers and avoided the obstacle. PPO-Exp performs better than
PPO-Clip because it can explore more policies to reach the target area and discover a good
path to avoid obstacles. However, the PPO-Clip still tries to reach the target area straight.
Compared to the formation keeping task without obstacles, the obstacle scenario
requires the formation system to explore more to avoid the obstacle. Therefore, in this
scenario, compared to the fixed e PPO-Clip, the PPO-Exp shows better performance because
it could adjust their ¢ to balance exploration and estimation error. Then the PPO-Exp
explored the large-angle arc maneuvers and performed them to avoid the obstacle.
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Figure 11. (a): The performance of formation keeping with obstacle avoid task by PPO-Exp; (b): The
performance of formation keeping with obstacle avoid task by PPO-Clip.

7. Conclusions

This paper studies a flocking scenario consistent with one leader (with an intelligence
chip) and several followers(without an intelligence chip). The reinforcement learning
environment is constructed (continuous action and state space) with an OpenAl gym, and
the reward is designed as a regular part and an exploration part. A low-communication cost
protocol is provided to ensure the UAVs can communicate the state and action information
between leader and followers. In addition, a variation of Proximal Policy Optimization is
proposed to balance the dilemma between the estimation error bound and the exploration
ability of PPO. The proposed method can help UAVs adjust the explore strategy, and the
experiments demonstrate it has better performance than the current algorithms such as
PPO-KL, PPO-clip, and DDPG.

Author Contributions: Conceptualization, D.X. and H.L.; Methodology, D.X., Y.G.; Supervision, D.X.
and H.L.; Software, Y.G., Z.Y., ZW., R.L., R.Z,; Formal analysis, Y.G. and H.L.; Writing—original
draft, Y.G., R.Z,; Validation, Z.Y., ZW., R.L., R.Z.; Visualization, Z.Y., Z.W.; Funding acquisition,
D.X.; Resources, R.L.; Investigation, X.X., Data curation, X.X., Writing—review and editing, X.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

192



Drones 2023, 7, 28

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Zhou, W.; Li, J.; Zhang, Q. Joint Communication and Action Learning in Multi-Target Tracking of UAV Swarms with Deep
Reinforcement Learning. Drones 2022, 6, 339. [CrossRef]

Tian, S.; Wen, X.; Wei, B.; Wu, G. Cooperatively Routing a Truck and Multiple Drones for Target Surveillance. Sensors 2022,
22,2909. [CrossRef] [PubMed]

Wu, G; Fan, M; Shi, J.; Feng, Y. Reinforcement Learning based Truck-and-Drone Coordinated Delivery. IEEE Trans. Artif. Intell.
2021. [CrossRef]

Gupta, L.; Jain, R.; Vaszkun, G. Survey of important issues in uav communication networks. IEEE Commun. Surv. Tutor. 2015, 18,
1123-1152. [CrossRef]

Wu, Q.; Zeng, Y.; Zhang R. Joint trajectory and communication design for multi-uav enabled wireless networks. IEEE Trans. Wirel.
Commun. 2018, 17, 2109-2121. [CrossRef]

Eisenbeiss, H. A mini unmanned aerial vehicle (uav): System overview and image acquisition. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2004, 36, 1-7. Available online: https:/ /www.isprs.org/proceedings/XXXVI/5-W1/papers/11.pdf (accessed
on 29 November 2022).

Wang, Y,; Xing, L.; Chen, Y.; Zhao, X.; Huang, K. Self-organized UAV swarm path planning based on multi-objective optimization.
J. Command. Control 2021, 7, 257-268. [CrossRef]

Kuriki, Y.; Namerikawa, T. Formation control with collision avoidance for a multi-uav system using decentralized mpc and
consensus-based control. SICE |. Control Meas. Syst. Integr. 2015, 8, 285-294. [CrossRef]

Saif, O.; Fantoni, I.; Zavala-Rio A. Distributed integral control of multiple uavs: Precise flocking and navigation. IET Contr. Theory
Appl. 2019, 13, 2008-2017. [CrossRef]

Chen, H.; Wang, X. Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach. Chin. |. Aeronaut. 2021, 34,
504-515. [CrossRef]

Liu, Z.; Wang, X.; Shen, L.; Zhao, S.; Cong, Y.; Li, J.; Yin, D.; Jia, S.; Xiang, X. Mission-Oriented Miniature Fixed-Wing UAV
Swarms: A Multilayered and Distributed Architecture. IEEE Trans. Syst. Man Cybern. Syst. 2022, 1, 2168-2216. [CrossRef]
Koch, W.; Mancuso, R.; West, R.; Bestavros, A. Reinforcement learning for uav attitude control. ACM Trans. Cyber-Phys. Syst.
2019, 3, 1-21. [CrossRef]

Kaelbling, L.; Littman, M.; Moore, A. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237-285.
10.1613/jair.301. [CrossRef]

Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274. Available online: https:/ /arxiv.org/pdf/1701.072
74.pdf (accessed on 29 November 2022).

Huy, P; Hung, L.; David, S. Autonomous uav navigation using reinforcement learning. arXiv 2018, arXiv:1801.05086. Available
online: https://arxiv.org/pdf/1801.05086.pdf (accessed on 29 November 2022).

Gullapalli, V.; Franklin, J.; Benbrahim, H. Acquiring robot skills via reinforcement learning. IEEE Control Syst. Mag. 1994, 14,
13-24. [CrossRef]

Huang, J.; Mo, Z.; Zhang, Z.; Chen, Y. Behavioral control task supervisor with memory based on reinforcement
learning for human—Multi-robot coordination systems. Front. Inf. Technol. Electron. Eng. 2022, 23, 1174-1188.
FITEE.2100280. [CrossRef]

Zhang, F; Leitner, ].; Milford, M.; Upcroft, B.; Corke, P. Towards vision-based deep reinforcement learning for robotic motion
control. arXiv 2017, arXiv:1511.03791. Available online: https:/ /arxiv.org/pdf/1511.03791.pdf (accessed on 29 November 2022).
Tomimasu, M.; Morihiro, K.; Nishimura, H. A reinforcement learning scheme of adaptive flocking behavior. In Proceedings of the
10th International Symposium on Artificial Life and Robotics (AROB), Oita, Japan, 4-6 February 2005.

Morihiro, K.; Isokawa, T.; Nishimura, H.; Matsui, N. Characteristics of flocking behavior model by reinforcement learning scheme.
In Proceedings of the 2006 SICE-ICASE International Joint Conference, Busan, Republic of Korea, 18-21 October 2006. [CrossRef]
Shao, W.; Chen, Y.; Huang, J. Optimized Formation Control for a Class of Second-order Multi-agent Systems based on Single
Critic Reinforcement Learning Method. In Proceedings of the 2021 IEEE International Conference on Networking, Sensing and
Control (ICNSC), Xiamen, China, 3-5 December 2021; pp. 1-6. [CrossRef]

Wang, C.; Wang, J.; Zhang, X. A deep reinforcement learning approach to flocking and navigation of uavs in large-scale complex
environments. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim,
CA, USA, 26-28 November 2018. [CrossRef]

Beard, R.; Kingston, D.; Quigley, M.; Snyder, D.; Christiansen, R.; Johnson, W.; McLain, T.; Goodrich, M. Autonomous vehicle
technologies for small fixed-wing uavs. J. Aerosp. Comput. Inf. Commun. 2005, 2, 92-108. [CrossRef]

Hung, S.; Givigi, S.; Noureldin, A. A dyna-q (lambda) approach to flocking with fixed-wing uavs in a stochastic environment.
In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics(SMC), Hong Kong, China, 9-12
October 2015. [CrossRef]

193



Drones 2023, 7, 28

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

Hung, S.; Givigi, S. A Q-learning approach to flocking with UAVs in a stochastic environment. IEEE Trans. Cybern. 2016, 47,
186-197. [CrossRef]

Yan, C.; Xiang, X.; Wang, C. Fixed-wing uavs flocking in continuous spaces: A deep reinforcement learning approach. Robot.
Auton. Syst. 2020, 131, 103594. [CrossRef]

Wang, C.; Yan, C.; Xiang, X.; Zhou, H. A continuous actor-critic reinforcement learning approach to flocking with fixed-wing
UAVs. In Proceedings of the 2019 Asian Conference on Machine Learning(ACML), Nagoya, Japan, 17-19 November 2019.
Available online: http://proceedings.mlr.press/v101/wangl9a/wangl9a.pdf (accessed on 29 November 2022).

Bohn, E.; Coates, E.; Moe, E.; Johansen, T.A. Deep reinforcement learning attitude control of fixed-wing uavs using proximal
policy optimization. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA,
USA, 11-14 June 2019. [CrossRef]

Hernandez, P; Kaisers, M.; Baarslag, T.; de Cote, EM. A survey of learning in multiagent environments: Dealing with non-stationarity.
arXiv 2017, arXiv:1707.09183. Available online: https:/ /arxiv.org/pdf/1707.09183.pdf (accessed on 29 November 2022).

Yan, C.; Wang, C.; Xiang, X.; Lan, Z; Jiang, Y. Deep reinforcement learning of collision-free flocking policies for multiple
fixed-wing uavs using local situation maps. IEEE Trans. Ind. Inform. 2021, 18, 1260-1270. [CrossRef]

Peng, J.; Williams, R. Incremental multi-step Q-learning. Mach. Learn. 1996, 22, 283-290.:1018076709321. [CrossRef]

Hasselt, H.; Marco, W. Reinforcement Learning in Continuous Action Spaces. In Proceedings of the 2007 IEEE International Sym-
posium on Approximate Dynamic Programming and Reinforcement Learning, Honolulu, HI, USA, 1-5 April 2007; pp. 272-279.
[CrossRef]

Wang, C.; Wu, L,; Yan, C.; Wang, Z.; Long, H.; Yu, C. Coactive design of explainable agent-based task planning and deep
reinforcement learning for human-UAVs teamwork. Chin. J. Aeronaut. 2020, 33, 2930-2945. [CrossRef]

Zhao, Z.; Rao, Y;; Long, H.; Sun, X,; Liu, Z. Resource Baseline MAPPO for Multi-UAV Dog Fighting. In Proceedings of the 2021
International Conference on Autonomous Unmanned Systems (ICAUS), Changsha, China, 24-26 September 2021._327. [CrossRef]
Yan, C.; Xiang, X.; Wang, C.; Lan, Z. Flocking and Collision Avoidance for a Dynamic Squad of Fixed-Wing UAVs Using Deep
Reinforcement Learning. In Proceedings of the 2021 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September—1 October 2021; pp. 4738-4744. [CrossRef]

Song, Y.; Choi, J.; Oh, H.; Lee, M,; Lim, S.; Lee, ]. Improvement of Decentralized Flocking Flight Efficiency of Fixed-wing UAVs
Using Inactive Agents. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7-11 January 2019.

Yan, Y.; Wang, H.; Chen, X. Collaborative Path Planning based on MAXQ Hierarchical Reinforcement Learning for
Manned/Unmanned Aerial Vehicles. In Proceedings of the 39th Chinese Control Conference (CCC), Shenyang, China, 27-29 July
2020; pp. 4837—4842. [CrossRef]

Ren, T,; Niu, J.; Liu, X.; Hu, Z.; Xu, M.; Guizani, M. Enabling Efficient Scheduling in Large-Scale UAV-Assisted Mobile-Edge
Computing via Hierarchical Reinforcement Learning. IEEE Internet Things J. 2021, 9, 7095-7109. [CrossRef]

Yang, H.; Jiang, B.; Zhang, Y. Fault-tolerant shortest connection topology design for formation control. Int. J. Control Autom. Syst.
2014, 12, 29-36. [CrossRef]

Schulman, J.; Wolski, F; Dhariwal, P; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347. Available online: https://arxiv.org/pdf/1707.06347 pdf (accessed on 29 November 2022).

Banerjee, N.; Chakraborty, S.; Raman, V.; Satti, S.R. Space efficient linear time algorithms for bfs, dfs and applications. Theory
Comput. Syst. 2018, 62, 1736-1762. [CrossRef]

Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; Mordatch, I. Emergent Complexity via Multi-Agent Competition. arXiv 2017,
arXiv:1710.03748.

Sutton, R.; Barto, A. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge MA, USA, 2018.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceeding of the 2015 International
Conference on Machine Learning(ICML), Lille, France, 6-11 July 2015; pp. 1889-1897.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,
arXiv:1606.01540. Available online: https://arxiv.org/pdf/1606.01540.pdf (accessed on 29 November 2022).

Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Wierstra, D. Continuous control with deep reinforcement learning.
In Proceeding of the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2—4 May 2016; pp.
1582-1591.

Fujimoto, S.; Herke, H.; David, M. Addressing Function Approximation Error in Actor-Critic Methods. In Proceeding of the 2018
International Conference on Machine Learning (ICML), Stockholm, Sweden, 10-15 July 2018; pp. 1582-1591. Available online:
http:/ /proceedings.mlr.press/v80/fujimotol8a/fujimotol8a.pdf (accessed on 29 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

194



. drones

Article

Onboard Distributed Trajectory Planning through Intelligent
Search for Multi-UAV Cooperative Flight

Kunfeng Lu, Ruiguang Hu *, Zheng Yao and Huixia Wang

Citation: Lu, K.; Hu, R.; Yao, Z.;
Wang, H. Onboard Distributed
Trajectory Planning through
Intelligent Search for Multi-UAV
Cooperative Flight. Drones 2023, 7, 16.
https://doi.org/10.3390/
drones7010016

Academic Editors: Xiwang Dong,
Mou Chen, Xiangke Wang and
Fei Gao

Received: 21 November 2022
Revised: 22 December 2022

Accepted: 22 December 2022
Published: 26 December 2022

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

National Key Laboratory of Science and Technology on Aerospace Intelligent Control, Beijing Aerospace
Automatic Control Institute, Beijing 100854, China
* Correspondence: rghu258@163.com

Abstract: Trajectory planning and obstacle avoidance play essential roles in the cooperative flight of
multiple unmanned aerial vehicles (UAVs). In this paper, a unified framework for onboard distributed
trajectory planning is proposed, which takes full advantage of intelligent discrete and continuous
search algorithms. Firstly, the Monte Carlo tree search (MCTS) is used as the task allocation algorithm
to solve the cooperative obstacle avoidance problem. Taking the task allocation decisions as the
constraint, knowledge-based particle swarm optimization (Know-PSO) is used as the optimization
algorithm to solve the onboard distributed cooperative trajectory planning problem. Simulation
results demonstrate that the proposed intelligent MCTS-PSO search framework is effective and
flexible for multiple UAVs to conduct the cooperative trajectory planning and obstacle avoidance.
Further, it has been applied in practical experiments and achieved promising results.

Keywords: multiple UAVs; trajectory planning; task allocation; obstacle avoidance; intelligent search;
Monte Carlo tree search; knowledge-based particle swarm optimization

1. Introduction

Unmanned aerial vehicles (UAVs) have been extensively used in many areas, such
as surveying [1-4], military surveillance [5-8], disaster rescue [9,10], etc. Although a
single UAV can conduct the above-mentioned tasks, some disadvantages, including energy
and others, have placed severe limitations on its applications. That is the reason why
cooperative multiple UAVs have been further developed and utilized, which can overcome
the disadvantages of single UAVs and accomplish tasks more robustly and intelligently
with less time consumption [11].

Trajectory planning plays an essential role in the cooperative flight of multiple UAVs,
which can be seen as continuous search algorithms mathematically. Commonly with some
environmental constraints and UAVs’ own constraints, the trajectories that minimize the
cost function are seen as the best ones. Trajectory planning has been widely researched
for many years, and two classes of trajectory planning methods have been developed.
The first one is those traditional algorithms, including dynamic planning, the Voronoi
diagram [12,13], the Dijkstra algorithm [14,15], and the A* algorithm [16]. The other class is
swarm intelligence algorithms, such as the artificial bee colony (ABC) algorithm [17], the ant
colony optimization (ACO) algorithm [18], and especially, the particle swarm optimization
(PSO) algorithm [19-21]. In the literature [22], the trajectories of multiple UAVs were firstly
given out by an offline simulation software program and saved in a text file. Then, the
trajectories of all UAVs were transferred into the ground station software and displayed on
a map. Finally, the trajectories were downloaded to the UAVs through the ground stations,
and the UAVs completed the flight. The offline operation as in the literature [22] is now the
mainstream execution style for cooperative trajectory planning.

Obstacle avoidance plays another essential role in the cooperative flight of multiple
UAVs, for which the artificial potential field (APF) method is widely used [23,24]. To some
extent, cooperative obstacle avoidance of multiple UAVs can be seen as a task allocation
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problem [25], in which multiple UAVs have to choose one side or the other to pass through
the threat area. The Hungarian algorithm [22] and the auction algorithm [26,27] are two
mainstream algorithms for the task allocation of multiple UAVs. In the literature [28], a
two-step auction mechanism was first proposed to select the optimal action. Then, an
obstacle avoidance mechanism was designed by defining several heuristic rules. Finally,
a reverse auction mechanism was developed to balance the workload between multiple
UAVs.

Although a large amount of effort has been devoted to addressing the trajectory
planning and task allocation problems for multiple UAVs, there is still some room for
further improvement. For instance, traditional task allocation algorithms often require
that the input dimension must be equal to the output dimension, namely, the allocation
matrix has identical row and column numbers, which severely restricts the application
for more general task allocation problems. In addition, the efficiency and effectiveness of
trajectory planning algorithms for multiple UAVs are not satisfactory in some circumstances.
Meanwhile, the trajectory planning and task allocation for multiple UAVs are conducted
offline in some literature, which cannot meet the requirements in complex and intense
environments, where multiple UAVs must respond to commands rationally and quickly.

Taking the abovementioned issues into consideration, a unified framework for onboard
distributed trajectory planning is proposed in this paper, which takes full advantage of
intelligent discrete and continuous search algorithms. The main contributions of this paper
are as follows:

(1) The Monte Carlo tree search (MCTS) is used as a task allocation algorithm to conduct
obstacle avoidance, which does not require the equality of the row and column
numbers of the allocation matrix. Further, the obstacle avoidance for multiple UAVs
takes the energy constraint into account.

(2) Knowledge-based particle swarm optimization (Know-PSO) is used as the optimiza-
tion algorithm to solve the onboard distributed cooperative trajectory planning prob-
lem, in which the motion energies of a few good particles are used to improve the
velocities of those bad particles, and the information of the individual worst particles
and global worst particle are also used. Furthermore, the interaction among multiple
UAVs is utilized to avoid conflicts.

(3) The decisions of MCTS are taken as constraints for Know-PSO to form a unified
framework for onboard distributed trajectory planning.

(4) The method proposed in this paper has been verified by actual flights and achieved
good practical results.

The remainder of this paper is organized as follows: Section 2 formulates the trajectory
planning and obstacle avoidance problem. Section 3 presents the proposed intelligent
MCTS-PSO search framework. In Section 4, a series of simulations and actual experiments
were conducted to evaluate the performance of MCTS-PSO. Finally, Section 5 concludes the
paper and presents the future direction for the next work.

2. Mathematical Model

Cooperative trajectory planning driven by obstacle avoidance for multiple UAVs can
be presented in the following mathematical models:

(1) Task allocation to obstacle avoidance: As shown in Figure 1, m UAVs are configured
to go to the target area to conduct some important operations, in which the threat
area must be avoided. Regarding each UAV, there are two choices for it to avoid the
threat area, going through one side of the threat area or the other. Consequently, the
cooperative obstacle avoidance problem can be translated into the task allocation
problem, for which there are m decisions that have to be made. Generally, suppose
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@)

there are n choices for each UAV, then the mathematical model for task allocation is as
below:
n m o
maxz w][l - H (1 — eij) 1]]
j=1 i=1
n
xij=11=12,...,m 1)
s.t.q j=1
xij=0o0rl,i=12,...,mj=12..n

where wj is the threat value of j choice, ¢;; is the capacity evaluation of the i UAV to
pass through the j choice and can be seen as the energy constraints, x;; is the final
decision, whether the i UAV passes through the j choice or not. The MCTS is used to
solve the model to obtain x;;. All x;; compose the task allocation matrix, which is a 0-1
matrix and has m rows and n columns. Each row has only one, which means that the
corresponding UAV can only make one choice.

Cooperative trajectory planning driven by obstacle avoidance: The goal of cooperative
trajectory planning is to minimize the total distances of m UAVs from the start area to
the target area; in the meantime, m UAVs must avoid the threat area and not collide
with each other. The mathematical model is as below:

. m n
min}; ) lijxij
i=1j=1 (2)
ot dmi >ds, i,k =1,2,...,mi#k
o xijj=00rl,i=12,...,mj=12...n

where J;; is the length of a trajectory that the i UAV pass through the j choice, dm;
is the margin distance between trajectories of two different UAVs, and d; is the safe
distance between two adjacent UAVs. x;; is the final decision, whether the i UAV
passes through the j choice or not as in formula (1), which is solved by the MCTS
method.

Start Area dlarget
Area

Figure 1. Representative scene of cooperative obstacle avoidance and trajectory planning.
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3. MCTS-PSO Framework for Onboard Distributed Trajectory Planning

In this section, we elaborate on the cooperative trajectory planning driven by obstacle
avoidance, which can be conducted in an onboard distributed mode. Firstly, MCTS is used
as a task allocation algorithm to conduct obstacle avoidance, taking the energy constraint
into consideration; secondly, the decisions of MCTS are taken as constraints for Know-PSO
to conduct onboard distributed trajectory planning for multiple UAVs. The schematic
diagram of the MCTS-PSO framework is shown in Figure 2, and the Pseudo-code of the
MCTS-PSO Algorithm 1 is:

Algorithm 1: MCTS-PSO framework

Input: UAVs number m,
choices number 7,
start position Ps and target position P¢,
Threat area center P, and radius r,
the safe distance ds,
Output: best trajectories
:for i<+ 1tomdo
:for j <1 tondo
: Evaluate the threat values wj;
: Evaluate the capacity values ¢;;
: end for
: end for
: Use MCTS to solve formula (1) to get decisions x;;;
: Use Know-PSO to generate a trajectory for one UAV i;
:for k <1 tom do
vifk==1
: continue;
: else
: Use Know-PSO to generate a trajectory for UAV k with ds;
: Check whether dm; is larger than ds or not;
:end if
: end for
: Return m best trajectories;
The resulting m best trajectories obtained after the above steps is the optimal
solution for onboard distributed cooperative trajectory planning;
end

O 0 NI O Ul W IN -

U G WY
NN O Ul LN = O
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Intelligent
discrete search

Intelligent
continuous search

Figure 2. The schematic diagram of the MCTS-PSO framework.
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3.1. MCTS Task Allocation for Multiple UAV's

Task allocation plays an essential role in the cooperative flight of multiple UAVs.
In this paper, MCTS, as an intelligent discrete search algorithm, is used to conduct task
allocation. MCTS does not require the equality of the row and column numbers of the
allocation matrix, beyond the traditional mainstream Hungarian algorithm and auction
algorithm. The flow chart of MCTS task allocation is shown in Figure 3, whose specific

steps are presented as follows:
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Step 1: Input UAV number, choices number, threat values, UAV capacities, and iteration
number. The UAV capacities can be seen as the energy constraints:

1
% wx dist(UAV;, choice;) ®)

where « is the energy coefficient.

Input relative
parameters

y

Construct a tree
For a UAV N

v

Iterate the tree [«

v

v

v

v

Select the
Best child

Expand

Conduct

Backup

the tree Default policy The score

Iteration No

Over

Update the
Allocation matrix

No

All UAV
iterated

Yes

Allocation
matrix

Figure 3. The flow chart of MCTS task allocation.

Step 2: Construct a new search tree and initialize the root node.
Step 3: Iterate the search tree until the iteration number:

(1) Select the best child layer by layer to find a leaf node;
(2) Expand the tree from the leaf node;

(3) Conduct the default policy;

(4) Back up the score and update nodes’ attributes.
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Step 4: Update the allocation matrix.
Step 5: Repeat steps 2—4 for all UAVs.

The resulting 0-1 matrix obtained after the above steps is the optimal solution for
multiple UAV task allocation problems.
Pseudo-code of the MCTS task allocation Algorithm 2 is:

Algorithm 2: MCTS task allocation

Input: UAVs number m,
choices number 7,
threat values w,
capacities e,
IterNum,
Output: Allocation matrix AlloMx
:for i<+ 1tomdo
: Create a new tree with root node and initialize root:
: r00t.N <— 0, root.Q < 0;
: for j <1 to IterNum do
:node p « root;
: AlloMx_copy <— AlloMx;
Di_temp < 1;
: while(True)
:if p is leaf
: break;
: end if
: find the best child of p and its index ind;
: p < best child of p;
: AlloMx_copyli_temp][ind] < 1;
Di_temp < i_temp +1;
: end while
vif i_temp ~=m
: Expand the node p;
: end if
: Conduct the default policy for AlloMx_copy and get the score;
: Back up the score;
: end for
: find the best child of root and its index ind_best;
. AlloMx[i][ind_best] < 1;
: end for
: Return AlloMx;
The resulting 0-1 matrix obtained after the above steps is the optimal solution for
task allocation;
end

R IO U= W

NN RN RN RNNNRP PR R el ) O
NI WN R, OV UE WN PO

3.2. Onboard Distributed Cooperative Trajectory Planning for Multiple UAVs

Trajectory planning plays another essential role in the cooperative flight of multiple
UAVs. PSO, as an intelligent continuous search algorithm, has been widely used to conduct
trajectory planning. Nevertheless, the standard PSO algorithm has some limitations such
as premature convergence. In this paper, knowledge-based particle swarm optimization
(Know-PSO) is proposed as the optimization algorithm to solve the onboard distributed
cooperative trajectory planning problem, in which the motion energies of a few good
particles are used to improve the velocities of those bad particles, and the information
of the individual worst particles and global worst particle is also used. Furthermore, the
interaction among multiple UAVs is utilized to avoid conflicts.
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The well-known standard PSO algorithm is
Vik+1 - wVik + Clrl(Plb(est,i — xf‘) + czrz(g’b‘est — xi‘) 4
x;{Jrl _ xi'c + ‘/jk+l

Practically, it has been found that the information of individual worst particles and global
worst particle are also beneficial, which are introduced as
k+1 _ k
VA = @V (g o) + (s, — )
_631’3(Pworst,i - xi ) - C4r4(gworst - xi ) (5)
xi'c-i-l =xk+ Vik+1

Further, the motion energies of a few good particles are used to improve the velocities of
those bad particles, which is defined as

my T
EbM =y (V) (V) ©)
i=1
The energy loss is
AEk,ml — Ek'ml _ Ek*l,ml (7)

Consequently, the updated equation for bad particles is

VikJrl = le.k + Clrl(pllgest,i B Xf) + C27’2(gll§est - xf)
_C3r3(pfuorst,i - xi() — C4lg (glzcuorst - xi() + AEkm™ /my (8)

T = yk 4 Rt

The decisions of MCTS are taken as constraints for Know-PSO to form a unified
framework for onboard distributed trajectory planning. Specifically,

0, i=1
cost(xij) = {1000 . #0 ©)
;o Xij

The flow chart of Know-PSO for onboard distributed cooperative trajectory planning
is shown in Figure 4, whose specific steps are presented as follows:

Step 1: Input particle number, point number, start position and target position, threat area
center and radius, task allocation matrix, iteration number, UAV number, the safe
distance, and the max velocity.

Step 2: Initialize the particles and best values.

Step 3: Iterate the particles until the iteration number:

1 Compute the cost of particles;
2) Update the best values;

3) Update the velocities;

(4) Update the particles.

Step 4: Generate one best trajectory.
Step 5: Repeat steps 2—4 for all UAVs considering the safe distance between them.

The resulting best trajectories obtained after the above steps is the optimal solution for
onboard distributed cooperative trajectory planning.
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Figure 4. The flow chart of Know-PSO cooperative trajectory planning.

Pseudo-code of the cooperative trajectory planning Algorithm 3 is:
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Algorithm 3: Onboard distributed cooperative trajectory planning

Input: particle number mp,
point number 7,
start position Pg and target position Py,
Threat area center P. and radius 7,
AlloMx,
IterNum,
UAVs number m,
the safe distance ds,
Vinax,
Output: best trajectories
. particles < rand(mp,n);
: particlesBest < zeros(mp,n);
: globalBest < zeros(1,n);
. particlesV < rand(mp,n) *« 2Vyax — Vipax
: for iter < 1 to IterNum do
:for i +— 1 tomp do
: Compute the cost of particles[i,:] with decision AlloMx and P, 1;
: if cost is descending
. particlesBest[i,:] < particles[i,:];
10: globalBest < particles[i,:];
11: end if
12: for j - 1 ton do
13: Update particlesV[i, j] according Formulas (5) and (8);
14: Adjust particlesV[i, j] into [—Vinax, Vinax);
15: particles(i, j] < particles]i, j| + particlesV[i,j];
16: end for
17: end for
18: end for
19: Here, we got the best trajectory for one UAV.
20: for i +— 2 tom do
21: Repeat 1~21 considering the safe distance ds;
22: end for
23: Return m best trajectories;
The resulting m best trajectories obtained after the above steps is the optimal
solution for onboard distributed cooperative trajectory planning;
end

O 0 NI O Ul = W IN -

4. Experiments and Analysis

This section demonstrates the performance of the MCTS-PSO framework by conduct-
ing a series of experiments.

A cooperative processor was deployed for each UAV. The processor had a four-
core CPU, whose main frequency was 1.5G Hz and AI computational power was 20
TOPS (int8).

The experiments were all conducted in open environments, including plains and
mountainous areas. The environmental temperature was generally higher than —20 °C.

Wind has a very important influence on flight in open environments. According to all
experiments, UAVs could be controlled stably if the wind velocity was smaller than 15 m/s;
otherwise, there would be some accidents.

Firstly, a flight of two drones was conducted, whose trajectories were shown in Figure 5,
of which the red circle was a threat area. It can be seen that the two drones avoided the
threat area successfully and passed it by one side, respectively. The task allocation matrix
of them was shown in Table 1.
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Figure 5. MCTS-PSO framework for two drones.

Table 1. Task allocation matrix for two drones in Figure 5.

Top Channel Bottom Channel
UAV1 1 0
UAV2 0 1

Secondly, a flight of three drones was conducted, whose trajectories were shown in
Figure 6, of which the red circle was a threat area. It can be seen that the three drones
avoided the threat area successfully. The task allocation matrix of them was shown in
Table 2.

Thirdly, a flight of four drones was conducted in another environment, whose trajecto-
ries were shown in Figure 7, of which the red circle was a threat area. It can be seen that the
four drones avoided the threat area successfully. The task allocation matrix of them was
shown in Table 3.

Figure 6. MCTS-PSO framework for three drones.
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Table 2. Task allocation matrix for three drones in Figure 6.

Top Channel Bottom Channel
UAV1 1 0
UAV2 0 1
UAV3 0 1

Figure 7. MCTS-PSO framework for four drones.

Table 3. Task allocation matrix for four drones in Figure 7.

Top Channel Bottom Channel
UAV1 1 0
UAV2 1 0
UAV3 0 1
UAV4 0 1

It was shown in these experiments, when the number of UAVs changed, the trajectories
were slightly adjusted automatically. For example, comparing Figures 5 and 6, when the
green UAV joined in, the trajectory of the yellow UAV was automatically adjusted to leave
some space for the green one. This reflected the intelligent onboard adjustment ability of

the algorithm.

Cooperative flight in an open environment was shown in Figure 8, in which five
quadcopters were used. It must be noted that the MCTS-PSO framework can also be

applied to other kinds of UAVs, such as fixed-wing UAVs.
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Figure 8. Cooperative flying drones in open environments.

The further computational time of the proposed distributed framework and common
centralized framework were shown in Table 4.

Table 4. Computational time.

Distributed Framework Centralized Framework
2 UAVs 0.72s 2.2s
3 UAVs 0.73s 3.1s
4 UAVs 0.73s 4.2s

It is quite clear that the proposed distributed framework was more efficient than a
common centralized framework, especially when there were more UAVs, because each
UAV planned its trajectory using its own processor.

The distance between the start area and the target area was about 1.4 Km. Note that the
start area was where the proposed distributed framework conducted cooperative trajectory
planning, not the location where the UAVs were launched. The total distances were shown
in Table 5.

Table 5. Total distances.

Total Distances

2 UAVs 3.2Km
3 UAVs 49 Km
4 UAVs 6.6 Km

In open environments, other factors could also influence the real flight trajectories,
such as maneuverability, wind, etc. Moreover, PSO variants could not always generate the
best trajectories. These were the reasons why the trajectories in Figures 5-7 were not very
close to the threat area.

Generally, the effectiveness, scalability, and adaptability of our framework were ver-
ified through the quantitative experiments with different UAV numbers. Moreover, it
realized the avoidance of conflicts between multiple UAVs. All experiments demonstrated
that the MCTS-PSO framework could be applied in dynamic and complex environments.

5. Conclusions

In this paper, the unified MCTS-PSO framework for onboard distributed trajectory
planning is proposed, which takes full advantage of intelligent discrete and continuous
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search algorithms. The effectiveness, scalability, and adaptability of our framework have
been verified through a series of experiments with different UAV numbers. Moreover, the
proposed framework can also be applied in other similar swarm systems.

In future work, large-scale UAVs will be tested with the MCTS-PSO framework.
Further, other intelligent algorithms such as multi-agent reinforcement learning will be
introduced into the framework. In addition, we would like to evaluate our framework in
intense confrontation applications.
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Abstract: Aiming at the problems of low detection accuracy and large computing resource con-
sumption of existing Unmanned Aerial Vehicle (UAV) detection algorithms for anti-UAV, this paper
proposes a lightweight UAV swarm detection method based on You Only Look Once Version X
(YOLOX). This method uses depthwise separable convolution to simplify and optimize the network,
and greatly simplifies the total parameters, while the accuracy is only partially reduced. Meanwhile,
a Squeeze-and-Extraction (SE) module is introduced into the backbone to improve the model’s ability
to extract features; the introduction of a Convolutional Block Attention Module (CBAM) in the
feature fusion network makes the network pay more attention to important features and suppress
unnecessary features. Furthermore, Distance-IoU (DIoU) is used to replace Intersection over Union
(IoU) to calculate the regression loss for model optimization, and data augmentation technology is
used to expand the dataset to achieve a better detection effect. The experimental results show that the
mean Average Precision (mAP) of the proposed method reaches 82.32%, approximately 2% higher
than the baseline model, while the number of parameters is only about 1/10th of that of YOLOX-S,
with the size of 3.85 MB. The proposed approach is, thus, a lightweight model with high detection
accuracy and suitable for various edge computing devices.

Keywords: object detection; Unmanned Aerial Vehicle (UAV) swarm; lightweight model; attention
mechanism; data augment

1. Introduction

In recent years, with the rapid development and wide application of Unmanned Aerial
Vehicle (UAV) technology in civil and military fields, there has been a tremendous escalation
in the development of applications using UAV swarms. Currently, the main research effort
in this context is directed toward developing unmanned aerial systems for UAV cooperation,
multi-UAV autonomous navigation, and UAV pursuit-evasion problems [1].

In modern wars, where UAVs are widely used, the technical requirements for anti-
UAV technologies are becoming increasingly significant [2]. However, existing anti-UAV
technologies are not enough to effectively deal with the suppression of UAV swarms [3]. For
a small number of UAVs, countermeasures such as physical capture, navigation deception,
seizing control and physical destruction can be used. But it is difficult to cope with a large
number of UAVs once they gather together to form a UAV swarm. It is imperative to be
able to detect the incoming UAV swarm from a long distance in time and then carry out
scale estimation, target tracking, and other operations.
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Therefore, the development of UAV swarm target detection and tracking, etc., is the
premise and key to achieving comprehensive awareness, scientific decision-making, and
active response in battlefield situations. Because anti-UAV swarm systems have high
requirements for the accuracy and speed of object location and tracking methods and radar
detection, passive location, and other methods experience significant interference from
other signal clutter, resulting in false detections or missing detection problems. Therefore,
using computer vision technology to detect and track the UAV swarm has significant
research value.

This paper focuses on UAV target detection for anti-UAV systems. Specifically, under
our proposed method, once the UAV swarm is detected, detectors are rapidly deployed
on the ground to obtain video, and quickly and accurately detect the target to facilitate
subsequent countermeasures.

Most of the existing object detection algorithms consider the object scale to be of
medium size, while a low-flying UAV accounts for a very small proportion of the image,
and there is little available texture information. It is difficult to extract useful features,
especially against a complex background, and, thus, it is easy to mistakenly detect or miss
the UAV target. Therefore, in order to improve the capability of UAV swarm detection in
different scales and complex scenes, and meet the application requirements in resource-
constrained situations, such as in terms of computing power and storage space, this
paper proposes a lightweight UAV swarm detection method that integrates an attention
mechanism. Data augmentation technology is applied to expand the dataset to improve
the diversity of the training set. In addition, depthwise separable convolution [4] is used to
compress the main structure of the network, with the aim of building a model that meets
the accuracy requirements and takes up as little computing resources as possible.

We train and test based on the UAVSwarm dataset [5], and the experimental results
show that the mAP value of the proposed method reaches 82.32%, while the number of
parameters is only about 1/10th of that of the YOLOX-S model and the model size is only
3.85 Mb. Under the same experimental conditions, compared with other YOLO series
lightweight models, the detection accuracy of the proposed method is 15.59%, 15.41%,
1.78%, 0.58%, and 1.82% higher than MobileNetv3-yolov4, GhostNet-Yolov4, YOLOv4-Tiny,
YOLOX-Tiny, and YOLOX-Nano models, respectively. At the same time, the total network
parameters and model size are excellent.

The main innovations of this paper are as follows:

(1) The depthwise separable convolution method is used to compress the model, and
a nano network is constructed to achieve the lightweight UAV swarm detection network.

(2) A Squeeze-and-Extraction (SE) module [6] is introduced into the backbone to
improve the network’s ability to extract object features. The introduction of a Convolutional
Block Attention Module (CBAM) [7] in the feature fusion network makes the network pay
more attention to important features and suppress unnecessary features.

(3) During the training process, Distance-IoU (DIoU) [8] is used instead of Intersection
over Union (IoU) to calculate the regression loss, which is beneficial for model optimization.
At the same time, Mosaic [9] and Mixup [10] data augmentation technologies are used to
expand the dataset to achieve a better detection effect.

2. Related Work

Swarm intelligence algorithms play an extremely important role in multiple UAV
collaborations such as collision avoidance, task assignment, path planning, and formation
reconfiguration. Object detection is an important computer vision task. Traditional object
detection methods are mostly based on manual feature construction [11], which has weak
generalization ability and takes up large computing resources. In recent years, with the
vigorous development and wide application of deep learning technology in various fields,
algorithms based on deep learning have been widely studied by researchers.
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2.1. Related Work for UAV Swarm

Currently, lots of researchers pay attention to the development of UAV systems for
UAV cooperation, multi-UAV autonomous navigation, and UAV pursuit-evasion prob-
lems. For successful communication among collaborating UAVs in a swarm, Cheriguene,
Y. et al. [12] proposed COCOMA, an energy-efficient multicast routing protocol for UAV
swarms. This method builds a multicast tree that can convey data from a single source
to the swarm’s UAVs in order to pick the shortest distance between UAVs, optimize total
network energy consumption, and extend the network lifetime. Tzoumas, G. et al. [13]
newly developed a control algorithm called dynamic space partition (DSP) for a swarm
system consisting of high payload UAVs to monitor large areas for firefighting operations.
Sastre, C. et al. [14] proposed and validated different algorithms to optimize the take-off
time of drones belonging to a swarm, and the experiments proved that the proposed al-
gorithms provide a robust solution within a reasonable time frame. Sastre, C. et al. [15]
proposed a collision-free take-off strategy for UAV swarms. Experimental results show
that the proposed method can significantly improve time efficiency and keep the risk of
collision at zero.

2.2. Related Work for UAV Detection

Object detection algorithms based on deep learning are mainly divided into two
categories: two-stage and one-stage detectors. In the former approach, first, a region
proposal network is used to estimate a candidate object bounding box. Then, in the second
stage, the network extracts features from each candidate box and performs classification
and bounding box regression. In this manner, several methods such as R-CNN [16], Fast
R-CNN [17], and Faster R-CNN [18] have been proposed. The latter object detector uses a
single deep neural network with a regression strategy to directly classify and detect objects.
It should be noted that, in this approach, the process of region proposal is avoided. In
this manner, several methods such as the You Only Look Once (YOLO) series, Single Shot
Detector (SSD) [19], and RetinaNet [20] have been proposed.

With the rapid development of computer vision technology, researchers have carried
out a lot of research on image-based UAV detection algorithms. Hu Y. et al. [21] introduced
an algorithm based on YOLOV3 into UAV object detection for the first time. In the prediction
process, the last four scale feature maps are adopted to conduct multi-scale prediction
to enrich the texture and contour information. At the same time, the size of the UAV
in four scales feature maps is calculated according to input data, and then the number
of anchor boxes is also adjusted. This approach improves the accuracy of small object
detection while ensuring speed. Sun H. et al. [22] proposed a UAV detection network
named TIB-Net, integrating a structure called cyclic pathway into the existing efficient
method Extremely Tiny Face Detector (EXTD) to enhance the capability of the model to
extract effective features of small objects. Furthermore, they integrated a spatial attention
module into the backbone network to better locate small-size UAVs and further improve
detection performance. Ma J. et al. [23] integrated the attention mechanism module into
the PP-YOLO detection algorithm and introduced the Mish activation function to eliminate
the gradient disappearance problem in the back-propagation process, which significantly
improved the detection accuracy. Yavariabdi A. et al. [24] proposed a multi-UAV detection
network named FastUAV-NET based on YOLOv3-tiny that can be used for embedded
platforms. By increasing the depth and width of the backbone network, local and global
features are extracted from the input video stream, providing higher detection accuracy
and saving computing time. Liu B. et al. [25] replaced the backbone with a lightweight
network Efficient-lite based on YOLOV5s to reduce the number of parameters of the model,
introduced adaptive spatial feature fusion technology to balance the loss of accuracy caused
by simplifying the network model, and, finally, introduced a constraint of angle into the
original regression loss function to avoid the mismatch between the prediction frame
and the real frame orientation during the training process in order to improve the speed
of network convergence. Wang C. et al. [26] used the Se-ResNet as a feature extraction
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network by introducing the SeNet attention mechanism into the backbone to improve the
correlation between feature channels and enhance the features of the target to solve the
problem of UAVs in low-altitude airspace being submerged in complex background clutter.
The differences between the proposed method and the existing UAV detection frameworks
are shown in Table 1.

2.3. Related Work for Lightweight Network

Although R-CNN, YOLO, and SSD series algorithms have excellent performance in
object detection, they generally have high computational complexity and large model
volume, which makes them unable to fully meet the application requirements in resource-
constrained situations such as limited computing power, storage space, and/or power
consumption [27]. With the development of intelligent mobile devices toward marginaliza-
tion and mobility, various lightweight object detection algorithms have been developed
successively. The goal is to keep good detection performance on devices with low hardware
conditions to adapt to the development trend of intelligent devices. The basic idea of
MobileNet [4,28,29], based on depthwise separable convolution, is to use depthwise convo-
lution to replace the filter in traditional convolution for feature extraction, and use point
convolution instead of filter to combine features while reducing the number of parameters
and amount of computation. ShuffleNet [30,31] was published by Zhang X. et al. in 2018,
the core of which is to reduce the computation of a large number of point convolutions
in MobileNet by using the strategy of combining group convolution and channel shuffle.
Tan M. et al. [32] proposed MnasNet in 2019. Its core innovation lies in the proposed
multi-objective optimization function and the decomposed hierarchical search space, which
correspond to the optimization accuracy and reasoning delay, and improve the diversity
between different layers. Han K. et al. [33] proposed GhostNet in 2020. First, they used
less convolution to check the input for conventional convolution, obtaining the output
features with fewer channels as the internal feature map. Then, they linearly transformed
each channel of the internal feature map to obtain its corresponding Ghost feature map.
Finally, they connected the internal feature map with the Ghost feature map to obtain the
final GhostNet convolution output feature. Xiong Y. et al. [34] proposed a lightweight
object detection network called MobileDets in 2021, based on a Neural Architecture Search
(NAS) network architecture for object detection tasks, and achieved the state-of-the-art in
mobile accelerators.

Table 1. A comparative overview of UAV detection methods.

Method Detection Strategy Backbone Dataset
HuY. etal. [14] YOLOv3-based DarkNet-53 self-built
Sun H. et al. [15] TIB-Net EXTD self-built
Drone-vs-Bird,
Ma]. etal. [16] PP-YOLO ResNet50-vd TIB-Net, and
self-built
Yavariabdi A. et al. [17] FastUAV-NET Inception module self-built
Liu B. et al. [18] YOLOv5-based Efficientlite self-built
Wang C. et al. [19] Se-ResNet ResNet-18 DroneI:\;ss—grilfd and
Proposed Method YOLOX-based CSPDarkNet UAVSwarm [33]

3. Materials and Methods
3.1. Overview

The object detection model can generally be abstracted into backbone, neck, and head
networks, as shown in Figure 1. The backbone network performs feature extraction, the
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neck network performs multi-scale feature fusion on the feature layer obtained by the
backbone network, and the head network performs classification and regression analysis.

input === backbone 1 neck y head e output

Figure 1. Overall structure of object detection model.

3.2. Backbone Network

CSPDarkNet [35] is used as the backbone of our UAV swarm detection model, con-
sisting mainly of convolution layers and a CSP structure, as shown in Table 2. First, a
640 x 640 RGB three-channel image is input into the network, and the image size and
the number of channels are adjusted through Focus. Then, four stacked Resblock body
modules are used for feature extraction. In the last Resblock body module, the image is
processed through the SPP module; that is, the max pooling operation with different kernel
sizes is used for feature extraction to improve the receptive field of the network. The final
output of CSPDarkNet is the feature maps of the 2nd, 3rd, and 4th Resblock body modules,
with the shapes of 80 x 80 x 256, 40 x 40 x 512, and 20 x 20 x 1024, respectively.

Table 2. The structure of CSPDarkNet.

Module Structure Output Valid Output
Inputs Inputs 640 x 640 x 3
Focus Focus 320 x 320 x 12

Conv2D-BN-SiLU

Conv2D-BN-SiLU

320 x 320 x 64

Conv2D-BN-SiLU

160 x 160 x 128

Resblock body1 CSPLayer 160 x 160 x 128
Conv2D-BN-SiLU 80 x 80 x 256
Resblock body2 CSPLayer 80 x 80 x 256 Output 1
Conv2D-BN-SiLU 40 x 40 x 512
Resblock bOdy3 CSPLayer 40 x 40 x 512 Output 2
Conv2D-BN-SiLU 20 x 20 x 1024
Resblock body4 SPPBottleneck 20 x 20 x 1024 Output 3
CSPLayer 20 x 20 x 1024

In the Resblock body module, the CSPLayer is similar to the residual structure. The
input first passes through convolutional layers with a kernel size of 1x1 and 3x3 for
n times, then the result and the original input are concatenated as output, as shown in
Figure 2a. In order to further improve the detection of UAV swarm targets, referring to the
MobileNet V3 model [29], a Squeeze-and-Extraction (SE) module [6] is introduced into the
CSPLayer structure, as shown in Figure 2b. The UAV detection model uses SiLU as the
activation function. SiLU has the characteristics of no upper bound, with a lower bound
and smooth and non-monotone functions. It can converge faster during training and its

formula is as follows:
SiLU(x) = x-sigmoid(x), 1)
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Figure 2. (a) Original CSPLayer structure (b) CSPLayer structure with SE module.

Specifically, the SE module generates different weight coefficients for each channel by
using the correlation between feature channels, multiplies them with the previous features,
and adds them to the original features to enhance the features. As shown in Figure 3, the
detailed process of the SE attention mechanism is as follows: First, the extracted feature
X € RH'XWxC g mapped to U € RHXWxC through the conversion function F;,. Then, the
global information of each channel is represented with a channel characteristic description
value through global average pooling Fs;(-); and then the channel characteristic description
value is adaptively calibrated by F,x(- , W) to make the weight value more accurate. Finally,
the enhanced feature is obtained by multiplying the weight value and the original feature
through Fcp. (-, ).

Fo (\W
o i - o (5W)

() » I~ ST
/ e e \

H' F, H Fecate ()

c’ C
Figure 3. Diagrammatic sketch of the SE module.

3.3. Neck Network

The three feature layers obtained by CSPDarkNet are sent to the neck network for
enhanced feature extraction and feature fusion. The neck network of the UAV swarm
detection model is constructed based on the Path Aggregation Network (PANet) [36]. The
input feature map is resized through a convolution layer and then fused through up- and
down-sampling operations. The specific network structure is shown in Figure 4.
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Figure 4. The structure of the neck network.

In order to improve the detection performance of the model for UAVs, a Convolutional
Block Attention Module (CBAM) [7] is firstly applied to the three feature maps obtained by
the backbone network, and then sent to the neck network for feature fusion. The CBAM is
also applied after each up-sampling and down-sampling operation in the PANet. CBAM is
a simple and effective attention module for feedforward convolutional neural networks.
It combines the two dimensions of channel and spatial features. When the feature map is
input, it first goes through the Channel Attention Module (CAM) and then Spatial Attention
Module (SAM). The calculation formula is (2):

Fo = MC(F) ®F
{Fa:Ms(Fc)@)Fcl (2)

As shown in Figure 5, in the CAM, for the input feature map F € REXHXW first, Global
Average Pooling (GAP) and Global Maximum Pooling (GMP) operations are performed
based on the width and height of the input feature map, and then they are processed by
a shared neural network Multilayer Perceptron (MLP), respectively. The two processed
results are added together, and a one-dimensional channel attention vector M, € REx1x1
is obtained through the Sigmoid function. Finally, the feature map F. with channel weights
is generated by multiplying the channel attention vector M, and the feature map F. In the
SAM module, for the feature map F. obtained by CAM, a pooling operation is performed,
and then the 7 x 7 convolution and Sigmoid function to obtain a two-dimensional spatial
attention vector M; € RIXHxW, Finally, F. and M are multiplied to obtain the final
feature map F,.
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Figure 5. Diagrammatic sketch of the CBAM.

3.4. Head Network

After feature fusion and enhanced feature extraction are completed, the head network
conducts classification and regression analysis on the three feature layers of different scales,
and finally outputs the recognition results. Its network structure is shown in Figure 6. The
head network of the UAV detection model proposed in this paper has two convolution
branches [35], one of which is used to achieve object classification and output object
categories. The other branch is used to judge whether the object in the feature point
exists and regress the coordinates of the bounding box. Thus, for each feature layer, three
prediction results can be obtained:

— | 10U fxwx1

HxWx256

- — 1) Hxwxc
* w2 _/
|/|'_ HXWx256 A A
— £ /4
H/ —— | |Reg) Hxw x4
HXW X256 i _/

Figure 6. The structure of the head network.

(1) Reg (h, w, 4): The position information of the target is predicted. The four parame-
ters are X, y, w, and h, where x and y are the coordinates of the center point of the prediction
box, and w and h are the width and height.

(2) Obj (h, w, 1): This is used to judge whether the prediction box is a foreground or a
background. After being processed by the Sigmoid function, it provides the confidence of
the object contained in each prediction box. The closer the confidence is to 1, the greater the
probability of the existence of a target.

(3) ClIs (h, w, num_classes): Determine what type of object, each object is, give each
type of object a score, and obtain the confidence level after the sigmoid function processing.

The above three prediction results are stacked, and the prediction result of each
feature layer is (h, w, 4+1+num_classes). The first four parameters of the last dimension
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are regression parameters of each feature point and the fifth parameter is used to judge
whether each feature point contains an object, and the last num_classes parameter is used
to judge the category of the object contained in each feature point.

3.5. Lightweight Model

The essence of a lightweight model is to solve the limitations of storage space and
energy consumption on the performance of traditional neural networks on equipment with
low-performance hardware. Aiming at the problem that the traditional deep convolution
neural network consumes a large amount of computing resources, this paper pays more
attention to how to reduce the complexity of the model and the amount of computation,
while improving the accuracy of object detection. Considering that the depthwise sepa-
rable convolution method [4] can effectively compress the model size while retaining the
ability of feature extraction, this paper uses it to simplify and optimize the UAV swarm
detection network.

A standard convolution both filters and combines inputs into a new set of outputs
in one step. Depthwise separable convolution splits this into two layers, for filtering and
combining. While minimizing the loss of accuracy, this approach can greatly simplify the
network parameters and reduce the amount of calculation. The depth-separable convo-
lution operation divides the traditional convolution operation into two steps: depthwise
convolution and pointwise convolution. The depthwise convolution applies a single filter
to each input channel. The pointwise convolution then applies a 1 x 1 convolution to
combine the outputs of the depthwise convolution. The standard convolution operation
and the depthwise separable convolution operation are shown in Figure 7a,b, respectively.
The depthwise separable convolution is used to replace the traditional convolution in the
UAV detection network while reducing the network parameters and computation.

xN
nfl.
Dy

> H

(a) Traditional Convolution

| XN 1 X Cour
Dy R 1
4
H

w
(b) Depthwise Separable Convolution

Figure 7. Comparison of the two convolution methods.

The total number of convolution kernel parameters and the total amount of convolu-
tion operations are analyzed to determine the amount of internal product operations. If
we assume that N groups of convolutions, having the same kernel size, Dy x Dy x C, are
taken to check the input image for convolution and that the required feature map size is
W x H x N, then the quantity of parameters and operation required by the two methods are
shown in Table 3. The depthwise separable convolution method can compress the network
size and reduce the amount of computation. In the process of obtaining a fixed-size feature
map using convolution kernels of the same width and height, by expressing convolution as
a two-step process of filtering and combining, we get a reduction in necessary computations
of 1/N + 1/Dj?, which is the key to achieving light weight.
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Table 3. Comparison of the two convolution methods.

Method Parameters Computational Ratio
Amount
. Dy X Dy x C x N X
standard convolution Dy x Dy x Cx N Wx H 1
depthwise separable Dy x Dy x C+ Dy x D x Cx W x 1
convolution CxN H+CxNxWxH N T Dg2

3.6. Model Training

In the training process of the UAV swarm detection model, Distance-IoU (DIoU) [8] is
used instead of Intersection over Union (IoU) to calculate regression loss, which is bene-
ficial for model optimization. In addition, Mosaic [9] and Mixup [10] data augmentation
technologies are used to expand the dataset to achieve better UAV detection.

3.6.1. Data Augmentation

Data augmentation is a means of expanding the dataset in computer vision. The
approach enhances the image data to compensate for the problem of insufficient training
dataset images and achieve the purpose of expanding the training data. As the UAV swarm
dataset UAVSwarm used for the experiment has few training samples and repetitive scenes,
the Mosaic and Mixup algorithms are used in the image data preprocessing process in
order to increase the diversity of training samples and enrich the background of the target,
to avoid, as far as possible, the network falling into overfitting during the training process
and improve the recognition accuracy and generalization ability of the network model.

The enhancement effect of the Mosaic algorithm is shown in Figure 8. First, the four
images are randomly cut, scaled, and rotated, and then they are spliced into a new image
as the input image for model training. It should be noted that the image during processing
contains the coordinate information of the bounding box of the target, so the new image
obtained also contains the coordinate information of the bounding box of the UAV. The
advantage of this is that, on the one hand, the size of the object in the picture is reduced
to meet the requirements for small object detection accuracy, and, on the other hand, the
complexity of the background is increased, so that the UAV swarm detection model has
better robustness toward complex backgrounds.

Figure 8. The enhancement effect of Mosaic.

The Mixup algorithm was originally used for image classification tasks. The core idea
is to randomly select two images from each batch and mix them up to generate new images
in a certain proportion. The Mixup algorithm is more lightweight than Mosaic, requiring
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only minimal computational overhead, and can significantly improve the operation speed
of the model. Its mathematical expression is as follows:

F=Axi+ (1-A)x
y=Ayi+(1-A)y;, ®)
Ael0, 1]

where (x;,y;) and (x;,y;) are two randomly selected samples and their corresponding
labels, (X, ) are the newly generated samples and their corresponding labels that will be
used to train the neural network model, and A is a fusion coefficient. It can be seen from
Formula (3) that Mixup essentially fuses two samples through a fusion coefficient. The
enhancement effect of the Mixup algorithm is shown in Figure 9.

Figure 9. The enhancement effect of Mixup.

3.6.2. Loss Function

The goal of network training is to reduce the loss function and make the prediction
box close to the ground truth box to obtain a more robust model. The loss function of
object detection needs to indicate the proximity between the prediction box and the ground
truth, whether the prediction box contains the target to be detected, and whether the object
category in the prediction box is true. As predicted by the head network, the loss function
consists of three parts, which are given by Formula (4):

Loss = Lossgeg + Lossopj + Losscys , 4)

(1) Regression loss (Lossgg) is the loss of position error between the prediction box
and the ground truth. The x, y, w, and h parameters predicted by the model can locate the
position of the prediction box, and the loss is calculated based on the DIoU of the ground
truth and the prediction box. Figure 10 shows the principle for DIoU to calculate regression
loss, and the corresponding calculation Formula is (5):

2 b, pst d2
p(c—2) = JoU — c_z , (5)

DIolU = IoU —
where b represents the parameter of the center coordinate of the prediction box and b8!
represents the parameter of the center coordinate of the ground truth; 4 is the distance
between the center point of the prediction box and the ground truth; and c represents the
diagonal length of the maximum bounding rectangle of the union of the prediction box
and ground truth. IoU measures the intersection ratio between the prediction box and the
ground truth. However, if there is no intersection between them, the result of IoU will
always be 0. When one of the two boxes is inside the other, if the size of the box remains
unchanged, the calculated IoU value will not change, which will make the model difficult
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to optimize. If DIoU is used to calculate regression loss, this problem can be effectively
solved and a good measurement effect can be obtained.

Figure 10. Schematic diagram of DIoU.

(2) Object loss (Lossop)) is to determine whether there is an object in the predicted box,
which is a binary classification problem. According to the result predicted by the head net-
work, whether the target is included can be known, while the feature points corresponding
to all ground truths are positive samples, and the remaining feature points are negative
samples. The Binary Cross-Entropy loss is calculated according to the prediction results of
whether the positive and negative samples include the target.

(3) Classification loss (Losscy;) is applied to reflect the error in object classification.
According to the feature points predicted by the model, the predicted category results of the
feature points are extracted, and then the Binary Cross-Entropy loss is calculated according
to the category of the ground truth and prediction results.

4. Experimental Results and Analysis

The proposed UAV swarm target detection model is constructed based on the deep
learning framework Pytorch. The size of the input images needs to be adjusted to 640 x 640,
and the number of input images in each batch is set to 12 during the training process; a total
of 100 epochs are trained without using a pre-training weight. Furthermore, the Mosaic
and Mixup data augment algorithms are used for the first 70 epochs and canceled for
the last 30 epochs. The gradient descent optimization strategy adopts the SGD optimizer,
and the initial learning rate is set to 0.01. In this experiment, the mean Average Precision
(mAP), the number of parameters, model size, latency, and Frame Per Second (FPS) are
used as measurement metrics of the experimental results. We train and test on a computer
equipped with dual Intel Xeon E5 2.40GHz CPUs, a single NVIDIA GTX 1080TI GPU, and
32 GBRAM.

4.1. UAVSwarm Dataset

Wang C. et al. [5] collected 72 UAV image sequences and manually annotated them,
creating a new UAV swarm dataset named UAVSwarm for UAV multi-object detection
and tracking. This dataset contains 12,598 images in total, of which 23 are included in the
images with the largest number of UAVs, 36 image sequences (6844 images) are included in
the training set, and the remaining 36 sequences (5754 images) are included in the test set.
The dataset we used largely excludes all objects (flocks of birds, etc.) except UAVs but some
scenes are complex, leading to the UAVs being blocked. Figure 11 shows some images and
annotation information of the dataset.
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(b) Sample Images with Labels

Figure 11. Samples of the UAVSwarm dataset.

4.2. Ablation Experiment

Firstly, the structure of YOLOX is simplified and optimized by depthwise separable
convolution to build a nano network. In order to verify the effectiveness of the lightweight
module, this paper uses the same training strategy to train three lightweight YOLOX
models, namely, YOLOX-S, YOLOX-Tiny, and YOLOX-Nano, and tests them on the same
test set to analyze their performance differences. It can be seen from Table 4 that the UAV
detection accuracy of the three differently scaled YOLOX models toward the test set is
more than 80%. As far as the network accuracy and scale of YOLOX of the same series are
concerned, the results of this experiment are consistent with the general law of the object
detection network—that is, the more layers and parameters of the convolutional neural
network, the stronger its feature extraction and generalization ability, and the higher its
recognition accuracy. When the DIoU threshold score is set to 0.5, the mAP scores of the
three networks are largely the same, but the size of the model and the total number of
parameters greatly differ Among them, the model size and the total number of parameters
of nano network are about 1/10th of those of the version S network. This shows that
under the same hardware conditions, the lightweight nano model can process more input
images and reduce the equipment cost on the premise of meeting the accuracy requirement.
Therefore, YOLOX-Nano is selected as the baseline model for research in this paper.

Table 4. Performance comparison of YOLOX models with different scales.

Model mAP@0.5 (%) Params (x106) Model Size/Mb
YOLOX-S 82.12 8.94 34.30
YOLOX-Tiny 81.74 5.03 13.70
YOLOX-Nano 80.50 0.89 3.70
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Table 5 shows that the mAP score of the proposed model on the UAVSwarm test set is
82.32%, which is about 2% higher than that of the baseline model, while the total number
of parameters and model size are only about 40 Kb higher. It can also be found that the
introduction of the SE and CBAM modules and the improvement of the loss functions have
brought about an increase in mAP compared with the baseline model, which proves the
effectiveness of the above three modules.

Table 5. Ablation experiment based on YOLOX-Nano.

SE CBAM Loss mAP@0.5 (%) Params (x10°) Model Size/Mb
- - - 80.50 0.89 3.70

v - - 81.25 0.92 3.78

- Vv - 80.62 0.92 3.84

- - v 82.14 0.89 3.70

v Vv v 82.32 0.93 3.85

The Loss curves of the different network models during the training process are shown
in Figure 12. The abscissa and ordinate are the Epoch and Loss values, respectively. It can
be seen that in the training process, the convergence of different models of the YOLOX
series is similar. The loss of the training set decreases rapidly in the early stage. With the
increase in epoch, the loss value gradually decreases and tends to be stable. Finally, the
loss value of the proposed network model is the lowest, which proves that the training
strategy and parameter settings are reasonable and effective for improving the model
detection accuracy.

= YOLOX-S Training Loss
16} YOLOX-Tiny Training Loss
—— YOLOX-Nano Training Loss
= Ours Training Loss

14

12r

Epoch

Figure 12. Loss curves of the different networks.

For the UAVSwarm dataset, as a typical small object, the network model proposed in
this paper has improved the Precision and Recall indicators of the baseline model by 0.63%
and 1.84%, respectively, when the threshold scores are both 0.5, as shown in Figure 13.
The improvement of Recall shows that the optimization strategy we used can effectively
increase the learning effect of the model on the target of positive foreground samples.
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Figure 13. Precision and Recall of UAV detection.

4.3. Comparison Experiment

In order to objectively reflect the performance of the UAV swarm object detection
network proposed in this paper, this study also uses the same settings to train other
lightweight YOLO models and conducts a comparative analysis. The comparison results
are shown in Table 6. It can be seen that under the same test set, the mAP value of the
proposed UAV detection model has reached 82.32%, which is 15.59%, 15.41%, 1.78%, 0.58%,
and 1.82% higher than MobileNetv3-yolov4, GhostNet-YOLOv4, YOLOv4-Tiny, YOLOX-
Tiny, and YOLOX-Nano, respectively. At the same time, the total network parameters and
model size are optimal.

Table 6. Comparison experiment of different networks.

Model
o 6
Method mAP@0.5 (%) Params (x10°) Size/Mb Latency/ms FPS
GhostNet-
YOLOv4 66.91 11.00 42.40 83 12
MobileNetv3-
YOLOv4 66.73 11.30 53.70 90 11
YOLOV4-Tiny 80.54 5.87 22.40 45 22
YOLOX-Tiny 81.74 5.03 13.70 55 18
YOLOX-Nano 80.50 0.89 3.70 71 14
Ours 82.32 0.93 3.85 71 14

The experimental results that are obtained on the computational time are tabulated in
Table 6. It should be said that, due to limitations in the hardware platform, our experiment
did not achieve the effect in the original paper, but we believe that the proposed method will
have lower latency and higher processing speed under the condition of higher computing
power. Table 6 illustrates that, compared with the baseline model YOLOX-Nano, the pro-
posed model achieves higher recognition accuracy under approximately the same inference
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time. Thus, our model can also meet the requirements of being real-time and is suitable
for applications that require low latency. However, the YOLOX-Tiny and YOLOv4-Tiny
networks are quicker than the proposed model, as they run 18 FPS and 22 FPS, respectively.
Even though the proposed architecture is slower than these two models, significantly, it
provides higher detection accuracy. Therefore, the proposed model is a lightweight model
with high detection accuracy and suitable for various edge computing devices.

In order to verify the detection effect of the UAV detection model proposed in this
paper in actual scenes, some images in the dataset are selected for detection, and the
comparison diagram of the detection effect is shown in Figure 14. As shown in Figure 14a,
in an environment with a simple background, most models can successfully identify UAVs.
The proposed method can detect more small and distant objects than the baseline model
YOLOX-Nano. As shown in Figure 14b, when the background is complex or UAVs are
densely distributed, there are many undetected phenomena with the other models. The
algorithm in this paper shows better detection performance and can accurately detect UAVs
when occlusion occurs among objects. As shown in Figure 14c, when the image resolution is
low, the algorithm in this paper can still accurately detect UAVs with complex backgrounds
and provide higher confidence scores. Through comparison, it can be demonstrated that
our method has improved detection accuracy and confidence, which shows that it can
satisfy the requirements of being lightweight and providing higher accuracy, meeting the
requirements of industrial applications.

GhostNet 1
YOLOv4
4
MobileNet L
-YOLOv4
4l

YOLOV4|
-Tiny

YOLOX
-Nano
our i
model
e
(a) (b)

Figure 14. Comparison of detection results of different models.
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References

In addition to the construction of an anti-UAV system, the algorithm proposed in
this paper can also be applied as a swarm intelligence algorithm to achieve UAV swarm
formation, multi-UAV cooperation, etc. By deploying lightweight object detection methods,
UAVs in the swarm can quickly and accurately obtain the position and status of other
partners, so that they can adjust themselves in time according to the swarm intelligence
algorithm. Swarms of UAVs may have enhanced performance during performing some
missions where having coordination among multiple UAVs may enable broader mission
coverage and provide more efficient operating performance. Moreover, the proposed
method will greatly help to improve the performance of UAV swarm systems including
total energy, average end-to-end delay, packets delivery ratio, and throughput. According
to the analysis, the application of the lightweight model provided by this paper may reduce
the total energy demand and average end-to-end delay of the UAV swarm system, while
increasing the packets delivery ratio and throughput of the system. This means that the
UAV swarm system may be able to achieve higher data transmission efficiency at a lower
cost, thus, better performing tasks.

5. Conclusions

This paper proposes a lightweight UAV swarm detection model integrating an at-
tention mechanism. First, the structure of the network is simplified and optimized by
using the depthwise separable convolution method, which greatly reduces the total num-
ber of parameters of the network. Then, a SE module is introduced into the backbone
network to improve the model’s ability to extract object features; the introduction of a
CBAM in the feature fusion network makes the network pay more attention to important
features and suppress unnecessary features. Finally, in the training process, a loss function
based on DIoU can better describe the overlapping information and make the regression
faster and more accurate. In addition, two data augmentation technologies are used to
expand the UAVSwarm dataset to achieve better UAV detection. The proposed model is a
lightweight model with high detection accuracy and only 3.85 MB in size, which is suitable
for embedded devices and mobile terminals. In conclusion, the real-time performance and
accuracy of the UAV swarm detection model proposed in this paper meet the requirements
of rapid detection of UAVs in real environments, which has practical significance for the
construction of anti-UAV systems. In our future work, we will continue to study and
optimize the improvement strategy, so that it can achieve better recognition accuracy and
real-time performance under the premise of minimizing the complexity of the model.
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Abstract: Unmanned aerial vehicles (UAVs) are important in reconnaissance missions because of
their flexibility and convenience. Vitally, UAVs are capable of autonomous navigation, which means
they can be used to plan safe paths to target positions in dangerous surroundings. Traditional
path-planning algorithms do not perform well when the environmental state is dynamic and partially
observable. It is difficult for a UAV to make the correct decision with incomplete information. In
this study, we proposed a multi-UAV path planning algorithm based on multi-agent reinforcement
learning which entails the adoption of centralized training—decentralized execution architecture to
coordinate all the UAVs. Additionally, we introduced a hidden state of the recurrent neural network
to utilize the historical observation information. To solve the multi-objective optimization problem,
We designed a joint reward function to guide UAVs to learn optimal policies under the multiple
constraints. The results demonstrate that by using our method, we were able to solve the problem
of incomplete information and low efficiency caused by partial observations and sparse rewards in
reinforcement learning, and we realized kdiff multi-UAV cooperative autonomous path planning in
unknown environment.

Keywords: multi-UAV; path planning; incomplete information; multi-objective, reinforcement learning

1. Introduction

Multi-UAV perform well in complex tasks because of their robustness and high effi-
ciency [1]. When multi-UAV perform reconnaissance tasks cooperatively in an unknown
environment, they have to perceive the environment through their own sensors and plan
the optimal path online according to the current environmental state to reach the target
points safely. It is important for UAVs to be capable of autonomous navigation in complex
and unknown environments. Moreover, a greater coordination is needed between all UAVs.
Thus, we have to consider we can guide multi-UAV to achieve a common goal.

Multi-UAV path planning can be considered as a Multi-Agent Path Planning (MAPF)
problem [2], which is a model used to find the optimal path for multi-agents from the
starting positions to destinations without conflicts. In fact, MAPF is a relatively complex
joint objective optimization problem. The state space of this problem grows exponentially
with the number of agents, and it has been proved to be an NP-hard problem [3]. In the
reconnaissance tasks, multi-UAV not only have to avoid dangerous areas and reach the
target points safely, but they must also cover a larger area in a shorter time. However,
the time cost and coverage area are in conflict, as these are multi-objective optimization
problems, and we must make a trade-off between two or more conflicting goals to enable
optimal decision making. It is impossible to find a solution that can achieve the optimal
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performance of all objectives; therefore, for the multi-objective optimization problem, we
usually use a set of non-inferior solutions called the “Pareto solution set” [4].

Most of the previous research regarding multi-UAV path planning has focused on
intelligent optimization algorithms, such as evolutionary algorithms [5] including Particle
Swarm Optimization(PSO) [6-8]. Shao et al. [9] proposed a more accurate and faster
PSO algorithm to effectively improve the convergence speed and solution optimality, and
the proposed PSO was successfully used in UAV formation path planning under terrain,
threat, and collision avoidance constraints. Evan et al. [10] proposed a PSO algorithm for
use in navigating in an unknown environment, which was able to reach a pre-defined
goal and become collision-free. Ajeil et al. [11] proposed a hybridized PSO-modified
which was shown to minimize the distance and follow path smoothness criteria to form an
optimized path. Evolutionary algorithms based on swarm intelligence can iteratively search
for local optimal solutions, but this method is difficult to expand to online and real-time
optimization due to its limited speed, and it is not suitable for use in reconnaissance tasks.

In recent years, with the rapid development of Deep Reinforcement Learning (DRL),
its powerful representation and learning capabilities have enabled it to perform well
in decision-making problems [12]; therefore, researchers are beginning to explore the
application of reinforcement learning in multi-UAV path planning and navigation [13-15].
Compared with traditional algorithms, reinforcement learning performs better when the
environment is unknown and dynamic. Moreover, the inference speed and generalization
of reinforcement learning are advantages in real-time decision-making tasks.

In our research, the perception abilities of multi-UAV were limited, and only partial
observations of the environment were made, meaning that it was difficult for the multi-
UAV to make the optimal decisions when global states were lacking because the state
transitions were unknown. The action of each UAV could change the environment’s state,
especially in a learning-based algorithm, such as reinforcement learning, the incomplete
information will lead to poor efficiency and convergence. Moreover, it is vital to design
training architecture to coordinate multi-UAVs to achieve a common goal. It is unwise to
adopt a completely distributed training architecture to solve MAPF problems because of
the high complexity. The same applies to multi-objective optimization problems. Lowe,
firstly, proposed a framework of centralized training with decentralized execution [16],
allowing extra information to be used in policies to make training easier. This framework
has been proved to be capable of handling collaborative problems, such as multi-agent
path planning. For instance, Jose et al. [17] proposed a DRL model with a centralized
training and decentralized execution paradigm to solve vehicles routing problem, which
was shown to be able to produce near-optimal solutions through cooperative actions. Marc
et al. [18] adopted a distributed multi-agent variable framework to solve conflicts between
UAVs, and also to train agents using centralized learning. Wang et al. [19] adopted a
centralized training and decentralized executing framework to enable dynamic routing,
introducing a counterfactual baseline scheme to improve the convergence speed. Moreover,
the reward function of reinforcement learning should be reviewed in light of multi-objective
optimization problems. On the one hand, a reward function that is too simple maybe cause
“Reward Hacking” [20] and exacerbate the difficulties of policy learning due to incomplete
information. On the other hand, a reward function that is too complex will lead the worse
generalization. The most commonly used solution is to design a reward to satisfy multiple
objectives of different weights according to the prior knowledge, in which a multi-objective
optimization problem will be changed into a singe-objective optimization problem. In fact,
this solution is near-optimal. Li [21] proposed an end-to-end framework for use in solving
multi-objective optimization problems using deep reinforcement learning. Xu [22] proposed
prediction-guided multi-objective reinforcement learning for use in solving continuous
robot control problems. In multi-UAV path planning, some constraints, such as time cost,
security, and coverage, must be considered.

To solve these problems, we proposed an improved multi-agent reinforcement learning
algorithm based on centralized training and decentralized execution architecture. The
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policy learning algorithm is proximal policy optimization (PPO) [23]. It is a model-free
reinforcement learning algorithm, which can adapt to a dynamic environment and provide
good generalization. The critic network of PPO is used to coordinate all the UAVs to
maximize team returns through centralized training by receiving joint observations, and the
actor network of PPO is used to output actions. We also added a recurrent neural network
to the actor—critic network to gather the historical information from the hidden state of
the recurrent neural network [24], which solves the problem of incomplete information
caused by partial observations. In addition, we designed a joint reward function to guide
multi-UAV to learn optimal policies. When the training stage is completed, each UAV can
execute an action based on its local observations in the reference stage. The contributions
of our research are as follows:

1. We solved the problem caused by multi-UAV path planning with incomplete infor-
mation through reinforcement learning based on the centralized training and decentralized
execution architecture. We deeply explored the reasons why centralized training and
decentralized execution architecture improves model performance, and we explained the
benefits of centralized training compared to fully distributed methods.

2. When designing the reward function, we decomposed the multi-objective optimiza-
tion problem into multiple sub-problems based on the idea of decomposition, solving the
multi-objective optimization problem through reinforcement learning.

Experiments show that by using our method, the performance was significantly
improved compared with baselines, and we demonstrated the high application value of
reinforcement learning in multi-UAV path planning. In the execution stage, our method
could be used to plan paths online, far exceeding the speed of heuristic algorithms. Section 2
introduces the backgrounds of our research. Section 3 describes our methodologies in
details. Section 4 introduces the experimentation setup and results. We provide a conclusion
in Section 5.

2. Background
2.1. Problem Description

When multi-UAV perform reconnaissance missions, they need to make real-time deci-
sions based on current state information, and a collision-free path to reach the target points
must be planned. In addition, time cost and coverage need to be considered. Therefore,
multi-UAV autonomous path planning is a online decision-making problem under the
constraints of incomplete information. It has three characteristics: distributed decision-
making, partial observation and multi-objective optimization. Multi-UAV autonomous
path planning is considered to be a fully cooperative task. The objective of all the partici-
pants in such a task is to obtain the maximum team returns. Therefore, we could establish
a multi-agent real-time sequential decision-making model by the Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) theoretical framework [25].

Dec-POMDP is a general model used to solve multi-agent objective optimization
problems in cooperative environments, which generalizes the Partially Observable Markov
Decision Process (POMDP) to multi-agent environments. It allows for the distributed
control of multiple agents which may not be able to observe global states of environment. In
every step, each agent chooses an action based on local observations (all agents in parallel),
and then obtains its own reward from the environment, and all of agents cooperate to
obtain common long-term benefits and maximize returns. Generally, a Dec-POMDP model
is described by a tuple: (I,S,{A;},T,R,{Q;},0O,h)
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e Jisasetof Nagents.

e Sisa set of states of the environment, and S is the initial state.

e {A}isasetof actions for the agents. It is an action tuple Aj, Ay, ..., A;.

e T is the state transition probability function P(S'|S, A).

*  Ris the reward when agents take actions { A} in state S, it depends on all the agents.

e {Q} is a set of observations for the agents.

e Ois atable of the observation probabilities, where O(01, 0z, .. .,0;|S’, A) is the proba-
bility that (01, 0y, ...,0;)are observed by all the agents, respectively.

® i is the maximum number of steps in an episode which is called “horizon”.

However, the complexity of the optimal solution of this distributed model is

<|A|“v—f> ] W

which is double exponential [26]; it is hard to compute directly, and reinforcement learning
is usually used to obtain the approximate solution.

@)

2.2. Actor—Critic Algorithm

In reinforcement learning, an agent interacts with the environment continuously to
optimize the policy through the feedback (reward) given by the environment. Reinforce-
ment learning is mainly divided into value-based methods and policy-based methods. A
policy-gradient algorithm can easily select the appropriate action in the continuous action
space, while value-based algorithm cannot. However, the limitation of the policy-gradient
algorithm is its poor learning efficiency. Therefore, researchers proposed a method that com-
bines the policy-gradient and value-based algorithms, called the actor—critic algorithm [27].
The architecture of actor—critic is shown in Figure 1. Actor—critic uses a value-based net-
work and policy-based network as the critic network and the actor network, respectively.
The critic network can realize single-step updates to overcome the poor learning efficiency,
and the actor network outputs actions according to the current observation, while the
critic network can judge whether the current action is good or bad, which can lead the
actor network to output a better action. Currently, the algorithms based on the actor—critic
framework, such as DDPG, PPO, and A3C, are very popular.

Actor
- Policy
. TD-error
Critic
———> \/alue Function Action
State Reward
— Environment —

Figure 1. Actor—critic algorithm.
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2.3. Centralized Training and Decentralized Execution Architecture

When there are multiple agents in a completely cooperative environment, we can
establish a Dec-POMDP framework. Reinforcement learning is a great method to seek
the optimal solution of a model. However, if we directly use single-agent reinforcement
learning algorithms to train agents independently, it is hard to converge them, because
the actions of each agent will change the environment, meaning the environment will be
unstable for each agent and lead to learning difficulties. The MADDPG trains multi-agents
through a centralized critic network, providing a good solution for the training of multi-
agent systems. As shown in Figure 2, the input of the critic network is the joint observation
of all of the agents in the environment in the training stage, and the actor network only
inputs its own local observations and output actions according to the observations in the
inference stage. This architecture enables each agent’s actions in the environment to be
observed by other agents, ensuring the stability of the environment. Therefore, multi-agent
reinforcement learning is mostly based on centralized training and decentralized execution
(CTDE) architecture, such as COMA [28].

A 4

Actor i cesces Actor j

y

Fy Fy

3 y Actor i eescse ACtOI‘i

0ol-@l 1)

Critic i ssescs Critic j

| L |

Training Execution

Figure 2. Centralized training (left) and decentralized execution (right).

3. Methodology
3.1. Proximal Policy Optimization with CTDE

We choose proximal policy optimization (PPO) to guide UAVs in learning policies. The
PPO algorithm is based on the actor—critic architecture, which can more effectively achieve
continuous control in high-dimensional space, and it is also an on-policy reinforcement
learning algorithm. The learning approach of PPO is policy gradient. However, the policy-
gradient algorithm is unstable, and this makes it difficult to choose an appropriate steps.
If the difference between the old policy and new policy is too great during the training
process, it is not conducive to learning. Using the PPO algorithm, a new objective function
was proposed which can be updated in small batches in multiple training steps, which
solves the problem of steps being difficult to determine in the policy-gradient algorithm.
The algorithm takes into account the difference between an old network and an new
network when updating parameters. In order to avoid the difference being too great, a clip
is introduced to limit:

VR(T) = Ecno(e) [A™ (st,at) Viogpg (arlst)] )
AT (s,a) = Q" (s,a) — V7 (s) 3)
Bap ()] = [ F0p(e)dx = [ 0B aos =By f0 20| @
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where A is an advantage function, indicating the return of the action a in the current state.

Based on the PPO algorithm, we adopted the training method of the CTDE architecture
and designed a multi-agent PPO algorithm in a multi-agent environment. Compared with
the single-agent environment, the critic network’s input is the joint observation of multi-
UAV, which is equivalent to a central controller, each drone can obtain more information.
The actor network is updated to maximize the objective:

L(0) = f i [min (r’éli/lf»‘, clip (r’{;i, 1—¢1+ e) Af) + 0 * Sn} (6)

Cota (41 )

(ctip (Vo () Vi (5F) = & Vi (5F) +¢) - ﬁi)z] ’

The weights of two networks are updated in every episodes, the process is shown in
Figure 3.

¥

Actor Network .
> H.0 B Sample a, Environment
(new)

Actor(old)

Advantage
function

Critic Network

Min(loss)

Max
(objective)

Figure 3. The weights of actor—critic network are updating in every episodes.

3.2. Adding RNN Layer For Incomplete Information

One of the difficulties within multi-UAV autonomous path-planning tasks is partial
observation, which leads to limited information being obtained by UAVs. A solution to
this is the utilization of the previous state to avoid falling into a local optimum.

Recurrent neural networks can memorize the previous information and apply it to the
calculation of the current output. The nodes between the hidden layers are connected, and
the input of the hidden layer includes the current input and the previous output, as well
as the output of the hidden layer at the moment. The study of deep recurrent Q-learning
(DRQN) was the first to combine an RNN with reinforcement learning [29]. As shown
in Figure 4, DRON essentially turns one of the linear layers of DQN into an RNN layer.
Due to the addition of RNN, DRQN has short-term memory, and it can achieve similar
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scores to DQN in “Atari Games” without frame stack technology. Taking inspiration from
this idea, we added the RNN layer to the PPO network, and we used the RNN layer
to process historical information to solve the problem of incomplete information in the
training process.

/jﬂl Critic Network — Critic Network \

"'O;{ || W _Adding

B LSTM

O0,.1— 0
\ r10t t

Figure 4. Adding LSTM layer have the same effect compared with frame stack, and reduce the

dimension of input.

However, RNNs suffer from short-term memory. If a sequence is too long, it is
difficult to transfer information from an earlier time step to a later time step. During back
propagation, the gradient easily vanishes. Long Short-Term Memory (LSTM) is a variant
of the RNN. It can select the information to be remembered or forgotten through the gate
mechanism. As shown in Figure 5, the forget gate determines which relevant information
in the previous step needs to be retained; the input gate determines which information in
the current input is important and needs to be added; the output gate determines what
the next hidden state should be. These “gates” can keep the important information in the
sequence and discard the useless information, preventing the gradient from vanishing.

® ® )
P i 1

~
X (P 1>
@anh>
T
J j_’

| I
& ® &)

Figure 5. LSTM structure: at timestep ¢, X; is input, C; is cell state, and #; is hidden state.

ft = (7<Wf [ht 1,xt] + bf)
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C = tanh(WC [htflet] +be) (8)
C :ft*ct_1+it*ct
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hy = o¢ * tanh(Cy)

where C; is the cell state, and /; is the current hidden state. Therefore, we added LSTM
layers to both the actor and critic networks of PPO. After adding the LSTM layer, the
historical information was remembered by updating the cell state and hidden state at each
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timestep T, and the problem of incomplete information caused by the local observations
was alleviated.

Batches of T are used to update the parameters of actor and critic networks to maximize
L(0) and minimize £(¢) through gradient descent. T = [s¢, 04, a¢, 74, S¢41, 0441, 441 - - -]
Add an LSTM layer to the network, two elements h; ; and h; y are added to T, which
changed into [s¢, 0t, bt 7, By v, a8, 74, Se41, 0641, Mite1, 70, Bee1,v, i1 - - ], e o, By v are the hidden
state of timestep ¢ in an LSTM layer of the actor network and critic network.

Bi i i [mm (791 ,clip (rel, —e, 1+ e) Af) + 0% Sn} )

Moreover, we sought to establish the different roles of the critic network and actor
network in the multi-agent reinforcement learning algorithm based on the CTDE architec-
ture. We believe that the critic network acts as a central controller to process all observation
information, meaning that adding an RNN layer to the critic network can, theoretically,
greatly enhance the performance of the model in partially observable environments. The
actor network acts as a policy network for each agent, and adding the RNN layer to the
actor network has less of an effect on its performance. The experimental results prove our
analysis, it also confirms that the CTDE architecture is effective in this task.

3.3. Multi-Objective Joint Optimization

Multi-UAV autonomous path planning is a multi-objective optimization. The time
cost, coverage area, and security of multi-UAV systems need to be considered in Figure 6.
Multi-objective optimization is the optimal selection of decision variables in a discrete
decision space.

Multi-objective
Optimization

0
[e]
<
(1
=
\3)
o]
0]

Figure 6. Multi-objective optimization seeks optimal solutions under the constraints of security, time,
and coverage.

The mathematical expression is as follows:

max F () = max,[f1(7), fo(7),..., fiun(77)] (10)

where m is the number of the objectives,and 7 is the policy.

This is very similar to the “action selection” of reinforcement learning, and the “offline
training, online decision-making” characteristic of deep reinforcement learning make it
possible for an online, real-time solution of a multi-objective optimization problem to be
achieved. Therefore, deep reinforcement learning methods are a good choice when used to
solve traditional multi-objective optimization problems, and the learning-based model has
a good generalizability.

We designed the reward function based on multi-objective optimization and com-
bined it with prior knowledge regarding navigation, decomposing the multi-objective
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optimization problem into multiple sub-problems. We shaped a joint reward function by
considering the constraints of security, time, and coverage. There are several ways for
multi-UAV to obtain feedback.

Ttotal = & * Ttimecost T P * Tsecurity T Y * Tcoverage (11)

where rgoepriyy = L|distance(UAV; — UAV;)| — |distance(UAV; — target;)| , which guides
the multi-UAV to reach the target points and avoid each other. The purpose of this design
is to achieve larger coverage by distributing all of the UAVs, ensuring that the drone does
not collide with other drones or obstacles. rcoverage = Y- new areay ay;, it means the UAV
will be rewarded if new areas are explored; this reward encourages multi-UAV to explore
an environment, not simply reach the required points. 70005t guides the drone to reach
the target point with the shortest possible number of steps. These three different rewards
constitute the reward function that guides the multi-UAV autonomous path planning under
constraints.

Usually, we give these rewards different weights to change a multi-objective problem
into single-objective problem and to seek a solution. The advantage of this design is that the
aggressiveness of the agent’s learning strategy can be changed amending intended meaning
has been retrained the manually set rules, but this is a near-optimal solution under the
constraint. A multi-objective optimization problem can be solved through multi-objective
reinforcement learning, as shown in Figure 7.

Mulit-UAV Mulit-UAV
A 4 4 4
State = Reward \Action» state iR, iR, .-iR, [Action
Environment Environment
Reinforcement Learning Multi-Objective RL

Figure 7. The difference between reinforcement learning and multi-objective reinforcement learning.

A set of solutions called “Pareto front” can represent the optimal solutions in all of the
different weights. The differences between two methods are as shown in Figure 8.

= %t ® optimal 5 ~ 1t @ Pareto Ffont
‘oo | @ Non-optimal : ) ° ® Non-optimal
Q :Constraint E ®
= N %} / ®
s 2
L
®o / P
: ® o
oot o 0,0 /0
ansunns®®® E . . . .
Xopt X Objective 1
Single-Objective Optimization Multi-Objective Optimization

Figure 8. Multi-objective optimization: obtaining the optimal solution under the constraints of
security, time, and coverage.

A multi-objective gradient optimizes the policy to maximize the weight-sum reward,
where w is the weight of every objective, meaning that the policy gradient has changed.
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4. Experiment
4.1. Experimental Setup

We built a simulation platform based on Unreal Engine 4 to support quad-rotor
dynamics simulation. In this platform, we created a scenario to simulate multi-UAV
reconnaissance missions, as shown in Figure 9. The reconnaissance area was 2 km x 2 km,
and the scenario contained four movable anti-drone devices. Once the drone entered the
coverage area of these devices, it would be destroyed. The perception radius of a drone
was 200 m x 200 m, and all of the drones communicated with each other by default.

Figure 9. Multi-UAV simulation platform.

Three UAVs started from the starting points and planed a collision-free path to three
target points online. The area covered by all of the UAVs was the final total coverage area,
and the total path length of the UAVs was the path cost. Figure 10 shows that three UAVs
started from different points, and there were four threat areas in the environment. By
default, the drones could only perceive dangerous areas within their capability radius.

In this simulation platform, low-level and high-level commands were used to control
the motion of a UAV. As shown in Figure 11, in order to simulate a real flight, we choose to
control the motion of the UAV through the underlying control method. The policy network
outputs (pitch, roll, yaw_rate, throttle, and duration) a five-dimension vector in every step,
where pitch, roll, and yaw_rate controlled the attitude and direction of a UAV, and throttle
and duration made the UAV to accelerate or decelerate for a period of time.

240



Drones 2023, 7, 10

X (FORWARD)

Figure 11. Kinematics of a quad-rotor.

4.2. Network Architecture

We used PyTorch to build a three layers neural network for the actor and critic net-
works of PPO, respectively. We used a centralized training and decentralized execution
architecture to coordinate all of the UAVs; the intuitive difference between centralized
training and independent training is the input of the value network. In this experiment,
we connected the local observations of all of the UAVs into a high-dimensional vector
as the joint observations, and then input the value network, called Ogepter, and the actor
network input was the observation O; of each UAV itself as shown in Figure 12. We set up
four control experiments to compare the performance between CTDE and independent
training in this task. The first and third layers of the networks were fully connected layers,
and the second layer was an LSTM layer. In order to validate whether adding Istm was
effective, we use the same network architecture to build a network without an LSTM layer
as a comparison with the specific aim of verifying which one of critic and value was more
dependent on historical information, thus confirming the role of CTDE architecture.
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Actor Network Critic Network

Figure 12. Actor network and critic network, and all of the agents that share the networks.

PPO outputs random policies, meaning that the outputs of the actor network are y, o,
which are the expectation and variance of a Gaussian distribution, and the output action
is randomly sampled by this Gaussian distribution. In the experiment, all of the agents
shared common networks parameters as shown in Table 1.

Table 1. Network parameter table.

Episode Episode length Rollout thread Clip Discount Entropy coefficient
625 200 16 0.2 0.99 0.1
Buffer size Batch size FC layer dim RNN hidden dim Activation Optimizer
500 32 128 64 Relu Adam
4.3. Results

After 1,000,000 steps of training, by analyzing the experimental results, we came to
the conclusion that the PPO algorithm based on the centralized training decentralized
execution architecture performed better compared to independent training in multi-UAV
autonomous path planning tasks. As the results show in Figure 13, it is difficult for
a completely independent and distributed training method to perform well in multi-
UAV tasks. The adoption of CTDE architecture obviously and significantly improved the
performance, the reward became positive, and the performance was even improved when
the number of UAVs was larger. This proves that CTDE architecture is effective in such
distributed tasks. A center controller can coordinate all of the UAVs. However, it does
not indicate the number of UAVs, which can be unlimited. In fact, we found when there
was more than six UAVs, the center controller could not effectively handle it, due to the
dimension of joint observation being too high.

800

—— 3 UAVs:Central Training
6001 —— 2 yAvs:Central Training
3 UAVs:Independent Training

2 UAVs:Independent Training

200

-200

Rewards

-600 1 /)

400 /;if“”"

800 f

-1000
0

100 200 300 400 500 600
Train Episodes

Figure 13. Comparison of the CTDE and independent architecture.
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In addition, we carried out a set of control experiments to verify whether adding the
RNN layer could solve the problem of multi-UAV learning difficulties with incomplete
information. According to the experimental results in Figure 14, we found that adding the
RNN layer to both the actor and critic networks significantly improved the performance
of the model. Adding the RNN layer to the critic network also achieved practically the
same effect, with the convergence speed being slower. The method of only adding the
RNN layer to the actor network did not significantly improve the model performance,
and it failed to solve the problem caused by partial observations of multi-UAVs. This
result also verified our analysis: in the CTDE architecture, the critic network is the central
controller, it coordinates all of the UAVs to complete common goals through the input of
joint observations. The addition of the RNN layer to the critic network is effective, and the
problem of incomplete information is solved through the hidden state.

800

R-Critic and R-Actor
600 R-Critic

R-Actor

I

400

Baseline

200

-200

Rewards

400
600 {f,

800 {f

-1000
0 100 200 300 400 500 600

Train Episodes

Figure 14. After the addition of the LSTM layer, better performance in an average reward
was achieved.

In order to solve the decision-making problem with incomplete information, we chose
CTDE architecture and added RNN layer to utilize historical information. In model-free
reinforcement learning algorithms, reward represent an important evaluation criterion.
Similarly, value loss, policy loss, and action entropy are also key components to evaluating
algorithm performance. Value loss evaluates a value output of critic network and deter-
mines whether the prediction is accurate, and the action entropy reflects the randomness
of the actor network strategy output. Here, we hoped that the action entropy would be
larger enough to facilitate adequate exploration. The experimental results prove that our
algorithm significantly improved the performance. As shown in Figure 15, after about
300 episodes, the loss function begin to stabilize, and the rapid convergence of value loss
also showed that the value predicted by the critic network was more accurate. Similarly,
after adding an LSTM layer, the critic loss was decreased, and the policy entropy value
descended smoothly, which was a good performance and meant that the agents did not
fall into a local optimum. We did not want this value to descend too rapidly or too slowly.
Policy entropy is the variance of the output actions, and a smooth curve shows that multi-
UAVs have learned a stable policy after a sufficient exploration, because exploration is
indispensable in reinforcement learning.

Moreover, we found that adding a LSTM layer greatly improved the performance of
the algorithm. After adding an LSTM, the average reward is significantly increased, which
proved that the agent could make more correct decisions, and the policy entropy and critic
loss converge faster, which shows that our method for adding an LSTM to the network
effectively utilized historical information. The parameters of the model were continuously
updated during the training phase.
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Figure 15. Critic loss, policy loss, and entropy.

Reinforcement learning is much faster than traditional swarm intelligence algorithms
in the execution phase, and it is suitable for real-time decision-making tasks, as shown in
Figure 16. Once the training stage was completed, the weight parameters of the networks
were frozen during the execution phase. When we performed the navigation task with the
trained model, the total average reward of our method was higher and stable.

1000
—— R-Critic and R-Actor
7501 —— R-Critic
—— R-Actor
500 —— Baseline
250
(7]
kel
G
0
5
o -250
-500
-750
-1000
0 5 10 15 20 25

Test Episodes
Figure 16. Our improved algorithm performs better in test.

In the simulation platform, multi-UAV realized path planning online by the pre-model
in the inference stage as shown in Figure 17. We found that our method performs well
under the constraints of security, time, and coverage. As shown in Table 2, compared
with the state-of-the-art particle swarms optimization algorithms, our method has a better
performance in many aspects especially the speed of reference. Reinforcement learning

shows the powerful ability in real-time path planning task.

-4

Tt

Figure 17. Multi-UAV path planning in three-dimensional environment through reinforcement learn-

ing.
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Table 2. Performance comparison between our method and other state-of-the-art algorithms.

Time Cost Coverage Success Rate Reference Speed
Our method 92 57.9% 92.7% 0.126 s
RL baseline 93 54.5% 90.1% 0.115s
DPSO 97 41.2% 65.2% 1.35s
GAPSO 95 43.7% 62.1% 1.16s

5. Conclusions

In this study, we proposed a multi-UAV autonomous path planning algorithm based
on model-free reinforcement learning, which is able to adapt to dynamic environments. It
was shown that the algorithm coordinates all of the UAVs through centralized training,
which effectively lessens the difficulty of training distributed systems. When the training
stage is completed, each UAV can make optimal decisions based on its own observations.
We also introduced an RNN to remember historical information and prevent the model
from falling into the local optimum due to incomplete information caused by partial obser-
vations. Finally, we designed a joint reward function to cooperatively guide the UAVs. Our
experiments performs well in this type of task. Considering its communication capabilities
in the real world, we plan to constrain the communication range and communication
frequency between UAVs in follow-up research. The authors of [30,31] have contributed
new ideas regarding the security of UAV communication. We believe this algorithm can be
deployed to real drone swarms.
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Abstract: A decentralized swarm of quadcopters designed for monitoring an open area and detecting
intruders is proposed. The system is designed to be scalable and robust. The most important aspect
of the system is the swarm intelligent decision-making process that was developed. The rest of the
algorithms essential for the system to be completed are also described. The designed algorithms were
developed using ROS and tested with SITL simulations in the GAZEBO environment. The proposed
approach was tested against two other similar surveilling swarms and one approach using static
cameras. The addition of the real-time decision-making capability offers the swarm a clear advantage
over similar systems, as depicted in the simulation results.

Keywords: real-time decision making; decentralized monitoring; swarm surveillance algorithm;
autonomous quadcopters; swarm intelligence

1. Introduction

The decision-making capability is an important attribute, essential for designing
autonomous and intelligent systems. Agent-based real-time decision-making based on the
data collected by the swarm is proven that can increase the efficiency of the solution and
remain robust to dynamic changes and uncertainties. The aim of this work is to examine
the efficiency of a decision-making algorithm for swarms compared with other methods,
where the decision-making is not existing, and evaluate the methods with a series of metrics
in six different scenarios ensuring that the swarm can operate autonomously and safely
regarding the inter-agent collisions.

We present a scalable and robust swarm, designed for surveilling a specific area and
tracking intruders. The concept is based on that when the swarm starts its operations,
it does not have any knowledge about whether intruders exist or not in the monitored
area. The intruders spawn at random places in the world during initialization and then
there is a fixed time window in which new intruders spawn in the world. The main
algorithm behind the swarm'’s operation is a stochastic optimization-based decision-making
algorithm, responsible for selecting the next task of each agent from a large total of options.
The selection criteria are designed so that decision- making is optimized in a system level
rather than in an agent level, since we consider that global optimization provides better
results for our system. The algorithms needed to support the operation of the swarm are
described as implemented.

The key findings of our work are that a swarm with key components such as Task
allocation, Collision Avoidance, V2V communications, and V2G communications can
perform precisely and robustly a series of tasks in contrast to swarms with no cognitive
intelligence, as proven by our experiments. We can observe that when the swarm activates
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the decentralized decision-making, the effectiveness of the system is increased significantly,
as measured by a group of metrics.

Section 2 contains a brief state-of-the-art review focusing on decision-making and task
allocation algorithms. Section 3.1 introduces the UAVs and sensors used in the system. The
rest of Section 3 presents the developed algorithms and the proposed system architecture.
Section 3.7 depicts the tools used to implement and simulate the designed system. In
Sections 3.8 and 3.9, the behavior of the simulated intruders and the parameters of the
experiment scenarios are presented accordingly. In Section 4, the metrics used to assess the
algorithm and the experiment results are provided, where in Section 5 we present the key
findings of our work. Finally, in Section 6 we present the conclusions we made conducting
these series of experiments.

2. Related Work

The state-of-the-art presents a plethora of different approaches to the use of decision-
making in the task allocation problem. According to [1], the multi-robot task allocation
problem is an example of a Discrete Fair Division Problem, as an Optimal Assignment
Problem, an ALLIANCE Efficiency Problem or a Multiple Traveling Salesman Problem.
The methods to solve the multi-robot task allocation problem can be categorized to be
auction based, game theory based, optimization based, learning based and hybrid, as they
are listed below.

Auction based: In this type of approach, tasks are offered via auctions, the agents
can bid for tasks and the agent with the higher bid is assigned the corresponding task.
Each agent bids a value representing the gain of the utility function in case the agent gets
assigned that task. The utility function is designed based on the criteria of each problem and
takes as inputs the agent’s current state, the task’s description, and the local environment
perception of the agent [2]. The auctioneer might be a central agent, or as it is more
common, the auction could be held in a decentralized manner, such as in [3]. The authors
in [4] address the task allocation problem for multiple vehicles using the consensus-based
auction algorithm (CBAA) and the consensus-based bundle algorithm (CBBA), which is
a modification of the first one to be applied in multi-vehicle problems. The Contract Net
Protocol (CNP) presented in [5] was the first negotiation platform used in task allocation
problems and constitutes the base for numerous task allocation algorithms. CNP was tested
in [6] using a variety of simulation environments to solve the task allocation problem for
multiple robots. The authors concluded that because of the interdependency of the tasks
in a multi-robot task allocation problem, the original CNP approach does not solve the
problem sufficiently.

Game theory based: Game theory-based approaches describe the strategic interactions
between the players of a game. Each decision-making agent is considered a player and
the game strategy of a player consists of the tasks that the player chose. When the task
allocation solution proposed has been optimized globally, all the players will stop changing
their strategies, since the optimal outcome has been reached; that condition is called Nash
equilibrium. In [7], the authors present several applications of game-theoretic approaches
to UAV swarms. Authors in [8] proposed a decentralized game theory-based approach
for single-agent and multi-agent task assignment for detecting and neutralizing targets by
UAVs. In their scenario, UAVs might not be aware of the strategies of other UAVs and a
Nash Equilibrium is difficult to achieve. Instead, they used a correlated equilibrium.

Optimization based; Optimization algorithms focus on finding a solution from a set
of possible solutions, so that the solution’s cost is minimized, or the solution’s profit is
maximized depending on the specific problem’s criteria. Optimization techniques can be
distinguished into deterministic or stochastic methods. Deterministic methods always
produce the same results for equal inputs, while stochastic methods produce with high
probability similar results for equal inputs. Probably the most famous deterministic opti-
mization method used for task allocation is the Hungarian Algorithm (HA) [9]. The HA
attempts to solve the General Assignment Problem (GAP) in polynomial time by maxi-
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mizing the weights of a bipartite graph. In [10], the authors approach the task allocation
problem as a Vehicle Routing Problem (VRP) in order to solve a multi-agent collaborative
route planning problem. In this case, HA is employed after it has been modified to be able
to consider constrains, and a detour resolution stage has been added.

A subcategory of stochastic algorithms with great interest for us is the metaheuristics
methods which include evolutionary algorithms, bio-inspired algorithms, swarm intelli-
gence, etc. [11] presents the Modified Distributed Bees Algorithm (MDBA), a decentralized
swarm intelligence approach for dynamic task allocation, which shows great results when
compared with the state-of-the-art auction-based and swarm intelligence algorithms. In [12],
three different algorithms are presented inspired from Swarm-GAP, a swarm intelligence,
heuristic method for the GAP. Authors in [13] use a genetic algorithm (GA) optimization
for decentralized and dynamic task assignment between UAV agents. The task assignment
includes an order optimization stage, using GA optimization, for ordering the tasks from a
single-agent point of view and a communications and negotiation stage for reallocating
tasks between neighboring agents.

Learning based: A commonly used learning-based method is reinforcement learning,
a machine learning subcategory. Reinforcement learning algorithms adjust their parameters
based on the data gathered from their experiences, to achieve better behaviors. Q-learning
is a model free reinforcement learning method, which describes the environment as a
Markov Decision Process (MDP). In [14], a Q-learning implementation for the dynamic task
allocation is presented, while the adaptability of Q-learning to uncertainties is showcased
in [15], where it is used for multi-robot task allocation for the fire-disaster response.

Hybrid: Hybrid approaches combine some of the methods listed above to solve the
task allocation problem. In [16], the authors study the Service Agent Transport Problem
(SATP), a problem in the family of task-schedule planning problems, using a Mixed-integer
linear programming (MILP) of the optimization-based category and an auction-based
approach. [17] proposes an improved CNP technique for solving the problem of task allo-
cation for multi-agent systems (MAS), combining CNP with an ant colony algorithm using
the dynamic response threshold model and the pheromone model for the communication
between agents. [18] uses a CBBA-based approach, combined with the Ant Colony System
(ACS) algorithm and a greedy-based strategy to solve the problem of task allocation for
multiple robots” unmanned search and rescue missions.

The multi-agent surveillance and multi-target monitoring and tracking problem has
been studied by several researchers, and a variety of decision-making techniques have been
proposed. A gradient model for optimizing target searching based on beliefs regarding the
target’s location is presented in [19,20]. They propose a decentralized architecture for the
implementation of their algorithm, in which it is assumed that the agents’ belief is globally
known across the system, and each agent optimizes its own actions based on the global
belief. Authors in [21] present a decentralized approach, in which UAV agents are organized
in local teams, in which the target estimations are communicated. A particle filter is used
to track the targets and the estimations are approximated as Gaussian Mixtures using
the expectation-maximization algorithm. The leaders of the local teams are responsible
for dynamically assigning regions to the team members. A system of UAVs and ground
sensors is studied in [22] for surveillance applications. Targets are detected from both
the ground and aerial sensors and UAVs are assigned targets based on a decision-making
methodology, so that a multi-attribute utility function is maximized. Partially Observable
Markov Decision Processes (POMDPs) have been proposed to model surveillance missions
to deal with uncertainties. A methodology to use POMDDPs in a scalable and decentralized
system is presented in [23], based on a role-based auctioning method. In [24], an integrated
decentralized POMDP model is presented to model the multi-target finding problem in
GPS-denied environments with high uncertainty.

249



Drones 2022, 6, 357

3. Materials and Methods
3.1. Drone Characteristics
3.1.1. Drone Kinematic Model

The vehicle used in our tests is a simple quadcopter, shown in Figure 1, that can be
controlled by linear velocity commands in the X, y and z axis. The yaw of the vehicle
remains constant with small variations at its initial value, yaw = 0. For all the experiments
we assume a constant flight altitude is used.

Figure 1. The iris drone as it is visualized in the GAZEBO simulator.

3.1.2. Sensors

The camera of the agent is directed vertically downwards, as presented in Figure 2.
The camera’s field of view (FOV) for every given moment is a rectangle defined by its
height, width, and center. The center of the rectangle coincides with the position of the
drone, while the height and width are given by the Equations (1) and (2).

heightfov = 2 X altitude x tan(fov vertlzcal angle) (1)
width r, = 2 X altitude x tan(fov horzzozntal angle> o

Figure 2. The field of view of the iris drone with downwards oriented optical camera. The dimensions
of the field of view in this figure are measured for a flight altitude of 20 m.
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In our case, the flight altitude of the drones was predefined to 20 m for all the simulations
and the camera in use has fov vertical angle = 0.785 rad and fov horizontal angle = 1.047 rad.

3.2. System Overview

The system is described as a surveillance system with decentralized decision-making
capabilities and a central entity acting as a single point of truth. Each agent runs the same
code separately and can make its individual decisions. Before each decision is made the
agent asks from the central entity to provide him with information about the map /world.
That information is gathered in the central entity as each agent sends the data that he is
collecting. For every agent an identification number, unique in the swarm, is allocated.
Figure 3 shows the main data exchange between the agents and the central entity.

( \ Scan data

Path data

Agent Next square-target Central

World Map

____ N

Figure 3. Central entity and agent data exchange.

The messages exchanged between each agent and the central entity are listed below:

From an agent to the central entity:

Scan data: The scan data message includes the identification number of the agent, the
number of intruders caught in the square, the number of the intruders detected but not
caught while scanning and the 2-D coordinates of the square scanned. The message is
sent from the agent to the central entity every time that the agent transitions from the
“Scan” mode to the “Go to” mode.

e  Path data: The path data message includes the identification number of the agent
and a list of the intruders that were detected and not caught while moving from the
previous target to the next. The message is sent from the agent to the central entity
every time the agent transitions from the “Go to” mode to the “Scan” mode, since
that is when the agent has completed its path to the new target. Moreover, the path
data message will be sent if in the process of following an intruder, another intruder
gets detected.

e  Next-square target: The next target message includes the identification number of the
agent and the 2-D coordinates of the next target that the agent selected. That message
is sent from the agent to the central entity every time the agent decides on a next target.
From the central entity to an agent:

World map: The world map message is a 2-D matrix with the information about the
world, as described in Section 3.3.

The agents’ behavior consists of three different modes:

Scan: “Scan” mode is activated when the agent is in the boundaries of its square-target.
The agent delineates a zig-zag coverage pattern to surveille the whole square-target
and check for intruders in that square. If an intruder is detected, then the agent
will transit to “Follow intruder” mode. The algorithm used is described in detail in
Section 3.4.

e Go to: In this mode, the agent has decided on the next square-target and it moves
towards the target in a straight line connecting its current position and the vertex of
the square-target that is closer to the current position.
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e  Follow intruder: Independent of the previous mode, when an intruder is detected the
agent changes to “Follow intruder” mode. If the agent is already following an intruder,
it will keep following the previous intruder and when the intruder is caught the agent
will follow the new intruder if the new intruder is still in the agent’s detection range
(in the FOV of the agent), otherwise the agent will change to “Go to” mode and move
towards the next square-target. In the case that another agent is in a distance that
allows him to detect the intruder as well, the agent will drop the “Follow intruder”
mode with a probability of 0.1. That characteristic is added to avoid agent congestion
over a specific intruder or small group of intruders. The drop probability used may
seem too small, but we need to consider that the algorithm runs in a ROS node with a
frequency of 5 Hz, so for every second each agent in that situation has a probability of
0.5 to drop the mode.

The agents’ modes and the trigger mechanisms for transitioning between modes are
summed up in Figure 4.

Scan completed

h 4

Scan L Arrived at square-target (_ Go to

Intruder caught and
New New intruder detected New

intruder ﬁ intruder

detected detected
4{ Follow

o

Intruder caught

Figure 4. Agents’ mode sequence and change triggers. The three modes of the agent “Scan”, “Go
to” and “Follow” are visualized as rectangles and the transitions between the modes are arrows,
explaining the type of the cause that triggered the transition.

3.3. World Representation

The world is treated as a 2-D grid of n xn size, which consists of equal sized squares.
A similar approach to discretize the area search problem has been introduced in [25,26].
Each square corresponds to one task and each task can be assigned to one agent at any
given moment. Each agent is responsible for one task and only when that task is completed
or dropped, is when the agent can select a different task. If an agent has selected a task, the
central entity flags the square corresponding to that task, so that no other agent is able to
select the same task. If two or more agents select the same task simultaneously then the
central entity is responsible to inform one of them through a message asking to change
their task and repeat the selection process.

The central entity initializes a 2-D matrix containing the grid’s information. The
matrix is updated by the central entity based on the data that are received from the agents.
When an agent needs to select its next task considering the world information, the agent
receives the grid matrix from the central entity. Each node of the matrix includes the
following information:

e  Time of last visit: that contains the time stamp of the last time that the corresponding
node was scanned by an agent.

e  Probability: that expresses the estimated probability of finding an uncaught intruder
in that node. The probability is calculated based on the number of intruders that were
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detected and not caught in that node and in its neighboring nodes. The probability
value p; is initialized at 0.1 for all the nodes (Equation (3)). When a square-target is
selected by an agent, its corresponding node’s probability takes a negative value so
that no other agent selects that square-target until the current agent has completed
its task (Equation (4)). The probability is repaired to its non-negative value when
scanning is completed. When scan or path data are received, the probability updates
as described at Equations (6)—(10).

Initialize all square probabilities to 0.1:
pi=01Vi € Grid ®)
When a next target message is received for square i as the target assigned to an agent:
pi = pi—100 4)
When a scan message is received after scanning square i:
If pi <0 : pi = pi+100 @)
e Ifnointruders were detected in the square i after a full scan:

pi =01 (6)

e If Nintruders were detected and not caught in the square i:

Find the neighborhood n; of i (7)

Vsquarejcm o= — ®)
quarej € nj : vj = 1+ o (nax—d))
v;

Vsquarej € n; 1 pj = pj+ N x = 9

quare ] € nj : pj = pj T or ©)

Ifpi>1:pi=1Vi € Grid (10)

The value vj is computed for every square separately and it is dependent on its distance
d; from the center, since intruders tend to move towards the center and the probability of
their next move to be in a square closer to the center has a higher probability. Where dmax is
the maximum distance computed from the neighborhood to the target (in our experiments
the center of the map). Before it is added to the probability of the square, the value vj is

divided by the sum of all values vj calculated for the neighborhood so that )y ¢ ZV—\’,k =1,
where n; is the neighborhood of square i. The size of the neighborhood depends on the
speed of the intruders and the size of the squares. In our implementation, the neighborhood
consisted of only the squares adjacent to the square i, creating a neighborhood of nine
squares (3 x 3 square neighborhood), containing the square i.

3.4. Coverage Algorithm

The objective of the coverage path planning algorithms is to compute a path that
crosses over all points of an area of interest while avoiding obstacles [27]. As mentioned
above, each square of the grid corresponds to an agent’s task. The task to be implemented
is for the agent to scan the whole area of the square using a coverage algorithm. Since the
main objective of the system is to detect intruders, the scanning is dropped if an intruder
is detected, in which case the agent starts following the intruder, activating the “Follow
intruder” mode. If no intruder is detected, the task is completed when the area of the
square has been scanned.
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The scan mode is activated only after the “Go to” mode and the event that triggers
that transition is the arrival of the agent at one of the corners of the square to be scanned.
Since the FOV of the agent is considered to be a rectangle, the agent does not actually have
to be on the edges of the square for them to be scanned. We assume a rectangle smaller
than the square and with the same center (the inner rectangle as presented in Figure 5). The
height and width of the rectangle depends on the height and the width of the field of view
accordingly and is given by Equations (11) and (12).

. 2 .
height,ectangle = edgesquare — 2 X g x height g4, (11)
. 2 .
Widthyectangle = €dgesquare — 2 X g~ width oy (12)
where the heightrectamgle and the widthectangle represent the height and the width accord-

ingly of the inner rectangle, the edge,_ ... is the length of the edge of each square-target
and the height; . and width,, are the height and width of the Field Of View of the agents.

Start

End

Yy

Figure 5. Scanning movement: The agent starts at the up-left corner of the inner rectangle. Then,
the agent moves to the right along the x axis until it reaches the right edge of the inner rectangle.
After, it moves downwards along the y axis for a distance equal to two thirds of the height of the
FOV. The agent continues its movement, moving to the left along the x axis until it reaches the left
edge of the inner rectangle. Finally, the agent repeats its downwards movement until it reaches the
down side of the inner rectangle and it moves to the right until it reaches the down-right corner of
the inner rectangle.

The agent moves in the boundaries of the inner rectangle, drawing a zig-zag shaped
route. The scanning movement starts with a repeating shift on the x axis until the right-side
or left-side (depending on the starting corner) boundary is reached and continues with a
shift at the y axis for % x height, . The sequence of shifts is repeated with the direction of
the shift on the x axis to be inverted for each repetition until the upper-side or downer-side
(depending on the starting corner) is reached. When the movement is completed, the agent
has visited all the corners of the inner rectangle, and by doing so, it has scanned the whole
area of the square.

3.5. Swarm Intelligence—Decision Making

The most important part of the system is the agents’ ability of decision-making to select
their next square-target. That is handled by a stochastic algorithm, partially inspired from
the ant colony pheromone deposition [28] idea. The decision-making process is activated
when an agent has completed a task and it needs to choose the next square-target as its
task. To make its decision, it uses the world information provided by the central entity as
a 2-D matrix, containing the probability and time of the last visit of all the square-targets
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of the grid. The decision-making process is depicted in Figure 6. The agent first decides
if it will stay in its current neighborhood or travel to another neighborhood of the map.
That decision is not deterministic, and the agent chooses its current neighborhood with a
probability of 0.7, the center neighborhood with probability of 0.06 or a random square-
target with probability of 0.24. The ability to travel across the map instead of staying in
neighboring squares is added to force the agents to move around the map; this helps to
escape local minima by exploring areas of the map that have not been explored recently or
detect intruders during the flight and add more information to the world’s matrix. After
the agent decides the neighborhood of its next square-target, it needs to select the exact
square-target. It computes the margin of every square of the neighborhood based on the
Equation (13):

(time now — time of last visit)>

600 (13)

margin; = probability! x

receive world data

pick a random
number [0,1]

[0,0.24]

random (0.94,1]
number

between

(0.24,0.94]

A

v
Select Random zelect from local
Square-Target neighborhood

compute margins

select from center
neighborhood

scale margins

Yy

Select Square-Target
From Meighborhood
based on Random
Selection Wheel

Square-Target
Selected

Figure 6. Flowchart of the proposed decision-making algorithm for the selection of the next square-target.
The sum of all the margins of the neighborhood gives the margin:

Margifs,, = Z margin; (14)
i € neighborhood
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Each margin computed is divided by the margin, . to compute the probability of
selecting each square-target.

marging

—_— 15
Marging,m (15)

selection prob; =

Finally, the next square-target is selected in a non-deterministic manner and each
square-target has a probability selection prob; to be selected. After the agent selects its next
target, it informs the central entity by sending a “Next square-target” message containing
its identification number and its selected target.

For the random selection based on probabilities, a simple wheel selection algo-
rithm similar to the one proposed in [29] was developed. The algorithm is presented
in Algorithm 1.

Algorithm 1. Random selection wheel

1: Choose a random number p in the range [0, 1]

2: Create a list prob_list containing all the probabilities

3: Initializeias 0

4: Set prob as prob= prob_list[i]

5: If prob <=p

6: Theielement is selected, and the algorithm is terminated
7: Else

8: p = p-prob

9: i++

10:  Repeat from step 4

The decision-making algorithm uses the idea of pheromones and evaporation intro-
duced in the ACS, which in our case is implemented by saving the time of the last visit of
each square. The agent’s decision is based on how recently the square that it is considering
on selecting was visited. In that way, a square that has been scanned recently and hence
has higher probability of not having intruders has a lower probability to be picked by the
agent. It is clear that in our case the existence of pheromones acts as a suspending factor on
visiting an area, which is in contrast to the way that the pheromones are used in the ant
colony as described in [28], where the existence of pheromones increases the probability of
an agent to visit the area.

The probability of finding intruders in a square can also be described as an attractive
pheromone, which does not obey the evaporation phenomenon. The intruder-related
pheromone only increases until the agent scans the corresponding square, and if no intrud-
ers are detected it is decreased to its initialization value of 0.1.

We should note here that in the scenario under study the behavior of one intruder is
independent on the behavior of the rest of them. Under that assumption, it is not valid to
use the information of an intruder that has been caught to predict the behavior of the rest of
them. So, the probability of finding an intruder in a square is computed using information
regarding only intruders that were detected, but they were not caught. It would be prudent
to say that if the behavior of each intruder influences the rest of the intruders, the data
concerning the intruders that have been caught would also be useful in determining the
probability of finding an intruder in a specific area.

3.6. Collision Avoidance

The most crucial block when dealing with swarms is to ensure that each agent can
perform autonomously with safety. Hence, a collision avoidance algorithm is needed to
ensure that the agents do not collide on each other. In the literature, a variety of methods
exists with many different characteristics and capabilities. A potential field method [30]
was selected both for guiding the agents to a point of interest and for preventing inter-agent
collisions. The implemented collision avoidance method is decentralized and it requires for
every agent to be aware of the position of the other agents in a distance shorter or equal
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to 7 m by utilizing V2V communication. The collision avoidance block is enabled only at
the “Go to” and “Intruder following” modes. In the “Scan” mode, no conflicts occur, since
only one agent could be in the “Scan” mode on a particular square-target at every moment.
If two or more agents either in the “Go to” or in the “Intruder following” mode detect a
collision in their path, they all act to ensure deconfliction. If one or more agents not in the
“Scan” mode detect a possible collision with an agent in the “Scan” mode, the agents that
are not in “Scan” mode deconflict while the scanning agent continues its route.

In the “Go to” and the “Intruder following” modes, the objective is similar; navigate
to a specific point of interest while avoiding collisions with other agents. The difference
between the modes is the type of the point of interest, which is a constant point in the case
of the “Go to” mode and a moving ground target in the case of the “Intruder following”
mode. Thus, the calculation of the movement commands is conducted in the same way in
both modes.

The computed desired velocity of each agent is the sum of attractive velocity and
repulsive velocity. The attractive velocity is caused by an attractive force acting on the
agent and causing it to move towards the point of interest. The repulsive velocity is caused
by a repulsive force acting between agents, which is responsible for not allowing agents to
come too close, preventing the possibility of a collision.

The attractive velocity is analyzed at v_attr; x and v_attr; y as shown in Equations (16)
and (17) and it is dependent on the distance from the target. The coordinates of the target are

given as a 2-D point (goalirx,goali,y ), as is the position of the agent i (position, ,, positioni,y).
l; x—position; . L.
2 x SMia POTIOMx if |goal; . — position; | > 2
Z)_let?’l‘,x — |g0ali,,(7posztzoni,x|/ f |g 1,x p l,xl = (16)
goal; y — position; ,, if |goal; , — position;,| < 2
goal; ,—position;,, . .
. if \goal;, — position; | > 2
z;_attri,y = |gouli1y—p051tzoni,y| f !g iy — P z,y‘ = (17)

goal;, — position;,, if |goal;, — position;,| < 2

The repulsive velocity is also analyzed at v_rep; , and v_rep; , and it is calculated from
Equations (18) and (19), where the position of another agent j in the detection distance of
7 m is defined as (positionjlx, positionj,y), and distance;; is the Euclidean distance between
the two agents.

posztzonj,x —position; y

%;—2 X distance;; Vj:2 <distance;; <7
v_repix = osition; ,— position; .. (18)
Y2 x e PO V j:distance;; <2
7 |posztzonjrxfposttzoni,x| ’
position;, —position; . . N
%;—2 X Jistance,,; Vj: 2 <distance;j <7
v_repiy = osition;, — position; . . (19)
Y Y2 x ey POy Vj: distance;; <2
7 | position;,, —position;,, | ’

The overall desired velocity is expressed in the x, y axes as vj x and v; ; for each agent
i, and it is computed from Equations (20) and (21).

U x = U_attr;y +v_rep; (20)

Uiy = v_attri, +v_rep;, (21)

The computed velocity here is the desired velocity of the agent and it is sent to the
autopilot, who is responsible for achieving it in a robust and efficient manner. That provides
us with the freedom of not having to ensure the continuity of the velocity functions. If
the velocities computed here were fed directly to the motors, the continuity of the velocity
functions should be ensured, either by computing the velocity indirectly via computing the
attraction or repulsion forces, or by adding a maximum velocity change step.
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One of the main problems caused by the potential fields family of algorithms is the
existence of local minimum that cause the agents to immobilize before they reach their
goal [31]. Local minima could be resolved with three approaches: Local Minimum Removal,
Local Minimum Avoidance and Local Minimum Escape (LME) [32]. Since the environment
that we are working in does not contain any static obstacles, the agents could fall into local
minimum caused only by the existence of other agents nearby. We choose to resolve local
minimum using a local minimum escape method. In the LME approaches, the agents reach
a local minimum and then an escape mechanism is triggered to resolve it.

The local minimum detection and resolution is implemented in a decentralized manner
by each agent separately. After the agent has computed its desired velocity, it checks if
he is trapped in a local minimum. If the agent’s desired velocity is equal to zero (using a
threshold near zero) and his attractive velocity does not equal to zero, then the agent is
considered trapped. At that point, the agent assumes that all the other agents from which
the agent is currently deconflicting are also trapped in the same local minimum. The agent
computes the average position of all agents trapped in the same local minimum.

Z?;gapw’d position;

osition inimum .
p lOCﬂlmmlmllm n_trapped ( )

where n_trapped is the number of the agents trapped in that local minimum and i belongs
in the set of agents trapped in that local minimum. Each agent i performs a circular motion
around the position;,,; . in an anti-clockwise direction with a constant speed. The
agent recomputes its desired velocity in every time step and it continues with the circular
motion until it is no longer trapped, in which case it continues with its path.

3.7. Implementation—Simulation

To validate our algorithms and the effectiveness of our system, we performed a series
of experiments in simulated worlds. To make our swarm more realistic and applicable to
real world scenarios, we decided to use the famous robotics framework ROS [33]. Using the
ROS architecture capabilities, we can add to our system all the desirable aspects for every
block we described. The nodes were developed at C++ and python and the ROS version
used was ROS melodic. The simulations were conducted using the GAZEBO 7 physics
engine [34], where the PX4 autopilot [35,36] was used to control the drones and the selected
vehicle was the iris quadcopter, as provided by the PX4.

The central entity is managed by a python script that creates a ROS node is named
the central_node, while a ROS node named drone_node was developed in C++ to control
the agents. For each agent, an instance of the drone_node runs, given different values
for each node. The essential data for each drone_node instance initialization are: the
identification number, and the x and y cartesian coordinates of the corresponding agent’s
spawn position. The drone_node instances also send control commands with the desired
velocity in the x, y and z axis to the PX4 autopilot. The intruders are managed by a python
script, which creates a ROS node named intruders_node. The intruders_node is responsible
for spawning them and moving them, as described in Section 3.8, and keeping logs of the
metrics presented under Section 4.2. All of the components described communicate with
each other by exchanging messages (publish or subscribe) to specific ROS topics. For the
communication of the node developed by our team, special message types were developed
to include the exact types of variables needed.

Figure 7 presents the overall system architecture of the implementation of a swarm
containing two agents only for demonstration purposes. The figure has been produced
from the rqt_graph ROS tool. The nodes are represented by eclipses, while the arrows
connecting them represent the topics which they use to exchange messages. The gazebo and
gazebo_guinodes are related to the simulation and the simulation’s graphical user interface.
The uav0/mavros and uavl/mavros nodes’ purpose is to transfer information between
the ROS environment and the autopilot [37]. The MAVROS package [38] enables the data
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/uav

/gazebo_gui

exchange between ROS nodes and autopilots equipped with the MAVLink communication
protocol [39]. The nodes central_node, drone_node0 and drone_nodel were implemented
by our team.

/uav0

It

/uavl

/mavros/global position/,

- /uav0/mavros/state
/tf . -
_lﬂbﬂl-//—— /uav0/mavros /uav0/mavros/setpoint_position/local 1av0/globalPose

/tf static

/uav1/globalPose /drone_node0 /ScanningInfo

/uav l/mavros/state /uav1/globalPose

/uav0/globalPose

/ScanningInfo

/uav 1/mavros/setpoint_position/local /drone_nodel /central_node

/World

Figure 7. The rqt graph with the ROS nodes. The rqt graph includes two agents and the central entity
for simplicity. The ROS nodes are represented by ellipses while the ROS topics used for message
exchange between the nodes are the arrows connecting them. The/uav0/mavros and/uav1/mavros
nodes are created from the mavros ROS package to enable the communication of the ROS nodes with
the drones’ firmware.

3.8. Intruders’ Behavior

In this section, we will present the intruders’ behavior. An intruder in our simulations
can be ground moving objects (either people or robots with constant speed and smaller
in amplitude to the drone’s speed). An intruder’s goal is to reach the center of the world
and stay there for 10 s. The attributes defining the behavior of the simulated intruders are
summarized here:

e  Spawn positions: It is assumed that the world was not being surveilled before the
simulation starts, so at the beginning of the simulation, five intruders are spawned at
random positions through the world. After that, the intruders are spawned only at the
edges of the world, randomly distributed along the four edges of the boundaries of
the world.

e  Spawn time: Spawn time is defined as the time interval between the spawn of two con-
sequential spawning groups of intruders after the simulation starts. In our simulation,
that value was constant and equal to 10 s and the size of the spawning group was set
to two intruders, so every 10 s, two more intruders were spawned in the simulation.

e  Movement type: The intruders’ goal is to reach the target, so each intruder’s average
movement is on a straight line starting from its spawn position and ending at the
target. To recreate a more realistic movement pattern, a stochastic element is added to
the constant velocity movement. For every four steps that the intruders make, three of
them are the right direction and one of them is in a random direction. After reaching
the target, the intruders stay over it for 10 s before they complete their mission. If an
intruder completes its mission, it is removed from the simulation.

e  The intruders are simulated as non-dimensional points with holonomic movement.
Since the intruders are assumed to be non-dimensional, inter-intruder collision is
not considered.

e  Anintruder is considered caught after it has been tracked by an agent for a predefined
tracking time. When an intruder is caught, it is removed from the simulation and the
metrics related to the caught intruder are saved.

e An intruder is considered alive from its spawn time until it is caught, or it reaches
the target.

e Anintruder is detected from an agent, if the intruder is in the FOV of the agent’s camera.
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3.9. Scenario

Six scenarios were designed to test the performance of the algorithm. Each scenario

has a different world size and swarm size to evaluate the scalability of the algorithm. The
parameters to describe each scenario are listed below:

World size: the size of the simulated world.

Grid size: the size of the grid applied in the world.

Square size: the size of the individual square of the grid depends on the size of the
world and the size of the grid and is calculated based on the Equation (23).

world size

square size = ——
1 grid size

(23)
Swarm size: the number of the agents of the swarm.

Environment type: an empty environment was selected with no static obstacles that
would cause collision risks and visibility constraints.

Simulation duration: the duration of the simulation remained constant for all three
scenarios at 33 min in real time simulation.

Intruders spawned: the total amount of intruders spawned during the simulation;
that value is constant at 401 intruders for all the scenarios and experiments that
were conducted.

Intruders” average speed: That is computed by dividing the average time that the
intruders need to reach the target by the average distance between their spawn position
and the target.

Target: The target is defined as the center of the world.

Intruder tracking time: That is defined as the duration of time that an agent needs
to track an intruder for the intruder to be considered caught. That was set to 10 s for
all scenarios.

Density of agents: That is defined as the number of agents of the swarm divided by
the world area.

Table 1 summarizes the different parameters used between the different scenarios.

Two sets of scenarios were designed, such that the density of the agents is maintained
constant for all scenarios of the set. The size of the surveilled area, the swarm size and the
speed of the intruders was changed in every scenario. The speed of the intruders changed
proportionally to the area size to maintain the time of the intruders’ life constant and test
the algorithms in increasingly difficult scenarios.

Table 1. Scenarios’ parameters.

Set1 Scenario 1 Scenario 2 Scenario 3
World size 100 m x 100 m 140 m x 140 m 200 m x 200 m
Grid size 10 x 10 14 x 14 20 x 20
Swarm size 4 8 16
Intruders’ speed 0.28 m.s~! 0.39 m.s~! 0.56 m.s~!
Set 2 Scenario 1 Scenario 2 Scenario 3
World size 150 m x 150 m 210 m x 210 m 300 m x 300 m
Grid size 15 x 15 21 x 21 30 x 30
Swarm size 4 8 16
Intruders’ speed 0.42 m.s~! 0.59 m.s~! 0.84 m.s~!

In each scenario of the same set, the world size, number of agents and speed of the

intruders is increased proportionally, aiming to examine the scalability of our system.

4. Results

In this section, the results from all the experiments conducted are presented.
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4.1. Collision Avoidance

A separate scenario was designed for testing the collision avoidance algorithm devel-
oped. The scenario is simplified to focus on the collision avoidance. Each agent was given
a specific destination point, so that several conflicts would occur in different or in the same
position for multiple agents.

Figures 8 and 9 show the results of a collision avoidance simulation test using four
agents. The agents are spawned simultaneously at the vertices of a rhombus and are
assigned to go to the opposite vertex. All four of the agents detect the collision and
deconflict. Figure 8 presents the trajectories of the four agents, while they conduct their
individual mission and avoid collision with the other three agents. The trajectory of each
agent is slightly altered to ensure a collision-free path, but the added cost of the path is not
significant, considering that the agents replanned in real-time.
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Figure 8. The agents’ paths during the collision avoidance experiment. For this experiment, four
agents were used and spawned simultaneously at the vertices of a rhombus. The agents were tasked
to travel to the opposite vertex while using collision avoidance to ensure a safe flight. As expected,
their paths intersected at the center and they adjusted their velocities to avoid collision.
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Figure 9. Minimum inter-agent distance in every moment where the red horizontal line is the 2 m
distance boundary, the minimum allowed inter-agent distance. The graph is based on the same
experiment that is presented in Figure 8.

Figure 9 is a diagram of the minimum inter-agent distance for every time step. The
minimum measured inter-agent distance decreases significantly around the time value of
20 s, since the agents were in the center area deconflicting at that time, but it remains higher
than the minimum allowed inter-agent distance, which for safety precautions was set to
2 m in our experiments.

4.2. Metrics

We propose a set of metrics that can be used to quantify the efficiency of our proposed
algorithm regarding the detection of intruders and the area coverage to assess the decision-
making process.

Intruder-related metrics:
Number of intruders caught: The sum of the intruders that the agents caught during
the simulation run.

e  Number of intruders reached the target: The sum of the intruders that reached the
target during the simulation run.

e  Average time of intruder’s life: The average alive time of all the intruders during the
simulation independently if the intruder was alive or not at the end of the simulation,
measured in seconds.

e  Average time of intruder’s life for caught intruders: The average alive time of the
intruders which were caught during the experiment, measured in seconds.

e Average time of intruder’s life for reached intruders: The average alive time of the
intruders that successfully reached the target, measured in seconds.

e  Decision metric: The decision metric is the average time interval between two succes-
sive decisions of one agent. It is measured in seconds.

e  Coverage metric: The coverage metric is defined as the percentage of the world that
has been covered by the swarm. That metric is initialized every teoverage seconds,
where tcoverage Was set to teoverage = 180 s for our simulations. That metric is an
indication of how effectively the area of interest is covered, but it is of less importance
than the intruder’s metrics in our case. We can easily understand that this metric
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ensures us about the correct functionality of the decision-making process. Figure 10
shows an example of the coverage metric.

Figure 10. Coverage example with 10 agents, 78.02% coverage. The grey area depicts the coverage
that the agents succeeded as a group in 180 s.

4.3. Competing Algorithms

Three competing surveillance methods were developed and implemented to compare
their results with our method.

e  Map division: The area of interest is divided into n rectangles, where n is the number
of the agents of the swarm. Each agent undertakes the surveillance of one of the
rectangles. The first action of each agent is to compute their rectangle and to move to it.
After that, each agent changes to mode “Scan” and starts scanning the rectangle using
zig-zag-like coverage. If the agent detects an intruder, it changes to “follow intruder”
mode. When the intruder is caught, the agent carries on with scanning if the agent is
in the boundaries of its rectangle. Otherwise, the agent changes to the “Go to” mode
until it is in the boundaries of its rectangle and then changes to “scan” mode. Collision
detection and avoidance is only activated if the agent is out of the boundaries of its
rectangle since the rectangles do not overlap and there is no risk of collision when all
the agents are the boundaries of their own rectangle. Algorithm 2 is used to divide the
map into squares by setting the number of columns, nc, and rows, nr.

Algorithm 2. Map division

1: Set n the number of drones in the swarm
2: If the square root of n is an integer

3: root=nc=nr=+/n

4: Else

5: nc = round (y/n)

6: nr=1

7: While nc > 0 and n% round(root) ! =0
8: nc = round (root)

9: a

nr=ﬂ

10: root = root -—1

After the number of rows and columns is computed, each drone calculates the vertices
of its square based on its ID, the world size, the coordinates of the center of the world and
the computed number of rows and columns.
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(a)

e Random decision: In this scenario, the agent’s modes are the same as in our proposed
algorithm, but the swarm intelligence has been removed. The agents do not make
decisions based on the world information and the central entity does not exist. The
agents select the next square-target at random each time.

e  Static cameras: In this scenario, the agents take off and hover statically over a specific
predefined position, different for each agent acting as static cameras. They are not
allowed to follow intruders. Figure 11 presents the configuration of the static cameras
for each scenario.

(b) (c)

Figure 11. Positioning of the static cameras for scenarios 1, 2 and 3 accordingly at (a-c). The gray
rectangles represent the field of view of the agents.

4.4. Experiment Results

This section includes the experimental results of the simulations conducted to assess
the efficiency of our proposed algorithm and to compare the results with the competing
algorithms. Each experiment was run five times and the results were averaged to be
presented here. The number of intruders reached the target and the number of intruder-
caught metrics are the most indicative of all the metrics used to assess the algorithms, since
preventing the intruders from reaching the target is the main objective of the system.

In Figure 12, the results are presented for our first group of tests, where we maintain
a UAV density of 25 square-targets per UAV. To keep the density constant, the area is
increased linearly with the number of UAV agents. On the first graph of Figure 12, the
results for 4 UAVs indicate that our decision-making algorithm outperforms all other
algorithms, by letting just 10 intruders to reach their target. The random decision algorithm
and map division algorithm perform closely to each other with 35 and 40 intruders reaching
the target, respectively, and lastly, the static camera approach failed to catch most of the
intruders, as 328 reached their target. We can observe that the proposed algorithm performs
almost 350% better for the number of intruders reaching the target metric than the second
best, which is the random decision.
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Figure 12. Intruder metrics for the first set of experiments. The three scenarios of set 1 correspond to
(a—c) accordingly. (a) Scenario 1 of Set 1. A total of 4 UAVs for a world of 100 m x 100 m. (b) Scenario
2 of Set 1. A total of 8 UAVs for a world of 140 m x 140 m. (c) Scenario 3 of Set 1. A total of 16 UAVs
for a world of 200 m x 200 m.

Our decision-making algorithm was able to catch 364 intruders, 22 more than the
random decision algorithm and 26 more than the map division approach, by allocating
resources in intruders’ clusters, mostly close to the map center, where intruders converge.
This in return increased the average alive time of caught intruders to 124 s, 22 more versus
both the random decision and map division approaches. In this scenario, the system is
stressed due to the low number of UAVs in comparison to the number of intruders, which
results to most of the time being spent following intruders instead of actively searching.
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When 8 and 16 UAVs are used as shown in the second and third graphs of Figure 12, we
see that the decision-making algorithm performs similarly to the random decision one,
with the map division approach performing a bit worse. The similar performance of the
first two algorithms is explained by the low density of 25 square-targets per UAV, which in
return minimizes the benefits of decision-making since a random approach still has a high
chance of finding intruders. In all tests, static cameras proved inefficient and map division
fell behind likely due to the inability of the system to migrate resources to hotspots.

In Figure 13, results are presented for the second experimental set, while we maintain
a UAV density of 56 square-targets per UAV, more than twice higher than in set 1. In
the first graph of Figure 13, the results for scenario 1 of set 2 are presented for four
UAVs. The decision-making algorithm outperforms the three competing algorithms, but
the performance is still rather poor, letting 33 intruders reach their target. The random
decision algorithm and map division algorithm perform closely with 90 and 84 intruders
reaching the target, respectively, and lastly, the static camera approach failed to catch most
of the intruders, as 319 reached their target. The decision-making algorithm was able
to catch 337 intruders, 48 more than the random decision and map division algorithm,
which performed equally in this metric, while static cameras caught only 36 intruders. The
problem described in the previous set of scenarios when four UAV agents are involved, is
furtherly amplified by the increase in map size to achieve 56 square-targets per UAV. The
average alive time of the caught intruders is 155 s, 42 more versus the random decision
and 23 more versus the map division approach. These critical metrics show the worst
performance than the first group of tests, attributed to the increased map size while still
using four UAV agents.

When 8 and 16 UAV agents are used, as shown in the second and third graphs of
Figure 13, the benefits of decision making are clearer when compared to other approaches
as the higher amount of squares per UAV agent allows for a significant chance of a random
decision being wrong. When 8 UAVs are involved, 20 intruders reached their target using
the decision-making algorithm, 46 for random decision, and 43 for map division, which
performed once again roughly equally. Static cameras once more proved to be significantly
worst in these tests, as 302 intruders reached their targets. The decision-making system
caught 355 intruders, 26 more when compared to random decision and 28 more when
compared to map division. The trend continues for 16 UAVs with decision making having
a large lead, catching 350 intruders, and missing just 24 intruders. In this case, the random
decision proved better than map division, as 40 intruders reached their goal and 337 were
caught, while the results were 58 and 321, respectively, for map division. Map division
underperforms, likely due to the inability of the system to migrate resources to hotspots.

In all of the experiments presented above, the intruder speed was increased propor-
tionally to the world’s dimensions in an attempt to keep the difficulty equal in that regard.
In Figure 15, the performance results of an extra scenario are presented for the case when
16 UAVs are deployed and 56 square-targets are assigned to each UAYV, such as in the case
of the scenario 3 of set 2. In this experiment, the speed of intruders was not adjusted to the
world’s dimensions, and it had the value of 0.28 m.s 1. Intruders were not able to reach
their target for the decision-making, random decision and map division approaches, and
the average duration of their life is comparable for the three approaches. The excellent
performance of the three approaches was probably caused by the long life-time required
for an intruder to reach the target in this scenario. It seems that the increase in the world
size would create a severe advantage for all approaches, and the results would not give a
clear comparison between the approaches. Based on those results, an adjustable intruders’
speed has been selected for all the experiments presented above.
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Figure 13. Intruder metrics for the second set of experiments. The three scenarios of set 2 correspond
to (a—c), accordingly. (a) Scenario 1 of Set 2. A total of 4 UAVs for a world of 150 m x 150 m.
(b) Scenario 2 of Set 2. A total of 8 UAVs for a world of 210 m x 210 m. (c) Scenario 3 of Set 2. A total
of 16 UAVs for a world of 300 m x 300 m.

Figure 14 focuses on the number of intruders that reached the target for the different
scenarios of each set. Plot (a) shows that the number of intruders to reach the target is
relatively stable across the scenarios of set 1 and maintained in low values for the decision-
making approach. That indicates that the system’s performance fits the specific density
used in set 1 of one UAV agent per 25 square-targets. The random decision and map
division approaches demonstrate similar results to the decision-making approach as the
size of the swarm increases, indicating that the number of UAVs is enough for monitoring
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the given area, even for systems with no decision-making capabilities. Plot (b) presents the
same metric for the second experimental set. In this case, the density of UAVs per square-
target is lower and the advantage of using agents capable of decision-making is clearer, as
the proposed decision-making approach outperforms the three competing approaches.
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Figure 14. The intruders reached target metric depending on the number of UAVs for the four
approaches. Graphs (a,b) correspond to the experimental sets 1 and 2 accordingly. (a) Number of
intruders to reach target for scenarios of set 1. (b) Number of intruders to reach target for scenarios of
set 2.
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Figure 15. Intruders’ metrics for a scenario of 16 UAVs in a 300 m x 300 m world, with the intruder
speed at 0.28 m.s 1.

Table 2 sums up the decision-making metric average results for the six scenarios. The
time interval between two subsequent square-target selection is shorter for the decision-
making algorithm than for the random decision that is explained because the random
decision allows the agents to travel across the map in each decision, while the decision-
making algorithm urges agents to stay in their neighborhoods with a large probability. By
maintaining the decision-making metric small, the system will have a quicker reaction to
new intruder data.

Table 2. The average of the decision metric in seconds for all the experiments and scenarios for the
decision making and the random decision algorithms.

Set1 Scenario 1 Scenario 2 Scenario 3
Decision making 409 s 33.8s 38.7s
Random decision 71.2s 63.4s 66.7 s

Set2 Scenario 1 Scenario 2 Scenario 3
Decision making 46.7 s 444 s 53.8s
Random decision 754 s 75.8 s 93.6s

Table 3 presents the average of the coverage metric for each scenario and implementa-
tion. It is noticeable that the random decision implementation offers a larger area coverage
for each scenario. Before extracting any conclusions concerning the efficiency of the algo-
rithms based on that metric, it should be noted that larger area coverage does not result
to more efficient area coverage. The reason behind the lower area coverage provided by
the decision-making algorithm is that agents tend to cluster over areas with high intruder
density, which enables the detection of a larger amount of intruders.
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Table 3. The average of the coverage metric for all the experiments and scenarios for the four
competing algorithms.

Set1 Decision Making Random Decision =~ Map Division  Static Cameras
Scenario 1 68.41% 83.14% 73.89% 15.29%
Scenario 2 76.02% 87.2% 80.1% 15.59%
Scenario 3 82.64% 89.82% 87.23% 15.28%

Set 2 Decision making Random decision =~ Map division Static Cameras
Scenario 1 42.7% 62.32% 38.78% 6.8%
Scenario 2 53.87% 68.95% 40.79% 6.9%
Scenario 3 59.34% 67.41% 53.1% 6.8%

We can see in Figure 16 that the swarm manages to cover a big size of the area to be
surveilled and is not biased in the selection of the next grid by selecting only certain areas
of the world, resulting in the even distribution of the selection across the map based on
the collected information. It is clear that of the two sequential coverage measurements
in Figure 16a,b, that the swarm covers all the map and does not show preference to
specific areas.

(a) (b)

Figure 16. The coverage metric results for the decision-making algorithm in scenario 1 of set 1.
(a,b) are two sequential measurements of the coverage figure.

Even though mostly two of the proposed metrics (the Number of intruders caught,
and the Number of intruders reached the target) are used for the efficiency assessment of
the algorithms, the rest of the metrics are of importance as well. All the proposed metrics
are good indicators of how well tuned the decision-making algorithm is. It is a subject of
further research to determine the exact equations to compute all the algorithm’s parameters
based on those metrics.

5. Discussion

Decision making is a crucial ability for autonomous systems and especially UAV
swarms. It is an open-research area with most researchers in the field focusing on devel-
oping the theoretical background of the decision-making algorithms, while we propose
a new optimization based, stochastic algorithm for real time decision making, and we
describe the whole system implementation after testing it in SITL simulations. The literate
review presented in Section 2 shows that there are multiple methods to approach the task
allocation problem, offering a variety of solutions that provide different architectures and
benefits. The proposed UAV swarm shows great scalability results, is considerate regarding
the communication bandwidth, and reacts quickly to dynamic changes and uncertainties.
Our system’s nature is adaptable to information gathered from the environment and it
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dynamically reacts, facilitating global optimization. The decision-making algorithm has
been designed to be decentralized and scalable ensuring fault tolerance through the opera-
tion of the system if UAV agents of the system suffer failures. Moreover, it is designed as
a surveillance system for defense purposes of a friendly area, but it can be adapted to be
used in multiple fields such as research missions in the research and rescue field, wildlife
tracking missions, and wildfire monitoring missions. The algorithm can easily be modified
to be optimized depending on the specific behavior of each intruder, or any other type of
agent/object that the system is interested in observing and monitoring.

6. Conclusions

We present a system consisting of multiple UAV agents, designed for area surveillance
and intruder monitoring. In addition to the state-of-the-art decentralized decision-making
algorithm that is proposed, the supportive algorithms were also designed and implemented.
The system was originally fine-tuned for a scenario with a swarm of four agents and a world
size of 100 m x 100 m (scenario 1 of set 1). The results for this scenario are 363.6 intruders
caught over the 401 intruders introduced in the world for our decision-making algorithm
and 342.2, 337.6 and 24.4 accordingly for the random decision, map division and static
cameras implementations. The average value of the intruders reaching the target for this
scenario is 9.8 for our decision-making algorithm and 35.4, 39.4 and 328 accordingly for
the random decision, map division and static cameras implementations. Overall, the
system was tested in two experimental sets, maintaining a constant density of UAV agents
per monitored area across the set. Each set included three scenarios, varying in the size
of the swarm, the size of the world, and the intruders’ speed. In all six scenarios, the
proposed algorithm demonstrates superior results to the three competing systems. The
proposed approach demonstrated comparable results across the three experiments of each
set indicating that the UAV density is a stronger factor in the system’s performance than
the size of the monitoring area. That shows the scalability characteristic of the system. One
exception to the stable performance of the system was identified for the first scenario of
the second set, in which the system seems to have reached its limits, as the number of the
intruders and their relatively high speed caused agents to chase intruders for most of their
operational time, and the decision-making algorithm demonstrated a lower performance.
As a result, we conclude that the existence of cognitive intelligence in a swarm is crucial
and produces much higher situational awareness as opposed to the cases where the swarm
is selfish and each agent act on his own without utilizing any shared information. The
overall system was tested in real time simulations and demonstrated an improvement up to
350% when compared with similar systems that lacked the decision-making ability. Though
the proposed decision-making algorithm was designed to be decentralized, the presented
communication scheme of this work requires communication with a central agent, as the
necessary processing power of the described central agent is very low, and that processing
load may be allocated to the agents. Future work shall include the implementation of a
decentralized communication layer for the world map data.

The key contribution of the present paper is the description of a decentralized decision-
making algorithm designed for area monitoring and intruder tracking by a swarm of UAVs.
The overall system was implemented to support the testing of the algorithm, including
collision avoidance and area coverage algorithms. The system was developed in ROS and
simulated in GAZEBO with swarms of up to 16 quadcopters. Experiments of this study
included intruders incapable of planning to avoid UAV agents. Future research shall focus
on adding strategy to the intruders” behavior and more elaborate models of estimating
the intruders’ near-future locations. It is of interest to investigate how the system will
perform when faced with smarter intruders upgraded with self and group strategies to
achieve their goal of reaching the target. We believe that the system’s performance can be
enhanced by the addition of alternative stochastic models describing the probability of an
intruder’s presence, especially in the case of intruders capable of strategic planning and
collaboration. Finally, future research will also include the development of object detection,
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target tracking and localization techniques for detecting and following the intruders. This
will allow us to study the uncertainties added during intruder detection and localization
and may demonstrate some of the limitations of the system.
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