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Preface to “Lithium-Ion Batteries: Latest Advances,

Challenges and Prospects”

This book is dedicated to exploring fundamental and applied research on lithium-ion batteries,

with the primary goal of presenting state-of-the-art knowledge and cutting-edge technology

advancements. It provides extensive coverage of various research aspects, including the development

and investigation of new energy materials, advanced modeling techniques, and rigorous testing

methodologies. This book also delves into the emerging field of all-solid-state lithium batteries, which

have garnered significant attention for their potential to revolutionize the energy storage landscape

by offering enhanced safety, higher energy density, and a prolonged cycle life. Furthermore, this book

emphasizes the critical importance of battery recycling and remanufacturing practices. It addresses

the growing concerns surrounding sustainable battery technologies and their environmental impact.

By discussing strategies and methodologies for efficient battery recycling and the remanufacturing of

battery components, this book aims to contribute to the development of environmentally conscious

practices in the industry.

Overall, this comprehensive resource serves as a valuable reference for researchers, engineers,

and individuals interested in gaining an understanding of the latest advancements, emerging trends,

and sustainability aspects related to lithium-ion batteries.

Siamak Farhad

Editor
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Abstract: The cathode performance of lithium-ion batteries (LIBs) fabricated from recycled cathode
active materials is studied for three scenarios. These scenarios are based on the conditions for
separation of different cathode active materials in recycling facilities during the LIB’s recycling
process. In scenario one, the separation process is performed ideally, and the obtained pure single
cathode active material is used to make new LIBs after regeneration. In scenario two, the separation
of active materials is performed with efficiencies of less than 100%, which is the actual case in the
recycling process. In this scenario, a single cathode active material that contains a little of the other
types of cathode active materials is used to make new LIBs after the materials’ regeneration. In
scenario three, the separation has not been performed during the recycling process. In this scenario,
all types of cathode active materials are regenerated together, and a mixture is used to make new LIBs.
The studies are performed through modeling and computer simulation, and several experiments
are conducted for validation purposes. The cathode active materials that are studied are the five
commercially available cathodes made of LiMn2O4 (LMO), LiCoO2 (LCO), LiNixMnyCo(1−x−y)O2

(NMC), LiNixCoyAl(1−x−y)O2 (NCA), and LiFePO4 (LFP). The results indicate that the fabrication of
new LIBs with a mixture of cathode active materials is possible when cathode active materials are not
ideally separated from each other. However, it is recommended that the separation process is added
to the recycling process, at least for the separation of LFP or reducing its amount in the cathode active
materials mixture. This is because of the difference of the voltage level of LFP compared to the other
studied active materials for cathodes.

Keywords: lithium-ion battery; recycling; cathode performance; mixture of cathode active materials;
separation of cathode active materials

1. Introduction

Lithium-ion batteries (LIBs) are storage systems for electrical energy. Their relatively
high energy density, high power density, and long lifespan have led to the industry making
them the first candidate for portable electronics, electric vehicles, and even renewable
energy storage [1,2]. A commercial LIB consists of six components: (1) an anode or negative
electrode; (2) a cathode or positive electrode; (3) an electrolyte; (4) a separator; (5) current
collectors for positive and negative electrodes, which are usually aluminum and copper
foils, respectively, and (6) the battery casing, which is usually stainless steel for cylindrical
LIBs and polymer coated aluminum for pouch/prismatic LIBs [3]. The negative and
positive electrodes are usually made of three materials: the active material for storage
of lithium, the conductive material to enhance the electron conductivity of the electrode,
and the binder to bond the active and conductive materials and to adhere the electrode
to the current collector. Among the anode active materials, graphite is currently the most
common one because of its relatively high energy density (372 mAh/g), good mechanical
and chemical stabilities, and low cost [4]. Another anode active material is Li4Ti5O12

Energies 2022, 15, 410. https://doi.org/10.3390/en15020410 https://www.mdpi.com/journal/energies
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(LTO), which is one of the promising anode active materials for LIBs because of its constant
charge/discharge profile at 1.5 V versus lithium and its excellent Li-insertion/extraction
reversibility with no structural change [5]. For cathode active materials, LiCoO2 (LCO) is
widely utilized due to its high specific energy [6]. Despite its success in the LIBs industry,
it has some shortcomings such as the high cost (cobalt is not an abundant element on
earth) and relatively lower specific power. These shortcomings have led the industry
to adopt other materials such as LiFePO4 (LFP), LiMn2O4 (LMO), LiNixCoyAl(1−x−y)O2
(NCA), and LiNixMnyCo(1−x−y)O2 (NMC) [7]. Each of these cathode active materials has its
own advantages and disadvantages. The electrolyte in LIBs is responsible for transferring
lithium ions between the cathode and anode active materials. Most commercial LIBs
currently use organic liquid electrolytes because of their relatively wide electrochemical
stability. An organic liquid electrolyte is comprised of a lithium salt, such as lithium
hexafluorophosphate (LiPF6), dissolved in an organic solvent [8]. The separator is an
electron non-conductive material that separates the positive electrode from the negative
electrode to prevent the short circuit between them [9], while allowing rapid transport
of ionic charges between the negative and positive electrodes. In most LIBs, separators
are currently made of either microporous polymeric films or nonwoven fabrics. The
microporous polymeric films (e.g., polyethylene (PP)) are the preferred separator for LIBs
because of their thermal and mechanical stabilities [10].

Among all components/materials of LIBs, the cathode active material is usually expen-
sive, as it may be valued at even 40% of the total material cost of LIBs [11]. Improvement
of the energy density of active materials has been a pursuit of the scientific community
for a long time [12]. Many researchers have studied the combination/mixture of two or
three active materials to improve the electrode performance and reduce the cost of the
cathode. For example, in a study, the authors have investigated the cathode mixture of
LMO and NCA [13]. In fact, NCA shows a high energy density and a good lifetime, but it
shows poor thermal stability at elevated temperatures. On the other hand, LMO shows a
better thermal stability, higher nominal voltage, higher power density, and lower cost, but
it has a lower energy density. Therefore, the performance of the cathode can be engineered
when NCA and LMO are blended, and the cathode is made from a mixture of two active
materials. The results of this research showed that, at low C-rates, NCA showed higher
specific energy, while at high C-rates LMO showed higher specific energy. Another research
has been conducted to investigate the blended electrode of two cathode active materials
of LMO and NMC [14]. The results indicated that the low capacity of LMO is increased
when it is blended with NMC. A research team has conducted a study on the ternary blend
of NMC, LMO, and LMFP and showed the advantage of this blend [15]. Out of the many
blended seniors, they showed that the blend of 75% NMC, 12.5% LMFP, and 12.5% LMO is
comparable with NMC.

All prior blending studies have been conducted to either reduce the cost or enhance
the electrochemical performance of the cathode. In contrast to prior studies, our focus in
this paper is on the blended cathode materials that are obtained from the recycling of LIBs
using the physical recycling method.

All LIBs that are produced today will be retired after about 10 years. If LIBs are
landfilled, we may expect several environmental problems: (1) Contamination: chemicals
found in batteries may leak from the casing once the battery is in a landfill and contaminate
the area and groundwater. This is a serious threat to the environment, ecosystems, and
human health. (2) Safety: the landfilled lithium-ion batteries may catch fire and an explosion
may happen. (3) Sustainability: several rare materials such as lithium and cobalt are
wasted in landfills and new materials will need to be extracted from mines. In general,
three methods are available to recycle LIBs. Hydrometallurgy (melting), pyrometallurgy
(chemicals), and physical or direct methods. The direct method is the most cost-effective
and environmentally friendly method for recycling LIBs, and it is also the most promising
recycling method for these batteries. One advantage of the physical method is that the
electrode active materials can be separated without changing the morphology of the
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materials. Hence, the recycled electrode materials can be regenerated and reused to make
new LIBs. In recycling plants that operate based on the physical method, all types of LIBs
are usually recycled together without sorting them out based on the battery chemistry. In
fact, sorting LIBs is not usually logistically possible. Therefore, the obtained cathode active
materials are a blend of different active materials. This motivated us to look at the blend
of different cathode materials from the angle of the obtained materials from LIB recycling
with the physical method.

In this study, we decide to show how the battery performance can be affected if it is
built with a blend of recycled cathode active materials. The focus will be on the electrochem-
ical performance of the blended/mixture of the five most commercially available cathode
types: LFP, LMO, NMC, NCA, and LCO. This study is the continuation of the studies
conducted by the authors for recycling LIBs [16–19]. The authors’ results have already
indicated that the complete separation of the five cathode active materials is achievable.
However, there is still a concern or uncertainty about the performance of separation that
cannot reach 100% in practice. Therefore, we study the performance of LIBs made from the
recycled cathode materials based on the following three scenarios:

(I) The separation process is performed ideally. In this scenario, a pure single regenerated
cathode active material is used to make new LIBs.

(II) The separation process is performed with an efficiency of less than 100%. This is the
actual scenario in the recycling process with the physical method. In this scenario, a
single regenerated cathode active material that contains a little of the other types of
cathode active materials is used to make new LIBs.

(III) The separation has not been performed. In this scenario, all types of cathode active
materials are regenerated together and used to make new batteries.

In this paper, the results of both mathematical modeling and experiments are presented.
For the modeling, a pseudo-two-dimensional (P2D) model based on the porous theory
proposed by Newman [20] has been adopted. The computer simulation has been carried
out in the COMSOL Multiphysics software package for all three scenarios. The experiments
have been conducted to validate the simulation results.

2. Model

Since the objective is to study the performance of the cathode active material, we
modeled a half-cell of the LIB. As shown in Figure 1, a half-cell consists of a lithium
foil anode, separator, cathode (positive electrode), aluminum correct collector, and liquid
electrolyte, which is available in the separator and the cathode.

Figure 1. Schematic of the half-cell lithium-ion battery made from a single cathode active material.
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The electrochemical reaction during charging and discharging of the half-cell can be
expressed as Equation (1) [21]. During discharging, the lithium ions move from the lithium
foil to the cathode particles. During charging, the lithium ions move back from the cathode
to the lithium foil.

xLi+ + xe− +M
charge⇐

⇒
discharge

LixM (1)

2.1. Half-Cell Made from a Single Cathode Active Material

The model considers one active material for the cathode, as seen in Figure 1. The
negative electrode in the half-cell works as a reference electrode for the battery. For the
modeling, we consider the: (a) electric charge transfer in the cathode; (b) ionic charge
transfer in the cathode; (c) lithium-ion mass transfer in the cathode; (d) lithium mass
transfer in the cathode active material particles (intercalation); (e) ionic charge transfer
in the electrolyte; (f) lithium-ion mass transfer in the separator, and (g) electrochemical
reaction at the active sites of the cathode. The modeling equations and their boundary
and initial conditions are summarized in Table 1. Several assumptions have been made
for the modeling. The main assumptions are that the battery is fresh and there is no sign
of materials degradation, the cathode active materials are solid spheres with uniform
size, the Bruggeman assumption is valid for calculation of the effective conductivities and
diffusivities, there is no volume change in the cathode active materials during charging
and discharging, no SEI layer is formed on the lithium foil, the entire surface of all cathode
active material particles is an active site for electrochemical reactions, the voltage drop
in the aluminum current collector is negligible, and the half-cell temperature is kept
constant during charging and discharging. In addition, the half-cell model is pseudo-two-
dimensional (1D + 1D). This means that the lithium mass transfer equation in the cathode
active material particles is solved only in r direction, and all other transport equations are
solved in only x direction. See Figure 1 for the r and x directions.

2.2. Half-Cell Made from a Mixture of Cathode Active Materials

The modeling of the cathode performance made from a mixture of cathode active
materials (see Figure 2) is similar to the modeling of the cathode made from a single cathode
active material. However, there are some differences. The differences are discussed here.

Figure 2. Schematic of the half-cell lithium-ion battery made from a mixture of cathode active materials.
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Table 1. The modeling equations for performance simulation of a cathode made from a single active
material [20].

Equations Initial and Boundary Conditions

Li mass transfer in cathode active material particles

∂cs
∂t = 1

r2
∂
∂r

(
r2Ds

∂cs
∂r

)
Solution of this equation gives the distribution of lithium in r direction in the cathode particle,
which is located at any x, at any time t

∂cs
∂r = 0 at r = 0
∂cs
∂r = − ilocal

FDs
at r = rp

cs = cs,0 at t = 0

Electric charge transfer in the cathode

∇.is = −Sa,catilocal
is = −σs,cat,e f f ∇φs

σs,cat,e f f = σs,catε
1.5
s,cat

Sa,cat =
3

rp,cat

Solutions of these equations give the distribution of electric current along the cathode
thickness at any time t

is = 0 at x = Lsep
φs = 0 at x = Lsep

is =
Iapplied

A at x = Lsep + Lpos

Ionic charge transfer in the electrolyte within the cathode

∇.il = Sailocal

il = −σl,cat,e f f ∇φl +
2RT

F σl,cat,e f f
(
1 − t0

+

)(
1 + d ln f

d ln cl

)
∇ ln cl

σl,cat,e f f = σlε
1.5
l,cat

Solutions of these equations give the distribution of ionic current along the cathode thickness
at any time t

il = 0 at x = Lsep + Lpos

il =
Iapplied

A at x = Lsep

Li+ mass transfer in the electrolyte within the cathode

ε l,cat
∂cl
∂t +∇.Nl = 0

Nl = −Dl,cat,e f f ∇cl − il t0
+

F
Dl,cat,e f f = Dlε

1.5
l,cat

Solutions of these equations give the distribution of lithium-ion concentration along the
cathode thickness at any time t

Nl = 0 at x = Lsep + Lpos
cl = cl,0 at t = 0

Ionic charge transfer in the electrolyte within the separator

∇.il = 0
il = −σl,sep,e f f ∇φl +

2RT
F σl,sep,e f f

(
1 − t0

+

)(
1 + d ln f

d ln cl

)
∇ ln cl

σl,sep,e f f = σlε
1.5
l,sep

Solutions of these equations give the distribution of ionic current along the separator
thickness at any time t

il =
Iapplied

A at x = 0

Li+ mass transfer in the electrolyte within the separator

ε l,sep
∂cl
∂t +∇.Nl = 0

Nl = −Dl,sep,e f f ∇cl − il t0
+

F
Dl,sep,e f f = Dlε

1.5
l,sep

Solutions of these equations give the distribution of lithium-ion concentration along the
separator thickness at any time t

Nl = 0 at x = 0
cl = cl,0 at t = 0

Electrochemical reaction in the cathode (Butler–Volmer kinetics)

ilocal,cat = i0,cat

[
exp
(

F
2RT ηcat

)
− exp

(
− F

2RT ηcat

)]
i0,cat = Fkcat

(
cs,max − cs,sur f

)0.5
c0.5

s,sur f

(
Cl

Cl,re f

)0.5

ηcat = φs − φl − Eeq,cat
Solutions of these equations give the local current generation along the cathode thickness at any time t as well as the local activation
+ concentration polarizations along the cathode thickness at any time t

The mixture of cathode active materials consists of spherical particles from different
active materials that are mixed homogenously before the cathode slurry is coated on the
aluminum current collector. For the modeling, it is assumed that the mixture is homo-
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geneous, while each type of cathode active material can have its own particle sizes. For
the mixture of cathode active materials, the equation of lithium mass transfer should be
solved for each cathode active material. The electrochemical reaction equation should also
be solved separately for each cathode active material, and the total local current should
be obtained from the summation of the local current generated by each cathode active
material. The additional modeling equations and their boundary and initial conditions to
simulate the behavior of a mixture of cathode active materials are summarized in Table 2.

Table 2. The additional modeling equations required for performance simulation of a cathode made
from a mixture of active materials [13].

Equations Initial and Boundary Conditions

Li mass transfer in the particles of each cathode active material

∂cs,i
∂t = 1

r2
∂
∂r

(
r2Ds,i

∂cs,i
∂r

)
for ith cathode active material

Solution of this equation gives the distribution of lithium in r direction in the particles of the
cathode active material i, which is located at any x, at any time t

∂cs,i
∂r = 0 at r = 0

∂cs,i
∂r = − ilocal,i

FDs,i
at r = rp,i

cs,i = cs,i,0 at t = 0

Electrochemical reaction in the cathode (Butler–Volmer kinetics)

ilocal,cat,i = i0,cat,i

[
exp
(

F
2RTηcat,i

)
− exp

(
− F

2RTηcat,i

)]
for ith cathode active material

i0,cat,i = Fkcat,i

(
cs,i,max − cs,i,sur f

)0.5
c0.5

s,i,sur f

(
Cl

Cl,re f

)0.5

ηcat,i = φs − φl − Eeq,cat,i

iloc,total =
N
∑

i=1
iloc,i

Solutions of these equations give the total local current generation along the cathode thickness at any time t as well as the local
activation + concentration polarizations for each cathode active material along the cathode thickness at any time t

The capacity of the cathode made from a mixture of cathode active materials can be
obtained from Equation (2):

Qcat = Fεs,catLpos

N

∑
i=1

Yics,i,max(SOCi,max − SOCi,min) (2)

where the state-of-charge (SOC) of each active material can be obtained from Equation (3):

SOCi =
cs,i,sur f

cs,i,max
(3)

Based on this mathematical modeling, the simulation of half-cell LIBs was carried out
in the COMSOL Multiphysics software package, version 5.2a.

3. Experiment

3.1. Cathode Groups

The cathodes for the experiments are divided into three groups. The first group is the
cathodes that were made of a single cathode active material to simulate the performance of
the battery in case the separation of active materials during the recycling process is ideal.
This group is for the study of scenario I. The second group is the cathodes that were made
of a mixture of active materials with one dominant cathode active material to simulate the
conditions that the separation process is not ideal and there are some impurities from other
types of cathode active materials. This group is for the study of scenario II. The cathodes in
this group are made from a dominant cathode active material and the minor percentage of
the other four types of cathode active materials that are equally mixed. The third group is
the cathodes that were made of the equally mixed five types of cathode active materials to
simulate the battery performance in the case that no separation happened in the battery
recycling. This group is for the study of scenario III.
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3.2. Half-Cell Fabrication

To study the performance of cathodes, several cathodes from each of the three groups
were made. The cathode active material was acetylene black (MTI corporation), and the
binder was PVDF (MTI corporation). The cathode active materials were mixed homoge-
nously with PVDF and acetylene black with a weight ratio of 92:4:4, respectively. The
solvent to make the cathode slurry was NMP (Sigma-Aldrich) that was mixed at a solid-to-
liquid ratio of 1:2 before the cathode slurry was coated on the aluminum current collector.
After making the cathodes, several coin half-cells (3032-type) were assembled in the order
shown in Figure 3 in an argon-filled glovebox in the laboratory. Lithium foil was used as a
reference electrode for all half-cells. The electrolyte used in the half-cells was 1 M LiPF6 salt
in 1:1 EC:DEC (by weight) solvent (Sigma-Aldrich).

Figure 3. The schematic of the half-cell assembly of coin cells in glovebox.

4. Results and Discussion

In this section, the results of the computer simulation and experiments for scenarios I
to III are presented. The results are generated based on one important assumption, that the
efficiency of the regeneration process to recover the recycled cathode active materials is
100%. This means that the regeneration process is ideal and the capacity of the recycled
active material after the regeneration reaches the capacity of the fresh material. This
assumption was made to reduce the degree of freedom of the study to only focus on the
effect of blending cathode materials on the cathode performance.

4.1. Scenario I

In this scenario, the separation process is assumed to be performed ideally. This means
that a pure single regenerated cathode active material can be used to make new LIBs. The
modeling was carried out for five of the most common cathode active materials: LCO, LMO,
NCA, NMC, and LFP. The modeling parameters for each of the cathode active materials
are listed in Table 3.
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Table 3. Model parameters of the commonly used cathode active materials in LIBs [22–27].

Active
Material

Density
(kg/m3)

D50

(μm)

Maximum
State of Charge

(mol/m3)

Initial State of
Charge

(mol/m3)

Reaction Rate
COEFFICIENT, ki

(mol/s.m2)

Theoretical
Capacity
(mAh/g)

LMO 4280 25 23,670.6 6000 5 × 10−10 148.2
LCO 5050 12 51,555 23,750 1 × 10−7 273.8
NMC 4770 10.5 51,385 21,500 1 × 10−11 279.5
NCA 4450 13.6 46,319 8067.9 1 × 10−10 278.9
LFP 3600 3.5 22,806 1000 3.63 × 10−11 169.9

The open circuit voltage (OCV) profile of each cathode active material is shown in
Figure 4. As seen, each material has a different nominal voltage. The OCV profile represents
the ideal discharge performance of the half-cell.

Figure 4. Open circuit voltage of some commercially available cathode active materials for LIBs
versus the active material’s state of charge at 25 ◦C.

The performance of half-cells with single cathode active materials at 1C discharge is
shown in Figure 5. The actual capacity of the battery is lower than the theoretical capacity.
The discrepancies of the actual and the theoretical capacity of cathode active materials are
due to several factors. One of the factors is the discharge C-rate. As the C-rate increases,
the capacity of the battery decreases [28]. In this study, we chose 1C because it is an
appropriate indicator for the battery performance, especially for batteries used in hybrid
electric vehicles and aircrafts. Another factor is the crystal structure of the active materials.
As shown in Figure 5, the actual capacity of batteries, which is obtained from mathematical
modeling, is in the range of the experimental results reported in the literature [29,30]. In
addition, the modeling and experimental profiles are very close to each other, indicating
the validity of the adopted mathematical model.
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Figure 5. Discharge profile (1C and 25 ◦C) of half-cells made from cathodes with a single cathode
active material.

4.2. Scenario II

In this scenario, the separation process is performed with an efficiency of less than
100% (actual separation process). Therefore, the single regenerated cathode active material
contains a little of the other types of cathode active materials.

To obtain the electrochemical performance of the half-cells made from these regener-
ated cathode active materials, pure LCO, LMO, NMC, NCA, and LFP powders were mixed
homogenously in different mass ratios. Five different mass ratios of 90%, 80%, 70%, 60%,
and 50% were considered for the dominant active materials, and 2.5%, 5%, 7.5%, 10%, and
12.5% of each of the other four active materials were mixed with the dominant material,
respectively. For example, for the dominant LCO cathode, we mixed 90 wt% LCO with
2.5 wt% NMC, 2.5 wt% LMO, 2.5 wt% NCA, and 2.5 wt% LFP for sample cathode one. For
sample cathode two, we mixed 80 wt% LCO with 5 wt% NMC, 5 wt% LMO, 5 wt% NCA,
and 5 wt% LFP. Similarly, we made sample cathodes three, four, and five for the dominant
LCO of 70%, 60%, and 50%. We also carried out the same for the dominant LMO, NMC,
NCA, and LFP cathode samples one to five. Obviously, in each half-cell, the dominant
cathode active material has a higher percentage than the other four cathode active materials.
After preparation of all samples and finishing the formation process, the half-cells were
discharged between the voltage limits of 4.2 V and 2.9 V at a 1C rate and 25 ◦C.

Figure 6 shows the performance of the half-cells for five cathode active materials. As
seen, when the NCA is the dominant active material, the capacity of the battery decreased
with the decreasing percentage of NCA. The reduction in the capacity is because of the
higher capacity of NCA among the other four types of the cathode active materials. When
the LCO and NMC are the dominant materials, there is a slight reduction in the capacity
when the percentage of the dominant active material reduces. This insignificant reduction
of the capacity happens because these two cathode materials have a capacity in the average
range among the other cathode active materials.
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Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. Discharge profile (1C and 25 ◦C) of half-cells made from a dominant cathode active
material. (a) 90% dominant active material mixed with 10% other active materials (2.5% each), (b) 80%
dominant active material mixed with 20% other active materials (5% each), (c) 70% dominant active
material mixed with 30% other active materials (7.5% each), (d) 60% dominant active material mixed
with 40% other active materials (10% each), and (e) 50% dominant active material mixed with 50%
other active materials (12.5% each).

When the dominant material is LMO, the capacity of the half-cells is increased with the
decreasing percentage of LMO. This increase is due to the difference between the capacity of
the LMO and the other four cathode active materials. In fact, LMO has the lowest capacity
among the other four materials, while it has the highest nominal voltage of 3.9 V.

The worst-case scenario was found when the dominant material is LFP. The capacity
of the half-cells decreased significantly. This reduction of the capacity is due to the fact
that the LFP has the lowest nominal voltage (3.2 V) compared to the other four cathode
materials, as seen in Figure 4. Thus, the performance of the cathode with a dominant
active material is dependent on the nominal voltage of the other mixed active materials.
Therefore, all other active materials should be completely separated from the LFP.

For validation purposes, we made half-cells with 60% of the dominant cathode active
material and 10% of each of the other four active materials and compared the modeling
results with the experimental results. This comparison is shown in Figure 6d. As seen, there
is a good agreement between the experiments and modeling in terms of the prediction of
the cathode capacity. However, discrepancies are evident for the prediction of voltages,
especially for the case when LFP is the dominant active material. Since our focus in this
paper is the evaluation of the electrode capacity, the current model is valid. However, a
more accurate model is required for studying the voltage trends.

4.3. Scenario III

In this scenario, the separation has not been performed during the recycling process,
all types of cathode active materials are regenerated together, and a mixture of cathode
active materials is used to make new LIBs. Three samples were prepared for this scenario.
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For sample one, we made the half-cells from cathodes with equal weight percentages of the
five cathode materials (20 wt% LCO, 20 wt% LMO, 20 wt% NMC, 20 wt% NCA, and 20 wt%
LFP). Since from the results of scenario II we learned that LFP is not suitable to be in the
mixture of cathode active materials, we made two more samples that have only 5 wt% and
0 wt% LFP. These two samples simulate the case that the separation is performed only for
LFP. For sample two, we made the half-cells from cathodes with equal weight percentages
of 23.75% for LCO, LMO, NMC, and NCA and 5 wt% LFP. For sample three, we made the
half-cells from cathodes with equal weight percentages of 25% for LCO, LMO, NMC, and
NCA. No LFP exists in sample three. The composition of samples one to three are listed in
Table 4.

Table 4. Mass fraction of active materials in the cathode samples made for scenario III.

Cathode in the Half-Cells LCO wt% LMO wt% NMC wt% NCA wt% LFP wt%

Sample 1 (20% each) 20 20 20 20 20
Sample 2 (5% LFP,

23.75% each) 23.75 23.75 23.75 23.75 5

Sample 3 (0% LFP,
25% each) 25 25 25 25 0

As seen in Figure 7, the best performance was found for the half-cells made from
sample three, which has 0% LFP. The capacity of the half-cell made with a 5 wt% LFP
(sample two) does not have noticeable a difference in comparison to the half-cell made from
sample three. Therefore, we can conclude that a small fraction of LFP (typically less than
5 wt%) does not have a significant impact on the cathode capacity. However, the half-cell
capacity decreases significantly when the weight percentage of LFP in the cathode active
material mixture reaches 20% (sample one).

Figure 7. Discharge profile (1C, 25 ◦C) of cathodes made from the mixture of regenerated cathode
active materials. Black curves: 20 wt% of each of the five types of cathode active materials (sample 1).
Red curves: 5 wt% LFP and 23.75 wt% of each of the other four active materials (sample 2). Blue
curves: 0 wt% LFP and 25 wt% of each of the other four cathode active materials (sample 3).

5. Conclusions

The performance of cathodes made from recycled cathode active materials for three
scenarios of the active materials’ separation was studied. In scenario one, the separation
process in the recycling facility was ideal, and a pure single cathode active material was used
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to make new batteries. In scenario two, the separation process for active materials in the
recycling facility was realistic, with an efficiency of less than 100%. In this scenario, a single
cathode active material that contains a little of the other types of cathode active materials
was used to make new batteries. In scenario three, the separation was not performed,
and all types of cathode active materials were regenerated together and used to make
new batteries. The results were generated through modeling and computer simulation
and several experiments were conducted for validation of the model. The cathode active
materials that were studied are five commercially available cathode active materials: LMO,
LCO, NMC, NCA, and LFP. The results indicated that the fabrication of new LIBs with
a mixture of regenerated cathode active materials is possible when the cathode active
materials are not separated from each other. However, it is better that the separation
process is added to the recycling process, especially for minimization of the amount of LFP
in the mixture of cathode active materials. It is not necessary that the separation process
is ideal. However, more studies are still required to show that making new LIBs with a
dominant cathode active material is technically and economically feasible.
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Nomenclature

A Apparent surface area of electrode (m2)
c Concentration (mol/m3)
D Diffusivity (m2/s)
D50 Mean diameter of particles (m)
Eeq Equilibrium potential (V)
f Mean molar activity coefficient of inorganic salt in electrolyte
F Faraday’s constant (96,485 C/mol)
i Currant density (A/m2)
Iapplied Applied current to battery (A)
i0 Exchange currant density (A/m2)
ilocal Local current density generation (A/m2)
k Electrochemical reaction rate coefficient (m/s)
L Thickness (m)
N Flux (mol/m2·s)
Q Capacity (Ah/m2)
r Radial direction in spherical coordinate system (m)
R Universal gas constant (8.314 J/mol K)
rp Average radius of active material particles
Sa Surface area per unit volume (m2/m3)
SOC State of charge of the active material
t time (s)
t0
+ Lithium-ion transference number

T Temperature (K)
x x direction in cartesian coordinate system (m)
Y Mole fraction of an active material in the mixture of active materials
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Greek Letters
ε Volume fraction
η Polarization (V)
σ Conductivity (S/m)
φ Potential (V)
Subscripts
0 Initial
i Index for ith cathode active materials in the cathode mixture
l Liquid phase (electrolyte)
cat Cathode
eff Effective
max maximum
min minimum
pos Positive electrode (cathode)
ref Reference
s Solid phase of electrode (active/conductive material)
sep Separator
surf Surface
Abbreviations
DEC Dimethyl carbonate
EC Ethylene carbonate
LCO LiCoO2
LFP LiFePO4
LIB Lithium-ion battery
LMO LiMn2O4
NCA LiNixCoyAl(1-x-y)O2
NMC LiNixCoyMn(1-x-y)O2
NMP N-Methyl-2-pyrrolidone
OCV Open circuit voltage
PVDF polyvinylidene fluoride
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Abstract: The global transition to electric vehicles and renewable energy systems continues to gain
support from governments and investors. As a result, the demand for electric energy storage systems
such as lithium-ion batteries (LIBs) has substantially increased. This is a significant motivator for
reassessing end-of-life strategies for these batteries. Most importantly, a strong focus on transitioning
from landfilling to an efficient recycling system is necessary to ensure the reduction of total global
emissions, especially those from LIBs. Furthermore, LIBs contain many resources which can be
reused after recycling; however, the compositional and component complexity of LIBs poses many
challenges. This study focuses on the recycling and reusing of copper (Cu) and aluminum (Al) foils,
which are the anode and cathode current-collectors (CCs) of LIBs. For this purpose, methods for
the purification of recycled Cu and Al CCs for reusing in LIBs are explored in this paper. To show
the effectiveness of the purification, the recycled CCs are used to make new LIBs, followed by an
investigation of the performance of the made LIBs. Overall, it seems that the LIBs’ CCs can be reused
to make new LIBs. However, an improvement in the purification method is still recommended for
future work to increase the new LIB cycling.

Keywords: lithium-ion battery; current-collectors; recycling and reusing; copper; aluminum

1. Introduction

The electric vehicle (EV) revolution, driven by the imperatives to decarbonize personal
and commercial transportation to meet global targets of greenhouse gas reduction and air
quality improvements in urban centers, is set to change the automotive industry radically.
In 2022, sales of electrified vehicles reached a 10% market share with 6 million vehicles sold.
This is double that of 2021 and quadrupling 2020 sales, evidencing ongoing support for the
transition [1].

With the ever-growing need for lithium-ion battery (LIBs) technology, many LIBs
are destined for retirement in the coming years [2–4]. Historically, LIBs especially for EV
applications have suffered incredibly low recycling rates [5]. The complex, low-profit
material processing procedures and lack of consumer value propositions for recycling
old electronics resulted in low interest in recycling LIB cells and such batteries ended
up in landfills. The lack of proper disposal of spent LIBs results in grave ecological
consequences [6]. While this problem still seems to persist for consumer electronics [7,8],
the residual value, economics of scale, material shortage and need for disposal associated
with EV battery packs provide an economic incentive to recycle LIB cells. Thus, recycling
of spent LIBs has received substantial attention in recent years [9–14]. However, some
researchers suggest that the retired LIBs from applications such as EVs and electric aircraft
can be used in applications such as renewable storage before recycling [15,16]. Although
new materials are being developed for next-generation LIBs [17] to overcome the safety
issue of LIBs [18] and reduce the use of precious materials in electrochemical systems [19],
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recycling will be still a need to return the battery materials back to the supply chain and
the LIB manufacturing line. The forecasts show that in the coming decades, tens of millions
of EVs will be produced annually. Careful farming of the resources used in EV battery
manufacturing will be essential to ensure the sustainability of the automotive industry in
the future, ensuring material and energy-efficient 3R systems (reduce, reuse, recycle).

In the waste management hierarchy, reusing materials is considered preferable over
recycling them, to extract maximum economic value and minimize environmental impacts.
Many companies in various parts of the world are already piloting the second use of EV LIB
cells for a range of storage applications [20–22]. Today, advanced sensors and improved
methods of monitoring battery packs and cells in the field and end-of-life testing are
used. This would enable the characteristics of individual end-of-life batteries to be better
matched to proposed second-use applications, with affiliated advantages in the lifetime,
safety, and market value [23,24]. The influences of retired LIB packs and subsequently
cells from EVs on resource conservation and environmental protection will be positive.
Any national or regional end-of-life (EOL) strategy will need to account for the reduced
demand for energy storage as well as the reduced supply of EOL batteries [25]. Questions
regarding the economic viability and safety of second-life batteries are being quickly
answered both practically and theoretically. They will undoubtedly play a role in the clean
energy transition.

Although EVs have no point emission during operation, many factors related to LIB
manufacturing, use, and recycling heavily influence the true environmental impact [26–28].
With the market expansion of EVs in recent and coming years, LIB manufacturing and up-
stream industries have increased substantially. Thus, consequently creating environmental
burdens, such as resource consumption, energy generation, and wastes emission (includ-
ing gaseous, liquid, and solid wastes) [29,30]. The high efficiency of electric powertrains
decreases the impact of the electrical source, but global clean energy generation is still
required to meaningfully impact global emissions [31]. Recycling, which can be modeled
as either a downstream or upstream step of the manufacturing process, has non-negligible
environmental impacts. Meaningful research works have been published, modeling many
recycling processes’ general efficiency and emissions [32–34]. Yet, the rate of change within
the industry necessitates a constant reexamination of assumptions and calculations.

The ever-changing LIB cell composition is one of the many categorical challenges to
creating robust, flexible recycling systems. The intense competition for high-performance
LIB cells has inspired substantial research across all battery components. A historically
under-researched component, which is largely unaccounted for in the analysis of recycling
methods, is the current-collector (CC). CCs serve a vital bridge function in supporting
the active materials, binders, and conductive additives, as well as electrically connecting
the anodes and cathodes to the external circuit. High-purity copper (Cu) and aluminum
(Al) foils are predominately used as CCs for anodes and cathodes, respectively. Recently,
various factors of CCs such as the thickness, hardness, compositions, coating layers, and
structures have been modified to improve aspects of battery performance such as the
charge/discharge cyclability, energy density, and the rate performance of a cell [35,36].
Lithium ions and electrons should move rapidly to and from the anode and cathode particle
surfaces to charge and discharge the cell with a high current density. In addition, CCs
should have high mechanical strength, chemical and electrochemical stability, and adhesion
between the active material layer and the CC surface. To realize these requirements, the
optimization of materials for CCs, the structural modification of CCs, and the formation of
a surface layer on CCs have been performed [37–40].

The established recycling processes are focused mainly on the recovery of cathode
active materials [41–47]. Even though it is a small weight percentage of the cell, it comprises
a large portion of the material’s elemental value. In addition to the cathode materials,
research in recycling CCs can incentivize the recycling process, especially, if the recycling
process becomes automated [48,49].
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Tight and closed loops for all battery components will be necessary to support pro-
duction at the global electric vehicle market scale. Towards that effort, this research work
examines the efficacy of reusing Al and Cu CCs in three steps: (a) impurity analysis of
scrap material after ultrasonic solvent bath, (b) impurity analysis after thermal melting
process, and finally (c) impurity analysis after reusing the recycled CCs in half-cells.

2. Materials and Methods

2.1. Separation of Al and Cu CCs

Figure 1a shows the fluff materials that were received from a LIB recycling facility. The
fluff materials consist of the Al CC, Cu CC, plastics separator, battery casing, and battery
Table Figure 1b,c show the Al and Cu CCs, respectively, after separation from the fluff
materials. After the separation, the cleaning/purification step starts.

   
(a) (b) (c) 

Figure 1. Material obtained from shredded scrap, (a) fluff, (b) separated Al, (c) separated Cu.

2.2. Ultrasonic Cleaning and Characterization of Surface and Bulk Impurities

The effectiveness of N-methyl-2-pyrrolidone (NMP), distilled water (RO), and ethanol
as solutions for cleaning surface impurities in Al and Cu CCs obtained from recycled
batteries was tested. These solutions were selected because they were accessible in the lab.
Researchers may try other solutions which are more effective than these solutions. Al and
Cu obtained from shredded battery cells were cleaned by placing them in an ultrasonic
cleaner for 4 min at room temperature. Washed samples using the three cleaning methods
were analyzed using scanning electron microscopy (SEM) (FEI Perception V4.6) and the
energy-dispersive x-ray spectroscopy (EDX) method. To detect impurities on and below
the surface, the SEM acceleration voltage was adjusted to 10 keV and 20 keV, respectively.
The 20 keV X-ray beam energy seems to be high enough to penetrate a couple of tens of
microns into the sample. Unwashed shredded battery cells containing Al and Cu were
analyzed in the same way for control.

2.3. Melting, Molding, and Characterization of Surface and Bulk Impurities

The second phase of this study involved recycling the washed Al and Cu CCs into
new battery cells and components. As before, Al and Cu are separated from the used LIBs
and washed. To-be-recycled materials were placed in graphite crucibles and melted using
a 1500-watt tabletop furnace (Tabletop Furnace Company, Tacoma, WA) with a maximum
heating temperature of 1205 ◦C (2200 ◦F) and a standard 15 Amp circuit as seen in Figure 2a.
Molten Al and Cu are then poured into graphite molds to form several 1 mm thick disks
of 10 mm diameter Figure 2b. After Al and Cu solidification, the disks were pressed to be
20 mm in diameter using a DAKE-50 Tone press (Figure 2c) and then polished as seen in
Figure 2d.
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(a) (b) 

  
(c) (d) 

Figure 2. (a) Tabletop furnace used for melting, (b) mold for forming disks from molten material,
(c) press for forming the samples (DAKE-50 Tone), and (d) polished and pressed CC disks.

During melting, the metal which enters the furnace is not all used in the final product
and some of it is lost. Consequently, melting efficiency is a key parameter that must be
accounted for in the results. It can be quantified as the weight ratio of output material to
input material. Furthermore, the dimensions for preparing the CCs were chosen to improve
the melting efficiency. Additionally, compression was utilized to prevent oxidation as it
reduces the CC surfaces which are in contact with oxygen. It is noted that the melting
efficiency in our study is low (less than 50%) due to the limitation of the equipment and
technology of melting that we have in the lab. Large-scale recycling facilities can be
equipped with equipment and technologies so that the melting efficiency increases to close
to 100%.

As seen in Figure 1b, Al material acquired from crushing is in a bullet-like form with
an apparently high surface melting point. This has made cleaning cathode active material
from the surface difficult and would therefore lead to impurities at the grain boundaries.
The issue of clumping did not occur in the crushed Cu material which is favorable for
cleaning and improving melting efficiency.

The contamination effect of graphite crucibles on the melting process should be noted.
Therefore, samples were analyzed through SEM and EDX to observe the implications of
melting on the purity of the CCs. SEM images were taken linearly to show up to 400 microns
on the surface of each sample. The acceleration voltage was kept at 10 keV. The percentage
of impurities on the surface was measured using EDX for three spots and the average value
was converted to weight percentage. EDX was the accessible characterization method for
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this study. Other methods such as ICP-MS can be sought out in future studies to assess
elemental composition more accurately.

2.4. Half-Cell Construction and Final Characterization of Surface Impurities

Using the Al and Cu CCs from the second phase of this study, cathodes and anodes were
fabricated and tested in four half-cells. Cathodes were made by mixing LiNi1/3Mn1/3Co1/3O2
(NMC111) with polyvinylidene fluoride (PVDF) binder and acetylene black as the conduc-
tive material in a ratio of 90/5/5 weight percent, respectively, as shown in Figure 3a. The
NMC was mixed with NMP in a Thinky centrifugal mixer (Thinky U.S.A., Inc., Laguna
Hills, CA) at 1000 rpm for 2 min. The binder and conductive material were added grad-
ually using the same mixing program. Using a similar procedure, anodes were made by
mixing graphite with carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)
binders and acetylene black as the conductive material in a ratio of 89/7/4 weight percent,
respectively, as shown in Figure 3b.

(a) 

 

(b) 

Figure 3. Schematic representation of materials mixed in (a) cathode and (b) anode.

Four coin-cell type half-cells were assembled using the anodes and cathodes made
from recycled materials along with half-cells made from new electrode material. Half-cell
components and coin-cell assembly can be seen in Figure 4. Coin-cells were assembled by
placing punched cathodes or anodes, polypropylene (PP)/polyethylene (PE)/polypropylene
(PP) tri-layer separator, then Li metal chip in coin-cell casings along with a wave spring.
Each half-cell was tested at two C-rates of C/5 and C/10.

Aluminum Current-Collector  Copper Current-Collector 
Cathode (Ni-Mn-Co)  Anode (Graphite) 
Separator PP/PE/PP  Separator PP/PE/PP 

Li Metal  Li Metal 
Stainless Steel Spacer  Stainless Steel Spacer 

Wave Spring  Wave Spring 
(a)  (b) 

Figure 4. The assembly of half-cell LIBs, (a) cathode and (b) anode.

To analyze the effect of chemical reactions during battery cycling on the CCs’ chemical
compositions, the half-cells were opened after cycling to observe the reappearance of
surface impurities on the CCs’ after testing using SEM and EDX.
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3. Results and Discussion

3.1. Surface Impurities of Cleaned CCs by the Ultrasonic Technique

For the first phase of this study, the impurity reduction of washed CCs was analyzed.
The EDX results by elemental weight percentages of the anode can be found in Figure 5.
Two measurements on and below the surface were taken from four anode CC samples after
NMP, RO, and ethanol cleaning, and one as-received sample as a control. A summary of
the result can be seen in Figure 6.

 
   

(a) (b) (c) (d) 

 

 
 

 

(e) (f) (g) (h) 

Figure 5. The EDX results for recycled Cu CCs show the composition (a) on the surface as-received
without cleaning, (b) below the surface as-received without cleaning, (c) on the surface after cleaning
by NMP, (d) below the surface after cleaning by NMP, (e) on the surface after cleaning by RO, (f) below
the surface after cleaning by RO, (g) on the surface after cleaning by ethanol, and (h) below the surface
after cleaning by ethanol.
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Figure 6. The weight percentage of Cu on and below the surface of a LIB-graded fresh Cu foil, recycled
Cu as-received from spent batteries, and recycled Cu after washing with NMP, RO, and ethanol.

The as-received Cu foils showed 45.7 wt.% of impurities on the surface. For reference,
new Cu foil supplied to manufacturing facilities contains only 0.7 wt.% of surface impurities.
The most effective solution for washing the electrode surface was ethanol (77.4%), followed
by RO (67.7%), with NMP being the least effective (65.3%). As expected, impurities below
the surface were much less than those above the surface with 18.8 wt.% for as-received and
~1 wt.% for washed samples. Ethanol and NMP were most effective at washing impurities
below the surface. In contrast to impurities on the surface, CCs washed with NMP showed
fewer impurities than those washed with RO.

The data strongly indicates many impurities are present on and below the surface of
used CCs. The impurities are due to the aggressive electrochemical environment inside
a battery with potential contribution coming from shredding after retirement. These
impurities must be washed before proceeding to the melting phase of the recycling process.
As shown previously, the best solution for cleaning the surface of recycled Cu is ethanol,
which removes up to 25.3% of surface impurities. Similar results were found for reducing
impurities in Al CCs. Thus, all CCs subjected to melting were first cleaned with ethanol for
4 min at 24 ◦C (75 ◦F) in an ultrasonic cleaner before melting.

3.2. Surface Impurities of CCs after Melting and Battery Testing

Results from the SEM and elemental assessment of impurities on the surface of Al
collectors are shown in Figures 7 and 8. SEM images of Al CCs at three relevant stages for
assessment: as-received, after melting, and after battery testing, are shown in Figure 8a–c
show. For these Al CCs, three impurities were found comprising Cu, manganese, and
nickel. Overall, Al purity increased by 2.2 wt.% after recycling and decreased only by
1.1 wt.% after battery testing.
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Figure 7. EDX test results on the surface of Al CCs after washing, melting, and battery testing.

(a) 

 
1.6 wt.% Cu 

 
1.3 wt.% Mn 

 
2.7 wt.% Ni 

(b) 

 
1.1 wt.% Cu 

 
1.3 wt.% Mn 0.9 wt.% Ni 

(c) 

 
0.7 wt.% Cu 

 
2.9 wt.% Ni 

 
0.7 wt.% Mn 

Figure 8. Elemental mapping for (a) As-received Al CC from used batteries, (b) Al CC from recycled
batteries after melting, and (c) Al CC from recycled batteries after reuse in new battery and cycling.
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It is important to note that all impurities decreased after the thermal treatment of
the as-received collectors. Cu content decreased by 0.5 wt.%, nickel by 1.4 wt.%, and
manganese by 0.4 wt.%. This drop in impurities proves that the recycling process is capable
of reversing impurities in the CCs. Cu and manganese impurities continued to decrease by
0.4 and 0.2 wt.%, respectively, after battery operation. However, nickel content increased
by 1.6 wt.%. The increase in nickel impurity after battery operation indicates that some
CC degradation occurs along with the loss of active cathode material. Nickel content in
impurities is higher than all other elements, especially for as-received CCs (2.7 wt.%) and
recycled CCs used in battery testing (2.9 wt.%).

The SEM and elemental assessment results for Cu CCs at the three relevant stages
are shown in Figures 9 and 10a–c. The impurities found on Cu CCs were Al and nickel.
The purity of Cu showed only a slight increase of 0.3 wt.% after recycling and a very small
decrease of 0.1 wt.% after battery testing. After recycling, Al impurities decreased by
0.4 wt.%. Contrastingly, nickel impurities increased slightly by 0.1 wt.%. Battery testing
showed no impact on Al content quantities and only slightly increased nickel content by
another 0.1 wt.%.

 
Figure 9. EDX test results on the surface of Cu CC after washing, melting, and battery testing.

(a) 

 
2.3 wt.% Al 

 
2.9 wt.% Ni 

Figure 10. Cont.
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(b) 

 
1.9 wt.% Al 

 
3.0 wt.% Ni 

(c) 

 
1.9 wt.% Al 

 
3.1 wt.% Ni 

Figure 10. Elemental mapping for (a) As-received Cu CC from used batteries, (b) Cu CC from
recycled batteries after melting, and (c) Cu CC from recycled batteries after reuse and cycling.

3.3. Cycling Performance of Recycled CCs

Results for testing half-cell anodes at a C-rate of C/5 using recycled Cu CCs are shown
in Figure 11a. After five cycles, the capacity is 312 mAh/g while the capacity after ten cycles
is 250 mAh/g. Capacity continues to drop until it reaches 50% after 25 cycles. Contrastingly
for testing at a C-rate of C/10, shown in Figure 11b, the initial capacity after ten cycles was
255 mAh/g but it dropped to 220 mAh/g after fifteen cycles. The capacity reaches 67% of
its initial value after 25 cycles measuring as 170 mAh/g.

(a) 

Figure 11. Cont.
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(b) 

 

Figure 11. Discharge of anode half-cells with C-rates of (a) C/5, and (b) C/10.

Results for discharging cathode half-cells at C/5 C-rate are shown in Figure 12a. After
21 cycles, the capacity is 138 mAh/g. Capacity drops to 85 mAh/g after 52 cycles and finally
reaches 39 mAh/g after 71 cycles. Moreover, Figure 12b includes results for discharging
half-cell cathodes at C/10 C-rate. This showed an initial capacity of 157 mAh/g which
consistently drops every 25 cycles until reaching a capacity of 130 mAh/g after 50 cycles.
After 70 cycles, the capacity is 90 mAh/g which is 57% of the initial capacity. For all tests,
specific capacity was normalized by the mass of electrode active material.

The capacity retention of the cathode half-cell tested at both C-rates is shown in
Figure 13a along with a comparison to cathodes using fresh Al CC. For C/5, the capacity
retention after 50 cycles is 84% while it is 83% for C/10. In contrast, the fresh CC cathode
shows a capacity retention of 96%. When compared to the fresh CC cathode, capacity is
lower; however, the cathode half-cells still retain more than 80% of the initial capacity.
Capacity retention results for anode half-cells are shown in Figure 13b. The two test
conditions of C/5 and C/10 do not show any significant difference in capacity retention.

(a) 

Figure 12. Cont.
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(b) 

Figure 12. Discharge of cathode half-cells with C-rates of (a) C/5, and (b) C/10.

  
(a) (b) 

Figure 13. The capacity retention of (a) cathode half-cells over 50 cycles and (b) anode half-cells over
25 cycles compared to cathodes and anodes made from fresh Al and Cu CC.

4. Conclusions

Because of their high purity, Al and Cu CCs are among those high-value materials
in LIBs manufacturing; hence, recycling and returning them to the LIB’s manufacturing
line is attracting great interest, especially in the EV market. Therefore, in this paper, we
investigated the feasibility of recycling, purification, and reusing them in new LIBs. For
this purpose, Al and Cu CCs from retired LIBs were recycled, purified, and reused in fresh
LIBs. A brief description of the phases of the studies performed in this paper is as follows.
In the first phase, shredded LIB cells were separated to obtain the components containing
Al and Cu CCs. After separation, the ultrasonic cleaning of the CCs was investigated using
several solvents. This includes an in-depth assessment of impurities detectable on or even
below the surface (in depth) of the CC. The second phase of this study included recycling
the cleaned Al and Cu CCs via melting and molding. Another assessment of impurities
was conducted to show the effectiveness of the recycling procedure. Finally, the third
phase of the investigation included constructing and testing anode and cathode half-cells
at C-rates of C/5 and C/10 at room temperature. These cells used the same material from
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the two previous phases. It was found that ultrasonic cleaning of both Al and Cu CCs with
ethanol was the most effective method, reducing a quarter of surface impurities. Material
cleaned using this method and then recycled showed very low impurity indicating a highly
effective process for purifying the surface of CCs. Battery cell testing of the aforementioned
material showed an expected increase in impurity, especially when nickel is concerned.
This is due to the CC degradation which naturally occurs during battery operation and may
indicate loss of active cathode material. Battery testing results of both cathode and anode
half-cells presented a decrease in capacity retention over time. However, after 50 cycles of
testing at either C-rate, cathode half-cells capacity retention remained above 80%. Battery
cell performance testing showed that both anode and cathode half-cells reach below their
initial capacities after relatively short cycling periods. Although the cleaning and melting
procedures significantly improved the purification level of both Al and Cu, it can be seen
from battery cell performance results that CCs recycled using such a method may not be
suitable for reuse in new batteries, especially for the Cu CC. Thus, a more sophisticated
purification method should be adopted, which may increase the cost of recycling, or the
recycled Al and Cu from retired LIBs should be repurposed in other products/applications
where less material purity is acceptable.
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Abstract: Manual disassembly of the lithium-ion battery (LIB) modules of electric vehicles (EVs)
for recycling is time-consuming, expensive, and dangerous for technicians or workers. Dangers
associated with high voltage and thermal runaway make a robotic system suitable for the automated
or semi-automated disassembly of EV batteries. In this paper, we explore battery disassembly using
industrial robots. To understand the disassembly process, human workers were monitored, and the
operations were analyzed and broken down into gripping and cutting operations. These operations
were selected for automation, and path planning was performed offline. For the gripper, a linear
quadratic regulator (LQR) control system was implemented. A system identification method was
also implemented in the form of a batch least squares estimator to form the state space representation
of the planar linkages used in the control strategy of the gripper. A high-speed rotary cut-off wheel
was adapted for the robot to perform precise cutting at various points in the battery module case.
The simulation results were used to program an industrial robot for experimental validation. The
precision of the rotary cutter allowed for a more direct disassembly method as opposed to the
standard manual method. It was shown that the robot was almost twice as fast in cutting but slower
in pick and place operations. It has been shown that the best option for disassembly of a LIB pack is a
human–robot collaboration, where the robot could make efficient cuts on the battery pack and the
technician could quickly sort the battery components and remove connectors or fasteners with which
the robot would struggle. This collaboration also reduces the danger encountered by the technician
because the risk of shorting battery cells while cutting would be eliminated, but the time efficiency
would be significantly improved. This paper demonstrates that a robot offers both safety and time
improvements to the current manual disassembly process for EV LIBs.

Keywords: lithium-ion battery; recycling; robots; automation; electric/hybrid vehicles

1. Introduction

Robotic systems have been widespread in usage for the assembly of lithium-ion batter-
ies (LIBs) for many years, but their use for disassembly has only recently been considered
as hybrid electric vehicles (HEVs) and electric vehicles (EVs) become more prevalent. As
the adoption of EVs and HEVs gains traction, the value of the active materials, such as
lithium cobalt oxide (LiCoO2) and lithium nickel manganese cobalt oxide (LiNiMnCoO2),
within the batteries is lost if they are not recycled [1–3]. To prepare for the end of life (EOL)
of these battery systems, the recycling process for LIBs is being researched to reduce not
only the environmental impact of landfilling LIBs but also to recover the valuable materials
contained within the LIBs [4–6]. It has been shown that the robotic disassembly of an HEV
battery system is possible [7], but more work is required in this field for proof of concept.

Most LIB recycling is done through pyrometallurgical [8], hydrometallurgical [9,10],
and physical/direct processes [11]. These methods may rely on the disassembly and shred-
ding of battery cells/modules/packs before the process begins to reduce the contaminants
created by the case and structural materials used in the construction of modules and
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packs. The disassembly process allows for the sorting of bulk materials, such as aluminum,
structural plastics, printed circuit boards (PCBs) and integrated circuits (ICs), copper, and
various other components [9]. In the physical/direct recycling process, once these materials
are removed, either individual cells or modules can be put into a shredder to separate
the materials contained within the cells. The shredded cells or modules then undergo
a physical separation process and are submerged in an alkali solution of lithium brine.
This process allows the various materials to be sorted via physical and chemical means,
increasing the purity of the filter/powder cake [12] and making the various by-products
suitable for secondary processing.

Currently, more than 95% of LIBs are landfilled each year [13]. In addition, the total
number of unrecycled batteries are increasing because of their adoption in EV applica-
tions [13]. Some of the major challenges in LIB recycling are due to the economics of the
recycling process. Currently, the costs associated with the recycling of LIBs may be enough
to make recycling unsustainable without subsidies or mandates due to the recovered value
of materials being less than the required resources. One cost that significantly impacts
the recycling process is the labor associated with the disassembly of packs and modules.
This step in the recycling process is both time consuming and hazardous to the techni-
cians/laborers. The manual disassembly process requires a technician/laborer to operate
hand tools to remove fasteners, connectors, wires, and cut tabs, which can be difficult
due to the pack layout and location of various hardware components within the pack
assembly. In addition, the technician/laborer must wear personal protection equipment
(PPE) and handle the tools with extreme care, as any mistake in the disassembly process
could present hazards to the technician/laborer in the form of electrocution or explosion.
Hazards associated with the disassembly process are a result of the high voltage in the
battery system if it is not properly discharged and thermal instability if the individual cells
are mechanically, electrically, or thermally compromised. The hazards can be mitigated
through the proper pre-disassembly procedures, but caution should always be taken when
handling the packs for disassembly.

To reduce the economic burden associated with the disassembly process, a robotic
method for automating or semi-automating the disassembly process was envisioned and
tested in disassembling a representative battery module. This process was broken down into
the following steps: process identification, suitable actions for robotic implementation, end-
of-arm tooling design and control, development of a representative work piece, workspace
layout, path planning, robotic modelling and simulation in MATLAB/Simulink, and
experimental testing of the robotic system. The research focused on the implementation
of a robot for disassembly, and the programming of the robot was done through direct
inputs from the user with either the teach pendant [14] or manual positioning [14]. This
methodology has the advantage that it can be done by technicians without prior knowledge
since the path planning is situationally dependent. The human brain is quickly able to
make decisions as to how a system needs to be assembled or disassembled, and this
process is not easily automated due the highly complex nature of electro-mechanical
systems. Research has been performed in the area of machine learning for the purpose of
disassembly automation [14]. Oak Ridge National Laboratory has also started introducing
an automated disassembly line to make battery recycling safer and faster [15]. Recently,
some researchers reported studies on task planners for robot disassembly [16] and human–
robot collaboration [17], but more research is required in this field.

In this study, a novel approach for disassembly of EV/HEV LIBs is presented based
on the off-line simulation and path planning, as proposed to aid the implementation of the
disassembly process. By using offline path planning, the precise control and tool paths of
the robot can be predefined to maximize the efficiency of the required disassembly steps.
In addition to this, both the robot dynamics and process time can be quantified to provide
more insight into the state of the robot. By utilizing the CAD geometry models directly,
offline simulation can be performed ahead of time, and allows the operator the ability to
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precisely define waypoints within the model that can allow for alternative disassembly
techniques.

2. Disassembly Workflow

To determine what steps in the disassembly process would be suitable for a robot, the
manual disassembly process was observed and documented in Figure 1. The process of
manual disassembly for the pack involved the following steps: (1) removal of the pack
cover, (2) disconnection and removal of the main wiring harness and primary battery
management system (BMS), (3) disconnection and removal of the thermal management
system plumbing, (4) removal of the module tie downs, and (4) removal of the battery
modules.

Figure 1. Disassembly process diagram of a battery pack by technician.

The disassembly of individual modules is comprised of the following: (1) the removal
of the module BMS and main harness connector, (2) removal of the battery module frame
bolts, (3) the removal of the module top cover, (4) the cutting of the first battery cell tabs,
(5) the separation and removal of the first battery cell, and (6) the repetition of step 5 for the
remaining cells. To describe the workflow of the disassembly process, one could maximize
the use of the technician and robot by the following process, as depicted in Figure 2.

Figure 2. Process workflow as modified for a technician–robot collaboration.
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3. Experimental Design for Human–Machine Collaboration

As the pack level disassembly of the case would require an industrial robot with a
large reach as well as a high payload, it was decided that for the purposes of this experiment
the scope of implementing a robot would be on the module disassembly level. A FANUC
LR-Mate 200iD/4S, six degree of freedom (6DOF) industrial robotic system was used with
a maximum payload of 4 kg and maximum reach of 550 mm. This robot was chosen due
to its precision and small size, as well as having the ability to communicate with an end
effector through the input/output port on the upper arm.

To prove the suitability of a robot for the disassembly of an EV/HEV battery system,
the benchmark operations of cutting and gripping were selected for evaluation. Both the
cutter and gripper are required for the disassembly process by the robot, and they are
add-ins to the robot. Fine motor function, such as disconnection of electrical connectors,
were decided to be outside the scope of this experiment, as the inherent level of complexity
and dexterity needed would require more specialized end-of-arm tooling. A more gener-
alized assessment of the robot’s ability to perform gross motor function was chosen. The
assessment was to be done for single end-effectors without accounting for the tool-change
time, as a quick tool change and docking station could be implemented to automate the
tool-change process. The total time for module disassembly would be evaluated based on
the sum of the cutting and gripping operations, as well as any additional collaboration
needed from a technician, such as fastener, connector, or harness removal. It is noted that
the process analysis to find the total time of the disassembly process by robots is out of the
scope of this paper.

End-of-arm tooling was a major focus of the experimental design, as the functional
requirements defined in the robotic implementation stage required both highly precise
motion and careful manipulation of components to prevent accidental shorting of the
batteries or causing mechanical damage to the individual cells which could trigger a
thermal event where explosion or fire could occur. Multiple modalities for the cutting tool
were conceptualized, and a weighted decision matrix was used to select the best solution
for implementation, design, and prototyping.

The first end effector to be evaluated was the cutting instrument, as this would be
responsible for dismantling and separating the casing components from the individual
battery cells. The cutting instrument would need to be compact, as the payload is limited
to 4 kg, while maintaining the ability to cut through plastics and metal objects with both
precision and speed. Cost was also considered a concern, as any additional cost of the
robotic system would reduce the economic benefit. As listed in Table 1, the three modalities
of cutting investigated were a high-speed rotary cutter, a reciprocating saw mechanism,
and a laser-cutting instrument.

Table 1. Weighted decision matrix for three cutting methods.

Method Cost (25)
Form

Factor (5)

Heat
Generation

(15)

Vibration
Amplitude

(15)

Cut
Precision

(15)

Technical
Implementation
Difficulties (25)

Total (100)

Rotary cutter 25 5 10 10 13 25 88

Reciprocating
cutter 20 4 15 5 5 15 64

Laser cutter 10 3 10 15 15 20 73

The high-speed rotary cutter was chosen due to the precision of cutting, compact size,
and less technical difficulties, while still maintaining acceptable levels of heat generation
and vibration transmission. Due to high-speed rotary cut-off tools being common, a Dremel
4000 was adapted to perform the cutting operations, as the motor and cutting speed were
able to accommodate a wide range of materials and thicknesses. This was implemented, as
shown in Figure 3a, and used in the offline simulation to represent the geometric properties.
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Threads in the tool handle made cutting-tool integration with the robot secure and efficient.
Since the state of the cutting tool only had one parameter that was controllable without
modification of the tool, input/output states for the cutting tool can be controlled via a
digital output as an on/off state from the upper arm in/out port communicating with a
power relay to the tool.

  
(a) (b) 

Figure 3. (a) The CAD model of the cutting tool, (b) the 3D-printed griper with servo actuator and
gear-driven coupled planar linkage system with force feedback.

After determining how to implement the cutting-tool control and designing custom
mounting for it, the gripper was designed and built, as shown in Figure 3b. Most robotic
cells have gripper attachments, but few control the exact gripping pressure or force that
grippers use to interface components. This is particularly important in the case of LIBs, as
mechanical damage to the battery cell can cause internal short circuit, leading to thermal
runaway [18,19] which is a major hazard presented by LIBs. For the gripper to not damage
battery cells, force regulation became an important feature in the gripper design. The
primary design for the gripper was based on a servo-actuated, gear-driven coupled planar
linkage system with force feedback as the feature to be controlled. This was done through
the implementation of a strain gauge into the gripper’s finger to measure the strain of the
finger under load.

The finger was modeled as a fixed-free cantilever beam, where the load was applied at
the tip of the finger. Knowing the geometric dimensions and the material properties of the
as printed PLA, the Young’s modulus, the beams cross sectional properties, and the length
of the beam were used to determine the bending stress at the base of the beam through the
bending-stress equation in Equation (1).

σ =
My

I
=

FLh
1
6 bh3 . (1)
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The force was then calculated from Equation (2) to determine how the input mapped
to the output of the system for setting up the error value.

F =
6L

Eεbh2 . (2)

The general design of the gripper was modeled as two gear-driven coupled four bar
linkages with nearly parallel input links and four revolute joints to create a smooth motion.
This allowed for a simplified actuation principle, as the system has only one degree of
freedom being the input link angle if backlash and linkage compliance are assumed to be
minimal. The general procedure was formulated similar to Ref. [20].

After determining how to observe the forces, a mathematical model for the system
was created to implement a feedback control law for the system. This was derived through
the use of Lagrange’s equations. However, this yielded a sixth order nonlinear system
of state equations for the planar linkage of the gripper. As a result of operating away
from the nonlinear behavior, the system was approximated as a third order, linear, single
input/single output (SISO) system, and the state space representation for the system
dynamics was synthesized through the use of a least squares identification method. After
synthesizing the state equations for use with the feedback error in the force, an infinite
horizon linear quadratic regulator was implemented to control the system. For convenience
and first try, the performance index, Q, and R matrices were selected as follows:

J =
∫ tf

t0

(
xTQx + uTRu

)
dt, (3)

Q =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦, R = [1].

The optimal gains were calculated through the solution to the algebraic Riccati equa-
tion (ARE) Equation (4) and implemented using state variable feedback, as shown below in
Equations (5) and (6).

ATS + SA + Q − SBR−1BTS = 0, (4)

K = R−1BTS, (5)

u = −Kx. (6)

This was enough for the case of contacting the work piece. However, the initial
conditions for solving the differential equations were not sufficient for the case of non-
contact; thus, creating a two-step control strategy was required. As such, the gripper was
modeled as a finite state machine with four states during operation. Due to the initial
conditions not being available until after contact had been made with the work piece, four
states were executed before the linear-quadratic regulator (LQR) control sequence was
used. The first state was an idle state where the gripper was left in the state at which it
last operated. After receiving an input signal from the robot during the pick and place
sequence, the servo on the gripper moves the gripper to a limit open angle and sends a
ready status to the robot in the form of a digital output. Once the robot moves the gripper
into place for gripping the work piece, the robot then sends a start signal to the gripper to
initiate a constant advance. After the contact force is detected via exceeding the contact
force threshold, the initial conditions for the state equations are defined, and the LQR
control sequence begins until the drop signal is given by the robot. The gripper controller
was then tested for performance and implemented on the microcontroller through the
Arduino toolbox in MATLAB, as shown in Figure 4.

Due to hazards associated with disassembly of a real battery system, a representative
battery module was created that mimicked the geometry, layout, and material composition
of the battery module observed in the manual disassembly. The construction of the module
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consisted of a module frame, cell compartments that also functioned as cooling plates, top
and bottom module covers, a front tab harness and connector, module frame bolts, and the
module BMS. This was positioned on a flat surface within complete reach of the arm, where
both cutting operations and pick and place could be completed. The representative module
was made through the use of a 3D printer and assembled in a similar way to the actual
module. The goal was to position the battery module in the workspace such that the tabs
were accessible and that the individual cells could be lifted out from the top. Additionally,
the module needed to remain in the same location during the cutting procedure; thus, the
outline of the module location was marked, and the module was held in place with weights
during the cutting operation.

 

Figure 4. Gripper response under LQR control (results do not change if we increase the time).

To develop the kinematic model of the robot, the Denavit–Hartenberg (DH) represen-
tation of a kinematic linkage chain can be used to model the system in terms of the DH
parameters, ai, di, θi,αi, as shown in Figure 5 [21].

Figure 5. Parameter definitions of the Denavit–Hartenberg representation of a kinematic linkage
chain.
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For the case of the LR-Mate 200iD/4S, the DH parameters for the articulated robot are
displayed in Table 2. J1-6 are the six links of the robot, and J7 is the end effector.

Table 2. DH parameters for the LR-Mate 200iD/4S [22].

Link θi di ai αi

J1 θ1 0 160 π/2

J2 θ2 0 330 0

J3 θ3 0 260 π/2

J4 θ4 290 0 −π/2

J5 θ5 0 0 π/2

J6 θ6 70 0 0

J7 0 107 100 π/2

Once the DH parameters are determined, the homogenous transformation matrix
for each link can be computed as the product of the various rotation and translation
matrices [21], as shown in Equation (7).

i−1
i T(αi, θi, ai, di) = Rz(θi)× Tz(di)× Tx(ai)× Rx(αi) . (7)

These equations are fundamental to both the forward and inverse kinematics solver
for determining or solving the position and pose of the robot in space. Forward kinematics
uses joint states to calculate a position given a specified pose of the robot, whereas inverse
kinematics solve for the joint states of a given end effector position and pose. Solving
the inverse kinematic equations is more difficult, as there can be multiple solutions or no
solutions to a given end effector position.

Once the DH parameters are known along with all the masses and lengths of the links
and end effector, one can use the following equation to solve for the torques required to
move the robot joints to a desired location, and from there along a desired trajectory. This
equation is often called the robot equation or the dynamic model for a robot.

τ = D(q)
..

q + h(q,
.

q) + C(q), (8)

where τ is the joint torques, D is the inertia matrix for all the links, h is Coriolis and
centrifugal terms, and C is the gravity terms.

MathWorks’ Robotics System Toolbox and Simscape Multibody Dynamics software
packages were used in the MATLAB/Simulink environments to solve these equations. Both
the forward and inverse kinematics/dynamics are simplified into blocks for use in solving
the equations. There is a way to link CAD models directly into Simscape Multibody in the
form of a Unified Robot Description Format (urdf) file. To import the robot model, the CAD
model must be assembled, and the various coordinate systems, joint axes, inertia properties,
and joint limits need to be defined during the setup of the urdf file. Once the urdf file is
setup, it can be imported into MATLAB/Simulink, and motion analysis and offline path
planning can be performed. Once the path planning was completed, simulation (Figure 6a)
was performed in MATLAB/Simulink to evaluate the motion of various joint states. The
waypoints as well as pose information (Figure 6b) were imported into MATLAB and fed
into the inverse kinematics block in Simulink.

MATLAB utilizes the Levenberg–Marquardt algorithm (LMA) to solve the nonlinear
least squares problem for the inverse kinematics. This method utilizes the minimization
of the error in the joint configuration to that of the desired configuration to solve for the
closest robot input joint angles to reach a target point [20,23]. This method is very robust
and capable of solving complex motion tasks but can be slow to perform in real time. The
Simulink block diagram for path definition and inverse kinematic is shown in Figure 7.
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Figure 6. (a) Robot motion simulation to evaluate the motion of various joint states, (b) cutting path
for a retired EV battery module to make it ready for recycling.

Figure 7. Simulink block diagram for path definition and inverse kinematic.

4. Results and Discussion

The velocity, acceleration, and torque were obtained from the offline simulation of
cutting an EV battery module and then plotted for each robot joint, as demonstrated in
Figure 8, to study the involvement of each joint in the process. As seen in this figure, the
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angular velocities for joint 2 and joint 5 were highest, and the angular acceleration for joint
5 and joint 7 were highest at the beginning and end of the process, as compared to other
joints. The angular velocity and angular acceleration of all joints are fluctuating at the
middle of the process; however, their values are not significantly greater than zero. The
highest torque also belongs to joint 7, followed by joints 3 and 5. The torque of other joints
remains close to zero during the process. As a remarkable result, it was revealed that all
velocities, accelerations, and torques can be easily handled by the robot, as shown in the
Figure 8. The error of values in Figure 8 depends on the accuracy of the model and the
model input parameters. Our estimation is that the error of the Simulink simulation for the
velocity, acceleration, and torque is less than 2%.

 

Figure 8. Cont.
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Figure 8. The results of Simulink simulation: (a) joint angular velocity vs. time, (b) joint acceleration
vs. time, (c) joint torque vs. time.

After the offline simulation was performed, the robot program was uploaded to the
teach pendant to begin making the initial cuts experimentally. The cutting path was the first
item to be tested in the experiment. The quality of the cut was based on two performance
metrics:

1. accuracy of the cut and
2. disruption of the work piece within the workspace.

All battery tabs in the EV battery modules (the LIB cells are the pouch type) were
successfully cut by the robot (See Figure 9). The cutting tool placed the cut with both
accuracy and speed, performing the operation in 112 s (1:52 min). A technician completed
this operation in 220 s (3:40 min) in the LIB recycling plant, which is 108 s (1:48 min) longer
than the robot. This almost a 2X gain in speed efficiency. Thus, the disassembly process
may be two times faster when a robot is incorporated into the process. However, more
detailed time analysis is required for the final answer.

However, more importantly, the cutting path developed for the robot was more
efficient, as it was a continuous cutting process and did not require the tool to be changed.
Pick-and-place operations proved to be slightly lengthier and less successful in both time
and performance compared to the technician. Therefore, the best option for disassembly
of a LIB pack/module would be a human and robot collaboration, where the robot could
make efficient cuts on the battery pack, and the technician/laborer could quickly sort
the battery components and remove connectors or fasteners with which the robot would
struggle. This is based on the results of the experiment, as the technician is capable of
sorting through the components of the battery module 18 s faster than the robot and with
higher rates of success.

The readers are referred to Ref. [24], the publication of the authors at ASME IMECE-
2019 for more information on the design aspect of this project. For more information about
recycling lithium-ion batteries, the readers are recommended to look at Refs. [25–27].
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Figure 9. The results of the implementation of the work experimentally.

5. Conclusions

In this study, a method for the robotic disassembly of an electric vehicle battery module
was proposed and tested. Offline simulation was used to perform path planning for the
disassembly of the battery module, and custom end-of-arm tooling was designed. The
cutting tool demonstrated improvements in effectiveness over a purely technician-based
disassembly due to the precision of the cuts made by the robotic arm. The cutting speed and
direction did have a significant influence on the cut quality, as too high of a speed would
increase the temperature, and too low of a speed would stall the motor. In the experimental
testing of the cutter, the robotic arm was extremely capable in making the required cuts,
and the only instances it failed were when the mock battery module was not properly
secured to the workspace. A way of controlling the gripper to utilize force regulation
was designed using system identification techniques in the form of a batch least squares
estimator. This was then utilized to form a state space representation for the gripper, and a
linear quadratic regulator was implemented to determine the optimal gains required to
control the system. Despite the development of a customized gripper under LQR control,
the pick-and-place operations proved to be more of a challenge, as the control sequence
was slow to sense contact with the part, and the geometry of the gripping tool was not able
to securely hold on to the battery cell. This could be overcome through redesigning the
gripper fingers, choosing more rigid construction materials, and developing a faster sensing
method for contact detection. As a remarkable result, it can be concluded that the best
option for disassembly of a LIB pack would be human and robot collaboration, where the
robot could make efficient cuts on the battery pack, and the technician could quickly sort
the battery components and remove connectors or fasteners with which the robot would
struggle. This collaboration also reduces the danger encountered by the technician because
the risk of shorting battery cells while cutting would be eliminated, and sharing in the
labor contribution reduces the required man hours for disassembling an EV battery module
or pack. The focus of this study was the technical aspects of the disassembly of EV/HEV
LIBs by industry robots. The continuation of this work can be an economic analysis and
studying the time saving in the disassembly process when the human–robot collaboration
approach is chosen.
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Nomenclature

A A matrix
b width of cantilever beam (mm)
F applied force (N)
B B matrix
E Young’s modulus (GPa)
h thickness of cantilever beam (mm)
I second moment of area (mm4)
M bending moment (N.m)
l length of beam (mm)
ε strain
ai length of common normal (m)
di offset along z-axis to common normal (m)
θi angle about previous z (degrees)
αi angle about common normal (degrees)
J performance index
x generalized coordinate (mm/degrees)
Q weighting matrix on the position
R weighting matrix on the control input
u control input
K optimal gain
S variable used for the ARE
T homogenous transformation matrix
Rz(θi) rotation matrix about z axis
Tz(di) translation matrix along z
Rx(αi) rotation matrix about x
Tx(ai) translation matrix along x

Abbreviation

BMS battery management system
EOL end of life
HEV hybrid electric vehicles
IC integrated circuits
LQR linear quadratic regulator
LIB lithium-ion battery
PCB printed circuit board
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Abstract: The battery pack in electric vehicles is subjected to road-induced vibration and this vibration
is one of the potential causes of battery pack failure, especially once the road-induced frequency is
close to the natural frequency of the battery when resonance occurs in the cells. If resonance occurs, it
may cause notable structural damage and deformation of cells in the battery pack. In this study, the
natural frequencies and mode shapes of a commercial pouch lithium-ion battery (LIB) are investigated
experimentally using a laser scanning vibrometer, and the effects of the battery supporting methods
in the battery pack are presented. For this purpose, a test setup to hold the LIB on the shaker is
designed. A numerical analysis using COMSOL Multiphysics software is performed to confirm that
the natural frequency of the designed test setup is much higher than that of the battery cell. The
experimental results show that the first natural frequency in the two-side supported and three-side
supported battery is about 310 Hz and 470 Hz, respectively. Although these frequencies are more
than the road-induced vibration frequencies, it is recommended that the pouch LIBs are supported
from three sides in battery packs. The voltage of the LIB is also monitored during all experiments. It
is observed that the battery voltage is not affected by applying mechanical vibration to the battery.

Keywords: lithium-ion battery; modal analysis; electric vehicles; vibration; experiments

1. Introduction

Relatively high energy and power densities, long cycle life, lightweight design, and
the absence of memory effect have facilitated lithium-ion batteries (LIBs) have expanded
in use as a sustainable product for supplying electrical energy [1–3]. The use of LIBs in
electric vehicles (EVs) and hybrid electric vehicles (HEVs) is also becoming more attractive
to automobile manufacturers. LIBs are preferred over other battery technologies for EVs
and HEVs due to their higher energy and power densities. At present, substantial research
and development efforts are being focused on increasing the range of applications of LIBs
in EVs and HEVs.

The study of vibration and impact loads of LIBs and their casing is of great importance
to avoid their malfunctioning in EV and HEV operations, which has led to commitments
from researchers to study the behavior of LIBs under such conditions. Concerning the
safety of the vehicle and, consequently, its passengers, the probability of short circuit or
thermal runaway, or explosion in its worst-case, shall be studied thoroughly. Consequently,
a lot of researchers have done studies on quantifying the mechanical robustness of the cell
and investigating, for instance, the effect of nail penetration [4], the mechanical crushing of
the cell [5–7], the durability of the cell under impact [5–8], mechanical shock [5] and fatigue
conditions of the battery system under extreme temperature and pressure conditions [9,10].
These are done to satisfy the requirements of the whole vehicle crash homologation stan-
dards which are reviewed specifically for the use of LIBs in transportation by Refs. [11–13].
In addition, some researchers examined battery shell casing properties for cylindrical LIBs
for the EV crash [5], and performed axial and lateral compression tests, three points bend
tests, and hydraulic tests [14]. Furthermore, the battery brackets are studied by a means
of single-axis acceleration test approach [15]. Therefore, conducting investigations on
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the amplitude and frequency of the vibration to which batteries are exposed is vital to
understanding how the mechanical vibration affects electronic and electrical components
and how to avoid or hinder the loss of electrical continuity and the housing structural
failure, which is a common well-known cause of failure [15–19]. It has been demonstrated
that structural failure with sustained and excessive motion inevitably happens if a system
vibration happens at the same frequency as its natural frequency [16]. Some studies are
dedicated to studying individual single-cell responses to vibration while some referred to
considering the whole battery pack. Choi et al. [20], investigated the natural frequencies of
a used but serviceable 10 Ah LIB pouch cell during impact hammer and shaker excitation
tests. The results of this study showed that the first and second mode shape frequencies of
the battery to the impact hammer testing are roughly 267 Hz and 474 Hz, respectively. For
the frequency response of the battery for the white noise wave to the shaker, with two-edge
clamping condition along the out-of-plane excitation, the first and second mode shapes are
around 87 Hz and 478 Hz, respectively. Similarly, Hoopen and James [17] studied impulse
excitation provided by an impact hammer to quantify the natural frequencies and mode
shapes of a commercially available 25 Ah Nickel Manganese Cobalt Oxide (NMC) laminate
pouch cell. However, compared to Choi et al.’s study, they covered the calculation of the
values of cell damping and stiffness and reported that the lowest natural frequency of the
cell is about 200 Hz [20].

There are three methods of excitations commonly employed to measure the modal
response of a structure: impulse excitation, dynamic excitation, and operational excita-
tion [21]. The impulse excitation is implemented using a hammer applying the impact
testing. This method is commonly employed when the testing of specific points is aimed.
However, the destruction of the structure during the test should be considered. In opera-
tional excitation, the structure is subjected to the real-life application and it is done after
the structure is subjected to impulse and dynamic excitation and acts as a final verification
test [21]. However, the low accuracy of the operational excitement to measure the natural
frequency of a battery system in EVs or HEVs is its main drawback. Dynamic excitation
is often employed for structures for which performing the other two methods is not ap-
plicable, since they are destructive testing. The way that dynamic excitation is employed
is to use an electromagnetic shaker or hydraulic shaker to apply a force or frequency
input that is known to the structure. The flexibility that dynamic excitation offers is that
researchers can apply different values of inputs conveniently, such as specific force and
specific frequency [21].

The study of the vehicle vibration inputs to the batteries suggests testing EV and
HEV battery vibrational characteristics over the range of 0 Hz to 150 Hz frequency [17]. In
addition, standards and regulations recommend testing in the range of 7–200 Hz, 7–50 Hz,
and 10–190 Hz for the regulation UN38.3 [22], regulation ECE 100 [23] and the SAE J2380
standard [24], respectively. Consequently, when the natural frequency of the battery and the
support are beyond 200 Hz the battery may not experience the failure due to vibration. This
paper suggests an experimental method to quantify a commercial LIB’s natural frequencies
and mode shapes. The laser scanning vibrometer is used for modal analysis with frequency
response functions (FRF). The design of the battery holder to test the battery in supporting
configurations of two-side and three-side clamping is presented. The effect of the battery
on the LIB voltage fluctuation is also studied.

2. Formulations

COMSOL Multiphysics software is employed to calculate the natural frequency of the
base-plate design and to ensure that it does not coincide with the natural frequency of the
battery and the excitation frequency. The un-damped free vibration equation for the system
is as follows:

M
..
X + SX = 0 (1)
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where, M is the mass matrix,
..
X is the mass acceleration vectors, S is the stiffness matrix, and

X is the displacement vectors of the modes. In a natural mode of vibration, the displacement
of each mode is calculated by:

Xi = Xi,m × sin(ωt +∅i) (2)

where, ω and ∅i are the angular frequency and phase angle of the ith mode. Xi is the
matrix of the displacement of the modes, and Xi,m is the vector of maximum values. If the
displacement field of the given structure is harmonic, the Eigen frequency can be derived.
Dictating equations in the study are in terms of the excitation load.

− ρω2u = ∇× FS + Fv (3)

where, ρ is the density of the material, ω is the angular frequency of the excitation load, and
u is the harmonic response from the structure. The Eigenvalues λ and the Eigen frequencies
f are calculated using Equation (4):

f =

∣∣∣∣ Im (iω)

2π

∣∣∣∣ (4)

where, the eigenvalue is λ = −iω.

3. Experimental

The design of the test apparatus is done by SolidWorks software, where the LIB is held
on the shaker and the baseplate is designed in a way to accommodate the geometry of the
battery. To replicate the real-life mounting conditions of the battery, the baseplate aims to
provide rigid support to the battery and hold the battery firmly. The baseplate is designed
such that the battery fits in easily and the fixture including the battery does not exceed the
weight-bearing limit of the shaker. The material used for the baseplate is 6061 Aluminum
and its geometry is presented in Figure 1. The baseplate is mounted on the shaker using
M6 screws to the center of the shaker and is torqued down with 45 lb/in. Then, the battery
is fixed on that plate with clips. To perform sinusoidal frequency sweeps, a 110 lb MB
RED dynamic shaker is used. A signal generator is used to create input variables. The
shaker specifications are listed in Table 1. Due to restrictions of weight that the dynamic
shaker aperture load is 12 lb and the maximum weight of the apparatus that the aperture
arm of the shaker can handle is 11 lb, the weight of the fixture and apparatus including
the battery is determined to be 10 lb. At the test of the structure mounted aperture arm,
the dynamic shaker delivers low noise motion. The casing material used all around the
flexures to hold the internal components is stainless steel. Using a set of ultra-flexible
multi-strand wire, coil currents are conducted to the coil from which the shaker receives the
signal and responds accordingly. The cooling system is provided with a constant field and
eliminates the need for a power source. The reason for using a cooling system is to reduce
the resistive losses of the electromagnet from coil overheating and abate the breakdown of
the coil insulation [25]. The baseplate is then installed onto the aperture arm of the shaker.
The completed experimental setup with the battery is presented in Figure 2.

A commercially available aftermarket pouch LIB consisting of 23 individual cells that
are sandwiched together, with the specifications listed in Table 2, is used. We choose the
pouch type for the LIB because it is getting more attraction for automobile applications or
heavy-duty vehicles.
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Figure 1. Drawing of the plate in SolidWorks Software.

Table 1. Specification of the energizer red shaker shown in Figure 2.

Specifications Value

Force output-cooling (convection) 55 pounds (peak)
Stroke 1.5 inch (peak-peak)

Distance between stops 1.5 inch
Armature axial stiffness 65 pounds/inch

Armature weight 2.6 pounds
The frequency range of shaker DC to 5000 Hz

Driver coil current 22 Amperes Maximum
Driver coil DC resistance 41 Ohms (@ amplifier connector on shaker)

Shaker attachments Floor mount trunnion base

Dimensions 13.1 in high (to top of mounting table)
14 in × 10.75 in footprint

Weight 85 lbs.

Table 2. The specification of the aftermarket LIB used in this study.

Item Value

The thickness of copper current collector 10 μm
The thickness of aluminum current collector 20 μm

Thickness of anode 57 μm
Thickness of cathode 65 μm

Thickness of separator 48 μm
Anode material Graphite

Cathode material Lithium iron phosphate, LiFePO4 (LFP)

The velocity of the battery is directly measured with a Polytec PSV 400 laser scanner
and the velocity data is converted to FRF calculations using integrated laser vibrometer
software. For conducting calculations of the frequency response function, there is a built-in
accelerometer that is attached to the surface of the dynamic shaker. The experimental setup
block diagram is shown in Figure 3.
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Figure 2. (a) Baseplate installed onto the aperture arm of the shaker, (b) Complete experimental setup
with the pouch LIB.

Figure 3. Block diagram of the experimental setup.

3.1. Boundary Conditions

To set up the system to represent real conditions of a battery in EVs/HEVs, two
different boundary conditions are examined. Boundary condition 1 is the rigidly clamped
mounting technique that fixes the three sides of the battery as shown in Figure 4a. Boundary
condition 2 is the partially clamped mounting technique which can be seen in Figure 4b.
This boundary condition leaves the output of the battery and the opposite side open and
clamped rigidly lengthwise.

3.2. Grid Convergence

A study on grid convergence is necessary since grid densities of a scanning laser
vibrometer should not have any effect on the experiments. Three different grid sizes from
widely-placed to closely-placed grid points are shown in Table 3. The results from the
grid convergence study in Figure 5 show that the mode shapes resulting from boundary
condition 1 are consistent with the increase of scanning laser vibrometer grid densities. The
scanning time of each grid size, as shown in Table 3, takes more time with an increase of
grid densities. Finally, based on the results from the mode shapes and duration of the scan,
evenly placed grid size mesh 2 with 425 points is chosen for the rest of the study.
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Figure 4. Battery Boundary conditions (a) Boundary condition 1, which is the three-side clamped,
and (b) Boundary condition 2, which is the two-side clamped.

Table 3. Mesh representation for the mesh size independency analysis.

Mesh Number Mesh Points Mesh Representation Scan Duration

Mesh 1 117 35 min

Mesh 2 425 1 h 25 min

Mesh 3 1247 6 h 20 min

Figure 5. Each mode shape frequency for the three mesh sizes.
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4. Results and Discussion

4.1. Baseplate

The action to take into consideration is to ensure that the natural frequencies of the
baseplate and the battery do not happen at an equal frequency. Otherwise, this might
lead to misinterpretation of the results because of the resonance that the whole apparatus
will face. To verify this, an Eigen frequency study with the use of COMSOL Multiphysics
software is done on the baseplate. Figure 6 shows the first mode shape of the baseplate.
By gradually increasing the frequency input to the structure, there will be other natural
frequencies shown by it, as presented in Table 4.

Figure 6. The first mode shape of the baseplate happens at 2716.3 Hz.

Table 4. The first six natural frequencies of the baseplate.

Frequency No. Natural Frequency

1 2716.3 Hz
2 2999.0 Hz
3 3013.8 Hz
4 3118.5 Hz
5 4247.1 Hz
6 5398.7 Hz

The first natural frequency of the baseplate, which is the frequency in which the first
bending of the structure occurs, happens at 2716.3 Hz, while the first natural frequency
of the LIB is reported to be lower than 200 Hz [17,20]. Consequently, there is no match
between the natural frequency of the baseplate and the battery, which means that the whole
apparatus will not resonate at the same natural frequency.

4.2. Battery Mode Shapes

In Figures 7 and 8, the magnitude of mode shapes for boundary conditions 1 and
2 are shown. A range of 470–1060 Hz for the first six natural frequencies for boundary
condition 1 is seen, while for boundary condition 2 the range of 310–995 Hz for the first
six natural frequencies is observed. However, the vibration induced by the road does not
exceed 200 Hz, which is far below the ranges discussed above. Consequently, it is unlikely
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that the natural frequencies coincide with road-induced vibrations. Thus, both stacking
techniques can be implemented.

Figure 7. Pouch LIB mode shapes for boundary condition 1 shown in Figure 4a. (a) mode shape
1–first bending, (b) mode shape 2–first torsion, (c) mode shape 3–second torsion, (d) mode shape
4–second bending, (e) mode shape 5–third bending, (f) mode shape 6–third torsion.

Figure 8. LIB mode shapes in boundary condition 2 shown in Figure 4b. (a) mode shape 1–first
bending, (b) mode shape 2–first torsion, (c) mode shape 3–second torsion, (d) mode shape 4–second
bending, (e) mode shape 5–third bending, (f) mode shape 6–third torsion.

The change in battery voltage is monitored during the vibration test. By measurement
of the battery voltage in different time intervals, it is revealed that the battery voltage
remains at 3.287 V with no significant fluctuation. Finally, after performing a complete test
for both boundary conditions, no battery failure is observed.
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4.3. Repeatability Analysis

To ensure the reliability of the frequency results and the mode shapes, a repeatability
study with a sample size of 11 is done. A break is given to the test apparatus after each test.
To cover all mode shapes a wide frequency range of 200–2000 Hz is chosen. The results of
repeatability test runs are presented in Figure 9 for boundary conditions 1 and 2, which
show that there is no significant deviation of the observed frequencies.

Figure 9. Mode shapes frequency for 11 repetitions; (a) boundary condition 1, (b) boundary condi-
tion 2.

5. Conclusions

The battery installed in EVs and HEVs is subjected to continuous vibration caused
by road conditions. If the frequency of the road-induced vibration matches the natural
frequency of the battery pack, there may be a failure in the battery due to the created
resonance. In this paper we studied the mode shapes and natural frequencies of a commer-
cially available pouch LIB, designed for EVs and HEVs. The LIB was excited by a dynamic
shaker and the study was done using a laser scanning vibrometer. Two battery boundary
conditions of the fixed-fixed-fixed-free (boundary condition 1) and the fixed-free-fixed-free
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(boundary condition 2) were examined. These two boundary conditions simulated the
battery installation conditions in EVs/HEVs’ battery packs. The repeatability tests and grid
convergence studies were performed to ensure the accuracy and reliability of test results.
The results revealed that the frequencies of the first six mode shapes of the battery fall
within the range of 460–1070 Hz and 310–1000 Hz for boundary conditions 1 and 2, respec-
tively. Although a change in boundary condition will alter the natural frequency of the
battery, in either of the boundary conditions the natural frequency of the battery does not
coincide with the road-induced vibration, which is lower than 200 Hz. The battery voltage
was also monitored during the vibration tests. It was revealed that applying vibration with
frequencies lower than the resonance frequencies will not affect the battery voltage. The
results presented in this paper is for a pouch LIB with liquid electrolyte and the graphite
anode and LFP cathode active materials. A separate study may be required to prove that
the results of this paper can be generalized for LIBs with different designs and different
electrode active materials and electrolytes.
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Abstract: This paper presents a method for use in estimating the state of charge (SOC) of lithium-ion
batteries which is based on an electrochemical impedance equivalent circuit model with a controlled
source. Considering that the open-circuit voltage of a battery varies with the SOC, an equivalent
circuit model with a controlled source is proposed which the voltage source and current source
interact with each other. On this basis, the radial basis function (RBF) neural network is adopted to
estimate the uncertainty in the battery model online, and a non-linear observer based on the radial
basis function of the RBF neural network is designed to estimate the SOC of batteries. It is proved
that the SOC estimation error is ultimately bounded by Lyapunov stability analysis, and the error
bound can be arbitrarily small. The high accuracy and validity of the non-linear observer based on
the RBF neural network in SOC estimation are verified with experimental simulation results. The
SOC estimation results of the extended Kalman filter (EKF) are compared with the proposed method.
It improves convergence speed and accuracy.

Keywords: lithium-ion batteries; state of charge; fraction order; electrochemical impedance model;
non-linear observer based on RBF neural network

1. Introduction

With the shortage of resources and environmental pollution gradually becoming more
serious, people are paying more attention to Battery Electric Vehicles (BEVs) due to their
advantages of environmental protection, clean energy, low cost, high technology [1]. In
order to ensure the safe and reliable operation of BEVs, the following items are essential
components of BEVs: increasing the driving range, extending the battery life, reducing the
battery cost [2–4], and a Battery Management System (BMS). SOC estimation is one of the
main functions of a BMS [5]. Its value is directly related to battery life and safety. However,
SOC cannot be measured directly, it can only be estimated by measuring variables such as
current and voltage [6].

A battery model with small error and high accuracy is required, which can not only
improve the accuracy of battery state estimation but also provide accurate monitoring of
the important status of batteries [7]. Many methods have been proposed to estimate battery
SOC, which can be divided into four main methods: open-circuit voltage methods, current
time integration methods [8], data-driven methods [9,10], and model-driven methods.
However, the first three methods have disadvantages such as large estimation errors, low
reliability, and being time-consuming [11]. Therefore, the model-based methods have been
studied by researchers because of their high interpretability and accuracy. The integer-order
model is the most widely used in SOC estimation. For example, Chen et al. [12] proposed
an improved Thevenin model to obtain a more accurate battery model. Considering envi-
ronmental influence, Chen et al. [13] improved the battery model with the Butler–Volmer
(BV) equation, which can solve the problem of large current and temperature variation.

However, compared to integer-order components, unique fractional-order compo-
nents, such as CPE, can better describe the amplitude–frequency characteristics of the
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double layer inside the battery. For example, Liu et al. [14] proposed a fractional-order
model based on the PNGV model, which considers the effects of many battery charac-
teristics. Liu et al. [15] proposed a simplified fractional-order equivalent circuit model
(FO-ECM) with high precision, which can better characterize the non-linear dynamic be-
haviors. However, the electrochemical process of a battery is not completely considered
in this model. Electrochemical impedance spectroscopy (EIS) is widely used to establish
fractional-order models, which combines both electrochemical reactions inside batteries
and SOC estimation. Li et al. [16] proposed a SOC estimation method based on an equiva-
lent circuit model in which the parameters are determined using simulated electrochemical
impedance spectroscopy. Then, Hu et al. [17] established a fractional-order equivalent
circuit model of lithium-ion batteries based on electrochemical impedance spectroscopy
using constant-order and fractional-order characteristics such as Warburg. To improve the
accuracy, Xiong et al. [18] proposed an online parameter identification method based on a
fractional impedance model, which obtains the solid electrolyte interphase resistance to
predict the remaining capacity. On this basis, Mawonou et al. [19] proposed a time-domain
and frequency-domain fractional-order model parameter identification method based on a
recursive least squares algorithm. It was proved that the fractional-order model had better
performance and robustness than the classical integer-order model.

Many non-linear state estimation algorithms and adaptive filters have been studied.
Typical algorithms are the Kalman filter [20,21], Luenberger observer [22], PI (proportional-
integral) observer [23], H-infinity observer [24,25], sliding mode observer [26,27], particle
filter [28–30], etc. In the SOC estimation methods based on the power battery model, the
most common method is the Kalman filter, which is often used to estimate SOC based
on linear battery models, but most battery models are non-linear. Therefore, many non-
linear state estimation algorithms and adaptive filters are proposed to estimate or infer the
internal state of batteries. To determine the non-linear characteristics of the battery mode,
the improved Kalman filter has been further studied. Charkhgard et al. [31] proposed a
method of SOC estimation combining a neural network (NN) and an extended Kalman
filter (EKF) for SOC estimation. However, this method is based on a data-driven battery
model, which has the disadvantage of poor interpretability. Focusing on this problem,
Chen et al. [32] designed a SOC estimation method based on an EKF and a non-linear
battery model which divides the model into a non-linear, open-circuit voltage and a second-
order resistance-capacitance model. To improve the accuracy of the EKF, Zhang et al. [33]
proposed a method that combines an unscented Kalman filter (UKF) and a comprehensive
battery model. The system state variables are calculated recursively through a non-linear
mapping process, which effectively reduces the error. However, the basic principle of the
EKF algorithm is to linearize the non-linear function via first-order Taylor series expansion.
This local linearization will result in large errors in the battery model when it is highly
non-linear, which has limitations.

Therefore, to further improve the accuracy of SOC estimation, a non-linear SOC
estimation observer was widely researched. Ouyang et al. [34] proposed an SOC non-linear
observer based on the equivalent circuit model. The capacitance and resistance in the battery
model were considered as a non-linear function of SOC and battery temperature, and the
non-linear relationship between open-circuit voltage (OCV) and SOC was considered.
However, parameter uncertainty and unknown disturbance are also key issues that affect
the accuracy of SOC estimation most. In this case, a non-linear observer-based on a neural
network was proposed. Chen et al. [35] designed an output feedback adaptive neural
network controller combining adaptive backstepping technology with the approximation
ability of the radial basis function neural network, which solves the problem of non-linear
and non-strict systems. Zhao et al. [36] proposed an adaptive neural-network-based control
scheme, in which a radial basis function neural network was adopted to compensate for the
actuator gain fault. To further improve the accuracy of the SOC estimation, Chen et al. [37]
estimated the uncertainty in the battery model online through the neural network and
designed a non-linear observer based on the radial basis function neural network to
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estimate the SOC of the battery, which was proved to have faster convergence speed and
higher precision.

The above methods only focus on integer-order models and take no consideration of
the characteristics of fractional-order models. In this paper, a non-linear observer for SOC
estimation with an RBF neural network, considering characteristics of lithium-ion batteries,
and a fractional-order model are developed. The main contributions in this paper are
(1) a fractional-order electrochemical impedance equivalent circuit model of a controlled
source with the interaction of voltage source and current source is established based on
electrochemical impedance spectroscopy; (2) a non-linear observer for SOC estimation
with an RBF neural network is improved to estimate the uncertainty in a battery based
on the fractional-order model. The remaining parts of this paper are organized as follows.
Section 2 provides the fractional-order electrochemical impedance equivalent circuit model
for lithium-ion batteries. Section 3 introduces the non-linear observer for SOC estimation
based on a neural network. Section 4 presents the results of the simulation to verify the
feasibility and superiority of the model. Finally, the conclusion is delivered in Section 5.

2. Design of Battery Model

When building a battery model, the uncertainty of the model is often large due to
various reasons, and the error of the SOC estimation is large. In this paper, using the
uncertainty of an RBF neural network estimated in a battery model online, the SOC of a
battery could be estimated more accurately. In order to accurately estimate the SOC of a
battery, an intuitive and comprehensive battery equivalent circuit model was adopted.

In the modeling process of lithium-ion batteries, the characterization parameters used
are the voltage, the current and the temperature of the battery. These parameters are
acquired by the method of time domain data acquisition. Compared with time domain
signals such as voltage, current and temperature, the impedance-frequency relationship of
lithium-ion battery in a specific frequency range constitutes EIS (Electrochemical impedance
spectroscopy). EIS impedance spectroscopy is a non-invasive electrochemical analysis
method. Its measurement results can not only analyze the performance degradation and
aging state of batteries, but also provide data support for battery modeling and low-
temperature heating strategies. It is related to multiple parameters, such as SOC estimation,
internal temperature monitoring, SOH life estimation and internal failure prediction. In the
EIS measurement process, the general frequency band covers 0.1Hz-10kHz, the excitation
and response signals are weak and usually less than 5mV, the measurement period is long
and generally within tens of seconds and minutes, the signal-to-noise ratio is below -85dB,
and the time window of measurement is short be less than or equal 1 second. So EIS
measurement method is too complicated, and the online measurement is difficult.

As shown in Figure 1, a typical EIS impedance spectrum is usually displayed on a
negative Nyquist Diagram, with the real part of the impedance on the X-axis and the
negative imaginary part of the impedance on the Y-axis. With X-axis as reference, the left
side is the high frequency band. The intersection of this curve and the abscissa is the ohmic
resistance of the lithium battery; the middle is the medium frequency band. The shape and
parameters of this curve are formed at the interface between the lithium battery motor and
the electrolyte. The electric double layer is related and is dominated by the RC parallel
connected circuit, which includes the constant phase angle element (CPE); the right side is
the low frequency band, and the EIS curve is a straight line with a constant slope, which is
closely related to the interior of the lithium-ion active material particles. related to the solid
diffusion process. It can be seen from the curve shape of EIS that lithium-ion batteries have
typical fractional-order characteristics, while in the analysis process of EIS, a more accurate
expression can be obtained by replacing the RC parallel component by fractional-order
components. Therefore, in the ordinary second-order RC circuit model, the two capacitors
are replaced by fractional-order components, and the battery model will be more accurate.
The electrochemical impedance equivalent model is shown in Figure 2.
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Figure 1. Typical EIS of a lithium-ion battery.
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Figure 2. Electrochemical impedance circuit model of battery.

Figure 2 shows a battery electrochemical impedance equivalent circuit model with
two subcircuits that interact with each other with a voltage-controlled voltage source and
current-controlled current source. The left circuit in Figure 1 is used to simulate the SOC of
a battery and the remaining operating time. The capacitance Cb is used to represent the
total charge stored in a battery, and the Rsd is the self-discharge resistance. The capacitance
Cb value is the rated capacity of the battery QN: Cb = QN. When the battery is charged, the
charge amount on the capacitance Cb is set as Q and the charging current as I. In addition,
SOC =

∫ t
0 i(t)dt/QN = Q/QN = Cb · VSOC/QN =VSOC is obtained by Q = Cb·VSOC.

In Figure 2, VSOC quantitatively represents the SOC of batteries, and VSOC ∈ [0 V, 1 V]
corresponds to 0–100% of the battery SOC. Voc(SOC) is the OCV of batteries. The non-
linear mapping of SOC to OCV of batteries VOC = f (VSOC) = f (SOC) can also be fitted with
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polynomial function. VB is a directly measurable battery end voltage. R0, R1 and R2 are
ohm resistors, and V1 and V2 are the terminal voltages of CPE1 and CPE2.

The mathematical model of the battery model shown in Figure 2 is established as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dr1 V1 = − 1

R1(SOC)C1(SOC)V1 +
1

C1(SOC) IB

Dr2 V2 = − 1
R2(SOC)C2(SOC)V2 +

1
C2(SOC) IB

.
VSOC = − 1

RsdCb
VSOC − 1

Cb
IB

VB = VOC − V1 − V2 − R0(SOC)IB

(1)

where Dr
t is used to represent the derivative or integral of arbitrary-order r with respect to

t. The Grunwald–Letnikov definition is used in this paper [38].
Considering modeling errors, sensor measurement errors and unknown interference

in real processes, the above Equation (1) battery model can be rewritten as follows:{
Drx(t) = A(x)x(t) + B(x)u (t)

y(t) = Cx(t) + D(x)u(t) + f (x(t) ) + ϕ(x, IB)
(2)

where x(t) = [V1(t) V2(t) SOC(t)]T is the state vector; y(t) is the battery end voltage VB
which is the output of the system; u(t) is the battery current IB, which is the system input;
r = [r1 r2 1]T is the order vector of the system; ϕ(x, IB) is the uncertain item. Matrices A, B,
C and D are as follows:

A(x3) =

⎡⎣ −h1(x3) 0 0
0 −h2(x3) 0
0 0 −a

⎤⎦, B(x3) =

⎡⎣ g1(x3)
g2(x3)
−b

⎤⎦, C =
[ −1 −1 0

]
, D(x3) = −g3(x3)

h1(x3) =
1

R1(x3)C1(x3)
, h2(x3) =

1
R2(x3)C2(x3)

g1(x3) =
1

C1(x3)
, g2(x3) =

1
C2(x3)

,
a = 1

RsdCb
b = 1

Cb
, g3(x3) = R0(x3)

ϕ(x, IB) =
[

0 0 ψ(x, IB)
]T

(3)

The function f (x(t)) is widely used to represent OCV-SOC relationships for many
batteries, which are expressed as:

f (x(t) ) =
M

∑
k=0

dkx(t) k (4)

where dk(k = 0, 1, . . . M) is the factor of f (x(t)). According to the relationship between
OCV-SOC in batteries, f (SOC) is a monotonic increasing function, and the easy Equation (4)
is Lipschitz-continuous in the range of 0 ≤ SOC ≤ 1, then ‖ f (SOC1) − f (SOC2)‖ ≤
γ‖SOC1 − SOC2‖, where γ is the Lipschitz constant.

The coefficient of matrix A(x) in Equation (3) is related to the charging and discharging
time constant, whose magnitudes are generally determined in the battery system. Therefore,
the time constants can be the average value of the charge and discharge time constants
under different SOCs, which are denoted as R1cC1c, R2cC2c. In this way, Equation (2) can be
rewritten as {

Drx(t) = Ax(t) + B(x)u (t)
y(t) = Cx(t) + D(x)u(t) + f (x(t) ) + ϕ(x, IB)

(5)

where A =

⎡⎢⎣ − 1
R1cC1c

0 0
0 − 1

R2cC2c
0

0 0 −a

⎤⎥⎦ =

⎡⎣ −m 0 0
0 −n 0
0 0 −a

⎤⎦, m, n > 0.

Remark 1. Resistance and capacitance in an equivalent circuit can be assumed to be positive and
bounded. Due to the protection of BMS, the charging and discharging current of the batteries is
limited, and all states of the battery system are bounded by the non-limit current of the batteries.
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Therefore, it can be obtained that h1(x3) and h2(x3) in Equation (3) are positive and bounded, and
IB(t), x(t) and g1(x3), g2(x3), g3(x3) are bounded.

3. Design of Non-Linear State Observer Based on RBF Neural Network

Based on improved fractional-order electrochemical impedance equivalent circuit
model with a controlled source and electrochemical impedance spectroscopy in Section 2, a
non-linear observer based on a neural network, where an RBF neural network is designed
to approximate the uncertainty in the battery model online, is shown in this section.

The model is shown in Equation (6):{
Drx̂(t) = Ax̂(t) + B(x̂)u (t) + L(y − ŷ)

ŷ(t) = Cx̂(t) + D(x̂)u(t) + f (x̂(t) ) + ϕ̂(x̂, IB)
(6)

In the above equation, x̂(t) is state estimation and ŷ(t) is the output estimation of
the actual terminal voltage. L = [l1, l2, l3]T is the observer gain vector to be designed.
ϕ̂(x̂, IB) = ψ̂(x̂, IB) is the estimate value of ϕ(x, IB) in Equation (2). An RBF neural network
used to estimate modeling errors and unmeasurable disturbances, as shown in Equation (7):

ψ̂(x̂, IB) = WTS(ẑ) (7)

where the input vector is ẑ =
[
x̂T , IB

]T . The weight vector is W = [ω1, ω2, · · · , ωn]
T . The

number of nodes in the neural network is N. The activation function vector is S(ẑ) =

[s1(ẑ), · · · , sn(ẑ)]
T , where si(ẑ)(1 ≤ i ≤ n) satisfies:

si(ẑ) = exp

[
−(ẑ − μi)

T(ẑ − μi)

ηi
2

]
(8)

The central point vector is μi, and the width of the Gaussian function is ηi. The
adaptive law of the weight vector is:

.
W = Γ[S(ẑ)(y − ŷ)− KωW] (9)

The positive definite constant matrices to be designed are Γ = ΓT and Kω.

Remark 2. RBF neural networks with sufficient numbers of ganglion points can approximate any
continuous function. Depending on the approximation properties of RBF neural networks, the
uncertainty ψ(x, IB) can be replaced by the following:

ψ(x, IB) = W∗TS(z) + ξ (10)

where W* is the true constant. The input vector is z = [xT , IB]
T. An approximate error is ξ, which

is assumed to be |ξ| ≤ ξN. As ψ(·) is bounded, and the ideal constant weight W∗ is also bounded
‖W∗‖ ≤ WM , in which WM is a normal number.

The system error dynamic equation can then be obtained and is shown in Equation (11):

Drx̃(t) = Ãcl x̃(t) −
(

B̃ − LD̃
)

IB (t) + LF(t) + L(ϕ(x, IB)− ϕ̂(x̂, IB)) (11)

where the error between state estimation and state actual value is

x̃(t) = x(t)− x̂(t) = [Ṽ1(t)Ṽ2(t)SÕC(t)]
T

; F(t) = f (x̂(t))− f (x(t))
Ãcl = A − LC; B̃ = B(x)− B(x̂); D̃ = D(x)− D(x̂)
ψ(x, IB)− ψ̂(x̂, IB) = W∗TS(x, IB) + ξ − WTS(x̂, IB) = −W̃TS(x̂, IB) + ε

(12)
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where
W̃ = W − W∗, ε = W∗T(S(x, IB)− S(x̂, IB)) + ξ (13)

In Equation (13), ε is the bonded term which satisfies |ε| ≤ εM(εM > 0). Since W∗ is a

constant weight vector,
.

W̃ =
.

W holds.
Before giving the main theorems, the following important lemmas are given first.

Lemma 1. A fractional differential equation, Dri xi(t) = gi(t), 0 < ri < 1, is equivalent to the
following continuous frequency distributed model.

∂zi(ω,t)
∂t = −ωzi(ω, t) + gi(t)

xi(t) =
∫ ∞

0 μi(ω)zi(ω, t)dω

μi(ω) = sin(riπ)
π ω−ri

(14)

and for ri = 1, Dri xi(t) = gi(t) can be represented as

∂zi(ω,t)
∂t = −ωzi(ω, t) + gi(t)

xi(t) =
∫ ∞

0 μi(ω)zi(ω, t)dω
μi(ω) = δ(ω)

(15)

where gi(t) represents the input; xi(t) denotes the output;zi(ω, t) is the frequency distributed state
variable; and μi(ω) is the frequency weighting function and δ(ω) is a unit impulse function.

Theorem 1. If the observer gains l1, l2, l3 in L given in Equation (6) to satisfy inequalities (16), the
estimation error of the non-linear observer shown as Equation (6) together with the adaptive law
shown in Equation (9) is uniformly bounded.⎧⎪⎪⎨⎪⎪⎩

l1 < m − 12p3l2
3

p1(a−γl3)

l2 < n
5 − 4p1l1

5p1

l3 < a
γ

(16)

where p1, p2, p3 and γ are positive constants.

Proof. According to Lemma 1, Equation (11) can be exactly converted into

∂z(ω,t)
∂t = −ωz(ω, t) + Aclex(t) + Lh(ex(t)) + (E − LF)ω(t)

ex(t) =
∫ ∞

0 μ(ω)z(ω, t)dω
(17)

where
z(ω, t) =[z1(ω, t) z2(ω, t) z3(ω, t)]T

ex(t) =
[
Ṽb(t) Ṽc(t) S̃OC(t)

]T

μ(ω) =diag
[

μ1(ω) μ2(ω) μ3(ω)
]

=

⎡⎢⎣
sin(r1π)

π ω−r1 0 0
0 sin(r2π)

π ω−r2 0
0 0 δ(ω)

⎤⎥⎦
(18)

After the equivalent transformation, the fractional-order model is transformed into a
continuous frequency distributed state model. In order to obtain the convergence of the
designed non-linear observer based on an RBF neural network, the Lyapunov function V(t)
is chosen as follows:

V(t) =
∫ ∞

0
zT(ω, t)μ(ω)Pz(ω, t)dω +

1
2

W̃Γ−1W̃ (19)
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Then, Inequation (20) can be obtained.

.
V(t) =

∫ ∞
0

[
∂zT(ω,t)

∂t μ(ω)Pz(ω, t) + zT(ω, t)μ(ω)P ∂z(ω,t)
∂t

]
dω + W̃Γ−1

.
W̃

=
∫ ∞

0 [−ωz(ω, t) + Ãcl x̃(t) + (B̃ − LD̃)IB(t) + LF(t)
+L(ϕ(x, IB)− ϕ̂(x̂, IB))]

Tμ(ω)Pz(ω, t)dω

+
∫ ∞

0 zT(ω, t)μ(ω)P[−ωz(ω, t) + Ãcl x̃(t) + (B̃ − LD̃)IB(t)
+LF(t) + L(ϕ(x, IB)− ϕ̂(x̂, IB))]dω − W̃KωW
≤ ∫ ∞

0 [x̃T(t)ÃT
clμ(ω)Pz(ω, t) + (B̃ − LD̃)IB(t)μ(ω)Pz(ω, t)

+FT(t)LTμ(ω)Pz(ω, t) + (ϕ(x, IB)− ϕ̂(x̂, IB))
T LTμ(ω)Pz(ω, t)]dω

+
∫ ∞

0 [zT(ω, t)μ(ω)PÃcl x̃(t) + zT(ω, t)μ(ω)PL(ϕ(x, IB)− ϕ̂(x̂, IB))

+zT(ω, t)μ(ω)P(B̃ − LD̃)IB(t) + zT(ω, t)μ(ω)PLF(t)]dω − W̃KωW
= x̃T(t)(ÃT

cl P + PÃcl)x̃(t) + 2x̃T(t)P(B̃ − LD̃)IB(t) + 2x̃T(t)PLF(t)
+2x̃T(t)PL(ϕ(x, IB)− ϕ̂(x̂, IB))− W̃KωW

(20)

Assume P = diag
{

1/2p1 1/2p2 1/2p3
}

and p1, p2, p3 > 0 then:

.
V(t) ≤ −p1(m − l1)x̃2

1+
∣∣∣(p1l1 + p2l2)x̃1 x̃2

∣∣∣+∣∣∣p3l3 x̃1 x̃3

∣∣∣−p2(n − l2)x̃2
2

+
∣∣p3l3 x̃2 x̃3

∣∣−p3(a − γl3)x̃2
3+
∣∣p1[(g1(x3)− g1(x̂3)) + l1(g3(x̂3)− g3(x3))]IBx̃1

∣∣
+|p2[(g2(x3)− g2(x̂3)) + l2(g3(x̂3)− g3(x3))]IBx̃2|
+
∣∣∣p3[l3(g3(x̂3)− g3(x3))]IBx̃3

∣∣∣+∣∣∣p3l3εMx̃3

∣∣∣−W̃KωW

(21)

Because gi(·)(1 ≤ i ≤ 3), xi(·)(1 ≤ i ≤ 3), IB(t) are bounded, Inequation (22) can be obtained.

|p1[(g1(x3)− g1(x̂3)) + l1(g3(x̂3)− g3(x3))]IB|≤ M1
|p2[(g2(x3)− g2(x̂3)) + l2(g3(x̂3)− g3(x3))]IB|≤ M2

|p3[l3(g3(x̂3)− g3(x3))]IB|≤ M3

(22)

Assume (l1 p1 + l2 p2) = N; Inequation (23) can be obtained.

.
V(t) ≤ −p1(m − l1)x̃2

1+
∣∣∣Nx̃1 x̃2

∣∣∣+∣∣∣p3l3 x̃1 x̃3

∣∣∣−p2(n − l2)x̃2
2+
∣∣∣p3l3 x̃2 x̃3

∣∣∣
−p3(a − γl3)x̃2

3 + p1M1

∣∣∣x̃1

∣∣∣+p2M2

∣∣∣x̃2

∣∣∣+p3M3

∣∣∣x̃3

∣∣∣+∣∣∣p3l3εMx̃3

∣∣∣−W̃KωW
(23)

Then, the inequation can be obtained as shown in Inequations (24) and (25).

(1)− p1(m − l1)x̃2
1 + p1M1|x̃1|+ |Nx̃1 x̃2| ≤ − p1(m−l1)

3 x̃2
1 +

3p1 M2
1

(m−l1)
+ 3N2

p1(M1−l1)
x̃2

2

(2)− p2(n − l1)x̃2
2 + |p2M2 x̃2| ≤ − p2(n−l2)

2 x̃2
2 +

2p2 M2
2

(n−l2)

(3)− p3(a − γl3)x̃2
3 + |p3l3 x̃2 x̃3|+ |p3l3 x̃1 x̃3|+ |p3M3 x̃2|+ p3l3εM|x̃3| ≤ − p3(a−γl3)

4 x̃2
3

+
4p3l2

3 x̃2
1

(a−γl3)
+

4p3l2
3 x̃2

2
(a−γl3)

+ 4p3(M3+l3εM)2

(a−γl3)

(24)

− W̃KωW = −W̃Kω

(
W̃ + W∗

)
≤ −

‖Kω‖
∥∥∥W̃
∥∥∥2

2
+

‖Kω‖‖WM‖2

2
(25)

According to Inequations (24) and (25), Inequation (23) can be rewritten as Inequation (26).

.
V(t) ≤ α1 x̃1

2 + α2 x̃2
2 + α3 x̃3

2 −
‖Kω‖

∥∥∥W̃
∥∥∥2

2
+ M (26)
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where
a1 = −p1(m−l1)

3 +
4p3l2

3
(a−γl3)

a2 = − p2(n−l2)
2 +

4p3l2
3

(a−γl3)
+ 3N2

p1(m−l1)

a3 = −p3(a−γl3)
4

M =
3p2

1 M2
1

(m−l1)
+

2p2 M2
2

(n−l2)
+ 4p3(M3+l3εM)2

(a−γl3)
+ ‖Kω‖‖WM‖2

2

(27)

According to the previous analysis, if Equation (14) is satisfied by l1, l2, l3, and α1,
α2, α3 can be guaranteed to be negative. Since the initial value of Lyapunov function
V(0) is bounded, the solution of the estimation error system is also uniformly bounded
according to the boundedness analysis. The bounds of SOC estimation error are satisfied
with

{
x3(t) ≤

√
M/λ

}
, in which λ is a constant satisfied with 0 < λ < p3(a − γl3)/4. If p3

is selected as large, λ can be selected large enough, and then the bounds of SOC estimation
error can be arbitrarily small. Therefore, a non-linear observer based on an RBF neural
network can accurately estimate the SOC of batteries. �

4. Experiment and Simulation Analysis

The test system was built with a PXI system developed by the National Instruments
(NI). The electrical schematic diagram of the test system is shown in Figure 3, and the
battery test bench was built as shown in Figure 4. The hardware platform of the battery
test system was composed of four parts: an industrial computer, charging and discharging
instruments, a parameter measurement device and a thermostatic humidity test box, and
the software of the battery test system was designed through the LabVIEW development
environment. The environmental temperature was simulated by adjusting the internal
temperature of the given thermostatic humidity box. The charging and discharging instru-
ments were controlled by a program, the charging and discharging currents of the battery
were set during the experiment, and the performance test of the power battery in different
environments was completed. In the process of the experiment, the current voltage and
temperature of the battery were collected in real time using a high-precision voltage current
and temperature sensor, and the real-time data collected were saved and exported to the
table using the SQL database linked to the experimental platform.

The equipment and software list in Figure 3 is shown in Table 1.

Table 1. The equipment and software list.

No. Name of Equipment or Software Model or Version Functions and Performance

1 DC Power supply IT6533A 160 V, 120 A, 6 kW
2 Electronic Load IT8830 120 V, 500 A, 10 kW
3 USB-DAQ card NI USB-6216 16 bit, 400 kS/s, Isolated Multifunciton DAQ
4 USB-DMM NI USB-4065 61/2-Digit, ±300 V, 0.025%
5 Heat Test Chamber WTH-150-40-880 −45 ◦C~105 ◦C, 99 Rh%
6 Labview 2019 SP1
7 Matlab 2019b
8 GPIB Card NI USB-GPIB
9 USB-CAN Card Peak CAN-USB
10 High Performance Voltage Isolated Interface HVIS-400 Isolated Voltage: 500 V, 0.01%
11 High Performance Current Isolated Interface HIIS-100 Isolated Voltage: 500 V, 0.01%
12 PXI Controller NI PXIe-8840 Intel Core i7, 8 GB/s
13 PXI Chassis NI PXIe-1062 8 slots, PXI Express Chassis

The test system, composed of a heat test chamber, DC power supply, electronic load
and PXI system, is shown in Figure 4.

The UI of the lithium battery test system based on Labview is shown in Figure 5. The
characteristic test for lithium-ion power battery could be selected on the main interface in
real time, and the current size of the charger and discharger could be set. The temperature,
charging and discharging current, voltage and other parameters of the battery could be
displayed on the interface in real time.

67



Energies 2022, 15, 3835

 
Figure 3. Architecture diagram of battery characteristic test platform.

 
Figure 4. Photos of battery characteristic test platform.

The open-circuit voltage test and HPPC test of batteries were carried out using the
test and verify system. The parameters of the above model could be obtained by the least
squares method. Then, these curves were fitted to balance the accuracy and complexity
using an empirical equation composed of exponential and polynomial function. Figure 6a,b
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show the non-linear relationship between OCV and SOC of batteries and the curves between
parameters (R0, R1, C1, R2 and C2) and SOC in the equivalent circuit of batteries. The red
dot is the data recorded in the test, and the blue line is the corresponding fitting curve for
the actual data obtained from the experiment. The weight vector rule of the neural network
is Kω = diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01) and Γ = diag(1, 1, 1, 1, 11, 1, 1, 1, 1).

Figure 6a shows the curves of OCV and SOC obtained using the standard OCV test
method. Figure 6b shows the measured values and fitting curves of the equivalent circuit
parameters of the battery.

The battery test platform mentioned above was used to carry out three different
dynamic operating conditions experiments to verify the accuracy and effectiveness of the
proposed RBF neural network, non-linear, fractional-order observer. Since high-precision
measuring instruments were used when building the battery test platform, the current data
collected by the device had high precision. The accurate SOC could be obtained as the real
reference value of SOC using the current-time integral method.

 

Figure 5. Battery test system interface.

Dynamic operation test 1: Leave the fully charged battery in the incubator for 24 h at
the laboratory temperature to ensure that the temperature of the entire battery is even. Use
a constant current of 1C to discharge the battery at a capacity of 10% (to avoid overvoltage
conditions during the subsequent dynamic operating experiment). Dynamic operation test
1 is performed within the range of SOC of interest (90% to 10% SOC). The experimental
current image of Dynamic operation test 1 is shown in Figure 7.

The measured actual end voltage for reference and the model estimated end voltage
curves and their local amplification diagrams are shown in Figures 8 and 9, respectively.
The local amplification diagrams shown in Figure 9 show that the measured actual end
voltage curves for reference and the curves estimated by the model basically coincide. The
RMSE of the real and model results was 5.97 mV under dynamic condition test 1. The local
amplification curve shown in Figure 9 shows more clearly that the identified model reflects
the dynamic characteristics of the battery with high accuracy, and the proposed circuit
model captures the battery performance well. The accuracy of battery SOC estimation
depends on whether the battery voltage estimated by the model is accurate, which proves
that the proposed model can more effectively and accurately estimate the battery status,
and the corresponding voltage error curve is shown in Figure 10.
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(a) 

 

 

 

 

 
 

(b) 

Figure 6. (a) Relationship between OCV and SOC of battery. (b) Parameters of battery equivalent
circuit model and its fitting curve.

The results of estimating SOC using the proposed RBF neural network non-linear
observer and EKF method are shown in Figure 11. It can be seen that the proposed RBF

70



Energies 2022, 15, 3835

neural network non-linear observer accurately estimated the SOC. The error between
the true value and the estimated value decreased gradually. The final estimated curve
converged gradually near the true value curve, and the SOC error was limited to a very
narrow error range. It was related to accurately modeling and accurately estimating the
battery end voltage, which was used to correct the estimated SOC. Furthermore, this proved
that the identified fractional-order electrochemical impedance model could accurately
capture the battery dynamics and accurately estimate the battery end voltage, thus enabling
the designed RBF neural network, non-linear, fractional-order observer to accurately and
effectively estimate the SOC and power in batteries.

In order to compare the error of SOC estimation between the two methods, the error
of SOC state estimation is also shown in Figure 12. The curve of the proposed RBF neural
network non-linear observer SOC estimation error was nearly zero, and SOC error mainly
fluctuated within the range of +0.5%. Conversely, SOC estimation error based on EKF
method varied greatly, and the error range was large. The validity of the proposed RBF
neural network non-linear observer is further proved.

Figure 7. Current of dynamic condition test 1 experiment.

 

Figure 8. Comparison of real and estimated voltage of test 1 under dynamic condition.

In practical engineering applications, the ability to correct SOC is necessary for a good
SOC estimation algorithm. Therefore, in the case of dynamic condition 1, the strategy of
random SOC initial value was adopted to verify the SOC correction ability of the proposed
algorithm. As shown in Figures 13 and 14, when the initial SOC value deviated from the
real value, the RBF neural network non-linear observer could quickly converge to the true
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value in a short time and keep the error below 2%, while the EKF method converged to the
true value almost at the end of the test. The convergence speed of the proposed RBF neural
network non-linear observer is further proved.

 

Figure 9. Comparison of real value and estimated value of experimental terminal voltage in dynamic
condition test 1.

Figure 10. Voltage estimation error of experiment terminal in dynamic condition test 1.

 
Figure 11. Comparison of SOC estimation based on non-linear observer and EKF in dynamic
condition test 1.
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Figure 12. Comparison of SOC estimation error based on non-linear observer and EKF in dynamic
condition test 1.

 

Figure 13. Comparison of SOC estimation based on non-linear observer and EKF in dynamic
condition test 1 under random SOC initial value.

Remark 3. The effects of the number of ganglion points on the performance and calculation of SOC
estimation for lithium-ion power batteries based on an RBF neural network non-linear observer
were studied through comparative experiments and simulations. More specifically, two, five, seven,
eleven and fifteen lithium-ion power batteries were compared to estimate their SOC performance
and load using the experimental data of battery current and end voltage collected. The performance
comparison of the RBF neural network non-linear observers with different ganglion points for
estimating SOC is shown in Figure 15. The running time for solving the non-linear observer
problem of RBF neural networks with different number of ganglion points is shown in Figure 16 to
represent the computational burden of different ganglion points. From the comparison results, the
neural network non-linear observer used in the experiment with seven ganglion points has good
performance under a reasonable amount of calculation.

73



Energies 2022, 15, 3835

 

Figure 14. Comparison of SOC estimation based on non-linear observer and EKF in dynamic
condition test 1 under random SOC initial value.

 

Figure 15. SOC estimation error of non-linear observers with different numbers of neural nodes.

Figure 16. Time consuming of solving non-linear observers with different numbers of neural nodes.
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Dynamic operation test 2: Leave the fully charged battery in the incubator for 24 h
at the laboratory temperature to ensure that the temperature of the whole battery is even.
The battery is charged to full capacity with a constant current of 1C, and then tested under
dynamic condition 2. When fully charged, the battery is discharged with high current
for a period, and then charged and discharged with the current changing with dynamic
fluctuations. The current image of dynamic condition test 2 is shown in Figure 17.

The measured actual end voltage used for reference and the model estimated end
voltage curve are shown in Figure 18. It can be seen that the measured actual end voltage
curve used for reference and the curve estimated by the model did not coincide as in
Working Condition 1. The main reason for this is that the voltage fluctuation in the second
half of the test was so small that the model did not track the voltage change in the power
battery very accurately. The corresponding voltage error curves are shown in Figure 19.
The RMSE of the true and model results was 11.7 mV under the dynamic condition test 2.
This indicates that the model was less accurate under very small voltage fluctuations, but
the accuracy of the estimation was still high enough.

Figure 17. Dynamic condition test 2 experimental current.

Figure 18. Comparison of real and estimated voltage of test 2 under dynamic condition.

The results of estimating SOC using the proposed RBF neural network non-linear
observer and the EKF method are shown in Figure 20. The error of estimating SOC state
using the proposed RBF neural network non-linear observer and the EKF method is shown
in Figure 21. It can be seen that the proposed RBF neural network non-linear observer
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accurately estimated the SOC of power batteries, and the estimated SOC error decreased
gradually. However, due to the small fluctuation of voltage in the second half of the test
period, the SOC estimation error did not converge to a range gradually because the model
did not track the change in power battery end voltage very accurately. However, it can be
seen from Figure 21 that the SOC estimation curve of the proposed non-linear observer
of the RBF neural network was still very close to the real value of SOC. On the contrary,
although the SOC estimation curve obtained using the EKF method was closer to the true
value in the early stage, the error increased during the back-end test process. The proposed
RBF neural network non-linear observer was more accurate than the EKF method.

Dynamic operation test 3: Leave the fully charged battery in the incubator for 26 h
at the laboratory temperature to ensure that the temperature of the whole battery is even.
Charge the battery to its full capacity using a constant current of 1C and discharge it to
zero power battery capacity. Test under dynamic condition 3, charge the battery with a
high current for a period after discharging, and then charge and discharge with dynamic
fluctuating current. The image of the current under dynamic condition test 2 is shown
in Figure 22.

Figure 19. Voltage estimation error of test 2 under dynamic condition.

Figure 20. Comparison of SOC estimation based on non-linear observer and EKF in dynamic
condition test 2.

The measured actual end voltage for the reference and the model-estimated end
voltage curve are shown in Figure 23. The measured actual end voltage curve coincided
with the model estimated curve. The corresponding voltage error curve is shown in
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Figure 24. The RMSE of the real and model results was 9.69 mV under dynamic condition
test 3, which indicates that the proposed electrochemical impedance model could accurately
estimate the terminal voltage of the power battery.

Figure 21. Comparison of SOC estimation error based on non-linear observer and EKF in dynamic
condition test 2.

Figure 22. Dynamic condition test 3 experimental current.

The results of estimating SOC using the proposed RBF neural network non-linear
observer and the EKF method are shown in Figure 25. It can be seen that the proposed RBF
neural network non-linear observer accurately estimated the SOC, and the error between
the true value and the estimated value was small. The SOC state estimation error estimated
using the proposed RBF neural network non-linear observer and the EKF method is shown
in Figure 26. It can be observed that the SOC estimation error curve of the proposed RBF
neural network non-linear observer was closer to the transverse coordinate axis. Although
the SOC error curve estimated using the EKF method decreased gradually at the end, the
SOC estimation error was larger in the middle of the curve. The accuracy of the proposed
non-linear observer for RBF neural networks is further demonstrated.

To further show the accuracy of the proposed RBF neural network non-linear observer
in estimating the SOC of the EKF method, Table 2 gives the RMSE results of estimating
the SOC using the proposed RBF neural network non-linear observer and the EKF method
under three dynamic operating conditions tests. Figures 12, 21 and 26 and Table 2 show
that the RBF non-linear observer designed has higher estimation accuracy than the EKF.
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Figure 23. Comparison of real and estimated voltage of test 3 under dynamic condition.

Figure 24. Voltage estimation error of test 3 under dynamic condition.

 

Figure 25. Comparison of SOC estimation based on non-linear observer and EKF in dynamic
condition test 3.
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Figure 26. Comparison of SOC estimation error based on non-linear observer and EKF in dynamic
condition test 3.

Table 2. RMSE of SOC estimation error based on RBF neural network non-linear observer and
EKF method.

Working Condition 1 Working Condition 2 Working Condition 3

RBF neural network non-linear observer 0.53% 0.24% 0.33%
EKF method 1.42% 1.70% 0.75%

The comparison of the accuracy of the EKF method with the RBF neural network non-
linear observer proposed under different dynamic test conditions is given. The following
are the simulation results of voltage and SOC estimation using the proposed RBF neural
network non-linear observer under dynamic test condition 1 under integer- and fractional-
order models.

Figure 27 shows the estimation of battery end voltage using the integer-order model
and the proposed electrochemical impedance fractional-order model, the actual measured
end voltage, and the comparison of the estimated end voltage curves between the two
models. Figure 28 shows the local amplification comparison of the two models, and
the corresponding voltage error curves are shown in Figure 29. The local magnification
diagram shown in Figure 28 shows that the measured actual end voltage curve used for
reference coincides basically with the curve estimated based on the fractional model of
electrochemical impedance, while the voltage estimate based on the integer-order model
has a greater error than that based on the fractional-order model. The RMSE based on
fractional-order model voltage estimation was 5.97 mV, and 13.7 mV based on integer-
order model voltage estimation. This shows that the proposed fractional-order model of
electrochemical impedance for power batteries can clearly reflect its dynamic characteristics
and battery performance.

The proposed non-linear observer of the RBF neural network was used to estimate SOC
based on the fractional- and integer-order models of electrochemical impedance proposed.
The estimation curve of SOC is shown in Figure 30. From Figure 30, it can be seen that
the SOC estimation curve of the fractional electrochemical impedance model proposed
basically coincided with the true value curve, and the estimation result was better than
that based on the integer-order model. The RMSE of SOC based on the fractional model of
electrochemical impedance was 0.53%, and that of SOC based on the integer model was
1.26%.Using the proposed RBF neural network non-linear observer to estimate SOC based
on the proposed fractional and integer-order models, the results show that the estimated
SOC error based on the fractional-order model of electrochemical impedance was between
(+) 0.5% and that based on the integer-order model was between 0.5% and 2%.The proposed
fractional model of electrochemical impedance can more accurately estimate the SOC of
power batteries.
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Figure 27. Comparison of voltage estimation based on fractional-order model and integer-
order model.

Figure 28. Comparison and enlargement of voltage estimation based on fractional-order model and
integer-order model.

The following conclusions can be drawn from the above experimental simulation
results in Figures 11, 12, 20, 21, 25, 26, 30 and 31 and Table 1:

(1) From Figures 30 and 31, the proposed non-linear observer of RBF neural network has
higher accuracy in estimating SOC of the fractional-order model of electrochemical
impedance than that of the integer-order model, because the proposed fractional-
order model of electrochemical impedance has smaller modeling error, more accurate
estimation of end voltage of power batteries and less error in estimating the SOC state
of batteries.

(2) For power battery SOC estimation, the proposed RBF-neural-network-based non-
linear observer has smaller error and higher accuracy than the EKF method. From
Figures 11, 20 and 25, the curve of SOC estimation using the EKF method is smoother
than that of the proposed RBF neural network non-linear observer. The reason for
these two phenomena is that the observer-based method is superior to the filter
in estimating the system output. The observer-based non-linear observer based
on the RBF neural network can quickly catch the change when the experimental
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current changes significantly between positive and negative modes in three dynamic
operating conditions. The convergence rate of state estimation is then adjusted.

(3) From Figures 12, 21 and 26, it can be seen that the proposed non-linear observer
method for RBF neural networks converges faster than the EKF in SOC state estimation.
The RMSE of the SOC estimation errors for the two methods in Table 1 further
demonstrates that the proposed non-linear observer method for RBF neural networks
is superior to the EKF method.

Figure 29. Comparison of voltage estimation error based on fractional-order model and integer-
order model.

Figure 30. Comparison of SOC estimates based on fractional-order model and integer-order model.
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Figure 31. Comparison of SOC estimation error based on fractional-order model and integer-
order model.

Based on the above analysis, it is known that the fractional model of electrochemical
impedance proposed has less modeling error and higher estimation accuracy than the
integer model. For the fractional-order model of electrochemical impedance proposed,
the proposed RBF neural network non-linear observer method is more effective and more
accurate than the EKF method. The proposed RBF neural network non-linear observer
method can run in real time and reliably and accurately estimate the end voltage and
SOC state of power batteries. In summary, the fractional-order model of electrochemical
impedance and the RBF neural network non-linear observer method proposed not only
take into account the characteristics of the battery itself, but also show good performance.

5. Conclusions

This paper designed a method for the state of charge (SOC) estimation of lithium-ion
batteries based on an electrochemical impedance equivalent circuit model with a controlled
source. A non-linear observer was designed to estimate the SOC of batteries by using an
RBF neural network to estimate the uncertainty of batteries online. The estimation error
of the non-linear observer based on an RBF neural network was proved to be ultimately
bounded by Lyapunov stability analysis. The results of simulations and experiments in this
paper are as follows: compared with the EKF, the average error of SOC measurement with
the non-linear observer was reduced by 50%, and the error of the optimal experimental
result was reduced by 70%. Compared with the integer-order model, the measurement
error of the fractional-order model was reduced by 40% on average, and the error of the
optimal experimental result was reduced by 60%. The experimental and simulation results
show the accuracy and superiority of the proposed method.
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Abstract: Battery state of charge as an effective operational indicator is expected to play a crucial
role in the advancement of electric vehicles, improving the battery capacity and energy utilization,
avoiding battery overcharging and over-discharging, extending the battery’s useful lifespan, and
extending the autonomy of electric vehicles. In context, this article presents a computationally
efficient battery state-of-charge estimator based on the Coulomb counting technique with constant
and variable discharging current profiles for an actual battery pack in real time. A dedicated
experimental bench is developed for validation purposes, where pivotal measurements such as
current, voltage, and temperature are initially measured during the charging/discharging cycle. The
state of charge thus obtained via these measurements is then compared with the value estimated
through the battery generic model. Detailed analysis with conclusive outcomes is finally presented to
exhibit the flexible nature of the proposed method in terms of the precise state-of-charge estimation
for a variety of batteries, ranging from lead–acid batteries for domestic applications to Li-ion batteries
inside electric vehicles.

Keywords: state of charge; electric vehicle; coulomb counting approach; battery generic model

1. Introduction

The battery state of charge (SOC) for electric vehicles is equivalent to the oil meter for
conventional fuel vehicles. Typically, the relation between the electrochemical reactions
and SOC is complex and difficult to determine. In addition, for vehicles, the working
conditions are challenging and complex. It is therefore very difficult to obtain precise SOC
as it is a hidden state function of electrochemical reactions inside the battery. It is possible
to separate the battery SOC estimation strategies into four classes [1]: characteristic param-
driven approach [2–7], an integral estimation method [8–11], a physical model-driven
method [12–16], and a data-driven approach [17–25], as illustrated in Figure 1.
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Figure 1. Classification of SOC estimation methods [26].

Subsequently, Table 1 sums up the benefits and drawbacks of four SOC assessment
strategies, which are presented in Figure 1. Due to the importance of this topic, SOC
estimation is rigorously investigated by several researchers. The work of [27] evaluated
the SOC estimation via two model-based techniques that are the extended Kalman filter
and the adaptive dual extended Kalman filter influenced by a fuzzy inference system.
The experimental results demonstrate that the last technique provides a more precise
indication of the battery SOC. The reference [28] is focused on optimizing the battery
state of health within the domain of satellite applications. To enhance the performance of
the system, the authors have taken into consideration different constraints linked to the
battery SOC. For this, the Coulomb counting technique is used to estimate the battery
SOC. Another study [29] treated the battery SOC as an operational indicator, which
can influence the energy consumption of the electric vehicle [30]. Therefore, the SOC
estimator is defined as the crude power consumption of the studied electrical vehicle
(for more details, the reader can consult [31,32]).

The goal of this work is to estimate the SOC of a domestic-grade lead–acid battery
through empirical measurements of battery voltage and current using the Ampere-hour
integral estimation method with constant and variable C-rates for discharge current. There
are many studies on the SOC estimation of lead–acid and Li-ion batteries, especially the
Coulomb counting method [33,34]. However, the research work conducted in this article
differentiates by investigating the discharging behavior of a lead–acid battery in extended
and varying conditions.

Table 1. SOC estimation methods: benefits, drawbacks, accuracy, and robustness. Reprinted from
Refs. [35,36].

Methodology Benefits Drawbacks Precision Sturdiness

Method based
on characteristic

param

- simpler
implementation

- lower computing
burden

- Real-time application

- easily influenced by
factors of uncertainty

- standard OCV or
information
calibration is required

poor good
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Table 1. Cont.

Methodology Benefits Drawbacks Precision Sturdiness

Ampere-hour
integral

approach

- simpler
implementation

- lower computational
burden

- Real-time application

- exact initial value of
SOC is required

- use of a high precision
sensor causes a
cumulative error.

- is affected by drift
noise and ageing.

average poor

Model-driven
estimation
approach

- high precision
- closed loop regulation
- Real-time application
- Adaptive

- requires model
precision

- computational
complexity

- divergence of
predicted outcomes

excellent excellent

Method of
data-driven
estimation

- high precision
- Suitable for nonlinear

implementation

- computational
complexity

- offline training
excellent poor

For that, a dedicated test bench is prepared, and cross-validation is conducted under
real-time scenarios and simulations. Finally, the performance of the proposed method is
depicted by an evident comparison with the data provided by the manufacturer under
variable operating conditions and with the generic battery model. It is worth mentioning
here that the proposed method is generic and flexible in terms of its application, which is
especially true for domestic-grade batteries as well as for modern Li-ion batteries present
in electric vehicles. Moreover, the hysteresis effect is also taken into account considering
the studied lead–acid battery.

The remainder of the paper is presented as: In Section 2, the battery management sys-
tem is summarized by citing some references. The Coulomb counting method is highlighted
in Section 3. In Section 4, the generic battery model is developed and comprehensively
discussed. The experimental setup, which exhibits the feasibility and the applicability of the
proposed approach for the lead–acid battery to attain adequate SOC values, is highlighted
in Section 5. Section 6 is dedicated to the obtained results that are discussed in detail.
Finally, the conclusions and the relevant perspectives are drawn in Section 7.

2. Battery Management System

The battery management system (BMS) is a technology that performs the micro-
management of the battery pack in terms of its state of health (SOH). Figure 2 depicts a
general layout of a typical BMS, which constitutes numerous sensors, actuators, controllers,
connection lines, etc. The bidirectional communication between the control unit of BMS
and external bodies such as the human media interface is typically carried out via CAN (the
communication bus controller area network). Besides maintaining reliability during normal
and abnormal operating conditions, adequate provision of the battery state of charge to the
vehicle’s vehicle control unit (VCU) is among the vital tasks of BMS.

A well-built BMS aids in collecting critical data in real time, such as electrical measure-
ments, temperature, and other relevant data via inherent sampling hardware. The collected
data is then exploited via embedded algorithms and strategies to estimate the battery states,
such as SOC [37], SOH [38], SOP [39], and RUL [40]. These states are ultimately fed to VCU,
in order to facilitate effective power management.
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Figure 2. Schematic diagram of a typical BMS [26].

3. Coulomb Counting Method

The Coulomb counting method (known as the current integration method) is chosen
as the baseline in this article and is among the most exploited method [41]. It consists
of measuring the battery open circuit voltage at the start-up to estimate the initial SOC
using the battery datasheet information. Then, the battery current information is integrated
to estimate the amount of charge delivered (or recovered) by the batteries. The overall
concept is presented in Equation (1), where knowledge of the initial SOC is detrimental to
determining the state of charge [24,42,43]. Based on this approach, the SOC for the battery
pack is calculated as follows [44]:

SOC = SOC0 − 1
CN

∫ t

t0
η·I(τ)dτ (1)

If the initial value of the charge state SOC0 is specified, or imposed (technically, most
researchers impose the initial state as to be fully charged or fully discharged), the Coulomb
counter provides precise estimation with relative ease and simplicity [45]. On the contrary,
this method is less accurate if the SOC0 is unknown.

The Coulomb counting strategy computes the remaining stored energy essentially by
collecting the charge moved in or out of the battery. The precision of this strategy depends
fundamentally on a real estimation of the battery current and a precise assessment of the
initial SOC. With pre-knowledge of the initial SOC, which also can be stored at the end
of the vehicle trip in a flash memory to be reused as the initial SOC for the next trip (and
neglecting the battery self-discharge), the battery SOC can be determined by computing
the stored and the released energy flows over the operating time. Nevertheless, the stored
energy in the battery is not completely available to be used due to the DOD (depth of
discharge) which is a quantity of energy to keep inside the battery to avoid permanent
damage. Moreover, there are losses during the charging and discharging process. For
an exact SOC assessment, this effect should be considered [46]. Futhermore, the SOC
must be recalibrated consistently, and the discharge limit should be considered for an
exact assessment.
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4. Generic Battery Model

The battery model can be obtained by considering a voltage source in series with
constant resistance, as appears in Equation (2) [11].

Vbatt = E0−K
Q

Q − it
·it−R·I + A· exp (−B·it)K

Q
Q − it

·i∗ (2)

As depicted in Figure 3, the special feature of this model is the use of filtered current (i*)
through the polarization resistance. This filtered current solves the problem of the algebraic
loop due to the simulation of power systems in Simulink [47]. Despite the existence of
hysteresis between the charging and discharging of the battery voltage, this model is still
valid for both charge and discharge cycles [48]. The battery models can be obtained using:

� The charge model (i* < 0)

f1(it, i∗, exp, batt type) = E0 − K
Q

it − 0.1Q
·i ∗ −K

Q
it − Q

·it + Exp (t) (3)

� The discharge model (i* > 0)

f1(it, i∗, exp, batt type) = E0 − K
Q

it − Q
·i ∗ −K

Q
it − Q

·it + Exp (t) (4)

Figure 3. Graphical description of the employed battery model.

The employed model is simplistic and cannot exactly mimic the complex electro-
chemical reactions taking place within the battery under the influence of actual operating
conditions. However, this model is still adequate from the computational side, and can
suffix for a range of applications. Especially, for the discharge state of lead acid batteries
with different currents, which is extensively studied, where the discharge curve of the
simulations matches with the discharge curve of the experimental work and with that
of the datasheet. Therefore, even with assumptions and limitations, the utilized model
suffixes the fundamental needs of this research work. It is worth mentioning here that the
hysteresis phenomenon for the lead–acid battery is considered here. The effect can be seen
in Figure 4, exhibiting that the exponential voltage increases when the battery is charging,
while during the discharging, the exponential voltage decreases immediately.
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Figure 4. Hysteresis effect associated with the lead–acid battery.

Application: From the discharge curve provided by the manufacturer, the extracted
parameters are presented in Table 2. The model also has its assumptions and limitations
as follows:

� Limitations

- The minimum no-load battery voltage is 0 V and the maximum battery voltage is
equal to 2 × E0.

- The minimum capacity of the battery is 0 Ah and the maximum capacity is Qmax.

� Assumptions

- The internal resistance is supposed as a constant value during the charge and the
discharge cycles and does not vary with the amplitude of the current.

- The parameters of the model are deduced from discharge characteristics and
assumed to be the same for charging.

- The capacity of the battery does not change with the amplitude of the current (no
Peukert effect).

- The model does not take the temperature into account.
- The self-discharge of the battery is not represented. It can be represented by

adding a large resistance in parallel with the battery terminals.
- The battery has no memory effect.

Table 2. Battery parameters: discharge at variable C-rate.

C-Rates of Discharge 0.25 C 0.17 C 0.09 C
Different
C-Rates

Nominal voltage (V) 12 12 12 12

Rated capacity (Ah) 52 52 52 52

Initial state-of-charge (%) 100 100 100 100

Max. capacity (Ah) 40.1999 53.8 47.5 47.5

Fully charged voltage (V) 12.7 12.8 12.9 12.9

Nominal discharge current (A) 13 8.84 4.68 12

Internal resistance (Ω) 0.0055 0.0055 0.0055 0.0055

Capacity (Ah) @ nominal voltage 38.2 44.80 46 46

Exp. zone [Voltage(V), capacity(Ah)] [12.7, 2.5] [12.8, 1.9] [12.9, 2.225] [12.9, 2.225]

5. Experimental Method and Description

Battery specification: The battery employed in this research is a valve-regulated lead–
acid (VRLA) type with a nominal voltage of 12 V and a nominal capacity of 52 Ah. The
recommended voltage when charged for standby use is 1.75 V for a single cell (6 cells in
series). Further features of this battery are presented in Table 3.
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Table 3. Lead–acid battery parameters.

Cells per unit 6

Voltage per unit 12 V

Capacity 52 Ah @ 20 h-rate to 1.75 V per cell @25 ◦C (77 ◦F)

Weight Approx. 18 Kg (39.68 lbs.)

Maximum discharge current 500 A (5 s)

Internal resistance Approx. 5.5 mΩ

Operating temperature range
Discharge: −15 ◦C~50 ◦C (5 ◦F~122 ◦F)

Charge: −15 ◦C~40 ◦C (5 ◦F~104 ◦F)
Storage: −15 ◦C~40 ◦C (5 ◦F~104 ◦F)

Float charging voltage 13.5 to 13.8 VDC/unit Average at 25 ◦C (77 ◦F)

Maximum charging current limit 15.6 A

Equalization and cycle service 14.4 to 15.0 VDC/unit Average at 25 ◦C (77 ◦F)

Self discharge Batteries can be stored for 6 months at 25 ◦C (77 ◦F).

Measurement test bench: The measurement test bench is presented in Figure 5, which
further consists of four interconnected components.

Figure 5. The test bench.

1. Lead–acid battery
2. Clamp meter
3. DC power supply
4. Variable resistor (handmade)

Computing parameters: The proposed computing method is implemented in Mat-
lab/Simulink version 2015b and has the following attributes and parameters: variable step,
ode45 (Dormand–Prince), relative tolerance = 1 × 10−3, time tolerance = 10 × 128 × eps,
zero crossing control = use local settings, algorithm = non adaptive, number of consecutive
zero crossings = 1000, number of consecutive min steps = 1.

Charging process test: The battery is charged via an external DC power supply, and
the initial voltage at the time of testing is effectively set at 14.7 V. The current maximum
limit is set to 5.03 A (this is the maximum available value). The battery is connected to
the power supply and is left until its fully charged. The voltage and current are measured
using a voltmeter and clamp meter every 10 min. The end-of-charge voltage equals
Vfinish-ocv = 13.96 V and the end-of-charge current (the minimum value of the current in the
vicinity of full charge) is Imin = 0.29 A. When the charging current reaches the minimum
value of 0.29 A (indicated by the manufacturer), the battery is disconnected, and the DC
power voltage supply is turned off. This test was spanned over 02 days, the duration of
this test, therefore, equals Tch = 1440 min or Tch = 24 h.

Discharging process test: Two experiments are conducted in total with relevance to
the discharging test:
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- Discharging with constant C-rates: a variable resistor is connected (for adjustment to vari-
able C-rates, that is to reach discharge current at 0.25 C, 0.17 C, and 0.09 C respectively)
with the battery. Consequently, the voltage and the discharge current are measured
after every 5 min by using a clamp meter. After 3.05, 5.41, and 10.25 h, respectively
(corresponding to the associated C-rate), it reaches the lower permissible limit of
discharge voltage (cut-off voltage) 10.10, 10.37, and 10.39 V each. Afterwards, the
discharge resistance is disconnected. The discharge resistance equaled Rdisch = [0.96–1]
Ω, [1.42–1.50] Ω, and [2.69–3] Ω, with the ambient temperature T = 26.7◦, 28.6◦, and
26.1 ◦C.

- Discharging with variable C-rates: the variable resistor is connected (for adjustment to
variable C-rates discharge current 0.23 C, 0.115 C, and 0.057 C, respectively. These
values of C-rates correspond to having three resistances connected in parallel. The
value of each resistance is 3.225 Ω. During the first period, the discharge is performed
at 0.23 C until 1.11 h. After that, the first resistance is disconnected, then the dis-
charge continues at 0.115 C until 4.44 h. At this point, the second resistance is also
disconnected. The discharge is pursued then with 0.057 C until 7.23 h, and at this
moment, even the last resistance is disconnected, and the experiment is stopped. The
battery voltage and discharging current are measured every 5 min with a clamp meter
during the whole experimental session. After 7.23 h, the end of discharge is reached
(cut-off voltage) which is equal to 10.39 V. At this point, the discharge resistance is
completely disconnected. It is also worth mentioning that the ambient temperature
equaled T = 27.1 ◦C (approx.) during the experimental session.

6. Results and Discussion

As depicted in Figure 6: the discharge voltage at 0.25 C, 0.17 C, and 0.09 C decreases
to 10.10 V, 10.37 V, and 10.39 V, respectively, during 3.05, 5.41, and 10.25 h. These values are
called the cut-off voltages, i.e., when the battery discharge voltage has reached the lowest
permissible value. At this point, the battery is disconnected to avoid permanent damage.
The 10.10 V, 10.37 V, and 10.39 V values are not indicative of the total discharge (SOC = 0%)
but correspond to the minimum SOC value in the vicinity of 20%, also known as depth of
discharge (DoD) [49].

Figure 6. The discharge voltage vs. time at 0.25/0.17 and 0.09 C.

It can be observed that the experimental discharge curve is very close to the simulated
one, except for the sensor’s noise and deviation in the collected points. This difference
shows that battery power varies according to the operating conditions and user param-
eters (charging mode, ambient temperature, discharge current, etc.). It should be noted
that the manufacturer-provided data normally correspond to ideal conditions (T = 25 ◦C,
Idisch = 13 A, 8.84 A, and 4.68 A, respectively) and the battery’s aging status (SOH = 100%).
which means a new battery. So, during the experiments, it is found that the 03 sets
(datasheet, simulated, and experimental) are close, this indicates that the battery model
used shows a very high precision in the discharge phase of the battery.
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Figure 7 depicts the results corresponding to estimated SOC evolution with dis-
charging at fixed C rates. It can be observed that the battery is initially fully charged
(SOC0 = 100%) and that the battery charging status decreases to a minimum value
(SOCmin = 20%) after 3.05, 5.41, and 10.25 h, respectively. This value must not exceed to
prevent the battery from being permanently damaged, as depicted in [50] for the appli-
cation of hybrid electric vehicles. The straight line is the SOC curve calculated by the
Coulomb counting estimator, i.e., the battery is discharged at a constant discharge cur-
rent (Idisch = 13 A, 8.84 A, and 4.68 A, respectively). This approach facilitates the battery’s
SOC evolution over the entire discharge cycle (3.05 h, 5.41 h, and 10.25 h, respectively).

Figure 7. The SOC as a function of time at fixed C rates.

All the tests evidently reflect that the experimental SOC and the simulated ones are
very close. This shows that this technique is very accurate and useful thanks to its simplicity
of implementation and calculations. Additionally, it is easy to implement, since it only
exploits the data received from current and voltage sensors.

Figure 8 exhibits the result of battery discharge at variable C rates using a handmade
variable resistor (three equal resistors connected in parallel), where the total equivalent
resistor equals Req1 = 1.075 ohms. At the beginning, all resistors are connected and a
discharging rate of 0.23 C is applied from [0 to 1.11 h]. Then, one resistance is disconnected
from the total equivalent resistors to obtain Req2 = 2.15 ohms, corresponding to a discharge
rate of 0.115 C from [1.11 to 4.44 h]. Finally, a second resistance is disconnected, which
means that only one resistance is kept connected, with a value of 3.225 ohms, corresponding
to a discharging rate of 0.057 C from [4.44 to 7.23 h].

Figure 8. The discharge current as a function of time at variable C-rates.

Therefore, it is noticed that the current is constant during each C-rates of the discharg-
ing range. This is a safe and effective method. Where the minimum value of discharging
current is 2.90 A, which corresponds to a cutting voltage of 10.39 V.

Figure 9 illustrates that with the applied variable C-rates, the discharge voltage de-
creases to 10.39 V over the period of 7.23 h. From the presented curve, it can be noticed
that the three ranges express the discharging process with the different C-rates: 0.23 C,
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0.115 C, and 0.057 C, respectively. The two curves (simulated and experimental) are almost
identical, exhibiting that the generic battery presents the real behavior of the battery pack
during the discharging process with very high precision.

Figure 9. The discharge voltage as a function of time at variable C-rates.

The evolution of estimated SOC under the influence of variable C rates is depicted in
Figure 10. It can be observed that the battery is initially fully charged (SOC0 = 100%) and
the battery charging status decreases after 7.23 h to its minimum threshold (SOC = 20%),
corresponding to the recommended value of the lead–acid battery (SOCmin = 20%). Again,
this value must not exceed to prevent the battery from being permanently damaged.
Furthermore, the theoretical estimation matches the experimental findings.

Figure 10. The SOC as a function of time at variable C rates.

The SOC curve calculated by the Coulomb counting estimator is nearly a straight line
(in their specific regions), i.e., the discharging test is performed individually under variable
discharge currents for sustained periods (Idisch = 12 A, 6 A then 3 A, respectively). It can be
observed that the SOCexperimental and SOCsimulated are almost the same, which shows that
this technique is accurate and useful.

Finally, Figure 11 exhibits the two curves (datasheets and simulation), depicting
that the initial value of the battery charge current is equal to 5.5 A and 5.03 A. It can
be noticed that the charging current stays constant for 3.50 h at a value of 5.5 A in
datasheet/simulations, while 5.03 A in the experimental curve. Then the value decreases
until 0.29 A in all the cases whether experimental or simulations. One can distinguish two
areas on the curve where the first is from [0 to 3.20] h in the experimental curve and from
[0 to 3.50] h in the simulation and datasheet curves. These curves are the representation of
the charging process via constant current (CC) and by a constant voltage (CV). The only
difference between the three curves (datasheet, simulation, and experimental) is in the
zone of charge by a constant current and exactly in the initial value given, wherein the
experimental test, it is set to a value of 5.03 A only (which is the maximum available power
supply value). In contrast, the value of the datasheet and simulation is 5.5 A.

94



Energies 2022, 15, 8172

Figure 11. The charging current as the function of time.

Figure 12 indicates the fact that the battery voltage at the start of this test is set to
11.6 V in the three curves (experimental, datasheets, and simulations). Moreover, the initial
charge condition is SOC0 = 20% [44]. It can be observed that the charge voltage rises rapidly
up to 14.7 V and stabilizes at this value, i.e., two curve areas are distinguished where the
first is from [0 to 3] h in the experimental/datasheet curve, and from [0 to 2.5] h in the
simulated curve, intended for the constant current (CC) charging mode [45]. The second
distinguishable area is from [3 to 20] h intended for the charging mode using a constant
voltage (CV) mode.

Figure 12. Charging voltage as the function of time.

The only difference between the three curves (experimental, datasheet, and simulated)
is in the zone of charge by a constant current (the duration of this phase is different as in the
datasheet/experimental is 3 h and in simulations is 2.5 h). This is because the simulation
parameters in the discharge phase are the same as for the charging phase. After all, the
charging phase is dependent on numerous factors such as charging mode, initial SoC,
ambient temperature, and mode of charging. This leads to a charge period of 24 h when
the end-of-charge current is equal to 0.29 A to prevent overcharging the battery by turning
off the DC power supply.

In Figure 13, the SOC0 equals 20% at time t = 0 and increases with the relation of
charging up to 100%, i.e., the battery is fully charged.

Figure 13. The SOC as function of time.
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There are two parts in the curve, from [0 to 3.5] h is the first portion, which corre-
sponds to the constant current charging mode. It has almost a linear shape. This part is
characterized by the rapid variation of the SOC as a time-dependent variable for instance at
3.5 h SOC (experimental) = 85%, SOC (datasheet) = 83% and SOC (simulation) = 80%. The
second part is in the form of a nonlinear curve line. It corresponds to the charging mode
at a constant voltage; it is characterized by the slow variation of the SOC. For example,
during [3.5–24] h, the SOC (experimental) increases by 15%, SOC (datasheet) increases by
17%, and SOC (simulation) increased by 20%.

Hence, it can be said that the battery charge capacity is dependent on the charging
mode, it is faster in CC mode and slower in CV mode, which is why the new charger is
faster to gain more time, especially in the lead–acid batteries.

From Figure 13, the Coulomb counter approach provides a fair depiction of SOC
during the entire charge; as a result, one can say that this method is independent of the
battery’s model and technology.

7. Conclusions and Perspectives

This study presents a Coulomb counting technique-based battery state-of-charge
estimator with constant and variable discharging current profiles for a real battery pack in
a real-time environment. The following conclusions are drawn from this study:

In the charging mode, the battery model used in the MATLAB Simulink is less efficient.
Regardless, it is widely used and has excellent battery economy when discharged at a
constant current. That is the reason why it is also included for the sake of comparison.

The only short-coming of the Coulomb counting method is the difficulty of estimating
the initial SOC. High-precision estimation sensors (for voltage and current) are also needed,
so these instruments need to be periodically modified.

Lead–acid batteries are only suitable for short-range vehicles. They remain the cheap-
est form of battery and are likely to be used for these purposes. A lot of useful and
small-scale EVs that do not require a long-range can be made via lead–acid batteries.

Most commercial-scale EVs require an extended traveling range; therefore, modern
Li-ion batteries can serve the purpose. The proposed SOC estimator is expected to provide
quick and reliable information, which can be then integrated into energy management.

It is concluded that constant current discharge is quicker, which is the approach used
for fast charging, and it is shown in this work that the efficiency of the generic battery
model is competitive, as its findings are close to experimental work. The Coulomb counter
approach is useful for estimating the battery SOC; also, in this case, the discharge with
variable discharge currents is always correct.

By using simple calculations and hardware requirements, the proposed method can
therefore be systematically implemented in any portable devices as well as electric cars. In
this research, the ampere-hour integral method is validated experimentally via a domestic
lead–acid battery. It is worth mentioning here that the proposed method is generic in its
implementation. Given that, the implementation and application of modern Li-ion batteries
are reserved for future studies.
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Abbreviations

SOC State of charge
Ah Ampere hour
OCV Open circuit voltage
AC Alternative current
SOH State of health
CC Constant current
CV Constant voltage
CN Nominal capacity of the battery
η Coulomb efficiency
I(τ) The current versus time (negative during charge and positive during discharge)
Vbatt The battery voltage (V)
E0 The constant battery voltage (V)
K The polarization constant (V/(Ah)) or polarization resistance (Ω)
Q The battery capacity (Ah)
it =

∫
Idt: actual battery charge (Ah)

A The exponential voltage (V)
B The exponential capacity (Ah) − 1
R The internal resistance (Ω)
I The battery current (A)
i* The filtered current (A)
Idis The value of the current of discharge
SOC0 Initial state of charge
SOCmin Minimum state of charge
SOCexp Experimental state of charge
SOCth Theoretical state of charge
Vchint Initial charge voltage
Vchend End charge voltage
Tchsum Simulation charge time
Vdisint Initial discharge voltage
Vdisend End discharge voltage
Tdissum Simulation discharge time
VRLA Valve regulated lead–acid battery
BMS Battery management system
VCU Vehicle control unit
SOP State of power
RUL Remaining useful life
DOD Depth of discharge
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Abstract: The application of Lithium Metal Batteries (LMBs) as secondary cells is still limited due
to dendrite degradation mechanisms arising with cycling and responsible for safety risk and early
cell failure. Studies to prevent and suppress dendritic growth using state-of-the-art materials are in
continuous development. Specific detection techniques can be applied to verify the internal condition
of new LMB chemistries through cycling tests. In this work, six non-invasive and BMS-triggerable
detection techniques are investigated to anticipate LMB failures and to lay the basis for innovative
self-healing mechanisms. The novel methodology is based on: (i) defining detection parameters to
track the evolution of cell aging, (ii) defining a detection algorithm and applying it to cycling data, and
(iii) validating the algorithm in its capability to detect failure. The proposed methodology is applied
to Li||NMC pouch cells. The main outcomes of the work include the characterization results of the
tested LMBs under different cycling conditions, the detection techniques performance evaluation,
and a sensitivity analysis to identify the most performing parameter and its activation threshold.

Keywords: lithium metal batteries; dendrites; detection technique; self-healing

1. Introduction

The continuous demand for electrical storage systems with ever-growing energy
density has focused research and innovation on the development of batteries that can pro-
vide superior performance over the Lithium Ions Batteries (LIBs), also called beyond-LIB
technologies [1–3]. A detailed review about cathode and anode materials for developing
state-of-the-art and future battery technologies is given by Divakaran et al. in [4], highlight-
ing the viable materials to be used for research and development of new LIBs. Among
many beyond-LIBs, rechargeable Lithium Metal Batteries (LMBs) have been extensively
researched in recent years for their valuable properties [5,6]. Lithium metal is an ideal an-
ode material for its extremely high theoretical specific capacity (3860 mAh/g), low density
(0.59 g/cm3) and the lowest negative electrochemical potential (−3.05 V vs. standard
hydrogen electrode). However, the applications of secondary LMBs have always been
limited due to one main degradation mechanism: the dendrite growth leading to safety
risk and early cell failure [7–10]. Whatever may be the testing conditions (e.g., current
rate, voltage range, temperature), LMB degradation starts from the Beginning of Life
(BoL) [11]. Dendrite nucleation takes place from the inhomogeneities of the Solid Elec-
trolyte Interphase (SEI) which represents a high conductive pathway for lithium ions. The
concentrated lithium ions are reduced causing fractures in the SEI layer due to volumetric
expansion. These fractures represent suitable sites for deposition of lithium metal forming
the dendrite [12,13]. The high conductivity of the initial deposition causes the dendritic
structure to continuously grow assuming various morphologies which depend on cycling
conditions [11,14]. In [15] Frenck et al. classified these morphologies in three main groups:
(i) whiskers, which are long and thin needle-shaped lithium metal frames growing from
the anode and covered with the SEI layer; (ii) mossy lithium, which corresponds to an accu-
mulation of solid lithium cluster with holes and internal cavities filled with electrolyte and
characterized by a large interface surface area that increases reactions with the electrolyte;
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and (iii) fractal dendrites, which are thin, highly ramified structures growing directly from
a layer of mossy lithium. The three listed morphologies occur in different testing conditions
or after different timing that is always strictly correlated to the specific components and
design of the cell under test [15]. Knowing the effects of these morphologies contribute
to understanding LMB degradation. During the cell’s early cycles, dendritic deposition is
mossy and then progresses in a fractal configuration when the lithium ion concentration
reaches zero value at the interface between the anode and the electrolyte [11,15]. The transi-
tion between mossy and fractal dendrites is described by Sand’s principle and occurs at
the so-called Sand’s time [16]. This transition time depends on the applied current density
and on the total amount of exchanged capacity. For instance, large current density leads to
a fast-growing fractal dendrite structure that may penetrate the separator and may cause
hazardous internal short circuits [17,18]. In addition to the short circuit risk, during the
discharging phase, lithium metal is mainly stripped from dendrites causing the detachment
of dendrite sections and resulting in electrically isolated inactive dead lithium [19,20]. Chen
et al. deepened the dead lithium impact on the mass transport in LMBs, proving that the
growth of a dead lithium layer, characterized by a small lithium ions diffusive coefficient, is
associated with an increase of the electrode overpotential which results in an arcing effect
of the voltage shape profile [21]. At later cycles, as the dead lithium layer thickens and
the overpotential becomes more significant, the cell begins to be cycled between a much
shallower voltage range, preventing a complete lithiation or delithiation of the cathode,
thus resulting in cell capacity fade [22].

Studies to prevent and suppress the dendrite growth mechanisms are under continuous
development and are classified as a self-healing method [23]. The most recent promising
solutions involve the use of optimized electrolytes with protective additives, the modulation of
lithium metal anodes and the introduction of piezoelectric separators [24–27]. Characterizing
new LMB chemistries through the application of a detection technique becomes fundamen-
tal to study their behavior and to determine when dendritic degradation is going to occur
in order to act accordingly. An extensive review about existing and emerging detection
techniques for LMB degradation is given by Paul et al. in [28]. These detection techniques
are classified into four groups, depending on their nature and application method: elec-
trochemical in situ methods, mechanical methods, spectroscopic operando methods and
chemical ex situ methods. Electrochemical in situ methods are the most promising for BMS
application [29,30]. However, existing works on LMBs degradation detection are all at the
development stage and have only investigated the possibility to track phenomena but not
to concretely use that information to trigger actions [28].

This work analyzes and combines non-invasive detection techniques to present a
novel methodology to detect LMBs degradation, laying the basis for the concreate appli-
cation of LMBs self-healing mechanisms triggered by the BMS. The work is structured as
follows. Section 2 shows the six selected electrochemical characterization techniques and
the innovative methodology developed to apply the detection parameters as degradation
identification tools. Section 3 presents the details of the experimental procedure, the most
relevant results of the tests and the application of the detection techniques for the determi-
nation of approaching degradations. Section 4 discusses and identifies the most performing
detection parameter based on an extensive sensitivity analysis.

2. Materials and Methods

This section includes an overview of non-invasive characterization techniques for the
detection of degradation mechanisms in LMBs and the developed methodology to bench-
mark and validate the detection parameters extracted by the characterization techniques.
The methodology has been applied to lithium metal pouch cells produced in the framework
of the Horizon 2020 project HIDDEN [31]. The cells consist of Lithium Nickel Manganese
Cobalt Oxide (LiNi0.5Mn0.3Co0.2O2) as the active cathode, coated on top of a 15 μm thick
aluminum current collector, and a copper foil double coated with lithium metal mixed with
a small amount of aluminum as an anode material (99.7% Li and 0.3% Al) and a monolayer
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polypropylene separator of 20–40 μm thickness. Commercially available state-of-the-art
electrolyte for lithium metal anodes is added. A total of 5 cathode foils and 6 anode foils
alternated with 12 separator layers are stacked into the pouch cell. The stack is prepared
under a control environment in a glovebox and filled with the electrolyte before sealing
in a four-layer pouch foil of PET, oriented nylon, aluminum and polypropylene housing.
The cells have been produced in three batches at different times, with an average weight
of 11 g, a theoretical capacity of 670 mAh and an estimated gravimetric energy density of
225 Wh/Kg.

2.1. Detection Techniques

As mentioned in the introduction, electrochemical non-invasive techniques that do
not require cell modifications or major add-ons in a system are selected here for possible
application in real BMS. Aging tracking methods, already verified for LIBs, are analyzed to
select the most relevant techniques for the application with LMBs.

Incremental capacity (IC) is used as an effective method to analyze the aging mecha-
nisms based on the discrete derivative of the cell’s voltage with respect to the exchanged
capacity dQ/dV [32–35]. Voltage plateaus during charging and discharging processes,
corresponding to specific electrochemical phase transitions, are converted into clearly iden-
tifiable peaks on the IC curve as shown in Figure 1a. Several works proved that Loss of
Active Anode Material (LAM), responsible for capacity fade and limited cyclability, leads
to peak intensity reduction and peak position variation in the dQ/dV curve [36–40]. Since
the formation of dead lithium causes detachment and isolation of active lithium metal, its
development is directly detectable on the IC profile. Similarly to IC, Differential Voltage
(DV) analysis is an investigation technique given by the inverse derivative dV/dQ [41–43].
Therefore, the DV curve provides information similar to the IC curve but with a different
representation (peaks of IC are valleys of DV). Depending on the specific application, it
may be more appropriate to use the IC or the DV profile.
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Figure 1. Characterization techniques: (a) Incremental Capacity (IC) during discharging phase;
(b) Coulombic Efficiency (CE); (c) EIS spectrum; (d) voltage profile with mid-voltage (M-V) and
cycle-time (C-T).
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Coulombic Efficiency (CE) is a widely used technique exploited to monitor the degra-
dation rate inside a cell [28,33,44–46]. The CE of a cell is defined as the ratio between
the delivered capacity during the discharging and during the charging processes of a
given cycle; an example of its trend is shown in Figure 1b. In LMBs, the formation of
inactive dead lithium leads to a low CE. In [47], C. Fang et al. experimentally demonstrated
that the amount of unreacted metallic lithium shows a linear relationship with loss of
CE, whereas the lithium ions compound concentration is nearly constant during the CE
reduction, implying that the CE decrease in LMB is led by the thickening of the isolated and
unreacted lithium layer. Coulombic Efficiency Determination (CED) requires a dedicated
test, consisting of continuous cycling at full Depth of Discharge (DoD). In addition, a high
sampling rate is required to obtain accurate and reliable CE values, making this technique
complicated to be applied and integrated into real BMS systems.

Electrochemical Impedance Spectroscopy (EIS) is a powerful characterization technique
consisting of the application of a sinusoidal current signal and measuring the voltage
response of the cell at different frequencies to compute the impedance [35,48–53]. Therefore,
in BMS applications, a dedicated hardware is required for its application. The resulting
impedance curve is normally represented in the Nyquist plot, as shown in Figure 1c and is
characterized by three frequency regions [48]: high-frequency region (>1 kHz) including
the inductive and ohmic behavior, mid-frequency region (0.1 Hz–1000 Hz) associated to
the resistive-capacitive behavior of the charge-transfer processes and low-frequency region
(<0.1 Hz) related to the capacitive behavior of the diffusive processes. As observed in [35],
EIS spectra throughout cycling are affected by Loss of Lithium Inventory (LLI), that is
the consumption of lithium ions by parasitic reaction (SEI growth) and decomposition
reactions of the SEI or the electrolyte and LAM processes. EIS has been applied to LMBs [50],
showing a large rise of the mid-frequency arch in both real and imaginary impedances and
an increase of the ohmic resistance. Impedance evolution during cell aging can be tracked
by fitting the curve with Equivalent Circuit Models (ECMs) and by tracking the impedance
value of specific parameters (e.g., the maximum of the arch, the width of the arch and the
minimum before the tail) [54,55].

Mid-Voltage (M-V) and Cycle-Time (C-T): As a consequence of the dead lithium layer
thickening, an increasing electrode overpotential is introduced, leading to an arcing in the
voltage profile during the charging process [21]. Furthermore, the increasing overpotential
causes the voltage to reach the set maximum and the minimum limit values faster in time
during cycling. The evolution of the voltage shape profile (M-V) is recorded by measuring
the voltage value at the halfway point in time during charging, as represented in Figure 1d.
The time duration of a cycle is then adopted to evaluate the aging state of the cell and the
ongoing impact of dead lithium with the C-T parameter.

Table 1 summarizes and ranks the listed characterization techniques depending on
different criteria. EIS can be performed in the shortest time. All detection techniques can
be implemented into embedded systems (e.g., BMS), but both EIS and CE are considered
more complex measurement techniques. IC/DV and EIS parameters allow for the detection
of degradation and discriminate the degradation modes (e.g., loss of active material, loss
of lithium ions). Mid-Voltage and Cycle Time parameters only allow us to detect the
accumulation of dead lithium without more details. Finally, some of the listed techniques
allow us to calculate Li plating and stripping rates. These values are useful to quantify the
cell degradation in more detail.

2.2. Methodology

The procedure developed to benchmark the detection techniques is schematically rep-
resented in Figure 2, including four steps: cell testing, detection parameters identification,
thresholds setting and validation. These steps will be described in the next paragraphs.
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1. Cell testing
2. Detection 
parameter 

identification

3. Thresholds 
setting 4. Validation

Figure 2. Schematic representation of the developed methodology.

Table 1. Evaluation of measurement and detection characteristics of the techniques analyzed for LMB
degradation detection.

Technique Length Complexity Applicability Degradation Modes
Dendrite

Quantification

IC ��� ��� ��� ��� ���
DV ��� ��� ��� ��� ���
CE ��� ��� ��� ��� ���
EIS ��� ��� ��� ��� ���

M–V ��� ��� ��� ��� ���
C–T ��� ��� ��� ��� ���

2.2.1. Cell Testing

A scheme of the cell testing protocol is represented in Figure 3. The procedure is
divided in three main steps:

• Formation and characterization: The formation process for the initial SEI layer estab-
lishment is performed via two full cycles at low C-rate. The characterization is based
on the Battery Capacity Determination (BCD)—a full charge and discharge cycle at
specific current rate—and EIS measurements.

• Cycling: consecutive charge–discharge cycles at specific C-rate and DoD.
• Diagnosis: The cell properties are checked regularly after a fixed number of cycles.

BCD is performed to obtain the cell’s updated capacity (i.e., SoH) and to compute
the IC, M-V and C-T characterization techniques. EIS in the frequency range of
10 kHz–10 mHz with C/50 AC current excitation are performed at different OCVs
(i.e., SoCs).

 

Figure 3. Schematic representation of the cell testing protocol.

After the initial characterization step, cycling and diagnosis are lopped until the cell
reaches the End of Life (EoL), represented by a SoH lower than 70%. The only exception is
represented by the Coulombic Efficiency protocol, which consists of continuous cycling
without interruptions until the EoL of the cell.

2.2.2. Detection Parameters Identification

The experimental results collected during the cell testing are analyzed to define the
detection parameters as reported in the last column of Table 2:

• IC: The variation of the peak intensity during the discharge phase constitutes a
parameter to follow the degradation of the cell. Generally, low current rates during
the diagnosis cycle are recommended to have the cell close to equilibrium condition
and thus obtain better parameter results. Low rates are preferable (~C/20), but it is
proven that even at higher rates (~1C), relevant aging signs are still identifiable [39].
Since the information of the DV and IC profile are similar, only IC analysis is adopted
in this study.
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• CE: The CE technique itself represents the detection parameter.
• EIS: Impedance spectra are tracked by recording specific impedance in the three

main frequency zones: the local maximum, the width of the mid-frequency semiarch,
and the local minimum before the diffusive tail. The resulting Zmax Zarch, and Zmin
represent suitable parameters to track the impedance evolution as the cell faces aging
processes. In this study, the imaginary part of Zmax and Zmin, is used.

• M-V and C-T: themselves represent the parameters for detection. Both the parameters
are retrieved from full diagnosis cycles at regular intervals during testing.

Table 2. Description of characterization techniques and overview of selected detection parameters.

Technique Measurement Protocol Elaboration (If Present) Detection Parameter

IC Full charge or discharge IC = dQ
dV Peak intensity

CE Full cycle CE = Qdisch
Qcharge

CE value

EIS EIS Zarch= Zmin − Zohm Zarch, Zmax_im, Zmin_im

M–V Full charge Mid − voltage = Vcharge(t =
tcharge

2 ) M-V

C-T Full cycle Cycle time = tend − t0 C-T

2.2.3. Thresholds Setting

Through the application of the above presented techniques, the detection parameters
are extracted and tracked. Figure 4a exemplifies a parameter variation with respect to its
initial value. The parameters usually exhibit small variations between consecutive diagnos-
tic assessments, whereas large and rapid changes occur at later cycles when degradation
processes become more relevant. A threshold is set to identify when the transition between
the low and high degradation rate occurs:

Δp = pi − pi − 1 > [Threshold] (1)

where Δp is the difference between the actual parameter value pi and its previous point
pi − 1. If a threshold is exceeded during testing, as represented at the check n.3 of Figure 4a,
a warning signal is triggered to report an upcoming degradation.

  
(a) (b) 

Figure 4. Detection algorithm: (a) application of thresholds between consecutive measurements of
detection parameters; (b) validation procedure.

2.2.4. Validation

The validation procedure is then applied to verify whether the warning signal resulting
from exceeding a specific parameter threshold truly represents a condition preceding a
degradation of the LMB. The process is based on two State of Health (SoH) checks at the
triggering event:
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• SoH range: At the time when the trigger is activated, the SoH of the cell must be between
two limits. This is performed to avoid too early or too late self-healing activation.

• SoH variation: The variation between the SoH of the cell at the time when the trigger is
activated and the SoH at the following diagnosis step is used to check if the parameter
is detecting and preventing a fast degradation.

Figure 4b shows a graphical representation of the validation procedure for the generic
parameter triggered at the check n.3. The fulfillment of both criteria implies that the
detection parameter with the selected threshold is suitable for the LMB failure detection.

3. Results and Discussion

Characterization and cycling tests were performed at the Sustainable Energy Center
laboratories of CSEM in Neuchâtel, Switzerland with a BioLogic BCS 815 [56] battery
tester (±0.01% FSD accuracy on the voltage, ±0.015% FSD accuracy on current, for each
available range and EIS capability from 10 kHz to 10 mHz). The cells were placed inside a
thermostatic chamber Angelantoni ATT-DM340 [57] to prevent large temperature variations.
Table 3 collects the main characteristics of the tests performed on the three batches, under the
testing protocol shown in Figure 3: (i) number of cycles performed, the C-rate and voltage
range during formation; (ii) capacity determination and EIS during first characterization,
(iii) C-rate, DoD and number of cycles applied during cycling phase; and (iv) capacity
determination and EIS during the diagnosis phase. In short, the different batches focused
on different aspects:

• 1st batch (C-rate focused): The cells are cycled at different C-rates and at full cell
capacity (100% DoD), performing a complete diagnosis (BCD+EIS) every 10 cycles.

• 2nd batch (DoD focused): The cells are cycled at reduced DoD, keeping the same C-rate
throughout the whole test. EIS during charging are performed every equivalent cycle.

• 3rd batch (hybrid): The tests alternate cycling phases at reduced DoD and full diagnosis
every five equivalent cycles.

Table 3. Testing protocol specifications for the three different batches of cells.

Formation 1st Characterization
Cycling

Diagnosis
Cell ID C-Rate DoD n. of Cycles

1st batch 3 cycles, C/10,
3–4.3 V

BCD at C/10,
EIS at different SoCs

5 C/10 100% 10

BCD at C/10,
EIS at different SoCs

6 C/5 100% 10

7 C/2 100% 10

8 1C 100% 10

10 C/10 100% - CED

11 C/5 100% - CED

12 C/2 100% - CED

2nd batch 2 cycles, C/20,
3–4 V EIS at 3.8V

15 C/20 20% 5

EIS at 3.8 V
21 C/20 50% 2

22 C/20 80% 1

24 C/20 100% 1

19 C/10 100% 1

17 C/20 100% - CED

3rd batch 2 cycles, C/20,
3–4 V

BCD at C/20,
EIS at different SoCs

36 C/20 20% 25

BCD at C/10,
EIS at different SoCs

29 C/20 50% 10

38 C/20 80% 5

37 C/20 100% 5
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The cells that performed Coulombic Efficiency Determination are labelled as “CED”
in the column diagnosis (first batch and second batch).

3.1. Testing Results

When analyzing the most relevant results, Figure 5a,b show the SoH evolution re-
trieved from the BCD diagnosis as a function of the equivalent cycles, respectively, for the
1st and the 3rd batches. EIS spectra evolution (Figure 5c) shows a great rise both in real and
imaginary parts as the cell ages. Similarly, the IC profiles (Figure 5d) show a main peak
around 3.7 V that consistently decreases its intensity during aging and shifts rightward
between the third and fourth diagnosis steps.
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Figure 5. Test results: (a) SoH evolution profiles of the 1st batch cells; (b) SoH evolution profiles of
the 3rd batch cells; (c) EIS spectra evolution of cell ID6 at 3.9 V; (d) IC profiles of cell ID29.

Figure 6 shows the trends of the detection parameters listed in Table 2 for the 3rd
batch cells. For instance, Figure 6a shows the IC peak intensity variation batch, Figure 6b
represents the M-V parameter variation and Figure 6c shows the evolution of Zarch. All the
parameters are evaluated with respect to their initial value at BoL. The parameters follow a
common trend characterized by a sudden increase at the 12th equivalent cycle: this growth
is representative of a significant change in cell behavior, and it corresponds to the strong
SoH fade represented in Figure 5b.

Lastly, CED is analyzed in Figure 7a,b. The higher the current rate is, the earlier the
steep discharge capacity fade occurs, and consequently, the earlier CE drops to values
lower than 100%. The irregular trend of cell ID12 suggests that a current rate of C/2 is too
high for the cells under investigation.
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Figure 6. Examples of detection parameters trends over equivalent cycles for the cells of the 3rd
batch: (a) IC peak intensity; (b) M-V, (c) Zarch.
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Figure 7. CED test results: (a) evolution of discharge capacity over equivalent cycles with respect to
the initial value; and (b) CE trends of the tested cells over the equivalent cycles.

Overall, the collected parameters show clear and distinct signals of cell degradation,
i.e., internal physical changes. Given the arcing effect observed in cells voltage profiles
during cycling, the degradation is mostly attributed to an accumulation of dead lithium [21].
This phenomenon causes a sudden and steep variation of the detection parameter occurring
just after an approximately steady condition.

3.2. Triggering Thresholds and Detection Parameters Validation

As per the procedure detailed in Figure 2, for each of the selected parameters, a suitable
threshold has been empirically defined as variation between two consecutive diagnosis
steps. Table 4 shows the selected values. In the case of M-V and C-T, a second limit has
been introduced to improve reliability of these indicators. The detection techniques with
the selected thresholds have been applied to the three batches, with the most representative
results reported in Figure 8.

Table 4. Triggering thresholds chosen for the detection parameters investigated.

Parameter Threshold Values

Mid-Voltage (M − Vi) – (M − V i−1) > 1.25%
(M − Vi) – (M − V 0) > 2.5%

Cycle Time (C − T i) – (C − T i−1) < 4%
(C − Ti ) < 90%

Incremental Capacity Peak_Intensityi–Peak_intensityi−1 > 5%
Zmax_im Zmax_i – Zmax_i−1 > 15%
Zmax_im Zmin_i –Zmin_i−1 > 15%

Zarch Zarch_i – Zarch_i−1 > 15%
Coulombic Efficiency CEi – CEi−1 > 1.5%
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Figure 8. Detection results with triggering highlighted in yellow for: (a) cell ID6 of the 1st batch
cycling at C/5; (b) cell ID38 of the 3rd batch cycling at 80% DoD and C/20.

Regarding the 1st batch experiment, Figure 8a shows that the degradation detection
for cell ID6 is triggered in proximity of the SoH slope change for all the tested techniques.
Voltage profile-based parameters (i.e., IC, M-V, C-T) showed an earlier detection than
impedance-based ones, with the triggering event at the 13th EqC. Similar results were
obtained for cell ID38 (third batch), as shown in Figure 8b, with some early triggering
by the Zmax parameter around the eighth cycle. Analogously, the detection parameters
have been evaluated for all the other tested cells. The degradation detection is validated
whenever the two criteria presented in Section 2.2.4 are fulfilled, specifically: (i) 70% <
SoHi < 90% and (ii) SoHi + 1 − SoHi ≥ 5%. Table 5 shows the validation results for the three
batches. Unfortunately, the 1st batch has been affected by the limited number of diagnostic
phases in the tests. In the case of the 2nd and 3rd batches, M-V, C-T and IC peak intensity
parameters fulfill both validation criteria in almost all the testing conditions suggesting a
good performance of the parameters to detect degradation.

Table 5. Validation procedure results for the three batch tests. The columns correspond to the testing
conditions and the rows to the detection parameters. The legend is given in the lower part of the table.
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3.3. Sensitivity Analysis

A sensitivity analysis was applied to identify the best values for the parameters’ thresh-
olds (Table 6). Ten different thresholds values were tested for each detection parameter. The
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sensitivity analysis was applied only to the 2nd and 3rd batches, given the few diagnosis
points available in the 1st batch. The thresholds are evaluated separately, and the detection
Success Rate was computed, i.e., the ratio between the number of cases where the SoH
validation criterium was fulfilled over the total number of tested cases.

Table 6. Success rate results for SoH range and SoH variation validation procedures with the
parameter thresholds selected for the sensitivity analysis application.

Zmax_im [%]
Thresholds 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20% 22.5% 25%

SoH range 22% 22% 22% 33% 33% 33% 22% 44% 22% 22%

SoH var. 44% 44% 56% 56% 56% 56% 56% 78% 67% 78%

Zmin_im [%]
Thresholds 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20% 22.5% 25%

SoH range 22% 22% 22% 44% 56% 67% 67% 67% 56% 33%

SoH var. 44% 44% 44% 67% 78% 89% 89% 89% 100% 78%

Zarch [%]

Thresholds 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20% 22.5% 25%

SoH range 22% 33% 33% 33% 44% 44% 44% 56% 33% 22%

SoH var. 44% 44% 44% 56% 67% 67% 67% 89% 78% 67%

M-V [%]

Thresholds 0.1% 0.25% 0.5% 0.75% 1% 1.25% 1.5% 2% 2.25% 2.5%

SoH range 33% 33% 44% 67% 67% 67% 56% 44% 44% 44%

SoH var. 44% 44% 56% 78% 78% 78% 67% 78% 67% 67%

C-T [%]

Thresholds 1% 1.5% 2% 2.5% 3% 4% 5% 6% 7.5% 10%

SoH range 33% 44% 56% 56% 78% 89% 100% 100% 100% 100%

SoH var. 56% 56% 67% 67% 78% 78% 78% 78% 78% 78%

IC [%]

Thresholds 0.25% 0.5% 0.75% 1% 2.5% 5% 7.5% 10% 12.5% 15%

SoH range 11% 11% 11% 11% 22% 56% 67% 67% 67% 56%

SoH var. 44% 44% 44% 44% 44% 78% 89% 100% 89% 67%

CE [%]

Thresholds 0.1% 0.25% 0.5% 1% 1.5% 2% 2.5% 3% 4% 5%

SoH range 25% 25% 25% 50% 50% 50% 50% 50% 50% 25%

SoH var. 0% 0% 25% 25% 75% 50% 50% 50% 75% 50%

The resulting Success Rates are reported in Table 6, respectively, for the SoH range
and the SoH variation validation criteria. In the first case, mid-range thresholds allow for a
higher success rate applying all the detection techniques. Too small or too high threshold
values are ineffective, respectively, with too early and too late detection. In the second case,
the results for the SoH variation are very similar, even though larger threshold values give
a higher success rate for most of the techniques.

Thresholds’ Success Rates for the two validation criteria were then combined by
retaining the lowest Success Rate value among the two applied criteria. The best threshold
value is defined as the one with the highest success rate for a specific detection parameter.
The results are listed in Table 7. Overall, the Cycle Time obtained the highest success rate
of 78%, the Mid-Voltage and IC peak intensity share the same success rate of 67%, whereas
the best performing impedance-based parameter is Zmin with a 67% success rate, followed
by Zarch and finally Zmax. Lastly, the CE parameter led to effective detection in only half of
the tested cases.
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Table 7. Sensitivity analysis results.

Parameter Threshold Value [%] Success Rate [%]

Zmax_im 20% 44%
Zmin_im 15% 67%
Zarch_im 20% 56%

M-V 0.75% 67%
C-T 3% 78%
IC 7.5% 67%
CE 1.5% 50%

4. Conclusions

This work introduced a structured methodology to test and validate parameters
that can be used to detect degradation in LMB and which should be non-invasive and
BMS-triggerable. In this way, a novel algorithm structure is presented to enable LMB
degradation tracking and to trigger self-healing mechanism activation by BMS. After a
review of the selected electrochemical techniques (Section 1), Section 2 presented the devel-
oped methodology which includes (i) the cycling and diagnosis of standard LMBs via six
testing protocols, (ii) the analysis on the selected detection parameters trends with respect
to capacity fade, (iii) the thresholds definition to trigger a self-healing action and (iv) the
performance validation in early detecting LMBs degradation. Section 3 presented the case
study where three batches of LMBs have been tested with different protocol focus: different
C-rates and 100% DoD, fixed C-rate and different DoD ranges. A sensitivity analysis was
performed to compute the Success Rate of each detection technique. On average, the
detection techniques successfully detected degradation in 60% of the cases and can be used
to anticipate LMB failures and to lay the basis for self-healing mechanism activation.

Limitations of this work can be analyzed on different levels. Validity of the results: The
obtained Success Rate was not directly linked to the ability to detect dendrite growth
formation. During the experimental phase, it was in fact not possible to discriminate
dendrite growth from dead lithium, the fast accumulation of which was confirmed by
post-mortem analysis. All the tested cells reached their EoL due to cycling failure and
not for short-circuit failure. Replicability of the results: The obtained Success Rates are very
dependent on the experimental campaign performed for two reasons: statistics, due to
the limited number of tested samples, and specificities of the tested cells (Li||NMC). The
developed methodology can be replicated to other LMB with different chemical formulation,
but different performance results should be expected. These results could also be influenced
by more severe or real use profiles testing conditions. Applicability of the results: The tested
detection techniques can be implemented in embedded systems to sense degradation and
trigger actions such as, for instance, self-healing methods, which is one of the possible
routes to make LMB exploitable in real applications. Some techniques are easier than others,
but in general all the non-invasive techniques proposed can be implemented in BMSs.
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Abstract: Due to their safety and high power density, one of the most promising types of all-solid-state
lithium batteries is the one made with the argyrodite solid electrolyte (ASE). Although substantial
efforts have been made toward the commercialization of this battery, it is still challenged by some
technical issues. One of these issues is to prevent the side reactions at the interface of the ASE and
the cathode active material (CAM). A solution to address this issue is to coat the CAM particles
with a material that is compatible with both ASE and CAM. Prior studies show that the lithium
niobate, LiNbO3, (LNO) is a promising material for coating CAM particles to reduce the interfacial
side reactions. However, no systematic study is available in the literature to show the effect of
coating LNO on CAM performance. This paper aims to quantify the effect of LNO coating on the
electrochemical performance of a nickel-rich CAM. The electrochemical performance parameters that
are studied are the capacity, cycling performance, and rate performance of the coated-CAM; and the
effectiveness of the coating to prevent the side reactions at the ASE and CAM interface is out of the
scope of this study. To eliminate the effect of side reactions at the ASE and CAM interface, we conduct
all tests in the organic liquid electrolyte (OLE) cells to solely present the effect of coating on the CAM
performance. For this purpose, 0.5 wt.% and 1 wt.% LNO are used to coat the LiNi0.6Mn0.2Co0.2O2

(NMC-60) CAM through two synthesizing methods. Consequently, the effects of the synthesizing
method and the coating weight percentage on the NMC-60 performance are presented.

Keywords: coating; wet process; nickel-rich NMC; lithium niobate; electrochemical performance

1. Introduction

In traditional commercial lithium-ion batteries (LIBs), the use of liquid electrolytes con-
taining flammable organic solvents creates potential safety issues [1]. All-solid-state lithium
batteries (ASSLB), on the other hand, utilize intrinsically safe solid-state electrolytes [2,3].
Hence, they are considered safe next-generation battery systems, especially for applications
in electric vehicles (EVs). There are several types of ASSLBs, depending on the type of solid-
state electrolyte used to make the battery. Among all types of solid-state electrolytes, the
argyrodite electrolyte (ASE), for example, Li6PS5Cl0.5Br0.5 (LPSCB), is considered one of the
most promising electrolytes due to its high ionic conductivity and special mechanical prop-
erties [4]. The high ionic conductivity makes this solid electrolyte suitable for applications
where high power density is required, for example, in hybrid electric vehicles (HEVs).

Significant efforts have been devoted toward the development of ASE-type ASSLBs
by researchers. However, some technical issues still need to be addressed before the
commercialization of these batteries. Some of these issues are (1) the interfacial resistance
between the ASE and the cathode active material (CAM) in the cathode that causes an
increase in the cathode ohmic resistance, consequently, the battery capacity decreases
and the heat generation in the battery increases, (2) the side-reactions at the interface of
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the ASE and CAM that causes fast battery degradation, and (3) the scalability for large-
scale manufacturing [4,5]. As proposed by Divakaran et al. [6] and other researchers, one
practical method to suppress side reactions at the interface of the ASE, such as LPSCB,
and CAM, such as lithium nickel manganese cobalt oxide (NMC) or lithium nickel cobalt
aluminum oxide (NCA), is to coat them with a material that is not only ionically conductive
and acts as a second electrolyte, but also it is compatible with ASE, CAM, conductive
material, and cathode current collector [6,7]. The interface between the coating material
and each of these materials is schematically shown in Figure 1.

Figure 1. Interface of the coating material with other components of the cathode. The red particles
are argyrodite electrolyte, the blue particles are the cathode active material, the black particles are the
electron conductive materials, the gray layer is the cathode current collector, and the green layers
are the coating (Reprinted/adapted with permission from Ref. [7]. Copyright year: 2022, copyright
owner’s name: Eman Hassan).

Several coating materials and procedures have been developed by researchers to
suppress the interfacial side reactions between the electrolyte and electrode active ma-
terials. However, the addition of a surface coating layer can negatively impact ionic
conductivity and decrease the cathode capacity and the rate performance [8]. Accord-
ingly, researchers have reported compounds containing lithium as viable candidates for
the coating of nickel-rich metal oxides because of their low impedance, increased ionic
conductivity, and increased chemical stability [9,10]. Some compounds that have shown
promise in resolving these issues are Li2ZrO3, LiAlO2, Li2TiO3, and LiNbO3 [11–14].
Lithium niobate, LiNbO3, (LNO) has been suggested as a suitable coating material in
several studies [3,14,15]. Due to its low detriment to conductivity [16,17], LNO has
recently proven to be a viable transition metal oxide contender for coating as it increases
Li+ mobility at the cathode surface. Additionally, due to its high thermal stability, LNO
allows for operation at high temperatures for long periods of time without negative
levels of dissolution. Despite the above-mentioned benefits, the effects of coating this
material, along with its synthesis methods and coating thicknesses, on the performance
of CAM still need to be systematically investigated.
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Various methods can be employed to deposit coatings on the surface of cathode active
material particles. Examples of methods that have been utilized by researchers for this
purpose are dry coating, atomic layer deposition (ALD), and wet mixing [18–21]. Among
these processes to coat NMC with LNO, the application of a relatively simple wet process
followed by heat treatment has shown merits, while ALD is also promising. The procedure
for this method is simple enough that issues of scalability for mass manufacturing can be
resolved. The initial step of the wet process method involves the dissolution of LNO precur-
sors in a solvent. Mereacre et al. [22] have shown that along with this solvent the addition
of hydrogen peroxide might improve the LNO coating through surface activation [22].
Li et al. [20] investigated the effect of LNO coating on nickel-rich NMC using a wet mixing
method followed by heat treatment. Their study into NMC structure and particle mor-
phology showed that LNO-coated NMC was very stable and presented a uniform coating
on NMC particles. By evaluating the effects of LNO coating on the chemical, structural,
and thermal stability of nickel-rich NMC, it was proven that LNO coating can improve
the electrochemical performance of the cathode, especially at elevated temperatures [20].
Furthermore, there is much flexibility regarding heat treatment of the coated NMC. As
shown by Kim et al. [21], the development of the LNO surface coating is contingent upon
the sintering temperature. Kim et al. [21] sought several benefits from coating NMC with
LNO, which were namely chemical, structural, and thermal stability. For their study, when
LNO coating was heated at 450 ◦C, it was amorphously present on the surface of NMC.
However, it showed crystallinity when heated at 800 ◦C. They found that desirable prop-
erties were provided by both the crystalline and amorphous structures. However, these
valuable properties were found to a larger degree in the crystalline coating than in the
amorphous coating [21].

There is not any systematic study in the literature to show the effect of coating LNO
material on the CAM performance. This paper aims to quantify the effect of LNO coating on
the electrochemical performance of the nickel-rich LiNi0.6Mn0.2Co0.2O2 (NMC-60) cathode
active material. The electrochemical performance parameters that are studied are the
capacity, cycling performance, and rate performance of the LNO-coated NMC-60. It is
noted that the study on the effectiveness of the coating to prevent side reactions at the ASE
and CAM interface is out of the scope of this paper. To eliminate the effect of the ASE and
CAM side reactions, we conduct all tests in the organic liquid electrolyte (OLE) environment
to solely study the effect of coating on the NMC-60 material performance. It is also noted
that the reason for coating the CAM is to use them in the ASE-type ASSLBs, rather than
increasing the CAM performance to use it in conventional OLE-type LIBs. The only reason
that we choose testing cells in the OLE environment is to separate the effect of side reactions
at the interface of the ASE and CAM from the effect of the LNO coating layer on the NMC-
60 material performance. For this purpose, we (a) compare two methods of synthesizing
and coating LNO on nickel-rich NMC-60 cathode active material, and (b) evaluate the
effects of coating thickness on the capacity, cycling performance, and rate performance
of the coated-NMC-60. This study not only helps to fabricate high-performance solid-
state lithium batteries, but it also aids several other studies such as modeling solid-state
lithium batteries for investigation of cell operating voltage and capacity [23], microstructure
heterogeneity [24], battery energy efficiency [25], and designing an appropriate cooling
system for the battery [26].

2. Materials and Methods

To synthesize the LNO coating, the following chemical reaction was utilized.

1 CH3CH2OLi + 1 Nb(CH3CH2O)5 + 3H2O → 1 LiNbO3 + 6 CH3CH2OH

The synthesizing and coating methods of LNO that we used in this study are briefly
explained below.

Method-I: For coating NMC-60 using Method-I, appropriate amounts of lithium
ethoxide (CH3CH2OLi, 95%, Sigma-Aldrich, St. Louis, MO, USA) and niobium ethoxide
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(Nb(CH3CH2O)5, 99%, Sigma-Aldrich) are dissolved in dry isopropanol (99%, Sigma-
Aldrich) and continuously stirred at room temperature for 10 min. Then, NMC-60 is added
to the solution and mixed at 80 ◦C until evaporation.

Method-II: In this method, lithium ethoxide (CH3CH2OLi, 95%, Sigma-Aldrich) and
niobium ethoxide (Nb(CH3CH2O)5, 99%, Sigma-Aldrich) are mixed in dry ethanol (99%,
Sigma-Aldrich) and hydrogen peroxide (H2O2, 30%, Sigma-Aldrich). After dissolution of
precursors under stirring for 10 min, NMC-60 is added to the solution and mixed at 100 ◦C
until evaporation.

For both methods, the resulting dried powders are placed in zirconia combustion boats
(AdValue Technology) and sealed in a quartz tube furnace (GSL-1100X, MTI Corporation).
Powders are then annealed under flowing O2 atmosphere at 450 ◦C for 1 h with a ramp of
5 ◦C/min. The coated powders are collected, ground, and kept overnight at 100 ◦C in a
vacuum oven before making electrodes.

3. Coating Formulations

The entire mass of coating material does not participate in forming a solid and dense
coating layer on the surface of CAM particles and remains as loosely connected LNO to
CAM particles or agglomerated LNO as impurities in the obtained coated-CAM. Hence,
we define the coating efficiency as the ratio of the mass of the dense coating layer to the
total mass of the coating material as stated in Equation (1).

ηcoating =
mDCL
mCAM

(1)

where, ηcoating is the coating efficiency and m is the mass. The subscripts of DCL and CAM
denote the dense coating layer and cathode active material, respectively. For one of the
samples of 1 wt.% of LNO coating on NMC-60, we did the transmission electron microscopy
(TEM) characterization at Argonne National Laboratory, Center for Nanoscale Materials
(CNM). Based on the TEM image in Figure 2, the thickness of the dense coating layer on the
NMC-60 is about 14 nm, while the 1 wt.% LNO is enough to make a 21 nm coating layer.
Therefore, about two-thirds of the theoretical LNO thickness is formed as a dense coating
layer. The other one-third of LNO material remains as loosely connected to NMC-60, or
agglomerated LNO as impurities in the obtained coated-NMC-60. If required, the loosely
connected LNO and the LNO impurities may be removed by rinsing the coated-NMC
after the coating process is done. Therefore, we assume a coating efficiency of 66% for the
calculation of the LNO coating layer thickness, which may be only valid for our lab with its
available equipment and technology. It is also noted that the thickness of the LNO coating
on the NMC-60 may not be uniform. This may affect the value of the coating efficiency.

The mass fraction ratio (MFR) of the coating material (LNO in this study) and the
uncoated active material (NMC-60 in this study) is defined in Equation (2).

MFR = MFCM
MFCAM

= mCM/mtot
mCAM/mtot

= mCM
mCAM

= 1
ηcoating

× mDCL
mCAM

= 1
ηcoating

× ∑ ρCM Np,iVDCL,i
∑ ρCAM Np,i Vam,i

= 1
ηcoating

× ρCM
ρCAM

× ∑ Np,iπD2
CAM,iδDCL

∑ Np,i
π
6 D3

CAM,i

= 1
ηcoating

×
(

6 ρCM
ρCAM

× ∑ Np,i D2
CAM,i

∑ Np,i D3
CAM,i

)
δDCL

= 1
ηcoating

×
(

6 ρCM
ρCAM

× D2
s,CAM

D3
v,CAM

)
δDCL

(2)

where, MF is the mass fraction, ρ is the density, Np is the number of CAM particles, V is the
volume, and δDCL is the dense coating thickness on the active material. The subscripts of s
and v denote the diameter of uncoated CAM, the surface mean diameter of particles, and
the volume mean diameter of particles, respectively. The density of the LNO and NMC are
approximately 4.65 g/cm3 and 4.76 g/cm3, respectively.
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Figure 2. TEM image of the LNO coated NMC-60 showing a dense coating layer with a thickness
of 14 nm has been formed, which is two-thirds of the theoretical thickness of 21 nm for a 1 wt.%
of LNO coating on NMC-60 (work performed at the Center for Nanoscale Materials at Argonne
National Laboratory).

To calculate the MFR, we need to determine the surface mean and volume mean
diameters of uncoated CAM particles. For this purpose, the morphology of the NMC-60
was determined using Tescan Lyra 3 XMU scanning electron microscopy (SEM) at an
operating voltage of 15 kV with an EDAX Element energy-dispersive X-ray spectroscopy
(EDX) detector. The SEM image of the uncoated NMC-60 is taken as shown in Figure 3a.
As seen, the shape of particles is close to a sphere. Thus, to obtain the sizes of particles, we
assumed that the particles are spherical, and using the ImageJ software, we measured the
diameter of more than 300 particles of NMC-60. Then, the measured particles are divided
into several intervals and the histogram of the particle size distribution is plotted. Based on
the obtained histogram, it was determined that a log-normal distribution is the best fit to
the size distribution of NMC-60 particles, as shown in Figure 3b.

 
Figure 3. (a) SEM of the uncoated NMC-60 particles, and (b) approximation of NMC-60 particle sizes
with log-normal distribution.
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The surface mean and volume mean diameters for the log-normal distribution are
determined from Equations (3) and (4), respectively. For details, the readers are referred to
the authors’ other publications in Ref. [27].

Ds =

(
∑ Npi D

2
i

Np

)1/2

=
D50

exp
(
−
(

ln
(

D84.13
D50

))2
) (3)

Dv =

(
∑ Npi D

3
i

Np

)1/3

=
D50[

exp
(
−
(

ln
(

D84.13
D50

))2
)]1.5 (4)

where, Ds is the surface mean diameter, Dv is the volume mean diameter, D50 is the median
diameter, and D84.15 is the diameter that 84.15% of particles are smaller than. The D50 and
D84.15 are determined by analyzing SEM images of NMC-60 particles using ImageJ software.
For NMC-60, we obtained D50 and D84.15 are 10.9 μm and 13.7 μm, respectively. Finally, we
calculated that the Ds and Dv are 11.5 μm, and 11.8 μm, respectively.

For preparation of the LNO coated NMC-60 with the desired coating thickness,
whether using Method-I or Method-II, the mass fraction of initial materials for CH3CH2OLi,
Nb(CH3CH2O)5, and uncoated NMC-60 are obtained from Equations (5)–(7).

MFCH3CH2OLi =
MWCH3CH2OLi

MWLNO
×
(

1 +
1

MFR

)−1
(5)

MFNb(CH3CH2O)5
=

MWNb(CH3CH2O)5

MWLNO
×
(

1 +
1

MFR

)−1
(6)

MFNMC_60 =
1

1 + MFR
(7)

The molecular weights of CH3CH2Oli, Nb(CH3CH2O)5, and LNO are 52.0 g/mol,
318.21 g/mol, and 147.85 g/mol, respectively.

4. Electrode and Cell Fabrication and Testing

Several OLE-type half-cell cathodes with mass loading of ~7 mg/cm2 were made to
evaluate and compare the performance of the coated and uncoated NMC-60. The cathodes
were made from four types of coated NMC-60: 0.5% LNO coated NMC-60 using Method-I
(Method-I-0.5%), 1% LNO coated NMC-60 using Method-I (Method-I-1%), 0.5% LNO
coated NMC-60 using Method-II (Method-II-0.5%), and 1% LNO coated NMC-60 using
Method-II (Method-II-1%). First, a 6 wt.% PVDF (Sigma-Aldrich) solution is made by dis-
solution in NMP (99.5%, Sigma-Aldrich) and allowed to mix. A cathode slurry comprising
of 90 wt.% active material, 5 wt.% conductive material and 5 wt.% binder was then made.
The appropriate amounts of acetylene black (MTI corporation) and the PVDF solution were
mixed in a planetary centrifugal mixer. One-third of the coated active material is then
mixed with the acetylene black and PVDF solution. This step is repeated until the total
amount of active material has been added and mixed. Then, several coin type half cells
were fabricated using the OLE (LiPF6), coated NMC-60 as the cathode, and the lithium
metal as anode (reference electrode) with a separator in between.

Before testing the half-cells, a formation process was completed. For the rate perfor-
mance test, we cycled the cathode half-cells at c-rates of C/10, C/5, C/3, 1C, 2C, and C/10,
with five cycles at each C-rate (CC C/25 CV Charge; Discharge: No CV mode). The C-rate
is defined as the rate at which a cell completely discharges its maximum capacity. To
test half-cells using NMC-60 as cathode, a theoretical maximum capacity of 178 mAhg−1

is assumed.
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5. Results and Discussion

5.1. Coating Formation

The mass fractions of initial materials for coating NMC-60 were calculated from the
desired coating thickness and shown in Figure 4. The red and orange lines in this figure
represent the mass fractions of lithium ethoxide and niobium ethoxide in the synthesizing
process, respectively. The green line indicates the mass fraction of the total LNO coating
material synthesized, while the blue line indicates the mass fraction of LNO participated to
form the dense coating layer on NMC-60 particles. The LNO that has not participated in
formation of the dense coating layer remains as loosely connected LNO to NMC-60 particles,
or agglomerated LNO as impurities in the obtained coated- NMC-60, as demonstrated in
red circles in Figure 5.

 
Figure 4. Mass fraction of initial materials to coat NMC-60 with the desired thickness of LNO.

 
Figure 5. Materials in red circles seem to be the agglomerated LNO with sizes < 1 μm produced
during synthesizing, but has not participated in coating layer formation on the NMC-60 particles.

121



Energies 2022, 15, 4886

The SEM images was used to evaluate the morphology of LNO coating on NMC-60
using Method-I and Method-II. A comparison of changes in morphology between un-
coated NMC-60, Method-I-1%, and Method-II-1% can be seen through the SEM images
in Figure 6a–c, respectively. As shown in Figure 6a, the uncoated NMC-60 appears to
have particles that are mostly spherical with some irregular edges. On the other hand,
images of the coated NMC-60 show, in appearance, a white material sitting on the surface
of particles. This is most clearly seen on the large particles of Method-I coated NMC-60
in Figure 6b. Method-I also showed agglomeration of secondary particles, which is not
present in uncoated NMC-60 nor Method-II-1%. It is essential to note how the primary
and secondary particles become less defined for the coated powders when compared to
uncoated NMC-60. For instance, in the Method-II coating, the white material appearing in
the images of the coated NMC-60 takes on a feathery appearance, which covers the entirety
of some NMC particles. An enlarged image of a particle which exhibits this phenomenon is
inset in Figure 6c. Figure 7 shows the corresponding EDX analysis for SEM imaging of the
coated particles. Formation of LNO coating on NMC-60 particles is indicated through the
presence of niobium elemental peaks for Method-I and Method-II, respectively.

Figure 6. SEM imaging of (a) uncoated NMC-60, (b) Method-I-1%, and (c) Method-II-1% with inset
exhibiting LNO as soft or feathery surface material in appearance.

Figure 7. EDX analysis of 1% LNO coating using (a) Method-I and (b) Method-II.
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The powder XRD measurements were taken using Rietveld analysis to compare the
effect of LNO coating on NMC-60. Patterns of uncoated and 1% LNO coated NMC-60
using Method-I and Method-II are shown in Figure 8a–c. The XRD patterns of the three
materials can be indexed to a hexagonal α-NaFeO2 structure [20]. Moreover, there are no
extra peaks on the coated NMC-60 materials indicating that no structural changes occurred
as a result of the LNO coating or annealing procedure. It is noted that the LNO peaks are
not visible in the XRD patterns due to the very small composition in the overall material
being analyzed.

a

b c

Figure 8. XRD analysis of (a) uncoated NMC-60, (b) 1% LNO coated NMC-60 using Method-I, and
(c) 1% LNO coated NMC-60 using Method-II.

5.2. Electrochemical Performance

Electrochemical performance study of uncoated NMC-60, coated using Method-I, and
coated using Method-II, with 0.5 wt.% and 1 wt.% LNO content for both methods, was
performed in the voltage range of 2.7 V to 4.3 V using coin half-cells. Two tests were
performed. The cycling performance was the first test which was used to evaluate the
stability and capacity retention of the cathode half-cells over time. The CAM capacity was
also determined during this test. The rate performance was the second test used to evaluate
the power performance under different current loadings.
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5.2.1. Cycling Performance Test

Cycling performance was performed at a charge and discharge rate of C/3 for 50 cycles.
The results of this performance for uncoated NMC-60, Method-I, and Method-II with 0.5%
and 1% for both methods are shown in Figure 9. Each point in this graph was found
through charge and discharge voltage versus capacity curves. These curves showed
almost the same trend between uncoated and coated NMC-60 with only changes in values
of the capacity. Half-cells made using uncoated NMC-60 show an initial capacity of
~164.0 mAhg−1 and a capacity retention of 98.0%. Method-I-1% showed comparative
values with an initial capacity of 166.4 mAhg−1 and a capacity retention of 97.0%. In
comparison, Method-I-0.5% has a higher initial capacity of ~167.0 mAhg−1 with a much
higher capacity retention of ~99.9%. This capacity retention is higher than the uncoated
NMC-60, may be due to the protective coating layer formed around the NMC-60 particles.
On the other hand, Method-II-1% showed an initial capacity of ~155.1 mAhg−1, which is
much lower than that of the uncoated NMC-60 or Method-I-1%. However, the capacity
retentions of uncoated NMC-60 (98.0%) and Method-II-1% (97.7%) were very similar.
Method-II-0.5% has an initial capacity of 171.0 mAhg−1 which is higher than all other
initial capacities. Contrastingly, while Method-II-0.5% has higher initial capacity, capacity
retention is much greater for Method-I-0.5% with a value of ~99.9% versus 97.0% for
Method-II-0.5%. It is apparent that Method-I-0.5% has very good stability with almost no
capacity fade after 50 cycles. Furthermore, with special regard to capacity fade, Method-I-
0.5% shows a clear improvement in electrochemical performance of NMC-60 with organic
liquid electrolytes. This improvement should be checked with the argyrodite electrolyte as
well, which is the out of the scope of this paper.

 

Figure 9. Cycling performance of the uncoated NMC-60 and 0.5 wt.% and 1 wt.% LNO coating
NMC-60 using Method-I and Method-II.
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We define the capacity retention ratio (CRR) as the ratio of the capacity retention of
the coated-CAM to the capacity retention of the uncoated-CAM. The CRR of the coated-
NMC-60 with methods I and II is shown in Figure 10. In this figure, the CRR of the
uncoated NMC-60 has been represented by the LNO wt.% of 0, which is obviously equal
to 1. The Method-I-0.5% exhibits CRR ≈ 1.026 after 50 cycles, which is higher than other
coated samples. The CRR of Method-I-1% and Method-II-0.5% are less than that of the
uncoated-NMC-60, while Method-II-1% shows almost the same CRR compared to the
uncoated-NMC-60.

a b

Figure 10. Capacity retention ratio of the coated-NMC-60 for (a) Method-I, and (b) Method-II.

5.2.2. Rate Performance Test

Results of the rate performance test to compare the uncoated NMC-60 with the
coated NMC-60 with Method-I and Method-II 0.5 wt.% and 1 wt.% LNO are shown in
Figure 11. Tests were run in the same cut-off voltage range of 2.7 V to 4.3 V. Different
C-rates of C/10, C/5, C/3, C/2, C, and 2C followed by a return to C/10 were each
tested for 5 cycles. Regarding initial capacity, Method-I-1% has higher values than
the uncoated NMC-60 and Method-I-0.5%. Method-I-1% also exhibits these higher
capacities for all c-rates. Method-II-0.5% has higher capacity than all other samples for
all c-rates. Conversely, Method-II-1% has lower capacity than all other samples for all
c-rates. Method-I-0.5% consistently performs at lower capacities than uncoated NMC-
60 for c-rates below 2C. Although Method-II-0.5% has the highest capacity overall,
this sample has the lowest recuperation of capacity after returning to C/10, while
Method-I-0.5% has the highest. For better comparison of rate capabilities, Table 1
features the initial capacities, capacities at 2C, and capacities after returning to C/10
for all five samples as well as their corresponding capacity retentions.

It is evident from the data that the most improvement of NMC-60 regarding rate
capability is achieved through Method-II-0.5% and Method-I-1%. These two samples
exhibit higher capacities and capacity retention than the uncoated NMC-60 even at high
c-rates. This trend is maintained upon returning to C/10 discharge rate. It should also
be noted that Method-I-0.5% performs better than the uncoated NMC-60 after returning
to C/10.

We define the specific capacity ratio (SCR) as the ratio of the specific capacity of the
coated-CAM to the specific capacity of the uncoated-CAM. The SCR of the coated-NMC-60
with methods I and II is shown in Figure 12. In this figure, the SCR of the uncoated NMC-60
has been represented by the LNO wt.% of 0, which is obviously equal to 1. The comparison
is presented for low versus high c-rates. It is evident from Figure 12a that the 1 wt.% LNO
for Method-I can keep the specific capacity of the coated-NMC-60 about 1 to 2 percent more
than the specific capacity of the uncoated-NMC-60 at both low and high C-rates of C/10
and 2C. On the other hand, Figure 12b shows that the 0.5 wt.% LNO for Method-II can
keep the specific capacity of the coated-NMC-60 about 6 percent more than the specific
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capacity of the uncoated-NMC-60 at both low and high C-rates of C/10 and 2C. Further
investigations into the effects of various LNO wt.% are necessary to conclude a precise
wt.% of LNO for each method.

 
Figure 11. Rate performance of the uncoated NMC-60 and 0.5 wt.% and 1 wt.% LNO coating NMC-60
using Method-I and Method-II.

Table 1. Comparison of rate performance at low and high C-rates.

Initial Capacity
(mAhg−1)

Capacity at 2C
(mAhg−1)

Capacity
Retention at 2C

(%)

Capacity upon
Return to C/10

(mAhg−1)

Capacity
Retention at C/10

(%)

Uncoated NMC-60 167.6 146.1 87.2 172.6 103.1
Method-I-0.5% 167.3 140.0 83.7 175.6 105.0
Method-I-1% 168.9 148.7 88.0 174.1 103.1

Method-II-0.5% 176.9 154.8 87.5 178.8 101.1
Method-II-1% 159.1 135.4 85.1 163.2 102.6
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Figure 12. Specific capacity ratio of the coated-NMC-60 for (a) Method-I, and (b) Method-II for low
or high c-rates of C/10 and 2C.

6. Conclusions

This paper aimed to quantify the effect of LNO coating on the electrochemical perfor-
mance of the nickel-rich NMC-60 cathode active material. The electrochemical performance
parameters of the initial capacity, cycling performance, and rate performance were studied.
To eliminate the effect of side reactions at the interface of the argyrodite solid electrolyte
and NMC-60, we conduct all tests using organic liquid electrolyte cells to solely study
the effect of coating on the NMC-60 electrochemical performance. We presented a model
and formulation to control the coating thickness on the electrode active material particles.
Based on these formulations and by using two synthesizing and coating methods, several
coated-NMC-60 with 0.5 wt.% and 1 wt.% LNO were prepared. The effects of LNO on the
morphology and electrochemical performance of the coated-NMC-60 were investigated.
Using the TEM and SEM images and EDS analysis the presence of LNO coating on the sur-
face of the NMC-60 was determined. Further characterization using XRD showed that the
coating methods did not change the structure of NMC-60. The electrochemical performance
analysis results indicated that the capacity, cycling performance, and the rate performance
of the LNO coated-NMC60 are sensitive to the LNO coating thickness (or wt.%) and the syn-
thesizing and coating method. It was found that the initial capacity and rate performance
of the 0.5 wt.% LNO-coated-NMC-60 using Method II are noticeably higher than those
of the uncoated-NMC-60. The initial capacity and rate performance of the 1 wt.% LNO-
coated-NMC-60 using Method I are only slightly higher than the uncoated-NMC-60. The
initial capacity and rate performance of the 0.5 wt.% LNO-coated-NMC-60 using Method I
and 1 wt.% LNO-coated-NMC-60 using Method II are lower than the uncoated-NMC-60.
Although the 0.5 wt.% LNO-coated-NMC-60 using Method II is promising, a more detailed
study is required to determine the optimum LNO wt.% and the best synthesizing and
coating methods. Although this study provided a baseline for electrochemical performance
of the coated-NMC-60, further investigations are required by testing the coated-NMC-60 in
solid state cells.
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Abstract: Solid-state argyrodite electrolytes are promising candidate materials to produce safe all-
solid-state lithium batteries (ASSLBs) due to their high ionic conductivity. These batteries can be
used to power electric vehicles and portable consumer electronics which need high power density.
Atomic-scale modeling with ab initio calculations became an invaluable tool to better understand the
intrinsic properties and stability of these materials. It is also used to create new structures to tailor
their properties. This review article presents some of the recent theoretical investigations based on
atomic-scale modeling to study argyrodite electrolytes for ASSLBs. A comparison of the effectiveness
of argyrodite materials used for ASSLBs and the underlying advantages and disadvantages of the
argyrodite materials are also presented in this article.

Keywords: argyrodite electrolyte; all-solid-state lithium batteries; modeling; molecular dynamics;
simulation

1. Introduction

Argyrodite electrolytes are very promising solid-state electrolytes (SSE) materials for
all-solid-state batteries (ASSB). The high lithium mobility and conductivity in argyrodite
electrolytes make it a potential solution for ASSBs [1]. The SSE also allows more effec-
tive cell packaging accompanied by their high gravimetric/volumetric energy density
applications [2]. Lithium batteries with liquid organic electrolytes [3] have protection
issues in terms of high combustibility and electrolyte leakages, while those with SSE are
precisely contrary to these qualities [4–7]. Recently, Zhou et al. [8] have researched the
electrochemical performance of Li6PS5Cl in an ideal solid-state battery (SSB). It exhibited
sublime performance as its ionic conductivity is improved through the initiation of Li
vacancies and disorder and showed congruence between cells. Some research works have
been conducted to improve the activity of lithium-ion batteries, such as elastic stiffening
tendency to increase stresses to aggrandize lithium-ion diffusion and uphold the elastic
modulus [9].

Considering the SSEs, everything is not perfect. The electrolyte interfaces with both
cathode and anode require significant considerations such as the restraint of the common
boundary developed at the borderline of the cathode [10,11] and the anode [12,13]. Mal-
leable solid electrolytes having an appropriate Young’s modulus can repress the growth of
lithium dendrite for lithium anode and enhance finer connection upon cycling when taken
with the cathodic substance [3,14]. However, an established scalable route to such material
is a substantial challenge that could limit the progress of the SSB field because of simple
economics [8].

The investigation of the conductivity of SSE is an involved experiment because of
the problem in the reproduced reformation of the materials and the responsivity of the
conduction property. Computational approaches often utilize a measure for the determi-
nation of conductivity depending on the configuration and constituents of crystal-like
substances. In computational analysis, researchers have critically controlled these variables,
unlike empirical analyses in the presence of dopants and flaws, which are susceptible
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to the manufacturing environments and hard to describe. To address issues relating to
the initiation of force fields for processes in which charge transfer and polarizability are
applicable, ab initio molecular dynamics (MD) simulations are of interest, and scholars have
broadly utilized them. However, due to the somewhat low conductivity of SSE materials
(always not up to 10−3 S·cm−1), it is frequently computationally expensive, besides being
somewhat impractical, to essentially quantify the estimation of the conductivity of the
materials considered in ambient condition by means of ab initio MD computations [15,16].
An approach to resolve this difficulty is to compute the coefficient of diffusivity at elevated
temperatures and then apply the Arrhenius equation to speculate the ionic diffusivity at
ambient temperature [15,17]. Meanwhile, scholars expect the relative errors in the eventual
conductivity value to be substantial, since the high-temperature data for statistical errors
engender more relative errors for such estimated values [15]. So, they need to introduce
proxy computational approaches which give definitive approximates of the diffusion coef-
ficient to review the processes. Researchers have reported that ab initio non-equilibrium
molecular dynamics (AI–NEMD) simulations is useful in this premise. Although they
used AI–NEMD simulations for the ionic conductivity of LiBH4 in a review [18], they did
not juxtapose the outcome of that review with that from ab initio equilibrium molecular
dynamics (AI–EMD) simulations. So, it is demonstrated that AI–NEMD simulations permit
good estimates for the coefficients of diffusivity acquired for materials with diffusivities not
precisely ascertained by AI–EMD computations [19]. They used these values to establish
materials such as SSE for recognizing the objective for modifications in experimentations.

An argyrodite structure (for example, Li6PS5Cl) is a cubic crystal structure possessing
F43 m, space group number 216 [20,21]. The literature have examined argyrodite supercell
assumed from two-unit cells each containing four Li6PS5Cl, with 104 atoms (eight simple
unit cells) for the entire computations of the argyrodite material. The regulation of the
unit cell lattice parameters was conducted through energy minimization, so the dimension
is 10.08 Å × 10.08 Å × 10.08 Å (Å = Angstrom). From Figure 1, Li-ions fill 48 h Wyckoff
positions, where there is a distribution of S atoms on 4a and 4c sites. Again, there is
an attachment of S in the 4a areas to the P atoms (4b areas) framing PS3−

4 (labeled S1),
surrounded by Li-ions is the S as S2− in 4c sites (labeled S2), so the Cl− also get dispersed
in 4a sites. There is a formation of pure and defective Li6PS5Cl structures gleaned from its
space lattice. When discussing the creation of the Li5PS4Cl2 structure, it is crucial to replace
the S2 S ions with Cl ions and achieve charge balance by removing one of the lithium-ions
from the structure surrounding each individual S2 [21].

Figure 1. Sample of Li6PS5Cl lattice structure. Purple = lithium, yellow = S, green = Cl, and light
purple = P atoms (at the middle of the PS3−

4 ion). Adapted from Baktash et al. [19].

In Sections 2–4, we explain the general modeling approaches for argyrodite materials.
They also contain comparisons of common argyrodite compounds. Sections 5 and 6 are
for some particular argyrodite compounds of high interest amongst researchers due to
their electrochemical properties. Ab initio molecular dynamics modeling specifics and
machine learning for the argyrodites are presented in Section 7. Sections 8 and 9 are for
discussions and conclusions. Therefore, this work reviews the previous work conducted
on the modeling of argyrodite electrolytes materials with machine learning (ML) predictive
models as speculating the utilization of lithium as a peculiar cathodic substance.
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2. Modeling of Argyrodite Materials

The determination of diffusion coefficients of argyrodite materials is essential; however,
it is relatively problematic. The diffusion coefficients are calculated using AI–NEMD and
AI–EMD simulations for the high diffusive SSE to illustrate an obtained precision. Moreover,
the AI–EMD is terribly slow to investigate diffusion coefficients, whereas it is viable and
timely to get them using AI–NEMD simulations. Therefore, utilizing AI–NEMD simulations
for the coefficient of diffusivity of Li-ions in argyrodite materials (Li6PS5Cl and Li5PS4Cl2),
Baktash et al. obtained two potential electrolytes for ASSB [19]. These computations prove
Li-ions diffusion coefficient in Li5PS4Cl2 is greater than other promising SSEs, making it
bespoke for future technologies. Small disorders and voids were considered as possible
explanations for the variability observed in experimental data. Remarkably, inculcating Li
vacancies and disarray into the system tends to improve Li6PS5Cl ionic conductivity.

Again, amongst the ASSBs, sulfide-based electrolytes, as a result of their being elec-
trochemically stable, noble mechanical characteristics and ionic conductivities are one of
the promising candidates, more so than other probable SSEs [22–25]. The Li-argyrodites
are built on Li7PS6, possessing substantial ion conductivities of 10−5–10−3 S·cm−1 under
ambient condition [26]. Considering the lithium-argyrodites model peak temperature point,
its ionic conductivity as well, is higher at an elevated temperature point, high conductivity
argyrodite models, such as Li7PS6, are unstable at ambient temperature. The literature
reported that the creation of lithium vacancies and institution of halogens into the Li7PS6
model make it possible to produce configurations of Li6PS5X (X = Cl, Br, and I) [1] which
are constant at ambient temperature with higher conductivity [27,28]. Empirical reports
prove Li6PS5X (X = Cl, Br, and I) to possess identical lattice configurations of space group,
F43 m, with Li7PS6. As a matter of fact, Li6PS5Cl and Li6PS5Br ionic conductivities at
ambient temperature are sufficiently high for battery technology [29,30]. Moreover, halides
disorder effects are researched [28] as investigations prove that Li6PS5Cl have an ionic
conductivity of about 10−3 S·cm−1 at ambient temperature and electrochemical stability up
to 7 V versus Li/Li+ [3,30,31]. Computations have suggested that more halogens and Li
vacancies give rise to greater ionic conductivities, and it is speculated that Li5PS4Cl2 could
be a replacement [21]. Many experimental and computational overviews have been con-
ducted for Li6PS5Cl, but because of numerous difficulties, there is not enough full absolute
knowledge of the mechanism of the diffusivity of this specimen, and the conjecture for its
conductivity varies over many orders of magnitude [16,17,21,27,30–32]. Researchers have
reviewed a lot of superionic materials to be potentially lithium solid electrolytes [33,34].
While oxides and phosphates are inelastic and stiff, Li3PO4 [3] tend to be flexible, simply
formed, and densified, with modulus of rigidity reduced 5 to 10 times [35,36], showing
good ionic conductivity of about 25 mS·cm−1 at ambient temperature [37–46].

Amongst the phases provide in Table 1, the last-mentioned phase is considered the
most stable in connection with lithium metal, since a phase consisting of Li2S [1], Li3P
and LiX (X = Cl, Br) develops at a relatively low order when in connection with the
lithium that works as an in situ passivation interphase [47]. Some innovative ASSBs cells
utilized lithium-argyrodite as SSEs accompanied by various cathodic and anodic arrange-
ments [30,48–54]. Nonetheless, scientists have designed all the Li-argyrodite electrolytes
investigated so far, and their modeling is performed by a conventional mechanical milling
machine followed by the application of heat. Ball-milling exudes substantial energy and
makes the synthesis hard to measure and thereby not feasible to SSB formation. Solution-
engineered processes did not alone solve these issues, but improbably it also decreases the
ensuing temperature of the heat treatment coupled with time. Solution-based methods
were engineered for Li4PS4I [55], β-Li3PS4 [1,56], Li7P2S8I [57], and Li7P3S11 [58] structures,
alongside differing levels such as the purity of the phase and ionic conductivity of the re-
sult. The literature delineated Li6PS5Cl argyrodite, requiring a dissolution−reprecipitation
procedure arising out of a solution of ethanol [32]. While mechanical milling measure is
essential, as the ionic conductivity of the specimen reported is 1.4 × 10−2 mS·cm−1, which
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is two orders of magnitude less than the traditional solid-state formation technique, an
exact and valid “all-solution” argyrodite Li6PS5X formation stands out as a question.

Table 1. Lithium superionic conductor phase [1,8].

Phase
Ionic Conductivity

(IC) (mScm−1)
Activation Energy

(Ea) (eV)
Reference

Li3.25Ge0.25P0.75S4 2.2 0.21 [1,37]

Li10GeP2S12 12 0.25 [1,3,38] and
derivatives [39,40]

Li9.54Si1.74P1.44S11.7 25 0.24 [41]

Li7P3S11 17 0.18 [1,42–44]

Li6PS5X (X = Cl, Br) ∼1 0.3−0.4 [31,45,46]
Reprinted (adapted) with permission from ACS Energy Lett. 2019, 4, 1, 265–270 [8]. Copyright 2018 American
Chemical Society.

It was shown that a direct solution-engineered procedure of Li6PS5X (X = Cl, Br, I)
argyrodite [1] as well as Li6−yPS5−yCl1+y SSEs possess good lithium-ionic conductivities,
which is about 2.4 mS·cm−1, with reference to ambient temperature against chlorine and
bromine phases. Ionic conductivity is more for an integrated Cl and Br, and chlorine-full
phases, yielding about 4 mS·cm−1.

3. Single Halides Argyrodites

The articulation in Kraft et al. [28] proves that solid-state engineered Li6PS5Cl and
Li6PS5Br show an exact bulk of LiX and Li3PO4 dopants. Yubuchi et al. [59] reported
the results culminating from the composite synthesis showing a more dopant level, at-
tributed to the reactivity of ethanol and PS3−

4 units, or slight moisture in the ethanol.
Zhou et al. [8] used a related solution synthesis approach to produce a pure Li6PS5I phase
with an imprint of lithium thiophosphate (Li3PO4) impurity, albeit with Li6PS5I argyrodite
low ionic conductivity, which agrees with reviews from Pecher et al. [60]. However, the
iodide crystallization explains a wide relevance of this solution synthesis procedure to
the lithium-argyrodite species. Researchers represented the SEM images of grounded
Li6PS5X (X = Cl, Br) materials to interpret the densified characteristics of the crystallite
masses, and when processed into ASSB, they become incredibly useful [8]. Highly ductile
sulfide solid electrolytes give good contact at the grain boundaries than oxides (which are
always essentially brittle), even pressed parts without consideration of sintering result in
multiple solid electrolyte phases [43]. The reported solution engineered ionic conductivities
of Li6PS5X SSEs were determined by electrochemical impedance spectroscopy (EIS) in
(stainless steel = SS) SS/Li6PS5X/SS arrangement at ambient temperature. Researchers
reported the resistivities, 46 and 34 Ohm, for Li6PS5Br and Li6PS5Cl at ambient temperature,
making the total conductivities 1.9 mS·cm−1 and 2.4 mS·cm−1, discretely. These values
correspond with that of solid-state engineered Li6PS5Br and Li6PS5Cl argyrodites of about
1 mS·cm−1 and 3 mS·cm−1 apiece [28,31,46]. This shows that the dopant effects in the
processed materials do not lower the Li-ions conductivity in the exceptionally fine elec-
trolytes. It is noteworthy that these elements are especially improbable to enhance the gross
ionic conductivity as the densified solid electrolyte pressed pieces enable good interaction
amid Li6PS5X lattices and allow ample lithium ion straining pathways for transport [28].
Iodide argyrodite conductivity was reported to be 2 × 10−3 mS·cm−1, which tallies with
the low values often published for this phase (i.e., 4 × 10−4 mS·cm−1) [60]. There is the
measurement using a direct current (DC) polarization for the electronic conductivities
of the two materials (Li6PS5Cl and Li6PS5Br) of the SS/Li6PS5X/SS symmetric cells at
ambient temperature. Zhou et al. [8] estimated the direct current electronic conductivities
as 5.1 × 10−6 mS·cm−1 for Li6PS5Cl and 4.4 × 10−6 mS·cm−1 for Li6PS5Br. Both values are
six orders of magnitude smaller than their individual ionic conductivities. Proving that
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Li6PS5Br and Li6PS5Cl argyrodite electrolytes obtained from synthesis are productively
unalloyed ionic conductors.

4. Mixed Halide Argyrodites

Formerly researched mixed halide argyrodites Li6PS5X (X = Cl0.75Br0.25, Cl0.5Br0.5, and
Cl0.25Br0.75) present substantial ionic conductivities when contrasted with single-halide
phases [28], enabling the study of the molecular modeling of argyrodites. Zhou et al. [8]
further showed the X-ray diffraction (XRD) patterns after heat treatment for the product,
as the identical values reported for the single halide composition, especially the pure
argyrodite phase, is available as an important crystalline phase with the presence of
dopants of Li3PO4, Li2S, and LiX (X = Cl, Br). Additionally, the lattice parameters from
Rietveld refinements increase directly from x = 0–1 in Li6PS5Cl1−xBrx. For solid solutions,
as explained by Vegard’s principle, the disordered Cl/Br ions were constructed in the
model, which demonstrates the argyrodite phases. They used EIS to measure the ionic
conductivities and recorded an ionic conductivity of 3.9 mS·cm−1 for Li6PS5Cl0.5Br0.5, and
using a DC polarization, they reported particularly low electronic conductivities. The ionic
and electronic conductivities are summarized in Table 2.

Table 2. Compendium of the ionic and electronic conductivities of lithium-argyrodites primed by
synthesis method [1,8].

S/N Material IC (mS·cm−1) EC (mS·cm−1)

1. Li5.5PS4.5Cl1.5 3.9 1.4 × 10−5

2. Li5.75PS4.75Cl1.25 3.0 2.6 × 10−5

3. Li6PS5Br 1.9 4.4 × 10−6

4. Li6PS5Cl0.25Br0.75 3.4 1.1 × 10−5

5. Li6PS5Cl0.5Br0.5 3.9 1.4 × 10−5

6. Li6PS5Cl0.75Br0.25 3.2 3.7 × 10−6

7. Li6PS5Cl 2.4 5.1 × 10−6

Reprinted (adapted) with permission from ACS Energy Lett. 2019, 4, 1, 265–270 [8]. Copyright 2018 American
Chemical Society.

Previously reported density functional theory (DFT) MD simulations further increased
the Li ion conductivity through the sulfur/halide ratio adjustment [21], shown by the
XRD scales of Li5.75PS4.75Cl1.25 and Li5.5PS4.5Cl1.5 formulated by the solution-engineered
synthesis approach. Lithium-argyrodite electrolytes are available as the prime products,
with dopants of Li3PO4 contrasted with Li6PS5X, little Li2S and carefully selected LiCl.
EIS reported surging ionic conductivities with a greater Cl-to-S ratio for Li5.75PS4.75Cl1.25
and Li5.5PS4.5Cl1.5, respectively (see Table 2). The incremental ionic conductivities and
XRD scale show a replacement of S with Cl, introducing Li-ions voids for the argyrodite
structure, thus enhancing the ionic conductivity. However, because of the homogeneous
array and X-ray smattering conditions of S and Cl, advanced neutron divergence work are
important to differentiate the order of S/Cl disarray, Li vacancies and positioning in the
argyrodite processes.

Again, Zhou et al. [8] considered TiS2/Li11Sn6 ASSBs prototype using Li6PS5Cl as
an SSE formulated between 1.5V and 3.0V vs. Li/Li+ at 30 ◦C. Obviously, these cells
utilized lithium alloy as a negative electrode due to their toughness with the goal of
measuring the qualities of argyrodite. Prospects will make use of lithium as a discrete
cathodic substance. Figure 2 presents two discharge−charge voltage depiction for Li6PS5Cl
cells formed through the traditional solid-state approach (Figure 2a) and the solution-
synthesized process (Figure 2b).
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Figure 2. Comparison of Li6PS5Cl ASSB by (a) solid-state procedure (b) solution-synthesized proce-
dure of TiS2/Li6PS5Cl/Li11Sn6 cells at current density, 100 μA·cm−2 (equivalent to 0.11 charge rate).
Reprinted with permission from ACS Energy Lett. 2019, 4, 1, 265–270 [8].

The Li6PS5Cl cell produced by the solution-synthetic method presents an ideal capacity
of 239 mAh·g−1 and presents no change from cells making use of derived SSE, suggesting
that the slight scum produced within the solution-synthesized pathway are negligible in
comparison with the overall performance of the cell.

5. Ionic Conductivity of Li5PS4Cl2

Utilizing AI-EMD and AI-NEMD simulations at 300 K, 600 K, 800 K, and 1000 K, the
diffusion coefficient for Li5PS4Cl2 could be calculated. So, this process advances a specific
collation with the accuracy of AI-EMD and AI-NEMD techniques and with extrapolated
calculation at 300 K using the Arrhenius equation. There is an assessment of the AI–
EMD simulations at 300 K, 600 K, 800 K and 1000 K for 45 ps, 40 ps, 20 ps and 20 ps,
discretely. Researchers have calculated the MSD [16] of the Li-ions, values for ten models,
and statistical errors at various temperatures using the results of these AI-EMD simulations.
They examined the trajectories in each case to ensure that the simulation times (450 ps–
200 ps) were enough to distinguish the Li-ions diffusion further from their starting points.
Figure 3a–c show the MSD of the lithium-ions with time dependence at 300 K, 600 K and
800 K for the ten separate trajectories. In a diffusive motion, the MSD heightens with time,
and the gradient is associated with diffusion co-efficient from Equation (1) [61].

Ds = lim
t→∞

1
6Nt

N

∑
i=1

〈(Δri(t))
2〉 (1)
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Figure 3. Lithium-ions mean square displacement (MSD) with time. Results for ten iterative compu-
tations of Li5PS4Cl2 at (a) 300 K, (b) 600 K, (c) 800 K, and MSD of the ions with respect to time with
the error bars for ten iterative simulations considering (d) 300 K, (e) 600 K, (f) 800 K. Adapted from
Baktash et al. [19].

(See nomenclature for terms definition.)
Figure 3d–f show the derivation of the MSD of 10 models involving the error bars

where the coefficients of self-diffusion and the proportion of the conductivity of the material
with an approximate computational accuracy. While noticing diffusive behavior, the value
of the MSD at 35 ps at 300 K is only about 6 2. The conductivity and coefficient of self-
diffusion values are shown in Table 3, respectively.

Table 3. Computation using AI–EMD and AI–NEMD simulations for self-diffusion coefficient with
concurrent conductivity of Li5PS4Cl2 at specific temperatures.

Temp.
(K)

AI–EMD AI–NEMD

Ds (cm2 s−1) σ (S·cm−1) Ds (cm2 s−1) σ (S·cm−1)

300 2.9 × 10−6 0.35 3.3 × 10−6 0.4

600 2.9 × 10−5 1.80 2.9 × 10−5 1.8

800 5.6 × 10−5 2.50 5.2 × 10−5 2.4

1000 8.9 × 10−5 3.20 8.9 × 10−5 2.9
Adapted from Baktash et al. [19].

For SSEs with minimal conductivity, such as those of about 10−3 S·cm−1 or less
at ambient temperature, it is complex to compute an accurate conductivity at ambient
temperature with ab initio simulations. In order to find a solution, it was specified that the
conductivity of the material at peak temperatures may be calculated using a straightforward
method, and that the values for the ambient temperature can be extrapolated to produce an
approximation of the conductivity value. [18,61,62]. An Arrhenius representation for the
conductivity of Li-ion data computed from AI-EMD simulations in Li5PS4Cl2 from MSD
for various temperatures is illustrated by Figure 4.
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Figure 4. Arrhenius plot for Li5PS4Cl2 conductivity. Outcomes of AI–EMD simulations and AI–
NEMD simulations at specific temperature. The error ranges for extrapolation estimated data at
600 K and 800 K to 300 K are displayed by AI-EMD and AI-NEMD, respectively. Adapted from
Baktash et al. [19].

From MSD [17] computations, the ionic conductivity of Li5PS4Cl2 at 300 K is
0.35 ± 0.05 S·cm−1. Figure 4 presents a close look into the values at 600 K and 800 K,
the extrapolated conductivity presents an ionic conductivity ranging from 0.17–0.37 S·cm−1

at 300 K. This works well with the computed results. However, the statistical error for the
elevated temperature values is minute when related to the results. Moreover, correlative er-
ror at decreased temperature is sizeable because of their extrapolated values. Additionally,
the extrapolated result at 1000 K gave values from 0.17–0.33 S·cm−1 at 300 K, thereby real-
izing a minimal swap through an extra-elevated temperature since it requires a substantial
temperature difference to advance a discrete value in the temperature reciprocal.

Aeberhard et al. [18] employed an alternate method based on AI-NEMD simulations
to calculate the self-diffusion coefficient of hexagonal LiBH4 at 535 K, which is different
from the method used in ab initio simulations to find the IC of SSE. To prove the accuracy of
Baktash et al. [19], AI–NEMD simulations approach is employed to speculate the Li5PS4Cl2
coefficients of self-diffusion and conductivities at 300 K, 600 K, 800 K and 1000 K, so these
values are juxtaposed with those from AI–EMD MSD calculations.

Calculating conductivity at various fields is necessary to identify the linear response
domain for ionic conductivities calculations from AI-NEMD simulations. The EMD and
NEMD procedures reported results work in the range of one standard error. There is
an evaluation of the conductivity of the extrapolated specimen at 300 K from elevated
temperatures. Distinguishing the lines in Figure 4 using comparable complete simulation
times at 300 K, 600 K and 800 K for the NEMD and EMD computations, the NEMD
simulations statistical errors values equate that of EMD approach. This is true for both
direct consideration and extrapolated elevated temperatures values at 300 K.

Li5PS4Cl2 Collective Diffusion Coefficient

Scholars used the Nernst–Einstein models to connect the conductivity of a material
to its coefficient of self-diffusion. However, if the sample of interest diffusing atoms tends
to be stationary at the time of diffusion, on top of that, it is an ineffective estimation, and
therefore, it is advisable to use the coefficient of collective diffusion [63]. When the diffusing
atoms transpose individually, the coefficients of self and collective diffusion coincide, but
they diverge when they do so collectively.

Dc = lim
t→∞

1
6Nt

〈
(

N

∑
i=1

ri(t)−
N

∑
i=1

ri(0)

)2

〉 (2)
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(See nomenclature for terms definition.)
In order to determine if this calculation is adequate for the systems under consid-

eration, Evans et al. [61] computed the Li5PS4Cl2 coefficient of collective diffusion using
Equation (2) and compared it to the coefficient of self-diffusion. They picked the most
diffusive pure system because it is challenging to make deductions when the statistical
error is considerable, and since this statistical error for its collective diffusion computa-
tion is substantially higher than that of self-diffusion estimations. A report from Baktash
et al. [19] compares the MSD discrete sample simulations for Li5PS4Cl2 at 800 K for the
ions and their center of mass, but the error bar for the ion MSD remained low. This holds
true since each ion in the sample can offer an autonomous contribution towards MSD.
Therefore, the MSD (self and collective diffusion coefficients) computed in both ways agree.
The agreement aligns with individual performance of the entire lithium-ions in Li5PS4Cl2
during the diffusion process, making it easy to compute the conductivity by the coefficient
of self-diffusion.

6. Li6PS5Cl Ionic Conductivity

Keil et al. [64] reported that for diffusive motions, simulation times vary inversely with
the coefficient of diffusion. For low conductivity models, such as EMD simulations, it is
hard to obtain precise values, and at some points, there is no activity of ions in a practicable
timescale between the areas in the electrolyte.

An analysis of Li5PS4Cl2 has shown that valid findings were achieved by coalescing
NEMD computations under elevated temperatures with assumed values at minimal tem-
peratures. So, a method of sustaining the range of materials to compute the conductivity
by providing an approach of when the conductivity is very minimal to allow the use of
EMD simulations has been reported. Baktash et al. [19] proved this tender by computing
Li6PS5Cl ionic conductivity by NEMD simulations. Scientists have utilized both AI–EMD
and AI–NEMD simulations with the objective of computing the conductivity and recog-
nizing the technique of diffusion in pure Li6PS5Cl, Li6PS5Cl with sulfur–chlorine disarray
(sulfur and chlorine switching locations), and Li6PS5Cl with mutually lithium-ion vacancies
with sulfur–chlorine disarray.

6.1. Li6PS5Cl Pure Diffusion

Six Li-ions move in an octahedral region around an S2 S atom in one of the two different
motion types, while a second Li-ion transposes in the center of these octahedral borders
in the other. If the skips time is more than the time of simulation, then no conclusion
is viable on the diffusion coefficient from the simulation. For AI–EMD simulations of
Li6PS5Cl, they did not notice jumps between cages in ten independent trajectories of 100
ps at 300 K and 450 K and extraordinarily little, or no jumps were visible for the 600 K
trajectories. This proposes a small coefficient of diffusion of the material at 300 K (not up to
10−4 S·cm−1) and exemplifies the strain of assessing the result of the conductivity by EMD
computations [64]. However, it is a simple exercise to obtain conductivity results utilizing
NEMD computations at 600 K and 800 K, where jumps observation is available, and to
gauge the conductivity at 300 K using an extrapolation of these results. Baktash et al. [19]
envisaged the pure Li6PS5Cl conductivity ranging from 10−5–10−4 S·cm−1. The period
of simulation needed to obtain a corresponding accuracy for the Li6PS5Cl conductivity
through the EMD method at 600 K and 800 K was restraining as mean and standard error
jumps did not take place. Meanwhile, considering another option at elevated temperatures,
the extrapolated errors will be much more if the lowest temperature tends to be greater,
eventually leading to a disordering of the complex followed by a diffusion coefficient with
a corresponding non-Arrhenius behavior. Thus, the NEMD method is a more suitable
option.

The pure Li6PS5Cl lithium-ion conductivity was formerly established empirically [20,32,65]
and computationally [17,21] at 300 K. It is interesting to note that the calculations from
earlier publications for pure Li6PS5Cl at 300 K differ by five orders of magnitude and are
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between one and four orders of magnitude distinct from the actual data [19]. They obtained
a lower extrapolated data for simulations at 600 K and above. Consequently, reports
show no existence of consistent computational approximates of the diffusion coefficient for
this system. Under this condition, neither jump frequency of lithium-ions in Li6PS5Cl in
ambient condition at about 109 s−1 [7] demands extrapolation of the elevated temperature
and use of AI–NEMD to predict the conductivity at lower temperatures.

6.2. Li6PS5Cl: Disorder Effect

The Li6PS5Cl high conductivity spotted in several research studies is as a result of the
disarray of Cl and S atoms [7,20,66]. To apprehend this, the consideration of a model with
disarray based on the empirically scrutinized structure is important. There is a swapping
of 25 percent of the Cl ions holding Li6PS5Cl 4a areas/sites with S2 ions which occupied
4c areas/sites. EMD simulations values were taken to determine the conductivity of the
disarrayed configuration at 600 K and 800 K. Assuming Arrhenius behavior, the empirical
values for the conductivity of the disarrayed configuration are relayed in Baktash et al. [19]
as squares and triangles [7,31,67,68] with reported computational results [21]. Studying the
error bars, the computed result for the conductivity of the dissembled structure, aligns with
the contemporary empirical results reported by Yu et al. [7]. As a result, the disorganized
structure has a conductivity that is two orders of magnitude greater than the pure Li6PS5Cl
structure. Accordingly, minor structure changes include replacing four out of the 104 atoms,
gives a sizeable altering of the conductivity. This demonstrates that minute voids in the
pure Li6PS5Cl crystal might result in a range of empirical conductivities. There is the
regulation of the diffusion mechanisms of the ordered and disarrayed Li-ions structures
at 600 K using AI–EMD simulations (Figure 5). Comparing the methods, it is evident
that switching the positioning of Cl and S ions cause a disarray that alters the freedom
of the Li-ions. Figure 5a,b show the movement of pure Li-ions in the octahedral regions
produced by the PS3−

4 (Figure 1), and the paths through the regions show that the energy
barrier for diffusion out of the regions is high when compared to the available thermal
energy, which is why the pure crystal ionic conductivity is hardly discernible from these
AI-EMD simulations.

Figure 5. Li ion trajectories views, pure Li6PS5Cl (a,b) and (c,d) for S-Cl disarrayed Li6PS5Cl at
600 K observed up to 50 ps. Li (violet), S (yellow), Cl (green) and P (light purple). The diffusion
pathways of Li-ions = small violet dots. The apertures illustrate simulation supercell. Adapted from
Baktash et al. [19].

While in the disordered structure, an aperture linking the cages is visible, Figure 5c,d.
This demonstrated that in the new passage direction, diffusion of lithium-ion barrier energy
is miniature compared with other regions and with the size it used to be in the pure
structure, as lithium-ions advance into the dissembled area more readily.
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6.3. Li6PS5Cl: Li-Ions Vacancies and S–Cl Disorder

Yu et al. [66] proposed the empirically formed specimen to possess an empirical
formula of Li5.6PS4.8Cl1.2 after heat treatment. They believed that the charges were not
balanced in the empirical formula presented; however, a formula that comes near to charge
balance is Li5.8PS4.8Cl1.2. Considering the influence of the fusion of a lithium vacancy,
and a few more chlorine ions and fewer S2 ions [67] on the Li6PS5Cl ionic conductivity,
two Li-ions were removed from the Li6PS5Cl supercell (8–unit cells) and two S2 ions were
changed with two chlorine ions [45], delivering a novel Li5.75PS4.75Cl1.25 structure, more
like the formula reported in previous work (Li5.8PS4.8Cl1.2). The calculated conductivity
of the ions in this structure at 300 K was 0.09 ± 0.03 S·cm−1, which is somewhat higher
than the calculated result for Li6PS5Cl with disorder of the sulfur and chlorine atoms
alone (6 × 10−3–10−1 S·cm−1) and higher than the evaluated value for pure Li6PS5Cl solid
electrolyte. The approximated result for the ionic conductivity is also greater than that
related as 1.1 × 10−3 S·cm−1 in Yu et al. [66]. However, sensitivity to voids and disarray
means they are not anticipated to match, as a result of the variance in empirical formulas.
It is obvious that the diffusion of the structure is improved by lithium vacancies and the
substitution of a sulfur ion for a chlorine ion. They were prepared for this increase since
the lithium vacancies and the small masses of the chlorine and sulfur ions tend to cause
the mobility of the lithium-ions in space, and the disorder caused by the substitution of
chlorine ions for sulfur ions may facilitate easy movement.

Table 4 shows a compendium of conductivities of the various type Li6PS5Cl struc-
tures (pure, disarrayed, and structures with both disarray and lithium vacancies) re-
ported from computational works. From the outcomes of the computations and previous
reviews [17,20,21,27,30,32,66], pure Li6PS5Cl has a quite low conductivity of 10−5–10−4 S·cm−1.
However, impurities such as lithium vacancies, ion disorder, and grain boundaries insti-
tuted during the synthesis of argyrodite electrolyte would affect their final conductivity.

Table 4. The conductivity of Li6PS5Cl and defective materials at 300 K investigated in tens of research
and computational studies.

Material IC (S·cm−1) Reference

Li6PS5Cl

1.4 × 10−5 Experiment [32]
3.3 × 10−5 Experiment [20]

6 × 10−5–3 × 10−4 *a AI–NEMD [19]
6 × 10−5 Experiment [65]

0.29 Computation (MSD) [21]
0.05 (0.16) Computation (Jump) [21]
2 × 10−6 Computation (MSD) [17]

Li5.6PS4.8Cl1.2 1.1 × 10−3 Experiment [66]

Li5.75PS4.75Cl1.25 6 × 10−2–1.2 × 10−1 *a [19]

Li6PS5Cl with chlorine and
sulfur

disorder

1.9 × 10−3 Experiment [67]
4.96 × 10−3 Experiment [7]
3.38 × 10−3 Experiment [68]

0.26 Computation (MSD) [21]
0.89 (1.29) Computation (Jump) 21]

6 × 10−3–0.1 *a AI–EMD [19]
*a—extrapolation ranges at 800 K and 600 K. Adapted from Baktash et al. [19].

7. Methods of Argyrodite Electrolyte Modeling

Previous works have reported that MD simulations were used to examine the char-
acteristics of ionic liquid (IL) electrolytes close to cathodic electrodes [69]. It is pertinent
that we describe that the interfacial structure of IL electrolytes was first considered with
MD simulation, as reported by Lynden-Bell [70] and Lynden-Bell et al. [71]. Some novel
advancement on the theory of electric double layer, and computer simulation of interfacial
structures of IL., new coarse-grained ILs and foregoing discoveries on MD are outlined by
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Fedorov et al. [72]. With respect to other work conducted, we decided to streamline our
reviews on the modeling of ab initio MD simulation in the ensuing section.

7.1. Ab Initio MD Simulations

Ab initio Born–Oppenheimer MD simulation was carried out by the CP2K (Quick-
step package) [73,74] with an improved version of the same that utilized the AI-NEMD
procedure. Other research work in the literature inculcated the Vienna Ab initio Simu-
lation Package (VASP) [3] for this same simulation [1,17,75]. Researchers preferred the
PBE generalized gradient approximation (GGA) for the density functional theory [3,14]
exchange-correlation functional. Van der Waals interactions reported the corrections of
the DFT-D3 [76], an approach for many works in the literature. The pseudopotentials of
Goedecker, Teter and Hutter (GTH–POTENTIAL) were used [77]. They usually select the
DZVP–MOLOPT–SR–GTH [78] basis set as an optimization tool for molecular gas proper-
ties and condensed-phase computations. Researchers used the Gaussian and plane-waves
(GPW) basis [79] and a cutoff energy (in Rydberg) to further the task. Researchers used a
1 × 1 × 1 k-point mesh (Γ point) in all computations, and initial optimization computations
showed the use of grid-initiated errors not up to 0.01 Å for lattice parameters and errors not
up to 0.06 eV for the energy per unit cell. The optimized lattice constants, 10.08 Å, used are
2.5% more than the empirically described results for Li6PS5Cl and compared with previous
computational reports [17,21].

7.2. Equilibrium and Nonequilibrium Models of Motion

EMD and NEMD simulations assess the coefficients of the diffusion of materials in
the NVT ensemble (constant-temperature, constant-volume). The models of motion for the
AI–EMD simulations are [61,80]:

qi =
pi
mi

(3)

pi = Fi − αpi (4)

where qi = position, pi = momentum, mi = mass of atom i, Fi = inter-atomic force on atom
i, α = Nosé–Hoover thermostat couples of the atoms. A chain thermostat with the chain
number of 3 (typical for CP2K) for EMD computations was employed [19,61,81]:

α =
1

Q1

(
N

∑
i=1

p2
i

mi
− gkBT

)
− αα2 (5)

α2 =
Q1α

2 − kBT
Q2

− α2α3 (6)

α3 =
Q2α

2
2 − kBT
Q3

(7)

In the above equations, Q1, Q2, and Q3 = coefficients of friction, all given the same
inputs of three in the equilibrium simulations, kB = Boltzmann’s constant, T = target
temperature and g = degrees of the system freedom. The non-equilibrium approach applied
to resolve the coefficient of diffusion for lithium ion is the color-diffusion algorithm that is
broadly functional in classical MD simulations [80–82]. The equations of motion for ions
utilizing this line of instruction are given in Equations (3) and (4); however, the equation
of motion for the momentum of the lithium-ions is given. Equation (4) was modified to
incorporate a force brought on by a color field, Fc. [80]:

pi = Fi + ciFc − αpi (8)

where ci = color charge of lithium ions. The summation of the color charge = 0, ensuring
that no drift of moment occurs in the system, but the selection of these charges is random.
There is always +1 color label on half of the lithium-ions and −1 color charge on the other

142



Energies 2022, 15, 7288

half. PS3−
4 , S2− and Cl− are not directly affected by the color field, and the color charges do

not affect how the Li+ interact with one another; rather, the color field simply affects the
field response. Because a chain thermostat is inappropriate for non-equilibrium simulations,
it was not applicable for NEMD computing [83].

Using the velocity Verlet technique in the 1 fs time step, it is crucial to extend the
EMD and NEMD equations of motion. Using the Nernst–Einstein equation and the coeffi-
cients of self-diffusion, researchers may determine the ionic conductivity of any specimen,
σ [17,21,80]:

σ =
ne2Z2

kBT
Ds (9)

where n is the ion density of Li, e is the elementary electron charge, and Z the valence of Li.
Using the NEMD simulations, the self-diffusion coefficient is derived from the com-

putation of the color current by the color field. Remarkably, this approach determines the
self-diffusion coefficient of an SSE with minimal conductivity. The color current is [18]:

Jc(t) =
N

∑
i=1

civi(t) (10)

where vi = velocity of ith lithium ion. At low fields, the color current in the direction of
the field (Jc= Jc · Fc/|Fc|) varies directly to the field, Fc = |Fc|, when the systems are in a
steady state, and then for the color charges reported in Evans et al. [61]:

Ds =
kBT
N

lim
t→∞

lim
Fc→0

Jc

Fc
(11)

where N = number of Li-ions subject to a color field. Using a disparate choice of color
charges, we substitute N in Equation (11) with ∑N

i ci
2. The system and condition, including

temperature, will have an impact on the field’s outcome if there is a linear change between
the color current and applied field. Baktash et al. [19] conducted simulation in practice to
calculate the critical field. So, to obtain values with the least statistical error, maximum field
for which linear response occurs is better utilized. In ergodic order, researchers substituted
the color current ensemble average in Equation (11) with a time average, using [19]:

〈Jc〉 = lim
t→0

1
t

∫ t0+t

t0

Jc(s)ds= lim
t→∞

1
t ∑N

i=1 ci Δri(t) (12)

In the horizontal direction, the self-diffusion coefficient is [77,79]:

Ds =
kBT
N

lim
t→∞

lim
FC→0

∑N
i=1 ciΔxi(t)

tFC
(13)

The field accumulates force to the molecules in the orientation of the field assuming a
corresponding influence to diminishing the activation energy bar for diffusion [84].

The predicted time for a specific leap, if the diffusion method is synthesized as a
jump process, will increase with the size of the activation bar. As a result, using the
field discharge permits systems with lower diffusion coefficients for a given simulation
duration. This proves that there is a great edge for NEMD computations for systems
with minimal coefficients of diffusion. Since the ionic conductivity of SSEs depends on
temperature, researchers used ionic conductivities at elevated temperatures calculated
from MD simulations to specify the coefficients of diffusion of the electrolytes at reduced
temperatures, considering the Arrhenius equation [1,17]:

D = D0e−Ea/(kBT) (14)
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where Ea = activation energy, and D0 = diffusion pre-exponential factor. Using Equation (9),
we express this in terms of the ionic conductivity of the process [19,85],

σT =
ne2Z2

kB
D0e−Ea/(kBT) (15)

Note that for systems where only the Li-ions are moving and transpose separately,
the conductivity computed from the Einstein equation for the self-diffusion, Equation (1),
which is written as a Green–Kubo equation, [80–82].

σ =
ne2Z2

kBT
Ds =

e2Z2

3VkBT

∫ ∞

0
〈∑N

i=1 vi(t)·vi(0)〉dt (16)

Furthermore, if the theory of independency of motion of the Li-ions is open, then
computed from the coefficient of collective diffusion and the Green–Kubo relationship
as [81,82],

σ =
ne2Z2

kBT
Dc =

e2Z2

3VkBT

∫ ∞

0
〈(∑N

i=1 vi(t)·(∑N
j=1 vj(0))〉dt (17)

The Einstein expression used in Zhou et al. [8] avoids problems correlated with
convergence of the time-correlation functions in Equations (16) and (17). Importantly, ab
initio MD simulations of conductivity has been reported in the literature, and it has been
emphasized that that Green–Kubo equation provides regular results using integer charges
and velocities of distinct sites, as shown in Baktash et al. [19], and the mean-square dipole
displacement computed using Born charges of each atom [86].

7.3. Machine Learning (ML) Models

The machine learning models provide an approach to juxtapose the atoms in a large
molecule and their neighboring counterpart, giving a representation of their bonding and
interaction. Again, ML makes it easy to make projections for the energies of large molecules
or the disparities between the low-accuracy and high-accuracy computations. It is pertinent
to add that ML is appropriate to the search for stable and harmless electrolytes for LIBs [87].
Additionally, ML provides solutions to mitigate orders of magnitude in calculations and
big data analysis [88]. A lot of models and equations on ML were extensively reported in
Refs. [88,89] to calculate DFT using VASP for the total energies and electron densities.

Partial density states that computations for LiPS4 and LiPO4 can be computed with
the form [85]:

Na(E) ≡ 1√
πΔ ∑

nk
f a
nkWke−(E−Enk)

2/Δ2
(18)

The smearing factor (Δ) is always chosen to be 0.1 eV. Wk is the Brillioun zone sampling
factor. f a

nk is the weighing factor, n is the band index, and k is the wave vector.

8. Discussion

We reviewed the investigation of the diffusion technique of lithium-ions in Li6PS5Cl
and Li5PS4Cl2 and their coefficients of diffusion. They used the assessment of the EMD
and NEMD methods to estimate the ionic diffusion of these materials, whilst their ionic
conductivity is about 10−3–10−2 S·cm−1. At any time when the ionic conductivity of these
samples is low, the EMD simulation time required for short and simple results is currently
infeasible. However, it was shown that it is viable to use NEMD to calculate coefficients of
diffusion of SSEs with conductivities in the range 10−6–10−4 S·cm−1. The consensus on the
results of these techniques has shown that if conductivity is increased sufficiently, both can
provide reliable measurements of conductivity. However, for low-conductivity resistance
SSEs that are close to ambient temperature, NEMD simulation should be used.

As the diffusivity decreases, the advantage of NEMD calculations over EMD calcula-
tions grows. This is due to the fact that the diffusion coefficient has an inverse relationship
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with the amount of time needed to explore a material in equilibrium simulations [65],
but the applied force field also affects the NEMD simulation. It is important to perform
different NEMD simulations on fields in distinctive directions to calculate the diffusivity,
especially if the diffusion is not isotropic. Therefore, in this case, the NEMD efficiency
calculation is minimized. However, it is necessary even if the field is small enough.

We additionally reviewed the conductivity of Li5PS4Cl2 and Li6PS5Cl from past and
recent works, and also the effect of disarray and defects on diffusion of the Li-ions in
Li6PS5Cl. Predictions made proved that Li5PS4Cl2 is a highly conductive solid electrolyte
while its synthesis is in progress. For Li6PS5Cl, though the pure material has a moderately
low ionic conductivity and was found to be metastable [38,43] (6 × 10−5–3 × 10−4 S·cm−1

at 300 K), it is proven that by intensifying lithium vacancies of the structure and establishing
disarray in the ionic positioning of the chlorine and sulfur ions, the ionic conductivity
of the material can be improved. Whilst they pronounced those structures formerly, the
dimensions of the error bars made it tough to envision the effects. In summary, the
experimentally reported increase in conductivity of Li6PS5Cl is assumed to be as a result of
a combination of lithium-ion vacancies with chlorine–sulfur ion damage, or an increase
in halogen (Cl) concentration after heat treatments. The computational results mentioned
in a paper by Baktash et al. predict conductivities that are either greater than the actual
values or at the upper end of the range of empirical values [19]. The modeling of the system
size, the degree of theory employed in the ab initio MD simulations, and changes in the
lattice parameters during diffusion carried out under constant volume circumstances are a
few systematic flaws in the calculations that might potentially lead to this. Nonetheless,
the existence of grain boundaries, contaminants, chaotic, and non-uniform distribution of
chaotic sites in the experimental sample may explain the discrepancy between the actual
and calculated results. It is important that the calculated results are duplicatable and show
trends due to structural changes indicating ways to tune a material to increase conductivity,
which is essential for improving SSE.

Based on findings reported by Zhao et al. [89] about some promising compositions,
which can be further verified experimentally, it should be noted that some substitutions may
be challenging due to the limited solid solution ranges and may require special synthesis
conditions [90]. Simultaneously, the solubility itself can be included in the ML predictive
model. This will be the focus of future research work.

From reports from the literature, the creation of mechanical stress during discharge in
a dual porous insertion electrode cell sandwich made of lithium cobalt oxide and carbon is
simulated using models that are given [91]. Models credit two separate factors—changes
in the lattice volume brought on by intercalation and phase transformation during the
charge or discharge process—to the stress accumulation within intercalation electrodes.
Models are used to forecast how cell design elements such as electrode thickness, porosity,
and particle size will affect how much stress is generated. To comprehend the mechanical
deterioration in a porous electrode during an intercalation or de-intercalation process,
models described in the literature are employed. The usage of these models leads to an
improved design for battery electrodes that are mechanically durable over an extended
time of operation. Refs. [92–103] are recommended to readers for these models.

9. Conclusions

The lithium conductivity in argyrodite electrolytes makes ASSB transcend to be a
preferable option for clean electrical energy storage. Scholars have considered a scalable
solution-synthetic approach to model argyrodite phases using solvate complexes to enhance
elevated ionic conductivities of about 3.9 mS·cm−1 with minimal electronic conductivities.
ASSB showed great stability performance and good agreement between cells formed by
ball-milling and solution-engineered approaches.

Researchers have shown that the AI-NEMD simulation provides a good approximation
of the coefficient of diffusivity found in materials with diffusivity that are not intended to
be determined directly by the AI-EMD computations. They calculated diffusion coefficients
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using AI–NEMD and AI–EMD simulations for highly diffusive SSE obtaining accuracy. It
was proven from the literature that the AI–EMD approach tends to be slow when used to
compute the diffusion coefficients, whereas it is better when using AI–NEMD simulations.

Using AI–NEMD simulations, Li6PS5Cl and Li5PS4Cl2 were separated as two potential
electrolytes for ASSB. It was demonstrated that by including Li vacancies and disorder
into the argyrodite electrolyte system, the ionic conductivity of that material will improve
substantially.

We reviewed sulfide-based electrolytes reported in the literature as a few potential
materials of ASSB because of their mechanical qualities, ionic conductivities, and electro-
chemical stability surpassing many other potential SSE. We reported that it is possible to
construct structures that are stable in the higher conductivity phase at room temperature
by introducing halogens into argyrodite models, such as Li7PS6.

It was proven that ionic conductivity is good for heterogeneous Cl and Br phase and
Cl-rich phases, yielding about 4 mS·cm−1. This shows that the dopants impurities effects
of the synthesized argyrodites electrolyte materials does not reduce Li-ions conductivity in
the exceptionally fine electrolytes.

Certainly, so far, cells in the literature have been reported to utilize lithium alloy as an
anodic electrode due to its toughness, with the goal of measuring the qualities of argyrodite.
Future research is expected to make use of lithium as a discrete cathodic substance to see
its reaction.

Additionally, future work is expected to factor the ML predictive model extensively
into the synthesis of argyrodite electrolyte materials.

Overall, we plan to make this article an all-in-one resource for researchers to access
information on the previous and current work on the modeling of argyrodite electrolyte ma-
terials with their related references. We included models and methods used by researchers
to model the argyrodite electrolyte materials they considered. We also introduced other
resources to access more models of argyrodite using ML.
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Nomenclature

Symbol Description
Ea activation energy
n band index
kB Boltzmann’s constant
Wk Brillioun zone sampling factor
Dc Lithium center-of-mass coefficient of diffusion
ci color charge/label
Jc color current
Fc color field
α Nosé–Hoover thermostat couples of atoms
D0 diffusion pre-exponential factor
Δri(t) ith displacement of N lithium-ions over a period
e elementary electron charge
〈 〉 ensemble average
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Q1, Q2 and Q3 friction coefficients
Fi inter-atomic force on atom i
n ion density of Li
σ ionic conductivity of the material
mi mass of atom i
pi momentum
g number of degrees of freedom
N number of lithium-ions subject to a color field
Na(E) partial densities states
D0 position
ri(t) ith position of lithium-ion at time t
Ds coefficient of self-diffusion
Δ smearing factor
T target temperature
Z valence of Li
vi velocity of ith Li-ion
k wave vector
f a
nk weighing factor

Å Angstrom
AI–EMD/EMD Ab initio equilibrium molecular dynamics
AI–NEMD/NEMD Ab initio nonequilibrium molecular dynamics
ASSB All-solid-state batteries
ASSLB All-solid-state lithium battery
DC Direct current
DFT Density functional theory
DME Dimethoxy ethane
EC Electronic conductivity
EIS Electrochemical impedance spectroscopy
GGA Generalized gradient approximation
GPW Gaussian and plane-wave
IC Ionic conductivity
IL Ionic liquid
LIB Lithium-ion batteries
MD Molecular dynamics
ML Machine learning
MSD Mean square displacement
PBE Perdew–Burke–Ernzerhof
Ry Rydberg
SEM Scanning electron microscope
SS Stainless steel
SSB Solid-state batteries
SSE Solid-state electrolyte
THF Tetrahydrofuran
VASP Vienna Ab initio Simulation Package
XRD X-ray diffraction
Symbol Description
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Abstract: Owing to the variation between lithium-ion battery (LIB) cells, early discharge termination
and overdischarge can occur when cells are coupled in series or parallel, thereby triggering a decrease
in LIB module performance and safety. This study provides a modeling approach that considers
the effect of cell variation on the performance of LIB modules in energy storage applications for
improving the reliability of the power quality of energy storage devices and efficiency of the energy
system. Ohm’s law and the law of conservation of charge were employed as the governing equations
to estimate the discharge behavior of a single strand composing of two LIB cells connected in parallel
based on the polarization properties of the electrode. Using the modeling parameters of a single
strand, the particle swarm optimization algorithm was adopted to predict the discharge capacity
and internal resistance distribution of 14 strands connected in series. Based on the model of the LIB
strand to predict the discharge behavior, the effect of cell variation on the deviation of the discharge
termination voltage and depth of discharge imbalance was modeled. The validity of the model was
confirmed by comparing the experimental data with the modeling results.

Keywords: lithium-ion battery; modeling; voltage deviation; electrical behaviors; cell performance deviation

1. Introduction

Lithium-ion batteries (LIBs) have diverse applications because of their high energy
density, efficiency, and power [1]. LIB-powered energy storage devices balance the power
supply and demand, reduce peaks, and maintain a stable power system [2]. Cell-to-cell
variation is unavoidable due to the inconsistency from the fabrication of cell components
including electrodes, separators, and electrolytes to the assembly process of cell [3–7]. Ow-
ing to an imbalance between cells, overcharging and overdischarging can occur when LIBs
are connected in series or parallel, thereby triggering a decrease in module performance
and safety [8]. Therefore, computing the cell-to-cell deviation effect of the LIB module via
mathematical modeling is necessary to improve the reliability of the power quality of the
energy storage device and ensure efficient operation of the energy system [9].

Numerous studies have reviewed the effects of cell-to-cell deviation in modules and
packs of LIBs [3–7]. Xie et al. [10] proposed an experimental procedure to measure the
capacity and voltage deviation accurately between cells connected in series of an LIB
module. Chang et al. [11] modeled the performance of a battery pack based on Monte Carlo
experiments in which LIB cells were connected in parallel. Astaneh et al. [12] predicted
the performance of an LIB pack for EV by scale-up, considering the random variability of
the cell based on the electro-thermal model of the LIB cell. Tran et al. [13] estimated the
state of charge (SOC) distributions of modules connected in series with LIB cells using
a nonlinear state observer. They lowered the computational burden compared with the
conventional SOC estimation algorithm. Liu and Zhang [14] proposed a cell balancing
method to solve the cell imbalance of batteries by designing an active balancing circuit
through SOC estimation using an extended Kalman filter. Lee et al. [15] predicted the

Energies 2022, 15, 8054. https://doi.org/10.3390/en15218054 https://www.mdpi.com/journal/energies
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voltage behavior in a LIB pack based on the normal distribution of the capacity and internal
resistance of the LIB cell. They verified the pack-modelling results through a dynamic
test. Krupp et al. [16] proposed a modeling tool that estimates the state of health (SOH)
distribution of individual cells and that of a module in real-time through incremental
capacity analysis. Zilberman et al. [17] estimated the distribution of the capacity and
impedance of 18,650 LIB cells using differential voltage analysis and analyzed the deviation
changes according to calendar aging. The cell-to-cell deviation that occurs when the battery
module is operating can cause overcharge and overdischarge in the cell and accelerate
cell aging, reducing the efficiency of the battery module and causing safety issues [18].
Commercial battery modules require a modeling methodology to accurately estimate the
cell deviation in real time. The voltage deviation among cells should be predicted by
estimating the individual parameters of the battery cell to minimize energy loss in the
battery system [19].

Many works mentioned in the above [10–17] reported the estimation of the distribu-
tions of the cell voltage, SOC, capacity, and internal resistance distributions of individual
cells in LIB modules using various modeling methodologies including extended Kalman
filter, nonlinear state observer, incremental capacity analysis, and differential voltage anal-
ysis among others. To the best of authors’ knowledge, there are no published articles on
the assessment of overdischarge and early discharge termination of individual cells in a
module based on modeling and verified by the comparison of experimental measurement
data. Herein, we propose a methodology that can effectively model the deviation of the
discharge termination and depth of discharge (DOD) imbalance of the LIB module under
the effect of cell variation. Two cells were combined in parallel to form a single strand, and
then 14 strands were connected in series in the LIB module analyzed in this study. Based on
the polarization properties of the electrode, Ohm’s law and the law of charge conservation
were employed as governing equations to predict the discharge performance of a single
strand. The distribution of capacity and internal resistance of the LIB strand, which are the
main parameters of strand deviation in the LIB module [3,17], were calculated using the
particle swarm algorithm (PSO) [20,21]. In the modeling approach proposed in this study,
several constant-current discharge experiments of the module were performed to calculate
the modeling parameters. Finally, the experimental data were compared with the modeling
results to validate the proposed model.

2. Mathematical Model

Herein, an LIB cell by LG Energy Solution with a capacity of 63 Ah composed of
lithium nickel manganese cobalt oxide (NMC) cathodes and graphite anodes was modeled.
The modeling procedure for each LIB cell in the module was similar to that used in our
previous studies [22–24]. As LIB batteries are composed of alternating anodes and cathodes,
two parallel cathodes and anodes with tabs positioned in opposite directions, as shown in
Figure 1, are modeled. Figure 1 shows that the current flow between the electrodes from
the cathode to the anode during discharge was perpendicular to the electrode, assuming
that the distance between the cathode and the anode was very close. From the continuity
of the current at the cathode and anode during discharge, the Poisson equations for the
voltages at the cathode and anode can be derived as follows:

∇2Vc = +rc J in Ωc (1)

∇2Va = −ra J in Ωa (2)
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Figure 1. Schematic of the current flow in parallel cathode and anode of LIB during discharge.

Resistances rc and ra were calculated as described in the previous papers [22–24]. In
addition, a previous study reported relevant boundary conditions for Vc and Va [22].

Current density, J, is a function of the cathode and anode voltages, and the functional
relationship between the current density and voltage depends on the polarization prop-
erties of the electrodes. This study adopted the polarization characteristics proposed by
Tiedemann and Newman [25] and Newman and Tiedemann [26], as follows:

J f aradaic = Y(Vc − Va − U) (3)

where Y and U are the fitting parameters as functions of the DOD, as shown in Gu [27],
and their electrochemical meanings have been described in the previous studies [28,29].
The detailed procedure for deriving Y and U from the experimental data and the functional
relationship between Y and U according to DOD are described in Section 4.

By excluding the modeling procedure to calculate the voltage distribution of the
transport phenomena of ionic species and electrolyte phase, the model reduces the compu-
tational burden significantly while maintaining its validity [22–24,28–35]. In the simplified
model, the DOD according to the time during discharge can be calculated by integrating J
with respect to time as follows:

DOD = DODi +

∫ t
0 Jdτ

Q0
(4)

Figure 2 shows a schematic of an LIB module in which two LIB cells are connected in
parallel to form a single strand and 14 strands are connected in series. The negative and
positive terminals of the module composed of copper busbars were connected to the 1st and
14th strands, respectively. Each cell was connected in series and parallel with aluminum
bus bars through laser welding to minimize the electrical contact resistance, while the
7th and 8th strands were connected with copper busbars. The LIB module in Figure 2
measures the total terminal voltage and voltage at each strand terminals through a sensor.
The electrical resistance, including the busbar, BMS sensor, and contact resistance with the
terminal, is negligible because of the good welding conditions and very small compared
to the resistance of the LIB cell [36]. As the measurement data that can be obtained from
the experiment are the terminal voltage of the module and the voltage of 14 strands, we
proceeded with the above modeling procedure by considering the strand in which two
cells are connected in parallel as a single battery model. The key parameters of the above-
mentioned modeling for calculating the voltage deviation of the battery strands are Qn
and Yn. Qn is the capacity of the nth LIB strand, and Yn correspnds to the reciprocal of the
internal resistance of the LIB [29]. As Yn is a function of the DOD, Equation (5) is introduced
to efficiently calculate the distribution of Yn by multiplying Yref with a proportionality
constant, βn.

Yn = Yre f βn (5)
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Figure 2. (a) Photograph of an LIB module with LIB cells configured in two parallel and 14 series
and (b) schematic of the electrical connections of the LIB module.

To reflect the deviation of Qn and Yn from the discharge behavior of the reference LIB
strand, the DOD of each LIB strand was modified with Qn and was calculated as follows:

DODn = DODn,i +

∫ t
0 Jdτ

Qn
(6)

The PSO algorithm was used to calculate the distribution of strand capacity and inter-
nal resistance. PSO is a widely used metaheuristic optimization method that determines an
optimal solution by moving particles, a solution candidate group, according to a mathemat-
ical formula to solve the problem [20]. The PSO algorithm has fewer hyperparameters than
other optimization techniques, and has the advantages of concise theory, efficient operation,
and stable convergence [21]. To determine Qn and βn using the PSO algorithm, Vmodel
according to a constant current was calculated by assigning Qn and βn into the battery
strand model as inputs. Equation (7) was used as the fitness function to minimize the sum
of errors compared with the experimental Vexp.

f itness f unction =
∫ t

0

√(
Vexp − Vmodel

)2dτ (7)

3. Experimental Section

The energy of the LIB cell composed of the NMC cathode and graphite anode was
232 Wh, and the nominal capacity was 63 Ah. The positive and negative tabs of the LIB cells
were positioned in both directions. The energy of the two parallel and 14 series-connected
LIB modules is 6.5 kWh, and the nominal capacity is 126 Ah. The LIB module was stacked
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with an aluminum case of dimensions 445 × 110 × 620 mm3. In Figure 2, the negative tab
of the 1st strand is connected to the negative terminal of the module. The positive tab of
the 14th strand is connected to the positive terminal of the module. LIB module tests were
conducted in a chamber maintained at 25 ◦C. The LIB module was charged with a current
of 0.2 C and discharged at three different C rates of 0.2 C, 0.5 C, and 1 C with a rest of 1 h in
the same experimental condition as the cell test. The discharge termination voltage of the
LIB cell was 42 V. During the experiment, the voltage sensor measured the terminal voltage
of the module and those of the 14 strands.

4. Results and Discussion

4.1. Model Validation for LIB Strand

As one of the experimental data that can be obtained from the discharge test of the LIB
module is the voltage of a strand, the LIB strand was modeled as a single-battery model
by neglecting the electrical resistance for parallel connection in this work. The nominal
capacity of the LIB strand was 126 Ah, because the two LIB cells were connected in parallel.
Figure 3 shows the discharge voltage according to three different C rates in the range of
0.2 C to 1 C of the 1st strand. The discharge curves in Figure 3 show the nonlinear behaviors,
because the electrical resistance of battery cell is not constant during the discharge with
constant current as shown by combinatorial atomistic-to-AI simulation on supercapacitors
validated by experimental data [37]. In this work, the internal resistance change of LIB cell
during discharge was accounted through the functional dependence of model parameter
Y on DOD, because Y can be regarded as the reciprocal of the internal resistance of the
LIB [28,29]. The dependence of Y on the environmental temperature was reported in
the previous work [28]. Figure 4 illustrates the linear relationship between the LIB strand
voltage and current density during discharge obtained from the experimental results shown
in Figure 3. The well-fitted results in Figure 4 justify the linear relationship between the
current density and LIB strand voltage of Equation (3). As the vertical intercept and slope
of the linear function change according to the DOD level, U and Y can be expressed as
functions of DOD. Unlike the previous works [22–24,28] in which U and Y were expressed
as the polynomial functions of DOD, U and Y were determined through an interpolation
with a 2 × 101 matrix whose elements are the values U and Y at a certain DOD between 0
and 1 with an increment of 0.01 given in Figure 5a,b. U can be considered as the equilibrium
voltage and Y as the reciprocal of the internal resistance of the LIB [28,29].

Figure 3. Experimental discharge voltage curves of 1st LIB strand for 0.2 C, 0.5 C, and 1 C.
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Figure 4. Strand voltage as a function of applied current density at various DOD levels during discharge.

 
Figure 5. Fitting parameters of 1st LIB strand to calculate voltage behavior (a) U and (b) Y.
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To verify the modeling methodology for the LIB strand, 0.2 C, 0.5 C, and 1 C discharge
behaviors of the LIB strand were calculated using U and Y in Figure 5a,b. The experimental
discharge voltage curves of the 1st LIB strand at 0.2, 0.5, and 1 C were compared with
the modeling results, as shown in Figure 6. The comparison of the modeling results and
experiments showed good agreement.

Figure 6. Comparison of discharge voltage behavior of modeling and experimental data at 0.2 C, 0.5
C, and 1 C of LIB strand.

4.2. Model Validation for LIB Module

It was found that the variation of Un due to the change of the strand number, n, was
negligible, if Un is calculated as a function of DODn instead of DOD. Because the variation
of Yn was noticeable as the change of the strand number unlike Un, the value of Yn which
is expressed in terms of βn should be determined through the PSO algorithm along with
Qn. By using Equation (7) as the fitness function of the PSO algorithm, the Qn and βn
that can render the best fit of the 0.2 C, 0.5 C, and 1 C voltage behaviors calculated from
the modeling to the experimental data were obtained. Each LIB strand discharge voltage
behavior was predicted by using the calculated Qn and βn values and it was compared
with the experimental results. The modeling results are summarized in Table 1 in terms of
the RMSE values at different C-rates of the LIB strand and it was calculated by using the
following formula:

RMSE =

√√√√ T

∑
i=1

(
Vexp − Vmodel

)2

T
(8)

where T represents all sampling times in which the LIB strand was discharged with the
discharge rates of 0.2 C, 0.5 C, and 1 C.

The results in Table 1 indicate that the model presented herein can accurately simulate
the voltage behavior of the battery strand with an accuracy of 4 mV or less. The deviation
in the capacity and internal resistance of the LIB cell is caused by the inconsistency in the
electrochemical characteristics of the LIB cell that occurs during the process of material
synthesis and cell manufacturing. Figure 7a–c show the capacity distributions at 0.2 C,
0.5 C, and 1 C. If we define the uniformity index (UI) of discharge capacity distribution as
the difference between the maximum and minimum discharge capacities divided by the
average value of discharge capacity, the UIs of 0.2, 0.5, and 1 C shown in Figure 7a–c are
0.006, 0.007, and 0.007, respectively. Although UI increases slightly with higher C rate, the
values of UI at different C rates are very small and we may regard that the nonuniformity
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of the discharge capacity distribution is not significant. Figure 8 shows the distribution of
βn, which is a parameter related to the internal resistance of each LIB cell in the strand [29].

Table 1. RMSE of the modeling results and experimental data of discharge voltages of LIB strands at
0.2 C, 0.5 C, and 1 C.

Strand Number
RMSE (mV)

0.2 C 0.5 C 1 C

1 2.069 3.674 1.964
2 2.804 3.846 2.249
3 2.821 3.235 3.202
4 2.794 3.443 2.591
5 2.804 3.167 2.937
6 2.267 3.288 3.581
7 2.750 3.829 2.542
8 2.534 4.193 2.591
9 2.461 3.607 2.666
10 2.767 3.678 2.335
11 2.306 3.307 3.561
12 2.875 3.526 2.812
13 2.803 3.725 1.958
14 2.283 3.420 2.785

(a) 

(b) 

Figure 7. Cont.
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(c) 

Figure 7. Modeling results of capacity distribution of LIB strands (a) 0.2 C, (b) 0.5 C, and (c) 1 C.

Figure 8. Modeling results of βn distribution of LIB strands.

Based on the modeling methodology mentioned above, the discharge behaviors of the
LIB module consisted of 14 strands connected in series were predicted. Figure 9 shows the
comparison of the discharge voltage variations of the LIB module with time from modeling
and those from experiment at the discharge rates of 0.2 C, 0.5 C, and 1 C. The voltage
comparison results of the module were good; thus, the methodology presented in this
paper may be justified.

4.3. Modeling of LIB Module Performance

When discharging in the LIB module, the termination voltage is terminated at 42 V and
the cell termination voltage becomes 3.0 V considering the connection of 2P 14S. However,
each cell maintains a different voltage level, and there are early discharge termination and
overdischarge cells if we regard 3.0 V as the termination voltage. The module efficiency
can be reduced in case of an early discharge. In the case of overdischarge, aging may be
accelerated and cause serious safety problems. Therefore, predicting the end of voltage
is important during the discharge of each cell. Figure 10 compares the end of voltage for
each strand at 0.2, 0.5, and 1 C from the experimental with modeling results. The blue
bars represent early discharge termination, where the termination voltage of the strand has
not reached 3.0 V, and the red bars represent overdischarge, where the strand voltage has
dropped below 3.0 V. The experimental results indicated by the black dots show a good fit
with the modeling results.
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Figure 9. Comparison of modeling and experimental data of discharge behavior of LIB module at 0.2
C, 0.5 C, and 1 C.

 

Figure 10. Comparison of experimental results with modeling results of the voltage of LIB strands at
the end of discharge (a) 0.2 C, (b) 0.5 C, and (c) 1 C.
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The voltage difference between the strands can be calculated based on the verified
model, which accurately simulates the strand voltage in the LIB module. Figure 11 shows
the difference between the maximum and minimum voltages measured by the sensor
over time when discharging at 0.2, 0.5, and 1 C. The difference between the maximum
and minimum voltages is defined as the voltage imbalance and it is compared with the
modeling. Figure 11 shows that the voltage imbalance increases as the discharge current
rate increases, and particularly at the end of the discharge, it rises very steeply. The
comparison results of the model and experiment are in good agreement, indicating that
the proposed modeling methodology is suitable for calculating the voltage deviation in
the module.

Figure 11. Comparison of modeling and experimental results of the difference between the maximum
and minimum voltages between LIB strands according to DOD. The solid lines denote modeling
results and symbols are the experimental data.

As proper cell balancing is not performed after charging, an initial DOD deviation
occurs. The DOD range used by each strand during discharging is different. Figure 12a–c
show the DOD range area from the initial DOD to the final DOD when discharging at 0.2 C,
0.5 C, and 1 C, respectively. The point at 3.0 V is indicated by a red dashed line. The initial
DOD of each strand was obtained by interpolation into the OCV table, and the DOD use
for each strand was calculated using Equation (6). In Figure 12a, when some strands fall
below 3.0 V at 0.2 C discharge, an overdischarge occurs and DOD value exceeds 1.0. The
rest of the strands are assessed as early termination discharge. In Figure 12b,c, the strand
below the red dashed line is the early discharge termination, and the strand above the red
dashed line is the overdischarge.

Variations in the voltage and DOD used in the LIB module are unavoidable owing
to differences in the physical properties of the electrode materials and cell manufacturing
process. Early discharge termination owing to these deviations reduces the efficiency of
the LIB module. If overdischarge accumulates continuously, it can accelerate individual
aging and cause serious damage to the battery system. Therefore, it is possible to accurately
analyze and parametrize the cell deviation within the LIB module to calculate the difference
by using the modeling methodology proposed in this study. Although the modeling
approach was verified with data of only the discharge behavior, the deviation between the
battery cells in a module or pack can be calculated in real time under various operating
conditions using the modeling methodology presented herein. The modeling approach
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will be a good strategy for cell balancing and improving the energy efficiency in large-scale
energy storage applications.

(a) 

(b) 

(c) 

Figure 12. Modeling results of DOD use distribution of LIB strands during discharge (a) 0.2 C,
(b) 0.5 C, and (c) 1 C.
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5. Conclusions

We developed a mathematical model to accurately calculate the effect of cell variation
during discharge in an LIB module. A simplified model that can simulate the behavior of
an LIB strand, eliminating the computational burden, was applied. The discharge-voltage
behavior of the LIB strand is modeled based on Ohm’s law and charge conservation law
using the simplified polarization characteristics of the electrode. Based on the modeling
methodology validated on a single LIB strand, the capacity and internal resistance distri-
butions of the 14 strands were calculated using the PSO algorithm. The calculation result
was compared with each strand voltage measured by the sensor in the module and the
calculation accuracy was expressed with RMSE. The modeling methodology in this study
simulated the voltage behavior of a module composed of 2P 14S and showed an excellent
agreement with the experimental data. Based on the verified modeling method, the voltage
difference between the strands, discharge termination voltage, and DOD use distribution
were modeled during discharge in the LIB module.
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Nomenclature

Symbol Description Units

DOD Depth of discharge
DODi DOD at t = 0
DODn DOD of nth LIB strand
J Current density between the electrodes A cm−2

n LIB strand number
Q0 Nominal capacity per unit area Ah cm−2

Qn Q of LIB cell in nth LIB strand Ah cm−2

rc Resistance of cathode Ω
ra Resistance of anode Ω
t Time s
U Polarization characteristic of the electrodes, intercept of the voltage-current curve V
Vc Voltage of cathode V
Va Voltage of anode V
Vexp Experiment voltage V
Vmodel Modeling voltage V
Y Polarization characteristic of the electrodes, inverse of the slope of the voltage-current curve S cm−2

Yn Y of nth LIB strand S cm−2

Yref Y of reference LIB strand S cm−2

βn Proportionality constant of internal resistance of nth strand
Ωa Computational domain of anode
Ωc Computational domain of cathode
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