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FPGA-Based High-Throughput Key-Value Store Using Hashing
and B-Tree for Securities Trading System
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Abstract: Field-Programmable Array (FPGA) technology is extensively used in Finance. This paper
describes a high-throughput key-value store (KVS) for securities trading system applications using an
FPGA. The design uses a combination of hashing and B-Tree techniques and supports a large number
of keys (40 million) as required by the Trading System. We have used a novel technique of using
buckets of different capacities to reduce the amount of Block-RAM (BRAM) and perform a high-speed
lookup. The design uses high-bandwidth-memory (HBM), an On-chip memory available in Virtex
Ultrascale+ FPGAs to support a large number of keys. Another feature of this design is the replication
of the database and lookup logic to increase the overall throughput. By implementing multiple
lookup engines in parallel and replicating the database, we could achieve high throughput (up to
6.32 million search operations/second) as specified by our client, which is a major stock exchange.
The design has been implemented with a combination of Verilog and high-level-synthesis (HLS) flow
to reduce the implementation time.

Keywords: key-value store; Field-Programmable Gate Arrays (FPGA); high-level synthesis (HLS);
system performance; B-Tree; hashing; CAM-content addressable memory; high-bandwidth memory
(HBM); Block-RAM (BRAM)

1. Introduction

Key-value search is one of the most basic operations of data processing. Key-value
search has a wide range of applications such as forwarding table lookup in routers, directory
search, data deduplication in storage, stock trading, and graph search. Most of these
operations require line rate processing, so low latency is an important requirement for the
key-value search.

Field-Programmable Gate Arrays (FPGAs) [1] are programmable digital integrated
circuits that allow a hardware designer to program the customized digital logic as per the
requirement. FPGAs are widely used in the field of financial processing. A well-known
example of the application of FPGA in financial systems is the deployment of FPGAs in the
London Stock Exchange for securities trading [2]. FPGAs support dynamic reconfiguration
in contrast to ASICS, which is a very important feature in the design of trading systems
as frequent changes in the algorithms are required. Furthermore, the number of stock
exchanges is not large enough to justify the use of ASIC technology, which will be costly
when the volumes are not very high.

In this paper, we describe the design of a key-value store (KVS) for a securities trading
system that needs to support a very large number of keys (up to 40 million). Since the
KVS is used for a securities-trading application, its functionality and specifications are
different from a conventional KVS. KVS systems typically support search, insert, and delete
operations. In a search operation, a key is input into KVS, and data corresponding to the
key is retrieved. In an insert operation, a new key along with the data is written into the
database, while in a delete operation, the key and the corresponding data are removed

Electronics 2023, 12, 183. https://doi.org/10.3390/electronics12010183 https://www.mdpi.com/journal/electronics
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from the database. We list the specifications of our KVS and the differences between the
functionality of our KVS and the conventional KVS. These specifications have been received
from a major stock exchange, which is our client:

1. KVS has to support 40 million keys. This is based on the number of clients the stock
exchange has to handle. There is one key for each client, and the number of clients is
20 million and is expected to grow to 40 million in the future.

2. The key length is 128 bits.
3. Key length is fixed, and KVS does not support variable length keys.
4. KVS supports search, insert, and delete key operations.
5. The throughput of the KVS should be 4 million search operations/s (the order pro-

cessing rate of the stock exchange is 2 million orders/s, which is expected to increase
to 4 million orders/sec in the future. One order generates one search request).

6. Data associated with the key are 128 bits.
7. Insert and delete operations are performed in bulk, and unless insert and delete

operations are completed, the corresponding key is not searched for.
8. Insert and delete operations performed in bulk should not affect search operations.

It should be possible to perform search operations in parallel with bulk insert and
delete operations. Search operations need to be carried out at the line rate.

It can be seen from above that the features of our KVS are rather different from
those of a conventional KVS [3]. In a conventional KVS, insert and delete operations are
dynamic and typically not performed in bulk. While insert and delete operations are
being performed, search operations cannot be performed in parallel. Furthermore, in a
conventional KVS, if insert and search operations are pipelined, there is a possibility of
a read-after-write (RAW) hazard if the insert operation is not completed (committed to
the memory) before the search operation. This situation does not arise in our KVS since
the search operation for the newly inserted key will not be performed until the insert is
completed, i.e., insert data are committed to memory. Newly inserted keys correspond
to the new clients added to the stock exchange, and these clients will not start sending
the trade requests (which will generate search operations) until the database is completely
written to the memory. New clients and their data are, however, added in bulk as stated
above in the specifications.

This paper is organized as follows—in Section 2, we describe the related work. In
Section 3, we describe the operation of the trading system and the role of KVS in a trading
system. Section 4 discusses the architecture of KVS in detail and Section 5 discusses
simulation results. We conclude the paper in Section 6 regarding future work.

2. Related Work

Key-value stores have been traditionally implemented with x86 servers [4,5], but they
are not optimized for this kind of workload. The processor’s last-level data cache is not
effectively used due to the random-access nature and memory size of the application.
Furthermore, the throughput and latency are affected by the high latency of the TCP/IP
stack implemented with the software. Therefore, these key-value stores are not suitable for
financial and trading systems where line rate processing is required and latencies have to be
low. With the FPGA technology, we can implement data flow architectures, and instruction-
and task-level parallelism in FPGAs can be used to significantly increase the throughput
and reduce the latency—an important requirement for line rate processing.

Key-value (KVS) stores can be implemented in FPGA logic using techniques such as
hash tables, CAMs, and B-Trees [6–9]. The main challenge with the hashing technique is
handling the case when multiple keys map to the same hash index (which is called a hash
collision) while maintaining consistent throughput levels. One well-known approach to
avoid collisions completely is to use perfect hashing [10]. If all the input keys are previously
known, collisions can be avoided using a customized hash function. The key benefit of
this approach is that all search operations can be performed in O (1) time. This approach
is not, however, suitable for trading systems that use cases as the input keys are dynamic
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and previously unknown. The keys continue being added in bulk as new customers are
registered in a trading system. Another technique to handle the collisions is to store the
colliding keys in a dynamically linked list often referred to as a bucket, which is pointed to
by a hash index. However, keys need to be accessed sequentially and compared with the
input key, which increases the time for the search operation. We can allocate fixed space to
store the colliding keys contiguously in a bucket so that the keys can be read in a burst from
off-chip memory. The keys read from memory can be compared in parallel in FPGA logic by
using multiple comparators operating in parallel. This approach is used in [11]. However,
allocating a fixed storage space results in non-optimal memory utilization if a small number
of keys map to the particular hash index. This is especially true if we are using an on-chip
BRAM to store the colliding keys. To overcome this problem and conserve BRAM (which is
a scarce resource in the FPGA), our design uses a novel technique of hashing with buckets
of different capacities (by different we mean buckets of pre-determined sizes of 1, 4, 8, and
16) as explained later.

In a trading systems application, 90% of the search requests are generated by 5% of
users referred to as active users. We keep the keys and the corresponding data values for
up to 1 million active users in BRAM/UltraRAM. The actual number of keys stored in
BRAM/UltraRAM will depend on the collision pattern. This is to increase the overall
throughput of KVS. The data of approximately 39 million users is kept in on-chip high-
bandwidth memory (HBM). We have a very large amount of HBM—16 GBytes available in
the FPGA, which we are using for implementing the KVS. While we are using a hash-based
lookup engine for keys stored in BRAM, we are using a B-Tree-based lookup engine for keys
stored in the HBM. An alternative to B-Tree is to use the cuckoo hashing technique [12–14]
in which items are stored in one of the two possible locations. With cuckoo hashing, search
operations take a constant time; however, insert operations pay the cost of collisions. Insert-
ing a new key can result in ‘cycles’, and in the case of a cycle, new hash functions are chosen
and the whole data structure needs to be ‘rehashed’. Multiple rehashes might be necessary
before Cuckoo succeeds. This results in very high response times for insert operations.
Consequently, this approach becomes unsuitable for our application, considering the large
number of insert operations performed in bulk. To simplify insert operations, we use the
B-Tree approach in which insert and delete operations will be handled in software while
the search operations will be executed in hardware. Because of the above-mentioned points,
we use hashing for implementing lookups in BRAM, which can store a relatively small
number of keys, and B-Tree for implementing lookups in HBM, which can handle a very
large number of keys.

3. Operation of a Trading System

The architecture of a Trading System is depicted in Figure 1. It consists of many
users/traders connected to the trading system using an IP-based network. These traders
are outside the premise of the trading system.

The Trading System itself consists of front-end, order-matching, and post-trade com-
ponents. The front-end component receives trade requests from the users on the Ethernet
network and performs validations on the ranges of various parameters in a trade request
and the functional validations. The order-matching component matches buy orders against
sale orders and vice versa. It maintains the database of orders received from traders and
executes commands to perform order matching. The post-trade block performs data log-
ging functions after a trade happens and also performs the functions of record keeping,
journaling, and sending a response back to the users. Since these functions are implemented
in software at present in most trading systems, these systems give a high response time
and low throughput for trade requests.

3
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Figure 1. Architecture of a Trading System.

FPGAs are increasingly being used to perform these functions in hardware to reduce
latency and increase throughput [15,16]. Front-end and order-matching functions are
implemented with PCIe add-on FPGA boards. As mentioned above, the front-end functions
involve validations of the numeric ranges of different fields present in the trade requests
and also the functional validations. KVS is used mainly for functional validations. An
example of functional validation is using a nine-digit social security number to retrieve the
identification number (ID) of the user and compare it with the user ID in the database to
check if a particular user is a valid user. Since there are approximately 20 million users in
our client stock exchange at present and this number is expected to grow to 40 million in
the future, our KVS design needs to handle 40 million keys.

Moreover, at present, the rate at which orders are received is 1 million orders/s and
this is expected to grow to 4 million orders/s in the future. Therefore, the KVS needs to
support up to 4 million search operations/s.

4. Architecture of KVS_Top

KVS_top is our top-level design, which instantiates both the hash-based lookup engine
and B-Tree-based lookup engines. Since our KVS_Top design uses both the BRAM and
HBM as stated earlier, the design is partitioned into two main sub-blocks, KVS_bram,
which stores the keys in BRAM/UltraRAM, and KVS_hbm, which stores keys in on-chip
HBM. KVS_bram executes insert, delete, and search commands in hardware. KVS_hbm
executes search commands in hardware while insert and delete commands are issued to
KVS_hbm through software by the host. KVS_bram uses hash tables while KVS_hbm uses
four lookup engines working in parallel on four B-Tree databases. Four B-Tree databases
contain the same data, as explained later.

The top-level block diagram of KVS_Top showing all the interfaces is shown in Figure 2.
KVS_Top consists of KVS_hbm and KVS_bram as stated earlier. Search commands are is-
sued to KVS_Top from users submitting trade requests on the Search_Commands_Interface.
A search command consists of a Command_code (2-bit) and an input key (128-bit).

4
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Figure 2. Block Diagram of KVS_Top showing all Interfaces.

Insert and delete commands are issued to KVS_bram and KVS_hbm through the
software on the PCIe interface shown in Figure 2. The PCIe_Axi-lite bridge converts the
PCIe protocol to AXI-lite for interfacing with KVS_bram. KVS_bram accepts the insert and
delete commands on the AXI-lite interface. The Cmd_ID_alloc_&_reseq block allocates
a 2-bit Command_ID to each search command. Search commands are supplied to both
KVS_bram and KVS_hbm in parallel since it is not known in advance whether a key resides
in BRAM or HBM. The search command execution time of KVS_bram is much shorter than
that of KVS_hbm. Therefore, if KVS_bram completes the search command successfully as
indicated on the internal results interface—Results_intf_int—the Cmd_ID_alloc_&_reseq
block commands the KVS_hbm to abort the search command. The abort command is
sent to KVS_hbm on the Abort_IDs_Interface by issuing Abort_ID, which is equal to
the Command_ID of the command to be aborted, as shown in Figure 2. If the search
command is completed with an error status from KVS_bram on the internal results interface,
Results_Intf_int, KVS_hbm is allowed to complete the command. The Command_IDs are
necessary since the search commands given to KVS_hbm may not be completed in the
same sequence in which they are issued. For example, if two search commands, cmd1 and
cmd2, are submitted to KVS_hbm in the pipelined manner and the key corresponding to
cmd1 is found in level 3 of B-Tree and the key corresponding to cmd2 is found in level 1
of B-Tree, then cmd2 will be completed before cmd1. The Cmd_ID_alloc_&_reseq block
re-sequences the command responses so that the results of search command execution are
received on the external Results_Interface in the same sequence in which search commands
are issued to KVS_Top. As stated earlier, KVS_bram stores the keys in on-chip BRAM, and
KVS_hbm stores the keys in BRAM and on-chip HBM. There is 16 GB of on-chip HBM
available in the FPGA, which we use for KVS. Sixteen gigabytes of HBM are divided into
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two sets (hbm_set1 and hbm_set2) of four banks with each bank consisting of 2 GBytes of
memory (Refer to Figure 2). Four banks of HBM in one set are accessed by four lookup
engines present in KVS_hbm, as explained later. The key database is replicated in all four
banks in one set while inserting the keys using the software. Therefore, all four lookup
engines work in parallel, giving very high throughput. Since the two sets of banks are
connected using an on-chip AXI-Interconnect, each set can be accessed by four lookup
engines. When hbm_set1consisting of four banks of 2Gbytes each is accessed by four
lookup engines for carrying out search commands, the software writes the insert and delete
commands in bulk to hbm_set2 and prepares an alternate database. This is performed
in parallel while search operations are carried out by four lookup engines on hbm_set1.
When an alternate database is ready, the software sets a flag called bank_flag in a register
inside KVS_hbmm and four lookup engines then switch to hbm_set2 to carry out search
operations and hbm_set1 will be used to carry out the new insert and delete operations
in the software. KVS_hbm accesses two sets of HBM using AXI (0–3) interfaces for search
commands and the AXI (4) Interface shown for insert and delete commands issued through
software (Refer to Figure 2). It can access both sets of HBM simultaneously due to the
presence of AXI-Interconnect. The architecture of KVS_bram and KVS_hbm is explained in
detail below.

4.1. KVS_Bram

KVS_bram completely reuses the architecture of the lookup engine designed in our
earlier work [17] and uses a hash table and buckets of different capacities as mentioned
earlier. In a traditional KVS, which uses hashing, colliding keys are stored in a linked
list (called a bucket) pointed to by a hash index. The keys in a linked list need to be
sequentially read and compared with the incoming key. Though the usage of a linked list
conserves BRAM, it increases search latency and reduces the throughput if the number of
colliding keys is very large. To overcome this, our design uses buckets of variable capacity
to conserve the BRAM and stores the keys contiguously in a bucket. These keys are read
into a pipelined comparator and compared in parallel with an incoming search key to
reduce the search latency.

In our design, the 128-bit incoming key is hashed using the checksum algorithm
and the resulting hash value is used as an index into the hash table (implemented in
BRAM), which is used to store bucket descriptors (Bucket_dsc0—Bucket_dscn-1) as shown
in Figure 3. Bucket descriptors in turn contain pointers to the buckets of different capaci-
ties containing a differing number of keys. The bucket descriptor structure contains the
key count (Key_cnt), pointer valid bit (Ptr_valid), pointer type (Ptr_type), offset of the
bucket group (Offset), and bucket number (Bucket_no). The description of these fields is
given below:

1. Ptr_valid (1 bit)—Indicates contents of bucket descriptor are valid and bucket descrip-
tor holds a valid pointer to a hash bucket containing one or more keys.

2. Ptr_type (2 bits)—Indicates the type of hash bucket or capacity of the hash bucket in
Block RAM as explained below. Bit 00, 01, 10, and 11 indicate 1-key, 4-key, 8-key, and
16-key buckets, respectively.

3. Bucket_ptr (16 bits+ 4 bits)—20-bit pointer to hash bucket pointed to by this descriptor
as shown in Figure 3. Bucket_ptr consists of a 16-bit Offset to Bucket Group and
4-bit Bucket_no.

4. Key_cnt (5 bits)—Indicates the count of colliding keys in the hash bucket pointed to
by the pointer in this descriptor.

As mentioned above, our KVS design uses buckets of four different sizes to conserve
the BRAM, instead of using buckets of fixed lengths. Using buckets of fixed lengths results
in wastage of BRAM if the number of colliding keys in the bucket is small. If initially there
is only one key in the hash bucket, a bucket size of 1 is used. If one more key hashes into
the same bucket during the insert operation, a bucket with a size of 4 is obtained from the
free pool of buckets, and the original 1-key bucket is returned to the free pool of buckets. If
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a 4-key bucket is full and one more key hashes into it, the 4-key bucket is returned to the
free pool and an 8-key bucket is obtained from the free pool, and all keys are transferred
from the 4-key bucket to the 8-key bucket. Similar logic holds for the 8-key and 16-key
buckets. The free pool of buckets is a First-In-First-Out (FIFO), which is initialized at the
reset with the pointers to the free buckets. Since buckets are stored in BRAM, which is
limited in FPGA, this scheme optimizes the use of BRAM.

Figure 3. Hash Table and Bucket Descriptor Data Structure.

Keys are stored contiguously in a hash bucket, and using a pointer in the bucket
descriptor, all keys in the hash bucket are read into a parallel comparator in FPGA. The
comparator compares all the keys in the hash bucket in parallel with the incoming key
and returns the index of the matching key, which is used to access the data corresponding
to that key. Parallel comparison gives very low latency, and the pipelined operations of
different blocks result in very high throughput.

Hash buckets are stored in bucket memory in BRAM, which consists of an array of
bucket groups. As shown in Figure 4, each bucket group can consist of one 16-key bucket,
two 8-key buckets, four 4-key buckets, or sixteen 1-key buckets, and Bucket memory
(Buckt_mem) consists of an array of bucket groups. Thus, a bucket group always contains
16 keys. As each key is 128-bit wide, the width of the bucket group is 2048 bits. Bucket
memory is an array of bucket groups of different capacities. As shown in Figure 3, a bucket
descriptor contains a bucket pointer consisting of a 16-bit offset (Offset) into bucket memory
and a 4-bit bucket number (Bucket_no (3:0)). The interpretation of Bucket_no depends on
the type of bucket. For a 16-key bucket, Bucket_no (3:0) has no significance since there is
only one bucket present in the bucket group. For a 4-key bucket, Bucket_no (3:2) identifies
one out of four buckets present in the bucket group. For an 8-key bucket, Bucket_no (3)
identifies one of two buckets. For a 1-key bucket, all four bits of Bucket_no (3:0) identify a
bucket number, since there are sixteen buckets and there is only one key in each bucket.
Furthermore, 128-bit data corresponding to the keys is also stored in BRAM using a data
structure similar to bucket memory (refer to Figures 4 and 5). The BRAM, which stores
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the data corresponding to the keys, is called data memory. The index returned by the
comparator mentioned above is used to access the data corresponding to the search key
from data memory. The number of 1-key, 4-key, 8-key, and 16-key buckets is software
configurable.

Figure 4. Format of buckets of different capacities and bucket groups.

Figure 5. Key Bucket Memory with Bucket Groups.

4.1.1. Architecture of KVS_Bram

The block diagram of KVS_bram is shown in Figure 6. KVS_bram receives a stream
of fixed-length keys (128 bits), Command_code (2 bits), Command_ID (2 bits), and data
(128 bits) on cmd_ID_Key_data_Interface and provides key, lookup data, command, and
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error signals on Results_Interface, as shown in Figure 6. The error signals indicate the
success or failure of the command issued on cmd_ID_Key_data_Interface. Different sub-
blocks of KVS_bram are described below:

1. Command_key_data_ID_FIFO: This FIFO stores a 128-bit key, 128-bit data, and
a 2-bit command received on the cmd_ID_key_data_interface. It also stores the
2-bit Command_ID.

2. Hash_val_calculator (Hash Value Calculator): The 128-bit key and command are read
by Hash_val_calculator, which computes a 16-bit checksum on the 128-bit key. It uses
a pipelined architecture and computes a 16-bit checksum in 4 clocks. The output of this
module is a 16-bit checksum, the value of the key, Command_code, and Command_ID.

3. Operations_decode_exec_sm (Operations Decode Execute State Machine): This block
decodes 2-bit Command_code and performs all the operations required to execute
the search, insert, and delete commands. In the case of insert and delete commands,
new 1-key, 4-key, 8-key, and 16zkey buckets are assigned, and one that is freed is
put back in the free pool. In case a bucket of particular capacity is full and one more
key hashes into it, a higher-capacity bucket is obtained from the free pool, and this
bucket is returned to the free pool. Keys from the freed bucket are transferred to that
obtained from the free pool. In the case of a search command, the 16-bit hash value
is used as an index in the hash table, which contains bucket descriptors as shown in
Figure 3. If the bucket descriptor is valid, 16-bit offset and 4-bit bucket_no are used to
load keys from the selected bucket. The keys are loaded into a pipelined comparator,
which compares the keys in parallel with the input key and returns an index of the
matching key. This index is used to read the data corresponding to the key from
data memory.

4. Mux and Arbiter—This block multiplexes commands received from the AXI-lite
interface and cmd_key_data_interface, as shown in Figure 6.

5. Registers_&_Cmd_Storage—This block stores the insert and delete commands re-
ceived from the AXI-lite interface through software and returns the status of command
execution to software.

6. Cmd_key_data_response_FIFO—This FIFO stores the data returned for the search
command and Command_code along with the key and Command_ID. It also stores
the command success/error code.

Figure 6. Block Diagram of KVS_bram.
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The algorithmic steps of insert and delete operations are described below.

4.1.2. Insert Key Algorithm

1. Read the incoming data and key.
2. Compute the hash of the key.
3. From the hash value, check whether the allocated bucket type is 1, 4, 8, or 16 key type.
4. If (bucket type is type 1) then:

a. If (a new bucket of type 4 is available) then:

i. Copy the keys from the type 1 bucket to the type 4 bucket and add the
incoming key to this. Return type 1 bucket to free pool.

b. Otherwise, if (a new bucket of type 8 is available) then:

i. Copy the keys from the type 1 bucket to the type 8 bucket and add the
incoming key to this. Return type 1 bucket to free pool.

c. Otherwise, if (a new bucket of type 16 is available) then:

i. Copy the keys from the type 1 bucket to the type 16 bucket and add the
incoming key to this. Return type 1 bucket to free pool.

d. Otherwise, store the keys in HBM.
e. End if.

5. If (bucket type is type 4) then:

a. If (key count in the bucket < 4) then:

i. add the key to type 4 bucket.

b. If (a new bucket of type 8 is available) then:

i. Copy all the keys from the type 4 bucket to the type 8 bucket and add
the incoming key to this. Return type 4 bucket to the free pool.

c. If (a new bucket of type 16 is available) then:

i. Copy all the keys from the type 4 bucket to the type 16 bucket and add
the incoming key to this. Return type 4 bucket to the free pool.

d. Otherwise, store the keys in HBM.
e. End if.

6. If (bucket type is type 8) then:

a. If (key count in the bucket < 8) then:

i. Add the key to type 8 bucket.

b. If (a new bucket of type 16 is available) then:

i. Copy all the keys from the type 8 bucket to the type 16 bucket and add
the incoming key to this. Return type 8 bucket to the free pool.

c. Else:

i. Store the keys in HBM.

d. End if.

7. If (bucket type is type 16) then:

a. If (key count in the bucket < 16) then:

i. add the key to type 16 bucket.

b. Else:

i. Copy all the keys from type 16 to HBM and add the incoming key to it.
Return type 16 bucket to the free pool.

c. End if.

8. Else allocate new 1-key, 4-key, 8-key, or 16-key bucket.
9. End.
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4.1.3. Delete Key Algorithm

1. Read the incoming key and data.
2. Compute the hash of the key.
3. From the hash value, check whether the allocated bucket type is 1, 4, 8, or 16 key type.
4. If the bucket type is 1:

i. Delete the key from the bucket.
ii. Return the bucket to the free pool.

5. If the bucket type is type 4:

a. If the key count is greater than 1:

i. Then delete the key from the bucket.

b. Else if the key count is equal to 1:

i. Then delete the key and return the bucket to the free pool.

c. End if.

6. Else if the bucket type is type 8:

a. If the key count is greater than 5:

i. Then delete the key from the bucket.

b. Else if the key count is less than 5 and greater than 1:

i. Then if a type 4 bucket is available:

(1) Then copy the keys from the type 8 bucket to the type 4 bucket.
(2) Return the type 8 bucket to the free pool.

c. Else if the key count is 1:

i. If a type 1 bucket is available:

(1) Then move the key from type 4 to type 1 bucket.
(2) Return the type 8 bucket to the free pool.

d. End if.

7. Else if the bucket type is type 16:

a. If the key count is greater than 9:

i. Then delete the key.

b. Else if the key count is greater than 4 and less than 9:

i. Then if a bucket of type 8 is available:

(1) Copy the keys from type 16 to type 8 bucket.
(2) Return the type 16 bucket to the free pool.

c. Else if the key count is greater than 1 and less than 5:

i. Then if a bucket of type 4 is available:

(1) Copy the keys from type 16 to type 4 bucket.
(2) Return the type 16 bucket to the free pool.

d. Else if the key count is equal to 1:

i. Then if a bucket of type 1 is available:

(1) Copy the key from the type 16 bucket to the type 1 bucket.
(2) Return the type 16 bucket to the free pool.

8. If the key count is zero, then return the bucket to the free pool.
9. End if.
10. End.

4.2. KVS_hbm

KVS_hbm handles the keys stored in on-chip HBM memory. It uses a 5-level B-Tree
for implementing insert, delete, and search operations. Insert and delete operations are
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implemented in software, while search operations are implemented completely in hardware.
The root node of B-Tree and the first two levels are contained in BRAM, while the last
two levels are implemented in HBM. The last two levels contain a very large number of
nodes and require more storage, so they are located in HBM. The structure of each node of
the B-Tree is shown in Figure 7. The node contains an 8-bit count of the number of keys in
the node (the maximum number of keys in a node is 33). This is followed by an array of
33 keys (key0–key32) and corresponding data pointers to 33 keys (data_ptr0-data_ptr32).
The node also contains 34 pointers to the nodes in the next level (ptr0-ptr33). The hit count
denotes the number of times the particular key is hit during a search operation. There are
33 hit counts, Hit_count0—Hit_count32, corresponding to 33 keys. This is used to transfer
keys with a large number of hits to BRAM to increase the overall throughput of KVS as
explained later. The root node of the B-Tree is located in a register inside FPGA, and the
first two levels are implemented in BRAM while the remaining two tree levels are located
in HBM. The total number of nodes in the tree is given by the equation:

Figure 7. Structure of a B-Tree Node.

The total number of nodes = 33 + 33 × 34 + 33 × 342 + 33 × 343 + 33 × 344 = 45,435,423,
which is greater than 40 million nodes as per the requirement.

Architecture of KVS_hbm

A detailed block diagram of KVS_hbm is shown in Figure 8. KVS_hbm consists of the
following sub-blocks:

1. Lookup Engines0–3: The four lookup engines work in parallel, and each engine in-
terfaces to 2GBytes of HBM, which contains the key database. The key database is
replicated across four banks of HBM connected to four lookup engines by software
while executing insert commands. Each lookup engine receives the search command,
key, and Command_ID of the command from the Command_assign block. It carries
out the search command using a B-Tree. The root node and first two levels of the
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B-Tree are implemented in FPGA logic while the nodes in the remaining two levels
are stored in HBM. The B-Tree nodes contain 33 keys, which are arranged in ascend-
ing order. If a key is found in KVS_bram, the Cmd_ID_alloc_&_reseq block issues
an abort command with the ID of the search command, which was previously al-
located by the Cmd_ID_alloc_&_reseq block, over Abort_IDs_Inteface. The com-
mand_assign block then issues the abort command to the respective lookup engine to
which the command is assigned, and the search command is aborted. Lookup engines
use highly pipelined 128-bit.

Figure 8. Detailed Block Diagram of KVS_hbm.

A comparator is used to compare the input key with a maximum of 33 keys present in
the node of the B-Tree. The comparator returns an index and two flags—equal_flag and
right_flag—as a result of the comparison. If the input key is equal to 1 of the 33 keys, the
comparator returns the index of the matching key, and equal_flag is set. The index is used to
retrieve the pointer data, and using the pointer, data corresponding to the key are read from
HBM. If the input key falls between the two keys key(n-1) and key(n), index n-1 is returned
and right_flag is set. If the key is less than key(0) in the node, an index of 0 is returned
and right_flag is reset. If the input key is greater than key(32), an index of 32 is returned
and right_flag is set. Therefore, the comparator returns the index of keys between which
an input key lies or the extreme left or extreme right indices. The index is used to retrieve
the pointer to the B-Tree node in the next level of the B-Tree. The search operation continues
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until the matching key is found or the leaf level of the B-Tree is reached as indicated by
Leaf_flag (refer to Figure 7). Lookup engines return the lookup result with a success/error
status over results_interface_hbm, which is supplied to the Cmd_ID_alloc_&_reseq block.

2. Comamnd_assign: The Command_assign block receives the search command, input
key, and Command_ID over Command_Key_ID_interface. It allocates the command
to one of the lookup engines that are free. When a command is assigned to the lookup
engine, a busy flag is internally set in the engine, which is reset by the respective
engine on completion of the command. The command can be completed successfully
or with an error status if the key is not found or an abort command is issued. The
Command_assign block also keeps track of which Command_ID is allocated to which
Lookup Engine and accordingly issues an abort command to the respective engine on
the Abort_IDs_Interface.

3. PCIe_2_AXI_bridge: PCIe to AXI bridge converts the PCIe protocol to the AXI protocol
and is used for issuing insert commands using software to KVS_hbm. PCIe_2_AXI_bridge
is also used to access Bank_flag_register, which maintains bank_flag status. Bank_flag
indicates which of the set of 8Gbytes HBM (hbm_set1 or hbm_set2) is active at any
time, as explained earlier.

4. Bank_flag_register: This register contains the bank_flag, which indicates whether
hbm_set1 or hbm_set2 is active. When hbm_set1 is active, bank_flag is 1 and search
operations are carried out on hbm_set1 while insert commands are carried out on
hbm_set2. These insert operations are typically performed in bulk. After insert
operations are completed on hbm_set2, software resets the bank_flag so that search
operations are carried out from hbm_set2 and hbm_set1 is used for carrying out insert
operations in bulk. While insert operations are being carried out in hbm_set2, search
operations are carried out in parallel on hbm_set1 and vice versa.

4.3. BRAM/HBM Usage for KVS_Top

Each node of the B-Tree requires 864 Bytes of memory storage. Therefore, KVS_hbm
requires 3.93 Mbytes BRAM for four lookup engines to store the first three levels of the
B-Tree. It requires 1.852 GBytes of HBM for storing B-Tree nodes and 128-bit data corre-
sponding to the keys. KVS_bram requires 30 Mbytes of UltraRAM and 4 Mbytes of BRAM
for storing keys, data, and the hash table.

5. Experimental Results

KVS_bram and KVS_hbm were separately synthesized in Xilinx Virtex Ultrascale +
VU47P FPGA. Synthesis was performed with Vivado v2021.1. The resource utilization of
KVS_bram and KVS_hbm is shown in Tables 1 and 2, respectively.

Table 1. Resource Utilization of KVS_bram.

Flip_Flops/Total/Utilization LUTs/Total/Utilization
UltraRAM

KB/Total/Utilization

39,192/2,607,360 = 1.503% 52,037/1,303,680 = 3.99% 460/960 = 47.92%

Table 2. Resource Utilization of KVS_hbm.

Flip_Flops/Total/Utilization LUTs/Total/Utilization
BRAM (MB)

Total/Utilization

90,329/2,607,360 = 3.461% 146,221/1,303,680 = 11.21% 4.231/8.86 = 47.75%

5.1. Simulation of KVS_Top

Simulation of KVS_Top was carried out using Cadence Xcelium Single Core sim-
ulator version 22.0. The architecture of the test bench used for generating search com-
mands is shown in Figure 9. The DUT (Design Under Test) consists of the Verilog model
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of KVS_Top and models of AXI-Interconnect and HBM. The test bench consists of the
following components:

1. CMD/Key_Generator—Generates a 36-bit index randomly. This index is used to look
up a table of 128-bit keys stored in the test bench at initialization. The block also
generates search commands and sends the key and command to the DUT. The time at
which the key and command are sent to DUT is stored in Timestamp_FIFO.

2. Timestamp_FIFO—Stores the time at which search commands are delivered to
KVS. The Timestamp stored in FIFO is used to find the latency of the search
command execution.

3. Response_Analyzer—Stores the keys and corresponding data in an Associative array
which is initialized with values of 128-bit keys and corresponding 128-bit data before
the simulation starts. When the DUT sends a response consisting of a 128-bit key
and corresponding data, the key is used to look up an associative array, and the
value of corresponding the 128-bit data (expected data) is retrieved from the array.
This value is compared with the 128-bit data received in the response from DUT to
determine the data integrity. Furthermore, the Response Analyzer notes the time
at which the response is received and reads the time at which the corresponding
command was delivered to DUT from Timestamp FIFO. The difference between
the two timestamps gives the latency of the search command execution. Moreover,
the DUT response contains a flag showing whether the response is received from
KVS_bram or KVS_hbm. In case a response is received from KVS_hbm, the level at
which the key is found in the B-Tree is also recorded. These data are used to find the
latency of the search command execution when the corresponding data are found at
different levels in the B-Tree.

4. Statistics_Report_gen: Maintains the statistics of delay values for SEARCH commands
executed by KVS_bram and KVS_hbm. It calculates the average delay values and
generates a report of latencies and the throughput of KVS.

5. RC_Model: This block is the model of the PCIe Root Complex and generates PCIe read
and write commands for sending insert commands to KVS_hbm by software. It also
sends insert and delete commands to the KVS_bram through the AXI-lite interface
present in KVS_bram.

Figure 9. Architecture of Test Bench for Generating Search commands to KVS_Top.

The test bench operation consists of two phases:
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1. Initialization Phase—In this phase, BRAM/UltraRAM and HBM memories in the
FPGA are initialized with the values of 128-bit keys and corresponding 128-bit data.
We have implemented a software function that generates the database of 128-bit keys
and data to be inserted into the KVS_bram and KVS_hbm. The function generates the
B-Tree nodes in the format shown in Figure 7. It also performs balancing of the B-Tree.
The function generates two files for initializing BRAM/UltraRAM and HBM memory.

2. Run Phase—In the Run phase, the search, insert, and delete commands are delivered
to KVS_bram and KVS_hbm.

5.2. Simulation Results

The KVS_Top was synthesized at the frequency of 300 MHz, and the timings for insert,
delete, and search command execution for KVS_bram are given in Table 3.

Table 3. Command Execution timings for KVS_bram.

Sr No. Command Timing

1 Insert 20
2 Search 12
3 Delete 25

Average command Execution timings for the search command for KVS_hbm when
the key match is found at different levels of the B-Tree are given in Table 4.

Table 4. SEARCH Command Execution time for KVS_hbm.

Sr No. Level Timing

1 0 (root) 170.6 ns
2 1 210.2 ns
3 2 243.8 ns
4 3 371.2 ns
5 4 634.2 ns

5.3. Performance (Search Commands/s) of KVS_Top

The performance of KVS_bram for search commands is 33 million search opera-
tions/second. For KVS_hbm, the execution time for the search command depends upon
the level at which the key is found. The worst-case performance of one lookup engine
is 103/634.2 = 1.58 million search operations/s, assuming the key is found at level 2 in
HBM. Therefore, in the worst case, if the key is found at level 4, the performance of
KVS_hbm is 1.58 million search operations/s ∗ 4 = 6.32 million search operations/s since
four lookup engines are operating in parallel (the performance of one lookup engine
is 103/634.2 = 1.58 million search operations/s) since 634.2 ns is the worst-case lookup
time. The performance of KVS_Top will depend on the distribution of input keys in the
search command.

6. Conclusions and Future Work

In this paper, we present the design of a Key-value Store for a trading system ap-
plication. By using a combination of Hashing and B-Tree techniques, we can meet the
specifications and performance requirements of the stock exchange. To obtain higher
performance for active users, we store the key and data corresponding to those users in
BRAM/UltraRAM. The KVS_hbm performance can be increased significantly by pipelining
the lookup process for different levels of the B-Tree. In future work, we need to design
an algorithm that scans the keys in HBM periodically and shifts the keys with a large
number of hits from HBM to BRAM/UltraRAM without affecting the throughput of search
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operations. The number of the keys stored in KVS_bram can also be increased with the use
of higher-capacity FPGAs such as Xilinx Versal series FPGAs.
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Abstract: FPGA technology is widely used in the finance domain. We describe the design of a
financial trading system order processing component using FPGAs, implemented with high-level
synthesis (HLS) flow. The order processing component is the major contributor to increased delays
and low throughput in the current software implementation of trading systems. The objective of
FPGA implementation is to reduce the latency of order processing and increase the throughput of
trading systems as compared to software implementation. Our design is one of the first attempts to
speed up order processing in a trading system using FPGA technology and HLS flow. HLS was used
in implementing the design for higher productivity and faster turnaround time. The design shows
orders of magnitude of improvement in performance indicating that more complex FPGA systems
could be designed using HLS. We obtained more than 2X of an advantage in order processing speed
and a reduction in latency with FPGA technology. Moreover, we gained a 4X advantage in terms of
productivity using HLS.

Keywords: accelerator architectures; field programmable gate arrays; high-level synthesis; system
performance; TCPIP

1. Introduction

Securities trading systems involve the processing of orders that are generated by end
users. These orders are typically placed at a rate of 1 million orders per second and are
expected to be processed at very low latencies. Since all the components of a trading system
such as order validation, lookups, and order matching are implemented in software in
a traditional trading system, the order processing rate is low and the latencies of order
processing are high. Furthermore, physical network delays and TCP/IP stack delays add
to the software delays, resulting in high latencies and low order processing throughput.
So, the idea is to speed up the operation of trading systems by migrating the functionality
of trading system components including order validation, order matching, lookups, and
TCP/IP stack processing from software to hardware.

1.1. Use of FPGAs for Accelerating Trading Systems

The number of trading systems is not very large (around 60 stock exchanges in the
world) [1] and trading systems contain modules that need frequent reconfigurations of
their algorithms as well as parameters. For example, business logic in stock exchanges
requires frequent changes, such as the addition of multi-leg order commands (a multi-leg
options order refers to any trade that involves two or more options that are completed at
once). Since volumes are low and functionality requires frequent changes, the use of ASIC
technology is not justified for trading systems acceleration, and reconfigurable computing
devices such as FPGAs are the best choice for the acceleration of trading systems.

FPGAs [2] are increasingly receiving traction in the field of financial processing where
there is a need for frequent changes in business logic and operating parameters such as the
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load and number of securities to be traded. Added to this, there could be a need for adding
newer algorithms to the existing system to make it more intelligent.

The development time taken by classical VHDL/Verilog-based flows is very long and
productivity is low [2]. There has been a search for alternate flows which can reduce the
development time. High-level synthesis (HLS) [3–6] provides a level of abstraction higher
than Verilog and VHDL. HLS can be used to describe algorithms in C/C++ and convert
them to digital circuits [3]. Additionally, the productivity gained by HLS is orders of
magnitude greater than by traditional methods [7]. HLS is supported through its products
by a number of VLSI vendors such as Vivado HLS by Xilinx [8], HLS by Intel Altera [9], and
Catapult by Mentor [10]. All these products provide tools for writing code in high-level
languages such as C/C++/System C and converting them to Verilog/VHDL.

HLS has been traditionally used for implementing algorithmic workflows making use
of C language. HLS finds use in domains such as image processing and high-frequency
trading (HFT). Boutros et al. [11] described the usage of HLS for designing an HFT system.
Here, we use HLS for speeding up the trading system itself.

As shown in Figure 1 below, the trading system environment consists of users/traders
submitting trade requests and a trading system which is located in the stock exchange.
While HFT trading provides high-speed processing for users submitting trade requests and
sits on the user side, our objective in this paper is to accelerate the trading system itself.
This paper uses HLS to migrate the functionality of trading system components which are
currently implemented in software, to FPGA hardware. This is performed to reduce latency
and increase throughput.

Figure 1. Trading system architecture (the block being accelerated is shown in green color).

1.2. Study Contributions

The main contributions of this paper are as follows:

• To increase the order processing rate of the trading system from 1 million orders/sec
(achieved with software implementation) to 2 million orders/sec with FPGA technology.

• To reduce the latency of order processing commands from 1 microsecond (achieved
with software implementation) to less than 500 ns. The throughput and latency
numbers for software implementation have been taken from a large stock exchange.
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• Additionally, as an important feature of our design, to optimize the use of block RAM
(BRAM) which is a fast on-chip memory inside the FPGA, by the innovative design of
the data structures.

• Through, this design, to also increase the throughput of the UPDATE command by
30–40% using pipelined execution as explained in later sections.

We describe how HLS was used for implementing the three main commands INSERT,
UPDATE and DELETE in the trading system back end.

This paper is organized as follows. In Section 2 we describe the related work conducted
in this field. Section 3 describes the general architecture of a trading system. In Section 4,
we describe the problem statement. Section 5 describes the data structures used in the
design and design implementation. Finally, Section 6 describes the performance numbers,
followed by Section 7 on the pipelined execution of the UPDATE command, and Section 8
with the Conclusion and Future Work.

2. Related Work

There have been many examples in the literature of FPGAs being used for accelerating
financial systems, databases, as well as network protocols. They have found use in high-
frequency trading (HFT) [12–14]. These are optimized to achieve the lowest possible latency
for interpreting market data feeds. FPGA acceleration for HFT has been described in [15].
FPGA implementation using HLS for HFT has been described in [11]. The study in [16]
describes the design of a hardware accelerator to speed up the data filtering, arithmetic, and
logical operations of a database. The study in [17] describes the acceleration of a TCP/IP
stack with an FPGA. However, after an extensive literature review, we could not find any
related previous work that describes the acceleration of a trading system front end and
back end with an FPGA.

Trading systems have traditionally existed within the software. Trading system soft-
ware is very much multi-threaded and is usually found in Linux OS [18,19]. The software
makes use of hardware features such as pipelining and multicore technologies. There have
been very few instances of the use of FPGAs for a complete trading system back end. A very
well-known example of the deployment of FPGAs is in the London Stock Exchange [20].
The system promises extensibility and reconfigurability.

There is very little literature regarding the internal architecture of securities trading
systems. This is because these details are mainly proprietary in nature. Moreover, there are
very few companies in this field, and revealing the internal architecture could dent their
competitive advantage. Hence, the architecture details are not published by the trading
system developer firms. Due to this, we were not able to compare the performance of an
FPGA-based system to other systems. However, we compared the performance of our
system to existing software-based systems.

Our paper describes a trading system accelerator design. FPGAs provide a lot of
flexibility that can be exploited by programmers and hardware designers to build accelera-
tors. In data analytics, FPGAs are suited for repetitive tasks. They have been incorporated
into platforms such as Microsoft’s Project Brainwave [21], the Swarm64 Database Accel-
erator [22], Postgres [23], the Xilinx Alveo Data Center Accelerator [24], and Ryft [25].
Key–value stores [26] have also been accelerated using FPGAs. Also, FPGAs have become
a good option for accelerating databases [27].

3. Trading System Architecture at a High Level

The architecture of the system is depicted in Figure 1. It consists of a number of
users/traders connected to the trading system using an IP-based network. These traders
are outside the premise of the trading system. The trading system itself consists of
three components:

1. Front end

a. Connects the traders to an IP network.
b. Accepts orders from users.
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c. Performs validations.

2. Back end (order processing block)

a. Performs the function of order matching, i.e., matching sell orders with buy
orders and vice versa. It maintains the database of the sell and buy orders
received from users and executes commands to perform order matching.

b. Connects to the front end via an Ethernet IP network.

3. Post trade block Once trading is complete, the post trade block performs functions
such as:

a. Journaling;
b. Recordkeeping;
c. Sending a response back to a user on an IP network.

As stated above, our objectives are

1. To reduce the latency of order processing;
2. To increase the throughput by implementing order processing functions in FPGA hardware.

Both the front end and order processing block (back end) functions, shown in Figure 1,
are implemented in the FPGA using a PCIe-based front end processor board and back end
processor board. This architecture is shown in Figure 2.

 
Figure 2. Architecture of the trading system implemented in an FPGA.

The users connect to the front end processor board on the 10G Ethernet network and
submit trade requests. The front end processor board uses a TCP offload engine (TOE)
block to perform TCP/IP processing in hardware to reduce the network latency. It contains
the front end processor FPGA. A block diagram of the front end processor FPGA is shown
in Figure 3. It contains a TOE which interfaces to users, validations logic, lookups logic, a
connections management block, and a TOE for interface to the back end processor board.
Validations logic checks the ranges of different fields in the order request submitted by
users and verifies that these fields have valid values. Lookups logic performs many lookups
to verify that the data in the different fields in the order request matches the master data.
The validations and lookups are performed in parallel by FPGA logic to reduce latency.
Connections management logic maintains a table of TCP connection IDs against the user
IDs and ensures the response from the back end processor board to a user request is sent on
the same TCP connection ID on which the order was received. The second TOE performs
the function of interfacing with the back end processor FPGA board.
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Figure 3. Block diagram of the front end processor FPGA.

The back end processor PCIe board connects to the front end processor board on 10G
Ethernet and performs order matching functions in hardware to reduce processing latencies.
The block diagram of the back end processor board is shown in Figure 4. It consists of a
TOE for interface to the front end processor PCIe board and order processing block, which
in turn consists of business logic and a command execute block. The business logic matches
the sell orders against the buy orders. For example, if there is a buy order for a particular
security at a given price and if it matches the sell order with a lesser price for the same
security, the trade will be executed. If there is no matching sell order, then the buy order
will be inserted into the database. When trade happens, orders are either deleted from
the order database or updated in the order database based on order matching quantities.
Command execute logic maintains a linked list of orders and performs a deletion, insertion,
or update of orders in the order database as described in later sections.

Figure 4. Block diagram of the back end processor FPGA.

To reduce network latency, both boards perform TCP/IP processing in hardware
using the TOE block. In our implementation, we focus on the order processing block,
which is the most critical block in the system in terms of latency experienced for trade
requests submitted by users. Order processing involves the implementation of a number of
commands out of which INSERT, DELETE, and UPDATE order are the most frequent ones
and occur 95% of the time. So, only these three commands are considered for modeling the
order processing block:

1. The INSERT order command, when submitted to the trading system back end, requires
the incoming order to be placed in the back end order database by appropriately
manipulating the internal data structures.
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2. The UPDATE order command requires the system to change the price of the already
placed order to a new value. Thus, the order data structure stored in the memory
is manipulated to indicate the new price to be used. This is the most commonly
executed command occurring more frequently than INSERT and DELETE. Hence, it
is necessary that the data structures and modules are designed such that the latency
of this command is minimized.

3. The DELETE order command requires that the order placed using the INSERT order
command is removed from the order database and the order is not manipulated
any further.

4. Problem Statement

As described in Section 2, the trading system consists of a 10G network, front end, and
back end blocks. The total order processing latency consists of three components:

1. Network Latency—This consists of TCP/IP processing delays and wire delays. The
TCP/IP processing latency is reduced by implementing TCP/IP processing using
a TOE block in hardware as mentioned in Section 3. This reduces latency from
3–4 microseconds (required by the TCP/IP stack implemented in software) to around
100 ns.

2. Front End latency—This consists of delays involved in validations and lookups which
are performed by the front end. This is reduced by performing validations and
lookups in parallel in FPGA logic.

3. Back End (Order Processing) Latency—This delay is the time required for processing
the INSERT, DELETE, and UPDATE commands as described above. This paper
describes the implementation of an order processing block in an FPGA using HLS to
reduce this latency component.

The INSERT, DELETE, and UPDATE orders form the major chunk of the commands
executed in the trading system. Any acceleration of the trading system would require the
acceleration of these three commands. Thus, the problem at hand is to increase the through-
put of the system and reduce the latency of these transactions. To tackle this problem,
newer data structures and algorithms are needed. The constraints for implementing this
logic in an FPGA are the on-chip memory (BRAM) and FPGA resources.

5. Data Structures

The implementation of the trading system involves the use of the following data structures:

(A) Order Database

The order database stores all the fields and attributes of the order which are placed by
the end users. The order structure has all the details needed for processing a transaction.
Referring to Figure 5, orders are stored in the order database, which is an array of around
one million order structures, stored in Static RAM (a special category of RAM) for fast
access. Typical fields in the order structure are the price, time stamp, volume, security
identifier, buy/sell flag, OrderID, etc. The offset of the order in the order database is called
the OrderIndex and order indexes for all the orders are stored in the order index table
shown in Figure 5.

Each order is identified by a unique 32-bit OrderID and this OrderID is used to address
the order index table. For example, if orders Order0, Order1, . . . OrderK stored at offsets 0,
1, . . . k, respectively, as shown in Figure 5, have OrderIDs m0, m1, . . . mk, then integer 0 is
stored at address m0, integer 1 is stored at address m1 and integer K is stored at address
mk in the order index table. This way, using OrderID in an incoming order, the index of the
order can be obtained from an order index table lookup and the OrderIndex can be used to
locate the order in order database. The order index table is stored in DRAM as OrderID is
32-bit, which requires 4GB of storage.
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Figure 5. Order database and order index table.

(B) Security Pointers Table

Order nodes are used to store important and frequently accessed information about
an order (for example, the price, OrderID, buy/sell flag, etc.). There is one order node
corresponding to every order in the order database. For faster access, order nodes are
stored in BRAM at the same offset as the corresponding order in the order database. (This
offset is the same as the OrderIndex in the order index table). Since order nodes contain
only the frequently accessed information about the order, the use of block RAM (BRAM)
is optimized. Each security is identified by a unique TokenID. The head pointer to each
security linked list is stored in the securities pointer table as shown in Figure 6, at the offset
equal to the TokenID. For each security, order nodes for a particular price are stored in a
vertical linked list, as shown in Figure 6. They are sorted according to the time stamps. For
a given security, there is a vertically linked list of order nodes for each price point. The
price point information is stored in a dummy order node and these dummy order nodes are
arranged as a horizontally linked list. The dummy order nodes or price points are arranged
in the decreasing order of prices for buy orders and in the increasing order of prices for
sell orders. Pointers or offsets to the order nodes and dummy order nodes are stored in
a free pool, which is accessed as first-in, first-out (FIFO). FIFO stores the offsets of order
nodes and dummy nodes. A pointer to the new order node is obtained during an INSERT
command execution from the free pool and the pointer is returned to the free pool during
the execution of the DELETE command.

Figure 6. Securities pointer table.
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6. HLS Implementation of the Order Processing Block

A block diagram of the order processing block which executes the INSERT, UPDATE,
and DELETE commands is shown in Figure 7 below. The order processing block consists of
the following components:

1. Command Queue—The command queue is used to store the commands delivered on
the command interface.

2. Command Decode Logic—This block reads the commands from the command queue
and decodes them. Based on the command code, it calls the different functions in the
command execute block to execute the command.

3. Command Execute Block—This block contains all the subfunctions required to execute
the INSERT, DELETE, and UPDATE commands as explained later.

4. Free Pool FIFO—The Free Pool FIFO stores the pointers to free order nodes and
dummy order nodes.

5. Dummy Order Node Array—The dummy order node array is used to store the linked
list of dummy order nodes which contain the price information of buy and sell orders.
They are stored in BRAM for faster access.

6. Order Node Array—The order node array is used to store the linked list of order
nodes which contain the frequently accessed information about the orders. These are
stored in BRAM for faster access.

7. Order Index Table—As explained earlier, the order index table is used to store
OrderIndex information and is accessed by OrderID. This table is implemented
in DRAM.

8. Command Status Queue—This contains the status of the commands that were deliv-
ered on the command interface.

9. Order Database—The order database contains the orders placed by users of the trading
system. It is stored in SRAM for faster access.

 
Figure 7. Block diagram of the order processing block implemented in HLS.

The INSERT, UPDATE, and DELETE commands delivered over the command interface
are stored in the command queue. The command decode logic reads the commands from
the queue, decodes the commands, and calls the command execute logic functions to
execute the required command. Command execute logic implements HLS functions to read
the order node from the free pool FIFO, return the order node to the free pool, insert the
order node into the order node array, remove the order node from the order node array,
read the OrderIndex from the order index table, and manipulate the pointers for inserting
and deleting the order nodes in the order node arrays. The dummy order node array and
order node array are implemented as doubly linked lists as shown in Figure 6. As the order
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index table is stored in DRAM and the order database is stored in SRAM, which are both
off-chip memories, the AXI master interface is used for accessing these data structures. We
used the pragma HLS interface m_axi port = ord_ind_arr for implementing the AXI master
interface. We also used the pragma HLS interface bram port = ord_nd_arr and pragma
HLS interface bram port = dmy_nd_arr for implementing BRAM interfaces for order node
and dummy order node arrays, respectively. To implement pipelined operations, pragma
HLS pipeline II= n was used. The pipeline pragma was also used to pipeline the loops
and obtain a higher frequency operation. Pragma HLS latency = max_value was used for
constraining latency values.

Table 1 below shows the HLS pragmas used in the code in tabular form.

Table 1. Details of the pragmas used in the HLS code for the order book top.

Sr. No. Block Name Pragma Value

1 Order_book_top HLS Interface m_axi port = ord_ind_arr

2 Order_book_top HLS Interface m_axi port = ord_bk_arr

3 Order_book_top HLS Interface Bram port = ord_nd_arr

4 Order_book_top HLS Interface Bram port = dmy_nd_arr

5 Command Execute HLS Pipeline II = 1

6 HLS_top HLS Latency Max 200

7 Command Queue HLS Stream Depth = 8

8 Command Status Queue HLS Stream Depth = 8

The steps involved in executing the INSERT, UPDATE, and DELETE commands by
the order processing block are described below.

The order processing block (back end logic) decodes the orders received from the front
end and takes the following steps during the execution of each of the INSERT, UPDATE,
and DELETE order commands:

A. INSERT Order

1. Get the pointer to the new order node (offset of the order node) from the free
pool FIFO.

2. Store the order structure in SRAM at the same offset (offset obtained in step 1) as
the order node.

3. Make the entry in the order index table in DRAM. Write the offset of the order
in DRAM (which is the same as the offset of the order node in BRAM) in the
order index table using the OrderID as the address. (The OrderID is received as
a part of the order request). Set a flag to indicate that the content of the location
is valid.

4. Traverse the dummy order nodes linked list to find the location where the order
node corresponding to the new order can be placed based on the price field in
the order.

B. UPDATE Order

1. Using the OrderID field in the request as an address, read the OrderIndex (offset
of the order in SRAM) from the order index table stored in DRAM memory.

2. Using the OrderIndex, the order node corresponding to the order is accessed.
3. This order node is moved to the new price point position and added at the end of

the vertical linked list of order nodes and deleted from the current price position
in the vertical linked list under the dummy node corresponding to the old price
position. If there is only one order node under the dummy node corresponding
to the old price position, the dummy node is deleted and returned back to the
free pool FIFO.
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4. If the dummy node corresponding to the new price position does not exist, it
is obtained from the free pool and added to the horizontal linked list, and the
order node is added at the head of the vertical linked list under the newly added
dummy node.

C. DELETE Order

1. Using the OrderID field in the request as an address, read the OrderIndex from
the order index table stored in DRAM. Reset the flag in the DRAM location
indicating that the location content (OrderIndex) is no longer valid.

2. Locate the order node using the OrderIndex. The order node is at the same offset
in block RAM (BRAM) as the order structure in SRAM and this offset is equal to
the OrderIndex. Remove the order node from the linked list by manipulating the
pointers in the time vertical linked list. If it was the only node under the dummy
node, then remove the corresponding dummy node as well. Return the order
node back to the free pool FIFO.

The algorithmic steps for executing the INSERT, UPDATE, and DELETE commands
are shown in Figure 8 below:

Figure 8. Algorithms for the execution of the INSERT, UPDATE, and DELETE commands.

7. Performance Numbers

To obtain the performance numbers, we implemented the order processing block in
HLS, Verilog, and software. The setup consisted of a Vivado HLS IDE and QuestaSim
simulator for SystemVerilog. HLS code was run, first in the Vivado HLS IDE environment
to confirm logical correctness. Co-simulation was conducted to understand whether
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the generated Verilog also worked correctly. The HLS code was synthesized on a Xilinx
Ultrascale+ FPGA board (Virtex UltraScale+ VCU118-ES1 Evaluation Platform with xcvu9p-
flga2104-2L FPGA). It was synthesized with a clock cycle of 3 ns. Latency numbers for
overall processing (front end + order processing block) were computed for the system using
C-RTL co-simulation in Vivado and the use of SystemVerilog simulations under QuestaSim.
The software implementation of the front end and the order processing block consisted
of C code run on a fault tolerant machine with a Red Hat Linux 7, 16-core CPU (Intel (R)
Xenon(R) CPU ES-2667 V3 @ 3.20 GHz), and 256GB of RAM. The data structures used in
the software were different since there was no consideration of the block RAM for software
implementation. The software uses hashmap and treemap data structures for the order
book. As for the synchronization, single-writer principles were followed to avoid locking
contentions in the performance critical path. In a few scenarios, compare and swap low
latency locks were used. Dedicated isolated cores were assigned to every process to avoid
CPU switching. Due to the sequential nature of software, having more CPU cores did not
give significant performance improvement.

The performance of the design was measured based on various parameters, namely,
resource utilization, latency, and throughput. Overall, the time required for processing
one order was around 500 ns for HLS and Verilog, while it was around 1 microsecond
for software. Table 2 gives the details of the resource utilization of the final system after
synthesis in the xcvu9p-flga2104-2L FPGA. These details of the resource utilization were
made available by the Vivado HLS synthesis tool.

Table 2. Resource utilization.

Flip Flops/
Total/

Utilization

LUTs/
Total/

Utilization

Memory kb/
Total/

Utilization

10629/
2364480/

0.45%

18769/
1182240/

1.58%

105/
4320/

2%

7.1. Setup for Latency and Performance Measurement

A block diagram of the test bench and design under test (DUT) for measuring the
latency and performance of different commands is shown in Figure 9. The DUT consists of
Verilog code of the order processing block implemented in HLS. The test bench consists
of the command generator, command queue, command latency mean execution time
calculator, and report generator. The command generator generates a random mix of
INSERT, UPDATE, and DELETE commands using SystemVerilog constrained random
generation and submits the commands to the DUT on the command interface. The weighted
random distributions of different commands are generated using the dist operator of
SystemVerilog random generation. Commands are also queued into the command queue
as they are submitted to the DUT along with the time stamp. Commands are executed
by the DUT in the order in which they are submitted. The DUT indicates that command
execution is complete with the Cmd_cmplt pulse shown in Figure 9. This signal is used to
record the command completion time. Commands are retrieved from the command queue
in FIFO order, and the command execution time and command latency are calculated by
the mean time and latency calculate block, respectively. This block also maintains the count
of how many UPDATE, DELETE, and INSERT commands were executed in a particular test
case. The report generator prints the report of the latency and command mean execution
time for the INSERT, UPDATE, and DELETE commands.
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Figure 9. Block diagram of the SystemVerilog test bench and DUT.

7.2. Latency Measurements

The following were our observations with regard to latency for each of the commands:

1. DELETE Order The latency for the DELETE order operation remains constant. It does
not change based on the order number or the location of the order in the buy/sell
linked list.

2. INSERT Order

The INSERT operation involves traversing the buy/sell dummy order node linked list
and placing the incoming order under the appropriate dummy order node. If needed (if the
price point does not exist), a new dummy order node may be inserted, and the incoming
order placed under this dummy node. Thus, we see that the time for the INSERT order is
dependent on the time spent traversing the buy/sell linked list or the number of dummy
nodes (hops) that have to be inspected. Thus, latency depends directly on the number
of hops.

3. UPDATE Order

The UPDATE operation involves placing one timestamp node in a new location in
the buy/sell linked list. The latency is dependent on the number of hops from the current
dummy node location to the new dummy node location.

To compute latency, two types of traffic were generated for the system:

a. Sequential traffic that gave a fixed sequence of INSERT, UPDATE, and DELETE commands.
b. Random traffic that gave INSERT, UPDATE, and DELETE commands in some weighted

proportion. The proportion was configurable.

These timings have been observed with the QuestaSim SystemVerilog Simulator
designed by Mentor Graphics.

7.3. Atomic Transaction Level Latency

From the latency test cases, the following latencies (refer to Table 3) have been observed
for the INSERT, UPDATE, and DELETE commands. (These numbers were calculated from
sequential traffic tests by giving few INSERT, DELETE, and UPDATE commands).
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Table 3. Latencies of various commands.

Command Name Latency (Clocks) Comment

INSERT 52 This is for inserting one price point after
the initial insertion.

DELETE 45 This timing is constant, irrespective of the
number of price points, as expected.

UPDATE 36 This is for the first UPDATE with one hop.

7.4. Formulae for the Expected Latency

For the INSERT/UPDATE commands, the linked list has to be traversed. The number
of dummy nodes between the start and the end node is called hops. After running sequen-
tial and random traffic tests, we observed the following relationship between the number
of hops and corresponding latency for each command:

• INSERT: Clocks for N hops = 50 + 2xN
• UPDATE: Clocks for N hops = 34 + 2xN
• DELETE: Total number of clocks = 45

N in the above formulae is the number of hops. Here, latency is the number of clock
cycles with the clock having a period of 3 ns. These latencies were calculated with C-RTL
co-simulation and do not include DRAM access latency and DDR controller latency. As
expected, the latency of INSERT and UPDATE was proportional to the number of hops
while the DELETE latency was constant irrespective of the number of hops.

7.5. Observed Latency under Various Price Depths (Hops)

This study is applicable to UPDATE commands.
Table 4 above shows the latency numbers for 1200 total commands of which the first

300 were inserts and the rest were random where the percentages of INSERT, UPDATE,
and DELETE were 10%, 80%, and 10%, respectively.

Table 4. Latencies of various depths for UPDATEs.

Max.
Hop

Min. Latency
(Clocks)

Max. Latency
(Clocks)

Avg. Latency
(Clocks)

Std. Dev. Latency
(Clocks)

20 70 149 89 10

30 70 159 96 15

40 70 165 100 16

Table 5 below has 1200 total commands of which the first 300 were INSERTs and the
rest were random where the weights of the INSERT, UPDATE, and DELETE commands
entered were 5%, 90%, and 5%, respectively. From the tables, we can conclude that the
minimum time was for the first UPDATE. It can be inferred from the table that irrespective
of the distribution, the average latency and maximum latency depend on the number of
hops, while the minimum latency remains constant as expected.

Table 5. Latencies of various hops for UPDATEs.

Max. Hop
Min. Latency

(Clocks)

Max.
Latency
(Clocks)

Avg. Latency
(Clocks)

Std. Dev. Latency
(Clocks)

20 70 151 90 10

30 70 171 97 15

40 70 169 101 17
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7.6. Throughput

The throughputs for the INSERT, UPDATE, and DELETE commands were calculated
based on the mean time required for the execution of the commands for a given number of
hops. The mean time gives the time it takes in ns to execute the command. The throughput
of the system was computed under various kinds of loads. The following table, Table 6,
depicts the throughput for the INSERT, UPDATE, and DELETE commands. The hops in
the table indicate the initial depth of the linked list which vary according to the INSERT
and DELETE traffic.

Table 6. Throughput of various commands.

Sr. No. Command Hops
Execution
Times (ns)

Throughput
(commands/sec)

1 INSERT 20 367 2724.79 × 103

2 INSERT 30 361 2770.08 × 103

3 INSERT 40 367 2724.79 × 103

4 UPDATE 20 270 3703.703 × 103

5 UPDATE 30 291 3436.4 × 103

6 UPDATE 40 303 3300.330 × 103

7 DELETE 20 153 6535.9 × 103

8 DELETE 30 162 6172.8 × 103

So, the throughput for the command is
(109)/(mean command execution time) commands per second
Note: This calculation was obtained with traffic from 90% UPDATE, 5% INSERT, and

5% DELETE commands.
The software implementation of the INSERT and UPDATE commands takes 1.5 mi-

croseconds (0.67 million commands/sec) while DELETE takes 1.2 microseconds (0.84 million
commands/sec). It can be seen that with an FPGA, the throughput of all the commands in-
creased to more than 2 million commands/sec (which is the same as orders/sec). Furthermore,
the average latency of the command execution was reduced to around 300 ns.

7.7. Productivity

Verilog implementation took 6 months while HLS implementation took 1.2 months
with two engineers with experience of 8–10 years.

8. Pipelined Execution of UPDATE Command

The execution of the UPDATE command involves two phases: 1. Fetch—In this phase,
the OrderIndex of the order which is stored in the order index table is fetched using the
OrderID as the address. Since the order index table is stored in DRAM, the fetching of
the OrderIndex takes longer compared to BRAM. 2. Execute Phase—This phase involves
moving the order node to a new price position, adding at the end of the vertical linked list
of order nodes and deleting the order node from the current price position in a vertical
linked list under the dummy node corresponding to the old price position. If the fetch and
execute phases are carried out sequentially without any overlap, the execution time of the
UPDATE command increases, resulting in less throughput for UPDATE. To address this
issue, we modified the UPDATE command execution logic such that there is an overlap
between the execution of the fetch and execute phases. This was achieved by executing the
fetch and execute phases in a pipelined fashion. The fetch logic looks up the order index
table using the OrderID as the address and writes the OrderIndex read from DRAM into
a first-in, first-out (FIFO) queue. The execute command reads the OrderIndex from the
queue and uses it to locate the order in the order database. After locating the order node,
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the execute logic moves it to the new position in the horizontally linked list of price nodes.
Since the fetching of the OrderID for the next UPDATE command overlaps with the execute
phase of the previous UPDATE command, the effective execution time of the UPDATE
command is reduced significantly, if the UPDATE commands are received sequentially.
Since the percentage of UPDATE command is very high (around 90% of the total commands
are UPDATEs), this modification results in a 30–40% increase in the throughput of the
UPDATE command as shown in Table 7 below.

Table 7. Throughput for various commands with the pipelined execution of UPDATE.

Command Hops Execution Times (ns)
Throughput

(commands/sec)

INSERT 20 367 2724.79 × 103

INSERT 30 361 2770.08 × 103

INSERT 40 367 2724.79 × 103

UPDATE 20 189 5290.703 × 103

UPDATE 30 218 4587.4 × 103

UPDATE 40 224 4464.330 × 103

DELETE 20 153 6535.9 × 103

DELETE 30 162 6172.8 × 103

9. Conclusions and Future Work

In this study, we have implemented the order processing block of a trading system
with FPGA technology. By migrating the functionality of order processing from software to
hardware, we were able to obtain more than 2X of an advantage in throughput and order
processing latency was reduced to less than 500 ns. The design was implemented with HLS.
HLS methodology is comparatively new and is an emerging technology that is not mature as
of yet. However, our observation is that the results of latency and throughput obtained with
HLS are very close to Verilog implementation. With HLS, we achieved almost 4X–5X of an
improvement in throughput for the INSERT and UPDATE commands compared to software
implementation. However, to obtain results close to a highly optimized and efficient Verilog
implementation, various optimization techniques need to be tried out as recommended below:

• Using HLS stream variables internally to implement FIFOs and carry out concur-
rent/overlapped executions of subfunctions of the three commands.

• Using an optimal mix of Verilog and C code in which certain latency and time-critical
subfunctions are coded in Verilog, and the rest of the logic is coded in C and imple-
mented in HLS.

• Design under test (DUT) consists of the Verilog implementation of the order processing
block. As an alternative approach, the same DUT can be ported on an Intel HLS
Compiler, and the results compared with those obtained from Xilinx Vivado HLS.
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* Correspondence: grzegorz.jablonski@p.lodz.pl

Abstract: In this paper, a massively parallel implementation of Boltzmann’s thermally activated
molecular transport model is presented. This models allows taking into account potential energy
barriers in molecular simulations and thus modeling thermally activated diffusion processes in
liquids. The model is implemented as an extension to the basic Dynamic Lattice Liquid (DLL)
algorithm on ARUZ, a massively parallel FPGA-based simulator located at BioNanoPark Lodz. The
advantage of this approach is that it does not use any exponentiation operations, minimizing resource
usage and allowing one to perform simulations containing up to 4,608,000 nodes.

Keywords: distributed system; reconfigurable system; FPGA; ARUZ; Boltzmann statistics; molecular
simulation

1. Introduction

Computer simulations have become one of the most important research methods for
non-equilibrium processes in chemistry and physics. The applied simulation techniques,
however, have encountered difficulties with different types of problems, related to spatial
and time scales, which are necessary to bring the system to a state of full equilibrium. Such
phenomena are particularly interesting wherever the enthalpy factor (non-covalent interac-
tions between molecules and atoms) is important (e.g., in soft matter, simple and complex
liquids, and polymer solutions), as well as when temperature is one of the parameters of the
studied phenomenon. The commonly used computational methods for non-equilibrium
problems, such as phase separation, include nonlinear diffusion equation solvers [1,2],
molecular dynamics methods [3], and stochastic Monte Carlo (MC) methods [4,5].

A particularly interesting method belonging to the stochastic category is the Dynamic
Lattice Liquid (DLL) model [6–8], as it allows observing not only steady state static behavior
but also the process of reaching equilibrium. It is based on the concept of cooperative
motion of objects (elements). The positions of the elements are limited to the nodes of
a face-centered cubic (FCC) lattice (coordination number Z = 12) for simplicity. The FCC
lattice is commonly chosen in 3D as it has the highest coordination number among regular
ones. The algorithm works on a completely occupied lattice, where the elements cannot
easily move over a long distance due to the occupation of all neighboring lattice sites. In this
case, the only way to move the elements with the excluded volume preserved is cooperative
motion. In DLL, cooperative rearrangements take the form of closed loops of displacements
that involve at least three elements (see Figure 1). Loops are formed spontaneously in
a random way. The DLL model fulfills the continuity equation and provides the correlated
movements of molecules as a model of real liquids. A discussion of the detailed balance
and ergodicity in the DLL model was presented in [9].

This basic version of the DLL algorithm (also called the LOOPS mechanism here)
models Brownian diffusion in a long time limit for simple liquids. However, to model
more complex phenomena, the DLL model can be extended with additional functionalities,
namely the so-called “mechanisms”:
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• The introduction of molecular bonds with excluded volume between elements must
involve the BONDS mechanism, which is responsible for movement restriction related
to the length-constant unbreakable bonds.

• The mechanisms BOND_BINDS and BOND_BREAKS are used when one wants to
simulate the macromolecular polymerization and degradation processes, respectively.

• A growing macromolecule (in the case of polymerization, where new elements are
joined to the molecule with some probability) can be terminated randomly using the
TERMINATION mechanism.

• Chemical reactions of different orders can also be modeled with the REACTION
mechanism, where elements can change their type with a given probability.

• Local trapping can be modeled with the MOBILITY mechanism, where movement of
a given element can be restricted (e.g., due to its spatial position in the simulation box).

• Vector fields can be modeled using the VECTOR and REORIENTATION mechanisms.
• In the case where vacancies are present, the WAYS mechanism is used to model coop-

erative motion involving empty lattice nodes, forming a cooperative set of elements
(chain-like and not necessarily a loop).

• The APERIODIC mechanism is used to build immobile obstacles such as walls.
• Thermal noise can be reduced in simulations by lowering the temperature with the

ENERGY mechanism (introducing potential energy barriers).

Figure 1. Attempts of movement in the DLL algorithm. Successful ones are marked as empty arrows
in blue. A 2D case with Z = 6 is shown for clarity.

All the above mechanisms can be defined for a given type of element or spatial position
in the simulation box, enabling modeling of various external fields.

The DLL model can be implemented efficiently with good scalability on a parallel
machine equipped with low-latency communication interfaces to the nearest neighbors. A
specialized field-programmable gate array (FPGA)-based simulator—ARUZ—was built for
DLL simulations and has achieved performance orders of magnitude better than imple-
mentations on a sequential computer (see Table 4 in [10]).

In this paper, the details of Boltzmann’s thermally activated molecular transport
model [11] implemented as a DLL extension on ARUZ (ENERGY mechanism) are presented.
The model allows taking into account potential energy barriers in molecular simulations
and thus allows modeling of thermally activated diffusion processes in liquids. This
approach does not use any exponentiation operations, allowing one to perform simulations
containing 4,608,000 nodes, reaching 69 percent of the maximum simulation size achievable
using only the LOOPS mechanism.

The performed simulations confirm that the implementation gives exact results com-
pared with the values calculated theoretically.

Although the presented implementation works as an extension of the DLL algorithm,
it is also applicable to other molecular movement models, especially those based on the
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lattice approach with high occupancy, such as direct exchange dynamics [12] or vacancy
transport [13].

2. The ARUZ Simulator

The ARUZ [10], commissioned at the end of 2015 at Lodz Technopark (currently
BioNanoPark), came as a result of close cooperation between the Department of Molecular
Physics and the Department of Microelectronics and Computer Science, both from the
Lodz University of Technology, complemented by the professional management expertise
of the Ericpol (currently Ericsson) company. It is the first instance of a simulator built
using TAUR technology [14]. This machine was designed to reflect the DLL algorithm in
its hardware [15].

The ARUZ simulator consists of 2880 simulation boards called daughter boards
(DBoards), interconnected by ca. 75,000 cables (see Figure 2). Each of them carries nine
FPGAs: eight of them being called DSlaves (Artix XC7A200T), which constitute the re-
sources for the nodes of the simulation algorithm, and the remaining one called DMaster
(Zynq XC7Z015), which manages the operation of the DSlaves. The entire ARUZ thus
contains 23,040 DSlaves. Each of the DSlaves can host up to a few hundred simulation
nodes, depending on which features of the computational model are selected, and has
communication interfaces to the eight closest neighboring FPGAs in a 3D simulation space.

Figure 2. Inside ARUZ. DBoards on interconnected panels.

Internally, each FPGA implements a grid of specialized processing cells dedicated
to performing consecutive steps and complex calculations of the Dynamic Lattice Liquid
algorithm. Assuming that every FPGA can host ca. 300 DLL cells [10], the entire simulation
space consists of about 6.9 million nodes in the case of the basic DLL version.

3. Thermally Activated Diffusion Model

In the DLL algorithm, the individual molecules try to move in random directions,
and the movement is possible only if the set of molecules is able to form a cooperative
loop, where excluded volume interactions are naturally accounted for. The thermally
activated diffusion model introduces an additional temperature-dependent restriction on
molecule movement due to their interaction with neighbors. Such simulations have been
performed previously only on a sequential computer [16–18], and no high-performance
parallel implementation of this model is known. Different models can be considered in
this case, including the kinetic MC test [16] based on the present state, forward-testing
based on the next state, Metropolis sampling [4], or Glauber dynamics [19]. The first one
was selected for the sake of simplicity and high performance. Additionally, the rest of
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the models take into account the forward system configuration, which would require a
reversing phase of the simulation (going back to the starting point if the test fails), which
complicates the parallel architecture a lot. Only the nearest neighbors were taken into
account to simplify the interconnection topology and limit the number of transmission
phases, but this simplification is not really significant in dense systems where long-distance
interactions are mostly shielded by the rest of the system.

The ENERGY algorithm computes the probability of molecule movement in the
following simulation phase (cooperative loops). Based on this probability, a pseudo-
random number generator determines if the given molecule is immobilized in the current
DLL cycle.

The involvement of nearest-neighbor interactions (or, in other words, temperature-
dependent attraction or repulsion) must take into account the probability test related to
the system energy. The system Hamiltonian for the ith lattice site populated by the X-type
element is defined as follows:

Ei
kBT

=
1

kBT
(

1
2 ∑

j
εXYj + HXi ) (1)

where the sum extends over all nearest neighbors and j can take any type Y. The following
definitions apply:

• T is the absolute temperature, and kB is the Boltzmann constant.
• HX/kBT is the interaction energy of the type X with the external field and can depend

on the spatial position to model, for example, the temperature gradient.
• εXY/kBT is the interaction energy of the i, j pair and is position-independent. In the

presented model, εXY always equals εYX .

Both εXY/kBT and HX/kBT are input data. For example, if four interactions εXY
between elements are defined, with X = A placed in the currently analyzed ith lattice node
and Y = A, B, C, D, then

Ei
kBT

=
1

2kBT
(εAAnAA + εABnAB +

+εACnAC + εADnAD) +
HAi

kBT
(2)

with multiplicities of i, j pairs nAA = 2, nAB = 2, nAC = 1, and nAD = 1, as illustrated in
Figure 3.

Figure 3. Example local configuration of interacting types shown in 2D.

A kinetic Monte Carlo test, representing the Boltzmann statistics, is applied (i.e., an
effective attempt of motion is performed with a probability proportional to the energy of
the current local state) [16,20]:

Pi = e−
Ei

kBT (3)

The test is executed for all elements in a given loop of possible cooperative move-
ment, and all elements must pass it; otherwise, the whole loop is immobilized (when
exp(−Ei/kBT) < random[0, 1)).

As a result, if εXY > 0, then an attractive interaction is present for the i, j pair. Interac-
tions become effective at a finite temperature by reducing the probability of motion. Here,
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εXY describes the barrier which has to be overcome in order to release contact between X
and Y during the thermally activated diffusion process.

The average interaction energy per element is equal to < E >= 1/N ∑N
i=1 Ei, with N

being the total number of elements in the lattice.
Note that the commonly known Metropolis sampling algorithm is not used because the

loops have a spatial extent (over large distances, sometimes even 50 lattice constants [10]),
and the test defined above involves the nearest neighbors only [21].

4. Implementation Requirements

To implement the kinetic MC test, the types of all the neighbors must be known.
These are obtained using the local communication, described in detail in [10] (see Figure 11
therein for details about latency). After this information is acquired, the computations
are performed independently in all nodes. The DLL algorithm’s performance is mainly
determined by the performance of the loop detection phase [22]. The time of a single cycle
of the LOOPS algorithm amounts to ca. 100 microseconds. Therefore, in implementation
of the ENERGY mechanism, the minimization of resource utilization and not the lowest
latency is the main objective.

Implementing the test in a digital circuit requires choosing the number storage format
and the required precision. Equation (3) contains the exponentiation, which is a quite
complex operation that is difficult to implement in hardware.

By substituting (1) into (3), we obtain

Pi = e−( 1
2 ∑Z

k=1
εXY
kBT (k)+HX(x,y,z)) (4)

where Z is the number of neighbors, which is assumed to be 12. If we define

εw(X, Y) = e(−
1
2

εXY
kBT ) and εe(X) = e(−HX(x,y,z)) (5)

then we obtain

Pi =
Z

∏
k=1

εw(X, Yk) · εe(X) (6)

As εw(X, Yk) and εe(X) are constant, no exponentiation operation is needed in the
FPGA fabric, as they can be precomputed in the software.

For
y = ex (7)

we have
dy = exdx (8)

Thus, we have
dy
y

=
ex

y
dx (9)

and
dy
y

= dx (10)

Therefore, the absolute precision of x is equal to the relative precision of y. Therefore,
to store εw and εe and perform operations on them, we need to apply a floating-point
format, as it ensures a constant relative precision for the full range of stored values.

Because the assumed precision of the expression in the exponent in Equation (4) is
10−5, and log2(10−5) is −16.7, to store εw and εe, we need a 17 bit mantissa.

Assuming that 1
2

εXY
kBT (k) in HX(x, y, z) has a range −10–10, from Equation (4), we can

infer that Pi can vary in the range e−10·(Z+1)–e10·(Z+1), which is thus e−10·13–e10·13, 2−187.55–
2187.55, and 2−27.55

–227.55
. This implies 9 bits for the floating point number exponent (8 for
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numbers greater than 1 and 8 for numbers smaller than 1) to encompass the entire range
presented above.

In the vast majority of cases, the maximum number of simulation time steps is assumed
to be 109. The mean probability of element movement is close to 6% for the FCC lattice [23]
in the case of a basic version of DLL (additional mechanisms can only decrease it). Therefore,
the number of steps in which the energy test will be used is approximately 0.06 × 109 =
6 × 107 per element, so it will be necessary to perform the operation with probabilities
in the order of 1/(6 × 107). Log2(6 × 107) = 25.8, and therefore we need at least a 26 bit
pseudo-random number generator. Please note that we do not need to compute a logarithm
of the pseudo-random number as opposed to, for example, the solution presented in [24].

5. Implementation on FPGA

As the number of simulation nodes in DSlave (Artix XC7A200T) is limited to ca. 300,
the optimization of the amount of hardware resources used by each node becomes a crucial
factor. As can be seen in Figure 16 in [10], the most limiting resources are look-up tables
(LUTs). Therefore, implementation using other available FPGA resources is desirable.
The kinetic Monte Carlo test requires Z + 1 multiplications of εw and εe, as presented
in Equation (6). This can be performed effectively by employing specialized hardware
resources available in DSlave instead of configurable logic blocks (CLBs) [25], such as
block random access memory (BRAM) [26] to store coefficients εw and εe and digital signal
processing (DSP) slices [27] to perform multiplications.

Artix XC7A200T has 13,140 kb of BRAM [28] and 740 DSP slices, each containing
a 25 × 18 multiplier. To implement multiplications in Equation (6), a single Xilinx Floating-
Point Operator IP core [29] was used. This multiplier needs two DSP slices, limiting the
number of nodes that can be implemented in one DSlave to 370. The block diagram of
a module implementing the kinetic Monte Carlo test is presented in Figure 4.

Figure 4. Block diagram of a module that implements the kinetic Monte Carlo test.

To reduce the number of CLBs, a special method for addressing BRAM is used which
allows the concatenation of address vectors instead of employing more complicated calcu-
lations. The memory address is a concatenation of the following (see Table 1):

• An “e_offset” bit indicating parts of the memory storing εw and εe;
• A vector representing the type of a neighbor element “other_type”;
• A vector representing the type of the considered element “my_type” (occupying the

right-most bits).

The coefficient memory is divided into two sections. The first section of the memory
stores εw coefficients and requires M2 memory locations (assuming that εw occupies one
location), where M is the number of types rounded up to the nearest power of two. The
second section of the memory stores εe coefficients and requires M memory locations
(assuming that εe occupies one location). Therefore, the total number of memory locations
is M2 + M.
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Table 1. Example of BRAM utilization. White background denotes entries that are unused when only
three element types are present.

Address Data
(e_offset & other_type & my_type)

0 & 00 & 00 εw(A, A)
0 & 00 & 01 εw(A, B)
0 & 00 & 10 εw(A, C)
0 & 00 & 11 εw(A, D)
0 & 01 & 00 εw(B, A)
0 & 01 & 01 εw(B, B)
0 & 01 & 10 εw(B, C)
0 & 01 & 11 εw(B, D)
0 & 10 & 00 εw(C, A)
0 & 10 & 01 εw(C, B)
0 & 10 & 10 εw(C, C)
0 & 10 & 11 εw(C, D)
0 & 11 & 00 εw(D, A)
0 & 11 & 01 εw(D, B)
0 & 11 & 10 εw(D, C)
0 & 11 & 11 εw(D, D)
1 & 00 & 00 εe(A)
1 & 00 & 01 εe(B)
1 & 00 & 10 εe(C)
1 & 00 & 11 εe(D)

In Table 1 an example of memory addressing is presented:

• Example 1: Four element types are used (types A, B, C, and D coded by a two-bit
vector: A = 00, B = 01, C = 10, and D = 11). The address of an appropriate εw is
a concatenation of the ”e_offset” bit set to 0, and two two-bit vectors (representing
the type of the considered element and a neighbor, respectively). The address of
εe is the concatenation of a constant M2 coded by a three-bit vector (taking bits of
”e_offset” and ”other_type” vectors) and a two-bit vector representing the type of
element considered. In this example, all memory locations are used, and 16 of them
are needed for εw and 4 for εe, leading to a total of 20.

• Example 2: Three element types are used (types A, B, and C coded by a two-bit vector:
A = 00, B = 01, and C = 10). The addresses of the appropriate coefficients εw and εe are
determined in the same way as in the previous example. Only gray-colored memory
locations are used, but the required number of memory locations is still 20.

As the presented example shows, some parts of the memory are unused in some
scenarios, and the memory utilization is higher than would be expected based on the
number of types, but calculation of the memory address is kept very simple, and its
implementation costs less CLBs for one node.

The FPN MULT block (see Figure 4) is 27 × 27 (1 bit for the sign, 10 bits for the
exponent, and 16 bits for the mantissa) floating-point multiplier. The BRAM data are fed to
the mult_A input of the multiplier. The data on the mult_B input are multiplexed. During
the first cycle of calculations, the value of one represented in the floating-point format, and
during the following cycles, the current product is fed. In this way, the result accumulates,
giving Equation (6) after Z + 1 = 13 multiplication cycles.

Figure 5 presents the results of an example simulation that shows the module’s opera-
tion. Its settings are as follows: a single type A surrounded by a homogeneous mixture

of types B and C, εAB/kBT = 0.2, and εAC/kBT = 0.01. Thus, e(−
1
2 ·∑

Z
2

k=1 0.2− 1
2 ·∑

Z
2

k=1 0.01) =

∏
Z
2
k=1 e(− 1

2 ·0.2) · ∏
Z
2
k=1 e(− 1

2 ·0.01) = ∏
Z
2
k=1 0.90483 . . . · ∏

Z
2
k=1 0.99501 . . . = 0.53255 . . .
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Figure 5. Result of the simulation.

In this simulation, one floating-point multiplication takes 4 clock cycles, so the whole
operation takes 12 · 4 = 48 clock cycles. The clock period is 8 ns.

In the example, the neighbor nodes are placed evenly (homogeneous mixture). Thus,
the BRAM address takes two values: four (0100), where εw(B, A) is stored, and eight (1000),
where εw(C, A) is stored. The values read from BRAM are 0.90483 . . . and 0.99501 . . . ,
respectively. The result is 0.5325469 . . . , which is correct.

The output of “FPN MULT” is compared with a random number. This random number
is a 32 bit vector generated by a dedicated linear feedback shift register (LSFR). To make
this comparison possible, the product is converted to a 32 bit fixed-point number. Both
numbers being compared are treated as numbers in the range [0, 1). The flag “move” is set
to one when the “product” is greater than the generated random number.

There are two parameters of the floating-point multiplier core affecting the resource
utilization and timing closure that can be adjusted: latency and DSP usage. Latency can be
configured to between 0 and 8 clock cycles. The multiplier can use zero (“no DSP”), one
(“full DSP” setting), or two (“max DSP”) DSP48 blocks per instance.

Table 2 summarizes the results of exploration of a design space and shows the overhead
of adding the ENERGY mechanism to the simulation. The results for the maximum number
of nodes that can be placed in a single FPGA that can be successfully implemented without
timing issues are presented in the table.

Table 2. Exploration of a design space.

Nodes
per Chip

Mechanisms
Multiplier
Parameters

LUTs (%) FFs (%) BRAMs (%) DSPs (%)

200 LOOPS N/A 58.01 29.21 0.00 0.00
288 LOOPS N/A 81.52 40.98 0.00 0.00

128 LOOPS,
ENERGY

latency 3,
no DSP 80.09 34.93 0.00 35.07

200 LOOPS,
ENERGY

latency 3,
full DSP 79.17 47.90 27.03 54.79

200 LOOPS,
ENERGY

latency 3,
max DSP 76.56 48.05 54.05 54.79

200 LOOPS,
ENERGY

latency 4,
max DSP 77.58 48.95 54.05 54.79

200 LOOPS,
ENERGY

latency 8,
max DSP 78.24 50.87 54.05 54.79

The maximum number of simulation nodes that can be placed in a DSlave is limited
by the number of LUTs. It is typically not possible to route a design with more than 80%
LUT utilization. Increasing the latency of the multiplier improves the timing closure but
also slightly increases resource utilization. The timing closure is not possible with the
multiplier latency set to one. Setting it to two results in successful implementation only
for three out of all eight DSlaves on the board. It is possible to obtain consistently positive
results for the synthesis with the latency set to at least three. At the “max DSP” setting,
over half of the DSPs are used. As the only other mechanism that is able to use DSPs is the
WAYS mechanism [22], and it uses only one DSP48 block per node, this is not a limiting
factor. However, halving DSP usage by applying the “full DSP” setting does not cause
a significant increase in LUTs. On the other hand, using the “no DSP” setting increases the
LUT usage, enormously reducing the maximum number of nodes per chip to 128.
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The inclusion of the ENERGY mechanism consumes ca. 20% of the LUTs in fully
utilized FPGA. As a result, it decreases the maximum number of nodes per chip to 200
(4,608,000 in the entire machine) compared with 288 for the simulation using only LOOPS.

6. Example Simulation

The Hamiltonian in Equation (1) can model a kind of system called the conserved-
order parameter [30] Ising model [31], or model B in the Hohenberg–Halperin classifi-
cation [32]. The model assumes that the diffusion can be suppressed in X(Y)-type-rich
regions (εXX(YY)/kBT > 0) or at the X-Y interfaces [33] (εXY/kBT > 0) as a result of nearest-
neighbor interactions.

As the probability of any state in equilibrium is given by the Boltzmann distribution,
the interaction εXY causes configurations where particles are clustered together to be low
in energy and therefore more likely at low temperatures. The critical interaction value for
the FCC lattice (defined with a critical temperature TC) after which the systems undergo
the order-disorder transition (second-order phase transition) is ε/2kBTC = 0.204. . . [34,35].

This kind of system was used to study many physical problems for which the kinetics
of mixing or demixing matters (i.e., where diffusivity of elements is highly related to their
neighborhood), such as for binary alloys [36,37], liquid mixtures [38,39], and polymer
blends [40,41]. Obviously, if more than two types with many more pairs of interactions are
defined, then the modeled system possesses much higher complexity than the simple Ising
model, and its properties strictly depend on the defined conditions.

Figure 6 presents simulation snapshots for a box initially filled with two interacting
types: X = A and Y = B (50%:50%). The system consisted of 3,538,944 nodes with periodic
boundary conditions. In the first simulation step, the types were fully separated (see
Figure 6a in all cases). Figure 6b presents the box configuration after t = 105 cycles of the
algorithm and εAB/2kBT = 0 (no interaction). The box was mixed by diffusive motion of the
elements (by the LOOPS mechanism [10,22]), ending with the totally random configuration.
When the interaction was set to εAB/2kBT = 0.1 (Figure 6c), the mixing process was slowed
because diffusive motion was limited in the areas where A and B were in contact. However,
after t = 106, in this case, the system was again random. The application of εAB/2kBT = 0.5
(Figure 6d) resulted in a stable separation in time because the critical value of the interaction
for the FCC lattice was exceeded, and the system remained ordered. The introduction
of εAB/2kBT does not restrict movement within regions rich in A or B (εAA/2kBT and
εBB/2kBT were set to zero). In the investigated cases, ARUZ achieved a performance of
5260 cycles/s (18.6 × 109 lattice updates per second (LUPS) [10]) for εAB/2kBT = 0.01 and
up to 7300 cycles/s (25.8 × 109 LUPS) for εAB/2kBT = 0.1 with a completely random initial
configuration because the energy tests excluded 4̃6% of all elements from the diffusive
motion analysis in this case.

Figure 6. Example of simulation snapshots for (a) t = 0, (b) εAB/2kBT = 0 and t = 105,
(c) εAB/2kBT = 0.1 and t = 105, and (d) εAB/2kBT = 0.5 and t = 106. Types A and B are marked with
different colors.

7. Conclusions

An efficient approach to FPGA-based simulation of Boltzmann’s thermally activated
diffusion was developed. It avoids the expensive exponentiation operation in the FPGA
fabric by using precomputed values of the Boltzmann weights. A special method for
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BRAM addressing was used, eliminating complicated calculations thanks to address vector
concatenation. Application of the described model increased the performance of the
simulation measured in LUPS, as the energy tests excluded a large portion of all elements
from diffusive motion. The simulations performed confirmed that the implementation
gives exact results compared with the theoretically calculated values.

The presented implementation is applicable to other lattice algorithms where Boltz-
mann weights need to be used.

Author Contributions: Conceptualization, K.H.; methodology, G.J., P.A. and K.H.; software, G.J. and
P.A.; validation, P.A. and K.H.; formal analysis, G.J.; investigation, G.J., P.A. and K.H.; data curation,
K.H.; writing—original draft preparation, G.J.; writing—review and editing, G.J., P.A. and K.H.;
visualization, K.H.; supervision, G.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Polish National Science Centre grant UMO-2017/25/B/ST5/01110.

Data Availability Statement: Not avaliable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ARUZ Analyzer of Real Complex Systems
(in Polish: Analizator Rzeczywistych Układów Złożonych)

BRAM Block random access memory
DLL Dynamic Lattice Liquid
FCC Face-centered cubic
FPGA Field-programmable gate array
LUPS Latice updates per second
TAUR Technology of Real Word Analyzers

(in Polish: Technologia Analizatorów Układów Rzeczywistych)
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ARUZ—Large-scale, massively parallel FPGA-based analyzer of real complex systems. Comput. Phys. Commun. 2018, 232, 22–34.
[CrossRef]
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Abstract: Recently, the application of bio-signals in the fields of health management, human–
computer interaction (HCI), and user authentication has increased. This is because of the development
of artificial intelligence technology, which can analyze bio-signals in numerous fields. In the case of
the analysis of bio-signals, the results tend to vary depending on the analyst, owing to a large amount
of noise. However, when a neural network is used, feature extraction is possible, enabling a more
accurate analysis. However, if the bio-signal time series is analyzed as is, the total neural network
increases in size. In this study, to accomplish a light-weight neural network, a maximal overlap
discrete wavelet transform (MODWT) and a smoothing technique are used for better feature extrac-
tion. Moreover, the learning efficiency is increased using an augmentation technique. In designing
the neural network, a one-dimensional convolution layer is used to ensure that the neural network
is simple and light-weight. Consequently, the light-weight attribute can be achieved, and neural
networks can be implemented in edge devices such as the field programmable gate array (FPGA),
yielding low power consumption, high security, fast response times, and high user convenience for
wearable applications. The electromyogram (EMG) signal represents a typical bio-signal in this study.

Keywords: bio-signals; artificial intelligence technology; light-weight neural network; maximal
overlap discrete wavelet transform (MODWT); smoothing technique; augmentation technique; edge
devices; field programmable gate array (FPGA); electromyogram (EMG)

1. Introduction

Various bio-signals have been developed, such as electrocardiogram (ECG), elec-
tromyogram (EMG), photo-plethysmography (PPG), and electroencephalogram (EEG).
Many artificial intelligence networks using these bio-signals are being developed, and the
fields of application are diverse [1,2]. Typical application fields include health care, human–
computer interaction (HCI), and user authentication [3–6]. In this study, the EMG signal
was treated as a representative bio-signal. In the case of the EMG signal, the measurement
is simple; therefore, it is expected to be used in fields such as user authentication and
HCI [7,8]. EMG is measured by amplifying a small signal coming from the movement of
the muscle, and the measurement equipment has three input terminals [9]. Two terminals
were used to measure the signal in the middle and end of the muscle. The last terminal was
used as a reference signal, which is far from the muscle. This is amplified by the differential
amplification unit to determine muscle movement [10]. The EMG sensor is easy to attach
and can be used for HCI by attaching it to the most active hand. For HCI applications that
use EMG, the classification of the signals using artificial intelligence has been the subject
of many studies [11,12]. The increasing use of bio-signals is due to the rapid progress of
artificial intelligence and big data technology.

In the case of EMG signals, as with other bio-signals, various noise components
are included in the measurement [13]. This creates a problem in that the analysis of
results can differ depending on the analyst. However, when a neural network is used,

Electronics 2023, 12, 1398. https://doi.org/10.3390/electronics12061398 https://www.mdpi.com/journal/electronics
47



Electronics 2023, 12, 1398

feature extraction is possible and more accurate, and consistent results can be obtained [14].
In [15], based on EMG signals measured in 16 channels, support vector machine (SVM)
and generalized regression neural network (GRNN) artificial intelligence algorithms were
employed using the root mean square (RMS), an autoregressive model (AR), and the slope
sign change (SSC). In this manner, the six hand gestures were classified with 98% accuracy.
In [16], a user recognition study was conducted using the EMG signal measured when
drawing an unlock pattern on a smartphone screen. The EMG signal was measured in the
flexor digitorum superficialis (FDS) muscle of the forearm using OpenBCI. Using one-class
SVM (OCSVM) and extracting features, such as the mean absolute value (MAV), variance
(VAR) in the time domain, the user was recognized 98.2% of the time. In [17], a fast Fourier
transform (FFT) was performed using EMG signals, and based on this, it was confirmed
that diseases such as neuropathy muscle disease could be predicted. However, if the time
series is used as is or if FFT is used, the neural network for feature extraction becomes
significant, with more than 100,000 weight values, making it unsuitable for wearable
applications [18,19]. Most of the heavy EMG signal analyses are implemented in a structure
that transmits data to a server and analyzes them on the server. This means that many
hardware resources are used in the server, and the power consumption is high. Moreover,
security is emerging as a big problem in EMG analysis, while, regarding authentication,
problems such as slow response times may occur [20,21].

To solve this problem, the field of bio-signal processing in edge devices has received
considerable attention [22–24]. This is because when using an edge device, low power, a
fast response speed, and security can be expected [25]. However, difficulty in achieving
low power in the case of CPU- and GPU-based artificial intelligence systems is a problem.
This is because their operation is clock-based and consumes considerable power in the
process of accessing memory. To prevent this, a field programmable gate array (FPGA) with
a distributed structure is a possible alternative, and low power and fast response times can
be secured through various structure optimizations [26,27]. In the case of an edge device
with a CPU/GPU or an embedded system, only one execution is performed, whereas an
FPGA has the advantage of executing multiple instructions simultaneously. Therefore,
FPGAs have received significant attention in the field of edge devices [28,29].

In the case of an inference accelerator using an FPGA, many studies have been con-
ducted [30]. However, when an FPGA is used, external memory such as dynamic random
access memory (DRAM) is required to store the weight values, and considerable energy is
therefore consumed for reading memory processes. To prevent this, edge devices that are
more compressed are being studied, which is also the focus of this study. This study focuses
on hardware configurations that can be applied in real life. The hardware compression
methods used are largely based on (1) compression of the model network itself using
algorithms, (2) compression of the computation methods (e.g., MobileNet [31], a systolic
array structure for the tensor processing unit (TPU) [32]), and (3) a pruning method that
uses weight sparsity and bit quantization [33]. In this study, hardware compression was
carried out by focusing on methods (1) and (3). Therefore, the main purpose is to design
a light-weight neural network suitable for an edge device, such as an FPGA, capable of
parallel operation and with low memory access. With such a neural network, memory
components for storing weight values can exist inside the FPGA without any external
DRAM memory access (e.g., ResNet minimum storage requirement for 26 million weight
values of 104 MB).

For this purpose, a frequency-filtered signal is used by signal processing. The maximal
overlap discrete wavelet transform (MODWT) and smoothing algorithm for this signal are
used. Moreover, an augmentation technique is used to increase learning efficiency. For
the neural network design, a one-dimensional convolution layer is used for light-weight
systems that are suitable for wearable applications. The neural network implemented in
this manner is deployed to the FPGA, which is an edge device, and performs an appropriate
inference operation. Through this, a low-power, high-speed, and high-security system with
an edge device can be implemented even in low-cost FPGAs for artificial intelligence. In
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particular, the size of the model network can be reduced using an efficient feature extraction
method that is suitable for EMG signals; through this, operation with high accuracy and
low power consumption without access to external memory is possible. Additionally,
bit quantization was performed to secure the compression of the edge device. The main
application area is wearable systems for HCI or user authentication. Section 2 investigates
the signal processing of EMG signals, and Section 3 reports on the structure of the neural
network. Section 4 shows the overall hardware structure and verification process through
high level synthesis (HLS) for hardware deployment. Section 5 presents the conclusions,
discussions, and future research directions.

2. Signal Processing

2.1. Data Augmentaion

For the EMG signal input, “sEMG for Basic Hand movements Data Set” of the existing
UCI machine learning repository was used [34]. This is the measurement data for five
people, and the hand gestures are composed of six; thus, the final goal is to classify the
six movements using the measured EMG signals. The measurement sampling frequency
was 500 Hz, and the measurement was performed using two channels. The sampling
frequency was 500 Hz because the most important data in the case of EMG signals are
included in the range from 10 to 250 Hz. However, because a wearable device is assumed
in this study, classification was performed using only data from channel 1. This causes a
decrease in accuracy, but because one channel is mostly used in the actual HCI environment,
one channel is used. In a real environment, the six hand gestures would be difficult to
distinguish with one channel of data. In actual wearable device applications, classification
for approximately two to three classes is considered. Both the EMG sensor and artificial
intelligence will be produced in the form of a smartwatch. The actual application fields
through this will be HCI implementation for two or three hand motions, analysis of carpal
tunnel syndrome, and user authentication. However, for comparison with other neural
networks, the accuracy was obtained by performing the classification of all six hand
gestures. Additionally, in the case of measurement data, the amount of data is insufficient
because it is data from five people; however, the data were used only for the feasibility
test of the proposed neural network. The dataset “EMG data for gestures Data Set” of 36
subjects and eight channels for six hand gestures were also verified with similar sequences.
A 98% classification accuracy was observed for the validation data (not shown here). The
increased accuracy is related to the increased channel numbers [35]. In the future, the
EMG signal will be measured via its own compact EMG modules and will be used as a
wearable device. A high-efficiency wearable device for EMG signal acquisition is currently
under development. Figure 1a shows a prototype of the EMG sensor that is currently
under development. A differential amplifier was used, and signals from 10 to 250 Hz were
obtained using frequency filtering. Figure 1b shows the measured EMG signals of the
wrist. In the future, the signals will be produced in the form of a wearable watch through
miniaturization and low power consumption and will be combined with an edge device
for artificial intelligence to detect wrist movements.

In the case of the EMG input dataset, because the number of datasets is small, it is
unsuitable for training. Therefore, data augmentation was implemented using additive
noise and magnitude warping. In the case of additive noise, Gaussian noise was added,
and the entire signal was processed after normalization. The equations below describe the
creation of a new signal by adding additive Gaussian noise [36].

x∗i = xi + n (1)

n ∼ Gaussian(μ = 0, σ =

√
x2

i
SNR

) (2)

where xi is the original signal and xi
* is the augmented signal. n is the additive noise

component and Gaussian noise is randomly added according to the signal-to-noise ratio
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(SNR). Figure 2 shows a representative EMG signal and an augmentation signal using the
additive noise method.

(a) (b)

Figure 1. (a) Prototype for electromyogram (EMG) sensor and (b) measurement results in the wrist.

(a) (b)

Figure 2. Representative (a) EMG signal, (b) augmentation signal using additive noise of “sEMG for
Basic Hand movements Data Set”.

Moreover, the moving average, permutation, and magnitude warping techniques
can be used for data augmentation. In this study, only the magnitude warping technique,
which is known to be the most efficient, was used [36]. As a result of actual verification,
the improvement in accuracy due to the moving average technique was insignificant, and
in the case of the permutation technique, the accuracy is rather reduced. The magnitude
warping method is shown in the following equations:

x∗i = xi·CubicSpline(r) (3)

r = {r(t1), r(t2), . . . , r(tT)} (4)

where t is the sampling time. A random curve is generated using the CubicSpline method,
which is an interpolated curve, and warping is performed on the magnitude. Through
this augmentation method, training was performed by increasing the size of the dataset
by approximately three times. This resulted in an increase in the classification accuracy of
approximately 3% compared to when the data augmentation method was not used.

2.2. Filtering and Smoothing

The EMG signals were completely removed at 50 Hz and 0 Hz using an additional
filter. They are signals that have passed through the band pass filter; however, when the
signal analysis is performed through FFT, DC and 50 Hz components still exist; therefore,
50 Hz and 0 Hz signals were additionally removed using an additional high-performance
filter for signal processing. The first filter was an active second-order high-pass filter with a
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cutoff frequency (fc) of 10 Hz. The second filter was an active notch filter with fc of 50 Hz.
These are designed for easy hardware implementation in an EMG sensor system. The active
notch filter is designed using the active twin-T notch filter method [37]. Figure 3 shows
a representative signal before and after applying additional filters. This is displayed as a
frequency spectrum for ease of comparison.

(a) (b)

Figure 3. Frequency spectrum of EMG signal (a) before and (b) after the use of additional filters.

In addition to using the filtering method for the time series data, the effective noise
components can be reduced through a smoothing technique. In this study, the Savitzky–
Golay filter was used as the smoothing technique. Although several smoothing techniques
exist, the Savitzky–Golay method was used because it is easy to perform for a simple hard-
ware implementation. The Savitzky–Golay filter can mathematically replace smoothing
using a polynomial regression model by providing a specific impulse response without
calculating the regression model within the window of every time step in performing
smoothing using a regression model. The time window was 42 ms, and a cubic equa-
tion was used for polynomial regression. Through the filtering method and smoothing
technique, the accuracy could be improved by approximately 2%.

2.3. Feature Extraction

For feature extraction of the EMG signal, the MODWT method was used for easy
implementation in the FPGA. The wavelet transform was developed to perform time and
frequency domain analyses simultaneously. The wavelet transform has the advantage of
being able to deal with information in the time domain instead of sacrificing some accuracy
in the frequency domain. Among them, the discrete wavelet transform (DWT) based on
orthonormal wavelet is frequently used; however, MODWT is more sensitive to circular
shifts than the general DWT. This can be interpreted as a linear filter result. In hardware
implementation, a finite impulse response (FIR) filter is used using digital logic. The above
results indicate that MODWT, which is easy to interpret in combination with events that
actually occur in nature, is useful in time series analysis. Moreover, unlike DWT, MODWT
is defined naturally for all sample sizes. The MODWT method was expanded while
preserving the size of the data. There are various studies related to feature extraction [38].
Based on the dataset measured at Chosun University, a scalogram based on the continuous
wavelet transform (CWT) is confirmed to be useful as an ECG feature [39]. By extending
this, MODWT was selected as a feature suitable for the EMG analysis at edge devices.
Owing to the MODWT method, feature extraction with light-weight can be realized. If the
time series are directly analyzed, the size of the entire neural network for feature extraction
increases, whereas in the MODWT method, a similar performance can be secured even
with a small neural network. The basic implementation algorithm of the MODWT method
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is as follows. For a time series X with an arbitrary sample size N, the j-th level MODWT
wavelet (Wj*) and scaling (Vj*) coefficients are defined as follows [40].

W∗
j,t =

Lj−1

∑
l=0

h∗j,lXt−l mod N (5)

V∗
j,t =

Lj−1

∑
l=0

g∗j,lXt−l mod N (6)

where hj,l* = hj,l/2j/2 are the MODWT wavelet filters, and gj,l* = gj,l/2j/2 are the MODWT
scaling filters.

In this study, the second-order Daubechies filter (db2) was used, and the original
signal was restored using inverse MODWT. In addition to db2, filters that can be used in the
MODWT method include the first-order Daubechies (db1), fourth-order Daubechies (db4),
Haar, Symlets, and Coiflets filters [41]. Except for the Haar and db1 filters, all exhibited
excellent performance. Moreover, the decomposition level was selected as 4 because the
performance increased up to level 4; however, the performance decreased by approximately
2% when the level was 5 or higher. This is related to the decomposition of the frequency
domain. For example, the frequency spectrum of the level 1 MODWT signal is between
125 Hz and 250 Hz.

The results of the MODWT with the decomposition level of 4 are shown in Figure 4.
Similar to the artificial intelligence network, the MODWT module will also be implemented
inside the FPGA using digital logic. The results of each MODWT were provided as inputs
to the artificial intelligence network.

(a) (b) (c)

(d) (e) (f)

Figure 4. Maximal overlap discrete wavelet transform (MODWT) execution result. (a) Original signal,
(b) level 1, (c) level 2, (d) level 3, (e) level 4, and (f) residual.

3. Artificial Intelligence Network

The MODWT signal for feature extraction has five channels and is given as an input
to the one-dimensional convolution layer, as shown in Figure 5. The three one-dimensional
convolution layers were used. The one-dimensional convolution layer is suitable for
realizing a compressed neural network because the amount of computation is smaller than
that of the two-dimensional convolution layer. To implement the light-weight characteristic
while keeping the neural network as simple as possible, the accuracy was aimed at above
93%. Therefore, the verification of various neural networks was performed, and among
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them, a neural network with 93% or more accuracy was selected while achieving the
light-weight characteristic. KerasTuner was used for the network design.

Figure 5. Structure and parameters for an artificial intelligence network.

The activation function of the one-dimensional convolution layer used the rectified
linear unit (ReLU), and padding was not used. The kernel for the convolution layer used
L1 regulation, and the used parameter was 0.001. Three 1-dimensional convolution layers
were used, and the number of channels was optimized. The max-pooling layer after the
convolution layer was used to reduce the number of features. In the case of the fully
connected layer (dense layer), the minimum features were used as input, and the sigmoid
and softmax functions were used for the activation functions. These were implemented in
the form of a look-up table when being implemented to the hardware resources in Section 4.
Because the dense layer uses many parameters, the structure is implemented as concisely
as possible. The focus in this case was to ensure high accuracy with few parameters and a
simple structure.

In this case, the adaptive moment estimation (adam) optimizer was used for training,
and the categorical cross-entropy function was used as the loss function. Moreover, the
learning process was performed using the validation data of 30% of the total training data.
The learning rate (lr), a representative hyperparameter, used a step decay function, and the
lr change factor was set to 0.5. The initial lr value was set to 0.0001. The minimum value of
lr was set to 10−7. Thus, the appropriate learning rate was adjusted. The total number of
trainable parameters of the designed neural network was 8122. This corresponds to the
lightweight neural network, and 96% accuracy for the validation data was possible with
the help of algorithms such as MODWT, data augmentation, and smoothing techniques.
Thus, the implementation of a light-weight neural network that can be operated with a
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small number of resources, even when implemented as an edge device, was achieved. The
accuracy and loss of training data and validation data according to the increase in training
epochs are shown in Figure 6. The accuracies of the training data and validation data were
approximately 99% and 96%, respectively.

(a) (b)

Figure 6. (a) Accuracy of training and validation data. (b) Loss of training and validation data.

In the case of new data (test data), the confusion matrix is shown in Figure 7. The
accuracy of the test data was 95% after training. Although this value has relatively low
accuracy, the value is high considering that it is implemented using a small number of
hardware resources. In the case of the other light-weight neural network example, the
accuracy of “jet tagging” was approximately 74% [42]. Using MODWT, feature extraction is
performed efficiently, and high accuracy can be secured with few parameters. In Figure 7,
“spher” represents the action for holding spherical tools, “tip” for holding small tools,
“palm” for grasping with the palm facing the object, “lat” for holding thin, flat objects, “cyl”
for holding cylindrical tools, and “hook” for supporting a heavy load.

Figure 7. Confusion matrix for test data.

Finally, Figure 8 shows the receiver operating characteristic (ROC) curve and area
under curve (AUC). The ROC curve is often used to evaluate the performance of a model
that distinguishes classes, with a false positive rate (FPR) on the x-axis and a true positive
rate (TPR) on the y-axis. Thus, various performance indices can be represented. Currently,
the AUC is over 99% for the test data. In the previous study carried out by the authors of [43]
using the State-of-the-Art (SOTA), the achievable accuracy with FPGAs was approximately
95.4% when using more parameters in the proposed network. In this study, higher accuracy
was achieved with fewer parameters using various feature extraction techniques.
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Figure 8. Receiver operating characteristic (ROC) curve for test data (six categories).

4. Hardware Deployment

Using the light-weight neural network model created by software using the Keras
tool, it is converted to the Verilog hardware description language (HDL) using HLS [44].
Verilog HDL is changed to NAND or NOR gates through synthesis to create digital logic.
HLS is a method that automatically converts the software code to Verilog HDL when
written in C/C++, with which the user is familiar. Because large logic requires longer
duration when written directly in a language such as Verilog HDL, HLS can significantly
reduce the hardware development time and increase user convenience. Moreover, if the
user uses a command such as “#pragma HLS PIPELINE”, which is a separate grammar
in HLS, the parallel computation of the FPGA can be accomplished. Therefore, latency
reduction in the FPGA can be obtained. Thus, the structure optimization is performed
together in the HLS. Figure 9 shows the HLS code for one-dimensional convolution layer
written in C/C++, representatively. This layer proposed by Keras is configured using
C/C++ and converted to Verilog HDL using HLS. The main algorithm is the process of
adding the convolution operation of the input and filter after storing the values of the
bias in the buffer. Each batch normalization, max-pooling, activation, and dense layer was
implemented using HLS to be similar to the neural network proposed by Keras. In the
case of the sigmoid and softmax functions, the number of exponential calculations is large;
therefore, it is implemented in the form of a look-up table. Similar to the abovementioned
method, several hardware implementation methods are available, such as Vivado SDAccel
and NVIDIA Deep Learning Accelerator (NVDLA). The core part has the advantage
of directly converting a neural network written in Caffe or similar frameworks into a
register transfer level (RTL). In this study, the artificial intelligence part for EMG signal
classification in real life can be implemented in an edge device, which was designed to have
light-weight parameters through neural network design. This resulted in a reduction in
hardware resources, and additional resource reduction was performed through additional
bit optimization. The designed digital logic can be easily changed to application-specific
integrated circuits (ASICs).
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Figure 9. High level synthesis (HLS) code for one-dimensional convolution layer.

The advantage of hardware deployment is that the number of systems can be freely
used. Because the hardware is designed by us, the number of systems used inside can be
defined and used; thus, the hardware resources can be reduced [45]. In the case of using
the floating point number used in software in Section 3, 95% accuracy can be obtained for
the test data using the hardware resource. This is the same accuracy result as that of the
software. However, the number of bits used for the resource reduction is reduced to make
it suitable for wearable devices. In this case, bit optimization was performed. In the case
of a fixed point number, an error occurs, unlike in Keras, and a large difference is shown
depending on the number of bits used. In the FPGA, the size of the fixed point number is
determined through the “ap_fixed” keyword, and ap_fixed<16, 6> is the basic configuration
for the FPGA. In particular, the entire bit becomes 16 bits, the integer is 6 bits, including the
sign bit, and 10 bits represent the value below the decimal point. In this case, if ap_fixed<24,
6> is used, it can be implemented with a small number of hardware resources without
degradation in accuracy. However, when ap_fixed<22, 6> was used, 80% of the hardware
resources were used compared to ap_fixed<24, 6>, which was regarded as the optimal
structure. In this case, the difference in accuracy was approximately 1%. However, if the
number of bits is further reduced and the hardware is configured as ap_fixed<20, 6>, the
accuracy is reduced to 86%. The distribution of the weights used to optimize the bit was
examined, as shown in Figure 10. The total number of bits used for the optimal structure
was 22. Bit optimization can also be performed using QKeras. QKeras is a quantization
extension of Keras.

The network was implemented using HLS with ap_fixed<22, 6>. The accuracy of the
test data was approximately 94%, and the AUC could be secured by more than 99%. If the
basic ap_fixed<16, 6> is used, the accuracy is reduced to approximately 18%, and the AUC
becomes more than 45%. No change is observed in accuracy when using floating-point
numbers or ap_fixed<24, 6>. Moreover, a reuse factor from 10 to 20 was used to implement
a structure that reuses resources completely. Figure 11 shows the ROC curve in the digital
logic implemented in the FPGA with apiece<22, 6> compared with the Keras result. The
AUC decreases with a decrease in the number of bits; an AUC can be secured by more
than 99%.

When configured in an actual FPGA, communication was performed using the AXI
structure, and the generated IP of the artificial neural network was used. The FPGA chipset
“xcku5p-ffvb676-1-i” was used, and the device utilization is shown in Figure 12. In the case
of AUC, it is shown as 99% or more for all classifications. In this case, the total operating
speed for 4000 data at the time of inference is approximately 2.47 s when using the CPU
and approximately 480 ms when using the proposed FPGA. Therefore, the operating speed
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for inference is approximately five times that of the proposed FPGA. In the case of FPGA,
because it is composed of a wearable system, the data transmission time to the server is
not required; therefore, a fast response time is guaranteed. Because security can be secured
in healthcare services, the application of edge devices using FPGAs is expected to be of
great help.

Figure 10. Bit selection using numerical profiling.

Figure 11. ROC curve for Keras and HLS (six categories).

Furthermore, fewer resources can be used by the pruning technique, although it is
not implemented in the current structure. When the pruning technique is used with 50%
sparsity, the accuracy is reduced by approximately 3%; hence, this option was not used.

Table 1 presents a comparison of the accuracy and response speed when performing
inference using FPGA and CPU. The CPU was Intel Core i7-7700HQ. In the case of accuracy,
test data were used. Thus, the EMG signal classification is possible using a small amount
of resources when using an FPGA. Security is enhanced, and a fast response time can
be acquired using FPGA. However, when using the HLS for hardware deployment, the
performance of optimization between the latency and resources is rather insufficient;
therefore, a more efficient implementation of the HLS should be considered in the future.
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Figure 12. Device utilization for FPGA chipset “xcku5p-ffvb676-1-i”.

Table 1. Comparison of accuracy for test data and response speed between CPU and FPGA.

Category Accuracy Inference Time (4000 Samples)

CPU 95% 2.47 s

FPGA, ap_fixed<24, 6> 95% 520 ms

FPGA, ap_fixed<22, 6> 94% 480 ms

FPGA, ap_fixed<20, 6> 86% 435 ms

FPGA, ap_fixed<16, 6> 18% 378 ms

EMG classification in real time has attracted considerable attention. In this regard, the
response time was approximately 200 ms in the case of the MYO armband and 0.2 ms in
the case of implementation with the MCU [46,47]. In this study, a response time of 0.12 ms
per sample was obtained using the parallel computation and light weight of the FPGA
(ap_fixed<22, 6>).

5. Conclusions and Discussion

The implementation of edge devices using EMG signals was studied. Among various
edge devices, FPGAs were considered because they can easily perform parallel computation
and can be implemented in ASICs in the future. In this case, owing to resource limitations in
the FPGA, optimization was performed on the structure that could maintain accuracy while
implementing the artificial neural network easily. For this, data augmentation was performed
on the EMG signal, and MODWT, which is capable of time and frequency domain analysis,
was used for the feature vector. In the case of convolutional and deep neural networks, the
structure was optimized to prevent the number of parameters from exceeding 10,000, and the
number of bits was optimized to maintain accuracy. Thus, HCI, disease diagnosis and user
authentication could be performed quickly and with low power using artificial intelligence
on a light-weight edge device. The implementation of wearable devices can contribute to
security enhancement. The main contribution of this study is the examination of the practical
applications of edge devices. However, to be grafted onto wearable devices, they must be
implemented using fewer resources. In future studies, a wearable system with a bio-signal
sensor system and edge device will be manufactured. This system will help the user’s self-
diagnosis at the desired time. Moreover, studies on Siamese or ensemble networks that can
learn with less data are planned. Simultaneously, the study plans to manufacture PPG and
ECG sensors to build a wearable system based on artificial intelligence.
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Abstract: We present a fast and reconfigurable architecture for Shack–Hartmann wavefront sensing
implemented on FPGA devices using a stream-based center of gravity to measure the spot displace-
ments. By calculating the center of gravity around each incoming pixel with an optimal window
matching the spot size, the common trade-off between noise and bias errors and dynamic range
due to window size existing in conventional center of gravity methods is avoided. In addition, the
accuracy of centroid estimation is not compromised when the spot moves to or even crosses the
sub-aperture boundary, leading to an increased dynamic range. The calculation of the centroid begins
while the pixel values are read from an image sensor and further computation such as slope and
partial wavefront reconstruction follows immediately as the sub-aperture centroids are ready. The
result is a real-time wavefront sensing system with very low latency and high measurement accuracy
feasible for targeting on low-cost FPGA devices. This architecture provides a promising solution
which can cope with multiple target objects and work in moderate scintillation.

Keywords: adaptive optics (AO); Shack–Hartmann wavefront sensor (SHWFS); wavefront sensing;
field-programmable gate array (FPGA)

1. Introduction

The Shack–Hartmann wavefront sensor (SHWFS) is one of the most widely used
wavefront sensors (WFSs) in adaptive optics (AO) systems [1]. The micro lenslet array
(MLA) samples the input wavefront spatially, and by determining the local slope on each
sub-aperture, the entire wavefront can be reconstructed successively. The local slopes over
individual sub-apertures are calculated linearly from the displacements of spots focused by
the micro lenses from their optical axes. Therefore, the accuracy of the spot displacement
estimation is directly related to the overall performance of the SHWFS, as error from
the estimation will pass through various stages to the final wavefront reconstruction
stage. Center of Gravity (CoG)-based methods have been largely used for determining the
centroids of the spots by measuring the center of mass within a window associated to a
particular micro lenslet. Matched filter [2], minimum mean-square-error estimator [3], and
maximum-likelihood methods [4] have been studied to estimate the centroid or wavefront
slope as well. If the source is an extended object instead of a point source, cross-correlation
methods can also be used to estimate the sub-image displacement [5–7]. A comparison of
some commonly used centroiding algorithms, including thresholding (TCoG), weighted
centroid (WCoG), correlation, and quad cell, is given by Thomas et al. [8]. For closed-loop
AO systems and fast wavefront sensing, the CoG-based methods are still preferred over
other methods due to their robustness and easy implementation.

Conventional CoG estimations are often corrupted due to various noise sources such
as photon noise, readout noise of the image sensor, and the finite and coarse sampling of
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the pixels. These CoG-derived methods also fail to estimate the local wavefront if the spot
breaks into parts due to strong turbulence with lower Fried coherence length r0 or when
scintillation from distant volumes of turbulence is presented. Using Gaussian approxima-
tion, Rousset [9] pointed out that the noise variance in local wavefront estimation due to
sensor readout noise increases with the increased number of pixels for CoG calculation.
On the other hand, Irwan et al. showed that the error variance due to photon noise also
diverges as detector size increases, even for a perfect CCD array, and even without readout
noise and effects due to finite pixel size. These analyses mean that a small CoG calculation
window is necessary in order to reduce the error contribution of photon and sensor readout
noise. However, if the window for the CoG calculation is too small, signal truncation error
will be introduced when the spot moves to the window edge, which in turn leads to a
limited dynamic range of the SHWFS. Therefore, the optimal CoG calculation window size
often needs to balance between the noise errors and dynamic range. To isolate the useful
signal for CoG calculation, the traditional CoG methods have been improved by threshold-
ing the signal [10,11] or adding weight to emphasize the signal [12,13]. The error sources
for centroid computation of a point source on a CCD-based sensor were analyzed by Ma
et al. [14] and the best threshold level is given. Other methods using iterative detection of
spot location and centroid estimation have been reported [15,16]. While they improve the
best area for the CoG calculation, these iterations will introduce extra delay for the centroid
measurements and eventually reduce the bandwidth of a closed-loop AO system. Recent
efforts to improve the performance of Shack–Hartmann WFS include direct wavefront
reconstruction as a continuous function from a bitmap image of the Shack–Hartmann
pattern [17], and using artificial neural networks [18] and learning-based methods [19] for
spot detection. To overcome the limitation of Shack–Hartmann WFS in certain situations,
e.g., under strong scintillation, a diffractive lenslet array can also been used to replace the
physical MLA, leading to a more flexible and adaptable Shack–Hartamnn WFS [20]. Talmi
and Ribak [21] showed that gradient calculation over the whole aperture is possible by
direct demodulation on the grid without reverting to Fourier Transforms. This method is
especially suited to very large arrays due to the saving of computation by removing the
two inverse Fourier Transforms. Importantly, they considered that incomplete spots, for
example, at the edge of the aperture, would create bias on the complete reconstruction, and
showed that processing these in a sensible way in the image domain could have a lesser
effect on the whole reconstruction.

In addition to the effort to improve the accuracy of centroid estimation algorithms,
other researchers also tried to increase the wavefront sensing speed by utilizing special
hardware such as GPU [22,23] or field-programmable gate array (FPGA) devices for imple-
mentation. For example, FPGA devices have been used both in complex AO systems to
process data where the timing is crucial [24–26], or used to implement centroid estimation
and reconstruction [27–29], or even to develop full AO application including driving the
wavefront corrector [30,31]. In comparison with conventional CPU [32] or GPU-based
solutions, FPGA devices provide a cost-effective way to achieve a high throughput, low
latency and reconfigurable wavefront sensing, and AO system thanks to their parallel
computation power.

In our previous work [33], we proposed an improved stream-based center of gravity
(SCoG) method for centroid estimation which is suitable to be implemented on FPGA
devices. By extending the conventional CoG method to evaluate the center of gravity
around each incoming pixel, the SCoG method can use an optimal CoG window matching
the size of the spot behind the MLA without the common trade-off between increased bias
error and reduced noise errors. In addition, the accuracy of the centroid estimation by
SCoG is not compromised when the spot moves to the sub-aperture edge or even crosses
the boundary, since the CoG operation centers on each individual pixel. The SCoG is also
able to detect multiple centroids within one sub-aperture when the size of the CoG window
is chosen appropriately because of its whole sensor centroid calculation.
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While complicated and advanced CoG methods [12,13,15,17] have been proposed
to improve the accuracy of the centroid estimation, little work has been reported to dis-
cuss their appropriate implementations to meet the low latency and high bandwidth
requirement in real-time AO systems. However, most real-time implementations of the
Shack–Hartmann WFS [22,23,28,32] use the basic thresholding CoG method. In this paper,
we present a complete Shack–Hartmann wavefront sensing system implemented on FPGA
hardware with very low latency and high accuracy using the superior SCoG for centroid
estimations. A parallel slope calculation and a robust least-squares wavefront reconstruc-
tion are also implemented in a pipe-lined way after the centroid estimation. The paper
is organized as follows: In Section 2, the theory of stream-based center of gravity deriv-
ing from conventional CoG methods, special treatments of multiple or missing centroids
in sub-apertures, and the modal wavefront reconstruction are explained. The hardware
implementations of the SCoG module, centroids segmentation module, and least-square
modal wavefront reconstruction module are described in detail in Section 3. In Section 4,
the resource usage and latency of the FPGA implementation are analyzed. Performance of
the centroiding algorithm is compared with a traditional CoG method using an artificially
generated image of spots followed by an examination of the wavefront reconstruction
performance of the whole Shack–Hartmann WFS system. Conclusions and future work are
summarized in Section 5.

2. Theoretical Background

Some notations used in this section to describe the stream-based center of gravity
algorithm are listed in Table 1.

Table 1. Notations.

Symbol Description

(i, j) pixel indices

(r, c) sub-aperture indices

(p, q) stream centroids indices

A(r, c) sub-aperture

C(p, q) stream centroid

Ĉx(r, c), Ĉy(r, c) centroid estimation in A(r, c)

sx(r, c), sy(r, c) average slope in A(r, c)

I(xi, yj) image intensity at pixel (xi, yj)

2.1. Conventional Center of Gravity

The geometric diagram of a single lenslet from a MLA is shown in Figure 1. The
local wavefront tilt θ in a sub-aperture A(r, c) causes a shift Δx of the focal spot from its
reference on-axis position (Cx,re f (r, c), Cy,re f (r, c)) when a plane wavefront is used. The
size of the diffraction-limited spot is determined by the f-number of the lenslet and equals
to 2.44λ fML/DML where fML and DML are the focal length and diameter of the micro lens
respectively. By determining the local slopes at all sub-apertures, a continuous wavefront
map can be reconstructed using either zonal- or modal-based reconstruction methods.

The local slope over sub-aperture A(r, c) can be calculated by:

sx(r, c) =
Δx(r, c)

fML
=

Ĉx(r, c)− Cx,re f (r, c)
fML

(1a)

sy(r, c) =
Δy(r, c)

fML
=

Ĉy(r, c)− Cy,re f (r, c)
fML

(1b)

where Δx(r, c), Δy(r, c) are the displacement of the spot in x and y directions from its
reference location.
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θ

zθ

fML

Δx
DML

Figure 1. Schematic of a single micro lens in the Shack–Hartmann wavefront sensor.

In Equation (2), the centroid in the sub-aperture A(r, c) can be measured in x and y
directions using the traditional CoG definition as:

Ĉx(r, c) =
∑xi ∑yj

xi I(xi, yj)

∑xi ∑yj
I(xi, yj)

(2a)

Ĉy(r, c) =
∑xi ∑yj

yj I(xi, yj)

∑xi ∑yj
I(xi, yj)

(2b)

where r, c is the coordinate of the sub-aperture, xi, yj is pixel index, and I(xi, yj) is the pixel
intensity. In a traditional instrument, the CoG is only calculated on the central pixel location
i = kr, j = kc per lenslet.

2.2. Stream-Based Center of Gravity

The conventional CoG method can be extended by evaluating the centroid estimation
on each pixel of the signal:

Ĉx(i, j) =
∑M

m=−M ∑N
n=−N Fx(m, n)I(xi, yj)

∑M
m=−M ∑N

n=−N I(xi, yj)
(3a)

Ĉy(i, j) =
∑M

m=−M ∑N
n=−N Fy(m, n)I(xi, yj)

∑M
m=−M ∑N

n=−N I(xi, yj)
(3b)

where F(m, n) is a linear filter ranging from −M to M. Ĉx(i, j), Ĉy(i, j) represents the
estimated centroid value for the pixel (i, j) within a square window of side size of 2M + 1.

Fx(m, n) =

⎛
⎜⎜⎜⎝
−M −M + 1 · · · M
−M −M + 1 · · · M

...
...

. . .
...

−M −M + 1 · · · M

⎞
⎟⎟⎟⎠ (4a)

Fy(m, n) =

⎛
⎜⎜⎜⎝

−N −N · · · −N
−N + 1 −N + 1 · · · −N + 1

...
...

. . .
...

N N · · · N

⎞
⎟⎟⎟⎠ (4b)

If the centroid estimation value at a pixel (ip, jq) equals to zero, then a spot is centered
on this pixel. In most cases, however, the centroid is less likely to sit on an exact pixel
but rather between two pixels. A potential spot is detected around pixel (ip, jq) if a zero-
crossing (from positive to negative) of CoG values happens horizontally between pixels
(ip − 1, jq) and (ip, jq) and vertically between pixels (ip, jq − 1) and (ip, jq) at the same time.
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The sub-pixel shift in the x directions from pixel (ip, jq) can be interpreted linearly by
the CoG values at pixel (ip, jq) and its left pixel (ip − 1, jq), while the sub-pixel shift in y
direction can be interpreted similarly by the CoG values at pixel (ip, jq) and its above pixel
(ip, jq − 1):

Δx(ip, jq) =
Ĉx(ip, jq)

Ĉx(ip − 1, jq)− Ĉx(ip, jq)
(5a)

Δy(ip, jq) =
Ĉy(ip, jq)

Ĉy(ip, jq − 1)− Ĉy(ip, jq)
(5b)

Therefore, the (p, q)th centroid C(p, q) where a potential spot is located can be de-
scribed by (x̂p, ŷq) as below:

x̂p = ip + Δx(ip, jq) (6a)

ŷq = jq + Δy(ip, jq) (6b)

Note that the calculation of integer and decimal parts of centroid C(p, q) are through
separate steps and the integer parts, i.e., pixel indices, are determined first. (ip, jq) can be
obtained directly by the sign changes of the numerators in Equation (3) as the denominators
which represent the sum of energy within the kernel window are always positive. If only
whole pixel resolution is concerned, calculations of the numerators are sufficient to locate
the pixel indices.

In this work, an estimate of centroid is made based on each and every pixel streamed
from the image sensor, for which best centroids are tagged resulting in a stream of centroids
or SCoG synchronous with the stream of pixels. Several immediate advantages of SCoG
over conventional CoG-based centroid estimation methods can be noticed [33]. Since the
CoG window is floating with the incoming pixels and will center around each potential gen-
uine centroid, bias errors due to asymmetric CoG filter are largely avoided. In addition, the
size of the CoG window 2M + 1 can be optimised by matching with the diffraction-limited
spot size to minimize the influence of irrelevant pixels so that noise errors are minimised.

It is worth noting the unique characteristics of the centroids detected by the stream-
based CoG algorithm. Using conventional sub-aperture-based CoG methods, only one
centroid will be estimated for each sub-aperture, even when multiple spots exist due to,
for example, binary star structure or strong turbulence, resulting in a “broken” spot (r0 is
less than the microlens diameter). In addition, the measured centroids belonging to each
sub-aperture are rather apparent from conventional CoG methods. However, the stream
of centroids from SCoG arises in order based on the position of the spot occurrence in the
input image frame as it is read from the image sensor, row-by-row, and column-by-column.
Therefore, the SCoG centroids stream need to be further processed in order to be used in
the conventional zonal or modal wavefront reconstruction algorithms.

2.3. Segmentation of the Streamed Centroids

There are two problems that need to be addressed for the stream of centroids C(p, q)
in order to get the centroid estimation for each sub-aperture associated with traditional
CoG-based methods. First, the occurrence of centroid C(p, q) follows the lower row number
to a higher row number or a lower column number to a higher column number depending
on the pixel reading sequence of the particular sensor. For a particular centroid C(p, q), it
needs to be assigned to a sub-aperture A(r, c) if its values are within the window of A(r, c)
defined by:

r =
⌊

ip

w

⌋
, c =

⌊
jq
w

⌋
(7)

where �·� is the floor operation and w is the window width in pixels.
Secondly, it is possible that multiple centroids or no valid centroid are detected within

one sub-aperture A(r, c), perhaps because of multiple objects, obstruction, or scintillation.

65



Electronics 2023, 12, 1714

For the multiple centroids case, different strategies can be used, such as using the centroid
with the highest energy (sum of intensity as the denominator in Equation (3)) or taking the
average of all centroids.

In our current implementation, we used the average of all centroids in the sub-aperture,
hence effectively measuring the G-tilt of the local wavefront:

Ĉx(r, c) = 〈x̂p〉
Ĉy(r, c) = 〈ŷq〉

}
where(ip, jq) ∈ A(r, c) (8)

where 〈·〉 denotes the average operation and ∈ means the integer part of C(p, q) that falls
within the pixel range of sub-aperture A(r, c).

On the other hand, if a centroid is missing in a sub-aperture A(r, c), it is possible to
generate an average one from its surrounding sub-apertures. However, if one or more
surrounding sub-apertures also miss valid centroids, the chain of average operation will
expand to further sub-apertures which could soon become too complicated to manage. The
other method to treat the sub-aperture with missing centroid is to inherit the corresponding
centroid from a previous frame, which could be traced back to an original reference centroid
if none of the previous frames contain a valid centroid.

Once all the valid sub-apertures in one MLA row have been processed to select a
representative centroid estimation, they need to be re-ordered to match the sequence of
the physical geometry, so the following wavefront reconstruction can be started even
though the remaining lenslets have not yet arrived. Therefore, the further processing of the
streamed centroids follows a sorting–processing–reordering procedure.

2.4. Wavefront Reconstruction

From the discrete slopes at all the valid sub-apertures as given by Equation (1), a contin-
uous wavefront map can be reconstructed using zonal, modal, or FFT-based methods [34,35].
Using the modal wavefront reconstruction, the incoming wavefront W(x, y) over the pupil
can be decomposed by a set of orthogonal functions, such as Zernike polynomials:

W(x, y) =
N

∑
k=1

akZk(x, y) (9)

where ak represents the weight of the kth Zernike term Zk(x, y) and N is the total number
of Zernike modes used to approximate the actual wavefront.

In Equation (1), the local slope of wavefront on the individual sub-apertures is expressed
as a relation between the local sub-image displacements for each axis (Δx(r, c), Δy(r, c))
and the MLA focal length fML. Considering only the x axis results in the following
equation:

sx(r, c) =
∂W(x, y)

∂x

∣∣∣∣
(r,c)

=
Δx(r, c)

fML
(10)

By combining Equations (9) and (10), the gradients of the wavefront over each sub-
aperture can be related with a weighted sum of Zernike polynomials as follows:

Δx(r, c)
fML

=
N

∑
k=1

ak
∂Zk(x, y)

∂x

∣∣∣∣
(r,c)

(11)

Considering the slopes in both x and y directions for all the sub-apertures, Equation (11)
can be expressed in the following matrix form:

s2M×1 = W2M×N aN×1 (12)

where M is the total number of valid sub-apertures and N is the number of Zernike modes
used for wavefront reconstruction. s is the slope vector of dimensions 2M × 1 and a is the
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Zernike mode coefficients vector of dimension N × 1. W is a matrix of dimension 2M × N
whose elements are the partial derivative of a Zernike mode on either x or y direction.
Equation (12) defines 2M linear equations. To obtain the Zernike coefficients vector a from
measured slope vector s, the pseudo-inverse of matrix W is used:

aN×1 = EN×2Ms2M×1; (13)

The pseudo-inverse matrix E, also known as the calibration matrix, has a dimension
of N × 2M and can be calculated using the least squares estimation method:

E = (W TW)−1W T (14)

In Section 3.4, the detailed implementation of the modal wavefront reconstruction is
explained.

3. Implementation

In this section, a parallel implementation of the stream-based center of gravity algo-
rithm and the modal wavefront reconstruction suitable for FPGA devices are described. By
taking advantage of parallelism and storage resources of FPGA devices, the CoG operation
can be evaluated at each incoming pixel in real-time. The wavefront reconstruction can also
start partially as soon as the centroids estimation of sub-apertures becomes available and
complete at a very short delay after acquiring one image frame (and certainly before the
start of the next frame).

The overall block diagram of the SHWFS system design using the stream-based CoG
method is shown in Figure 2. The complete implementation consists of four main modules
corresponding to Sections 2.2–2.4: SCoG module computes centroid on all incoming pix-
els and presents a stream of valid centroids; SEG module sorts the centroids to confined
sub-apertures and handles multiple centroids or centroids missing in some sub-apertures;
SLOPE module calculate the local slopes from measured centroids and can also be used
to generate a reference centroid grid; RECON module conducts a modal wavefront recon-
struction from the measured slopes. The SCoG and SEG modules together provide similar
functions to other conventional CoG methods. The auxiliary pre-processing, display, and
control modules shown in light blue blocks are necessary to configure the image sensor, set
system parameters, and visualize various results but not directly related to the research
interest and therefore are omitted in the following discussion.

SCoG SEG SLOPE RECON

Pre-
Processing

Display Control

Image
Sensor

Monitor PC

FPGA

SHWFS

Figure 2. Top level block diagram of the SHWFS implementation where the implementation of the
SHWFS is described here.

3.1. SCoG Module

In Figure 3, the 2D pixel array of an image sensor at the focal plane of the MLA
is shown. The sub-aperture window SA corresponds to individual lenslet with its size
and number of pixels (5 × 5 for this example) determined by the lenslet and pixel sizes.
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Traditional CoG-based methods use all the pixels (except for the windowing CoG) inside
the SA window for the calculation and generally need to read the whole image frame
before computation. The SCoG operates on a much smaller pixel set (the blue dashed
window) which could be optimized by matching the window with the spot size (3 × 3 for
this example). In the FPGA devices, First-In, First-Out (FIFO), or Look Up Table (LUT)
can be used to buffer several rows and columns of pixels, so as the last required pixel
arrives (light green and light blue pixel for the first and last possible centroids in SA11), the
computation of the CoG will start.

readout

SA11 SA1c

SAr1 SArc

SCoG

SCoG

First possible centroid in SA

Last pixel required for first centroid

Last possible centroid in SA

Last pixel required for last centroid

Figure 3. Illustration of the sub-aperture and SCoG window on the image sensor pixel array.

A high level logic diagram for calculating the stream centroid according to Section 2.2
on each incoming pixel is shown in Figure 4, where pixel Data DIN is synchronous with
the master clock. The circuit in the yellow box represents a 2D convolution operation
and it calculates either the numerators or denominators in Equation (3) depending on the
chosen coefficients C11 to C33 in the multipliers, which represent the matrix elements in
Equation (4). The SCoG window is assumed with a 3 × 3 size, and therefore three buffers
are used to store three rows of pixel values and three Flip-Flop (FF) registers are used to
buffer three columns of pixels. As the last required pixel within the SCoG window arrives
at the output of the first buffer, all the required pixel values will appear at the nine registers’
output simultaneously at the next clock cycle. This implementation makes logical sense
but is impractical, as all the multiplications and additions need to be finished in one clock
cycle. This causes challenges to meeting timing constraints in FPGA implementation. In
Appendix A, matrix multiplication is separated to two 1D filter operations, which reduces
the usage of multipliers. Furthermore, the implementation of the two 1D filter operations
are fully pipe-lined to best improve the timing closure in trade of more latency.
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FIFO

FIFO

FIFO

DIN[9:0]

Hsync

Vsync

Cc

Cr

C11 C12 C13

C21 C22 C23

C31 C32 C33

+
0

0

+
−

+
−

+
−

Cx

Cy

Ixy

TH

Ĉy

Ĉx

reg

reg

EN

EN

ip

jq

ZERO-CROSSING
DETECTION

FILTERS

Figure 4. Diagram for the implementation of SCoG module used for calculate integer pixel centroid
values. Depending on the coefficient values C, the numerators and denominators in Equation (3) are
calculated from the FILTERS circuit.

The zero-crossing detection circuit is shown in the blue box where the numerators and
denominators in Equation (3) are present simultaneously at the input. The horizontal and
vertical zero-crossing can be determined by checking the sign of the numerators while the
sum of the intensity, i.e., the denominator, can be compared with a threshold value ITH
to eliminate fake centroids due to noise pixels. The two dividers calculate the centroid at
pixel (ip, jq) as described by Equation (3). The registers on the H_sync and V_sync lines are
necessary to introduce the same number of clock delays for the counters of row and column
numbers as those FILTERS, and ZERO_CROSSING DETECTION circuits. The length of
these is a direct measure of the latency of the calculation.

The implementation of the sub-pixel interpolation in the x and y directions according
to Equations (5) and (6) is shown in Figure 5. To interpret the sub-pixel shift Δx(ip, jq), the
centroid estimation from the previous pixel is required, which can be buffered by a FF
register. For the sub-pixel shift in the y direction, however, the pixel in the previous row is
needed, which means the whole row of centroids value in y direction needed to be buffered
in a FIFO with depth that is the same as the column number.

Ĉx/Ĉy

ip/jq x̂p/ŷq

Figure 5. Diagram for the implementation sub-pixel interpolation in x and y direction.

3.2. Segmentation Module

The stream-based CoG algorithm itself is able to determine multiple spots presented
in a sub-aperture if the filter size is not so large as to cover all the spots. Recall that the
filter size is matched to the spot size, not the sub-aperture size Equation (3). How to use
these extra centroids to achieve a better local slope estimation (Z-tilt instead of G-tilt) or
reconstruct wavefront from multiple sources is a simple sorting procedure is beyond the
scope of this paper. Here, we try to render a traditional array of centroids corresponding
to the lenslet array from the SCoG detected centroids through the Segmentation module
using the following steps.
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3.2.1. Centroid Sorting Module

It is assumed that all the detected centroids in one sub-aperture truly belong to this
sub-aperture. In other words, there are no spots crossing lenslet boundaries due to strong
aberration. In order to associate a detected centroid to its sub-aperture, Equation (7) was
used to calculate the row and column index of the sub-aperture. When the number of pixels
per lenslet window and integer of power is two, the division can be simplified to bit shifts.

3.2.2. Treatment of Multiple Centroids and Missing Centroid

As discussed in Section 2.3, there are different ways to treat the scenarios where
multiple centroids or no centroid is detected in some sub-apertures. For the current FPGA
implementation, the average of all the centroids within a sub-aperture is used to represent
an overall displacement for the multiple centroids situation. If a centroid is missing from a
sub-aperture, then the centroid position from previous frame is inherited, which can trace
back to an initial default reference centroid positions for each sub-aperture.

Once the centroids for the last sub-aperture in a row have been examined following
by the slope calculation, the partial wavefront reconstruction can start immediately. The
above segmentation steps can be represented by the pseudocode in Algorithm 1:

Algorithm 1: Pseudocode for sorting–processing–reordering.
Data: stream centroid C
Result: ordered centroid for each sub-aperture A

1 initialization;
2 foreach stream centroid C do

3 r := f loor(Cx/w);
4 c := f loor(Cy/w);
5 append C to centroid list of A(r, c);
6 if time of the last possible C in A then

7 if no centroid in A(r, c) then

8 Assign the centroid from previous frame;
9 else if multiple centroids in A(r, c) then

10 Average all the centroids;
11 if last A in a MLA row then

12 reorder all the centroids in this row;
13 end

14 end

15 end

3.3. Slope Calculation Module

After the SCoG and Segmentation modules, there will be an averaged centroid for each
sub-aperture similar to conventional CoG-based methods. The SLOPE module calculates
local slopes of wavefront in each sub-aperture according to Equation (1). An initial reference
grid is stored in this module, where the reference center is designed to be in the center of
each sub-aperture. This module is also capable of updating the reference centroids grid by
averaging a certain frames of centroids data. This is particularly useful when applying the
wavefront sensing system to an imaging system where a flat wavefront is not accessible.
Therefore, the reference grid must be calculated by averaging the centroids from a number
of long exposure images.

3.4. Wavefront Reconstruction Module

The wavefront reconstruction module essentially computes a matrix multiplication
between the inverse matrix and the slope vectors according to Equation (12). As the
slopes for each sub-aperture are measured, they are multiplied by their corresponding
matrix elements and accumulated with previous multiplication. The calibration matrix E
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is determined once the geometric configurations is fixed and therefore can be calculated
in advance. When the slopes of all the sub-apertures in the same row are measured and
multiplied, the next section of the matrix corresponding to the slopes of next row of sub-
apertures are loaded. The loading of new matrix elements is controlled by a finite state
machine (FSM).

In Figure 6, different areas related with the SHWFS are shown. The gray sensor area
includes all the selected active imaging sensor pixels, on which the SCoG is operated.
The resulted detected centroids from the SCoG module are represented on this sensor
coordinate system. Since most AO systems have either a circular or annular Pupil, a square
ROI was chosen to include the Pupil. After removing the ROI origin offset (osx, osy) from
the centroids calculated by the SCoG module, the local centroids were obtained on the
ROI coordinate system. Following that, the segmentation module can sort the centroids to
their associated sub-apertures, followed by the slope module to obtain the average slope
on individual sub-apertures. For the wavefront reconstruction, only slopes on those valid
sub-apertures (green) were used. A binary sub-aperture mask indicating the validness of
an sub-aperture was used to decide whether to accumulate matrix multiplication result to
the partial wavefront reconstruction in the RECON module.

sy
sx

sensor area

region of interest

pupil area

valid sup-aperture

invalid sup-aperture

Figure 6. Illustration of various regions on the sensor area. The gray area is the sensor area on which
the stream-based CoG operates. The region of interest is selected such that it covers the pupil of the
imaging system. The green segments indicate those valid MLA lenslets within the pupil, while the
red segments are invalid sub-apertures for wavefront reconstruction.

4. Results

4.1. FPGA Design

The hardware platform used to implement the proposed Shack–Hartmann wavefront
sensor using the stream-based CoG method is shown in Figure 7. The FPGA board is a
Trenz Electronic TE0712 core board (TE0712-01-200-2C), which includes a Xilinx 7 series
FPGA Artix-7 chip XC7A200T.

Figure 7. Hardware platform used to implement the SCoG-based SHWFS.

The FPGA implementation was developed in the Xilinx Vivado Design Suite, with
most parts of the different modules designed using VHDL directly. Some common IP
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blocks, such as FIFOs, Dividers, and Block Memories provided by Xilinx, have also been
used in various places. This implementation strategy reduces the migration complexities
and difficulties when re-targeting the design to a different FPGA platform.

The arithmetic operations starting from the calculation of the sub-pixel shift use
fixed-point numbers. The absolute centroid position has a precision of 12 integer bits and
8 fractional bits, while the slope calculation uses 1 sign bit and 16 fractional bits. The
intermediate calculations use full precision, i.e., integer and fractional bits are extended
accordingly. The final Zernike amplitudes are rounded to 1 sign bit, 7 integer bits, and
8 fractional bits.

4.1.1. Resource Usage

The resource usage for the SCoG module, centroids segmentation module, slope
calculation module, and modal wavefront reconstruction module for a SHWFS with
10 × 10 sub-apertures, each having 30 × 30 pixels. as is shown in Table 2. The filter size is
5 × 5 and the wavefront reconstruction has been performed on the first 9 Zernike modes
based on Noll’s notation. The SEG module uses more LUT RAMs than other components
because centroids from previous frame are buffered to solve the possible missing centroid
situations in some sub-apertures. The RECON module uses the most Block RAMs only
because the calibration matrix are stored inside this module instead of external RAM.

Table 2. Resource usage of different modules on Artix 7 XC7A200T.

Resources SCoG SEG Slope RECON Total

Slice LUT 1554 7744 33 3731 13,062 (10%)
Slice REG 3567 16,184 19 10,100 29,870 (11%)
Block RAM 3.5 0 0 26 29.5 (8.1%)
DSPs 0 0 2 18 20 (2.7%)

The resource usage for the SCoG module with four different filter sizes is shown
in Figure 8. The implementation for slope calculation and wavefront reconstruction are
common and similar to those in the literature [27,28] and therefore are not shown here
separately. As the filter size increases, the slice usages as LUT and registers increase linearly.
The Block RAMs are mainly used to buffer a certain number of rows pixels depending on
the filter size, and therefore also increase linearly.

3× 3 7× 7 11× 11 15× 15
0

2000

4000

2 4 6 8

U
sa
g
e

Slice LUT Slice REG Block RAM

Figure 8. Resource usage for the SCoG module with four different filter sizes. Contributing resources
for each filter size include Slice LUT, Block RAM, and Slice Registers.

4.1.2. Latency

The various time delays from the pixel read to the calculation of wavefront are shown
in Figure 9. The SCoG computes the centroid on each incoming pixel and the time delay
from a when pixel is read to its associated CoG value being calculated tSCoG is:

tSCoG = M × TROW + M × TCLK + c × TCLK (15)
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where M is half of the filter size and c is a constant related to the delays caused by pipe-line
implementation and division. The detected centroids will be sorted to a sub-aperture
according to Algorithm 1, which introduces a delay tSort mostly due to divisions. When
the CoG value of the last pixel in a row of sub-apertures is sorted, multiple centroids
(if presented) in each individual sub-aperture will be averaged after a further delay of tSEG.
At this point, each sub-aperture will have its centroid estimation and the following timing
delay is similar to those reported in [28]. The slope calculation can be started as soon as
the segmentation is done, as the operation is basically a subtraction of the sub-aperture
centroid with its reference center and following multiplication with a factor related with
lenslet f-number. The time delay from the segmentation to the slope calculation is denoted
as tSLOPE.

tSCoG

tSEG

tSLOPE

tRECON tACCU

Figure 9. Time delay between different modules in the SHWFS implementation. Note that the
whole wavefront sensing operation finishes shortly after End-Of-Frame (EOF) and before the next
Start-Of-Frame (SOF).

The matrix multiplication for the wavefront reconstruction starts as soon as the slopes
of all the sub-apertures in the same row becomes available and introduces a time delay
of tRECON until the partial reconstruction finishes. As the multiplication on the last row
finishes, a time of tACCU is required to finish the final accumulation and serialization of the
Zernike coefficients vectors.

With a larger filter size, the closure of the timing constraint becomes more challenging,
even with fully pipe-lined implementation as described in Appendix A. In our implementa-
tion, the timing constraint for a clock running at 100 MHz can be met with a maximum filter
size of 65 pixels. Considering the micro lenslet array has a pitch size ranging from 100 μm
to 500 μm (equivalent f-number 20 to 50) and the common pixel size for CMOS imaging
sensors of 5 to 10 μm, the spot size for a wavelength of 500 nm is about 4 to 20 pixels and
each sub-aperture A is up to 50 × 50 pixels. Therefore, the timing constraint with this
maximum filter size is sufficient for most of the SHWFS for astronomy AO systems. We
note that most SHWFS limit the spot size to maximize the detectability, but meteorology
look for better precision with the luxury of more light.

The appealing low latency and high accuracy of our proposed Shack–Hartmann WFS
is only possible because of the deep exploitation of the parallelism power offered by FPGA
devices. Due to the heavy computation overload introduced by the per-pixel convolution
operations in Equation (3), CPU-based implementation will suffer from significant time
delay. For a configuration of 10 × 10 sub-apertures with each sub-aperture consisting of
30 × 30 pixels and an implementation running at 50 MHz, the latency from the end of
the frame to the finish of wavefront reconstruction to 9 Zernike terms is only 820 ns. The
same software implementation of the Shack–Hartmann WFS, getting the benefits of CoG
calculation at each pixel, written in Python 3.7 running on Ubuntu 18.04 (Intel Core i7-8750
CPU 2.20 GHz × 12, 32 GB RAM) (without exploiting specific optimisation like multithread
programming) takes about 2.855 s (SCoG 2.85 s, SEG 0.19 ms, SLOPE, and RECON 4.77 ms).
Image fetching time from memory in the CPU implementation has been omitted in the
above comparison. The reader should therefore note that it is not sensible to implement
the streaming per-pixel estimation of SCoG on a traditional CPU architecture for real-
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time applications. The latency of our FPGA-based Shack–Hartmann WFS implementation
using SCoG for centroiding estimation is on par with similar FPGA implementation using
TCoG [28] (740 ns) and is much smaller than the GPU-based centroiding extraction [22]
(2 ms) and CPU-based Shack–Hartmann WFS implementation [32] (40 μs excluding transfer
time).

4.2. Experimental Results

To evaluate the effectiveness of the hardware implementation of the proposed SHWFS
using SCoG algorithm, artificial SHWFS spots images were generated from numerical
simulation and stored inside the FPGA ROM. Following that, a camera module written
in HDL was used to mimic an image sensor by reading the stored image and outputting
common CMOS sensor signals such as pixel clock, frame/line valid, and pixel data bus.
This arrangement allows the experiments to still run on the hardware platform and quantify
the system performance in a reproducible manner.

4.2.1. Centroiding Performance

Comparison of the SCoG method with other CoG-based and cross-correlation methods
for measuring the spot displacement under various noise scenarios has been reported in our
previous research [33]. The focus here is to confirm that the argument of SCoG is superior
to conventional CoG method still holds with the fixed-point number representation being
used in various modules. The spot profile from the lenslet is modeled using the following
2D Gaussian function:

P(x, y) =
Nph

2πσ2
spot

exp

[
− (x − x0)

2 + (y − y0)
2

2σ2
spot

]
(16)

where (x0, y0) represents the ground truth of the spot center and Nph is the number of
photons. σspot is the standard deviation and the FWHM of the spot is 2

√
2 ln(2)σspot.

A Gaussian spot with a FWHM of 2 pixels and 100 photons moving across a sub-
aperture of 30 pixels is simulated as shown in Figure 10. On top of the Gaussian signal,
photon (Poisson) noise and sensor readout noise are introduced as well. The readout noise
is modelled by a Gaussian distribution with a mean value of 0.8 e− and standard deviation
of 0.2 e− under assumption of 100% quantum efficiency. The final signal is then digitized
to 8 bits. The centroids estimation results from a conventional TCoG with a thresholding
value of 15 and the SCoG with a filter size of 5 pixels are shown in Figure 10. While the
accuracy of the TCoG varies and at some sampling position results in a totally wrong
estimation, the SCoG always has a close agreement with the ground truth along the path.
The error variance of the centroid estimation from TCoG is about 1.795 Pixel2, while the
number from SCoG estimation is only about 0.002 Pixel2.

To evaluate a case where traditional CoG methods fail, in Figure 11 we present a
spots pattern from a random Kolmogorov phase screen with r0 of 14 cm. A telescope
with a diameter of 4.2 m, which leads to D/r0 = 30, is used. The pupil was sampled into
10 × 10 sub-apertures by a MLA with pitch size of 42 cm. Here, r0 is smaller than the MLA
pitch size, and therefore scintillation is expected. All the detected centroids together with
the centroid representation for each sub-aperture after segmentation are annotated on the
spots in blue and red colors. Noticeably, the spot breaks as the local turbulence is too strong,
i.e., r0 is less than the lenslet size, as shown in the two inset sub-apertures, and the SCoG is
able to identify these individual broken spots. As stated in the previous section, the average
of these centroids was used to represent the mean local wavefront. However, they could be
used in other, better ways [36] to yield a more precise wavefront reconstruction with further
study. The SCoG works here, despite scintillation and the accompanying signal spread.
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Figure 10. Comparison of hardware implemented SCoG with a traditional thresholding CoG (TCoG)
for detecting a moving Gaussian spot.

Figure 11. All the detected centroids (blue) and average ones for each sub-apertures (red) are
annotated on the SHWFS spots pattern (invalid sub-apertures are not shown here). Color for the
spots is inverted for better visibility.

4.2.2. Wavefront Reconstruction Results

In a similar way, to demonstrate the performance of the whole SHWFS design includ-
ing the wavefront reconstruction, the SHWFS spots pattern was generated numerically
from a known phase screen as shown in the top left in Figure 12. The wavefront is randomly
generated by a combination of the first 9 Zernike modes, after setting a wavefront error
budget of [0 nm, 100 nm, 100 nm, 36 nm, 36 nm, 36 nm, 6 nm, 6 nm, and 6 nm] at a
wavelength of 635 nm and over a pupil with diameter of 1.5 mm. The MLA used to sample
the wavefront has a pitch size of 150 μm and focal length of 4.1 mm, which models the
Thorlabs MLA150-5C micro lenslet array. The pixel size of the detector is set to be 5 μm
and therefore there are 10 × 10 sub-apertures and each sub-aperture has 30 × 30 pixels. The
phase residual between the reconstructed wavefront and the original wavefront is shown
in the top right in Figure 12 and the modal reconstruction has a RMSE of 0.023 rad. A
comparison of the Zernike coefficients from the original and reconstructed wavefront is
given in the bottom in Figure 12.
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Figure 12. Top left: original phase; Top right: phase residual; Bottom: comparison of original and
reconstructed Zernike coefficients using Noll’s index notation [37].

5. Discussion

In this paper, we have presented a complete hardware implementation of Shack–
Hartmann wavefront sensor in a modular design. The spots displacement was measured
using the previously reported Stream-based CoG algorithm, which reduces the centroid
estimation error when the signal is cut by the sub-aperture boundary and noise-induced
error by using a spot-matched floating CoG window. The slope calculation and wavefront
reconstruction using a least-square fit method starts immediately as long as the required
sub-aperture measurements are ready. The result is a very low-latency and real-time
wavefront sensing system with superior performance to conventional CoG-based SHWFS
facilitated by the parallelism power from FPGA devices.

The FPGA implementation of Stream-based Center-of-Gravity algorithm can be mod-
ified without much effort to adapt other filter-like algorithms, for example, the cross-
correlation for determining image shifts under extended sources proposed by Poyneer [6].
The First Fourier coefficient (1FC) algorithm [38] examines the phase symmetry in the
Fourier domain to evaluate the spot shifts. Both the CCF and 1FC algorithms can be
modified to their streamed version with minimal effort based on the implementation
presented in this work.

The current treatment of multiple centroids identified in one sub-aperture is to average
them, which can be further improved by other algorithm events to increase the dynamic
range such as [36]. Future work also includes testing the proposed SHWFS implementation
with the on-board image sensor in laboratory optics systems and eventually including
the wavefront correction component, such as a deformable mirror, to realize a closed-loop
AO system.
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Appendix A. Pipe-Lined Filter Implementation

The filters chosen for the SCoG algorithm are symmetric and separable, which is
helpful to reduce the resource usage. For instance, Fx(m, n) can be separated into two 1-D
filters as following:

Fx(m, n) =

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦[−M −M + 1 . . . M

]
(A1)

Similarly, Fy(m, n) can be separated by:

Fy(m, n) =

⎡
⎢⎢⎢⎣

−M
−M + 1

...
M

⎤
⎥⎥⎥⎦[1 1 . . . 1

]
(A2)

The column vector is applied to each incoming column of pixels first, followed by
a pipeline adder for the row vector. However, the multiple sum operations after the
multiplication of the vertical vectors lead to complicated combination logic between two
synchronous FFs and as a result, difficult timing closure. One solution to improve the
timing performance of this path is to break down the operations to be completed in more
clock cycles, i.e., a pipelined implementation as shown in Figure A1. Because the 1D filter
[−M− M+ 1 . . . M]T in Equation (A2) is also vertically symmetrical, it is possible to further
reduce the number of multipliers and delay FFs by summing the symmetrical pixels first.
Similar optimization can be applied to the horizontal 1D filter operation. However, as
our target FPGA device has plenty of resources for our current implementation, we have
not done such optimization. The output after the column vector, DV, is then passed to be
multiplied by the horizontal vector.

C01

C11

C21

C31

C41

Figure A1. A fully pipe-lined design for the vertical filter operation. LB is the output of different line
buffers and DV represents the output after applying the column vector.
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The implementation of the filter with the horizontal vector is a bit different as the
product of the previous vertical filter operation is present sequentially with each clock
cycle. It is straightforward to think that we need to use registers to buffer the data, and
then do the pipe-lined multiplication and addition as described for the vertical filtering.
However, a better way, in terms of simplicity and resource usage, to implement this filter is
to use the Transpose structure, which is a common technique in the design of finite impulse
response (FIR) filter. As shown in Figure 4, the input DV, is multiplied by all the coefficients
of the horizontal vector on each clock cycle. The results of multiplications are added and
propagate through a chain of registers, with the result from the later coefficient at the
furthest FF. The elegance of this Transpose structure, is that the adder chain can be easily
placed and routed because it matches with the Xilinx FPGA structure, where arithmetic
functions are placed in columns. In fact, the adder and register can be absorbed to the
DSP48A slices which are used for the multiplication, which not only reduces the resource
usage but also improves the speed.

0

C41 C31 C21 C11 C01

Figure A2. The horizontal filter implemented with a Transpose structure which takes the output of
the column vector operation, DV, and produces DH in its output.
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Abstract: In recent years, long short-term memory (LSTM) has been used in many speech recognition
tasks, due to its excellent performance. Due to a large amount of calculation and complex data
dependencies of LSTM, it is often not so efficient to deploy on the field-programmable gate array
(FPGA) platform. This paper proposes an LSTM accelerator, driven by a specific instruction set.
The accelerator consists of a matrix multiplication unit and a post-processing unit. The matrix
multiplication unit uses staggered timing of read data to reduce register usage. The post-processing
unit can complete various calculations with only a small amount of digital signal processing (DSP)
slices, through resource sharing, and at the same time, the memory footprint is reduced, through the
well-designed data flow design. The accelerator is batch-based and capable of computing data from
multiple users simultaneously. Since the calculation process of LSTM is divided into a sequence of
instructions, it is feasible to execute multi-layer LSTM networks as well as large-scale LSTM networks.
Experimental results show that our accelerator can achieve a performance of 2036 GOPS at 16-bit
data precision, while having higher hardware utilization compared to previous work.

Keywords: LSTM; FPGA; resource efficient; accelerator

1. Introduction

In recent years, recurrent neural nets have been widely used in tasks such as speech
recognition [1], due to their excellent performance. Long short-term memory (LSTM) is one of
the most popular recurrent neural networks. A central processing unit (CPU) and graphics
processing unit (GPU) are common LSTM hardware computing platforms. Due to a large
number of calculations and complex data dependencies in LSTM, it is often not so efficient to
calculate LSTM through CPU or GPU. When performing specific LSTM calculations, the uti-
lization of CPU and GPU is usually relatively low. Due to the aforementioned drawbacks of
CPU and GPU, some energy-efficient platforms are used as accelerators for LSTM forward
inference, such as field-programmable gate arrays (FPGAs) and application-specific integrated
circuits (ASICs). ASICs are highly energy efficient. For example, Google’s TPUv4i [2] has
a performance of up to 138 tera floating point operations per second (TFLOPS). However,
ASICs are inflexible and expensive to manufacture. Specific ASIC chips may not keep up with
the development of neural network algorithms.

FPGAs have achieved a good balance in terms of reconfigurability, flexibility, perfor-
mance, and power consumption. At present, many researchers use FPGAs to accelerate
LSTM [3–23]. Some works reduce the storage space of LSTM by compressing and quan-
tizing the weight of LSTM, and then storing all the weight on the chip [9,11]. In work [9],
the LSTM model is compressed using the block-circulant matrix technology so that the
model parameters can be stored on the on-chip block random access memory (BRAM) of
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the FPGA. In [11], the bank-balanced sparsity method was used to reduce the number of
parameters, so that all weights were stored on-chip in the small model. Some works store
weights in off-chip memory and reduce bandwidth requirements through data reuse [16,19].
The authors of [19] split the weight matrix into multiple blocks, and each block could be
used for a batch of input data, which increased data reuse. Addressing edge computing
scenarios, the authors of [12] focused on using embedded FPGAs to accelerate lightweight
LSTM. However, most works use FPGAs to accelerate an LSTM model, which cannot effec-
tively accelerate some multi-layer LSTM. Most of them use different computing units to
calculate different matrix multiplications of an LSTM, to those used to calculate operations
such as element-wise multiplication and element-wise addition in LSTM.

In this paper, we propose an instruction-driven accelerator. For large LSTM and
multi-layer LSTM, LSTM can be decomposed into multiple groups of small calculations
through a series of instructions. Our hardware consists of matrix multiplication units
and post-processing units, that compute element-wise multiplication, element-wise addi-
tion, etc. Several optimization techniques are used to improve performance and utilize
resources efficiently.

The contributions of this work are summarized as follows.

• The matrix multiplication units in the accelerator are cascaded, to simultaneously
compute multiple user input data. The matrix multiplication units reduce register
usage through a time-staggered data readout strategy.

• In the post-processing unit, only two DSPs with resource sharing are used, to com-
plete various types of calculations such as element-wise multiplication and batch
normalization, which reduces the resource usage of the post-processing unit.

• A domain-specific instruction set is designed to compute complex operations in LSTM.
A complex LSTM is executed by splitting it into a sequence of instructions.

• For a case study, experiments have been performed on the Xilinx Alevo U50 card.
The results show that our design achieves a performance of 2036 giga operations per
second (GOPS) and the utilization of the hardware reaches 86.1%.

The rest of the paper is organized as follows. Section 2 introduces the background.
Section 3 presents the hardware architecture design. Section 4 describes the detailed
instruction design. Section 5 gives an analysis of the experimental results. Section 6
concludes the paper.

2. Background

LSTM was first proposed in 1997 [24], and there have been many variants of LSTM
since then. Google LSTM [25] is one variant that has been widely used. Therefore, with-
out loss of generality, this paper uses Google LSTM as an example. Figure 1 shows the
network structure of LSTM.

Figure 1. LSTM network structure.
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Compared with the standard LSTM, Google LSTM has additional peephole connec-
tions and a projection layer. This structure has a better effect on deep networks. The input
of an LSTM is a sequence X = {x1; x2; . . . ; xt}; xt represents the input vector at time t.
The output of an LSTM is a sequence Y = {y1; y2; . . . ; yt}; yt denotes the output vector at
time t. The operation of an LSTM can be expressed as:

gt = σ(Wgxxt + Wgryt−1 + bg). (1)

it = σ(Wixxt + Wiryt−1 + Wic � ct−1 + bi). (2)

ft = σ(Wf xxt + Wf ryt−1 + Wf c � ct−1 + b f ). (3)

ct = ft � ct−1 + gt � it. (4)

ot = σ(Woxxt + Woryt−1 + Woc � ct + bo). (5)

mt = ot � tanh(ct). (6)

yt = Wymmt. (7)

where i, f , o, c, m represent input gate, forget gate, output gate, cell state, and cell
output, respectively. � represents element-wise multiplication. + denotes element-wise
addition. W denotes represents the weight matrix. b denotes the bias used in the matrix
multiplication operation. σ denotes the sigmoid activation function. tanh represents the
tanh activation function.

The input gate controls the proportion of input information transmitted to the cell
state at the current time step. The output gate controls the proportion of the cell state
transmitted to the output. The forget gate controls the proportion of information forgotten
and retained by the cell state. Cell state saves previous information. Because the number of
units in the projection layer is less than that of the hidden units, the projection layer can
control the total number of parameters, while allowing the number of hidden units to be
increased. The output layer calculates the final output.

LSTM will save previous information and be able to learn the relationship between data
at different times, so that LSTM can process sequential data such as voice data. Therefore,
LSTM is widely used in tasks such as speech recognition, machine translation, etc.

Next, we will introduce some principles of hardware acceleration for computing.
Common methods of hardware acceleration include pipelining, loop unrolling, loop tiling,
and loop interchange, among others. Pipelining can increase the operating frequency of
the system. Loop unrolling can improve parallelism during acceleration. In the case of
insufficient on-chip storage resources, loop tiling can process part of the data at a time.
Reasonable loop interchange can improve data reuse and optimize data movements and
memory access. In computing tasks, multiple computing units of FPGA can be used
for parallel processing. In the calculation process, improving the effective utilization of
computing resources is helpful to the final performance.

3. Hardware Architecture

Our complete design consists of a hardware accelerator and corresponding instruction
set design. Section 3 introduces the design of each module in the hardware part.

3.1. Overall Architecture

Our design consists of a host and a kernel. The host program is written in C++ and runs
on the CPU, and the kernel program is written in Verilog and runs on the FPGA. As shown
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in Figure 2, data pre-processing, including feature extraction, and post-processing, in-
cluding language models, are all calculated in the host, while LSTM computing is in the
kernel. When the system starts to work, the host pre-processes the data first and then sends
instructions, weights, parameters, the activation function table, and the pre-processed input
data to high bandwidth memory (HBM). Then, the kernel starts executing the instructions.
When the kernel finishes computing, the kernel notifies the host and puts the result on the
HBM. Then, the host will perform the remaining calculations, such as the calculation of the
language model, and notify the kernel to proceed with the next operation.

Figure 2. The overall architecture.

3.2. Kernel Architecture

The LSTM is calculated in the kernel, and the kernel in the FPGA completes most of
the calculations of the entire system. The following describes the architecture of the kernel,
as shown in Figure 3.

Instructions, weights, post-processing parameters, activation function tables, and
input and output data are stored on HBM. Instructions, post-processing parameters and
sigmoid tables each take up one HBM. The weight data takes up eight HBMs. The input and
output data share an HBM. Inside the computing kernel, each HBM has a corresponding
FIFO (first in first out). Each block of HBM uses an AXI interface for data reading and
writing. When the kernel starts working, the instruction data are transferred from the
HBM to the corresponding FIFO_S1. The state of the command FIFO_S1 is monitored.
When the command FIFO_S1 is not empty, the data in the FIFO_S1 will be read and sent
to FIFO_S2, and a signal to read data in other HBM will be pulled high. Next, the AXI1
interface to the AXI12 interface will read the data in the HBM, according to the information
in the instruction, and transfer it to the corresponding FIFO. At the same time, the data in
FIFO12 will be sent to ultra random access memory (URAM), which stores input data and
intermediate results.

The calculation of the kernel does not need to wait for all the input data to enter
the URAM, and the calculation of the kernel starts when sufficient input data is sent
to the URAM. At this time, the instruction enters the kernel from the FIFO_S2, and the
matrix multiplication unit will obtain data from the weight FIFO and URAM, according
to the information in the instruction for calculation. When the matrix multiplication is
finished, the result will be written into the BRAM, and then the post-processing unit will
start the calculation. The post-processing unit will obtain the data from FIFO or BRAM,
according to the information in the instruction, and obtain the parameters from the FIFO9,
storing the parameters for the calculation. Because the two modules write BRAM at
different times, the two modules perform calculations simultaneously. After the matrix
multiplication unit completes the first set of data calculations, the post-processing unit
performs the first set of data calculations and the second set of data enters the matrix
multiplication unit.

As shown in Figure 3, the results calculated by the post-processing unit will be
stored in different storage units. Which memory unit is written to, is determined by the
information in the instruction. Finally, the data that needs to be written into HBM will be
sent to FIFO first and then written into HBM. The proposed batch-based accelerator can
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process input data from multiple users simultaneously. The input data of multiple users
is calculated simultaneously in the kernel, and a total of 32 groups of computing units
perform calculations simultaneously. Since the 32 groups of computing units share the same
weights and post-processing parameters, the weights and post-processing parameters are
transferred between them through cascading. This calculation mode reduces the demand
for external HBM storage bandwidth, by reusing weights.

Figure 3. The architecture of the kernel (LSTM accelerator running on PL).

3.3. Design of Matrix Multiplication Unit

Most of the calculations in LSTM are matrix multiplications, and matrix multiplications
have the greatest demand for computing resources. We design a matrix multiplication
array composed of DSP to perform matrix multiplication. The detailed design of the matrix
multiplication unit is shown in Figure 4 below.

In Figure 3, we take a 3 × 3 array as an example, and the actual array size is 8 × 8.
There are 64 DSPs in total, 8 DSPs in each column as a group. Each group of DSPs calculates
the same value in the output matrix. In this calculation mode, the eight groups of DSPs
use the same input vector, so the eight groups of DSPs can share the same input vector,
through cascading among different groups. This calculation method reduces the bandwidth
requirement of the input vector to one-eighth of the calculation mode, without input data
sharing. In a matrix multiplication unit, different DSPs use different weights, without
using weight sharing. Because each group of eight DSPs computes the same output value,
the eight values computed by the eight DSPs are added, to form a partial sum. A complete
matrix multiplication operation will be performed multiple times by eight DSPs, and the
partial sums obtained from the multiple operations will be accumulated. When a new set
of data needs to be calculated, the data input port of the accumulator will be set to zero to
perform a new calculation, as shown in Figure 4.
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Since different DSPs in a group start calculations at staggered times, the value of the
input vector will be registered through registers, and different DSPs in the same group will
use different numbers of registers, as shown in Figure 4. For the reading of weight data,
in a common design, the weight is read from the FIFO and then output through a series
of registers, as shown in Figure 5. Since our design has many matrix multiplication units,
the weight readout circuit will consume a lot of registers. This may cause difficulties in
placement and routing, and result in a relatively low frequency for the final design. In order
to reduce the use of registers, we have designed a specific data read timing, as shown in
Figure 5. The read signal arrives at eight different weights, FIFO is staggered. In this mode,
each DSP reduces the corresponding 4.5 registers on average. If each data is 16 bits and a
matrix multiplication unit has 64 DSPs, then 64 × 16 × 4.5 = 4608 registers can be saved.

DSP

DSPDSP

DSPDSP

0 0

DSP

DSP

DSP

0

DSP

Figure 4. Design of matrix multiplication unit.

3.4. Design of Post-Processing Unit

After the matrix multiplication is completed, the result will be stored in the BRAM,
and the post-processing unit will then obtain the data from the BRAM for calculation.
The post-processing unit handles all operations except matrix multiplication, includ-
ing element-wise multiplication, element-wise addition, batch normalization, etc. Al-
though there is no batch normalization operation in LSTM, supporting batch normalization
can broaden the applicability of the architecture, so that the accelerator can perform more
types of calculations. In particular, in order to simplify the design of the matrix multi-
plication unit, the addition of bias operation in Equations (1)–(5) is also performed in
the post-processing unit. In conventional operations, these operations require separate
computing resources. Each type of calculation uses a dedicated computing resource. Since
these operations are not performed at the same time, this will lead to a waste of computing
resources. In order to improve resource utilization, we propose an architecture that utilizes
two DSPs to perform all of the above operations. This is achieved through dynamic recon-
figuration of the DSP. We make the DSP calculate different operations at different times by
changing the operation code when the DSP is running. The detailed structure diagram is
shown in Figure 6.
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Figure 5. Optimized data read timing.

As shown in Figure 6, the post-processing parameters store the calculation type
command, some weights, such as Wic, Woc, and the command that determines where the
output is stored. Two DSPs are connected by cascading. Firstly, the type of operation
performed by the two DSPs is determined by the command word, stored in the post-
processing parameters. Different types of operations determine different operation codes.
The input data of the two DSPs will be obtained from the BRAM, FIFO, and post-processing
parameters through the multiplexer, and which data is to be selected is determined by the
operation code. The shift module and the clamp module perform shift operations and
truncate values, respectively.

Figure 6. Structure of the post-processing unit.

87



Electronics 2023, 12, 1731

Table 1 illustrates the configuration modes and opcodes of the DSP in different types
of operations. Taking the addition of bias in matrix multiplication as an example, in the
first stage, we will split the 36 bit data into two input ports A0 and B0 of DSP0, because
the output result of matrix multiplication is 36 bit. The bias is placed on the C0 port
and the operation completed by DSP0 is result1[35 : 0] = (S + C)((A0 : B0) + C0).
A colon indicates a bitwise data splicing operation. S + C represent shift and clamp,
respectively. In the second stage, we put result1[16 : 0] and result[35 : 17] on port A0 of
DSP0 and port A1 of DSP1, respectively. The quantization parameter scale, representing
the ratio between the fixed-point number and the actual floating-point number, is placed
on the B ports of the two DSPs. At this time, the operation performed by the two DSPs
is result2[15 : 0] = (S + C)(data[16 : 0]× scale + data[35 : 17]× scale << 17) =
(S + C)(data[35 : 0]× scale).

Taking batch normalization as an example, data, gamma, and beta are, respectively,
placed on ports A0, B0, and C0 of DSP0. In this mode, the operation completed by
DSP is result = (S + C)(data1 ∗ gamma + beta). For element-wise multiplication
and element-wise addition, the calculation process is similar. There are two types of
element-wise multiplication in Table 1, which correspond to the two types in the LSTM
formula. One type is data multiplied by weights, and the other is data multiplied by
data. If these operations are calculated separately, using different DSPs, eight DSPs are
required, whereas the proposed architecture reduces the number of DSPs required for these
operations to two.

Table 1. Configuration modes and opcodes of the DSP.

Operations Opmode0 Opmode1 A0 B0 C0 A1 B1

Element-wise multiplication type1 110000101 110010101 data1 weight 0 0 0

Element-wise multiplication type2 110000101 110010101 data1 data2 0 0 0

Element-wise addition 110000101 110010101 data1 scale1 data2 scale2 0

Batch normalization 110000101 110010101 data1 gamma beta 0 0

Bias adding stage1 110000011 110010011 data[35:18] data[17:0] bias 0 0

Bias adding stage2 110000101 111010101 data[16:0] scale 0 data[35:17] scale

3.5. Design of Sigmoid/Tanh Module

The sigmoid and tanh functions are implemented in our architecture via a lookup table.
The values in the lookup table are precomputed in software and loaded into the memory
storing the lookup table in advance, before the activation function operation. Using the
internal symmetry of the sigmoid function and the tanh function, we only need to store
half of the data.

In order to improve the calculation efficiency, and avoid the activation function be-
coming a bottleneck, we designed a double buffer. Figure 7 shows a structural diagram of
a double buffer that implements an activation function. A double buffer corresponds to
a ping-pong operation. One buffer consists of two URAM and the double buffer consists
of four URAM. The double buffer stores different lookup tables. For example, one buffer
stores the sigmoid table while another buffer stores the tanh table. When the calculation
in LSTM is switched from sigmoid to tanh, the data that has been loaded can be used
immediately, reducing the time required to load the lookup table.
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Figure 7. Structural diagram of the double buffer.

4. Instruction Design

In Section 4, we introduce the design details of the instruction set and the execution
process of the instruction.

4.1. Information in the Instruction

In our design, the LSTM is split into a sequence of instructions. A matrix multiplication
unit calculates eight data at the same time, so each instruction operates on eight data. When
the eight data operations performed by one instruction are completed, the next instruction
is read in, and the eight data operations of the next instruction are performed. When all
instructions finish running, the calculation of the entire network also terminates at the same
time. The information contained in an instruction is shown in Table 2, below.

The instruction contains the following information, information related to the input
and output data, information related to the weights, information related to the post-
processing parameters, information related to the activation functions, information related
to matrix multiplication, information related to FIFO, and storage information about
the output data. The functions of the instructions are abundant, which simplifies the
design of the state machine of the control module in the hardware circuit. The hardware
circuit will read the information from the instruction and decide which data to read for
calculation and which address of the memory to store the calculated result, according to
the information.
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Table 2. Details in one instruction.

Field in the Instruction Meaning

dat_input_len length of the input data

dat_output_len length of the output data

wgt_addr address of weight

wgt_len length of weight

post-processing_para_addr address of post-processing parameter

load_sigmoid_cmd whether to write the sigmoid/tanh parameter table

sigmoid_buffer_cmd which buffer the sigmoid/tanh parameter table is written to

sigmoid_addr address of the sigmoid/tanh parameter table

loop_num_of_mmu the number of times the matrix multiplication unit calculates

vector_addr address of the input vector

ct_addr_cmd address of ct

uram_store_addr_cmd the address where the output is written to URAM

fifo2postprocess whether the data in the last FIFO enters the post-processing unit

fifo2hbm whether the data in the last FIFO is written to HBM

4.2. From LSTM to Instructions

With the network model and instruction definition, an LSTM can be split into a
sequence of instructions. The instructions and atomic operations after LSTM decomposition
are shown in Table 3. An atomic operation means an operation that can be completed by a
matrix multiplication unit or a post-processing unit at one time.

The seven equations (Equations (1)–(7)) are broken down into 24 atomic operations.
The 24 atomic operations are completed by a total of five instructions. Which atomic
operations each instruction corresponds to, is also shown in Table 3.

Because matrix multiplication occupies the main amount of the calculation, we use the
atomic operation of matrix multiplication as a separation point, to separate the data calcu-
lated by each instruction. The operations that can be completed by one instruction, include
a matrix multiplication operation and several post-processing operations. For example,
instruction 3 performs atomic operations from number 10 to number 16 while instruction
4 performs atomic operations from number 17 to number 23. When instruction 3 is executed,
the matrix multiplication unit will perform atomic operation 10. After atomic operation 3
is completed, the post-processing unit will perform the calculation of atomic operation 11
to atomic operation 16, and at the same time, the matrix multiplication unit will perform
operations on atomic operation 17. The matrix multiplication unit and the post-processing
unit perform calculations simultaneously, which can achieve high throughput and perfor-
mance. The total amount of instructions is related to the size of the matrix. If the output
dimensions of the five matrix multiplications in LSTM are all 1024, and LSTM iterates
32 times, then the total number of instructions is 32 × 1024 × 5/8 = 20,480.

4.3. Memory Reuse during Instruction Execution

During instruction execution, matrix multiplication and post-processing calculations
require frequent reading and writing to memory. In order to reduce memory usage and
maximize memory utilization, we have designed a memory reuse scheme.

For a matrix multiplication unit, it is relatively simple to read the data from the URAM
and write it into the BRAM after calculation, and there is no need to consider memory
reuse. For the post-processing unit, because the calculation it performs needs to read and
write data repeatedly, we achieve the purpose of reducing storage resources by reusing
BRAM, FIFO, and URAM.
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Table 3. Splitting the LSTM into a sequence of instructions.

Number Instruction Number Atomic Operation

1 1 gmat_mult=Wg[Xt :Yt−1]

2 1 gmat_mult=gmat_mult+bg

3 1 gt = σ(gmat_mult)

4 2 imat_mult = Wi[Xt : Yt−1]

5 2 imat_mult = imat_mult + bi

6 2 ielem_mult = Wic � ct−1

7 2 ielem_add = imat_mult + ielem_mult

8 2 it = σ(ielem_add)

9 2 gtit = gt � it

10 3 fmat_mult = Wf∗[Xt : Yt−1]

11 3 fmat_mult = fmat_mult + b f

12 3 felem_mult = Wf c � ct−1

13 3 felem_add = fmat_mult + felem_mult

14 3 ft = σ( felem_add)

15 3 ftct−1 = ft � ct−1

16 3 ct = ftct−1 + gtit

17 4 omat_mult = Wo[Xt : Yt−1]

18 4 omat_mult = Wo[Xt : Yt−1] + bo

19 4 oelem_mult = Woc � ct

20 4 oelem_add = omat_mult ∗ oelem_mult

21 4 ot = σ(oelem_add)

22 4 tanh_ct = tanh(ct)

23 4 mt = ot � tanh_ct

24 5 yt = Wymmt

Taking atomic operation 4 to atomic operation 9 in Table 3 as an example, the well-
designed data flow is shown in Table 4.

Table 4. Memory reuse scheme.

Operations Input Data1 Data1 Memory Input Data2 Data2 Memory Output Data3
Data3

Memory

Bias adding
stage1 imat_mult BRAM[35:0] bias post-processing

parameter imat_mult BRAM[35:0]

Bias adding
stage2 imat_mult BRAM[35:0] scale post-processing

parameter imat_mult BRAM[15:0]

Element-wise
multiplication Wic

post-processing
parameter ct−1 BRAM[63:48] ielem_mult BRAM[31:16]

Element-wise
addition ielem_mult BRAM[31:16] imat_mult BRAM[15:0] ielemadd BRAM[15:0]

Sigmoid ielem_add BRAM[15:0] none none it BRAM[15:0]

Element-wise
multiplication it BRAM[15:0] gt FIFO gtit FIFO
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In order to maximize the use of storage resources, we put multiple data into the
same address, by bit width division. As shown in Table 4, the result of adding bias is
placed in BRAM[15:0], ct−1 is placed in BRAM [63:48], and the result of element-wise
multiplication is placed in BRAM[31:16]. gtit is placed in the FIFO and will be read
from the FIFO to participate in the calculation when it needs to be calculated. For other
instructions, the operation is similar and will not be repeated here. Through the reuse of
storage resources, the intermediate results in all LSTM calculations can be stored on only
one BRAM, one URAM, and one FIFO.

5. Experimental Results

5.1. Experimental Setup

In our experiments, we implemented the LSTM network mentioned in Section 2.
Firstly, instructions are generated according to the network structure and hardware struc-
ture. The required information, such as data address and length, is stored in the instruction,
and the instruction is generated through a Python script. Our accelerator is implemented
using Verilog code. Vivado 2020.1 and Vitis 2020.1 are our design development tools.

There are two SLRs (super logic region) on the Xilinx Alevo U50 accelerator card,
and we deploy one kernel on each SLR. A kernel is composed of 32 cascaded computing
units. Each computing unit consists of a matrix multiplication unit containing 64 DSPs and
a post-processing unit containing 2 DSPs. So in our design, there are 64 computing units
distributed on two SLRs, which means that the input data of 64 users can be calculated at
the same time.

5.2. Resource Utilization

After placing and routing, the resources occupied by the accelerator are shown in
Table 5. The resources used by the platform in Table 5, are the resources needed by Xilinx
FPGA to communicate between the kernel and the host. Through the platform in the FPGA
and the Xilinx Runtime (XRT) in the CPU, the host and the kernel can easily transmit
data. It can be seen from Table 5 that 4224 DSPs are used, which is consistent with the
result calculated according to the hardware structure. In order to store input data and
intermediate results, the usage of URAM and BRAM in our design is within an acceptable
range. The usage of BRAM is 282 through our resource reuse, otherwise more BRAM would
be used. The kernel uses 122,935 lookup tables (LUTs), mainly because the instruction-
driven design reduces the complexity of the hardware design. If the control module is
not implemented by instructions, more LUTs will be required than in the current design.
The usage of registers is slightly larger, mainly due to the cascaded design, which needs to
register a lot of data.

Table 5. Resource usage and utilization.

Resource LUT
LUT As
MEM

Register BRAM URAM DSP

Total 870,016 402,016 1,740,032 1344 640 5940

Used by platform 145,219 25,745 253,970 180 0 4

Used by kernel 122,935 5536 407,690 282 384 4224

Utilization (platform + kernel) 30.8% 7.8% 38.0% 34.4% 60.0% 71.2%

5.3. Performance Comparison

We compared our results with those of others. Since we have not seen work imple-
menting LSTM using the same Alevo U50 card, we compare it with work using FPGAs
with a similar amount of computational resources. The comparison results are in Table 6.

In our design, the overall circuit runs at 280 MHz. Our accelerator achieves a perfor-
mance of 2036 GOPS at a 16-bit data bit width. The power consumption of our design,
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in Table 6, is obtained through Xilinx’s power analysis tool. Compared with the work
in [9], our design has higher performance and resource utilization, while using the same
16 bit data precision. Compared with the work in [16,18], our performance is lower but
the data bit width used in [16,18] is 8 bit. Because there are rich int8 multipliers in Stratix
10 GX2800, int8 performance will be relatively high in Stratix 10 GX2800. Our design has
higher resource utilization compared to [16,18]. Compared with [6,22], we obtain higher
performance with higher data precision. Due to the simultaneous computation of data
for 64 users, our design occupies a relatively large on-chip storage space (14.74 MB) and
has a higher latency than other works. On the one hand, because the instructions in our
design are executed continuously, the DSP in the matrix multiplication unit has almost no
idle time and operates continuously. On the other hand, because the DSP of the matrix
multiplication unit and the DSP of the post-processing unit work in parallel, and the DSP
of the post-processing unit realizes different operations by configuring different modes,
the hardware utilization of our work reached 86.1%, which exceeds the current designs.

Table 6. Comparison with previous work.

C-LSTM [9] FCCM2020 [18] Remarn [16] SIBBS [22]
FDTT-

LSTM [6]
Our Work

Year 2018 2020 2022 2022 2023

FPGA Vertex-7 Stratix 10 GX
2800

Stratix 10 GX
2800 Kintex KU115 XCKU060 Alevo U50

Network LSTM LSTM LSTM LSTM LSTM LSTM

Frequency 200 MHz 260 MHz 260 MHz 200 MHz 200 MHz 280 MHz

Precision 16 bit 8 bit 8 bit
8 bit (weight)

12 bit
(activation)

12 bit 16 bit

DSP used 2676 (74.3%) 4368 (76%) 4368 (76%) 4224 (76.52%) 972 (53%) 4224 (71%)

On-chip
memory used

(MB)
4.24 24.56 24.80 2.40 1.01 14.74

Performance
(GOPS) 131.1 4790 6965 712.6 273.5 2036

Latency (ms) 0.0167 0.033 N/A 0.00104 N/A 9.786

Power 22 W 125 W 125 W 12.0 W 18.6 W 32.3 W

Power
efficiency

(GOPS/W)
6.0 38.32 55.72 59.3 14.7 62.84

LSTM
hardware
utilization

12.2% 56.1% 81.6% 42.2% 70.3% 86.1%

6. Conclusions

This paper presents an instruction-driven LSTM accelerator. The hardware part of the
accelerator consists of a matrix multiplication unit and a post-processing unit. The matrix
multiplication unit adopts a staggered reading scheme in the weight reading stage, to reduce
the consumption of register resources. The post-processing unit completes operations such
as element-wise multiplication, element-wise addition, batch normalization, and bias
addition, by using only two DSPs, through resource sharing. Multi-layer LSTM and
large LSTM can be decomposed into a series of instructions for execution, each of which
executes a certain amount of data. Our design is implemented on the Xilinx Alevo U50 card,
and the experimental results show that our design can achieve 2036 GOPS performance,
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and the resource utilization of hardware exceeds the existing designs. Our design currently
uses 16-bit data and will support optimization of low-bit precision data in future work.
Using low-bit data, such as 8-bit data, can further enhance the overall performance. Our
research can be used in scenarios such as speech recognition and machine translation, in
the data center.
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Abstract: This research demonstrates a novel design of an FPGA-implemented task scheduler for real-
time systems that supports both aperiodic and periodic tasks. The periodic tasks are automatically
restarted once their period has expired without any need for software intervention. The proposed
scheduler utilizes the Earliest-Deadline First (EDF) algorithm and is optimized for multi-core CPUs,
capable of executing up to four threads simultaneously. The scheduler also provides support for task
suspension, resumption, and enabling inter-task synchronization. The design is based on priority
queues, which play a crucial role in decision making and time management. Thanks to the hardware
acceleration of the scheduler and the hardware implementation of priority queues, it operates in only
two clock cycles, regardless of the number of tasks in the system. The results of the FPGA synthesis,
performed on an Intel FPGA device (Cyclone V family), are presented in the paper. The proposed
solution was validated through a simplified version of the Universal Verification Methodology (UVM)
with millions of test instructions and random deadline and period values.

Keywords: real-time; task scheduling; EDF; FPGA; hardware acceleration; periodic tasks; CPU; SoC

1. Introduction

Real-time systems are a type of embedded system that handles tasks that require
real-time processing. The success of these tasks is dependent on both the accuracy of the
results and the time at which they are finished. Missing deadlines for real-time tasks can
be considered a failure, just like calculating the wrong results. Therefore, real-time system
reliability is achieved when tasks are finished within the specified time frame [1,2].

Task scheduling algorithms often use priority queues that are performed within soft-
ware. Such software-based solutions work well for relatively simple and tiny real-time
systems containing a limited number of tasks. However, as the number and complexity
of tasks increase, the performance and constant response time become more critical, espe-
cially for safety-critical systems. Meeting the deadlines of tasks is considered a reliability
requirement, as missing a deadline is seen as a failure of the system. Even using a high-
performance processor does not guarantee that all tasks will meet their deadlines, which is
why a dedicated task scheduler is necessary for real-time and safety-critical systems [3–7].

Real-time task scheduling is a critical aspect of many computing systems, particularly
those that are safety-critical, time-critical, or both. Unfortunately, software-based solutions
for task scheduling have several limitations, particularly with regards to the time consumed
for scheduling, the determinism, dependability, and predictability of the system, and the
algorithms used for scheduling. In an ideal world, a task scheduler for real-time systems
would be able to generate an optimal schedule, using zero CPU time to perform the
scheduling itself. This would allow all of the CPU time to be used for executing the
tasks themselves rather than for scheduling. Of course, this ideal scenario is unlikely
to be achievable in practice, and real-world schedulers will always spend CPU time to
some extent. However, it is possible to minimize the time spent on scheduling and make
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it as constant as possible, which would improve the determinism, dependability, and
predictability of a real-time system. One drawback of task schedulers implemented in
software is that they are restricted in the algorithms they can use, as they need to consume
a very low and constant quantity of processor time. This often results in the use of priority-
based scheduling algorithms, rather than algorithms based on task deadlines, leading to a
lack of robustness and efficiency in the scheduling process. One possible solution to these
limitations is the use of hardware acceleration for task scheduling. By implementing the
task scheduler in hardware, it is possible to use deadline-based scheduling algorithms that
minimize the time spent on scheduling and make it constant as well. This would allow for
a more robust and efficient scheduling process, which would be a significant improvement
over software-based solutions [7–16].

Hardware-accelerated task schedulers have been traditionally used for simple systems
that consist solely of aperiodic hard real-time (RT) tasks. However, these solutions have
proven to be insufficient for more complex and robust real-time systems that have a
higher number of tasks and a greater variety of task types. To address this issue, a more
advanced and sophisticated task scheduler is required. One that has the ability to support
a diverse range of processes/threads. Apart from aperiodic RT tasks, hard RT systems
also perform periodic tasks. These tasks can be managed by task schedulers in the same
way as aperiodic tasks. However, including dedicated support for periodic tasks directly
within the HW-based scheduler can significantly improve the overall performance of
the system. This is because the addition of this support in HW eliminates the need for
any further software extensions for periodic task management because periodic tasks are
autonomously rescheduled without using the CPU whenever a period is completed. As a
result, the system can operate more efficiently and effectively, providing the desired level
of real-time performance and reliability. Overall, the implementation of a more robust and
complex task scheduler is necessary to meet the demands of modern real-time systems
that have a greater number of tasks and a wider range of task types. This will ensure that
the system can perform at its optimal level and deliver the desired level of performance,
reliability, and functionality [17–24].

The aim of the research presented in this article is to design a new version of a copro-
cessor unit that is capable of scheduling tasks based on the Earliest-Deadline First (EDF)
algorithm [7]. The EDF algorithm is widely regarded as a dynamic version of deadline-
based scheduling algorithms [25], as it eliminates the need for assigning individual task
priorities. One of the main challenges faced by modern CPUs is the parallel execution of
multiple tasks, which is a result of the widespread adoption of the many-core paradigm
in processor design. This poses significant complications for hardware-accelerated task
scheduling, particularly for RT systems that contain periodic hard RT tasks and require
inter-task synchronization. In order to address these challenges, the research focuses on
ensuring that the coprocessor unit is highly efficient and scalable in terms of performance
while also ensuring that the overall system remains reliable and deterministic. This is a crit-
ical aspect that must be considered when developing hardware-accelerated task scheduling
systems for real-time systems. In principle, the research presented in this article seeks to
provide a solution to the obstacles and challenges faced by modern CPUs in the implemen-
tation of hardware-accelerated task scheduling. By focusing on the implementation of the
EDF algorithm and addressing the critical aspects of efficiency, scalability, reliability, and
determinism, the proposed coprocessor unit is designed to deliver improved performance
and functionality for real-time systems containing periodic hard RT tasks.

This paper is structured the following way: The paper’s Section 2 covers task sched-
ulers for real-time systems. In Section 3, the paper introduces a new solution for task
scheduling. The proposed solution is verified in Section 4. The paper presents synthesis
results for the proposed solution in Section 5 and discusses the outcomes. Section 6 con-
tains an evaluation of the performance achieved by the proposed solution, including a
comparison with software-based scheduling. Finally, the paper concludes with a summary
in Section 7.
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2. Related Work

There are a lot of scheduling algorithms, each with pros and cons [26,27]. A deep
comparison of global, partitioned, and clustered EDF scheduling algorithms in software
has been presented in [28]. The authors performed experiments on a 24-core Intel Xeon
L7455 system, where each core was running at 2.13 GHz. For these algorithms, they
analyzed the overheads of the algorithms for the scheduling of tasks, their release, context
switching, and several other types of overheads. The outcome was that as the number of
tasks increases, the scheduling overhead is increasing, mainly for the global EDF, where the
worst-case scheduling overhead for 250 tasks was 200 μs. The partitioned and clustered
EDF algorithms reached up to around 30 μs overhead.

The scheduling overhead analysis of several algorithms has also been done in [29].
The authors run tests on a single-core ATmega2560 clocked at 16 MHz. The overhead
of two tested non-preemptive EDF schedulers increased with the number of tasks. The
maximum scheduling overhead by the basic EDF for twelve tasks was 136 μs, while the
Critical-Window EDF had a maximum overhead of 404 μs.

Authors in [30] used the profiler of the Virtual Machine for a comparison of two
algorithms to get information about their scheduling overhead on multiple cores. The
first algorithm (LRE-LT) tried very hard to ensure that all deadlines were met. On the
other hand, the second algorithm (USG) tried to minimize task preemption and migrations
between cores, so it was expected that the second one missed a few deadlines. It was
shown that the scheduler has been invoked a lot more often in the LRE-L and that the
decision-making process took longer. The result was that the time spent on scheduling was
approximately 10,000 times longer in the LRE-LT than in the USG.

Task scheduling plays a crucial role in operating systems, as it determines which
task (i.e., thread or process) should be running in the processor and in what order. The
algorithms used for scheduling greatly impact these decisions. Classic operating systems
typically schedule tasks based on their priorities of tasks, while RT systems must schedule
tasks based on their deadlines. This is because meeting the deadlines of all hard real-time
tasks is of the utmost importance in real-time systems. The Earliest-Deadline First (EDF)
algorithm is one of the most widely used and well-known algorithms for scheduling hard
real-time tasks. It operates by sorting all tasks based on their deadlines, with the task
having the earliest deadline being selected for execution first. Since tasks need to be sorted
according to their deadlines, priority queues are the ideal data structure for implementing
the EDF algorithm. Also, task scheduling is a core and critical component of operating
systems that must be carefully designed and implemented [7,31,32].

The ideal real-time task scheduler is one that schedules tasks optimally, ensuring that
all tasks are completed before their deadlines while minimizing the overhead on the CPU.
The more CPU time that is consumed by the scheduling algorithm, the less effective the
CPU becomes at executing the scheduled tasks. It is inevitable that some CPU time will
be consumed, as the scheduler must use at minimum one clock cycle for transferring data
to and from the scheduling unit. However, to achieve optimal performance, the goal is to
spend the minimum amount of processor time. Maintaining a predictable and deterministic
embedded system is critical, and this requires that a constant amount of CPU time be spent
on scheduling, regardless of the actual amount of tasks currently present in the scheduler
or even the maximum amount of tasks that can be handled by the system (i.e., the capacity
of the task queue). This ensures that the system operates in a consistent and predictable
manner, making it easier to debug and optimize. These qualities are essential for ensuring
that real-time systems operate reliably and efficiently.

Our previous research [33] resulted in the development of a novel real-time task sched-
uler based on the Earliest-Deadline First (EDF) algorithm. This scheduler was implemented
as a coprocessor unit, and a comparison was made between HW and SW realizations
with regards to efficiency and performance. The coprocessor is designed to consume two
cycles of the processor’s clock domain, no matter how many tasks the system contains.
Subsequently, an improved variant of the coprocessor was developed to be suitable for
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dual-core CPUs. To solve the issue of conflicting situations where more than one CPU
core attempts to access the coprocessor at the same time, two approaches were proposed
and compared [34]. Finally, support for scheduling non-real-time tasks was added to the
scheduler, utilizing priorities instead of deadlines [35].

In addition to our coprocessor, there are other existing solutions for HW-accelerated task
scheduling on RT systems. Some of them are also utilizing the EDF algorithm [21,22,36,37].
One solution, presented in [37], uses the EDF algorithm as well, but with a limited maximum
number of tasks of 64. On the other hand, another solution relies on task priorities instead of
deadlines, which is not suitable for hard RT systems [38]. There are also other approaches that
adopt a priority-based or static scheduling method [39–42]. One solution, presented in [43],
supports EDF, LST (Least-Slack-Time) and priority-based scheduling. Schedulers based on
genetic algorithms and fuzzy logic are presented in [44,45].

Our previous coprocessor solution is efficient for simple RT systems with hard RT
tasks in conjunction with single-core CPUs. On the other hand, as RT systems become
more complex and require higher performance, multi-core CPUs are often used, requiring
a more complex task scheduler to support multiple cores. A thorough analysis of the
suitability of the EDF algorithm in uniform multiprocessor systems reported that this
algorithm is applicable in such cases too [37]. Some of the existing solutions also incor-
porate a method to monitor the remaining execution time of real-time tasks and predict
potential deadline misses [38,41,42]. Based on the analysis of existing schedulers, we have
decided to design a new RT task scheduler implemented as a coprocessor unit suitable
for quad-core RT embedded systems and that would support periodic tasks and inter-task
synchronization too.

The performance of real-time task schedulers based on deadlines relies heavily on the
ability to sort tasks using their deadlines. To achieve this, a priority queue data structure
is used as the central component in hardware-implemented task schedulers. There have
been numerous designs for data sorting in priority queues for real-time systems, including
the FIFO approach [36,38,40,46], Shift Registers [37,47–49], and Systolic Array [41,42,49,50].
Each of these architectures has been developed to provide efficient sorting capabilities,
making them popular choices for use in real-time task scheduling.

The FIFO approach is extremely inefficient in terms of chip area and suitable for a small
range of possible values (deadlines in this case), up to four or five bits only [36,38,40,46].

The architecture called Shift Registers is made up of homogeneous cells that each
consist of a comparator, control logic, and registers to store one item. The cells are connected
in a line, and each cell can exchange items with its two neighbors. The cells receive
instructions simultaneously from the queue input, which results in an increase in the
critical path length with an increase in the number of cells. The critical path length is a
result of the bus width used for simultaneous instruction delivery and the exchange of
control signals between all cells. The critical path issue of Shift Registers can be resolved
by using a register at the inputs of cells, dedicating one clock cycle for the shared bus.
The throughput of the Shift Registers architecture is one instruction per clock cycle. An
illustration of a four-cell Shift Registers architecture can be seen in Figure 1 [37,47–49].

The architecture called Systolic Array is quite like Shift Registers, but it overcomes the
critical path length issue by utilizing pipelining. The Systolic Array features homogenous
cells, which are connected in a linear manner, with each cell having one neighboring cell
to the left and right, excluding the first and last cell of the structure. The first cell in the
queue serves as the only source of output for the entire queue and is receiving instructions
through the queue’s input. All instructions are gradually passed from one cell to the
next cell, at a rate of one cell per clock cycle, in a manner similar to how instructions are
processed through pipeline stages in pipelined processors. The throughput, however, of
this architecture is smaller than Shift Registers because each delete instruction takes two
clock cycles instead of just one. An example of the Systolic Array architecture consisting of
four cells is displayed in Figure 2. The first cell on the right side contains the first item in
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the priority queue and serves as the interface between the surrounding circuits. Clock and
reset are the only parallel signals [41,42,49,50].

Figure 1. Shift Registers architecture example [48].

Figure 2. Systolic Array architecture example [41,42,49,50].

The Systolic Array priority queue brings a solution to the critical path issue present
in Shift Registers. The instructions are propagated through the cells, with each cell repre-
senting one pipeline stage with pipeline registers. This means N clock cycles are required
for an instruction to propagate via the entire queue, where N is the queue capacity. Since
every cell is performing a different instruction at a time, the throughput of this structure is
one instruction per clock cycle. However, after deleting an instruction, a pause (NOP) is
needed for one cycle, resulting in a throughput of one instruction per two clock cycles. The
priority queue is providing an updated output in just two cycles. Thus, response time is
two clock cycles. This response time remains constant, regardless of the number of cells in
the queue. In addition to the lower throughput of this architecture in comparison to Shift
Registers, the second disadvantage is the almost doubled amount of flip flops needed for
implementation of the Systolic Array [41,42,49,50].

3. Proposed Solution

The proposed solution is a task scheduler based on FPGA technology, which is de-
signed as a coprocessor that receives instructions from the processor and sends back deci-
sions about which instructions are supposed to be executed at the moment. This implies
that the scheduler will be encapsulated or integrated into an existing CPU, much like any
other coprocessor, for example a multiplier or divider. Figure 3 illustrates the architecture
at the top level of abstraction of the top-level module of the designed coprocessor, which is
comprised of seven submodules: Ready Queue, Waiting Queue, Idle Queue, Tasks Memory,
Running Tasks, Control Unit, and Semaphore.
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Figure 3. Block diagram of proposed task scheduler.

The scheduler top-level module contains four input ports, known as instr_1, instr_2,
instr_3 and instr_4, which are used by the CPU to provide the coprocessor instructions for
the scheduler. It is assumed that up to four tasks/processes/threads can run simultaneously
(for example, on a quad-core CPU). The output port of the scheduler is providing valuable
data for the processor. Using this output port, the processor also gets the information about
which (up to four) processes are currently dedicated to run right now, and the processor is
also able to obtain memory data from the Tasks Memory submodule this way as well.

The proposed task scheduler is providing the following list of new instructions:

• MEMORY_WRITE—can be used to create a new task in Tasks Memory or to modify
already created tasks. This instruction performs a standard write operation into
the memory.

• MEMORY_READ—can be used to read any information about tasks stored in Tasks
Memory. This instruction performs a standard read operation from the memory.

• SCHEDULE_TASK—is used to schedule an existing task to be executed by the CPU.
This causes the task to be moved to Running Tasks or Ready Queue, which is a decision
based on the scheduling algorithm (i.e., deadline values). Task states that are stored
inside Tasks Memory will be modified if needed, too.

• KILL_TASKL—is used to deschedule (i.e., to kill) an already scheduled task. As a
result, the task is removed from the queues, such as Running Tasks, and the task state
is set to IDLE_TASK in Tasks Memory.

• BLOCK_TASK—is used to temporarily block a scheduled task, forbidding its execution
for a limited time. As a result, the state of the selected task is changed to WAITING,
and the task is moved into the Waiting Queue. The task is blocked for a specified time
only; therefore, a waiting time is set too. When the waiting time elapses, the blocked
task will be automatically unblocked.

• UNBLOCK_TASK—is used to unblock a blocked task. As a result, an existing blocked
task is released (i.e., unblocked), changing its state from WAITING to a different state,
and this task is also removed from the Waiting Queue, returning the task back to the
Ready Queue or Running Tasks. Since blocked tasks are automatically unblocked after
a specific waiting time elapses, this instruction is just meant for unblocking the task
earlier, eliminating the need to wait until the waiting time has elapsed.

• GET_RUNNING_TASKS—is used to obtain the list of running tasks or the task that is
selected for execution in a particular processor core using the scheduler output port.
This information is provided by the Running Tasks module.
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3.1. Ready Queue

The Ready Queue is a key component in the task scheduler, as it holds all tasks that
are ready for execution but are waiting their turn. This component is designed as a priority
queue, sorting tasks that are ready by their deadline values so that the next task to be
executed can be quickly identified. The sorting of tasks is performed by utilizing the Shift
Registers architecture, which was explained in Section 2. This architecture is composed of
sorting cells, each of which consists of a comparator for comparing deadlines, control logic
for deciding when and what to store in this cell, and a register as an actual storage element
to remember the ID of the task and its deadline. These cells are able to move tasks to
neighboring cells, and they receive instructions simultaneously via a common bus. Ready
Queue ensures that the tasks are executed in a timely manner, based on their deadlines,
and provides the necessary information to the CPU for task selection and execution.

3.2. Waiting Queue

The Waiting Queue is an integral part of the task scheduler and is designed to hold
all the temporarily suspended or blocked tasks. This component is also implemented as a
priority queue, just like the Ready Queue, to sort the waiting tasks based on their remaining
waiting times. The waiting tasks are referred to as such because they are temporarily put
on hold and are waiting to be unblocked. This can occur in two ways: either through
the execution of the UNBLOCK_TASK instruction or if the remaining time for waiting
has elapsed. Once a task is unblocked, it is extracted from the Waiting Queue. This
prioritization of waiting tasks ensures that the task scheduler can effectively manage the
execution of multiple tasks and maintain a high level of performance.

The Waiting Queue is used only for the inter-task synchronization instructions
BLOCK_TASK and UNBLOCK_TASK. While this queue is allowing users to block and
unblock tasks, the inter-task synchronization logic itself is not implemented and is only
supported by providing these two instructions. It is up to the software extension to
decide whether and when a particular task is supposed to be blocked, for how long
it is blocked, and eventually, whether a blocked task is unblocked before the block
time elapses.

3.3. Idle Queue

The Idle Queue is a module designed to hold idle periodic tasks (i.e., state = idle), either
because they were completed naturally or terminated using the KILL_TASK instruction.
This component is only relevant for periodic tasks; tasks that are not periodic are not
stored in the Idle Queue. The module is structured as yet another priority queue, similar to
Waiting Queue and Ready Queue, with each task being sorted based on their remaining
period times. The output of Idle Queue represents the next periodic task that is going to
finish its period. When current time reaches the task’s period time, the task is extracted
from the Idle Queue and rescheduled to start a new instance of this task for the new period.
It is efficient handling of periodic tasks, and it is possible despite the fact that only one task
can be extracted from the Idle Queue at a time. If more tasks end their period at the same
time, i.e., they need rescheduling simultaneously, then those tasks that are rescheduled
later automatically adjust their remaining deadline time by the delay incurred. Thus, such
tasks may be rescheduled in any sequence under the condition that the rescheduled tasks
get adjusted for their remaining deadlines appropriately.

Unlike the Waiting Queue, the Idle Queue does not need any instructions to be called
from the CPU in order to manage the idle (completed) periodic tasks that are waiting for
their next period. Whenever the period of the periodic task elapses, the task is automatically
moved from the Idle Queue back to Running Tasks. The state of this task is automatically
changed from idle to ready or running (depending on the EDF logic, i.e., deadlines of tasks).
This automation is provided by the Control Unit module.
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3.4. Semaphore

The Semaphore component is designed to handle conflicts that arise when multiple
CPU cores simultaneously attempt to use the scheduler, e.g., to schedule a new task or
to kill a task in exactly the same clock cycle. This situation is referred to as a conflict. To
resolve conflicts, the Semaphore is a module that is responsible for arbitrating instructions
by selecting one of the instructions as the arbitration winner and the rest of the instruc-
tions becoming losers. The winner’s instruction is passed on to the Control Unit. The
loser instructions cannot be executed immediately; therefore, other CPU cores are stalled.
Semaphore module uses a widely known algorithm called Round-Robin, which guarantees
that the arbitration is fair, and the load is evenly balanced. This is an important aspect of
the FPGA-based task scheduler design, as it ensures that all CPU cores have equal access to
the scheduler coprocessor and that no core is favored over the others.

The total number of possible conflicts that can arise in the system is eleven, and each
conflict is identified by a different combination of CPU cores attempting to use the scheduler
at the same time. When two processor cores try to access the coprocessor simultaneously,
there are six combinations possible: 1_2 (processor core 1 and core 2 conflict), 1_3 (core 1
and core 3 conflict), 1_4 (core 1 and core 4 conflict), 2_3 (core 2 and core 3 conflict), 2_4
(core 2 and core 4 conflict), and 3_4 (core 3 and core 4 conflict). In the case where three CPU
cores attempt to access the scheduler at the same time, there are four possible combinations:
1_2_3 (core 1, core 2, and core 3 conflict), 1_2_4 (core 1, core 2, and core 4 conflict), 1_3_4
(core 1, core 3, and core 4 conflict), and 2_3_4 (core 2, core 3, and core 4 conflict). The final
combination occurs if all four processor cores try to access the coprocessor simultaneously,
and this is named 1_2_3_4.

The Semaphore module has two essential demands, a primary and a secondary one.
The most critical demand is to have a limited maximum number of delays caused by
conflicts and to keep this number low. This demand is vital since the scheduler is designed
for RT embedded systems. The second demand is to have fairness among all CPU cores,
ensuring that each core has a similar chance of winning the conflict and accessing the
scheduler immediately.

The design of the Semaphore module is based on a 2-bit counter to represent four
distinct states. These states, referred to as 1234, 2143, 3412, and 4321, are used to determine
the priority order in case of any of these eleven possible combinations of access conflicts.
For instance, if the current state is 1234, then processor core 1 is prioritized over core 2,
processor core 2 is prioritized over core 3, and processor core 3 is prioritized over core 4.
To resolve the conflicts, the current state is shifted to the new state through an increment
of a 2-bit counter. The decision was taken to limit the amount of possible priority order
permutations to just four instead of the original twenty-four permutations in order to
simplify the FSM that is deciding which processor core wins the arbitration. This results
in a relatively simple design of the FSM consisting of four states instead of twenty-four
states, reducing chip area and energy consumption. These four states have been carefully
selected to ensure symmetry, fairness, and rotations after each conflict. Whenever there is a
conflict, the order is updated by shifting FSM to the next state. The 2-bit counter is used to
represent the states in the following manner:

• Counter set to “00” is representing state 1234, and is incremented to “01”.
• Counter set to “01” is representing state 2143, and is incremented to “10”.
• Counter set to “10” is representing state 3412, and is incremented to “11”.
• Counter set to “11” is representing state 4321, and is incremented to “00”.

The scenarios in which two or more CPU cores conflict, along with the winner selection,
are presented in Table 1. This table outlines the different potential scenarios for conflicting
CPU cores, with each line representing a possible conflict. The columns represent the
four possible orders, where one order is used at the moment based on which state the
FSM is currently in. It is noticeable that the primary as well as secondary demands for
the Semaphore were satisfied, as each processor core stalled three times in a row, at most,
and the distribution of wins among the CPU cores is even. The rotating nature of the
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states/orders ensures that the worst-case scenario for one instruction to be completed is
2N clock cycles (in the event that all processor cores attempt to access the coprocessor
continuously), where N is the number of processor cores (i.e., N = 4). On the other hand,
the best-case access time is just two cycles. Consequently, the amount of time it takes for
one instruction to be executed on a quad-core CPU ranges from two to eight clock cycles,
which depends on the frequency of access conflicts.

Table 1. Table of conflict resolutions in Semaphore module.

Title 1 1234 2143 3412 4321

1_2 1 2 1 2
1_3 1 1 3 3
1_4 1 1 4 4
2_3 2 2 3 3
2_4 2 2 4 4
3_4 3 4 3 4

1_2_3 1 2 3 3
1_2_4 1 2 4 4
1_3_4 1 1 3 4
2_3_4 2 2 3 4

1_2_3_4 1 2 3 4

A block diagram of the Semaphore module is shown in Figure 4, based on the pre-
viously described information. The module includes 3 multi-bit multiplexers, 2 D-FFs,
5 AND gates, 4 NAND gates, 2 inverters, a Winner Selector submodule, and a Conflict
Detector. The Winner Selector and Conflict Detector submodules only require the instruc-
tion’s bit, which indicates if the instruction is valid or not (if the processor is attempting to
access the coprocessor). The Winner Selector submodule selects the winner of arbitration,
i.e., deciding which of the valid instructions should be selected. The selection signals are
called SEL00, SEL01, and SEL1. These signals drive the control inputs of MUXes that pass
the winning instruction to an output port named “instr”. This port is used by Control
Unit module.

Figure 4. Block diagram of Semaphore module.
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The Semaphore module in Figure 4 also outputs four single-bit outputs to the indi-
vidual processor cores, named stall_core_#. These signals serve to notify the respective
processor core when the attempt to access the coprocessor is declined due to losing an
arbitration caused by the situation when another core is trying to use the coprocessor as
well (i.e., during a conflict). The processor core receiving the stall response must wait
until the stall is active. In the meantime, it can perform other operations. The signals
core_#_instr_valid and stall_core_# act as a means of handshaking-based communication
between the processor and coprocessor.

The Conflict Detector submodule is illustrated in Figure 5 as a logic circuit. It consists
of one 6-input NAND gate and six basic 2-input NAND gates. The purpose of this sub-
module is to detect whether 2 or more processor cores are trying to access the coprocessor
simultaneously. If two or more inputs are set to 1, the conflict output will be 1 to indicate a
conflict. However, if there is only one valid instruction from a single CPU core at most, the
conflict output will be 0.

Figure 5. Logic circuit of Conflict Detector.

The Winner Selector submodule, as depicted in Figure 6, implements its decision logic
through the use of one 3-input NOR and three 2-input NORs for the SEL1 output, and
two 2-input NANDs for each of the SEL00 and SEL01 outputs. The circuit includes two
inverter gates for creating inverted input signals as well. The decision logic for this module
is the same as that outlined in Table 1. The Q1 and Q0 inputs represent the actual state of
the FSM. The inputs CPU1, CPU2, CPU3, and CPU4 represent information about which
processor cores are attempting to access the coprocessor at the moment. The output signals
SEL00, SEL01, and SEL1 are needed for controlling the multiplexing presented in Figure 4.

3.5. Running Tasks

The Running Tasks module holds the tasks that are currently being executed. With
a capacity of four tasks, it can execute up to four tasks at once. To minimize unnecessary
task switches, this component can assign a task that was previously running on one CPU
core to another CPU core due to task preemption. By doing so, the number of task switches
is reduced to the minimum possible amount, and the scheduling overhead is minimized
this way.
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Figure 6. Winner Selector logic circuit.

The control logic of Running Tasks performs decisions about whether to keep the
current tasks or make changes. If a task is terminated, the task that has the lowest deadline
value within the Ready Tasks submodule is moved into the Running Tasks submodule.
When the coprocessor is scheduling new tasks, a preemption may occur, depending on the
task deadline and the deadlines of currently running tasks. Whenever the task is scheduled
with an earlier deadline than the deadline of any running task, the running task with the
latest deadline is replaced, causing task preemption, and execution of the preempted task is
suspended. If preemption occurs, the preempted task is stored in the Ready Tasks module;
otherwise, the new task is added to it.

The Running Tasks component has five comparators and requires two clock cycles for
decision logic due to the length of the critical path in the combination logic. The results of
the comparison performed in the first cycle are stored in registers holding temporary results
along with 2 bits for task identification. The first cycle performs two parallel comparisons,
comparing running_task_core_1 with running_task_core_2 and running_task_core_3 with
running_task_core_4. During the second cycle, the deadlines of temporary results obtained
from the registers are compared, which may result in a preemption, replacing one running
task with a new one. The previously running task that is being replaced is sent to the Ready
Queue if preemption occurs. Regardless of preemption, one of the tasks is sent to the Ready
Tasks module—either the new task (i.e., no preemption occurs) or one of the previously
running tasks (i.e., preemption occurs).

3.6. Control Unit

The Control Unit component manages all task queue modules (Idle Queue, Waiting
Queue, Ready Queue, and Running Tasks) and reads from and writes to the Tasks Memory
module. When a valid instruction is received from the Semaphore component, the Control
Unit module decodes it and performs it by providing data and control signals to surround-
ing modules. The Control Unit directly controls all task queue components, except for the
Ready Queue, which it can only access indirectly using the Running Tasks module. When
no valid instruction is received from the CPU or Semaphore, the Control Unit can still
transfer tasks autonomously between the Running Tasks module and Idle Queue module
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and between the Running Tasks module and Waiting Queue module. This ensures that
managing waiting or blocked tasks, including periodic idle tasks, is done automatically,
reducing the CPU time needed for task scheduling, which is crucial for RT tasks.

Control Unit is also responsible for managing states of tasks. There are four possible
states the task can have in this scheduler: IDLE, RUNNING, READY and WAITING. The
IDLE state is used for tasks that are not yet scheduled or are completed already. This
is especially important for periodic tasks to determine that the task is finished, and that
the scheduler is waiting for the next period of the task to automatically schedule a new
instance of the periodic task. The RUNNING state is used for tasks that are running,
i.e., being executed at the moment. The READY state is used for tasks that are scheduled
and ready to be executed but have not yet been chosen for execution due to other tasks
being prioritized over the ready task. WAITING state is used for those tasks that are blocked
by the BLOCK_TASK instruction, so these tasks are waiting to be unblocked either by the
UNBLOCK_TASK instruction or by elapsing the waiting time set by the BLOCK_TASK
instruction. These states and possible changes between the states are depicted in Figure 7.

KILL_TASK

RUNNING READY

WAITING

IDLE

KILL_TASKKILL_TASK

SCHEDULE_TASKSCHEDULE_TASK

BLOCK_TASK

UNBLOCK_TASK UNBLOCK_TASK

PREEMPT

Figure 7. State diagram of task states.

3.7. Tasks Memory

The Tasks Memory component is a multi-port standard memory designed to sup-
port various features in other components. Though it could potentially be implemented
using SRAM, it has been realized with registers due to the need for multiple read/write
ports. While this implementation based on registers consumes more chip area, the added
read/write ports are essential to the functions described in other components.

The Tasks Memory stores all information about tasks, including task type, task state,
ID of parent task, and timing characteristics such as starting/remaining deadline, start-
ing/remaining period (if the task is periodic), and starting/remaining execution time of
the task. While the starting timing characteristics are provided by the CPU when a task is
created, the remaining timing characteristics are automatically maintained by the scheduler
itself. The memory’s layout is outlined in Table 2, with the lowest three bits of address
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being reserved to choose specific data within the particular task while the upper bits are
utilized to choose a task.

Table 2. Memory map of Tasks Memory.

Address Bits 2 Downto 0 Field Number of Bits

000 ID of parent task 8
001 Task state + task type 4 + 5
010 Remaining deadline time 20
011 Remaining period time 20
100 Remaining execution time 20
101 Starting deadline time 20
110 Starting period time 20
111 Starting execution time 20

4. Design Verification

The task scheduling coprocessor that was introduced was described using the Sys-
temVerilog language and then tested through simulations. The ModelSim tool was used
to perform these simulations. Additionally, to the SystemVerilog language, a simplified
variant of the Universal Verification Methodology (UVM) was also utilized during the
verification phase. The interface of the scheduler was quite simple, making it possible to
simplify the use of UVM as well. In this scenario, a single transaction within the UVM test
equates to one instruction executed in two clock cycles, eliminating the need for agents to
interface with the device under test (DUT).

The verification phase involved the use of one test procedure that generated con-
strained random input values, a scoreboard, and a predictor. This test generated millions
of instructions with deterministic instruction opcodes and unique task ID values, but with
random timing values. The predictor is responsible for predicting the expected output of
DUT (Design Under Test) based on the input values. The predictor behaves similarly to
the DUT but at a higher level of abstraction, similar to high-level software languages. The
predictor’s description was purely sequential and high-level, utilizing the SystemVerilog
priority queue data structure and the sort() procedure to order the tasks within each queue.
Figure 8 demonstrates the testbench that was applied for verification simulations.

Figure 8. Testbench architecture.

To verify that the designed scheduler is working properly and as expected, more than
2,000,000 iterations of the test were performed, each containing at least 1000 randomly
generated instructions. The full capacity of the scheduler was utilized during this test.
Scheduler parameters were set to the following values during the design verification:
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eight bits for task IDs, a capacity of Ready Queue set to sixty tasks, and twenty bits for
random deadlines, execution times, and task periods.

The verification process was thorough, ensuring that the proposed task scheduler
was functioning as expected. The use of the SystemVerilog language and UVM, along
with the test procedure and predictor, provided a comprehensive and efficient method for
verifying the coprocessor unit’s behavior. The results of these simulations demonstrate the
reliability and effectiveness of the task scheduler, making it a suitable solution for real-time
task management.

5. Synthesis Results

The proposed task scheduler was implemented on an Intel Cyclone V FPGA, more
specifically the 5CSEBA6U23I7 device. The synthesis process was performed using the Intel
Quartus Prime 16.1 Lite Edition tool. To ensure that the scheduler would operate properly,
a static timing analysis was performed to determine the maximum clock frequency for each
version of the design.

The synthesis results presented in Table 3 indicate that the maximum clock frequency
of all versions of the proposed scheduler is 105 MHz or higher. The critical path, i.e., the
path that is limiting the maximum clock frequency, was found in priority queues. Therefore,
increasing the size of these priority queues has an impact on the maximum clock frequency
(fMax). However, the resource requirements, as measured by Adaptive Logic Module
(ALM) consumption, are relatively low considering the large capacity of current FPGA
devices, which often have hundreds of thousands, if not millions, of ALMs.

Table 3. FPGA synthesis results.

Tasks Capacity ALMs Registers fMax (MHz)

8 334 325 177.99
16 591 541 156.98
24 832 756 137.85
32 1067 976 127.67
40 1324 1181 122.05
48 1576 1403 118.10
56 1817 1624 107.49
64 2044 1833 105.52

It is important to note that the Tasks Capacity, or the maximum number of tasks the
scheduler can handle, has a direct and significant impact on both the resource costs and the
maximum clock frequency. As the Tasks Capacity increases, the logic utilization increases
and the timing performance (fMax) decreases. The implementation of each timing variable,
such as deadline, period, waiting time, and execution time, uses twenty bits, while the task
ID is comprised of eight bits.

6. Performance Evaluation

This section demonstrates the performance benefits of using the proposed task sched-
uler instead of the existing software-based task scheduler, the G-EDF (Global Earliest
Deadline First) algorithm that was presented in [28] and used on a 24-core Intel Xeon CPU
running at 2.13 GHz.

Two use cases of the proposed scheduler are considered: one case when a CPU that
is running four tasks in parallel (i.e., four CPU cores) is used, and the second case when
a CPU with one task (i.e., one CPU core) is used. In both cases, the proposed scheduler
is running on the FPGA described in the previous section at 100 MHz. Using this clock
frequency means that one clock cycle takes ten nanoseconds, which is equal to 0.01 us.
Table 4 shows the worst-case CPU overhead of task scheduling, i.e., the time needed to
schedule one task (to call one SCHEDULE_TASK instruction). This overhead is displayed
in microseconds (us). The four CPU cores version takes seven clock cycles in the worst-case
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scenario, which occurs when the CPU core has to wait for six clock cycles plus one clock
cycle for calling the SCHEDULE_TASK instruction.

Table 4. Worst-case CPU overhead of task scheduling comparison in microseconds (us).

Number of Tasks G-EDF on Xeon [28] Proposed Scheduler
(with 4 CPU Cores)

Proposed Scheduler
(with 1 CPU Core)

25 20 0.07 0.01
36 28 0.07 0.01
50 42 0.07 0.01
64 51 0.07 0.01

100 140 0.07 0.01

The worst-case overhead of software-based EDF scheduling is around 20 us when
25 tasks are used. If this scheduling is hardware-accelerated using the proposed solu-
tion, then the overhead drops to less than 0.1 us, effectively reducing the CPU overhead
more than 200-times, i.e., more than 99.5% overhead reduction is achieved. It is worth
noting that the overhead of the proposed solution is constant with respect to the num-
ber of tasks—unlike in software-based scheduling, where the CPU overhead increases
with the number of tasks. Thus, the relative reduction of CPU overhead is even 99.95%
(i.e., 2000-times lower overhead) when 100 tasks are used. Therefore, the proposed HW-
based scheduler has much better scalability for the growing number of tasks, allowing
more complex real-time systems with a higher number of tasks to be implemented.

The proposed solution significantly outperformed the existing software-based schedul-
ing despite the fact that the existing solution used a 2.13 GHz clock and the proposed
solution used only a 100 MHz clock. If the proposed solution was implemented using
cutting-edge ASIC technology together with a CPU, then the performance benefits would
be even bigger, reducing the scheduling overhead down to around 3.5 ns (i.e., 0.0035 us) and
further reducing the overhead by around 200-times if a 2 GHz clock was used. On the other
hand, since the main limitation of the proposed solution is the amount of HW resources
(i.e., chip area in ASIC or Look-Up Tables in FPGA), which heavily depends on the number
of tasks to be supported, the FPGA technology brings a significant advantage in the form
of configurability and reconfigurability (including the partial reconfiguration feature of
FPGAs) of the scheduler. In FPGA, the scheduler can be configured to have optimal task
capacity, whereas in ASIC, the scheduler cannot be reconfigured for optimal task capacity,
which can lead to significant waste of chip area if the actual real-time system is using much
less tasks than the scheduler capacity. The optimal setting of scheduler capacity is hard to
determine as it depends on the real-time system requirements and needs.

The overall performance benefits of using a hardware-accelerated task scheduler also
depend on what percentage of the CPU time is spent on the scheduling and what percentage
is used for the actual execution of scheduled tasks. This depends on the actual application
of the real-time system and the granularity of tasks—whether the application uses a few big
tasks or many smaller ones. However, regardless of the actual application, by accelerating
the task scheduling in hardware, it is possible to use almost all of the CPU time for the
actual execution of scheduled tasks instead of scheduling those tasks. Thanks to Moore’s
Law, the costs of hardware-accelerated scheduling are gradually lower and lower, causing
the overall benefits to outweigh the costs.

7. Conclusions

The proposed task scheduler is a novel solution that implements the Earliest-Deadline
First (EDF) scheduling algorithm on an FPGA. This scheduler is well-suited for complex
real-time systems that consist of a mixture of aperiodic hard RT tasks, periodic hard RT
tasks, and non-real-time (best-effort) tasks. It leverages a priority queue-based approach to
handle all types of tasks efficiently and with ease.
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The scheduler uses priority queues not only to sort the ready tasks but also to handle
idle periodic tasks and waiting/blocked tasks. As a result, managing these types of tasks is
straightforward, allowing for an autonomous handling process with no need for software
extension, with the only exception being the Tasks Memory initialization. Additionally, the
priority queue-based approach makes the proposed scheduling solution highly efficient
in managing periodic RT tasks and readily extensible to include task synchronization and
inter-task communication capabilities.

This scheduler is optimized for use on quad-core CPUs, which can execute up to
four tasks in parallel. All of the supported instructions take a maximum of three clock
cycles to complete, no matter the system configuration or the actual or maximum amount
of tasks in the system, provided there are not any conflicts between multiple processor
cores attempting to access the scheduler simultaneously. However, in the event of such
conflicts, an extra delay of two to six cycles may occur, leading to a maximum latency of
nine clock cycles per instruction in the worst-case scenario.

In conclusion, the proposed task scheduler is a highly efficient solution for real-
time systems that can handle a diverse range of tasks, including aperiodic hard RT tasks,
periodic hard RT tasks, and non-real-time (best-effort) tasks. Its utilization of priority
queues simplifies the handling of periodic idle tasks and blocked/waiting tasks, making it
a suitable option for systems that require minimal software intervention. The scheduler’s
performance is further enhanced by its compatibility with quad-core CPUs and its ability to
execute instructions in a few cycles, regardless of the number of tasks the system contains.
These features make the proposed task scheduler an attractive option for complex real-time
systems that require efficient task management and optimal performance.
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Abstract: Online fault detection in industrial machinery, such as induction motors or their com-
ponents (e.g., bearings), continues to be a priority. Most commercial equipment provides general
measurements and not a diagnosis. On the other hand, commonly, research works that focus on fault
detection are tested offline or over processors that do not comply with an online diagnosis. In this
sense, the present work proposes a system based on a proprietary field programmable gate array
(FPGA) platform with several developed intellectual property cores (IPcores) and tools. The FPGA
platform together with a stray magnetic flux sensor are used for the online detection of faults in the
outer race of bearings in induction motors. The integrated parts comprising the monitoring system
are the stray magnetic flux triaxial sensor, several developed IPcores, an embedded processor for
data processing, and a user interface where the diagnosis is visualized. The system performs the
fault diagnosis through a statistical analysis as follows: First, a triaxial sensor measures the stray
magnetic flux in the motor’s surroundings (this flux will vary as symptoms of the fault). Second, an
embedded processor in an FPGA-based proprietary board drives the developed IPcores in calculating
the statistical features. Third, a set of ranges is defined for the statistical features values, and it is used
to indicate the condition of the bearing in the motor. Therefore, if the value of a statistical feature
belongs to a specific range, the system will return a diagnosis of whether a fault is present and, if
so, the severity of the damage in the outer race. The results demonstrate that the values of the root
mean square (RMS) and kurtosis, extracted from the stray magnetic field from the motor, provide a
reliable diagnostic of the analyzed bearing. The results are provided online and displayed for the user
through interfaces developed on the FPGA platform, such as in a liquid crystal display or through
serial communication by a Bluetooth module. The platform is based on an FPGA XC6SLX45 Spartan
6 of Xilinx, and the architecture of the modules used are described through hardware description lan-
guage. This system aims to be an online tool that can help users of induction motors in maintenance
tasks and for the early detection of faults related to bearings.

Keywords: embedded systems; intelligent systems; industrial applications; FPGA; reconfigurable
computing

1. Introduction

Currently, equipment used for monitoring industrial processes is still of research
interest, specifically for the topic of fault detection and classification, since it is continuously
being improved thanks to the development of new methodologies for data processing [1].
These systems are very helpful in providing information about a process’s status, for
instance, indicating whether fault conditions exist, generating alarms, performing error
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corrections, logging data, and executing critical decisions, among others [2]. Thanks to
these systems, corrective actions are avoided, giving way to preventive actions applied in
the practice of scheduled maintenance, and, in terms of the benefits, the costs savings are
increased and the stopping times of the process are reduced [3]. Most of the monitoring
systems are commercial equipment that generally measure common variables, such as
the voltage or current, for performing a diagnostic, but they require the knowledge or
experience of an expert in the field [4]. Commercial equipment is characterized by being
completely closed architectures in hardware and software, and the functionality is also
restricted; in fact, the actual tendency in commercial products is to pay for access to the
full resources or extra functions [5]. The general scopes of existing monitoring systems
are limited because the methodologies implemented for fault detection are insufficient for
online implementation [6] or are very complex, requiring many computational resources
that need to be implemented offline [7]. Along this same line, the industry has evolved
toward a new concept, known as Industry 4.0, that today represents the integration of
physical objects, machines, systems, and processes throughout interconnexion networks [8].
The idea is to exploit the full potential of these evolved technologies for performing more
than simple measurements through instrumentation techniques. In this sense, to follow
the philosophy of Industry 4.0 and achieve smart systems with high profits, monitoring
systems are still important elements that must integrate sensors, data processing units,
and communication modules for the detection of problems in industrial processes [9]. For
these systems, it is very important to have adequate and high-quality information from
the processes to accurately detect problems or failures, because some machines, such as
an electric motor and its peripheral components, are the most used in industry, since they
provide movement and transmit power to the processes, representing between 60% and
80% of the total power consumption [10,11]. In addition, it is worth mentioning that among
the elements integrated in an induction motor, the most frequent faults represent between
41 and 42% for rolling bearings, between 28 and 36% for stator winding damages, between
8 and 9% for rotor-related damages, and between 14 and 28% for other types of dam-
ages [12,13]. These metrics emphasize that the most common failures in motors appear in
the rolling bearings, where several works have focused their efforts on developing method-
ologies for the detection of problems, considering mainly outer–inner race faults [14,15],
ball defects [16], and cage damage [17]. For these reasons, the development of industrial
equipment for online fault detection through dedicated methodologies implemented into
embedded systems that overcome the limitations and restrictions of existing commercial
systems is still an area of opportunity.

Particularly for bearing faults, over time several methodologies have been proposed
for detecting such problems. For instance, in the work presented in [18] vibration signa-
ture analysis is used together with continuous wavelet transform (CWT) for identifying
patterns associated with the vibration signals from bearings in rotating machines. The
conditions analyzed were inner and outer race faults, ball faults, and cage faults. The
signals were acquired through a very low-cost commercial development platform based
on a microcontroller and using a low-cost accelerometer. In addition, the data processing
was performed offline with a personal computer (PC) in MATLAB 2013R due to the limited
capability of the microcontroller. On the other hand, an acoustic signal analysis was applied
offline in [19] for detecting bearing faults in induction motors. In such a proposal, the
measured sound of the motor is considered contaminated by other surrounding sources,
which have degraded the signal-to-noise ratio (SNR). Therefore, to overcome this situation,
a lock-in amplification (LIA) is synchronized to the machine shaft’s frequency by means of
a fractional phase-locked loop (PLL) frequency synthesizer, yielding the frequency asso-
ciated to bearing faults. The signals acquisition is performed using a PCIe-6346 National
Instruments board and the processing by means of the synthesizer, but the graphical results
are presented on the PC. In another case, the use of infrared thermal images demonstrates
that fault diagnosis can be performed offline over a rotor-bearing system of a kinematic
chain [20]. In that research, several thermal images are acquired from healthy states of the
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rotor-bearing system and then an exponential linear unit together with stochastic pooling
is used to construct an enhanced convolutional neural network (ECNN). In addition, the
model parameters of a convolutional auto-encoder (CAE), previously trained with unbal-
anced images, are transferred to the ECNN; thus, the small labeled thermal images serve to
train the ECNN and for the diagnosis of faults. All of the processing was carried out with a
PC Core (TM) i7-8550U CPU with 12 GB RAM using the software MATLAB 2016b. The
considered conditions for the analysis were normal state, inner and outer race faults, ball
faults, and a combination of shaft unbalance with ball faults. On another topic, machine
learning and deep learning methodologies have been proposed for fault diagnosis in bear-
ings of rotating machinery. For example, in the research described in [21], raw vibration
signals from a kinematic chain are converted into a two-dimensional image in gray scale
through their resampling and normalization. In addition, in that work, the use of two
dropout layers and two fully connected layers improves the performance of a convolutional
neural network (DFCNN) that finally learns the fault patterns, yielding a final diagnostic.
The DFCNN methodology was implemented offline on a Ryzen 5 1600X CPU computer
with 16 GB RAM and a GTX1060 GPU using MATLAB 2018a software through the neural
network toolbox, and the conditions considered were normal state, inner and outer race
faults, and ball faults. In other works, such as in the comparative analysis developed in [13],
the implementation (on a PC) of deep learning (DL) algorithms to determine which of
them were more efficient in detecting bearing faults in mechanical systems was studied
and tested. The conclusion from that comparative analysis was that the most popular
DL techniques are convolutional neural networks (CNNs) [22], recurrent neural networks
(RNNs) [23], auto-encoders (AEs) [24], and generative adversarial networks (GANs) [25].
However, in all previously discussed cases, the implementation of the methodologies was
conducted offline using software tools on a PC because of the effort required for the data
processing and due to the techniques’ complexity, mainly in those data-driven works based
on machine learning and deep learning. Currently, there exist some solutions in the field
of fault detection in bearings that have been implemented into hardware. For example,
the work described in [26] presents an algorithm implemented into a field programmable
gate array (FPGA) that performs signature extraction in the time–frequency domain to-
gether with a one-against-all multiclass support vector machine for online fault diagnosis
in bearings, but a limitation was the computational complexity that restricted the use of the
system in real-time applications. Such a methodology uses emitted acoustic signals from a
sensor located near the bearing. The analyzed faults were inner and outer race cracks and
roller cracks in a cylindrical bearing. In summary, from an analysis of the works reported in
the literature, it can be concluded that several methodologies have been developed for fault
detection in rolling bearings, but their implementation is limited to offline applications
because of the algorithms’ complexity. Therefore, to overcome such limitations, FPGAs can
be viable alternative solutions for the online processing of algorithms.

Regarding technologies that can be used for developing embedded systems focused
on monitoring applications, FPGAs are very advantageous hardware-based development
platforms because of their features such as configurability, flexibility, portability, design
of modular cores, design of concurrent structures, high speed, high performance, very
dedicated design, and hardware description, among others [27]. As an example of the
aforementioned, in [28] the power quality issue is addressed through a methodology
capable of detecting voltage and current swells by implementing into the FPGA spline
interpolation and Otsu segmentation. In such an online implementation, the time-span
measurement of the swell disturbance reaches up to 81.3 μs. Through its part, the research
described in [29] presents a methodology for measuring the synchronous relationship
between electric signals (phase) through a hardware architecture described for an FPGA.
This architecture allows to register phase shift changes per minute with a minimum sam-
pling time in the range of picoseconds. This way, the phase measurement core logic unit
is based on the subsampling accumulation principle though a systematic sampling over
a phase detector. However, this core was validated under a mathematical model. On
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another topic, the review developed in [30] introduces the evolution and application of
different hardware architectures for processing medical imaging through specific technolo-
gies. Among the technologies considered in that study of FPGAs are central processing
units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), and
application-specific integrated circuits (ASICs), and a discussion of the options according
to the application is provided. Recently, a review and survey were presented assessing the
implementation of different intelligent techniques, as well as machine learning techniques,
for classification tasks in FPGAs [31,32]. In these works, an overview of the wide variety
of classification techniques and intelligent techniques is presented, and then the existing
FPGA-based implementations of the techniques are discussed; later, the challenges and
strategies adopted for the optimization are analyzed, and architectures for hardware ac-
celerators are mentioned. Another survey addressing sensor systems implemented into
FPGAs for different applications was developed in [33]. In that work, the assessment was
performed for three types of wireless sensor nodes: standalone, combinations of FPGAs
with a microcontroller, and FPGA coprocessors for experimental nodes. The objective of
the survey was to demonstrate how the features of FPGAs, such as configurability, power
consumption, and smart architectures, play a key role in the construction of sensor nodes.
An interesting concept that makes use of the potential and advantages provided by FPGAs
are called hardware-in-the-loop (HIL) simulations; for instance, in [34] an overview of
the engineering advances involving system simulation based on hardware for automotive
applications, power electronic systems, and even for industrial drivers is provided. The
analysis in that work demonstrates that HIL simulations can reduce the effort during the
development and testing of digital systems. On another note, the work described in [35]
demonstrates that FPGAs allow for the implementation of reconfigurable architectures
in filtering applications under acoustic environments for cancelling noise. To achieve
this, the implementation of hardware of flexible finite impulse response (FIR) filters in
adaptive linear element (ADALINE) structures are complemented with dedicated multiply
accumulate (MAC) units and optimized using least mean square (LMS) and recursive least
square (RLS) algorithms. Naturally, the hardware description was optimized, reducing the
number of resources in comparison with other implementations. All of these discussed
works provide the antecedent that hardware architectures can be implemented into FPGAs
for online applications because of their advantages and potential. Therefore, it is desirable
to explore the development of an online tool applied for fault diagnosis in bearings based
on FPGAs.

The contribution of this work is a methodology for developing a dedicated system
based on a field programmable gate array, and it uses stray magnetic flux signals for
the online fault detection of the outer race of rolling bearings in induction motors. The
monitoring system integrates a proprietary FPGA board and a stray magnetic flux triax-
ial sensor (which measures the motor’s surroundings) for performing data acquisition,
processing, and fault detection, making the system nonintrusive. The system performs
the fault diagnosis through statistical analysis by measuring the stray magnetic flux in
the motor’s surroundings (which varies due to the presence of a fault) through a triaxial
sensor. Next, the signal is processed through an FPGA-based proprietary board in which
an embedded processor drives developed IPcores that calculate the statistical features.
After, a set of ranges is defined for the values of the statistical features, and this is used to
indicate the condition of the bearing in the motor, considering from a normal condition
(without a fault) to the highest severity level. Therefore, if the value of a statistical feature
belongs to a specific range, the system will return a diagnosis: whether a fault is present
and severity of the damage in the outer race. The developed system can be seen as a digital
tool, portable, and nonintrusive for industrial applications that takes advantage of the
features of FPGAs for detecting graduality in the faults of bearings. For the validation of
the system, it was subjected to tests on damaged bearings whose failures were represented
by holes drilled in the outer race; but these holes can represent more than a single fault,
for instance, surface breakage and electrical erosion according to the International Orga-
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nization for Standardization’s (ISO) standard. The system developed has the advantages
of being configurable, with an open architecture in hardware and software, portable for
FPGA technologies and vendors, with a high operating frequency, modularity in the cores’
functionalities, and efficiency. The output of the system is adequate from the viewpoint
of an industrial product, because it provides to the final users, clearly and concretely, the
information of the status detected, for instance, if the bearing is healthy or if it has a fault
and its type. However, the information generated by the system can also be used for a
deeper analysis, since the acquired signals can be sent to a PC for graphical analysis and
other types of data processing, if required. The obtained results demonstrate that the
system can provide accurate diagnostics of faults detected in outer races of rolling bearings.

2. Theoretical Foundations

In this section, the theoretical foundations regarding the following topics are described:
(i) failures in rolling bearings, (ii) statistical features, and (iii) proprietary boards based on a
field programmable gate array.

2.1. Failures in Rolling Bearings

Rolling bearings are important elements used for a wide variety of purposes in indus-
try. However, from all of their possible applications, their implementation in induction
motors is the topic of interest of this work, since they are the elements with approximately
40% of the faults in these machines [12,13]. According to [36], bearings are used for trans-
mitting rotating mechanical power in industrial processes through induction machines, and
they must accomplish the exacting demands of having a load-carrying capability, running
accuracy, noise levels, friction and frictional heat, and life and reliability. Despite the effort
in the design and the careful manufacturing of rolling bearings, sometimes their useful
lifespan is not fully achieved. As a complement, there exists a standard that explains and
classifies the damage and failures occurring in the service of rolling bearings made of
standard steels, which is ISO 15243 [37]. From this standard, it is explained that damage
and/or failures of these elements can be the result of different circumstances, such as
several mechanisms operating simultaneously; improper transport, handling, mounting,
and maintenance; faulty manufacturing (of the bearing and adjacent parts); operating
conditions; environmental effects; premature failures; aging; cracking; wearing; and corro-
sion. The consequences are reflected in damage to the elements, economic losses caused by
production stoppages, and maintenance and reparation costs. The general classification of
the failure modes according to ISO 15243 can be observed in Table 1. It must be specified
that the shadowed rows in the table mark the specific failures addressed in this work, which
are electrical erosion and fracture/cracking. Outer race failures are common during the
operation of rolling bearings, and aging and temperature changes can induce fractures and
cracks in the surface. However, current leakage can also cause microspalls in the surface;
this phenomenon is also called pitting [36].

Table 1. Damage and failures in rolling bearings according to ISO 15243 [37].

Failure Mode Failure Subtype

Fatigue Subsurface initiated fatigue
Surface initiated fatigue

Wear
Abrasive wear
Adhesive wear

Corrosion
Moisture corrosion
Frictional corrosion

Excessive current erosion
Electrical erosion 1

Current leakage erosion

Plastic deformation
Overload deformation

Indentations from debris
Forced fracture
Fatigue fractureFracture and cracking 1

Thermal cracking
1 Failure modes addressed in this work.
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2.2. Statistical Features

A methodology for performing adequate monitoring and detection of faults necessarily
requires processing measured signals acquired from the physical system. For such a task, it
is very common to carry out the extraction of features from a signal that provide useful
information related to the looked for faults. There are many techniques that perform
feature extraction; however, in this work, the use of statistical indicators was adopted
because they have proven their effectiveness in the development of methodologies for
monitoring systems [38,39]. Therefore, in Table 2, a summary of the eleven statistical
indicators used in this research is presented. These indicators were obtained directly in
the time domain of the measured signals by the monitoring system based in the FPGA.
It is worth mentioning that the selection of these features was because they can easily
be computed into a hardware structure and provide meaningful information that could
be related to faults through patterns, signatures, profiles, and data distribution (central
tendencies, dispersion, asymmetries, geometry, and form), which are not always directly
visible from the signals.

Table 2. Statistical indicators adopted for this analysis.

Feature Equation

Mean x = 1
N ·∑N

i=1
(xi) (1)

Mean of absolutes xa = 1
N ·∑N

i=1
|xi| (2)

Root mean square xrms =

√
1
N ·∑N

i=1
(xi)

2 (3)

Standard deviation σ =

√
1
N ·∑N

i=1
(xi − x)2 (4)

Variance σ2 = 1
N ·∑N

i=1
(xi − x)2 (5)

RMS shape factor SFrms =
xrms
xa

(6)

Maximum value xp = max|xi| (7)

Crest factor xCF =
xp

xrms
(8)

Impulse factor xIF =
xp
xa

(9)

Skewness 1 xskew =
1
N ∑N

i=1(xi−x)3

σ3
(10)

Kurtosis 1 xkurt =
1
N ∑N

i=1(xi−x)4

σ4 (11)

1 High-order moments.

From the table, x is the input data vector from which the statistical features are to be
extracted; N is the total number of data in the sample set; and i is the corresponding ith
sample, which takes values from i = 1, 2, 3, . . . , N.

2.3. Proprietary Board Based on a Field Programmable Gate Array

The FPGA-based proprietary board in which the monitoring system was implemented
has the following features. The proprietary board of 50 × 50 mm dimensions includes one
Spartan 6 XC6SLX45 FPGA running at 48 MHz and integrates the power management,
static random-access memory (RAM), flash storage, and communication ports, such as the
universal serial bus (USB) and universal asynchronous receiver transmitter (UART). The
embedded processor, xQuP01v0, and interconnection in-system bus (ISB) in the FPGA are
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described as follows, both of which are proprietary designs. The processor, xQuP01v0, is a
reduced instruction set computer (RISC) structure of a 16-bit core, with its own instruction
set architecture (ISA) that integrates a hardware floating-point co-processor for simple
precision. The ISB connection is a multiplexed bus protocol for the IPcores interconnection
that the embedded processor uses to communicate with the rest of the modules in the
system, including the processing modules, communication, and data storage. Both the
embedded processor and the ISB are designed to minimize the use of resources in the FPGA,
since their objective is to serve as the controller and communication mechanisms of the
hardware processing modules. The firmware executed in the embedded processor is used
for coordinating the data acquisition, managing the memory, transferring data to the hard-
ware processing modules, and processed data recovery. In addition, the processor is aware
of the communications and the user interface. The system uses this hardware–firmware
division in order to obtain the maximum performance of the hardware with the software’s
flexibility, which takes advantage of the versatility of the FPGA to implement fast process-
ing hardware units and complex control processes implemented in software running on
the embedded processor. This system has proven to be effective in other applications [40].

3. Proposed Fault Detector Based on FPGA and Stray Flux Applied on Bearings

In this section, the methodology followed for developing a dedicated system for
diagnosing faults in rolling bearings (considering outer race faults according to the standard
ISO 15243) of induction motors is described. The monitoring tool is implemented into
an FPGA-based proprietary board making use of stray magnetic flux signals measured
in the motor’s surroundings and by computing statistical indicators. Figure 1 presents a
block diagram of this tool, named the stray magnetic flux fault detector (SMFFD), and the
implementation can be revised in four main blocks: (i) physical system, (ii) stray magnetic
flux triaxial sensor, (iii) statistical module implemented in the FPGA-based proprietary
board, and (iv) user interface. As can be noted from the figure, the last three blocks integrate
the SMFFD system.
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Figure 1. Block diagram of the methodology for detecting faults in the outer race of rolling bearings
through the SMFFD.

3.1. Physical System

From Figure 1, the first block of the proposed methodology is the physical system con-
sisting of the electromechanical coupling between an induction motor and an automotive
alternator used as the load. The coupling is performed through a transmission belt and two
pulleys at the motor and alternator shafts. This way, the system will work under industrial
operating conditions. Inside the motor, the rolling bearing under analysis supports the rotor
frontal shaft, and during the experimental tests, this bearing is substituted by a bearing with
its respective fault condition (healthy and fault conditions). As mentioned in the standard
ISO 15243, faults in bearings are associated to different failure modes [37]. However, in this
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work, only those related with fracture and cracking affecting the outer race of the element
were considered because of their statistical importance as reported in the literature. In
addition, pitting is an outer race affectation due to the fact of electrical erosion, and this
failure mode was also considered. Although these failure modes also consider the inner
race affectations on bearings, this work begins by analyzing only outer race faults, with the
purpose of keeping a simple structure and its online implementation. Nevertheless, the
configurability of the proposed SMFFD could allow to expand its functionality, incorporate
other sensors, compute and process additional data, and implement additional algorithms
with the aim of detecting other types of faults. Thus, three standard steel bearings, model
6203 2RS, manufactured by SKF, with an external diameter of 40 mm, an internal diameter
of 17 mm, and 8 caged balls were prepared for testing the conditions considered, i.e., healthy
state and two fault conditions in the outer race with increasing severity. The preparation
of the bearings is described as follow: The rubber seals were removed from the back of
the bearings and the grease inside was completely cleaned with the help of solvents to
remove any grease residue. Next, with the help of metallic clamps, the bearing was secured
on the bed of a computerized numerical control (CNC) milling machine for drilling holes
on the outer race of each bearing, generating the following fault cases: 3 mm hole (fault
severity: 1) and 5 mm hole (fault severity: 2). Once the holes were drilled, an exhaustive
cleaning was carried out by blowing compressed air into the bearing’s interior; in addition,
some solvents were applied to avoid any type of burr that would prevent their correct
operation. Finally, BATat-3 grease was applied, which is a high-quality bentone adhesive
lubricant designed for the maintenance of bearings operating at high temperatures, and
the rubber seals were placed again. The first experimental test used the healthy bearing,
and posteriorly the bearing under analysis was changed to one with a fault severity of
1 and next by one with a fault severity of 2. The faults induced defined the controlled
experimentations on the physical system, having as advantages the development of rapid
tests, adequate and realistic fault design, and variations in the fault severity over short
times with the desired graduality. For example, the outer race faults were easily and rapidly
induced through a machining process with the desired gradual severity, without the need of
waiting for long periods of time over physical system’s operation until a real failure occurs.
As a counterpart, of course, induced faults cannot reflect the unpredictable ways in which
a real fault may occur and affect the physical system. However, the system can be adjusted
to be validated under tests of bearings with real faults because of its configurability. It must
be clarified that induced faults are real damage to a bearing, and when it is mounted in a
physical system, it causes, in consequence, a behavior different from that described with a
healthy bearing.

3.2. Stray Magnetic Flux Fault Detector

The second block of the proposed methodology, which is the first part of the SMFFD,
is the stray magnetic flux triaxial sensor. Therefore, in order to put the use of the sensor
in context, the following must first be mentioned. During the operation of the induction
motor, using the healthy bearing, a stray magnetic flux is generated; thus, when this bearing
suffers damage, the stray flux has variations in the field magnitude and can be measured.
Consequently, a triaxial sensor measures such variations of the stray flux in the motor’s
surroundings from sensor axes “x”, “y”, and “z”, which for this work corresponded to
the axial, axial–radial, and radial directions, respectively. It is worth mentioning that
the useful information that the stray magnetic flux can provide will depend on factors
such as the element analyzed in the motor, the sensor’s placement, and the type of fault
studied, among others. However, based on previous experimentations and reported works
in the literature [41], axial direction measurement was considered in this work. Finally, the
measured signal was sent to the digital system for data processing.
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3.3. Statistical Module Implemented into the FPGA-Based Proprietary Board

The third block of the proposed methodology is the statistical module hardware
architecture of the SMFFD, which uses the data acquired from the stray magnetic flux
sensor to compute the statistical indicators through Equations (1)–(11), as shown in Table 2.
To perform this task, the algorithms required in this module are implemented into the
FPGA-based proprietary board. Therefore, the hierarchical architecture, developed through
hardware description language (HDL), is integrated by the IPcores/soft-cores, such as the
first-in, first-out (FIFO) memory, the datapath, a finite states machine (FSM), and pipeline
registers. It must be said that the proprietary board implements an embedded processor
to control all of the hardware architectures developed for this module and any module
required. This embedded processor is not visible in the block diagram in Figure 1, but
its function is to drive the data acquisition from the stray magnetic flux sensor, statistical
module, and user interface (diagnostic visualization and serial transmission of data). For its
part, the FIFO memory stores the input data vector (Din) of the measured signal to speed
up the calculation. Meanwhile, the FSM drives the operation of the datapath module and
regulates the input of the data from the FIFO. Hence, the embedded processor executes
the following sequence, loads the input data to the FIFO memory, defines the operation
that the datapath must perform through the OPC command (statistical feature required),
and starts the operation process by means of a pulse in the STR terminal. Once the module
finishes, it generates a pulse on the RDY terminal and the output data (i.e., result) can be
read on terminals Do1 and Do2. In summary, the FSM has the purpose of synchronizing all
calculations in case extra steps are required to deliver the expected result.

The main IPcore of the hardware architecture is the datapath, because the statistical
features are obtained through this module. Figure 2 shows a simplified diagram of the
internal structure of this function, which consists of four main stages: subtraction, powers,
accumulator, and adjust. The subtraction stage determines whether the mean, x, must
be subtracted from the input, xi, or if the absolute value, |xi|, is taken. The powers stage
determines the power to which the result of the previous operation is raised, and the power
values are 1, 2, 3, and 4. The accumulator stage performs the accumulation of the result of
the powers module. For the case of the 1

N divisor, this operation is executed as a shift in the
fixed-point representation, since N is always considered as an exact power of 2. The adjust
stage carries out the rounding and saturation, if applicable, of the accumulated value, and
it is the output y1; in addition, if necessary, it applies the square root of the rounded result,
and it is the output y2. It is important to mention that for every stage, pipeline registers are
used with the objective of balancing the latency lines of the computational process.

Accumulator
PowersSubtraction Adjust

xi

0
X

X

1
N

Sat.
y1
y2

Datapath

xi
x

Figure 2. General hardware architecture of the datapath IPcore.

All operations in the datapath IPcore are performed in a fixed-point format, which is
specified in the presynthesis during IPcore instantiation, where the numerical representa-
tions are adjusted automatically during the elaboration process. In general, this hardware
architecture requires two full word multipliers used in the powers stage and an additional
one used by the square root unit, which is carried out through a successive approximations
register (SAR). In addition, several adders/subtractors are required in the initial stage:
accumulation and rounding. Moreover, another register is used for the accumulator and
several multiplexers for routing the data flow. The implementation of the datapath consid-
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ers the latency balance, where each combinational operation is isolated from the next by a
pipeline register, which controls the combinational delays within the FPGA’s structure and
maximizes the operation’s frequency. For the multipliers, a latency of 4 clock cycles was
considered to maintain data coherence, and balancing registers were placed to synchronize
the data paths parallel to the multipliers. Finally, for illustrative purposes and for the sake
of not extending too much the explanation of the obtention of the statistical indicators, only
two calculus chains are described: root mean square and kurtosis.

Therefore, by taking as the basis the general hardware structure in Figure 2 to calculate
the root mean square and using Equation (3) in Table 2, Figure 3 shows the data flow,
marked in red, selected by the FSM through the OPC command to obtain this value. From
the figure, the calculus chain starts by subtracting the mean, x, to the input, xi, and this
value is then raised to the power of 2, the result is accumulated and divided by N, the
square root is obtained from the rounded value, and the output is in terminal y2. In this
case, the powers stage considers a latency of 8 cycles to maintain datapath synchronization.
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Accumulator
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Figure 3. Calculus chain to obtain the root mean square of Equation (3).

Similarly, using the previous example and considering the general diagram in Figure 2
and Equation (11) in the Table 2 to calculate the kurtosis, four steps are necessary: cal-
culation of the mean, calculation of the standard deviation, calculation of the numerator
of the kurtosis, and calculation of the kurtosis. Figure 4 shows the data flow, marked in
red, to calculate the kurtosis numerator. For this purpose, two multipliers are used in the
powers stage to obtain the fourth power term. The final kurtosis value is calculated through
the firmware of the floating-point co-processor, in the hardware, by dividing the kurtosis
numerator by the standard deviation raised to a power of 4.
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Figure 4. Calculus chain to obtain the kurtosis numerator of Equation (11).

3.4. User Interface

The last block of the proposed methodology is the user interface that presents a
visualization of the diagnosis results through a liquid crystal display (LCD). In this LCD
screen are displayed the statistical indicators obtained by the SMFFD system. Only those
indicators that can provide useful information about the faults detected are displayed on
the screen. It is worth mentioning that the user can extract the measured signal and the
statistical indicators through an additional port of serial communication, since the system
has IPcores to drive a Bluetooth module.
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4. Results and Discussion

4.1. Experimental Setup

The experimental test bench is an electromechanical system consisting of the coupling
between an induction motor and an automotive alternator. Figure 5a presents a picture of
the experimental test bench. The characteristics of the induction machine are as follows:
manufactured by WEG, triphasic motor, one pair of poles, case type A.E. 00136AP3E48TCT,
rated power of 740 W, nominal speed of 3355 RPM, input voltage of 210-230/460 Vac, and
operating frequency of 50/60 Hz. For its part, an automotive alternator was used as the
mechanical load entailing approximately 30% of the motor capacity. All elements tested
were standard steel bearings manufactured by SKF, model 6203 2RS, with an external
diameter of 40 mm, internal diameter of 17 mm, and eight caged balls. The bearings’
preparation was described previously in Section 2. Figure 5b presents pictures of the
bearings used after such preparation in the three conditions analyzed: healthy bearing
and two bearings with severity levels 1 (3 mm hole) and 2 (5 mm hole). As mentioned,
inside the motor the bearing under analysis supports the rotor frontal shaft, and during
the experimental tests, this bearing is substituted by the bearings with their respective
defined condition. According to the standard ISO 15243, these induced faults can be
categorized as fractures and cracks but also as pitting phenomenon caused by electrical
erosion. For the experimental trials, the electromechanical system was driven through
a variable frequency driver (VFD) feeding the motor with a start ramp of 10 s, which
was previously programmed, that reached a final operating frequency of 50 Hz. Taking
into consideration this ramp, every trial lasted 40 s, with the first 10 s corresponding
to the transient response and the last 30 s to the steady state. For the data processing
in the SMFFD, only the steady state was considered. This way, a total of 15 runs per
bearing condition (healthy state and two outer race severities) were carried out, generating
15 runs × 3 conditions = 45 data sets.

 
 

(a) (b) 

Figure 5. Experimental setup: (a) test bench; (b) rolling bearings conditions. The considered elements
were the (1) induction motor, (2) alternator as the motor load, (3) output shaft pulleys, (4) transmission
belt, (5) location of the bearing under analysis in the frontal support of the shaft, (6) bearing with a
healthy outer race, (7) bearing with a 3 mm hole in the outer race, and (8) bearing with a 5 mm hole
in the outer race.

4.2. Stray Magnetic Flux Fault Detector

Regarding this tool developed, Figure 6a presents the physical SMFFD system for
diagnosing bearings in induction motors. From the figure, it can be noted that in the final
package’s presentation, only the LCD screen is visible to the user. A sticker indicates the
way of placing the SMFFD in respect to the motor for a correct analysis; as previously
mentioned, the axial flux (“x”-axis) was of interest [41]. Internally, as shown in Figure 6b,
the box contains the FPGA-based proprietary board, Bluetooth module, power source,
liquid crystal display, and triaxial stray magnetic flux sensor. For its part, the triaxial sensor
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for measuring the stray magnetic flux is the board BM1422AGMV-EVK-001 from ROHM
Semiconductor manufacturer, and it was installed in the SMFFD box making the “x”-, “y”-,
and “z”-axes coincident with the axial, axial–radial, and radial directions of the stray flux
generated by the motor, respectively. These sensors had the following features: bandwidth
of 1 kHz, I2C interface, sensitivity of 0.042 μT/LSB, sensing range of ±1200 μT, and supply
voltage of 1.7–3.6 V. The proprietary board characteristics were described previously in
Section 3. In relation to the FPGA, the proposed IPcores were implemented as hardware
processing units: inter-integrated circuit (I2C) communication for acquiring the data of the
stray magnetic flux sensor, statistical module, LCD driver, communication port UART, and
embedded system that comprises the processor, memory driver, ISB connection, and USB
interface of the programming. Here, the firmware controls all modules for implementing
fault detection through the stray magnetic flux.

  

(a) (b) 

Figure 6. FPGA-based proprietary SMFD: (a) physical system; (b) hardware components. The
hardware components of the SMFD are the (1) FPGA-based proprietary board, (2) Bluetooth module,
(3) power source, (4) liquid crystal display, and (5) proprietary triaxial stray magnetic flux sensor.

The SMFFD performed the data acquisition from the sensor at a sampling frequency
of 1 kHz, and the data of interest were in the steady state of the machine, as previously
mentioned, in the last 30 s of each trial. For the computation of the statistical indicators
time windows of 4086 data points were taken with overlaps between the windows of 50%.
Therefore, every statistical indicator was obtained and updated approximately every two
seconds during the online monitoring process. In this way, 29 indicators were generated
per trial, 345 indicators per bearing condition, and a total of 1305 indicators for all three
conditions, which were used for validating the diagnosis. The SMFFD monitoring tool
indicates in the LCD the information regarding the final diagnosis through the values of
the statistical indicators; for instance, on the screen two indicators per row are displayed.
The fault severity is known according to a defined range of values to which the statistical
indicators belong. Additionally, the measured signal and the statistical indicators can be
extracted by the user through serial transmission of the Bluetooth module.

In summary, the Spartan 6 XC6SLX45 is a cost-optimized FPGA, according to the
manufacturer, and the hardware resources used by the SMFFD system are presented in
Table 3. The resources used consider all of the modules described previously (embedded
processor, statistical module, drives for LCD and Bluetooth, etc.). From the table, the column
“Logic utilization” refers to the specific hardware elements in the FPGA; the column “Used”
indicates the exact number of implemented elements; the column “Available” indicates
the total available of each type of element; and the column “Utilization” represents the
percentage of elements used in respect to the total available. Finally, the tool for synthetizing
the project was Xilinx ISE 14.7, using the Ubuntu 22.04 operating system.
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Table 3. Hardware resources of the Spartan 6 XC6SLX45 FPGA used by the SMFFD system.

Logic Utilization Used Available Utilization

Number of slice registers 5401 54,576 9%
Number of slice look up tables (LUTs) 7367 27,288 26%
Number of bonded input–output blocks (IOBs) 103 218 47%
Number of block random access memory (RAM)/the
first-in, first-out (FIFO) 17 116 14%

Number of digital signal processing multipliers
(DSP48A1s) 14 58 24%

In the case of IOBs, this refers to the physical terminals of the device, where most are
IOs connected to external RAM (40 pins), and there are general purpose IOs (16 pins), the
rest are connected to the LCD, sensor, communication ports, etc. In general, it can be said
that a quarter of the device’s resources are used.

4.3. Results of the Fault Diagnosis through the SMFFD

In the next paragraphs, the fault diagnosis through the SMFFD is described. For
performing the diagnosis task, thresholds must be defined as follows: The statistical
features’ values vary in a range according to the bearing’s condition in the motor; for
instance, the motor with a bearing fault and with a severity level will cause variations in
the statistical values different from those when the motor bearing is healthy. Therefore,
after several experimental trials, it was found that from the eleven statistical indicators
only a few of them present meaningful information related to the fault and its severity;
the rest have incipient variations in their values. For this work, the statistical indicators of
the RMS and kurtosis provided the best information related to the fault and its severity.
Thus, the RMS was used to provide a threshold of whether the kurtosis data were valid,
because if the RMS was out of range, then the kurtosis was saturated. This range, which
was experimentally defined, established the RMS amplitude between 150 and 250, which
corresponds to measurements of the sensor between 5 μT and 10 μT, respectively. Thus,
if the kurtosis values fell into this range, then data were valid, but for values outside of
this range, the kurtosis would not be valid. Meanwhile, the kurtosis was used for defining
a set of ranges for indicating the bearing’s condition. To obtain these kurtosis ranges, an
independently short experimentation was carried out as follows: The stray magnetic flux
signal was acquired in the time domain (1 kHz sampling frequency) at the steady state and
a total of 140 time windows were used, each one of 4 s in length, for every bearing condition
(healthy, 3 mm hole, and 5 mm hole). Therefore, 140 windows per three conditions resulted
in 420 windows that were used to obtain the kurtosis boxplots for differentiating every
bearing condition, see Figure 7.

 

Figure 7. Boxplots that determine the range of kurtosis for every condition of the bearing.

127



Electronics 2023, 12, 1924

Through the boxplots in Figure 7, it can be noted that on the “x”-axis the labels
“HLT”, “3 mm”, and “5 mm” represent the bearing conditions healthy, severity 1, and
severity 2, respectively. On the “y”-axis are the amplitude values that every boxplot spans.
Congruently, the ranges that determine the severity of the faults are summarized in Table 4.

Table 4. Ranges for condition detection according to the kurtosis statistical indicator.

Bearing Condition Kurtosis Range

Healthy state (HLT) [2.2–2.5]
Fault severity 1—Hole of 3 mm diameter [1.5–1.9]
Fault severity 2—Hole of 5 mm diameter [1.3–1.5]

For the sake of validating the monitoring system’s functionality, the results of the
three analyzed conditions are presented. Figure 8a shows an image of the SMFFD system
performing online monitoring and diagnosis of the induction motor with a healthy state
bearing (element without problems in the outer race) mounted in the rotor’s frontal shaft.
From the picture, it can be observed that the placement of the SMFFD in relation to the
induction motor was nonintrusive, because the SMFFD stayed in the surroundings of the
physical system. Meanwhile, Figure 8b presents a digital zoom in on the SMFFD focused
on the LCD screen to better appreciate the results obtained from the fault diagnosis. From
this zoom, the statistical indicators shown to the user are the RMS and kurtosis, having
magnitudes of 155.595 (kurtosis is a valid value) and 2.5, respectively. Therefore, by taking
the value of the kurtosis and comparing it with the ranges in Table 4, the diagnosis is a
healthy bearing. The letter “A” that appears on the LCD screen next to the RMS value is not
an indication of units, instead this letter indicates that the SMFFD system is performing the
analysis. Additionally, the letter “V” appears next to the value of the kurtosis, and this letter
indicates that a fault condition was detected. It is worth highlighting, again, the practicality
of the monitoring tool because it has the following advantages: it is a nonintrusive system
(the sensor in the SMFFD measures the stray magnetic flux in the motor’s surroundings),
the fault diagnosis is completely online, the system is portable, its reconfigurability, and
the functionality expansion.

 

 

(a) (b) 

Figure 8. (a) SMFFD performing an online fault diagnosis on the induction motor with the healthy
bearing; (b) observing the results in detail through the digital zoom on the LCD screen.

In another case, Figure 9a presents a captured image of the SMFFD system performing
online monitoring and diagnosis of the induction motor with a bearing, mounted in the
rotor’s frontal shaft, having the severity of 1 for an outer race fault (hole of 3 mm). At the
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same time, Figure 9b presents a digital zoom of the LCD screen for this case, indicating
an RMS with a value of 233.105 (kurtosis is a valid value) and the kurtosis with a value
of 1.545. Hence, by taking the value of the kurtosis and comparing it with the ranges in
Table 4, the diagnosis is effectively the outer race fault on the bearing with a hole of 3 mm.

 

 

(a) (b) 

Figure 9. (a) SMFFD performing an online fault diagnosis on the induction motor with the bearing
having a fault severity of 1 (3 mm); (b) observing the results in detail through the digital zoom of the
LCD screen.

Figure 10a depicts a photograph of the SMFFD system performing online monitoring
and diagnosis of the induction motor with a bearing, mounted in the rotor’s frontal shaft,
having the severity of 2 for an outer race fault (hole of 5 mm). Figure 10b shows a digital
zoom on the screen of the tool indicating magnitudes for the RMS of 163.859 (kurtosis is a
valid value) and a magnitude for the kurtosis of 1.333. Therefore, by taking the value of the
kurtosis and comparing it with the ranges in Table 4, the diagnosis is an outer race fault on
the bearing with a hole of 5 mm.

 

 

(a) (b) 

Figure 10. (a) SMFFD performing an online fault diagnosis on the induction motor with the bearing
having a fault severity of 2 (5 mm); (b) observing the results in detail through the digital zoom of the
LCD screen.
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5. Conclusions

This work presents a methodology for developing an online monitoring tool for
diagnosing outer race faults on bearings in induction motors. The monitoring tool, named
the stray magnetic flux fault detector, was developed into an FPGA-based proprietary
board, performing an analysis on the data from the acquired stray magnetic flux signal.
The are several advantages to using an FPGA-based solution, for example, the design in the
hardware for faster data processing, concurrent execution of the IPcores, configurability,
portability, functionality expansion according to the application requirements, and high
operational frequency, among others. The practicality of the developed tool is observed
in its compact design following an all-in-one philosophy, which means that the system
includes the FPGA, an embedded processor, the sensor, the user interface, and the power
source. Therefore, the user must only put the system near to the induction motor that needs
to be analyzed, and the online fault diagnosis will be performed. This is achieved thanks to
the sensor integrated into the system’s box, thus measuring the stray magnetic flux from
three directions (axial, radial, and axial–radial) in the motor’s surroundings, making the
system nonintrusive. Now, in relation to the FPGA potential, the implementation of the
IPcore for the calculation of the statistical indicators demonstrates the powerfulness of the
programmable logic device, because the system acquires the physical signal and extracts
the features related to the faults. As mentioned, the selection of the statistical features
is because they are relatively easy to compute and can provide nonvisible information
about the data distribution. In this sense, the calculation of the statistical indicators was
performed through a generalized hardware architecture in only four stages. It is worth
mentioning the potential of computing diverse statistical indicators, for this work from
the set of statistical features, two of which became meaningful in the final diagnosis. The
RMS validates the kurtosis value and this allows for the differentiation of the bearing
conditions; thus, the system is based on these two features. However, if other types of
faults need to be analyzed, the rest of the statistical features could be helpful, since the
faults could be reflected as different symptoms in the physical system and, consequently,
in the acquired data. Thus, the calculation of several statistical indicators is important,
because they could be useful for the analysis of other types of faults. In addition, in future
work other nonstatistical indicators can be computed and explored for developing fault
detection methodologies. Finally, as mentioned, the developed system has an interesting
and important characteristic which is the configurability allowing for the inclusion of extra
IPcores, allowing the system to be adjusted as required. For this reason, the system is
able to be expanded in functionality and with the possibility of being explored for other
monitoring applications, because other types of sensors can be added and other hardware
structures can be described according to an application’s requirements.
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Abstract: This paper presents a novel approach for accelerating the top-k heavy hitters query in data
streams using Field Programmable Gate Arrays (FPGAs). Current hardware acceleration approaches
rely on the direct and strict mapping of software algorithms into hardware, limiting their performance
and practicality due to the lack of hardware optimizations at an algorithmic level. The presented
approach optimizes a well-known software algorithm by carefully relaxing some of its requirements
to allow for the design of a practical and scalable hardware accelerator that outperforms current
state-of-the-art accelerators while maintaining near-perfect accuracy. This paper details the design
and implementation of an optimized FPGA accelerator specifically tailored for computing the top-k
heavy hitters query in data streams. The presented accelerator is entirely specified at the C language
level and is easily reproducible with High-Level Synthesis (HLS) tools. Implementation on Intel Arria
10 and Stratix 10 FPGAs using Intel HLS compiler showed promising results—outperforming prior
state-of-the-art accelerators in terms of throughput and features.

Keywords: top-k heavy hitters; data streams; Field Programmable Gate Arrays; High-Level Synthesis

1. Introduction

Extracting a list of the most frequently occurring items (aka. heavy hitters) from large
datasets is a well-studied problem that is usually tackled with approximation techniques
due to the complexity and size of the problem [1,2]. Several approximation techniques
model the input as a “data stream” consisting of a sequence of items that needs to be
processed in a one-pass manner at high speed and using limited memory [3]. The heavy
hitter problem has applications in many fields, such as network traffic monitoring [4],
website data analysis [5], and sensor networks [6]. A sub-class of the heavy hitter problem
is the “top-k” problem, wherein a user would query the k most frequent items in a data
stream. Examples of such queries include the top-visited websites in web data, the most
frequent destination IPs in network traffic passing through a networking device, the
bestselling products in retail data, etc.

In recent years, data stream algorithms have been deployed by companies such as
Google, Apple, Microsoft, etc. to address several computational problems [7]. With
the growing demand for high-speed data stream processing, several custom hardware
accelerator architectures have emerged (see Section 2). In general, these accelerators rely
on parallelism and deep pipelining to achieve the required processing throughputs. Field
Programmable Gate Arrays (FPGAs) are typically used to implement such accelerators due
to three main reasons: First, the flexibility of FPGAs allows one to change the accelerator
hardware configuration so that it is tailored for specific stream distributions or specific user
requirements. For example, some hardware configurations would favor accuracy, while
other configurations would favor higher throughputs. Second, stream algorithms usually
summarize the properties of the data stream in small data structures referred to as “stream
summaries”. The amount of fast on-chip SRAM memory in a modern FPGA is sufficient for
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implementing practical stream summaries without the need to access the slower external
DRAM. Third, the extensive Intellectual Property (IP) support and flexible high-bandwidth
Input/Output (I/O) in FPGAs allow for the easy integration of FPGAs in edge and cloud
applications that deploy data stream analytics.

With the advances in High-Level Synthesis (HLS) tools, functional hardware imple-
mentations of software algorithms can be easily and quickly realized. However, design
optimizations are often necessary to achieve the optimal operation of hardware accelera-
tors. The main goal in HLS design is to be able to implement a stall-free accelerator or, in
other words, an accelerator with an Initiation Interval (II) of 1. An II of 1 means that the
accelerator pipeline can process a new input item every clock cycle without stalling. An
optimal stall-free accelerator is not always possible, especially if the accelerator requires
complex memory accesses. For example, a hardware implementation of a hash table will
not maintain an II of 1 due to the pipeline stalls needed to resolve collisions when inserting
items in the table.

There are several complexities associated with designing an optimal accelerator to
compute the heavy hitters in data streams, depending on the base algorithm used and
the overall system requirements. For example, several heavy hitter algorithms utilize
hash table data structures for counting item occurrences in a data stream, preventing a
stall-free operation due to hash collisions and memory dependency. Additionally, if the
accelerator is required to support the top-k item query, this adds further complexity to
the design. A suitable data structure, such as a priority queue, needs to be implemented
to maintain a list of the top k items. In addition, a suitable interface is needed for the
host to traverse the top-k item list. Several hardware architectures have been proposed
in the literature to accelerate the heavy hitter problem in data streams (See Section 2).
However, there is no single elegant solution to handle the aforementioned complexities
without scaling down the design. This paper presents a novel hardware adaptation of the
approximate Probabilistic sampling algorithm in [8], which is used for the top-k item query
in data streams. The presented hardware architecture aims to address design complexities
in existing solutions by introducing hardware-specific optimizations at the algorithmic
level. These modifications are based on intuition and favor simplicity and design scalability
to facilitate the strict mapping of the algorithm into hardware. When implemented as an
HLS kernel using Intel HLS compiler and targeting an Intel Stratix 10 FPGA, the proposed
architecture scaled very well and achieved higher throughputs compared to all relevant
existing FPGA accelerators. Furthermore, test results on synthetic and real datasets showed
near-perfect accuracy—exceeding 95% in all test runs. This is a significant improvement
over previously proposed scaled down accelerators that would strictly map the Probabilistic
sampling algorithm into hardware. In short, the main contributions in this paper can be
summarized as follows:

(1) A novel hardware-optimized algorithm for computing the top-k query in data streams.
The algorithm is the first to deploy techniques such as fingerprinting, optimistic
counting, re-hashing, and timestamping to resolve hardware-specific complexities
usually associated with relevant FPGA accelerators.

(2) An HLS kernel design for the proposed optimized algorithm that can be easily repro-
duced using HLS tools from both major FPGA vendors (AMD/Xilinx and Intel). The
HLS kernel also deploys novel optimizations at the hardware level to resolve common
implementation issues such as memory dependency and data hazards.

(3) The fastest FPGA implementation compared to existing accelerators, achieving high
throughputs even when the implementation has a high chip utilization.

(4) Addressing important practicality issues in kernel design such as larger key sizes (up
to 128-bit), result mergeability, and parallelism.

The remainder of this paper is organized as follows: Section 2 briefly introduces the
top-k query problem in data streams and discusses some of the most relevant previously
published work. Section 3 briefly discusses the Probabilistic sampling algorithm, which is
used as the basis for the top-k item query computation. Section 4 presents the proposed
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optimizations for efficient hardware implementation. Sections 5 and 6 details the HLS
accelerator kernel design and FPGA implementation. Section 7 presents the functional
verification and evaluation of the proposed accelerator. Finally, conclusions and future
work plans are summarized in Section 8.

2. Background and Related Work

2.1. The Top-k Item Query in Data Streams

Assume we have a stream S of size N, and we want to find the k most frequent items in
S (known as top-k items or top-k heavy hitters). The size of the stream N is not necessarily
known beforehand. A naïve exact solution for finding the top-k items can be realized using
a lookup table data structure with key-count pairs in its entries. For every item hit, if the
item key is in the table, its count value is updated. Otherwise, a new entry is created in
the table. An additional priority queue data structure can be used to maintain a record
of the current top-k items. Alternatively, the entries in the lookup table can be sorted
according to their count values to extract the top-k items when the stream is exhausted or
when results are required. For a general input distribution containing a large number of
distinct items, finding an exact solution is impractical or even impossible due to the time
and space complexity.

In most practical applications, an exact result is not required. Approximate results
can be obtained using approximate algorithms that do not count every distinct item in
the stream. In general, approximate algorithms only maintain a summary of the stream
and a list of heavy hitter candidates that most likely contain most of the actual top-k items
in the stream. There are two categories of such approximate algorithms in the literature:
counter-based and sketch-based algorithms.

2.2. FPGA Implementations of Counter-Based Algorithms

In general, counter-based algorithms allocate counters in memory, only enough for
counting a small subset of the overall distinct items in the stream. Each counter is a key-
value tuple, where the key is an identifier for a heavy hitter candidate and the value is
the estimated count for this candidate. When the stream is processed, the counters should
contain all or most of the heavy hitters in the stream. Counter-based algorithms do not
require an additional priority queue for computing the top-k items, as this can be performed
by using a simple sort operation.

Several architectures have been proposed to accelerate item counting using FPGAs.
Early works on the related field of itemset mining acceleration with FPGAs proposed
implementing fine-grained systolic arrays with serially connected Processing Elements
(PEs). Each PE contains a small independent memory allocated for updating a single or
small number of key-value tuples [9]. A limited number of such systolic array accelerators
have been specifically designed to compute the heavy hitters in data streams [10–13]. Most
of these accelerators implement the popular Space-Saving algorithm [14]. Space-Saving
uses m counters to monitor the first m distinct items that appear in the stream. A new
incoming item, not in the any of the m counters, replaces the item with the minimum
count. By doing so, frequent items with large counts should remain in some of the counters
when the stream is exhausted. Although implementing Space-Saving is relatively simple in
software, mapping it to a systolic array architecture can be tricky with complexities that
limit the overall number of monitored items. Current Space-Saving FPGA implementations
can be used to monitor hundreds to a few thousands of items using mid-capacity and
large-capacity FPGA chips [11–13]. The work in [10] showed that the Probabilistic sampling
algorithm proposed in [8] maps better to a systolic array architecture, resulting in some
notable improvements compared to Space-Saving.

All the aforementioned systolic array accelerators rely solely on the FPGA logic
resources for implementing small distributed memories to store the key-value tuples.
Although they are stall-free and relatively fast, the maximum number of items that can
be monitored is limited, especially with larger key integer sizes. Several works have
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demonstrated that it is possible to expand the total number of monitored items using
key-value store approaches based on hash tables that utilize the abundant embedded
memory resources on an FPGA chip [15,16]. However, the performance of such approaches
significantly suffers because of hash collisions and the pipeline stalls needed for updating
the monitored items.

2.3. FPGA Implementations of Sketch-Based Algorithms

Sketch-based algorithms aim to summarize the frequency distribution of the data
stream using a unique data structure referred to as a “sketch”. The frequency estimation
sketch can be queried to output the estimated count of a particular item key. A very popular
frequency estimation sketch is the count–min sketch [17]. The count–min sketch consists of
several hash tables with different hash functions. The hash tables only contain count values
in their entries. When the sketch is updated with a new item hit from the stream, the item
key is hashed into all of the tables, and the relevant table entries are incremented. Since the
hash functions are different, item collisions will differ in all of the tables. For any queried
item, the table entry with the minimum count (minimum number of collisions) represents
the best count estimate for the item.

The count–min update process does not require hash collision resolution. Several FPFA
accelerators implement count–min on the on-chip embedded memory to realize constant
update time and, in some cases, stall-free operation [18–23]. As the count–min does not
store item keys in its table entries, it cannot be directly used to solve the top-k item query
problem. An additional hardware data structure is required to maintain a record of the top
key-value tuples [24–26]. Only a few FPGA implementations extend the basic functionality
of count–min to support the top-k query. The sketch accelerator in [27] uses a simple priority
queue architecture. Because the queue update process is sequential, the throughput can be
drastically reduced, even for small values of k. A more sophisticated and improved priority
queue was later presented in the accelerator proposed in [28,29]. This accelerator uses a
large portion of the available embedded memory resources for implementing the queue
rather than for the sketch. The queue is implemented as a pipelined hash table with several
independent buckets to allow for consecutive updates (1 update per clock cycle in most
cases). This allows one to monitor a larger number of top items, but with reduced count
accuracy due to the smaller sketch. In fact, the main objective of this accelerator was not to
output the top-k items accurately but to estimate the entropy of the input stream using the
top-k item list as a sample of the stream.

A related work deploys a hybrid approach, combining a sketch implemented on
embedded memory and a systolic array implemented using the logic resources of the
FPGA. The sketch is only used as a filter that passes item hits for items with counts larger
than a specific threshold to the systolic array that monitors the heavy hitters [10]. While this
architecture achieved good performance, it only allowed one to monitor a relatively small
number of items. Another related work implements an accelerator based on an alternative
sketch algorithm that supports the top-k query without the need for a priority queue [30].
The implemented Heavy-Keeper sketch uses hash tables similar to count–min; however, item
keys are also stored in the table entries, allowing for the sketch to be traversed to extract
the top-k items [31]. Due to the complexity in updating the Heavy-Keeper sketch, the item
update process required several clock cycles (II larger than 1).

2.4. Summary of Existing FPGA Implementations

Table 1 summarizes the most relevant existing FPGA implementations of data stream
heavy-hitter detection algorithms. Implementations are classified into three categories:
systolic array, hash table, and sketch implementations. These categories are compared
according to the following attributes:

Design: A stalling design means that the accelerator cannot guarantee that an item is
processed in a single clock cycle, resulting in a slow FPGA implementation.
Key Size: Smaller key sizes limit the possible applications.
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Top-k Query Support: Several implementations do not directly support the top-k query as
an additional priority queue is needed.
Result Readout Style: Using a buffer implemented as a memory block allows the results
to be easily copied and processed by a host. However, a large buffer increases latency and
host processing time. A First-In First-Out (FIFO) interface is present in accelerators that are
only capable of outputting results for individual item count queries.

Table 1. Summary of FPGA implementations of data stream heavy-hitter detection algorithms.

Ref. Type Algorithm
Stalling
Design?

Key Size (Bits) Top-k Query?
Result

Readout

[10] Systolic Array Probabilistic [8] No 32 Yes Small Buffer
[11–13] Systolic Array Space-Saving [14] Yes 32 No FIFO
[15,16] Hash Table Cukoo Hash [32] Yes 104 Yes Large Buffer
[18–23] Sketch Count–Min [17] No 32-128 No FIFO
[30] Sketch Heavy-Keeper [31] Yes 32 Yes Large Buffer

From Table 1 we can see that there is no single FPGA implementation that excels in all
attributes. Therefore, the presented work focuses on filling this gap by addressing all the
attributes needed to realize a fast and practical FPGA accelerator specifically tailored for
the top-k query in data streams.

3. Base Algorithm: Probabilistic Sampling

Our proposed approach for finding the top-k items borrows several ideas from the
Probabilistic sampling algorithm in [8]. We first briefly introduce Probabilistic sampling in
this section and, later, we detail the proposed hardware-specific optimizations in Section 4.

Probabilistic sampling is generally considered fast and efficient, and can approximate a
list of the top-k items in data streams. The idea behind Probabilistic sampling is very simple
and as follows: the data stream is divided into rounds of size r that are processed separately.
The algorithm uses m counters to count the first m distinct items that appear in the round
(see Figure 1). Hits from items not registered in the m counters are discarded. A hash table
with key-value entries is a fast and simple method for counting the sampled items. At the
end of a round, the k items with the largest round counts are extracted and stored in a list.
The process is then repeated in later rounds of the stream. The final list of approximate
top-k items is obtained by merging the top-k lists at the end of each round. Only the items
with the highest round counts make it to the final list. For duplicate item records, only one
entry with the highest round count is stored in the merged list.

Figure 1. Probabilistic sampling algorithm.

In addition to the highest round count for an item in the top-k list, an extra total accu-
mulate count field can also be stored for each item. This field represents an underestimated
value for the item count. The value in this field is obtained by accumulating the round
counts of items appearing in the top-k list in consecutive rounds. If an item is recorded as a
top item in all rounds, then the total count estimate is the actual count of this item.
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4. Proposed Approach: Optimizations for Efficient Hardware Implementation

4.1. Updating the Round Table

To implement the Probabilistic algorithm on an FPGA, a hash table is needed for
counting items in a round. The hash table can be implemented as a RAM block. The aim
is to store as many key-value pairs as possible using the available on-chip memory. In
addition, a stall-free operation is necessary to achieve high throughput. The main obstacle
in achieving a stall-free operation is the item collision issue. There are some trivial methods
to minimize hash collisions. For example, we can increase the load factor of the hash table
by using a RAM block with M buckets to count m distinct items (M > m). Additionally, it
is possible to use an additional bloom filter data structure to decrease the number of table
updates [33]. However, using these methods will increase the memory usage and limit the
number of items that can be monitored in a round.

Optimizing memory accesses and the RAM block geometry can also enhance the
performance of a hash table. For example, breaking the RAM block into several pipelined
banks allows for several concurrent memory accesses [16,33]. However, real data streams
are typically skewed, causing contention on some of the memory banks and, as a result,
preventing meaningful performance gains. While there are some methods that have
been proposed to reduce contention on the memory banks when processing has skewed
streams [34,35], there is no efficient solution that guarantees a stall-free operation.

Instead of strictly mapping the round table update process in Probabilistic models into
hardware, we modify this process to address the aforementioned shortcomings associated
with hardware hash tables. The remainder of this section details the proposed optimizations
for the round table update process. Figure 2 shows the pseudo code for the optimized
update_table() function, which returns the round count for a particular item hit in a round.
The function has four arguments:

(1) FP: item fingerprint.
(2) TS: timestamp.
(3) IDX: table index generated by a hash function.
(4) w: weight of an item (w = 1).

Figure 2. The proposed optimized function for updating the round table.
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4.1.1. Optimistic Counting

As mentioned earlier, the main obstacle in achieving a stall-free operation is item
collisions when counting the first m distinct items in a round. Rather than increasing
the hash table load factor to decrease item collisions, we opt for an “optimistic counting”
approach that ignores item collisions. The idea behind optimistic counting is simple and
can be described in four steps as follows:

(1) An item hit is hashed to generate an index (IDX) to a bucket in the table.
(2) If the indexed bucket is empty, create an entry for the item in the bucket.
(3) If the indexed bucket already contains an entry for the item, increment the round

count of the item.
(4) If the indexed bucket contains an entry for another item, discard the item hit.

We can see that the optimistic counting approach utilizes all M buckets for item
counting opposite to the conventional hash table approach, which only inserts m items
in the M buckets (M > m). The first item to be hashed into an empty bucket will stick
in the bucket for the remainder of the round. Item collisions are totally ignored in favor
of sampling more items and achieving a stall-free operation in hardware. We refer to the
optimized function as “optimistic” because it assumes, or in other words, hopes that there
will be no item collisions before, at least, the m items are inserted into the table. Due to the
simplicity of this approach, we can count a significantly larger number of items using the
same amount of FPGA embedded memory compared to a conventional hash table with
a large load factor. In addition, to allow for a stall-free operation, we can also argue that
the proposed simplified item counting technique can result in better accuracy compared
to a hash table with a large load factor when the amount of embedded memory is limited.
This is mainly attributed to the larger number of sampled items using the same amount
of memory.

4.1.2. Fingerprinting

As the on-chip memory in FPGAs is generally limited, it is very important to optimize
memory usage to be able to sample as many items as possible. Most of the available
accelerators discussed in Section 3 limit the key size of an item to 4 bytes. While this is
sufficient for some applications (example: IP address in IPv4), there are other applications
that require larger key sizes (example: 128-bit IP address in IPv6). Storing the full item keys
in the round table buckets will limit the total number of buckets possible with the available
memory, especially for larger key sizes. As we are only interested in maintaining a record
of the top-k items, there is no need to store the keys for all the sampled items. Alternatively,
we can store a unique fingerprint (FP) of the item in the round table [31]. This fingerprint
is generated by a hash function and is much smaller in size compared to the actual key
(see Figure 2). Simply, when calling the optimized table_update() function, the function
matches the generated item fingerprint to the fingerprint stored in the indexed table bucket
to decide if the round count should be incremented.

4.1.3. Round Re-Hashing

As our simplified optimistic counting technique ignores item collisions, we need to
consider the case when two or more heavy hitter items generate the same index early in
the round. Only one of these heavy hitters will be registered in a round and considered as
a top-k candidate. In addition, there is a possibility of different items generating the same
table index as well as the same fingerprint.

To rectify the issue of colliding heavy hitters, we propose round re-hashing. Basically,
the seed for the hash function used to generate the item index is randomly generated for
each round (labelled hi(key) in Figure 2). The idea behind round re-hashing is simple and
as follows: if two heavy hitter items collide in a round, it is highly unlikely that the same
items will collide with each other again in another round, as they will likely generate
different hashes.
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4.1.4. Using a Timestamp for Reduced Latency

Another issue that needs to be addressed when updating the round table is the RAM
block reset needed in between rounds. As we are going to use the same RAM block
for counting items in different rounds, all buckets must be reset before starting a new
round. This is time-consuming, as the memory locations in the RAM block need to be
reset sequentially. The latency of the accelerator will significantly increase, especially if the
RAM block is large and the chosen round size is not sufficiently large relative to the RAM
block size.

To address this issue, we propose using a unique timestamp for every round. Items
in the same round will be assigned the same timestamp. When an item is first registered
in a table bucket, the current timestamp is also stored in the bucket (see Figure 2). When
updating the table, if an indexed bucket has a timestamp different to the current timestamp,
the bucket is considered empty and can be used to register a new item. This way, there
is no need to reset the RAM block after each round. To avoid significantly increasing the
memory usage of the round table, only small numbers should be used for the timestamp.
For example, if 1 byte is allocated for the timestamp, this allows one to run 255 rounds
before a reset of the RAM block is required.

4.2. Updating the Heavy Hitter Summary

After counting items in a round, the top-k frequent items in the round should be
extracted and stored in a list. In hardware, the process of updating the top-k item list
should run concurrently with the table update process to achieve a stall-free operation.
Typically, a priority queue data structure is used to maintain a record of the top-k items;
however, FPGA implementations of such data structures can be complex and inefficient,
especially if a stall-free operation is required (see Section 2).

We propose a data structure that is entirely different to a priority queue. We call this
data structure the “heavy hitter summary”. The summary is a hash table with K buckets,
where K is much larger than k but still much smaller than M. Figure 3 shows the pseudo
code for the update_summary() function, which is called after the update_table() function in
Figure 2.

Figure 3. Updating the heavy hitter summary.

Each bucket in the summary contains three fields: an item key, round count, and total
accumulate count for the item. The update_summary() function arguments are the key for the
current item hit, the bucket index (IDXs) generated by the hash function, the item’s round
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count returned by the update_table() function, and the weight of the item. The procedure for
updating the summary can be summarized as follows:

(1) An item hit is hashed to generate an index (IDXs) to a bucket in the summary.
(2) If the key matches the key stored in the indexed bucket, the accumulate count is

incremented. The stored round count is also updated in case the current round count
is larger than the stored count.

(3) If the key is different than the stored key in the indexed bucket, the bucket is up-
dated with the new item only if the new item round count is larger than the stored
round count.

The update_summary() function is called for every item hit in the stream. The summary
is only reset when the stream is exhausted. The function basically splits the stream into
K sub-streams using the hash function. Only the heaviest item from each sub-stream is
maintained in the relevant bucket (the item with the largest round count). When K is
sufficiently large relative to k, most of the actual top-k item should stick in some of the
summary’s buckets. Querying the top-k items from the summary is simple and involves
the following: first the items in the summary are sorted according to their accumulate
count. Then, the top-k items are extracted. The latency incurred from the sorting operation
should not affect the performance when implementing the proposed summary in hardware.
This is because, in practical applications, a top-k query is only issued intermittently after
very large intervals of streaming activity. Additionally, K is generally small, and the sorting
operation can be efficiently completed in software by a host.

5. HLS Kernel Architecture

This section details the design of an FPGA accelerator implementing the proposed
algorithm in Section 4. We draw the readers’ attention to the Intel HLS documentation [36],
as the remainder of this section uses technical terminology that may be specific to Intel HLS
design flow. As the presented design only deploys standard pragmas, the design can be
easily migrated to other HLS tools (for example, AMD/Xilinx Vitis HLS). In addition, with
minor modifications, the accelerator can be deployed as a kernel in Intel heterogeneous
computing tools such as the following: Intel FPGA SDK for OpenCL and Intel OneAPI
toolkit. Since these tools use the same core compiler technology as Intel HLS, results should
be the same regardless of which Intel design tool is used.

5.1. Architecture Overview

The accelerator is designed as a kernel that operates alongside a host CPU, which is
the typical hardware setup in streaming applications. The kernel is implemented as a slave
component that is controlled by a host through a memory mapped slave interface (see
Figure 4). In Intel HLS compiler, the “hls_avalon_slave_component” attribute can be used
to infer a slave interface compatible with the Avalon bus specification. The host launches the
kernel to process a single round of the stream. There are some memory mapped registers
that need to be setup by the host before launching the kernel, including the following: the
round size (r), the timestamp of the round (TS), and the hash function seed needed for
generating the round table index (IDX), as explained in Section 4. The kernel contains two
memory blocks, one represents the round table with M memory locations and the other
represents the heavy hitter summary with K memory locations. Both memory blocks are
implemented as simple dual-port RAM using the M20K embedded memory resources
in Intel FPGAs. A simple dual-port memory has a read port dedicated to reading (load
operations) and a write port dedicated to writing (store operations). Using the relevant
component macros in Intel HLS compiler, the heavy hitter summary is specified as a slave
memory with read access granted to the host. By doing so, the compiler inserts arbitration
logic at the read port of the heavy hitter summary to allow the host to read the summary
when results are required. For a simpler arbitration logic, we prevent host access during a
round when the kernel is active.
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Figure 4. Architecture overview of the HLS kernel.

After launching the kernel, the kernel runs for r iterations. In every iteration a blocking
read operation from an input stream FIFO is performed to read the item keys from the
data stream. The kernel pipeline can be divided into three main stages: the pre-process
stage, the round table update stage, and the heavy hitter summary update stage. In the
pre-process stage, the input keys are processed to generate the hashes required in the
proposed algorithm. In addition, some control signals are generated to efficiently handle
data hazards in later stages in the pipeline. The round table update stage basically executes
the function in Figure 2, while the heavy hitter summary update stage executes the function
in Figure 3. While a functional hardware implementation of the proposed algorithm in
Section 4 is very straightforward using HLS, achieving an II of 1 requires some design
optimizations, which will be detailed in the remainder of this section.

5.2. Round Table Load-Store Logic

A naïve HLS code for the update_table() function in Figure 2 will certainly result in a
pipeline with an II larger than 1 when compiled. The pipeline will not be able to process
an input item every clock cycle mainly due to memory dependency and the read-modify-
write operation performed when updating a bucket in the round table. With dual-port
RAM, it is possible to perform load and store operations at the same time; however, the
minimum latency of a RAM block is 1 clock cycle. This means that consecutive updates
to the same bucket will create a data hazard issue. To prevent functional failure due to
memory dependency, the HLS compiler inserts stalling logic in the pipeline and increases
II to a number larger than the RAM block latency. Therefore, the best possible II for a naïve
HLS implementation is 2. In addition, the performance will further suffer if the round table
is large—consisting of many FPGA RAM primitives that are physically distanced apart on
the chip. The compiler may decide to further increase II or reduce the maximum operating
frequency (fmax) to meet timing requirements.

HLS tools usually support special pragmas to relax memory dependency. For example,
the “ivdep safelen (m)” pragma can be used to tell the compiler that there will be no
memory dependency for at least m loop iterations. We only need m = 2 to achieve an II of
1. However, when m is sufficiently larger than the RAM block latency, the compiler will
be able to schedule the memory load and store operations further apart in the pipeline to
achieve higher fmax, and this is particularly useful when the RAM block is large [37].

Relaxing memory dependencies and specifying a safe dependence distance m for the
compiler does not guarantee functional correctness. The programmer needs a mechanism
to guarantee that no such dependencies will occur in the first place to prevent functional
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failure. There are several solutions available in the literature for handling dependencies at
run-time when updating frequency estimation sketches (Examples: [19,21,37,38]). None
of the available solutions are directly applicable to our proposed algorithm. Therefore,
we propose a custom solution for handling memory dependencies when updating the
round table according to the update_table() function in Figure 2. The solution is based on a
Load-Store Queue (LSQ) that precedes the round table update stage in Figure 4. The LSQ
mainly performs two tasks—labelled “pre-count” and “hazard detect” in Figure 4.

5.2.1. Pre-Count: Forward Weight Accumulation

Memories constructed using the logic blocks of the FPGA do not have read and write
latencies as in memories constructed with the embedded RAM resources of the FPGA. The
first step in our proposed solution for handling memory dependencies is to pre-count the
occurrences of item keys in a small buffer constructed using the logic blocks. We refer to
this technique as “forward weight accumulation”. The circuit used for forward weight
accumulation is shown in Figure 5. The circuit consists of a shift register of size m. All
registers have parallel connections to the weight accumulation logic.

Figure 5. Pre-count: breaking memory dependency for m loop iterations using forward weight
accumulation.

When the kernel is launched, the item keys are read from the input FIFO. The kernel
will first wrap each item key in a data structure containing a wight variable (w), which
is initialized to 1 (see Figure 5). In addition to the key and initial weight of 1, the kernel
will wrap a variable t that is assigned to either 0 or 1 depending on the order of the item
in the stream. The variable t is a tag used for dividing consecutive keys into groups or
windows of size m; each key in the same window is assigned the same tag. Basically, the
value of t is inverted in every m loop iteration. When passing items through the shift
register, the weight accumulation logic will compare the key in Reg[0] to the keys in all
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other registers. The weight of any identical key belonging to the same window will be
accumulated forward in Reg[0] before it is reset to zero. Any key with a weight of zero is
regarded as a “bubble” and can be discarded in later stages in the pipeline when it exits the
shift register. By inserting bubbles in the pipeline, memory dependencies are eliminated
for at least m loop iterations.

Implementing forward weight accumulation is straightforward with HLS as it only
requires a simple loop unroll pragma (see the HLS code snippet in Figure 5). It should be
noted that a previously proposed solution deployed a similar backward weight accumula-
tion technique that does not require the stream to be divided into windows with alternating
tags [37]. The idea was to keep accumulating wights backward in Reg[m − 1] to insert
as many bubbles as possible into the pipeline. While the solution is perfect for simple
frequency estimation sketches, it is not suitable for the algorithm presented in this paper.
This is mainly because, in skewed data streams, the weights of frequent items will likely
keep accumulating in the shift register for long intervals in the case of using a backward
accumulation technique. This is highly undesirable for our sampling algorithm because
updates of frequent items are delayed in the shift register and may fail to stick in any of the
round table buckets when they eventually exit the shift register.

5.2.2. Data Hazard Detection

With forward weight accumulation, we resolve the memory dependency issue asso-
ciated with consecutive items with identical keys in the stream. There is still one minor
issue that needs to be resolved before safely using the “ivdep safelen (m)” pragma in the
kernel’s HLS code. The issue arises from the fact that different keys may generate the same
round table index (IDX). While this is not a problem when the keys are distanced apart in
the stream or when a key is already registered in the indexed bucket, a data hazard occurs
when two keys that are less than m cycles apart generate the same index to an empty bucket.
When the empty bucket is evaluated for the first key update, a memory store operation is
initiated to register the key in the bucket. Due to memory latency, the bucket may still be
interpreted as empty when evaluated for the second key update—initiating an incorrect
memory store operation.

To resolve this data hazard, the table indexes are first pre-processed by an LSQ similar
to the one used for forward weight accumulation. The LSQ consists of a shift register of
size m and some data hazard detection logic (see Figure 6). When passing the indexes to the
shift register, the kernel wraps a Write Enable (WE) variable as well as the same window
tag t used in forward weight accumulation. The data hazard detection logic compares the
index in Reg[m − 1] to all the indexes in the other registers. If any identical index that
belongs to the same window is detected, the WE variable in Reg[m − 1] is reset. In later
stages in the pipeline, any key update with WE = 0 is discarded.

Figure 6. Resolving data hazards before the round table update stage.
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5.3. Heavy Hitter Summary Load-Store Logic

The next stage in the pipeline is the heavy hitter summary update stage, which
will execute the update_summary() function in Figure 3. This function takes the item key,
summary index (IDXS), the item weight w, and the round count c.

As memory dependencies occur due to identical keys in the stream that are already
resolved by weight accumulation, there is only one minor data hazard that needs to
be resolved before executing the update_summary() function. The data hazard occurs
when two item hits with different keys are less than m cycles apart and generate the same
summary index. In particular, if the indexed bucket stores a round count smaller than the
round count of both items and the round count of the second key is larger than the round
count of the first key. When the bucket is evaluated for the first item, a store operation
will be initiated to replace the stored item with the smaller round count. Due to memory
latency, an incorrect memory store operation may be also initiated for the second item. To
resolve this data hazard, another LSQ is used after the round table update stage. The LSQ
in Figure 7 consists of a shift register of size m and some data hazard detection logic. The
summary indexes for the items are wrapped with the associated round counts as well as
a Write Enable (WES) variable before being passed to the shift register of the LSQ. The
data hazard detection logic compares the index in Reg[m − 1] to all the indexes in the
other registers. If any identical index with a larger round count is present, the WES signal
in Reg[m − 1] is reset. Any item with WES = 0 is discarded before updating the heavy
hitter summary.

c c c c c c

m

m-1

c c c c c c

m

m-1

 

Figure 7. Resolving data hazards before the heavy hitter summary update stage.

By applying the aforementioned LSQs, a stall-free HLS kernel for the proposed al-
gorithm can be easily implemented. The kernel can be invoked by a host to process as
many rounds as needed. However, an additional minor tweak is needed to safely process
multiple rounds. The shift registers of the LSQs need to be flushed at the end of a round to
ensure that all item hits are processed. To accomplish this, the kernel runs for a number of
extra iterations at the end of the round. During these iterations, the kernel passes dummy
item keys with zero weights to flush the shift registers before the next round.

5.4. Support for Parallel Sub-Streams

Achieving high performance when mapping algorithms into hardware can be per-
formed via deep pipelining and task parallelism. Task parallelism involves vectorizing
the input into distinct sets that are processed using separate kernels. Results from these
separate kernels can then be merged. By applying task parallelism, the throughput can
be significantly increased without the need to operate a kernel hardware at its fmax. Task
parallelism is particularly useful to exploit the high throughputs supported by the on-chip
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High Bandwidth Memory (HBM) available in some of the trending high-end FPGAs [39].
In addition, FPGAs with high-speed transceivers may require several replicas of a kernel to
be able to saturate the available bandwidth.

In order to apply task parallelism, the algorithm should support vectorization. In
general, data stream frequency estimation sketches, such as the count–min sketch, can be
vectorized by splitting the stream into several sub-streams that update separate sketches
with identical geometry. Merging results from distributed count–min sketches with identical
geometry is simple as it only involves the entry-wise summarization of the sketch tables.
In hardware, this can be difficult, as the host needs to access every table entry in the
sketch, which can span most of the embedded RAM on the FPGA chip. Based on the
lack of attempts reported in the literature, there have been few attempts to implement
parallel frequency estimation sketches in a single FPGA chip [19,21]. These parallel systems
only support a general update–query model, where the frequency of individual items is
sequentially acquired by the host. This simple model does not support the top-k item query
as it does not allow the host to access the sketch memory or any priority queue paired with
the sketch.

One of the important advantages of the algorithm proposed in this paper is the ease
of vectorizing the algorithm in hardware. First, the data stream is naturally divided into
rounds that can be processed independently by several kernel replicas (see Figure 8).
Second, the host only needs to access the smaller heavy hitter summary data structure
in each kernel, which is implemented as a slave memory. Third, the merging of heavy
hitter summaries is very simple, especially if the same hash function is used for all the
summaries. The pseudo code in Figure 8 shows how two summaries from two kernel
replicas can be merged when the same hash function and the same round sizes are used in
the different kernel replicas. The merge process can be performed efficiently by the host
as it only has a time complexity of O(n), where (n = K). In addition, if the heavy hitter
summary configuration is changed in the HLS code to grant both read and write access
to the host, the merge process can be performed in-place without the need to copy the
summaries to the host’s memory.

Figure 8. Scaling performance with parallelism.
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6. FPGA Implementation

This section reports the FPGA implementation results when compiling the proposed
kernel using Intel HLS compiler and Intel Quartus Prime synthesis tools. The midrange
Arria 10 GX 1150 FPGA was selected as a target device. This is the largest chip from
the Arria 10 family, with 427,200 Adaptive Logic Modules (ALMs), 1518 Digital Signal
Processing (DSP) blocks, and 2713 M20K embedded RAM blocks. As the kernel mainly
consumes embedded RAM for implementing the round table and the heavy hitter summary,
we focus on validating the notion that the throughput of the kernel is sustained even when
scaling the size of the RAM blocks to large portions of the available on-chip memory.

As there are many parameters that can be varied in the kernel’s configuration, we fix
some of these parameters to practical values for simpler analysis. First, the size of the heavy
hitter summary K is fixed to 215 in all configurations. This size should be selected according
to the number of top-k items that needs to be monitored. Making K unnecessarily large
may increase the time for result readout without gaining meaningful improvements in
accuracy. So, if we are aiming to report somewhere near the top-1000 items, a fixed size
of K = 215 is a reasonable choice that should provide a good balance between accuracy
and result readout time. The size of the round count variable c is fixed to 16-bit, the total
accumulate count filed in the heavy hitter summary’s buckets to 32-bit, the item fingerprint
FP to 16-bit, and finally, the round timestamp TS to 8-bit.

As can be seen from Figure 4, there are three hash circuits that need to be implemented
in the kernel. The quality of the hash function used will affect the accuracy of the system.
We opt for using a simple and efficient hash function that can be implemented with the least
amount of FPGA resources. We use the “binary multiplicative” hash function described and
analyzed in [40] for the three hash circuits in the kernel. This hash function only requires
a single multiplier when implemented in hardware. The operation of the hash function
is described as follows: assume we have L-bit integers that need to be mapped to l-bit
integers. Using an odd integer seed a, the hash function is defined as:

ha(x) = (a.x)mod 2L/2L−l

Table 2 reports the FPGA post place-and-route implementation results for nine differ-
ent configurations of the kernel. In these configurations, the size of the round table M and
the size of the item key are varied. Three sizes of M were considered: 217, 218, and 219, and
three key sizes were considered: 32-bit, 64-bit, and 128-bit. In all configurations, the safe
dependence distance m was fixed to 8. Additionally, a target fmax of 400 MHz and a target
II of 1 were specified to the compiler when compiling all configurations.

Table 2. Implementation results on Intel Arria 10 GX 1150 FPGA.

M Key Size (Bits) Fmax (MHz)
Resource Utilization

ALM DSP M20K

217
32 417 1577 6 480 (18%)
64 399 2294 18 544 (20%)

128 379 3493 45 672 (25%)

218
32 351 1719 6 800 (30%)
64 351 2356 18 864 (32%)

128 321 3616 45 992 (37%)

219
32 277 2032 6 1440 (53%)
64 261 2567 18 1504 (55%)

128 265 3890 45 1632 (60%)

With the proposed optimizations, the compiler achieved an II of 1 in all configurations,
meaning that the maximum throughput in items/s is equivalent to the reported fmax. We
can see from Table 2, that the throughput of the kernel can reach up to 417 million items/s in
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the smallest configuration. All configurations achieve throughputs that can be considered
optimal for this mid-range FPGA family. The largest configuration, spanning 60% of the
available embedded RAM on the FPGA chip, achieved a throughput of 265 million items/s.
These significantly high numbers are mainly attributed to the simplicity of the synthe-
sized logic and the proposed memory dependency handling technique that allowed for
efficient pipelining.

It should be noted that the synthesis tools may report slightly different results for the
same configuration when compiled multiple times. The results in Table 2 are obtained from
a single compilation process for each configuration.

7. Evaluation

7.1. Accuracy Validation

As the accuracy of the proposed accelerator will be mainly bounded by the amount of
on-chip memory allocated for the round table, it is important to validate that the available
embedded memory in a typical FPGA chip is sufficient for achieving good accuracy when
processing practical data streams. The same Arria 10 GX 1150 FPGA is used as a baseline for
accuracy analysis. The amount of embedded RAM available on this chip can be considered
in the mid-range of modern FPGA devices. From Table 2, the kernel configurations with the
32-bit key size are selected for accuracy analysis. These configurations are simulated using
both synthetic and real datasets. After each simulation run, the heavy hitter summary is
sorted to extract the top-1000 items, which are compared to exact results. Two metrics are
used in the analysis, as defined below:

Accuracy: The number of correctly identified top-k items divided by k.
Avg. Count Error: The average of relative count errors calculated in all reported items.

Figure 9 reports the accuracy and average error for synthetic data streams. The datasets
were generated as Zipfian distributions [41]. The size of all datasets was fixed to 107 items,
and the Zipfian parameter (α) was varied from 1.0 to 1.6 in intervals of 0.2. The range of α
was selected to cover typical values of data skew in several types of real data streams [42].
There are several factors that would influence the best choice of round size r [8]. For
simplicity, r was fixed to M in all simulation runs (M—size of the round table in the kernel).

From Figure 9 we can see that all kernel configurations achieved near-perfect accu-
racy. The worst-case accuracy exceeded 98%, and the worst-case average count error was
below 4%.

To further verify the kernel’s performance, four different real datasets were also used
for accuracy analysis. The properties of the datasets are summarized in Table 3. All
of these datasets are easily available and widely used in the analysis of itemset mining
algorithms. Retail contains market basket transactions data from an anonymous Belgian
retail store [43]. Kosarak is a collection of click-stream data from a Hungarian online
news portal [44]. Chainstore contains customer transactions from a major grocery store
in California, USA [45]. Finally, BMS2 contains click-stream data from an anonymous
webstore [45]. All of these datasets were originally structured as transactional datasets
consisting of several separated transactions, each containing a number of integer items.
For the purpose of stream item counting, these datasets were pre-processed to merge the
transactions into a serial stream of items. Figure 10 reports the accuracy and average error
count results when processing these real data streams.
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Figure 9. Results for synthetic data streams modelled as Zipfian distributions.

Table 3. Real datasets.

Dataset Distinct Items Size

Retail 16,469 908,399
Kosarak 41,270 8,019,015

Chainstore 46,086 8,042,879
BMS2 3340 358,278

We can see from Figure 10 that the kerel maintained a high level of accuracy when
processing the real datasets. The worst-case accuracy exceeded 95%, and the worst-case
average error count was 2%.
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Figure 10. Results for real datasets.

7.2. Comparison with the State-of-the-Art

This section compares the proposed accelerator kernel to the fastest FPGA accelerators
previously proposed in the academic literature (see Table 4). As discussed in Section 2,
there are a limited number of FPGA accelerators specifically designed for the top-k query
problem in data streams. Therefore, we extend the comparison to include generic data
stream sketches. These sketches are simple and do not monitor any item key as they do not
include a priority queue data structure. Four different metrics are used in the comparison:

Chip utilization: The highest chip utilization percentage of any resource type in the
accelerator implementation (mainly logic resources for systolic array implementations and
embedded memory for sketch implementations).
Monitored items: The number of item keys that are monitored by the accelerator. In
Table 4, the relevant entries are labelled with “none” for generic sketch accelerators without
a priority queue.
Key size: The size of the item key in bits. Smaller key sizes will limit the applications of
the accelerator. For example, monitoring IPv6 addresses requires 128-bit item keys.
Throughput: The accelerator processing speed is measured in million items/s. It should be
noted that, in some of the relevant publications of the accelerators (Table 4), the throughputs
were reported in bits/s and calculated by multiplying the update rate by the item key size
or by the network packet size in sketches targeting networking applications.

We use the largest kernel configuration from Table 1 for comparison (M = 219 K = 215).
Several accelerators in Table 4 are implemented using high-end AMD/Xilinx UltraScale
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and UltraScale+ FPGA devices. Since our work was based on Intel FPGA technology, the
proposed accelerator was re-implemented on a Stratix 10 FPGA for better comparison with
previous implementations on high-end FPGAs. When compiling for a Stratix 10 FPGA
as a target, the target fmax was set to 600 MHz, and the safe dependence distance m was
set to 16.

Table 4. Comparison with published work.

Implementation
Chip

Utilization (%)
Monitored Items Key Size (bits)

Throughput
(M Items/s)

Arria 10 (Proposed) 60 32,768 128 265
Stratix 10 (Proposed) 6 32,768 128 542
Arria 10 [10] 51 300 32 276
Arria 10 [11] 40 1200 32 174
Virtex UltraScale+ [18] 8 none 96 415
Stratix 10 [21] 11 none 32 503
Virtex UltraScale [23] 16 none 128 456
UltraScale+ MPSoC [29] 24 2400 32 354

We can see from Table 4 that the proposed accelerator is far more efficient when
compared to accelerators that support the top-k query [10,11,29], as it allows one to monitor
a significantly larger number of items with larger keys. In fact, the only other accelerator to
support 128-bit keys is the accelerator in [23], which is slower than our proposed accelerator
and does not support the top-k item query. When implemented on a Stratix 10 FPGA, the
proposed accelerator has a 25% higher throughput compared to the average throughout of
competing accelerators implemented on high-end FPGAs. The proposed accelerator is also
8% faster than the fastest competing accelerator.

The presented accelerator was designed using an HLS design flow, which usually
leads to performance penalties in favor of better design productivity compared to Register
Transfer Level (RTL) design flows. Although most of the accelerators in Table 4 were
designed and optimized using RTL, the presented accelerator outperformed all of the other
accelerators. The fact that the proposed accelerator outperformed existing FPGA acceler-
ators was mainly attributed to the simplicity of the synthesized hardware. Introducing
careful modifications to the implemented algorithm facilitated the resolution of several
design complexities. While, in a previous section, we presented an empirical analysis based
on synthetic and real datasets to validate the accuracy of the optimized algorithm, we note
that further mathematical analysis is required to formally define the error bounds and other
metrics, such as the time and memory complexity of the optimized algorithm.

8. Conclusions and Future Work

This paper presented the design and implementation of an FPGA HLS accelerator
kernel for computing the top-k heavy hitters in data streams. The kernel is based on a
novel hardware-optimized algorithm, allowing for an easily achieved pipelined datapath
with an initiation interval of 1. The proposed algorithm incorporates several optimiza-
tions, such as fingerprinting, optimistic counting, re-hashing, and timestamping to address
several hardware-specific complexities that usually limit the performance of data stream
item-counting accelerators. In addition, several FPGA-specific design tweaks that resolve
memory dependency issues when implementing the accelerator kernel on an FPGA have
been presented. These tweaks deploy unique Load-Store Queues (LSQs) that can be easily
implemented using HLS code. When synthesized for Intel FPGA devices using Intel HLS
compiler and targeting the Arria 10 and Stratix 10 FPGA families, the resulting synthesized
hardware was very simple—mainly consuming the embedded memory resources of the
FPGA. Hardware synthesis of several configurations of the kernel showed a variety of
promising results: First, the high throughput of the kernel was sustained, even for configu-
rations consuming up to 60% of the on-chip memory. Second, the high throughput and low
logic footprint were also sustained when scaling the item key size processed by the kernel
from 32-bit to 128-bit. Third, accuracy analysis based on synthetic and real datasets showed
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that near-perfect results are achievable even using the on-chip memory capacities available
in mid-density FPGA families. Finally, compared to existing state-of-the-art accelerators,
the proposed accelerator is the fastest—with throughput exceeding 540 million items/s. It
is also notably superior in terms of features, as it has a larger key size, larger number of
monitored heavy hitters, and supports task parallelism.

Future work will first focus on further validation of the proposed algorithm as well as
formally defining the error bounds, time, and memory complexity. In addition, we will
explore porting the proposed kernel to a cloud application using FPGAs and different types
of accelerators, such as Graphics Processing Units (GPUs).
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Abstract: This paper presents a design and implementation proposal for a real-time frequency mea-
surement system for high-precision, multi-channel quartz crystal microbalance (QCM) sensors using
a field programmable gate array (FPGA). The key contribution of this work lies in the integration of a
frequency measurement and mass resolution computation based on Global Positioning System (GPS)
signals within a single FPGA chip, utilizing Input/Output Blocks to incorporate logic QCM oscillator
circuits. The FPGA design enables parallel processing, ensuring accurate measurements, faster
calculations, and reduced hardware complexity by minimizing the need for external components.
As a result, a cost-effective and accurate multi-channel sensor system is developed, serving as a
reconfigurable standalone measurement platform with communication capabilities. The system is
implemented and tested using the FPGA Xilinx Virtex-6, along with multiple QCM sensors. The
implementation on a Xilinx XC6VLX240T FPGA achieves a maximum frequency of 324 MHz and
consumes a dynamic power of 120 mW. Notably, the design utilizes a modest number of resources,
requiring only 188 slices, 733 flip-flops, and 13 IOBs to perform a double-channel sensor microbalance.
The proposed system meets the precision measurement requirements for QCM sensor applications,
exhibiting low measurement error when monitoring QCM frequencies ranging from 1 to 50 MHz,
with an accuracy of 0.2 ppm and less than 0.1 Hz.

Keywords: embedded systems; FPGA-based applications; IOB interfaces; quartz crystal microbalance;
frequency measurement; GPS

1. Introduction

Nowadays, many industrial applications that involve the handling or processing
of physical, chemical, or biological substances rely heavily on high-precision measure-
ment instrumentation. One of the most commonly used systems for this purpose is the
QCM (quartz crystal microbalance), which detects the resonance and frequency shifts of
quartz crystal resonator (QCR) sensors. In this context, QCM sensors are widely used in
different application domains. QCM sensors find wide application in various domains
due to their high sensitivity and real-time capability of measuring minute mass changes
(typically in the order of a few ng/cm2) within a broad dynamic range (100 μg/cm2).
This makes them particularly attractive for applications such as bio-sensors, analysis of
biomolecular interactions, and studying cell–substrate interactions [1]. Usually, to perform
high-precision measurements, accurate frequency (/time) measurement techniques are
employed using electronic resonators based on circuits containing capacitors, resistors,
and/or inductors [1]. These circuits generate alternating current by periodically fluctuating
between two voltage levels. Oscillators working with optimal stability rely on vibrating
quartz crystals, which exhibit a stable frequency when a direct current is applied. Similarly,
a piezoelectric oscillator circuit uses a piezoelectric crystal in combination with electronic
passive components to generate a stable frequency depending on crystal properties and
environmental conditions [2]. Factors such as temperature, pressure, acceleration, radiation,
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electric fields, and electromagnetic fields can introduce variations in the nominal generated
frequency oscillation. As a result, sensors based on piezoelectric oscillators offer accurate
measurement of these physical variables [3]. Therefore, piezoelectricity based on the quartz
crystal microbalance is one of the most popular mass sensing techniques in industrial
applications, including gas and liquid sensors [2–4] and electronic tongues [5]. These
applications include molecular recognition [6–8] and food quality control [4,9–11]. QCM is
a low-cost and highly sensitive mass measurement technique that was discovered in 1959
by Sauerbrey [12]. Sauerbrey established a relationship between the mass on the surface of
the crystal and its resonance frequency. More precisely, as depicted in Figure 1, the addition
of mass distributed over the quartz crystal surface alters the nominal oscillation frequency.
This frequency variation can be described by the following Sauerbrey Equation (1):

Δ f =
−2 × f0

2

A ×√
ρq × μq

× Δm. (1)

Figure 1. Basic working principle of quartz crystal microbalance sensor [13].

Here, Δ f represents the normalized frequency change (Hz) as a function of the mass
change Δm (gram), f0 is the resonant frequency (Hz), A is the piezoelectrically active crystal
area (area between electrodes, cm2), ρq is the density of quartz (2.648 g/cm3), and μq is the
shear modulus of quartz for AT-cut crystal (2.947 × 1011 g·cm−1·s−2).

Therefore, the resonance and subsequent frequency shift of the quartz crystal resonator
is detected by a QCM measurement system. A QCM crystal consists of a thin quartz crystal
with metallic electrodes of a certain thickness on both sides. This pellet is produced with
different thicknesses, resulting in different frequencies. Gold is often used for the electrodes
due to its resistance to corrosive environments [14]. There are three main electronic tech-
niques used for frequency shift measurements: impedance measurement, quartz crystal
microbalance with dissipation (QCM-D), and oscillator-based measurements [15]. Among
these techniques, impedance measurement provides the most precise results for resonance
frequency analysis [16]. It involves applying a sweeping frequency signal to a quartz
crystal resonator and collecting impedance spectrum (or admittance) data to determine the
resonant frequency and dissipation outputs. QCM-D is a type of quartz crystal microbal-
ance based on the ring-down technique. It is often used to determine film thickness in a
liquid environment, such as the thickness of an adsorbed protein layer. It can be used to
study other properties of the sample, such as its softness. The QCM-D technique allows
measurement of several times per second in a vacuum, gaseous, or liquid environment [17].
Additionally, it is possible to switch between fundamental frequency and overtones [18].
Although QCM-D and impedance measurement systems are efficient and commercially
available, they are often expensive and cumbersome. They are not adequate for on-site
use. The principles of oscillator-based measurement, distinguishing inverting and non-
inverting amplifier oscillators, are illustrated in Figure 2. On the one hand, the inverting
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amplifier, known as a Pierce oscillator (shown in Figure 2a), adds a 180◦ phase shift which
is compensated by the feedback network (based on Ra, C1, C2 passive components and
the quartz crystal) to meet the phase requirement in the Barkhausen criterion. On the
other hand, the non-inverting amplifier (shown in Figure 2b) acts on the sensor as a series
resonator satisfying the phase condition at the series resonance frequency by only using
resistor components (Ra, Rb). Figure 2c illustrates another non-inverting amplifier known
as a Colpitts oscillator, where the sensor functions as a high-quality inductor through its
connection in parallel with R1, C2 passive elements.

 
Figure 2. Typical oscillator circuits: (a) with an inverting amplifier (Pierce oscillator); (b) with a
non-inverting amplifier, and (c) with a Colpitts oscillator [16,19].

The QCM is widely used due to its extreme sensitivity to the characteristics of the
materials it comes into contact with, leading to shifts in its resonant frequency. How-
ever, the effectiveness of the QCM is constrained by the noise specifications of the crystal
oscillator and the resolution of the frequency counter employed to measure frequency
variations. Usually, the standard QCM System is a stand-alone instrument with the built-in
quartz crystal oscillator electronics, frequency counter, and CPU/microcontroller ensur-
ing the measurement, the monitoring, and the display (on a front panel) of the shifts in
resonance frequency, which is dependent on the material with which the QCM is in con-
tact. Consequently, an input stimulus induces a frequency shift in the sensor. Therefore,
precise quantification of changes in the input stimulus is achievable, provided an appro-
priate frequency counter/meter is utilized. Unfortunately, it is well known in the field of
time–frequency metrology that attaining higher measurement accuracy necessitates longer
measurement times. To mitigate this, QCM systems incorporate a phase-locked loop (PLL)
electronic circuit, which reduces the measurement time [20]. Nevertheless, such systems
are neither cost-effective nor suitable for developing a multi-channel QCM system. Each
QCM would require a quartz crystal resonator oscillator, a PLL, a low-pass filter, and an
amplifier circuit.

Static random-access-memory-based field programmable gate array (SRAM-Based
FPGA) technology provides a parallel computation capability which offers performance
improvements while ensuring flexibility compared with traditional CPU processing ar-
chitectures. Moreover, FPGAs provide Input/Output Blocks (IOBs) which can be used
to implement additional logic with CLBs to improve design performance by increasing
available logic and routing resources. Previous works show interest in using FPGA for
the integration of a frequency measurement technique providing a trade-off between per-
formance and accurate measurement [21]. Similarly, several works have explored the
utilization of FPGAs in QCM systems for conventional counter-based frequency measure-
ment, with or without compensation circuits [22,23]. For example, a low-cost prototype
of a multi-channel quartz crystal microbalance data acquisition system for QCM sensor
investigation was developed in 2018 [10]. It uses a totally external oscillator to keep the
oscillation down. The 16-bit time counters of the PIC16F allow frequency measurement to
be performed by QCM sensors with a sensitivity of 1 Hz. However, all of these prior works
required additional external chips to realize the QCM oscillators and generate the reference
signal based on a subdivision of a highly accurate local clock oscillator.
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This paper presents a proposal to implement a commonly used Pierce-gate crystal
oscillator based on a quartz crystal using configured Input/Output Blocks (IOBs) within an
FPGA. By incorporating digital inverters and a feedback resistor, the inner digital CMOS
inverter can be linearized, effectively transforming the logic inverter gate into an analog
amplifier. This approach allows for the utilization of low-cost external passive components
(such as C1 and C2 reactance and Rs) that satisfy the Barkhausen criteria.

Input/Output Blocks connect internal FPGA architecture to the external design via
interfacing pins, eliminating the need for external chip oscillators, such as resonators,
PLLs, amplifier circuits, or filters. Moreover, the FPGA’s logic elements, which serve as
the fundamental building blocks, can be programmed to carry out different functions as
required by the design, enabling the implementation of accurate frequency measurement
using the GPS as a reference signal. The main novelty of the proposed FPGA-based system
lies on the use of internal IOBs and its ability to perform a multi-QCM measurement system
composed of several oscillators, each equipped with a QCM. Within this system, Pierce
oscillators utilize on-chip inverting amplifiers within the IOBs of the FPGA, striking a
balance between achieving accurate frequency measurements (which can be enhanced
through fine measurements based on a ring oscillator or time-to-digital approach) while
minimizing the use of logic resources within the FPGA and external components. There-
fore, the frequency measurement is accomplished through the implementation of a 32-bit
reconfigurable reciprocal frequency meter architecture, which relies on the GPS reference
signal and the measurements taken when it is connected to different QCMs.

The remaining sections of the paper are structured as follows. Section 2 outlines
the proposed system, which integrates parallel quartz crystal oscillators using only IOBs
connected to multiple QCMs simultaneously. This section describes the reciprocal counter
implemented in FPGA (with the potential for enhanced accuracy through the implementa-
tion of a time-to-digital converter (TDC) in the FPGA). Section 3 investigates the resonant
conditions for various QCMs, providing details on the experimental setup, measurement
results, and subsequent discussion of the findings. Finally, Section 4 presents the conclusion
of the study along with directions for future work.

2. Frequency Measurement Electronic System

Figure 3 illustrates the overall electronic measurement system of the proposed multi-
channel QCM data acquisition system, which incorporates two QCM resonators. The embed-
ded frequency measurement system comprises both hardware and software components.

Figure 3. Block diagram of multi-channel QCM data acquisition system.

The embedded hardware employed in this study utilizes an accurate FPGA-based fre-
quency measurement system implemented on the Xilinx Virtex 6 FPGA ML605 stand-alone
platform [24]. The software part, executed on a microcontroller, is responsible for collecting
frequency data and transmitting this to a display. This proposed electronic communication
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system incorporates an embedded processor that utilizes Bluetooth communication with
a custom-developed Android application. This application receives and stores data from
the frequency measurement hardware system in the form of a spreadsheet. This electronic
system ensures the transmission of data acquired from the sigma-delta converter through
the utilization of the I2c protocol. More precisely, serial data (SDA) and clock (SCL) signals
are used to perform the I2c protocol ensuring data transmissions. One on-board microcon-
troller on the red PIC32MX470 development board manages the communication with the
FPGA via the I2c protocol. The timer configuration is used to set the measuring rate. The
UART link is used to send the results from the microcontroller to the computer in order to
fill in a spreadsheet. The timer defines the delay between each acquisition request for digital
frequency values. The Android application manages the reception of measured values via
the Bluetooth protocol and displays in one tablet device. In summary, the microcontroller
is responsible for managing frequency measurements, which are conducted by the FPGA
directly connected to multiple QCM measurement channels.

A multi-channel reciprocal counter is implemented within the FPGA Virtex-6, utilizing
a 200 MHz local clock reference signal. The timegate (measurement time) for counting
rising edges of the reference signal is set to one second, corresponding to a 1PPS GPS signal
received with a jitter of approximately 20 ns from the MediaTek GPS Chipset MT3339 of
the Adafruit GPS module [25]. This received GPS reference signal provides an efficient,
stable, and cost-effective solution for generating an accurate timegate reference signal,
enabling high-frequency resolution in frequency measurements. Figure 4 showcases a
photo of the proposed embedded hardware system for QCR oscillator multi-channel
frequency measurements.

 

Figure 4. Photo of the proposed resonator multi-channel reciprocal counter implemented in the
FPGA-Virtex-6-based GPS clock reference signal.

2.1. Frequency Measurement System

Usually, low-cost FPGA-based frequency measurement relies on a frequency counter
that incorporates timers and logical counters. The basic digital measurement of frequency
involves counting the number of rising edges of the input signal during a predetermined
time interval, utilizing a stable clock reference signal. The resonance frequency can then
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be obtained using Equation (2), where f represents the measured resonance frequency, N
denotes the measured number of input pulses, and t indicates the measurement time.

f =
N
t

. (2)

Depending on the frequency of the clock reference signal, the accuracy of the mea-
surement improves as the duration of the measurement time increases. If we use a basic
frequency counter (according to Equation (2)) with a measurement window of one second,
we will reach a maximum accuracy of ±1 Hz. However, for QCM applications that require
higher frequency resolution and/or shorter measurement time, modern frequency counters
employ the reciprocal counting method [26]. Unlike previous approaches that solely rely
on a high-frequency reference signal, the proposed reciprocal counter utilizes two signal
references: a high-frequency clock signal for frequency calculation and the received GPS
signal for period measurement. This approach offers an alternative solution for achieving
more accurate measurements without the need for subdivision of the high clock reference
signal. Figure 5 illustrates the reciprocal counting method using the GPS Signal.

Figure 5. Reciprocal counter based on an input reference GPS signal.

For a duration of one second, each clock edge of the input signal is counted N times.
Simultaneously, a reference signal is also counted for the exact same duration. This duration,
referred to as τ, represents the time delay between the first rising edge of the input signal
following the rising edge of the one-second period signal, and the first rising edge of
the input signal following the falling edge of the 1 Hz signal. The main advantage of
this method is its resolution, which remains unaffected by the input frequency and can
be enhanced through the utilization of low-cost FPGA-based digital counting techniques
(DCTs) for time stamping the start and stop edges of the input signal. Moreover, the error
remains constant across the entire range of input signal frequencies and can be reduced as
the reference clock frequency increases or as the gate time extends.

Figure 6 illustrates the internal architecture of the FPGA reciprocal counter designed
for measuring the frequency of a single QCR oscillator. This design incorporates three
digital counters, each 32 bits in size, responsible for counting the various edge events of
the input oscillation signal. These counters enable the calculation of the frequency value
or frequency shifts resulting from the input QCM stimulations connected to the FPGA’s
IOBs. The first counter, denoted ValeurFrequenceRef, provides the count result of the high
frequency reference delineated by the input GPS signal. This measurement provides a
real-time accurate measurement of the reference frequency. The second counter, referred
to as C_Freq, counts the number of rising edges of the signal to be measured (the output
oscillation signal for one Pierce QCM oscillator) within the time period τ. Finally, the last
counter performs the task of counting the number of rising edges of the reference signal
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during the designated period τ in order to obtain the frequency measurement of the input
signal by considering Equation (2).

Figure 6. Architecture of reconfigurable frequency meter.

Behavioral simulations and timing were conducted to evaluate the accuracy of the
proposed test using the Xilinx Virtex-6 ML 605 platform. These simulations demonstrated
the highly accurate frequency measurement of the oscillating QCM signal obtained from
an on-chip FPGA IOB logic inverter. The simulation results of the proposed architecture,
which utilizes the GPS-based reciprocal counting method, are presented in Figure 7. These
results were obtained through the utilization of VHDL description and the Xilinx FPGA
ISE Environment design tool.

 

Figure 7. Timing behavioral simulation results of accurate frequency measurement based on recipro-
cal counter design.

The design of the proposed reconfigurable frequency meter incorporates the GPS and
oscillating QCM signals as inputs (represented by clk_1 hz and freq_in signals in Figure 7).
The behavioral simulation results demonstrate the functionality and the accurate values
obtained by three counters (C_Ref, ValeurFrequenceRef, C_Freq) in accurately measuring
the frequency of the freq_in signal. These measurements take advantage of the precision of
the GPS sensor (clk_1 hz signal) and a local clock frequency of 200 MHz (clk200mhz signal).
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The accurate frequency calculation is performed according to Equation (3), as depicted in
Figure 5.

f =
C_Freq ∗ ValeurFrequenceRef

C_Ref
. (3)

2.2. Oscillator Realization

The resonance time of QCM crystals exhibits a low oscillation amplitude, typically
measured in millivolts. Therefore, sensors are connected directly to the oscillator circuit to
preserve the signal level and shape. However, the crystal signal can suffer from attenuation
and interference as it traverses various contact points such as the crystal holder and connec-
tors before reaching the circuit. To address this issue, great care has been taken in selecting
the connecting components, and proactive measures have been employed to position the
oscillator components away from strong magnetic fields and power connections.

As mentioned, the on-chip IOB inverters of the FPGA are configured as OBUFDS
elements [27] to directly facilitate the implementation of Pierce QCR oscillators. This novel
approach, not previously proposed in the existing literature on multi-channel QCM mea-
surement systems, enables the realization of low-cost QCR oscillators. Figure 8 describes
the proposed IOBs’ configuration and connection to create multi-channel QCR oscillators.
Pierce oscillators are implemented with QCM connected to the FPGA realizing the inverting
gate for the oscillator circuits responsible for generating the frequency oscillation signals
to be measured. For this purpose, some input pins of the FPGA are connected to QCR by
using the connection pins of the FMC XM105 expansion card (see Figure 4). For the input
frequency signal to be measured (i.e., the oscillator output signal), “Clock Capable” pins
ending in “_CC_” are used. For the OB output signal of the OBUFDS component, pins
ending in “_N” must be used, and for the O output signal of the OBUFDS component, pins
ending in “_P” should be used. In order to ensure adjacent output ports, the positive and
negative outputs are positioned on the same IOB side.

 
Figure 8. Design of Pierce-QCR-oscillator-based inner logic inverters of IOB FPGA.

3. Implementation and Experimental Results

The proposed reconfigurable standalone measurement platform with communication
capabilities combines both software resources, which bring the necessary versatility, and
the logic hardware resources in which the accurate frequency measurement unit is imple-
mented. To implement and test with multiple QCM sensors, the proposed design based on
the Xilinx XC-6 ML 605 technology is integrated as a new core with specific components
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as described by the corresponding block diagram shown in Figure 9. The proposed block
design includes the following four main modules:

- The Frequencemetre module, which corresponds to the proposed reciprocal counter
and delivers a 32-bit sequence of three counter values representing the digital fre-
quency measurement, as determined by Equation (3).

- The I2c_Slave_top module, which represents a hierarchical communication using the
I2c protocol that is connected to and exchanges data with the microcontroller for the
purpose of frequency measurement display. This module receives the counter values
from the Frequencemetre module and transmits them via the I2c communication link
to the microcontroller (PIC32MX) for further processing and display of the correspond-
ing normalized frequency change (in Hz) based on the QCM microbalance oscillation.

- The OBUFDS block, which is the inner logic oscillator circuit that provides the oscillat-
ing QCM signal while reducing the need for extra external logic circuits to function as
an inverting amplifier oscillator.

 

Figure 9. Design block diagram of GPS-based frequency measurement by QCM sensors.

As shown in Figure 9, the configured IOBs function as external oscillators ensuring
multi-channel measurement as illustrated in Figure 8. For this purpose, two IOBs are
necessary to achieve a single-channel QCM oscillator. More precisely, one IOB (OBUFDS
block) is configured as one logic inverter, which is combined with the external passive
elements (C1 and R1 as described in Figure 2) to create an on-chip piezoelectric QCM
oscillator within the FPGA. The second IOB is configured as a single-input buffer (IBUFDS-
configured IOB), serving as an intermediary element that ensures the signal source remains
unaffected by the load attributes while delivering a voltage and current similar to what it
receives at its input.

The proposed accurate multi-channel frequency measurement is described by using
hardware description language (VHDL), and the final binary configuration file is imple-
mented on Xilinx Virtex 6 XC6VLX240T-1FFG1156 FPGA. Table 1 provides a breakdown of
the required logic synthesis resources for the system, which include two QCR oscillators
connected to the FPGA. The resource utilization is as follows: 733 Slice registers, no DSP
multipliers, and no block RAM. This results in a low-cost logic consumption, with 188
slices, 733 flip-flops, and 13 IOBs, all operating at a maximum frequency of 324 MHz. The
architecture exhibits a dynamic power of 0.120 W, with a total supply power of approx-
imately 3.618 W. Compared with a similar previous work [28], the proposed system for
multi-channel measurement eliminates the need for Block RAM or specific digital clock
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managers (DCMs) associated with multiple GCLKs used as delay-locked loop (DLL) for
accurate measurement [28]. Moreover, due to the Xilinx FPGA technology, the proposed
system consumes over five times less dynamic power than other DCM- or DLL-based
systems which require a minimal dynamic power of 727 mW and 662 mW, respectively,
with a 100 MHz clocking frequency [29].

Table 1. Comparison of FPGA Resource Utilization for Two Parallel QCMs.

FPGA
Technology

GCLK DCMs BRAMs LUTs Slices IOBs FFs
Dynamic

PWR (mW)
Fmax

(MHz)

Proposed
Work

Virtex-6
XC6VLX240T

1
(12.5%)

0
(0%)

0
(0%)

527
(1%)

188
(1%)

13
(2%)

733
(1%) 120 324.4

Ref. [22] Virtex-4
4vlx25fft668-10

2
(6%)

1
(12%) X 1625

(7.5%)
922

(8.5%)
8

(1.5%)
774

(3.5%) NC 102.963

Ref. [28] Spartan-3
XC3S200 NC 1

(25%)
1

(9%)
460

(12%)
230

(12%)
5

(3%)
460

(12%) NC 200

To validate the system’s performance, a test platform consisting of multiple QCM
sensors in a homogeneous liquid (distilled water) was utilized. Figure 10 displays the
measurement obtained by the proposed multi-channel QCM from output signals of 4 MHz
and 10 MHz QCR oscillators. These signals were obtained using OBUFDS differential
inverters to perform 4 MHz and 10 MHz on-chip FPGA Pierce oscillator using only external
passive components (see Figure 4). We observed that the IOBs of the FPGA ensure the
oscillation of several quartz crystals without the need for additional external logic circuits,
as commonly utilized in previous QCM measurement systems. Therefore, the proposed
integrated QCRs maintain the oscillation of the signals; these are directly measurable by
the Frequencemetre module within the FPGA. These tests validate the functionality of the
FPGA-based multi-channel QCM measurement system, which operates effectively without
external QCRs and provides accurate real-time frequency measurements.

  

(a) (b) 

Figure 10. Frequency output signals of the QCR oscillators of the proposed multi-channel QCM
measurement: (a) 4 MHz QCR and (b) 10 MHz QCR.

In order to assess the accuracy of the proposed FPGA-based frequency meter design,
we conducted a series of comparative measurements. We used an input signal from a
10 MHz MicroCrystal OCXO oscillator, reference “OCXOV-AV5-10.000”, which provided
a frequency stability of ±0.2 ppm. This reference signal is measured both by a frequency
meter (Rohde and Schwarz Hameg HM8123 (OCXO Version)) and the proposed FPGA
Virtex-6 frequency measurement system. The HM 8123 counter frequency measurement
error is 1.25× 10−8. It represents the frequency instability of the counter, in the temperature
range of 0–50 ◦C. A 120-second series of measurements can be seen in Figure 11. On all
the measurements taken, it can be seen that the difference (Δf) between the mean value of
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measured frequencies by the HM8123 m and the mean values measured by the frequency
meter implemented in the FPGA is less than 0.1 Hz. In Figure 11, Δf is approximately
0.09 Hz. We can therefore consider that under normal operating conditions, the accuracy of
our system is better than 0.1 Hz.

Figure 11. Frequency measurement results for a gate time of one second.

4. Comparison with Similar Works

Several recent systems have been proposed to measure frequency shifts in QCM sys-
tems based on QCR [22,23,28,30–34]. Table 2 provides a comparison between the proposed
accurate multi-channel QCM system and state-of-the-art works in terms of additional hard-
ware resources, number of channels, number of external logic oscillator circuits (QCRs),
reference time base source, accuracy, and required FPGA logic resources. Based on Table 2,
it is evident that the proposed system achieves one of the highest accuracies. This is primar-
ily attributed to the utilization of a GPS signal and the incorporation of QCRs specifically
designed within the FPGA. These features enable the system to conduct multi-channel
frequency measurements using just a single FPGA. In fact, compared with previous works,
the achieved accuracy is better than 0.1 Hz, which is accomplished with only a reciprocal
counter. Furthermore, compared with similar works, the proposed FPGA design utilizes
79% fewer slices, 5% fewer flip-flops, and 67% fewer LUTs compared with the architecture
presented in [22]. Similarly, the proposed FPGA architecture design necessitates 45% fewer
slices compared with the system suggested in [28]. Therefore, compared with previous
systems, the proposed multi-channel QCM measurement system offers low-cost, highly
accurate frequency measurement for multiple interconnected sensing QCM crystals in
parallel for sensor investigations. Consequently, the proposed system provides a better
trade-off in terms of performance and required logic resources while offering a cost-effective
solution as it only requires external passive components to achieve multiple inverting QCM
oscillators, allowing multi-channel QCM measurement using a single FPGA device. More-
over, the main advantage of the proposed system is that it enables multi-channel frequency
measurement without the need for specific embedded blocks such as DSP, BRAM, DLL, or
additional external logic circuits such as oscillators, PLLs, microcontrollers, etc. However,
a limitation of the proposed system is its performance when ensuring simultaneous mea-
surement of a large number of QCR frequencies in the FPGA, which requires high parallel
computation and a large number of IOB (Input/Output Buffer) clocks.
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Table 2. Comparison of QCR-based QCM measurement systems.

References Hardware
Reference
Time Base

Source

Active
QCR

Techniques
Precision
Achieved

Resources for
Frequency

Measurement

Reconfigurability
with

Multi-Channel
System

[28] Xilinx Spartan 3 External 50
MHz oscillator External

Conventional
frequency
counter,

differential
delay lines

(DLL)

0.05 Hz
230 slices, 1

DCM, 9 IOBs,
17,280 BRAMs

Yes

[20]

Low-pass filter,
amplifier, PLL with

VCO,
microcontroller,

temperature sensor

NC External
Phase-locked
loop circuit

(PLL)
0022 Hz NC Yes

[22]
Virtex 4, 32-bit

MicroBlaze
microprocessor

NC External
Conventional

frequency
counter

<1 Hz

922 slices, 774
flip-flops, 1625
LUTs, 8 IOBs,
21 FIFO16, 1

GCLKS and 3
DSP48s

Yes

[30] DE-2 board PLL 200 MHz
signal External

Reciprocal
counter,

time-to-digital
converters

(TDCs)

0.25 Hz with
reciprocal
counter

NC Yes

[31]

Arduino Atmega
2560

microcontroller,
PIC16F628A per

channel

Arduino 1 Hz
signal External

Conventional
frequency
counter

1 Hz
One microcon-

troller per
channel

No

[32] Spartan 3 External 50
MHz oscillator External

Conventional
frequency
counter

1 Hz NC Yes

[33] CPLD XC2C256
16.9344 MHz

external TCXO
oscillator

External
Conventional

frequency
counter

0.5 Hz

228 macrocells,
19 function

blocks and 72%
of registers

Yes

[34] Spartan-3E
(XC3S250E)

100 MHz
TCXO

oscillator
External Reciprocal

counter 0.1 Hz NC Yes

Our QCR
with

reciprocal
counter

Virtex-6 ML605

GPS 1PPS
signal from

MediaTek GPS
chipset
MT3339

Internal Reciprocal
counter <0.1 Hz

188 slices, 733
flip-flops, 527
LUTs, 13 IOBs

Yes

5. Conclusions and Future work

This paper presents a GPS-based accurate multi-channel QCM sensor measurement
application using an FPGA directly interfaced with quartz crystal oscillators. Our system
ensures multi-sensor measurement while integrating the reciprocal frequency measurement
part within the FPGA. The reconfigurable embedded system performs the frequency
measurement for high-accuracy QCM applications which has been implemented and
behavior-tested using the FPGA Virtex-6 XC6VLX240T. The proposed system requires low
FPGA logic resources while taking advantage of the computation concurrency. Furthermore,
the suggested system eliminates the need for external oscillators or chips for conditioning
or data processing. It enables the measurement and monitoring of QCM frequencies within
the 1–50 MHz range with an accuracy of 2 ppm and a precision of under 0.1 Hz. Frequency
values from multiple QCM sensors can be measured and recorded periodically, every
second, using this system.
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As part of our future work, we also plan to integrate compensation conditions (or cali-
bration sensors) based on Allan deviation computation within the FPGA. This integration
will accurately determine the influence of measurement conditions on oscillator behavior,
frequency stability, and sensor mass resolution, thereby improving accuracy and processing
time [33]. Additionally, we will measure temperatures and ambient humidity in sensor
environments simultaneously to enhance high-temperature compensation and improve
quartz crystal characteristics. To achieve higher accuracy in frequency measurement, we
will consider incorporating a time-to-digital converter IP core for FPGA, enabling precise
measurements [34]. Moreover, as sensors with high sensitivity require more time for accu-
rate frequency shift measurements, we will explore the principle of rational approximations
for measurement [35].
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Abstract: FPGAs are gaining favor among researchers in fields including artificial intelligence
and big data due to their configurability and high level of parallelism. As the packing methods
indisputably affect the implementation performance of FPGA chips, packing techniques play an
important role in the design automation flow of FPGAs. In this paper, we propose a quantitative
rule for packing priority of neural network circuits, and optimize the traditional seed-based packing
methods with special primitives. The experiment result indicates that the proposed packing method
achieves an average decrease of 8.45% in critical path delay compared to the VTR8.0 on Koios deep
learning benchmarks.

Keywords: FPGA; EDA; packing; seed-based; indirect connections

1. Introduction

In recent years, Field Programmable Gate Array (FPGA) chips are being widely used in
the acceleration of neural networks (NNs). NN applications such as image classification [1],
object detection [2], and natural language processing [3] can take full advantage of the
reconfigurable parallelism of FPGA architectures.

FPGAs typically consist of two-dimensional reconfigurable arrays, including Con-
figurable Logic Blocks (CLBs), Block RAMs (BRAMs), Digital Signal Processing blocks
(DSPs) [4,5], etc., and all these tiles are connected through programmable wires and
switches. The back-end optimization of FPGAs is restricted by the pre-placed computing
primitives and the pre-routed clock tree. As the packing methods indisputably affect the
implementation performance of FPGA chips, packing techniques play an important role in
the design automation flow of FPGAs.

Nowadays, the most commonly used packing algorithms are Seed-based algorithms,
which pack the look up tables (LUTs) and flip-flops (FFs) together to implement the
designated logic function. Seed-based algorithms construct new tiles by seeding each with
an unpacked primitive and greedily absorbing its surrounding primitives according to
attraction functions. However, emerging heterogeneous FPGA architectures present a new
challenge to the traditional packing methods; heterogeneous IP Blocks, such as the BRAMs
and DSPs, make traditional packing methods inefficient due to the unevenly distributed
wiring topology.

In this paper, we propose an improved packing algorithm. The main contributions
of this paper are as follows: (1) A quantitative rule for packing priority of neural network
circuits is proposed. (2) The traditional seed-based packing methods with special primitives
is optimized. Compared with Verilog-To-Routing(VTR) [6], the proposed packing method
achieves an average reduction of 8.45% in latency at the cost of a 0.58% increase in resource
consumption and a 7.55% increase in runtime for the optimized circuits without affecting
other circuits.
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2. Related Work

Previous algorithms for FPGA packing can be loosely categorized into seed-based
packing and partitioning-based packing.

VPACK [7] is the first seed-based packing approach. It packs LUTs and FFs into
BLE, and then into CLBs. T-VPACK [8] reduces the critical path delay of the circuit by
modifying the attraction function. DPACK [9] adds the Manhattan distance to the attractive
function of T-VPACK, which reduces the bus length by 16% and the critical path delay
by 8% after placement and routing. For more complex logic blocks, ref. [10] proposes the
AAPACK algorithm, which packs primitives into molecules and assemble clusters from a
set of molecules. RSVPACK [11] is a packing algorithm for the XILINX V6 architecture that
bridges the gap between academia and industry. DPPACK [12] adopts distributed parallel
packing, which shortens the runtime by 1.4–3.2 times with acceptable quality degradation
compared to AAPACK. [6] is an update to AAPack, optimized for seed selection and
attraction functions.

PPFF [13] applies partition-based packing to FPGAs as a sub-step of placement.
PPack [14] explores partition-based packing, which adds a significant amount of runtime
compared to T-VPACK. PPack2 [15] is an improved version of PPack. Compared to T-
VPack, PPack2 has an 11.2% reduction in critical path delay. PartSA [16] is a multi-threaded
parallel packing algorithm that reduces runtime but increases wire length by 26%.

A summary of FPGA packing algorithms is shown in Table 1. Partitioning-based
algorithms are effective at packing simple FPGAs, but they can struggle to handle the
constraints present in commercial devices. Conversely, seed-based algorithms perform
better in packing heterogeneous FPGAs. The seed-based algorithm adopts the same packing
rule for tiles with different areas, which will affect the wire length around some tiles and
even the delay of the critical path. This is more prominent in neural network circuits. This
paper proposes improved seed-based packing algorithms for neural networks, which can
reduce the critical path delays in the packing process.

Table 1. Summary of FPGA Packing Methods.

Packing Methods Advantages Disadvantages

partitioning-based
packing [13–16] effective struggle to handle packing of

heterogeneous clusters

seed-based packing [6–12] excel at packing
heterogeneous FPGAs

the influence of tiles of
different sizes on wirelength

was ignored

3. User Netlist

After circuit synthesis and mapping, a primitive-level user netlist is generated. It is
composed of primitives and necessary connectivity.

3.1. Primitives

Primitives are fundamental units that cannot be separated, and their internal structure
is usually treated as a black box. Each primitive contains one or more ports, including input
and output ports, with each port having one or more pins. For example, the input port of a
LUT usually has four to eight pins. In modern FPGAs, three frequently used primitives are
DSPs, RAMs, and adders, which were not present in earlier generations of FPGA products.
The features of these three types of primitives in application circuits are described below.

3.1.1. DSPs and RAMs

DSPs and RAMs are embedded reconfigurable IP blocks in FPGAs. However, the use
of primitives inherently introduces significant latency. In advanced neural networks, about
80–90% of the operations are matrix multiplication [17], which means that the critical
path often includes DSPs or RAMs. Consequently, reducing the delay of the network
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connected by these primitives has become a pressing issue that requires immediate attention
in the field.

3.1.2. Adders

Adders typically implement carry chains and are generally located in CLBs. In real-
world applications, adders typically consist of multiple cascaded CLBs. Since adders re-use
the LUT routing pins, a smaller number of LUT pins is required for CLBs with adders.
Taking the Intel Stratix_10 architecture as an example, a CLB without adders can absorb a
6-bit LUT, while for CLBs with adders, the maximum number of input pins is four.

3.2. Connectivity

The connectivity between primitives in the user netlist is implemented through net-
works. Primitives are connected to a network through pins. A connected network is usually
interconnected to the pins of multiple primitives, among which only one pin is an output
pin. A network with a large number of primitives connected to it is commonly referred to
as a high fan-out network, while a network with a smaller number of primitives is typically
known as a low fan-out network.

There are three types of connectivity between primitives: direct connectivity, indirect
connectivity and high fan-out connectivity. Direct connectivity refers to the connectivity
between primitives through a low fan-out network. Indirect connectivity is the connection
between primitives through different networks of the same tile. A high fan-out connectivity
refers to the connectivity between primitives through a high fan-out network. The modes
of connection are shown in Figure 1.

FF1

FF2

LUT1

RAM1

RAM2

RAM3

FF3

LUT2

FF4

LUT3

FF5 FF6

FF7

Figure 1. There are three types of connectivity between primitives. LUT1 is the seed, FF1 is a directly
connected primitive, FF5 and FF6 are indirectly connected primitives, and FF3 is a high fan-out
connected primitive.

Packer is designed to absorb the primitives of direct connections in order to reduce
the number of external networks on the tile, which serves to reduce the overload of routing
and computing. For primitives of indirect connections, packing them into the tiles can
reduce the number of external connections of the tiles, which increases the relevancy of the
connected tile.

4. Packing Methods

The path delay of FPGAs is affected by two factors: the internal delay of logic blocks
and the delay introduced by programmable routing. The delay of logic blocks is fixed,
while the delay of programmable routing is influenced by the wire length of nets. In order
to minimize the delay of the nets that are connected to DSPs and RAMs, it is essential to
reduce the length of these nets. However, since the area occupied by DSPs and RAMs
is much larger than that of CLBs, some pins on DSPs and RAMs may be located far
apart. As a result, even tiles that are situated around a DSP or RAM may be distant from
the pins of the corresponding connection. Figure 2 shows the result of placement and
routing in VTR8.0. In the figure, o1 stands for the DSP, o2 stands for the CLB. And two
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primitives indirectly connected through o1 are grouped in o2, resulting in two nets between
o1 and o2. Figure 2a shows two routing networks connected with DSP pins at the same
coordinates, while Figure 2b shows two routing networks connected with DSP pins at
different coordinates. It can be seen from Figure 2 that absorbing primitives indirectly
connected through pins in the same location can reduce wire length. This is in contrast to
absorbing primitives indirectly connected through pins in different locations. To minimize
the delay of the nets that are linked to DSPs and RAMs, the packer prioritizes absorbing
the primitives that are indirectly connected through pins in the same location based on
the pin distribution of tile. This approach avoids absorbing primitives that are indirectly
connected at different locations, thereby reducing the length of the nets connected by DSP
and RAM after placement and routing.

(a) (b)

Figure 2. Connections between a CLB and a DSP via two nets (VTR8.0 visualization).

When a CLB is connected to multiple DSPs or RAMs, the average wire length between
the CLB and these tiles tends to be high, as shown in Figure 3. This issue becomes more
prevalent if there is a higher proportion of RAMs and DSPs in the circuit, as it increases the
likelihood of multiple connections between the same CLB and these tiles. In contrast, if
the circuit design incorporates a high proportion of adders, there will be fewer options for
packers, and primitives in different positions will be absorbed. Moreover, the cascading of
adders considers multiple CLBs as a single unit, which is often connected to multiple DSPs
or RAMs. This interconnection can significantly impact the overall packing result.
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Figure 3. A CLB connects multiple DSPs (VTR8.0 visualization).

Table 2 presents a comparison between wire lengths and wiring segments utilized in
connecting DSPs and CLBs. As the table illustrates, the connection relationships between
CLBs, DSPs, and RAMs significantly impact wire length and wiring segment consumption.
Therefore, it is essential to give priority to circuits that are indirectly connected via DSPs
and RAMs. In this study, we refer to DSPs and RAMs that satisfy the specified requirements
as special primitives, while referring to other primitives as normal primitives.

Table 2. Three types of connections between DSP and CLB.

Types of
Connections

Total
Wirelength

Maximum Net
Length

Total Wiring
Segments Used

Maximum
Segments Used

by a Net

Figure 2a 14 5 6 2
Figure 2b 21 9 8 3
Figure 3 47 12 17 5

The process of the packing algorithm in this paper is shown in Algorithm 1. First, the
packer analyzes the proportion of various primitives in the user netlist to determine whether
to use DSP and RAM as special primitives or not. The packer then groups the primitives
into molecules, calculates the seed gain for each molecule and selects the molecule with the
highest gain as the seed. After the seed is selected, the packer will absorb the molecules
around the tile until the constraints of the tile are no longer satisfied or the surrounding
molecules are all packed. The above process is repeated until all molecules are packed. Our
packing algorithm is composed of three stages: primitive classification, seed selection, and
molecule selection.
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Algorithm 1 Pack algorithm.

Input: f pga_architecture and netlist
Output: packed_netlist

1: if number(DSP, RAM, adder) < threshold then
2: DSP, RAM ∈ special tiles
3: else
4: DSP, RAM ∈ normal tiles
5: end if
6: moles ← atom2molecule(netlist)
7: while unpacked_mol �= ∅ do
8: seed ← get_highest_seed_gain(moles)
9: cur_clus ← creat_cluster(seed)

10: while have_spcace(cur_clus) do
11: next_mol ← get_highest_gain(moles)
12: if next_mol = ∅ then
13: break
14: end if
15: cur_clus ← add_mole(moles, cur_clus)
16: end while
17: end while
18: return packed_netlist

4.1. Primitive Classification

In this paper, the algorithm considers the proportion of DSPs, RAMs, and adders in
the circuit as the quantitative rule for special primitives. The formula used for this purpose
is as follows:

SP =

⎧⎨
⎩{DSPs, RAMs},

num(DSPs) + num(RAMs) + num(adders)
num(total)

< thre

∅, otherwise
(1)

where SP is a set of special primitives, num(DSPs) is the number of DSPs in the netlist,
num(RAMs) is the number of RAMs in the netlist, num(adders) is the number of adders in
the netlist, num(total) is the total number of primitives in the netlist, and thre is the threshold.

4.2. Seed Selection

The selection of the seed impacts the order in which different parts of the netlist will
be clustered. In VTR8.0, the criteria of the selection of seed are determined by the number
of primitives in the molecule, the number of molecular pins, and the delay information
of the molecule. When the molecules are packed, the packer can determine the type of
connectivity between the pins of the tile and the network. In this paper we seek to raise the
priority of molecules with special primitives as seeds through the use of seed_gain as the
criterion for seed selection. The molecule with large seed_gain is preferentially selected as
the seed. The model of seed_gain is as follows:

seed_gain = w1 × num(in) + w2 × num(used_in)

+ w3 × num(block) + w4 × crit + w5 × i(SP)
(2)

where num(used_in) is the normalized number of input pins used, num(in) is the normal-
ized number of input pins, and num(block) is the normalized number of primitives in the
molecule, crit is the delay of the primitive pins, i(SP) is used to determine whether the
current primitive is a special primitive, w1 ∼ w5 is the weight.
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4.3. Molecule Selection

Once a seed molecule has been chosen and a new tile is opened, the packer begins
searching for unclustered molecules to add. The next molecule to be grouped into the
current tile is determined by attraction functions, which are influenced by the connectivity
between the molecule and the current tile.

For the attraction function of direct connectivity, our packing algorithm adopts the
same attraction function as VTR8.0.

A f f (p, B) = (1 − β)× c_gain(p, B) + β × t_gain(p, B) (3)

where c_gain(p, B) is the connection benefit of the molecule p to the tile B, and t_gain(p, B) is
the Criticality of the network connection between p and B. c_gain(p, B) formula is as follows.

c_gain(p, B) =
(1 − α)× nets(p, B) + α × con(p, B)

num_pins(p)
(4)

where nets(p, B) is the number of shared nodes between the molecule p and the tile B,
and con(p, B) and the pins of p are closely related to the connection relationship of B; the
formula is as follows.

con(p, B) =
1

ext(p, B) + packed(p) + 1
(5)

where ext(p, B) is the number of pins of p that are not connected to tile B, and packed(p) is
the number of pins of p that are connected to the packed molecule.

Our packing algorithm considers two types of indirect connectivity: indirect con-
nectivity through special tiles and indirect connectivity through normal tiles. The packer
should preferentially absorb molecules that are indirectly connected to the current tile via
short-distance pins. Therefore, the molecules that are indirectly connected to the current
tile through the special tile are divided into three categories. The first type is molecules
that are indirectly connected through pins on the same side and at the same location, as
shown in Figure 4a. The second type is molecules that are indirectly connected on the
same side but at different locations, as shown in Figure 4b. The third type is molecules
indirectly connected by pins on different sides, as shown in Figure 4c. During packing, the
packer prioritizes first-type molecules into the same tile, and then considers second-type
molecules, and finally third-type molecules. The cost of the attractive function is as follows.

FF1

Tile

Port1(in)
Tile

Port1(in)

Port2(in)FF2

FF3
Tile

Port1(in)

Port3(out)

(a)first-type indirect 
connectivity

(b)second-type indirect 
connectivity

(c)third-type indirect 
connectivity

Figure 4. Three models of indirect connectivity.

A f f (p, B) = ∑
Ti∈Tiles

ind_gain(p, B, Ti) (6)
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Among them, Tiles is the set of tiles around tile B. ind_gain(p, B, Ti) is the attraction
of p indirectly connected to molecule tile B through Ti.

ind_gain(p, B, Ti) =

{
wport × numport + wdir × numdir + wrev × numrev, Ti ∈ SP
wnor × nnor, otherwise

(7)

Among them, wport is the weight of the first type of molecules, wdir is the weight of the
second type of molecules, wrev is the weight of the third type of molecules, numport, numdir
and numrev are the connection times of the three indirect connection molecules, wnor is
the weight of molecules indirectly connected through normal tiles, and nnor is the number
of times primitives are indirectly connected through normal tiles. The formula for wdir
is as follows:

wdir =
wport

ndir
(8)

Among them, ndir is a positive integer.
If both directly connected and indirectly connected molecules are packed, and the

tile to be packed does not meet the constraints, then the molecules connected by the high
fan-out network are selected for clustering.

5. Experimental Results

The experiments are performed on a workstation with an AMD EPYC 7302P (16 cores,
3 GHz) with 64 G of memory. The FPGA architecture used in this paper is the k6FracN10LB
_mem20K_complexDSP_customSB_22nm architecture provided by VTR. Its blocks are
Agilex-like, but the routing architecture is Stratix-IV-like [18]. The circuits used in this
paper are from the Koios benchmark [19]. The Koios benchmark contains 20 deep learning-
related circuits, all of which are medium- or large-size circuits, suitable for architecture
research and EDA algorithm research. This paper runs Koios with a channel width of
200 for medium-size circuits and 300 for large-size circuits.

Table 3 shows some parameters and parameter values used in this experiment, and
the values are obtained through verification in VTR8.0.

Table 3. Values of parameters.

Parameters Value

w1 0.5
w2 0.2
w3 0.2
w4 0.1

wnor 0.003
wrev 0.001

α 0.6
β 0.2

Figure 5 shows the impact of the proportion of DSPs, RAMs and adder on the critical
path delay in the Koios benchmark. It can be seen from Figure 5 that when the proportion
of DSPs, RAMs and adder in the circuit exceeds 20%, the packer uses DSPs and RAMs as
special primitives to cluster. This clustering results in a higher possibility of increasing the
critical path delay, as shown in the red zone on the left in Figure 5. If the proportion of DSP
in the circuit is less than 20%, eleven out of twelve benchmark circuits have successfully
reduced critical path delays, as shown in the blue zone on the right in Figure 5. So the
algorithm in this paper sets the thre as 20%.
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Figure 5. The influence of the proportion of DSPs, RAMs and adder in the circuit on the critical path
delay. The histogram is the proportion of DSPs, RAMs and adder in the circuit, corresponding to the
coordinates on the left. The line graph is the optimization rate of critical path delay, corresponding to
the coordinates on the right.

In the seed selection stage, the effect of different w5 in the seed_gain on the algorithm
of this paper was tested. For testing purposes, the medium circuits of the Koios benchmark
that meet the special primitive conditions are used as the test circuits, and the results of
these tests are shown in Figure 6. From the figure, it can be seen that the critical path delay
is optimized best when w5 is 0.1. In this paper, we set w5 to 0.1.

Figure 6. Effect of variation of w5 in seed selection stage on critical path delay.

In the molecule selection stage, the attraction of directly connected molecules should
be greater than that of indirectly connected molecules. The attraction functions of indirectly
connected molecules are shown in Equations (7) and (8). In indirect connection, the
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attraction should meet the condition wport>max{wdir, wnor} and min{wdir, wnor}> wrev.
With the parameters of Table 3, the attraction of direct connection molecules is greater than
0.1. Therefore, this paper sets wport as 0.009, 0.03, 0.06 and 0.09, respectively, and observes
the impact of changes in wport on the critical path delay. As can be seen from Figure 7, in
the Koios benchmark, the circuits that meet the special primitive conditions achieve better
results when wport is 0.03 for critical path delay.

�
���

��

�
���

��

�
���

��

�
���

��

Figure 7. The impact of changes in wport on critical path delays.

When dealing with molecules indirectly connected through special tiles, the first type
of indirect connectivity should exhibit greater attraction than the second type. However,
if the attraction of the second type of indirectly connected molecules is too small, the
packer may end up neglecting these molecules and instead absorb those that are indirectly
connected through another special tile. In this paper, ndir is set to 2, 3, 6, and 9 respectively,
and the critical path delay changes are observed. It can be seen from Figure 8 that in the
Koios benchmark, the circuits that meet the special primitive conditions achieve better
results in critical path delay when ndir is 6.

Figure 8. The impact of changes in ndir on critical path delay.
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From Figures 9 and 10, it can be inferred that resource consumption is scarcely affected
by variations in wport and ndir. The variation range is within 0.24%. After rebalancing
resource consumption and critical path delay, this paper sets wport to 0.03 and ndir to 6.

Figure 9. The impact of changes in wport on resource consumption.

Figure 10. The impact of changes in ndir on resource consumption.

Our proposed algorithm contrasts with the packing algorithm in VTR8.0 through a
modified packing rule for indirectly connected molecules. This modification results in a
rise in computational demand and extends the algorithm’s runtime. However, while fewer
options during the packing process translate into a slight increase in resource consumption,
the algorithm’s refinement leads to a shortened wirelength for nets around DSPs and RAMs.
The end result is a reduction in the critical path delay.

As can be seen from Table 4, compared with VTR8.0, our packing reduces the critical
path delay by 8.45% on average at the cost of a 0.58% increase in resource consumption and
a 7.55% increase in runtime. Among the circuits in the Koios benchmark suite that meet
the special primitive criteria, eleven out of twelve have successfully reduced critical path
delays. For circuits that do not meet the conditions of special primitives, the algorithm in
this paper does not divide the primitives around DSP and RAM, so resource consumption
and critical path delay are the same as VTR8.0.
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Table 4. The comparison between the packing method of the present invention and the results of
VTR8.0 after placement and routing.

Circuits
Blocks Runtime Crit Path Delay

VTR8.0 Ours VTR8.0 Ours VTR8.0 Ours

Eltwise_layer.v 478 478 6.48 6.08 6.69 5.75
Conv_layer.v 1323 1326 42.47 43.24 6.9 6.82

Softmax.v 570 570 10.13 10.44 8.62 9.08
Gemm_layer.v 2217 2217 17.54 17.73 6.05 5.48

Robot_rl.v 1438 1443 19.19 19.46 12.66 12.12
Conv_layer_hls.v 1749 1748 115.18 137.12 6.9 6.48

bnn.v 1409 1452 378.2 575.76 7.98 6.76
Tiny_darknet.med.v 18,315 18,380 3164.24 3890.84 13.68 12.33
Tpu_like.medium.v 5344 5436 787.39 682.35 12.34 10.67
Clstm_like.small.v 10,078 10,130 308.05 326.07 8.06 7.17
Clstm_like.med.v 19,087 19,172 617.4 629.25 9.22 8.34
Clstm_like.large.v 28,118 28,232 985.77 992.84 10.51 9.19

Average 1.000 1.0058 1.00 1.0755 1.00 0.9155

improve −0.58% −7.55% 8.45%

6. Conclusions and Future Work

This paper proposes a packing algorithm for FPGA improved by indirect connection,
which refines the packing guideline in two aspects. (1) It proposes the quantitive rules
of the special primitives by the proportion of DSPs, RAMs and adders. (2) It optimizes
the traditional seed-based packing methods with special primitives, such as the modified
criteria for seed and molecule selection. For circuits with special primitives, the proposed
packing algorithm reduces the critical path delay by an average of 8.45% compared to
VTR8.0. For circuits without special primitives, the critical path delay of our packing is the
same as that of VTR8.0.

For future work, we will primarily aim at utilizing parallel computing methods to
curtail the runtime of our proposed algorithm. We also plan to investigate the feasibility of
porting these algorithms to commercial FPGAs.
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Field-programmable gate array (FPGA) technology represents a potential alternative
to classical CPUs and GPUs in the post-Moore era from edge computing to data centers.
FPGAs offer performance improvements when compared with traditional processing
architectures due to their spatial computation capability and energy efficiency. In recent
years, FPGA technologies have evolved in different forms of tools, design methodologies,
and architectural features. These technologies have enabled or boosted novel application
domains. This Special Issue aims to present how advances in FPGA-based technologies
have made it possible for multiple application domains.

The following two papers “FPGA-Based High-Throughput Key-Value Store Using
Hashing and B-Tree for Securities Trading System” and “Acceleration of Trading System
Back End with FPGAs Using High-Level Synthesis Flow” show how FPGA-based technol-
ogy helps accelerate high-performance trading systems. In first paper, the authors propose
a high-throughput key-value store (KVS) for securities trading system applications using
an FPGA. The design uses a combination of hashing and B-Tree techniques and supports a
large number of keys (40 million), as required by the trading system. The design uses high
bandwidth memory (HBM), on-chip memory available in Virtex Ultrascale+ FPGAs, to
support a large number of keys. The second paper presents the design of a financial trading
system order-processing component using FPGAs, and it was implemented with high-level
synthesis (HLS) flow. The order processing component is the major contributor to increased
delays and low throughput in the current software implementation of trading systems.
The objective of FPGA implementation is to reduce the latency of order processing and
increase the throughput of trading systems as compared to software implementation. This
paper shows more than double the advantage in order-processing speed and a reduction in
latency when using FPGA technology.

FPGA-based applications for machine learning are of a different variety, as shown by
“Electromyogram (EMG) Signal Classification Based on Light-Weight Neural Network with
FPGAs for Wearable Application”, “An Instruction-Driven Batch-Based High-Performance
Resource-Efficient LSTM Accelerator on FPGA, and “Improving Seed-Based FPGA Pack-
ing with Indirect Connection for Realization of Neural Networks” . In the first paper, to
accomplish a lightweight neural network, a maximal overlap discrete wavelet transform
(MODWT) and a smoothing technique were used for better feature extractions. Moreover,
learning efficiency increased when using an augmentation technique. In designing the
neural network, a one-dimensional convolution layer is used to ensure that the neural
network is simple and lightweight. Consequently, the lightweight attribute can be achieved,
and neural networks can be implemented in edge devices such as the FPGA, yielding
low power consumption, high security, fast response times, and high user convenience
for wearable applications. The second paper proposes an LSTM accelerator that is driven
by a specific instruction set. The accelerator consists of a matrix multiplication unit and
a post-processing unit. The matrix multiplication unit uses the staggered timing of read
data to reduce register usage. The post-processing unit can complete various calculations
with only a small amount of digital signal processing (DSP) slices using resource shar-
ing, and at the same time, the memory footprint is reduced via well-designed data flow
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designs. The accelerator is batch-based and capable of computing data from multiple
users simultaneously. Since the calculation process of LSTM is divided into a sequence
of instructions, it is feasible to execute multi-layer LSTM networks and large-scale LSTM
networks. Experimental results show that the accelerator can achieve a performance of
2036 GOPS at 16-bit data precision while having higher hardware utilization compared
to previous work. The third paper proposed a quantitative rule for packing the priority
of neural network circuits and optimized traditional seed-based packing methods using
special primitives. The experimental result indicates that the proposed packing method
achieves an average decrease of 8.45% in critical path delay compared to the VTR8.0 on
Koios deep learning benchmarks.

Furthermore, FPGA-based technology for accelerating algorithms is shown in the
following papers. “A Model of Thermally Activated Molecular Transport: Implementation
in a Massive FPGA Cluster” reports a massively parallel implementation of Boltzmann’s
thermally activated molecular transport model. This model allows considering potential
energy barriers in molecular simulations and thus modeling thermally activated diffusion
processes in liquids. The model is implemented as an extension to the basic dynamic lattice
liquid (DLL) algorithm on ARUZ, a massively parallel FPGA-based simulator located at
BioNanoPark Lodz. The advantage of this approach is that it does not use any exponen-
tiation operations, minimizing resource usage and allowing one to perform simulations
containing up to 4,608,000 nodes. “FPGA Implementation of Shack–Hartmann Wavefront
Sensing Using Stream-Based Center of Gravity Method for Centroid Estimation" presents a
quick and reconfigurable architecture for Shack–Hartmann wavefront sensing implemented
on FPGA devices using a stream-based center of gravity to measure spot displacements.
By calculating the center of gravity around each incoming pixel using optimal window
matching with respect to the spot size, the common trade-off between noise and bias errors
and dynamic range due to window size existing in conventional center of gravity methods
is avoided. In addition, the accuracy of centroid estimation is not compromised when the
spot moves to or even crosses the sub-aperture boundary, leading to an increased dynamic
range. The calculation of the centroid begins when the pixel values are read from an image
sensor, and further computations, such as slope and partial wavefront reconstruction, fol-
low immediately as the sub-aperture centroids are ready. The result is a real-time wavefront
sensing system with very low latency and high measurement accuracy that is feasible for
targeting low-cost FPGA devices. This architecture provides a promising solution that can
cope with multiple target objects and work in moderate scintillation.

“FPGA-Flux Proprietary System for Online Detection of Outer Race Faults in Bearings”
introduces an online fault detection mechanism for industrial machinery, such as induction
motors or their components (e.g., bearings). Most commercial equipment provides general
measurements and not a diagnosis. On the other hand, commonly, research studies that
focus on fault detection are tested offline or over processors that do not comply with an
online diagnosis. In this sense, the present work proposes a system based on a proprietary
FPGA platform with several developed IP cores and tools. The FPGA platform and a stray
magnetic flux sensor are used for the online detection of faults in the outer race of bearings
in induction motors. The integrated parts comprising the monitoring system are the stray
magnetic flux triaxial sensor, several developed IP cores, an embedded processor for data
processing, and a user interface where the diagnosis is visualized. The system performs
the fault diagnosis via a statistical analysis as follows: First, a triaxial sensor measures the
stray magnetic flux in the motor’s surroundings (this flux will vary as symptoms of the
fault). Second, an embedded processor in an FPGA-based proprietary board drives the
developed IP cores in calculating statistical features. Third, a set of ranges is defined for
the statistical features’ values, and it is used to indicate the condition of the bearing in the
motor. The results demonstrate that the values of the root mean square (RMS) and kurtosis,
extracted from the stray magnetic field from the motor, provide a reliable diagnostic of the
analyzed bearing. The platform is based on FPGA XC6SLX45 Spartan 6 of Xilinx, and the
architecture of the modules used is described in HDL.

184



Electronics 2023, 12, 3302

“Finding the Top-K Heavy Hitters in Data Streams: A Reconfigurable Accelerator
Based on an FPGA-Optimized Algorithm": This paper presents a novel approach for accel-
erating the top-k heavy hitter query in data streams using field programmable gate arrays
(FPGAs). Current hardware acceleration approaches rely on the direct and strict mapping
of software algorithms into hardware, limiting their performance and practicality due to the
lack of hardware optimizations at an algorithmic level. The presented approach optimizes
a well-known software algorithm by carefully relaxing some of its requirements to allow
for the design of a practical and scalable hardware accelerator that outperforms current
state-of-the-art accelerators while maintaining near-perfect accuracy. This paper details the
design and implementation of an optimized FPGA accelerator that is specifically tailored
for computing the top-k heavy hitter query in data streams. The presented accelerator is
entirely specified at the C language level and is easily reproducible with high-level synthe-
sis (HLS) tools. Implementation on Intel Arria 10 and Stratix 10 FPGAs using the Intel HLS
compiler showed promising results—outperforming prior state-of-the-art accelerators in
terms of throughput and features.

Finally, the last two papers presented FPGA-based technology applied to real-time
and embedded systems. The first paper, “A New FPGA-Based Task Scheduler for Real-
Time Systems” demonstrates a novel design of an FPGA-implemented task scheduler for
real-time systems that supports both aperiodic and periodic tasks. The periodic tasks
are automatically restarted once their period has expired without any need for software
intervention. The proposed scheduler utilizes the earliest deadline first (EDF) algorithm
and is optimized for multi-core CPUs that are capable of executing up to four threads
simultaneously. The scheduler also provides support for task suspension, resumption,
and enabling inter-task synchronization. The design is based on priority queues, which
play a crucial role in decision making and time management. Thanks to the hardware
acceleration of the scheduler and the hardware implementation of priority queues, it
operates in only two clock cycles regardless of the number of tasks in the system. The
results of the FPGA synthesis, performed on an Intel FPGA device (Cyclone V family),
are presented in the paper. The second paper is “Accurate Multi-Channel QCM Sensor
Measurement Enabled by FPGA-Based Embedded System Using GPS” : This paper presents
a design and implementation proposal for a real-time frequency measurement system for
high-precision, multi-channel quartz crystal microbalance (QCM) sensors using a field
programmable gate array (FPGA). The key contribution of this study lies in the integration
of a frequency measurement and mass resolution computation based on global positioning
system (GPS) signals within a single FPGA chip, utilizing I/O blocks to incorporate logical
QCM oscillator circuits. The FPGA design enables parallel processing, ensuring accurate
measurements, faster calculations, and reduced hardware complexity by minimizing the
need for external components. As a result, a cost-effective and accurate multi-channel sensor
system is developed, serving as a reconfigurable standalone measurement platform with
communication capabilities. The system is implemented and tested using the FPGA Xilinx
Virtex-6, along with multiple QCM sensors. The implementation on a Xilinx XC6VLX240T
FPGA achieved a maximum frequency of 324 MHz and consumed a dynamic power of
120 mW. The proposed system meets the precision measurement requirements for QCM
sensor applications, exhibiting low measurement errors when monitoring QCM frequencies
that range from 1 to 50 MHz with an accuracy of 0.2 ppm and less than 0.1 Hz.

These papers demonstrate the diverse range of applications enabled by FPGA-based
technology. As the application requiring high performance and flexibility continues to
evolve, we can expect to see even more and more applications in the future.
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