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Intelligent and Computer Technologies’ Application in
Construction
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The construction industry is faced with many challenges, such as lagging productiv-
ity [1], labor sustainability [2], and environmental sustainability [3]. Intelligent construction
provides a solution to these challenges. In the past two decades, significant efforts have
been devoted to enhancing the construction project delivery process using intelligent and
computer technologies. Examples include, but are not limited to, smart site supervision [4],
construction robotics [5], automatic safety [6], and health management with the IoT [7].
This Special Issue aims to provide a platform to explore state-of-the-art knowledge, practi-
cal implementation, and cutting-edge innovations in the area of intelligent and computer
technologies’ application in construction. A total of fourteen original research studies
have been published, with contributions from international research groups. All these
contributions address the main topics of this Special Issue with an effective and targeted
effort.

Al-Sarafi et al. [8] explored factors that affect the adoption of BIM in the Yemeni
construction industry. The authors investigated five factors, i.e., technology, process, policy,
people, and the environment, using partial least squares structural equation modeling
(PLS-SEM). The multivariate results indicate that all factors influencing BIM adoption in
Yemen are highly correlated in the measurement model. The insight of this study illustrates
how factors influence the adoption of BIM and help develop BIM implementation strategies
in other countries.

Lin et al. [9] developed maturity scoring tables for assessing intelligent construction
management (ICM). A case study on two construction enterprises was conducted to validate
the feasibility of the developed assessment system. The results show that the system
can assess the maturity of these enterprises and derive appropriate improvement plans
accordingly. This method paves the way for an effective and accurate improvement in ICM
maturity.

Xu et al. [10] proposed an automatic approach that expands domain knowledge
elements (DKEs) from unstructured text to achieve better safety and risk management in
metro construction. The authors first obtained the connected knowledge elements with
a co-word co-occurrence network (CCN) and pruned the weakly related subnetworks
using association rule mining (ARM). Finally, a structure of DKEs could be obtained. The
presented method automatically expands DKEs from a small body of prior knowledge
while reducing expert bias, contributing to a refined knowledge structure that can guide
safety training and aid knowledge-based safety risk management.

Li, Zhang, and Xu [11] aimed to determine the factors influencing the adoption of
blockchain technology. The authors developed a technology–organization–environment
framework and collected data from 244 practitioners using questionnaires. The hypothesis
was validated using partial least squares structural equation modeling (PLS-SEM) and
fuzzy-set qualitative comparative analysis (fsQCA).
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Fei et al. [12] proposed an integrated schematic design method for reinforced concrete
(RC) shear wall structures using generative adversarial networks (GANs). A cloud design
platform was developed to provide a workable GAN application so as to address chal-
lenges in computer-aided design (CAD) drawing preprocessing and the high hardware
and software requirements of users’ computers. The experimental results show that the
proposed method has a 97.3% accuracy in heterogeneous data conversion and can generate
shear wall layout designs similar to those of qualified engineers.

Yan et al. [13] aimed to identify and analyze the key factors driving intelligent con-
struction (IC) development and to produce general laws to guide IC development. The
authors designed a five-stage method to obtain key driving factors and outlined general
laws based on an empirical study in China.

Xu, Kang, and Li [14] designed a novel feature-based deep learning method for con-
struction component classification. The presented method leverages local and global
features and performs feature fusion through deep convolution to achieve robust classifi-
cation. An experiment conducted on the construction dataset proved the efficiency of the
proposed method. The method helps increase efficiency in construction digitization.

Wang et al. [15] recognized key construction scenes on highway bridges through a
visual relationship detection-based method. The authors first identified five key construc-
tion scenes based on the underlying construction characteristics. Then, they formulated
identification rules for these scenes. Finally, a novel construction scene identification model
(CSIN) was built on these rules and vision-based techniques. The model’s effectiveness
was verified experimentally with an accuracy of 94%. This method helps to ensure safe
construction through remote monitoring.

Guo et al. [16] developed a virtual simulation method that achieves automatic selection
and localization of mobile cranes to improve the safety and efficiency of lifting operations.
The authors first extracted the required information from building information modeling
(BIM). Then, candidate locations and types of mobile cranes could be determined based on
the crane capacity and simulation results. More specifically, three constraint checks and
two efficiency optimizations were conducted. This study contributes to crane operation
planning and automatic construction simulation.

Shen et al. [17] aimed to identify and prevent safety risks during construction. The
authors developed a method that integrates the safety rule library, BIM, and natural
language processing technology to identify risks and intelligently present results in a
visual way. The findings and insights provide new information for construction safety
management.

Aguilar et al. [18] proposed a framework for analyzing the acoustic behavior of rooms
based on reverberation time (RT). The presented framework enables decision-making in the
early design phase using BIM technology and Dynamo. The framework allows automatic
evaluation of the RT each time after the modification of the BIM model, showing optimal
solutions according to cost and optimum absorbent surface area.

Li et al. [19] investigated and analyzed factors that influence the development of
intelligent construction (IC) in China. They developed a structural equation modeling
(SEM) approach to identify the factors, examine their implications, and showcase the key
means for successful IC development.

Zhao, Cao, and Liu [20] addressed problems in prefabricated component (PC) hoisting
control. They proposed a novel framework that uses BIM and the Internet of Things (IoT)
to structure a digital twin (DT) and adopts Dijkstra’s algorithm to conduct hoisting route
planning. In addition, long-range radio (LoRa) technology is also utilized for real-time
information transmission to monitor the PCs’ state. The proposed framework improves the
intelligent management of prefabricated building construction.

Cao, Kamaruzzaman, and Aziz [21] proposed a review paper on BIM utilization
in green building construction. They highlighted the advantages of BIM, discussed the
potential application of BIM in different phases of green building construction, and revealed
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the barriers, challenges, and future research directions of BIM utilization in green building
construction.
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A Framework for Prefabricated Component Hoisting
Management Systems Based on Digital Twin Technology

Yuhong Zhao 1,2, Cunfa Cao 1,2 and Zhansheng Liu 1,2,*

1 Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China;
zhaoyuhong@bjut.edu.cn (Y.Z.); caocunfa@emails.bjut.edu.cn (C.C.)

2 The Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education,
Beijing University of Technology, Beijing 100124, China

* Correspondence: liuzhansheng@bjut.edu.cn

Abstract: The hoisting of prefabricated components (PCs) is a key step during the construction of
prefabricated buildings. Aiming at the problems existing in the control of PC hoisting, an innovative
hoisting management system framework based on the digital twin (DT) is established in this paper.
The system framework comprehensively utilizes the building information model (BIM) and Internet
of Things (IoT) to establish a digital twin model (DTm) for PC hoisting control and uses Dijkstra’s
algorithm to conduct hoisting route planning according to the BIM data in the model. Meanwhile,
long-range radio (LoRa) technology was used for data acquisition and transmission to monitor the
movement state of the PCs in the hoisting process. By testing it in a prefabricated building project,
the DT control method was conducted to realize the functions of real-time information collection,
hoisting path planning and PC positioning, which proved the feasibility and effectiveness of the
method. As a key technology to realize intelligent manufacturing, DT has been widely studied in
academia. The DTm of the hoisting process of PCs is established in this study; it improves the level of
intelligent management of prefabricated building construction and provides a new idea for intelligent
building construction.

Keywords: digital twin; Internet of Things; prefabricated components; hoisting; building information
model; long-range radio; Dijkstra’s algorithm

1. Introduction

With the rapid development of society, the construction industry’s labor-intensive
construction noise and pollution, as well as other problems, are increasingly prominent.
Prefabricated building is developing rapidly because of its advantages of factory prefab-
ricated component production, fast construction site assembly and green environment
protection [1]. At present, the scale of the global prefabricated building market is growing
steadily year by year and the new construction area and market share of prefabricated
building in China are increasing year by year. Although prefabricated buildings have
many advantages, there are still many challenges in the construction site of prefabricated
buildings, such as insufficient management of construction site information being unable
to be timely transmitted, insufficient management of PC and low degree of visualization of
the construction site [2]. Prefabricated building is the key link to realize the transformation
of the construction mode from the traditional way to the industrial way. How to use intelli-
gent management and advanced technology to solve the problems in the construction of
traditional prefabricated buildings has attracted the attention of enterprises and scholars [3].
Zhong et al. [4] developed a multi-dimensional BIM platform by applying radio frequency
identification (RFID) technology and BIM technology to enhance the real-time visibility
and traceability of PCs. Zhao et al. [5] proposed a method based on the combination of
cloud computing, BIM and IoT to solve the problem of delayed information transmission
on the construction site. Through RFID, wireless sensor networks, LoRa, BIM and cloud

Buildings 2022, 12, 276. https://doi.org/10.3390/buildings12030276 https://www.mdpi.com/journal/buildings
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computing, real-time dynamic assembly building project data are obtained from the con-
struction site. Bortolini et al. [6] established a prefabricated building system model based
on BIM 4D modeling for assembly logistics planning and control in the construction site,
which is used for the delivery of sequence planning of PCs in the construction site and
the collaborative work of all construction parties. Ko et al. [7] proposed a cost-effective
material management and tracking system based on integrated RFID cloud computing
services, which realizes the omni-directional automatic tracking of materials. Dave et al. [8]
developed a communication framework based on the IoT to strengthen lean construction
management and the use of tracking technology for RFID, GPS and other key components
of the IoT and to track the whole process status of workers, materials and equipment.
Valero et al. [9] introduced the application of RFID technology in tracking the status of
PCs and Lee [10] designed a conceptual framework for prefabricated building construction
management systems, integrating BIM, 3D laser scanning, IoT, cloud computing and other
information technologies, to improve the efficiency and quality of prefabricated building
construction management. Wang et al. [11] proposed a conceptual framework of an Intelli-
gent Construction System for Prefabricated Buildings based on the IoT (ICSPB-IoT) and
proved the feasibility of the realization of ICSPB-IoT through case studies. Professor Ma
and his team, on the basis of overall building information management, also conducted
research on prefabricated buildings and put more emphasis on intelligence on the basis
of informatization [12]. He established an intelligent production planning and control
system for residential parts [13] and built a material management system based on mobile
terminals for the construction site [14].

Based on the above research studies and analyses, it was found that there are, mainly,
the following deficiencies: (1) Research on prefabricated building construction focuses
on the application of new technologies, such as IoT and BIM, for site management and
information transmission, but does not apply the IoT and BIM in the hoisting process of
PCs. (2) Although there are studies on the hoisting of complex objects, such as complex
environment, there is a lack of research on the control method for the hoisting of PCs.
(3) There is a lack of systematic methods for real-time monitoring and visual display of
PCs in the hoisting process. This study analyzes the application of a variety of emerging
technologies in the field of prefabricated buildings, studies the application ideas of DT
technology in the construction management of prefabricated buildings and establishes a
multi-technology combination of a PC hoisting management method based on DT. Mean-
while, the key technologies of hoisting planning and monitoring of the hoisting process are
studied in combination with a hoisting example; the feasibility of the proposed method
was verified.

2. Literature Review

2.1. Prefabricated Building Construction Management

In the field of prefabricated building construction management, scholars have con-
ducted extensive research on construction management digitalization and intelligent up-
grade. Liu et al. [15] and Liu et al. [16] used low-power wide-area network (LPWAN) in
prefabricated building construction sites to solve the problems of small coverage, high
energy consumption, and real-time information uploading and query in wireless net-
work used in traditional prefabricated building construction. By comparing LoRa and the
narrow-band IoT (NB-IoT), the most concerned LPWAN LoRa technology was found to
have advantages such as low cost, flexible networking, being independent of operators,
lower energy consumption and more mature industrial chain [17]. Combined with the
characteristics of multiple terminal nodes and small data volume, it is believed that LoRa
technology is more suitable for prefabricated building construction sites. Wang et al. [18]
proposed an enhanced perception system based on IoT to solve the hoisting problem.
Zhou et al. [19] proposed to use CPS-SMS to simulate and monitor the hoisting process
based on the concept of information physical systems (CPSs), which overcame problems
such as limited vision of underground space crane operators and complex construction
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environment. Lee et al. [20] aiming at the problem of the blind field of vision of operators
in the process of tower crane hoisting, proposed to use laser element ranging to accurately
locate the position of the object to be lifted, thus ensuring the safety of the tower crane
hoisting process due to visual field and other factors. In order to deal with the problem
of crane hoisting path planning in complex environments, Cai et al. [21] proposed a hy-
brid configuration space collision detection strategy based on an image collision detection
algorithm and designed a master–slave parallel genetic algorithm. Through the verifi-
cation of Compute Unified Device Architecture (CUDA) programming on the graphic
processing unit, this method could efficiently generate a high-quality hoisting path in the
complex environment.

2.2. Digital Twin

With the rapid development of the new generation of technologies represented by the
IoT, big data, cloud computing, Blockchain and artificial intelligence [22,23], the application
of DT theory to solve the problems existing in intelligent manufacturing has gradually
become a research hotspot. Globally speaking, the digitization level of the engineering
construction field is at a low stage, far behind the manufacturing industry, which indicates
that the digitization development of the construction industry has broad prospects and
space. People’s Daily published an article on the broad prospect of DT and pointed out
that, in the Yangtze River Delta integration Forum, relevant officials of the Ministry of
Industry and Information Technology proposed to build a DT system for the full life cycle
of products in key industries, which reflected China’s confidence and support for the
application prospect of DT.

The concept of “twin” originated from National Aeronautics and Space Adminis-
tration (NASA), which predicted the flight status of the air vehicle through the accurate
simulation test of the “twin” aircraft on the ground [24]. Professor Michael Grieves pro-
posed the concept of “Conceptual Ideal for Product Lifecycle Management (PLM)” and
pointed out that the digital model corresponding to the physical product could abstract
the state of the physical product by simulating and testing the product’s behavior [25]. It
was not until 2011 that Professor Michael Grieves formally proposed the concept of DT,
which includes physical entities, virtual digital models and the connection of data and
information between them [26]. The DT conceptual model digitizes the concept of “twin”,
introduces virtual space for digital expression and establishes the connection between
real space and virtual space, enabling them to interact in real time [27]. DT refers to the
establishment of a virtual model of the real physical entity in a digital way, so as to map
the physical model in the real world to the digital world, and to the use of a virtual model
to simulate the behavior characteristics of the real physical entity by means of information
exchange, fusion and iterative optimization [28,29]. Based on the physical entity, virtual
digital model and three-dimensional architecture of interactive connection, Tao Fei et al. [29]
introduced the twin database and service platform to establish the five-dimensional DTm.
Wu et al. [30] proposed a conceptual modeling method of DT based on the five-dimension
DT framework to represent the complex relationship between DT and their attributes
and conducted class verification through the concept level modeling of DT for intelligent
vehicles. Pei Wang et al. [31] proposed a big data virtual and real fusion framework for
intelligent manufacturing based on DT and designed the framework comprehensively from
three perspectives, such as the overall framework supported by the industrial Internet.
Qiu et al. [32] enumerated a typical AR assembly system structure, analyzed key technolo-
gies and applications of AR in digital assembly and pointed out that DT technology is
the development trend of intelligent assembly research in the future. The authors of [33]
studied the availability of data resources in the manufacturing industry based on DT and
took the available and unavailable data in the turning process as an example to conduct
general form classification to ensure that every situation was covered. Many researchers
have studied the application of DT in the production workshop, aerospace and other intel-
ligent manufacturing fields and put forward the concepts of DT workshop and DT satellite,
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which reflect the promotion of the development of advanced manufacturing industry by
DT [34–37].

Research on DT is also increasing in the field of architecture. China Information and
Communication Institute pointed out that the “DT city” is the necessary way and means to
realize the “smart city”. The Chinese government is committed to making the Xiongan New
Area a leading digital city in the world. Since the statement on DT cities was put forward
in the 2018 outline of the plan for Xiongan New Area, DT cities have been mentioned in the
fields of smart cities and community governance [38,39]. Yu et al. [40] proposed a method
for health monitoring based on the DTm, which constructed a non-parametric Bayesian
network to represent the dynamic degradation process of health state and the propagation
of cognitive uncertainty. The authors of [41,42] studied the application of DT technology
in steel structure building safety assessment and construction tensioning, respectively,
verifying the feasibility of DT application through cases. In the field of building venue
security, DT has been applied to the dynamic evacuation of personnel in the fire scene
of the Winter Olympic Venues, which makes up for the shortage of traditional fire safety
evacuations [43,44].

2.3. Research Emphasis and Novelty

Although information technology is widely used in the construction management of
prefabricated buildings, the application of DT technology in the construction management
of prefabricated buildings is seldom studied. Moreover, because of the complexity of
construction and hoisting sites of PCs, it is impossible to collect and analyze the hoisting
path and process information in real time. Additionally, because the management system
of on-site construction hoisting cannot be combined with the existing virtual model layout,
the management of construction hoisting still remains in the way of workers’ commu-
nication and dialogue. Thus, the construction site process cannot be better displayed.
To solve these problems, this study uses BIM, IoT and other technologies to establish a DT
model for the hoisting management of PCs. Meanwhile, the model was used to conduct
meaningful investigations and the results are as follows: (1) According to the DT model,
the system framework of construction hoisting management was established to realize
the real-time interactive management of PC hoisting. (2) This study verified the feasibility
of using Dijkstra’s algorithm to plan the hoisting path of PCs based on the established
virtual model. (3) According to the system framework of virtual and real interactions,
a method of real-time monitoring of the hoisting process of PCs is proposed to guide the
management personnel in site construction. (4) Virtual model interactive management of
PC hoisting management was realized to help site managers understand the location and
related information of PCs. The method proposed in this study integrates DT, IoT, BIM
and other technologies to improve the construction management level of prefabricated
buildings, which is of great significance for future research.

3. DTm for PC Hoisting

According to the characteristics and requirements of PC construction and hoisting
sites, this study establishes a DT five-dimensional model for prefabricated component
lifting combined with the DT five-dimensional model proposed by Tao Fei et al. [27].
On this basis, the frame of a PC hoisting management system is proposed. As shown in
Equation (1), HDT represents the hoisting-oriented DTm; HPE represents the hoisting of
a physical entity, which mainly includes the component being hoisted, the surrounding
physical environment affecting the hoisting and the actual changes in the component in the
hoisting process, such as the position and attitude; HVE represents the hoisting of virtual
entities corresponding to the hoisting of physical entities, such as PCs, BIM models of
building and surrounding site layout, etc.; HDD represents the twin data system for storing
and processing all kinds of data, such as building information model, data collected by
sensor, etc.; HSP represents the hoisting control service platform, which is used for various
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operations and presentations of the hoisting process visualization; and HCN represents the
relationships established among the four parts.

HDT = (HPE, HVE, HDD, HSP, HCN), (1)

As shown in Figure 1, the hoisting service platform is used to display the information
in the hoisting site environment and the hoisting process of PCs. Combined with the path-
planning algorithm, the planned hoisting route of PCs is displayed. The service platform
receives the virtual entity model, PC hoisting route data, PC position data and PC attitude
data in the twin data service platform. HVE is modeled manually according to HPE. BIM
modeling is conducted by hoisting surrounding environment (including building and site
layout, etc.) and PCs and the data of HVE are uploaded to HDD for storage and processing.
Combined with the cloud database, HVE is uploaded to the cloud, which can be quickly
inquired and viewed by the construction personnel. Meanwhile, the path optimization
algorithm is used to optimize the PC construction path, determine the reasonable hoisting
path and obtain the planning path data. During the hoisting process, the PCs are collected
by a variety of sensor devices and uploaded in real time using LPWAN. HDD collects
and stores all the data in the hoisting scenario, mainly including the following four types:
(1) HVE data after modeling is completed; (2) multi-layer data collected by the sensor during
hoisting; (3) through HVE data combined with the path optimization algorithm, each PC
hoisting planning path data; and (4) PC information data.

Figure 1. DT five-dimensional model for PC hoisting management.

Through the DT five-dimensional model for PC hoisting, the framework of the man-
agement system for PC hoisting is established in this study, as shown in Figure 2. Through
HPE in real object environment, HVE is established for the visual display of PC hoisting.
HVE is processed and path planning for the hoisting route of PCs is conducted. The infor-
mation of the PCs in HPE in the hoisting process is collected through a variety of sensors.
The collected data include position data, attitude data, stress–strain data, etc. The IoT is
conducted to realize the real-time transmission of data in the hoisting process of PCs and
the relationship between the variation in the hoisting process of PCs in HPE and HDD and
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HSP is established. HSP can provide the visual display of PCs for tower crane operators,
managers and project leaders. HSP applies an intelligent algorithm to call and process
the data in HDD, so as to present the virtual construction site, PC position information
and attitude information at the platform end. HSP controls the swing of PCs in hoisting
by setting the swing displacement threshold and the route offset threshold. When the
threshold is exceeded, HSP gives a danger alarm to reduce the risks in the hoisting process
of PCs.

Figure 2. Framework of hoisting control method based on DTm.

4. DT-Driven Hoisting Management Framework Construction

Based on the concept of DT, this study establishes the connection between HPE and
HVE through HDD and HSP and realizes the real-time interactive feedback between the real
physical environment and the virtual digital environment. In the hoisting control manage-
ment system established in this study, HPE mainly includes construction site environmental
entities, PC entities, tower cranes and operators. The construction site environmental
entities and PC entities are modelled and digitized by virtual entities through BIM mod-
elling. The virtual digital environment also includes the collection of a variety of data by
a variety of sensor devices, including attitude information data and position information
data, and uploads to HSP through information transmission technology. By combining the
HVE data of PCs for data processing, visual presentation is carried out in HSP. The position
and attitude information displayed by the tower crane operator is used to assist decision
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making and operation, and real-time interactive feedback between HPE and HVE is realized.
The information collection of PCs in the hoisting process adopts the Inertial Measurement
Unit (IMU), GPS, RFID tag and other sensors. HPE should be adjusted accordingly with the
change in HPE. If the building floor increases gradually, the hoisting virtual entity should
be updated according to the actual change.

4.1. DT-BIM Model

Building information mainly comes from the BIM model, which highly integrates all
relevant data in the building engineering project. Moreover, BIM, as a better information
solution in the construction industry, has been widely applied. Based on the BIM model,
this study establishes DT-BIM for hoisting. DT-BIM can realize the digital representation of
HVE on HPE of construction sites, environmental entities and PC entities. Based on the BIM
model in the design stage, the modelling of the surrounding environment and adjacent
buildings should be conducted reasonably, so that the virtual entity can fully show the
physical environment of the construction site, the construction field layout and the DT-BIM
of the building. Meanwhile, reasonable modelling of the building model is conducted for
all kinds of PCs that are hoisted on site and corresponding information is added into the
model for unified information management of the PCs that are processed from the factory
to the site construction and hoisting. The model of the PCs should be consistent with the
entity of the PCs to fully display the information of the PCs in the hoisting process.

BIM model-type attributes are used to define common attributes of the same types
of components, including section definition, geometric parameters and identification data
information. The instance type is defined as each specific precast component model having
unique attributes, including 3D graphics, dimension labelling, constraint mode, elevation
and positioning, etc. In order to realize the clear presentation of the PC model in the BIM
model, the PCs are named and coded in combination with the positioning and coding of
components’ names in the BIM model.

The BIM model is light-weighted to retain the 3D shape information of buildings
and surrounding environment, so as to reduce the amount of model data and reduce the
calculation pressure. According to the BIM model, combined with the layout location
of the tower crane on the construction site, the location of the PCs, the location of the
reinforcement processing zone and the surrounding building model, unified integration
and lightweight processing are conducted, so that the construction hoisting site can be
more clearly presented in the simplified BIM model. In the light-weight treatment of the
BIM model, only relevant information affecting the hoisting of PCs in the construction site
should be retained, such as the key location of the construction site as well as adjacent
buildings and layouts that have an impact on hoisting, etc. Information that has no influence
on hoisting, such as the specification of reinforcement, reinforcement and concrete of all
parts of the building, is removed to reduce the information of the BIM model. The DT-BIM
model is transmitted to the cloud server through the Industry Foundation Classes (IFC)
interface; then, WebGL technology is used to mount it on the web page, so as to see the
spatial environment layout of the construction and hoisting site of PCs on smart phones,
tablets and other mobile devices.

In order to meet the requirements of the route optimization algorithm for highly
abstracted construction site environments, this study proposes a plane model method
which simplifies the DT-BIM model into a hoisting path-oriented model. The plane model
facing the hoisting path is presented in the form of a spatial topology structure. The vertical
hoisting plane model is established through the hoisting position of the PCs and the
installation position of the PCs, which mainly includes the hoisting point of the PCs,
the installation position of the PCs and the layout relationship of buildings and adjacent
facilities, as shown in Figure 3.
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Figure 3. Hoisting location schematic diagram based on DT-BIM model.

4.2. Hoisting Route Planning Based on Dijkstra’s Algorithm

According to the location of the PCs in the construction site, the path optimization
algorithm is used to plan the hoisting path. According to the pre-developed building
complex, the surrounding environment model and the principle of avoiding, the path is
reasonably planned to establish the hoisting route from the storage location of the PCs to
the installation point.

4.2.1. Prefabricated Component Hoisting Route Planning

This study takes the tower crane as an example to analyze the hoisting track of PCs
and conduct hoisting route planning. In this study, the Dijkstra’s algorithm is employed for
improvement and the condition function of prohibition is added to the node topology to
prevent the hoisting route from passing through the obstacle body. The hoisting DT-BIM
model is processed and the plane model topology diagram facing the hoisting path is
obtained through hoisting point and termination point. The target building and obstacle
body area in the topology diagram are the hoisting prohibition area and the hoisting
prohibition condition function is set, as shown in Equation (2). The forbidden condition
function means that the distance between any two points in the restricted area of hosting
is infinite, wherein the variable T represents the horizontal coordinate and the variable V
represents the vertical coordinate. The forbidden conditional function is used to eliminate
the case whereby the node connection (hoisting path) in the topology diagram intersects
with the obstacle body region, preventing the hoisting object from contacting the obstacle
body region. In the topological diagram, the simplified size of the obstacle body extends
outward for a certain distance, representing as the obstacle region, and the conditional
function of the region is established.

t1 < Tx < t2 and v1 < VZ < v2, dp1 pm = ∞, (2)

4.2.2. Application Principle of Improved Dijkstra’s Algorithm

This section describes the principle of hoisting route planning of PCs in a construction
site based on Dijkstra’s algorithm. Dijkstra’s algorithm adopts the pattern of a greedy
algorithm, which is used to calculate the shortest path problem from one point to other
points in a directed graph [44]. Its main feature is to extend the operation layer by layer
from the starting point to the end point. The improved Dijkstra’s algorithm can calculate
the shortest path from the hoisting point to the installation point in a given topology based
on the avoidance principle. The idea of the improved Dijkstra’s algorithm is as follows:

11



Buildings 2022, 12, 276

(1) H = (S, U, E) is defined as a directed graph, where S is the set of nodes whose
shortest path from source point to a node has been solved and U is the set of nodes whose
shortest path has not been solved.

(2) If there is a node P1
n for the source point P1

m and the edge d (P1
n , P1

m) that connects
the two passes through the forbidden region (satisfies the forbidden condition function),
then its path length is set to infinity. Meanwhile, if the slope of the side connecting source
point P2

n to some node P2
m is less than 60 degrees, then the path length is set to infinity.

(3) The nodes in U are sorted according to the distance from the source point, the nodes
with the minimum distance are transferred to set S and the nodes with the shortest path are
recorded. Then, reorder the remaining nodes in U and select the node with the smallest distance.

(4) Repeat step 2. In the initial operation, there is only one point in S; find the shortest
path each time and add it to set S, until all nodes are added to S and the algorithm ends.

In the above algorithm, the source points of the directed graph are updated according
to the location of the PC and the directed graph and source points are updated according
to the construction progress and the changes in the location of the PC.

4.3. Method of Monitoring the Hoisting Process of PCs
4.3.1. Fusion Algorithm Positioning in Hoisting Process

Based on acquisition layer sensor equipment such as RFID tag, IMU and GPS, it can
collect detailed information of the components, position information and swing informa-
tion in the process of assembly building construction in real time. The IMU is a device
that measures an object’s three-axis attitude angle (or angular velocity) and its acceleration.
By means of three uniaxial accelerometers and three uniaxial gyroscopes of IMU, the oscil-
lation information of the prefabricated component in three-dimensional space is obtained
and the attitude of the object is calculated accordingly.

There are various representation methods for attitude monitoring, including three
common ones, i.e., Euler angle, attitude matrix and quaternion. In this study, the attitude
solution algorithm based on quaternion is adopted. When the quaternion represents the
attitude, there are multiple ways to write it. When the Euler angle represents the attitude
transformation, it represents three rotations around three axes. According to Euler’s
theorem, these three rotations can be equivalent to one rotation about one of the axes.

IMU was fused with GPS data and barometer data and the ETK (extended Kalman
filter) algorithm was improved to monitor the hoisting trajectory of PCs. The algorithm
architecture is shown in Figure 4. The improved fusion positioning algorithm architecture
is shown in Figure 5. The fusion positioning algorithm fuses the data collected by IMU,
GPS and barometer. The IMU collects the relative acceleration of the precast member in the
hoisting process in real time, converts the coordinate to the absolute acceleration and obtains
the three-dimensional displacement accumulation through two integrals. The collected
angular rate is used to detect the stopping condition, information such as swing disturbance
is zeroed and the quaternion is used to calculate the Euler Angle and the acceleration to
monitor the swing. The above information collected by IMU forms a state matrix and
Kalman filtering is carried out in combination with the position data collected by GPS
and barometer, through which more accurate precast member position information can
be obtained.

4.3.2. Information Transmission Based on LoRa Technology

According to the DTm for PC hoisting, this paper establishes the connection between
HPE and HDD based on the IoT, which involves wireless information transmission tech-
nology, sensor technology, global positioning system and RFID technology, etc. In recent
years, the IoT has developed rapidly. As one of the IoT methods, LPWAN has attracted
more and more attention from enterprises and scholars. By analyzing and comparing
the existing wireless transmission technologies, it was found that LoRa technology has
the advantages of wider transmission range and lower energy consumption. According
to the characteristics of complex construction processes of prefabricated buildings and
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the advantages of LoRa technology, such as flexible networking and low costs, compared
with NB-IoT technology, LoRa technology is more suitable for information transmission in
prefabricated building construction and hoisting sites.

Figure 4. Fusion positioning algorithm architecture.

Figure 5. Hoisting monitoring method architecture based on LoRa WAN.

Based on the LoRa WAN network architecture, this study establishes the construction
and hoisting site monitoring method architecture. LoRa technology is used for the wireless
transmission of physical entity attitude information and position information during
hoisting. In this study, the hoisting control terminal based on LoRa technology is used
to transmit the information and data in the hoisting process wirelessly. The device has
a variety of sensor interfaces, external IMU, GPS, barometer, etc. IMU collects attitude
information, including acceleration, velocity, swing, etc., during the hoisting of PCs. IMU,
GPS and barometer are used to collect the position information of PCs in the hoisting process
through the fusion positioning algorithm. The collected information is transmitted in real
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time via the LoRa chip to the LoRa gateway, where it is uploaded to HDD. The connection
between HPE, HDD and HSP is established through information collection, transmission
and processing and the real-time feedback mechanism is established for visual display.
As shown in Figure 5, the monitoring method architecture is mainly composed of perception
layer, network layer, service layer and application layer. The perception layer refers to the
information collection of the hoisting site through IMU, GPS, barometer, RFID tag and
other sensors and information uploading through the LoRa terminal device. The network
layer refers to the real-time and accurate transmission of the information collected by the
perception layer through the LoRa network. The information collected by the perception
layer is transmitted to the gateway through the LoRa WAN protocol and then to the service
layer through the gateway. In the service layer, database technology is used to store and
process the collected information, including component attribute information, hoisting
monitoring information, etc. The information in the service layer can be displayed on apps
and web pages through mobile phones, computers and other devices.

5. DT Application Case Study

Based on the DT theory and method, the framework of the control system for PC
hoisting is established. In this system, the DT-BIM model of prefabricated building is
embedded into the system, and the data collected by the sensor is also visually displayed
at the HVE. The DT-BIM model and the data collected by the sensor are stored in HDD.
According to these data and algorithms, component positioning, attitude monitoring, path-
planning presentation and construction management functions are realized. In this study,
the key technologies to realize these functions were experimentally studied and the above
functions were preliminarily realized.

5.1. Application of Hoisting Route Planning Method

DT achieves accurate mapping of virtual and real objects that are similar in form, pro-
cess and behavior by constructing virtual space objects corresponding to physical objects
in physical space. By using digital twinning to achieve the accurate mapping of virtual
and real conditions, we can have a more realistic grasp of the unpredictable situations in
reality. The management method of twin hoisting based on twin PCs is shown in Figure 6.
In this study, the real-time connection between the physical world and the virtual world
for the hoisting of PCs was established through digital twinning and the dynamic interac-
tion between the real situation and the virtual situation of construction hoisting process
management was realized. At the same time, route planning and result prediction analyses
of hoisting process were carried out through the interactive detection result analysis of
processing architecture and algorithm. The mapping analysis of construction hoisting man-
agement is shown in the figure. Based on the concept of DT, this study started from model
and data interaction, established the foundation of the virtual space model, perceiving
and optimizing real-time information of physical entities, and promoted the technological
integration and iterative integration of the BIM model, sensors, visualization software and
IoT. In this study, the twin body mapping elements for prefabricated component hoisting
were established, as shown in Figure 7. The driving factors of DT for the hoisting of PCs
established in this study mainly include the following six aspects:

(1) BIM model—a pre-established digital carrier of virtual mapping based on real physical
space objects;

(2) Sensor—actual hoisting process-related operation management and multi-dimensional
and multi-level sensing tools;

(3) Data—including data collected by sensors, construction plan data and historical
reference data (physical list, design specifications, engineering drawings, on-site
feedback, etc.);

(4) Integration—the physical vehicle for the interaction between the physical and virtual
digital worlds;
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(5) Analysis/Forecasting—analyze data through artificial intelligence algorithms and visu-
alization programs and provide analytical decision-making and forecasting solutions;

(6) DT—an accurate real-time digital model of the physical world.

Figure 6. Twinning management method of hoisting of PCs.

Figure 7. Mapping elements of virtual-real twin for hoisting of PCs.

This part takes the PC hoisting on the construction site of prefabricated buildings as
an example, simplifies the DT-BIM (as shown in Figure 8) and preliminarily realizes the
hoisting path planning with the improved Dijkstra’s algorithm. The hoisting point position
and the installation point position were determined in the lift-oriented virtual model and
the plane model of the prefabricated floor hoisting route was obtained. As shown in
Figure 9, the hoisting planning plane was divided into prohibited zones. In the figure,
the Prohibited Zone 1, where the target building is located, and the Prohibited Zone 2,
where the steel processing zone is located, affected the hoisting this time. The prohibited
area is a certain length of the external contour extension of the obstacle as a safety area to
avoid collisions between PCs and obstacles in the hoisting process.
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Figure 8. Hoisting planning plane obtained by model cutting.

Figure 9. Hoisting topology diagram of PCs.

The hoisting route node set was generated by generating the hoisting route node
passing nodes in the hoisting topology diagram, as shown in Equation (3).

PL = {PA, P1, P2, P3, . . . . . . , Pn−1, Pn, PB}, (3)

The hoisting path was planned by using the improved Dijkstra’s algorithm in
Section 4.2. Firstly, the topology graph was represented by a topology matrix, in which
the number represented the distance between its row node number and its column node
number. The connected distance between nodes was expressed in the form of a matrix; then,
the distance between nodes directly connected through the dangerous area was changed to
infinity. This way, one can avoid collisions when using algorithms to calculate time paths.
The established node topology matrix is shown in Figure 10. The data before and after
algorithm optimization were compared and the results are shown in Table 1. It can be
seen that the optimization effect was 27.369% when the safety angle of hoisting was not
considered and 19.844% when the safety angle of hoisting was considered.

5.2. Data Acquisition and Transmission Unit

In this study, a sensor was installed on the PC for data acquisition during the hoisting
process and real-time monitoring of the PC during the hoisting process was conducted
to ensure the safety and visibility of the PC during the hoisting process. In this part, BIM
technology, LoRa technology and inertial measurement unit were combined to realize
the monitoring of PC in the hoisting process. In addition, taking prefabricated building
construction in Tianjin as an example, data collection, uploading and webpage display
were conducted.
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Figure 10. Topology matrix of prefabricated component hoisting route planning.

Table 1. Effect analysis table of hoisting route planning for a prefabricated floor.

Hoisting Situation
Prefabricated Floor

Hoisting Path
Length of Hoisting

Route (m)
Reduced Length (m) Optimized Effect (%)

1 PA � P6 � P47 � PB 113.35 / /
2 PA � P17 � P39 � P40 � PB 90.857 22.493 19.844

3 PA � P9 � P31 � P46
� P47 � PB

82.33 31.02 27.367

Information acquisition in this case mainly includes data acquisition in the hoisting
process of PCs by sensors such as attitude sensor, stress sensor and GPS sensor. Based on
LoRa technology, the PC hoisting monitoring information collection and upload terminal
and transmission gateway were developed. The physical structure is shown in Figure 11.
The transmission terminal was composed of an MCU control module, an LoRa module
and various sensor interfaces. Information of hoisting process was collected and upload-ed
by the acquisition terminal mentioned above. Figure 10 shows the acquisition terminal
installed on the PC and its composition. The information collected by the acquisition
terminal was uploaded through the LoRa gateway. The LoRa gateway applied on the
construction site is shown in Figure 11.

Figure 11. Physical view of LoRa information transmission terminal and gateway architecture.

In the case study, the BIM hoisting model established was exported in IFC format,
which was parsed and read in the JavaScript environment for extension and light-weight
processing, and the developed interface was used for transmission and uploading to HDD.
Additionally, sensor information was transmitted to the system and combined with the twin
model for visual display, so as to realize the retrieving of model data on the system platform
or software and the viewing of the overall environment affecting hoisting in the construction
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site. The access process of the web terminal system is shown in Figure 12. Through the
functional analysis of the system platform, it mainly included eight functional modules,
including staff management, system management, site safety management, information
entry, DT database management and DT model management. The contents of each module
are shown in Figure 13.

Figure 12. LoRa gateway installed on the construction site.

Figure 13. Analysis of system platform functional architecture.

5.3. Prefabricated Component Hoisting Route Monitoring

The precast floor numbered T1-11-2-3 in the case study established the hoisting route
planning plane of the floor through the hoisting position and the installation position and
determined the hoisting route of the precast floor through the path-planning algorithm of
this study, as described in Section 4.2. The construction and hoisting of the prefabricated
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floor were conducted according to the path planned by the algorithm and hoisting control
was conducted according to the prefabricated floor information transmitted during the
hoisting process. After receiving the instruction from the construction site, the manager of
the component yard transported the components out according to the information in the
system and re-entered the working state through the control transmission module of hand-
held devices for the real-time transmission of information. According to the information
in the RFID spreader selection, floor ring inspection and other work, the correct hoisting
needed to be checked. According to the information collected by the LoRa terminal during
the hoisting process, the tower crane operator could view the real-time information of the
components on the equipment and check the deflection, tilt angle and position information
of the components during the hoisting process. The collected position information was
processed and compared with the Kalman filtering effect, as shown in Figure 14. The posi-
tion information directly measured by the sensor had a large error, especially the position
of multiple projections. By comparing the position information of the three planes, it was
found that the positioning accuracy was improved to a certain extent after the Kalman
filtering correction of various sensors. By monitoring the location information of PCs,
the tower crane was controlled timely to ensure that the components were lifted accurately
to the installation point of prefabricated floor, thus improving the safety and visibility of
the whole hoisting process.

Figure 14. Hoisting route monitoring and comparison.

6. Discussion and Conclusions

Based on the concept of DT, this paper proposes the framework of a PC hoisting
management system; furthermore, it intelligently controlled the hoisting process of PCs by
using DT-BIM, IoT and sensor technologies. This study absorbed advanced technologies
from other industries and applied them to the field of construction. An innovative solution
is proposed for PC hoisting control, which has the following advantages.

(1) Aiming at the application method of assembly construction stage, the multi-
technology integration mechanism of DT, IoT and BIM is explored. The twin feedback
mechanism of virtual and real interaction provides a new idea for the realization of “real-
time perception, intelligent analysis and intelligent decision” in the construction and
hoisting management of PCs.

(2) In this study, DT-BIM hoisting planning model was established based on the DTm
and hoisting path planning was carried out combined with the Dijkstra’s algorithm. This
paper uses virtual space data to deal with the problem of hoisting paths and verifies the
effect of the optimized hoisting path. The application of DT model was well verified by
this method.

(3) LoRa technology and multi-sensor fusion method were applied to the construction
site monitoring of prefabricated buildings, realizing the twin interactive connection of
prefabricated construction and opening up the DT interactive channel. This paper uses
the fusion location algorithm to process the data and confirms the effect of the depth
information fusion on the optimization control of PCs in the process of hoisting, which is
helpful to promote the intelligent development of prefabricated building construction.
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(4) PC hoisting construction intelligentization is a multi-disciplinary integrated engi-
neering system. This research project adopted DT technology, IoT, BIM and the integration
method driven by an intelligent algorithm to realize the virtual and real interaction of hoist-
ing management, which greatly improved the intelligent management level of PC hoisting.

Through the introduction of DT, IoT, BIM technology and sensor technology, strength-
ening the intelligent management and control of the assembly construction process is
feasible and can improve the visual and intelligent level of site construction, so as to
ensure the accuracy and safety of construction. Meanwhile, with a background of intel-
ligent construction reform and industrial upgrading of construction industry, this study
actively explores research and application schemes of DT, IoT and other technologies in the
field of intelligent construction of prefabricated buildings, providing a good reference for
future research.
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Abstract: Intelligent construction (IC) is an innovative development model of the construction
industry in which construction is integrated with digital technologies against the backdrop of the new
technological revolution. The development of IC involves many influencing factors which are actively
promoting IC development. However, investigations focusing on identifying and examining the
relationships among the factors necessary for IC development are limited. In contributing to bridging
this gap, this paper investigated and analyzed influencing factors for IC development by developing
structural equation modeling (SEM) based on 5 variables and 28 measures, including (1) identifying
the factors and examining their influence on IC development in China and (2) clarifying the paths
and key measures for successful IC development. The results showed that (1) the three variables
of government, company, and technology had a direct and significant impact on the development
of IC, (2) the three variables of industry, company, and technology actually formed a “closed-loop”
within which they interact and promote each other, and (3) it was widely realized and accepted that
IC development has bright prospects in China. Furthermore, four paths for IC development were
obtained and the key measures of the five variables were further analyzed. This research contributes
to the body of knowledge on IC by identifying the factors influencing IC development. The four
paths and key measures were proposed to clarify the relationship between factors. Recommendations
were put forward to promote IC development.

Keywords: intelligent construction; influencing factors; structural equation modeling

1. Introduction

The global construction industry is booming, increasing building projects and demand
for intellectual development [1]. Furthermore, given the increasingly frequent transfer of
technologies such as building information modeling (BIM) and additive manufacturing,
the intelligent development of the construction industry is inevitable [2].

At present, the expression “the process or product of construction using emerging
digital technologies” primarily refers to “digital construction” [3], “smart construction” [4],
or “construction 4.0” [5,6]. “digital construction”, “smart construction”, “intelligent con-
struction”, and “construction 4.0” have similar connotations; that is, the use of emerging
technologies to achieve integrated collaboration of project approval decision making, plan-
ning and design, construction, and operation and maintenance services. Such integrated
collaboration can significantly improve the efficiency and effectiveness of the construc-
tion industry. IC is an innovative development model of the construction industry [7].
Especially in China, IC is greatly advocated. In July 2020, the “Guiding Opinions on
Promoting the Coordinated Development of Intelligent Construction and Building Industri-
alization” jointly issued by 13 Chinese government ministries and commissions proposed
increasing the application of IC in all aspects of construction to form an IC industry.

In recent years, the application of IC technologies in construction has become in-
creasingly extensive [8,9], and the research on IC has mainly focused on the application
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of BIM [10–13], intelligent equipment [14–16], information and communication technol-
ogy [17], and additive manufacturing [18–20] in the construction industry.

It can be seen from previous studies that most of the research on IC development
is concerned with IC technology, and investigations focusing on identifying and examin-
ing the relationships of the influencing factors necessary for IC development are limited.
However, identifying the factors and their impact is crucial for IC development. Therefore,
this paper investigated and analyzed factors for IC development by (1) taking IC develop-
ment in China as an example and identifying the factors and examining their influence on
IC development, and (2) clarifying the paths and key measures for IC development.

2. Theoretical Framework

The conceptual research model is constructed, hypotheses are provided, and the
conceptual hypothesis model is presented in this section.

2.1. Conceptual Research Model

Explanatory factors and their relationships are discussed in classical theories of in-
dustrial development. A variety of analytical frameworks were proposed to analyze
industry development. Bain (1956) proposed the structure-conduct-performance (SCP)
analysis paradigm to explore the impact between national policies, technological upgrades,
and corporate behavior. Porter (1990) presented four factors for determining industry
development, namely production, demand conditions, the performance of related indus-
tries and supporting industries, and corporate strategy, structure, and competition in the
industry, and claimed that two variables influenced these factors: opportunity and gov-
ernment. Industrial development theory studies the problems of technological innovation,
industrial clusters, companies, and product service changes [21]. The theory assumes that
the motivation of industrial development includes scientific and technological innovation
and other factors related to production, policies, and markets.

In the case of the influencing factors of IC development, Ding [7] proposed that the
government needs to actively support IC technology innovation to provide new opportuni-
ties, promote the transformation of construction companies to seize market opportunities,
and encourage cross-border industries to extend the engineering market. Wang [22] be-
lieved that the current IC technology development is unusually rapid and technology
upgrading assumes the role of a pioneer, promoting the high-quality development of the
construction industry. Chen & Ding [23] also pointed out that the development of domain
technology plays a key role in IC development. In July 2020, the “Guiding Opinions on
Promoting the Coordinated Development of IC and Building Industrialization” pointed out
that IC development involves the transformation and upgrading of technology, company,
and industry.

From the above research review, this paper studied the following four factors that
influence IC development: government, industry, company, and technology. Moreover,
we built a conceptual model, as shown in Figure 1. Then, we clarified how these factors act
on IC development by examining their relationships. Finally, we discussed the influencing
paths and critical measures for IC development in China.
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Figure 1. Conceptual research model.

2.2. Research Hypothesis

Based on a review of the research literature and expert interviews, five items in-
cluding ten research hypotheses were proposed, then the conceptual hypothesis model
was constructed.

2.2.1. The Relationship between Various Influencing Factors

(1) The relationship between the government and other factors

The government is an essential driver of IC development. IC development in China is
driven by macro-development [24]. The role of the government affects the development
of industry, company, and technology: government subsidies reduce economic risks to
businesses and boost industry development [25], directly reducing the cost of research and
development, encouraging companies to engage in research and development, and improv-
ing the degree of technological growth in the industry [26]. On the other hand, subsidy
funds help reverse the disadvantage of cash flow shortages, reduce the risk of debt re-
payment, and provide more protection for the business development of companies [27].
Moreover, subsidies impact technological innovation output [28]. They make a significant
contribution to technological advances [29], which also impact technological innovation
behavior. Based on the above literature, we made the following assumptions:

Hypothesis 1 (H1). Government has a positive impact on the industry;

Hypothesis 2 (H2). Government has a positive impact on the company;

Hypothesis 3 (H3). Government has a positive impact on technology;

(2) The relationship between industry and other factors

The industry development trend has led to a mandatory structural adjustment on
the supply of companies [30]. It has induced companies to carry out technological inno-
vation [31]. According to the questionnaire survey, the industry development has had an
important impact on individual companies. Based on the above literature, we made the
following assumption:

Hypothesis 4 (H4). The industry has a positive impact on business development;

(3) The relationship between the company and other factors

Corporate strategy, innovation expectations, and research and development invest-
ment impact technology innovation [32–34]. Under the premise of pursuing their interests,
companies have increased their investment in research, forming a virtuous circle that
promotes technological progress [35]. For example, with the development of intelligent
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technology, architectural design companies need to study intelligent integrated systems to
meet design requirements, solve difficulties, improve efficiency, and complete transforma-
tion and upgrading [36].

Based on the above literature, we made the following assumption:

Hypothesis 5 (H5). The Company has a positive impact on technological development;

(4) The relationship between technology and other factors

Schumpeter [37] argued that technology drove new market demand, incredibly inno-
vative technology combined with marketing, which guides industry development. Many
scholars have recognized this conclusion. With the current exponential growth of informa-
tion technology, digital applications, networked applications, and intelligent integration
innovation are the three driving forces of new technology [38]. Based on the above literature,
we made the following assumption:

Hypothesis 6 (H6). Technology has a positive impact on the industry.

2.2.2. The Relationship between Various Influencing Factors and the IC Development

(1) The relationship between the government and IC development

IC development is a complex system. The government plays a key driving role
in industrial development through overall planning and careful arrangements to create
an effective environment for development [39]. The principle of market allocation and
government guidance should be followed to realize IC development [40], which requires the
government to actively cultivate new industries for IC and strengthen the transformation
and promotion of scientific and technological achievements [41].

Based on the above literature, we made the following assumption:

Hypothesis 7 (H7). The government has a positive impact on IC development.

(2) The relationship between the industry and IC development

Industry development affects the production, development, and structural adjustment
of the industry. IC development is not limited to the reform of the traditional construction
industry, but other sectors are also gradually entering the field of the IC industry. Therefore,
the rise and change of the industry is an important force driving the development of IC.
Based on this, we made the following assumption:

Hypothesis 8 (H8). The industry has a positive impact on the development of IC.

(3) The relationship between the company and IC development

Companies make up the main body of the IC industry. At present, the intelligent
transformation of the construction industry in China still relies on leading companies to
drive change. The industry is gradually reaching a higher level of development through the
competition and cooperation between companies. Mao et al. believed that traditional com-
panies could use existing emerging technologies to achieve construction and management
innovation [42]. While Xia [43] believed that construction companies, as the main body of
IC development, should build a combination of production, research, and development of
technological innovation systems, scientifically select the path of technological innovation,
and carry out construction and exploration.

Based on the above literature, we made the following assumption:

Hypothesis 9 (H9). The company has a positive impact on IC development.

(4) The relationship between technology and IC development
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The development of industry relies on the progress of technology. Therefore, the cur-
rent integration of intelligent technology and construction technology is the key issue of
IC development. Chen et al. [44] pointed out that recent IC technology development is
unusually rapid and technology upgrading in the construction industry assumes the role
of a pioneer, promoting the high-quality development of the construction industry. Chen
& Ding [45] proposed that the development of domain technology as a hub connecting
the underlying general technology with the upper business can play a key role in the
development of IC.

Based on the above literature, we made the following assumption:

Hypothesis 10 (H10). Technology has a positive impact on IC development.

2.3. Hypothesis Model

We constructed a conceptual hypothesis model based on the previous assumptions
to clarify the relationship between the influencing factors and IC development, as shown
in Figure 2. Then we examined the model by conducting empirical research through a
questionnaire and a structural equation model in the following sections.

Figure 2. The conceptual model of the structural equation.

3. Research Methodology

We adopted a three-stage approach to achieve the set objectives shown in Figure 3.
First, we proposed 28 measures through relevant literature and expert interviews to assess
the five variables in the hypothesis model. Second, we conducted the questionnaires
using a five-point Likert scale. Third, we analyzed the questionnaire data through the
Harman single-factor test, measures statistical analysis, reliability and validity analysis,
and structural equation modeling analysis.
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Figure 3. Three-stage research methodology.

3.1. Stage 1: Measures and Questionnaire Design

The influencing factors for IC development are latent. They are not directly measured
and thus need to be specified by some measurement indicators. The measures were
proposed in several ways, as listed in the following.

• The mature measurement scales are quoted as far as possible; and
• Most measures are designed based on literature reviews.

The appropriate revision and suggestions from a seven-expert group were incor-
porated to guarantee the rationality and completeness of the questionnaire measures.
The seven-expert group included three practitioners in the construction industry, two gov-
ernment officials, and two scholars involved in IC. In the end, we proposed 28 measures to
assess the five variables in the hypothesis model: government (four measures), industry
(six measures), company (seven measures), technology (four measures), and trends of IC
development (seven measures), as listed in Table 1.

Table 1. Influencing factors for IC development.

Code Influencing Factors Measures Literature Reference

1

Government

The degree of government attention (G1) [24,46]
2 The perfection and matching of regulations and standard systems (G2) [47,48]
3 Government support policies and incentive policies (G3) [49,50]
4 Demonstration project (G4) [51,52]
5

Industry

Industry promotion/guidance measures (I1) [53]
6 Industry training efforts (I2) [54,55]
7 Market and consumer demand(I3) [7,56]
8 The overall level of IC technology application capabilities (I4) [36,57]
9 The number and type of IC companies (I5) [58]

10 The degree of industry association (I6) [59]
11

Company

The degree of attention of the companies (C1) [53,59,60]
12 Company management system (C2) [61,62]
13 The resource input of the companies (C3) [63,64]
14 Company technology research and development capabilities (C4) [65,66]
15 Vocational training for companies (C5) [67,68]
16 Employee awareness and engagement with IC (C6) [69,70]
17 Employee technical application capabilities (C7) [71,72]
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Table 1. Cont.

Code Influencing Factors Measures Literature Reference

18

Technology

The maturity of the intelligent technology application system (T1) [40]
19 Security issues for data and privacy (T2) [73,74]
20 Hardware and software facilities (T3) [40,75]
21 Technology convergence (T4) [76,77]

22

Trends of IC
Development

IC technology has been widely used, and the degree of intelligence has
been greatly improved (TICD1) [7,78]

23 Industry chain upstream, downstream extension, and market
expand (TICD2) [7,21]

24 The industry has achieved industrialization, service, and platform
transformation (TICD3) [7,79]

25 The industry can provide people-oriented, green sustainable products
and services (TICD4) [7]

26 Due to the concentration of industry, the degree of homogenization of
companies is intensified (TICD5) [41,80]

27 Company survival of the fittest, the industry as a whole to enhance
innovation capacity (TICD6) [81,82]

28 The construction industry traditional, and its future is not much
different from that of the present (TICD7) [83,84]

Then we designed the questionnaire based on the 28 measures of the five categories
of influencing factors from the Porter Diamond Model Theory. The purpose of the ques-
tionnaire was to survey a wider pool of construction experts and practitioners in China’s
construction industry to obtain empirical data and determine the relationships of the iden-
tified factors. We used a five-point Likert scale [85,86] in the questionnaire: 1–5 respectively
represented “strongly disagree”, “disagree”, “neutral”, “agree”, and “strongly agree”,
and all the measurement indices were declarative sentences.

3.2. Stage 2: Data Collection Procedure

We collected data by questionnaire. A total of 200 questionnaires were distributed online
via a web-based platform. After recovery, 160 valid questionnaires were obtained and the
effective recovery rate was 80%. The profile of the respondents is presented in Table 2.

Table 2. Respondents’ characteristics.

Category Characteristic Frequency Percentage (%)

Nationality China 160 100

Organization

Construction companies 53 33.12
Research/teaching institutions 81 50.63

IC technology development company 4 2.50
Government departments 6 3.75

Other 16 10

Position level
Senior management 17 10.63

Middle-level management 73 45.62
Low-level physical operators 70 43.75

Working years

Less than 5 years 35 21.88
5–10 years 38 23.75
10–20 years 60 37.50

More than 20 years 27 16.88

Level of
understanding of IC

Greatly understand 10 6.25
Understand 68 42.5

Moderately understand 70 43.75
Slightly understand 11 6.87

Does not understand 1 0.88

29



Buildings 2022, 12, 478

3.3. Stage 3: Data Analysis Procedure

We analyzed the data in the four steps shown in Figure 4.

Figure 4. Four steps of data analysis.

First, all questionnaire questions were analyzed for gender factors through the Harman
single-factor test. The variance interpretation rate of the first principal component obtained
in the absence of rotation was 10.642%, which did not account for the majority. From the
result of the composition matrix, the load of no question on the first main component
exceeded 0.5. Therefore, it can be concluded that there was no common method deviation
problem in the measurement results.

Second, we examined the correlation, collinearity, and normality of the variables.
The thresholds of absolute skewness, absolute kurtosis, and variance inflation factor (VIF)
were all less than or equal to 2, 7, and 5, respectively [87,88]. Finally, since the parameter
estimation method in structural equation model analysis requires sample data to satisfy
the multiple normal distributions, we tested the survey results for normal distribution.
Table 3 shows the data that meet the requirements of the structural equation model under
the multiple normal distributions.

Table 3. The result of measures statistical analysis.

Question Maximum Minimum
Standard
Deviation

Skewness Kurtosis
Kolmogorov–Smirnov

D p

1 5 1 0.758 1.958 6.167 0.298 *
2 5 1 0.798 1.706 4.886 0.276 *
3 5 1 0.881 1.830 3.954 0.332 *
4 5 1 0.886 1.117 1.864 0.255 *
5 5 1 0.737 1.654 6.255 0.303 *
6 5 1 0.774 0.877 0.851 0.268 *
7 5 1 0.723 0.779 0.587 0.247 *
8 5 1 0.782 1.438 4.354 0.279 *
9 5 1 0.800 1.586 4.590 0.311 *
10 5 1 0.839 0.885 1.790 0.287 *
11 5 1 0.853 1.566 3.609 0.260 *
12 5 1 0.746 0.107 −0.467 0.264 *
13 5 1 0.895 1.632 3.140 0.310 *
14 5 1 1.000 1.190 1.641 0.252 *
15 5 1 0.845 1.019 2.085 0.289 *
16 5 1 0.969 1.110 1.592 0.297 *
17 5 1 0.903 1.122 1.736 0.282 *
18 5 1 1.009 1.323 1.869 0.284 *
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Table 3. Cont.

Question Maximum Minimum
Standard
Deviation

Skewness Kurtosis
Kolmogorov–Smirnov

D p

19 5 1 0.824 0.686 −0.003 0.242 **
20 5 1 0.849 1.071 2.134 0.244 *
21 5 1 0.857 1.215 2.366 0.245 **
22 5 1 0.961 0.757 0.451 0.250 *
23 5 1 0.926 0.643 −0.367 0.240 **
24 5 1 0.818 0.579 −0.114 0.251 **
25 5 1 0.958 0.974 0.904 0.268 *
26 5 1 0.866 0.661 1.055 0.253 *
27 5 1 0.895 0.777 −0.135 0.237 **
28 5 1 1.337 0.446 −1.119 0.290 **

Note: * means p > 0.05, ** means p > 0.01.

Third, we used the Kaiser-Meyer-Olkin (KMO) measure and Bartlett samples to test
whether the data are suitable for factor analysis and the validity of the data. Experience
showed that a KMO greater than 0.7 is suitable for factor analysis and KMO below 0.5 in-
dicates unsuitable [89,90]. KMO and Barclay spherical significance tests of the study data
were performed using SPSS and the results are shown in Tables 4 and 5, indicating that the
research data were suitable for the principal component analysis.

Table 4. The result of Kaiser-Meyer-Olkin.

The Scope of the Inspection KMO

The questionnaire as a whole 0.817
Government 0.719

Industry 0.742
Company 0.753

Technology 0.605
Trends of IC Development 0.851

Table 5. The result of Bartlett.

The Scope of the Inspection
Bartlett’s Test of Sphericity Approx.

Chi-Square df Sig.

The questionnaire as a whole 1350.185 105 0.000
Government 34.767 10 0.000

Industry 214.632 30 0.000
Company 131.871 30 0.000

Technology 82.213 30 0.000
Trends of IC Development 380.407 30 0.000

Reliability is the overall consistency of a measure [91]. Cronbach’s alpha test was
performed to check the reliability of questions or items, which is much higher than the
threshold of 0.70 [92], indicating internal consistency of the items and high data reliability.
The Cronbach values of the five variables were higher than 0.7, as shown in Table 6,
which denotes the high robustness and stability of the questionnaire.

Table 6. Results of measuring model validity.

Variables Measures CITC Cronbach’s α

Government

G1 0.659

0.840
G2 0.751
G3 0.759
G4 0.548
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Table 6. Cont.

Variables Measures CITC Cronbach’s α

Industry

I1 0.686

0.883

I2 0.616
I3 0.767
I4 0.731
I5 0.751
I6 0.710

Company

C1 0.735

0.921

C2 0.561
C3 0.808
C4 0.729
C5 0.835
C6 0.848
C7 0.771

Technology

T1 0.792

0.892
T2 0.745
T3 0.764
T4 0.762

Trends of IC Development

TICD1 0.762

0.877

TICD2 0.789
TICD3 0.798
TICD4 0.821
TICD5 0.783
TICD6 0.808
TICD7 0.207

Fourth, as SEM is an appropriate technique for multivariate analysis that integrates
factor analysis, path analysis, and multiple regression analysis [17,93], we used it to create
the conceptual model and test the theoretical hypotheses of the structural models.

4. Research Results

We tested the aforementioned hypothesized model (Figure 2) with the SEM technique.
First, we used the standardized factor loading test for the measures, then we estimated

the path coefficient by the maximum likelihood method and removed the path data indexes.
Furthermore, we tested the model by factor analysis and repeated the above steps until the
indexes were qualified. Finally, we got the verified model.

4.1. Data Results

First, through the calculation results, the 28 measures in which the loadings of the
measurement variables and potential variables are more than 0.6 were retained. The revised
indicators and the standardized load of each index are shown in Table 7.

Second, the maximum likelihood method was used to estimate the path coefficient,
in which C.R. (i.e., t-test value) is the critical ratio. (1) in H1, T = 2.612, p = 0.319 > 0.05,
indicating that the government has no direct relationship to industry development; (2) in H3,
T = 0.124, p = 0.409 > 0.05, indicating that the government has no direct relationship to
technology; (3) in H8, T = −1.012, p = 137 > 0.05, indicating that the industry has no direct
relationship to the development of IC. Therefore, H1, H3, and H8 were removed, and the
revised model test results are shown in Table 8, where all hypothesis tests passed.

The revised model was again tested for factor analysis. Each fitted indicator is shown
in Table 9, and each indicator was within the standard range, so it could be considered that
the model’s overall fit is acceptable without the need for another correction.

Three main indices of the overall model fit were adopted in this paper to confirm
the measurement model: the relative χ2 (χ2/degree of freedom), root-mean-square error
of approximate (RMSEA), and comparative fit index (CFI). The upper thresholds of the
relative χ2/df and RMSEA were 3 and 0.08, respectively, while the lower threshold of CFI
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was 0.90 [94]. As shown in Table 9, χ2/df of the model was less than 3; RMSEA was less
than 0.08, indicating that the model was reasonable and not affected by the sample size;
and CFI was greater than 0.9, meaning that the sample was stable.

Table 7. Results of the measures.

Variables Measures Standardized Factor Loading

Government

G1 0.925
G2 0.814
G3 0.878
G4 0.904

Industry

I1 0.809
I2 0.796
I3 0.932
I4 0.812
I5 0.946
I6 0.898

Company

C1 0.726
C2 0.618
C3 0.895
C4 0.837
C5 0.861
C6 0.879
C7 0.749

Technology

T1 0.863
T2 0.814
T3 0.941
T4 0.938

Table 8. Results of the model test.

X Path Y Hypothesis T p Standardized Path
Coefficients

Conclusion

Government → Company H2 2.369 * 0.653 support
Industry → Company H4 3.153 ** 0.308 support

Company → Technology H5 2.781 ** 0.245 support
Technology → Industry H6 6.572 *** 0.735 support
Government → IC development H7 9.454 *** 1.180 support

Company → IC development H9 0.336 * 0.144 support
Technology → IC development H10 3.013 ** 0.691 support

Note: *, **, and *** indicate that the statistics are at the levels of 0.05, 0.001, and 0.001, respectively, and the effect
is significant.

Table 9. Calculation results of the fitting index of the modified model.

Index Outcome

χ2/df 2.662
GFI 0.847

RMR 0.057
CFI 0.935
NFI 0.657

NNFI 0.838
IFI 0.952
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4.2. Verified Model

The hypothesis model was verified through SEM, as shown in Figure 5.

Figure 5. Influencers acting on the IC development mechanism model.

Taking into account these results of the model test, we summarized further conclusions
as follows:

(1) The three variables of government, company and technology directly and significantly
impacted IC development. These path coefficients were 1.18, 0.144, and 0.691, respec-
tively. Although each path was significant, the coefficient load values were generally
low, especially the impact of company, which means that the impact of company on
IC was still at a low level.

(2) Industry did not directly affect the development of IC but rather indirectly affected
the development of IC through company and technology. These three endogenous
variables of industry, company, and technology form a “closed-loop” within which
the three elements interact and promote each other.

(3) The standardized factor loading of TICD7 was 0.024 and less than the factor loadings
of the trend of IC development, which shows that it was widely accepted that IC
development has a bright outlook in China and IC can certainly change the relative
backwardness of China’s construction industry through the upgrading of technology,
industry, and company.

5. Discussion

Based on the final model, we further summarized the paths among factors and iden-
tify key measures, hoping to provide a reference for the government and companies to
formulate development strategies.
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5.1. Path Analyses

(1) Government→Company→Technology→IC development. On the one hand, the intro-
duction of policies forces companies to carry out IC development; on the other hand,
preferential subsidies support companies in carrying out IC activities. As a result,
companies vigorously carry out relevant practical activities, form a new industrial
system, stimulate construction activities and the application of innovative technology,
and improve the basic endowment of the development of the construction industry.
The emergence of innovative technology also contributes to the development of the
construction industry.

(2) Government→Company→Industries→IC development. The government’s initiation
and support has given birth to various companies with new business in the field
of IC, increasing the complexity of corporate relations and the degree of competi-
tion within the industry. In contrast, this trend forces companies to change their
management models and improve effectiveness to adapt to environmental changes.
The adjustments and changes in corporate relationships reconstruct the industrial ecol-
ogy, including the business model, business philosophy, market form, and industry
management, creating a new steady state of IC industry development.

(3) Technology→Industry→Company→Technology→IC development. The iterative
application of technology innovation affects the adjustment and development status
of the industry’s development. Therefore, industry development trends guide the di-
rection of company development and companies adjust their development strategies,
paying attention to investment in technological innovation and application and grad-
ually forming a certain scale and level of economic benefits of IC and development of
new industrial forms.

(4) Company→Technology→Industry→Company→IC development. Companies are
the core of technological innovation and development. Intelligent technologies change
the traditional working model of the construction industry which provides a realistic
basis for IC development. Following the trend, more companies participate in the
intelligent transformation.

5.2. Measures Analyses

The measures of the variables in the model were further analyzed. The standardized
factor loading indicates the relationship between the variables and the measure; the higher
the loading is, the closer the relationship with the corresponding variables. The indicator
can be used as the basis for ordering the importance of the observed variables, and the
order is shown in Table 10.

(1) Among the government measures, the degree of government attention was the most
important. This result is in line with the current state of IC development in China.
At present, most companies have recognized the necessity of upgrading and have
a positive attitude toward development prospects. However, companies directly
engaged in IC projects need to pay huge costs, so most have been in a wait-and-see
state. In the above environment, the government was the most critical stakeholder.
Survey data and the state of IC development in China showed that IC development
depends on government policies. On the one hand, the government has a certain
mandatory role; on the other hand, it provides preferential subsidies to encourage
companies to carry out IC activities to protect companies motivated to undertake IC.

(2) Among the industry measures, the number and type of IC companies were of the
utmost importance. In the infancy of IC development, most IC technology still belongs
to the companies of developed countries. There is an urgent need for more compa-
nies to improve the ability to develop IC technology with independent intellectual
property rights.

(3) Among the company measures, the resource input of companies was the most impor-
tant. Most Chinese construction companies did not pay attention to IC in the past.
Therefore, there currently exists a huge gap between actual development and the
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vision of IC. In contributing to bridging this gap, a significant amount of resource
input is needed to compensate for the backward development caused by traditional
production methods so that it is possible to meet the current stage of IC development.

(4) Among the measures of technology, hardware and software facilities were the most
important. Since most of the core technologies related to IC still belong to companies
in developed countries, the application of IC technologies is limited. It is difficult for
companies in China to find suitable hardware and software services companies to
assist in construction projects.

Table 10. Order of measures.

Variables Measures Standardized Factor Loading Order of Importance

Government

G1 0.925 1
G2 0.814 4
G3 0.878 3
G4 0.904 2

Industry

I1 0.809 4
I2 0.796 6
I3 0.932 2
I4 0.812 5
I5 0.946 1
I6 0.898 3

Company

C1 0.726 6
C2 0.618 7
C3 0.895 1
C4 0.837 4
C5 0.861 3
C6 0.879 2
C7 0.749 5

Technology

T1 0.863 3
T2 0.814 4
T3 0.941 1
T4 0.938 2

5.3. Recommendations

Based on the above analysis, we propose the following strategies to enhance
IC development:

(1) Understand the general path driving the development of IC. The process of influencing
the development of IC has a certain regularity. Therefore, it is necessary to understand
the influencing factors that employ the important role for its maximum utility and
vigorously promote the development process of IC.

(2) Emphasize and play the role of policies. It is necessary to promulgate effective policies
to ensure and encourage the willingness of relevant entities to practice IC, develop
and improve the market, and establish a long-term force to promote IC development.
In addition, the government should pay attention to the development and changes of
IC to make corresponding policy adjustments to form a virtuous circle.

(3) Increase investment in research and development and overcome technical barriers.
Different companies need to formulate appropriate integrated development plans and
policy choices according to their business characteristics and foundation and carry
out innovative research and development to promote the coordinated development
of the IC industry.

6. Conclusions

IC is the key to adapting to the trend of intelligent development of the global con-
struction industry, which involves multiple factors. This paper contributed to identifying
and determining these factors through literature analysis and clarifying paths and key
measures through SEM, which can help the government and companies better understand
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IC development and provide a basis for the later introduction of policies and practice accel-
eration. Simultaneously, this paper offered a generalizable reference for other countries to
develop IC.

In this paper, we analyzed the influence paths and key measures affecting IC develop-
ment by SEM. This paper achieved the following results:

(1) We identified the following four variables that influence IC development: government,
industry, company, and technology. Moreover, we built the conceptual model.

(2) Based on SEM method, we obtained four influence paths: (1) Government→company
→technology→IC development; (2) Government→company→industries→IC de-
velopment; (3) Technology→industry→company→technology→IC development;
and (4) Company→technology→industry→company→IC development, which indicates
that the government has a significant direct impact on the development of IC.

(3) We further analyzed the key measures of government, industry, company, and tech-
nology: the degree of government attention, the number and development capa-
bility of IC technology development companies, resource input, and hardware and
software facilities.

(4) We proposed some recommendations to promote IC development.

This research contributed to the body of knowledge on IC by identifying the factors
that influence IC development. The four paths and key measures were proposed to clar-
ify the relationship between factors. Recommendations were put forward to promote
IC development. Construction industries globally can leverage the factors influencing
IC development in this research, which provides a valuable reference for further con-
textual investigations in their regions. Although the context of this study was China,
the study findings can provide references for IC development in the construction industry
globally, especially in those countries whose construction industries are in similar stages
of development.
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Abstract: Both the building design and the construction process determine the indoor acoustic quality
of enclosures. A suitable indoor acoustic environment is crucial for the productivity and well-being
of users. For this purpose, Reverberation Time (RT) is often calculated or measured in situ. Recently,
Building Information Modelling (BIM) has provided a new paradigm to face building projects.
Nevertheless, little research has been conducted on the optimisation of indoor acoustics using BIM
methodology. In this context, the objective of this work is to propose and develop a BIM-based
framework for the analysis, evaluation and optimization of the RT. The proposed procedure allows
designers to explore alternatives in order to achieve an adequate acoustic performance without any
further needs of specific software. This proposal is devised to consider some important characteristics
of the project, such as its location, applicable regulations, room uses, materials and costs. This
framework calculates the solution set that meets the requirements, showing the set of optimal
solutions according to the minimization of both the cost and the optimum absorbent surface area.
BFRT contributes by offering a tool to support the decision making process of designers during the
initial design phase in the field of acoustic conditioning of buildings.

Keywords: acoustic performance; building; Building Information Modelling (BIM); built environment;
optimization algorithms; reverberation time

1. Introduction

Between an 80 and 90% of the urban population spends most of its living time in
interior spaces [1]. In this sense, the conditions of the indoor environment in buildings
represent an important factor in the quality of life for occupants/users. According to
the ISO 16814:2008 standard, indoor environment includes thermal, acoustic and lighting
conditions, as well as indoor air quality (IAQ). All these elements taken altogether have
been already identified and taken into account in different studies [2,3] as relevant aspects
that will determine the environmental quality of interior spaces. Focusing specifically in
the acoustic conditions, the acoustic behaviour inside rooms in a building is conditioned
not only by external noise sources, but also by domestic sources and the characteristics of
other adjacent spaces [4,5]. If such behaviour was not appropriate, the normal performance
of human activities would be affected, and may even result in an increased risk of diseases
related to exposure to noise [3].

In this sense, an appropriate acoustic behaviour for a given indoor space should be
already guaranteed from the early design phase, working with some potential available
objective parameters to allow evaluating the acoustic characteristics of a room [6–8]. Among
these parameters this work focus in the reverberation time, denoted as RT, which is certainly
one of the most important variables or physical factors considered by experts in the design
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of interior spaces [9]. In fact, the RT is used as the key parameter in the acoustic assessment
of enclosures. RT is defined as the time required by the sound to “fade away” or decay
in a given closed space. Specifically, it is the time taken from the sound pressure level to
decrease 60 dB after ceasing the emission of a sound source in a room or closed space, or
equivalently, the time needed for the acoustic intensity to decrease up to a million times
its original value when the source is switched on. Its value depends on the constructive
elements that make up the room and their fine finishes and coatings, which affect the overall
sound absorption [10,11]. Its analysis is important because the presence of reverberant
acoustic energy tends to mask the immediate recognition of any new incoming sound and
makes it difficult for the speech intelligibility [11]. If the reverb is excessive, the speech
intelligibility may be poor and/or the acoustic pressure be high, being able to adversely
affect the performance of activities for which these spaces have been designed [12]. In
fact, it is confirmed by experimental studies the strong empirical relationship between
the characteristics of the RT of a room, its size and the amount of absorbent material of
coatings [12]. So, the RT parameter will be optimized to control the main characteristics of
the acoustic behaviour inside rooms in a building.

Furthermore, in spite of the great influence that the acoustic behaviour of buildings has
on its occupants, it is often not taken into account from the early stages of the project (except
in those buildings in which the acoustic requirements are essential, such as theatres and
auditoriums). In general, the acoustic behaviour of spaces is analysed later, in an advanced
stage in the construction projects when the geometry and configurations of the enclosures
have been already set up. Therefore, if designers strive for achieving some minimum
acoustic requirements, they realize that it becomes more complicated and expensive than
if it had been handled during the design stage of the project [13,14]. What is more, the
acoustic simulations are often carried out using specific software (i.e., Odeon, Catt-Acoustic,
Ease, Soundplane, etc.) which are not usually integrated with the others used to design the
building. In consequence, the use of these tools in later stages of conventional buildings
projects involves an additional work that implies further costs in time and resources, but
perhaps the most worrying issue is the fact that it not often concludes with an optimal
result [13].

Therefore, the purpose of this research is to build an integrated framework in BIM-
based software to generate a comprehensive scheme that allows the analysis of room
acoustic performance from the early design stages to be included, in the same way as
it was performed with other design disciplines in the construction sector (i.e., energy
efficiency, sustainability, LCA, facilities, etc.) [15–19]. In this sense, this research assumes
and will demonstrate that the use of BIM-based model into a reliable database with the
acoustic characteristics of absorbent material of coatings will result in a reduction of the
time invested in the definition of the project and, since the number of explored solutions is
increased, the achieved acoustic performance is higher than the one obtained without the
use of this framework.

This article is structured in five sections: Section 2 establishes the objectives and
the methodology followed in this research. In this section it is outlined the problem of
acoustic performance in buildings in the early stages of design of the project building
using a BIM-based scheme. In Section 3, those parameters and tools that will be used in
the subsequent BIM-based methodology development are defined and presented. The
proposed framework based on BIM for the assessment of the acoustic performance of rooms
in buildings is developed in Section 4, and in Section 5 the proposed scheme is evaluated on
a study case of a building for educational uses. Finally, the main findings and conclusions
of this research are drawn in Section 6.

2. Objectives and Research Methodology: Problem Identification and the Use of BIM
as a Framework to Assess Acoustical Performance of Buildings

In addition to the comments given in the preceding section, it must be also empha-
sized that the processes of architectural design and construction are currently becoming
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increasingly specialized and complex tasks, not only due to the use of new technologies and
materials, but also by the specific demands coming from the different regulations (acoustic,
thermal, environmental, fire safety, etc.) [20]. In addition, it is quite common that multiple
agents to be involved during the life cycle of the project and this fact causes an urgent
need for a necessary communication, interaction and collaboration between the different
agents from the very early stages of design. For all these reasons, Building Information
Modelling (BIM) as a work methodology has attracted a great deal of attention by replacing
the traditional methodology based on Computer Aided Design (CAD). The process of
generation and data management related to the properties and characteristics of buildings
(both geometric and non-geometric data), turns a BIM-based model into a reliable database.
This database can be used throughout the whole life-cycle project allowing the effective
exchange of information between the different agents involved.

Consequently, the application of the BIM methodology in construction projects offers
an exceptional opportunity to assess the building performance from its initial phase [21].
BIM is so useful to test and visualize different scenarios during the process of design,
construction and even maintenance; and therefore, it has the potential to improve the
design process and to support designers and contractors in the decision-making process
concerning the acoustic evaluation [13,22].

On the other hand, the use of BIM-based tools for the assessment of acoustic perfor-
mance in buildings has been the focus of several studies. Among the most recent ones, it
can be highlighted that conducted by Pauwels et al. [20] that proposes a method to analyze
the acoustic performance of buildings by translating the design BIM data into ontology
data and performing reasoning according to ontology-based rules. For the purposes of this
research, it should be note that the BIM-based tool proposed by Wu [13] for the acoustical
evaluation of simple rooms during the design stage of the building. The tool is comprised
of four modules (BIM data extraction, analysis of frequencies, simulation of sound effects
and auralization/visualization). In addition, for simulation purposes, Deng et al. [23]
develops in a framework that integrates BIM and 3D-GIS for the assessment of traffic
noise in both outdoor and indoor urban environments. This framework is based on four
modules that allow calculating noise levels at the outside and the inside and generate
output simulation results. As a tool for decision-making based on BIM, the proposal of
Hammad et al. [24] allows comparing conventional construction methods and modular
ones, considering different factors of sustainability (economic, social and environmental).
Among the analysed factors are the study of environmental noise generated by the different
processes during the construction process. Finally, Tan et al. [25] proposes an acoustic
simulation approach supported by BIM to reduce the impact of noise on offshore platforms
in maintenance work. BIM provides the information to configure and prepare the acoustic
simulation, this is carried out in Comsol. In this framework, BIM is also used to integrate
the obtained information with daily maintenance information. This developed tool can
also be implemented in the early stages of design.

The above schemes propose the use of BIM in several acoustic problems but there
is a need to develop a complete and fully integrated framework for the assessment of
acoustical performance of buildings. For the aforementioned reasons, this work proposes
a BIM framework for the assessment and optimisation of the RT in interior spaces. The
objective is to propose and develop a framework that allows designers to explore design
alternatives in order to achieve a suitable acoustic performance in the early stages of the
design of buildings. This framework intends upon completion of the proposed steps to
allow the assessment of RT in interior spaces in accordance to the legal regulations of each
country or region, and for this commitment, the proposal incorporates an optimization
algorithm for the selection of materials to ensure a suitable acoustic behaviour.

With the aim of accomplish the objectives outlined in the preceding paragraph, four
consecutive phases were conducted in this research in the following order: (I) Identification
of the problem, (II) Statement on Objectives, (III) Proposed Solution and (IV) Evaluation
(see Figure 1). In the first phase, literature review allowed defining the context of the
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problem, i.e., the main characteristics of the room acoustic behaviour can be achieved by
an adjustment of the RT parameter, and this acoustic behaviour should be addressed from
the early stages of the building project, BIM methodology being a promising framework to
accomplish it. With this starting-point, some evidence-practice gaps coming from RT-based
analysis from the early stages of the building project made it possible to identify the needs,
and objectives were defined on this basis. Therefore, on the basis of the information ob-
tained from phases I and II, the objective of developing a framework that allows designers
to achieve a suitable acoustic performance in initial stages of building design was config-
ured. This framework is called “BIM-based framework for Reverberation Time” (BFRT)
and it is developed in Section 4.

Figure 1. Research method.

Once the framework is defined and established, the feasibility of its implementation
in real cases is tested and its results are evaluated in a study case. The project chosen
corresponds to a building for educational purposes. In this study case, the application of
the BFRT framework was made taking into account several regulatory requirements in
European countries, and the obtained results were further compared each other to identify
differences in possible options or solutions according the current different guidelines.

3. Parameters and Tools Used for the Development of the BIM-Based Framework

With the methodology scheme outlined in Figure 1, the following subsections establish
the identification problem and the parameters and tools (Phase 2 in Figure 1) within a
BIM-based methodology needed to develop the proposed framework scheme in Section 3.

3.1. Using Visual Programming Language in BIM Methodology

The use of the BIM-based methodology in the industry of Architecture, Engineering
and Construction (AEC) has aroused a high impact for the last decade. One of the reasons
for this growth is that the BIM methodology provides tools to comply with the Directive
2014/24/EU of the European Parliament and of the Council of 26 February 2014 on public
procurement [23]. This Directive establishes in Article 22. Rules applicable to commu-
nication the following: “For public works contracts and design contests, Member States
may require the use of specific electronic tools, such as of building information electronic
modelling tools or similar.”

On the other hand, the ability of BIM to support the decision-making process from the
early stages of design has become in an effective tool for building performance modelling.
In this sense, researchers have started to use BIM not only as a modelling tool, but also for
what it was originally created, i.e., as a critical methodology and technology to achieve
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higher levels of performance and automatic simulations (such as predictive analysis of per-
formance, sustainability performance [26], life cycle assessment (LCA) performance [27]).

This progress is accompanied by the appearance of tools based on Visual Programming
Language (VPL) that make it easier for the designers, which are not usually programmers,
extend the capabilities of BIM without the need for advanced knowledge in programming
languages. There are different tools based on VPL for BIM (among the most known ones are
Dynamo and Grasshopper). These tools enable us to expand the parametric functionalities
of the BIM methodology and its use expands the options of iteration with the model,
information extraction and development of tools.

There are many studies that have developed tools or frameworks based on BIM
using tools with VPL, such as for example: multi-objective environmental optimization of
buildings [28], Building Sustainability Assessment [29], evaluation of BIM-based LCA [30],
Safety Analysis [31] or Design for Deconstruction [32].

In this work, VPL is used as a tool for the development of a BIM based-framework
that allows designers to evaluate and optimize the acoustic behaviour of a room from an
analysis of RT in interior spaces, all integrated into the own BIM software.

3.2. Reverberation Time (RT) for the Assessment of Acoustic Room Behaviour

The standard EN 12345-6:2003 [33] sets the calculation model for the estimation of the
RT of enclosed spaces within buildings. Due to the strong dependence of the absorption on
frequency, it is necessary to determine the RT for those most representative frequencies. In
general, it is calculated as the average of the RT for 500, 1000 and 2000 Hz the frequencies.
Equation (1) shows the classical Sabine formula for the calculation of the RT, taking as
345.6 m/s for the speed of sound in air [12]:

TR = 0.16
V
A

(1)

where V is the volume of the room (m3) and A is the whole room sound absorption
(Equation (2)) given by [33]:

A =
n

∑
i=1

∝s,i Si +
o

∑
j=1

Aobj,j +
p

∑
k=1

∝s,k Sk + Aair (2)

where:
∝s,i is the coefficient of acoustic absorption of the i-th room surface.
Si is the surface area (m2) of the i-th room surface.
Aobj,j is the equivalent sound absorption area of the j-th object (m2).
∝s,k is the coefficient of acoustic absorption of the k-th specific object configuration (for

example rows of chairs, people sitting in line or children in a classroom with reflecting furniture).
Sk is the surface area covered by the k-th object configuration (m2).
Aair is the equivalent sound absorption area of the air (m2).
n is the number of absorbing surfaces in the room (excluding objects).
o is the number of absorbing objects in the room.
p is the number of the configuration of absorbing objects in the room.
The equivalent sound absorption area of the air is given by the Equation (3):

Aair = 4 m V (1 − Ψ) (3)

where
m is the sound attenuation coefficient of the air, in Neper per meter;
V is the volume of the empty closed space (m3);
Ψ is the object fraction defined as the ratio between the sum of all the volumes of the

objects and the volume of the empty space according to the ISO 12354-6:2004 standard
(dimensionless).
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To ensure a suitable acoustic behaviour, it is required to restrict the reverberating
noise inside rooms. If the reverberation is excessive, the audibility may be poor and/or the
acoustic pressure be high, which interferes with the appropriate performance of human
activities for which these spaces were designed [8]. As a rule, to minimize the effects of
an excessive reverberation is desirable to keep RT small. On the other hand, if the sized
of the room is large and the sound source power is weak, it is advisable to achieve a
higher RT to keep the sound audible at all points in the room. As can be observed, the
choice of a suitable RT for a given enclosure depends on the final use of the room and the
commitment/criterion to be reached in the design stages [9].

For this reason, in such a case in which rooms have an intended use for spoken word,
current regulations of each country sets a maximum value for the RT, which should not
be exceeded. In Table 1 it is showed those minimum requirements for the RT in different
countries given the different uses of the spaces.

Table 1. RT minimum requirements in different countries.

Country Type of Room Requirement RT Frequency Band Comment

Spain [34]

classrooms and
conference rooms 0.7 s 500–1000–2000 Hz Unfurnished and unoccupied

room. V ≤ 350 m3

classrooms and
conference rooms 0.5 s 500–1000–2000 Hz Furnished room. V ≤ 350 m3

Restaurants and
canteens rooms 0.9 s 500–1000–2000 Hz Unfurnished and

unoccupied room

France [35]

Classrooms and
polyvalent rooms 0.4 ≤ RT < 0.8 s 500–1000–2000 Hz Furnished and unoccupied room.

V ≤ 250 m3

Classrooms and
polyvalent rooms 0.6 ≤ RT < 1.2 s 500–1000–2000 Hz Furnished and unoccupied room.

V > 250 m3

Restaurant (School) 0.4 ≤ RT < 0.8 s 500–1000–2000 Hz Furnished and unoccupied room.
V ≤ 250 m3

Restaurant (School) 0.6 ≤ RT < 1.2 s 500–1000–2000 Hz
Furnished and unoccupied room.

V > 250 m3. Special
study required

Sport 0.6 s 500–1000–2000 Hz Furnished and unoccupied room.
V ≤ 250 m3

Portugal [36]

Sport RT ≤ 0.15 3
√

V 500–1000–2000 Hz Furnished and
unoccupied room.

Sport RT ≤ 0.12 3
√

V 500–1000–2000 Hz Furnished and unoccupied room.
With Public address

Auditory, conference
and polyvalent rooms RT ≤ 0.12 3

√
V 500–1000–2000 Hz Furnished and unoccupied room.

if V < 250 m3.
Auditory, conference
and polyvalent rooms RT ≤ 0.32 + 0.17 log V 500–1000–2000 Hz Furnished and unoccupied room.

if 250 ≤ V < 9000 m3.
Auditory, conference
and polyvalent rooms RT ≤ 0.05 3

√
V 500–1000–2000 Hz Furnished and unoccupied room.

Furnished ≥ 9000 m3.

Belgium [37]

classrooms and
conference rooms 0.35 log(1.25V) 500–1000–2000 Hz Unfurnished and

unoccupied room.

Sport log(V/50) 500–1000–2000 Hz Unfurnished and
unoccupied room.

Restaurant (School) 1.0 s 500–1000–2000 Hz Unfurnished and
unoccupied room.
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Table 1. Cont.

Country Type of Room Requirement RT Frequency Band Comment

United
Kingdom [38]

Clasrooms
(primary school)

RT ≤ 0.6 s1

RT ≤ 0.8 s2 500–1000–2000 Hz Furnished and
unoccupied room.

Clasrooms
(secondary school)

RT ≤ 0.8 s1

RT ≤ 1.0 s2 500–1000–2000 Hz Furnished and
unoccupied room.

Lecture rooms RT ≤ 0.8 s1

RT ≤ 1.0 s2 500–1000–2000 Hz Furnished and unoccupied room.
Fewer than 50 people

Lecture rooms RT ≤ 1.0 s1

RT ≤ 1.0 s2 500–1000–2000 Hz Furnished and unoccupied room.
More than 50 people

Gymnasium/activity
studio

RT ≤ 1.5 s1

RT ≤ 2.0 s2 500–1000–2000 Hz Furnished and
unoccupied room.

As can be observed in Table 1, in some country regulations there is some limit values
for not occupied enclosures, furnished or unfurnished, or depending on the room volume.
These considerations inherent in the regulations of each country will be taken into account
in the proposed tool to define minimum and maximum values of RT.

Finally, in the design phase of the project these values will be used to define the
range that allows us to check if the RT in a room will be acceptable or not, in accordance
with its characteristics. In addition, the definition of an upper limit of RT will ensure the
information coming from the sound source is intelligible inside the room. Furthermore, the
establishment of a lower limit will ensure a suitable room acoustic performance.

4. Proposed BIM Framework for Acoustic RT-Based Design in Indoor Areas (BFRT)

The proposed BIM Framework based on RT (denoted as BFRT) is developed as an
integrated tool for the assessment and optimisation of RT of interior spaces in buildings.
The proposed tool generates a set of possible solutions from an extensive search for possible
combinations of existing materials for the different surfaces of the room (wall, floor and
ceiling) included in a database, so that the RT becomes suitable for the prescribed uses of the
room. For this purpose, this work develops an optimization algorithm using combinations
of finishing materials to propose alternatives of constructive design but always fulfilling
the regulatory limits. The aim of this proposal is to help designers in the decision-making
process in the initial stages of design.

The proposed framework is composed of 3 stages as shown in Figure 2. In the Stage

1—BIM Modelling, the building under consideration is designed and modelled using BIM,
with special emphasis in including the information of constructive elements, materials, etc.
In this stage, this modelling must ensure that all the necessary information (geometric and
not geometric) of the project is available, accurate and reliable. After that, it is performed
the zoning of the model and allocation of final uses for the building rooms. The Stage 1 was
developed using Autodesk Revit software [39], which is based on the building parametric
information modelling.

In the Stage 2—Data extraction and RT calculation, the extraction of geometric data
(dimensions of the enclosures, volume, areas of surfaces, etc.) and non-geometric data
(item type, materials, etc.) from the BIM model is performed. This stage was developed
using the Dynamo software [40] (as it is shown in Figure 3). At this stage, a connection
with an external database of materials is made to gain access to absorption coefficients and
price of the materials used in the model. From the data obtained from the BIM model and
database, it is calculated the current RT and the targeted or desired RT (RT objective) is
established, as well as the range of acceptance for each room according to their use and
regulations in the specific country where the project is run.
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Figure 2. Proposed acoustic BIM framework.
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Figure 3. BFRT system in Dynamo (Stages 2 and 3).

Just in the case that the initial RT of the room (calculated from the original design)
becomes unacceptable, it is undertaken the application of the optimization algorithm
defined in Stage 3. If the initial RT were acceptable, the proposed procedure ends at this
point. In any case, once the calculations are finished, the results are displayed in the
Dynamo interface.

In those cases, in which the RT is not acceptable, the Stage 3—Optimization Algo-

rithm starts. Now, these cases are evaluated using an algorithm that performs the search
for the optimal solution of the RT using a branch and bound algorithm [41]. This stage is
carried out using Dynamo software (Figure 3). The optimization is based on the search for
all the appropriate combinations of existing materials in the database that can be used in
the different surfaces of the room (wall, floor and ceiling) to accomplish the targeted RT.
After performing this search, the algorithm shows a set of optimal solutions by the Pareto
frontier. These stages are described in detail in the following Sections 4.1–4.3 of this work.

4.1. Stage 1—BIM Modelling

Prior to the design process of the building in BIM, it is necessary to define several
multiple shared parameters (Figure 4) with that serve to save and communicate information
about the BIM model components. The advantage of the shared parameters is that they can
be used in other projects or ensembles of projects without the need to re-create them, as
they are stored in different files separated from the main project files.

The above-mentioned shared parameters are required for the subsequent process
of calculation and optimization of the acoustic room behaviour. In this case, it will be
necessary to generate four shared parameters associated with the different components of
the model. Table 2 shows the parameters used for the development of the BFRT.
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Figure 4. Example of creating shared parameters for its further use in BIM.

Table 2. Shared parameters of the BIM model.

Shared Parameter Definition Type Parameter Caegory

RT Reverberation time of room Number Room
Type room Type of room String Room

Id Identification number of material with
Acoustic material Database Number Material/Door/Window

Afurn Equivalent sound absorption area of furniture Number Room

Once the parameters are defined, it is accomplished the design and construction of the
BIM model of the building (it would be also possible to use an already developed model
and import the shared parameters, if it were the case). A minimum Level of Development
(LOD) 300 is required for the analysis. Then, it should subsequently be defined the different
constructive elements (walls, floors, ceilings, doors, windows, etc.) to be used in the
rooms under analysis and the Id parameter is assigned to each material comprising the
components. This parameter is used to properly relate the materials of the model with the
external database of acoustic parameters of construction materials (AM database). This
database must be defined and set up at this stage, and it is connected with the BFRT
system. The AM database is composed of different fields (see Table 3), and it contains all
the necessary information on materials for the making of calculations and the subsequent
optimization. Its content and information have been obtained after a review of the currently
materials available in the market and the information provided by the manufacturers.
Users can easily modify the database manually, which may be broaden with new materials.
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Table 3. Basic information scheme of the AM database for each material.

Element Data-Type Description

Name String Name or description of the construction material
Id Number Identification number of the acoustic material

α Number Absorption coefficient in the
125–250–500–1000–2000–4000 Hz frequency band.

Location Number Each finish material has a specific type of location
(wall or/and ceiling or/and floor).

Cost Number Cost of material (€/m2)

The next step is the zoning of the building. To accomplish this, it will be required the
identification and definition of the use of each enclosure using the shared parameter Type
room (Figure 5). In addition, in the event of the regulations of the country specify that the
RT must be calculated considering that the room is furnished, the parameter Afurn must be
fulfilled with the quantity corresponding to the amount of equivalent sound absorption
area of the furniture that the designer should consider.

Figure 5. Example of Type room shared parameter setup.

4.2. Stage 2—Data Extraction and RT Calculation

This stage is composed of 4 groups of nodes developed using Dynamo, which will be
defined in the following sections (Figure 3) i.e., Room Level Selection, Room Data Extraction,
RT Optimum Calculation and RT Calculation and Visualization. Some of the used nodes
are included in the basic library of Dynamo, while the more complex functions have been
developed as nodes in a Python script to avoid the limitations from the basic nodes.

4.2.1. First Node Group—Stage 2: Room Level Selection

This first group is composed of 3 nodes. For RT assessment is necessary to gather
some data from the BIM model. To accomplish this, firstly it will be necessary to choose the
model floor for which the assessment is going to be performed. The levels node is used
from the bookstore of Dynamo to select the corresponding plant model. Once the floor
is selected, using the Room at level node it is performed a filtering process of the rooms
classifying them by its floor (Figure 6). At this point, the Filter Room Regulation node
makes a selection of rooms depending on the country where the project is located and the
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final intended use. In this node, only those rooms with a prescribed RT value addressed in
regulations will only be selected for its subsequent evaluation.

Figure 6. Room at Level Node.

4.2.2. Second Node Group—Stage 2: Room Data Extraction

The second group of nodes is comprised of 4 nodes. They extract information such as
geometric data (dimensions, area, and volume) and non-geometric data (finishing materials,
Id of the materials, element type, location, and the Afurn parameter) from the elements
of the BIM model. Data Room and Element Room nodes extract the information related
to the rooms selected by the First Node Group, while the Door/Window at Level and
Door/Window Released nodes extract the information related to the doors and windows.
To accomplish this, the Door/Window at room node filters out doors and windows of
the model and then they associate them to the room where they are located. Finally,
the Door/Window Released node obtains the necessary information for performing the
calculation process.

4.2.3. Third Node Group—Stage 2: RT Optimum Calculation

Once data from the model have been extracted in the preceding sub-stages, it is calcu-
lated the minimum RT requirements demanded by regulations. For this task Regulation
RT node has been developed. This node assigns the limit RT value depending on the
country in which the project is going to be implemented and the room use, obtaining as
output the maximum values that each of the rooms should meet. In a first approach of this
framework, it has been implemented the limit or recommended values from the regulations
of the following countries: Spain, Portugal, Belgium, Denmark and the United Kingdom. If
new country regulations are required for RT assessment in other countries than the pre-set
ones, the designers can add their own restrictions by editing de Regulation RT node. For
this purpose, the code of the Regulation RT node must be edited, simply adding the new
country, the types of room and the associated RT requirement values.
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As noted in Section 3.2, it is necessary to set both the lower and upper limits to
evaluate if the RT for a specified room can be acceptable or suitable in the design phase.
In this way, if the RT belongs to the interval defined by those limits, it is ensured a correct
acoustic behaviour of the room. The upper limit value (RTlim_sup) of the acceptance interval
corresponds to that established by the regulations as the value that should not be exceeded
(see Table 1). In addition to this upper limit, it is necessary to establish the lower limit
of the acceptance range to ensure a minimum suitable RT (RTlim_in f ) so that the speech
intelligibility is reasonably good at all points in the room.

For this purpose, it has been set by default that the lower RT limit (RTlim_in f ) will be
a value 20% lower than the upper limit RTlim_sup. In this issue, the recommendation of
DIN 18041 standard has been chosen, although the designer could set a different value or
other requirement according to his own criterion (see Figure 7). In this sense, the value
corresponding to the middle of the interval defined by both limits, RTlim_in f and RTlim_sup,
is accordingly denoted as RTtarget.

Figure 7. Acceptance interval for the RT from the regulatory limits.

4.2.4. Fourth Node Group—Stage 2: RT Calculation and Visualization

Finally, the last group of nodes needs to perform the calculation of the RT from the
data obtained through the previous node groups. The RT will be calculated for each room
from the finishing materials defined in the initial design. The calculation is made using the
absorption coefficients of materials provided by the AM database for the mid frequencies
(500–1000–2000 Hz) and Equation (1) shown in Section 3.2. In those cases, in which
regulations would require to consider the room furnished -that is to say, the equivalent
sound absorption area of the furniture-, the Afurn parameter absorbent characteristic of
each room will be added to the total absorption area.

Then, the RT value obtained for each room is checked upon it belongs to the acceptance
interval established in the previous phase. At this moment, a preview of the rooms is
displayed to the user in the Dynamo environment, so that those rooms marked in green
stands for those ones with the value of the RT inside the acceptance interval, being marked
in red otherwise. For those enclosures in which the RT value falls in the acceptance interval,
the process finishes and this solution is taken as a valid one with the initially defined
finishing materials. Lastly, the values of the RT obtained are exported to the model BIM
to enrich and complete the information contained in the model database related to the
acoustic behaviour of the building.

4.3. Stage 3—Optimization Algorithm

In this Stage 3 the optimization process is performed, in a Dynamo environment.
This process is carried out over the rooms whose RT does not belong to the region of
acceptance. The objective of this algorithm is twofold, firstly it tries to find out different
design solutions to adapt the original RT to the prescribed targeted RT (see Figure 7) and
secondly, it looks for minimizing the total cost, by the replacement of finishing materials
once the AM database is connected. The information on materials included in the AM
database is then used for proposal of new solutions in the optimization process. As a result,
different solutions are shown, ordered as their average absorption coefficient increases.
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Table 4 shows different types of action made for optimization, according to the replaced
materials for the finishings of the room (wall, ceiling or floor) and their possible combinations.

Table 4. Types of optimizations according to the replaced material.

Type Replaced Material

Type 1 Replace the wall
Type 2 Replace the ceiling
Type 3 Replace the floor
Type 4 Replace the wall-ceiling
Type 5 Replace the wall-floor
Type 6 Replace the ceiling-floor
Type 7 Replace the wall-ceiling-floor

To determine the possible potential solutions that would allow us to adapt the RT
of the room, the implemented algorithm uses the branch and bound technique [41]. This
technique is frequently used to solve optimization problems through the generation of a
space of solutions defined in a tree (Figure 8). The use of this technique has the purpose of
searching for a set of solutions that meet one criterion previously established, through a
systematic path by the tree of solutions.

Figure 8. Branch and bound algorithm using to adapt the RT.

So, this procedure discards large subsets of unsuccessful candidates on the basis of the
use of upper and lower limits by following different paths. The efficiency of this method
depends mainly on the branching procedure of nodes and the strategy of bounding to
remove those nodes that are not a feasible solution.

For this study, a FIFO (First In First Out) strategy of branching has been chosen, in
which the path through the search space is made in the width of the tree. With regard to
the bounding strategy, the range of acceptance interval of the RT is taken into account.

Thus, the procedure in the stage 3 remains as follows:

1. From the TRlim_sup y TRlim_in f limits of the acceptance interval, it is possible to
calculate the minimum acoustic absorption surface (Alim in f ) y and the maximum
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acoustic surface absorption (Alim sup) that the room under analysis should have. The
bounding strategy is set from the Equations (4) and (5),

Aw,i + Ac,k + A f ,j ≥ Alim in f (4)

Aw,i + Ac,k + A f ,j ≤ Alim sup (5)

where Aw,i is the total absorption surface area corresponding to a wall coated with
the i-th material; Ac,k is the total absorption surface area corresponding to a ceiling
coated with the k-th finishing material; and A f ,j is the total absorption surface area
corresponding to a floor with the j-th finishing coating material, i.e.:

Aw,i = αw,i × Sw (6)

Ac,k = αc,k × Sc (7)

A f ,j = α f ,j × S f (8)

In the above equations αw,i is the average absorption coefficient of the wall coated with
the i-th material; Sw it is the total surface area of the wall; αc,k is the average absorption
coefficient of the ceiling coated with the k-th material; Sc is the total surface area of the
ceiling; α f ,j is the average absorption coefficient of the floor covered with the j-th material;
and S f it is the total surface area of the floor.

2. For each individual solution that meets the acceptance criterion, the objective functions
are computed. These functions are two: the first one denoted as Ci is the cost of the
investment (Equation (9)) and the second one is denoted as Di (Figure 9) which is
the absolute value of the difference between the total absorption surface area that
provides such a solution with respect to the optimal absorbent surface area (Atarget) of
the enclosure (Equation (10)).

Cijk = pw,i × Sw,i + pc,k × Sc,k + p f ,j × S f ,j (9)

Dijk =
∣∣∣Atarget − Aijk

∣∣∣ being Aijk = Aw,i + Ac,k + A f ,j (10)

Figure 9. Calculation of Dijk objective function.

In the above equation pw,i is the cost of the i-th finishing material covering the wall
surface, Sw,i being the total surface area of the walls coated with the i-th finishing material.
pc,k is the cost of the k-th finishing material that coats the ceiling surface. Sc,k is the total
surface area of the ceiling coated with the k-th finishing material. p f ,j is the cost of the j-th
finishing material that covers the floor surface and Sw,j is the total surface area of the floor
covered with the j-th finishing material.

3. Once obtained the set of solutions for the studied problem, the optimum solutions
are calculated using of the Pareto front or frontier. The criterion of optimization has
been the minimization of the cost and the difference between the absorbent surface
area of the solution and the optimum absorbent surface area. The Pareto front is the
set of possible solutions of optimization that are not dominated; a non-dominated
solution being a solution that is not dominated by any other solution. The optimal
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Pareto solution will be that solution Pi such that there is no other solution Pj that will
improve in a goal without becoming worse at least one of the other ones.

4. This algorithm ends by showing the solutions that belong to the Pareto fronts corre-
sponding to each one of the 7 types of actions proposed in Table 3. Thus, the designer
will be able to choose between the proposed solutions, as they all fulfil the criterion of
a suitable RT.

5. Results: Case Study

In this section, the application of the proposed methodology is illustrated, using a
study case. This example aims to show the type of solutions found and the potential of the
proposed methodology to be applied in the design process.

5.1. Building for the Case Study

The proposed framework (BFRT) was applied to a building to be used for educational
purposes. The building has a design area of 2500 m2 with two floors (Figure 10), and is
located in the city of Granada in Spain. The building comprises of different rooms for dif-
ferent uses (classrooms, laboratories, offices, conference rooms, library, dining, warehouses
and facilities). Table 5 shows a summary of the materials used in the different rooms.

Figure 10. BIM 3D model of the educational building taken as a study case.
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Table 5. Finishing materials according to the type of room.

Type of Room Element Finishing Material

Classroom/Reading
room/Office/Laboratory

Wall Plaster
Ceiling 15 mm gypsum board
Floor Ceramics

Storage/Facilities/Bathroom
Wall Tile

Ceiling Ceiling
Floor Terrazzo

Library/Conference room
Wall 15 mm gypsum board

Ceiling Drop ceiling
Floor Parquet

The windows are composed of glazed surface area in the 90% of its surface, while the
doors are made entirety of wood. The height of the rooms is 3.00 m. The 3D BIM model
was created using Autodesk Revit 2021 and Dynamo 2.1.

5.2. Data Extraction and RT Calculation (Application of the Stage 2 of the Proposed Procedure)

Once the building is modelled, the package of nodes developed in Dynamo extracts
the geometric and non-geometric data (related to its Node Group). Firstly, it performs a
filtering of the rooms that have a regulatory requirement to fulfil. Given that this building
is located in Spain, in accordance with the applicable regulations, only those rooms with
a declared use of classroom, conference room and restaurant (see Table 1) must meet the
prescribed limits. On the basis of these data, the RT is computed. Figure 11 shows the
calculated values for the RT in the different selected rooms, as well as its use. Figure 12
shows the display of the RT fulfilment according to the Spanish regulation in the different
floors of the BIM model. As shown in Figure 12 only the room with the use of dining
room/cafeteria meets the criteria for acceptance of the RT.

Figure 11. Room schedule in the BIM model with RT calculated values.
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Figure 12. Visualization of the compliance with the RT limit values according to the type of room on
the ground floor (project located in Spain).

5.3. Optimization (Application of Stage 3 of the Proposed Procedure)

Once it has been identified those rooms whose RT is not appropriate, a further analysis
is performed applying the “Optimization Algorithm” node developed in Stage 3. The
calculation is made automatically for all the on the same floor rooms that do not comply
with the predefined criteria, in accordance with the acceptance interval based on the Spanish
regulations.

An example of the results obtained through the optimization process is shown in
Figure 13 for the “A” room whose use is classroom. The Branch and Bound technique is
used to determine all the possible potential solutions. Every solution Aijk providing a total

absorption surface area contained in the interval
[

Alim,in f , Alim,sup

]
is stored and classified

according to the replaced material (i.e., Type 1, . . . , Type 8). Based on this set of solutions
classified for each typology, the optimum solutions are then calculated by making use of
the Pareto frontier. In this sense, in this study case a database was used containing i = 81
wall materials, k = 207 ceiling coated materials and k = 25 floor materials. In fact, these
numbers depend on the number of materials used by the design team. Accordingly, the
size of the solution space is n = 419, 175 cases. The algorithm has generated 46,437 feasible
solutions. From these solutions and in different colour Figure 13 shows the Pareto fronts
for each of the types of intervention defined in Table 4, based on the criteria of minimizing
total cost and difference of absorption. In this figure, it can be also observed the results
obtained for the different choices of elements for optimization: Wall (w), Ceiling (c) and
Floor (f), as well as their diverse combinations. In type 1 (only wall) there are no solutions
starting from the existing database. For the rest of elements (see Table 4) two sets of Pareto
fronts can be identified.

According to the Pareto fronts obtained for the different elements, the different types
can be grouped into two sets. The first set comprises the types 3, 2 and 6, in which all the
solutions have a cost equal to or greater than 4000 €. The second set comprises the types
4, 5 and 7. In this set, the solutions provide values near to the optimal absorbent acoustic
performance, but with a total cost less than the Pareto fronts in the first set.
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Figure 13. Results obtained from the Pareto frontiers calculation in Stage 3 for the optimization based
on the acoustic absorption of materials and their investment cost. Red square—Pareto front type 1.
Green dot—Pareto front type 2. Blue Triangle—Pareto front type 3. Cyan rhombus—Pareto front
type 4. Purple hexagon—Pareto front type 5. Wine cross—Pareto front type 6. Black Cross—Pareto
front type 7.

It is interesting to note that the use of the information provided by the stage 3 of the
proposed procedure through the Pareto frontiers can be helpful to the designer/researcher
in order to make a final decision by selecting a specific proposal. On the basis on these
results, the designer could choose from several solutions depending on the preference for
one criterion or another. Thus, the designer could prioritize whether to minimize the cost of
the intervention, or minimize the difference between the optimal absorbent area and those
provided by the tool, or the number of surfaces to adapt, or the material of the elements to
be used in the project. The designer, depending on the level of requirement for acoustic
comfort and other specific features or needs of the project, can thus implement this tool to
make the final decision.

5.4. Solutions for the Study Case in Different Locations: Comparison of Results

As has been mentioned before, the regulatory requirements of RT vary by country
(see Table 1). To assess the versatility of the proposed BFRT framework, the analysis of the
same project of the case study has been performed, maintaining the initial configuration
but changing the country of location of the building. For this, three different countries
with different regulations were chosen and, accordingly, the results obtained are different
depending on the selected country, since the regulatory limits established by each country
are different. Figure 14 shows the results obtained following the implementation of the
Stage 2 of the proposed BFRT to three different locations. It should be noted that the results
differ from those previously obtained when the location was set in Spain (see Figure 12).

60



Buildings 2022, 12, 542

Figure 14. Compliance with the RT limit values by room type and floor for different locations of the
study case.

Subsequently, it is interesting to make a comparison of the results obtained in Stage 3.
To accomplish it, it has been selected the room of the study case (“A” room whose use is
classroom). Figure 15 shows the Pareto fronts after the optimization process performed for
this room.

For the case of the optimization of the room case study (classroom) located in Portugal,
the algorithm generated 35,211 feasible solutions. If the classroom was located in United
Kingdom, 25,642 solutions were obtained and 12,605 ones for the case of Belgium. The
number of solutions obtained for each country is different because the RT limits are different
for each country: the RT regulatory limits for Portugal is 0.76 s, being 0.8 s in the case of
United Kingdom and 0.87 s in the case of Belgium. In this sense, the number of feasible
solutions provided by the proposed optimization algorithm is going to depend on the RT
regulatory limit established by each region or state, and of the initial finishing materials
and the configuration of the rooms in the buildings.
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Figure 15. Results obtained from the Pareto frontiers calculation in Stage 3 for the optimisation based
on the acoustic absorption of materials and their investment cost for the countries of Portugal, United
Kingdom and Belgium. Red square—Pareto front type 1. Green dot—Pareto front type 2. Blue
triangle—Pareto front type 3. Cyan rhombus—Pareto front type 4. Purple hexagon—Pareto front
type 5. Wine cross—Pareto front type 6. Black cross—Pareto front type 7.

5.5. Discussion

The BFRT proposed framework implements a workflow based on BIM for the assess-
ment and optimisation of RT in buildings. The BFRT framework allows to develop the
acoustic analysis of spaces in the BIM design software itself, without having to resort to a
specific acoustic software outside of the own BIM frame. This is an important advantage in
contrast to other research approaches proposed in other studies which require the use of
additional software, such as GIS [23] or Comsol [25].

Therefore, the scientific contribution of this research is the development of a framework
for the integration of acoustic analysis in BIM-based software. This framework is developed
in Section 4 (Proposed BIM framework for acoustic RT-based design in indoor areas: BFRT).
The relevance of the proposed BFRT is that it contributes to solving the current problem of
defining the design of spaces with a suitable acoustics according to their prescribed use
with two important features: (1) it is carried out during the design stage and (2) it performs
a systematic search for a large number of possibilities with a reduced time for analysis.

The BFRT allows the compliance with the limit values of RT depending on the country
and its specific regulations to be analysed. The implemented procedure is based on the
RT calculation, which is automatically computed for the different rooms of each floor
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of a building. In those cases where the value of the RT of the room does not belong to
the acceptance interval, the optimization process provides solutions based on changing
finishing materials of different surfaces of the walls, floors and ceilings. The design of the
interior spaces is essential for a good acoustic conditioning. The selection of materials and
composition of the constructive elements in the design phase allows us to anticipate the
solution of arguments arising from a poor acoustic behaviour already in the initial design
phases of building projects. Consequently, cost savings and better acoustic performance can
be provided to building inhabitants compared to addressing the issue in subsequent phases.

The BFRT offers the possibility to evaluate the behaviour of the RT depending on the
location of the project since it the limit values of the regulations can be included in the
optimization process. In this first stage of development of this framework, the designer
can supply other limits coming from specific regulations or requirements. This process
requires editing the code of the Regulation RT node and a minimum knowledge of VPL
and Python scripting in Dynamo is advisable. Results are displayed by using colours in
the same interface of the BIM software, which greatly facilitates the visualization of the
assessment in the same design interface.

In the proposed framework it has been chosen the optimization algorithm based
on the technique of branching and bound since it is a flexible tool for calculating all
possible solutions. It should be noted that the application of this procedure for optimization
differentiates this research from other proposals that only evaluate the initial design solution
and do not provide alternative design options [13,24]. Other multi-objective optimization
tools could have been chosen at this stage, but results do not differ mainly from the
proposed one, since the objective is that the algorithm does not calculate all possible
scenarios for interventions in the rooms. In fact, the results obtained for the study case in
the classroom, considering the location of the project in different countries (Spain, Portugal,
United Kingdom and Belgium), shows that of the total number of combinations chosen
by the branching and bound tool lies between 9% and 33% of the total (Spain: 33%, UK:
16%, Portugal: 23% and Belgium: 9%). So, the algorithm has discarded approximately a
67 to 91% of possible combinations without need to be computed, saving computational
time. In this regard, the computation time needed by the proposed algorithm to obtain the
results of the floor where the room study case is located (15 rooms) is 117 s and it obtained
639,647 workable solutions for all the different rooms. For the second floor (10 rooms), the
computing time was 44 s obtaining 419,441 feasible solutions. The calculations were carried
out with an Intel Core i7–9750H computer.

In summary, the main advantages and contributions offered by the application of
BFRT in the field of acoustic engineering are: (1) it allows incorporating information related
to the acoustic behavior of interior spaces and so the further enhancement of BIM model.
In addition, the proposal allows for efficient connection with AM databases; (2) BFRT
provides an automatic calculation of RT in all the rooms of the studied floor of a building
(no need to re-enter data in other software); (3) Visualization of the fulfilment of the RT
requirements in the design software allows the designer to work with a friendly tool for
helping in decision-making process in the early design phase; (4) The proposed algorithm
based on the technique of branching and bounding allows selecting the combination of
finishing materials to obtain an optimal value of the RT without the need to evaluate all
possible solutions. This implies a significant saving on computation time in the calculation
process; and (5) the framework is flexible, i.e., it allows the user to add easily new RT limits
according to the regulations of different countries in the code.

Finally, among the limitations presented by this study, it should be noted that the
calculation of RT is based on Sabine’s formula. Nevertheless, this formula has been
implemented in the framework because national regulations in European countries state
that it should be used to assess RT. In further research, complementary methods for the
calculation of RT other acoustic parameters will be incorporated into the system.
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6. Conclusions

This research develops a framework for the analysis of acoustic behaviour of rooms
based on RT parameter (BFRT). Using both a BIM-based methodology and a graphical
programming software (Dynamo) it has been developed a framework to support the
decision-making process of designers during the early design phase in the field of acoustic
conditioning of buildings. The proposed framework is embedded itself in the design
software, so facilitating the evaluation of the RT without the need to use other specialized
software. This is quite relevant since working time is saved and errors arising from manual
data entry of a software to another are avoided. In addition, it allows an easy and automatic
evaluation of the RT each time that a modification of the 3D BIM model is considered,
showing a display of the results on the same interface design which is really comfortable
for the designer.

The BFRT provides a framework for the integration of information on acoustic pa-
rameters within the building BIM model. The inclusion of parameters relating to the
acoustic behaviour of the building allows additional features of the building to be taken
into account and adds new information to the database so that it can be performed the
analysis of the acoustic behaviour from the early stages of design in many ways. In this
sense, the integration of the proposed BFRT into BIM design software simplifies the process,
avoiding further rework and it reduces the time spent in RT assessment. Furthermore, it
provides key information to designers for the decision-making process and improves the
acoustic performance in buildings construction, which are key aspects in practical work.
Finally, the automation of the assessment procedure encourages designers for optimisation
of the building acoustic behaviour in their projects from the early stage of design, with the
important fact that the acoustic data and parameters become integrated in the BIM model.

Finally, the management and consideration of the acoustic behaviour in the interior
spaces from the initial stages ensures a further appropriate acoustic performance of the
different rooms. This is an important issue since providing acoustic comfort and ensuring
the correct performance of the activities that can be carried out according to its use without
the need of subsequent costly and complicated actions in other phases of the project results
in relevant time and economical savings and better final performances.
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Abstract: Real-time identification and prevention of safety risks in dynamic construction activities are
demanded by construction safety managers to cope with the growing complexity of the construction
site. Most of the studies on BIM-based construction safety inspection and prevention use data from
the planning and design stage. Meanwhile, safety managers still need to spend a lot of time gathering
reports about construction safety risks in certain periods or areas from inferred results in BIM.
Therefore, this paper proposed an automatic safety risk identification and prevention mechanism
for the construction process by integrating a safety rule library based on ontology technology and
Natural Language Processing. An automatic inspection mechanism integrating BIM and safety rules is
constructed, and a presentation mechanism of intelligent detection results based on Natural Language
Processing is designed. The construction process safety rule checking system was developed, and the
effectiveness of the system was verified by a case study. The outcome of this paper contributes to the
development and application of ontology in construction safety research, and the NLP-based safety
rule checking result presentation will benefit safety inspectors and construction managers in practice.

Keywords: construction process; safety compliance checking; ontology; BIM; NLP

1. Introduction

As construction accidents continue to cause casualties and economic losses, the ef-
ficiency of safety management and the reduction of the occurrence of accidents remain
an urgent problem to be solved. The current way of safety management heavily relies on
safety managers’ understanding of safety regulations and their experience. With the growth
of scale and complexity of projects, the tasks of safety inspection and risk prevention are
time-consuming and error prone. Analyzing the causes and formation mechanisms of
safety accidents is the prerequisite for preventing safety risks [1]. At present, the accident
causation theory is often used to analyze the causes of accidents. The theory of the cause of
construction safety accidents refers to the analysis of typical accidents, thus as to extract
the mechanism of accident occurrence and to establish the accident causation model. This
can provide a scientific basis for the qualitative and quantitative analysis, prediction, and
prevention of accidents, as well as the improvement of safety management [2]. The accident
causation theory has experienced three stages, namely the early accident causation theory,
the accident causation theory after World War II, and the modern system safety theory [3].
The early accident causation theory includes accident frequency tendency theory, Heinrich
accident causation sequence theory [4], Frank Bode’s modern accident causation theory [5],
and the accident causation theory after World War II includes the trajectory cross theory
and accidental release of energy theory. For building structures with increasingly complex
structures and sizes, the sources of safety accidents are many and complex, including
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unsafe behaviors of construction workers, errors of safety management personnel, unsafe
conditions of construction machinery and tools on-site, and unsafe conditions. Protective
measures and environment. The modern system theory is a theory specifically aimed at
complex accident systems. In order to comprehensively manage the hidden dangers and
problems of the construction site, it is necessary to sort out the sources of various safety
problems during the construction process in order to establish a comprehensive safety
prevention system. This paper adopts the modern system safety theory, which believes that
the most important factor that causes accidents is the various hazards in the production
process. The theory also believes that the main work of safety management is to identify,
evaluate, and control hazard sources.

Therefore, the automatic identification of construction safety risks and their corre-
sponding solutions has gained more and more attention from researchers worldwide.
However, current studies on the issue mainly focus on the use of BIM (Building Informa-
tion Modelling) technology in safety inspection and risk prevention from the design stage.
While the limited range of safety risks in construction are covered in current studies, such
as openings or edges, it is believed that real-time identification and prevention of safety
risks in dynamic construction activities will provide a more desirable solution to the ever-
growing complexity of the construction site. In addition, the current research is unable to
form a system of reusable safety knowledge in the form of standardized provisions for use
in subsequent safety management projects. There still remains a gap in the establishment
of reusable construction safety management knowledge and its application in the dynamic
construction site.

In recent years, advanced information technologies such as BIM, ontology, NLP (Natu-
ral Language Processing) are introduced in the construction industry to improve production
efficiency. Ontology, which can be interpreted as a knowledge description model, was
originally derived from the field of philosophical concepts. A complete ontology consists
of at least five parts: concept or class, relation, function, axiom, and instance. An instance
is a concrete instance of a concept [6]. Ontology has been widely used in information
retrieval, semantic web, knowledge management, digital library, and other fields. As an
important knowledge representation model, ontology technology has been widely studied
in the field of construction safety management, especially in information reasoning and
extraction. Wang and Boukamp (2011) [7] established an ontology for analysis of potential
job hazards, including construction activities and specific operation steps, and established
a set of ontology reasoning mechanisms to realize the safety inspection of construction
activities, with which the response rate of construction companies to construction activity
risks was improved. To identify specific safety risks and automatically generate safety
measures, Lu (2015) et al. [8] established five categories of CSCOntology (construction
safety checking ontology), including the line of work, task, precursor information, hazard,
and solution. The rules regarding high falls as promulgated by OSHA (Occupational Safety
and Health Administration) were first translated into SWRL (Semantic Web Rule Language)
rules that can be processed by computers, the JESS inference machine was then used to
realize the inference for a given instance of ontology and generate corresponding solu-
tions. However, the information needed for detection still needs to be created and entered
manually, implying an insufficient degree of automation. Kim et al. (2016) developed a
BIM-based scaffolding automatic planning system. The system used simulation engines
and BIM to simulate daily construction progress and identify potential hazards according to
safety specifications. Zhang (2015) et al. [9] proposed an automatic safety planning system
combining BIM and ontology. This system established the mapping between BIM compo-
nents and concepts in the ontology and then used SWRL rules in the ontology to carry out a
safety inspection on automatically extracted masonry components in BIM and give a visual
results report. In 2016, Ding et al. [10] applied ontology technology and semantic network
technology in the safety risk management of deep foundation pit construction. There are
several shortfalls in the current research of ontology applications in construction safety
management. Firstly, the information for reasoning using ontology either comes from
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manual input or is extracted from a static BIM model in the phase, both of which cannot
represent the dynamic nature of construction safety management. Secondly, a limited range
of construction safety management is covered in current research, with emphasis on falls
from height and border identification. Lastly, the results of safety checking are presented
in the form of databases or tools for ontology reasoning, which imposes restrictions on
construction managers who are not familiar with such tools.

Natural Language Processing is an important direction in the field of computer sci-
ence and artificial intelligence, which helps computers understand the real meaning of
human natural language. NLP is mainly used for information extraction and retrieval from
documents written in natural language. At present, there have been increasing applications
of NLP in construction safety management. One typical study was reported in Zhang
and EI-Gohary (2015) [11], which used established semantic mapping rules and conflict
resolution rules to convert some chapters of the International Building Code 2009 into
logical sentences that can be used for safety code inspection. In this study, NLP was used for
syntactic analysis, and ontology was used for semantic analysis. In order to automatically
extract relevant information from the BIM model for automatic specification checking,
Zhang and EI-Gohary (2016) [12] proposed the use of NLP to extract concepts related
to consistency checking from the specification. The concepts were then mapped to the
IFC (Industry Foundation Classes) hierarchical relationship to automatically match the
information in the specification and the BIM model. In another study, Zhang and EI-Gohary
(2017) [13] developed an NLP-based system to automatically extract and transform speci-
fication information and design information in BIM, which were then used in consistent
reasoning. Lin (2015) [14] et al. proposed a method for intelligent retrieval and presentation
of BIM cloud data based on NLP. The number of materials used on the construction site and
the amount of progress completed can be presented in an intelligent way through inquiry.

In light of recent advancements in safety rule checking and result presentation, al-
though progress was made recently towards intelligent construction safety management,
there were some limitations that need to be resolved. Firstly, most of the studies were on
BIM-based construction safety inspection and prevention use data from the planning and
design stage. There were relatively few studies on real-time safety risk inspection and
prevention of complex and changeable construction sites. Secondly, there were few studies
using BIM as the information source for a safety inspection, which reported that a lot of
manual intervention was still needed to name BIM model components in order to realize
the mapping relationship between safety rules and BIM components. Lastly, while BIM has
shown its potential in inferring construction safety risks and prevention measures, safety
managers still need to spend a lot of time gathering reports about construction safety risk
in certain periods or areas from these inferred results. There are few studies that focus
on how to intelligently present construction safety reports thus that safety managers can
quickly obtain safety issues for a real-time safety inspection.

This paper contributes to the body of knowledge of construction safety management
by the establishment of a BIM-based construction process safety risk inspection system
integrating ontology and Natural Language Processing. In this study, BIM is used to
contain the dynamic construction process and serves as an efficient information retrieval
hub. Combined with ontology and Natural Language Processing, the information in BIM
is used to identify and prevent construction safety risks, thus as to achieve day-to-day
dynamic and comprehensive safety management. Two research questions are addressed
in this paper: (1) building an ontology-based computer-recognizable safety regulation
knowledge base that helps to automatically identify and prevent safety risks in everyday
construction activities; (2) comprehensive and easy-to-use ways of providing construction
managers with real-time safety risk identification results and prevention measures. The
work presented in this paper not only effectively reduces the workload of managers but
also improves the accuracy of safety risk inspections and ultimately achieves the goal of
reducing safety accidents and improving construction safety management.
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2. Methodology

2.1. Methodology Overview

In this paper, a BIM-based dynamic construction safety rule checking framework using
ontology and Natural Language Processing was proposed to overcome the shortcomings of
current research. The methodology of the framework development included 3 major steps,
namely the development of construction safety management ontology, the establishment of
a safety rule library for the construction process and prosing a safety risk identification and
retrieval mechanism. The framework can be illustrated in Figure 1.

Figure 1. Illustration of the framework.

2.2. Development of Ontology

The construction safety management ontology integrates the relevant knowledge
of the construction process, various types of safety accident knowledge related to the
construction process, and the precursor information and corresponding safety solutions of
the accident. The improved 7-step method was applied to complete the construction of the
safety ontology. The standard 7 steps of ontology development were: (1) determine the
domain and scope of the ontology; (2) consider reusing existing ontologies; (3) enumerate
important terms in the ontology; (4) define the classes and the class hierarchy; (5) define
the properties of classes—slots; (6) define the facets of the slots; and (7) create instances.
The development of the safety ontology specifically includes 5 processes.

2.2.1. Determine the Scope of the Ontology

Since the establishment of the ontology is a complex and elaborate process, the first
step in building the ontology is to determine the professional domain and scope of the
established ontology, that is, to define the role of the ontology, the domain of the application,
the user, and the maintenance of the ontology. In this paper, the developed ontology will
focus on the civil construction process and renovation process of the building, as well as the
corresponding safety issues and solutions. The development of the ontology will include
the review of the concepts and interactions of the construction process, precursor, hazard,
and solution based on relevant construction specifications and safety specifications.
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2.2.2. Reusing the Existing Ontology

The existing ontology related to the scope of the study should be reused in order to
reduce the difficulty of developing the ontology. Jiao [15] established a subway construc-
tion safety risk ontology knowledge database, and Zeng [16] established a knowledge
database of subway construction safety accidents, both of which discussed the subway
construction process from the perspective of accident causes, the fundamental aspects of
the subway construction process, and the risk management ontology corresponding to the
solution. Zhang [17] established a risk management ontology of construction engineering
under a BIM environment to realize the semantic reasoning and retrieval of risk accidents.
With reference to the structure and establishment process of these ontologies, this paper
established an ontology that can effectively manage the safety risks of construction sites in
view of the dynamic characteristics of the construction process in the construction field.

2.2.3. Hierarchy and Properties of Classes

This paper used a top-down approach to enumerate and define classes. The on-
tology classes constructed in this section mainly include 4 categories: construction pro-
cess; precursor; hazard; and solution, each of which includes different sub-classes, hierar-
chy of these sub-classes, and the relationship between them (Table 1). In this paper, the
WBS (Work Breakdown Structure) decomposition results included C1 (civil engineering),
C2 (decoration engineering), and C3 (facility and pipeline). C1 (civil engineering) included
4 categories, and C2 (decorative engineering) included 7 categories.

Table 1. Category concept definition.

Name Definition

Construction Process The activities of construction
Precursor Status or condition that may cause a safety incident

Hazard Safety accidents caused by precursory information
such as falling, collapse, and object striking

Solution Preventing safety accidents or actions

The precursor information included 4 parts: structural member; material; equipment;
and; environment, and these 4 precursor information classes were each divided into 3 different
sub-classes. An example specification of the precursor information is shown in Table 2.

Table 2. Example of precursor definition.

Construction Process Precursor Location Cause

C1.3 Formwork, scaffolding;
C1.4 The stacking of masonry

materials and construction
machinery and tools in the

masonry engineering;
C2.1 Veneer engineering
C2.2 Veneer engineering

machinery stacking

Protective thickness at the
top of the protective shed Pedestrian access shelter

The thickness of the top of the pedestrian
access shelter is not enough to resist falling

objects from high places

Geometry size of the
protective shed Pedestrian access shelter

The geometric dimensions of the pedestrian
access protection shelter do not meet the

requirements of the specification

Safe net Main building
The safety net around the main building is
not erected or the erection quality/density

does not meet the specification requirements

Scaffolding position Main building
The stacking position of the scaffolding is

too close to the unprotected opening or
the edge

Tool stacking position Building main
body/scaffold board

The stacking position of tools is too close to
the unprotected hole or the edge, or placed

on the scaffold

C1.3 Tower crane installation and
dismantling in the main structure

project

Tower crane
installation/removal Tower crane

Tower crane installation and demolition
have an intersection with construction

pedestrians within a certain safe distance
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The hazard component included 5 parts: fall hazard; struck; collapse; lifting injury;
electric shock; fire; and explosion.

Solutions included staff protection system and safety control of material and equipment.

2.2.4. Definition of Class Attributes

The definition of class attributes in this paper included 2 aspects: the definition of the
object property and the definition of data type property. The object attributes define the
relationship between classes and classes, while the data attributes define the relationship
between the classes and data.

Object property: the ontology established in this paper included 4 major categories,
and the logical relationship between the 4 categories can be expressed by 3 relational terms.
Some construction processes or precursors generated by unsafe construction state can be
expressed by “Has_precursor”; the precursor may cause construction safety accidents (haz-
ard), thus “Cause_hazard” can be used; and construction accidents (hazard) occur, which
need corresponding countermeasures (solution) to prevent or solve, thus “Has_solution”
can be used to express the relationship.

The formal expression of these attributes can be expressed by Domain U and Range
U in the property’s toolbar of Protégé 5.5.0 from Stanford University in the United States,
an open-source ontology editing software. Each construction process may have several
kinds of precursory information, but each specific precursory information instance can only
belong to a construction process, and the setting of the attributes of objectivity can be seen
in Table 3. The process of attribute construction in Protégé is shown in Figure 2.

Table 3. Object property definition.

Object Attribute Domain Range
Function

Characteristics

Has_precursor Construction Process Precursor Inverse Functional
Cause_hazard Precursor Hazard Inverse Functional
Has_solution Hazard Solution Inverse Functional

Figure 2. Object relationship setting.
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The relationship between classes of the same level was defined above, and the rela-
tionship between different levels was an inclusion relation. According to the predefined
definition of Protégé software from Stanford University in the United States, “is_a” repre-
sents the attribution relationship between the class and the inclusion class. For example,
“Block_Masonry” of brick masonry projects belongs to a larger category of construction
processes. Thus far, the definition of object type attributes of different classes at the same
level was completed. Figure 3 presents an OntoGraf view of the class hierarchy.

 

Figure 3. Class and class hierarchy relationship OntoGraf view.

Datatype Property: this paper defines data type attributes according to the charac-
teristics of the 4 major classes, and the characteristics of the sub-classes contained in each
class were relatively different; thus, for convenient construction, this paper summarizes the
characteristics of each sub-class to the main class.

The datatype properties of the construction activities were summarized as follows:
(1) the basic information includes the construction activity number, construction activity
location, construction content, and start and end time; (2) the precursory information that
may be included in the construction process, such as the components, materials, equipment,
environment, specific attribute names, value types and function characteristics, as shown
in Table 4.
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Table 4. Construction activity data type attribute definition.

Data Type Attribute Names Value Types Function Characteristics

Construction_ID int Functional
Construction_Location float Functional

Construction_Task string Functional
Start_time string Functional

Ending_time string Functional
Construction_member string Functional
Construction_material string Functional

Construction_equipment string Functional
Construction_environment string Functional

The datatype properties of the precursory information were summarized as follows:
the number of construction activities, the number of precursory information entries, and
the description of precursory information, including the components, materials, equipment,
and environment. Different types of precursory information have different characteristics;
thus, different types of precursory information have different data attributes. For example,
when considering the precursor information of the hole, the information regarding whether
there was a cover (has_cover), whether there was a guardrail (has_guardrail), and the
direction of the hole (has_direction) should be included. For each of the 4 types of values
and functions, the characteristics are shown in Table 5.

Table 5. Precursor information data type attribute definition.

Data Type Attribute Names Value Types Function Characteristics

Precursor_ID int Functional
Belong_to_Constuction int Functional
Precursor_Description string Functional

Precursor_member string Functional
Precursor_material string Functional

Precursor_equipment string Functional
Precursor_environment string Functional

The datatype properties of the construction risk were summarized as follows: construc-
tion risk number, accident location, correspondence to the precursor information number,
and accident occurrence time, as shown in Table 6.

Table 6. Construction risk data type attribute definition.

Data Type Attribute Names Value Types Function Characteristics

Risk_Number int Functional
Cor_to_Precursor int Functional
Risk_Description string Functional

Risk_Location string Functional
Risk_Task string Functional
Risk_Time string Functional

The datatype properties of the safety measures were summarized as follows: safety
measure quantity, risk accident number, description of measures, safety measures for
personnel, measures for materials, and measures for equipment, as shown in Table 7.
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Table 7. Safety measure data type attribute definition.

Data Type Attribute Names Value Types Function Characteristics

Solution_ID int Functional
Risk_ID int Functional

Measure_Description string Functional
Solution_Person string Functional

Solution_Material string Functional
Solution_Equipment string Functional

With the object and datatype properties of the ontology class established above, the
ontology was then stored in Protégé. Figure 4 shows the data type attributes of the
construction process number (Construction_ID) in the construction process class.

 

Figure 4. Various data type attribute definition interfaces.

2.3. Establishment of a Safety Rule Library for the Construction Process
2.3.1. Parameterization of Safety Rules

The safety rules of the construction process refer to the regular patterns or logical
relationships that use certain pre-set parameters to determine whether certain precursors
will lead to safety accidents in the construction process. The composition of safety rules
generally includes 3 parts: the subject of the accident; the judgment conditions (parameters);
and the safety risk. A general safety rule checking process starts by determining the subject
of the accident through the inspected object and then continues to verify the inspected
object through the distinguishing conditions to determine whether it has violated safety
rules. The rule interpretation refers to the conversion of the normative terms expressed
in natural language into a form that can be recognized by the computer, which forms the
basis for automatic safety rule checking. Therefore, in order to fully identify the safety
accidents in the construction process, the interpretation of each safety rule should consider
the comprehensiveness of the discrimination conditions. The safety rule library formed
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by these safety rules in a unified form can become an important tool to help the safety
managers at the construction site to identify potential safety hazards and promptly give
safety precautions, avoiding complicated manual search and regulation checks.

The interpretation of safety rules needs to consider 2 key issues: the identifiability of
the subject of the safety risk and the discrimination conditions. The premise of whether
safety rules can be applied digitally is to find the “object/subject” that may cause accidents,
and the key to the effective implementation of the judgment condition of the accident
subject is the detail of the subject’s attribute parameters. In addition, the safety rules
were norm clauses compiled by experts of different professions and described in natural
language, which makes the subject of the safety risk and the judgment conditions vague
and abstract; moreover, for the same kind of safety risk, different norms and clauses have
different focuses or overlap; thus the interpretation of safety rules needs to consider the
expression and comprehensiveness of the clauses. Therefore, the process of interpreting
safety rules was to clarify the subject of the accident. Moreover, for the same kind of risk
subject, we should comprehensively collect the safety clauses describing the risk in the
safety regulations with different expressions and then sort out the logical relationships
among them according to the characteristics of the clauses to realize the operability or
usability of safety rules.

In this paper, the establishment of safety rules can be preliminarily divided into
2 categories according to the different accident subjects and different information retrie-
val processes:

(1) The subjects of safety risks involve the components produced in the construction
process, such as floors and balconies;

(2) The subjects of safety risks occur in dynamic construction operations or processes,
such as welding operations.

A complete set of safety rule interpretations should include information about the
subject, location, attributes, and parameters of the accident and solutions. In this paper,
related safety standards in China [18–23] were combined with the ontology defined in
Section 3.1 to establish the safety rules used in this study. The result of safety rule parameter
establishment for a hole is shown in Table 8.

Table 8. Safety rule parameter establishment for a hole.

Accident Subject Location Attributes Parameter Information Treatment

Hole

Reserved hole
(Floor, roof) platform

Landscape L < 25 cm; No protection Solid cover
Landscape 25 ≤ L < 50 cm; No protection Cover
Landscape 50 ≤ L < 150 cm; No protection Steel mesh

Landscape L > 150 cm; No protection Protective fence,
safety net

Wall (Window) Vertical H < 80 cm and V > 2 m;
Unprotected railing

1.2 m high
temporary railing

Elevator wellhead Landscape W < 2 × F and W < 10 m; No gate Set up a safety net
Other holes Landscape Same as reserved holes Same as reserved holes

L: the length of the hole; H: the lower edge of the hole to the floor or the bottom; V: the side drop; W: the safety
net spacing in the elevator wellhead; F: the floor height.

2.3.2. Building a Safety Rule Library Based on Ontology

(1) Semantic Web Rule Language (SWRL).
The semantic web rule language (SWRL) is a language that presents rules in a semantic

way. SWRL integrates the ontology description language OWL Lite, OWL DL (description
logic), and Datalog RuleML. SWRL is human-readable with the advantages of the rule
editing function combined with the elements defined in the ontology to improve knowledge
expression and reasoning [24]. The SWRL consists of 4 parts: Imp, Atom, Variable, and
Building, as shown in Figure 5 [25].
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Figure 5. SWRL framework.

With the help of the developed safety management ontology classes and attributes,
along with its rich arithmetic operations, the SWRL rules on safety management were es-
tablished. To better connect the ontology and SWRL rules, the SWRLTab plug-in provided
in the Protégé ontology editing software seamlessly connects the SWRL rule environ-
ment and the ontology editing environment, further improving the convenience of SWRL
rule editing.

(2) Establishment of the SWRL safety rule database.
The ontology established in this paper included 4 categories: construction activities;

precursor information; risk accidents; and solutions. The links formed by these 4 cate-
gories lay the premise for the establishment of SWRL rules. The elements (Atom) used
in a complete SWRL rule for accident subjects, attributes, discriminant parameters, and
prevention measures came from the 4 major classes of ontology, and the specific discrim-
inant conditions or parameters were obtained in the interpretation of the safety rules.
Taking the unprotected wall holes as an example, they were caused by the construction
work brick masonry in the paving ash masonry and other construction steps for the outer
window and other reserved holes. If the bottom edge of the hole was more than 2 m
wide and the distance from the bottom of the floor was more than 80 cm without proper
protection, accidents such as falling from a height may occur. The solution was to add a
1.2 m high protective railing around the hole in accordance with the specifications. The
corresponding rule in SWRL database can be expressed as shown in Figure 6. The results
of the complete set of safety rules for fall from height in the Protégé plugin SWRLTab
developed in this study are shown in Figure 7. This paper also builds an SWRL safety rule
base containing 5 major incident identifications in accordance with this process, as shown
in Figure 8.
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Figure 6. Vertical hole rule frame.

 

Figure 7. Vertical hole and cutting fire instance rules.

 

Figure 8. SWRL safety rule library for major safety risks.
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2.4. Safety Risk Identification and Retrieval Mechanism

Safety rules were composed of accident subjects, judgment conditions, risks, and
solutions, etc. The implementation of safety rules inspection needs to link the subjects of
accidents in construction activities and extract discriminant parameters for verification. As
a data source, the BIM model has its parameterized characteristics; thus that the information
of each component and the relationship between each other can be directly attached to the
component, which provides better convenience for the extraction of relevant information for
a safety inspection. In addition, due to the characteristics of parameterization, modification
or model building can be achieved directly by adjusting the parameters. This convenient
way can save time and labor for safety managers on construction sites.

The safety risks in the construction process are dynamic and may only exist in a certain
stage or process. For example, when the construction of the floor slab is completed, the
unprotected periphery of the building forms edges that may cause the risk of falling from
a height; and after the building of the walls eliminates the risk of the edges, the vertical
opening of the windows on the masonry creates a new risk of falling from the height of
the opening. Therefore, the process of safety inspection is not only the inspection of static
safety risks but also includes more practical dynamic risk identification. BIM can realize
the dynamic simulation of the construction process according to the given model and
progress information (4D BIM) and serve as an intuitive process information hub. The
dynamic risk inspection in the everyday construction process is only made possible by
automatic identification and prevention of safety risks through the integration of BIM,
ontology, and NLP. In light of the complexity of information related to safety risk, it was
also necessary that safety managers can obtain access to the information in a convenient
manner. Information related to safety management checked by the safety rules, such as
accident subject/component attribute information, location information, time, over-limit
parameters, etc., should be extracted as a safety problem report as required for the use of
the safety managers.

2.4.1. Safety Risk Identification

The safety risk identification contains the following processes: first, use the BIM
software tool to build the construction plan and schedule into a virtual construction process,
and assign the necessary parameters and attribute information to it according to the
characteristics of the construction components. Then, the ontology established a link with
the detected object or construction process in BIM, automatically established an instance
name in the safety ontology class according to the subject exposed to safety risks and
extracted the required discrimination parameters to the ontology instance. Next, use the
established SWRL rules to complete the inspection of safety risks and identify unsafe
components and their parameters. Finally, all safety risks were summarized and output as
an inspection report and displayed in the visual 3D model according to the inquiry made by
construction safety managers. Considering that buildings are becoming more complex, and
the content of the safety inspection report is complicated or cumbersome, safety managers
still need to spend a lot of time finding safety management issues at different stages.
For this reason, this paper uses the developed natural language search engine to achieve
intelligence retrieval, which provides a convenient way for safety managers to deal with
safety issues under their jurisdiction.

When the inspected object is a specific building component, the information of the
component in the BIM model includes component name, attribute parameters, and other
ancillary information, and the attribute parameters include direct attribute parameters
such as elevation coordinate parameters, geometric information, material parameters,
etc., and indirect parameters such as the topological relationship with the surrounding
space. In building components such as stairs and elevator shafts, the names of building
components have a corresponding relationship with the subject of the accident. This
provides a preliminary way to link components with safety rules. After the connection was
generated, multiple instance names were created by the scanning of the linked object, and
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the corresponding parameters or attributes were extracted to the instance to complete the
instance creation. When the detected object was an abstract construction process, the link
between the accident and the construction process was established through the name of
the construction process, which was then used to detect related attributes or parameters
of components or materials within a certain distance of the process, thus as to create an
instance for safety rule checking. The process is shown in Figure 9.

Figure 9. Linking building components and construction processes to safety rules.

When given specific domain rules and facts, the rule-based reasoning engine can be
used to complete the corresponding reasoning tasks. However, the safety rules expressed
by the SWRL rule language and the fact knowledge expressed in the form of ontology
cannot be understood by JESS; thus, it was necessary to convert the SWRL rules and facts
into the knowledge format supported by JESS to realize the reasoning. When the JESS
inference engine is activated, the inference process begins. Pattern matching was used to
determine what rules were executed and when to execute, after which the Agenda executes
the commands in the activated rules. Then, the execution engine completes the execution
of the rules. The processes are illustrated in Figure 10, which are then implemented in the
case study.
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Figure 10. The reasoning processes.

2.4.2. Retrieval Mechanism

In contrast to traditional keyword-based retrieval technology, NLP-based retrieval
technology was used to understand the semantics of the user’s retrieval statement, which
results in more accurate retrieval and allows safety managers to obtain construction safety
information in a convenient and efficient manner. The retrieval mechanism designed in
this paper included word segmentation, part-of-speech tagging, parsing, target keywords,
and constraint sequence expansion.

(1) Word segmentation, in which the natural sentence from the user is divided into
individual words after identifying each word and punctuation mark;

(2) Part of speech tagging, by marking the part of speech of each word based on
statistical data or other methods, such as the Penn Treebank POS tag set;

(3) Parsing, designed to capture the relationship between words, forms a syntactic tree
of queries through the Stanford parser. The NLP tool was used to obtain the relationship
of different words in the sentence to form a syntactic structure tree. The results of the
syntax analysis are shown in Figure 11, where IN, ADJ, NN, NNS, NP, and PP represent
prepositions, adjectives, singular nouns or uncountable nouns, plural nouns, noun phrases,
and prepositional phrases, respectively.
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Figure 11. Syntactic structure tree.

The purpose of obtaining the syntactic tree was to find the words that actually represent
the user’s intent to search (also known as “target word”) and the constraint relationship,
while the keywords that contain the user’s search purpose often exist in the noun phrase.
Firstly, starting from the root node of the tree, create a line containing only nouns or
noun phrases. The noun phrase closest to the root node was the target keyword, and the
non-noun node (preposition phrase or adjective phrase with the same root node) was the
constraint keyword of the target keyword. Secondly, for the subtree of the structure tree
(the subtree root node is a noun or noun phrase), the leaf whose noun (noun phrase) was
in the leaf node represents the target keyword of the subtree, and a similar case holds for
the non-identical parent node. The noun node (prepositional phrase or adjective phrase)
was the constraint word of the target keyword of the subtree. Then, a reverse analysis
of the subtree to the root node was used to obtain a constraint sequence for the target
keyword. According to the syntax tree analysis in the example sentence, the keywords
“locations,” “week,” and the case of “fall” and “hazard” for the 2 keywords with the same
root node were nouns. Finally, dependency grammar analysis was required to determine
which word was a keyword and which word was a constraint word. After completing the
analysis of this situation, the keywords of the whole sentence were “locations,” “week,”
“hazard,” and according to the order of constraints, “locations” was the keyword of the
target (representing the purpose of the user). The user wants to obtain the location of the
risk of falling from a height, and the risk of falling from a height was based on the third
week of the project schedule. Therefore, the other keywords were all the constraints of this
keyword and have a sequence (Restriction 1, Restriction 2).

(4) Keyword extension and mapping: since the query statement is expressed in natural
language; the keywords or constraints of non-professional expression cannot be used for
database retrieval. Therefore, this section designs the concept extension and mapping using
ontology. This process consists of 3 tasks: (1) formalization of the extracted keywords or
constraints; (2) query expansion using semantic similarity techniques to determine the final
query term; and (3) mapping to the database.

Formal standardization of extracted keywords or constraints was used because the
same term may have different expressions, such as abbreviations, spellings, or singular and
plural numbers, such as “locations” becoming “location.” Since the diversity of expressions
leads to different expressions with the same meaning, the standardization of forms also
includes conceptualization. For example, the concept of the use of the expression “location”
in the ontology was “coordination,” and the expression of risk was “hazard” instead of
“risk.” Therefore, formal standardization also includes the transformation of keywords or
constraint sequence words obtained by search statements into standard concepts defined
in the ontology, which were all integrated in the Protégé software.
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The query expansion algorithm was used to improve the recall rate and retrieve the
results that more strongly satisfy the user’s needs. This paper determines the concept of
extension based on the degree of approximation between ontology concepts. This process
is called ontology mapping, which is the process of mapping to exchange information in
a semantically sound manner. The target words obtained in the previous step were used
to calculate semantic similarity of other words according to the concept hierarchy of the
ontology (such as the parent class and subclass), which was then used as an expansion
of query. This paper chose to use the Leacock–Chodorow formula [26] (Formula (1)) to
characterize the degree of conceptual semantic similarity.

R(C, Ci) = −lg
len(C, Ci)

2Depth
(1)

where R(C, Ci) represents the similarity value; len(C, Ci) represents the conceptual stan-
dard concept of the target keyword and the constraint keyword; C and the extended concept
Ci represent the shortest distance in the construction safety ontology structure; Depth is
the maximum depth of the construction safety ontology; and the coefficient 2 was used to
ensure a positive value of similarity.

To remove the less similar concepts, this paper sets the similarity threshold to filter the
concepts of lower similarity value, and the remaining expansion concepts and the initial
standard concept were used as the final search keywords to complete matching with the
Database. The final search keyword was used to match the database and sort the search
results. Each target keyword and constraint sequence, extended keyword, and constraint
sequence form a query vector and a record formed by the database record to calculate the
similarity value, and the result was presented according to the similarity value. This paper
used the Cosine space method to determine the size of the similarity value, as shown in
Formula (2).

V =
(X·Y)

‖ X ‖‖ Y ‖ (2)

where
V: cosine of similar distance.
X: the feature vector formed by the target keyword or the extended keyword and its

constraint sequence.
Y: the feature vector of the database data record.

2.4.3. Report of Retrieval Results

At present, the most common data presentation methods included 2-dimensional
charts, network diagrams, documents, pictures, and animations, and this paper selected the
document report + visual map in BIM to present the search results. The safety inspection
report designed in this paper included the construction process, construction procedure,
planning time, construction location (area, floor, etc., location map), type of accident, over-
limit parameters, and recommended solutions. This information needs to be obtained from
the database, and the information was presented according to the intention of the search
phrase from the user.

3. Validation

3.1. Framework of the Proposed Safety Checking System

This paper chose the student dormitory building (C3 building) of the commuter
college of a university as a case to demonstrate the framework. The student dormitory
building (C3) covers an area of approximately 827.2 square meters. It extends seven floors
above the ground and one floor below the ground. Each story height was 3.3 m, and
its basement height was 3.6 m. The three-dimensional model of the dormitory building,
which was generated in the Revit software (license number: 559-06926929), is shown in
Figure 12 below.
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Figure 12. BIM model of a student dormitory building.

To realize the dynamic safety inspection process, this paper first used Microsoft Project
(license number: W2JJW-4KYDP-2YMKW-FX36H-QYVD8) to develop a progress plan of
simulated construction, as shown in Figure 13. The concrete pouring process was divided
into structure construction and decoration construction. The schedule began on 1 July 2017,
when concrete was poured into the basement beams and slabs. On 23 September 2017, the
installation of the top doors and railings was completed. The total duration was 85 days.

 

Figure 13. Construction schedule of the student dormitory building.

This paper then integrated the Revit information model of student dormitory building
and MS project schedule into Navisworks software (license number: 559-06926929) and re-
alized the dynamic simulation process by dividing the construction process and connecting
time information of components in the construction process, as shown in Figures 14–17.
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Figure 14. Project progress in week 4.

 

Figure 15. Project progress in week 7.

 

Figure 16. Progress of the project in week 8.

 

Figure 17. Progress of the project in week 13.

85



Buildings 2022, 12, 564

The following is an example of the process and results of the performed safety in-
spection on holes. According to the construction schedule, the time period for the top
floor to complete the floor and stairs was 10 weeks (26 August to 2 September 2017), while
the maintenance wall of the top floor took 12 weeks (15 September to 19 September), and
the opening formed by the stairs and slabs had not undergone corresponding protection
measures during the period of 10 to 12 weeks (Figure 18). This condition may lead to an
accident involving falling from a high place.

The automatic identification process was performed by scanning the construction
process files containing time information by the developed framework, which established
the connection with the top-level components according to the detection rules of the
openings and extracted the relevant parameters. The results from the reasoning are shown
in Figure 19. Under the implementation of a reasoning engine, the safety parameters can
be identified automatically, and the risks and solutions can be identified (Figure 20).

 

Figure 18. Top floor stair opening.

 

Figure 19. Extraction of the top floor stair opening information to the ontology instance.
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Figure 20. Risk reasoning results of the top floor stair opening.

The NLP-based query system to present the identification results of related risks
according to the user’s requirements was then illustrated. The login interface and the
query interface are shown in Figures 21 and 22, respectively. This paper takes the query
statement “I need to know about any potential hazards on the third floor” as an example
to show the query results (Figures 23 and 24) and query reports (Figure 25). The project
manager of the case study stated that the developed plugin was user-friendly, and the
results could help improve the construction safety management since they were rational
according to their experiences and requirements. Similar to many other industries, people
tend to use a system that can make their queries easily without previous knowledge of
semantic technologies [27].

 

Figure 21. Landing interface of the developed safety risk inspection system.
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Figure 22. Landing interface of the safety risk inspection system in the construction process.

 

Figure 23. Safety risk query result for potential risks on the third floor.
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Figure 24. Safety risk query result and the suggested safety measures.

 

Figure 25. Query report.
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3.2. Experiment Results

In the experiment, the developed system presents the safety inspection results of the
third floor. It was shown that the system successfully identified the safety risks in the
construction process of the third floor, such as the stairway opening and window opening,
as well as the multiple adjacent edges. The reasoning accuracy by virtue of the ontology
was close to 100%. For the evaluation of retrieval effectiveness, this paper adopted two
indicators: recall rate and precision rate. Suppose A was the correct number of results
retrieved by a certain retrieval sentence, B was the number of incorrect results retrieved by
a certain retrieval sentence, and C was relevant results that were not retrieved by a certain
search sentence; thus, the precision rate can be expressed by A/(A + B), and the recall rate
can be expressed by A/(A + C).

However, these two indicators have a mutual restriction relationship; that was, if the
recall rate was required to be high, the search result would contain more wrong results;
thus, the accuracy rate would be reduced, and if the accuracy rate was high, the search
result will miss a certain correct result. For this reason, an F-value metric that takes the
two into account was introduced to consider the retrieval level of retrieval technology. The
Formula (3) is as follows.

Fβ =
(

1 + β2
)
· Pre·Re
β2·Pre + Re

(3)

where Pre stands for accuracy;
Re stands for recall rate; and
β Represents the weight of recall relative to accuracy;
This article randomly tested about 50 natural language search sentences and made

statistics on accuracy and recall. The results are shown in Figure 26. According to the chart,
the accuracy rate of the retrieval system was higher than 60% when the recall rate was
lower than 50%.

Figure 26. Retrieval recalls and precision curves.

4. Conclusions and Future Work

This paper built an automatic mechanism for identifying and preventing safety risks
during the construction process by integrating the safety rules library and BIM technology
with advantages in visualization and parameterization. Moreover, an intelligent presen-
tation method based on the Natural Language Processing technology was proposed to
intelligently present identified results from a developed system.

In the building of the ontology, the hierarchical construction activities of residential
buildings were broken down by using WBS. Moreover, then the precursory information of
four categories, including structural components, materials, equipment, and environment,
were established by combining construction activities and types of safety accidents. Then,
domain ontology was built depending on the seven-step method, which consists of con-
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struction activities, precursor, hazard, and solution. Next, on the basis of the established
precursor and relevant codes, the parameterized forms for five kinds of accident safety
rules were summarized and converted into SWRL format. To realize the automatic safety
rules checking, automatic checking mechanism of integrating BIM, and safety rules was
proposed. Meanwhile, an intelligent results presentation based on Natural Language
Processing was designed. Finally, the construction process safety rule checking system was
developed, and the effectiveness of the system was verified by a case study.

Two innovative methods were proposed in this paper: (1) ontology technology and
BIM were put forward for safety rule checking for the dynamic construction process of
the residential building; (2) the intelligent presentation mechanism based on the Natural
Language Processing was presented. It not only provided ideas for the reuse and sharing
of the safety knowledge but also proposed a solution for immediate and intelligent presen-
tation of the safety problems on dynamic problems, which made a certain contribution to
the improvement of efficiency of construction safety. The NLP-based presentation method
for construction safety rule checking results will facilitate the access of construction safety
managers to the relevant information, which will then improve the efficiency of construc-
tion safety management in practice. However, there are certain limitations of the paper
that needs to be addressed in future work: (1) this paper only aimed at the construction
process of civil residential buildings to establish the construction safety ontology, it is not
comprehensive and extensive enough; (2) this paper selects only common safety regulations
and clauses.
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Abstract: Accurate selection and location of mobile cranes is a critical issue on construction sites, being
able to contribute to the improvement of the safety and efficiency of lifting operations. Considering
the complexities and dynamics of construction sites, this study aimed to develop a useful approach
for automated selection and localization of mobile cranes based on the simulation of crane operations.
First, the information required for crane selection and localization is analyzed and extracted from
BIM (building information modeling). Then, mainly considering the crane capacity, the initial crane
type is selected with candidate location points. Based on the simulation of lifting operation at the
candidate points, feasible location points and crane types are determined through three constraint
checks (i.e., environment constraint, operation constraint, and safety constraint). Besides, two kinds
of efficiency optimization, namely lifting time minimization and crane movement minimization, are
presented to figure out the best location points from the feasible points. Finally, the proposed approach
is validated using a case study. This research contributes to not only crane operation planning but also
automatic construction simulation, thus supporting the implementation of intelligent construction in
the future.

Keywords: mobile crane; automated selection; automated localization; virtual construction

1. Introduction

As the most commonly used and shared site resources with large moving and heavy
loads, mobile cranes are involved in all kinds of lifting works [1,2]. Considering the
complication of hoisting, especially heavy weight lifting, a detailed hoisting scheme should
be formulated before operation [3]. According to relevant statistics, the design of the
hoisting scheme is a very important part of lifting work on construction sites, accounting
for 60–80% of the whole lifting time [4]. It mainly includes crane selection, crane localization,
and operation planning. However, the traditional hoisting scheme design mostly relies
on the experience of site engineers, requiring a lot of two-dimensional (2D) drawings
with limitations, such as a high error rate, low design efficiency, low safety level, and
poor data synchronization. This calls for an urgent in-depth study to figure out the above
critical problems.

In recent years, the rapid development of virtual construction and simulation technolo-
gies has provided a new solution. The application of virtual construction technology to the
hoisting scheme design helps promote high-accuracy three-dimensional (3D) visualization,
and advanced simulation and optimization. It is used extensively for the path planning
of mobile cranes, training operators, or the detection of spatial conflicts [5–10]. More-
over, the simulated results further support the following crane selection or localization,
respectively, especially the effects of different factors (i.e., wind effect [11], ground bearing
pressure [12,13], rope breakage [14], and so on) on the operational feasibility. However,
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crane selection and localization are essentially two mutually prerequisite steps that cannot
be separated independently while previous research has treated them less as a whole
process [15]. Due to the difference in the performance parameters between various types
of cranes, not only the load but also the spatial relationship between a lifting object and
a crane on a site should be considered to ensure that the selected crane meets the lifting
requirements regarding the height and distance. Lifting collision is another indispensable
problem in the selection of cranes. Moreover, mobile cranes can move to different locations
on construction sites to meet the specific hoisting requirements mentioned above. Therefore,
the hoisting scheme design needs to consider different location point combinations of lifting
objects, minimizing the movement of the crane, and ensuring the safety of lifting processes.

Aimed at the above problems, this research aimed to develop a method to automati-
cally select and locate mobile cranes in virtual construction to aid in hoisting scheme design.
The rest of this paper is structured as follows. First, a literature review is outlined to analyze
the limitations of current research in Section 2. Then, the research methodology is presented
in Section 3. After that, the method for the automated selection and localization of mobile
cranes is proposed in Section 4 and further tested based on a case study in Section 5. Finally,
a conclusion is drawn in Section 6.

2. Literature Review

2.1. Crane Selection

Previous research on the selection of mobile cranes has mainly focused on the crane
load and the distance between crane booms and buildings. Al-Hussein et al. [16] proposed
a method to select a feasible crane by calculating whether the load of the crane and
the gap between the crane and building components meet basic requirements based on
independent 2D drawings involving a lot of manual input. Moselhi et al. [17] developed
a selection and positioning system of a mobile crane to establish 3D models based on the
coordinates and size of hoisting objects and obstacles and then simulated the position of
the mobile crane and potential collisions in a virtual environment to identify the optimal
crane. Based on the above research, a systematic method for the selection of mobile cranes
was proposed [18]. It selected the optimal crane based on different constraints from feasible
cranes that meet the minimum clearance with buildings, crane working radius, and crane
load. For instance, the selection of a truss boom crane was optimized with the lifting
radius while that of a hydraulic telescopic boom crane was achieved using the main boom
length and working radius. Besides the crane load and safety distance, other factors,
such as pressure and cost, have been considered in the selection of mobile cranes. For
example, a study investigated the effect of the ground bearing pressure on the selection
of a crane type by comparing the pressure of the crane on the ground with the ground
bearing pressure [19]. Hasan et al. [20] calculated the pressure of each leg of a crane at
different horizontal swing angles and ensured safety by checking the leg pressure during
crane operation. Han et al. [21,22] considered the lifting capacity, working range, lifting
height, and the first lifting weight to select a crane with the lowest cost in a feasible list
of cranes. Furusaka and Gray [23] proposed an algorithm to realize the most economical
combination of different cranes, with a new definition of the minimum total cost of a
mobile crane, including leasing, assembly, and disassembly. Based on the feasible crane
locations, Han et al. [24] proposed a 3D-based crane evaluation system to select the most
suitable crane type under two circumstances (i.e., the fixed and unfixed crane), requiring
module information inputs. Artificial intelligence (AI), on the other hand, has been used
to select cranes in recent years. For example, the genetic algorithm (GA), as a heuristic
random search technique, was used to determine the optimum location of a crane by
considering safety, clearance, site conditions, etc. [25]. A discrete event simulation model
was developed to realize the automatic planning of crane operation and the selection of
the optimal crane type [26]. A system called PRECISE was developed to select the optimal
crane type, which minimized the number of mobile crane operations [27].
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The existing methods enable rapid calculation and analysis of the geometric and
mechanical parameters of mobile cranes and construction sites, and realize the selection
of the optimum crane for a specific construction project by considering several specific
factors. Based on experience, this is more efficient and accurate than traditional meth-
ods. However, the selection methods in previous research mainly considered a 2D static
environment. Although some methods have been combined with 3D models, they still
need significant manual input or modeling [24]. In some studies, 3D modeling was even
used as a visualization tool for animation demonstration after selection, which does not
provide enough assistance in hoisting scheme design. Moreover, there is no comprehensive
and systematic consideration of various factors, such as the site environment, operation,
safety, and economy, in crane selection, with less consideration of the following progress
(e.g., crane localization and path planning) [15].

2.2. Crane Localization

In terms of crane localization, three constraints (i.e., environmental constraint, opera-
tion constraint, and safety constraint) have mainly been considered in previous research.
To deal with these constraints, different methods have been applied, which can be classified
as the 2D-based method and the 3D simulation method. The 2D-based method uses math-
ematical formulas to calculate the feasible location areas or location points for a mobile
crane. Although some methods consider spatial factors and establish 3D models, they are
still based on the mathematical analysis of 2D drawings, thus being classified as a 2D-based
method [28]. Lei [29] and Ding [30] obtained the appropriate location areas of a mobile
crane by defining the outer boundary constraints of existing buildings or obstacles but
without consideration of 3D spatial factors. Al-Hussein et al. [16] judged whether a crane
satisfied the environmental constraints by comparing the building coordinates around
the proposed location points and calculating the distance between the crane boom and
the building. Considering that a crane should be located in the center of all buildings,
Olearczyk et al. [3,4] proposed a method for calculating the geometric center coordinates
of all buildings and analyzed the maximum working radius of a crane and the distance
between its boom and the buildings to ensure the operability and safety of lifting work.
Moreover, Hermann et al. [31] proposed another method to determine the location of
mobile cranes in prefabricated building construction. First, a project manager defines a line
and generates several random points on the line. Then, the distance between the center
of each building and each random point is calculated to select the maximum distance for
the random points, and finally, the above two steps are repeated to select the minimum
distance from these maximum distances. The point with the minimum distance is the
desired location point of the crane. Based on the 2D-based method, the feasible location
area of the mobile crane is firstly obtained by considering its working radius or minimum
operating distance. Then, other factors, including time and cost, are further considered
to determine the optimal location point. However, this requires manual input of many
parameters [32,33], which takes a significant amount of time, especially for complex spatial
calculations. In addition, the accuracy of the obtained location points may be affected
because some location points with collisions are not deleted while some feasible points are
eliminated by mistake.

Considering the limitations of the 2D-based method, some research presents discrete
simulation-based 3D methods [28,34–36]. Firstly, feasible location points are determined
based on the construction environment and the reachability of cranes. Through simulation
of the lifting operation, location points with spatial collisions or other unsatisfied constraints
are deleted to obtain the optimal location points. Tantisevi et al. [28,34] selected feasible
location points initially by judging the accessibility of a boom; screened out feasible location
points using the bounding box, ray tracing algorithm, and conflict analysis method; and
then obtained the optimal location points by traversing all operations of the crane with
the minimization of crane relocalization. The first two steps of the method proposed
by Wang et al. [35] are similar to those proposed by Tantisevi [28,34]. However, the
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relocalization of the mobile crane is not considered while the total weight of a crane and
lifting components is minimized from a safety perspective. In addition to the localization
of an individual crane, some research has considered the operation of double cranes or
multiple cranes. For example, Zi et al. [36] used a parallel robot method to solve the
localization problem of multiple cranes based on the multi-point localization method and
3D grid method. Recently, integer programming [37,38] has been introduced to solve the
location optimization problem of multiple cranes, with some assumptions disagreeing with
reality, as limited by the computation resource.

Compared with the 2D-based method, the 3D simulation method not only considers
spatial factors but also applies various simulation methods in spatial conflict analysis,
making collision detection more dynamic and efficient. However, the changes in the lifting
capacity during actual operations are not considered. The maximum load capacity of a
mobile crane changes with the lifting radius. In addition, existing 3D simulation methods
still require many manual inputs or modeling, neglecting the effect of other stages.

2.3. Research Gaps

As crane selection and localization are two interdependent processes [15], recently,
some research [39–41] has attempted to consider the two processes simultaneously. Re-
ferring to the research gap that neglecting the impact of multiple construction stages
leads to excessive costs, Yeoh and Chua [39] reframed crane selection and localization
as a four-dimensional set cover problem (4D-SCP) to minimize the investment, with the
limitation of static cranes. Focusing on multiple working cranes, Lin et al. [40] compared
the working efficiency of different crane combinations to determine the optimal one with
a value engineering model. However, collision detection, which is unavoidable between
adjacent cranes, was considered less. Boo et al. [41] proposed a multi-objective optimization
model for the selection of the tower crane number, types, and locations, which minimized
cost and conflict, using a multi-objective optimization model. As a matter of fact, the
calculation of the gap between a crane boom and an obstacle needs to consider the posi-
tion of the boom in the elevation, and the existing selection algorithm inputs the crane
location as a known item. Meanwhile, the determination of the crane location requires the
information of the selected crane, which traps the calculation into a circular loop. Existing
research does not take this iterative problem into account as a whole process. In addition,
most of the relevant research only considers the hoist of a single component; however, it
is a multi-component lifting process. Therefore, a method for automated selection and
localization of mobile cranes is proposed in this research by combining the specification of
the lifting operation and characteristics of mobile cranes with BIM (building information
modeling) and virtual construction to ensure the safety, operability, and efficiency of lift-
ing processes. Besides, the proposed method contributes to the automated simulation of
construction processes, thus increasing the safety performance of lifting operations and
reducing construction costs.

3. Methodology

Automated selection and localization of mobile cranes are two interdependent pro-
cesses. As the first step of a hoisting scheme design, crane selection is based on the crane
location and calculation to determine whether crane parameters meet the requirements.
Therefore, this research regards the selection and localization of a mobile crane as a compre-
hensive planning process, taking both into consideration when analyzing the constraints
and information requirements.

Figure 1 shows the process of automatically selecting and locating a mobile crane.
Due to the complex environment of construction sites, the location of the mobile crane
should meet the requirements of the site layout, that is, the environmental constraints.
According to the construction plan, the plane range of an obstacle must be eliminated from
the alternative location area. Then, the lifting requirements of the mobile crane, namely the
operation constraints, including the transport distance, transport height, and the weight of
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lifting objects, should be considered. Thirdly, safety constraints should be considered in the
operation of the mobile crane. The selection and localization of the mobile crane can be
simulated in a virtual environment to identify and remove collisions between booms and
buildings. Once these constraints are analyzed, suitable crane types and feasible location
points can be achieved. Traversing the generated alternative location points, the optimal
combination of the crane type and location point can be determined. Moreover, time and
cost are two important aspects of project management, and they should be analyzed and
reduced through further optimization. On the one hand, a crane with a lower rental price
is more advantageous when it meets the above constraints. On the other hand, relocation
and lifting are two time-consuming activities in crane operation, and minimizing the
relocation and lifting time can effectively reduce the total lifting time and improve the
lifting efficiency. Aiming to meet the requirements of the constraints and optimization,
the constraint conditions should be digitized first. The BIM model can be converted into
relevant parameters, which describe the conditions, to support the automated selection
and localization of the mobile crane through appropriate algorithms. The spatial structure
of each component of a crane can be further simulated as well. Based on the process
of automated selection and localization of the mobile crane, the key algorithms for the
three constraints and efficiency optimization are developed and tested using a virtual
experiment in the following sections.

 

Figure 1. Logic framework of automated selection and localization of a mobile crane [42].

4. Method for Automated Selection and Localization of a Crane

4.1. Information Requirement and Extraction

The analysis of the above constraints and optimization requires a large amount of
project information, most of which is contained in the 4D (four-dimensional) BIM model
of a project. The 4D BIM model contains the specific location and external contour of the
buildings and facilities on a construction site. This research takes prefabricated building
construction as an example to explore the information requirements and extraction of
crane selection and localization. For a prefabricated building, the lifting components
usually involve walls, slabs, beams, etc. Relevant information can be obtained directly or
indirectly from its IFC (Industry Foundation Classes) format BIM model. Table 1 displays
the information regarding the building components that is extracted from the BIM model,
which is required for crane selection and localization. Regarding the three constraints
mentioned above, the information for each constraint is summarized in Table 2. Note that
some information can be obtained directly while other information can be obtained through
further calculation based on the parsed data from the BIM model, referring to our previous
research [43,44]. In addition, the selection and localization calculation of a crane required
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its performance parameters, which are stored in the crane database and are applicable to
different construction projects. According to the above constraints and optimization, the
required performance parameters are summarized in Table 3.

Table 1. Parameter information of building components for crane selection and localization.

Type Position (x, y, z),
→
R Size Others

Wall

Vertical: starting position
Horizontal: wall center line, core

layer center line, surface layer
center line, surface layer

internal/external line, core layer
internal/external line

Length L,
Depth D,
Height H

ID, Floor number F,
Height of floor HF,
Volume V, Time T

Slab Endpoint position Depth D
ID, Floor number F,
Height of floor HF,
Volume V, Time T

Column Column center point Section size b*h,
Height H

ID, Floor number F,
Height of floor HF,
Volume V, Time T

Beam Vertical: starting position
Horizontal: section center point

Section size b*h,
Height H

ID, Floor number F,
Height of floor HF,
Volume V, Time T

Stairs Endpoint position -
ID, Floor number F,
Height of floor HF,
Volume V, Time T

Roof Endpoint position -
ID, Floor number F,
Height of floor HF,
Volume V, Time T

Table 2. Information required for the calculation of constraints.

Constraint Required Information
Whether Directly

Obtainable from the Parsed
BIM Model

Data Required from the
BIM Model

Environmental constraint

Outside boundary of a
building’s first floor Needs conversion calculation Coordinates and size of the first

floor wall

Boundary of main road and
temporary facilities Obtained directly -

Operation constraint

Original and target positions
of a lifting component Needs conversion calculation Relative position, size, direction,

and height of the component

Weight of the component Needs conversion calculation Material and volume of
the component

Safety constraint
Height of the building, the

outside boundary, and
location of a crane jib

Needs conversion calculation Time, coordinates of slab, wall
and column, and location of crane

4.2. Initial Type Selection and Candidate Location Generation

As the selection and localization of mobile cranes are two indispensable steps that
cannot be separated independently, an initial crane type should be selected with constraint
checks. It means that appropriate cranes need to be re-selected if the initially selected
crane type does not meet the constraints. The selection of the crane type mainly considers
the maximum lifting weight and the cost of the crane. The weight of a lifting compo-
nent can be calculated based on its volume and density (see Table 2), which are obtained
directly from the IFC format BIM model. After all components Ck required for lift are
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traversed, the weights of different components CGk are compared to determine the max-
imum weight CGmax. Then, CGmax and the maximum lifting capacity of the crane Gmax,
which is stored in the crane database, are compared to construct Equation (1). According
to the results, all cranes that conform with Equation (1) are added to the alternative crane
type database. As for the price, the crane type with the lowest price is selected as the
initial crane type to carry out the subsequent calculation of crane localization by assuming
G′ = hook weight + rigging weight + weight of the other accessories:

Gmax ≥ CGmax + G′ (1)

Table 3. Parameter information of a crane required for crane selection and localization.

Constraints/ Optimization Required Information

Environmental constraint Outside boundary of a carne after the full extension of legs
Rotation radius of the turntable

Operation constraint Rated lifting weight corresponding to the length and
radius of different boom

Minimum lifting time
Boom variation time

Maximum elevation of boom
Maximum speed of rotation

Lowest price of crane Market price of crane

The location is determined according to the above three constraints and the optimiza-
tion conditions. As the safety constraint and efficiency validation are analyzed by traversing
each candidate location and simulating the lifting operation, the candidate locations should
be represented as a set of discrete points rather than consecutive points in some areas. In
this research, the candidate locations of a crane refer to a set of points resulting from the
grid method. It divides a construction site into different square grids of the same size,
which depends on the size of the crane [21]. The apex of each grid represents the location
point of the mobile crane, where the rotation center of the crane is projected to the ground.
The position of the point is represented by a three-dimensional Cartesian coordinate system
(x, y, z). The size of the crane can be used as a reference for the width of the grid [26]. If
the grid width is less than that of the crane, the adjacent points of the grid point will be
covered when the crane is located at a certain point, and the difference between the adjacent
points is small. Otherwise, if the width of the grid is larger than that of the crane, it is too
sparse for the location of the crane. In addition, the candidate location points also consider
the soil condition the crane sits on, where location points with a total load exceeding the
land bearing capacity are deleted, which may lead to mobile cranes tipping over.

4.3. Environment Constraint Check

After generating the candidate points, a series of constraints are calculated to gradually
remove the points that do not meet the requirements of the candidates; thus, a set of feasible
points is obtained. The environmental constraint is tested first to define the boundaries
of the buildings, temporary facilities, and main roads in the construction site, and then to
eliminate the candidate points where the crane cannot be located to identify its feasible
point set FL1. For the buildings on the construction site, their flat coverage areas can be
determined by the location of the ground walls. In IFC format BIM models, the location
point of a wall component (x, y, z) is the starting position of the wall in the longitudinal
direction and in the transverse direction. According to the modeling choices in BIM, they
may be located at the center line of the wall, that of the core layer, that of the surface layer,
the interior/exterior of the surface layer, or that of the core layer. An example is shown
in Figure 2. The location point is located exterior to the surface layer, and points A1 to
A6 are the vertices of the walls W1-W6 of a certain building. For wall W1, the starting

point coordinates A1(x1, y1, z1), the direction
→
R(a, b, 0), and the length L can be extracted
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from the IFC format BIM model, and the line of the wall W1 is expressed by Equation (2).
Similarly, the pattern enclosed by the walls W1-W6 is represented by Equation (3):

y − y1 =
b
a
(x − x1) (2)

⎧⎪⎪⎨
⎪⎪⎩

y − y1 = b
a (x − x1), x ∈ (x1, x2), y ∈ (y2, y1)

. . . . . .

y − y6 = b
a (x − x6), x ∈ (x1, x6), y ∈ (y1, y6)

(3)

where xi and yi are the coordinates of the wall Wi.

Figure 2. Building coverage area.

Moreover, an initial alternative point represents the rotation center of the crane. Thus,
a certain distance from unreachable areas must exist, such as buildings, temporary facilities,
and traffic routes, on the construction site. The rotation radius of the turntable is added,
with a certain safety distance as the minimum distance Dclear between the location point
and unreachable areas. The rotation radius of the turntable is determined based on the
crane parameters. The safety distance is not specified in the national standard for crane
operations. Thus, it can be set as a user’s input parameter. The distance from a feasible
location point to the nearest unreachable area is calculated. If the distance is less than Dclear,
the feasible point will be eliminated from the point set.

4.4. Operation Constraint Check

The operation constraint test is carried out to identify whether the selected crane
and the feasible alternative points meet the operation requirements. First, the maximum
working radius and the maximum boom length of the crane are determined according to
the weight of the building components. As shown in Table 4, the rated lifting capacity of
the same crane is different under different boom lengths and working radiuses. Due to the
limitation of torque, the larger the boom length or the working radius is, the weaker the
lifting capacity is. Therefore, according to the original and target positions of the component
and the maximum working radius, the location range of the crane can be determined.
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Table 4. Lift capacity of a QY100H-3 mobile crane [42,45] (T).

Working Radius (m)
Boom Length (m)

13.0 17.8 22.5 27.2 31.9 36.6 41.3 46.0 50.4

3.0 100 80.0
3.5 93.0 77.0 62.0
4.0 88.0 72.0 62.0
4.5 79.0 67.0 61.0 42.0
5.0 72.0 62.0 60.0 42.0 40.0
5.5 65.0 58.0 56.0 42.0 39.0
6.0 59.0 55.0 52.0 42.0 37.5 31.5
6.5 54.0 52.0 48.2 40.5 35.8 31.0
7.0 50.0 49.0 45.0 39.0 34.5 29.5
7.5 46.0 45.0 42.5 37.0 33.0 28.7
8.0 42.0 41.0 40.5 35.5 31.8 27.6 23.5
9.0 36.5 35.5 35.0 32.5 29.5 25.7 22.0 18.5

10.0 32.0 31.0 30.5 30.0 27.5 24.0 20.8 17.5
11.0 27.5 26.5 27.5 25.7 22.6 19.5 16.5 14.0
12.0 23.5 23.3 24.5 24.0 21.2 18.9 15.9 13.2
14.0 17.5 17.0 18.5 19.5 18.8 16.9 14.5 12.2
16.0 13.0 14.2 15.0 16.0 15.2 13.2 11.2
18.0 10.0 11.2 12.0 12.6 13.2 12.0 10.2
20.0 9.0 9.7 10.3 10.9 11.0 9.3
22.0 7.2 7.9 8.5 9.0 9.4 8.7
24.0 6.2 7.0 7.6 7.9 8.0
26.0 5.0 5.8 6.3 6.5 6.9
28.0 4.9 5.2 5.6 5.8
30.0 3.9 4.3 4.8 4.9
32.0 3.0 3.6 3.9 4.2
34.0 2.8 3.2 3.6
36.0 2.2 2.7 2.9
38.0 2.2 2.4
40.0 1.8 1.9
42.0 1.6

The maximum working radius Rmax and the maximum boom length Lmax of the crane
can be automatically determined by the following procedure. From small to large, the rated
lifting capacity Gm,n corresponding to a different working radius Rn and boom length Lm
is invoked and compared with the maximum weight CGmax of the lifting components to
check whether Equation (4) is satisfied. When Gm,n under a certain boom length does not
satisfy Equation (4), the comparison between the rated lifting weight of the next level of
the boom length and the maximum weight CGmax starts, until the comparison of each level
of the boom length is conducted. Based on this, the maximum working radius Rmax and
the maximum boom length Lmax of the crane is determined:

Gm,n ≥ CGmax + G′, (4)

where Gm,n is the rated lifting capacity of a crane under a working radius Rn and boom
length Lm; and m and n are the level of the boom length and working radius, respectively.

Once the maximum working radius is determined, the plane working range of the
crane is also determined. The components whose horizontal distance from the crane is
within the maximum working radius can be lifted. Therefore, the distance between the
location point of the crane and the original or target position of components should be less
than the maximum working radius Rmax. This research focuses on the prefabricated lifting
components; thus, the target position of a lifting component corresponds to its design
position in the building model, and its original location is determined by the hoisting
scheme, which is presented in the 4D BIM model. Considering that the positions of differ-
ent components are represented differently in the BIM model, and their target positions
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for a crane are represented by their centers of gravity, different coordinate conversions
are needed.

1. For a column component, its position coordinates in the BIM model are its bottom
center coordinates. Thus, only the z-axis coordinate needs to be re-calculated to
determine its target position coordinates. Taking column C1 as an example, based
on its position coordinates (x1, y1, z1) in the BIM model and its height H and floor
height HF obtained from the BIM model, the coordinates of its gravity center are
determined as (x1, y1, HF + H/2).

2. For a regular rectangular slab, the coordinates of its gravity center can be calculated
from the coordinates of each endpoint of the slab in the model. Taking slab P as an
example, based on two diagonal endpoint coordinates (x1, y1, z1) and (x2, y2, z2),
the height H, the floor height HF, and the slab depth D from the BIM model, the
coordinates of its gravity center are (x1 + x2/2, (y1 + y2)/2, HF + H + D/2).

3. For wall and beam components in the form of tension, since the position coordinates
in the BIM model are the coordinates of the tension starting point, it is necessary to
determine the changed plane coordinates of its gravity center. Taking the wall W1 as

an example, based on the starting point coordinates (x1, y1, z1), direction
→
R(a, b, 0),

length L, height H, and floor height HF from the BIM model, the coordinates of its
gravity center

(
x′1, y′1, z′1

)
can be calculated using Equation (5):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x′1 = x1 +

L
2 × a√

a2+b2

y′1 = y1 +
L
2 × b√

a2+b2

z′1 = HF + H
2

(5)

After the original and target positions of the building components are determined,
for each component Ck to be lifted, its original and target positions are taken, respectively,
as the centers of two circles and the maximum working radius Rmax of the crane is the
radius of the circles. As a result, the overlapping area of the two circles is obtained, i.e., the
feasible location area of the crane. This is because the distance between any point in the
overlapping area and the two centers is less than the maximum working radius of the crane.
As an example, Figure 3 shows an intersection for lifting a wall component, involving
feasible location points. By following the original feasible point set FL1, the feasible point
set FL2,k for component Ck can be obtained. By traversing all components, the original
feasible points that do not belong to any feasible point set FL2,k are eliminated to obtain a
feasible point set FL2. On the other hand, if the two circles do not intersect, meaning that
the working radius of the crane does not meet the lifting requirements, the crane needs
to be eliminated. Another crane with an increased load capacity would be loaded for the
above constraint tests to be performed again.

4.5. Safety Constraint Check

The above two constraint tests screen out the basic feasible location points of the
crane based on a 2D plane, which meets the basic requirements, such as accessibility and
operability. However, safety problems may exist in crane operations and need to be solved.
By traversing all feasible points FL2,k of a component Ck, the collisions between the crane
boom and other objects during operation can be identified to prevent safety accidents.
The spatial position of the crane boom at the beginning and the end of lifting operations
should firstly be determined. For each feasible point of a component Ck, since there are
various combinations of boom lengths and working radiuses, to simplify the calculation,
the maximum boom length Lmax obtained in the previous section is selected as its working
boom length for calculation. If the maximum boom length does not meet the requirements
of the safety constraints, collisions will occur during operations and the relevant location
point should be eliminated. If all location points fail to meet the requirements, it means
that the crane does not meet the safety requirements. As an example, Figure 4 shows
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the position of a lifting boom at the end of lifting work in the plan and space. The plane
position can be determined using the plane coordinates of an alternative feasible point
Pij (xi,yj) and the final position of components (x′,y′) using Equation (6). In terms of the
spatial position, the angle of the boom θ is calculated using the distance between the target
position of the component and the feasible location point of the crane and the length of the
boom Lmax based on Equation (7). Moreover, the BIM model is used to obtain construction
environment information, including the plane positions of building components when
component Ck is lifted at time tk. Meanwhile, all components’, such as beams, columns,
walls, and slabs, which might intersect with the crane boom in the plane, maximum heights
are selected:

ax + by + c = 0, (6)

where a, b, and c are constants.
θ = cos−1 r

Lmax
, (7)

where r =
√
(xi − x′)2 +

(
yj − y′

)2
+ dOO′ ; dOO′ is the horizontal distance between the

rotation center line of the crane boom and the center point of the turntable.

Figure 3. Operation constraint check.

  
(a) (b) 

Figure 4. Crane position in the plan and space. (a) Lifting boom in the plan, (b) Lifting boom in space.
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Figure 5 shows an example of the hoist of component Ck. The boom intersects with the
exterior wall of the building in the vertical plane at time t. Relevant parameters include the
height of the intersection wall Hw, the floor height HF, the coordinates of the starting point

of the wall A1(x1, y1, z1), the direction
→
R(a1, b1, 0), the wall depth D, and the component

height Hc. Assuming that the center line of the wall is the positioning line, the center line
of the wall can be expressed by Equation (8). Equations (6) and (8) can be combined to
obtain the plane coordinates of the intersection point (xw, yw). Then, the plane distance
between the location point Pij of the crane and the surface of the wall can be calculated
using Equation (9). Finally, Equation (10) is used to identify whether the lifting boom
collides with the wall or the component itself. If Equation (10) is satisfied, collisions can
be avoided effectively; otherwise, a collision problem will occur. By traversing all feasible
points of each component Ck, the above-mentioned safety constraints are calculated to
eliminate the points with collisions; thus, the feasible location point set FL3,k is obtained:

y − y1 =
b1

a1
(x − x1), (8)

d =
√
(xi − xw)

2 +
(
yj − yw

)2
+ dOO′ − D

2 sin β
, (9)

where β = tan−1 b
a − tan−1 b1

a1
.{

(d × tan θ + Hbase − (HF + Hw)) cos θ ≥ dclear

(r × tan θ + Hbase − (HF + Hw + Hc)) cos θ ≥ dclear
, (10)

where dclear is the minimum distance between the crane boom and the obstacle; Hbase is the
distance between the rotation axis of the crane boom and the ground; and θ is the elevation
angle of the boom.

Figure 5. Safety constraint check.

4.6. Lifting Efficiency Optimization

Lifting efficiency is affected by two factors (i.e., the lifting time of a single component
and relocation times of a mobile crane). The former consists of the boom variable amplitude
time and boom extension time while the latter mainly depends on the lifting schedule
stored in 4D BIM.

104



Buildings 2022, 12, 580

(1) Minimization of single lifting time

The lifting time of a crane at each location point depends on its work parameters,
including the boom variable amplitude time, the boom extension time, the maximum
rotation speed, the maximum lifting speed, etc. In a construction site, the boom is preferably
stretched without loads, and the lifting height of the hook is independent of the location
point and only related to the target installation position of the lifting components. Therefore,
the calculation of a single lifting time mainly considers the boom amplitude time and the
turntable rotation time. For the point in the feasible point set FL3,k of each component
Ck, the boom pitch rotation angle difference dθ and the turntable rotation angle ω of the
crane are firstly calculated. As mentioned above, the initial position coordinates (x1, y1, z1)
and final position coordinates (x2, y2, z2) of the component; the boom elevation angles θ1
and θ2 of the crane at the beginning and ending operation, respectively; and the position
of the lifting boom on the plane a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are obtained.
Therefore, the values of dθ and ω can be calculated using Equations (11) and (12). Then, the
lifting time at the point is calculated using Equation (13). The lifting efficiency is calculated
successively for several feasible points of the same component and stored in the database:

dθ = |θ1 − θ2|, (11)

ω =

∣∣∣∣tan−1 b1

a1
− tan−1 b2

a2

∣∣∣∣ (12)

TL =
Traising

ϕ
× dθ + vswing × ω, (13)

where Traising is the lifting time of the boom; ϕ is the maximum elevation angle of the lifting
boom; and vswing is the rotation speed of the turntable.

(2) Minimization of relocation times

The principle of minimizing relocation times is to find the coincident location points
in the feasible points for different lifting components, so that more lifting operations can
be performed with the same crane location. It should be noted that due to the complexity
of lifting operation, relocation is unavoidable in practical construction even with the
minimizing principle. Therefore, according to the lifting schedule, which is stored in 4D
BIM, the method used in this research is to iteratively traverse the feasible point set of all
components FL3 and check its attributes. Since the attribute k is added to the feasible point
of each component Ck in the operation constraint test, the feasible points with the greatest
attribute value is acceptable. The specific procedure is presented as follows.

1. Check the attribute value k of each feasible point Pij in turn, and add points with the
same attribute to the same group.

2. Find the group Groupm that contains the most contiguous attributes. Since the at-
tribute value k is the number of components and also represents the lifting order of
components, the lifting order should be considered to ensure that the attribute value
is as continuous as possible.

3. Compare the minimum lifting time when the crane is located at the points of multiple
Groupm, and select the group with the shortest lifting time as the final Groupm. If no
multiple Groupm exist, go straight to the next step.

4. Take point Pij,k in Groupm as the location point of the crane for the hoist of the
component Ck, and release the attribute value k contained in other points at the
same time.

5. Identify the remaining feasible point with the greatest attribute k and repeat the
above steps.

6. Identify the crane location point combinations with the minimum number of move-
ments after completing the above steps for all feasible points, calculate the lifting time
of each point in the same group of location points, and take the point combination
with the shortest lifting time.
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Through the above steps, the optimal location point of the mobile crane with minimum
relocations and the shortest lifting time can be identified.

5. Case Study

To test the feasibility and validity of the proposed method, a crane selection and local-
ization system were developed based on Unity 3D, including the input module, selection
module, positioning module, and optimization module, and a case of a 3-story prefabri-
cated building project was adopted, involving the integrated selection and localization of
a mobile crane under a lifting scenario of multi-components. In this case, the BIM model
of the building was constructed in advance, with various types of precast components
(see Figure 6a). In addition, site roads, temporary facilities, and relevant coordinates were
directly extracted from the parsed IFC format BIM model, marked in the construction
site layout (see Figure 6b). Table 5 lists some candidate mobile cranes and their basic
performances stored in the crane database.

 
 

(a) (b) 

Figure 6. BIM model and site layout (a) BIM model of the building with precast components.
(b) Roads and temporary facilities in the construction site layout.

Table 5. Basic performances of the candidate cranes in the database.

Crane Model
Maximum Lifting

Capacity (T)
Maximum Boom

Length (m)
Maximum Working

Radius (m)
Cost (Yuan/per Machine)

QY16D 16 30.5 22 1100
QY20G 20 32.27 28 1360

QY25K-I 25 33 30 1800
QY50K-II 50 42.7 32 2960

QY65K 65 42 30 3500
QY70K 70 44.5 36 4780
QY80K 80 45 36 5000
QY90K 90 55 50 5800

QY100K-I 100 51 42 6833
QY130K 130 58 56 6900
QY160K 160 62 52 7000

5.1. Data Input

The IFC format BIM model was firstly imported into the system using its input module
to automatically obtain the attributes of all precast components, and the coordinates of the
obstacles and stacking yards in the construction site. Referring to the range of building,
facilities, and site, an initial candidate location point set for the mobile crane was generated
automatically to support the subsequent selection and localization of the crane.

5.2. Initial Crane Type Selection

According to the maximum weight of the precast components, 4 types of mobile
cranes were selected based on Equation (1), including QY90K, QY100K-I, QY130K, and
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QY160K, and added to the alternatives. QY90K was automatically selected as the initial
crane type by the selection module because of its lowest price. Then, the performance
parameters of the selected mobile crane were extracted from the crane database to support
the subsequent calculation.

5.3. Constraint Checks

The environmental constraint check, operation constraint check, and safety constraint
check were performed orderly using the positioning module to check the feasibility of
the selected crane type. The points satisfying the three constraints were set as the feasible
location points, which meant these components could be hoisted safely. However, it
was found that in terms of the initial crane type QY90K, all constraints with the lifting
components could not be satisfied. Thus, the crane type had to be eliminated from the
alternatives. Figure 7 shows the scenarios in which crane QY90K was inconsistent with the
three constraints. Specifically, Figure 7a shows the crane was located within the boundaries
of the existing buildings, which is defined by the minimum clearance, Figure 7b shows the
weight of the lifting component that exceeded the rated lifting capacity, and Figure 7c shows
there was a collision between the crane boom and the building during lifting operation.
Another alternative crane type QY100K-I with the minimum cost was loaded as a new
initial type for repeated constraint testing. As a result, this crane type conformed with all
of the constraints, and the feasible location points were obtained (see Figure 8).

 
(a) 

 
(b) 

Figure 7. Cont.
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(c)

Figure 7. The initially selected type QY90K, which does not satisfy the constraints. (a) Unsatisfied
environmental constraint. (b) Unsatisfied operation constraint. (c) Unsatisfied safety constraint.

 

Figure 8. Feasible location points for a certain component (crane type QY100K-I).

5.4. Optimal Combination of Feasible Location Points

Based on the obtained feasible points for all lifting components, the combination with
the minimum relocations of 2 (i.e., the optimal location point 1 and 2 in Figure 9) and the
shortest lifting time was determined using the optimization module. The optimal locations
were highlighted in the construction site layout. As shown in Figure 9, the highlighted
combination of feasible points represents the optimal locations for the selected mobile
crane QY100K-I.

It is shown from this case study that the proposed method is workable. Moreover, the
selection and localization processes of the mobile crane can be automatically conducted
by the developed system. Thus, it makes the selection and localization of the mobile
crane more efficient than before, not only saving cost and time but also improving the
safety performance. Furthermore, this proposed method has the potential to support the
automatic simulation of construction processes, which further supports the implementation
of intelligent construction.
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Figure 9. Optimal combination of feasible location points for crane QY100K-I.

6. Conclusions

The promotion of virtual construction technologies has the potential to improve the
efficiency and safety of crane operation by producing a more precise, comprehensive,
and dynamic operation plan. However, in terms of the selection and localization of the
mobile crane, it seldom considers the combination of different feasible location points,
the minimization of crane movement, and the spatial safety requirements during lifting
processes. Consequently, this study developed a method to automatically select and locate
the mobile crane, mainly involving three constraints, i.e., the environmental constraint,
operation constraint, and safety constraint, and two optimization methods covering the
least cost, minimum relocations, and shortest lifting time. Relevant parameter informa-
tion can be directly obtained or indirectly transformed from the 4D BIM model. A case
study was also presented to test the feasibility and validity of the proposed method. The
result shows that the method was feasible and valid in the virtual simulation environment.
This benefits not only on-site crane operations but also automatic construction simulation.
Moreover, compared with other construction machinery, mobile cranes have more con-
straints and more complicated operation. Thus, it is easier to extend the method to other
construction machinery.

In addition, there are still some limitations. On the one hand, the proposed method
was only tested in a virtual construction scenario and the optimized result has not yet been
used in real construction. On the other hand, the method only considered the construction
scenario with a single mobile crane. Thus, future research will focus on the use of optimized
results from the method in real construction scenarios to test its performance, with more cri-
teria (i.e., wind effect, ground bearing pressure, and rope breakage) considered. Moreover,
multi-crane construction scenarios will also be taken into consideration in the future.
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Abstract: Highway bridges play an important role in traffic construction; however, accidents caused
by bridge construction occur frequently, resulting in significant loss of life and property. The identifi-
cation of bridge construction scenes not only keeps track of the construction progress, but also enables
real-time monitoring of the construction process and the timely detection of safety hazards. This paper
proposes a deep learning method in artificial intelligence (AI) for identifying key construction scenes
of highway bridges based on visual relationships. First, based on the analysis of bridge construction
characteristics and construction process, five key construction scenes are selected. Then, by studying
the underlying features of the five scenes, a construction scene identification feature information
table is built, and construction scene identification rules are formulated. Afterward, a bridge key
construction scene identification model (CSIN) is built; this model comprises target detection, visual
relationship extraction, semantic conversion, scene information fusion, and identification results
output. Finally, the effectiveness of the proposed method is verified experimentally. The results show
that the proposed method can effectively identify key construction scenes for highway bridges with
an accuracy rate of 94%, and enable the remote intelligent monitoring of highway bridge construction
processes to ensure that projects are carried out safely.

Keywords: construction scene identification; visual relationship detection; scene rules; deep learning;
neural networks; highway bridges

1. Introduction

Highway bridge construction is an important element of road transport, and plays
an increasingly significant role in the development of the transportation sector. In the
actual bridge construction process, the complex operating on-site environments, large
numbers of construction personnel, and irregular operation of equipment often lead to
major safety accidents [1], resulting in significant life and economic losses to societies
and families [2]. Therefore, the identification of workers, equipment, and the behavioral
relationship between workers and equipment at bridge construction sites, and thus, the
inference of the current construction scene, has important application value for construction
safety prevention.

The earliest methods used for construction safety monitoring relied primarily on
manual monitoring during construction and safety assessment after completion [3]. How-
ever, owing to factors such as a wide working area, the large number of people on the
construction site, and the complexity of the equipment used, a reliance only on manual
point-to-point monitoring is often time-consuming and labor-intensive, and the monitoring
results are prone to error.

Most current researchers use deep learning methods in artificial intelligence (AI) for
safety monitoring during construction processes [4], with a focus on target detection of
construction workers wearing helmets and holding equipment [5]. However, this method
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ignores the interrelationship between workers and construction objects, leading to a lack
of early warning capability for safety monitoring when workers perform non-compliant
construction operations.

In recent years, more researchers have focused on visual relationship detection in
deep learning, which aims to determine the topological relationship between targets in a
scene [6,7] and generate the triplet form of subject–predicate–object. This approach can
more accurately represent and describe construction scene information and contextual
relationships. R-CNN [8] was used by VDR [9] to obtain the target candidate frame,
and the relationship likelihood score of the triplet was obtained by a visual model and
a semantic model for relationship prediction. Different from VRD, VTransE [10] was an
end-to-end model that maps the visual features of targets into a low-dimensional relational
space, using transfer vectors to represent the relationships between targets. The textual
representation of subject/object was used by CAI [11] as contextual information to establish
a visual relationship detection model. Features are the basis of target identification, so more
features are incorporated into the DR-Net model to count the occurrence probability of
subjects, predicates, and objects by visual features, spatial structure features, and relational
features [12]. In order to better understand the relationship between targets, ViP-CNN [13]
was used to establish the association between subjects, predicates, and objects on visual
features by passing information between different models at the same layer. Zoom-net [14]
was used for deep information transfer between local target features and global predicate
relation features to the achieve deep integration of subjects and predicates. At present,
visual relationship detection has been applied to a variety of image understanding tasks,
such as image understanding in construction scenes. Wu et al. [5] performed relationship
detection between workers and equipment by obtaining the head pose and body orientation
of the worker. Kim et al. [15] reconstructed individual behaviors using object types of
interactions between workers and equipment to improve construction scene identification.
Xiong et al. [16] applied visual relationship detection in construction to a video surveillance
system, enabling further improvement with respect to the immediate effectiveness of
construction safety warnings. The above methods are able to identify specific targets and
interrelationships between targets in construction scenes, but fail to further realize scene
identification and understanding on this basis, and thus cannot achieve automation and
intelligence in safety monitoring during construction. In addition, owing to the relatively
high complexity of construction scenes, it is easy to encounter the problem of missing and
incorrect detection of targets.

Visual relationship detection fully presents all information in an image and solves the
problem of object relationship fragmentation caused by using target detection algorithms
alone. However, there are only a few applications of visual relationship detection in
highway bridge construction. In order to achieve intelligent safety monitoring of the bridge
construction process and to complete construction scene identification and understanding,
this paper proposes a visual relationship-based method for construction scene identification
on highway bridges. The method combined the construction characteristics of highway
bridges, and is based on the idea of deep learning. In this method, scene identification rules
are formulated according to the target features and interrelationships in the construction
scenes, and a scene identification model is then built based on the rules to complete the
textual output of key scene information. The main work of this paper is as follows:

(1) Selection of key construction scenes on bridges. There are numerous bridge con-
struction processes. Therefore, in this study, five key construction scenes of a bridge were
selected based on an analysis of its construction characteristics and construction process.

(2) Formulation of identification rules for key construction scenes on bridges. A
feature is the basis of scene identification. This study examines the underlying features
that can distinguish the categories of key construction scenes, and establishes a feature
information table and a tree diagram for the identification of key construction scenes on
highway bridges. On this basis, the identification rules under different construction scenes
are formulated.
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(3) Building an identification model for key construction scenarios on bridges. In
the target detection module, a feature pyramid network (FPN) and color moments are
introduced to perform the multiscale detection of targets and obtain construction personnel
identity information, while reducing the rate of missing and incorrect detection of targets.
In the visual relationship extraction module, feature vectors are introduced to connect
subjects, objects, and predicates in construction scenes in order to determine the interaction
relationship between targets. In the semantic conversion module, frequency baselines are
introduced to count the number of predicates in the construction scene, and the probability
distribution of construction personnel actions is then obtained. In the scene information
fusion module, an image–text encoder is introduced to combine the image results with the
detection results to obtain the correspondence between the images and text. In the scene
identification results output module, a rule consistency matching strategy is introduced to
match the detected feature results with the formulated rules, and the category information
of key construction scenes of highway bridges is then obtained.

(4) Validation of scene identification method. Experimental validation was performed
using a homemade key construction scene identification dataset on a highway bridge.
In addition, the accuracy, precision, recall, and other evaluation indexes were used to
evaluate the accuracy of the proposed scene identification method. Moreover, we performed
a comparative analysis with other visual relationship-detection methods to prove the
effectiveness of the proposed method.

2. Proposed Method

2.1. Selection of Key Construction Scenes on Bridges
2.1.1. Analysis of Bridge Construction Characteristics

In highway bridge engineering, there is a degree of difference between its production
and general industrial production, which includes the following three perspectives.

(1) Large span of engineering structures. Highway bridge projects are often used to
connect two distant areas; therefore, the bridge body has a long span. Furthermore, gantry
cranes are essential types of equipment for the transport and installation of bridge bodies,
but are more dangerous.

(2) More open-air and high-altitude operations. The fixed nature of highway bridge
locations makes construction workers often face open-air work and to work from heights.
As the distance of construction workers from the ground increases, the risk factor also
increases layer-by-layer.

(3) High periodicity and repetitiveness. Bridge projects involve the use of similar types
of structures, the same part of the sub-section construction, as well as other factors during
the construction process. Therefore, they need to be carried out in a step-by-step manner,
such as embedding steel casing, fixed formwork installation, concrete pouring, etc., which
gives the bridge construction a certain periodicity and repetitiveness.

Owing to the aforementioned characteristics of highway bridge construction, there
are a number of difficulties and safety hazards. To reduce the occurrence of accidents, it
is necessary to monitor the bridge construction scene in real time. However, the bridge
construction process is complex and varied; therefore, five key scenes were selected for
this study.

2.1.2. Key Construction Scenes on Bridges

The construction process of a highway bridge consists mainly of in situ construction
and assembly construction. That is, the formwork and stand are set up at the location
of the entire bridge, followed by the welding of the reinforcement and concrete pouring.
After the concrete reaches its target strength, the formwork and stand are removed. Finally,
prefabrication of the beams and bridge deck construction is carried out near the bridge site.
The flow of the construction process is illustrated in Figure 1.
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Figure 1. Schematic diagram of the bridge construction process.

Bridge construction is divided into three main stages: pile foundation construction,
abutment pier construction, and bridge span structure construction, each of which is a
complex and tedious construction process. In this study, five key construction scenes
(indicated by bold underlining in Figure 1) were selected for analysis and identification.

(1) Construction surveying and proofing. Before the construction of the bridge project,
the technicist should first carry out measurement lofting and data calculation on-site to
provide the construction direction for the entire project. This is the premise and foundation
for ensuring the quality of bridge projects.

(2) Embedding of steel casing. During bridge construction, to achieve the required
load-bearing capacity, the steel casing needs to be embedded to ensure the verticality of the
bridge and prevent collapse caused by the falling of debris around it. This directly affects
the stability of the bridge pile foundations.

(3) Erection of formwork and stand. When pouring the superstructure of the bridge
on-site, the first step is to erect a stand at the location of the bridge hole to support the
formwork and poured reinforced concrete. This is an important construction step in
bridge engineering.

(4) Steel bar welding and binding. Steel processing is an extremely important step
in bridge construction, and the welding and binding of steel bars are basic links in steel
processing to ensure the stability of steel installation. This, in turn, affects the structural
safety of the entire bridge.

(5) Beam transportation and assembly. The weight and volume of the equipment
involved in the beam transportation and assembly stages are large, such as gantry cranes
and bridge erectors, which are prone to accidents if not operated carefully. This is a major
source of danger during the bridge construction process.

To ensure the stability and safety of bridge structures, it is necessary to strengthen
the management of the construction process, particularly during the key construction
scenes. The first step in management is to accurately identify the current scene in-
formation and monitor hazards according to the interrelationship between workers
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and equipment. Based on this idea, this study proposes identification rules for key
construction scenes on bridges.

2.2. Formulation of Identification Rules for Key Construction Scenes on Bridges

Scene identification can be achieved by extracting the underlying features of different
instances in an image and the spatial location relationship between them, and by inferring
the relationship to output, the current scene information of that image. Based on this
idea, this study designed identification rules for key construction scenes on highway
bridges. Table 1 presents the information of bridge key construction scenes identification
features: Table 1 A presents the key-scene construction equipment information, and Table 1
B presents the key-scene construction personnel and construction material information. In
both tables, the underlying features required to identify the five key scenes are marked
as “

√
”. Where, 1©– 5© denote five key construction scenes on the bridge. 1© denotes

construction surveying and proofing, 2© denotes embedding steel casing, 3© denotes erect
formwork and stand, 4© denotes steel bar welding and binding, and 5© denotes beam
transportation and assembly.

Figure 2 shows the rules of bridge key construction scene identification. It describes
the logical relationship of the underlying features of construction personnel (blue), con-
struction equipment (green), and construction materials (orange). The left shows the five
key construction scenes and the corresponding construction equipment for each scene.

 

Figure 2. Identification rules tree diagram of bridge key construction scenes.

(1) Construction personnel include three underlying features: posture, identity, and lo-
cation. 1© Posture features include seven kinds: observe, command, stand, etc.; 2© Identity
features include construction stuff (yellow helmet), supervisor (blue helmet), etc.; and
3© Location features include four types of location information such as on the ground, on

the stand, etc.
(2) Construction equipment includes three underlying characteristics of shape, color,

and working principle. 1© Shape characteristics include cylindrical, round, etc.; 2© Color
characteristics include red, yellow, etc.; 3© Working principles include arm, hook, etc.

(3) Construction materials include rebar, concrete, etc.
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For example, the worker wearing a blue helmet stands on the ground observing the
total station and instructing the worker wearing a yellow helmet, it can be inferred that
the current scene is “construction surveying and proofing”; the worker wearing a yellow
helmet holds a cutting machine to weld long objects, and it can be inferred that the current
scene is “steel bar welding and binding”.

2.3. Building of Identification Model for Key Construction Scenes on Bridges

The authors in [17] proposed a relationship detection model named RelDN, and this
study draws on the idea of constructing a CSIN network model with CNN (Convolu-
tional Neural Network) [18] and DCR (Deep Convolutional Relationship) [19] as the basic
framework for bridge construction scene identification. The structure of CSIN is shown
in Figure 3. There are four parts. The first part is image input and feature extraction part,
which is composed of the convolutional neural network CNN to extract the underlying
features of construction images. The second part is the feature processing part, which
mainly includes the target detection module, visual relationship extraction module, and
semantic conversion module to obtain different feature score charts. The third part is the
feature fusion part, which is composed of the scene information fusion module to fuse
image features and text features. The fourth part is the result output part, which is com-
posed of the scene identification result output module to obtain the current construction
scene information.

 

Figure 3. Structure schematic diagram of bridge construction scene identification model. (The source
of the identifiable image in Figure 3 is shown in the Supplementary Materials).

2.3.1. FPN-Based Target Detection Module

Detecting and locating various types of targets in construction images are the basis for
achieving construction scene identification; therefore, this study first needs to extract and
capture feature information, such as the location and category of construction personnel,
using the target detection module. To address the problem of target size difference and
target miss detection in construction scene images owing to the imaging angle, a detection
method that can cope with such multi-scale variation is needed. The feature pyramid
network (FPN) [20] can feature extraction for each scale of the image, increasing the
perceptual field of the bottom layer of the feature map. So, the FPN is able to obtain
more contextual information when performing small target detection at the bottom layer,
reducing the rate of missing and incorrect detection. Therefore, this study adds an FPN
in the target detection module, which makes shallow networks focus more on detailed
information, and high-level networks focus more on semantic information.
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In addition, standardized coordinates were used to encode the bounding box
between targets to obtain position information and to complete the prediction of the
position relationship.

Δb1, b2 = (
x1 − x2

W2
,

y1 − y2
H2

, log
W1

W2
, log

H1

H2
) (1)

c(b) = (
x

Wimg
,

y
Himg

,
x + W
Wimg

,
y + H
Himg

,
WH

WimgHimg
) (2)

where b1, b2 are the bounding boxes between the two targets, Δb1, b2 denote the increments
between the bounding box coordinates, and (x, y, W, H) is the coordinate information of the
bounding box. In addition, c(b) denotes the normalized coordinate feature of the bounding
box, and Wimg, Himg are the width and height of the input image, respectively.

To address the problem of mismatch between helmet type and construction personnel
identity, in this paper, the color characteristics of the safety helmet are extracted using the
color moment method [21]. The first-order moments describe the average color of the safety
helmet, the second-order moments describe the color variance, and the third-order moments
describe the offset of the color. Thus, the color moments can present comprehensive color
characteristics of the safety helmet to achieve the purpose of corresponding with the identity
of workers. The correspondence between helmet color and worker identity is shown in
Table 2. The formulae for calculating the first-order, second-order, and third-order moments
are as follows:

M1 =
1
N

N

∑
j=1

Pij (3)

M2 = (
1
N

N

∑
j=1

(
Pij − M1

)2
)

1
2

(4)

M3 = (
1
N

N

∑
j=1

(
Pij − M1

)3
)

1
3

(5)

Table 2. Matching relationship between safety helmet color and construction personnel identity.

Color
Classification

Red Helmet Yellow Helmet Blue Helmet White Helmet

Worker status Technicist Construction staff Supervisor Safety supervisor

2.3.2. Visual Relationship Extraction Module Based on Feature Vectors

The visual relationship detection branch is used to capture deeper visual features
in construction images, including the construction scene content, interrelationships, and
logical relationships between different objects. The visual relationship extraction module
focuses on obtaining the interaction probability values between the construction action
sender (subject), construction action (predicate), and construction object (object), as shown
in Figure 2. This module generates a set of class vector logits conditioned on region-of-
interest (ROI) feature maps and passes the fused feature map information so that the
network can fully learn and perceive the visual and semantic intersection information
in the construction scene. A multilayer perceptron (MLP) is used to connect the feature
vectors of the subject, predicate, and object to obtain the probability values of the interaction
relationships between different entity targets in the construction scene. The formula is
as follows:

f(x) = G(b(2) + W(2)(s(b(1) + W(1)x))) (6)

where W is the connection weight, b is the bias, G is the softmax function, and s is a
sigmoid function.
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To improve the processing efficiency of the network for visual information and reduce
the computational cost of the network, two cross-layer connections [22] are constructed in
the visual relation extraction module. Then the subject/object ROI features extracted by the
detection module are mapped to the predicate class vector logits to facilitate the transfer
and flow of information in the network.

2.3.3. Semantic Conversion Module Based on Frequency Baseline

A construction scene graph contains not only intuitive visual information, but also
deep semantic information. Scene graphs are one of the methods used to construct the
visual relations of images [23]. The main idea is to divide the visual relations between
all objects in an image into a triadic subject–predicate–object form, which is used as a
whole learning task [24,25]. The semantic conversion module focuses on outputting the
relationship information between the subject and object. This module draws on the idea
of a scene graph to generate a set of binary relational feature maps of the ROI and passes
the semantic information extracted by the relationship detection branch to a higher level
of cyberspace. The interrelationships and attribute information between different objects
are then captured by calculating the frequency of predicates between subjects and objects.
This predicate is generally limited and regular; for example, the relationship between
construction workers and scaffolding is generally workers “install” scaffolding or workers
“stand” on scaffolding, but not other predicates such as “wear”. Therefore, to improve the
processing and learning efficiency of the semantic conversion model, a frequency baseline
was set based on the number of occurrences of the predicate [26]. For any pair of training
images, the prediction probability distribution was obtained by counting the number of
occurrences of subject s and object o in the real box with the set frequency baseline.

ω(s, o) = 1 − p(pred = ∅|s, o) (7)

where p(pred|s, o) denotes the probability of predicate distribution between subject s and
object o, and p(pred = ∅|s, o) denotes that there is no interrelationship between subject s
and object o.

To prevent the network from incorrectly inferring two targets that are close but not
interrelated, a loss function L is designed when subject s and object o are interrelated to
maximize the bounding box distance between the two targets determined by the predicate.

L = 1
N

N
∑

i=1

1
|P(O+

i )| ∑
p∈P(O+

i )

max(0,α− ms(i, p))

+ 1
N

N
∑

j=1

1∣∣∣P(O+
j

)∣∣∣ ∑
p∈P(O+

j )

max(0,α− mo(j, p))
(8)

where P() is the specific set of predicates associated with the input, p represents the predicate
class, and O+

i , O+
j denote the set of targets whose relationship is p. In addition, α is the

threshold value, ms, mo denotes the confidence of the subject and object, and i, j denotes
the index of the subject and object.

2.3.4. Scene Information Fusion Module Based on Image-Text Encoder

After the target detection module and visual relationship extraction module, the image
information of the construction personnel and the image information of the subject and
object in the scene were obtained. Moreover, the text information of the predicate in the
scene was obtained after the semantic conversion module. The key step in realizing scene
identification is to combine image information with text information. In this study, the
scene information fusion module was formulated by referring to the method of correlation
description between images and text in the literature [27].
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First, the detection, visual, and semantic scores obtained by the three modules are
softmax normalized to obtain the target relationship probability Ppre.

Ppre = softmax(fDet + fVis + fSem) (9)

where fDet, fVis, and fSem denote the output relationship probabilities of the target detection
module, visual relationship extraction module, and semantic conversion module, respectively.

After obtaining the target relationship probabilities, the output image results and
detection results are encoded to the same dimension by the image encoder φ through
convolutional neural networks (CNNs) [28], and the text encoder ϕ through the long
short-term memory network (LSTM) [29]. Then, the cosine similarity between the paired
image results and the detection results was calculated to construct the ranking loss function.
The ranking loss function of encoder Lrank is as shown in Equation (10).

Lrank = min
θ ∑

x
∑
k

max{0,α− s(φ(x),ϕ(t)) + s(φ(x),ϕ(tk))}
+∑

t
∑
k

max{0,α− s(φ(x),ϕ(t)) + s(φ(xk),ϕ(t))} (10)

where θ denotes all parameters in the image encoder and text encoder, α is the boundary
value, and s is used to calculate the cosine similarity between the image embedding vector
φ(x) and the detection result embedding vector ϕ(t); xk, tk denote the mismatched images
and texts, respectively.

2.3.5. Scene Identification Results Output Module Based on Rule Consistency Matching

The four modules above are all intermediate results, which can be expressed as
“features,” while the final goal of this study is to output a textual expression that is consistent
with the scene image to be detected. The textual output of scene identification is obtained
by matching the integration features acquired from the scene information fusion module
with scene identification rules (Figure 2). In this paper, the method of reference [30] is
referred to, and the loss function Lcon is used to calculate the consistency between the
integration features and the rules. Lcon is calculated as shown in Equation (11).
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a
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(11)

where (ui,xt
i), (vi,yt

i), and (wi,zt
i) appear in pairs and denote subject-construction person-

nel matching, object-construction equipment matching, and predicate-posture matching,
respectively; and a, b, and c represent the number of instances of the three construction
elements (mentioned in Figure 2).

In the training process, given a dataset D =
{
(Ik, Sk)

N
k=1

}
containing N image-text,

a batch of images is sampled from the dataset for training, and the final loss function is a
weighted sum L of the ranking loss and the consistency loss.

L =
Nb

∑
k

Lrank(Ik, Sk) + λcon

Nb

∑
k

Lcon(Ik, Sk) (12)

where I denotes the image, S denotes the text, and λcon is a hyperparameter with an
adjustable balance.

2.3.6. Method Flow-Chart

The overall method flow-chart is shown in Figure 4. Firstly, the bridge construction
scene images are input into the convolutional neural network, then the geometric features
and color features in the shallow layer of the image are extracted by the operations of
convolution, pooling, and full connection to form the feature maps. Then the extracted
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feature maps are fed into the target detection module, the visual relationship extraction
module, and the semantic conversion module through the target detection branch and
the relation detection branch, respectively, to obtain information on parameters such as
location, category, probability values, and attributes of image targets to form a detection
score chart, visual score chart, and semantic score chart. Afterward, the three score charts
are fed into the convolutional neural network and the long short-term memory network,
respectively, for image coding and text coding to obtain the integration features. Finally,
the integration features are matched with the scene identification rules for consistency, and
the current scene information is obtained and output in the text form.

 

Figure 4. Method flow-chart.

3. Experiment

3.1. Experimental Configuration
3.1.1. Dataset

To fully learn the target features, semantic features, and visual features in different
construction scenes, and to identify key construction scenes on bridges, a large amount of
data is required for training. Because there is no dataset for construction scene identification
that satisfies the needs of this study, a scene-based construction identification dataset for
highway bridges is built in this study. For the five key scenes mentioned in Section 2.1.2,
the construction scene images are intercepted by online bridge construction monitoring
videos considering various factors such as the target size variation, location distribution,
and similar color interference. In addition, LabelImg is used to label visual information
such as the location and category of targets, as well as the semantic information of the
interrelationship between targets in the images. So, the model can fully learn and under-
stand the logical relationships embedded in the images. The specific information of the
bridge key construction scene identification dataset constructed in this study is presented
in Table 3, containing a total of 465 images. This dataset was constructed from three aspects:
subject, object, and predicate. Furthermore, 60% of the images were selected as the training
set and the remaining 40% were selected as the test set, including 37 images for each of the
five key construction scenes.
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Table 3. Number and interrelationship of images in each construction scene.

Bridge Construction Scene
Number of

Images

Visual Relationship

Subject Predicate Object

Construction surveying
and proofing 95 Worker Observe Total station

Embedding steel casing 90 Crane Conduct Steel case
Erect formwork and stand 90 Worker Install Scaffold

Steel bar welding and binding 100 Worker Weld Rebar
Beam transportation and assembly 90 Beam carrier Transport Beam

3.1.2. Evaluation Indicators

To verify the accuracy of the proposed bridge key construction scene identification
method, indicators such as accuracy (Acc), precision (P), and recall @K (R@K) were used to
evaluate the results of the experiments. The main formulae are shown in Equations (13)–(15).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall@K =
TP@K

(TP@K) + (FN@K)
(15)

Among them, true positive (TP) and true negative (TN) are correct detection results,
false positive (FP) is wrong detection, and false negative (FN) is missed detection.

3.1.3. Implementation Details

The configuration of this experimental platform is the Windows 10 operating system
and CUDA 10.1 computing platform; the algorithm framework is TensorFlow-GPU1.12.0
and Keras2.13; the programming language is Python 3.6.13. To obtain a better training
effect, the size of the image input network was set to 800 pixels in the training phase. Then,
the batch was set to 1, the number of iterations was 10,000, and the initial learning rate
was 0.001.

3.2. Identification Results and Accuracy Analysis for Key Construction Scenes on Bridges

To verify the effectiveness of the bridge key construction scene identification method
proposed in this study, two parameters, namely the identification effect and identification
accuracy, were evaluated and analyzed.

3.2.1. Scene Identification Results and Analysis

To verify the scene identification effect of the proposed method, experiments were
conducted on the test set. Figure 5 shows some of the data in the test set, including five key
construction scenes: (a) shows three technicists wearing red helmets to operate the total
station and recording; (b) shows that the steel case is controlled by the crane arm, and
the crane is operated by two construction workers wearing yellow helmets; (c) shows
three construction personnel in yellow helmets welding steel bars with electric welders;
(d) shows two construction workers in yellow helmets standing on the support to install
the scaffold; and (e) shows a construction worker in a yellow helmet directing the beam
transporter to transport the beam.
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(a) (b) 

 
(c) 

 

(d) (e) 

Figure 5. Partial data in the test set (five key construction scenes). (The sources of the identifiable
images in Figure 4 are shown in the Supplementary Materials.)

The scene identification method proposed in this paper was applied to the test set for
the experiment. Figure 6 and Table 4 show the scene identification results.

By analyzing the identification results in Figure 6 and the information in Table 4, it
was found that the proposed scene identification method can correctly output the final
scene category information (black box in the upper left corner in Figure 6). The informa-
tion is derived from the intermediate results by reasoning through the formulated scene
identification rules. The intermediate results consisted of two parts: the target detection
result (green) and the visual relationship detection result (yellow for the subject, purple for
the object, and pink for the predicate).

From the target detection results, we can see that the proposed method can distinguish
different identity types according to the color of the helmet worn by workers, such as
the detection result for workers wearing helmets in Figure 6; (a) is a “technicist”, while
the workers wearing yellow helmets in (b–e) are detected as “construction staff”. In
particular, the method proposed in this paper can still accurately detect the type and location
information of the relatively small-sized workers appearing on the left side of (e) (this
result will be analyzed in Comparison Results and Analysis of Target Detection Module).
The visual relationship detection results show that the proposed method can correctly
identify the subject, predicate, and object, and can connect the above three through the red
line segment to reflect the correlation between them. Finally, the final scene identification
results were obtained from the above two intermediate results using inference rules.
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(a) (b) 

 

 
(c) 

 
(d) (e) 

Figure 6. Partial results of the bridge key construction scene identification method on the test set.
(The sources of the identifiable images in Figure 5 are shown in the Supplementary Materials.)

Table 4. Information table showing identification results for key construction scenes on bridges.

Intermediate Results Final Results

Figure Target Detection
Results

Visual Relationship Detection Results Construction Scene Category
InformationSubject Predicate Object

A Technicist Worker Observe Total station Construction surveying and proofing
B Construction staff Crane Conduct Steel case Embedding steel casing
C Construction staff Worker Weld Rebar Erect formwork and stand
D Construction staff Worker Install Stand Steel bar welding and binding
E Construction staff Beam carrier Transport Beam Beam transportation and assembly

3.2.2. Scene Identification Accuracy and Analysis

To verify the scene identification accuracy of the method in this study, it was evaluated
using a confusion matrix, as shown in Table 5. Each scene category contains 37 test images.

125



Buildings 2022, 12, 827

Table 5. Table of identification accuracy results for key construction scenes on bridges, where:
1© denotes construction surveying and proofing, 2© denotes embedding steel casing, 3© denotes

erection of formwork and stand, 4© denotes steel bar welding and binding, and 5© denotes beam
transportation and assembly.

True Value
Precision (%)

Predicted Value

1© 2© 3© 4© 5©
1© 37 100
2© 35 100
3© 31 3 91.2
4© 6 34 85.0
5© 2 37 94.9

Recall (%) 100 94.6 83.8 91.9 100
Accuracy (%) = 94

Comparing the data in the table, it can be seen that the identification accuracy and
recall in the “construction surveying and proofing” are the highest, and 100% recognition
can be achieved. The identification accuracy and recall in the “erection of formwork
and stand” and “steel bar welding and binding” were lower, with accuracies of 91.2%
and 85.0%, and recall values of 83.8% and 91.9%, respectively. From an analysis of the
reasons, we found that the processes of “erect formwork and stand” and “steel bar welding
and binding” have high similarity. It is obvious from (c,d) of Figure 5 that the above
two scenes have confusing targets, so the identification accuracy is slightly lower than that
of the other scenes. The identification accuracy of “beam transportation and assembly” is
higher because the size of the beam transporter is larger than the targets in other scenes,
which is easy to identify. The identification accuracy of the “construction surveying and
proofing” is the highest because the target in this scene is clear and the background is
simple, which is not easily disturbed by other information. However, in general, the scene
identification accuracy of this study reached 94%, which can complete the identification of
key construction scenes on bridges.

Based on the experimental results obtained, it can be concluded that the key construc-
tion scene identification method proposed in this paper has a good scene understanding
ability. This method can fully learn the semantic and visual information in the graph,
perform target localization and relationship detection, and accurately output the category
information of the scene.

3.3. Experimental Results and Analysis of Identification Model CSIN for Key Construction Scenes
on Bridges

The CSIN model proposed in this study plays an important role in the scene identi-
fication process. To verify its effectiveness, two aspects of the model, namely the overall
performance and internal modules, were evaluated and analyzed.

3.3.1. Experimental Results and Analysis of the Performance for the Scene
Identification Model

The PR curves were plotted using precision and recall, which can visually describe the
model performance. Figure 7 shows the PR curves generated when the IoU threshold is
set to 0.5, 0.6, and 0.7, where the horizontal and vertical coordinates represent recall and
precision, respectively. From an analysis of the three curves in the figure, it can be seen
that when the IoU threshold is set to 0.5, the PR curve is closer to the upper right; that is,
the precision and recall are both higher. The area formed by the PR curve and coordinate
axis gradually decreased as the IoU threshold increased. When the IoU is 0.6 and 0.5, the
two PR curves start to decrease significantly at recall >0.7, and when the IoU is 0.7, the PR
curves start to decrease around recall =0.5. This indicates that the proposed CSIN model
had the best detection effect when the IoU threshold was 0.5.
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Figure 7. PR curves under different IoU thresholds.

3.3.2. Comparative Experimental Results and Analysis of Specific Modules

The CSIN model proposed in this study includes two important modules: target
detection and visual relationship extraction. To verify the effectiveness of the proposed
algorithms in these two modules, comparative experiments were conducted separately.

Comparison Results and Analysis of Target Detection Module

The basis of achieving scene identification is to correctly detect the classification and
location information of targets in construction scenes; therefore, the effect of adding FPN in
the detection module was tested in this study.

As shown in Figure 8, the second column is the true value, which is the feature map
obtained from the original image after the grayscale comparison operation, and it is used
to highlight specific regions of the foreground targets of the image. Further, the green box
is the target with a smaller size. The third column is the convolutional heat map, which is
used to delineate the target regions. The last two columns are the feature visualizations
obtained by the two methods after channel-dimension averaging. Based on the results, the
images (e,j) obtained by our method are generally clearer than the images (d,i) without FPN.
In addition, both sets of feature maps contain targets of smaller size (red and yellow boxes),
where the red boxes are marked by the multi-scale target detection without an FPN, and
their response value is low when compared with the real value of the green boxes; that
is, there is a missed detection. It is evident from the yellow boxes that the response value
of the features is higher after the FPN is applied, and the human shape can be roughly
detected. It can be concluded that the CSIN model proposed in this study, which applies
an FPN for multi-scale target detection, is effective.

Original Image True Value Heat Map Without FPN CSIN (Ours) 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 8. Visualization of the convolutional feature map obtained by channel-dimension averaging.
(The sources of the identifiable images in Figure 5 are shown in the Supplementary Materials.)
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Comparison Results and Analysis of the Visual Relationship Detection Module

Visual relationship detection is a prerequisite for achieving deep perception and
understanding of construction scenes, and the degree of detection accuracy determines the
merit of the CSIN. Therefore, in this paper, four mainstream algorithms are selected for
visual relationship detection in the visual relationship extraction module for comparison
experiments. Among them, VRD [9] is one of the earliest algorithms used for visual
relationship detection and often appears as a comparison model; both Large-Scale [31] and
the proposed method adopt the semantic module and visual module for feature extraction
in model design; Motifs [26], Graph R-CNN [32], and the proposed method are all based on
the basic model of scene graph for visual relationship detection. So, these four algorithms
are selected for comprehensive comparison experiments. Their effectiveness can be assessed
based on two aspects: subject/object localization accuracy and predicate detection accuracy,
where subject/object localization focuses more on the target detection ability of the model,
whereas predicate detection focuses more on the relationships.

Table 6 lists the visual relation detection results of the different algorithms. In general,
the CSIN model in this study has better performance for the target detection of subjects
and objects; for predicate detection, the CSIN model is not significantly different from other
algorithms. Almost all of the models had the highest detection results for Recall@100.

Table 6. Comparison results with other visual relationship detection algorithms.

Subject Detection Object Detection Predicate Detection

Recall at (%) 20 50 100 20 50 100 20 50 100

Large-Scale 20.7 27.9 32.5 36.0 36.7 36.7 66.8 68.4 68.4

Motifs 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1

VRD - 0.3 0.5 - 11.8 14.1 - 27.9 35.0

Graph R-CNN - 28.5 35.9 - 29.6 31.6 - 54.2 59.1

CSIN (ours) 35.9 37.8 42.4 36.1 36.7 37.0 65.3 67.9 69.3

Specifically, the subject detection accuracy in Recall@100 reached 42.4%, which is at
least 6.5% or so higher than that of other algorithms. The object detection accuracy in
Recall@100 reached 37.0%, which was also slightly higher than those of the other detection
algorithms. However, the relationship detection was slightly lower than those of the other
algorithms. Specifically, the predicate detection accuracies of Recall@20 and Recall@50
are 65.3% and 67.9%, respectively, which are lower than the predicate detection accuracy
of the large-scale algorithm. This is because the large-scale algorithm is for the location
and relationship detection of larger size targets. What is more, the predicate detection in
this study does not show obvious superiority; this may be because bridge constructions
are characterized by complex scenes and ambiguous relationships between workers and
equipment, and it is relatively difficult to distinguish relationships. Subsequent experiments
could be further improved to address this problem.

In summary, the localization accuracy results for the subject and object show that
the use of an FPN can improve the detection accuracy of the target. The CSIN model
proposed in this study works well for relationship detection and can effectively infer scene
information during the construction process.

4. Discussion

In this part, we discuss three main points: robustness of scene identification rules,
stability of the CSIN model detection frame, and generalization capabilities of the
CSIN model.
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4.1. Robustness of Bridge Construction Scene Identification Rules

The bridge construction scene identification rules developed in this paper adopt the
idea of consistency matching. The logical relationship between construction personnel,
construction equipment, and construction materials in the construction scenes is considered,
which satisfies the needs of this paper to a certain extent. However, the lack of some
reasoning strategies, such as inductive reasoning [33] and deductive reasoning [34], makes
the constraint relationships among construction activities unable to be further refined
into rules. BIM technology is used to obtain construction information [35,36] and obtain
the constraint relationship between construction activities, so as to deduce the logical
sequence between construction activities, which can improve the robustness of the scene
identification rules to a certain extent.

4.2. Stability of the CSIN Model Detection Frame

In this paper, the CSIN model applies FPN for the target detection of construction per-
sonnel with high detection accuracy. The identity and location information of construction
personnel can be obtained accurately in many cases. However, when shadows appear in
the construction image, the accuracy of the CSIN model detection frame is affected to some
extent. As shown in Figure 6d, the worker identification frame in the lower-left corner only
detected the worker’s head and hands, which may be due to the fact that the worker’s legs
blended into the shadow. Since FPN cannot distinguish shadows and targets better, it will
affect the stability of the detection frame to a certain extent when shadows appear in the
construction image. To solve this problem, generative adversarial networks (GAN) [37] or
texture features of shadows in HSV space [38] for shadow suppression can be considered
to eliminate the interference of shadows on image targets.

4.3. Generalization Capabilities of the CSIN Model

The CSIN model proposed in this paper was experimented on with self-made datasets.
It has been verified that the model can complete target detection, visual relationship
detection, and output construction scene information as text, realizing the automation
and intelligence of identification in the key construction scenes on bridges. In the CSIN
model, CNN and DCR are used as the base networks for target detection and relationship
detection, respectively, which have been proved to have certain generalization abilities in
related literature [39,40]. In addition, the underlying features of scene identification rules in
this paper, such as color features, geometric features, and posture features, will not change
greatly with different scenes, so they are portable. Therefore, the CSIN model can be applied
to other types of construction and infrastructure projects, such as housing construction,
road construction, etc. However, in port and tunnel construction, its generalization ability
needs to be further verified due to the influence of datasets.

5. Conclusions

The construction process of highway bridges is tedious, and site environments are
complex; thus, the realization of bridge construction scene identification helps relevant
departments to carry out safety control. Therefore, based on the idea of visual relation-
ships, this paper proposes the identification method of key construction scenes on highway
bridges. This method can provide automated intelligent monitoring during the construc-
tion process and provide more applications for visual relationship detection in bridge
construction. Firstly, the characteristics of bridge construction are analyzed and five key
construction scenes are selected as research objects. Then, the scene identification rules are
formulated from the three aspects of construction personnel, construction equipment, and
construction materials. Following this, the CSIN model is built: FPN and color moments
are first introduced to obtain the image features of construction workers, and solve the
problem of missing and incorrect detection of target; then, through the division of subject–
predicate–object triplet and image-text coding, the semantic features and visual features of
construction scene can be obtained; finally, the integration features are matched with the
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scene identification rules for consistency, and the category information of the construction
scene is further obtained. Finally, the method in this paper is verified; the experimental
results show that compared with other algorithms, the CSIN model obtained better results,
especially on Recall@100.

Although the method in this paper has addressed the above problems, there are
still two limitations. One is that the method is only experimentally validated in five
key construction scenes, and research on other bridge construction scenes has not been
carried out. The other is that the method involves fewer large equipment and construction
materials, such as the lack of detection of large cranes, pile-driving machines, concrete,
long bars, and other targets. Therefore, for the construction monitoring of different bridge
types, such as girder bridges, arch bridges, rigid bridges, suspension bridges, cable-stayed
bridges, and combined system bridges, it is necessary to further increase the identifiable
elements in the construction scenes to enrich the bridge construction scene categories.

In our study, we found that the production of the dataset was time-consuming and
laborious. In future work, we will combine efficient methods such as crowdsourcing
labeling technology to produce targeted visual relationship detection datasets, so as to
improve work efficiency. In addition, we will further optimize the CSIN model, combined
with the relevant construction safety standards to realize the safety monitoring and safety
assessment of bridge construction based on the existing methods. Thus, we will form
a complete set of methods for intelligent monitoring and safety assessment of bridge
construction, and extend it to other construction scenes.
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Abstract: This paper proposes a novel method for construction component classification by designing
a feature-based deep learning network to tackle the automation problem in construction digitization.
Although scholars have proposed a variety of ways to achieve the use of deep learning to classify
point clouds, there are few practical engineering applications in the construction industry. However,
in the process of building digitization, the level of manual participation has significantly reduced
the efficiency of digitization and increased the application restrictions. To address this problem,
we propose a robust classification method using deep learning networks, which is combined with
traditional shape features for the point cloud of construction components. The proposed method
starts with local and global feature extraction, where global features processed by the neural network
and the traditional shape features are processed separately. Then, we generate a feature map and
perform deep convolution to achieve feature fusion. Finally, experiments are designed to prove the
efficiency of the proposed method based on the construction dataset we establish. This paper fills
in the lack of deep learning applications of point clouds in construction component classification.
Additionally, this paper provides a feasible solution to improve the construction digitization efficiency
and provides an available dataset for future work.

Keywords: deep learning; pipeline component extraction; point clouds; feature; CNN (convolutional
neural network)

1. Introduction

The 3D reconstruction models are gradually replacing 2D drawings for information
transmission and more in-depth processing to meet the demands of civil engineering
digitization, according to the research by Ma and Liu [1]. Among a variety of 3D information
data formats, the point cloud model is the research focus of many scholars. The 3D
point cloud data are widely used in the construction industry for model reconstruction,
geometry inspections and other applications, but there is still a research gap regarding the
practical applications [2]. In the early stage of point cloud data processing, scholars mainly
utilize traditional algorithms to deal with complex and irregular object reconstruction [3],
complicated scenes with repetitive objects [4] and the updating of as-designed BIM to as-
built BIM [5]. On the basis of shape extraction, some scholars further enriched the semantics
of point cloud data and deepened the relationship between BIM [6,7] and point clouds via
IFC (Industry Foundation Classes) extension [8]. This has had positive significance for data
management in the field of civil engineering, and has greatly promoted the informatization
process in the construction industry. However, such studies mainly focus on indoor scenes
and generally require manual participation, which leads to a low level of automation and
compatibility [9]. Thus, some scholars have turned to deep learning for resolution. With the
maturity of deep learning algorithms, more network structure designs for the deep learning
of point clouds have emerged, the feasibility of applying deep networks to point cloud
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learning has been verified and the design theory has been continuously improved [10]. The
application of deep learning in civil engineering information management has developed
from image damage detection [11] to 3D reconstruction segmentation [12]. In order to
use deep learning to enhance the efficiency of engineering information acquisition, some
scholars directly apply deep learning networks on IFC models [13] or use deep learning to
assist in removing unwanted information [14]. Overall, most scholars focus their attention
on deep learning to help in the acquisition and processing of 3D point clouds, so as to
reduce the manual participation and achieve automation. This approach would be for
the great promotion of efficient digital management, especially for complicated building
scenarios such as MEP (Mechanical, Electrical and Plumbing) systems.

With the development of 3D reconstruction technology, the accuracy of the obtained
data is gradually improved. At this time, the requirements for the accuracy and flexibility
of the model become more stringent. In the realization of as-built BIM from point clouds,
the extraction of building components plays a vital role, among which pipeline component
extraction is an important task. The digitization of existing buildings can be completed by
extracting and identifying point clouds, and then the management of important building
components, such as MEP systems, can be completed. In the construction industry, the
application of point cloud data in information sharing platforms is synchronized with the
development of point cloud data processing methods [15]. To efficiently use point clouds,
scholars have paid attention to semantic recognition, which is an essential step to identify
the part that a point cloud belongs to. In reverse engineering, many algorithms are used in
the mesh and point clouds for labeling, such as randomized cuts for the mesh [16], mesh
labeling via CRF [17] and the octree-based method for point cloud segmentation [18]. These
algorithms are designed using the geometry features and can work for certain datasets,
but it is difficult for them to maintain high accuracy in various datasets. To address this
problem, the concepts and structures of deep learning are introduced to design a self-
learning algorithm for mesh labeling [19], and we further turn to point cloud labeling [20]
due to the flexibility and integrity of the point cloud approach.

However, the currently proposed algorithms experiment with repetitive and limited
datasets, which leads to difficulties for actual applications in engineering practice, with
even fewer applications in MEP systems [9]. Among the datasets used by these algorithms,
one part of the datasets is composed of small-volume point clouds generated by CAD
models which have little noise interference, such as ModelNet40 [21], while the other part
of the datasets is designed for scene segmentation and focuses on identifying ceilings,
tables and chairs in indoor rooms, such as the Stanford 3D semantic parsing dataset [22];
or trees, roads and buildings in outdoor spaces, such as Semantic3D.net [23]. In addition
to the problems with the datasets used for training, the practical engineering application
of these algorithms is also restricted by the environment and other conditions. The point
clouds obtained on site are incomplete because of interference. At the same time, they
are affected by the speed of the data collection, meaning it is difficult to obtain complete
attribute data, such as RGB (Red, Green, Blue) data.

To overcome the above problems, it is necessary to adjust the structure design of the
deep learning algorithms to adapt to the needs of engineering applications, especially for
MEP systems. Thus, based on previous studies, this paper proposes a new deep network
structure and builds a dataset that emphasizes engineering scenarios for learning and
training. The key to our approach is the surrounding description of a single point. Through
the usage of the SHOT (signature of histograms of orientations) and spin image approaches,
the attributes of a single point are expanded to fill the gaps in data collection.

The key contributions of our work are as follows: (1) we design a novel neural network
architecture suitable for an imperfect point cloud collected from the construction project;
(2) we introduce the concepts of SHOT and spin image in point cloud deep learning and
improve the performance of point cloud labeling by depicting the distribution of points;
(3) we establish a point cloud deep learning dataset for engineering application scenarios
and pipeline component extraction.
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The rest of this paper is organized as follows. Section 2 reviews related work and
Section 3 introduces the overall methodology used for the point cloud labeling. In Section 4,
the architecture of the network is shown to express how it works. Then, we demonstrate
the performance in the experiments in Section 5 with pipelines as examples. Finally, the
article is concluded in Section 6.

2. Literature Review

2.1. Information Extraction and 3D Reconstruction of Pipeline Components

As a more efficient data acquisition method, non-destructive tests (NDTs) replace
traditional manual measurement methods in many application scenarios [24]. Among the
many NDT methods, oblique photography, ultrasonic detection and laser scanning are the
most representative ones. As a large-scale data collection method, oblique photography
mainly uses drones for outdoor data collection. The subsequent data processing tends to
distinguish buildings from the environment [25] or extract building outlines [26]. Ultrasonic
detection is mainly used for internal damage detection, such as crack detection [27] and
weld detection [28], and no reconstruction model is generated during the detection process.
Compared with the first two types of NDTs, laser scanning is more suitable for construction
component reconstruction in the field of civil engineering due to its accuracy and scanning
range. Different types of laser scanning equipment can be applied for overall scene scanning
or partial scanning to obtain stable and accurate point clouds. Using these point clouds,
3D models of buildings or components can be reconstructed to conduct measurement [29],
recognition [30] and other data processing operations.

Processed point clouds are used in the field of civil engineering for quality and safety
management during the construction phase and in building information management,
which is known as BIM. Containing high-precision three-dimensional data, the point cloud
can describe the settlement state of the construction site and the deformation state of
the construction components, which is of great benefit for the collection of data for MEP
systems from complicate pipelines. Some scholars have proposed algorithms, including the
convex hull [31] and improved RANSAC algorithms [32], to extract primitive geometric
information form a construction site or building for further as-built BIM applications.

As an important building information exchange technology, BIM requires more data
to show a complete model with rich semantics to support the information required from
design to operation and maintenance phases while gradually improving. With the expan-
sion of the application range and the increase in importance, there are stricter requirements
for the point cloud data used in the BIM platform [33]. In the process of using BIM for
digital construction, pipeline management methods have also been developed, since the
pipeline occupies an important position during maintenance. In buildings that use BIM
technology for forward design, the management of pipelines can achieve efficient and
diversified purposes. In addition to conventional pipeline information management and
collision detection, some scholars have realized the prediction of pipeline corrosion on the
basis of BIM. Tsai et al. [34] utilized the semantic information management function to store
pipeline sensor information and to monitor and visualize the maintenance status. Under
the premise of complete pipeline information in BIM, many technologies, e.g., IoT and
RFID, can be used to assist in pipeline management [35,36]. Although BIM technology has
been widely used in the construction industry, a large number of existing buildings need
to be processed via as-built BIM technology to harness its superior functions for efficient
management. For the realization of as-built BIM for pipelines, there has been continuous
research for the purpose of reducing the manual participation proportion during processing.
Patil et al. [37] paid attention to the Hough transform for the automatic detection of cylinder
parameters in point clouds. Tran et al. [38] used traditional shape features for cylinder
fitting to complete the pipeline extraction in a similar way.

Among these works for MEP systems and pipeline management, these proposed
algorithms are usually used in ideal conditions, while the point clouds collected in actual
engineering scenes, especially in complex MEP systems, are often noisy and incomplete.
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The existing research has explored a feasible workflow to use the point clouds for building
information acquisition and management. However, these traditional point cloud process-
ing methods require a lot of manual participation and are limited to a few fixed models,
leading to poor efficiency and compatibility when dealing with the pipelines.

2.2. Deep Learning in Point Cloud

As a data format that is widely used in 3D reconstruction, the point cloud has always
been a research hotspot in graphics processing and computer vision. Recognizing the se-
mantic information of the point cloud as an important part of its use has been a continuous
concern for scholars [39]. Before deep learning gained widespread attention, graphical
analyses of point clouds were already carried out. The point cloud data features, including
spin image [40] and SHOT [41] features, are calculated to classify different parts to achieve
segmentation. Traditional classification algorithms such as the principal component anal-
ysis [42] are also used to assist in point cloud processing. Although these characteristics
can help distinguish the geometric features of a point cloud reconstruction model, they are
too rigid to lose their self-learning ability and strong adaptability. The emergence of deep
learning algorithms fills the gaps in this research field.

Deep learning for point clouds mainly focuses on the research fields of recognition
and classification and is applied to road condition recognition for automatic driving [43],
large-scale scene object classification [44] and indoor scene recognition [23]. According
to the methods of deep learning data recognition, they can be divided into three types in
general: Pointnet, Voxelnet and feature-based net.

Pointnet proposed by Qi et al. is an important algorithm in the field of point cloud
deep learning [20]. Pointnet is highly efficient and robust and can deal with object classi-
fication, part segmentation and scene semantic parsing. Since Qi et al. provided both an
authoritative theoretical analysis and experimental evaluation, many follow-up works aim-
ing to improve the network structure have been based on Pointnet, such as Pointnet++ [10],
Foldingnet [45] and dynamic graph CNN [46]. The novel deep net architecture proposed
as Pointnet, which focuses on processing unordered 3D points, has proved its stability and
efficiency via experiments. Compared with other algorithms, this algorithm is character-
ized by the extraction and processing of the main properties of a point cloud, which are
the disorder, interactions among points and invariance under transformations. The core
network structures of Pointnet are T-net, which is designed to strengthen the relevance of
points in the early stage of data training, and the max pool layer, which is used for dealing
with unordered points and keeping the invariance under transformations. Additionally, on
the basis of a classification network, Qi et al. [20] further expanded the network structure
to implement part and semantic segmentation by combining point features and global
features. Intuitive explanations were developed for the robust and effective performance
of Pointnet in their paper, and more studies are following the steps of Pointnet to pursue
better performance and more flexible use in more fields.

However, because of the training samples used by Pointnet, which are relatively simple
and small in size, and the lack of attention to local features, it is difficult to implement
Pointnet in large-scale continuous scenes, especially construction engineering scenes.

Differing from Pointnet, which uses a small point cloud as the input, Voxelnet empha-
size points connections. This algorithm is characterized in the early-stage data by voxel
mark processing. Point clouds are allocated in voxels and form input data according to
the distribution in the voxel [47] or voxel labels [48]. Voxelnet can achieve precise con-
trol because of the rasterization of point clouds and can handle variable point clouds in
more flexible ways in different usage scenarios. Although forming a voxel grid in the
most straight-forward way fully utilizes ConvNet, which was originally designed for 2D
imaging by changing the input data, it also leads to many disadvantages. Since VoxelNet
is mainly used in large-scale scenarios, it is often difficult to balance the workload and
algorithm accuracy, and the stability is greatly affected by the voxels. Although Kd-net was
proposed to further optimize the low efficiency of the voxels, it is still not a fundamental
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solution to the application of deep learning on 3D data based on the characteristics of the
point cloud [49].

In addition to the above two types of deep learning networks, some scholars start
from combining deep learning and traditional shape features by extracting features in
advance and then using them as the inputs of networks [19,50]. These types of networks
rely on the study foundation of traditional algorithms to provide reliable parameters for
subsequent learning, balancing the robustness and flexibility. Nevertheless, there have
been cases where traditional shape features are overused. For example, Guo et al. used
more than 7 features in their paper, which led to excessive reliance on the traditional shape
features and weakness of the learning network, together with increasing the workload at
the preprocessing stage. Although these networks can provide stable performance, they
have not brought about obvious improvements compared to traditional algorithms.

2.3. Deep Learning in Construction Industry

The introduction of digital technology such as deep learning has accelerated the
construction digitization process and provided more efficient tools to process engineering
data. A recent study [51] showed that deep learning technologies have been applied for
prevalent construction challenges such as site management, budget and energy control
and building quality monitoring. In terms of information management and prediction,
Sun et al. [52] used the long–short-term memory (LSTM) neural network in deep learning
for exchange rate forecasting and Ziari et al. [53] made full use of the deep learning
network of natural language processing (NLP) to assist highway agencies in decision-
making procedures, indicating that deep learning is gradually shifting from theory to
practice and becoming a substitute for traditional algorithms in some empirical research
fields. Additionally, during the process of image recognition, since ImageNet [54], which
is used for large-scale image recognition, was proposed in 2012, deep-learning-related
research has received more attention and there has been wide adoption of similar deep
learning structures, e.g., convolutional neural networks. In the construction industry,
the numerical prediction and image recognition functions of deep learning algorithms
are mainly used to solve practical engineering problems. For instance, Deng et al. [55]
and Nguyen et al. [56] separately proposed CNN model and DNN model to predict the
strength of concrete for monitoring and design. Rahman et al. [57] designed an RNN
(recurrent neural network) model for building energy prediction. Rafiei and Adeli [58]
presented a novel machine learning model for estimating construction costs by combining
the DBM-SoftMax (deep Boltzmann machine) layer and BPNN (back-propagation neural
network). For image recognition functions, scholars tend to invest more in research on
on-site worker behavior and construction quality and safety monitoring. For example,
Fang et al. [59,60] proposed a CNN model to check workers’ posture and helmet-wearing
from videos. Kolar et al. [61] presented a CNN-based model to detect guardrails in 2D
images for safety improvements. In researching applications related to quality issues,
scholars have focused more on crack detection. Similar CNN-based approaches have
been adopted for crack detection, where scholars have made efforts towards accuracy and
robustness improvements [62,63].

Although scholars have done a lot of work by combining deep learning approaches
for the digitalization of the construction industry, there has been very little work related
to 3D scenes and BIM, despite the model recognition work carried out by Wang et al. in a
BIM environment [64]. The adoption of BIM models has brought significant improvements
to construction digitization over the years [65]; scholars are also striving to achieve BIM
through the use of more advanced equipment and algorithms [66] but there is still a lot of
work to be done to achieve efficiency improvements, especially for as-built BIM. At present,
the achievement of as-built BIM requires a lot of human participation to manually label
construction components, which can be automated by applying deep learning algorithms
for point clouds. However, the datasets used in the related algorithms, such as the ShapeNet
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dataset [67], ModelNet40 dataset [21] and Stanford large-scale indoor space dataset [22],
do not match the engineering application scenarios.

3. Methodology

In this paper, we present a point cloud classification method by using deep CNNs,
as shown in Figure 1. First, the original data are processed by the preprocessing network
to obtain the training features. The original input data are the global coordinate values of
the point cloud. Inspired by PointNet, the network structure of this paper also adopts a
combination of global features and local features for training, whereby the global features
are formed by the global coordinates of a single point, which are entered into UnitNet,
then according to the traditional algorithm the spin image, SHOT and normal of each
point are calculated as local features and input into FeatureNet for training. Differing from
PointNet’s processing of global and local features, the different kinds of features in this
paper are calculated separately in the early stage and trained by independent networks,
which increases the irrelevance of the data. After the two kinds of features are trained on
their own networks, 36-dimensional and 64-dimensional data are output, from which the
new input data are merged as 100-dimensional data. Second, deep CNNs are built for
feature extraction and final classification. Before being sent to FinalNet for training, a 2D
feature matrix (n × 10 × 10) is transformed from processed features in the form of feature
maps to facilitate subsequent feature extraction. Finally, the deep convolutional networks
and the pooling layers are combined for training and learning, and two fully connected
layers are applied in the end to obtain the classification results.

Figure 1. Network resolution.

The key parts of this paper are the preprocessing networks used for the extraction of
local and global features by Unitnet and FeatureNet in the early stage, and the use of a
deep convolutional network in FinalNet to weight the merged features for recognition in
the later stage.

4. Network Architecture

4.1. Preprocessing Networks

In this paper, the network is used to classify the large-scene point clouds, especially
the one that is collected at the construction site. Due to the different application scenarios,
the data input to the neural network have the following characteristics: (1) Isolation of
the input data. The point cloud is disordered, and in the recognition of large scenes, each
point is input into the network separately, which highlights the weak connection and
poor continuity between the data. (2) The particularity of the application scenario. Many
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segmentation and recognition algorithms for large scenes are based on indoor scenes, and
many elements such as chairs can be obtained from existing model libraries and trained in
advance. For a construction site, there are few large-scale point cloud datapoints available
for use. (3) The lack of data features. Although the current laser scanning technology
has reached a high level of accuracy and good RGB color rendering performance by
taking photos for scanning, in order to ensure versatility and avoid interference during
color collection under construction conditions, the original data obtained often only have
coordinate values.

In order to solve the above problems, this paper sets up UnitNet and FeatureNet for
data preprocessing for global features and local features.

4.1.1. Global Feature Extraction

UnitNet is designed for global coordinate transformation, where each point is input
as a separate unit with normalized coordinate values as input channels. The network
architecture is shown in Figure 2. The input unit is trained by a one-kernel convolutional
network with 16 channels and 36 channels. Simultaneously, the BN (batch normalization)
layer and ReLU layer are applied for parameter correction and activation during the
training process.

Figure 2. Architecture of UnitNet.

It can be seen from the network structure that the shape of the input unit is not changed,
only the number of channels is gradually increased. In this way, the coordinate values
of the input data can be further input into the subsequent network after transformation,
while retaining the global characteristics of the original data. In this process, the coordinate
function of the point is strengthened.

4.1.2. Local Feature Extraction

The raw data from the point cloud have strong independence, which makes it difficult
to find the connections with the surrounding points when only using the coordinate value.
This disadvantage can be overcome by traditional algorithms such as SHOT and spin image
algorithms through the description of local points.

In this paper, SHOT (signature of histograms of orientations) and spin image are im-
portant features used as input data to train neural networks, which are originally designed
for surface matching. Both features can be used to describe the distribution of surrounding
points, whereby SHOT focuses on the locations of surrounding points and spin image
focuses on the distribution density of the points.

There are two reasons for using SHOT and spin image as input data for this convolu-
tional neural network: (1) Each point in the point cloud exists independently, and its own
attributes need to be obtained through subsequent processing, except for the coordinates
and RGB color that are obtained. SHOT and spin image can increase the correlation between
points and attach local attributes to independent single points. (2) The CNN framework
requires rich data for training and judgment, so algorithms that form a large amount of
features are needed.

SHOT

SHOT (signature of histograms of orientations) was proposed as a local reference
system for surface matching [41]. SHOT, which is also as a local 3D descriptor that has been
used in many scenarios, balances the signature and histogram to maintain the descriptive-
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ness as well as the robustness. After the concept of SHOT was put forward, some scholars
further improved it with global structure frames [68] or textures [69]. In this paper, a local
reference frame is first established to determine the locations of neighbor points, as shown
in Figure 3. In the local reference frame, the spherical space is divided into 32 spatial bins,
resulting from 8 latitude divisions (only 4 are shown in Figure 3), 2 longitude divisions and
2 radius divisions. According to the normal of the point in every spatial bin, nvi, and the
normal of the feature point, np, the cosine of the corresponding angle, θi, is calculated by
cos θi = np–nvi. Then, according to the calculated cosine value, 11-level histogram statistics
are performed on the number of points falling into each spatial bin. Finally, after the data
are normalized, a 352-dimensional (8 × 2 × 2 × 11) feature is generated as an array to input
to the neural network.

Figure 3. Generation principle of SHOT.

Spin Image

Spin image was proposed by Johnson et al. in 1999 for efficient object recognition
and surface matching in 3D scenes. [40] It was first used in 3D meshes. Subsequently,
the related algorithm further optimized the spin image approach [70,71]. With the rise
of laser scanning technology, point clouds are gradually displayed as 3D models in more
application scenarios. Thus, there are increasing studies exploring the application of the
spin image approach in point clouds, such as for classification [72] and registration [73]. In
addition to the traditional application technology route, a spin image also provides usable
data features for deep learning in point cloud processing [19].

The spin image approach was proposed to perform surface matching by depicting the
local distribution of other points around the feature point. As shown in Figure 4, first an
oriented point with the surface normal is selected to define a coordinate system, where α is
the radial coordinate and β is the elevation coordinate. Then, a 2D accumulator indexed by
α and β is rotated, taking the normal as the axis. As the accumulator rotates, the number of
points falling into the bin indexed by (α, β) gradually increases, forming the spin image,
which can be described by Equation (1), where SO(x) : R3 → R2 , p is the reference point, n
is normal vector of p and x is the neighbor point.

SO(x) → (α, β) =

(√
‖x − p‖2 − (n·(x − p))2, n·(x − p)

)
(1)
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Figure 4. Generation principle of the spin image approach.

Finally, an intensity-related histogram is output as an array to compose the input data
of the neural network.

FeatureNet

The output of the above algorithms forms a sequence of 508 elements, of which 352
are from SHOT, 153 are from the spin image and 3 are from the normal. Most of the
elements are obtained by establishing a local spatial coordinate system and describing the
surrounding points in blocks, which also leads to two problems: (1) Excessive data volume.
The method of dividing the space into blocks and the output form of the histogram results
in a large amount of local feature data, which is difficult to process. (2) The existence of
invalid data. Since the points are not evenly distributed in all spaces, there are lots of
zero-value data in the sequence, together with invalid data caused by noise.

The large data volume is often processed using a PCA algorithm for dimensionality
reduction, as shown in other studies, but this issue cannot be solved in this paper due
to the linearly independence of the feature data. Therefore, this paper proposes the use
of FeatureNet for effective feature extraction to reduce the amount of data and eliminate
invalid data. The structure of FeatureNet is shown in Figure 5.

Figure 5. The FeatureNet structure proposed in this study.

In FeatureNet, two one-dimensional convolutional layers and a pooling layer are
used to assign weights to each feature element to eliminate invalid data and zero-valued
data, and then two fully connected layers are applied to perform dimensional compres-
sion to achieve the purpose of data cleaning. Through the processing of FeatureNet, 64-
dimensional data are finally output, effectively compressing the dimensions of
feature data.

4.2. FinalNet

FinalNet is the main structure that implements feature extraction in the deep con-
volutional networks. As shown in Figure 1, considering the deeper network structure
leads to better performance [74] and improves the response speed of the network structure.
FinalNet uses 6 convolutional layers to perform the feature extraction, 3 pooling layers to
reduce the dimensions and 2 fully connected layers to make the final judgement.

141



Buildings 2022, 12, 968

FinalNet directly processes the feature map size formed by reshaping the sequence
spliced from the local feature and global feature. Figure 6 shows the details for composing
these two features. There is a weak connection between the two different features in the
initial feature map formed via concatenation and deformation in the first stage. After
processing the convolutional layer, connections between different feature elements are
established through convolutional kernels.

Figure 6. Feature combination process in FinalNet.

The merging result after the first convolution phase can be seen in Figure 6. Subse-
quently, with the deepening of the convolutional layers and the participation of the pooling
layers, a fully integrated feature sequence is formed. Finally, the fully connected layers are
applied to form non-linear combination and output the result.

5. Experiment

This paper focuses on the object classification of construction components, especially
the components that require maintenance management in complex construction scenes.
The existing datasets, such as ModelNet40 (Wu et al., 2015), which has 12,311 CAD models
from 40 man-made object categories, and ShapeNet (Yi et al., 2016), which is normally
used for indoor scenes in segmented learning, e.g., for tables and chairs, cannot meet the
need for the classification of construction components in the field of civil engineering.
Additionally, the point clouds generated by CAD models cannot reflect the actual state of
the point clouds obtained via laser scanning due to the environmental interference and
blind spots. Thus, this paper uses a self-built dataset via the laser scanning and labeling of
the appropriate scenes, since there are few datasets that can be directly used for the related
training and learning processes.

In this paper, the classification of pipelines, which are difficult to manage in the
construction process and complicate the maintenance process, is shown as an example to
prove the validity of the proposed network. The whole scene with the format of the point
cloud and the pipelines that are manually extracted, labeled and used for training and
learning can be seen in Figure 7.

Figure 7. The point cloud dataset. (a) is the engineering scene dataset and (b) is showing
extracted pipelines.
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5.1. Architecture Design Validation

In this section, a control experiment is designed for the validation of the networks this
paper has proposed. The networks that are trained and perform the pipeline classification in
the control experiment are inspired by feature-based DNNs (Y. Fang et al., 2015; Guo et al.,
2015), where traditional features are extracted and sent into deep networks directly. In
some simple application scenarios (such as image recognition), a network that has enough
neurons can achieve good results, even without an effective structural design. However,
compared with ordered and feature-rich datasets, such as image datasets, the raw data
from point clouds, which are unordered, lack features and are weakly connected with each
other, meaning they have higher requirements. Thus, a control experiment is designed here
for the validation of UnitNet and FeatureNet, whereby spin image and SHOT features are
combined and sent to a deep convolution network directly after the PCA for dimensionality
reduction, as shown in Figure 8. This control experiment used for comparison contains 11
convolutional layers, together with BN, ReLU and 2 pooling layers.

Figure 8. Network structure of the control experiment.

The results of the control experiment demonstrate the positive effects of the application
of UnitNet and FeatureNet, as listed in Table 1. The train loss and train accuracy of the
control experiment are better than the proposed method but lead to an overfitting result, as
reflected by the test accuracy comparison.

Table 1. The results of the pipeline classification experiments.

Train Loss Train Accuracy Test Accuracy

Control Experiment 0.0036 99.87% 82.37%
Proposed method 0.0054 99.75% 94.62%

5.2. Results of the Dataset and Comparison

Due to the dataset used and the specificity in the engineering of the classification
object, there are few experimental comparison datasets available for other algorithms. The
experimental results are mainly presented via a large-scale scene and a comparison with
the control experiment. The results listed in Table 2 show that our method, which uses
UnitNet and FeatureNet for structural improvement, significantly outperforms the deep
network in the control experiment.
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Table 2. Classification results for a large-scale dataset.

Dataset Mean Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Points number 191,404 696,406 1,419,606 718,361 411,160 296,335 521,597 1,203,240 732,260
Control

Experiment 84.06% 80.29% 88.07% 91.55% 92.73% 82.98% 86.10% 92.78% 78.59% 63.45%

Proposed method 98.03% 97.24% 97.50% 94.93% 98.91% 97.80% 98.17% 99.59% 98.54% 99.63%

The qualitative visible results are shown in Figure 9. Here, a comparison of the
classification results of the two algorithms is shown for datasets 2 and 5. It can be seen
more intuitively that our method can effectively avoid misjudgments by strengthening the
connections between local features and global features to achieve better classification.

Figure 9. Visible result comparison for the intercepted datasets. (a) shows the result comparison on
dataset 2 and (b) shows the result comparison on dataset 5.

According to Figure 9, the results show that the proposed method can significantly
focus more on the pipeline components. This could be the result of applying UnitNet and
FeatureNet to process features separately and the better combination of local features and
global features carried out in FinalNet. The mean accuracy of the proposed method is over
98% and the visible results also indicate the effectiveness of the pipeline extraction process.
All of these results of the experiments prove that the proposed method is workable and
could be further studied and applied for MEP systems.

6. Conclusions and Discussion

In this work, we proposed a deep neural network that is designed especially for com-
plex construction industry applications and demonstrated the effectiveness of our method.
Firstly, we built a dataset based on the engineering situation of the construction industry.
Then, we established a neural network structure in which local features and global features
are processed separately in UnitNet and FeatureNet. We made full use of traditional shape
features to enrich the features of simple point clouds and avoid excessive dependence on
them through the structural design of the neural networks. Further, a feature map was
proposed in FinalNet for feature fusion. Finally, by establishing a control experiment and
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comparing the results, the method proposed in this paper offers an effective and feasible
solution for deep learning applications for classification in the construction industry.

This study makes three main contributions to the knowledge and engineering infor-
matics. Firstly, we have optimized the combination of traditional shape features and deep
learning networks, which improves the accuracy of the engineering information collected
for 3D scenes and the feasibility of this method, as proven via experiments. Secondly,
we have established a targeted dataset for the actual situation in construction and engi-
neering, which provides a data basis for related research in the construction field in the
future and expands the breadth of engineering information in three-dimensional space.
Thirdly, we have provided efficient solutions to replace manual labor in the processes
of 3D reconstruction and as-built BIM in the construction industry, since they are vital
parts of the engineering information digitization process. Among these contributions, the
most important is that this study provides a feasible and effective method of MEP system
reconstruction and digitalization, and this method could be further studied for application
in other construction fields.

Last but not least, although the proposed method achieved good performance in
the experiment, there are still some problems to cover in future studies. Because the
extraction of local features is based on the description of the neighboring points, the
classification accuracy of the boundary part of the input data is relatively lower than other
parts. Additionally, although this paper has initially established a dataset for construction
engineering, there are comparatively few categories available. Regarding the experiments,
the design of this work could also be improved for the simplification of input data, and
the binary classification should be further extended to multiple classifications of other
MEP components.
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Abstract: As a multi-function method, Building Information Modeling (BIM) can assist construction
organizations in improving their project’s quality, optimize collaboration efficiency, and reduce
construction periods and expenditure. Given the distinguished contributions of BIM utilization, there
is a trend that BIM has significant potential to be utilized in the construction phase of green buildings.
Compared with traditional buildings, green buildings have more stringent requirements, including
environmental protection, saving energy, and residents’ comfort. Although BIM is deemed an effective
method to achieve the abovementioned requirements in the construction process of green buildings,
there are few systematic reviews that explore the capabilities of BIM in the construction phase of
green buildings. This has hindered the utilization of BIM in the construction of green buildings. To
bridge this research gap and review the latest BIM capabilities, this study was developed to perform
a systematic review of the BIM capabilities in the construction phase of green buildings. In this
systematic review, the PRISMA protocol has been used as the primary procedure for article screening
and review. The entire systematic review was performed from January 2022 to April 2022. In this
process, 165 articles were included, reviewed, and discussed. Web of Science (WoS) and Scopus were
adopted as the databases. Through this systematic review, it can be identified that BIM capabilities
have significant advantages in project quality improvement, lifecycle data storage and management,
collaboration optimization, planning, and schedule management optimization in the construction
phase of green buildings. Through the discussion, it can be concluded that BIM utilization can
be adopted from the pre-construction phase to the post-construction stage in the green building
construction process. Besides these, the barriers to BIM utilization in the green building construction
phase are also revealed in the discussion section, including the non-uniform data format, insufficient
interactivity, ambiguous ownership, insufficient BIM training, and hesitation toward BIM adoption.
Moreover, the challenges and future directions of BIM utilization in green building construction are
identified. The findings of this study can facilitate construction personnel to be acquainted with BIM
capabilities in the construction of green buildings to promote the utilization and optimization of BIM
capabilities in the green building construction process.

Keywords: building information modeling; information technology; green building; sustainable
building; construction

1. Introduction

As a multi-function method, Building Information Modeling (BIM) makes a significant
contribution to the Architectural Engineering and Construction (AEC) industry. According
to the British Standards Institution [1], BIM uses shared digital representations of building
assets to promote the design, construction, and operational process and form a reliable basis
for decision making. It is the process of generating and managing data about projects from
the pre-construction phase to the post-construction phase [2]. In this process, the BIM that
is three-dimensional, used in real time, and dynamic is adopted to improve the productivity
and quality of projects in their lifecycle [2]. Despite no uniform definition of BIM across
different countries and generations, there is a consensus in the AEC industry that BIM

Buildings 2022, 12, 1205. https://doi.org/10.3390/buildings12081205 https://www.mdpi.com/journal/buildings
149



Buildings 2022, 12, 1205

is not just a tool and software installed on a computer [3]; rather, it is a combination of
software and process [3]. In summary, BIM is the multiple function method that integrates
business process, digital representation, organization, and control of the process. It can
provide three-dimensional (3D) modeling of the project, manage the project schedule
throughout the whole lifecycle, provide a communication platform for all stakeholders,
estimate and calculate project costs, detect clashes, and allow stakeholders to inspect and
manage buildings throughout their building lifecycle [4].

As an effective information technology method in the AEC industry, BIM can provide
a significant contribution to the construction of green buildings [5,6]. Green buildings are
also known as healthy buildings. They are the buildings that can prompt positive influence
and reduce the negative impact on the natural environment in the lifecycle of assets [7].
According to the Evaluation Standard for Green Building [8], green buildings contain one
or more of the following features and standards:

1. Efficient utilization of resources and energy.
2. Utilization of renewable energy, such as wind and geothermal energy.
3. Adoption of pollution- and waste-reduction measures.
4. Utilization of non-toxic, ethical, sustainable, recycled, and re-used materials.
5. Quality indoor environment and comfortable residential experience.
6. Suitable for the local environment and climate.

Given the strict standards and requirements of green buildings, it is difficult for con-
struction organizations to achieve the green buildings’ requirements through traditional
construction methods [9,10]. To overcome the obstacles of the conventional construction
process, an increasing number of AEC participants recommended that BIM should be
integrated into the construction of green buildings [4,11,12]. As an effective information
technology tool, BIM was deemed the efficient solution to assist AEC corporates in overcom-
ing the barriers in the construction process of green buildings [3,4,11–14]. Ghaffarianhoseini
et al. [5] comprehensively summarized the benefits of BIM application: “these benefits
range from its technical superiority, interoperability capabilities, early building information
capture, use throughout the building lifecycle, integrated procurement, improved cost con-
trol mechanisms, reduced conflict and project team benefits.” Moreover, BIM is the essential
method for implementing full automation of information integration, collaboration and
intellectual property issues, multi-party involvement, and collaboration [15].

Although the application of BIM in the AEC industry has had tremendous positive
influences on the technology involved to provide effective and optimal parameters to
facilitate users to achieve project requirements, the integration of BIM and green buildings
in construction activities is still deficient [9,16–18]. The major hindrance to BIM utilization
in green building construction was the unfamiliarity with the BIM capabilities of the
construction organizations [19–23]. According to the statistics of Akhmetzhanova et al. [24]
and Tatygulov et al. [25], 44% of respondents refused to adopt BIM because they were
unfamiliar with BIM functions and had not received the appropriate training. Given the
abovementioned content, it can be concluded that construction personnel generally suffer
from a lack of familiarity with BIM within the AEC industry. To enhance familiarity with
BIM capabilities that can be utilized in the green building construction process, this study
was developed to perform a systematic review of BIM capabilities in the construction phase
of green buildings.

Moreover, there are a few review articles that reviewed the BIM application in the
construction phase of green buildings [3,26–29]. However, most of these review articles
did not utilize a systematic review method in their research. According to Lu et al. [4],
most reviews of BIM utilization in the construction phase are conducted by traditional and
bibliometric review. Most traditional reviews lack the explicit retrieve and screen protocol
of the literature in their studies [30,31]. Thus, the article-screening processes in traditional
reviews are usually not transparent enough for the audience [31]. Moreover, no fixed and
formal article search process guidance is identified in the traditional review, which has led
to confusion in the article selection process in the traditional review to some extent [32,33].
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From the perspective of a bibliometric review, this review is conducted through the quan-
titative analysis of bibliographic material (data) [34]. Although the bibliometric review
can perform a more quantitative description and discussion of the research area, it has
insufficient qualitative exploration and analysis of the particular study in this research [35].
Compared with the abovementioned review methods, the systematic review can provide a
complete summary of the current literature relevant to the research questions and develop
a reliable evaluation of future development directions [36,37]. Moreover, BIM software
is evolving rapidly, and BIM features are changing and iterating continually. To fill the
research gap of the insufficient systematic review of the BIM capabilities in green building
construction, it is necessary to perform a contemporary systematic literature review to
retrieve, summarize, discuss, and analyze the latest BIM capabilities that can be utilized
during the construction stage of green buildings.

Given the abovementioned background content, this study was developed with the
aim of performing a systematic literature review on BIM capabilities that can be utilized
during the construction stage of green buildings. To achieve this aim, three objectives were
developed:

1. Identify the BIM capabilities that can be utilized in the construction of green buildings.
2. Discuss and analyze the methods that BIM capabilities performed in green building

construction.
3. Summarize the advantages, challenges, and future direction of BIM utilization in the

construction of green buildings.

This study consists of the following sections. The introduction is presented in Section 1.
The research methodology is illustrated in Section 2, in which the process of article retrieval
and screening is demonstrated. Moreover, the search string and the inclusion and exclusion
criteria for the study are also presented in Section 2. The results of the systematic review
are shown in Section 3. Here, the reviewed BIM capabilities are categorized into four
categories, including project quality improvement, lifecycle data storage and management,
collaboration optimization, and planning and schedule management optimization. More-
over, the utilization methods of these BIM capabilities in green building construction are
reviewed in Section 3. The discussion and analysis are conducted in Section 4, in which the
authors discuss and analyze the BIM capabilities from the pre-construction phase to the
post-construction phase of green buildings. Besides these, the future direction, advantages,
and challenges of BIM utilization in green building construction are provided in Section 4.
Section 5 is the conclusion, and also discusses the contributions and limitations of this study.

2. Research Methodology

This study aimed to perform a systematic literature review on BIM capabilities that
can be utilized during the construction stage of green buildings. Given the precise scientific
design insisted upon in the systematic review process, it can assist researchers in mitigating
biases and random errors in the review process [38]. Moreover, a systematic review can
facilitate authors to become familiar with the primary knowledge retrieved in the screened
articles, and develop the research model through a robust approach, to explore the future
research directions more precisely [39–41].

To achieve the abovementioned aim, the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) model [42] was used to conduct the systematic
review. In this study, the PRISMA was conducted through four phases, as per the systematic
literature review studies by Cho et al. [43] and Lee et al. [40]:

1. Determine the search database and keywords.
2. Develop the search strings based on the keywords, inclusion criteria, and exclusion

criteria. Conduct the primary article screening through the search strings.
3. Conduct the qualitative screening of titles, keywords, and abstracts according to the

inclusion criteria and exclusion criteria.
4. Perform the qualitative assessment and literature review of the full content of the

remaining articles.
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The process of the systematic literature review in this study is shown below.
Phase 1: To ensure the retrieved articles can meet the requirements of the systematic

literature review, Web of Science (WoS) and Scopus were determined as the databases in
this study. Articles that had not been peer reviewed were not permitted to be included in
this study. The keywords were determined as follows: “Building Information Modeling”,
“Building Information Model”, “BIM”, “Green Building”, “Sustainable Building”, and
“Construction”.

Phase 2: In this phase, the search strings (as shown in Table 1) were developed to
conduct the initial article search of this study. Moreover, the inclusion criteria and exclusion
criteria (as shown in Table 2) were formulated for further qualitative screening. In this study,
the retrieved articles included conference papers, articles, review articles, and proceedings
papers that can be searched for through WoS and Scopus. Other types and database sources
of articles were excluded in this process. Moreover, non-English articles were also excluded
from the retrieval process. Through the initial article search and review, the overview of
BIM capabilities in the construction process of green buildings was formed.

Table 1. Search string and initial search results.

Search Engine Search String Results

WoS

TS = ((“building information modeling” OR “building
information modelling” OR BIM) AND (green building OR
sustainable building) AND (construction OR construct))

974

Document Types: Articles or Proceedings Papers or Review
Articles 969

AND LANGUAGES: (ENGLISH) 965

Scopus

“TITLE-ABS-KEY ((“building information modelling” OR
“building information modeling” OR BIM) AND (green AND
building OR sustainable AND building) AND (construction OR
construct))

459

AND (LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE,
“ar”) OR LIMIT-TO (DOCTYPE, “re”) OR LIMIT-TO
(DOCTYPE, “cr”))

445

AND (LIMIT-TO (LANGUAGE, “English”)) 437

Sum of the papers = 1402
Duplicates = 137
Invalid = 109
After removing duplicates and invalid papers = 1156
After title and keyword screening = 537
After abstract screening = 249
After review of full content of papers = 165
Total = 165

The initial article search was conducted in April 2022. In this process, 1433 articles
were retrieved from WoS and Scopus (974 in WoS, 459 in Scopus). Then, 137 duplicated
articles and 109 invalid articles (articles that cannot be provided as an online version of
the full content) were removed by the author. In the end, 1156 articles remained after this
phase was complete. The remaining articles were carried over into the next step to conduct
further qualitative screening of the titles, keywords, and abstracts.

The detailed search strings and initial search results are presented in Table 1, and the
clear inclusion and exclusion criteria are presented in Table 2.

Phase 3: This phase involved performing the qualitative analysis based on the above-
mentioned inclusion and exclusion criteria. In phase 3, the titles and keywords of the
remaining articles were firstly screened manually according to the secondary inclusion-
ary and exclusionary criteria. In this step, 619 articles were eliminated, and 537 articles
remained. Then, abstract analysis was performed manually on the remaining 537 articles

152



Buildings 2022, 12, 1205

based on the secondary inclusionary and exclusionary criteria. In total, 288 articles were
removed because their abstracts failed to meet the requirements of the secondary inclusion
and exclusion criteria (mentioned in Table 2). After phase 3 was accomplished, 249 articles
remained and were brought into the next phase.

Table 2. Inclusion criteria and exclusion criteria.

Primary Criteria Secondary Criteria

Inclusionary Exclusionary Inclusionary Exclusionary

Journal articles that
can be searched in
Web of Science (WoS)
or Scopus

Duplicated papers

Articles that contain
BIM capabilities in
the construction of
green buildings

Articles that contain
no BIM capabilities in
the construction of
green buildings

Conference paper and
proceeding papers
that are searchable
through WoS or
Scopus

Invalid articles
(articles that cannot
provide the online
version of full-text
content)

Articles that can
support authors to
accomplish research
objectives

The articles that
cannot provide
support for authors to
accomplish research
objectives

Review articles that
are searchable
through WoS or
Scopus

Published in English Non-English edited
articles or papers

Phase 4: The qualitative assessment was performed on the remaining 249 articles and
a literature review of the full content based on the secondary inclusionary and exclusionary
criteria was carried out (mentioned in Table 2). Moreover, these articles were also reviewed
manually by the authors to identify whether they contain quality content on BIM utilization
in green building construction. In this process, the inclusion and exclusion of an article
relied on the subjective decisions of the authors without firm objective standards. In the
end, 165 articles were included in the study, and were brought over to the next stage of the
process (Section 3), namely, the systematic literature review.

The entire search and screening process of this study is presented in Figure 1.
Through the full-text review of the included studies, the BIM capabilities can be

categorized according to their contribution areas (see in Table 3).

Table 3. Process of categorization determination.

Identify the BIM capabilities that can be utilized in the green building construction through
full-text review.

Categorize the BIM capabilities according to their contribution areas.

Develop the classifications of BIM capabilities in green building construction.

Check for consistency by referring to other studies.

Verify the developed classifications in this study.
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. 

Figure 1. Flowchart of article screening process used in this study.
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3. Results

3.1. Descriptive Analysis

After the search and screening carried out in Section 2, 165 articles were retrieved and
included in this systematic review. In Section 3, these included articles were systematically
reviewed and summarized by the authors.

The publication dates of the reviewed articles are presented in Figure 2. According
to Figure 2, it can be identified that the earliest publication of the articles reviewed was
2010. From 2010 to 2015, the research on BIM capabilities in green building construction
was still in the infancy stage. From 2010 to 2015, although the number of articles in this
area generally shows moderate growth, the overall number of publications is still relatively
few (from one to five).
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Figure 2. Number of reviewed articles per year.

Eleven of the reviewed articles were published in 2016, and the research on BIM
utilization in green building construction was becoming more popular and attractive. From
2017 to 2021, BIM utilization in the construction phase of green buildings had become a
prominent discipline and received wide and significant attention from researchers. The
included articles published exceeded 20 per year and gradually increased in this period
(from 21 in 2017 to 32 in 2021).

The number of included articles that were published in 2022 was 14. However, given
that this study was performed between January 2022 and April 2022, it can be concluded
that all reviewed articles were published in the first four months of 2022. Any articles
published after April could not be reviewed because of the publication date limitations.
Therefore, the decline in the number of reviewed articles in 2022 does not indicate that
the BIM capabilities in green building construction are obsolescent. Moreover, among the
reviewed articles in this study, 14 were published in the first four months of 2022. This
phenomenon can also indicate indirectly that this field is still valued and vital in 2022.

From the perspective of publication journals, these 165 reviewed articles were taken
from 64 journals and 12 conferences. According to the number of reviewed articles pub-
lished in each journal, the rank of journals is presented below (due to the length of the
study, only the top 10 journals are listed): Automation in Construction (25), Sustainability
(11), Procedia Engineering (8), Advanced Engineering Informatics (6), Buildings (6), Journal of
Cleaner Production (6), Journal of Building Engineering (6), Renewable and Sustainable Energy
Reviews (5), International Journal of Project Management (4), and Journal of Civil Engineering and
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Management (4). The ranking of journals according to the number of the reviewed articles
being published is demonstrated in Figure 3 (Only the journals that ranked in the top ten
for the number of articles in this study are included).
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3.2. Results Analysis

BIM is considered to be a potential technology in the construction stage of green
buildings. To encourage the adoption and development of BIM in the AEC industry,
the importance and potential of BIM implementation have been highlighted by many
researchers [44]. Ghaffarianhoseini et al. [5] comprehensively summarized the benefits
of BIM application: “these benefits range from its technical superiority, interoperability
capabilities, early building information capture, use throughout the building lifecycle,
integrated procurement, improved cost control mechanisms, reduced conflict and project
team benefits.”

In this study, 165 articles were included in the systematic review and analysis by
the authors. Through the systematic review, the BIM capabilities are summarized and
categorized according to their benefits and advantages during the construction phase of
green buildings. In this study, the classification of BIM capabilities in the green build-
ing construction phase is as follows: project quality improvement, lifecycle data storage
and management, collaboration optimization, and planning and schedule management
optimization. Detailed information on the reviewed studies in terms of the four aspects
mentioned above is presented in Appendix A.
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3.2.1. Project Quality Improvement

BIM has made significant contributions to improving the project quality in the process
of green building construction. As an object-orientated 3D model, BIM can integrate the
knowledge of various disciplines to provide a quality platform for parametric modeling,
spatial visualization, and asset-process simulation [45]. Based on the abovementioned func-
tions, the situations of components can be demonstrated through BIM, which can facilitate
the architects’ and engineers’ ability to conduct clash detection [46]. In green building
construction, the clash detection in BIM can save up to 10% of the contract value and reduce
the construction schedule by 7% [5]. In addition, the comparison between different design
schemes can be conducted by BIM tools. It assists stakeholders in developing construction
schemes with better efficiency and sustainability [17]. Moreover, BIM can provide the 3D
demonstration at the initial stage of green building construction so that the clients can
become familiar with the intent of the design in a timely manner [47]. This advantage helps
the designers and civil engineers to effectively make changes in time to meet the clients’
requirements. Based on the statistics from Noor et al. [48], the most efficient contributions
from BIM are “better visualization compared to traditional CAD technology”, “the ability
of BIM in visualization”, and “helps to ensure that the quality-related activities are being
performed effectively”, with mean values of 3.7500, 3.6471, and 3.9853, respectively. As
a reference, a mean value between 3.5 and 4.49 can be defined as “much” in the mean
scale formulated by Aguila et al. [49]. According to the questionnaire survey from Huang
et al. [14], 87.8% (180/205) of respondents endorsed BIM facilitating designers’ ability to
integrate designs. Furthermore, 84.4% (173/205) of respondents agreed that the acceleration
of model generation and modification could be achieved through BIM, which can improve
working efficiency and quality [14].

For the construction organizations that adopted BIM in the green building construction
process, the advantages of BIM can be extended from the pre-construction phase to the
projects’ final acceptance and retrofit phases [50]. From pre-construction to retrofit, BIM
can assist stakeholders in performing construction activities’ documentation, information
real-time storage and exchange, monitoring and surveillance, emergency control, and asset
demolition [5]. Moreover, BIM has a remarkable effect on the renovation of green buildings
with the support of as-built data acquisition tools (such as laser scanning and infrared
thermography) [51]. In the retrofit process, Najjar et al. [52] put forward that BIM utilization
in lifecycle assessment can encourage architects to incorporate environmental criteria into
their decision-making process. This characteristic enables the stakeholders from various
aspects to consider ecological requirements reasonably when making decisions [52]. BIM
also has practical functions in supporting the assessment of energy consumption and
residential comfort in various renovation instructions [53]. In the interior retrofit case of
the Diagnosis and Treatment Centre of the University Hospital of Jaén, through thermal
simulation, daylight simulation, and energy analysis, the annual energy consumption in
the renovated building dropped by 120.94 kWh/m2 [54]. In the energy-efficient retrofit
project of Xindian Central Public Retail Market in Taiwan, the air conditioner system load
was reduced by 100 kWh due to the support of BIM [55].

Moreover, green buildings are required to meet the green building evaluation stan-
dards. Through the simulation and knowledge-storage functions in BIM, BIM-based green
building assessment models were proposed to record the energy consumption during con-
struction and to predict the energy performance of the building during the post-construction
phase [56–59]. In the case study of Wu et al. [60], the researcher inputted the green building
evaluation standard into the BIM to check the compliance of the green building item by
item, and then determined the corresponding green building rating of the target projects.

3.2.2. Collaboration Optimization

Due to the strict quality and technology requirements of green building construc-
tion, the practical cooperation and collaboration of multiple stakeholders from various
organizations in sustainable construction are required [10]. Collaboration is deemed one
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of the most critical features of BIM. Collaboration aims to achieve the best results in a
cost-effective and timely manner by bringing together a variety of people and resources
and using their collective knowledge and capabilities to accomplish tasks that would be
difficult for an individual organization to perform [61]. Due to the massive scale and high
complexity of green building construction, it is necessary for the various stakeholders in the
lifecycle of projects to couple with other participants through project-specific collaborative
relationships [13,62,63]. The practical cooperation between multi-disciplines has significant
contributions to rework elimination, the reduction in clashes and misunderstandings, waste
mitigation, and the definition of risks and uncertainties [64,65].

The collaboration between multi-disciplines and various stakeholders (or organiza-
tions) can be effectively conducted through BIM. As a collaboration and communication
platform, BIM can develop a comprehensive shared operating environment intergraded
by multiple discipline models [64,66,67]. Through the cooperation platform in BIM, the
project information of their lifecycle is can more easily be updated, modified, inserted, and
extracted by various stakeholders. These stakeholders pertain to multiple disciplines and
organizations, and possess specific skill sets to fulfil BIM-related project requirements [68].
With the transparency of the BIM cooperation environment, the ownership of data through
the lifecycle of projects is shared by various stakeholders [69]. To eliminate the barriers and
ensure interoperability in collaboration, Industry Foundation Classes (IFC) are generally
utilized as the standard file format specification [70]. In addition, the gbXML schema
(Green Building XML) was formulated to enhance the transfer of building data from BIMs
to engineering analysis software [26].

In BIM-utilized green building construction processes, the collaboration among vari-
ous disciplines and stakeholders is basically achieved through the BIM-based construction
network (BbCN) [64]. The BbCN contains team members from multiple organizations to
conduct BIM-related activities on BIM-enabled projects [64]. Cao et al. [71] revealed that the
enhancement of internal collaboration within the BbCN had been a particularly effective
selling point for BIM. In the cooperation process in BbCN, some prerequisites need to be
integrated, including the context, team, process, task, and actor [72]. With the assistance
of effective management and transparent and shared information exchange, collabora-
tion can be deemed a central element of success throughout the lifecycle of construction
projects [73,74]. In addition to BbCN, Wang et al. [75] introduced the stake source system
based on social network analysis (SNA), which can automatically recommend suitable
stakeholders through SNA. Through this system, stakeholders can easily become familiar
with others’ responsibilities, work progress, and position.

In conclusion, BIM can effectively improve collaboration quality. As a digital repre-
sentation tool and database inventory, all stakeholders can work on a sharing cooperation
platform through the BIM application, which enhances the quality of the decision-making
process [4]. The essential issues in the cooperation management process can be described
as: “which building elements, from which trades, should be developed at what time and
at what level?”. This issue can be addressed by the Level of Detail (LOD) decision plan,
which is conducted through BIM [76]. In state-owned assets projects and public–private
partnership projects, satisfaction from the government is necessary for collaboration. Ac-
cording to the statistics from Zuhairi et al. [77], the most important driving factor in BIM
implementation in Malaysia is “the advocation and enforcement in the implementation
of BIM by the government” with relative importance indicators (RII) of 0.950. BIM im-
plementation can effectively improve the government’s satisfaction, thus improving the
quality of cooperation. According to statistics from Huang et al. [14], 86.34% (177/205) of
respondents believed that BIM played an essential role in the establishment of collabora-
tive platforms. According to the questionnaire survey of the Collaboration Management
(CM)-based BIM model developed by Lin and Yang [66], 92% of the respondents were
satisfied with CM-based BIM creation work, and 86% of the respondents believed that it
could enhance the management of model creation work in the collaboration process.
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3.2.3. Lifecycle Data Storage and Management

In the process of green building construction, it is necessary for the construction
organizations to obtain the data and information on corresponding green buildings that are
produced in their design phase. If the information delivery is deficient, the construction
schedule might be delayed.

BIM can be formulated as a multifunction repository that stores data throughout
the project lifecycle [15,52,78]. The digital presentation and remarkable interoperability
capabilities facilitate the exchange and revision of data by users throughout the entire green
building construction process. This benefit can help stakeholders to capture comprehensive
building information [4]. With the development of BIM, the international BIM information
storage and exchange standard Industry Foundation Classes (IFC) were introduced into
BIM [79]. This effectively eliminated the format barriers involved in collaboration using
BIM [79].

BIM’s knowledge storage and management function can effectively overcome the
fragmented information issues that have developed in the green building construction
process [80,81]. In the research of Solihin et al. [82], they integrate spatial operations into
standardized SQL queries that are easy to query. This makes the data in BIM more accessible,
and better assists stakeholders in making decisions. Lu et al. [4] maintained that one
BIM model could contain information from multiple disciplines, which can continuously
incorporate sustainability measures into the project throughout the design process. BIM
can also make users familiar with the intricate relationship between stakeholders. Zheng
et al. [83] propose a novel method based on the Stakeholder Value Network (SVN) that could
quantify and visualize the value exchange between critical stakeholders when adopting
BIM in sustainable constructions. This allows users to visualize and quantify the perceived
value of BIM stakeholders [83].

Moreover, with the integration of BIM and third-party devices, BIM can achieve effec-
tive data collection and management in the construction phase of green buildings [84,85].
With the integration of BIM and GIS, BIM can assist the construction organization in
obtaining information on the construction site and surrounding environment, including to-
pography, terrain, soils, vegetation cover, road layout, and infrastructure layout [63,86–89].
Besides that, with the connection of BIM and the Internet, BIM can effectively retrieve
and integrate weather conditions on green building construction sites, thus mitigating
the natural hazard damage and ensuring the safety of construction personnel [90]. In
addition to these, with the BIM, RFID, barcodes, 2D imaging, and photogrammetry, BIM
can automatically capture and store the utilization situation, stock quantities, and input
and output information of materials and equipment on the green building construction
site [87,91–94].

3.2.4. Planning and Schedule Management Optimization

Quality scheduling and project management in green building construction can be
efficiently guaranteed through BIM implementation. BIM can enhance the construction
schedule management for stakeholders [95]. Not only can the resource requirements, equip-
ment requirements, and excepted expenditure for the next step be obtained through BIM,
but the percentage of progress, the number of expenses, and the deviation from the budget
can also be predicted by BIM [96]. Moreover, real-time updates and quality visualization
performance can be achieved by BIM to enhance planning activities [97,98]. The project
duration and expenditure can be efficiently reduced through the project management of
BIM. According to the summary from Ghaffarianhoseini et al. [5] in the aspect of project
management, BIM can eliminate 40% of unforeseen modifications, provide cost estimates
with a 3% error threshold, and reduce the generation time by up to 80%. In addition,
Gao and Pishdad-Bozorgi [99] put forward that BIM can facilitate the integration of AEC
knowledge, which has a significant advantage for the contractors and subcontractors of
green building construction projects to enhance their management personnel training.
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The use of BIM in the planning and schedule management of green building construc-
tion can be started at the pre-construction stage. Before the construction activities begin,
the feasibility studies of green building construction plans can be verified through BIM
simulation, to eliminate rework and waste for the subsequent activities [17]. In addition,
Wang and Liu [100] highlighted that engineers and constructors could propose optimized
methods and simulate their performance to conduct feasibility verification and trial and er-
ror if there are defects in previous plans. By evaluating the impact of construction activities
on the surroundings, the corresponding environmental protection measures can be adopted
to mitigate the negative influence of the construction [101]. In the site-planning process,
BIM can compare various siting alternatives to determine the most suitable construction
site layout with the most negligible impact on the surrounding environment [102]. In
this process, BIM provides an appropriate framework for decision making by bringing
together the necessary information at the right time, and clarifying details and existing
conditions [102]. A meta-heuristic algorithm is used to optimize the construction site’s
layout after thoroughly considering all factors [88,103].

In multiple dimensions of BIM modeling, the stakeholders can utilize BIM to for-
mulate schedules and conduct project management in the green building construction
process. BIM is a multi-dimensionality tool. The BIM applications can be divided into
BIM 3D, BIM 4D, BIM 5D, and BIM 6D according to their functions and application
aspects [54,104–108]. To clarify, 3D means that BIM can provide detailed 3D model simula-
tions of buildings [109–116]. BIM 4D integrates BIM 3D with the time dimension, so BIM 4D
can simulate the green building construction process to support the schedule development
and revision, constructability analysis, clash detection, and other functions [117–122]. BIM
5D is based on BIM 4D, with the addition of cost-related information [123,124]. Through
BIM 5D, the construction organizations can effectively forecast and account for the ex-
penditure of the green building construction project at different phases, and predict the
return-on-investment (ROI) ratio [125–128]. BIM 6D is based on BIM 5D and adds sustain-
ability management functions, which improves the sustainable efficiency and quality of the
green building construction process [104,129].

As an advanced scheduling and modeling tool, BIM 4D can effectively conduct the
integration of 3D visual modeling and project schedules. Compared with the regular Gantt
chart, the construction schedules and sequence of tasks can be visually demonstrated in
BIM, which helps stakeholders to become familiar with the green building construction
sequences [130]. Through the integration of geometric information with the schedule
and material information, Jupp [131] revealed the potential of BIM to identify work se-
quence errors and conflicts quickly. With the combination of the BIM management system,
surveillance, barcode, and radio-frequency identification, materials that are transported,
transferred, and utilized within the construction site can be automatically recorded and
updated in the bill of materials (BOM) [132]. To eliminate the uncertainties in green build-
ing construction schedule plans, Yuan et al. [133] developed the Monte Carlo method
(MCM) and BIM-based construction schedule early warning model (MCM-BIM-CSEWM)
to address the logical relationships between construction activities and provide timely risk
warnings. Irizarry et al. [134] also revealed that the supply chain is arranged in a better
precise, efficient, and cost-effective method with the integration of BIM and geographic
information systems (GIS). From the perspective of safety management and planning,
through BIM 4D’s simulation and visualization of the green building construction progress,
BIM can conduct risk identification and safety training for management personnel and
construction workers [135–139]. Moreover, through the BIM 4D hazard identification com-
ponent established by Heidary et al. [140], BIM can assist green building construction
managers in identifying and demonstrating the potential construction hazards in the early
stages of green building projects [140].

In the BIM-generated schedule, the components and schedules of each sub-progress
and each task can be contained and demonstrated in the entire construction schedule [141,142].
Based on the abovementioned functions, the intercomparison of construction schedules and
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the detection of recurring processes can be conducted expediently through BIM 4D [143].
Moreover, through the visualization in BIM, the construction progress can be visually sim-
ulated, including engineering design, field environment, projected material consumption,
and machinery utilization [100]. This method enhances the predictability of construc-
tion and transforms the traditional pattern of construction plans [100]. By simulating the
construction progress and potential construction accidents, personnel training and safety
education can be provided by BIM utilization [135,136,144]. Nicał and Wodyński [129] put
forward that the impact of construction activities on the surrounding environment can be
simulated through BIM 6D, which is necessary to support green buildings to conform to
specific green building evaluation standards.

In the process of scheduling and project management, some repetitive tasks can
be conducted using the same or a similar method in the green building construction
process [143], and BIM 4D can provide predefined process templates to execute the required
tasks without wasting time or production [143]. To improve the generality of the template,
the IFC was adopted to provide required object definitions in BIM 4D [145]. In addition to
these, case-based reasoning (CBR) was utilized as an effective machine learning method
in BIM [146]. The faults can be settled by utilizing or adjusting the previous solutions
to tackle similar tasks [146]. In the process of CBR, new problems and malfunctions can
be matched and solved by the most similar solution through the typical four phases of
the CBR (retrieve, reuse, reserve, and modify), and then the new solution schemes can be
retained for future similar disposal [147]. To improve the accuracy of the match between
disputes and solutions, Sigalov and König [143] asserted that the graph indexing is settled
in partial BIM software.

One of the prominent features of BIM is simulation. In traditional AEC tools, with the
increasing size and complexity of green building construction processes, it is challenging
to generate sufficient suitable design and construction schemes with the distraction of
various undefined risks and uncertainties [148,149]. Therefore, the predictions about project
progress and results are hard to keep accurately [148,149]. However, these barriers can
be partially mitigated by the simulations of BIM. Based on virtual modeling, without the
consumption of materials, reliable simulations and predictions of projects can be developed
through the thorough consideration of factors and potential risks [150].

From the finance perspective, BIM can support green building construction teams to
generate bills of quantities automatically, perform procurement plans and logistical layout,
and conduct materials and equipment management. Given that the BOM can be updated
in BIM in real time, BIM can reflect real-time expenditure. Moreover, the construction
activities’ feasibility research can be conducted with the support of a data repository, 3D
visualization demonstration, and simulation in BIM [151]. In addition, BIM can provide
quality procurement management and optimization for construction organizations. In
the research of Vilas-Boas et al. [152], they proposed a four-dimensional BIM model to
analyze and optimize procurement. This model provides procurement suggestions by
comprehensively analyzing and comparing the following dimensions:

1. Product-based. Assess the properties, quality, and compliance of the purchased
materials.

2. User-based. Assess whether the material accords with the green assessment criteria
and whether it meets the requirements of stakeholders and participants.

3. Manufacturing-based. Test the operation status of the procured material, and check
whether these materials have clashed with other parts.

4. Value-based. Calculate the value of each material and procurement link, and evaluate
their cost performance. For stakeholders, value includes tangible and intangible
benefits.

4. Discussion

Through the systematic review in Section 3, it can be determined that BIM capabilities
have significant advantages in the construction phase of green buildings. BIM can develop
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apparent benefits to green building construction, including improving the quality of the
projects, optimizing collaboration between different stakeholders, performing lifecycle
data storage and management, and assisting construction organizations in conducting
and optimizing their planning and schedule management in the process of constructing
green buildings.

In this section, these abovementioned capabilities are discussed and analyzed by the
authors. Through the discussion and analysis, it can be concluded that the implementation
of BIM can be utilized in the green building pre-construction phase, construction phase, and
post-construction phase. The detailed discussion and analysis processes are shown below.

4.1. BIM Capabilities in the Green Building Pre-Construction Phase

Given the enormous complexity, extensive information and uncertainty in pre-construction,
the pre-construction phase of green buildings is always an area to which construction teams
and subcontractors attach great importance [50,65,153,154]. According to the systematic re-
view and discussion in this study, the BIM implementation in the pre-construction phase of
green buildings can be adopted from the perspectives of information and knowledge deliv-
ery, feasibility study, construction team setup, construction plans and schedule formulation,
construction cost estimation and budget formation, construction material supplement and
transportation, and construction equipment management.

Given the extensive information and the complex structural construction of green
buildings, it is vital for construction organizations to obtain detailed information about
targeted green buildings before formal construction [9,155–157]. BIM can help the con-
struction teams to transfer the green building model and related information generated
during the design phase to the construction personnel in an error-free, omission-free man-
ner [4,15,45,47,52,78–83]. For green building projects that do not adopt BIM in their design
phase, BIM can also be utilized to automatically capture the related information to generate
the green building information model by identifying CAD drawings, or integrating with
photography, GIS, and 3D scanning [63,86–94].

In the aspect of feasibility studies, construction plans, and schedule formulation,
through the simulation function of BIM, the consequences and impact of different green
building construction plans can be simulated [5,17,48,99,100,117–122]. Moreover, it can as-
sist the project managers in comparing different green building construction plans [102,103].
Through the BIM’s comparison of the quality, estimated construction period, and environ-
mental protection and resource-saving conditions of various alternatives, the most suitable
green building construction plan can be selected [102,103]. In addition, based on green
building project planning, construction site conditions, and feedback from subcontractors,
BIM can assist the construction teams in developing the requirements and configurations
of personnel, materials, and equipment [4,5,99,100,130,141–143,150]. Based on the above-
mentioned information, the logistics and transportation routes can also be automatically
formulated through BIM [158–162]. Finally, through the information mentioned above, the
estimated cost and budgets can be put forward by BIM [123,124,151].

Despite the various benefits of BIM utilization in the green building pre-construction
phase, there are still some obvious challenges. Given that many formats can be adopted
in BIM applications, the green building construction organizations might have format
mismatch issues in the information delivery process from the design phase to construc-
tion [6,14]. Moreover, another hindrance is that project management personnel often
refuse to adopt BIM in the construction process [22,77,163]. According to Akhmetzhanova
et al. [24], 55% of companies refused to utilize BIM because clients or management do not
support the adoption of the technology.

4.2. BIM Utilization in the Green Building Construction Phase

Compared with the BIM utilization at the pre-construction and post-construction
phases, the most significant contributions of BIM capabilities are in the construction phase.
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Through the discussion of reviewed BIM capabilities in Section 3, it can be determined that
the BIM contributions in the construction phase can be summarized as below.

In the process of green building construction, 3D visual modeling is of significant im-
portance to the construction organization [48,54,97,98,104–112,116]. It can demonstrate the en-
tire green building project, the interior structures, and components in 3D [4,5,51,54,76,77,104–106].
Moreover, In BIM 4D, the stakeholders can become familiar with the conditions of build-
ings at different periods through visual 3D demonstrations [100,117–122,142,143,145,164].
From the perspective of safety management, BIM’s visualization can assist construction
teams in identifying the clashes and potential risks in a visual manner, so as to provide
the corresponding safety training and avoid delay, construction waste production, and
rework [5,14,46,99,133,135,136,138–140].

As a multi-function database, BIM can provide information and knowledge collection,
storage, and management in the entire green building construction process, and integrate
fragmented information in a unified format in the corresponding file [4,15,52,78–83,145].
Besides storing and categorizing the data that are generated in the green building construc-
tion process, BIM can automatically provide solutions to issues for stakeholders through
CBR [143,146,147]. With the integration of BIM and third-party devices, the construction
site’s natural environment, climate, infrastructure, and the utilization conditions of human
resources and materials are all available to stakeholders [5,63,85–94].

Moreover, simulation is an important characteristic of BIM utilization in green build-
ing construction. Simulation includes not only the simulation of the construction activities’
impact on the surrounding environment, but also the prediction of construction processes
and risks [4,5,10,17,46,100,101,117–122,129,131,133,141]. Given that green buildings are re-
quired to meet the green buildings’ assessment standards, through the simulation function
of BIM, the construction organization can perform comparisons of different construction
schemes and select the scheme that can match the evaluation standards of green buildings in
the most positive sense [52–55,102,103]. Based on the simulation and information manage-
ment, the bills of quantity can be automatically generated by BIM to estimate the consump-
tion of materials and the overall cost of the project [5,95,96,99,100,123–128,132,151,152].

BIM can provide an effective collaboration platform for all stakeholders to communicate
and collaborate in the construction process of green buildings [10,13,26,62–67,69–71,73,74,122,165].
Through BIM, all project changes can be reflected in a timely manner, and decisions made
by one stakeholder are immediately uploaded to the BIM platform and communicated to
all other stakeholders [4,14,66,73,76,165]. Moreover, BIM can demonstrate the positions,
responsibilities, and current status of all stakeholders, thus assisting stakeholders in ob-
taining an overview of other stakeholders’ situations [64,72,75]. In addition, construction
organizations can utilize BIM to communicate with design organizations and facilitate the
management requirements of green buildings, and to develop their requirements about the
corresponding green building projects [13,61,62,66–68,71]. Through the integration of BIM
with the Internet of Things (IoT), the construction team can be assisted remotely by profes-
sionals worldwide to improve the projects’ quality and solve existing issues [64,72,75].

Despite the significant advantages of BIM implementations in the green building
construction phase, the challenges are still non-negligible. In the process of BIM utilization,
many stakeholders cooperate using the same BIM platforms or files, which leads to the ob-
scure copyright of the developed data in the green building construction process [165–170].
It is difficult for project managers to define the ownership of involved data [167,168]. More-
over, given the relative independence of the design and construction organization, some
information required in the green building construction process might not be obtained
in the delivered BIM files [6,14]. In the green building construction process, the main
contractors might be required to cooperate with other subcontractors. In the context that
the uniform regulatory framework is absent, the interactivity between the main contractors
and subcontractors might be insufficient [24].
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4.3. BIM Utilization in the Green Building Post-Construction Phase

The post-construction phase is the final phase of green building construction. It in-
cludes all of the final processes to hand over these green building projects to the building
owner and facility management organizations [171]. Through the systematic review and dis-
cussion of the BIM utilization in green building construction, the BIM’s contribution during
the post-construction phase can be summarized as follows: final acceptance, information
handover, and green building certificate inspection.

From the perspective of information handover and final acceptance, all building-
related information and construction activities can be stored, categorized, and retrieved
in BIM. This information is integrated into one single file in a given format (usually the
IFC format) [4,15,45,47,52,78–83,172–174]. Moreover, through the 3D visualization demon-
stration of BIM, the entire 3D model of green buildings can be demonstrated for the final
acceptance personnel to check [109–112,116]. Through BIM 4D, the specific situations of the
target green building projects at different points in time can be provided [100,117–122,130].

The green buildings must meet the green building evaluation standards. Regardless of
the various countries’ green building evaluation standards, the construction organizations
can adopt BIM’s simulation function to examine these buildings [175,176]. Utilizing BIM
to simulate and evaluate the energy consumption, environmental performance, material
utilization, and residents’ comfort of the green building can help to assess the compliance
of the green building to the green building evaluation standards [13,59,177–181].

In the post-construction phase, there are still barriers that impede BIM utilization. In
the process of information handover between green building construction organizations and
green building facility management organizations, information omissions and mismatched
formats are still the main challenges for both parties [6,14]. Moreover, given the high
expenditure on BIM training, the facility management organizations might lack sufficient
BIM operators. This issue can also disturb the handover of BIM documents [14,182,183].

5. Conclusions

Given the significant performance of BIM, there has been a dramatic increase in con-
struction organizations that utilize BIM in the green building construction phase. Despite
many studies exploring BIM utilization in green building construction, review articles
in this area are relatively rare. To enhance the understanding of AEC practitioners in
terms of the BIM capabilities in the green building construction phase and to bridge the
abovementioned research gap, this study performed a systematic review of these BIM
capabilities. Through the review of the retrieved articles, it can be summarized that the
BIM implementations in green building construction are categorized into the following ben-
efits: project quality improvement, lifecycle data storage and management, collaboration
optimization, and planning and schedule management optimization. Moreover, through
the discussion and analysis of the reviewed BIM capabilities, it can be concluded that BIM
can make significant contributions in the pre-construction phase, construction phase, and
post-construction phase of green building projects.

In spite of the tremendous abovementioned BIM benefits, there are still some obstacles
when using BIM in the green building construction phase, including non-uniform data
formats, insufficient interactivity, ambiguous ownership, insufficient BIM training, and
BIM adoption hesitancy. Despite the abovementioned shortcomings of BIM at the present
stage, through the comparison of the benefits and challenges of BIM capabilities in the
green buildings’ construction phase, it can be concluded that the BIM application still has
significant potential benefits and improvements for green building construction. Through
the systematic review, this study provided a comprehensive overview and understanding
of BIM capabilities in the green building construction phase to promote and optimize BIM
utilization in this area. Moreover, this study also pointed out the challenges and future
direction of BIM capabilities in green buildings to encourage other researchers to overcome
these issues.
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In addition to the contributions mentioned above, this study also has some limitations.
The limitations are presented below.

1. In this study, some reviewed BIM capabilities can be utilized in not only the con-
struction phase of green buildings, but also in the design and facility management
phase of other building types. This reduces the pertinence of the study to some extent.
However, to provide a comprehensive systematic review and avoid the omissions of
BIM capabilities in green building construction, these BIM capabilities are included in
this study.

2. Due to the language skills limitations of the authors, only English articles were
reviewed in this study. Non-English articles were excluded from the article screen-
ing process.

3. In this study, the majority of the reviewed BIM capabilities are on BIM utilization
in the pre-construction phase and the construction of green buildings. Rarely are
BIM functions reviewed that have been utilized in the post-construction phase of
green building projects specifically. It is recommended that other researchers perform
the corresponding studies to explore BIM utilization in the green building post-
construction phase.

In conclusion, this study develops a comprehensive systematic review and discussion
of BIM capabilities in the construction of green buildings. Given that the evolvement of
BIM is rapid, the BIM capabilities are updated correspondingly with the development of
internet technology. Thus, other researchers are welcome to further explore and review the
BIM utilization in the construction of green buildings based on this study.
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Appendix A

Table A1. Reviewed studies in Section 3.2.1 (sorted by order of appearance).

Title of the Article Publication Year

BIM in Off-Site Manufacturing for Buildings 2017

A Scientometric Review of Global BIM Research: Analysis and Visualization 2017

Building Information Modelling (BIM) Uptake: Clear Benefits,
Understanding Its Implementation, Risks and Challenges 2017

Effect of BIM on Rework in Construction Projects in Singapore: Status Quo,
Magnitude, Impact, and Strategies 2019

Applications of BIM: A Brief Review and Future Outline 2018
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Table A1. Cont.

Title of the Article Publication Year

Adoption of Building Information Modelling (Bim): Factors Contribution
and Benefits 2018

Contribution and Obstacle Analysis of Applying BIM in Promoting Green
Buildings 2021

BIM-Based Approach for Optimizing Life Cycle Costs of Sustainable
Buildings 2018

Integration of BIM and LCA: Evaluating the Environmental Impacts of
Building Materials at an Early Stage of Designing a Typical Office Building 2017

Measuring the Feasibility of Using of BIM Application to Facilitate GBI
Assessment Process 2019

Sustainability and Energy Efficiency: BIM 6D. Study of the BIM
Methodology Applied to Hospital Buildings. Value of Interior Lighting and
Daylight in Energy Simulation

2020

Green BIM Assessment Applying for Energy Consumption and Comfort in
the Traditional Public Market: A Case Study 2019

Integrating BIM-Based LCA and Building Sustainability Assessment 2020

Step-by-Step Implementation of BIM-LCA: A Case Study Analysis
Associating Defined Construction Phases with Their Respective
Environmental Impacts

2019

LCA and BIM: Visualization of Environmental Potentials in Building
Construction at Early Design Stages 2018

Recommendations for Developing a BIM for the Purpose of LCA in Green
Building Certifications 2020

Developing a Green Building Evaluation Standard for Interior Decoration: A
Case Study of China 2019

Table A2. Reviewed studies in Section 3.2.2 (sorted by order of appearance).

Title of the Article Publication Year

Critical Success Factors for Small Contractors to Conduct Green Building
Construction Projects in Singapore: Identification and Comparison with
Large Contractors

2020

Differing Perspectives on Collaboration in Construction 2012

Relationship Network Structure and Organizational Competitiveness:
Evidence from BIM Implementation Practices in the Construction Industry 2018

BIM-Based Green Building Evaluation and Optimization: A Case Study 2021

Developing an Integrated BIM + GIS Web-Based Platform for a Mega
Construction Project 2022

Collaboration Barriers in BIM-Based Construction Networks: A Conceptual
Model 2019

BIM Tool Development Enhancing Collaborative Scheduling for
Pre-Construction 2020

A Framework for Collaboration Management of BIM Model Creation in
Architectural Projects 2018

Building Information Modelling in Construction: Insights from
Collaboration and Change Management Perspectives 2018

Communications in Hybrid Arrangements: Case of Australian Construction
Project Teams 2017
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Table A2. Cont.

Title of the Article Publication Year

Modelling Building Ownership Boundaries within BIM Environment: A
Case Study in Victoria, Australia 2017

Interoperability Analysis of IFC-Based Data Exchange between
Heterogeneous BIM Software 2018

Review of BIM’s Application in Energy Simulation: Tools, Issues, and
Solutions 2019

Identifying and Contextualizing the Motivations for BIM Implementation in
Construction Projects: An Empirical Study in China 2017

Collaboration in BIM-Based Construction Networks: A
Bibliometric-Qualitative Literature Review 2017

Sorting out the Essence of Owner–Contractor Collaboration in Capital
Project Delivery 2015

The Conditions for Successful Automated Collaboration in Construction 2014

Collaborative Relationship Discovery in BIM Project Delivery: A Social
Network Analysis Approach 2020

Building Information Modeling (BIM) for Green Buildings: A Critical Review
and Future Directions 2017

Use of LoD Decision Plan in BIM-Projects 2017

Exploring the Barriers and Driving Factors in Implementing Building
Information Modelling (BIM) in the Malaysian Construction Industry: A
Preliminary Study

2014

Contribution and Obstacle Analysis of Applying BIM in Promoting Green
Buildings 2021

Table A3. Reviewed studies in Section 3.2.3 (sorted by order of appearance).

Title of the Article Publication Year

Transition from Building Information Modeling (BIM) to Integrated Digital
Delivery (IDD) in Sustainable Building Management: A Knowledge
Discovery Approach Based Review

2021

Enhancing a Building Information Model for an Existing Building with Data
from a Sustainable Facility Management Database 2021

Integration of BIM and LCA: Evaluating the Environmental Impacts of
Building Materials at an Early Stage of Designing a Typical Office Building 2017

Building Information Modeling (BIM) for Green Buildings: A Critical Review
and Future Directions 2017

Comparative Analysis of Energy Performance Assessment for Green
Buildings: China Green Building Rating System vs Other Major Certification
Systems

2016

BIM-Based Performance Monitoring for Smart Building Management 2021

Blockchain-Enabled IoT-BIM Platform for Supply Chain Management in
Modular Construction

A Simplified Relational Database Schema for Transformation of BIM Data
into a Query-Efficient and Spatially Enabled Database 2017

Quantifying and Visualizing Value Exchanges in Building Information
Modeling (BIM) Projects 2019
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Table A3. Cont.

Title of the Article Publication Year

Application of ND BIM Integrated Knowledge-Based Building Management
System (BIM-IKBMS) for Inspecting Post-Construction Energy Efficiency 2017

Improving Maintenance Performance by Developing an IFC
BIM/RFID-Based Computer System 2021

3D Environmental Urban BIM Using LiDAR Data for Visualization on
Google Earth 2022

Research Trend of the Application of Information Technologies in
Construction and Demolition Waste Management 2020

Reducing Noise Pollution by Planning Construction Site Layout via a
Multi-Objective Optimization Model 2019

Using BIM to Improve Building Energy Efficiency–A Scientometric and
Systematic Review 2021

Developing an Integrated BIM + GIS Web-Based Platform for a Mega
Construction Project 2022

Toward Sustainable Energy-Independent Buildings Using Internet of Things 2020

The Intelligent Use of RFID and BIM in Prefabricated, Prefinished,
Volumetric Construction Work Flow 2020

Building Information Modeling (BIM)-Based Modular Integrated
Construction Risk Management–Critical Survey and Future Needs 2020

An ICT-Enabled Product Service System for Reuse of Building Components 2019

Analysis of the Benefits, Challenges and Risks for the Integrated Use of BIM,
RFID and WSN: A Mixed Method Research 2022

Table A4. Reviewed studies in Section 3.2.4 (sorted by order of appearance).

Title of the Article Publication Year

A BIM-WMS Integrated Decision Support Tool for Supply Chain
Management in Construction 2019

Research on Construction Schedule Management Based on BIM Technology 2017

Life Cycle Energy Efficiency in Building Structures: A Review of Current
Developments and Future Outlooks Based on BIM Capabilities 2017

Real-Time Visualization of Building Information Models (BIM) 2015

Building Information Modelling (BIM) Uptake: Clear Benefits,
Understanding Its Implementation, Risks and Challenges 2017

BIM-Enabled Facilities Operation and Maintenance: A Review 2019

Effect of BIM on Rework in Construction Projects in Singapore: Status Quo,
Magnitude, Impact, and Strategies 2019

Research on the Project Management of BIM Project from the Perspective of
Enterprise Strategy 2016

Integration of BIM and GIS in Sustainable Built Environment: A Review and
Bibliometric Analysis 2019

Critical Success Factors for Implementing Building Information Modelling
(BIM): A Longitudinal Review 2018

BIM-Based Applications of Metaheuristic Algorithms to Support the
Decision-Making Process: Uses in the Planning of Construction Site Layout 2017
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Table A4. Cont.

Title of the Article Publication Year

Reducing Noise Pollution by Planning Construction Site Layout via a
Multi-Objective Optimization Model 2019

Sustainability-Based Lifecycle Management for Bridge Infrastructure Using
6D BIM 2020

Building Performance Optimization Using CFD for 6D BIM Application—A
Case Study 2021

Sustainability and Energy Efficiency: BIM 6D. Study of the BIM
Methodology Applied to Hospital Buildings. Value of Interior Lighting and
Daylight in Energy Simulation

2020

Evaluation of the Open Diversion Channel Capacity on Margatiga Dam
Construction Project Using 6D BIM Analysis 2021

Integration of Aerobiological Information for Construction Engineering
Based on LiDAR and BIM 2022

Permanent Magnet, Toroidal Winding Generator for 6D BIM Applications 2021

Research on PKIM Energy Construction Engineering Software System Based
on Building BIM Technology 2022

Automated 3D Volumetric Reconstruction of Multiple-Room Building
Interiors for as-Built BIM 2018

Green Construction Evaluation System Based on BIM Distributed Cloud
Service 2021

Green Building Investment Control System Based on a Three-Dimensional
Parametric Model of the Green Building 2021

Utilizing BIM and GIS for Representation and Visualization of 3D Cadastre 2019

A BIM Oriented Model to a 3D Indoor GIS for Space Management—A
Requirement Analysis 2019

A Full Level-of-Detail Specification for 3D Building Models Combining
Indoor and Outdoor Scenes 2018

Truss Construction of Green Fabricated Steel Structure Based on BIM
Intelligent Technology 2021

Integrated EDM and 4D BIM-Based Decision Support System for
Construction Projects Control 2022

Supporting Constructability Analysis Meetings with Immersive Virtual
Reality-Based Collaborative BIM 4D Simulation 2018

Impacts of 4D BIM on Construction Project Performance 2021

The Effects of BIM Maturity Level on the 4D Simulation Performance: An
Empirical Study 2021

BIM-Based Framework to Quantify Delays and Cost Overruns Due to
Changes in Construction Projects 2022

4D Modelling Using Virtual Collaborative Planning and Scheduling 2021

Quantity Surveying and BIM 5D. Its Implementation and Analysis Based on
a Case Study Approach in Spain 2021

Implementing 5D BIM on Construction Projects: Contractor Perspectives
from the UK Construction Sector 2020

Machine Learning-Integrated 5D BIM Informatics: Building Materials Costs
Data Classification and Prototype Development 2022

Cash Flow System Development Framework within Integrated Project
Delivery (IPD) Using BIM Tools 2021
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Table A4. Cont.

Title of the Article Publication Year

A BIM-database-integrated system for construction cost estimation 2021

Application of BIM Technology in Construction Cost Management of
Building Engineering 2021

Enhancing Facility Management through BIM 6D 2016

The Adoption of 4D BIM in the UK Construction Industry: An Innovation
Diffusion Approach 2017

4D BIM for Environmental Planning and Management 2017

Integrating BIM and GIS to Improve the Visual Monitoring of Construction
Supply Chain Management 2013

Improving Effectiveness of Safety Training at Construction Worksite Using
3D BIM Simulation 2020

Information Technology and Safety: Integrating Empirical Safety Risk Data
with Building Information Modeling, Sensing, and Visualization
Technologies

2016

An Automated Safety Risk Recognition Mechanism for Underground
Construction at the Pre-Construction Stage Based on BIM 2018

A Research Framework of Mitigating Construction Accidents in High-Rise
Building Projects via Integrating Building Information Modeling with
Emerging Digital Technologies

2021

A Research Framework of Mitigating Construction Accidents in High-Rise
Building Projects via Integrating Building Information Modeling with
Emerging Digital Technologies

2021

Using BIM as a Tool to Teach Construction Safety 2017

Semi-Automatic Construction Hazard Identification Method Using 4D BIM 2021

BIM-Based Framework for Automatic Scheduling of Facility Maintenance
Work Orders 2018

Investigating Benefits and Criticisms of BIM for Construction Scheduling in
SMEs: An Italian Case Study 2018

Recognition of Process Patterns for BIM-Based Construction Schedules 2017

BIM-Based Augmented Reality Inspection and Maintenance of Fire Safety
Equipment 2020

Automated Schedule and Progress Updating of IFC-Based 4D BIMs 2017

Retrieving Similar Cases for Construction Project Risk Management Using
Natural Language Processing Techniques 2017

BIM-Based Risk Identification System in Tunnel Construction 2016

Construction Planning, Programming and Control 2013

Knowledge-Based Schedule Generation and Evaluation 2010

BIM-Integrated Construction Operation Simulation for Just-In-Time
Production Management 2016

Informetric Analysis and Review of Literature on the Role of BIM in
Sustainable Construction 2019

Outlining a New Collaborative Business Model as a Result of the Green
Building Information Modelling Impact in the AEC Supply Chain 2019
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Abstract: Intelligent construction (IC) integrates intelligent technologies with the construction in-
dustry to improve efficiency and sustainability. IC development involves many driving factors, but
only the critical factors play essential roles. Thus, it is necessary to identify these key factors to
understand and promote IC development thoroughly. Although there are many studies on IC-related
technologies, a focus on identifying the driving factors of IC is lacking. We aimed to identify the key
driving factors for IC development, analyze the relationship between the key factors and IC, and
then produce general laws to guide IC by conducting an empirical study in China. We employed
a five-stage research design and proposed the following general laws of how the key factors drive
the development of IC: (1) initially, there exits the opportunity that drives companies to generate IC;
(2) subsequently, the planning and pressure of a firm strategy, structure, and rivalry further drive
companies to try to develop IC; (3) afterward, government policy vigorously promotes IC practices of
the participating companies and accelerates the development of IC; and (4) finally, the market forces
begin to play a leading role, and companies spontaneously carry out IC activities when the policy
effect reaches a certain level. The findings indicate that policies to promote IC development should
be consistent with its development stage, and the key driving factors of different stages should be
paid attention to. Although the context of this study is China, the findings can provide references for
IC’s development globally.

Keywords: intelligent construction; driving factors; driving force theory; Porter Diamond Model;
grey relation analysis

1. Introduction

The global construction industry is booming, prompting both an increase in construc-
tion projects and a demand for intellectual development [1]. Luckily, the application of
emerging technologies has responded to the intellectual development demand. These
emerging technologies in the construction industry usually include the four main kinds of
business digitalization; computer-integrated design; data acquisition, optimization, and
predictive analytics; and robotics and automation [2]. With the increasing application of
these emerging technologies to the construction industry, the intellectual development of
this industry is inevitable [3,4].

At present, the discussion of “the process or product of the construction using emerg-
ing technologies” is mostly limited to “digital construction” [5] or “smart construction” [6]
or “Construction 4.0” [7,8] in developed countries. IC is an innovative development model
that combines emerging technologies with the construction industry under the background
of the new technological revolution [9]. The words “digital construction”, “smart construc-
tion”, “Construction 4.0”, and “intelligent construction” have similar connotations. That is,
emerging intelligent technologies are used in the construction industry to improve quality,
save costs, reduce pollution, and improve the efficiency of the desired processes, further
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promoting industrial upgrading [9]. IC is the key to transforming and upgrading the
construction industry. In July 2020, the “Guiding Opinions on Promoting the Coordinated
Development of Intelligent Construction and Building Industrialization” jointly issued by
13 Chinese government ministries and commissions proposed increasing the application of
IC in all aspects of construction to form an IC industry (the guiding opinions on promoting
the coordinated development of intelligent construction and building industrialization.
http://www.gov.cn/zhengce/zhengceku/2020-07/28/content_5530762.htm, accessed on
8 August 2022).

In recent years, applying emerging technologies in the construction industry has
significantly promoted IC development. Correspondingly, lots of research focuses on
IC-related technologies’ applications in construction, such as BIM [10–12], the Internet
of Things [13,14], 3D scanning and printing [15,16], computer vision [17], and intelligent
equipment [18–20]; and the improvements in safety, quality, scheduling, etc.

The above articles have studied the application of various emerging technologies in
IC development from different perspectives. They have made significant contributions
to promoting IC development, but it is not enough to only focus on IC technology to
promote IC development. IC development is driven by many factors, and some critical
factors play an essential role in its development, such as government policies [9] and a labor
shortage [21]. These factors and their driving effects may also vary with IC development
stages. However, few studies have systematically investigated the driving factors of IC
development. Therefore, clarifying the critical driving factors at different stages and
grasping the fundamental laws that promote IC development will help to explain IC
thoroughly and provide a theoretical basis for guiding IC development in the future.
For example, it could help the government and companies clarify the current focuses of
IC development and provide a basis for the policy formation and practice acceleration.
Due to the importance of research on driving factors of IC development and the lack
of existing research, there is an urgent need to study the driving factors to improve the
construction industry’s performance. Thus, this paper aims to identify the driving factors
for IC development, determine the key factors, analyze the relationship between them
with IC, and finally, explore the general laws for driving IC development and provide
recommendations to promote it.

1.1. Driving Force Theory (DFT)

The concept of “driving force” in physics is mainly used to describe the effect of the
force generated in the driving process of a vehicle [22]. In business, the “driving force”
refers to the force that makes a company move toward the target direction to a specific state
under the internal and external driving environment to achieve a particular goal. Driving
factors influence the driving process [23,24].

With the intersection of disciplines, the basic concept of driving force has also been
extended to the fields of management science [25,26], sociology [27], economics [28], and
environmental science [29]. For example, Chen et al. [25] examined the driving force of
co-evolutionary dynamics between multistage overseas merger and acquisition (M&A)
integration and knowledge network reconfiguration. Pichlak M. [26] contributed to show-
ing the driving force for technological eco-innovation development. Qin Z. et al. [29]
investigated the driving forces of agricultural intensification.

In addition, some scholars have researched explicitly from the perspective of driving
factors, such as the driving factors of innovation systems [30,31], the driving factors of
land use in development zones [32], and the driving factors of the industrialization of new
buildings [33]. In summary, many scholars have researched the driving issues in various
disciplines from the aspects of the driving force, driving environment, and driving factors,
which provide good references for this paper.

Driving force theory provides a good reference and inspiration for this paper. Indus-
trial philosophy theory suggests that any industry’s generation, growth, and maturity are
driven by many factors [34]. IC is no exception. Many factors continue to interact in IC
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development, which restructure IC’s industrial, supply, value, and innovation chains [9].
For IC development, the driving force is the power or impact exerted or imposed on it by
the driving factors such as policy, market, competition among enterprises, and opportu-
nities. The power and impact may have different magnitudes, called driving strengths.
Therefore, identifying these driving factors and their relationships with IC based on the
driving force theory and making targeted improvements are significant to better promoting
IC development.

1.2. Driving Factors of IC Development

The literature review showed very few studies on IC driving factors. However, some
research indirectly reflects the driving forces and factors of IC. For example, Ding [9]
proposed that IC’s application could improve resource utilization efficiency, responded
to customer needs, and met the requirements of sustainable development. In addition,
some research performed some analyses related to IC development, including government
policies [35–37], technology [38–40], labor and professionals [21,41], etc. In this article, we
identify these as the driving factors of IC. Therefore, the initial list of IC driving factors
taken from the literature is shown in Table 1.

Table 1. Initial list of driving factors for the development of IC from previous studies.

Range of Driving Factors Literature Reference

Perfection and matching of laws, regulations, and
standard systems Liu et al. [35], Mao & Zhang [36], Okpala et al. [37]

Government support and incentive policies Liu et al. [35], Ding [9], Yue & Li [42], Zhou & Wu [43]
Demonstration projects Zhang et al. [44], Lin et al. [45], Yang et al. [46], Fan Q.et al. [47]
The dilemma of traditional construction methods Ding [9], Memari et al. [48], Zhou et al. [49];
Market and consumer demand Ding [9]
Corporate Strategy Ding [9], Mao & Zhang [36].
The intelligent technology application system Okpala et al. [38], Ogunrinde et al. [39], Shi et al. [40]
Support for the industrial system Mao & Zhang [36]
Talent training system Kim et al. [21], Heravi & Eslamdoost [41], Liu et al. [50]

The studies above mentioned some factors that drive IC development from different
angles, but they were not systematic or complete. Based on driving force theory, this article
innovatively and systematically studies the driving factors that promote IC development
and provides suggestions.

We arranged this paper as follows: the second section introduces the research method,
the third section presents the research results, the fourth section provides the discussion
and suggestions, and finally, the conclusions are reached.

2. Research Methodology

Many factors drive IC development, but only a few driving factors play a critical role.
In addition, IC development is a gradual process, and its degree of development is related
to the driving strength. Generally, when the driving strength is low, the company will be
unwilling to carry out activities related to IC, and it is difficult for IC to develop. On the
other hand, as the driving strength gradually increases, companies become more active,
and IC gradually grows and matures. Moreover, the driving factors that play crucial roles
are not the same with different driving strength levels. Therefore, it is imperative to clarify
the critical driving factors at various levels, grasp the focuses of IC development in different
stages, and drive its development.

Based on the research purpose and the above analysis, we designed the five-stage,
comprehensive approach shown in Figure 1. First, we identified and determined the
driving factors through a literature review and an expert symposium in stages one and two;
secondly, we introduced Porter Diamond Model (PDM) to classify the driving factors based
on its advantages in stage three; thirdly, we carried out the investigation in stage four; and
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finally, we determined the relationships between the factors and IC development based on
grey relation analysis (GRA) according to their use in solving problems in stage five.

 

Figure 1. Five-stage research protocol.

2.1. Stage One—Identifying Possible Driving Factors through a Literature Review

This stage involved a literature review for identifying driving factors affecting IC de-
velopment. First, we searched for the relevant literature published between 2010 and 2021
across various databases with the keywords “intelligent construction”, “smart construc-
tion”, “digital construction”, “construction industry development”, “emerging technologies
in construction”, etc., and we roughly searched for literature related to driving factors.
Eighteen papers were selected. Next, we closely examined the literature to identify the
possible factors. A list of nine driving factors for IC development drawn from the literature
review is presented in Table 1. These nine factors formed an initial list of factors.

2.2. Stage Two—Refining and Enriching the Driving Factors through an Expert Symposium

The objective of this stage was to identify the driving factors that specifically facilitated
IC implementation in China. After the preliminary identification, we held an expert
symposium to refine and optimize the driving factors identified. First, we set the criteria
for selecting experts to ensure the quality of the symposium. These experts were to be
representative and authoritative. They worked in all aspects of construction activities
along the construction lifecycle, and had rich knowledge and practical experience in the
construction industry. In addition, they were to have a certain influence in the industry
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and have professional insights into Chinese IC development status. Secondly, we invited
experts under the set standards through various channels, explained the purpose and
significance of this research to them in advance, and won their support. Among the invited
experts, six were from design, construction, supervision, and maintenance companies; four
were government officials; and five were scholars involved in IC. All invited experts had
more than ten years of experience. Then, we held a symposium to discuss IC driving factors
in China.

The symposium adopted a hybrid method and was divided into two stages. The
first stage used the brainstorming method. The reason for choosing to brainstorm is that
these experts were able to discuss in an unrestricted atmosphere, think positively, inspire
each other, brainstorm ideas, and fully express their opinions [51]. With the brainstorming
method, we can produce high-quality, creative results. In the second stage, the content of
the first stage was fully discussed. Finally, a consensus was reached, and a more consistent
conclusion was obtained.

The main task of the symposium included disassembling, enriching, and supplement-
ing the driving factors. Some factors were subdivided and disassembled. For example,
the role of the government was subdivided into “financial subsidies and tax incentives
for IC technology”; “rewards for IC projects”; “mandatory standards in the approval of
planning and design schemes” to align with China’s situation. Some factors were classified.
For example, “government support and incentive policies” and “demonstration projects”
were both government-led policy incentives in China and were classified into one category
to avoid omission during the optimization. In addition, some factors were enriched and
supplemented. For example, some other factors not covered by the nine initial factors were
added, such as the reduction of pollution, green development, and less labor that China has
advocated for in recent years. Finally, we identified 30 driving factors through the expert
symposium, as shown in Table 2.

Table 2. Driving factors of IC development.

Code Driving Factors

1 The necessity for gradual improvement of the construction industry’s industrial structure
2 Innovation and reform of upgrading of the construction industry
3 Severe pollution from construction solid waste
4 Enormous noise pollution during construction
5 Severe air pollution during construction
6 The necessity to improve the existing construction technology
7 Possible economic benefits of IC
8 Willingness to transform the construction process management
9 Decision-makers’ expectations for IC benefits
10 Decision-makers’ requirements for the construction period and quality
11 Level of decision-makers’ awareness of sustainable development
12 Long-term strategic goals for decision-makers
13 Company’s resource investment in IC
14 Anticipation of potential market opportunities in the future
15 Competitiveness of related companies
16 Promotion and application of IC technology
17 Financial guarantee for the research and development of IC technology
18 IC technical staffing
19 Building materials and energy consumption
20 Lack of labor force
21 Consumers’ needs and preferences for IC
22 Consumers’ awareness and understanding of IC
23 Market access system for IC
24 Low labor productivity in the construction industry
25 Continuous increase in labor costs
26 Increase in the number of prefabricated component factories
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Table 2. Cont.

Code Driving Factors

27 Information technology serves industry development
28 Financial subsidies and tax incentives for IC technology
29 Rewards for IC projects
30 Mandatory standards in the approval of planning and design schemes

2.3. Stage Three—Classifying Driving Factors through PDM

The objective of this stage was to categorize 30 factors based on the perspective of
industry development, which was conducive to a structured questionnaire survey and the
analysis below.

PDM, as a theoretical model, explains why the industry is competitive and is widely
used in research on competitive advantages in industry [52–55]. It states that four elements
determine the development of a specific industry: factor conditions; demand conditions;
related and supporting industries; and firm strategy, structure, and rivalry. In addition,
there are two variables: opportunity and government, both of which are closely related
to the development of the entire industry and affect four significant factors (see Figure 2).
Therefore, PDM is also used for the analysis of the characteristics of factors [27,56,57].

Figure 2. Porter Diamond Model (source: Porter, M. E. [52]).

Based on PDM, the four elements and two variables in IC development were iden-
tified as follows: (1) Opportunity refers to the construction industry urgently needing to
transform and upgrade the status quo, and IC has the advantages of high efficiency and
sustainability; (2) the firm strategy, structure, and rivalry refer to the corporate strategy and
organizational structure of the company formulated for the development of IC. In addi-
tion, competition in the same industry affects some factors, such as the decision-making
and market share of the company; (3) the factor conditions mainly refer to the primary
conditions required for IC, including natural resources, infrastructure, human resources,
etc.; (4) the demand conditions refer to the market’s demand for IC; (5) the related and
supporting industries refer to the synergy between upstream and downstream companies
of IC; and (6) government actions and government policies form the governmental roles:
participating in IC projects, leading the development of IC projects, promoting market
demand, promoting industrial development, etc.

Based on the definitions of the four elements and two variables in PDM, the 30 driving
factors were classified in Table 3.
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Table 3. Classification of driving factors for the development of IC.

Category Driving Factors

Opportunity

The necessity for gradual improvement of the construction industry’s industrial structure
of (OT1)
Upgrading innovation and reform of the construction industry (OT2)
Severe pollution from construction solid waste (OT3)
Enormous noise pollution during construction (OT4)
Severe air pollution during construction (OT5)
The necessity to improve the existing construction technology (OT6)
Possible economic benefits of IC mode (OT7)

Firm strategy, structure, and rivalry

Willingness to transform the construction process management (FS1)
Decision-makers’ expectations for the benefits of IC (FS2)
Decision-makers’ requirements for the construction period and quality (FS3)
Level of decision-makers awareness of sustainable development (FS4)
Long-term strategic goals for decision-makers (FS5)
Company’s resource investment in IC (FS6)
Anticipation of potential market opportunities in the future (FS7)
Competitiveness of related companies (FS8)

Factors conditions

Promotion and application of IC technology (FC1)Financial guarantee for the research and
development of IC technology (FC2)IC technical staffing (FC3)
Building materials and energy consumption (FC4)
Lack of labor force (FC5)

Demand conditions
Consumers’ needs and preferences for IC (DC1)
Consumers’ awareness and understanding of IC (DC2)
Market access system for IC (DC3)

Related and supporting industries

Low labor productivity in the construction industry (RS1)
Continuous increase in labor costs (RS2)
Increase in the number of prefabricated component factories (RS3)
Information technology serves industry development (RS4)

Government
Financial subsidies and tax incentives for IC technology (GM1)
Rewards for IC projects (GM2)
Mandatory standards in the approval of planning and design schemes (GM3)

2.4. Stage Four—Empirical Investigation through the Questionnaire

We developed a questionnaire in this stage to obtain empirical data to determine the
critical factors by surveying a vast pool of construction experts and practitioners. Excluding
the initial respondent information, the questionnaire was divided into six parts according
to the driving factors, and the 30 questions corresponded to the 30 driving factors. These
respondents were required to rate the strengths of the identified IC driving factors using a
five-point Likert scale with options ranging from “1” to “5”, with “1” being the weakest
rating and “5” being the highest rating. At the beginning of the questionnaire, we explained
the definition and scope of IC to ensure understanding by the respondents.

This research adopted a simple random sampling method to conduct surveys us-
ing relevant personnel in high, medium, and low positions from organizations related
to IC development, such as construction companies, research institutions, government
departments, and IC technology developers, scattered in different cities in China. We
distributed the questionnaires online via a Web-based platform. At the end of the survey,
150 questionnaires were returned, and 132 had valid data.

As is shown in Table 4, 100% of the respondents were Chinese. The findings also
show that 10.61% of respondents were senior management staff, 45.45% were middle-level
management staff, and 43.94% were low-level management staff in their organizations.
Further analysis of their work experience revealed that 78.03% of the respondents possessed
a minimum of 5 years of experience in the construction industry, and 16.67% had more
than twenty years of experience. In addition, 92.42% of the respondents acknowledged
they understood IC above a moderate level. We designed this question to obtain the re-
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spondents’ subjective personal views on IC to judge the respondents’ background. Besides
the respondents’ information, we got empirical data to analyze in stage five.

Table 4. Respondent’s characteristics.

Category Characteristic Frequency Percentage (%)

Nationality China 132 100

Organization

Construction companies 44 33.33
Research institutions 67 50.76

IC technology development company 3 2.27
Construction Industry Association 0 0

Government departments 5 3.79
Other 13 9.85

Position level
Senior management 14 10.61

Middle-level management 60 45.45
Low-level physical operators 58 43.94

Working years

Less than five years 29 21.97
5–10 years 31 23.48

10–20 years 50 37.88
More than 20 years 22 16.67

Level of
understanding of IC

Thoroughly understand 8 6.06
Understand 56 42.42

Moderately understand 58 43.94
Slightly understand 9 6.82

Does not understand 1 0.76

2.5. Stage Five—Determine the Critical Driving Factors through Grey Relation Analysis (GRA)

Not all 30 driving factors described above play a key role in IC development. Identi-
fying the key driving factors in various stages of IC development is beneficial for policy
formulation and corporate strategic planning in IC development.

GRA is specially applied in fuzzy problems with uncertain relations [58–60]. It is an
analysis method that measures the importance of factors by using the order of the relevance
degree influenced by other factors. For example, it is used in measuring sensitive factors
for landslides and concrete structures’ durability [61,62], travel modes and their influence
factors [63], and sources of risk for abnormal driving on expressways in a port city [64]. This
research was carried out the survey data by grey relation analysis to measure the driving
factors and the relationships between the critical driving factors and IC development.

First, we accumulated the evaluation results under different factors’ driving strengths.
Therefore, we obtained five sets of cumulative data from the lowest to the highest driving
strength. We performed the grey correlation analysis as follows:

The reference sequence X0 or the development status of IC, also known as the parent
sequence, was established.

The comparison series xi(k) using the 30 driving factor indicators, in which i =
1, 2, . . . , 30, k = 1, 2, . . . , 5, was set.

Data collection was initialized and calculated, as shown in Formula (1):

Xi(k) =
xi(k)
xi(1)

(1)

The correlation coefficient between the reference sequence and the comparison series
was calculated—that is, the driving effect of each driving factor on the development of
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IC under different driving strengths. The correlation coefficient ξi(k) was calculated with
Formula (2), where the resolution factor is generally taken as ρ = 0.5 [3,65]:

ξi(k) =
min

i
min

k
|X0(k)− Xi(k)|+ ρ max

i
max

k
|X0(k)− Xi(k)|

|X0(k)− Xi(k)|+ ρ max
i

max
k

|X0(k)− Xi(k)| (2)

The grey relationship degrees were arranged from small to large. The calculated grey
relationship degree is a relative weighted value. When the value is large, it indicates that
the factor is essential, and the designer should focus on it. In contrast, the smaller the value
is, the less critical the factor, which can be temporarily considered an unimportant reference
under cost.

3. Results

The comparison of driving factors considering five levels of driving strength was
calculated through GRA, and the results are shown in Table 5.

Table 5. Driving effects of the driving factors for IC development.

Code Category Driving Factors
Driving Strength

5 (Highest) 4 3 2 1 (Lowest)

1

Opportunity

OT1 0.183 0.496 0.784 0.958 1
2 OT2 0.173 0.593 0.791 0.972 1
3 OT3 0.203 0.426 0.701 0.885 1
4 OT4 0.208 0.412 0.654 0.891 1
5 OT5 0.201 0.412 0.686 0.899 1
6 OT6 0.191 0.478 0.782 0.961 1
7 OT7 0.251 0.543 0.837 0.961 1

8

Firm strategy,
structure,

and rivalry

FS1 0.156 0.537 0.832 0.973 1
9 FS2 0.199 0.600 0.849 0.921 1
10 FS3 0.248 0.539 0.877 0.948 1
11 FS4 0.236 0.512 0.791 0.953 1
12 FS5 0.188 0.527 0.852 0.929 1
13 FS6 0.232 0.448 0.671 0.889 1
14 FS7 0.244 0.590 0.866 0.946 1
15 FS8 0.226 0.501 0.793 0.855 1

16

Factors
conditions

FC1 0.242 0.506 0.847 0.949 1
17 FC2 0.219 0.489 0.721 0.952 1
18 FC3 0.169 0.489 0.729 0.939 1
19 FC4 0.144 0.452 0.783 0.931 1
20 FC5 0.319 0.661 0.831 0.946 1

21
Demand

conditions

DC1 0.240 0.483 0.700 0.90 1
22 DC2 0.174 0.456 0.700 0.85 1
23 DC3 0.221 0.496 0.781 0.877 1

24
Government

GM1 0.248 0.631 0.815 0.923 1
25 GM2 0.218 0.658 0.796 0.908 1
26 GM3 0.246 0.614 0.773 0.901 1

27
Related and
supporting
industries

RS1 0.342 0.531 0.831 0.959 1
28 RS2 0.371 0.672 0.860 0.963 1
29 RS3 0.212 0.532 0.805 0.920 1
30 RS4 0.241 0.530 0.819 0.936 1

According to the GRA method, the index value in each column in Table 5 represents
the closeness of the correlation between the factor and the driving strength, which is a
relative value and reflects the degree of the driving effect. As at level 1, each factor is not
closely related to the driving degree, this column was set as the reference sequence, and
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the value was set to one during the calculation process. From level 2 to level 5, the close
relationship changes. Therefore, we can compare the values of each column vertically.

Table 5 shows that the different driving factors have different driving effects under
various driving strength levels. For example, at level 2 of driving strength, the 30 driving
factors have different driving effects. Among them, FS1 ranks number 1 with the value
of 0.973, and OT2 ranks number 2 with the value of 0.972. Therefore, we can obtain the
critical driving factors under different driving strengths. To achieve this aim, we sorted and
analyzed the top ten driving factors with the most apparent driving effects under different
driving strength levels, as shown in Figure 3.

 

 

 

 

Figure 3. Ranking of critical driving factors under different drive strengths.

We draw the following conclusions about the relationships between the critical driving
factors and IC development based on Figure 3:
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(1) Under level 2 driving strength, four key driving factors belong to the category
of opportunity; two key driving factors belong to the category of firm strategy, structure,
and rivalry; two key driving factors belong to the category of factor conditions; and two
key driving factors belong to the category of related and supporting industries. Among
them, “the willingness to transform the construction process management” and “upgrading
innovation and reform of construction industry” have the most significant impacts.

(2) Under level 3 driving strength, five key driving factors belong to the category
of firm strategy, structure, and rivalry; two key driving factors belong to the category of
factor conditions; two key driving factors belong to the category of related and supporting
industries; and one key driving factor belongs to the category of opportunity. Among
them, decision-makers’ requirements on the construction period and quality have the
greatest impact.

(3) Under level 4 driving strength, three key driving factors belong to the category
of government; two key driving factors belong to the category of firm strategy, structure,
and rivalry; two key driving factors belong to the category of opportunity; two key driving
factors belong to the category of related and supporting industries; and one key driving
factor belongs to the category of factor conditions. Among them, the continuous increase
in labor costs, the lack of a labor force, and the rewards for IC projects have the most
significant impacts.

(4) Under level 5 driving strength, the numbers of key driving factors under the
element categories are balanced. The continuous increase in labor costs has the most
significant impact and has opened a gap for other key driving factors.

4. Discussion

4.1. The General Laws for Driving IC Development

We found a certain regularity for various driving factors driving IC development. That
is, the stage of IC development impacts driving strength levels, and the critical driving
factors that play leading roles change with the stage, as shown in Figure 4.

Figure 4. Key factors that play leading roles at different driving strengths.

(1) To drive IC development, the driving factors of opportunity are essential to achieve
driving strength of level 2. Level 2 is a low driving strength level which can only trigger
the initial motivation for the company to engage in IC. As an advanced construction mode,
IC can solve the development difficulties of the traditional construction mode. Therefore,
IC presents a significant opportunity for companies in the construction industry and is
involved in the industry’s development trends.
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(2) When the company has the initial motivation, the factors of firm strategy, structure,
and rivalry are critical to reaching level 3 driving strength. Upon reaching level 3, the com-
pany will transform the motivation for IC into practice. The company needs to recognize
and respond to industry trends and transform its motivations into corporate practices. This
is mainly affected by the firm’s strategy, structure, and rivalries, which include factors such
as the company’s expectations for future potential market opportunities, the expectations
of decision-makers for IC benefits, the willingness to transform the construction process,
the long-term strategy for company development, and cooperation and competition with
peer companies.

(3) When the company attempts to implement IC practices further, the factors of
government are essential for achieving level 4 driving strength. Driven at this level, the
company is genuinely implementing IC practices in a wait-and-see state of practice. The
government plays a key role. The survey data and the IC status quo in China show that
most IC practices depend on government policies. On the one hand, government policies
force all companies to develop IC. On the other hand, they provide preferential subsidies
and policy support to encourage companies to develop IC. The government’s policies offer
guarantees for companies with specific motives.

(4) When a company develops IC on a large scale, the market will play a huge role. The
pursuit of interests by the company drives IC development. The direct economic factors
driving the company to conduct IC activities spontaneously are essential indicators of
achieving level 5 drive strength. For example, it is difficult to achieve the quality, cost, and
construction period goals of construction products with traditional construction methods,
resulting in a decline in corporate profits, reduced competitiveness, and even corporate
decline. Therefore, companies will spontaneously practice IC based on its advantages
for improving efficiency and quality, resource-friendliness, and sustainable development
under the pressure of pursuing profits.

IC development under the influence of driving factors is a gradual and regular process.
First, there must be an opportunity to drive the company’s willingness to conduct IC.
Second, the corporate strategy, structural adjustment, and competition in the industry
drive companies to try more to develop IC. Furthermore, the support of the government
vigorously promotes IC practices. When the government guides this promotion to a certain
level, the market begins to play a leading role, so companies spontaneously carry out IC
activities because economic interests drive them. This analysis is in line with the general
state of China’s IC development.

4.2. Suggestions for IC Development

At present, opportunities already exist for IC development in Chinese companies. On
the one hand, most companies are aware of the development prospects of IC. A few of
them have raised IC to the level of corporate strategy. On the other hand, although labor
costs and shortages have become irreversible trends, the current impact on profits is still
within the company’s bearable range. However, Chinese construction companies have
always been confined to traditional production methods and lack industrialization and
digital development.

IC implementation requires substantial input and investment, but whether IC can
generate more profits for companies remains to be further investigated. Therefore, some
companies still doubt IC and are in a wait-and-see state. Under the above environmental
characteristics, government policies are currently the most critical driving factor. Therefore,
stimulating companies’ vitality and promoting them to transform their wishes into IC
practices will be the most direct and effective way to drive China’s IC development.

There are significant differences in various regions of China regarding IC development.
Due to diverse and complex regional development conditions, construction companies have
apparent differences in development planning, innovation capabilities, willingness, and
strength to develop IC. As the Chinese government has issued corresponding guidelines,
some regional governments have actively formulated implementation opinions to respond.
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However, some regions are not sensitive to these policies and trends, which leads to uneven
regional development. Local governments and companies should adjust local policies,
perceive the regional IC development status, seize opportunities, and clarify the current
key driving factors. The government must play important guiding and supporting roles,
and companies should formulate strategic plans.

Based on the above analysis, this paper proposes the following policy strategies:
(1) Understand the general laws driving IC development. It is necessary to understand

the key driving factors at different stages of IC development, employ the driving role for
its maximum utility, and vigorously promote the IC development process.

(2) Emphasize the role of government policies. The government must ensure and
encourage relevant entities to practice IC, develop and improve the market, establish a
long-term force to promote IC development, and make corresponding policy adjustments
according to IC development status to form a virtuous environment.

(3) Implement various IC development strategies. Different regions must formulate
suitable IC development plans and policy choices according to their characteristics and
foundations. That is, they should take different implementation priorities according to
their conditions.

5. Conclusions

IC is the key to adapting to the intellectual development trends of the global construc-
tion industry. The advancement of IC involves multiple factors and is inseparable from
the driving forces of various driving factors. However, a focus on identifying the driving
factors and the relationships between these factors and IC development was lacking. In
this manuscript, we designed a five-stage method to compensate for this research gap. We
obtained the key driving factors and arranged them, and we summarized and compared
the key factors of levels 2–5. On this basis, the general laws that drive IC development
were outlined and confirmed in combination with the current situation in China. Finally,
we put forward relevant policy recommendations.

This paper contributes to identifying and determining the critical driving factors for
IC development and clarifying the general laws of the relationship among them. It will
help the government and companies understand the current focus of IC development and
provide a basis for the policy formation and practice acceleration. This paper achieves the
following:

(1) Identification of driving factors from the literature, which were refined and enriched
through an expert symposium, and categorized based on PDM;

(2) Analysis of the key driving factors of IC development in China through the GRA
method and clarification of the relationships between the key driving factors and the stages
of IC development under different driving strength levels;

(3) Summarization of the general laws of the driving effect on IC development;
(4) Recommendations for IC development based on the general law, combined with

the analysis of the current overall development status and regional development status of
IC in China.

Even though the analysis of driving factors was performed from the Chinese perspec-
tive, some basic principles apply to many other countries, especially some developing
countries, as the external environment of IC development is similar. Moreover, IC develop-
ment all of over the world also follows some similar general rules. Therefore, the global
construction industry can leverage the outcomes of this study.

At the same time, this manuscript did limit its range of applicability with its focus.
Differences exist in IC development in the various countries of the world, and even different
regions in the same country may have significant differences. Therefore, countries and
regions should adapt to local conditions, understand their IC development status, identify
the current critical driving factors, and take different measures to deal with them. Future
research can investigate the driving factors of specific countries or regions of the world and
conduct comparative studies.
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Abstract: The intelligent design method based on generative adversarial networks (GANs) represents
an emerging structural design paradigm where design rules are not artificially defined but are
directly learned from existing design data. GAN-based methods have exhibited promising potential
compared to conventional methods in the schematic design phase of reinforced concrete (RC) shear
wall structures. However, for the following reasons, it is challenging to apply GAN-based approaches
in the industry and to integrate them into the structural design process. (1) The data form of
GAN-based methods is heterogeneous from that of the widely used computer-aided design (CAD)
methods, and (2) GAN-based methods have high requirements on the hardware and software
environment of the user’s computer. As a result, this study proposes an integrated schematic design
method for RC shear wall structures, providing a workable GAN application strategy. Specifically,
(1) a preprocessing method of architectural CAD drawings is proposed to connect the GAN with
the upstream architectural design; (2) a user-friendly cloud design platform is built to reduce the
requirements of the user’s local computer environment; and (3) a heterogeneous data transformation
method and a parametric modeling procedure are proposed to automatically establish a structural
analysis model based on GAN’s design, facilitating downstream detailed design tasks. The proposed
method makes it possible for the entire schematic design phase of RC shear wall structures to be
intelligent and automated. A case study reveals that the proposed method has a heterogeneous data
transformation accuracy of 97.3% and is capable of generating shear wall layout designs similar to
the designs of a competent engineer, with 225 times higher efficiency.

Keywords: intelligent structural design; generative adversarial networks; parametric modeling;
reinforced concrete shear wall structures; schematic design

1. Introduction

Intelligent structural design is an essential aspect of the fourth industrial revolution in
the architecture, engineering, and construction (AEC) sector [1–3]. A reinforced concrete
(RC) shear wall structure is an effective lateral force-resistant structural system commonly
employed in high-rise residential buildings and is an important research object in intelligent
structural design [4,5]. Schematic design is the first step in the structural design of RC shear-
wall structures, which mainly involves the spatial layout of the primary force-transmitting
components, including shear walls and beams. It is an essential basis for subsequent
detailed design tasks and significantly impacts the final design outcomes [6].

Currently, the schematic design is usually manually completed by experienced engi-
neers, resulting in low design efficiency and high labor costs. Existing intelligent schematic
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design methods can generally be separated into rule-based and learning-based meth-
ods [7,8]. Rule-based methods rely significantly on user-defined design rules, which tend
to be less effective for complex real-world problems. Additionally, the length of time they
require (usually several hours to dozens of hours) hinders their application in the indus-
try. In contrast, learning-based methods do not require artificially defined explicit design
rules but can automatically discover and master design laws from existing design data.
Moreover, they have the advantage of extremely high design efficiency in the application
stage [8,9]. As a typical representative of learning-based methods, generative adversar-
ial networks (GAN)-based methods have recently made substantial strides in intelligent
structural design. Existing studies have shown that GAN-based methods can effectively
learn from existing design data and efficiently complete structural designs. The overall
performance of the structures designed by GANs is close to that of structures designed by
engineers [10–14].

However, several obstacles prevent existing GAN-based methods from being effec-
tively applied in the industry. (1) GANs are based on computer vision techniques, and
their inputs are in the form of pixel images. Consequently, GANs cannot directly perform
structural designs based on the architectural computer-aided design (CAD) drawings com-
monly used in the industry. (2) GANs have a high requirement in terms of the computer
environment. In terms of software, a deep learning framework and dependent libraries
are needed. In terms of hardware, a graphics processing unit (GPU) is needed to achieve
high design efficiency. (3) The outputs of GAN-based methods are also pixel images,
where structural design-related information is unstructured data, making it challenging to
establish the structural analysis model required for subsequent detailed design tasks.

This study focuses on the above research gaps and proposes a systematic solution,
i.e., an integrated schematic design method based on GAN, as shown in Figure 1. First,
a preprocessing method for architectural CAD drawings is proposed. Second, a cloud
design platform is built based on the concept of software as a service (SaaS). Third, a
high-precision data transformation method is proposed for transforming pixel images
into structured data. Subsequently, a parametric modeling procedure is constructed to
establish the structural analysis model. The proposed method can be easily embedded
in the existing structural design process and can automatically complete the schematic
design task traditionally manually finished by engineers. It should be noted that, at present,
the structural designs are mainly stored in the form of 2D CAD drawings in China, and
mainstream building information modeling software (e.g., Revit) supports exporting 3D
models into 2D drawings. Therefore, this study takes 2D CAD drawings as the input of the
structural design workflow.

Figure 1. Traditional and proposed workflows of schematic design.
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The remainder of this study is organized as follows. Section 2 is the literature review.
Section 3 presents the framework of the integrated schematic design method. Section 4
introduces the preprocessing method of architectural CAD drawings. Section 5 introduces
the intelligent design method based on GANs. Section 6 introduces the heterogeneous data
transformation method and the parametric modeling procedure. A typical case study using
the proposed method is presented in Section 7. Finally, conclusions are drawn in Section 8.

2. Literature Review

2.1. Learning-Based Structural Design Method

In recent years, machine learning has been extensively applied in the AEC sector [2].
As a novel paradigm, the machine learning-based structural design method has attracted
substantial attention [7–9]. Compared with traditional rule-based methods, it can auto-
matically discover and master design rules from existing design data without artificially
defining them. Additionally, once the machine learning model is trained, it has the advan-
tage of extremely high design efficiency. For example, Almasabha et al. [15] used several
machine learning algorithms in the design of shear links for steel buildings; Zheng et al. [16]
adopted artificial neural networks to speed up the topological design of shell structures;
and Chang and Cheng [17] applied graph neural networks in the structural optimization of
framed structures.

More recently, breakthroughs have been made in structural design methods using
computer vision techniques, particularly GANs [18]. A GAN consists of a generator and
a discriminator, where the generator strives to generate real-looking designs to fool the
discriminator, and the discriminator tries to discriminate between real and fake designs. In
a game between the two, the generator can learn to generate realistic designs after Nash
equilibrium is reached. Liao et al. [10] and Pizarro et al. [11] effectively applied GANs to the
shear wall layout design. Liao et al. [12] further proposed a “fused-text-image-to-image”
GAN to consider the influence of design conditions on an intelligent structural design.
Zhao et al. [13] expanded the applicability of GANs to the beam–slab system of shear wall
residential buildings. Liao et al. [10] and Zhao et al. [13] evaluated the structural design
performance of GANs using the intersection over union (IoU) of model-generated and
engineer-designed structural pixel images. However, this evaluation method measures
unstructured pixel-by-pixel consistency, which is not equivalent to the structural layout
consistency on which the schematic design task focuses. Meanwhile, the performance of
solely data-driven GANs depends on the quality and quantity of the training data, which
limits their applications [10,12]. Consequently, Lu et al. [14] further embedded physical
mechanisms into GANs and proposed a physics-enhanced GAN for the shear wall layout
design. The physics-enhanced GAN features better interpretability, and its performance
is less affected by training data. However, the inputs and outputs of the above method
are still in the form of pixel images, limiting its embedment in the existing structural
design process.

2.2. Parametric Modeling

Parametric modeling is a crucial tool for automated structural design, which can signif-
icantly improve design efficiency [19] and potentially benefit design creativity [20]. Existing
studies have offered various parametric design systems that can automatically search for
optimal solutions by combining optimization algorithms with parametric models [21–24].
However, these methods require structured design data as input and are difficult to apply
to the unstructured design data obtained by GAN-based methods.

2.3. Transformation between Pixel Image and Structured Design Data

The input and output of the GAN-based method are unstructured pixel images, but
structured design data are commonly used in the structural design process. In practical
applications, it is necessary to convert the structured design data (architectural CAD draw-
ing) into an architectural pixel image (GAN’s input) and then convert the structural pixel
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image (GAN’s output) into structured design data (structural analysis model). Pizarro
and Massone [25] proposed a method to extract the polygons of wall contours from archi-
tectural CAD drawings, but the error rate was around 15%, requiring manual inspection
and correction. To establish the structural analysis model from the structural pixel image,
Lu et al. [14] proposed a vectorization method for pixel images of shear walls, but the
accuracy was unsatisfactory, resulting in errors and missing elements frequently. Therefore,
there is still a lack of high-precision preprocessing and heterogeneous data transformation
methods for GAN-based methods.

3. Framework

The proposed integrated schematic design method based on GAN for RC shear wall
structures is shown in Figure 2. It can complete structural design and establish structural
analysis models according to the architectural CAD drawings and design conditions within
10 min, accomplishing the intelligent and automated design of RC shear wall structures.
The proposed method includes the following modules.

 
Figure 2. Key modules of the proposed integrated schematic design method.

(1) Preprocessing of architectural CAD drawings: Figure 2a shows the extraction of ar-
chitectural elements using the AutoCAD plugin GANIO developed based on the
AutoCAD application programming interface (API) using C# [26]. GANIO can au-
tomatically identify and extract essential architectural elements (i.e., partition walls,
doors, and windows) and output their coordinates. Engineers can also check and
adjust the extraction results through human–computer interaction. Subsequently,
the architectural pixel image can be generated based on the architectural element
coordinates. This process requires approximately 5 min.

(2) Generation of structural schematic design: Figure 2b shows the cloud design platform
developed based on SaaS, which can swiftly generate a schematic design of the shear
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wall structure. After the architectural pixel image is uploaded, the cloud platform
inputs it into the pre-trained GAN deployed on the cloud server. The GAN generates
the corresponding structural pixel image in seconds and outputs it to the cloud
platform for users to download. This process requires approximately 1 min.

(3) Establishment of structural analysis model: Figure 2c shows the automatic modeling
from the pixel image to the structural analysis model. First, identify and extract the key
structural elements in the structural pixel image and obtain their coordinates. Next,
utilize the parametric modeling software Swallow (ESD) [27], developed based on the
Grasshopper API, to import structural element coordinates and establish a parametric
model according to a predetermined modeling procedure. Finally, export the para-
metric model to ETABS for structural analysis. This process requires approximately
2 min.

It should be noted that the floor area affects the time consumption of the preprocessing
of architectural CAD drawings and the establishment of a structural analysis model. Their
time consumption mentioned above is based on a common RC shear wall structure with a
floor area of around 500 m2. The time consumption of the generation of structural schematic
design is affected by the hardware performance and bandwidth of the cloud server. Its
time consumption mentioned above is based on a common cloud server equipped with
one Intel ® Xeon ® E5-2682 v4 CPU (two cores, 2.5 GHz), one NVIDIA P4 GPU (8 GB), and
a bandwidth of 1 Mbps.

4. Preprocessing of Architectural CAD Drawings

Architectural CAD drawings contain numerous elements, as shown in Figure 2a.
However, the elements related to structural design are sparse, mainly including three
categories: partition walls (where shear walls can be positioned), doors, and windows
(where shear walls cannot be positioned) [10,14]. To enable deep neural networks to extract
the key features of architectural design and avoid the influence of irrelevant data, Liao
et al. [10] proposed an architectural design representation method using semantic pixel
images, extracting the key elements in the architectural CAD drawing and representing their
categories with different colors in the RGB pixel image. However, manually completing
these operations is inefficient, prone to errors, and unrealistic for industrial applications.
Therefore, this study develops a CAD plugin, GANIO, based on the AutoCAD API [26],
which can automatically extract and output the axis coordinates of critical elements. The
coordinates are also used in Section 6.1 for the automatic identification and extraction of
shear walls in semantic structural pixel images.

Specifically, the user interface of the GANIO plugin, depicted in Figure 3a, has three
major functions: parameter setup, axis extraction, and coordinate export. The first step
involves setting up six parameters. The first three are the maximum wall thickness, mini-
mum wall thickness, and minimum wall length. These parameters are the thresholds for
determining whether an element is a partition wall. The remaining three parameters are
the layer names of the partition wall, door, and window. GANIO extracts the correspond-
ing elements from a specified layer. The second step is to select the target elements and
click on the “Extraction” button. GANIO locates key elements by matching parallel lines,
calculates the coordinates of their axes, and draws the axes on a new layer. Engineers can
check and adjust the extracted axes using an AutoCAD user interface. The third step is
to select the extracted axes and click on the “Export” button. The axis coordinates of the
key architectural elements are exported in a readable text format. Finally, according to the
coordinates and categories of the key elements, Python-OpenCV is used to represent the
key elements as RGB pixel images, as shown in Figure 3b. Distinct categories of elements
are represented by different colors: the partition wall is gray (RGB = (132, 132, 132)), the
door is blue (RGB = (0, 0, 255)), and the window is green (RGB = (0, 255, 0)).

198



Buildings 2022, 12, 1295

 

Figure 3. Preprocessing of architectural CAD drawings (the user interface of GANIO is in Chinese,
and the figure is translated into English for convenient reading).

5. Intelligent Structural Design Based on GANs

5.1. Physics-Enhanced GAN

Experience and mechanics are two indispensable aspects of structural design. This study
adopts the physics-enhanced GAN proposed by Lu et al. [14] (referred to as StructGAN-PHY)
to generate the structural schematic design. The architecture of a conventional data-driven
GAN is shown in Figure 4a (referred to as StructGAN), which only comprises a generator
and a discriminator [10]. The architecture of StructGAN-PHY is shown in Figure 4b. Apart
from a generator and a discriminator, StructGAN-PHY also comprises a physics evaluator.
The generator generates a structural design according to the architectural design and
design conditions. The discriminator judges whether the generated structural design is
real or fake and forms an image loss LG−img, which is fed back to the generator to improve
the image quality of its designs. Meanwhile, the physics evaluator predicts the physical
performance of the generated structural design considering the design conditions and
forms a physics loss LG−PHY, which is fed back to the generator to improve the physical
performance of its designs. The loss functions of the generator and discriminator are shown
in Equations (1) and (2), respectively. The generator, discriminator, and physics evaluator
work together in the training stage until the model performance is stabilized and the Nash
equilibrium is reached.

LG = ωimgLG−img + ωPHYLG−PHY, (1)

LD = LD−GAN, (2)

where LG−img is the image loss, as shown in Equation (3); LG−PHY is the physics loss
predicted by the physics evaluator; ωimg and ωPHY are the weights of LG−img and LG−PHY,
respectively [14]; is the discriminator loss [28].

LG−img = LG−GAN + λFM(LG−FM + LG−VGG), (3)

where LG−GAN, LG−FM, and LG−VGG are different types of image losses and λFM is the
weight [10,28].

The physics evaluator is a surrogate model based on neural networks, which can
output the physics loss of a generated structural design corresponding to its physical
performance. For details, please refer to Lu et al. [14]. For RC shear wall structures,
the inter-story drift under earthquakes is a critical indicator that reflects their physical
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performance, which can be evaluated by Pdrift as shown in Equation (4). The physical loss
predicted by the physical evaluator is an approximation to Pdrift.

Pdrift =

⎧⎨
⎩

1 − dmax
dlimit

, dmax ≤ dlimit(
dmax
dlimit

− 1
)0.5

, dmax > dlimit
, (4)

where dmax is the maximum inter-story drift; dlimit = 0.001 is the drift limit specified by the
Chinese design code [29].

Figure 4. Intelligent structural design based on GAN: (a) data-driven GAN (StructGAN); (b) physics-
enhanced GAN (StructGAN-PHY).

5.2. Dataset

This study collects 159 sets of architectural and structural CAD drawings and their
design conditions from 10 top architectural design institutes in China. The collected CAD
drawings have been used in real-world construction projects. Before that, they had been
comprehensively optimized by the engineers to guarantee that all design code requirements
were fulfilled. Therefore, the CAD drawings have a high design quality. The preprocessing
method described in Section 4 is adopted to extract the coordinates of partition walls, doors,
and windows from architectural CAD drawings and obtain corresponding architectural
pixel images. Similarly, the coordinates of the shear walls are extracted from the structural
CAD drawings, and the corresponding structural pixel images are obtained. One hundred
thirty-five sets of architectural pixel images and their corresponding structural pixel images
are used as the training set. Then, the training set is enlarged four times through data
augmentation (flipping and mirroring). The remaining 24 sets of architectural pixel images
are used as the test set, and their corresponding structural pixel images are not visible to
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the GAN. Typical architectural and structural pixel images and their design conditions
(seismic intensity and structural height) are shown in Figure 5.

 

Figure 5. Typical datasets for StructGAN-PHY training [14].

Although the dataset is small in comparison to other deep learning tasks, it is effective
for the training of StructGAN-PHY for the following reasons. (1) The focus of this research is
on common shear wall structures in residential buildings. StructGAN-PHY can effectively
learn general design rules from a relatively small dataset because the structures to be
designed are in similar forms. (2) Key structural design elements are extracted from CAD
drawings and processed into semantic pixel images. It is easier for StructGAN-PHY to
learn from the preprocessed semantic images, and therefore fewer data are needed. (3) The
incorporation of the physics mechanism reduces the model’s reliance on data even further.
(4) Data augmentation is used to increase the size of the training set.

5.3. Cloud Design Platform

Using StructGAN-PHY as the core algorithm, this study develops a cloud design
platform based on the concept of SaaS, as illustrated in Figure 6. The cloud platform
provides software services for users, with minimum requirements for users’ local hard-
ware and software, and the design process is straightforward and efficient. The client
provides a human–computer interaction interface, including project creation, file upload,
project design, and result download functions. The server is used to handle client re-
quests and manage user data. All computing and design processes are performed on a
GPU-powered server.

(1) Client: Figure 6a shows the homepage of the cloud platform, which has a login entry,
manual, technical support, version history, and introduction to the technical details of
the core algorithm. Figure 6b shows the window for creating a new project, including
inputting the project name, uploading the architectural pixel image, selecting the
design conditions (i.e., seismic intensity and structural height), and inputting the scale
(unit: mm/pixel). The seismic intensity can be selected among 6 degrees (0.05 g),
7 degrees (0.10 g), 7 degrees (0.15 g), 8 degrees (0.20 g), 8 degrees (0.30 g), and 9 degrees
(0.40 g). The numbers in brackets represent the seismic design acceleration with an
exceedance probability of 10% in 50 years. The structural height can be selected as <40,
40–60, 60–80, 80–100, and >100 m. Figure 6c shows the project list. The initial status
of a project is “to be converted”. Clicking the “Convert” button calls the pre-trained
StructGAN-PHY deployed on the server for the design. The obtained design result
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is a structural pixel image (Figure 6d), where red (RGB = (255, 0, 0)) represents the
shear wall layout. This pixel image can be downloaded by the user for subsequent
parametric modeling.

(2) Server: The Python, Flask, and Nginx environments are set up on a Windows system.
The website front-end is developed based on HTML and CSS, where Flask-login is
adopted for the login interface management. The database for user data management
adopts PyMySql, and data can be delivered by Flask-sqlalchemy. The website backend
is developed based on Python, where the PyTorch deep learning framework and
its dependent libraries are installed to run the pre-trained StructGAN-PHY model.
Furthermore, Nginx builds network services, connecting the client and the server.

 

Figure 6. Cloud design platform: (a) homepage; (b) project creation; (c) project list; (d) design
result. (The user interface of the platform is in Chinese, and the figure is translated into English for
convenient reading).

6. Establishment of the Structural Analysis Model

6.1. Heterogeneous Data Transformation

Based on Lu et al. [14], this study proposes a heterogeneous data transformation
method that considers architectural design information, as shown in Figure 7. This method
involves the following steps:

Step 1: Extract shear wall pixels
First, the RGB pixel image is expressed in the HSV color. Second, the red pixels (i.e.,

shear walls) are stripped from the structural pixel image and binarized. Subsequently, the
corrosion (cv2.erode()) and dilation (cv2.dilate()) functions in Python-OpenCV are used
to remove the noise in the binary image. Finally, a binary pixel image of the shear walls
is obtained.
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Step 2: Extract shear wall axes
Based on the assumption that the shear walls can only be positioned at the location of

the partition walls, the intersection points between the axis of the partition wall and the
contour of the shear wall pixels in the binary image are searched pixel-by-pixel and used as
the endpoints of the axis of the shear wall. All axes of the partition walls are traversed to
complete the extraction of the shear wall axes.

Step 3: Assign frame and coupling beams
The axes of the partition walls, doors, and windows are collectively called the archi-

tectural axes. It is assumed that (1) beams are only positioned on architectural axes and
(2) coaxial shear walls are connected by coupling beams. First, assign the beams over the
architectural axes, excluding the positions where the shear walls are already positioned.
Subsequently, check the topological relationship of the beams, delete cantilever beams, and
confirm that both ends of the beams are connected to the shear walls or other beams.

 

Figure 7. Heterogeneous data transformation.

Note that GAN-based methods focus on common residential buildings so that gen-
eral design rules can be learned from existing design data. Therefore, the assumptions
described in Step 3 are generally acceptable. If the assumptions are not applicable, the
beam layout obtained with the proposed method might be unreasonable, resulting in
inaccurate structural analysis results. However, in the schematic design phase of RC shear
wall structures, the beam layout is less crucial than the shear wall layout. Additionally,
inaccuracy in the structural analysis model is acceptable because it can be corrected in the
subsequent detailed design phase by optimization algorithms or manual adjustments to
fulfill special requirements.

Based on the above steps (Figure 7), the axis coordinates of the shear walls, frame
beams, and coupling beams are derived. Furthermore, the shear wall thickness is estimated
according to the empirical law proposed by Lu et al. [14]. The section heights of the frame
and coupling beam can also be determined according to the empirical law presented by
Qian et al. [4] as 1/12 and 1/8 of the beam span, respectively. The axis coordinates and
section dimensions of the shear walls, frame beams, and coupling beams are used as
the input data for the parametric modeling. Based on the initial structural layout and
section size, subsequent adjustments and optimizations can be easily accomplished using a
parametric model.

6.2. Parametric Modeling

Parametric modeling is a digital modeling method that builds structural models from
input data according to predefined rules, thereby realizing real-time mapping between
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input data and structural models. By leveraging the human–computer interaction in-
terface developed via visual programming, users can modify the structural design and
corresponding model in real-time. Rhino and its Grasshopper plugin are the commonly
used parametric modeling platforms in the industry, but they lack professional structural
analysis capabilities. In this study, Swallow (ESD), a parametric modeling plugin for build-
ing structures based on Grasshopper, is used as a bridge between the Grasshopper and
structural analysis software (e.g., ETABS) [27]. Using Swallow (ESD), structural properties
can be defined in Grasshopper, and structural analysis models can be assembled. ETABS
can be called in real-time through the ETABS API for structural analysis, and the analysis
results of ETABS can be viewed.

Figure 8a demonstrates the parametric modeling procedure based on Swallow (ESD),
and the final parametric model is shown in Figure 8b. (1) Firstly, the structural parameter
interpretation module is built to read the axis coordinates and section sizes of structural
components generated in Section 6.1; to convert them into structured data required for
the modeling of shear walls, coupling beams, and frame beams; and to read the overall
parameters of the structure specified by the user, including the story height and the number
of stories. (2) Subsequently, the structural element modeling module is built to model shear
walls and coupling beams using shell elements, model frame beams using beam elements,
and model slabs using membrane elements; to define the properties of the material, section,
and element; and to assemble all structural elements to complete the structural analysis
model. (3) Next, a load definition module is built to distribute beam-end loads according
to the structural layout and set seismic and wind loads according to the seismic and wind
design requirements. (4) Finally, an ETABS calling module is constructed to complete the
establishment and analysis of the ETABS model by calling the ETABS API.

Figure 8. Parametric modeling procedure based on Swallow (ESD).

7. Case Study

7.1. Evaluation Method of Shear Wall Layout

The schematic design of RC shear wall structures focuses on the shear wall layout.
This study uses the IoU of the shear wall axes to evaluate the consistency of the model-
generated and engineer-designed planar layouts, which is more reasonable than the IoU of
pixel images [10,13]. Meanwhile, the shear wall layout significantly influences the vertical
load-transfer mechanism of the floor system. A reasonable shear wall layout can effectively
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hold the slabs so that they are uniformly stressed [30]. Therefore, this study uses the
supported floor ratio to evaluate the vertical load transferability of slabs. In addition, with
the help of structural analysis models, the physical performance of the designed structure
is also evaluated.

(1) Planar layout consistency

The heterogeneous data transformation method described in Section 6.1 is utilized to
obtain the coordinates of the shear walls designed by the GAN. Subsequently, the shear
wall planar layout is drawn as a set of rectangles, and the intersection and union areas of
the GAN’s and the engineer’s designs are calculated. Furthermore, the difference between
the total length of the shear walls designed by the GAN and the engineer is calculated
as a correction coefficient. Figure 9a shows the calculation of the intersection and union
areas, where green represents the intersection area, blue represents the exclusive part of the
engineer’s design, and red represents the exclusive part of the GAN’s design. The union
area is a combination of green, red, and blue colors. The modified planar layout consistency
indicator SIoU−M can be calculated using Equations (5) and (6).

SIoU−M = ηDiffSwall
Ainter

Aunion
, (5)

ηDiffSwall = 1 − |LGAN − LENG|
LENG

, (6)

where Ainter and Aunion are the intersection and union areas of the shear walls designed
by the GAN and the engineer, respectively; ηDiffSwall is the correction coefficient for the
difference in total shear wall length; and LGAN and LENG are the total lengths of the shear
walls designed by the GAN and the engineer, respectively.

(2) Vertical load transferability

The vertical load transferability is assessed by the floor area supported by the shear
walls, as shown in Figure 9b. First, the floor boundary (blue contour) is obtained; then,
the floor area that each shear wall can support (red contour) is calculated, as shown in
Figure 9c [30]. Furthermore, all the supported floor areas are subtracted from the floor area.
Finally, the unsupported floor areas (green contours) are obtained, and the supported floor
ratio under the vertical load (SFloorA) is obtained based on the ratio of the green area to the
blue area, as indicated in Equation (7).

SFloorA = 1 − Aminus

Afloor
, (7)

where Aminus is the floor area that is not supported by the shear walls, and Afloor is the
total area of the floor.

Figure 9. Evaluation method of shear wall layout: (a) planar layout consistency; (b) vertical load
transferability; (c) floor area supported by a shear wall.
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(3) Physical performance under horizontal seismic load

After the ETABS model is established, a refined structural analysis can be performed
to evaluate the physical performance of the structure. For example, the inter-story drift
under earthquakes is a critical indicator in evaluating the lateral resistance capacity of RC
shear wall structures. Equation (8) calculates the consistency of the inter-story drifts of the
structures designed by the GAN and the engineer.

SIDR = 1 −
(∣∣∣∣1 − θGAN,X

θENG,X

∣∣∣∣+
∣∣∣∣1 − θGAN,Y

θENG,Y

∣∣∣∣
)

/2, (8)

where θGAN,X and θGAN,Y are the maximum inter-story drifts of the GAN’s design in the X
and Y directions, respectively, and θENG,X and θENG,Y are the maximum inter-story drifts of
the engineer’s design in the X and Y directions, respectively.

7.2. Basic Information of a Typical Case

This case study is based on a typical residential building in northern China. The build-
ing has a structural height of 96 m and 30 stories. It is lower than 100 m and is classified
as a common high-rise building. Its floor has a bounding area of 41.2 m × 17.7 m (around
500 m2). The seismic intensity is 8-degree, corresponding to a 0.20 g seismic design acceler-
ation with an exceedance probability of 10% in 50 years. This seismic design acceleration
a is medium-level (0.05 g ≤ a ≤ 0.40 g). The characteristic site period Tg is 0.55 s, which
is also medium-level (0.2 s ≤ Tg ≤ 0.9 s). The architectural CAD drawing, corresponding
pixel image, and structural design by the engineer are shown in Figure 10a–c, respectively.

Figure 10. A typical residential building in northern China.

7.3. Detailed Analyses of a Typical Case

The building was designed using the proposed integrated design method. The struc-
tural pixel image downloaded from the cloud design platform (i.e., the output of the
StructGAN-PHY model) is shown in Figure 11a, and the details in the black dashed box
are shown in Figure 11b. Two heterogeneous data transformation methods, one proposed
by Lu et al. [14] and another proposed in this study, were used to convert the structural
pixel image into structured data. The results are compared in Figure 11c,d. Lu et al.’s
method [14] results in the absence of several short shear walls and an undesirable offset
of the shear wall axes, which is adverse for the subsequent modeling task. The proposed
method prevents these problems and accurately extracts nearly all shear walls. In this
case study, the StructGAN-PHY lays out a total of 73 shear walls. Lu et al.’s method [14]
correctly extracted 44 shear walls with an accuracy of 60.3%. The proposed method cor-
rectly extracted 71 shear walls with an accuracy of 97.3%. The accuracy therefor increases
significantly by 37.0%. It should be noted that the above results are obtained from the
typical case study in Section 7.2.
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Figure 11. Comparison between different heterogeneous data transformation methods [14].

The design of the proposed integrated method is evaluated using the methods de-
scribed in Section 7.1. The evaluation results are shown in Figure 12 and Table 1 (StructGAN-
PHY). Regarding the planar layout consistency, generally, IoU > 0.5 implies that the con-
sistency between the designs from GAN and the engineer is acceptable [10]. The SIoU−M
in this case is 0.9902, which shows that the design of the proposed method is very similar
to that of the engineer. In terms of the vertical load transferability, SFloorA is 0.9334, indi-
cating that the designed shear walls can support vertical loads of the floor. In terms of
physical performance, the SIDR is 0.9602, and the inter-story drift is within the 1/1000 limit
specified in the code [29]. It is noteworthy that with the help of the parametric model, the
structural design can be manually adjusted by engineers and automatically optimized by
algorithms [31,32] in the future.

Table 1. Comparison between designs of data-driven and physics-enhanced models.

Designer SIoU−M SFloorA SIDR

StructGAN-PHY 0.9902 0.9334 0.9602
StructGAN 0.5855 0.8372 0.9380
Difference 69.1% 11.5% 2.4%

Furthermore, to illustrate the superiority of StructGAN-PHY adopted in this study, its
evaluation results are compared with those of a data-driven GAN, i.e., StructGAN [10], as
shown in Figure 12 and Table 1. The shear walls designed by StructGAN are insufficient
in number and length, resulting in lower evaluation indicators. The evaluation indicators
of StructGAN-PHY are improved by 69.1%, 11.5%, and 2.4%, respectively, compared with
those of StructGAN.

Moreover, in terms of design efficiency, the times required for a competent engineer,
StructGAN-PHY, and the proposed method to complete the schematic design of an RC
shear wall structure are presented in Table 2. Compared with the results for engineers,
the design efficiency is dramatically boosted by 225 times when the proposed method is
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used. Additionally, the preprocessing and modeling method proposed in this study boosts
the efficiency by 2.5 times for the entire design phase compared to existing studies (i.e.,
StructGAN-PHY).

Figure 12. Evaluation results of the typical case: (a) planar layout consistency; (b) vertical load
transferability; (c) physical performance.

Table 2. Comparison of design efficiency between different methods.

Designer Preprocess Design Model Total
Efficiency
Enhanced

Engineer (manually) 0 min 20 h 10 h 30 h /
StructGAN-PHY 15 min 1 min 4 min 20 min 90 times faster
Proposed method 5 min 1 min 2 min 8 min 225 times faster

Note that the design efficiencies of the proposed method and StructGAN-PHY were
obtained under the conditions described in Section 3. The design efficiency of engineers is
obtained by consulting several senior engineers from top architectural design institutes in
China. It is also based on common RC shear wall structures with a floor area of around
500 m2.

8. Conclusions

Despite showing potential in intelligent structural design, GAN-based methods are
difficult to apply in the industry because of their heterogeneous data form with traditional
CAD methods and high requirements in terms of the computer environment. This study
proposes an integrated schematic design method based on GAN, enabling the entire
schematic design phase of the RC shear wall structures to be intelligent and automated and
providing a workable solution for the industrial application of GAN-based methods. First,
a preprocessing method for architectural CAD drawings is proposed to connect GAN with
upstream architectural design tasks. Second, a user-friendly cloud design platform is built
to reduce the user’s local computer environment requirements. Third, a heterogeneous data
transformation method and a parametric modeling procedure are developed to establish
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the structural analysis model based on GAN’s design, facilitating subsequent detailed
design tasks. The following conclusions are drawn from the study:

(1) The cloud design platform and its pre- and post-processing methods have the advan-
tage of being straightforward and efficient. For common RC shear wall structures with
a floor area of around 500 m2, as shown in the case study, the overall efficiency is 225
times higher than that of a competent engineer and 2.5 times higher than that of the
existing intelligent design method.

(2) In a typical case, the heterogeneous data transformation method can convert the shear
wall design from a pixel image to structured data with a high accuracy of 97.3% and
enable the data transfer between GAN and parametric modeling.

(3) According to the case study, the shear wall layout obtained using the proposed method
is close to the engineer’s design, with a planar layout consistency SIoU−M of 0.9902. It
can also support the vertical load of the floor system with a vertical load transferability
SFloorA of 0.9334. Additionally, the inter-story drift under design-based earthquakes
can meet the requirements of the code.

Currently, the scope of this study is limited to the schematic design of RC shear
wall structures. In the future, parametric modeling can be used to improve structural
optimization algorithms. This will allow the proposed integrated design method to be used
in the detailed design phase and take into account more design factors, such as structural
stability. Additionally, the applicability of the proposed method to other material and
structure types should be investigated further.
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Abstract: Blockchain is considered a breakthrough technology in the construction industry, with the
potential to improve the trust environment and workflow of construction stakeholders. Although
recent research offers hints regarding possible contributing elements to blockchain adoption in the
construction industry, no specific study has addressed this topic. This knowledge gap hinders the
adoption and promotion of blockchain in construction organizations. This study aimed to identify
the determinants of blockchain adoption in the construction industry and verify the influence of
the combination of various factors on adoption intention. Based on the technology–organization–
environment framework, a conceptual model of blockchain adoption in the construction industry was
constructed. Data were collected through the distribution of questionnaires, and 244 professionals
in the construction field participated in this study. To evaluate the model hypotheses, we used a
two-stage partial least squares structural equation modeling (PLS-SEM) and fuzzy-set qualitative
comparative analysis (fsQCA) combination. The PLS-SEM revealed that factors such as compatibility,
top management support, relative advantage, regulatory support, cost, competitive pressure, organi-
zational readiness, and firm size significantly influence blockchain adoption. The fsQCA indicated
that six causal conditions achieve high adoption intention. This is one of the first empirical studies on
blockchain adoption in the construction industry, which can aid organizations, policymakers, and
project participants in making informed decisions regarding the adoption of blockchain.

Keywords: blockchain; innovation adoption; construction industry; technology–organization–
environment (TOE); PLS-SEM; fsQCA

1. Introduction

In recent years, as an emerging technology, blockchain has attracted the interest of
practitioners and scholars from different industries [1–3]. Blockchain is essentially a de-
centralized database, a novel application paradigm that integrates computer technologies
such as point-to-point transmission, consensus mechanisms, distributed data storage,
and encryption algorithms [3,4]. Because blockchain has the advantages of multiparty
maintenance, non-tampering, openness, transparency, auditability, and security, it has
begun to subvert many traditional business processes [4]. As a breakthrough technology,
blockchain provides valuable opportunities for companies and organizations. In particu-
lar, it is expected to address difficult problems in the construction industry, such as trust
among stakeholders [5], delayed payment [6,7], poor bidding information channels, opaque
transaction processes [8,9], unclear rights and responsibilities [10], and poor process trace-
ability [11]. Shojaei et al. [12] evaluated the current implementation of a circular economy
and highlighted blockchain as a potential technique in a built environment. Perera et al. [13]
conducted a critical analysis of current information regarding blockchain technology and
its applications, demonstrating that blockchain has significant promise in the construction
industry. Hunhevicz and Hall [14] emphasized that blockchain can provide opportunities
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to integrate smart contracts and digital information into management, thereby enhancing
collaboration among stakeholders in the construction industry.

However, although blockchain can provide many benefits to the construction industry
and is recognized as a disruptive innovation technology that changes the industry [13],
its adoption speed has not reached market expectations [11,15]. Construction companies
are still hesitant and adopt wait-and-see attitudes regarding whether to adopt blockchain.
Although some scholars have investigated the drivers and obstacles of blockchain adoption,
few studies have explored the determinants of blockchain adoption in the construction
industry [1,15]. In addition, although some scholars have conducted quantitative research,
most have focused on supply chain management in non-construction fields [16,17]. In other
words, organizations in the construction industry know little about adopting blockchain
decisions. Therefore, a more in-depth research is required to identify the factors that impact
blockchain adoption in the construction industry. More importantly, although the use of
structural equation models and software technology to prioritize the predictive indicators
of technology adoption is efficient and effective [18,19], no research has been conducted on
the integration of these methods in the construction industry.

To fill the gap, this study aimed to achieve the following objectives: (1) use the partial
least squares structural equation model (PLS-SEM) method to identify the determinants
of blockchain adoption in the construction industry; (2) combine the fuzzy-set qualitative
comparative analysis (fsQCA) approach and the PLS-SEM method to explore the synergistic
effect among these determinants. To achieve the research goals, we extracted 11 factors
from existing blockchain adoption studies. A theoretical model was established based on
the technology–organization–environment (TOE) framework. Then, to test the theoretical
model, an integration of the PLS-SEM and fsQCA methods was used. The methods are
complementary because fsQCA offers an in-depth comprehension of the complicated,
nonlinear, and synergistic effects, whereas PLS-SEM gives an explanation of the net effect
of linear connections between variables. Moreover, we demonstrated that the intention
for blockchain adoption in the construction industry can be encouraged by configuring
many causal indicators rather than signal causal indicators. This research was the first
attempt in the construction field to combine PLS-SEM and fsQCA technologies to identify
the factors that affect blockchain adoption and provide richer insight into the effects of
complex trade-offs. The results provide valuable insights for industry practitioners and
decision-makers in related departments.

2. Literature Review

2.1. Blockchain Technology

Blockchain technology can be defined as an open, secure, and immutable distributed
ledger [20]. It enables transactions without third-party involvement, eliminating the need
for third-party trust. It is a decentralized network that runs on top of Internet protocols
and records transactions in an immutable manner using cryptography and distributed
consensus algorithms among a distributed set of users [21]. Suppliers and demanders
can conduct peer-to-peer transactions using a blockchain. In a blockchain system, every
transaction is recorded on a ledger and then placed into a block. Each block is connected to
another block before and after it. When a block is linked to a chain, it becomes immutable.
The blockchain is verified using automation and governance protocols, which cannot be
changed or deleted by a single participant.

Depending on the type of access mechanism, blockchains can be broadly classified into
permissionless and permissioned blockchains [22]. In the first type of blockchain, every
transaction is public and users do not need permission to transact and reach a consensus.
The users remain anonymous at all times and the public network encourages participation
in the latex network through incentives. In the second type of blockchain, participants
must be invited to join a network. Many private blockchains are permitted to control the
types of users that can transact.

212



Buildings 2022, 12, 1349

Owing to the characteristics of blockchain technology, its advantages are relatively
significant. First, the blockchain is transparent [23]. Based on blockchain hashes, the
transaction records of the participants can be checked in real time and cannot be forged.
Second, blockchain reduces third-party dependencies in decentralized peer-to-peer network
transactions [21]. Third, blockchain technology improves security. This establishes a
consensus of trust in the entire network, making it difficult for hackers to penetrate the
internal network. Simultaneously, the information recorded in the database is permanent
and cannot be easily manipulated [24].

2.2. Blockchain in the Construction Industry

Blockchain has been studied by scholars in the construction industry since 2015. In
recent years, most scholars have either conducted research on theoretical methods or
conducted literature reviews, and few studies have explored blockchain adoption in the
construction industry [25].

Several review papers have been published on this topic. Xu et al. [26] provided a
comprehensive review of the application of blockchain technology in the construction
field based on bibliometric and content analysis methods and discussed key research
topics and future research directions. Perera et al. [13] analyzed the advantages and
challenges of blockchain technology and concluded that it has compelling promise in the
construction industry. Li et al. [11] identified the main research areas of blockchain in
the built environment by presenting the latest blockchain technologies and conducting
literature reviews and compiled an extensive list of the challenges and opportunities
related to blockchain, in addition to forming a roadmap for implementing blockchain in the
construction sector. Scott et al. [27] used an exploratory approach to examine 33 application
categories of blockchain applications in construction, which were organized into seven
thematic areas. Mahmudnia et al. [28] reviewed the characteristics of blockchain and
explored its important role in solving interaction issues in payments, documentation, and
interaction in the construction industry.

In addition, few studies on the potential advantages of blockchain have recently been
conducted. For example, Qian and Papadonikolaki [5] suggested that blockchain can
provide data tracking, transferring resources, and contracting in construction supply chain
management. Meanwhile, some studies [7,8] focused on secure construction payments and
indicated that the application of blockchain might create a transparent and efficient platform
to guarantee secure payments for construction projects. According to Wang et al. [29],
blockchain technology may improve traceability and make it easier for participants to share
information during precast construction. Lee et al. [30] used a case study to demonstrate
that integrating digital twins with blockchain can aid in ensuring traceability.

Despite extensive research and the rapid spread of blockchain technology in the
construction industry, many challenges and barriers remain to its adoption. Sharma and
Kumar [31] argued that in the early stages of adopting blockchain technology, inadequate
knowledge and experience are key challenges that must be addressed. Xu et al. [32]
indicated that barriers to blockchain adoption in the construction industry are prominent,
centered on insufficient information technology infrastructure and legal and regulatory
ambiguity. Yang et al. [9] indicated that the fragmentation and uncertainty of construction
projects complicate the widespread adoption of blockchain technology. Tezel et al. [33] and
Toufaily et al. [1] stated that construction companies lack the IT infrastructure and servers
required for blockchain applications. Compared with the significant potential of blockchain
technology, its application and research are still in the preliminary stage. Overall, the
widespread use of blockchain technology has not yet occurred in the construction industry.

2.3. Adoption Model

Owing to the various determinants that may affect innovation adoption in a wide
variety of domains, various theoretical models have been presented to investigate and
comprehend the adoption of innovation in organizations [34]. As a generic theory used
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for innovation adoption, TOE theory has guided scholars in identifying and determining
the drivers of innovative technologies [35]. From a business development perspective,
TOE indicates that a company’s decision to adopt new technology is based on techno-
logical characteristics and organizational and environmental considerations. The context
of technology describes the technical characteristics that can influence the adoption of
innovation, the organizational context relates to the organizational attributes that may
hinder or foster adoption, and the context of the environment refers to external factors
relative to the organization, which may present opportunities and challenges for innovation
adoption [36,37]. In several studies on construction innovation adoption, the three contexts
of the TOE framework have focused on identifying the factors affecting new technology
adoption by construction companies [38].

In the subsequent analysis, the TOE framework served as an overarching theoretical
underpinning for this research. It presents an extensive analysis of technology adoption as
decisions to adopt technology in the organizational dimension depend on factors in the con-
text of technology, environment, and organization. Specifically, because the TOE framework
combines human and non-human factors into one framework, it has better advantages than
other traditional models, such as the technology acceptance model, diffusion of innovation,
and unified theory of acceptance model [39]. It provides a suitable foundation for con-
sidering and understanding the appropriate determinants for the adoption of innovation,
and many of the results of innovation adoption studies support this [40]. Wong et al. [17]
mentioned that the TOE framework can be used to better examine blockchain adoption
in organizations.

3. Model Construction and Hypotheses Development

The construction industry is generally regarded as structurally fragmented, with
low productivity and a lack of improvements. Blockchain exhibits the basic properties of
traceability, transparency, and immutability. Therefore, it can facilitate a paradigm shift
towards cooperation and trust in the construction industry. With researchers developing
blockchain-based solutions, specific issues in the construction industry are being addressed,
such as construction quality, supply chain management, and construction payments. Based
on the above literature review and analysis, a conceptual model for this study is proposed.
It considers both the factors of technology and organization and the influence of the external
environment. The framework includes 12 different constructs, with the willingness to adopt
blockchain serving as the dependent variable, and the 11 determinants that are considered
as independent variables being determinants in the TOE context. Figure 1 shows the
proposed model.

3.1. Context of Technology
3.1.1. Relative Advantage

The degree to which the adoption of innovation may provide an organization with
greater benefits than the status quo is described as a relative advantage [37]. Relative ad-
vantage is considered a fundamental indicator of innovation adoption [41], as observed for
supply chains [42], cloud computing services [43], and business intelligence systems [44].
The construction industry is considered to be in a state of continual reengineering [45], and
the adoption of new technologies will promote industry flourishing. As a primary use of
blockchain technology, smart contracts may efficiently resolve construction payment delays
and contractual disputes [46]. Blockchain technology can also provide construction compa-
nies with trusted partnerships, information sharing during the design and construction
phases, foster collaboration, enhance traceability and transparency, reduce transaction costs,
and address late payment challenges, thereby improving operational and management
efficiencies [13]. Consequently, we propose the following hypothesis:

H1: Relative advantage positively influences the willingness of blockchain adoption.
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Figure 1. Research model of intention to adopt blockchain technology based on the TOE framework.

3.1.2. Compatibility

The extent to which an innovation system is considered compatible with the present
system is referred to as compatibility [47]. Compatibility between the innovation and
management requirements, as well as corporate culture and practices, is widely recognized
as a critical factor in innovation adoption [37,48]. Fernando et al. [35] indicated that as the
main motivation for technology adoption. Construction projects are highly fragmented
and uncertain, and engineering changes during project implementation are common.
Accordingly, construction companies are more likely to embrace and implement blockchain
technology in various aspects of their operations if they believe that blockchain adoption is
compatible with the current corporate culture and business practices. Thus, we formulate
the following hypothesis:

H2: Compatibility positively influences the willingness of blockchain adoption.

3.1.3. Complexity

Complexity is the extent to which an innovation is difficult to comprehend and ap-
ply [49]. According to some studies, complexity is considered a key factor affecting inno-
vation adoption [50]. Complexity is not positively associated with technology adoption
as other elements of technology adoption, but rather negatively [51]. The blockchain’s
transaction mechanism is relatively complex and speed is a major problem to be considered;
in addition, its implementation is challenged by its immature security properties [52].
Construction has long been considered a poorly performing and low-tech industry for
innovation [53], and construction companies do not intend to adopt blockchain because
of technical complexity. As construction companies move from traditional IT systems
to blockchain-based ones, complex programming, integration challenges, and a lack of
blockchain technology talent can hinder their adoption [54]. When the technology is
complex, decision-makers consider whether to adopt it. Thus, construction companies
have limited utility in participating in blockchain technology unless it can be readily
incorporated into current building operating systems. Consequently, we propose the
following hypothesis:

H3: Complexity negatively influences the willingness of blockchain adoption.
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3.1.4. Cost

Various costs are associated with technology adoption, and costs influence the willing-
ness to adopt technology. High costs discourage adoption [55]. The cost of obtaining and
using blockchain technology is referred to as the cost of adopting blockchain [17]. Although
digital technology has many benefits, its adoption in the construction industry remains
quite low [56]. High costs are often a barrier for companies adopting new technologies [57].
Blockchain adoption requires the acquisition of the necessary hardware and software, which
may be expensive for organizations. More importantly, several non-empirical studies on
blockchain technology in the construction sector have indicated that cost is a significant
factor that prevents construction companies from adopting blockchain technology [10].
Thus, the following hypothesis is proposed:

H4: Cost negatively influences the willingness of blockchain adoption.

3.1.5. Trialability

Trialability is the extent to which new technology can be attempted on a limited
basis [58]. The likelihood of successful adoption increases when the organization has
had the opportunity to test innovation before it is adopted [46]. Research has shown that
trialability facilitates the successful adoption of innovations [47,59]. A high degree of
trialability would make it less risky for companies to adopt the technology, which can
increase the level of acceptance. Moreover, trialability is promising to enable companies to
better understand the potential benefits and accurately determine the value of blockchain
technology. Thus, we propose the following hypothesis:

H5: Trialability positively influences the willingness of blockchain adoption.

3.2. Context of Organization
3.2.1. Top Management Support

Top management support is the degree to which top management in an organization
accepts and implements new technology [60]. The early adoption of blockchain inevitably
encounters resistance, and top management support can motivate members of an organiza-
tion by providing direction and satisfying the demand for resources and funding. Many
studies related to the construction industry have highlighted the importance of adopting
new technologies [61]. Top management support is essential for integrating emerging
technologies into existing business processes to facilitate the learning and dissemination of
innovative technologies [59]. Therefore, we propose the following hypothesis:

H6: Top management support positively influences the willingness of blockchain adoption.

3.2.2. Organizational Readiness

Organizational readiness is the capacity and intention of firms to adopt an innova-
tion [62]. It denotes business management and investment readiness to invest in innovation
technology, including cognitive readiness, resource readiness, and IT systems [59]. Pan
and Pan [36] reported that organizational readiness positively influences the adoption
of construction innovation. The awareness of change, financial resources, expertise, and
technical capabilities of construction companies are the fundamental bases for ensuring the
adoption and implementation of blockchain. Thus, we propose the following hypothesis:

H7: Organizational readiness positively influences the willingness of blockchain adoption.

3.2.3. Firm Size

Firm size is a critical condition in innovation adoption [55]. Many studies have
indicated that firm size positively affects and controls the innovation process [35,40]. The
adoption of blockchain technology involves a change from old to new systems and requires
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a large initial investment, the risks and costs of which may deter many small construction
companies, whereas larger firms can often manage the costs of innovation and provide
financial resources that occur in technology adoption. Meanwhile, larger firms have
more skilled professionals to ensure that the implementation of innovation is smooth [63].
Accordingly, we propose the following hypothesis:

H8: Firm size positively influences the willingness of blockchain adoption.

3.3. Context of Environment
3.3.1. Competitive Pressure

Competitive pressure is the degree to which a company experiences pressure from
competitors in the same field [17]. Intense competition among peers requires organizations
to adopt innovation to improve quality, reduce costs, and increase effectiveness and effi-
ciency [35]. As an emerging technology, blockchain can help early adopters to thrive in
today’s ultra-competitive market. The construction industry is competitive and fraught
with challenges [64]. Competitive pressure is likely to increase construction companies’
demand for blockchain technology, driving the aggressive adoption of blockchain. Thus,
the following hypothesis is proposed:

H9: Competitive pressure positively influences the willingness of blockchain adoption.

3.3.2. Trading Partner Pressure

Trading partners influence the construction industry as project-based groups [65].
Pressure from partners has been proved to be a main factor in innovation adoption in

various empirical investigations [40]. Badi et al. [46] indicated the beneficial role of partners
in facilitating the adoption, implementation, and completion of projects. Wamba et al. [66]
built a model to study the various factors influencing blockchain adoption in supply
chain management, demonstrating that trading partner pressure significantly influenced
blockchain adoption in India and the US. To facilitate collaboration between trading part-
ners, construction companies would further decide whether to adopt blockchain technology,
depending on whether blockchain is used by trading partners. Thus, the following hypoth-
esis is proposed:

H10: Trading partner pressure positively influences the willingness of blockchain adoption.

3.3.3. Regulatory Support

Regulatory support is assistance offered by the government or its authority to encour-
age innovation adoption [37]. Regulatory policies and legislation, such as required rules or
standards, have a crucial role in enabling blockchain implementation [57,61]. Interestingly,
Gibbs and Kraemer [67] emphasized that regulatory support has a greater role in develop-
ing countries than in developed countries. Most studies suggest that social acceptance is a
significant barrier to blockchain applications [68]. China is a developing country and the
role of government regulations and guidance is critical for innovation adoption. Because of
the novelty of blockchain technology, most construction companies have a wait-and-see
attitude in the early stages of adoption, and blockchain adoption systems in construction
would be further hindered by government regulation of what and how to regulate the
process of adoption. Thus, we propose the following hypothesis:

H11: Regulatory support positively influences the willingness of blockchain adoption.

4. Research Design and Methodology

4.1. Measurement of Determinants

Owing to its accessibility and scientific nature, questionnaire research has been ex-
tensively adopted by researchers in the field of construction. To guarantee validity and
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reliability, we designed the questionnaire for this study by referring to well-established
scales and reviewing the results of published literature in the context of blockchain adop-
tion and the construction industry. Accordingly, three construction experts were invited to
pretest the preliminary version of the questionnaire. The questionnaire was modified and
utilized in the pilot research based on their feedback. Meanwhile, it was translated into
Chinese by a language expert, considering that the study addressed blockchain adoption in
the Chinese construction industry. Three other experts assessed the translated version to
confirm that the content of the questionnaire was related to construction companies.

A questionnaire with 43 construct items was used to measure the variables within
the TOE framework. To facilitate the judgment of respondents, we scored the question-
naire items on a five-point Likert scale, with values ranging from 1 (strongly disagree) to
5 (strongly agree). Respondents made judgments and decisions based on their experiences
and were informed that there were no right or wrong answers and that they were used for
academic research only. Technological factors included compatibility, relative advantages,
cost, trialability, and complexity. Accordingly, the measurements of these five variables
were adapted [17,36,46]. In addition, three organizational constructs—top management
support, organizational readiness, and firm size—were adapted from [35,36,46]. Environ-
mental factors included regulatory support, trading partner pressure, and competitive
pressure. These three items were adapted from [17,46,63]. Appendix A presents a set of
questions for each construct.

Moreover, this study used three variables, namely, years of experience, education, and
job position. The years of experience and education could suggest a level of profession-
alism, which may be related to higher levels of self-efficacy [69], that has the potential to
affect the dependent variable. Job position may influence the attitudes and behaviors of
participants [70].

4.2. Sample and Data Collection

Because blockchain is an emerging technology in China’s construction industry, this
study adopted a snowball sampling technique to obtain more valid and extensive responses.
The questionnaires were distributed in WeChat groups of relevant conferences and forums
of engineering management majors, focusing on topics related to intelligent construction,
digital transformation of construction companies, and blockchain, in which the participants
were more aware and concerned about emerging technologies in the construction industry.
We selected eligible experts, senior managers, directors, and chief executive officers in the
conferences and forum as our key informants and they were encouraged to forward the
questionnaire. To further increase the enthusiasm of the respondents, the research group
promised to send the research conclusions to the respondents in the form of a report after
the end of the study to enable the respondents to adopt and apply blockchain technology in
the entire construction industry. Due to the pandemic of COVID-19, the survey lasted five
months in total, and finally, 244 valid surveys were received after removing disqualified
questionnaires, such as partial answers and nonsensical responses.

The demographic information of the participants is presented in Table 1. To test for
non-response bias, we used a t-test to compare the early and late participants. The findings
demonstrated that there were no significant differences between the two groups, indicating
that nonresponse bias was not a problem in this study. Statistically, we used Harman’s
single-factor test to evaluate the common method bias (CMB) problem [71], which accounts
for the vast majority of the model variance. Because only a signal factor accounted for
38.2%, which was less than 50%, the result revealed no substantial CMB. Additionally,
each correlation coefficient was less than 0.90, which also indicated that there was no
issue with CMB [17]. Meanwhile, variance inflation factors (VIFs) were used to check for
multicollinearity. All VIFs in this study were lower than the threshold of 5, indicating that
linear correlation was not a problem.
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Table 1. Profiles of questionnaire participants.

Demographic Categories Frequency
Percentage

(%)

Years of work
experience

<5 years 11 4.5
5–9 years 88 36.0

10–15 years 89 36.5
>15 years 56 23

Education

High school degree or below 3 1.2
College degree 103 42.2

Undergraduate degree 117 48.0
Graduate degree 21 8.6

Job position

Senior manager 44 18.0
Department manager 53 21.7

Project manager 56 23.0
Chief engineer 58 23.8

Other 33 13.5

Employee number
Less than 100 56 23.0

100–200 100 41.0
More than 200 88 36.0

4.3. Analytical Approaches

A multiple-method approach was applied to validate the proposed model. First, data
retrieved from the questionnaire were analyzed using PLS-SEM via SmartPLS software
to test the model and hypotheses, and the Statistical Package for Social Sciences (SPSS)
was used for descriptive analysis. SEM employs a confirmatory approach to analyze
the phenomenon-based structure and could account for the measurement error, thereby
providing valid conclusions on the structural patterns of multiple indicator variables than
other analytical approaches such as linear regression [63]. PLS-SEM was chosen for this
study for the following reasons: (1) PLS-SEM is a contemporary multivariate analytic
approach that is capable of estimating theoretically proven causality models; (2) PLS-
SEM is more favorable than covariance-based structural equation modeling techniques
to determine the connection variance between dependent and independent variables [36];
(3) PLS-SEM is more suitable for research involving non-normally distributed data, such as
the data of this study; and (4) PLS-SEM has been applied to solve construction management
problems in recently published articles [72]. The data were then analyzed in two steps using
SmartPLS. To ensure the goodness of the model, stage one examined the measurement
model to determine its validity and reliability. Subsequently, the proposed hypotheses were
tested using a bootstrapping procedure in phase two.

Second, fsQCA was conducted to obtain knowledge of the components that constitute
adequate combinations for blockchain adoption. fsQCA leverages Boolean logic to uncover
several paths that result in a common outcome [73]. It is an asymmetric approach differ-
ent from traditional symmetric approaches, such as regression and structural equation
modeling, which only permit the analysis of a single path of antecedent factors. Although
synergies exist in the factors influencing blockchain adoption, using fsQCA can capture
decision-making complexity in construction companies. The following phases were in-
cluded in the modeling process when using the fsQCA software: Phase one involved
calibrating the data from the survey into a fuzzy set (0 to 1) with three main points: full set
membership, crossover point, and full non-membership. Phase two was the analysis of the
necessary condition, which identified the determinants that may influence the achievement
of the target outcome. Subsequently, a truth table algorithm was constructed to draw the
study’s suggested conclusion in the third phase.
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5. Results

5.1. Results of PLS-SEM
5.1.1. Measurement Model

The quality of the research model was assessed in terms of convergent validity, relia-
bility, and discriminant validity. These three aspects are discussed next, as suggested in [36]
and [63]. To verify convergent validity, we applied the average variance extracted (AVE)
and factor loadings. Table 2 shows that every AVE was above the 0.5 benchmark, and all
factor loadings were above the 0.7 benchmark, which indicated satisfactory convergent
validity. The constructs’ reliability was examined by jointly analyzing Cronbach’s alpha
and composite construct reliability (CR). The tests both had acceptable values exceeding
0.7, as shown in Table 2, indicating that the reliability of the construct was validated. The
cross-loadings and Fornell–Larcker criteria were used to estimate the discriminant validity.
Figure 2 shows that the correlation coefficients were less than the square root of the AVE,
which satisfied the requirements of the Fornell–Larcker criterion. Additionally, all cross-
loadings were below each construct loading, which satisfied the cross-loading criterion in
this study, and discriminant validity was further established. The results of validity and
reliability are presented in Figure 3.

Table 2. Convergent validity and reliability results.

Constructs Items Loadings Cronbach’s α CR AVE

BI
BI1 0.926

0.889 0.931 0.819BI2 0.915
BI3 0.872

RA

RA1 0.816

0.873 0.905 0.613

RA2 0.833
RA3 0.748
RA4 0.747
RA5 0.786
RA6 0.762

CB

CB1 0.897

0.897 0.929 0.765
CB2 0.872
CB3 0.875
CB4 0.854

CX

CX1 0.927

0.937 0.955 0.841
CX2 0.920
CX3 0.921
CX4 0.902

CT

CT1 0.916

0.942 0.959 0.853
CT2 0.941
CT3 0.909
CT4 0.928

TA
TA1 0.823

0.782 0.866 0.685TA2 0.908
TA3 0.743

TMS

TMS1 0.902

0.912 0.938 0.790
TMS2 0.880
TMS3 0.898
TMS4 0.875

OR

OR1 0.862

0.863 0.907 0.709
OR2 0.854
OR3 0.845
OR4 0.805

FS
FS1 0.920

0.890 0.932 0.820FS2 0.915
FS3 0.881
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Table 2. Cont.

Constructs Items Loadings Cronbach’s α CR AVE

CP

CP1 0.741

0.799 0.869 0.624
CP2 0.819
CP3 0.824
CP4 0.771

TPP
TPP1 0.874

0.821 0.894 0.738TPP2 0.904
TPP3 0.797

RS

RS1 0.828

0.848 0.898 0.687
RS2 0.843
RS3 0.825
RS4 0.819

Notes: BI: behavioral intention; RA: relative advantage; CB: compatibility; CX: complexity; CT: cost; TA: trialability;
TMS: top management support; OR: organizational readiness; FS: firm size; CP: competitive pressure; TPP: trading
partner pressure; RS: regulatory support.

Figure 2. Fornell and Larcker criterion for discriminant validity results.

5.1.2. Structural Model

In this step, the proposed hypothesized relationships were examined using a bias-
corrected bootstrap procedure with 5000 subsamples. As Table 3 and Figure 4 show,
complexity, trialability, and trading partner pressure were non-significant factors at the
0.05 level. Among the remaining eight accepted relationships, compatibility, top man-
agement support, regulatory support, organizational readiness, relative advantage, firm
size, and competitive pressure significantly positively influenced construction companies’
willingness to adopt blockchain technology, whereas cost was negatively correlated with
adoption. In addition, the R2 value of 0.88 in Figure 4 indicates that the entire research
model fits the survey data well. Moreover, we assessed the control variables’ relevance
by adding them separately to a model that includes all main variables. According to the
results, none of the control variables exert a significant effect on blockchain adoption, thus
all the control variables were excluded from the final model.
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Figure 3. Measurement model.

Table 3. Path analysis results.

Hypotheses
(Effects)

Hypothesis
Path

Coefficient
t-Value Conclusions

H1 (+) RA → BI 0.102 3.960 *** Supported
H2 (+) CB → BI 0.166 4.314 *** Supported
H3 (−) CX → BI −0.013 0.459 Not Supported
H4 (−) CT → BI −0.205 3.605 *** Supported
H5 (+) TA → BI −0.013 0.579 Not Supported
H6 (+) TMS → BI 0.207 4.208 *** Supported
H7 (+) OR → BI 0.112 2.489 ** Supported
H8 (+) FS → BI 0.170 3.406 ** Supported
H9 (+) CP → BI 0.064 2.367 ** Supported

H10 (+) TPP → BI 0.030 1.175 Not Supported
H11 (+) RS → BI 0.155 3.679 *** Supported

Notes: * p < 0.05; ** p < 0.01; *** p < 0.001.

5.2. Results of fsQCA

The fsQCA, as a supplementary analysis, was further used to investigate the synergis-
tic impact of numerous factors that may influence the willingness of construction companies
to adopt blockchain. Some steps were necessary to perform an fsQCA analysis. The first
step was data calibration. Ordinary data must be transformed into fuzzy sets with three
meaningful thresholds: setting the original values from Likert scales to full membership,
crossover anchors, and full non-membership. The 5th, 50th, and 95th percentiles were
respectively used to show the level of membership among variables [74]. After calibration,
the necessary conditions analysis (NCA) was performed to detect the conditions that might
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influence the achievement of the desired result. Table 4 lists the calibration and NCA results.
Because all the consistency scores were below 0.90 as presented in Table 4, none of the
conditions are necessary for high levels of blockchain adoption. In the next step, a truth
table was constructed based on consistency and frequency. The number of cases threshold
was set to five [75], and the lowest acceptable observation consistency was set at 0.9 [63].
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Figure 4. Structural path diagram for the hypothesized relationships. Notes: * p < 0.05; ** p < 0.01;
*** p < 0.001; n.s. = not significant.

Table 4. Calibration thresholds of the measures and causal necessary conditions test.

Construct
Full

Membership
Cross-Over

Full Non-
Membership

Consistency Coverage

RA 4.33 3.50 2.50 0.768 0.775
CB 4.50 3.25 2.00 0.868 0.836
CX 4.75 3.25 2.00 0.515 0.544
CT 4.46 3.00 2.00 0.380 0.459
TA 4.67 3.67 2.33 0.692 0.703

TMS 4.00 3.25 2.00 0.863 0.853
FS 4.33 3.33 2.00 0.867 0.899
OR 4.00 3.25 2.00 0.856 0.830
CP 4.33 3.00 2.00 0.760 0.807

TPP 4.25 3.50 2.04 0.765 0.717
RS 4.28 3.33 1.72 0.884 0.856

A parsimonious solution, a complex solution, and an intermediate solution were used
through the fsQCA software. Considering the superiority over the other two solutions [75],
intermediate solutions were selected to conduct the fsQCA analysis of high blockchain
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adoption intention. Two combinations of causal conditions resulting in a high willingness
to adopt blockchain are listed in Table 5. According to the raw coverage, solution 1 ac-
counts for 21.7%, and solution 2 accounts for 28.7% of cases associated with the outcome.
The overall solution coverage in Table 5 indicates that the two solutions covered 34.6%
of cases that had the willingness to adopt blockchain. The consistent values for the two
solutions are above 0.8, which means the two solutions have achieved technology inno-
vation with sufficient consistency [76]. Factors including compatibility, top management
support, relative advantage, regulatory support, firm size, and organizational readiness
are considered the main conditions for blockchain adoption because they appeared in both
solutions, which indicated that these six factors together strengthen adoption willingness.
Solution 1 suggested that high blockchain adoption can be attained through the six main
conditions listed above: low levels of complexity and cost and low levels of trialability and
trading partner pressure. Solution 2 revealed that the six main conditions listed above—low
levels of complexity and cost, combined with trialability, trading partner pressure, and
competitive pressure—can achieve high blockchain adoption.

Table 5. Configurations for high blockchain adoption intention.

Configuration
Solution

1 2

The context of technology
RA • •
CB • •
CX O O
CT O O
TA O •

The context of organization
TMS • •
OR • •
FS • •

The context of environment
CP O •

TPP O •
RS • •

Consistency 0.999 0.999
Raw coverage 0.217 0.287

Unique coverage 0.059 0.130

Configuration Solution

Overall solution coverage 0.346
Overall solution consistency 0.9995

Notes: The black circles “•” indicate the presence of an element. The black circles “•” indicate the presence of an
auxiliary condition. The circle “O” represents the absence of an element.

5.3. Comparing PLS-SEM and fsQCA Results

The PLS-SEM analysis indicated that compatibility, top management support, relative
advantage, regulatory support, cost, firm size, organizational readiness, and competitive
pressure can significantly influence the intention of blockchain adoption for construction
companies in order of decreasing influence, whereas complexity, trialability, and trading
partner pressure can inhibit the intention to adopt. The fsQCA results indicated that
compatibility, top management support, relative advantage, regulatory support, firm
size, and organizational readiness are considered core elements for adoption because the
six variables mentioned above were included in both solutions. These results indicated
that the fsQCA and PLS-SEM analyses agreed.

However, some differences were observed between the fsQCA and PLS-SEM analyses.
FsQCA complemented the PLS-SEM analysis by revealing more than one complex con-
figuration of antecedents to achieve a high adoption of blockchain. Corresponding to the
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concept of causal asymmetry, fsQCA indicated that factors such as trialability, competitive
pressure, and trading partner pressure have opposite impacts on the willingness to adopt
blockchain, based on how they are combined or interact with other attributes. For example,
solution 1 indicated that, although the level of complexity, cost, trialability, competitive pres-
sure, and trading partner pressure is low, the six core conditions can increase organizations’
willingness to adopt blockchain. Similarly, solution 2 indicated that trialability, competitive
pressure, and trading partner pressure as the auxiliary conditions can contribute to the
high intention of blockchain adoption, as long as the level of complexity and cost is low
and the levels of six core elements are high.

6. Discussion

This study identified significant factors of blockchain adoption across technological,
organizational, and environmental dimensions, which can provide the foundation for pro-
moting blockchain adoption in the construction industry. Consequently, these key results
contribute to a deeper understanding of blockchain adoption in the construction industry.
By combining PLS-SEM with fsQCA, we also gained a better understanding of the overall
adoption process. According to an evaluation of the research model, compatibility, top
management support, and relative advantage were observed to be the top three impor-
tant determinants to influence the intention of blockchain adoption, whereas complexity,
trialability, and trading partner pressure received no meaningful statistical support at a
significant level. Next, all findings related to the hypotheses are discussed.

Within the technology dimension framework, relative advantage (H1) is positively cor-
related with construction companies’ intentions to adopt blockchain. Previous studies on
innovation adoption also support this conclusion [17,36]. For example, relative advantages
such as enabling efficiency gains, cost reductions, instant tracking and tracing of assets,
and automated contract enforcement have been demonstrated to be potential benefits in
the construction industry. Compatibility (H2) has a considerable impact on the adoption
of blockchain by construction companies. Several studies supported this finding [35,77].
Blockchain adoption would be facilitated if the existing business operating model of an
organization is compatible with blockchain technology. The internal systems of the con-
struction industry are complex, and if the blockchain application matches the existing
information infrastructure, construction companies would be more active in implementing
blockchain. Studies have shown that the effect of complexity (H3), which was considered
in earlier studies, does not have a significantly negative influence on blockchain adop-
tion [36,78]. The relationship between the complexity and intention to adopt blockchain
technology was not supported by the data we collected. Although somewhat unusual,
this insignificant relationship may be due to the following reasons. On one hand, most
construction companies have no ability to develop blockchain technology on their own,
and they purchase it directly from high-tech companies. To some extent, companies do not
care much about the complexity of blockchain but more about its usefulness, highlighting
the significance of the relative advantage. On the other hand, with the advent of the digital
age, construction companies could acquire technology in multiple ways, and technical
barriers no longer play a crucial role in a company’s competitive advantage. Cost (H4) has
a significantly negative impact on the intention to adopt blockchain, which is consistent
with the findings of earlier research that identified high costs as a primary barrier to inno-
vation adoption [17,36]. The construction industry is a collaborative stakeholder with a
complex network of relationships. A significant advantage of blockchain technology is the
elimination of third-party-related costs in the network. Additionally, based on interviews
with professionals working in the construction industry, it is anticipated that blockchain
technology will reduce the costs associated with data processing and management by 70%
through the automation of compliance checks, payments, and project performance anal-
yses [5]. Even with such cost savings, the adoption of blockchain will increase hardware
and facility costs, and the costs of operation and maintenance will remain significant. Con-
struction companies may make comprehensive decisions to weigh the costs of blockchain
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adoption against the cost savings. Many construction companies are reluctant to adopt
blockchain technology, considering the large initial investment and uncertainty on whether
the expected benefits could be achieved. Trialability (H5) was confirmed to have no effect
on blockchain adoption for construction companies, which was consistent with the findings
of [46] and [77]. The present relative immaturity of blockchain technology could explain
this result. The construction industry is recognized for its lack of innovation, and anxiety
about using emerging technology systems could discourage the adoption of blockchain
technology. Although trialability was not a significant factor in this study, its significance
may change if blockchain technology is applied more broadly in the construction industry.

Within the organizational context framework, this study revealed that top management
support (H6) has a crucial role in the adoption of blockchain in construction organizations.
It has been an essential component of the implementation of various technological advance-
ments [36,47]. It had the second-highest path coefficient value of all the examined factors,
confirming the significance of top management in innovation adoption in construction.
The significant effect of organizational readiness (H7) on blockchain adoption corresponds
with the findings of [35]. Blockchain adoption by construction companies that lack suffi-
cient technical, financial, and trained human resources may be challenging. A company
may not implement blockchain technology if it does not have the necessary resources and
competencies. Corresponding with the findings of [40] and [35], firm size (H8) emerged as
a critical factor affecting adoption. Combined with the characteristics of the construction
industry, larger firms intend to adopt blockchain technology because their capabilities and
sources are sufficient to utilize and implement blockchain technology.

Regarding the framework of the environmental context, competitive pressure (H9)
was confirmed to have a significant positive impact on the blockchain adoption intentions
of construction companies. Competitive pressure has been shown to be a crucial facilitator
of technology adoption across a broad variety of businesses, as previous studies have
shown [35,46]. Firms under intense competition are more likely to use and implement
blockchain technology to increase their market share. A construction company may explore
effective strategies to gain a long-term competitive edge. This shows that competition
exists and that the ability to remain at the forefront of technical advancement influences
decisions. Trading partner pressure (H10) was confirmed to have no significant effect
on blockchain adoption, similar to the study conducted in [36]. This may be because
blockchain is still a relatively new technology, with most companies involved being start-
ups. Chinese construction companies currently have minimal adoption of blockchain, and
it is difficult to assess the difficulty of using blockchain technology in new construction
projects. It is impossible for trading partners to fully adopt blockchain within a short
period. Consequently, companies are less sensitive to pressure from trading partners in
the construction industry. Regulatory support (H11) has a significantly positive influence
on blockchain adoption, similar to the conclusions of [63] and [78]. The significance
of this link results from the fact that construction companies consider the adoption of
blockchain technology to be a large investment, and regulatory support is essential for
legitimizing adoption and implementation. The reason for this significant relationship is
that construction companies consider blockchain adoption a significant investment and
regulatory support as necessary to ensure smooth implementation across the board.

6.1. Theoretical Implications

As blockchain research is still in its early phases in terms of empirical testing, the-
oretical processes, and methodological diversity, this paper provides timely important
theoretical and methodological contributions. Although there are many previous quali-
tative studies on blockchain in construction [11,27], there is a lack of quantitative studies
in this investigation. Based on the theoretical perspective of the TOE framework and
empirical evidence from Chinese construction companies, the results of this study provide
researchers, practitioners, and policymakers with relevant guidance for the construction in-
dustry by investigating the relationship between various determinants and the willingness
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to adopt blockchain. The results of the study revealed that factors such as compatibility, top
management support, relative advantage, regulatory support, cost, competitive pressure,
organizational readiness, and firm size significantly influence the intention of blockchain
adoption whereas complexity, trialability, and trading partner pressure have no effect.
These findings are in line with those reported by the vast majority of earlier studies on the
process of technology innovation diffusion [36,46]. The inconsistency of these findings with
the results of previous studies about the application of blockchain to other fields reflected
the characteristics of the construction industry [17,35]. More importantly, a comprehensive
analysis of the fsQCA and PLS-SEM results deepens our understanding of the adoption
process. Furthermore, this research can provide organizations or businesses with a clearer
picture of the factors influencing blockchain adoption, which can enhance the transfor-
mational capabilities of construction companies and provide insights into the impact of
emerging technologies on the construction industry.

6.2. Practical Implications

With the rapid development of smart construction, the construction industry has
experienced unprecedented disruptive innovation in recent years. Blockchain is recognized
as an emerging technology that promises to solve pain points in the construction industry. It
promises to have a significant impact on operations, trust management among stakeholders,
and business processes. This study evaluated various factors that influence the intent to
adopt blockchain, and our findings have many practical implications. Overall, these
conclusions can help practitioners make better blockchain adoption decisions. This study
evaluated the causes and situations that drive the migration of the construction industry
to blockchain.

In the context of technology, construction companies should actively recognize the
benefits of blockchain as the first step in its adoption. Our findings suggest that the relative
advantages that blockchain brings to construction companies can incentivize them to adopt
blockchain. The positive correlation between the comparative advantage and adoption
intentions can help decision-makers recognize the value of blockchain in construction
businesses; moreover, compatibility is a significant predictor of blockchain adoption. If
blockchain technology is compatible with a firm’s business philosophy and operating sys-
tem, it contributes to the smooth operation of the firm. Compatibility: Our findings suggest
that compatibility has a greater impact on the willingness to adopt blockchain than top
management. For strategic deployment, executives first assess a company’s compatibility
before adopting blockchain technology. Additionally, cost is a key concern for construction
companies, and can influence their willingness to adopt blockchain technology. Although
the cost is negatively correlated with the willingness to adopt blockchain, construction com-
panies still comprehensively decide whether to adopt blockchain technology in a dialectical
and systematic way.

In the organizational dimension, the attitude of the top management is critical to the
willingness of construction companies to adopt blockchain. Our findings suggest that, for
senior managers to conclude that adopting blockchain will bring relative advantages, they
should focus on improving the technical capabilities of R and D personnel to meet the
company’s needs for blockchain technology. Blockchain adoption is not a simple technol-
ogy implementation process and involves various aspects of organizational readiness to
create a foundation for adoption and application. Construction companies should focus on
improving their technological capabilities to successfully implement blockchain adoption.
More scientists with relevant knowledge must be recruited to facilitate the implementation
of blockchain. Large-scale firms are more willing to change their adoption of new technolo-
gies than smaller ones. Large-scale companies can use blockchain for business expansion
to solve their business challenges. Even with the uncertainties and risks associated with
blockchain technology adoption, large construction companies are actively adopting big
data analytics to gain a competitive advantage and open up new business opportunities.
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In an environmental context, competitive pressure compels the construction industry
to adopt blockchain technology to enhance the strength of companies. Learning and apply-
ing blockchain technology is gaining popularity as companies seek to gain a competitive
advantage over their competitors. In an increasingly competitive market, our findings
suggest that companies should adopt blockchain. Regulatory support is indispensable, and
the improvement of relevant laws and regulations will provide effective protection for the
construction industry to adopt blockchain. Governments play a pivotal role in encouraging
the development of new technologies, and the adoption of blockchain technology requires
the support of government entities.

7. Conclusions and Limitations

Based on the TOE framework, this paper attempted to fill a knowledge gap by iden-
tifying the determinants of blockchain adoption and presenting an empirical foundation
for future blockchain adoption in the construction sector. The survey data for this study
were obtained from Chinese construction companies, and 11 components in three different
contexts were examined using a hybrid approach of PLS-SEM and fsQCA. The PLS-SEM
findings show that factors such as compatibility, top management support, relative ad-
vantage, regulatory support, cost, firm size, organizational readiness, and competitive
pressure significantly influence adoption. In addition, three factors (complexity, trialability,
and trading partner pressure), because the relevant hypotheses did not receive support
from the evidence, were confirmed to have no statistically significant influence. Further
research on these three factors is required to obtain a clearer understanding. From the
fsQCA results, a combination of compatibility, relative advantage, top management sup-
port, regulatory support, organizational readiness, and firm size achieves the highest level
of blockchain adoption intention. These findings are intended to assist researchers, devel-
opers, and decision-makers in better comprehending the key blockchain adoption factors
in the construction industry and addressing negative adoption factors more effectively.

This study had some limitations. First, the data were cross-sectional rather than
longitudinal and the sample size and diversity were limited. However, the adoption of
blockchain is a dynamic process and blockchain technology is constantly evolving. Thus,
more studies should be conducted to extend the generalization of the findings in the current
study. For example, involving more stakeholders in the progress of adopting emerging
technologies; using different research methods, such as using multiple case studies or a
system dynamics approach to replicate this study and verify the findings obtained from it.
Second, except for those identified in this study, the research cannot be exhaustive because
of many other technical, organizational, and environmental factors that may influence
blockchain adoption; more precisely, some of the factors cannot be used to differentiate
the construction industry from others. In the future, we will consider factors that are more
specific to the construction industry, such as security and privacy issues. Furthermore,
this study only considered the impact of factors on adoption decisions, and linkages may
exist between factors, for example, whether the factors in the environmental dimension
moderate the factors in the dimensions of technology and organization to impact adoption
decisions. Additionally, the sample used in this study was from China. Because of the
cultural differences between China and other countries, the study model should be further
examined and contrasted using samples from other nations to offer more credible support
for the hypotheses.
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Appendix A

Table A1. Survey items.

Construct Measurement Items Adapted From

Relative
advantage

Adopting blockchain can enable my company to accomplish project tasks more efficiently
and effectively

[17]
Adopting blockchain can enhance the
traceability of my company’s projects

Adopting blockchain can increase the transparency of my company’s projects
Blockchain can increase trust among

stakeholders in construction
Adopting blockchain can improve deferred payment issues

Blockchain can provide privacy protection and security of my company

Compatibility

Blockchain is compatible with the business operating model in my company

[36,46]
Blockchain is compatible with the management requirements of the company

Blockchain fits with the existing values of my company
Blockchain is compatible with my company’s existing infrastructure

Complexity

Blockchain would be too complex for my company to use

[17,36]
Learning how to use blockchain in my company is not easy

It will take considerable time and effort for my company to learn how to use blockchain
My company believes that blockchain adoption requires many skills

Cost

Adopting blockchain in my company will increase the cost of facility and hardware

[17,36]
Adopting blockchain in my company will increase the cost of operations and maintenance

The cost of adopting blockchain will be expensive for my company
The cost of adopting blockchain is unknown and difficult to comprehend

Trialability

My company intends to try out some blockchain technology in a small scope before fully
adopting and implementing it

[46]A trial period before blockchain adoption will reduce risks
The ability to experiment with blockchain adoption is critical in deciding whether to adopt it

Top
management

support

Top management in my company will be responsive and attentive to blockchain adoption

[35,46]
Top management in my company could take the risks associated with blockchain adoption

My top management will provide the necessary human resources, finances and materials for
blockchain adoption

My top management will look at blockchain as strategically important

Organizational
readiness

My company has resources necessary to use blockchain

[36,46]
My company has possessed the necessary expertise and skills to adopt blockchain

The technology staff in the company have the sufficient experience and skills to conduct the
adoption of blockchain

My company’s existing technologies support blockchain adoption

Firm size
My company’s capital is higher than others in the construction industry

[35,36]My company’s revenue is higher than others in the construction industry
My company has more competent staff than others in the construction industry

Competitive
pressure

The adoption of blockchain will offer my company a stronger competitive advantage

[17,63]
My company believes it is important to adopt blockchain to be competitive

My company is forced to adopt blockchain due to competitive pressure
My company believes that competitors have recently started exploring blockchain technology
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Table A1. Cont.

Construct Measurement Items Adapted From

Regulatory
support

The government or competent agencies provide financial assistance for
blockchain development

[17]The government or relevant authorities provide technical guidance for adopting
blockchain technology

Blockchain technology can be implemented with the current set of laws and regulations
Government encourages the adoption of blockchain in procurement and projects

Trading partner
pressure

My company’s major trading partners recommend blockchain adoption
[46,63]My company’s major trading partners encourage blockchain adoption

My company’s major trading partners request blockchain adoption

Behavioral
intention

My company intends to adopt blockchain technology actively in the future
[17,46]My company intends to digitally transform management

My company is willing to utilize blockchain technology in various projects
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Abstract: Knowledge is a contribution factor leading to more effective and efficient construction
safety management. Metro construction practitioners always find it difficult to determine what
specialized knowledge is needed in order to lead to better safety risk management. Currently,
domain knowledge elements are generally determined by experts, which is coarse-grained and
uncomprehensive. Therefore, this paper aims to provide a structure of domain knowledge elements,
using an automatic approach to expand domain knowledge elements (DKEs) from a big dataset of
unstructured text documents. First, the co-word co-occurrence network (CCN) was used to find the
connected knowledge elements, and then the association rule mining (ARM) was compiled to prune
the weakly related subnetworks, leaving the strong associated elements. Finally, a list of DKEs in
the metro construction safety risk management was obtained. The result shows that the obtained
DKEs are more comprehensive and valuable compared to previous studies. The proposed approach
provides an automatic way to expand DKEs from a small amount of known knowledge, minimizing
the expert bias. This study also contributes to building a fine-grained knowledge structure for metro
construction safety risk management. The structure can be used to guide safety training and help
knowledge-based safety risk management.

Keywords: metro construction project; safety risk management; knowledge expansion; co-occurrence
analysis; association rule mining

1. Introduction

Metro construction has presented a powerful momentum for rapid economic develop-
ment worldwide [1]. Due to various uncertainty factors, especially complex underground
geological conditions, metro construction is inherently complicated and high-risk. Many
safety accidents and near-miss events are related to ineffective risk management [2,3],
resulting in serious social impact, many casualties, and huge economic losses [4]. It is
therefore significant to improve the safety risk management in metro construction to avoid
and reduce safety accidents and near-miss events.

The architecture, engineering, and construction (AEC) industry is becoming increas-
ingly knowledge-driven and information-intensive [5], especially for metro construction
safety risk management, owing to its characteristics of complexity. Research and practice
(such as by health and safety executives in the UK) have indicated that up to 80% of ac-
cidents are attributed to the actions or omissions of people [6,7]. One of the main causes
behind unsafe behaviors is a lack of domain knowledge [8,9], i.e., specific subject-matter
knowledge [10]. Hence, increasing domain knowledge leads to the promotion of the level
of safety management and a decrease in the rate of accidents and injuries.
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Owing to the one-off nature of metro construction projects and organizations, knowl-
edge learning is required every day to meet the demands of addressing new issues. The
term domain knowledge elements (DKEs) (e.g., soil mixing wall and shield cut) refers
to knowledge that has complete logic and cannot be divided [11]. DKEs can be used as
the domain-particular concepts (i.e., knowledge structure) in a domain knowledge graph
(DKG), which underpins the knowledge base of safety risk management [12]. However,
study on DKEs has received little attention in the literature and practice. Metro construction
practitioners always find it difficult to determine what specialized knowledge is needed to
lead to better performance and fewer errors.

Since domain knowledge is immense and new DKEs are generated every now and
then, the huge mass of information has resulted in a form of information overload for
safety risk managers. It is easy to list some DKEs, but it is hard to list all DKEs and
update the list in time. Information in text format remains a greatly underutilized form
of knowledge in the metro construction safety risk management domain. Hundreds of
research works are uploaded to public websites every day, containing rich but unstructured
domain knowledge elements. Consequently, this situation calls for an automatic approach
for expanding immense unknown DKEs from a small set of existing DKEs.

The main contributions of this work are summarized as follows:

1. Practically, we built a fine-grained knowledge structure for metro construction safety
risk management. The structure can be used to guide safety training and help the
construction of domain knowledge graphs, etc.

2. Theoretically, we propose an automatic approach to expand domain knowledge
elements from massive documents, minimizing the expert bias.

In the following sections, a literature review is first given on related research. Then,
a pathfinding approach of knowledge expansion is proposed, followed by a step-by-
step experiment and its results. Lastly, conclusions are drawn, informing the reader of
opportunities for future research.

2. Literature Review

2.1. Knowledge-Based Safety Risk Management in Metro Construction

Knowledge management research in the AEC industry has significantly blossomed in
the last two decades [13]. Since ineffective risk management in metro construction projects
is partly due to a lack of knowledge [14], knowledge-based safety risk management is
becoming an important method for risk prevention and mitigation. Substantial progress
has been made recently. Studies can be separated into three major categories.

The first category centers around using effective knowledge management to increase
organization performance regarding safety risk management, such as using knowledge
sharing to improve the safety climate [15], exploring knowledge transfer factors to benefit
cooperation networks [16], and using a knowledge dynamics-integrated map to clarify the
fluidity of knowledge through the risk management process [17].

The second category focuses on knowledge-based intelligent systems to implement
safety risk management processes, including automatic risk identification, supervision,
and warning. For instance, Ding et al. developed a safety risk identification system
for metro construction from construction drawings [18]. Zhong et al. extracted safety
risk factors from construction specifications and developed an ontology-based system
to match the potential hazards implied in photography images [19]. Current research
mainly extracts specified knowledge units related to risk factors and their attributes, e.g.,
in Ref. [19] construction equipment and its quality, materials, and bearing were identified
and extracted as knowledge units.

The third category explores domain knowledge elements. As the core component of
knowledge-based systems, a knowledge base is a warehouse of domain-specific knowledge [20].
Four types of knowledge elements were mentioned that lead to successful projects in the
AEC industry: Technical fundamentals, materials of construction, construction-applied
resources, and field construction operations [21]. Also, key phrases (i.e., domain-specific
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compounds of words) were extracted from unstructured text documents with relations
based on association frequencies of co-occurring word pairs [22]. Another interesting study
put forward a building information modeling (BIM) body of knowledge (BOK) to present
common knowledge, skills, and abilities using the Delphi method [23,24].

It is acknowledged that knowledge-based safety risk management is an important and
effective method to assist metro construction safety. Knowledge-based intelligent systems
have been developed to address safety risk issues. Yet the establishment of DKEs was
mainly based on empirical data collected from experts. It is expected that this study helps
facilitate the automatic construction and expansion of DKEs.

2.2. Automatic Methods for Safety Knowledge Discovery

Benefiting from the big data and artificial intelligence technologies, many automatic
methods have been developed to deal with knowledge discovery. The current study mainly
focuses on the two categories: (i) data-driven safety risk identification and analysis, and
(ii) knowledge extraction from publication works.

Data-driven safety risk analysis is prone to integrate data mining technologies and
risk assessment models. Na et al. improved the term frequency (TF) model with informa-
tion entropy values to extract safety risk factors from construction accident reports [25].
Zhipeng et al. utilized Cramer’s V and Phi coefficients to uncover statistical correlations be-
tween risk factors [26]. Alshboul et al. [27] combined machine learning (ML) techniques and
multiple linear regression (MLR) to predict liquidated damages for construction projects.
Wen-hui et al. proposed a comprehensive risk assessment framework incorporating credal
networks (CNs) and an improved evaluation based on the distance from average solution
(EDAS) method [28]. Additionally, many hybrid models have been developed to improve
the accuracy of risk evaluation. Alshboul et al. complied genetic algorithms to optimize
the associated decision variables for earthmoving equipment [29]. Zhang et al. optimized
t-squares support vector machines (LSSVM) using quantum-behaved particle swarm opti-
mization (QPSO) to perform early risk warning in subway station construction [30]. She-
hadeh et al. developed a Gaussian mixture model to estimate the construction companies’
capabilities in performing construction and maintenance activities during the pandemic [31].
Li et al. provided a second-order structural model using structural equation modeling
(SEM) to determine the safety level in metro subway projects [32]. However, domain knowl-
edge elements are far broader than safety risk factors. Knowledge units required for safety
risk management should also be explored, such as the description of metro structures and
construction equipment. Hence, the amount of processed data in this study is much larger.

Information extraction (IE) methods are mainly used to extract knowledge from
scientific publications [33,34]. Two prevailing tasks of IE are named entity recognition
(NER) and relation extraction (RE). The NER approach focuses on finding and classifying
relevant knowledge units at a semantic level [35], such as names, organizations, and
locations, whereas RE extracts the relationships between entities [36]. NER tasks require
highly accurate and domain-specific part-of-speech (POS) tagging results [37], which is
laborious and time-consuming. Thus, the linguistic characteristics of DKEs are more
complicated. As for RE, the relationship types are fixed and limited within a range of
semantic predefined rules, such as IsA, SubClassOf, and AtLocation [38]. For example, Yoo
and Jeong utilized ConceptNet to extract relationships, including RalatedTo, IsA, part of,
and HasA, between existing words and neologisms from news sites and social media, in
order to add new neologisms to existing knowledge [39]. These studies utilized verbs in
sentences to extract specified results based on a semantic labeling system, using text mining
and natural language processing methods. If two entities in one sentence are related to the
main verb, and the main verb is included in the predefined verb lexicon, those entities and
relationships are annotated and extracted [40]. However, only very few sentences in the
literature, such as definitions, adopt the narratives with specified verbs. Most of the related
knowledge elements appear in one document rather than in one sentence.
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Thus, a novel method needs to be brought forward to address the two issues of
knowledge extraction in the metro construction domain: (i) the obtained DKEs should cover
as many knowledge units as possible, and (ii) the process should use as little manpower as
possible. To achieve such demands, this study aimed to provide an automatic approach for
expanding immense unknown DKEs from a small set of seed words.

3. Methodology

3.1. Co-Word Co-Occurrence Analysis

Among the various NER and RE techniques, many studies have been based on co-
word co-occurrence analysis [41,42]. In the AEC industry, CCNs are widely used to extract
and visualize the potential relationships of topics and keywords from large-scale literature
works in order to find research trends and gaps [43,44]. The advantage of CCNs is that
they visualize the knowledge element network. However, they are considered to typically
have limitations in terms of the quality of keywords and the selection of strong linkage.
Regarding keywords, the results from indexing are more akin to the conceptualizations
of indexers than to those of the scientists whose work is being studied. As for the linkage
strength, the frequency of co-occurrences is counted to evaluate the strength of linkages in
co-occurrence relationships. For example, in Ref. [43], the number of articles in which two
topics tended to co-occur was calculated to evaluate the interlinkage strengths among all
topics. Moreover, social network analysis (SNA) was put forward to calculate the linkage
of nodes. The density and centrality of high-frequency words were counted to measure
the co-occurrence strength [45,46]. However, neither of the above methods is capable of
dealing with voluminous data.

To overcome the limitations of CCNs and to enhance the expanding performance, the
proposed co-occurrence-based pathfinding approach made the following improvements:

(1) To enlarge the scope of the dataset, a web crawler was utilized to search the
literatures on the World Wide Web across related domain platforms. Moreover, the entire
abstract was retrieved and used to build a corpus to mitigate the bias of improper keywords.
Moreover, because the collected abstracts were unstructured text, a domain lexicon closely
related to domain-specific documents was constructed to improve the performance of
text segmentation.

(2) A CCN was generated by a huge binary matrix. Both co-occurrence frequency and
the centrality of the node have limitations in dealing with big data. To accomplish this,
ARM, as a typical data mining method, was integrated to evaluate the strength of network
linkage and to prune the redundant subnetworks.

3.2. Association Rule Mining

Association rule mining (ARM) is a data-mining method that is widely used in com-
mercial settings (e.g., the purchase tendencies of customers) to find interesting associations
that often occur in large datasets [47]. In the construction safety risk management field,
Ayhan et al. identified the correlations between the attributes and accident types in occupa-
tional accidents [48]. Guo et al. analyzed the relationships among unsafe behaviors, worker
types, and construction phases [49]. Zhou et al. investigated the associations between safety
risk monitoring types and the coupling of risks [50]. In conclusion, ARM is normally used
to analyze the coupling safety factors or the co-occurrences of causes and accidents. This
paper aimed to use ARM to evaluate the association strength and highlight the strongly
linked DKEs in a CCN.

3.3. Architecture of the Co-Occurrence-Based Pathfinding Approach

The idea of co-occurrence-based pathfinding is to assume that DKEs frequently co-
occur in one document. The method is based on the integration of a CCN and ARM for
finding frequently co-occurring pairwise domain-specific terms in a big dataset of text docu-
ments. Figure 1 presents the architecture of the co-occurrence-based pathfinding approach.
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Figure 1. Architecture of the co-occurrence-based pathfinding approach.

(1) Web crawler. Select some known DKEs as seed words, and then use the web
crawler to collect domain literature, taking the selected seed words as search words. The
title, abstract, and keywords of each literature work are collected and stored in the corpus.

(2) Network builder. A general lexicon rarely contains proper or highly technical
terms. Thus, a domain lexicon is built to improve the performance of text segmentation.
Then, text segmentation is performed and word pairs and a binary term–document matrix
(B-TDM) are generated. A CCN is then built based on the B-TDM by counting frequencies
of pairwise term co-occurrence.

(3) Network filter. The association rule mining method serves as a filter to remove
weakly related subnets in the CCN. Support, confidence, and lift are the three important
indicators used for filtering rules by setting thresholds [51]. The threshold values are
context-specific and user-defined [52]. The newly discovered DKEs are compared and
added to the existing domain knowledge elements by using string matching.

3.4. Integration of a CCN and ARM

DKEs usually co-occur in one domain document simultaneously because they describe
one subject-specific topic. For example, if the term “geological conditions” appears, then
related terms such as “geotechnical structure,” “adverse geology,” and “collapse accident”
may be found in the same document. Therefore, we assumed that word pairs generated by
co-occurrence are prone to representing the same specific subject (i.e., domain knowledge).
As DKEs and their co-occurrence relationships form a CCN [53], the expansion of DKEs
can be achieved by finding the propagated paths of co-occurrence relationships.

Figure 2 displays a CCN of DKEs. The CCN comprises nodes, representing DKEs, and
links, representing the co-occurrence relationships between said DKEs. As an example,
suppose we want to find unknown DKEs related to the known element A. We begin by
exploring the paths from the node labeled A, which leads us to the new nodes B, C, D,
E, and F according to the strength of the link. We then expand from node F, leading to
node G and subsequently node F. This finding process is repeated until an expansion path
no longer appears and the network cannot be expanded any more—at which point it is
considered that all domain knowledge elements have been found. Finally, we can find
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the following five paths: A→B, A→C, A→D, A→E, and A→F→G→H. Therefore, we can
expand the domain knowledge elements from A to B, C, D, E, F, G, and H.

Figure 2. Co-word co-occurrence network of domain knowledge elements.

The basic concept of the association rule is to generate rules based on items with
frequent occurrence [48]. Association rule mining is utilized here to filter out the weak
linage of the CCN based on the support, confidence, and lift value. D is the total number
of documents. X and Y represent the two different knowledge elements. An association
rule X → Y is defined as: if X occurs, then Y occurs. X is the antecedent node of the CCN,
and Y is the node. Support, confidence, and lift are the common indicators employed to
evaluate the strength of an association rule [54].

The support shows the number of documents supporting the association rule of co-
occurrence (X and Y occur in one document together) over the total number of documents
(D). P(X ∪ Y) means the possibility of the co-occurrence of both X and Y. As for confidence,
it is defined as the frequency with which X and Y occur together over the frequency with
which X occurs in isolation. The value of support is an indication of how frequently the
word appears in the corpus, while confidence shows how often the co-occurrence is found
to be true [55]. Moreover, the value of lift reflects the influence of the occurrence of X on
the occurrence of Y. The indicators are defined as in Equations (1)–(3) [51,56].

Support(X→Y) = D(X∪Y)/D = P(X ∪ Y) (1)

Con f idence(X→Y) = D(X∪Y)/DX = P(Y|X ) (2)

Li f t(X→Y) = (D(X∪Y)/DX)/
(

Dy/D
)
= P(Y|X )/P(Y) (3)

The Apriori algorithm is adopted to mine the pairwise item sets X → Y. The path
X → Y will remain as a frequent item set when it meets the minimum thresholds of the
support, confidence, and lift. Otherwise, the path will be eliminated from the CCN.

Choosing a threshold value is one of the most difficult aspects of applying ARM.
Currently, thresholds are determined intuitively by users, according to the dataset’s charac-
teristics and the user’s desires. Normally, the threshold values of support and confidence
are usually set around 1%~4% and 10%~20% in safety risk factor discovery [56], while the
threshold value of lift is often set around 1~1.5. In the experiment, statistical analysis was
utilized to help generate the candidate threshold groups. Then, the domain experts decided
the best threshold group according to the mined outputs. It is expected that the designed
process can minimize the user’s uncertainty.

4. Experiment and Results

4.1. Data Collection

Compared to engineering documents in the field, the academic literature is large in
terms of quantity of works—more formally, it is easier to obtain and contains more new
emerging knowledge. Thus, academic literature work was selected to build the corpus.

(1) Selection of the seed words
Using “metro construction” as the topic word to search the literature in the database of

China National Knowledge Infrastructure (CNKI) during the years 2008–2018, we selected
the top 100 indexed literature works and extracted the keywords. The, duplicated words
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were deleted, synonyms were normalized, and general words were deleted (e.g., control,
management, and simulation analysis). Then, a list of seed words (No. = 188) was determined.

(2) Corpus building
With the CNKI, Vepu, and Wanfang databases (three of the main Chinese academic

databases) taken as the data sources, web crawling was conducted separately using the
seed words as search words to match the keywords in the academic literature published
during 2008–2018. Finally, 68,817 literature works were collected, including journal articles,
dissertation papers, newspaper reports, and conference proceedings. The title, abstract and
keywords of the literature works were collected and transformed to text-type documents to
construct a corpus. Moreover, the crawler supports the “Feed Adapter” function for data
ingestion, so it continuously integrates data from external sources.

4.2. Network Building

According to the architecture (Figure 1) in the Methodology section, four steps were
conducted to build a CCN:

(1) Domain lexicon
A domain lexicon was built according to Refs. [57,58]. Not only were subject-specific

terms listed in the lexicon, but so were the synonym terms and stopwords. The domain
lexicon benefits the generation of subject-specific tokens.

(2) Text segmentation
The corpus was divided into linguistically meaningful units (tokens) in this step.

JiebaR, a Chinese tokenization toolkit, was used to implement the segmentation. The
created domain lexicon was deployed in the program to improve the performance of
text segmentation.

(3) Binary term–document matrix (B-TDM)
B-TDM is a numeric two-dimensional matrix representing the occurrence of a term

appearing in a document [59]. JiebaR was used to calculate the occurrence count of each
token for each document. The row refers to the sequence number of the document, while
the column shows the tokens obtained after text segmentation. The number “1” represents
the token occurring in the document, while the number “0” represents the token not
occurring. It should be noted that the B-TDM of this case is a large sparse matrix because
the distribution of terms is scattered in the massive dataset. Table 1 shows the B-TDM of the
case. “Tunnel engineering” and “construction technology” both appear in documents No.
1, No. 2, and No. 5. Therefore, “construction technology” is considered a new candidate
DKE related to “tunnel engineering”.

Table 1. Binary term–document matrix.

Tunnel
Engineering

Construction
Technology

Shallow
Burying

Mining
Method

Shield
Method

. . . Foundation
Support

1 1 1 0 1 0 1
2 1 1 0 0 0 0
3 1 0 0 0 1 1
4 1 0 1 0 0 0
5 1 1 1 0 0 0

. . . . . .
68,817 0 0 1 0 1 1

(4) Co-word co-occurrence network
A CCN was created based on the data of B-TDM by counting the frequencies of

pairwise term co-occurrence. Because of the large number of redundant co-relations within
the tokens, the network needs to be largely pruned to highlight the most important co-
related item sets.
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4.3. Network Filtering

The Arules toolkit was used to perform association rule mining. The B-TDM was
taken as the input data, and the Apriori algorithm was chosen to generate the pairwise
item sets according to Equations (1)–(3). To set the thresholds of frequent item sets, 10 of
the 188 seed words were randomly selected as the training data. Figure 3 displays the
support value of 10 seed words by different colors. The mining results reflect that the
support value shows a long tail distribution, i.e., only a small number of item sets have
a high frequency of co-occurrence. The curve decreases sharply at the beginning, then
gradually decreases to a low level after entering the inflection area, and finally forms a
nearly horizontal straight line.

Figure 3. Distribution of support values.

According to the dataset’s distribution in Figure 3, we attempted to use the inflection
area to set around the high/low frequent items. In order not to lose the valuable item sets,
the lower end of the inflection area was selected as the boundary to define high and low
supportive item sets.

Different seed words have different inflection areas. Figure 4 displays all of the
support values at the lower end of the inflection area. To simplify the mining rule, the
benchmark of support value was defined as the average of them, which was 0.5%. Thus,
the potential mining rule set was defined as the combination of support ≥ {0.5%, 1%}
and confidence ≥ {0, 10%} and lift ≥ {1, 1.5}. This means that there are eight candidate
mining rules. Eight experiments were conducted on the above 10 words, as shown in
Figure 3. Expert knowledge was required to evaluate the strong association item sets
under different mining rules and to choose the best of them. Finally, the threshold value
of the three indicators in this study was set as support ≥ 0.5% and lift ≥ 1. No limitation
for confidence (confidence = 0) means that as long as Y occurs, the co-occurrence is
valid. Compared to previous studies, the relatively lower threshold value of support
and confidence led to more co-related terms. Otherwise, some item sets would have been
missed because the B-DTM in this case was very sparse. The value of lift (lift = 1) generated
those terms whose occurrence increased with the occurrence of the seed words.
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Figure 4. Support values of seed words at the lower end of the inflection area.

Therefore, the threshold group was finally set as support ≥ 0.5% and confidence ≥ 0
and lift ≥ 1. The minimum support value is lower than most cases (normally above 1%).
This is because of the sparse matrix of B-DTM in this case. It is acknowledged that datasets
with a low level of density required a smaller minimum support value when compared to
datasets with high density [60].

4.4. Results

(1) Knowledge structure of metro construction safety risk management
Applying the association rule to the whole corpus, 2914 strong item sets were obtained.

Then, the duplicate terms that already existed in previous rounds of mining were merged
by using string matching. Finally, a list of 1583 DKEs was obtained.

To benefit the sharing and reuse of knowledge, the obtained DKEs were grouped into
11 themes and five categories by experts, according to the descriptions and meanings of
the knowledge elements. Correspondingly, the knowledge structure of metro construction
safety risk management was established (Figure 5). Limited by the length of this paper, the
number of DKEs is displayed in parentheses instead of in detail. The knowledge structure
can be used in many practical scenarios, such as safety training, ontology establishment in
knowledge-based systems, and concept construction in domain knowledge graphs.

(2) The pathfinding process of the proposed approach
To verify the validity of the proposed approach, the process of one of the seed word

was taken as an example. Figure 6 displays the co-occurrence-based pathfinding process
that the seed word “tunnel engineering” experienced. For the one-round pathfinding,
17 strong associated items related to the word “tunnel engineering” were retrieved. The
itemset of bearing capacity and tunnel engineering had the highest support value of 10.11%,
indicating that the knowledge of “bearing capacity” is highly related to tunnel engineering
in the metro safety risk management domain. Moreover, the knowledge of “construction
management” had the highest lift value of 4.32, signifying that it is more likely to appear
with “tunnel engineering” than to appear alone. Then, the new collected terms were used
as root terms to match other pairwise item sets to retrieve the new DKEs, performing the
second, third, and fourth rounds of searching until there were no matching item sets. One
item may lead to several new items as long as the itemset meets the predefined mining
rules. Finally, 39 new terms were found through the seed word “tunnel engineering”.
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Figure 5. Knowledge structure of metro construction safety risk management.

Figure 6. Co-occurrence-based pathfinding process for “tunnel engineering”.
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The result shows that the retrieved knowledge elements are comprehensive and
valuable. Additionally, the number of newly found DKEs is rich without being overly
redundant, demonstrating that the threshold of the ARM is reasonable. In brief, the
proposed pathfinding approach performed well in the experiment.

5. Discussion

Knowledge elements are beneficial for the adjustment of the personal knowledge
structure and for the acceleration of the process of knowledge sharing and reuse, and even
knowledge innovation [61]. It is very important for each organization to reinforce the
domain knowledge of technical workers and consolidate the accumulation of knowledge
in metro construction. Moreover, extensive knowledge of practitioners can help all partici-
pants communicate more easily in order to effectively minimize the sources of risk in metro
construction projects [62]. However, knowledge structures were manually established by
experts in research and practice. In this study, a systematical and fine-grained knowledge
structure is provided for practitioners.

Knowledge on technology takes the lead regarding the number of DKEs, followed by
knowledge on the surrounding environment, knowledge on safety management, knowl-
edge on safety accidents, and knowledge on design. Comparisons with previous studies
are as follows.

(1) Knowledge on technology
Many previous studies have stated the importance of technical knowledge for construction

safety management using questionnaires or expert interviews [63,64]. As Liang et al. stated,
technical knowledge and skills constitute the third critical item affecting workers’ safety
competency, next only to physical conditions and safety awareness [65]. A few studies
have tried to increase knowledge on safety behavior and safety conditions to reduce safety
risks in metro construction. For example, Guo et al. built a behavioral risk knowledge
base for a metro construction project in Wuhan city in order to classify and identify unsafe
behavior [66]. Zhou and Ding established a safety barrier warning system for underground
construction sites using Internet of Things (IoT) technologies [67].

From the perspective of domain knowledge elements, we confirmed that knowledge
on technology, including 625 DKEs about construction technology and 207 DKEs about
materials and equipment, occupies the largest number of knowledge elements in the
metro construction safety risk management domain. This is probably because technical
knowledge can help practitioners discover safety risk factors in the operation context
and lead to safe behavior. Similarly, knowledge on materials and equipment, such as
tunnel boring machines (TBMs) and shield blades, can help practitioners know better
the materials and equipment on construction sites, discover unsafe conditions, and take
proactive measures.

(2) Knowledge on the surrounding environment
Many severe safety accidents happen due to the surrounding environment. For

example, a tunnel shaft of Xi’an metro collapsed because of excessive excavation and poor
geological conditions [67]. Li et al. (2018) determined that underground pipelines are
the most frequent reason for metro construction safety accidents based on an analysis of
156 accident reports [59].

We confirmed that knowledge on the underground environment plays a significant
role in metro construction safety. This part of knowledge consists of 222 hydrological
geology DKEs, 78 investigation survey DKEs, and 37 surrounding environment DKEs.
Knowledge on hydrological geology, such as karst, soft soil, and geologic hazards, occupies
the second largest number of knowledge themes, indicating that the unique nature of
underground hydrological geology is of great uncertainty and the related knowledge
plays a very import role for metro construction safety risk management. Knowledge
on investigation surveys (advanced surveys, special surveys, and additional surveys, for
example) and knowledge on the conditions of the surrounding environment (such as surface
settlement and deformation observation) refer to the construction procedures and operation
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rules that practitioners should obey. Underground risks are hard to predict and prevent.
However, knowledge on the underground environment can help practitioners understand
how to perform investigation work and follow the work procedure and standards.

(3) Knowledge on safety management
Safety management is usually considered an indirect reason leading to a safety ac-

cident [68]. To decrease such risks, practitioners need to learn and understand how to
perform safety risk management, especially the accurate identification of potential safety
risks and safety management decision making during the construction process [21].

Knowledge on safety management focuses on knowledge elements about manage-
ment, including 160 safety risk management DKEs (e.g., risk identification and risk
loss), 50 technology management DKEs (e.g., safety inspection and safety supervision),
39 resource management DKEs (e.g., safety training), and 9 emergency management DKEs
(e.g., emergency responsibility). This part of knowledge focuses on the management theory,
method, and procedure, such as safety inspection and safety risk identification and analysis
during metro construction. This part of knowledge may help practitioners build an identify
for the organization’s safety culture and perform good teamwork.

(4) Knowledge on safety accidents
Learning from past accidents is considered an effective way to prevent the occurrence

of similar accidents and to promote construction safety [69,70]. Knowledge on safety
accidents, such as accident type, near-miss accidents, and accident causation theory, is
needed to identify hazards in the workplace and to take actions to prevent the occurrence
of accidents. It is noted that knowledge on proper actions (e.g., knowledge on rescue and
recovery) after the occurrence of accidents is also important to prevent further damage.

(5) Knowledge on design
Although design is considered one of the most important potential risks for construc-

tion safety [71], knowledge on design seems less important for workplace practitioners
compared to other types of knowledge. This may be due to design and construction phrases
being separate in most metro construction projects [62]. Little knowledge on design is
needed for project managers and workers on construction sites, except for some essential
concepts, such as bearing capacity and stability analysis. However, designers need to
improve their knowledge of hazards because many construction accidents are connected to
the design.

6. Conclusions

The current study developed a hybrid model to expand domain knowledge elements
(DKEs) from a big dataset of text documents for metro construction safety risk management.
First, the CCN was used to build the pathfinding network of candidate DKEs, and then
the ARM was compiled to prune the weak related subnets, leaving the valuable ones.
A case study was conducted using the Chinese academic literature as the corpus. The
result verifies that the proposed approach is applicable to automatically expand domain
knowledge elements from a big dataset of text documents. The advantage of the proposed
approach is that it minimizes the expert bias.

Moreover, a list of knowledge elements was obtained. Knowledge on construction tech-
nology, hydrological geology, and construction resources constitutes the top three largest
groups of knowledge elements. They play the most important role in metro construc-
tion safety risk management from the perspective of required knowledge. The obtained
DKEs compose a fine-grained knowledge structure for practitioners. The knowledge
structure can be used in various fields, such as safety education and training, construc-
tion of domain knowledge graphs, knowledge-based intelligent systems, and domain
lexicon supplementation.

This approach can be extended to other projects to help engineers build a domain
knowledge structure. There are three major limitations in this study that could be addressed
in future research. First, the quantitative comparison between the method proposed in this
paper and other methods is lacking, because the domain knowledge is too immense to
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check systematically. Second, the threshold determination of ARM still requires experts’
recognition. A more general and automated approach is in need. Third, among the useful
item sets extracted from a database, frequent item sets are usually thought to unfold
“regularities” in the data [72]. In some situations, however, it may be interesting to search
for “rare” item sets. These correspond to new emerging words, which might evolve into
very important trends in the future of the domain. Moreover, exploring the semantic
relationships of knowledge elements based on natural language processing and deep
learning may advance the relation establishment for a knowledge graph.
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Abstract: In the new era of Construction 4.0, the application of a large number of intelligent in-
formation technologies (ITs) and advanced managerial approaches have brought about the rapid
development of intelligent construction management (ICM). However, it is still unclear how to
assess the maturity of ICM. In this study, a maturity assessment system for ICM was formulated
through literature reviews, questionnaires, expert discussions and a case study. A maturity scoring
table containing five assessment dimensions and twenty assessment indicators was developed, and
corresponding maturity levels and a radar chart of dimensions were designed. A case study of the
assessments of two construction enterprises was conducted to validate that the proposed assessment
system could be used by construction enterprises to quantitatively assess their ICM maturities and
obtain both overall and specific assessment results. This study also proposed practical improvement
methods to improve ICM maturities for construction enterprises with different maturity levels. Fur-
thermore, the study also discussed the development direction of ICM at present and in the short-term
future, which should be paid more attention to by the construction industry.

Keywords: intelligent construction management (ICM); construction industry; maturity assessment
system; improvement plan

1. Introduction

The construction industry is a traditional pillar industry in many countries, and its
contribution to economic growth and long-term national development is widely acknowl-
edged [1]. In China, for example, the construction industry contributed about 25.6% to the
national gross domestic product (GDP) in 2021 [2]. However, the construction industry
involves a large number of participants and covers multiple professions, so improper and
bad management of any aspect often causes huge losses. The fatal injury rate for the
construction industry is higher than the average for all other industries due to its labor-
intensive characteristics and poor safety management during production processes [3].
Careless quality management will cause a hidden danger to the later operation of struc-
tures. Many construction projects worldwide were completed with significant time and
cost overruns due to bad schedule management [4]. Furthermore, conflicts, disputes
and arbitration between construction parties caused by poor construction management
greatly lower the construction productivity on site. On the contrary, proper construction
management can reduce potential risks when implementing investment and construc-
tion projects and make necessary conditions for the timely and high-quality delivery of
projects within the planned budget. Construction management is a professional service
that provides a project’s owner(s) with effective management of the project’s schedule, cost,
quality, safety, scope and function [5], and it plays an increasingly important role in various
construction projects.
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With the rise of Industry 4.0 [6], the rapid development of information technologies
(ITs) has greatly promoted and improved the construction industry. As a result, the terms
Construction 4.0 and intelligent construction came into being. Construction 4.0 is a con-
cept that was proposed in reference to Industry 4.0. The definition of Construction 4.0 is
dynamically evolving. For example, Sawhney et al. [7] defined Construction 4.0 as a frame-
work that is a confluence and convergence of three broad themes: industrial production,
cyber-physical systems and digital and computing technologies. Wu et al. [8] regarded
Construction 4.0 as the integration of information and automation technologies in construc-
tion projects. There are many advanced technologies involved in Construction 4.0, and
Forcael et al. [9] concluded that four essential technologies are needed to understand Con-
struction 4.0 at the present time: 3D printing, big data, virtual reality (VR) and the Internet
of Things (IoT). Except for advanced technologies, Construction 4.0 also brought advanced
managerial approaches; García de Soto et al. [10] indicated that Construction 4.0 pushes
construction organizations and roles to be transformed in many aspects. The evolution
from digitalization to intelligence is the mainstream of the development of Industry 4.0 [11].
As a derivative of Industry 4.0, the development direction of Construction 4.0 is the same,
so intelligent construction is the ultimate goal of Construction 4.0. The comprehensive de-
velopment of intelligent construction requires intelligence in every segment, among which
intelligent construction management (ICM) plays an essential and inevitable part; it is the
foundation of Construction 4.0 and intelligent construction. ICM is the intelligent pattern
of construction management; it is a comprehensive evolution of traditional construction
management in management concepts, working mode and supporting measures which are
achieved by the introduction of intelligent ITs and congenial managerial approaches.

Maturity is the competency, capability and level of sophistication of a selected domain
based on a comprehensive set of criteria [12]. The ICM maturity of a certain construction
enterprise is its ability to conduct ICM, and it should be considered comprehensively from
the technological perspective and from the managerial perspective. Therefore, the maturity
assessment of ICM is the comprehensive consideration of the development condition of IT
and the application condition of managerial approaches. The purpose of maturity assess-
ment is to identify a gap that can then be closed by subsequent improvement actions [13].
Many construction enterprises have been developing ICM, and the fierce competition
among them requires more efficient improvement plans for their ICM maturities. Only
when the ICM maturity is accurately assessed can an enterprise select IT and managerial
approaches it needs to improve rather than extensively and aimlessly involving all kinds
of intelligent ITs and managerial approaches, leading to a waste of human, material and
financial resources. Therefore, the maturity assessment of ICM is of great significance
for construction enterprises to find out shortcomings and formulate future improvement
plans thereafter.

However, there is still a lack of effective systems, methods or even indicators to
systematically assess the maturity of ICM, which has encumbered the development of the
construction industry. Existing studies and explorations towards ICM just focused on the
innovation or application of one or several types of IT. Due to the differences between
construction enterprises or projects, as well as the diversity and complexity of advanced ITs,
the application depth and breadth of relevant IT are different, and their values and benefits
remain uncertain. At the same time, the introduction of advanced IT often leads to a change
in managerial approach, including organizational form and workflow. The mismatch
between the managerial approach and IT may also greatly limit the efficiency and value
of ICM. Therefore, it is difficult to effectively assess the ICM maturities between different
construction enterprises and discover their potential problems at the same time. In contrast,
available maturity assessment models are increasingly being applied in other informational,
digital or intelligent fields as approaches for continuous process improvements [14], such
as the building information modeling (BIM) capability maturity model [15] and the digital
maturity model [16]. These maturity models enable relevant organizations to clearly
understand their development maturity and to make appropriate developing plans later.
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In view of the above problems, this study formulated a maturity assessment system
for ICM. An intelligent maturity scoring table was established for the quantitative maturity
assessment of ICM. The scoring table consisted of five assessment dimensions and twenty
assessment indicators. To present the assessment results in both overall and specific aspects,
the levels of ICM maturity were set, and the radar chart of assessment dimensions was
designed. Finally, a case study of the assessments of two construction enterprises was
conducted to validate the usage of the proposed assessment system and intelligent maturity
improvement strategies were discussed. The assessment system can be used for leaders
in construction enterprises to assess their ICM maturities and obtain vivid assessment
results as well as improvement plans. For every construction enterprise, the scoring table
transformed its ICM maturity into a score. The corresponding maturity level plotted the
position of its ICM maturity in the whole industry. The radar chart of dimensions visualized
its strengths and weaknesses in dimensions. Finally, the improvement strategies guided it
to improve its ICM maturity according to the assessment results.

The rest of this paper is organized as follows. Section 2 reviews and summarizes
previous studies related to ICM and mature assessment systems in other fields. Section 3
introduces the methodology of this research to formulate the maturity assessment system.
Section 4 presents the rationality and effectiveness of the proposed maturity assessment
system through expert discussion. Section 5 enumerates the components of this maturity
assessment system. Section 6 recounts a case study to validate the usage of the proposed
assessment systems and discusses the methods to improve ICM maturity. Finally, Section 7
summarizes the main contributions, limitations and future improvements of this research.

2. Literature Review

In this section, studies concerning ICM are reviewed, and so are investigations about
assessment systems, including methods and models in other informational, digital or
intelligent fields to show mature examples.

2.1. ICM

Wu et al. [8] emphasized that Construction 4.0 heavily relies on data to build and
maintain the interaction between the physical and virtual worlds. Because intelligent
construction is the ultimate goal of Construction 4.0, data is also essential for ICM [17].
Intelligent IT for data collection, transmission, aggregation, analysis and sharing can con-
tribute to ICM [18], so can advanced managerial approaches supporting the data-oriented
work mode, such as corresponding working post setting and personnel training, online
personnel management and workflow interaction, etc. Therefore, the essence of ICM can
be concluded as the review and feedback of various types of relevant construction informa-
tion and data, which includes the collection, transmission and statistics of them, with the
support of visualization, intelligent analysis and other technical means in this process.

A number of researchers have investigated the attributes and development direction
of ICM from the perspectives of intelligent IT and advanced managerial approaches, re-
spectively. Aiming at intelligent IT, Sawhney et al. [7] illustrated representative IT that
is used in Construction 4.0: BIM, cloud-based project management, augmented reality
(AR), VR, artificial intelligence (AI), cybersecurity, big data and analytics, blockchain, laser
scanner, IoT, etc. These ITs can also be applied to ICM. Aiming at managerial approaches,
Woo et al. [19] reviewed different construction management methods by analyzing the
efficiency of various methods currently applied to public construction projects. They
concluded that the direct supervision method is the most efficient construction manage-
ment method because of lower cost and less time. García de Soto et al. [10] analyzed the
transformation of construction organizations and roles in Construction 4.0. Existing roles
evolved, and new roles were created; for example, more employees with digital skills were
needed. Many kinds of traditional construction work were automated with the application
of robotic systems. Furthermore, current fragmented projects evolved into project-based
integrations and eventually into a platform-based integration.
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There are other studies that focused on the application of just one certain IT or man-
agerial approach towards ICM. In this study, we reviewed nearly all the existing IT or
managerial approaches from the literature. Furthermore, we also discussed with experts in
the construction industry to supplement novel IT or managerial approaches which have not
been published yet. All ITs or managerial approaches researched are presented in Table 1.
Their effects on ICM and sources are also listed.

Table 1. IT or managerial approaches supporting ICM.

Effect on ICM IT or Managerial Approach Source

Management platform

Platforms with terminals for a personal computer (PC), mobile and website [20,21]
Use a firewall and virus scan against intrusion [22]
AI voice assistant [23]
Application of 5G technology [24]

Personnel management

Intelligent attendance system [25]
Human resource training and assessment [26,27]
Manage personnel information and user permissions in the platform [28]
Monitoring of personnel health and performance [29,30]
Warning of overdue personnel age and qualification Expert Discussion
Incorporation of COVID-19 guidelines into site health policies [31]

Visualization

Establish BIM or digital twin (DT) in the platform [20]
Construction simulation in a multidimensional BIM environment [32]
Construction information sharing in the platform [33]
Application of VR, AR and mixed reality (MR) [34,35]
Information carrier and displayed on the site [36]

Workflow

Submit and receive information through the platform [37]
Fill and modify documents in the platform [38]
Task management through the platform [36]
High-performance communication facilities on site [39]

Production
Machinery operation and work tracking and monitoring [40,41]
Materials management using emerging technologies [42]

Environmental impact Waste and pollutant monitoring on site [43,44]
Site workplace environmental situation monitoring [45]

Quality control

Automated data acquisition technologies on the site [46]
Application of robots [47]
Mark locations of quality problems in the models [36]
Declared quality problems tracking [48]
Vision-based inspection and real-time quality assessment [49,50]
Application of personal mobile devices [51]

Schedule and contract
Real-time schedule, contract and payment tracking and monitoring [52,53]
Warning of overdue schedule and contract [54]

Time and cost Optimization of time and cost using a learning curve [55]

Information management

Record of engineering data and personnel operation [56]
Information decentralization, forgery and alteration prevention [57]
Intelligent search engine [58]
Data integration and simplification [59]
Application of information extraction (IE) [60]

Work safety

Real-time video surveillance on the site [61,62]
Worker safety device makes warning in proximity to certain areas [63]
Warning of unsafe behavior by real-time smart video surveillance [61,62]
Equipment collision prevention [64]
Warning of real-time fire, smoke, etc., on the site [65]
Warning of abnormal value in data collected [66]

Construction
coordination

Dispatch list by intelligent work breakdown structure (WBS) calculation Expert Discussion
Time-space conflicts management [67]

Risk prevention Preventive measures with the use of the prediction model [68]

While all existing studies individually render positive influences on ICM, their research
directions, in general, are too scattered to establish sufficient cooperation and connection
with each other. Specifically, they suffer from several shortcomings—they
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• Neglect the combined effects of IT and managerial approach;
• Do not summarize all ITs and managerial approaches available for ICM;
• Lack methods to assess the application maturities of IT and managerial approaches

in ICM;
• Lack practical and appropriate plans to improve the ICM maturity of construction enterprises.

In this study, existing intelligent IT and advanced managerial approaches available
for ICM were reviewed, and the combined effect of IT and managerial approaches were
considered. Therefore, the assessment system could be established by extracting assessment
objects from these contents, and then maturity improvement plans were provided.

2.2. Assessment Systems in Other Fields

This study reviewed some representative maturity assessment systems in other infor-
mational, digital or intelligent fields, as listed in Table 2. Berghaus and Back [69] indicated
that a maturity assessment model should consist of dimensions and criteria that describe
the areas of action and maturity stages that indicate the evolution path toward maturity.
Though these assessment systems have different assessment targets using different assess-
ment methods, they all set assessment dimensions and criteria, as well as corresponding
development guides, to improve maturity. Furthermore, [15,70] set maturity levels to
present the overall assessment results and [70] designed a radar chart of dimensions to
visualize the strengths and weaknesses in each dimension. The advantage and priority of
each assessment system can offer important references to the assessment methods needed
in this research: (1) Scoring on dimensions is a quantitative assessment method that has
been proven popular and easy to use. (2) Dimension(s) to assess the management capacity
should be set, including organizational framework, personnel management, workflow,
etc. (3) Assessment results should be displayed clearly from both overall and specific
perspectives. For example, maturity levels and radar charts of dimensions can be applied
for the overall and specific perspective.

Table 2. Maturity assessment systems in other informational, digital or intelligent fields.

Research Assessment Target Assessment Method Dimension Advantage and Priority

[71,72] BIM adoption across markets Score on dimensions 5 Comprehensive consideration of policies,
management and technologies

[15] BIM capability maturity Score on dimensions 11 Needed dimensions can be selected from
the given 11 dimensions

[16] Digital maturity for companies Single choice questions 2 Rapid assessment process

[73] Digital readiness maturity
for manufacturing Yes or no questions 5 High objectivity

[74] Project complexity Analyze from dimensions 5 Detailed assessment results

[75] Digital maturity of construction projects Score on dimensions 4 Introduction of the frequency of
assessment objects

[70] Digital maturity on construction site Score on dimensions 11 Comprehensive assessment objects

3. Methodology

In this study, assessment indicators were set with criteria from different dimensions.
The steps to develop the assessment system are listed below in Figure 1.

The first step was the determination of assessment indicators. In the whole assessment
system, the maturity scoring table was the most important part, whose basic elements were
assessment indicators. There were a large number of assessment indicators extracted, so it
was necessary to set up assessment dimensions and reasonably classify all indicators to
facilitate the viewing and use of them and also help construction enterprises to assess their
own ICM maturity from the perspective of each dimension.

The second step was the calculation of the weights of assessment indicators. This
study used questionnaires designed in correspondence with the precedence chart method
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(PCM) [76,77] to consult experts on each indicator’s importance to the maturity assessment
of ICM, and then the weight of each assessment indicator and dimension could be calculated
with the results of the questionnaires. Scores of the assessment indicators and dimensions
in the maturity scoring table could later be calculated by converting their weights.

The third step was the design of the maturity scoring table. The indicators could not
be directly used, so the assessment criteria were set to instruct assessors when scoring. Ar-
ranging each indicator according to its dimension and then adding the corresponding score
and assessment criterion made a complete maturity scoring table. Necessary instructions
for each content should also be written to guide assessors to use it correctly.

The last step was the analysis of the assessment results. The presentation of assessment
results should take into account overall and specific aspects. This research used maturity
levels to plot the position of the ICM maturity in the whole industry and a radar chart [78]
of dimensions to visualize the strengths and weaknesses in each dimension. Therefore, this
step included the setting of appropriate maturity levels and the corresponding relationship
between score intervals and maturity levels, as well as the design of the radar chart.

Figure 1. The construction process of the assessment system.

3.1. Determination of the Assessment Indicators

A complete assessment indicator included the assessment object, weight and criterion.
The scope of construction management was confined, but intelligent ITs and advanced
managerial approaches supporting ICM over the scope at present were unlimited and
uncountable, not to mention new ones are being developed. The responsibility of indicators
was to screen objects and contents that could best reflect the development of ICM. Therefore,
assessment indicators in this study did not include ITs and managerial approaches available
for the scope but abstract attributes that reflect the developing situation of these ITs and
managerial approaches instead. In a word, it is not detailed ITs, and managerial approaches
that enterprises use but attributes enterprises satisfy that develop ICM.

3.1.1. Extraction of Assessment Indicators

The extraction of assessment indicators needed to comprehensively contain factors
from the following three aspects.

(1) Construction management scope to determine the assessment scope of indicators.
According to the regulations and requirements of the construction industry, aspects
and fields that construction management should be responsible for are clarified, which
should be covered by assessment indicators.

(2) ITs and managerial approaches supported ICM to abstract attributes as assessment
objects. Comprehension of the application status of relevant IT and managerial
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approaches could fully tap the application potential and highest maturity of each one,
that is, the scale of attributes.

(3) Existing assessment methods and systems refer to successful experiences. As men-
tioned, there were already advanced maturity assessment methods and systems in
other fields, as shown in Table 2. Among them were successful experiences in indicator
extraction, assessment dimension setting and assessment methods.

The above factors were extracted from both literature and expert discussions. Referring
to the literature provided a comprehensive grasp of the relevant contents, and discussing
with experts supplemented details omitted in the literature. The latest management tech-
nologies are not published yet, and these matters require attention for practical application.
These factors should be considered together during collection. First, discover ITs and man-
agerial approaches that could be applied to fields according to the management scope, as
shown in Table 1. Then search the application for relevant ITs and managerial approaches
to discern their abstract attributes, which are regarded as preliminary assessment objects.
Finally, with reference to the framework of other maturity assessment systems, establish
indicators by adjusting and reorganizing preliminary assessment objects according to ser-
vice objects of all IT and managerial approaches. Ensure that the complete independence of
indicators was obtained and there was no overlap between them. The indicator extraction
process is shown in Figure 2. The assessment indicators were extracted from the literature
and expert discussions through these three procedures. Each indicator does not have direct
sources of literature or expert discussion because of these fused procedures.

Figure 2. The indicator extraction process.

3.1.2. Setting of Assessment Dimension and Indicator Classification

The literature review indicated that a dimension to assess the management capacity
should be set. Among all indicators, there were some that described the personnel or-
ganization and management or workflow of construction management, so first, we set a
dimension for them. The remaining indicators described ITs and managerial approaches
related to construction management itself. Blanco et al. [79] illustrated many specific and
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clear activities to different technologies used during different construction phases, includ-
ing the phases of design, preconstruction, construction and operations. These specific
activities classified ITs and managerial approaches for construction management properly,
but they were too scattered. According to the essence of ICM, dimensions for the remaining
indicators could be set by composing these specific activities (definitions of these specific
activities can be seen in [79]). Considering the service objects and application fields of the
remaining indicators, set four dimensions for them. Each dimension and its components
are shown in Table 3. Five assessment dimensions were set following strict internal logic to
ensure that there was no overlap between each other. The meaning and description of each
assessment dimension are shown in Table 4.

Table 3. Assessment dimensions and their components for IT and managerial approaches.

Assessment Dimension Activities in [79]

Information collection and monitoring Materials management, equipment management

Information transmission and aggregation Field productivity, performance dashboard

Decision-making supported by visualization Digital design, design management, contract management, document management

Intelligent analysis and deduction Estimating, construction relationship management, market intelligence, quality
control, safety

Table 4. Meaning and description of each assessment dimension.

Assessment Dimension Meaning and Description

I. Organizational framework and working process A more suitable organizational framework, more powerful personnel
management and more efficient work mode are required by ICM.

II. Information collection and monitoring
Collection and monitoring of various types of construction information and
data through collection and measurement equipment arranged on the
construction site.

III. Information transmission and aggregation Transmission and aggregation of information and data collected on-site within
the time limit, proper storage and archiving to prevent loss and tampering.

IV. Decision-making supported by visualization Visualization and modeling of engineering information and simulation of
construction operation to support decision-making.

V. Intelligent analysis and deduction Analyze engineering information with the application of intelligent
technologies to provide calculation, detection, prediction, optimization, etc.

In order to make each indicator more consistent with the meaning and description
of the corresponding dimension when classifying, indicators were appropriately adjusted
after determining the dimensions so that each indicator was clearly and uniquely classified
into a certain dimension, and the number of indicators contained in each dimension was as
close as possible. After the determination of dimensions and the adjustment of indicators,
available indicators can be classified into each dimension.

3.2. Calculation of the Weights of Assessment Indicators

The questionnaire in this study mainly investigated respondents from three aspects:
(1) Basic information of respondents, including professional field and title, working post
and year, to show the objectivity of the questionnaire. (2) Eliminations or supplements
for existing indicators and judgment of the suitability of the setting of the assessment
dimensions and the classification of each assessment indicator to ensure the rationality
of the assessment dimensions and indicators. (3) The consultation of respondents about
the importance of each indicator to assess the maturity of the ICM. The questionnaire is
designed following the PCM. A seven-point Likert scale [80] was used for respondents to
choose from very low to very high on the importance of each assessment indicator, where
each choice corresponded to a point from one to seven, as shown in Figure 3.
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Figure 3. The seven-point Likert scale.

The PCM used a comparison matrix to calculate the weights of target objects, as shown
in Table 5. The left columns of the table refer to the comparing objects, while the upper
rows are the compared objects. In this study, the respondents’ opinions on the importance
of each assessment indicator were converted into a point from one to seven by the seven-
point Likert scale. If there are n indicators for comparison and the average points of all
respondents were calculated, it is easy to know that the indicator with the higher point
possesses higher importance. Choose I1 and I4 as an example for a pairwise comparison: if
I1 is more important, then a14 = 1 and a41 = 0; if I4 is more important, then a14 = 0 and
a41 = 1; if I1 and I4 are equally important, then a14 = a41 = 0.5. Finally, the weight of each
indicator can be calculated:

wi =
si

∑n
i=1 si

In this function, wi is the weight of the indicator i, si is the sum of all elements in the
row i.

Table 5. Comparison matrix of PCM.

Comparison Indicator I1 I2 I3 I4 . . . In Sum

I1 a11 = 0.5 a12 a13 a14 a1n s1 = ∑n
i=1 a1i

I2 0.5
I3 0.5
I4 a41 0.5
. . . 0.5
In 0.5

3.3. Design of the Scoring Table

The assessment indicator itself was the summary of ITs and managerial approaches
that construction enterprises used, and it does not contain the description of the highest
intelligent maturity of each IT or managerial approach. Setting assessment criteria for each
indicator was essential for assessors to make more accurate judgments when scoring each
assessment indicator. After that, the assessment indicators with scores and assessment
criteria could be reasonably arranged according to their dimensions. Finally, the complete
scoring table was finished when the necessary instructions for each content were written
for correct use.

3.4. Analysis of Assessment Results

The scores obtained by the assessors on the assessment of construction enterprises
using the scoring table represent their ICM maturities. The score intuitively reflected
the overall ICM maturity of each construction enterprise; however, as each enterprise
commonly only knows its own score, it cannot plot its position in the whole industry
without comparison with other enterprises. Besides, its strengths and weaknesses between
different assessment dimensions remain unclarified.

In this study, scores were converted into corresponding maturity levels as the over-
all presentation of assessment results. The division of maturity levels must ensure that
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enterprises at the same level possess ICM maturities at roughly the same standard. How
many maturity levels should be set? Whether the score intervals between levels should be
consistent? How to allocate them if they are inconsistent? These questions can be answered
only when preset maturity levels and the corresponding relationship between score inter-
vals and maturity levels are further verified and corrected. Verification and correction of
mentioned contents were also realized through expert discussion, so for convenience, they
are discussed together in the verification section. Also, in order to clarify the strengths and
weaknesses of enterprises in assessment dimensions, the radar chart of dimensions was
designed as the specific presentation of assessment results.

4. Verification of the Assessment System

Until now, determined contents were mainly obtained by theoretical analysis, so
crucial attributes of this assessment system have not been verified through an application.
Wernicke et al. [70] developed a framework for assessing the digital maturity of construction
site operations. To examine and verify the framework, they conducted a case study on one
construction site. The digital maturity of that site was firstly calculated by the proposed
framework. Then they discussed, with the assessor, the detailed status of the digitalization
of that site as well as the strengths and weaknesses. The consistency between the assessment
results and the discussion results verified the proposed framework. Furthermore, the
usability and benefits of this framework were also discussed. In this research, we also
used expert discussions to verify our proposed assessment system. However, rather than
conducting just one discussion with one assessment target, we conducted two rounds of
expert discussions with experts from several construction enterprises. The first round was
conducted to verify the scoring table and preset the maturity levels. The second round was
conducted to verify those preset maturity levels. The overall verification process is shown
in Figure 4. More details were discussed in our expert discussions.

Figure 4. The overall verification process.

4.1. Verification of the Scoring Table

The scoring table was sent to leaders of many construction enterprises, and they filled
out the scoring table according to the ICM maturities of their own enterprises. Except for
collecting the scores of each enterprise, we discussed with the leaders the crucial attributes
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of this assessment system. Through the feedback of these leaders, related contents of the
scoring table were verified and updated.

4.2. Verification of Maturity Levels

After the collection of the scores of each enterprise, the distribution of all scores was
obtained. Rough score intervals were divided by clustering all the scores, and thus the
maturity levels were preset. According to the score intervals of the preset maturity levels,
participating enterprises were differentiated into different maturity levels. Through detailed
discussions with leaders from several representative enterprises at each maturity level,
summary descriptions of the overall ICM maturity of enterprises at each maturity level were
formed. The setting of the maturity levels must satisfy two criteria: (1) enterprises at the
same level possessed roughly the same standard of ICM maturity; (2) enterprises at higher
levels demonstrated relatively obvious priorities in ICM maturity compared with those at
lower levels. Necessary adjustments to the set score intervals were conducted to satisfy the
two principles, and the appropriate corresponding relationship between maturity levels
and the scoring results was finally obtained. Thus far, all contents in the whole assessment
system have been verified to ensure their accuracy, rationality and appropriateness.

5. Assessment System

5.1. Assessment Indicators and Dimensions

To obtain more extensive responses, we set two criteria for selecting the potential
respondents for the questionnaire: (1) respondents with ample work experience in construc-
tion management or with ample knowledge of intelligent technologies; (2) respondents
from as many professional fields as possible. Leaders from many different construction
enterprises were interested in our study, so they helped us select employees from their
enterprises according to these two criteria to answer the questionnaires. They told us
that older employees tended to have more work experience while younger employees
tended to have more knowledge about intelligent technologies. We offered them a QR code,
which could be scanned to access our questionnaire and these leaders assigned qualified
employees to complete the questionnaire. The questionnaires were collected two weeks
after sending the QR code to leaders, and incomplete ones were deleted. Of the remaining
questionnaires, 706 were considered valid. The basic information of the respondents is
shown in Table 6. Respondents thought that the existing indicators were proper, so there
was no need for eliminations or supplements. Furthermore, respondents provided us
with suggestions on setting the assessment criteria, such as taking the operability of IT
into account.

Table 6. Basic information of respondents.

Professional Field Amount Professional Title Amount Working Post Amount Working Year Amount

Roads and bridges 483 Primary 131 General supervisor 166 Within 5 73
Tunnels 60 Middle 337 Specific supervisor 346 5–10 140

Traffic engineering 84 Vice-senior 170 Supervisor 148 10–20 301
Electromechanics 10 Senior 68 Enterprise administrator 32 More than 20 192

Others 1 69 Others 2 14

1 Safety, structure, electric power, water transport, contract, experiment and engineering economy. 2 Vice-general
supervisor, consultant and experimentalist.

There were twenty indicators in total, and their accurate weights were calculated using
PCM. However, in order to make the data neat and easy to use, it was necessary to make
adjustments within an appropriate range and keep the outcome as an integer. The scores
of all assessment indicators and dimensions in the maturity scoring table were calculated
by converting their weights, as shown in Table 7. They illustrated not only the present
situation but also the future development trend of ICM.

(1) The first dimension had the highest weight, of nearly 40%, in the whole scoring table.
It described the personnel organization, management and workflow of ICM. Effective
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personnel organization and management are a crucial basis for every kind of enterprise
and company to maintain competence, and it is the same for construction enterprises.
Furthermore, as ICM is still rapidly developing, more and more suitable workflows
will always be a key for construction management to develop more intelligence and
for ITs and managerial approaches to maximize their superiorities. According to
the expert discussion, nearly every enterprise has developed its own cloud platform.
They work online, and their organizational framework was adjusted to adapt to the
intelligent working mode.

(2) Indicators I-5, I-6, III-3, I-1 and V-2 have the top five highest weights. According
to the expert discussion, they were all at present developing focuses for ICM. Most
enterprises have been collaborating with researchers from institutes and universities
to develop ITs and managerial approaches that these indicators describe. These ITs
and managerial approaches have been realized to varying degrees among different
enterprises. Due to the high weights these indicators possess, they are now decisive
factors for a construction enterprise’s ICM maturity.

(3) Indicators IV-3, V-3 and V-1 have relatively low weights. According to the expert dis-
cussion, only a few employees were contacted with the ITs and managerial approaches
these indicators described. The development levels of these ITs and managerial ap-
proaches among different enterprises were pretty low. Publications about these ITs and
managerial approaches were mostly limited to theoretical or prospective; they have
not been comprehensively and maturely applied to ICM. However, as the publications
imply, these ITs and managerial approaches have great benefit and considerable appli-
cation potential to ICM, including VR [34], AR [35], prediction model [68], time-space
conflicts management [67], etc. A number of construction enterprises have included
these ITs and managerial approaches in their future development plans, and their
weights will definitely increase in the future.

Table 7. Weights of dimensions and indicators.

Assessment Dimension Assessment Indicator

I. Organizational framework and working process (38)
1. Working post setting (8), 2. Collaboration mode (7), 3. Personnel
training (4),
4. Personnel assessment (1), 5. Workflow (9), 6. Transaction tracking (9)

II. Information collection and monitoring (12) 1. Collection range (6), 2. Collection frequency (3), 3. Equipment
integration (3)

III. Information transmission and aggregation (22) 1. Transmission speed (6), 2. Information integration (7), 3. Information
storage (9)

IV. Decision-making supported by visualization (12) 1. Data visualization (2), 2. Knowledge base management (4),
3. Expanding reality (1), 4. Comprehensive decision (5)

V. Intelligent analysis and deduction (16) 1. Auxiliary calculation (2), 2. Anomaly Identification (8),
3. Deduction and prediction (1), 4. Early warning and optimization (5)

5.2. Maturity Scoring Table

The scoring table is attached in Appendix A. Assessment criteria for each indicator
were set according to the application status of the relevant IT or managerial approach.

5.3. Maturity Levels

Maturity levels and corresponding score intervals were set according to the two
criteria, as shown in Table 8. Five maturity levels were set, among which there was a
particular level called “Minimum Intelligent Maturity”. During the expert discussions, we
found that ITs and managerial approaches described by many indicators have been well
developed. Therefore, more than half of the scores in the scoring table were easily acquired
by every construction enterprise. Enterprises with scores less than 60 must demonstrate

259



Buildings 2022, 12, 1742

shortcomings in many aspects under this circumstance. Therefore, the lowest maturity
level, “Minimum Intelligent Maturity”, was set to conclude that these enterprises were not
“intelligent” enough. As mentioned, many leaders of different construction enterprises
filled out the scoring table and their scores were collected. The number of enterprises at
level 2 was the largest. Few enterprises were located at the Minimum Intelligent Maturity
level, and a few enterprises just entered level 3. There was not even one enterprise that
entered level 4.

Table 8. Maturity levels and corresponding score intervals.

Maturity Level Score Interval

Minimum Intelligent Maturity <60
1 [60,70)
2 [70,80)
3 [80,90)
4 [90,100]

5.4. Radar Chart

The radar chart was designed to compare the relative development of each dimension,
but the weights of each dimension were different so that their full scores in the scoring table
were also different. When using the radar chart, scores of each dimension in the scoring
table should be converted into a centesimal system:

Ri =
Ti
Wi

× 100

In this function, Ri is the score of dimension i in the radar chart, Ti is the score of
dimension i in the scoring table and Wi is the weight of dimension i (shown in Table 7).
Then the pentagon representing the ICM maturity of the enterprise in these dimensions
was drawn.

6. Case Study

The proposed assessment system was examined in a case study of two construction
enterprises, A and B. These two enterprises are both located in Hangzhou, a city in southern
China. Enterprise A mainly focuses on the construction of highways and canals; enterprise
B mainly focuses on the construction of highways and railways. One leader from each of
the two enterprises filled out the maturity scoring table according to the actual situations
of their enterprises.

6.1. Assessment Results

Their assessment results, using the maturity scoring table, were 78 and 81, respectively.
Therefore, the ICM maturities of enterprises A and B were very close. They both almost
entirely satisfied the demands of level 2, and enterprise B had just entered level 3. Further-
more, to show their strengths and weaknesses in each dimension, a radar chart of their
ICM maturities was drawn, as shown in Figure 5.

Then two discussions with the two leaders were conducted for detailed situations
of their ICM maturities, as shown in Table 9. Enterprise A and B paid great attention to
the development of ICM, and they made specific development plans for the introduction
and application of several ITs and managerial approaches. However, their unsystematic
development plans caused different kinds of deficiencies in each dimension and led to
relatively elementary maturity levels thereafter. Enterprise A and B are located in the
same city, and they have known each other for years. They both commented that their
development situations in ICM are very close, and they admitted that their maturity
levels are relatively elementary. Not enough new roles have been set in enterprise A,
and existing roles have not been thoroughly adapted to ICM, leading to a burden on the
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newly developed workflow. It is the main reason, according to our assessment system, for
enterprise A to have a slight gap in scores compared with enterprise B.

Figure 5. The radar chart of enterprises A and B.

Table 9. Detailed situations of the ICM maturities of enterprises A and B.

Assessment Dimension Strength Weakness

I. Organizational framework and
working process

A and B: Develop a construction management
platform, and transactions are strictly tracked.

A and B: Insufficient personnel training. Some
employees are still not skilled with the platform,
and workflows are still not clear.

A: Monthly personnel assessment. A: Only a few new roles are set.
B: Many new roles are set.

II. Information collection and
monitoring

A and B: Many data collection devices are arranged
on construction site. A: Almost no equipment integration, efficiency

and accuracy of data collection are low.A: Enough mobile phones for management.
B: A few attempts at equipment integration.

III. Information transmission
and aggregation

A and B: All data and information collected
are stored.

A and B: Inadequate coverage of network signal
on-site; real-time upload and receipt cannot be
guaranteed.A: Efficient information aggregation (a new role was

set for this).

IV. Decision-making supported
by visualization

A and B: Many kinds of important data and
information are displayed in real time by adequate
display devices.

A and B: Poor interaction between different
kinds of models, no application of VR,
AR or MR.

V. Intelligent analysis and deduction
A and B: Many intelligent functions and algorithms
are developed. A and B: The frequency of use is unstable.
A: Employed a software system team.
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6.2. Validation of the Assessment System

Despite many existing weaknesses and deficiencies for these two construction enter-
prises, the biggest problem for them is the low capacities of organizational management,
which are caused by the incompletely adjusted working posts. Even if there are ITs and man-
agerial approaches developed, they cannot be efficiently applied. Therefore, we strongly
recommend these two enterprises set more new roles first, and then other measures can
be applied, such as training employees more often, improving the network signal on site,
introducing VR, AR or MR, etc. After the discussions, these two leaders claimed that they
would adjust their development plans according to our recommendations.

In total, these two leaders spoke highly of the usability of the assessment system.
They commented that the assessment criteria helped them to reach deeper into their actual
development situation with ICM, and the assessment dimensions are essential for them
to find their deficiencies and weaknesses in detail. Therefore, the case study proved the
validation of the proposed assessment system, and it can provide not only overall and
specific representations of the ICM maturity of a certain enterprise, but also targeted
development plans thereafter.

6.3. Discussion

There should also be a potential, anticipated or typical development path to the
desired target state after evaluation [81]. The ultimate purpose of the maturity assessment
of the ICM is to efficiently and accurately improve its maturity. After assessment using
the maturity scoring table, construction enterprises can further understand details of their
weaknesses through the indicators with lower scores, and these are the aspects that need to
improve most. To provide specific improvement plans for construction enterprises, this
study discussed improvement strategies from two perspectives.

The first perspective was the detailed ITs and managerial approaches. This study
extracted and summarized ITs and managerial approaches that could improve the maturity
of ICM during the extraction of the assessment indicators. They could be used to help
construction enterprises that have been assessed to discover and fill the present gaps. These
ITs and managerial approaches are listed in Table 1, where they are very detailed and
specific. They were simply classified according to their effects on ICM, and their sources are
contained in the table, which can be searched and consulted by enterprises to understand
the development and application methods of any IT or managerial approach in detail.

The second perspective was the framework of enterprises at level 4. Organizations en-
gaged in information, digitalization, or intelligence have similar frameworks, which include
many layers. However, each layer in the framework of different kinds of organizations
consisted of different components. The frameworks of highly developed organizations
were powerful and comprehensive, where all layers had undergone extensive development.
When a certain construction enterprise had the highest maturity of ICM, it must have the
fourth maturity level and developed almost every IT and managerial approach in Table 1.
Under this circumstance, each layer in its framework possessed adequate components.
Representative components are summarized according to the sources of ITs and managerial
approaches in Table 1, as shown in Figure 6. This framework can be used for reference
by construction enterprises to supplement their own framework and finally continuously
improve their ICM maturities.

In general, construction enterprises are able to obtain suitable improvement plans
synthetically from these two perspectives after assessment, as shown in Figure 7.
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Figure 6. Framework of enterprises at level 4.

Figure 7. Method to obtain suitable improvement plans.

7. Conclusions

ICM is rapidly developing at present, but there is still a lack of systems, methods or
even indicators to systematically assess the maturity of ICM. In this study, we developed
a maturity assessment system through literature reviews, questionnaires, expert discus-
sions and a case study. The maturity assessment system consisted of a maturity scoring
table, maturity levels and a radar chart of dimensions, which can be used by construction
enterprises to assess their ICM maturities and formulate suitable future improvement
plans. First, fill out the maturity scoring table based on the ICM development situation of a
certain construction enterprise. Then the score can be converted into a maturity level and a
dimension radar chart. The position of the enterprise in the whole construction industry
and its own strengths and weaknesses can be accurately understood. Finally, a suitable
improvement plan for this construction enterprise can be created with reference to the
improvement strategy and the framework of enterprises at level 4.

The maturity scoring table consists of five assessment dimensions and twenty as-
sessment indicators. When using it, assessors need to score each indicator based on their
subjective judgment of their own construction enterprises. Since the subjective difference
is inevitable, it is strongly recommended that the ICM maturities of each enterprise are
assessed by more than one leader, and the average of their scores is taken as the final result.
According to the scoring table, developing ITs and managerial approaches, which support
organizational framework and working process, are of great significance for construction
enterprises to reach high ICM maturity. Many enterprises do not pay enough attention to
advanced managerial approaches because they have not realized the unimagined progress
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that these approaches can bring to them. During our discussion with leaders in construc-
tion enterprises, we found that many enterprises had already developed adequate IT and
managerial approaches. Unfortunately, a large number of ITs and managerial approaches
remained unused or insufficiently used for a lack of suitable organizational frameworks and
working processes, leading to a low ICM maturity with a huge amount of resource waste.

The study has two limitations. First, the study used the maturity scoring table as
the assessment method because of the high complexity of the assessment process of ICM
maturity. Although the scoring table is accurate and reliable, it is not efficient enough.
Future research can use the assessment indicators in this study to establish a more efficient
maturity assessment methods for ICM, such as the assessment methods consisting of yes
or no questions, flowcharts or single-choice questions. Second, the assessment indicators
and their weights in this study represented the developing situation of ICM in the present
and short-term future. There is still a long way for construction management to thoroughly
reach intelligence since most construction enterprises are located at level 2, and there is
nearly none that have entered level 4. However, there will be a time when most enterprises
have entered level 4 because of the efforts that the whole construction industry is making.
Meanwhile, more ITs and managerial approaches will come into use and serve as indicators.
The weights of all indicators must change with time. Future studies are recommended to
add new indicators and correspondingly adjust the weights of all indicators. For example,
the ITs and managerial approaches toward automation are rapidly developing and will
occupy more and more weight [82,83].
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Appendix A

Table A1. The maturity scoring table for ICM.

Dimension Indicator Criterion Score

I. Organizational framework and
working process

1. Working post setting: Adjust former posts and set
specific responsibilities and corresponding organizational
relationships for all posts.

Reasonable, perfect personnel
allocation and gross wage. 8

2. Collaboration mode: Conduct online personnel
management and workflow interaction based on the
management platform.

Real-time uploads, reminders
and feedback. 7

3. Personnel training: Train personnel in a variety of ways
to adapt to the working mode of ICM.

Check regularly and trace the
training data. 4

4. Personnel assessment: Use a variety of data sources to
assess the attendance and performance of personnel.

Quantitative, qualitative and
objective assessments. 1

5. Workflow: Assign designated, responsible personnel to
complete the workflow of each task with a clear
work sequence.

Smooth workflow with
high efficiency. 9

6. Transaction tracking: Record and track the processing flow
and relevant responsible personnel for all transactions.

Clearly record the process and
responsible person. 9
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Table A1. Cont.

Dimension Indicator Criterion Score

II. Information collection and
monitoring

1. Collection range: Collect as many types of data and
information as possible on-site and make the collection
range as wide as possible.

Collect comprehensively and all
key areas covered. 6

2. Collection frequency: Collect data and information as
frequently as possible to improve their continuity.

Avoid interruptions in data and
information acquisition. 3

3. Equipment integration: Develop equipment that collects
multiple data and information simultaneously
and efficiently.

Improve the accuracy of data and
information collection. 3

III. Information transmission and
aggregation

1. Transmission speed: Improve the transmission speed to
ensure the timeliness of data and information transmission.

Ensure real-time uploading and
receiving on-site. 6

2. Information integration: Integrate, fuse, summarize and
transform the collected data and information.

Automatic preprocessing of data
and information. 7

3. Information storage: Archive and save the collected data
and information to support efficient utilization and
security management.

Store all data for the whole life
cycle of the project. 9

IV. Decision-making supported by
visualization

1. Data visualization: Model, visualize and simulate using
all kinds of construction data and information.

Concrete, intuitive and accurate
visualizations. 2

2. Knowledge base management: Upload construction data
and information to the platform and set search functions
for viewing.

Comprehensive categories and
accurate search results. 4

3. Expanding reality: Assist scheduling and management
with the help of VR, AR, MR and other extended
reality technologies.

Widely used in the
complete workflow. 1

4. Comprehensive decision: Real-time display of the data
and information being monitored and collected.

Display on a variety of devices
widely. 5

V. Intelligent analysis and
deduction

1. Auxiliary calculation: Intelligently calculate the
schedule, cost, etc., with collected data and information.

Introduce intelligent computing
for all calculation processes. 2

2. Anomaly identification: Identify occurring abnormal
conditions, including automatic detection of construction
results and automatic alarm of unsafe behaviors, etc.

Comprehensive categories, fast
detection and identification speed
with high accuracy.

8

3. Deduction and prediction: Establish a prediction model
based on collected data and information to predict the
work focus and potential risks in the next stage.

The model considers all types of
data and information,
real-time update.

1

4. Early warning and optimization: Adjust the
management plan according to the prediction results to
avoid possible risks and improve the project
management ability.

Real-time optimize the
management plan and implement
it on time.

5
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Abstract: The construction sector is one of Yemen’s most important economic pillars. Building
information modelling (BIM) is a new information technology implementation that can create an in-
telligent digital design of buildings to support a variety of tasks and provides a wide range of benefits
throughout the project life cycle. However, BIM is not widely embraced in Yemeni construction firms.
Compared with other countries, Yemen presents a unique case for BIM adoption due to the ongoing
war in the country, which will assist in rapid rebuilding processes. Thus, a complete and systematic
investigation of the factors affecting BIM adoption in the Yemeni construction industry is required.
This study utilises five categories of impacting factors: Technology, Process, Policy, People, and the
Environment to model the strategic implementation for BIM in the Yemeni construction industry. A
random sample was used to achieve homogeneity and increase the consistency and quality of data.
Purposive sampling was used to choose participants for the framework validation. The data were
analysed using partial least squares structural equation modelling (PLS-SEM), and the key factors
influencing BIM adoption were determined and modelled. The results show multivariate results
indicate a high correlation within the measurement model for all factors affecting BIM adoption
in Yemen. In addition, the developed model was deemed to fit because the analysis result of the
model’s coefficient of determination test (R2) is BIM adoption having 0.437, Environment at 0.589, and
People having 0.310, demonstrating high acceptance. Moreover, the results reveal a high correlation
between policy and people (>0.50), while the environment significantly affected BIM adoption (0.304).
Overall, the model illustrated how various factors influence BIM adoption. The created framework
highlights the importance of understanding BIM adoption concepts and challenges in the Yemeni
construction industry. It is believed that this study highlights the BIM implementation in developing
countries such as Yemen and the possibility of implementing the proposed method in other countries
to develop their own BIM implementation strategy.

Keywords: building information modelling; BIM adoption; construction industry; technology factors;
Yemen; partial least square; PLS; SEM

1. Introduction

Construction industries worldwide use building information modelling (BIM) to plan,
build, and monitor their projects. The BIM adoption rate is increasing in several countries
in the public and private construction sectors [1]. However, BIM has not been studied
adequately for building project management, and there is a lack of extensive evaluations
that objectively analyse the advancements in BIM applications in the construction sector [2].
Succar [3] discusses the BIM framework’s fields, stages, and lenses. BIM competencies in-
clude implementation maturity, activity domain, level/scope, and requirements assessment.
Adopting BIM requires professionals and organisations, not software or technology; three
knowledge models are described (i.e., in Technology, Process, and Policy developments).

The significance, drivers, obstacles, and factors for government policies on BIM adop-
tion methods need to be determined and implemented [4]. The project lifecycle benefits
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greatly from BIM. These advantages are, nevertheless, compromised by challenges and
the construction industry’s failure to integrate BIM technology properly [5]. The primary
elements influencing BIM adoption in the global construction sector are processes, people,
and technology [6]. Babatunde [7] highlighted the barriers to BIM adoption and imple-
mentation in the Nigerian construction sector and discovered that enterprises are still
underperforming in BIM adoption and implementation. Therefore, further work is needed
to deepen the BIM adoption and acceptance strategies. The unpleasant precedent predicted
by building professionals since BIM’s inception in Malaysia has prompted more profound
research into BIM adoption [8].

Despite several attempts to analyse and model the BIM framework in the construction
industry, current research has flaws in how it views BIM as a separate technical and
administrative process rather than a working process that is supposed to be instantaneous
or simultaneous and emergent. The BIM knowledge framework, practical implementation
at the industry level, BIM application, and BIM acceptance are some of the frameworks
proposed to disperse BIM application in the construction sector [8]. Numerous studies
looked at technical integration, the usage of BIM tools, and model-sharing concerns, which
dwell on a technical aspect of BIM technology. However, this research was limited to the
use of BIM in the building sector in general. There is a shortage of in-depth examination of
the obstacles and success factors for effective BIM deployment among local organisations
or at the organisational level in building projects [9].

The Yemeni construction industry experienced noticeable growth in early 2011. After
the war started in 2015, there was a considerable decline in the construction industry, and
many projects were suspended. In early 2016, people got used to the instability within the
war environment and started to adopt the new norms of life, resulting in the unsustainable
building of their houses despite the shortage of materials and machinery. Additionally,
ongoing projects were funded by different non-governmental agencies and the Social Fund
for Development [9].

Complexity, instability, and time constraints are among the significant issues affect-
ing project delivery in the construction industry. Yemen’s construction industry is no
exception [10–13]. Using 2D CAD for many years has not enhanced collaboration or
project performance. Yemen’s construction sector is growing. Yemeni construction industry
stakeholders are working to improve construction efficiency. Still, the sector has technical
obstacles, such as a lack of acceptable building materials, labour construction technology
and a lack of BIM awareness and knowledge [12]. Therefore, techniques for BIM application
in the Yemeni construction sector should be studied to improve project cooperation and
performance [12,13].

There are limited studies on BIM in the Yemen construction industry, and construction
stakeholders are resistant to embracing changes, which encourages traditional building
practices linked with incorrect planning and monitoring resulting in cost overruns, schedule
overruns, low quality, and project failure [12]. Ineffective regulation and law, limited
utilisation of local construction technology, inadequate financial structure, and incorrect
use of local building resources were other problems [13]. An extensive review of the
relevant literature shows that most construction industries in Yemen still use 2D CAD.
Holistic research on BIM adoption, especially in Yemen, is absent. This research integrated
and examined BIM implementation aspects across the building process to produce an
effective and complete implementation plan in Yemen. For effective BIM adoption, local
organisations and the entire building industry need in-depth analyses of the challenges
and success factors.

This study fills this gap and narrows the scope by focusing on the Yemeni industry
scenario. Moreover, this study investigated the extent of BIM adoption in construction
projects, particularly among local organisations in Yemen, and has contributed to the body
of knowledge due to the limited literature on BIM adoption in the Yemeni construction
industry. It also examines the factors affecting BIM adoption, knowledge, and awareness
in the Yemeni construction sector. As a result of the thorough literature review, in-depth
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discussion during the interviews, and factor analysis evaluation, new factor groupings
are also identified. In addition, the study also created an SEM model that detailed the
correlations between the factors that influence the adoption of BIM. The model helps to
better understand how independent factors impact the adoption of BIM. The created frame-
work is an excellent example of the significance of understanding the BIM adoption ideas
and challenges and assessing the elements and BIM technology motivators to accomplish
effective adoption in building projects. Other researchers might use the suggested approach
to evaluate its value in promoting BIM adoption in construction projects.

2. Literature Review

The need for BIM in the construction industry became apparent after reviewing
papers and studies. A substantial amount of information on BIM, including definitions
and relevance to the construction industry, has been published in the academic and non-
academic literature. Some frameworks suggested for implementing BIM in the construction
industry include the BIM knowledge framework, industry-level implementation, and BIM
acceptance. Other studies investigated the concerns of model sharing, BIM tool use, and
technology integration. Most construction industries in underdeveloped nations are BIM
infant industries that struggle with adoption and implementation [14]. Therefore, BIM
infants are confronted with obstacles varying from innovative features to internal and
exterior settings. As noted in several developed nations, the lack of official backing for BIM
in most countries is a substantial barrier.

Recent research by [15] in “macro-BIM adoption: comparative market analysis” con-
tributes to comparative market research. That paper offers suggestions for newly adopting
countries seeking to deploy macro-BIM. In this expanding industry, precedent is crucial
for education and acceptability. This study evaluated BIM adoption trends in the United
States, the United Kingdom, and Australia to serve as a model for early adopting countries.
The study demonstrates: government engagement increases BIM adoption; government
mandates enable widespread BIM adoption and integrate a country’s industry into the
global marketplace; the ruling also supports BIM research and training, which leads to
revenue development through training and workforce export; diffusion dynamics vary
throughout time based on a country’s propensity to absorb innovation; and the dynamics
also alter as the culture and regulations of a sector evolve.

Moreover, the study by [16] evaluates and defines the usefulness and inefficiency of
BIM technology in construction infrastructure projects and presents a comparative and
exhaustive examination of academic literature and industry reports. Its implementation
provides a framework solution to profit and utilise BIM to overcome inefficiencies and
obstacles. The study intended to develop a method for identifying difficulties. The excessive
nature of BIM (acronyms and competing acronyms) also results in a gap. People need a
framework for applying an objective emphasis on BIM methodology, requirements, goal
achievement, and agreed-upon measurements, as well as an objective focus on what to
deploy and when (standards and technology) concerning the project’s aims and advantages.

Information collecting relies on the expert analysis provided by conventional storage.
The Internet of Things (IoT) and smart devices generate vast quantities of live data from
several sources; hence, IoT–BIM integration is essential. Replace semantic information with
internal conditions to construct Service-Oriented-Architecture (SOA). Connect static to real-
time models using SOA. It is crucial to develop two-way communication to imitate human
thought. Cloud computing is required for IoT device connectivity. Integrating BIM with
Internet of Things (IoT) real-time data enhances construction and operational efficiency
and produces high-fidelity BIM models. The study addresses IoT concerns connected to
BIM. Cloud computing eliminates interoperability problems. The document investigates
and identifies new BIM–IoT application areas, followed by enhanced procedures [17].

Due to country-specific socio-cultural, economic, and legal conditions, marketing
and implementing BIM for building projects varies. Cambodia’s building sector’s BIM
adoption is unknown. This study investigates BIM industry obstacles. Detailed survey
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responses and professional architects and contractors. In the final datasets, 13 key drivers
were identified. The use of technology enhances project visibility, and technology alters
project timelines. The future of an industry is influenced by the information stakeholders
share. Technology adoption’s is the most significant obstacle that pushes toward industrial
resistance to change, especially, reluctance towards inadequate BIM conversion from 2D to
3D, which is expensive. Study implementation can adapt and apply technology to improve
Cambodia’s construction progress and project success through socio-cultural, economic,
and regulatory parallels [17].

Enegbuma [18] conducted a study in Malaysia to investigate BIM adoption, focusing
on BIM interpretation (factors influencing BIM) and sources for successful BIM adoption.
This collaborative approach mediated the interaction between strategic IT planning and
BIM adoption. It identified the factors that have the most significant impact on BIM
perception in Malaysia. Another development was made in Singapore by Attarzadeh and
Tiong [19], likely to interest many researchers and industries looking to implement the BIM
technique. This study was to see what factors impact BIM adoption and application in
the AEC sector in Singapore. The study results aid AEC firms in ensuring BIM acceptance
during the project life cycle. The study also recommended that government agencies
develop standard, comprehensive functional guidelines, models, and BIM public libraries
for various areas to promote new technologies.

Similarly, Rosli et al. [8] investigated the link between numerous constructs that
influence BIM adoption. The Structural Equation Modelling (SEM) model fit indices and
the association strength within the components were used to investigate this link. It is
advised to employ ongoing BIM-friendly policy formulation, individuals, procedures,
and technology to primarily address the issues impacting BIM adoption in the worldwide
construction sector. Hosseini et al. [20] introduced some results of a study effort in Australia
where they employed a questionnaire survey to target SMEs in the construction sector.
The research provides the most up-to-date information on BIM in Australia’s small- and
medium-sized enterprises. It offers and expands upon a framework based on the innovation
diffusion concept (IDT).

Yemen has suffered and is continuously experiencing mass structural destruction from
a war that has been happening for many years. Many vital structures have been destroyed,
and reconstruction is inevitable [21]. Usually, the reconstruction of destroyed buildings,
such as hospitals, schools, universities, factories, highways, etc., requires a substantial
amount of time, money, and effort. An effective and efficient construction approach
such as building information modelling (BIM) is essential for rebuilding efficiency and
cost-effectiveness.

Gamil et al. [9] noticed that Yemen’s construction industry had substantially declined
and failed. The sector’s growth has been halted, and most projects have collapsed. Several
factors have played a significant role in the industry’s downfall. It is problematic because
the study views BIM as a discrete technical and administrative procedure rather than
an interactive, continuous, and emergent working process. Alaghbari [22] indicates that
construction project costs and time overruns are caused by various factors, including poor
labour productivity.

Moreover, according to Kassem [13], the economics of Yemen prepends on heavily
the gas sector. Any active building project has a unique set of risk concerns. As a result,
external risk factors have the most significant impact on Yemen’s oil industry. The greatest
risk indicators for cost and schedule overruns were those related to project management.
According to Dahmas [21], Yemen’s construction industry is pressured to reduce production
time and project costs. Yemen needs to use concurrent engineering (CE) to speed up the
reconstruction of its facilities. CE focuses on the design stage and gets it done right the first
time. However, delays in implementing construction projects, especially public projects,
have become common in Yemen.
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3. Methodology

3.1. Identifying and Evaluating the Factors That Affect the Adoption of BIM

This study aims to identify the factors influencing the adoption of BIM in Yemen’s
construction industry. The initial technique for conducting research is to go through
several sources, such as scholarly journal articles, conference proceedings, and books, to
determine all aspects of the concepts [23]. This study conducted intensive research of
the previous literature to study the adoption of BIM in the construction industry. Two
essential techniques are employed to extract and filter the components from the literature:
similarity analysis and frequency analysis. Analysis of similarity is a technique used to
avoid duplication of variables with similar meanings and distinct phrases; it also aids in
establishing a collection of factors that differ in terms of purpose and intent [24]. Frequency
analysis is the number of repetitions from the various literature sources of BIM adoption in
the construction industry [19]. The list of factors connected to the construction industry
is given to five Yemeni professionals; each has over 20 years of experience working in
Yemen’s construction industry. Using expert opinion in Yemen’s construction industry
proved extremely valuable in identifying the most critical challenges of implementing BIM
in Yemen [3]. Then, the experts were asked to classify these components conceptually into
categories, and ambiguous elements were improved. Figure 1. Summarises all stages of
the methodology.

Figure 1. Research method.

A random sample was used to achieve homogeneity and increase the consistency
and quality of data. Purposive sampling was used to choose participants for the expert’s
evaluation depending on criteria such as years of experience within the Yemeni construction
industry, BIM experience, organisation size, and job description. Table 1. lists the final
assessment items for these constructs.
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Table 1. Assessment of the factors that influence BIM adoption in the Yemeni construction industry.

Code Category 1: Technology (TEC) References

TEC01 Lack of full automation in the construction industry [8,18,25,26]

TEC02 Lack of BIM knowledge within the project [27–33]

TEC03 Visualisation of construction sequences [6,24,34–39]

TEC04
Trialability (Possibility of risk reduction with the try-out
before adopting BIM in practice, and trying out various
BIM features in my work to verify its effects)

[6,24,29,34–36]

TEC05 The usefulness of digital transfer of data [24,26,40–42]

Code Category 2: Process (PR) References

PR01 Information availability and sharing [35,41,42]

PR02 Providing guidance on the use of BIM [40,42]

PR03 The leadership of senior management [18,42–45]

PR04 Contractual sharing norm [35,41,42]

PR05 Shared norms and collective expectations diffused
through information exchange activities [35,42]

PR06 Shared liability between project participants [41–46]

PR07 Production of drawings and schedules [27,47,48]

PR08 Desire to speed up the design process [24,42]

PR09 Collaboration (project) management tools [42]

PR10 Standard and rules [42]

PR11 Companies’ collaboration experience with project partners [27,42,47,49,50]

PR12 Developing data exchange standards [24,41,42,45,46,51,52]

PR13 Greater collaboration with consultants and other project
team members [46]

Code Category 3: Policy (PL) References

PL01 Financial resources of the organisation [6,35,42,47,53,54]

PL02 Regulation and policy [35,42,47,55]

PL03 Organisational readiness [6,8,26,29,34,35,46,55–59]

PL04 Weak legal institutions [60,61]

PL05 Guidance on the use of BIM [40,42]

PL06 The increased demand for design and building [42,47,51]

PL07 Lack of government incentives [29,33,41,45,51,62]

PL08 Lack of construction codes [9,22,24,53,57,63,64]

Code Category 4: People (PPL) References

PPL 01 Lack of skills and knowledge of one of the partners [65–70]

PPL 02 Lack of cooperative concept [4,18,21,24,26,41,71–75]
PPL 03 Lack of BIM expertise [29,32,41]

PPL 04 Lack of top management support [28,74–81]

PPL 05 Errors by a design team in construction projects [13,33,56,82–85]

PPL 06 Weak supervision and control [50,86–90]

PPL 07 Lack of demand by clients [20,32,33,45,47,53,62,84,91–94]
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Table 1. Cont.

Code Category 5: Environment (ENV) References

ENV 01 Security of information on project data [22,24,42,46,51,52,54,62,94,95]

ENV 02 Poor Internet connectivity [50,64,96]

ENV 03 Allows coordination and collaboration
between disciplines [46,47,51,53,57,97]

ENV 04 BIM readiness by project consultants. [50,64,96]

ENV 05 Poor economic condition [5,13,55]

ENV 06 Method of communication between the team [18,20,24,26,32,35,36,41,52,92]

ENV 07 Market demand, size, and competition increase [98–101]

ENV 08 Risk management [2,34,72,102–107]

ENV 09 Facility management and building operation [17,108,109]

Code Intention to Adopt the BIM References

ADBIM1
Encourage the staff to use BIM in regular workflow, even
without BIM being the official workflow process at the
organisation

[94]

ADBIM2 Implement BIM in future projects, regard less of its
implementation level [94]

ADBIM3 Invite other partner organisations to use BIM for project
communication purposes [94]

3.2. Questionnaire Design

A questionnaire is a comprehensive set of instruments presenting respondents with
questions to answer by choosing responses that match their ideas [110]. This study uses the
literature review results and expert interviews to improve the questionnaire design. The
factors affecting the adoption of BIM in the construction industry were extracted and then
categorized into groups. Using a Likert-style scale, these factors determine the elements’
degree of importance and seriousness.

A pilot study observes the perspectives and feedback of construction industry experts.
It also aids in identifying issues, evaluating questions for clarity, confirming quality, and
validating measurement scales. The second objective of the pilot research is to assess and
improve the questionnaire’s content [111]. This study surveyed 30 Yemeni construction pro-
fessionals for a pilot study to examine the internal accuracy of the questionnaire regarding
data evaluation and assess the variables’ importance.

3.3. Data Collection

Surveys are often used to collect research field sample data. Despite a poor response
rate and bias, they can examine essential topics. This survey is based on earlier research that
led to government guidelines, suggestions, and principles for determining research data
requirements [112]. A two-part quantitative questionnaire was developed and utilised for
data collection. The first part comprised respondents’ demographic information, including
their age, education, position, BIM experience, and work experience. Table 2 shows that
most participants have more than ten years of experience in the construction industry, and
their career is strongly tied to civil/structural engineering. There were more designers or
consultants in the research than in the public sector, with fewer participants. The rest are in
the private sector and (Mix) public and private.
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Table 2. Factors affecting demographics.

Frequency Percent %

Qualification

High School 1 0.4
Diploma 5 2.1
Bachelor 137 58.3
Masters 58 24.7

PhD 34 14.5

Specialisation
Designer or Consultant 160 68.1

Contractor/Construction 64 27.2
Client 11 4.7

Organisation
Public 35 14.9
Private 94 40

Public and Private (Mix) 106 45.1

Profession

Architecture 33 14
Civil/Structural Engineering 147 62.6

Electrical Engineering 13 5.5
Mechanical Engineering 2 0.9

Project Management 14 6
Construction Management 11 4.7

Quantity Surveying 3 1.3
Technical in panning team 5 2.1

Others 7 3

The second part of the questionnaire had 45 items (see Table 1 for details). Using a
Likert scale of 1 to 5, the respondents’ attitudes and comprehension of BIM adoption factors
in the Yemeni construction industry were evaluated (1: strongly disagree; 2: disagree; 3:
neutral; 4: agree; and 5: strongly agree). The online surveys were open to a broad public.
The most efficient method of communication during the COVID-19 pandemic was online;
hence, the Ministry of Public Works and Highways and Yemeni Engineers Syndicates (YES)
were contacted repeatedly to distribute the survey to all registered engineers. Access to
the study was permitted for four months. Despite receiving 235 survey responses, the
intended sample size for the study was 475 people. The questionnaire was answered by
49% of the respondents that participated in the study. A quantitative technique was used
to investigate the factors affecting BIM adoption in the Yemeni construction industry.

3.4. Structural Equation Modelling (SEM)

A measurement model (confirmatory factor analysis) and a structural model are
combined in the SEM test. In formulas, all evaluation component connections are specified.
Since SEM captures the structure of latent variable relationships, the measuring method
must be validated. Scale reliability is the dependability of an internal element. It is
computed using Cronbach’s alpha coefficient, with a minimum value of 0.70 and a higher
value suggesting more accurate measurement scales for latent variables. The analyses
include concept validity, reliability, convergent and discriminant validity, and structural
model evaluation.

Estimating and quantifying relationships for interactions among components/latent
variables distinguishes structural equation modelling from other data analysis method-
ologies [113]. Over the last decade, SEM has captivated the interest of a rising number
of scholars in psychology, social science, and strategic management [114]. SEM is used
to explain a wide range of empirical data to evaluate the validity of statistical models’
underlying ideas. On the other hand, the researcher employs the SEM technique to estimate
a specific model. Hypotheses can be tested using SEM, including both latent and observable
variables. SEM’s aggregate topographies of factor analysis and multiple regression are
used to examine the structural properties of both theoretical and measurement models.
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Many academics have resorted to SEM as an alternative to first-generation data analy-
sis approaches, such as regression analysis and defining multi-layer correlations between
dependent and independent variables [115]. SEM concurrently examines structural models
and data. It concurrently models several dependent and independent variables. SEM must
be understood before usage. PLS-SEM and CB-SEM are examples of methods. Smart-PLS
software created a conceptual measurement model for examining observable characteris-
tics. PLS replicates the model by calculating and measuring item loading, reliability, and
validity. To estimate PLS model parameters, first, solve the measurement model’s blocks,
then compute the structural model’s path coefficients [116]. Even though individual item
reliability was satisfactory, construct reliability was nevertheless advised for observing
group item reliability within the same construct. The internal relationship between items
belonging to the exact constructions is more remarkable, as seen by construct-level depend-
ability [117]. The commonly used “Average Variance Extracted” strategy was used in this
study to examine convergent validity [118]. This method is considered comparable to that
of Fornell and Lacker. The HTMT number must be less than 0.90 [119].

Because PLS does not need distribution assumptions, bootstrapping was utilised to
generate t statistics and confidence ranges. Route estimates based on the inner path model
or hypothetical relations demonstrated the correct connection. It was utilised to assess
each framework path. PLS bootstrap was used to determine structural model hypotheses.
According to research, the path coefficient must be at least 0.1 for a model to have an effect.
The mediating analysis uses a rigorous bootstrapping method. Some scholars believe that
mediation analysis diminishes the significance of the direct impact. Inadequate sample size
or predictive ability may limit the detection of a relevant direct correlation. As a result, the
mediation analysis is the most important part of observing the indirect impact [120].

4. Results and Findings

This research method investigates BIM acceptance and usage, as well as how the
perspectives of BIM drivers, advocates, and early adopters may be utilised to develop a
contextualised BIM adoption framework. The conceptual framework supports fundamental
research methodologies. This model integrates Policy, Process, Technology, People, and the
Environment for BIM adoption in Yemen’s construction industry.

In this study, eleven hypotheses were formulated based on the theoretical model
illustrated in Figure 2; the potential for BIM’s further adoption in the construction sector:

H1. Environment (ENV) has a significant effect on BIM adoption (ADBIM).

H2. People (PPL) have a significant effect on BIM adoption (ADBIM).

H3. Policy (PL) has a significant effect on BIM adoption (ADBIM).

H4. Policy (PL) has a significant effect on Environment (ENV).

H5. Policy (PL) has a significant effect on People (PPL).

H6. Process (PR) has a significant effect on BIM adoption (ADBIM).

H7. Process (PR) has a significant effect on Environment (ENV).

H8. Process (PR) has a significant effect on People (PPL).

H9. Technology (TEC) has a significant effect on BIM adoption (ADBIM).

H10. Technology (TEC) has a significant effect on Environment (ENV).

H11. Technology (TEC) has a significant effect on People (PPL).
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Figure 2. The hypotheses of the research.

A partial least square estimate technique was used to investigate the theoretical
model. The measurement and the structural model parameters were estimated using Smart
PLS 3.0.

4.1. Experts’ Assessment of the Factors

Establishing a model for final variables focuses this investigation on defining features
that benefit the Yemeni construction industry. Expert opinion was precious in identi-
fying the most crucial issues in implementing BIM. Table 3 illustrates the respondent’s
demography, indicating that 40% of the experts are above 55 years, while those between
36–45 years represent 60%. Moreover, respondents that spent more than 20 years in the
industry represent 60%, whereas those between 11 to 15 years represent 40%.

Table 3. Demographic characteristic analysis for the experts.

Demographic Characteristics Frequency %

Age group:
Above 55 years 2 40%
36–45 years 3 60%
Experience in the construction industry:
Above 20 years 3 60%
11 to 15 years 2 40%
Qualification:
PhD 5 100%
Organisation:
Private 2 40%
Private (Mix) 3 60%
Job description:
Commercial Buildings; Industrial
Buildings 2 40%

Governmental Buildings; Roads and
Transportation; Water and Sanitation
Projects

1 20%

Residential Buildings 2 40%
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One hundred percent of the respondent have a Ph.D. The majority projects undertaken
by the respondents are residential and commercial buildings, with 40% each. Respondents
from the private sector represent 40%.

4.2. Pilot Survey

The pilot survey is aimed to test the questionnaire’s accuracy, completeness, and ease
of understanding by the respondent. It helps uncover flaws, assess whether questions are
straightforward, and check to measure scales’ reliability and validity. The pilot research
helped improve the questionnaire’s content and find unclear or complicated questions.
After explaining and clarifying questions to the respondents, the researcher collected 30
complete responses from the respondents who were emailed the pilot study questionnaire.

Reliability Test: This section calculates the first Cronbach alpha values based on
five BIM adoption factors affecting the construction industry. SPSS is used to calculate
Cronbach’s alpha; the result of the original Cronbach’s alpha value is less than the min-
imum [121]. Using Cronbach’s alpha, which ranges from 0 to 1, a reliability analysis
determines if the data obtained are consistent. If Cronbach’s alpha value is less than 0.3,
the reliability is poor, and the data cannot be trusted. A higher Cronbach’s alpha implies
better internal consistency in the data [122]. The data have a high and respectable level
of consistency if Cronbach’s alpha value exceeds 0.7. The pilot study’s Cronbach alpha is
shown in Table 4.

Table 4. Cronbach Alpha (Pilot Study) Constant factors affecting BIM adoption.

Construct No of Items Cronbach Alpha Value

Technology (TEC) 5 0.838
Proses (PR) 13 0.825
Policy (PL) 8 0.826

People (PPL) 7 0.925
Environment (ENV) 9 0.800

The extent of BIM adoption in
the Yemeni construction
industry (All Categories)

42 0.930

All the items are trustworthy, and the real test is internally consistent according to the
overall model’s Cronbach alpha value being substantially higher than 0.7.

4.3. Assessment of Measurement Model

Figure 3 shows the model development. The first stage in examining the model
is to evaluate the measurement model, which involves assessing Cronbach’s alpha and
composite reliability for construct reliability, convergent and discriminant reliability, and
discriminant validity for composite and discriminant validity. The outer model, also known
as the measurement model, is used in factor analysis to determine how loaded observed
variables are on their underlying construct. To confirm the underlying relationship between
the observable variables and the hidden components, an outer model/CFA is advised.
Figure 3 shows each item’s factor loadings/outer loadings, and the Cronbach alpha (CA)
for each constant derived using the PLS-Algorithm. Moreover, Table A1 indicates some
descriptive analyses resulting from Smart PLS.
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Figure 3. Factor loadings/outer loadings of each item calculated through the PLS algorithm.

4.3.1. Validity and Reliability of Constructs

The construct validity and reliability findings demonstrate that the absolute correlation
between the construct and its measuring items is between 0.661 to 0.934, which is higher
than the minimum threshold criteria.

4.3.2. Convergent Validity

The Average Variation Extracted (AVE) for each latent variable was more significant
than the required threshold of 0.5 (50 percent), indicating that each construct could explain
more than half of the variance to its measuring items on average, as shown in Table 5.

Table 5. Internal Consistency and Convergence Validity Results.

Constructs/Items Code F. L CA CR AVE

BIM Adoption AD-BIM 0.918 0.948 0.859

Encourage employees to utilise BIM in their daily
work, even if it is not the organisation’s formal
workflow process

ADBIM 01 0.929

Implement BIM in future projects, no matter how
advanced it is ADBIM 02 0.918

Invite additional collaborative partners to utilise BIM
for project communication ADBIM 03 0.934

Environment Factors ENV 0.896 0.916 0.548

Security of information on project data ENV 01 0.661

Poor Internet connectivity ENV 02 0.703

Allows coordination and collaboration
between disciplines. ENV 03 0.791
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Table 5. Cont.

Constructs/Items Code F. L CA CR AVE

BIM readiness by project consultants. ENV 04 0.802

Poor economic condition ENV 05 0.648

Method of communication between the team ENV 06 0.749

Market demand, size, and competition increase ENV 07 0.769

Risk management ENV 08 0.743

Facility management and buildings operation ENV 09 0.779

People Factors PPL 0.925 0.940 0.690

Lack of skills and knowledge of one of the partners PPL 01 0.820

Lack of cooperative concept PPL 02 0.854

Lack of BIM expertise PPL 03 0.871

Lack of top management support PPL 04 0.868

Errors by the design team in construction projects PPL 05 0.789

Weak supervision and control PPL 06 0.834

Lack of demand by clients PPL 07 0.773

Policy Factors PL 0.920 0.935 0.643

Financial resources of the organisation PL01 0.760

Regulation and policy PL02 0.806

Organisational readiness PL03 0.866

Strong legal institutions PL04 0.782

Guidance on the use of BIM PL05 0.788

The increased demand for design and building PL06 0.782

Government incentives PL07 0.804

Construction codes PL08 0.822

Process Factors PR 0.955 0.960 0.651

Information availability and sharing PR01 0.796

Guiding the use of BIM PR02 0.829

The leadership of senior management PR03 0.760

Contractual sharing norm PR04 0.780

Information-sharing activities disseminate shared
norms and community expectations PR05 0.794

Shared liability between project participants PR06 0.803

Production of drawings and schedules PR07 0.860

Desire to have the design process go faster PR08 0.759

Collaboration (project) management tools PR09 0.836

Standard and rules PR10 0.815

Collaboration experience of companies with project
partners PR11 0.790

Creating data interchange standards PR12 0.824

Greater collaboration with consultants and other
project team members. PR13 0.837

Technology Factors TEC 0.882 0.914 0.682

Full automation in the construction industry TEC01 0.767
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Table 5. Cont.

Constructs/Items Code F. L CA CR AVE

BIM knowledge within the projects TEC02 0.864

Visualisation of construction sequences TEC03 0.889

Trialability (possibility of risk reduction by
experimenting with BIM before implementing it in
practice and experimenting with various BIM features
in my work to validate their impact)

TEC04 0.759

The usefulness of digital transfer of data TEC05 0.842

Hints: (AVE) Average Variance Extracted; (CA) Cronbach’s alpha; (CR) Composite reliability.

4.3.3. Measurement of Discriminant Validity

Table 6 shows that the square roots of the AVE are more significant than their compa-
rable inter-correlations. As a consequence, the validity and reliability of the measurement
model is established.

Table 6. Discriminant Validity—Fornell and Lacker Criterion.

Constructs BIM Adoption Environment People Policy Process Technology

BIM
Adoption 0.927

Environment 0.614 0.740
People 0.447 0.560 0.831
Policy 0.585 0.730 0.556 0.802

Process 0.588 0.721 0.481 0.837 0.807
Technology 0.532 0.665 0.424 0.726 0.763 0.826

The diagonal represents the square root of AVE, while the off-diagonal values are correlations between
latent variables.

As shown in Table 7, the discriminant findings demonstrate that most of the Heterotrait–
Monotrait (HTMT) values are less than 0.9, which is extremely good and meets the discrim-
inant validity criteria since the value is less than 0.90.

Table 7. Heterotrait–Monotrait Ratio Results (HTMT).

Constructs BIM Adoption Environment People Policy Process Technology

BIM
Adoption

Environment 0.668
People 0.483 0.622
Policy 0.631 0.797 0.596

Process 0.623 0.770 0.509 0.893
Technology 0.587 0.738 0.463 0.803 0.828

4.4. The Structural Model’s Assessment

The structural model is a theoretical model that analyses the inner path model using
structural equations. Statistical measures such as path coefficient, predictive relevance
(Q2), effect size (f2), and coefficient of determination (R2) were used to verify the structural
model. Once the measurement model was fit, the structural model’s validity was evaluated.
The next step was to create a causal route between independent (exogenous) and dependent
(endogenous) variables to develop a linear covariance connection. The path coefficient,
coefficient of determination (R2) for the endogenous prediction relevance (Q2), variable,
effect size (f2), and multicollinearity were used to evaluate the structural model in this
study [123].
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4.4.1. Coefficient of Determination (R2)

The coefficient of determination (R2) is the most significant criterion for assessing
structural models and determining R2 values. If the R2 value is 0.26 or higher, effective
results are expected. It is moderate if the R2 value is between 0.13 and 0.25, and it is weak
if the R2 value is between 0.02 and 0.12 [124]. The R2 results are presented in Table 8, with
BIM adoption having 0.437, Environment at 0.589, and People having 0.310, demonstrating
high acceptance.

Table 8. Result of R-square.

Endogenous Variables R Square R Square Adjusted

BIM Adoption 0.437 0.424
Environment 0.589 0.584

People 0.310 0.301

4.4.2. Effect Size (f2)

The f2 measures the influence of a predictive construct on an endogenous construct.
According to [125], R2 looks at how much one external construct helps explain a particular
endogenous component. Significant, medium, and minor impact sizes are defined by f2

values of 0.35, 0.15, and 0.02. Table 9 shows that policy on people and the environment has
significant effects considering a value of 0.103 and 0.092, respectively. Other values indicate
medium and small size effects.

Table 9. F-square Result.

Exogenous Variables BIM Adoption Environment People

BIM Adoption
Environment 0.062

People 0.012
Policy 0.005 0.092 0.103

Process 0.013 0.042 0.001
Technology 0.004 0.037 0.001

4.4.3. Result of Multicollinearity (Inner VIF)

The presence of two or more independent but highly connected entities is referred to
as multicollinearity. It is a multicollinearity problem if there are common indicators across
multiple constructs. Before moving further with model testing, we strongly suggest the
researcher looks at multicollinearity [126]. The variables are assumed to have a collinearity
problem when the correlation coefficient values are more than 0.9. The Variance Infant
Tolerance (VIF) can detect collinearity concerns instead of the correlation coefficient. The
VIF value in Smart-PLS must not be greater than five, indicating that the variables in the
model are not collinear. This investigation did not consider multicollinearity because the
inner VIF values were less than 5. Table 10 shows that the maximum VIF is 4.196, and the
lowest is 1.561, indicating no multicollinearity at the site as the VIF is less than 10.

Table 10. Multicollinearity—Inner VIF Values.

Exogenous Variables BIM Adoption Environment People

BIM Adoption
Environment 2.630

People 1.567
Policy 4.102 3.559 3.559

Process 4.196 4.022 4.022
Technology 2.644 2.547 2.547
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4.4.4. Predictive Relevance (Q2 Value)

The Q2 value was calculated using a blindfolding test to measure the model’s pre-
dictive effectiveness. The blindfolding Q2 test assesses endogenous variables’ predictive
capabilities and the structural model’s predictive abilities. It is also a sample process
strategy for assessing cross-validation in a model. The model is accurate in its predictions.
The model’s predictive significance is insufficient if the Q2 value is more than zero [47]. As
shown in Table 11, because the Q2 values are more than zero, the model establishes a good
fit and vital predictive significance. All matters are greater than zero ranging from 0.210 to
0.672, which indicates that the model is significant.

Table 11. Predictive Relevance Results.

Endogenous Variables
CCC

Q2 (=1-SSE/SSO)
CCR

Q2 (=1-SSE/SSO)

BIM Adoption 0.672 0.350
Environment 0.433 0.314

People 0.583 0.210
Policy 0.540

Process 0.586
Technology 0.522

(CCC), Construct cross-validated communality; (CCR), construct cross-validated redundancy.

4.5. Analysis of Direct Effect Path Coefficients

The path coefficient results, as shown in Table 12 and Figure 4, indicate that the most
significant path (t = 5.276) was found between Policy (PL) and People (PPL), which Policy
(PL) and Environment (ENV) follow, and then Environment (ENV) and BIM adoption
(ADBIM) with t values of 4.050 and 2.889, respectively, with all having p significance values
of 0.000. The minor significance paths are those between Process (PR) and BIM adoption,
Process and People, Technology (TEC) and BIM adoption (ADBIM), and Technology and
People, all having a P-value above 0.05, and hence their hypotheses are not supported.

Figure 4. Path coefficient (T-values relative).
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Table 12. Path Coefficient Result.

Original
Sample (O)

Sample
Mean (M)

Standard
Deviation
(STDEV)

T Statistics
(|O/STDEV|)

p Values Decision

Environment → BIM
Adoption 0.304 0.304 0.105 2.889 0.004 Significant

People → BIM Adoption 0.102 0.097 0.068 1.496 0.135 Not Significant

Policy → BIM Adoption 0.104 0.107 0.129 0.805 0.421 Not Significant

Policy → Environment 0.366 0.365 0.090 4.050 0.000 Significant

Policy → People 0.502 0.503 0.095 5.276 0.000 Significant

Process → BIM Adoption 0.173 0.169 0.120 1.439 0.151 Not Significant

Process → Environment 0.264 0.257 0.107 2.473 0.014 Significant

Process → People 0.038 0.036 0.104 0.364 0.716 Not Significant

Technology → BIM Adoption 0.079 0.079 0.087 0.911 0.363 Not Significant

Technology → Environment 0.198 0.205 0.088 2.241 0.025 Significant

Technology → People 0.031 0.034 0.071 0.430 0.668 Not Significant

Significant: p < 0.05.

Table 12 shows the study’s path coefficient results, which show that five hypotheses
were supported and six were not, with a p-value of less than 0.05 for the supported
hy potheses.

4.6. Indirect (Mediation) Effect Analysis

The bootstrapping results for the indirect effect are shown in Table 13, where the
bootstrapping analysis was used to indicate the indirect effect of PL, PR, and technology
(TEC) on BIM adoption (ADBIM). The mediation impact of independent variables on
dependent variables was statistically significant using PL, PR, and TEC. The findings of the
mediation analysis show that two of the three mediating hypotheses were supported, while
the third was not. The mediating path Policy (PL) → Environment (EMV) is significant,
having a p = 0.000 and t = 4.050. Moreover„ Policy (PL) → People (PL) is significant with
p = 0.000 and t = 5.276, Environment → BIM adoption is significant with p = 0.004 and
t = 2.889, and Process → Environment is significant with p = 0.025 and t = 2.241.

Table 13. Mediation Result.

Hypothesis OS SM SD T p Values Decision Mediation

Policy (PL) → BIM adoption (ADBIM) 0.162 0.155 0.055 2.964 0.003 * Sig. Full Mediation
Process (PR) → BIM adoption (ADBIM) 0.083 0.076 0.046 1.804 0.045 * Sig. Full Mediation

Technology (TEC) → BIM adoption 0.063 0.064 0.039 1.604 0.109 Not Sig. No Mediation

Significant; * p < 0.05.

4.7. Hypotheses Testing Result

The summary of the hypotheses testing is presented in Table 14, which shows that
five hypotheses are accepted and six are rejected. This indicates Environment, People,
and Policy are the most influencing factors on BIM adoption in the Yemeni construction
industry. It also shows that other factors, such as Technology and Process, can be crucial
in achieving the said objectives. The findings conform with the studies conducted by
previous researchers.
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Table 14. Hypotheses Results.

No. Hypotheses Results

H1 ENV has a significant effect on ADBIM Accepted
H2 PPL have a significant effect on ADBIM Rejected
H3 PL has a significant effect on ADBIM Rejected
H4 PL has a significant effect on ENV Accepted
H5 PL has a significant effect on PPL Accepted
H6 PR has a significant effect on ADBIM Rejected
H7 PR has a significant effect on ENV Accepted
H8 PR has a significant effect on PPL Rejected
H9 TEC has a significant effect on ADBIM Rejected
H10 TEC has a significant effect on ENV Accepted
H11 TEC has a significant effect on PPL Rejected

The path between policy (PL) and Environment is the next meaningful relationship
(ENV). It was discovered via structural equation modelling evaluating this link that there
is a sizeable direct relationship between Policy and People. The Environment mediates the
relationship between increased BIM adoption in the Yemeni construction industry. Previous
studies have repeatedly emphasised this desired transformation.

5. Discussion

The structural equation model path analysis shows that the five variables, Policy, Pro-
cess, Technology, People, and Environment, affect BIM adoption. Specifically, the relation-
ship between Policy and People was found to be the most significant
(t-values = 5.276, p-values = 0.000; significant), the relationship between Policy and the
Environment was shown to be the second most important (t-values = 4.050,
p-values = 0.000; significant). Following that, in terms of the significance of the asso-
ciation, the Process (which is an independent variable) and the Environment (which acts
as a mediator) come in with t-values = 2.473 and p-values = 0.014; significant). Only
the direct affect environment has a significant active impact on the rate of BIM adoption
(t-values = 2.89, p-values = 0.004; significant). Consequently, the other direct-effect constants
do not contribute considerably to the relationships. The relationship between Technol-
ogy and the Environment was the last one to reach the significant level (t-values = 2.241,
p-values = 0.025; significant). The other correlations lack statistical significance because the
p-value is more than 0.05, and the t has a considerably lower value. As shown in Figure 5,
the BIM adoption model includes two mediation paths: PL and PR→PPL→ADBIM and PR
and TEC→ENV→ADBIM. In the first path, PPL acts as a link between PL→ADBIM. Such
findings indicate that the construction industry’s comprehensive understanding of policy
BIM implementation factors (particularly construction codes) encourages the People (PPL)
with a positive attitude to implement BIM in an existing workflow; this will eventually
influence the organisation’s decision to adopt BIM. Rogers’ (2003) innovation process has
five stages: agenda-setting, decision-making, implementation, and evaluation. Diffusion
theory argues that organisations start implementing innovations by identifying issues
and suggesting solutions. After analysing the innovation’s viability, a decision can be
taken about its implementation. This study focuses on initiation and decision stages, not
a five-stage process. The analysis results indicate that the Yemeni construction industry
shows fewer considerations of negative factors, including People (PPL). This reveals that
the Yemeni construction industry idealises the BIM adoption process. Such results are
not limited to Yemen. For instance, a study conducted in Qatar [127] revealed that more
than half of the interviewees understood BIM to be the collaboration, cooperation, and
digital data management that modifies the traditional manner of work. Despite this, most
respondents (71%) stated that the industry lacks a sufficient understanding of BIM. Another
mediation path identified in this study is from TEC and PR to ENV and eventually to AD-
BIM. Organisations whose teams have better capabilities in using BIM tools and processes
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tend to advance more in understanding the work environment, which will finally contribute
to BIM adoption. Based on the above logic, conventional organisations with a lack of focus
on improving personnel’s technical knowledge and simplifying the way of work are less
likely to adopt BIM. The establishment of a suitable environment is profoundly affected
by process (PR) or technology (TEC). The stronger the BIM process or experiences of staff
on technology, the more influential the environment the Yemeni construction industry
will establish [26]. Moreover, a test of the hypothesised components suggests that the
model can explain 24.6% of BIM adoption based on the sample size. The most significant
influence of Technology was on Processes, confirming the belief that technology facilitates
strategic innovation and alters traditional business processes. Non-challenge attitudes of
the authorities toward adopting BIM are eminent in developing countries. The construction
industry’s stakeholders in most developing countries are still in the early stage of BIM
adoption and implementation. Hence, they face numerous issues ranging from qualities
of innovation inside and outside environments. Small- and medium-scale construction
organisations contributing significantly to Yemen’s development are the most affected due
to their peculiar nature. The industry faces insufficient human resources, limited resources,
and a lack of technological innovation, which has always been a significant setback to BIM
adoption and implementation. This study appraises the factors affecting BIM adoption in
the Yemeni construction industry using a structural equation modelling approach. Factors
affecting BIM adoption were identified, reviewed, and synthesised into groups. Profession-
als within the Yemeni construction industry were consulted to determine the relationship
among the factors affecting BIM adoption using the structural equation modelling (SEM)
technique. As a result, Yemeni construction experts can investigate, examine, pinpoint,
and assess the challenges associated with implementing BIM in construction projects. This
study fills a gap and narrows the scope by focusing on the Yemeni construction industry
scenario. A schematic relationship model of effective BIM adoption was also developed in
the research. The government of Yemen is making several efforts to promote BIM among
local groups. As a result, there is an opportunity to investigate, examine, identify, and
assess the constraints of poor BIM adoption in construction projects among Yemeni con-
struction professionals. In Yemen, almost all projects struggle to accomplish their goals.
The government should use this study’s results to enhance the construction sector’s state.
This is necessary to investigate the previous projects to identify the leading causes of issues
and draw lessons for new initiatives. The Yemeni government should use the results of
this study to enhance the state of the construction sector currently [63]. This systematic
research on BIM adoption in the Yemeni construction industry has increased the literature
and describes the research’s originality. The research filled the knowledge gap regarding
identifying and evaluating barriers to and impacts on BIM adoption in Yemeni construc-
tion projects. The overall results of this study are anticipated to boost and succeed in
BIM adoption.

The research’s findings are essential for the construction sector for the reasons listed
below. Firstly, review the variables influencing the adoption of BIM in the construction
industry. Secondly, research the elements influencing BIM adoption in the Yemeni con-
struction industry. Investigate the level of BIM adoption, awareness, and knowledge in
the Yemeni construction industry. Finally, the study created a framework for enhancing
BIM adoption in the Yemeni construction industry. This framework can be used as a
visual aid to comprehend the requirements for BIM adoption and potential obstacles. The
research has paved the way for further study in various fields, including an international
application. The findings of this research can be expanded and updated to support and
improve construction practices in other countries.
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Figure 5. The final hypotheses of the research.

6. Conclusions

This study looks at the factors that drive BIM adoption in the construction sector. Its
purpose is to provide an integrated framework for BIM adoption in the Yemeni construction
industry, where additional research is needed. Making information more accessible to
project members is an awareness factor that is more significant among the responses
received. Structural equation modelling was employed, and essential factors loading was
observed, which led to the development of the BIM adoption framework, which was
successfully validated. This study’s framework is represented diagrammatically with
essential information embedded within. The findings show that the most critical factor
for BIM adoption in the Yemeni construction industry is Policy, which would include
regulation and policy, organisational readiness, government incentives, and construction
codes. Visualisation of a sequence is the most significant technological factor toward BIM
adoption. Greater collaboration between consultants and contractors is the most significant
process factor. In contrast, BIM adoption is a policy-driven factor that lacks top management
support as a people factor in addition to examining BIM adoption determinants and
awareness in the Yemeni construction industry in order to establish a strategy that enables
the development of a practical framework to proceed smoothly.

This research contributes originally to knowledge and the Yemeni construction indus-
try. According to the literature review, there has never been academic research in Yemen on
BIM adoption for the construction industry that has raised or increased the literature on
sustainable construction. The study framework will provide consultants and contractors
with a systematic and realistic technique for encouraging collaboration and consultation
in the BIM adoption decision-making process. The findings of this study contribute to
a better understanding of the factors affecting BIM adoption in the Yemeni construction
industry. It is believed that these factors will help the construction industry improve the
effectiveness of BIM implementation, achieve full benefits, and maximise the advantages
for each project stakeholder with the existing tools and technologies available. A research
framework is developed as the main contribution of this research, in which are attributes for
BIM adoption in the construction industry. Particular attention is given to the challenging
requirements of the Yemen construction industry, together with the need for govern-
ment support for BIM adoption and implementation across all disciplines throughout the
project lifecycle.

This study is extensive, and the findings are valuable to construction stakeholders.
Nonetheless, there are certain drawbacks to this study. The literature supporting BIM
adoption in the Yemeni construction sector was limited. As a result, this study could
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provide a solution to bridging this gap. Furthermore, it investigated BIM adoption factors in
the Yemeni construction sector and built a strategy that allows for the smooth development
of a practical framework. The framework’s design and development were limited to Yemen,
and possibly other countries needed to be studied. The usefulness of this study remains,
however, because it does not detract from the limitations but allows for future research.

The following recommendations for improving BIM adoption were derived from the
findings of this study:

• This study aimed to create a BIM adoption model in Yemen that could be expanded to
include the operational and destruction steps and investigations into nations other
than Yemen. More research may be conducted to examine the parameters of their
impact on different types of infrastructure.

• The built environment curriculum in Yemeni tertiary institutions should be studied to
include BIM education to produce a stream of BIM-oriented professionals.

• Similar to other developed countries, the Yemeni government should adopt construc-
tion policies to promote the use of BIM on every construction project. These policies
would stimulate the implementation of BIM in Yemen.

• Due to the high cost of BIM infrastructure, the government might implement a loan
scheme to aid construction companies in acquiring it.

• It would be interesting to investigate the level of BIM adoption in developed and
developing nations. As a result, benchmark data and best practices for addressing
problems with worldwide BIM adoption should be established.
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Appendix A

Table A1. MV Descriptive (from Smart PLS).

No. Mean Median Min Max
Standard
Deviation

Excess
Kurtosis

Skewness
Number of

Observations
Used

1 ADBIM01 4.000 4.000 1.000 5.000 1.023 1.603 −1.320 235.000
2 ADBIM02 3.885 4.000 1.000 5.000 1.031 0.911 −1.103 235.000
3 ADBIM03 4.021 4.000 1.000 5.000 1.000 1.751 −1.329 235.000
4 ENV01 3.485 4.000 1.000 5.000 1.077 −0.290 −0.568 235.000
5 ENV02 3.523 4.000 1.000 5.000 1.211 −0.341 −0.771 235.000
6 ENV03 3.749 4.000 1.000 5.000 1.092 0.614 −1.027 235.000
7 ENV04 3.902 4.000 1.000 5.000 1.041 1.265 −1.191 235.000
8 ENV05 3.672 4.000 1.000 5.000 1.248 −0.317 −0.814 235.000
9 ENV06 3.813 4.000 1.000 5.000 0.931 1.269 −1.018 235.000

10 ENV07 3.796 4.000 1.000 5.000 1.044 0.605 −0.982 235.000
11 ENV08 3.706 4.000 1.000 5.000 1.049 0.150 −0.790 235.000
12 ENV09 3.762 4.000 1.000 5.000 1.008 0.980 −1.039 235.000
13 PL01 3.715 4.000 1.000 5.000 1.076 0.640 −1.001 235.000
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Table A1. Cont.

No. Mean Median Min Max
Standard
Deviation

Excess
Kurtosis

Skewness
Number of

Observations
Used

14 PL02 3.753 4.000 1.000 5.000 1.035 0.607 −0.905 235.000
15 PL03 3.851 4.000 1.000 5.000 1.031 1.077 −1.128 235.000
16 PL04 3.681 4.000 1.000 5.000 1.078 0.090 −0.793 235.000
17 PL05 3.974 4.000 1.000 5.000 0.993 1.145 −1.129 235.000
18 PL06 3.800 4.000 1.000 5.000 1.063 0.824 −1.068 235.000
19 PL07 3.800 4.000 1.000 5.000 1.166 0.080 −0.949 235.000
20 PL08 3.991 4.000 1.000 5.000 1.126 1.005 −1.261 235.000
21 PPL01 3.528 4.000 1.000 5.000 1.153 −0.561 −0.612 235.000
22 PPL02 3.498 4.000 1.000 5.000 1.165 −0.509 −0.597 235.000
23 PPL03 3.570 4.000 1.000 5.000 1.227 −0.734 −0.595 235.000
24 PPL04 3.609 4.000 1.000 5.000 1.265 −0.509 −0.729 235.000
25 PPL05 3.455 4.000 1.000 5.000 1.142 −0.584 −0.511 235.000
26 PPL06 3.532 4.000 1.000 5.000 1.186 −0.556 −0.585 235.000
27 PPL07 3.477 4.000 1.000 5.000 1.168 −0.514 −0.564 235.000
28 PR01 3.996 4.000 1.000 5.000 1.033 1.827 −1.388 235.000
29 PR03 3.791 4.000 1.000 5.000 1.021 0.640 −0.950 235.000
30 PR04 3.723 4.000 1.000 5.000 1.042 0.264 −0.835 235.000
31 PR05 3.817 4.000 1.000 5.000 0.974 0.909 −0.931 235.000
32 PR06 3.889 4.000 1.000 5.000 1.000 1.028 −1.085 235.000
33 PR07 4.085 4.000 1.000 5.000 1.011 2.233 −1.514 235.000
34 PR08 3.877 4.000 1.000 5.000 1.043 0.605 −1.020 235.000
35 PR09 3.898 4.000 1.000 5.000 0.953 1.794 −1.218 235.000
36 PR10 3.813 4.000 1.000 5.000 1.043 0.946 −1.089 235.000
37 PR11 3.826 4.000 1.000 5.000 0.980 1.052 −0.980 235.000
38 PR12 4.000 4.000 1.000 5.000 0.932 2.222 −1.303 235.000
39 PR13 4.132 4.000 1.000 5.000 1.012 2.016 −1.456 235.000
40 PRO2 3.889 4.000 1.000 5.000 1.058 1.215 −1.209 235.000
41 TEC01 3.672 4.000 1.000 5.000 1.103 0.389 −0.970 235.000
42 TEC02 3.864 4.000 1.000 5.000 1.051 1.254 −1.229 235.000
43 TEC03 3.936 4.000 1.000 5.000 1.048 1.369 −1.256 235.000
44 TEC04 3.783 4.000 1.000 5.000 1.035 1.016 −1.152 235.000
45 TEC05 3.911 4.000 1.000 5.000 1.058 0.830 −1.100 235.000
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