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Abstract: Seaports are well known as the medium that has evolved into the central link between sea
and land for complex marine activities. The growth in maritime logistics particularly necessitates
a large volume of energy supply in order to maintain the operation of sea trade, resulting in an
imbalance between generation and demand sides. Future projections for three major concerns show
an increase in load demand, cost of operation, and environmental issues. In order to overcome
these problems, integrating microgrids as an innovative technology in the seaport power system
appears to be a vital strategy. It is believed that microgrids enhance seaport operation by providing
sustainable, environmentally friendly, and cost-effective energy. Although microgrids are well
established and widely used in a variety of operations on land, their incorporation into the seaport
is still limited. The involvement of a variety of heavy loads such as all-electric ships, cranes, cold
ironing, and buildings infrastructure renders it a complicated arrangement task in several aspects,
which necessitates further research and leaves space for improvement. In this paper, an overview of
the seaport microgrids in terms of their concepts and operation management is presented. It provides
the perspectives for integrating the microgrid concept into a seaport from both shore side and seaside
as a smart initiative for the green port’s vision. Future research directions are discussed towards the
development of a more efficient marine power system.

Keywords: cold ironing; electrification; operation management; renewable energy source; seaport
microgrids; shipboard microgrid; maritime

1. Introduction

Recent decades have witnessed the rapid expansion of the global economy. This
development was motivated by an even faster escalation in international trade. Seaport
plays a significant role in this economic liberalization as sea trading is in high demand due
to its cheap prices and capability to support goods transportation at a large volume through
cargo services. Currently, the marine transport network accounts for more than 90 percent
of global trade, and according to the International Maritime Organization (IMO) annual
report, it is predicted to be tripled by 2050 [1]. Seaports have become complex hubs due to
the multifunctional operations that need to comply with various factors such as marine
regulations, technologies, transportation, operational, and policy requirements. Hence,
high investment is required to expand ports facilities and infrastructure and to enhance
their operation management and maintenance in order to boost all marine operations.

Energies 2021, 14, 7941. https://doi.org/10.3390/10.3390/en14237941 https://www.mdpi.com/journal/energies
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The increasing number of ships, cranes, and trucks for port transportation requires
high-energy consumption. Moreover, the size of ships has become much larger nowadays,
with ships measuring hundreds of meters long and kilotons in terms of weight. All of these
factors consequently result in a huge volume of fossil fuel burning in order to fulfill the
entire load at the port. Overuse of energy always results in unbalance energy issues, which
makes the energy system inefficient and prone to frequent power outages and thereby
huge economic losses.

Research in developing more efficient power systems for port operations has attracted
special interest in recent years. Incorporating renewable energy sources (RESs) and energy
storage system (ESS) technologies through microgrid systems has been viewed as an es-
sential route. By utilizing microgrids, power generation is not limited to the conventional
fossil-based resources anymore, and the flexibility to integrate multiple RESs such as wind
turbines (WTs), photovoltaic (PV) systems, biomass, ocean energy, hydrogen, and geother-
mal sources all contribute to sustainable energy when introduced efficiently. Deploying
ESS at seaport will enhance better energy distribution by providing backup energy during
emergencies and providing the capability of storing excess energy generation.

The promising benefits of microgrids to the marine sector can be categorized into
four groups, namely energy efficiency, economic, environmental, and security benefits.
However, the variation of heavy loads energy demand at the port both at the shore and
seaside results in complex control for seaport microgrids. Although microgrids coordi-
nation is an undeniably established technology in land-based applications that currently
provides tremendous economic and environmental benefits, there are still several issues
that need to be addressed before incorporating them in maritime applications. Moreover,
the literature in this field is far from conclusive. Many aspects need further exploration in
order to ensure the optimal benefits of integrating the microgrid concept into seaports.

In this perspective, this paper presents an overview of the seaport microgrids concept
and its operational measures for seaport applications on both shore and seaside (shipboard
microgrid). Moreover, from a macro perspective to most co-occurrence research studies,
VOSviewer visualization analysis is provided to illustrate the trending and probable future
research directions of microgrid applications in the maritime sector.

The rest of this paper is organized as follows. Section 2 is dedicated to introducing the
variation of load demand and current major issues at ports as well as energy evolution in
seaports over time. In Section 3, the conceptualization of microgrids on shore and seaside
is presented, while topology and operation management of the seaport microgrids are
also discussed. In addition, a few constraints and potential aspects for further research
investigation are highlighted in Section 4. Finally, the significant findings of the paper are
summarized in Section 5.

2. Seaport

Seaports are well known as significant interfaces for both sea and land transportations,
which is supported by their strategic geographical locations between the sea and land,
as shown in Figure 1. Ports are among the largest parts of the industrial sector for economic
and social development across the world. However, the growing demand for logistics
globally increases the volume of sea traffic.

Port functions have aggressively changed along with global development compared
with the conventional ports as shown in Figure 2, where the first generation of ports in
the early 1960s only focused on the modes of transportation without any trading and com-
mercial activities. It then experienced more advances in terms of technology, networking,
international trading, and logistics. In the fifth generation, ports moved toward smart ports
by employing automation, advanced technologies, hybrid and intelligent infrastructure,
and efficient energy management systems.

2
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Figure 1. Seaport intersection between land and sea space [2].

Figure 2. The evolution of the seaport functions over time [2–5].

2.1. Port Activities and Power Consumers

Port engagement with respect to energy can be classified into energy generation and
power consumption mainly in the form of electricity and fuel. It is crucial to comprehend
the load components and monitor energy-related activities taking place within the port
before initiating any energy planning. The purpose is to analyze the amount of energy de-
mand and ensure that there is enough power supply to prevent power shortages. However,
load profile measures at seaports vary according to several factors such as the type of port
and activities conducted at that particular port.

Seaports by definition can be viewed as centers of economic activities associated
with any kind of arrival (tourist or goods), service of ships, and cargo [6]. The most
common ports can be categorized into commercial/industrial ports [2], container terminal
ports [7], and intermodal ports [8,9]. In another classification provided in [10], ports are
classified into three types, such as local ports, national ports, and international ports. These
classifications are based on the ports’ characteristics, region of the port, the volume of
loads it serves, vessel type, port’s operation and services, the annual number of passengers,
and the annual number of ships berthing in and out from the port. Different types of ports
and their characteristics are summarized in Table 1.

3
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Table 1. Classification of ports [10].

Port Type Characteristics

Local port

Serves for local needs
Limited space and capacity

Small size
No logistic activity handling
Do not support cruise ships

Boats, vessels, yachts, and small-sized ships < 500 passengers

National port

Serves country needs
Medium-sized (larger than local port)

Cover all ships type with small logistic and cruise activities
Medium-sized ships < 2500 passengers, cargo (packages), and logistics (only trucks)

International port

Serves international needs
Largest sized

Provide huge logistic infrastructure
Cruise ships > 2500 passengers, cargo, containerships, and RTG cranes

Geographically, a seaport is the point of interaction between land and sea, which
involves two modes of transportation (water and road traffic) with different character-
istics. From this perspective, the seaport area can be sorted into the seaside, shore side,
and intermediate space. Each space is utilized for a different type of activity, transportation,
and application, all of which have an impact on the amount of energy demand. Figure 3
illustrates the most common activities running in the seaport area and its load components.

Figure 3. Seaport activities and load components (abbreviations: rail mounted gantry (RMG), rubber
tyred gantry (RTG), and ship to shore (STS)).

Loads on the shore-side: On the shore side, administrative buildings and a custom
facility, as well as a warehouse for goods, are built. In this infrastructure, electricity is
consumed mostly for lighting; Heating, Ventilation, and Air Conditioning (HVAC) system;
and equipment [11]. Many factors influence the building’s energy consumption, including
weather conditions, building materials, occupant behavior, work durations, equipment,
and electrical load used [12].

In terms of transportation, different land vehicles such as trucks, cranes, yard tractors,
and trains are powered by diesel fuel, and electricity is needed for electric vehicle (EV)
charging stations. Typically, diesel is used as the primary source for motor movement in
the cranes. However, recent research studies on electrical cranes show a lot of interest in
energy storage systems for storing potential energy regenerated from lowering and lifting
cranes operations [13].
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Loads on the seaside: The seaside is includes a marine vessel or any watercraft
transportation voyages across the ocean that serves the purpose of carrying passengers
or delivering cargo. Ships will make more voyages, consume more fuel, and increase
the volume of water traffic as global trade expands. Normally heavy fuel oil (HFO) is
consumed for big vessels and bulk carriers. General cargo vessels consume the most HFO,
followed by oil tankers and cruise ships accounting for 66,000 t, 43,000 t, and 25,000 t of
HFO annual consumption, respectively [14]. The spill of fossil-based marine fuel into the
water and its combustion into the air can become a major threat to the environment [15].
Despite its undesired environmental impacts, HFO continues to be the preferred fuel of
the maritime transport industry due to its relatively low cost, widely available resources,
and the ability to suit engines that were originally designed for HFO [14].

In order to prevent heavy utilization of HFO and to be in line with port development,
ship technology is embracing the electrification concept by implementing an Integrated
Power System (IPS) and storage system known as All Electric Ship (AES) [16]. Energy
usage for a vessel is hard to measure as it depends on numerous aspects such as the size of
the vessel, onboard loads, vessel speed, sea waves, and weather conditions.

During berthing for transit or transferring goods, the auxiliary engines of the ships
are kept operating in order to supply the energy for onboard loads [17]. To overcome
continuous fossil fuel burning, cold-ironing facilities are provided at the intermediate
area between the sea and shore side. Power requirement varies from 300 kW to 7 MW
depending on the type of ships and berthing duration [18]. In addition to the onshore
power supply, the port must accommodate shore charging facilities. Some of the vessels
with storage components such as hybrid vessels and AES will need a charging station in
the port area for recharging their batteries and supplying onboard loads.

Loads in the intermediate area: In this region, there are cold ironing, charging sta-
tions, and container terminal facilities. The container terminal is an important part of
international logistics and requires a large amount of energy, both fuel and electricity [19],
for loading and unloading cargo as well as the transshipping goods to the next mode of
transportation [20]. Container terminals serve three primary functions: yard side, quayside,
and landside [21]. Each side has its operation and transportation needs. Cold storage facili-
ties among the terminal operation consume a lot of energy, as it is a temperature-controlled
storage solution for perishable goods. The Port of Wilmington built a 101,000 square foot
refrigerated warehouse to refrigerate food, pharmaceutical, floral, and other items that
require maintaining specific temperatures for storage [22]. It allows distribution companies
to deliver their goods locally, nationally, and globally in good conditions.

In the container terminal, there are various types of cranes in use, from ship to shore
(STS)/quay cranes (QC) to automated guided vehicles (AGVs)/automated straddle carriers
(ASCs), and, finally, rail-mounted gantry (RMG) cranes, before they are transferred into
truck/trains [23]. Considering peak power demand, cranes need about 72% of total energy
(STS cranes about 37%, ASC cranes 32%, and RMG around 3%) [24]. The breakdown of the
cranes’ power demand is shown in the pie chart of Figure 4.

From the appliances that are used and activities conducted within the marine port,
it can be observed that the seaport sector has a large energy demand that makes the energy-
handling problem a complex task. Hence, a reliable power system is required that can
provide sufficient energy supply to all distribution loads. Any shortcoming in energy
delivery will cause a big disruption to the seaport’s operations.

Therefore, it is very important to distinguish between critical and non-priority loads
so that the critical loads will receive priority during emergencies in order to obtain energy
supplies [25]. Table 2 summarizes the findings regarding seaport-related services and
their load.

5



Energies 2021, 14, 7941

Figure 4. Breakdown of cranes power demand during demand peak intervals.

Table 2. Seaport activities and loads variation [2,26].

Seaport’s Services Load
Factor Influence Energy

Consumption
Load Classifications Form of Energy

Vessel

Passenger ships (cruise, ferry),
container ships, electric ships, tugs,

gliders, bunkers, boats, tankers,
hovercraft, sailboats,
submarines, yachts

Size of the ship, activity conduct
on the ship, time of operation,

weather, wave, speed

(1) Peak load
(2) Critical load
(3) Non-critical load
(4) Variable load
(5) Constant load

(1) Electricity
(2) Fossil fuel

Goods handling

Cargo, container, quay, logistic,
freight forwarder, customs

warehouse, storage, security,
loading-unloading

Number of cranes, amount of
cargo, hours of operation

Administration
Management and administrative

building, planning, service solution,
IT, monitoring

Type of electrical equipment,
weather, building material,

hours of operation,
occupant behavior

Transportation Electric vehicles, cranes, trucks, yard
tractors, trains

Number of transportation, hours
of consumption

Electric Facility Cold ironing, charging station for
electric vehicles

Time of berthing, number of
ships per berthing, size,

and ship’s load

Maintenance Repair and maintenance Type of the maintenance

2.2. Port Critical Concerns and Green Maritime Policy

The urgent need for a more efficient maritime system demands a great effort to increase
the performance of every subsystem linked to it by implementing an energy efficiency
program. It is critical to identify the root of the problem and core issues in the port in order
to achieve a good outcome from planning.

The European Sea Ports Organisation (ESPO) in their latest report (October 2020)
highlighted the top ten priorities of the port sector from 1996 to 2020 [27]. Figure 5 shows
the top three port issues from 2009 until 2020. As observed in this figure, most of the
issues listed have remained the same while their relative positions have changed over
time. However, air quality and energy consumption remained mostly the highest priorities.
These data are important as it identifies the vital concerns that port managing sectors are
working on.

According to the top three priority issues highlighted in Figure 5, air quality has
persisted as number one from 2013 to 2020 followed by energy consumption. The problem
arises from the fact that air quality, noise, port waste, and climate change are strongly

6
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related to environmental concerns. This indicates that environmental issues are big prob-
lems in the port sector and require immediate action. Without fast action, the emissions
from maritime transportations are predicted to rise by 250% in 2050 from the amount
released in 2012 [1]. Heavy utilization of fossil fuel in marine transportation and other
areas contributes to serious air pollution from Carbon Dioxide (CO2) and greenhouse gas
(GHG) emissions. This is because the fossil sources encompass hazardous contents, which
in burning it will emit chemical and dangerous gases such as particulate matter (PM);
(CO2); sulphur dioxide (SO2); nitrogen oxides (NOx); and black carbon (BC) to the air [28].
Consequently, this emission results in acid rain and serious climate changes. It is also
capable to reaching 400 km [29] of land and produces a negative effect on human health
such as asthma, tuberculosis, impact on children’s lung growth, cardiovascular disease,
and lung cancer.

Figure 5. Top three issues in the port from 1996 to 2020 [27].

Meanwhile, ports’ energy consumption has increased due to various reasons. Devel-
opment and expanded port functionalities over time raise the energy demand from many
facilities and loads with low and heavy consumption. Continuous heavy use of energy
will cause fast energy resources depletion. The inequality between energy production
and demand results in frequent unplanned power outages. Poor power quality, lack of
energy monitoring, and old instruments are also among the factors that cause the high
energy consumption problem resulting in additional energy costs in ports’ daily operation.
The need for improvement both in infrastructure and port power system will acquire a
huge amount of investment. Lacking proper planning and a solid development framework
will cause great losses. Based on these scenarios, three major issues related to seaports
include energy, environment, and cost, as shown in Figure 6.

Figure 6. The three vital issues in the maritime sector.

Due to the serious environmental impacts caused by pollution from marine logistics,
ports are moving toward a greener industry by implementing various alternatives. Particu-
larly, in recent years, the arising awareness on environmental issues has made this target
one of the compulsory goals in achieving high-energy efficiency levels. Authorities have
formulated port policies consistently with tight regulation in order to ensure minimum
GHG emissions. In this regard, the International Maritime Organization (IMO) in the
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latest regulation limits the sulfur content in fuel to 0.5% m/m, known as ‘IMO 2020’ [30].
The change in sulfur limitation from 2000 to 2020 is shown in Table 3. The five most
important outcomes from IMO 2020 are as follows: (1) cleaner air, (2) higher quality fuel, (3)
positive impact on human health, (4) ship operator role, and (5) changes for enforcement
authorities.

Table 3. Change in fuel sulfur limit. Source: Marpol 2018, Marpol Annex VI.

Date
Sulfur Limit in Fuel (% m/m)

SOx ECA Global

2000 1.5
4.5

2010
1.0

2012
3.5

2015
0.1

2020 0.5

In line with the green port objective, the Port Authority of Genoa (GPA) is developing
a plan integrating renewable energy in their marine sector known as the Port Energy
Environmental Plan (PEEP). The ultimate goal of the PEEP is to reduce 20,000 t of CO2
annually by utilizing 12 plug cold ironing facilities, wind turbines, and photovoltaic power
stations with an overall investment of 60 million Euros [31].

In order to move towards a healthier environmental space, ports must plan and
manage their operations and future potential expansion in a sustainable manner. Saeyeon
Roh et al. [32] in their research stated that the majority of the existing literature’s emphasis
is on the environmental aspects for sustainable development, but they fail to clarify what
factors influence this process. Several authors studied the causes that contribute towards
air pollution and environmental damage from the operation of the harbors. Bunkering
from the vessels generates the risk of oil spill with potentially disastrous impacts on the
food chains of beaches [33]. Matishov and Selifonova [34] pointed out that the source of
water resources damage comes from a high density of ship transportation via waterborne
traffic. Meanwhile, Brigitte Behrends and Gerd Liebezeit [35] addressed that the two
leading destructive factors generated by shipping movement are atmospheric and seawater
contaminations. In an attempt to safeguard nature and waterways, new legislation for
future growth of ports and their construction at both international and domestic levels are
released from time to time, aiming to handle environmental issues based on strict standards
for core ports’ strategies. For instance, legislations in a few countries are listed in Table 4
below [33];

Table 4. List of legislations in a few countries.

Country Legislation

EU
Classification Societies—Regulation (EC) No 391/2009; Ship-Source

Pollution—Directive 2000/59/EC; Marine Equipment—Directive 96/98/EC
and Directive 2014/90/EU

Australia Environmental Protection Act 1986 (WA)

New Zealand Resource Management (Marine Pollution) Regulations

USA Diesel Emission Reduction Act (DERA)

Singapore Environmental Protection and Management Act (Cap.94A)

Without a doubt, all of these environmental legislations offer vast advantages in
terms of health, clean air, economy, energy, and potential for new technology if they are
properly considered in port planning. Nevertheless, the great challenge is that all the

8
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planning steps must be compatible with the rules, from the initial step of research and
development, collecting real-time data, collaboration among the parties, implementing,
monitoring, and analysis. All of these stages are time consuming and involve high capital
investment where payback period analysis is necessary. Cost is one of the main drivers
to run all strategic planning. Due to this risk, the relevant parties, especially the ports
themselves, are reluctant to implement any environmental program.

2.3. Seaport Energy Revolution
2.3.1. Conventional System

In the beginning phases of the maritime system, there has been no concern for energy
because it was solely utilized for shipping transportation. When the industrial revolution
arrived, energy demand began to raise. Electricity and fuel are the two main forms of
energy used in this sector. Depending on the availability and variation of the primary
sources in a particular country, both electricity and fuel are produced from fossil-based
sources (coal, oil, and natural gas). Electricity is not freely available in nature, so it must
be produced by transforming primary energy to electricity through a process. Figure 7
displays the entire power station network, from generation to the seaport.

Figure 7. The overall framework of the conventional structure.

In the 1880s, coal was first used to generate energy and became a fundamental driver of
steamships [36]. Coal is a combustible black rock that is formed over millions of years by the
decay of land vegetation and generates energy under high pressure. Coal is convenient to
use because it is easily combustible and cheap. Apart from electricity, another fundamental
source of energy, particularly for maritime transportation, is fossil fuel, which contains
hydrogen and carbon in its particles.

Previously, many vessels, particularly those with bunker fuel, used HFO to allow
the ship’s propeller or alternator to rotate. This can be accomplished by either burning
fuel in the engine combustion chamber or producing steam in the boiler. Due to its
relatively higher density and lower cost, HFO is a preferable marine fuel source. HFO is
characterized by its heavy molecules containing long-chain hydrocarbons, density greater
than 900 kg/m3 at 15 ◦C, and kinematic viscosity greater than 180 mm2/s at 50 ◦C [37].
The HFO comes in three varieties, which are listed in Table 5.

Table 5. Three variants of HFO and their sulfur content [30].

No Variant Sulfur Content

1 High Sulfur Fuel Oil (HSFO) 3.5%

2 Low Sulfur Fuel Oil (LSFO) 1.0%

3 Ultra-Low Sulfur Fuel Oil (ULSO) 0.1%
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Sulfur content is a key differentiator between these three types of HFO. However,
from 1 January 2020, HFO can only be used by vessels equipped with exhaust gas cleaning
systems (EGCS), and IMO has set new regulations banning vessels from using fuels that
have sulfur substances above 0.5% [30]. Due to the tight prohibitions, HSFO and LSFO are
no longer practical options for marine transport. The only choice to comply with this limit
is ULSO, which has a sulfur content of 0.1%. Unfortunately, the desulfurization process of
HFO requires very high costs and is not economical anymore.

Even though electricity and fuel are greatly used in the seaport sector since their early
stages of development, due to the arising issues, there is a great interest in alternative
solutions. This alternative includes considering electrification of vehicles, cold ironing
systems, alternative fuels (i.e., LNG, biofuels, methanol, hydrogen, and low-sulfur fu-
els), and implementation of both renewable energy and energy storage by implementing
microgrid power systems.

2.3.2. Ports and Ships Electrification

From the seaport perspective, electrification can be viewed as the replacement of fossil
fuel-based energy with new advanced technologies through the use of electricity. Marine
transportation contributes significantly to air pollution and climate change mainly for two
reasons: (1) The port is the area where emission sources are least regulated and (2) high
reliance on fossil fuels. With the increasing number of ships, the ports’ energy management
is required to provide sufficient power to supply the ship during berthing. Large ships
have a power range between 1 MW and 6 MW [38]. While the main engines are normally
switched off during berthing, the vessel’s auxiliary engines are switched on to supply
power to all loads inside the vessel such as lighting, ventilation, cooling, and other onboard
equipment. A study on different types of vessels in Reference [18] shows that the average
berthing time per vessel is between 21 and 52 h. Burning diesel oil during berthing for
such a long time injects severe GHG emission.

In order to resolve this problem, shore-side electricity practice known as cold ironing
is introduced to mitigate undesirable environmental impacts at seaports. Employment of
this technique allows a ship to shut off its auxiliary engines when docking, and it receives
electricity supplies from the shore to maintain the entire load in the ship. It provides
substantial advantages by reducing the dependency on fossil fuels and lessening GHG
emissions. The energy required for cold ironing can be supplied directly from the utility
grid, RESs, and ESS. Alexander Innes and Jason Manios [39] in their article highlighted
a few ports around the world that already utilized cold ironing. Despite the promising
benefits of a cold ironing system, many ports, particularly small ports, do not install it
due to a few constraints. In order to overcome this, alternative power sources are formed
by using shipboard microgrid (SMG), where this method acts as mobile cold ironing
facilities by sharing power from multiple ships in the port [16,40]. Another innovative
solution with the same concept is known as vehicle-to-grid (V2G) and boat-to-grid (B2G)
paradigms [41–43].

However, with the high energy requirement for the entire port operation, reliance on
power from the grid alone is not enough. Thus, the port industry has started to explore
clean energy resources including renewable energy. A few ports even built their renewable
energy power plant. Currently, Jurong Port is the world’s largest port that has installed a
solar power generation facility, which is estimated to generate more than 12 mil kWh of
solar energy per year and covers 60% of the port power demand [44]. In addition, it also
does help to reduce 5200 tones carbon emissions in a year. Meanwhile, Aalborg Port,
Denmark, not only constructed solar cell systems with an annual production of 80,000 kWh
but also included a 2 MW wind turbine in the plan [45].

By utilizing multiple RESs and paying attention to the need for a storage solution,
smart technologies such as a microgrid system, are being introduced. Microgrid’s alter-
native is great at solving power supply problems, and it has been gaining more attention
lately. The interest in microgrids is increasing due to their promising advantages in pro-
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viding sustainable, reliable, efficient, and environmentally friendly power supply [46].
Market acceptability of microgrid technologies due to their reliability and cost-efficient
power supply makes them a practical and effective solution in power delivery. Although
microgrids have been widely developed around the world, their application in harbor
areas remained limited. Due to this situation, the development of a microgrid in a port
presents significant challenges. Diversity of loads in the seaports (cranes, ship, container,
cold ironing, building, etc.) induces difficulties in load forecasting and accurate measure-
ments of power requirement. In order to avoid prohibitive costs and inefficient systems,
a comprehensive study on ports microgrids planning, energy management, regulation,
and other aspects is required.

Along with the industrial developments and innovations in power systems, ship
transportation is also emerging toward the All-Electric Ship (AES) concept [47,48]. Con-
ventionally, ships used a steam turbine as a prime mover, but it switched to steam piston
engines in 1850 [49]. The ship’s electrification began with an IPS that uses electric propul-
sion. It gradually evolved into a hybrid power system (HPS) by incorporating energy
storage elements. S. fang et al. [50] in their research study modeled the next version of AES
by using photovoltaic sources. The goal is to provide better energy production through a
hybrid concept that combines diesel generation with renewable sources.

3. Seaport Microgrids

Implementing a microgrid system is advantageous to the seaport because the port’s
geographical location can provide a strong base for RES production. A port is an area with
a large flat surface that is suitable for solar panel installation, such as on the rooftop of a
warehouse, a storage area, or a flat roof from a building. However, such infrastructure may
not always be appropriate for large-scale solar energy utilization. In addition to wind and
PV, some ports utilized other forms of energy such as waves (e.g., Port Kembla in Australia),
tide differentials (Port of Digby, Nova Scotia), and geothermal energy (Hamburg) [31].
Thus, seaport microgrids appear to be a feasible option for future power systems in the
harbor area.

Thereby, it is important to understand the significant aspects of this research field.
VOSviewer is a visualization tool that is useful for mapping large co-occurrence keywords
from research sources, especially from Web of Science and Scopus databases [51]. With the
assistance of such visualization tools, evolutionary patterns of seaport power systems can
be easily interpreted to identify trends and potential future research directions from a
macro perspective to the most current research. It will enhance the understanding of the
research field in the seaport microgrids and provide an intuitive overview. Figure 8 shows
the co-occurrence analysis of the maritime field with the search keywords of (microgrid*
AND (seaport* OR “Maritime” OR marine OR (“Ship Harbor”))) from the Scopus database.
The larger nodes indicate that more articles have been published in that area, showing
that the research field is trending. Small nodes in the network show low co-occurrence
of keywords, which might be because of the fact that the topic is still new, providing
the opportunities for further research. In this case, larger nodes in Figure 8 represent
‘microgrid/microgrids/ship’ keywords. It indicates that microgrid power systems are
increasingly popular in the maritime sector. Meanwhile, the keywords from the small
nodes reflect that researchers from all over the world are engaged in marine power systems,
including energy management, optimization, energy efficiency, and other power-related
subject areas. Since small nodes are caused by low co-occurrence, this allows more research
opportunities for the improvement of marine power systems.
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Figure 8. VOSviewer visualization for co-occurrence keywords from recent Scopus research publica-
tions on harbor power systems (Accessed on 20 July 2021).

3.1. Seaport Microgrid Topology

A microgrid is a local aggregation of distributed energy resources (DERs) including
generators or RES, ESS, power converters, and loads [52]. It links the low voltage (LV)
or medium voltage (MV) network to the utility grid at a single point known as point
of common coupling (PCC) [53]. Microgrids mainly work in two modes of operation,
namely (1) grid-connected and (2) island mode [54,55]. In the grid-connected mode with
the main grid fully functional, the microgrid acts as an extension part of the generator
by supplying power to the utility grid. However, it can also absorb power from the grid.
The inconsistency of power generation from RESs can sometimes produce an abundance of
power that exceeds the microgrid’s energy demand, thereby providing an opportunity to
sell energy back to the main grid and to make a profit [56]. Huang et al. [57] considered
‘market-based time-of-use (TOU) pricing’ strategies for a microgrid in order to reduce the
cost of electricity. A microgrid can also operate independently as an autonomous power
system in the island mode [58]. Microgrids help in power restoration after the occurrence
of a failure on the utility side, ensuring that end consumers have continuous access to
energy, particularly for critical loads. Utility failures can occur as a result of an unplanned
shutdown due to the fault or when power demand surpasses power generation [59,60].

Basically, microgrids frameworks can be classified into three topologies including
(1) AC microgrids, (2) DC microgrids, and (3) hybrid AC/DC microgrids [53,59,61]. In AC
microgrids, the common bus is the AC bus where DC-to-AC inverters are needed for ESSs
and DC generating units such as PV and fuel cells. Meanwhile, AC-to-DC rectifiers are
normally used for supplying DC loads. However, for DC microgrids, the common bus is
in DC and requires AC-to-DC rectifiers for AC generating components, and AC loads are
supplied via DC-to-AC inverters. In the case of hybrid microgrids, both types of buses exist
in the same network. It allows the flexible connection of DC and AC components to their
bus accordingly and reduces unnecessary converters. Figure 9 shows all three topologies
and their basic network connections.
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Figure 9. Microgrid topology options for a seaport.

The AC topology is the most commonly used topology that has become the standard
choice from the early phase of microgrid invention due to its ability to be synchronized
with the AC distribution network, its simple structure, and its economic viability [54].
Normally, when a microgrid has a connection with the main utility, AC microgrids become
an ideal choice. It has the capability to transmit power over a long distance, adjust the AC
voltage is easy to adjust into different levels for various applications, and it is applicable
for induction motors. Despite all of these benefits, long-distance transmission lines are one
of the barriers that make it cost-ineffective and impractical in some cases.

However, if the microgrid system is completely isolated without connection to the grid,
DC microgrids happen to be the preferred option. The advancements of power electronics
technology have resulted in arising the number of DC loads, indicating that modernization
of the existing energy system is inevitable [62]. Continuously using AC configuration will
require a lot of converters for DC applications and reduces the microgrids’ efficiency [63].
In addition, encouragement toward storage systems and clean energy resources such as PVs
in power systems, which are in DC, oblige better coordination for the distribution network.
As a result, DC microgrids have drawn a lot of interest in the research community in
examining possible direct connections with DERs, ESSs, and DC loads through the DC bus
and decreasing the impact on the AC networks. DC distribution systems are now gradually
used for various applications such as aircraft, automotive, marine, and manufacturing
industries [64,65]. Z. Jin et al. [66] investigated the concept of DC microgrids for the
onboard power systems of AES. In the maritime sector, the adoption of DC topology brings
an enormous range of advantages to the onboard power system by eliminating frequency
constraints, allowing the utilization of high-speed generators and providing systematic
management [66]. R. Prenc et al. [67] stated that DC ship power systems in the maritime
sector prevailed over the AC systems due to the following reasons: (1) improvements
in prime mover performance and fuel cost savings; (2) reduction in weight and space;
(3) unity power factor for generators; (4) low transmission losses; (5) faster and easier
parallel connection of generators; (6) flexible and simple implementation of ESSs.

Both AC and DC microgrids, however, rely on the converter when they interact
with the opposite network source that attaches to the buses, resulting in unavoidable
power losses during the conversion process [61]. Accordingly, a hybrid AC/DC microgrid
appears as a flexible solution for integrating AC or DC-based components while reducing
reliance on converters. The reduction in conversion equipment improves overall system
efficiency and reliability whilst also lowering costs [68]. X. Liu et al. [69] looked into
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different operating modes of hybrid microgrids and applied coordinated control schemes
to produce maximum power from RES, to reduce power transfer between AC and DC
networks, and to enhance stabilization in operation with various networks of DER, ESS,
and load components.

By the presence of two types of buses in a hybrid microgrid, control, operation, and
management become more complex compared to individual AC or DC microgrids. Fur-
thermore, the exploration of hybrid microgrids is still in its formative development stages
and requires extensive research. Table 6 presents the reference of research publications that
apply three kinds of microgrid topology into seaport applications.

Table 6. Seaport application with different topologies.

Topology Seaport Application References

AC
Shipboard microgrid [70–72]

Cold ironing [73]

DC

Ship-based seaport microgrid [16,40]

Shipboard microgrid [70,74–77]

Cold ironing [78]

Electric ship [79]

Offshore application [80]

Hybrid AC/DC

Electric ferry shipboard [81]

Shipboard microgrid [82]

Cranes [22]

Cold ironing [83]

3.2. Conceptual Seaport Microgrids in Shore Side and Seaside
3.2.1. Shore Side

Conventionally, the relationship between a seaport and ship mainly corresponds to
logistic activities. The electrification innovation in the maritime sector is represented by
the following: (1) seaport microgrid and (2) all-electric ship (AES), which is the promising
solution toward achieving zero carbon footprint in future seaports [51]. Apart from the
logistic side, the rising electrification trends in this sector extended the connection of
seaport-ships on the electric side. With the broadened infrastructure and multiple functions
conducted in the port area, their energy demand continuously grows. Hence, the maritime
sector is experiencing considerable power shortage as well as environmental pollution from
the burning of fossil fuels. These constraints encourage the incorporation of RES and ESS
into the seaport power system, further complicating its control and management. Therefore,
the concept of seaport microgrid is introduced in order to provide better coordination for
multiple energy resources, storages, and variation in seaport loads [84]. Figure 10 illustrates
the concept of microgrid integration on the shore side and seaside.

German maritime sector is an example for manifesting the integration of seaport
microgrid, where Hamburg port draws a power of 24.5 MW from renewable energy by
installing more than 20 units wind turbines [85]. Moreover, their warehouse rooftops are
filled with solar panels with projections to generate 500 MWh of electricity per year [85].
German ports emphasize the importance of renewable energy as they are also considering
other sources of energy such as tidal power generation, wave energy, and geothermal
energy [86]. Another positive step taken by the Hamburg Port is towards electrification
through the installation of cold ironing [39]. These measures are being developed to
increase power supply while simultaneously assisting the port in achieving its green
maritime goals.
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Figure 10. The concept of seaport microgrid on the shore and seaside.

On the shore side, microgrid integration will enhance more electrification and automa-
tion for port applications such as heavy lifting devices and transport machinery and enables
the transition from diesel to cold ironing during berthing [56]. On the other hand, all of
these practices are currently limited as the conventional grid cannot bear the heavy load.

By definition, a seaport microgrid refers to a port that employs microgrid technologies
to support its power system and distributed loads. The goal is to improve the port’s
operation efficiency, maximize renewable energy penetration, provide flexibility for storage
installation and allow for more energy sales to the market through the main grid [50].
Basically, seaport microgrids share similarities with land-based microgrids, but they have
slight differences in some aspects.

Commonalities: The framework of seaport microgrid has the same components as
land-based microgrids, for instance, RES, ESS, converter, and load components. Both mi-
crogrids can operate in grid-connected and island modes. In this regard, their basic control
and operation frameworks may be similar [50].

Differences: The significant difference between these two types of microgrids stems
from their application. Land-based microgrids normally support the power necessary for
building electrical appliances, and the most common electricity demand is for lighting and
thermal and HVAC systems [11]. Meanwhile, seaport microgrids must consider both the
logistic and the electric sides [50]. On the logistic side, a lot of factors need to be considered
such as berth allocation [87], port crane scheduling [88], route and voyage scheduling [89],
and various cargo transportation. On the electrical side, each application needs a different
level of energy, and the energy is volatile depending on many factors.

In addition, cold ironing applications on seaport microgrids will cause frequent berth
in and berth out, which will influence the microgrid’s performance. Even more difficult,
the port is also restricted by the strict policies that are changing over time [89]. Many
involved parties such as port entities, port stakeholders, policymakers, port authorities,
and the government add difficulty in any decision in the planning of ports. All of these
circumstances render seaport microgrids more complex compared to land-based micro-
grids. Further exploration of the system requirements and modifications for better seaport
microgrids is necessary to have compatible and efficient solutions for port electrification.

3.2.2. Seaside (Shipboard Microgrid)

The invention of electric propulsion has resulted in the total electrification of ship-
board power systems, referred to as AES. The innovation brings numerous advantages to t
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maritime ships by reducing manpower, minimizing maintenance workload, improving fuel
consumption, fast start-up of ships, and reducing emissions from diesel combustion [48].
AES is considered as the maritime microgrid because of the integration of microgrid tech-
nology on shipboard power systems. AES operates in both grid-connected and automation
modes. It has similar components as a typical microgrid, whereas generators and ESS
deliver power via an energy network in order to supply propulsion and the ship’s load.
In future shipboards, renewable energy implementations such as photovoltaic systems
become trendy. However, the limited space in the ship makes it one big constraint. Ships
work in two modes of operation.

Berthed in mode: During berthing, AES is connected to the cold ironing system,
receiving electricity so that its auxiliary engine can be switched off. The cold ironing
system normally obtains supply from the main grid. Hence, the same concept as the
grid-connected mode of operation for land-based microgrids is applied.

Berthed out mode: In the situation where the ship becomes physically independent
from the seaport, the electric connection between these two entities (port and ship) no
longer exists. The AES voyage at sea is viewed as a mobile microgrid and in island mode
of operation. It moves and supplies its entire onboard load with its onboard power system.

3.2.3. Operation Management and Energy Planning of Seaport Microgrid

The complexity of the coordination of various power resources in a microgrid, load
management, synchronization with the main grid, meeting policy obligations, and envi-
ronmental criteria recognizes the importance of the power/energy management system
(PMS/EMS) in the seaport microgrids. Energy management systems (EMS) in ships send
the signal to the particular component through the communication network after deter-
mining the optimal outputs for generators and batteries [50]. P. Xie et al. [90] categorized
the PMS and EMS of shipboard power systems into rule-based and optimization-based
techniques, where rule-based techniques are highly dependent on human expertise, precon-
figured strategies, and priorities. Meanwhile, optimization-based techniques are becoming
more trendy as they are capable in providing a better solution by using analytical strate-
gies or numerical optimization algorithms [91]. The diverse assortment of the PMS/EMS
strategies in a microgrid system entails managing each component and sub-component
by hierarchical control schemes, including primary, secondary, tertiary, and upper-level
control systems with different functionalities and time scales [71].

In this section, the importance of the operation management system for better en-
ergy planning within the seaport microgrid is highlighted. The demand for energy in
the maritime sector keeps increasing over time because of the expanding infrastructure,
increasing size and number of seaport transportations, need for handling multi functions,
and increase in global demand for logistics. The load will continue to rise due to the
above-mentioned factors, but there are several operational practices for controlling energy
demands, including load scheduling, load forecasting analysis, improving load factor, peak
shaving, and enhancement of ESS utilization. Moreover, price and tax incentives also play
a vital role in the operation management of seaport microgrids.

Shipboard/Seaport Microgrid Power Management and Load Scheduling

In the maritime sector, seaport controls on the shore side and seaside (shipboard power
system) normally have different administrators that seek different goals [50]. The coor-
dination between these two administrative bodies is necessary. For instance, the vessel
could choose a berth-in time when the electricity price is low, and the seaport can make
more electricity price savings by adjusting the berth allocation during off-peak hours.
Load scheduling at the time of the minimum electricity price is beneficial to energy con-
sumers with respect to minimizing total electricity cost while at the same time meeting
environmental requirements.

Pricing policy is one of the vital considerations in load scheduling as the price of
electricity fluctuates over time. Different pricing policies apply to different applications in
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industries. Similarly, in the marine sector, in order to achieve energy-saving and to optimize
the cost of energy, pricing policy plays a significant role. Sun and Li [92] described two
pricing policies, namely Time-Of-Use (TOU) pricing and Critical Peak Pricing (CPP). TOU
pricing is a dynamic pricing strategy where electricity is charged at several price levels
for off-peak, mid-peak, and on-peak intervals during the day [93]. This pricing strategy
allows energy consumers to shift their loads from peak load intervals to off-peak periods
and to avoid high electricity prices [94]. In the peak event situation where production is
skyrocketing due to very high demand, CPP is the most effective scheme, which selects one
price for critical periods [95]. Kyaw Hein et al. [1] proposed robust coordinated operational
scheduling for grid-connected seaport microgrids. In that framework, ship-to-shore (STS)
power demand is scheduled by using day-ahead and hour-ahead scheduling with different
time horizons. The aim is to reduce emissions and minimize the cost of port operation.

In addition, this scheduling technique is widely used in shipboard microgrids. Unlike
land-based microgrids, AES at the sea operation can be regarded as mobile microgrids.
Hence, power consumption varies with cruise speed and voyage distance. With the help
of electric propulsion motors, AESs are capable of adjusting cruising speeds in order to
achieve more economical operations. AESs operate at different speeds during different
operating modes including docking mode (when ship approaching or leaving the port),
cruising mode, and berthed mode. Yuqing Huang et al. [96] could reduce the operation
cost and GHG emissions by 17.4% and 23.6%, respectively, by implementing voyage
generation scheduling methods in the AES. In [97], the optimal scheduling for a ferry is
achieved by employing a rule-based algorithm considering three scheduling models of
different DG units and ESS. Simulation results show that by optimally scheduling the
onboard power sources, poor low-efficiency situations can be prevented. Appropriate
DG selection and load scheduling for the ship can maximize fuel-saving. Srinivasa Rao
K et al. [98] minimized fuel consumption in an offshore support vessel with a dynamic
positioning system by scheduling generation resources. The Genetic algorithm is applied
for the optimal load sharing due to the nonlinear specific fuel consumption curves of
diesel engines.

Load Factor Improvement

The load factor is expressed as the fraction of average load during a specified period to
peak load in that timeframe [99]. This technique is useful for determining the efficiency of
microgrid operations. A low load factor signifies that an electricity system is being operated
inefficiently and is economically poor [100]. Thus, a high load factor is desirable in order to
ensure that the seaport microgrid is economically viable by utilizing the total plant capacity
for the longest possible period [101]. As a result, the overall cost of providing electric
energy will be reduced. F.Robert et al. [102] analyzed the impact of different load factors of
0.2, 0.3, and 0.4 on the energy cost at the design stage of a microgrid. The analysis shows
that the highest value of load factor can reduce energy costs up to 48% approximately for a
solar-based microgrid [102].

In the harbor, instead of running all big operations such as heavy loading/unloading
cargo and multiple ship berthing at the same time, which causes peak demand in the
specific time, scheduling the time of ship and cargo arrivals is a wise action. When all the
high-demand operations are not running simultaneously, peak demand can be distributed
over off-peak hours and can increase the average load as well as the load factor.

At the same time, it will result in reducing the total energy purchase costs. Thus, im-
proving the load factor by reducing or shifting the peak load is necessary in order to ensure
the profitability of microgrid power systems [103]. In [97], power scheduling techniques
are applied to a hybrid ferry microgrid. The results show that the right arrangement of DG
and ESS is capable for improving the load factor.
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Peak Shaving

Electrification technologies in ports, such as AES, the transition from diesel-based
cranes to electric cranes, cold ironing, electric vehicles, electric trains, and electric trucks
for cargo transportation, change the port’s dynamic behavior. Peak shaving is a favorable
method to control the operational load at ports. Figure 11 illustrates three peak shaving
techniques to scale down peak load profiles and to distribute the load over low-demand
time intervals.

Figure 11. Three type of peak shaving methods where (a) is load shifting approach, (b) is power
sharing approach, and (c) is load shedding approach [20,22,52,104,105].

Peak shaving is based on the incorporation of energy storage systems. K. Mostafa
et al. [23] coordinated the duty cycles for the STS cranes through full automation of the
crane terminal and integrating peak shaving methods through the deployment of ultra-
capacitor (UC). The outcome shows that the higher amount of the peak load absorbed
by the UC results in more operational earning. Harry Geerlings et al. [106] investigated
the effectiveness of peak shaving at the container terminal (CT) by applying ‘new rules
of operation’ with the aim of cost saving while analyzing its effect on the handling time
of containerships. They highlighted that the peak shaving method not only reduces the
handling costs at CT but also enhances power stability. However, because the number of
terminal equipment and processes operating at the same time may be limited, this may
result in additional handling time for containerships [107]. This load-leveling technique also
applies to shipboard microgrids. In [76], in order to organize the operation in shipboard,
a specialized hierarchical control scheme is proposed. Load sharing levels in primary
control aim to distribute the load from peak to off-peak hours. Peak shaving in the
shipboard helps to absorb the load variation in the system so that engines can continue to
operate at their most efficient operating point. Kiyoune Kwon et al. [77] proposed a load
frequency-based approach to manage shipboard power and load sharing in DC hybrid
electric ships. Simulation results indicate that load frequency-based power management
offers effective load distribution and is capable of protecting the generator from sudden load
variations, which results in poor power quality and causes damage in mechanical systems.

Load Forecasting

On the shore side, dynamic load from multiple operations of logistics (container
terminal, cargo transportation, vessel, and charging station) and administration infras-
tructure (communication center, warehouse building, and maintenance) might result in
unexpected power consumption peaks. In this situation, a substantial amount of power
supply is required to prevent disruption in port operation due to power shortages. Thus,
load forecasting in ports is vital for optimizing resource utilization, scheduling the load,
and managing alternative energy from RES and ESS. Furthermore, understanding load
behavior brings advantages for complex decision making in energy management. However,
several uncertainty parameters influence the dynamic load of port operation in seaport mi-
crogrids, demanding the use of innovative load forecasting techniques. Various techniques
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can be used to implement load forecasting ranging from parametric-based methods to the
evolutional artificial intelligent techniques listed in Table 7.

Table 7. Load forecasting methods [108–112].

Load Forecasting
Approach

Technique Parameter Requirement Load Forecasting Time Horizon

Traditional
parametric techniques

(1) Gray dynamic methods
(2) Regression methods
(3) Time-series prediction methods

(autoregressive (AR), moving
average (MA), autoregressive
moving average (ARMA),
autoregressive integrated moving
average (ARIMA), seasonal
autoregressive integrated moving
average (SARIMA),
autoregressive moving average
exogenous (ARMAX))

− Historical data of load profile
− Influential factors: weather,

air temperature, humidity,
wind speed, calendar
seasonal information,
economical events,
and geographical information

− Short-term load forecast
(STLF)-typically from one
hour to one week for
economic dispatch

− Medium-term load forecast
(MTLF)—typically from
one week to one year

− Long-term load forecast
(LTLF)-typically longer
than one year suitable for
capacity expansion

Artificial intelligence-
based techniques

(1) Artificial neural network (ANN)
(2) Fuzzy logic
(3) Genetic algorithm (GA)
(4) Support Vector Machine (SVM)

One of the electrification innovations in ports is related to the transition from a
diesel-powered rubber-tyred gantry (RTG) to an electric RTG [113]. To understand the
energy behavior of electric RTG, Feras Alasali et al. [114] implemented three different
methods of load forecasting, namely autoregressive integrated moving average with ex-
ogenous (ARIMAX), artificial neural network (ANN), and autoregressive moving average
exogenous-support vector machine (ARMAX-SVM). The purpose is to find the most accu-
rate forecasting method so that peak demand can be reduced effectively. Several simulation
analyses are conducted by implementing STLF techniques (24 h) on the load profile of an
electric RTG crane from the Port of Felixstowe [114]. The results show that ANN outper-
forms ARIMAX and ARIMAX-SVN forecasting techniques with minimum errors during a
prediction interval.

Another vital seaport application, onshore power system (OPS) or cold ironing, in-
volves the interaction between ship and shore-side power facilities. Accordingly, the dy-
namic load of OPS fluctuates with various parameters from both sides. The power of the
ships varies depending on the load they carry and the size of the ship. Moreover, the arrival
and departure times of ships affect the power consumption of OPS. In addition, ship traffic
at the port is also inconsistent. Thus, these factors have an impact on OPS load behavior.
However, in a few forecasting techniques conducted for OPS load forecasting, the men-
tioned factors are either neglected or only one of them is considered. Hence, research
studies on how these parameters affect the OPS load profile are still lacking. The authors
in [115] conducted OPS load forecasting by considering the traffic volume of ship berthing
at two different seasons, winter and summer. The goal is to observe how the number of
ship berthing varies in different seasons. Still, it is better to conduct a forecasting method
for all seasons including spring and autumn in order to obtain the overall pattern of ship
berthing during all year. D’Agostino et al. [116] performed OPS load forecasting by using
two methods, namely the Environmental and Protection Agency (EPA)-based method and
Monitoring, Reporting, and Verification (MRV)-based method. These techniques measure
the ship’s load demand based on four operating modes: sailing at sea, maneuvering, cargo
handling in port, and idle mode. The results show that peak demand varies depending on
the ships’ categories and operating mode.

The amount of shore power demanded by ships changes randomly depending on the
number of berthed ships and their auxiliary power requirement. In order to determine
OPS power capacity, Yun Peng et al. [117] used the stochastic nature of arriving ships.
The goal is to observe the manner in which ships’ arriving patterns affect OPS power
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consumption. In another research study [118], OPS power requirement is determined by
utilizing the predicted energy consumption of auxiliary engines and by obtaining hourly
energy consumption for different kinds of ships by using the Monte Carlo procedure.
The power consumption prediction data are necessary for energy management. In [119],
forecasting data are utilized for the day ahead optimization of a hybrid ferry with OPS.
Two conflicting objectives of minimizing the operation cost and degradation of energy
storage are considered.

Regarding the seaside microgrid (isolated shipboard), the dynamic positioning (DP)
system, which is used in marine vessels to keep the ship position from displacement,
is important for determining how thrusters should act to stabilize the position and heading
of vessels. However, the uncertainty during the voyage that stems from sea waves and
weather conditions affects DP, vessel’s speed, and ship power. Hence, DP load forecast-
ing by considering the uncertainty is essential for better shipboard power consumption
management. M. Mehrzadi et al. [120] utilized the deep learning method for DP load
forecasting by using the Levenberg–Marquardt algorithm based on a nonlinear recurrent
neural network to predict thrusters’ power consumption in different sea states. The case
study is divided into several clusters of sea conditions including calm, moderate, rough,
and high states. As DP power consumption considerably changes based on the sea states,
wave height and wind speed are significant factors to be taken into account. The sea state
parameters change the vessel’s motion and affect the thrusting power demand, thereby
resulting in a dynamic load pattern. Meanwhile, Kyaw Hein et al. [121], with the same
consideration of sea states parameters, provide the simulation results in which sea states
have a big influence on voyage path and ship’s velocity. The volatility of the sea wave and
wind speed uncertainties influence propulsion power requirements. This DP forecasting
practice greatly aids the ship’s operation management and power system planning in
maintaining the stability of the ships’ DP handling. However, there is no analysis based
on real-time data, which is very important for observing the effectiveness of the proposed
load forecasting technique.

Storage Management

The incorporation of a RES component in a seaport microgrid necessitates the use
of an ESS to store excess energy and absorb RES power fluctuations. Due to the weather-
dependency of the RES power generation and uncontrolled weather conditions, the gen-
erated energy will fluctuate, which highlights the importance of ESS integration. Chun
Sing Lai et al. [122] reviewed two types of energy storage systems for storing low carbon
energy, namely generation-integrated energy storage (GIES) and non-GIES. GIES stores
a substantial amount of energy along with the transformation from primary energy to
electricity. GIESs typically consists of power generating technologies and are more efficient
for RES generation sources such as wind and solar thermal energy. Non-GIES is a common
type of ESS that converts primary energy directly into electricity for storage. Meanwhile,
Amirante et al. [123] made an overview of the three types of ESS:

(1) Mechanical-compressed air energy storage (CAES), pumped storage hydropower
(PSH), and flywheel;

(2) Electrical-supercapacitors and superconducting magnetic energy storage (SMES);
(3) Electrochemical-lead-acid batteries, lithium-ion batteries, and flow batteries;
(4) Hydrogen.

In maritime transportations, ESS is beneficial for strengthening the system in order to
avoid instability, which is caused by the engines’ delay in responding to load demand [124].
It will also serve as an additional power reserve in the event of a generator failure, reducing
the risk of a blackout. In [96], a virtual ESS between shipboard thermal storage and
thermal load is used in an AES for mutual support between voyage scheduling and
economic dispatch. The optimization model is formulated in order to effectively coordinate
voyage scheduling and power generation considering different load conditions. The results
show that operational cost and emission can be reduced by 17.4% and 23.6%, respectively.
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However, in some operating conditions, a low load factor of the parallel generator in a
ship might cause a detrimental effect on the fuel consumption rate. In order to solve this
issue, M. Othman et al. [97] utilized a battery for optimally arranging power generation
in a hybrid shipboard microgrid. Three case studies with different numbers of diesel
generators with and without batteries are performed. Optimization results illustrate that
fuel consumption can be reduced significantly, and the load factor is improved with
battery application compared to solely using a diesel generator. However, coordination
between several generators and battery needs to be carefully planned in order to achieve
better results.

M. Mutarraf et al. [17] signified the importance of battery banks in the DC bus seaport
microgrid in providing a mobile cold ironing facility at the harbor. Due to the highly
dynamic behavior of the port’s load, wise distribution of RES and ESS during peak and
off-peak duration help greatly in balancing demand and supply. For instance, during a
sharp rising in energy demand from cold ironing due to high traffic of ships berthing,
where generation is insufficient, ESS can come to the scene.

In another case, the storage component provides a solution to store energy generated
from ports’ applications that generates energy. In [13], a flywheel storage system is used to
harvest energy from the harbor’s electrical cranes. This idea comes from the problem of
conventional cranes operation that ignores the regenerated energy from cranes when the
container is lowered. As a result, most of this energy is dissipated as heat in resistor banks.
Thus, developing this flywheel storage system will avoid energy loss when the cranes are
lowered. In this manner, a significant amount of energy can be stored and reused during
peak hours.

From the emissions point of view, ESS is a promising solution relative to the port
for reducing pollution. Kyunghwa Kim et al. [125] proposed a hybrid storage system
by integrating supercapacitors (SC) and lithium-ion batteries (LIB) by targeting a bulk
carrier with four deck cranes. The capacity of SC and LIB is selected based on the load
consumption from the cranes in loading and unloading modes. Simulation results show
that emissions were reduced by roughly 77%, 93%, and 99% for CO2, SOX, and NOX,
respectively, for this specific case study. Emission reductions might vary in different
marine applications.

Several different methods for reducing peak demand have been proposed in the
literature. Some countries offer rewarding incentives so that energy consumers willingly
shift their electricity consumption to off-peak periods. Storage technology has merit
over this rewarding program in allowing customers to have their normal daily lives
while lowering their peak demand charge. The cost-benefit analysis is based on the
battery’s lifespan, state of health, and discharge time [100]. With the increase in storage
capacity, more loads can be scheduled at the minimum cost duration, thereby reducing
the potential for higher electricity charges [126]. The trade-off between financial gain
and operational efficiencies is quantified. In order to ensure the high efficiency of ESS
integration, suitable type storage systems must be carefully adapted by considering the
type and scale of applications. Nowadays, in some complex maritime applications, storage
technology is growing toward hybrid energy storage in order to satisfy demand from the
ports’ dynamic loads.

Price and Tax Incentives

Demand response is an efficient strategy to moderate electricity consumption in
response to the market incentives relative to either price or tax reduction. There are two
types of demand response programs: time-based rate (TBR) programs and incentive-based
programs (IBPs) [127]. TBR programs provide consumers with time-varying rates based
on the price of electricity in different periods (real-time pricing (RTP), TOU, and CPP),
motivating users to adjust their consumption patterns by changing price signals [128].
On the other hand, IBP is the form of incentive that provides advantages in the time of
stress. Considering environmental issues at ports, port authorities from U.S and EU offer
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shipping rebates to reward ship operators that satisfy environmental requirements [129].
In practice, the Port of Long Beach implemented the Green Ship incentive program to
reduce NOx emissions from shipping [28]. Another alternative is the introduction of
various environmental indexes such as the Environmental Ship Index (ESI), Green Award
(GA), the Clean Shipping Index (CSI), and Blue Angel (BA) [28]. These programs give
special discounts on port dues if the port score satisfies the baseline index. For instance,
in Bremen, ships with an ESI score of 30 to 40 receive a 5% discount on port dues, while
ships with an ESI score of more than 40 receive a 10% discount. These incentives will
encourage port entities to take the necessary actions to improve their port so that they can
achieve more discounts on port dues. J. Sanz et al. [130] reviewed four types of incentives
for microgrids, including (1) feed in tariffs, (2) market premium, (3) green certificates,
and (4) tenders. Each incentive is initiated for different conditions and rewards but with
the same goal toward energy saving and zero footprint ports.

4. Seaport Microgrid Challenges and Future Trends

4.1. Challenges in Developing Microgrid Systems at Seaports

The increasing number of publications from researchers around the world indicates
a growing trend towards maritime microgrids. However, real implementation of seaport
microgrids in the harbor is scarce due to several issues and barriers that exist from various
perspectives. Anthony Roy et al. [43] discussed a few aspects of seaport microgrids, namely
technical and managerial. Security and regulatory aspects are also among the important
perspectives. Some of these challenges are addressed below.

4.1.1. Technical Challenge

Relying solely on the utility grid is inefficient when considering heavy appliances
at the harbor. The grid must be close to the port or the cables will be very expensive.
Thus, harnessing energy from RES is more economical due to local generation advantages.
However, ports have limited space for RES installation [81]. Undeniably, solar panels can
be installed on the flat rooftop of the buildings or warehouse but with restricted capacity,
and it is not applicable for large-scale exploitation. Shipboard microgrids suffer from
the same problem. Many of the commercial AES use diesel generators and batteries for
propulsion and supplying onboard loads [131].

For the next AES evolution, the implementation of RES such as photovoltaic systems
is discussed in [50] to support the power required by the shipboard microgrid. However,
there is no discussion on a compatible unit of solar panels that can be placed on the ship. It is
well known that ships have very limited space due to existing bulky equipment on board,
especially in cargo ships, which usually use the space to place the cargo. Furthermore,
coordination of the RES will be complicated because ships are always on the move and
isolated when they are at sea [81].

For the wind turbines, installation can take up a significant portion of land and
deforestation to set up a wind farm that treats wildlife such as birds and bats. Moreover,
it does not only require a high upfront investment but is also prone to noise disturbance
and undesirable visual impacts.

Another challenge for RES installation is uncertainty in weather conditions. RESs
are unable to produce consistent power, and their power production depends on several
factors such as ambient temperature, wind speed, irradiation, and time of the season,
among others. Hence, storage elements are always integrated with the RES.

4.1.2. Managerial

According to the literature, a few ports, such as the Port of Hamburg and Port of
Genoa, have already taken the initiative for microgrid deployment [31]. In comparison
to the massive use of land-based microgrids, port-based microgrid implementation is
considered scarce. This situation creates an opportunity to bring microgrids technology
into seaports, but it is also difficult to access references in terms of their needs, design,
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operation, and maintenance requirements. Particularly during the design phase, it is a
complicated task to find the optimal design of the seaport microgrid with the compatible
configuration and the right size of its components. The research conducted on testing and
analysis of seaport microgrids lacks real-life data. This can be explained by many of the
studies that are conducted based on the simulated data sets. Thus, it is hard to know if the
simulation result is compatible with real implementation or not.

In addition, considering that the seaport microgrid is a relatively new topic, the re-
quired manpower that has the expertise and enough experience is limited. Due to this, port
entities find that new power system technology is difficult to handle, leading them to decide
not to take any risks by denying microgrid implementations. Not only that, the planning
for the implementation takes a long time before it can be executed. Revolutionizing the
ports to microgrid technology may appear great on paper; however, one of the biggest
hurdles that have to be overcome is the human factor with different mentalities. Moreover,
the requirement to make an agreement and synchronization between all parties involved
such as port entities, stakeholders, port authorities, policymakers, and government makes it
more difficult. This explains the reason why the majority of the ports are more comfortable
with traditional power systems.

4.1.3. Security and Regulation

Operation management and control of seaport microgrids are very different from
conventional power systems due to the characteristics of power electronic converters and
highly dynamic load behavior. A port is the site that has highly volatile loads due to the
frequent arrival and departure of ships. Microgrids must achieve a balance between supply
and demand in order to maintain voltage/frequency stability. Particularly during isolated
operations, system instability is a major concern. In order to effectively manage these
issues, hierarchical control techniques have been proposed [21]. On top of this, shore-side
and shipboard microgrids (seaside) have different administration and rules of conduct.

In terms of security, the lack of an efficient monitoring system makes microgrids
extremely vulnerable to cyber threats [132]. Malicious cyber assaults are a threat to power
network operations, causing massive damages from different technical, economic, social,
and control points of view. According to statistics from the energy sector, more than
150 cyber-attacks occurred in 2013 and 79 in 2014 [133]. Accordingly, the cost of power
outages in the United States is estimated to be around $ 80 billion per year [133].

Above all of the aforementioned concerns, one of the biggest challenges of the maritime
sector is the implementation of strict policies for marine operations both on the shore and
seaside. Policy regulations are in place either to restrict emissions or to stimulate the use
of improved technologies at ports. These guidelines must be followed in any future port
planning. It is becoming more difficult for existing appliances that require immediate
replacement. In accordance with a current IMO rule limiting sulfur content in fuel to
0.5% m/m, ships must either find alternative clean fuels or integrate a fully electric ship.

On the positive side, certain legislation exists that provides incentives and subsidies
to stimulate the use of new technologies. Taxes, for example, are proposed as a strategy by
increasing taxes on older systems while lowering taxes on newer systems. It is important
to formulate a legislative scheme that favors microgrids as a power system at ports, as this
legislative framework will result in switching to microgrids that are more cost-effective
than staying with conventional fossil-fuel-based systems. Adam Hirsch et al. [94] attracted
the attention to two key questions about the rules that require clarification, where the
answer eventually has a significant influence on microgrids. The first question is whether
a microgrid is considered as electrical distribution utilities and, thus, whether it should
be subject to state regulatory control or not. The second clarification is, in the case that
microgrids are excluded from state regulation as utilities, do microgrids fit into existing
legal frameworks governing energy sale and purchase, as well as rights to generate and
distribute electricity. Microgrids require a rightful legal identity and regulatory certainty in
order to ensure that their implementation is profitable; otherwise, the upfront cost is too
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high, and the profit is too uncertain with respect to rationalizing the investment of time
and money.

4.2. Potential Future Research Directions

The ongoing challenges of seaport microgrids including the barriers mentioned in
the previous subsection and other technical aspects require more investigation to find
effective solutions to improve the ports’ performance. The know-how to manage all of
these will benefit the ports in a variety of ways, including energy efficiency, cost-saving,
and environmental issues. Below are some of the identified potential issues on the seaport
microgrids that can be considered for future studies.

4.2.1. Mobile Cold Ironing

Currently, cold ironing in the harbors mostly uses direct energy from the main grid.
There is a chance that a few large vessels with high power requirements will arrive at the
same time. Thereby, the reliance on grid supply alone is insufficient to keep all parts of
ports operational and might result in power shortages. Furthermore, most of the smaller
seaports are not equipped with cold ironing stations, resulting in continuous pollution
from auxiliary engines during berthing [17]. In order to address these issues, mobile cold
ironing by forming a power-sharing network between nearby ships called a ‘moveable
shipboard microgrid’ appears to be a potential solution for providing temporary power.
Further research on this technique can be pursued with respect to putting it into practice.

4.2.2. Optimal Port Planning

Considering that seaport microgrids involve different kinds of load, various objectives,
and constraints, it is critical to plan efficient coordination among the components in the
microgrid. There is limited literature that addresses compatible configurations and appro-
priate size/capacity for each component in a seaport microgrid. Outstanding coordination
is needed in addition to determining the right type of RES/storage component/converter
installation and suitable topology. This is to ensure that there is no lacking or oversizing
in microgrid implementation, allowing power to be distributed efficiently and avoiding
unnecessary investments.

4.2.3. Cluster Seaport Microgrids

From the available literature, most of the publications on seaport microgrids contribute
to the overall performance of the microgrid. However, the port itself deals with many kinds
of large energy applications such as container terminals, cold ironing, cargo transportation,
vessel, and administrative buildings for port handling. Thus, it is a good opportunity to
implement a cluster seaport microgrid by grouping the loads into different load clusters.

4.2.4. Optimization

Due to the current firm policy for the port operation to control prolonged toxic
pollution, an optimization algorithm that will benefit both the legislative body and the
port entity is required. The analysis will help port entities in future planning so that it is
compatible with the port policy.

4.2.5. Economical Analysis

All the alternatives carried out in the marine sector from renewable energy harnessing
to electrification innovation undeniably bring a plentiful amount of energy-saving and
emission reduction benefits. Most previous research has focused on the technical aspects,
and a comprehensive economic analysis is still lacking. For a stakeholder, financial man-
agement and revenue generation from investment is vital before executing any planning
process. Further economic analysis on the seaport considering the market price, the tax
charged, energy price, and return on investment would be necessary. The authors in [134]
provide net present value for the OPS system at ports. However, this OPS installation
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involves retrofitting on both sides of ships and shore facilities. It would be insightful if eco-
nomic analysis can be provided in terms of investment needed and potential savings made
from the point of view of ships’ owners and port entities. In addition, in order to observe
the effectiveness of the return on investment from OPS implementation, a comprehensive
comparison between energy production cost from diesel auxiliary engines and electricity
purchase cost from OPS is necessary. If it is proven that this strategy can bring economic
advantages, it will encourage more OPS implementation in seaports worldwide.

Another alternative for future study is to develop an economic model that benefits all
parties in the port. This can be explained by the fact that national electricity rates vary per
country. Some countries offer electricity at a high cost, while others obtain lower costs. In a
country where electricity is expensive, the maritime industry has a big potential to main-
tain using diesel energy regardless of whether it would harm the environment. A good
economic model that is capable of attracting all port stakeholders not only because of
environmental concerns but also because of economic benefits can be implemented. For in-
stance, by reducing energy tax for those shifting to electrification applications, more savings
are obtained compared to the traditional paradigm of port operation. The port policymaker,
port entities, and ship owner should all be taken into account.

5. Conclusions

Ports are sites with major contributions to pollution as large vessels keep their engines
running even when berthed, and heavy lifting work is operated by diesel-powered cranes.
Dynamic behavior and the diversity of the port applications emphasize the promising role
of microgrid technology in supporting the utility grid. This paper addressed the concept
of the seaport microgrid and its integration into seaport from both shore and seaside
(shipboard microgrid) points of view as well as its operational management. After the
thorough literature review, the following points are some of the significant conclusions
drawn in this paper:

• Three major concerns at the ports include energy, environment, and cost. Future port
planning should be geared toward addressing these issues.

• A microgrid is a promising power system for the marine sector that is capable of
supporting the industry’s heavy loads. It enables the diversification of alternative
energy resources, such as harnessing power from RES, rather than being limited to
only fossil-based energy. A port will manage to achieve a substantial amount of cost-
saving since electricity is generated locally by RES in the harbor area. It will reduce
the investment costs in both utility grid expansion and long distribution cables.

• Furthermore, ESS components in the microgrids help in improving port performance
and serve as a useful tool for demand-side management. The good practice from
the operation management in seaport microgrids enhances better operation at a
lower price.

• With a seaport microgrid, it is possible to bring more electrification and automation
into the ports than compared to the conventional grid, which cannot support factors
such as large-scale cold ironing, full electrification of cranes, improved charging
stations, and electrification of other modes of transportation.

Electrification movement in the ports implies that the connections between seaport
and ships are no longer on the logistic side only but are also on the electric side. It requires
an efficient transportation system and power system, rendering the seaport microgrid
more complicated than the traditional land-based microgrids. Thus, further actions for
improvement in ports are needed in order to synchronize both the logistic and energy side
in a more coordinated manner.
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Abstract: Global economic growth, demographic explosion, digitization, increased mobility, and
greater demand for heating and cooling due to climate change in different world areas are the main
drivers for the surge in energy demand. The increase in energy demand is the basis of economic
challenges for power companies alongside several socio-economic problems in communities, such
as energy poverty, defined as the insufficient coverage of energy needs, especially in the residential
sector. Two main strategies are considered to meet this increased demand. The first strategy focuses
on new sustainable and eco-friendly modes of power generation, such as renewable energy resources
and distributed energy resources. The second strategy is demand-side oriented rather than the supply
side. Demand-side management, demand response (DR), and energy efficiency (EE) programs fall
under this category. On the other hand, the decentralization and digitization of the energy sector
convoyed by the emersion of new technologies such as blockchain, Internet of Things (IoT), and
Artificial Intelligence (AI), opened the door to new solutions for the energy demand dilemma.
Among these technologies, blockchain has proved itself as a decentralized trading platform between
untrusted peers without the involvement of a trusted third party. This newly introduced Peer-to-Peer
(P2P) trading model can be used to create a new demand load control model. In this article, the
concept of an energy cap and trade demand-side management (DSM) model is introduced and
simulated. The introduced DSM model is based on the concept of capping consumers’ monthly
energy consumption and rewarding consumers who do not exceed this cap with energy tradeable
credits that can be traded using blockchain-based Peer-to-Peer (P2P) energy trading. A model based
on 200 households is used to simulate the proposed DSM model and prove that this model can be
beneficial to both energy companies and consumers.

Keywords: energy; cap and trade; blockchain; demand-side management; energy policy; energy trading

1. Introduction

Electric utility companies worldwide deal with severe and recurring power crises
caused by a combination of supply-side problems, including fuel supply challenges, mainte-
nance requirements and unplanned outages, and a continuous increase in energy demand,
driven by global demographic growth, electrification of the transportation sector, and
greater need for heating and cooling. The dilemma of equilibrating the energy supply
with energy demand can be targeted using two principal methodologies. The first way is
to meet the demand by increasing the power supply, using fast-acting, low energy cost
power generators. The second method to equilibrate the supply with the demand is to act
on the demand side by managing the load to minimize the overall energy demand and
clear the gap between the supply power and demand power [1]. This second methodology
relies heavily on the participation of electricity consumers to reduce their electrical energy
consumptions during peak times in exchange for an incentive compensation [2].
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Nevertheless, when energy demand-side management (DSM) strategies are consid-
ered, the economic problem of free-riding emerges [3]. Free-riding usually refers to users
who benefit from conservation subsidies without really contributing to decreasing energy
consumption or paying for it. In demand-side management programs, free-riding occurs
when consumers get incentives without really reducing their loads [4]. On the other hand,
the rebound effect is another challenge when assessing the long-term goals and impacts
of energy efficiency projects. In energy efficiency projects, the rebound effect, also known
as the take-back effect, is the reduction in anticipated energy savings from the applied
energy conservation measures or technology caused by a change in consumer’s energy
consumption behavior due to the applied measure itself [5]. This is a significant outcome of
energy efficiency, which is commonly underestimated. Moreover, it characterizes the nega-
tive relationship between technology and consumption [6]. Thus, it is essential to develop
a demand-side management program that can achieve the ultimate targets of reducing
the overall energy demand and shaving the peak load while avoiding the free-riding and
rebound effects. The model proposed in this article is a demand-side management model
based on the cap-and-trade system, empowered by a peer-to-peer (P2P) blockchain-based
credit trading platform that aims to limit the increase in energy demand.

On the other hand, new emerging technologies such as blockchain, Internet of Things
(IoT), artificial intelligence (AI), machine learning, Big Data, etc. have the potential to
disrupt the energy sector heavily and change it from a centralized, hierarchical supply
chain to a decentralized, decarbonized and decentralized smart platform. Energy sup-
pliers are in a continuous quest to reap greater productivity, improve safety and reduce
energy costs. The digital transformation of the energy sector offers the means to achieve
those goals. Furthermore, the digitalization of the energy sector is the cornerstone of the
broad integration of distributed energy resources (DERs) in any electric grid, which aims
to increase load flexibility and diversity in the power generation systems. This digital
transformation also unlocks new potentials for users to manage their energy consumption
and supply while offering them the possibility to become active stakeholders in electricity
grid management. For electric utilities, digitalization permits better monitoring of the grid,
faster detection of failures supplemented by an autonomous diagnosis and response to
those faults, thus reducing power failures, grid downtime, and higher quality of service [7].
Additionally, the accelerated expansion of DERs, as a fundamental part of smart grids,
can no longer be efficiently addressed using conventional centralized methods but instead
requires a decentralized real-time control and supervision of all grid assets. Hence, new in-
novative management systems relying on decentralized networks are becoming a necessity.
Blockchain technology could facilitate a fully decentralized energy system [8].

A blockchain is a decentralized network that relies on a distributed chronological
ledger, hosted, updated, and validated by several peer nodes rather than a single central-
ized authority, acting as an immutable record of all transactions. The fact that blockchain
substitutes the trusted third parties makes this technology a simple, fast, safe, and transpar-
ent means of transaction between peers. An example of the implementation of blockchain
technology is the famous cryptocurrency Bitcoin. While conventional wire transfers re-
quire validation from a bank and take several days to be completed, Bitcoin transactions
can be achieved in near real-time directly from peer to peer [9]. Since the appearance of
Bitcoin in 2008 as a peer-to-peer (P2P) electronic cash system, blockchain, its underpinning
technology, has gained broad interest from different businesses and industries. Blockchain
technology promises a secure, near real-time, and low-cost method for conducting digital
assets transactions [10]. It increases process automation while managing more significant
volumes of data with limited human intervention at lower cost and risk. Meanwhile,
energy companies are grappling with increased reporting, transparency, and security regu-
lations, which incurs additional costs to the energy trading process and greater demand for
personnel and resources. Blockchain technology can help target those challenges and have
a significant positive impact on the energy sector [11]. Traditional transactional models
rely on centralized, server-client-based architectures. Transactions between network nodes
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occur only through an intermediary third party required to establish trust, especially when
unknown parties are involved. Nevertheless, the involvement of intermediaries induces
additional commission fees in exchange for their services and increases the processing time
required for transactions. Furthermore, since all transactions are managed and recorded
using a central server, centralized networks suffer from a single point of failure. Alterna-
tively, decentralized architectures, such as blockchain’s P2P platform, offer a network of
interconnected nodes that can interact directly, preserving the integrity of the grid even if
several nodes are jeopardized or disconnected. Thus, P2P decentralized networks allow
bridge or mitigate most of the problems associated with centralized networks [12].

Blockchain can transform the energy sector in harmony with the natural laws of
growth. It provides an incremental, sequential, highly integrated approach to developing
the energy sector’s effectiveness and efficiency. This new technology can move the energy
market progressively from a dependent market to an independent market to an interdepen-
dent market. The existing market is an entirely dependent market where consumers rely
on utility companies and service providers. With the development of DER technologies,
the market can evolve into an independent market where off-grid isolated micro-grids
can survive. But with the integration of blockchain, the energy sector has the potential
to metamorphose into an interdependent market ruled by the paradigm of we-we can
do it, where people can cooperate and combine efforts, abilities, and resources to create
something greater together.

In this article, a new demand-side management (DSM) program, based on the “Cap-
and-Trade” concept merged with blockchain-enabled peer-to-peer (P2P) energy trading
mechanism, is proposed. The second section of the article provides a review of the most re-
cent researches on peer-to-peer energy trading, smart energy management, and innovative
mechanisms used to mitigate challenges and limitations faced with traditional demand-
side management models. In Section 3, blockchain technology and its components will be
introduced. In Section 4, the proposed blockchain-enabled energy demand-side manage-
ment Cap and Trade model is defined along with a proposed trading model that highlights
its functionality. The proposed DSM model combines the features of blockchain P2P en-
ergy trading and the well-known Cap and Trade mechanism used for carbon emissions
trading. Thus, to clearly explain the proposed DSM mechanism, at first the Cap-and-Trade
mechanism is introduced, and secondly, the importance of adopting a P2P blockchain-
based energy trading platform is highlighted. Finally, in Section 5, a simulation model
using historical data from 200 households is implemented to test the effectiveness of the
DSM mechanism.

2. Related Works

The language of innovation is expected in sustainable development policy contexts and
load reduction, resulting from demand-side management mechanisms, including energy
efficiency programs and demand response models. This can be perceived as an innovative
equivalent of sustainable power generation development. Thus, in this framework, several
works have already been developed to respond to challenges faced by existing demand-
side management projects. The work conducted in [3] offers a two-step model to address
the free-rider issue resulting from demand response programs. The first step focuses on
predicting the customer’s baseline load using a regression-based estimation model. The
second step proposes an incentive paid to the consumer based on load reduction for a
specific baseline rate. The proposed two-step method outperformed other approaches in
terms of payment rule improvement.

Additionally, demand-side management is considered the central pillar of smart grids
and distributed energy resources. Conversely, as presented in [13], the emergence of new
technologies in smart grid settings has led to the advancement of the communication
and control infrastructure, enabling a better exchange of information and data necessary
to implement any demand-side management program properly. Similarly, article [14]
proposes, in the frame of smart grids, a methodology to implement an active demand-side
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management model for households equipped with solar photovoltaic (PV) systems and
battery energy storage systems. Nevertheless, the development of innovative demand-side
management models is not just limited to the smart grid outline. Advanced technologies
such as Artificial Intelligence (AI), machine learning (ML), blockchain, etc., have disrupted
conventional demand-side management practices. As presented in [15], AI and ML have
emerged as new enablers of demand response programs by tackling various challenges,
limitations, and barriers. Among these barriers are the consumers’ behavioral character-
istics and preferences, a pricing model that responds to the consumers’ expectations, the
management of the demand load, and connected devices. They also contribute to setting
an incentive reward program in a fair and economically efficient manner. In the same
vein and as highlighted in [16], data analytics and ML can be employed to forecast energy
demand, understand customer behavior, and tailor power generation solutions required in
the future to respond to increasing demands.

However, recently blockchain has emerged as a new technology that can play an
important role in smart grids and more specifically in advanced demand-side management
mechanisms. As presented in [17], blockchain technology, especially when merged with ad-
vanced metering infrastructure (AMI), can deliver a transparent, secure, reliable, and timely
energy flexibility to adapt consumers’ energy load profiles to existing energy value chain
stakeholders’ capabilities. The work conducted in [18] suggests a blockchain-based DSM
model using the Ethereum platform that matches energy demand and energy production at
a smart grid level to validate this concept. The model improves feedback from DR enrolled
consumers and aggregates and forecasts available DR loads while reducing the amount
of energy flexibility needed for convergence. Similarly, article [19] uses a micro-grid with
various residential load profiles to test a blockchain enhanced demand-side management
mechanism that reduces peak-to-average ratio and smoothens the dips in the load profile
caused by supply constraints.

Additionally, the proposed model optimizes the pay-off of both the energy provider
and the consumer. Equally, Ref. [20] introduces a distributed demand-side management
interconnecting, using a network of IoT smart meters, multiple households equipped with
renewable energy sources in a single micro-grid. The proposed system minimizes the
individual electricity cost for each household and the total cost of energy consumption for
the entire micro-grid. The consumers aim to optimize their daily energy consumption in
addition to their source of energy: self-generated energy from renewable energy sources,
shared energy on the community microgrid, and energy provided by the utility. Each
participant applies the best strategy that minimizes his energy consumption cost while
maintaining his privacy of energy consumption.

On the other side, the application of blockchain technology in demand-side man-
agement is not restricted to the relationship between the energy service provider and the
consumer but can cover machine-to-machine (M2M) interaction in the context of demand
response. The work presented in [21] provides an example of M2M interaction where a
power management system and a generator will cooperate to adjust the power generation
trading over the blockchain. But then again, demand-side management is not only limited
to demand response programs, and it also includes energy efficiency mechanisms. Even at
this level, blockchain can play a major role in advancing energy conservation measures, as
shown in [22].

Based on those above and even though only a little work has been conducted on
applying advanced technologies, such as AI, ML, and blockchain in the field of DSM, the
potential of these technologies in disrupting conventional DSM models is obvious and
worthy of further investigation. Hence, the work presented here offers a new perspective
for implementing the renowned emissions trading scheme known as Cap-and-Trade, as a
demand-side management mechanism in the energy sector. It uses blockchain technology
as a trading platform to limit the continuous increase in electricity demand faced by most
utilities worldwide, as shown in Figure 1.
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Figure 1. Global electricity generation and use.

3. Blockchain and Smart Contracts

3.1. Blockchain Technology

Satoshi Nakamoto first proposed the concept of blockchain in 2008 [23]. Blockchain
technology is an additional layer on top of the internet. It is defined as the “internet of
assets” as opposed to the world wide web that is recognized as the “internet of informa-
tion” [24]. Blockchain offers the great potential of digitizing assets such as records, deeds,
bonds, copyrights, currencies, art, real estate, carbon credits and energy while enabling a
P2P trading system that doesn’t rely on third parties. This process is known as tokeniza-
tion. By converting physical assets to digital tokens, blockchain unlocks new values for
real-world assets and enables trading them in real-time.

The value of the global market for blockchain technology is growing. Governments,
utilities to academia, and civil organizations are accommodating a digital era in which
blockchain is best known by cryptocurrencies like Bitcoin [25]. The blockchain has indeed
based its reputation on the Bitcoin revolution, but the blockchain is not only about trans-
ferring token ownership. Blockchain technology can have significant social and economic
impacts on established business practices. It offers an alternative means of transacting,
sharing value, storing data, and doing business by eliminating the need for centralized
entities. It is a decentralized trusted network, enabling anyone to digitize and save or
transact data, assets, contracts, or value in a secure manner. Global revenues of blockchain
technology are forecasted to grow in the coming years to more than $23 billion (U.S.) by
2023. The largest shares will come from the financial and energy sectors [26].

Traditional transactional models are based on a centralized structure. Transactions
between network nodes occur through an intermediary third party. Intermediaries are
most often required to establish trust between unknown involved parties. On the other
side, one of the most notable features of blockchain is its decentralized structure (Figure 2).
With blockchain, the trust between peers is empowered by mathematical algorithms and
cryptography, and transactions are conducted from peer-to-peer, which makes blockchain
most suitable for applications that meet the following criteria:

− Decentralized problems
− Peer-to-peer transactions
− Beyond boundaries of trust among unknown peers
− Require validation, verification, and recording of a time-stamped immutable ledger
− Autonomous operations guided by a rule structure and policies
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Figure 2. P2P network vs Client/Server network.

3.2. What Is a Smart Contract?

The concept of smart contracts refers to autonomous, self-enforcing programming
codes that run on a blockchain network to simplify, govern and enforce agreements and
transactions between untrusted peers without the need for a trusted intermediary [27].

The main problem with traditional client-server coded contracts is that when any of
the parties involved has root access to the server, they can change the rules and conditions
of the contracts. This is why in traditional contract models, a trusted third party or
government is required. Intermediaries usually charge fees and can be considered a source
of risk that potentially jeopardizes the confidentiality of any contract. This is a problem
that blockchain and smart contracts can solve by offering a platform that enables parties to
reach a consensus on the required set of rules or business policies and to jointly control
the information. Hence, what blockchain and smart contracts offer is an evolution of the
internet with immutable shared rules.

Bitcoin was the first blockchain to support basic smart contracts, providing a network
capable of transferring value between participants. Its programming language enabled
limited transaction features to be created (e.g., payment channels, escrows, multi-sign
accounts, and time locks). Ethereum introduced the new feature of smart contracts. Its pro-
gramming language enabled developers to build their decentralized applications (Dapps).
At present, it is the most widely used smart contracts platform.

Smart contracts aim to make legal agreements self-executable by using computer code.
Unlike conventional contracts drafted by lawyers, signed by stakeholders, and enforced by
law, a smart contract establishes a relationship with cryptographic coding. Unlike a client-
server-coded contract, smart contracts are immutable and unstoppable once deployed on
the blockchain. Smart contracts offer the following benefits:

− Smart contracts are cryptographically secured, immutable, and enforced.
− Smart contracts are fast and inexpensive.
− They offer a multi-sig feature, which means that transactions are executed only when

all approvals or signatures are provided.
− They are capable of managing agreements between users without human interruption.
− They may serve as part of other contracts (similar to how a software library works).

Smart contracts can run independently and can automatically interact with other
smart contracts.

− They store information, such as records, prices, energy consumption, etc., generated
by the smart contract itself, fed by another smart contract or an outside oracle.

A smart contract is made up of two main parts: smart contract code and smart legal
contracts. The smart contract code is the code that is stored, verified, and executed on
the blockchain. A smart legal contract is a digital representation of a legally binding
agreement using a smart contract code. A smart contract is created and signed by parties

38



Energies 2021, 14, 8600

using their digital signatures. The terms of the agreement and the obligations of each
participant are established and limited by program code instructions and functions. Once
the agreement terms are satisfied, transactions are automatically executed as defined in the
smart contract code.

Smart contracts are capable of redefining business relationships. Smart contracts offer
viable solutions with lower transaction costs and risks [28]. Smart contracts’ autonomous
and self-enforcing nature makes business operations faster, safer, and less prone to human
errors. Additionally, the fact that smart contract-managed processes require less human
intervention allows reducing the overhead. Finally, since all transactions are recorded on a
distributed ledger, it would be very difficult to tamper with the relevant data.

4. Blockchain-Enabled Energy Cap and Trade DSM Mechanism

4.1. Concept

The concept of sustainable consumption was first used on a global scale in Agenda
21, the action plan for sustainable development adopted by 179 heads of state at the Rio
Earth Summit in 1992. For the first time, overconsumption in industrialized countries was
identified as a direct driver of unsustainable development, and the idea of sustainable
degrowth was introduced. Basically, the wished-for solution involved short-term and
long-term market means to shift consumption patterns in an eco-efficient manner [29].
One way to achieve sustainable consumption is to use economic tools, such as subsidies,
taxes, and charges, to impact the price of goods or services and directly alter consumers’
choices [30]. Such market-based mechanisms minimize the impact of adverse market
externalities and play an essential role in influencing purchasing patterns [31].

Nevertheless, economic tools can only impact consumers’ preferences if the offered
financial incentive is strong enough to overcome the threshold of the decision-making
process. In other words, taxes should be adequately scaled to sway consumer-purchasing
decisions. As a result, economic tools can be seen as mechanisms to render eco-friendly
products financially appealing for consumers while making ecologically detrimental ones
more expensive with the aim of discouraging their consumption. However, subsidies and
taxes are not the only forms of economic tools. Trading or purchase schemes can also be
used as financial strategies. The energy cap and trade scheme presented in this article falls
under this category.

Often, prices of certain goods or services are increased to reflect their environmental
cost. Primarily, these additional costs are determined by the price elasticity of the products
in question. In other words, it depends on the percentage of consumers willing to decrease
their consumption when prices increase at a certain rate. The price elasticity depends on
the product or service itself and the household’s income group. The cost of environmental
policy initiatives is thus determined by users’ willingness to alter their consumption and
sacrifice some of their well-being in exchange for their environmental contribution. As
a result, these increasing costs, which may not necessarily be evenly dispersed, have
significant consequences for households [32,33]. Therefore, any economic tool needs to
achieve a balanced distribution of the repercussions of the increased cost. One example
of such behavior, is the Fuel Poverty Strategy, a UK effort that targets environmental
policy distributional challenges [34]. This plan aims at all households whose energy use
surpasses 10% of their income to meet their heating demands, with a special focus on
disadvantaged groups.

People’s habits in consuming energy should be altered to fight against energy demand
increase. Habits are defined as the intersection of knowledge (what to do), skill (how
to do), and desire (want to do) [35]. Any plan that aims to change people’s habits or
their energy consumption patterns should combine all three. Thus, considering these
criteria, the proposed energy cap and trade scheme penalizes heavy electricity consumers
and compensates low energy consumers. The work conducted in [36,37] reveals that
as one’s income rises, so does one’s energy use. This growth, however, is not uniform.
Energy consumption growth remains flat as income grows at the lowest end of the income
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spectrum. Energy consumption begins to rise only after a particular low-income threshold
is reached. Therefore, indirectly the suggested energy cap and trade targets consumers with
high income without impacting households majorly with relatively low income, which
respects the equitability concept in the distribution of the increased costs.

The Cap-and-Trade mechanism is well known in the greenhouse gases emissions
reduction and carbon credit markets. A cap-and-trade scheme allows governments to
issue a limited number of carbon dioxide emission permits each year, essentially putting
a “cap” on overall pollution. Companies that are part of the program can acquire and
sell permits amongst themselves [38]. Because the overall supply of permits is limited,
some businesses may determine that reducing their emissions is more cost-effective than
purchasing permits. For example, investing in more efficient technology, reducing energy
waste, or switching to renewable energy are all options that are less expensive than buying
permits. The cap is then reduced each year, resulting in fewer and fewer permits available
each year. As permits become more expensive, many businesses opt to minimize their
emissions rather than purchase allowances. Cap-and-Trade is considered more flexible
than flat regulations since they simultaneously combine sustainability goals, covered by
the cap, and economic efficiency, covered by the trading feature, and offer the potential to
achieve both [39].

In a Cap-and-Trade scheme, allocation is the process of distributing allowances to
participating or involved entities. The allocation process should be governed by rules
to ensure the fair distribution of allowances. There are three basic ways of allocation;
allocating based on historical data (grandfathering), allocating based on benchmarking,
and auction [40]. Grandfathering offers participating entities allowances based on their
historical data from a pre-defined base year or period. Grandfathering increases the
scheme’s feasibility by avoiding significant upfront costs. However, grandfathering as
a mechanism of allocation tends to reward historically high consumers and necessitates
additional allowances for future entrants. Comparatively, using a benchmarking allocation
method, allowances are distributed based on performance metrics. Benchmarking rewards
efficient and innovative solutions and makes it easier for newcomers to fit in [40]. The
third allocation method is selling allowances, usually by auction. The auction method is
advantageous in reflecting the real requirement of installations for allowances and offers
participating entities an equal chance to procure allowances. Furthermore, it generates
revenue for the regulator, which may then be used to fund additional initiatives. Therefore,
the choice of the allocation method has a significant impact on the cost-efficiency of any
Cap-and-Trade mechanism.

Therefore, analogously to the mechanism applied to fight against the increase in
greenhouse gas (GHG) emissions, we propose a cap-and-trade model to limit the increase
in energy demand while combining both the goals of sustainability and cost-effectiveness.
The proposed model is based on a benchmarking allowance system. Each category of
users or each sector, residential, commercial, healthcare, industrial, etc., is allocated a
cap for the monthly energy consumption based on a benchmark study of the relevant
market. Suppose the monthly energy consumption of the involved entity is below the
monthly cap value. In that case, the entity will pay the usual energy rate, but the entity
will have to pay an incremented rate for each energy unit consumed above the cap value.
Nevertheless, efficient energy consumers might have a total monthly energy consumption
way below the energy cap. Thus, the difference between their anticipated monthly energy
consumption and the cap value can be tokenized and sold to heavy energy consumers at
any rate between the usual rate and the incremented rate (Figure 3). Thus, the proposed
model generates two incentives for consumers. The first incentive is for consumers to
lower their energy consumption not to exceed the set cap value. The second incentive is to
improve their energy efficiency to maximize the number of energy tokens traded and thus
lower their monthly energy bill. The suggested selling algorithm is defined in Algorithm 1.
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Figure 3. Energy Cap and Trade Energy Consumption Model.

However, the application of such a model can be very complex for utility companies
and energy providers. Applying a cap-and-trade model for GHG emissions at the national
level or large-scale companies might be feasible. Still, its implementation on a small retail
scale with thousands and millions of consumers will undoubtedly prove to be a time-
consuming, labor-intensive, challenging, and sophisticated process. For this reason, we
propose using blockchain as a distributed ledger to govern the tokenization of traded
energy. It handles payments, keeps an immutable record of all transactions, and manages
the relationship between stakeholders: selsumers (consumers who are selling excess energy
tokens), pursumers (consumers buying energy tokens), and the utility company.

The adoption of a blockchain P2P architecture for our energy cap-and-trade model
offers several advantages. The anonymity of peers and security guaranteed by blockchain
are among the most important features. Additionally, blockchain’s greatest feature derives
from the transparency of its distributed ledger shared by all participating nodes. It provides
an unprecedented layer of accountability to any financial or business model, forcing all
involved stakeholders to be accountable towards other involved parties. Moreover, the fact
that each exchange of tokens is recorded on a blockchain creates an auditable trail of all
transactions, which can improve security, prevent fraud, and verify the legitimacy of the
traded asset. Finally, blockchain will help make the process more efficient and less costly
by eliminating intermediaries or third parties.

Hence, the proposed blockchain-enabled energy Cap-and-Trade DSM mechanism is
based on creating a monthly cap for consumers’ energy consumption, allowing them to
tokenize any unused energy, not exceeding the cap limit, and trading them with other
interested buyers using a blockchain P2P energy trading platform.
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Algorithm 1 Energy Cap and Trade

1: Initiate algorithm at time t
2: If t = end of billing period then

3: R(m, n) = 0
4: t = 0
5: i − 1
6: Goto 1
7: Else Goto 9
8: end if

9: If User = Seller then

Step 1: Seller Registration
10: Check if Seller Smart Meter is registered
11: Seller set γi

S and Ei
S

12: Offer is stored in matrix:R(1, i) = γi
S and R(2, i) = Ei

S
13: Arrange matrix R from lowest to highest γi

s
14: i = i + 1
End Seller Registration
15: Else

Step 2: Buyer Registration
16: Check if Buyer Smart Meter is registered
17: Seller set γB and EB
18: Initialize j = 1
19: If j = i then

20: t = t + 1
21: Goto 2
22: Else

23: If R(1, j) ≤ γB then

24: If R(2, j) ≥ EB then

24: Buy from Seller the quantity EB for γ
j
S

25: R(2, j) = R(2, j)− EB
26: t = t + 1
27: Goto 2
28: Else

29: Buy from Seller the quantity Ej
S

30: R(2, j) = 0
31: EB = EB − Ej

S
32: j = j + 1
33: Goto 19
34: end if

35: Else

36: j = j + 1
33: Goto 19
34: end if

End Seller Registration
35: end if

36: t = t + 1
21: Goto 2

4.2. System Architecture and Functionality

To better understand how the proposed blockchain-enabled energy Cap-and-Trade
DSM mechanism works, the architecture of the system, including all soft and hard compo-
nents functionalities are detailed in this section.

The main target is to enable electric end-users to exchange electric energy tokens
securely, in near real-time, and transparently. To achieve this, a Dapp will allow energy
consumers and prosumers to participate easily and create their own decentralized and
deregulated open P2P energy market.
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A public decentralized virtual machine will operate as an autonomous agent that
connects and matches selsumers (consumers willing to sell energy tokens) to pursumers
(consumers willing to buy energy tokens) and conducts the financial settlement between
them without the need for an aggregator, broker, or any type of intermediary. The de-
centralized virtual machine is nothing more than several smart contracts that take over
the two major functions of today’s energy retailers: billing and trading while keeping a
transparent record of all executed transactions. These smart contracts are then paired with
a user-friendly front-end application programming interface (API) that allows selsumers
and pursumers to interact directly with the virtual machine. Thus, the virtual machine
collects data, processes it, charges the pursumer for the bought electricity based on an
agreed-upon rate, and pays the selsumers for the sold energy tokens. It manages the
financial settlement between the two parties’ digital wallets in an autonomous, secure, and
completely transparent manner that doesn’t require the intervention of any trusted third
party. The proposed architecture is shown in Figure 4.

Figure 4. Trading model architecture.

The functionality of the model and the different steps of the process can be summarized
as follows:

− Data collection is provided by IoT devices connected to Smart Meters
− Smart contracts manage the processing and storage of data on the blockchain network

in an autonomous way
− Transactions between selsumers and pursumers are conducted in near real-time using

smart contracts and via the Dapp itself.
− Data is recorded and encrypted using cryptography, guaranteeing its immutability

and authenticity.
− Smart Contracts automate and ensure that all system functionalities, i.e., billing,

trading, and reporting, are carried out correctly without the risk of human error.

The Solidity code, included in the Appendix A, represents the smart contract trad-
ing.sol that allows to create buy/sell orders and log them. In addition, this smart contract
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calls for another smart contract called Registeredusers.sol that governs the registration of
smart meters for consumers who are willing to participate in the program and allocate an
address for each smart meter.

5. Case Study

To test the functionality and effectiveness of the proposed DSM mechanism, we
propose using a simulation model based on historical data from two hundred households
and applying the proposed DSM’s logic, outlined in Algorithm 1, to the adopted use case.
However, to achieve that, the proposed selected use case model is defined in the first part
of this section. In the second part, the simulation model and algorithm are transformed into
a mathematical model that allows one to test the DSM mechanism under several scenarios.
The ECT DSM mechanism is tested under different scenarios to evaluate its dynamicity
and how the outcome will change when the system variables are modified. Finally, the
simulation results, under different scenarios, are presented and analyzed.

5.1. Selected Model

Two hundred (200) households, randomly taken from a sample of housing units in
the Residential Energy Consumption Survey in the United States’ Midwest region, are
considered to test the proposed energy demand-side management model. The chosen
sample is part of the work conducted in [41]. The curves shown in Figure 5 represent the
total monthly energy consumption of the 200 households registered over four months of
the year (January, May, July, and October).

Figure 5. Daily cumulative total energy consumption of the 200 households.

The proposed Cap-and-Trade demand-side management model is verified for the
above-defined energy consumption capping applications under different scenarios. In
addition, the blockchain-enabled Cap-and-Trade DSM model is tested over four months
of the year (January, May, July, and October), each representing a season to account for
the energy seasonal variations. Table 1 shows the distribution of the households’ monthly
energy consumption for the selected months of the year.
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Table 1. Distribution of households’ monthly energy consumption.

Monthly Energy
Consumption (kWh)

Number of Households

January May July October

0–600 29 31 17 43
601–800 61 80 53 71

801–1000 54 59 58 60
1001–1200 11 21 32 14
1201–1400 9 6 22 6
1401–1600 15 1 9 3
1601–1800 9 0 5 1
1801–2000 3 2 2 1
2001–2200 2 0 2 1

>2200 7 0 0 0

The considered cases are validated according to three different strategies: aggressive,
intermediate, and soft. The three strategies differ in the set cap value, cap charge rate, and
average energy tokens selling price. The defined values for each simulation strategy are
given in Table 2.

Table 2. Defined values for simulation strategies.

Parameter Aggressive Strategy Moderate Strategy Soft Strategy

Cap Value as
percentile of the

Population’s Monthly
Energy Consumption

15 percentiles 30 percentiles 45 percentiles

Cap Charge $0.50 $0.20 $0.12
Average Energy

Token Price $0.20 $0.15 $0.10

The outcomes of the simulation models are evaluated based on three criteria:

− The variation of the consumer’s monthly electricity bill between the baseline period
and under the cap-and-trade DSM program

− The variation of the total consumed monthly electric energy of the 200 households
between the baseline period and under the cap-and-trade DSM program

− The variation of the total collected monthly electric bills by the utility between the
baseline period and under the cap-and-trade DSM program

An average price for the traded energy tokens was considered to simplify the sim-
ulation. Optimization of the transactions between the selsumers and the pursumers is
applied, which means that they sold energy tokens are equally distributed among all
pursumers. Additionally, it is assumed that all available excess energy tokens are sold.
Such an assumption is justified because, in the case of a large grid, there will always be a
pursumer willing to buy the offered energy token at a lower price than the electricity tariff
per kWh. In other words, if the supply in energy tokens is higher than the demand, all
pursumers are served, and in case the demand is higher than the supply, all selsumers are
served. This hypothesis defines the optimal case of the considered model.

Furthermore, it is considered that a certain percentage of the population will reduce
their energy consumption in response to the applied cap and the surcharge for energy
consumed above the monthly cap value. This assumption is defined by two the factors α
and β, respectively the percentage of households reducing their energy consumption and
the percentage by which the monthly energy consumption of these households is reduced.
For simulation purposes, α is set at 20% and β at 25%.
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5.2. Energy Cap and Trade Formulation

A mathematical model serves to test the above-defined algorithm. Accordingly, as
previously described, after the application of the Energy Cap and Trade (ECT) demand-side
management (DSM) program, it is expected that a certain percentage ∝ of the households
will automatically respond to the program and reduce their energy consumption by a
certain ratio defined as βi. Moreover, it is assumed that the households that will respond
to the applied ECT DSM program are part of the households whose monthly electrical
energy consumption Ei exceeds the set cap value K. Households with Ei < K will not
have any interest in decreasing their monthly electricity consumption. For simulation
purposes and to keep track of the number of households reducing their monthly electrical
energy consumption, a counter n was created. The counter n will be increased by 1 at
each iteration if the subject household i have a benchmarked monthly electrical energy
consumption above the set cap and if the maximum number of expected households to
reduce their energy consumption, defined by the percentage ∝, is not reached. The counter
n will continue to increase until it is equal to the round down of ∝ ×N which represents
the total number of households to reduce their monthly electrical energy consumption in
response to the ECT DSM program.

ni = qi ×
[
[αN]− ni−1

[αN]

]
+ ni−1 + qi (1)

Hence, to identify the households that have decreased their monthly electrical energy
consumption Ei, in response to the ECT DSM program, the index pi is defined. This index
equals 1 if the subject household i has reduced its monthly energy consumption and 0 if
not. The index pi is calculated using Equation (2):

pi =

(
1 +

[
[αN]− ni

[αN]

])
× qi (2)

i ∈ N set of all households
t ∈ T set of time intervals{

qi = 1 i f Ei ≤ K
qi = 0 Else{

pi = 1 i f Household i reduced his electrical energy consumption
pi = 0 Else

N: Population (in our case, the 200 households)
Ei: Household monthly electrical energy consumption in kWh
K: Defined electrical energy cap value in kWh
∝: Percentage of households to respond to the new rate structure and reduce their monthly
electrical energy consumption

The simulation aims to analyze the energy demand and economic impacts of the
proposed ECT DSM program on the consumer and the utility company or energy provider.
Two factors assess the effects on the electricity distribution company. The first one is the
total energy consumed by the 200 studied households, and the second factor is the sum
of the collected electricity bills from the 200 households. As for the consumers, the main
criteria used for the evaluation of the model is the new monthly electric bill U′

i .
The new total energy demand E′

T at the utility-scale is given by Equation (3):

E′T = ∑
i∈N

(1 − pi).Ei + ∑
i∈N

pi.βi.Ei (3)

The reduction in energy demand at the utility-scale is given by Equation (4):

RE =
ET − E′T

ET
(4)
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ET : Baseline total monthly electrical energy consumption of the population in kWh
E′T : Total monthly electrical energy consumption of the population in kWh after imple-
mentation of the Cap-and-Trade scheme
βi: Percentage of monthly electrical energy reduction for each household
RE: Total monthly electrical energy consumption reduction

The baseline monthly electric bill for household i, is given by Equation (5):

Ui = γU × EC
i (5)

The new monthly electric bill for household i, is given by Equation (6):

U′i = γU ×
[
qi.K + (1 − qi).EC

i + ES
i

]
− γS.ES

i + γB.EB
i + γC.ai.

(
EC

i − K − EB
i

)
(6)

Ui: Baseline total monthly electricity utility bill for household i
U′i: Total monthly electricity bill after implementation of the Cap-and-Trade scheme for
household i
γU : Utility electricity rate ($/kWh)
γS: Rate for sold electrical energy tokens ($/kWh)
γB: Rate for bought electrical energy tokens ($/kWh)
EC

i : Total monthly electrical energy consumed by household i in kWh
ES

i : Total monthly electrical energy sold by household i in kWh
EB

i : Total monthly electrical energy bought by household i in kWh{
ai = 1 i f EC

i − K > EB
i

ai = 0 Else
The reduction in the monthly electric bill for household i, is given by Equation (7):

RB
i =

Ui − U′i
Ui

(7)

RB
i : Total monthly reduction or increase on electricity bill of household i.

5.3. Simulation Results

As previously detailed, the simulation is conducted over four different months of
the year to account for the seasonal effect on the energy demand. The obtained results
are analyzed considering two different perspectives. The first is the utility company’s
perspective, and the second one is the consumer’s perspective. From a utility perspective,
the main target is to reduce the monthly electric energy consumption without heavily
impacting the monthly turnover. The obtained results show that even when incorporating
the selsumers as energy sellers and competitors to the utility company in terms of selling
electricity at a lower rate to penalized pursumers, the monthly turnover of the utility is
either comparable to the baseline (period without implementation of any DSM program),
for the soft and moderate scenario, or exceeding the baseline for the aggressive scenario
(refer to Figure 6).
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Figure 6. Utility monthly turnover in USD.

From the consumer’s perspective, the simulation results show that the seasonal effect
lightly affects the cap value (refer to Figure 7). Still, the same cannot be said for the traded
energy tokens. Figure 8 shows a remarkable increase in the number of traded kWh during
January and July. The main reason for this development in the number of traded kWh
during January and July is the increase in heating and cooling loads during those two
months. The high demand for heating and cooling energy is directly reflected in the
monthly electric bills, which means that under a Cap-and-Trade scheme, heavy consumers
will exceed the monthly cap value and consequently be penalized for the excess energy
consumed. Thus, in the proposed ECT DSM program, those heavy consumers will try to
buy energy tokens to minimize the additional charge applied to their monthly bills, which
verifies the increase in the number of traded energy tokens.

Figure 7. Monthly Cap Values in kWh.
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Figure 8. Total traded monthly Energy Credits in kWh.

Besides that, it is entirely reasonable to see that the number of selsumers is high
in a soft scenario, where the cap value is relatively high, allowing consumers to earn
a considerable number of tradeable energy credits. On the other hand, identically, the
number of pursumers is low, whereas these numbers are reversed under the conditions
of an aggressive scenario, as shown in Figures 9 and 10. Additionally, the proposed ECT
DSM model minimizes the impact of free riders while rewarding efficient consumers and
penalizing heavy consumers. Figures 11 and 12 show respectively the average monthly
reductions on the selsumers’ electricity bills and the average monthly increase on the
pursumers’ electricity bills. Under the conditions of the soft scenario, selsumers can
achieve a reduction of approximately 9% on their monthly bills whereas the increase
on pursumers’ monthly bills is between 3% and 7%. With an intermediate scenario,
the selsumers’ reduction is between 16% and 18.6%, whereas the pursumers’ increase is
between 23% and 32.7%. Subsequently, the aggressive scenario allows selsumers to achieve
higher reductions on their monthly electric bills and imposes higher penalties on heavy
consumers where the increase on the monthly electric bill can reach 140% during January.
On the other side, the applied ECT DSM, based on the previously detailed assumptions,
can achieve a 6.04% to 8.79% reduction in the total monthly electrical energy consumption
(refer to Figure 13).

Figure 9. Number of Selsumers per month.
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Figure 10. Number of Pursumers per month.

Figure 11. Average monthly reduction on selsumers’ bills.

Figure 12. Average monthly increase on pursumers’ bills.
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Figure 13. Total monthly energy reduction.

Lastly, Figure 14 compares the average monthly bills of prosumers under the different
scenarios that the utility can adopt to minimize the yearly increase in electricity demand.
The baseline scenario is the business-as-usual scenario where no demand-side management
program is applied. The second scenario is the “Baseline + Cap” scenario. This scenario
simulates the application of a cap value for the monthly energy consumption and penalizes
consumers that exceed this cap without offering them any trading option. In that case,
even though it is assumed that 20% of households will automatically reduce their monthly
electricity consumption by 25% in response to the application of the cap value, the average
monthly electricity bills have nearly doubled. This proves that such a model can have
a severe negative impact on consumers and can be considered an unembellished DSM
model. The other three scenarios represent the implementation of the ECT DSM program
with respectively aggressive, intermediate, and soft conditions. As shown in Figure 14, the
aggressive scenario can have similar adverse outcomes as the “Baseline + Cap” scenario.
In contrast, the intermediate and soft scenarios can maintain an average monthly bill
comparable to the baseline model to decrease the overall monthly energy demand, which
can be considered a win-win situation for both the utility company and the consumers.

5.4. Sensitivity Analysis

As defined in Section 5.1, several parameters are considered in the proposed blockchain-
enabled C&T energy trading model design. Thus, it is essential to determine and analyze
the set of independent variables or inputs that affect the outcomes of our model. The
parameters or variables identified as having an impact on the outcome of our model are
defined as follows:

− Cap value
− Energy rates
− Percentage of people reducing their energy consumption
− The energy consumption reduction rate

Indeed, the set cap value is the most critical variable that can significantly impact
the performance of the presented model. Hence in this context, Figure 15 represents the
sensitivity analysis or the “What if” analysis that illustrates the impact of the set cap value
on the model’s outcomes.
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Figure 14. Average prosumer monthly bill in USD.

Figure 15. Energy Cap’s impact on the model’s outcomes.

5.5. Other Application: Peak Load Shaving Use Case

The presented and simulated model, in Section 5, is not the only application for the
proposed blockchain decentralized application. The developed blockchain-enabled C&T
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energy trading model can also be used for peak load shaving. The suggested peak load
shaving model can operate as follows:

− Based on historical data of at least two complete cycles for each household, a cap
value will be defined for the peak power during the peak time for every billing cycle

− When the power during the peak period for each household is lower than the set
cap, the consumer earns energy tokens equivalent to the amount of energy reduction
below the set cap value (as shown in Figure 16)

− The earned tokens can be exchanged with the utility company or the independent
system operator (ISO) to pay the monthly energy bill or can be sold to other consumers

− Pursumers can benefit from the bought tokens to pay for the extra charge applied to
their energy consumption during on-peak periods

− The complete energy trading process will be similar to the one detailed in Section 4.2

Figure 16. Energy Cap and Trade Peak Load Shaving Model.

Such a model can be used as a demand response program to incentivize consumers to
lower their power peak demand during peak-time periods in exchange for tradable energy
tokens and thus to contribute to the reduction of the daily peak load and minimizing the
need for alternative means of power generation or a large spinning reserve.

6. Conclusions

This article presents a new DSM model that can help minimize the yearly increase
in electricity demand, inspired from the concept of Cap and Trade previously applied to
fight against the rise in carbon emissions, and benefiting from the emergence of blockchain
technology and the tokenization of energy assets. The suggested ECT DSM concept mini-
mizes the free-rider and rebound effects usually faced with conventional DSM programs.
It is fundamentally based on integrating consumers as the main stakeholders in the energy
supply and procurement process. It rewards efficient consumers and penalizes heavy
consumers. Furthermore, it creates an open market for energy trading based on P2P energy
trading. The prices are not controlled by a central entity, i.e., the utility company, but
instead governed by the general rules of a deregulated supply and demand. The central
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concept is that the average energy consumer no longer acts as a passive user, located at the
end of the energy supply chain, but rather as an integral part of a future smart digital grid,
where more and more distributed energy resources (DERs) are being integrated. Such a
consumer-driven energy system can benefit all stakeholders, as proven by the presented
ECT DSM model.

The proposed DSM program was tested using 200 households as a test bank, and the
model was simulated over four months to account for any seasonal effect. Moreover, three
different scenarios, soft, intermediate, and aggressive, were taken into consideration to
validate the most appropriate criteria to be applied to get the best-equilibrated outcomes
for both the utility and the consumer. The obtained results proved the effectiveness of the
model, especially for the soft and intermediate scenarios where the utility company can
achieve a reduction between 6.04% and 7.8% on the total monthly energy consumption,
without any considerable change in its total monthly turnover and without highly affecting
the average monthly bills of the consumers. Furthermore, the sensitivity analysis showed
the importance of properly selecting the cap value to achieve an optimal result for both
the utility company and the consumers. This value has to be modified every few years to
account for new market needs and control the energy demand.

Nevertheless, cash incentives alone are not sufficient to create a good DSM program.
Still, they should be complemented by real-time feedback from energy meters and an
updated billing system that considers an aggregate bill per consumer rather than individual
bills based on single points of delivery (PoD). Such a model can help to protect the system
against free riders. For example, a person or a family owning and occupying more than
one household will not benefit from a double quota of energy credits and can be billed
fairly for their aggregated monthly energy consumption as any other family who owns just
one household.

The presented blockchain-enabled energy Cap-and-Trade model can be applied to
several applications such as peak load shaving. Moreover, it can offer a new perspective
for the utility’s relationship with its customers, specifically for DSM projects. However, this
model might be confronted by several challenges, such as the need for new legislation and
regulations. Additionally, it is crucial to create awareness amongst people to embrace this
change and appropriately interact with the system and the new technological innovation to
extract the maximum benefits from the program. Otherwise, such a model might backfire
and lead to negative results.

The work conducted in this article can serve as a test-bed to evaluate the proposed
DSM mechanism for new applications, commercial or industrial, and various microgrids,
to optimize the model’s outcome especially by combining the impact of other distributed
energy resources. Additionally, it will be beneficial to test the ECT DSM model under
different rate structures such as Real-Time Pricing (RTP) and Time of Use (ToU), as well as
applying the rules of open market demand and supply on the actual price of the traded
energy tokens.

Author Contributions: Conceptualization, A.A.; methodology, A.A.; software, A.A.; validation,
A.I., M.G. and H.I.; formal analysis, A.A.; investigation, A.A.; resources, A.A.; data curation, A.A.;
writing—original draft preparation, A.A. and A.I.; writing—review and editing, A.A., M.G. and A.I.;
visualization, A.A.; supervision, H.I., M.G. and A.I.; project administration, H.I., M.G. and A.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions. The data presented in
this study are available on request from the corresponding author. The data are not publicly available
since they are part of an ongoing project, and full data will be publicly published once the project
is finalized.

54



Energies 2021, 14, 8600

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The following code is written using Solidity a programming language used for coding
smart contracts on the Ethereum platform. The smart contract trading.sol allows to create
buy/sell orders and log them on the blockchain’s shared ledger. In addition, this smart
contract calls for another smart contract called Registeredusers.sol that governs the regis-
tration of smart meters for consumers who are willing to participate in the program and
allocate an address for each smart meter.

Energy Trading Smart Contract—Solidity Code

Pragma solidity >=0.4.22 <0.6.0;
import "./Registeredusers.sol";
// Contract Registeredusers.sol registers a wallet address for each smart meter to enable the
registered user to trade energy on blockchain
// Contract trading.sol manages and records energy buying or selling transactions
contract trading is Registeredusers {

struct SellOrder {
address seller;

uint32 price;
uint64 energy;

uint64 timestamp;
}
struct BuyOrder {

address seller;
uint32 price;
uint64 energy;
address meterAddress;
uint64 timestamp;

}
// Add registry address
address public utilityreg = 0x89205A3A3b2A69De6Dbf7f01ED13B2108B2c43e7;

SellOrder[] public sellOrders;
BuyOrder[] public buyOrders;

//stores the amount of energy supplied by the seller
BuyOrder[] public sellerEnergy;
mapping(address => uint) public sellIndex;
mapping(address => uint) public buyIndex;
event sellEvent(address indexed seller, uint32 indexed price, uint64 energy);
event buyEvent(address indexed seller, uint32 price, uint64 energy, address meterAddress);

function sellEnergy(uint32 aprice, uint64 aenergy, uint64 atimestamp) onlyRegisteredUsers public
{
// record the sell order
uint idx = sellIndex[msg.sender];
sellOrders.push(SellOrder({

seller: msg.sender,
price: aprice,
energy: aenergy,
timestamp: atimestamp
}));

emit sellEvent(sellOrders[idx].seller, sellOrders[idx].price, sellOrders[idx].energy);
}
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function buyEnergy(address aseller, uint32 aprice, uint64 aenergy, address mAddress, uint64
atimestamp) onlyRegisteredUsers public {
// find offer by seller (aseller)
uint idx = sellIndex[aseller];
require(0x0 != idx);
// check if any matching offer is available
if ((sellOrders.length > idx) && (sellOrders[idx].seller == aseller)) {
// check if price is matching

require(sellOrders[idx].price == aprice);
buyIndex[msg.sender] = buyOrders.length;

// record the buyer's choice
buyOrders.push(BuyOrder({

seller: aseller,
price: aprice,
energy: aenergy,
meterAddress: mAddress,
timestamp: atimestamp
}));

emit buyEvent(aseller, aprice, aenergy, mAddress);
//checks if the consumer bought from the seller and stores it
// The array sellerEnergy in trading.sol stores the energy transaction
require(buyOrders[idx].seller == utilityreg);
sellerEnergy.push(BuyOrder({

seller: aseller,
price: aprice,
energy: aenergy,
meterAddress: mAddress,
timestamp: atimestamp
}));

} else {
revert();
}
}
}
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Abstract: The paper presents a set of prototype smart grid technologies and services and validates the
economic viability of the proposed solution using cost–benefit analysis (CBA). The study considered
the EU-funded project called RESOLVD and implemented the technologies and services in a real-life
pilot. The paper focuses on the analysis of technological solutions which enhance the operational
efficiency and the hosting capacity of low-voltage electricity distribution grids. The solutions provided
better integration of a hybrid battery storage system, with the grid interfacing power electronics,
smart gateways for the interconnection of assets at the grid edge, and sensors enhancing infrastructure
observability and control. The result from the CBA indicates the economic viability of the project,
high scalability, and replicability. The economic benefits were realized with the breakeven value
of eight secondary substations (SS) and 16 feeders. The scenario test on the DSO’s willingness to
pay for the software as a service (SaaS) revealed that the payback period can further be reduced by
almost half with a higher internal rate of return (IRR) and net present value (NPV). Both the CBA
and scenario tests showed RESOLVD solution can become more economically viable when deployed
in largescale. Moreover, the CBA results provide evidence to the energy policy by allowing DSOs
to consider both CAPEX and OPEX for better investment decisions. Further, the paper proposes an
alternative business approach that shifts from grid reinforcement to service provision. The paper also
discusses the research implications on energy policy and business.

Keywords: cost–benefit analysis; smart grid; hosting capacity; efficiency; technology; economic;
the EU; willingness to pay; policy

1. Introduction

The green transition of energy through low-carbon pathways moves the electricity
sector towards higher penetration of distributed energy resources (DERs). According to the
EU’s amended Energy Efficiency Directive (EU) 2018/2002 and 2030 climate and energy
framework of 2014, the EU has set a target for renewable energy of at least 32.5% and
32% share by 2030. This implies an increase in renewable resources (RES) connected to
the distribution grid and will require the distribution system operator (DSO) to expand,
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upgrade, and modernize the infrastructure [1]. Under high DERs, DSOs face multifaceted
challenges in managing LV grid networks, as they lack high-resolution grid observability
and advanced control and planning systems. Challenges include frequent voltage varia-
tions, congestions, reverse power flows, and reactive power balancing [2–5]. The authors
of [4] discussed how technical solutions, by providing new information about the state of
medium-voltage (MV) and low-voltage (LV) networks, can improve the quality of network
management.

Along with better management of the grid, DSOs need to increase their hosting
capacity cost-efficiently in the part of the grid that expects more challenges as a result
of the growth of intermittent renewable energy sources and mobility’s electrification to
provide the distributed asset flexibility. This can be achieved by activating flexibility and
coupling demand and generation [6,7]. This implies directly acting on energy assets (special
focus is put on storage) and the participation of consumers/prosumers through demand
response [8]. Storages are claimed to be the way to mitigate some of the distribution grid
challenges [5] but are expensive [9]. To overcome all challenges, cost-effective advanced
technologies need to be developed, tested, and the investment should be economically
justified using a detailed cost–benefit analysis (CBA).

Nevertheless, there is no standard methodology to assess the economic viability of the
technology developed, especially in the highly regulated business of the DSO. However,
there are some techno-economic analysis methods proposed in the electricity domain.
However, only a small amount of the research is linked to grid-scale electrical energy
projects. The authors of [10] conducted a social cost–benefit analysis and developed a
framework that helps the regulatory regime to assess and decide on investing grid-scale
electrical energy storage (EES). The authors of [11] applied CBA to analyze the deployment
of advanced metering infrastructure (AMI) by focusing on loans to check the worst-case
feasibility of the project. Although CBA has been applied in smart grid projects, there is
limited research focusing on technical projects.

This paper considers the case of the H2020 RESOLVD project, and describes the tech-
nologies developed to solve LV grid operation challenges. These technologies developed in
the project fall under the category of (a) use of hybrid storage systems, (b) observability
of the grid, (c) integration of IT systems, and (d) decision support for control of the grid.
The paper presents the outcome of a detailed CBA that was performed to explore if the
investment in the proposed solution is economically viable. Further, the paper presents a
scalability analysis and scenario test for willingness to pay by DSO. The paper does not
only validate and justify the economic soundness of intelligent LV grid management, but
also lays a foundation to give insight about the future flexibility services by paving the way
to reach high DER penetration through increased hosting capacity and efficiency. This shall
further help DSOs to consider OPEX-related investments as a key business consideration
in addition to the traditional grid upgrade (CAPEX). This enables and has implications
on efficiently managing the grid and to take the advantage of the combination of the two,
i.e., total expenditure (TOTEX). Furthermore, the results substantiate and shed light on
how to improve the energy policy and contribute to the green transition through high DER
penetration.

1.1. Objective and Research Questions

The objective of the paper is to demonstrate and validate the proof of concept of
RESOLVD solutions and provide evidence of its economic viability in managing an in-
telligent LV grid operation in the context of distributed networks. This is achieved by
measuring and quantifying defined KPIs for all technologies developed and implemented
on the selected pilot. The research objective is achieved by answering the following four
thematic research questions (RQ):

• RQ1. How can the DSO manage intelligently the LV grid and improve the grid
performance in terms of efficiency and hosting capacity?
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• RQ2. What concrete and quantifiable benefits (based on defined KPIs) can be achieved
from the proposed RESOLVD solution?

• RQ3. Are the RESOLVD hardware and software solutions economically viable and
can their adoption be economically justified when compared to the business-as-usual
(BAU) scenario, i.e., without RESOLVD? What will be the impact of scaling up towards
large-scale deployment of RESOLVD solutions and what is its sensitivity with respect
to reduction in major costs, such as software and battery?

• RQ4. What implications does RESOLVD have to the energy policy, technology, and
businesses?

To answer these questions the research framework shown in Figure 1 is followed.

Figure 1. Research framework to answer research questions of the paper.

1.2. Paper Organization

Section 2 is a literature review on aspects of intelligent distribution grids that are
of interest for RESOLVD, i.e., grid observability, integration of energy storage systems,
decision support systems for the DSOs, and integration of IT systems at the DSO level.
Additionally, Section 2 provides a brief review on cost–benefit analysis (CBA) for relevant,
low technology readiness level (TRL) solutions. Section 3 presents the RESOLVD concept
and solution as implemented at a demonstration site. Section 4 describes the methodology
used for performing CBA. Section 5 provides results and a discussion of the research
questions of the paper. Section 6 presents the implication of RESOLVD technologies on
business and policy. Finally, Section 7 concludes the paper.

2. Review on Intelligent Distribution Grids

2.1. Observability of the Grid

The traditional unidirectional power flow in power networks, from large generation
assets to end consumers in the grid, is being progressively replaced by bidirectional ones
because of the increasing penetration of distributed energy resources and active demand
management of consumers. The exploitation of various types of energy storage could
improve to reduce the controllable loads to support the active system management, re-
quirement for real-time knowledge on the distribution network state [12], and monitoring
of dynamic and transient events affecting the quality of supply [13]. The prerequisite
towards achieving comprehensive observability of the power network is the deployment of
advanced measurement technology and the provision of appropriate connectivity solutions
to support data aggregation and processing. Providing the means of monitoring, analysis,
prediction, control, and automation in the segment between the secondary substation
and consumer’s/producer’s connection point, which is a great part of increased system
dynamics that exists, allows the operator to provide resilient services, better utilization
of assets, and potential delay of investment in infrastructure reinforcement, fostering the
innovative solution to invest in real smart assets.

A power network is considered observable if it is possible to calculate its quasi-steady
state using the available set of measurements and knowledge on current configuration [14].
The approach can either be model-driven, where graph theory, line models, and instan-
taneous measurements are used to estimate the state, or data-driven, where a numerical
model is built using historical measurement data and instantaneous measurements are
then used to derive the state from the model. The smart meter data provided by the Ad-
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vanced Metering Infrastructure (AMI) are increasingly used to support various applications,
such as load profiling or forecasting. Moreover, power quality meters (PMQs) are typically
deployed to support the site or assets monitoring, and (micro) phasor measurement units
(PMUs) are emerging to support the wide-area situation awareness. Although there are new
approaches, technologies, and proposed observability solutions that could be deployed
in the energy domain, the results from such technologies should be further validated
and justified. In this connection, some of the proposed solutions include an automatic
target detector in infrared imagery [15], a multi-remote-sensor approach, such as a deep-
learning-based burned area mapping using the synergy of the satellite data and images of
Sentinels 1 and 2 [16]. Moreover, there is a new method that could be potentially adopted,
i.e., the use of multi-camera multi-player tracking with deep player identification [17];
however, the cost-effectiveness in a distributed energy grid context should be assessed.

2.2. Integration of Energy Storage Systems

The applications of energy storage systems (ESS) in networks are diverse and have
been widely discussed in the literature [18,19]. ESS is required to provide power and energy
services to upgrade the electrical grid and achieve a neutral role for DSOs and highlight
its developed infrastructures. From a techno-economic perspective, there is no optimal
battery type for all types of applications. Additionally, the stacking of multiple services
simultaneously can result in a higher return on investment [20,21]. Thus, the development
of hybrid energy storage solutions is suggested based on the combination and synergis-
tic exploitation of various storage technologies (each providing different services). The
realization of hybrid storage systems mainly depends on the ability to electrically intercon-
nect and manage a heterogeneous grouping of storage technologies. This is triggered by
advanced power electronics [22,23] and associated power-sharing algorithms [24–26] to
manage energy in such hybrid systems to provide a variety of energy services (e.g., voltage
compensation, storage, phase balancing, etc.). Aspects to consider for such power-sharing
algorithms are usually the main technical performance of each storage technology embed-
ded into the hybrid solution (e.g., energy and power ratings, cyclability, time response),
and degradation mechanisms. Based on such aspects and criteria based on the power time
profile, the setpoint for the hybrid solution can be evaluated—or stratified—to identify fast
time-varying and low time-varying components to associate to, for instance, a lithium-ion
battery and a lead-acid battery, respectively, pursuing an optimal performance. All in all,
this comprises a challenging decision process involving technical aspects and providing
business opportunities.

2.3. Decision Support Systems for the DSOs

The notion of a decision support system (DSS) embraces a variety of applications
oriented towards short-term (i.e., grid operation), medium-term (i.e., maintenance), and
long-term (i.e., grid planning) functions that usually also include visualization and simula-
tion capabilities.

In this paper, we focus on the short-term time frame and we present DSSs that allow
the operation of a smart grid in a more efficient way by scheduling grid configuration and
controllable assets at the day-ahead time frame.

Such DSSs usually combine power flow solvers with algorithms that aim to maxi-
mize a specific utility function. Existing studies focus on determining the optimal static
configuration of a network to minimize power losses [27–31]. The authors of [30] showed
that voltage control and power losses were improved with a simultaneous reconfiguration
and an optimal location of the distributed generation assets (DG). The same formulation
was used in [29], but a different solver algorithm with better performance was used. Usu-
ally, the optimization problem involves the co-ordination of the operation of ESS with
grid reconfiguration (i.e., switchgear operation), resulting in a multi-objective function.
To decouple grid configuration from charge/discharge of ESS, a two-stage optimization
approach has been applied [32]. In this approach, firstly, the grid configuration is set (on an
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hourly basis) to avoid possible critical events (congestions and over/sub voltages), and
once this problem is solved, the ESS is scheduled to minimize energy exchange and losses at
the substation level. The approach in [33] also considers the existence of interruptible loads
that transfer the problem to the demand side and incorporate the dispatchable load costs.

2.4. Integration of IT Systems at the DSO Level

As distribution systems gradually evolve into smart distribution systems, the DSOs’
operations centers that control them evolve in parallel, incorporating new functions. The
separate IT systems operating in these control centers become more streamlined, commu-
nicating seamlessly to provide an integrated monitoring and management system. More
advanced applications and analytical software provide more sophisticated analyses and
automated operations. The control systems of operation centers not only help to make
the grid smarter, but also help to improve support for decision-makers responsible for
operations, maintenance, and planning [34]. Among the IT systems present at a DSO’s
operations center, the distribution management system (DMS) is considered as one of the
most critical components for the efficient operation of the distribution grid. As a fully
functional unit, a DMS may include various applications, such as fault detection, isolation,
and service restoration, voltage variance optimization, power flow management, etc.

According to [35], a growing number of DSOs have DMS running in their operations
center. However, participants also indicated that challenges remain in developing a highly
reliable and functional DMS in different respects (e.g., system integration, communication).
This is just one side of the coin. In many cases, the DSO IT ecosystem is composed of
many different legacy systems and subsystems, rather than a monolithic DMS. Examples
of separate (nonintegrated) IT systems include customer information system; geographic
information system; trouble calls center; workforce management; switch order management;
AMI; SCADA, etc. On top of the above, there are several non-interconnected advanced
applications that are useful for the DSOs, both at the planning and operation phase (outage
planning, grid resources optimization, power quality analysis, distribution grid state
estimation, etc.). These and other applications are often in need of real-time information,
such as the status of switches, voltage regulator taps, capacitor banks, fault location,
the status of distributed resources, and customer demand/load. This signals the need
for an information exchange bus. In addition, ultimately, there is a need for integration
of the decision support functions (analytics plane) with the actions’ execution functions
(control plane).

2.5. Cost–Benefit Analysis for Relevant Low TRL Solutions

The development and adoption of smart grid technologies need economic validation.
Some researchers have developed cost–benefit analysis (CBA) frameworks for smart grid
applications. For example, the authors of [36] applied CBA to assess system management
and planning tools for the electrical grid. The authors of [37] proposed, in their theoretical
paper, a multi-agent systems (MAS) approach applied to the operation of power grids. The
authors of [10] applied CBA on grid-scale electrical energy storage (EES) and validated
the results using simulations. Similarly, authors of [38] used CBA on a virtual power plant
including solar PV, flow battery, heat pump, and demand management and attempted to
validate it by simulation.

In general, most of the CBAs for assessing the investment in smart grid technologies
are still too conceptual and theoretical, and include many assumptions. Moreover, although
there are various reports on such CBAs, the research on complete CBA and investment
analysis, including scalability and willingness to pay, is not covered adequately in the liter-
ature. Unlike previous CBAs of smart grid technologies, this paper focuses on investments
in the LV part of the grid.
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3. RESOLVD Concept and Demonstration Pilot

3.1. The Project Concepts

The RESOLVD project aimed to improve the efficiency and the hosting capacity of dis-
tribution networks in a context of highly distributed renewable generation by introducing
flexibility and control in the low-voltage (LV) grid without the participation of consumers.
Specifically, the project tackles the following challenges:

• Improvement of low-voltage grid observability.
• Critical event forecasting. This includes day-ahead forecasting of congestions and

over/under voltages due to daily variations in demand profiles with the presence of
PV generation.

• Early fault detection by exploiting the grid observability and redundancy of measurements.
• Island management; this includes the detection of uncontrolled islanding situations

and the management of ESS and frequency control in controlled LV islands.
• Power quality improvement and loss reduction; this includes compensation of har-

monics reactive power, and phase balancing with power electronics (PED).
• Reduction of technical losses in the network by reducing imported energy and maxi-

mizing the use of renewable energy locally produced.
• Cyber security; the design of subsystems and further integration has been submitted

to rigorous analysis and tests to assure the cybersecurity of the whole solution.

To tackle these challenges, the project developed and deployed hardware and soft-
ware solutions to smartly manage LV distribution grid operations and improve the grid
performance. The project developed an advanced power electronic device to control and
manage hybrid storage (lithium and lead-acid batteries) at the customer premises and two
substations with four feeders.

Advanced power electronics with integrated storage management capabilities provide
both switching and energy balancing capacities to manage energy locally. Enhanced
observability of low voltage grids has been achieved by introducing cost-effective high-
resolution instruments (PMUs and PQM) and exploiting smart meter data to perform
energy forecasting (generation and demand aggregated at bus level). Thus, enhanced
observability and improved energy control allow the introduction of day-ahead operation
planning in the low voltage by scheduling three elements:

- Switchgears: to reconfigure the grid to avoid critical events (congestions and/or
over/sub voltages)

- Batteries: schedule the charge/discharge of batteries according to efficient operation
goals (reduce energy exchange at the substation level, peak reduction, maximal use of
RES locally generated)

- Power electronics: its activation allows reduction of losses and improves quality by
compensating harmonics and reactive, balancing phases, and compensating voltage
variation by injecting reactive power.

Optimal scheduling and activation of such assets are performed by decision support
modules that provide services for day-ahead energy forecasting (generation and demand)
based on smart meter data, detection of abnormal operation as faults and critical events
(congestions and over/sub-voltage variations), and grid operation scheduling under dif-
ferent optimization criteria (critical event avoidance, loss and peak reduction, or maximal
consumption of RES locally generated). Thus, RESOLVD builds up an enhanced low-
voltage grid monitoring with (local) wide area monitoring (WAMs) capabilities to detect
faults, forecast critical events (congestion voltage variations), and correct power quality
issues, resulting in a better quality of supply that is more secure and efficient. RESOLVD
is conceived as a set of subsystems fully interoperable with the legacy systems (such as
SCADA, DMS, MDMS, and GIS) that provides enhanced low-voltage observability and
day-ahead scheduling capabilities to optimally manage the grid.

The interoperation of these technologies in a secure and safe way has been imple-
mented by considering current communication standards and putting the CIM model on
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the basis of the development. Integration of the overall system has been performed with an
enterprise service bus (ESB) that supports all the data transactions and co-ordinates the
invocation of modules according to specific decision support tasks. Next, Figure 2 shows
in green the RESOLVD components and, in light blue, existing legacy systems [39].

Figure 2. RESOLVD high-level architecture.

3.2. The Demonstration Pilot

The RESOLVD technology has been tested in a pilot integrated into a semi-urban
area of the distribution grid operated by Estabanell Energía (EyPESA) in the province of
Barcelona (Catalonia, Northeast Spain). The pilot (see Figure 3 for the schematic diagram)
covers two secondary substations (SS) feeding 25 consumers and five PV plants. It is
composed of two low-voltage (LV) three-phase lines, deriving from two different secondary
substations (SS-A and SS-B). Blue arrows represent the supply points, while the yellow
circles stand for the PV installations. The LV allows reconfiguration by operating three
switchgears, also permitting operation in a ring configuration. Residential consumers are
normally single-phase fed (phase + neutral or two phases).

In Table 1, the values of the rated power of the transformers and the total contracted
and generation power installed are summarized. It should be noted that the MV/LV
transformers are oversized with respect to the load of the area. This is because, some years
ago, the two substations had to also supply two high-load factories that have now closed.

Table 1. Rated power and contracted power values of SS-528 and SS-0030.

Secondary Substation (SS) SS (A) 528 SS (B) 0030

Transformer rated power 250 kVA 630 kVA
Total contracted power 138.6 kW 127.8 kW

Contracted power of line in the pilot 58.3 kW 56.9 kW
PV power installed in the pilot 12.5 kW 9.9 kW
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Figure 3. Schematic of the pilot area of RESOLVD.

Figure 4 shows a simplified schematic representation focusing on power electronic
devices’ (PED) connection with the pilot area. It should be noted that the power electronics
and the batteries are installed at the beginning of one line fed by SS-B. This scheme
represents the possible grid configurations that can be implemented during the test phase.

Figure 4. Simple pilot schematic showing the location of PED connection.

Smart meters and power quality monitors installed at the beginning of the two feeders
and in the point of common coupling of the PED were installed to collect data used during
the validation phase. The PED and the batteries were installed in the SS-B (Figure 5). This
location has been selected for space reasons, as it consists of a two-floor building, with an
empty second floor. Both the PED and batteries through the battery management system
(BMS) were integrated with the SCADA through specific remote terminal unit modules.
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Figure 5. A picture of SS-B where the PED and the batteries were installed.

4. Cost–Benefit (CBA) Methodology

4.1. CBA Process Steps for Smart Grid Projects

CBA is an analytical tool to evaluate investments and to support policy decisions for
society’s welfare [40]. In general, CBA concepts investigate the opportunity cost in a long-
term perspective, which depends on a set factor, such as the sector, discount rate, forecast
future costs, and other economic indicators quantified in monetary terms. The EU BRIDGE
initiative and the European Commission’s Joint Research Centre (JRC) recommended the
CBA framework to be followed for smart grid projects [41]. In RESOLVD, similar process
steps were followed by characterizing the project, quantifying the benefits, and, finally,
comparing the benefit to cost to see if the benefit outweighs the investment cost (see linked
RESOLVD activities in Figure 6 highlighted in blue color).

Figure 6. CBA process steps used in RESOLVD are based on the JRC and BRIDGE initiative.
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Indicators used to perform CBA are defined in Section 4.2. Using the indicators two
scenario tests were performed. The first scenario test focused on assessing the scale-up
potential of the RESOLVD solution from an economic point of view. Here, the solution was
scaled up from a small pilot site to selected numbers of sub-stations (SS) of the DSO. The
scenario test assessed the willingness to pay (WTP) for solutions under the software as a
service (SaaS) model. The WTP measures the maximum amount DSO would be willing to
pay to gain the desired outcome or, alternatively, the maximum amount that DSO would be
willing to pay to avoid undesirable outcomes. In the second scenario test, it was assumed
that software developed under the project is provided as a service rather than as a product
to the DSO. This results in different cost structures of having an annual service fee for
software instead of one lump-sum cost.

4.2. Economic Indicators for CBA

In this paper, the net present value (NPV), the internal rate of return (IRR), and
payback period were considered for performing the CBA analysis. NPV is calculated using
formula (3), while IRR is equal to discount rate when NPV is zero. The payback period is
defined as the time taken by net benefits to overcome initial investments. The benefit–cost
ratio is calculated based on the sum of all present values of quantified benefits divided by
the present values of all costs. All cashflows are aggregated considering the interest rate at
a time ‘t’.

Benefit–cost ratio =
|Present value[Quanti f ied Bene f its]|

|Present value[Costs]| (1)

Benefit–cost ratio =
∑N

t=0
|CFt [Bene f its]|

(1+it)
t

∑N
t=0

|CFt [Costs]|
(1+it)

t

(2)

The CBA or Benefit-cost ratio can be simplified further and presented in Equation (3)
including the initial investment.

NPV =
T

∑
t=0

{
Bt − Ct

(1 + r)t

}
− I0 (3)

where NPV = net present value; Bt = annual benefits at time t; Ct = annual costs at time t;
T = lifetime of the project; I0 = initial investment cost; r = discount rate; and CFt = cashflow
at time ‘t’.

Based upon consultation with DSO (also the pilot owner of the project) project lifetime
was considered as 10 years, and a discount rate of 4% is favored considering current
market conditions. In the EU, the projects are usually discounted using the social discount
rate of 3–5% depending on the cohesion and member state countries (JRC 2012). Thus,
the assumption of a 4% discount rate is within the normal range in the EU.

Quantification of costs and benefits:
The major costs and benefits are listed in Appendix A and are summarized as follows:

• Costs: all major costs for the hardware and software development, installation, per-
sonnel, services cost, such as cyber security.

• Shadow price: for calculating willingness to pay for SaaS, a shadow price is considered
based upon other existing software used by the DSO.

• Benefits from technical indicators: in the project, a total of 12 indicators, nine technical
KPIs, including the three control indicators (CI), have been defined, which are con-
verted into monetary values. The process of converting these indicators to monetary
value is qualitatively described in Table 2. Details on the project indicators can be
found under public deliverable D5.1 of the RESOLVD project [42].

• Benefits from remuneration: these are considered based on the DSOs savings from the
remuneration formula and described in the next sub-section.
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Table 2. Qualitative description of converting project indicators into benefits with linked remunera-
tion variables.

Project Indicators Basic Assumptions Considered to Calculate the Benefit Linked Remuneration Variables

KPI1: Power loss reduction due to waveform
quality improvement

The annual average electricity increases in the pilot feeders
(17 kW) multiplied by the % loss and compared with the
change from the business-as-usual scenario (BAU).

Pi
n

KPI2: Improvement of the energy profile in the
secondary substations

In SS where PEDs are managing renewable sources. The PV
energy does not flow from all distribution infrastructures
from TSO link.

data 1

CI1: Efficiency rate of the PED and the energy
storage system

Consumption of Vdc bus, batteries technologies and PED
auxiliary internal consumptions.

DESPn,15→n−2,
RIi

n

KPI3: Increase in DER hosting capacity in LV
network

PED, batteries, and auxiliary system internal
consumptions. DESPn,15→n−2

KPI4: Reduction in DSO investment
In terms of traditional infrastructure investment and
assuming an average distance of 100 m multiplied by new
LV feeder cable plus the cost of assets upgrade.

DESPn,15→n−2

CI2: DSO operation expenditures with respect
to the BAU solutions

Regarding the remuneration for the operation and
maintenance, the rule in force until 2020
(RD 1048/2013 + Order IET/2660/2015) differentiates
between O&M of electrical assets (which is remunerated by
unit value) and O&M of nonelectrical assets (which is
remunerated by invoice). The O&M amount of electrical
assets ranges from 3% to 5% of the unit investment
reference value.

RIi
n

KPI5: Percentage of improvement in line
voltage profiles with power injection and
consumption

The real and reactive power not supplied from the primary
substation and provided from PED in the maximum
consumption time and assuming that the active power was
charged in the storage system when there was a surplus in
the valley period.

-

KPI6: Rate of prevented critical events in the
LV grid due to forecasting and remote control
of grid actuators

Assuming average time response as a traditional way,
the customer from the fault to fuse restoration is two hours.
Moreover, the usual time that a user calls DSO to
communicate the fault is 10 min on average. Average
energy in the pilot feeders multiplied by the events that
feeder fuses are blown per year assumed by DSO.

-

KPI7: Quality of online event detection in LV
grid

Fast detection of short circuits and severe faults that lead to
protection (fuses). The time difference between rapid
detection (the time of occurrence) compared to a
conventional method in which fuse actions are protections
where they are reported. I have considered it to involve a
reduction in response time x kWh considering the number
of end-users affected due to fuse blow.

Qi
n

KPI8: Quality and time needed for awareness
and localization of grid fault MV grid

To localize an MV fault and isolate part of the grid on
average from the historic SCADA registers in 5 h, consider
wage of operator per hour. As result of this KPI, it is
possible locate the fault and save in average 3.5 h.
Moreover, it avoids the assets stress.

Qi
n

KPI9: Quality of LV grid operation in island
mode

It was just tested during the functional test. The functional
testcreated an electrical island for 85 min.

Qi
n,

REVUi
n &

COMGESi
n

CI3: Waveform quality in LV grid Only affect in the part of the upstream grid from PED until
the primary substation is connected the pilot feeder. Pi

n

Benefit from remuneration.
Some of the benefits relate to different KPIs and the benefits are calculated based on

the assumption of the remuneration formula. In this connection, the Spanish Comisión
para lospara los Merecados y la Compenténcia (CNMC) establishes for calendar years,
by resolution and after hearing the interested parties, the remuneration recognized to each
DSO for the distribution activity. Before November 15 of each year, the CNMC will submit
to a public hearing the total remuneration proposal to be received the following year by
each of the DSOs. The remuneration of the distribution activity recognized to the DSO
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(i) and in the year (n) for the performance of its activity, year n−2 will be determined by
formulation (4).

Ri
n = RIi

n + DESP i
n,15→n−2 + TER i

n,15→n−2︸ ︷︷ ︸
Financial business

+ COMGESi
n + REVUi

n︸ ︷︷ ︸
O&M

+ ROTDi
n︸ ︷︷ ︸

Commercial
cycle

+ Pi
n + Qi

n︸ ︷︷ ︸
Efficiency
incentives

(4)

where:
Ri

n: is the return on investment to be received by company (i) in year (n).
RIi

n: is the investment remuneration to be received by DSO (i) in year (n) for the
facilities of distribution company i with commissioning prior to 1 January 2015.

DESPn,15→n−2 : is the investment remuneration to be received in the year (n) for the
maneuver’s offices and distribution energy control center that have been carried out by the
distribution company i in the years 2015 to n − 2, both inclusive.

TERn,15→n−2 : is the return on investment to be received in year n for the properties
and lands associated with new electrical installations that have been carried out by the
DSO (i) in the years 2015 to n − 2, both inclusive.

COMGESi
n : is the manageable component of the remuneration to be received in

year (n), which will be calculated for each DSO (i).
REVUi

n: is the remuneration for the extension of the useful life for year n that a DSO (i)
will receive for all those distribution facilities, which, having exceeded their regulatory
useful life, remain in service in year n − 2, if availability is proven effective of each of said
facilities.

ROTDi
n: is the term of remuneration for other regulated tasks that the DSO (i) has to

receive for the year n for the development of these tasks in year n − 2.
Pi

n: is the term of incentive or penalty for the reduction of losses passed on to the
DSO (i) in year (n), associated with the level of losses in its network between years n − 4
and n − 2.

Qi
n: is the term of incentive or penalty to the quality of the service based on the

DSO (i) year (n) associated with the supply quality indicators obtained by DSO i between
years n − 4 and n − 2.

According to the Spanish remuneration equation, the KPIs of the RESOLVD project
impact according to the following Table 2.

5. Results and Discussion

The results and discussion section are organized to respond point-by-point with
the respective research questions presented in Section 1.1. This section discusses the four
RESOLVD technologies with their novelty and main findings from the project to address the
DSO challenges: (a) advanced power electronic device (PED) and storage, (b) observability,
(c) decision support system (forecasting and flexibility control), and IT integration in DSO
level.

Key results of the research from the RESOLVD project are the development of ad-
vanced technologies and integration for smart grid management, demonstration of these
technologies in the real-life pilot, and testing the economic viability of the proposed solution
supported by the DSO for the future investment in LV grid in a distributed network. The
detailed findings of the research are as follows.

5.1. Developed Technology, Novelty, and Main Findings (Linked to RQ1)

Power electronic device (for multiple storage integration): As a result of the whole
RESOLVD solution, and due to the PED, the DSO can improve the performance of the
grid in terms of energy efficiency, since active and reactive power flows within the grid
can be optimized. Energy efficiency was improved as: (i) since the PED is connected close
to the consumption points in the network and partially fed them, distribution losses are
minimized; (ii) the PED has been proved effective in managing voltage levels at the LV
side of the transformer, and this also minimizes grid currents and transformer losses. In
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addition to energy efficiency, the hosting capacity of renewables of the network has been
improved. Following the control setpoints from the DSO, the PED minimized transformer
loading and mitigated current harmonic content in the network due to, for instance, PV
inverters and nonlinear loads connected nearby. All in all, this permits the DSO to defer
in time network reinforcements, while also hosting more DER. Further, the PED has been
effective in acting as a voltage source in case of a mains failure. This is an attractive service
for a DSO in a rural area, as in the RESOLVD project. Figure 7 below shows the integration
of different batteries and the context of utilization.

Figure 7. PED as developed in the project shows possibilities to integrate multiple batteries (at the
bottom), as well as to use them in multiple contexts (on top).

The two battery types embedded into the PED are operated synergistically by a power-
sharing algorithm explained in [43]. This algorithm optimizes how to split the total power
the PED is to exchange with the network among the two battery types, considering their
efficiency, degradation mechanisms, and state of charge. Degradation is associated to two
phenomena: power stress and depth of discharge of cycles; and lithium-ion batteries are
more resilient against degradation than lead-acid batteries. Thus, the power requested to
the lead-acid batteries is limited, and also the depth of discharge (the minimum admissible
state of charge is limited at 30%), while high-peak power needs are associated with lithium-
ion batteries. This way, lead-acid batteries smoothly provide part of the total power needs
the PED should exchange with the network, thus reducing the stress for the lithium-ion
batteries that, in turn, are subjected to more stringent power requirements.

The front-end power electronics of the PED and the power inverters interfacing with
the network are equipped with advanced algorithms to improve network waveform quality.
This enables management of the reactive power, load balancing of the three phases of
the network, and cancelling current harmonics. Relevant test data conducted on the
performance of the PED while balancing loads of a three-phase network are conducted and
presented in [44].

Sensors for observability: In designing the RESOLVD observability solution to support
the implementation of use cases and testing of the KPIs, the emphasis has, on one hand,
been given to the realization of appropriate metrology instruments and, on the other hand,
the capability of efficient data communications and processing. The PQM instrument
has been designed to observe the power quality parameters, and thereby the quality of
supply or the impact of PED service in characteristic locations of the network. To support
also direct interfacing to grid assets under control, it embeds a gateway functionality
supporting the legacy control protocols. The embedded computing functionality allows for
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the implementation of moderate control schemes and schedules to allow for an autonomous
operation. The design of the PMU instrument and edge computing solution target efficient
implementation of advanced situation awareness applications in the distribution grid
segment. The particular focus has been given to fault detection and localization to support
fast service restoration [45]. Given the vast amount of measurement data produced by
the PMU and no dedicated connectivity solution on disposal at deployment locations,
the application consists of several interacting distributed services, each responsible for
a specific sub-function. The data are preprocessed on edge for the purposes of event
detection and model building, event classification is realized based on raw data snapshots
aggregated from all affected locations, and localization is performed using the information
on grid configuration, line models, and the pre- and post-event conditions. The connectivity
towards the control center application is, for both instruments, realized via 4G cellular
network. The three key components of observability developed in the project are shown in
Figure 8.

Figure 8. Observability-related sensors developed in the project: (a) PQM, (b) PMU, and (c) gateway.

Decision support toolkit (forecasting and flexibility control): Grid operation scheduling
avoids exporting energy (exported 0) and, at the same time, storage is managed to reduce
peaks of demand. Thus, the main contribution to loss reduction is achieved by flattening the
curve. This is quantified, on average, by reducing the peak around 18% and the variability
of the curve by 43%. A generalized reduction in peaks at the low-voltage grid supposes
a substantial increase in efficiency of overall power system (transport losses depends on
the square of current) and the consequent reduction in emissions (according to the energy
mix). However, this has a cost. In the experimental pilot, the consumption of the PED
and battery is around 6.5% of total energy managed (more than 4% is consumed by the
PED) in the pilot. This supposes increasing the total demanded energy by around 4%. This
elevated percentage is mainly because the PED is somehow oversized, and it is capable
of managing larger peaks of power and amounts of energy than the pilot demand in the
current state. This increase could be compensated by an increase in local production,
resulting in an increase in hosting capacity. Due to the increase in energy required to
run the PED and battery, it is recommended to limit the operation of the GOS only when
the excess of PV is enough to compensate for this consumption. During the test, only
dates 5, 8, 10, and 12 February 2021 produce an excess of generation (between 5.8 and
9.6 kWh), and this excess does not compensate the losses in the PED and the batteries
(between 18.1 and 18.6 kWh). The technology developed in RESOLVD enabled the DSO to
achieve the following key findings and improvements: hourly energy (aggregation of SM
at bus level) forecasting error (MAPE) of 20%, peak reduction by 18%, and 0% exported
energy (at SS level). Besides the key findings, the technology enables provision of the
additional features revealed, such as 97.5% accuracy on fault detection (high impedance
faults), 3.8% false alarm, and missed detection of 0%.

Novelty in Integrating IT systems: RESOLVD implemented a solution for integration of
the novel applications of the project, not only in between them, but also with legacy systems
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of the DSO, by implementing an innovative and standards-based enterprise services bus
(ESB) solution. Being compliant with the IEC 61968 standard, this solution comprises an
integration middleware with a focus on the smart grids domain.

5.2. Quantified RESOLVD Benefits (Linked to RQ2)

All savings from each KPI and control indicator are aggregated to realize the direct
benefits of the project. When available, control indicators based on existing technical
standards have been used to validate the fulfillment of technical conditions (e.g., EN-50160
is the power quality standard that specifies the acceptable ranges for the parameters that
define the supplied electric waveform). The benefits derived from the analyzed KPIs are
quantified and summarized in Table 3 below. The results in this table show the benefits,
in EUR, calculated from the changes in business-as-usual scenarios (with and without
RESOLVD). Most of the KPIs are quantified but few KPIs are converted into two benefits
based on the assumption of measuring two KPIs. For example, KPI-7 and KPI-8 are related
to the devices and measure the accuracy of the software solution. In this case, for the CBA,
hypotheses have been taken based on the benefit to locate an electrical fault and simplify
the onsite work operation into a reduction in the asset stress. As some of the consortium
members are business entities, some of the values are anonymized and described in some
ranges instead of specific monetary values (Table 3).

The quantified benefits after the RESOLVD project implementation were calculated
based on the KPIs defined and compared with the business-as-usual scenarios (BAU).
All monetary values are registered in Table 3. Since some of the savings and benefits are
business sensitive, the results are put in ranges for anonymity after agreement with partners.
For example, in connection to the hosting capacity (HC) of the grid and in line with the
project objective, the KPI-03 is defined to show the increase in DER hosting capacity in an
LV network (%kVA with respect to the current maximum limit) and calculated as below.

%Change gained =
HC with RESOLVD − HC without RESOLVD

HC without RESOLVD
× 100

189 kVA − 138 kVA
138 kVA

× 100 = 36.95%

Cable capacity: 330 A

330 A × 400 V × 1732 = 228,624 kVA

Assuming the power factor cosFi = 1 → 228,624 kW

229 kW × 36.95% = 84.5 kW of capacity

84.5 kW × 24 h × 365 days = 740.220 kWh year

740.220 kWh year × 0.0350333 € = 25,932 €/year i.e., >25,000 Euros/year.

Similarly, the savings from the rest of the KPIs are calculated and the results are
summarized in Table 3 below. For some of the KPIs, the average day-ahead price of the
Spanish market is used (see Appendix B).

5.3. Cost–Benefit Analysis (Linked to RQ3)
5.3.1. Economic Viability of RESOLVD Technology

The CBA result clearly showed the economic viability of RESOLVD solution and the
high scalability and replication potential of the project (see Table 4). The major savings
come from increased hosting capacity, reduction of DSO investment through increased grid
infrastructure flexibility, and the way to upgrade traditional assets by smart devices with
inherent ability for real-time monitoring and control. This is relatively in line with one of
the core project objectives of RESOLVD, and, therefore, savings from increased hosting
capacity (see Figure 9) are considered to comprise a scale-up scenario with respect to the
increased pilot size. This is carried out according to the DSO investment policy, which is
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up to 10% of the yearly investment on the grid infrastructure/upgrade and by ensuring the
required additional costs are considered in the analysis. Because of high investment cost at
the early stage of the project, the first CBA with the current pilot size of two substations (SS)
showed the benefit/cost ratio less than 1. However, as the pilot size increases (scale-up)
with all associated costs, such as a total cost for PMU, PQM, batteries, and PED, included,
the benefit/cost ratio becomes greater than 1, with increased internal rate of return (IRR),
NPV, and shorter payback periods (see Table 4 summary of CBA). The breakeven threshold
is reached when RESOLVD solutions deploy on more than eight secondary substations (SS).

Table 3. Summary of quantified benefits from RESOLVD solution.

Category Indicator
Business as Usual (BAU)

without RESOLVD
After (with) RESOLVD Saving in EUR/Year

Efficiency

KPI-01: Power loss reduction due to
waveform quality improvement (W/Ω) Unknown 166.7 W/Ω <1000

KPI-02: Improvement of the energy profile
in the secondary substations
Sub-indicators:
(i) Losses T&D (%)
(ii) Locally generated energy use (%)
(iii) Maximum peak (%)

(i) Losses T&D is 7.3% at each
SS, which is at SS-00528:
9.49 kW, SS-0030: = 8.3 kW.;
(ii) Locally generated energy
use is: 2.8% and 1.27%;

(i) SS-00528: Not affected because PED
is not interacted as a normal
exploitation. SS-0030 reduced T&D
losses = 0.5%
(ii) and (iii) Locally generated energy
use and maximum peak (%) has no
registered changes

1000–5000

Planning

CI-01: Efficiency rate of the PED and the
energy storage system
Note: The benefit of this indicator to DSO is
in higher self-consumption rate (kW).

Without PED (no PED
implemented) Change registered: −4.2 kW <1000

KPI-03: Increase in DER hosting capacity in
LV network (%kVA with respect to the
current maximum limit)

138 kVA 189 kVA
Change registered: 36.95% >25,000

KPI-04: Reduction in DSO investment (%) Retribution Retribution change registered: 22% >25,000

CI-02: DSO operation expenditures with
respect to the BAU solutions (EUR per year)

The O&M amount of
electrical assets ranges from
3% to 5% of the unit
investment reference value.

Considering an investment of EUR
57.000 as a usual new building of
network assets at LV level.

1000–5000

Quality of
service

KPI-05: Percentage of improvement in line
voltage profiles with power injection and
consumption (%)

NA 0.03 <1000

KPI-06: Rate of prevented critical events in
the LV grid due to forecasting and remote
control of grid actuators
Sub indicators:
(i) Precision of forecasting (%)
(ii) Time to respond to critical event
(minutes)

(i) No previous data available;
(ii) It was taking 120 min

−15–40% (*) (**)
−2 min
Change registered: 118 min
N.B. (*) (**) are kept anonymous.

<1000

KPI-07: Quality of online event detection in
LV grid
Sub-indicators:
(i) Accuracy (%)
(ii) Precision (%)
(iii) Miss Detections (%)
(iv) False Alarms (%)
(v) Detecting time (s)
(vi) Informing delay (s)

(i) No previous data
(ii) No previous data
(iii) No previous data
(iv) No previous data
(v) No previous data
(vi) 120 min

(i) 97.5%
(ii) 93.5%
(iii) 0%
(iv) 3.8%
(v) 1 s
(vi) 35–400 s

<1000

KPI-08: Quality and time needed for
awareness and localization of grid fault MV
grid (seconds)

NA because RESOLVD is
focused on LV level. This KPI,
is focused in MV level.
Moreover, the KPI measures
quality of effectivity of PMU

2.04 s
Impact MV (indirect benefit to the DSO
due to PMU)

1000–5000 (indirect
saving from MV)

KPI-09: Quality of LV grid operation in
island mode (hours)

0.33 h (avg. from previous
year)

1.417 h
Changed registers: 1.087 h 1000–5000

CI-03: Waveform quality in LV grid (%) NA (no data before
RESOLVD project) 0.12% <1000

N.B, (*) and (**) are the assumptions made based on: (*) Forecasting performance has large variability depending
on the node and time. Large errors are due to 24h delay in having SM data available and low consumption in most
consumption points. (**) Critical events were simulated in the pilot by changing line parameters, demonstrating
the availability to detect and mitigate. Given the number of tests is not representative enough, the paper considers
2 incidents to calculate KPI6.
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Table 4. Summary of CBA with scale-up of the pilot size.

Indicators
2SS-4 Feeders
(Current Pilot)

8SS-16 Feeders 10SS-20 Feeders 12SS-24 Feeders 24SS-48 Feeders

NPV −459 k −57 k 97 k 226 k 1054 k

IRR −11% 2% 6% 9% 23%

Payback period >10 years 9th year 8th year 5th year 4th year

Benefit–cost ratio 0.5 < 1 1.1 > 1 1.3 > 1 1.4 > 1 2.4 > 1

Recommendation
Not worth

investing in the
current pilot size.

Risky to continue
with the

investment.

Relatively lower
IRR; however, it is
worth continuing

with the
investment.

It is worth
continuing with
the investment.

It is worth
continuing with
the investment.

Figure 9. Increased hosting capacity with scale-up of RESOLVD pilot.

Considering the increase in the hosting capacity due to RESOLVD solution (Figure 10),
the research summarized the economic indicators from the CBA in Table 4 below.

Figure 10. NPV (in EUR, left side of the figure) and IRR (% in the right side) based on WTP scenario
for the three-software platform when the pilot is scaled up 12 times the pilot size.
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5.3.2. Scenario Test Based on the DSO Willingness to Pay (WTP) of the Software Service

From the DSO long- and medium-term energy policy perspective, to have cost-
effective, reliable smart grid solutions and have security in energy supply, the WTP scenario
test on major costs is needed. In this regard, one of the major costs in RESOLVD solution
is software development and associated IT platform solutions. For this test, the Intelli-
gent Local Energy Manager (ILEM) software cost was considered, which enables control
and management of the PED with or without storages thanks to the link with the energy
management systems (EMS) and SCADA or advanced distribution management systems
(ADMS). The main reason for this test is that the regulation does not allow the DSOs to
own a battery and can get the ILEM service through licensing. However, the basis for
defining willingness to pay is not straightforward and, therefore, it needs to benchmark
with other licensing costs. In this connection, the DSO considered similar software service
costs, such as the annual licensing fee for smart meter management platforms, which is
calculated based on the number of the smart meters (see Table 5).

Table 5. A basis for DSO’s willingness to pay for the software as a service fee.

Number of Supply point <10,000 10,000–50,000 50,000–100,000 100,000–500,000 500,000–1,000,000 >1,000,000

Cost per supply point EUR 1 EUR 0.2 EUR 0.1 EUR 0.02 EUR 0.01 EUR 0.001

Based on this assumption, the CBA is recalculated to test the scenario at which the
DSO has a willingness to pay for the software service cost benchmarked from a similar
software platform. The CBA with respect to WTP showed a positive economic indicator if
the RESOLVD solutions are deployed on more than 8SS, and the payback period reduced
to 2–3 years. This will give flexibility for the DSO to get the software service by involving
other technology providers or aggregators while all regulatory boundaries are respected,
including the battery ownership. However, the willingness to pay scenario test for the
three-software platform is carried out and summarized in Table 6.

Table 6. Summary of CBA for willingness to pay scenario of the three RESOLVD software. 2SS-4
feeders represent current pilot size, and values are rounded to the nearest thousand (k).

Indicators
ILEM IT Integration Software LVD-DST (Decision Support Toolkit)

2SS-4 Feeders 8SS-16 Feeders 2SS-4 Feeders 8SS-16 Feeders 2SS-4 Feeders 8SS-16 Feeders

NPV −156 k 305 k −323 k 78 k −343 k 58 k

IRR −5% 17% −11% 6% −8% 6%

Payback period >10 years 4th year >10 years 6th year >10 years 7th year

Benefit–cost ratio 0.8 < 1 1.8 > 1 0.6 < 1 1.3 > 1 0.6 < 1 1.3 > 1

Recommendation
Not worth

investing with the
current pilot size.

It is worth
continuing with
the investment.

Not worth
investing with the
current pilot size.

Longer payback
period but worth
continuing with
the investment.

Not worth
investing with the
current pilot size.

Longer payback
period but worth
continuing with
the investment.

Extending the WTP scenario test with 24 SS-48 feeders, the CBA showed the payback
period further reduced by close to half, with increased NPV and IRR for each software
developed compared to the assumption the complete solution developed at the DSO
premise (see Figure 10).

5.4. Replication and Market Potential of RESOLVD Solution

The replication and market potential of the RESOLVD solution can be looked at in
two perspectives. The first one is based on the number of secondary substations available
in the EU and EEA. In this regard, there is an estimated number of 4.5 million secondary
substations (SS). However, as the case pilot depicted, there is the possibility that RESOLVD
solution may not apply to all these substations. For example, referring to the DSO where the
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RESOLVD pilot was implemented, only 35% SS from the total available 907 SS could apply
the solution due to different factors (e.g., physical available surfaces, the structure and
topology of the distribution networks). Based on similar assumption of 35%, RESOLVD
can be replicated to a large number of SS in the EU and receive a proportional benefit
from increased hosting capacity, DSO investment reduction, and other associated direct
and indirect benefits. From a market potential point of view, in the EU, there are about
190 large DSOs (≥100 K customers) and more than 2400 small and medium DSOs which
have less than 100 K customers (See Table 7). Only within partners’ countries there are
27 large DSOs and 640 medium and small DSOs. Considering all these DSOs together
with other stakeholders (aggregators, business entities/sister companies, third parties,
etc.), RESOLVD could contribute to the EU targets of renewables by increasing the hosting
capacity to reach high DERs and create an impact to the society at large.

Table 7. Number of DSOs in partner countries and EU and EEA for RESOLVD replication and market.

Partners Population (MN) DSO (<100 K Customers) DSO (>100 K Customers) TWh

Spain 47 349 5 278

Norway 5.4 150 7 118

Austria 8.8 138 13 61

Greece 11.1 2 1 45

Slovenia 2 1 1 13

Total 74.3 640 27 515

EU and EEA 520MN (inc. UK) 2400 190 2700

6. RESOLVD Implications on Business and Policy (Linked to RQ4)

6.1. Business Implication

From WTP scenario analysis, it is found that the SaaS approach is more cost-attractive
than the traditional approach of owning software. In consultation with DSO, five addi-
tional benefits of the SaaS approach have been identified, making it a more attractive
option from a business perspective. These additional benefits are: (i) DSOs can obtain a
predictable payment, which can be consistently budgeted in each term, (ii) SaaS removes
the burden of maintaining on-site servers and software, freeing up IT staff to work on more
strategic initiatives and ensuring greater solution uptime, (iii) DSOs do not have to worry
about unexpected expenses associated with unplanned maintenance and/or breakdown,
(iv) DSOs have access to updated software all the time, rather than buying new updates,
and (v) cloud-based software can be updated in the background without any disruption
to the existing deployment. Considering this attractiveness, technology developers have
become interested in exploring the option of providing a complete RESOLVD solution as a
service. This has been identified as an area of further research.

PED (along with storage) has shown the potential to provide multiple flexibility
services to the distribution grids. It can also provide flexible services to other sectors,
such as buildings, industries, and EV charging stations. Thus, there could be multiple
beneficiaries of the PED, but the cost needs to justify investment for other beneficiaries. One
way to make PED more cost attractive would be to stack multiple values together. From a
policy perspective, DSO needs to procure these services through market mechanisms and
should act as a neutral market facilitator of such services. However, market mechanisms to
procure flexible services are not yet clearly defined at a local level in most of the member
states. Absence of such local market limits DSOs’ ability to procure services and limits
benefits derived from the value stacking capabilities of PED. Thus, for market adoption of
technology such as PED, it is crucial that regulations on local energy markets are defined
sooner.
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6.2. Policy and Regulatory Implications

The adoption of solutions such as those developed by the RESOLVD project is directly
correlated with the specific targets set by the EU and the policy linked with the measures
aiming to increase the efficiency and hosting capacity of the distribution grids. The CBA
outcomes presented in this paper give interesting insights, specifically to the DSOs, as to
the impact that the RESOLVD solutions can have in achieving those targets/plans. The
positive CBA shows that research results from the project are cost-effective in improving
the hosting capacity of the existing distribution grid infrastructure, thereby deferring grid
capacity investments.

From a techno-economic point of view, DSOs constantly look for ways to lower the to-
tal cost of infrastructure investments (capital expenditure, i.e., CAPEX). As demand for new
infrastructure grows, DSOs look for ways to improve their management and mitigate in-
vestment risk. The CAPEX of grid expansion can be deferred by implementing technologies
that improve operational efficiency of the grid, i.e., having operation expenditure (OPEX).
However, DSO being a regulated business, the remuneration for investment in most of the
member states in the EU is capital expenditure (CAPEX)-based. This limits DSOs to invest
in innovations that are OPEX-based. An optimal mix of CAPEX and OPEX depends upon
local conditions and, thus, CEER, in its recommendation to the EU commission, proposes
allowing DSO to decide optimal mix. In this regard, a total expenditure (TOTEX) approach
is considered promising to support innovations, as well as reduce overall costs associated
with DSO business. This business approach is in line with the proposed change in business
model by [46,47].

According to the new Spanish law 3/2013 (under Royal Decree-Law 1/2019), DSO
remuneration may incorporate incentives, which may have positive or negative signs, to the
reduction of costs of the electricity system derived from its operation or other objectives
(see Section 4.2 for remuneration formula). RESOLVD results of CBA provide evidence
that OPEX-based investments can be cost-effective in both increasing hosting capacity and
deferring gid upgrade.

7. Conclusions

The EU energy policy principles to overcome the challenges in the field of energy
include speeding up the slow progress in energy efficiency and alleviating the challenges
emanating from the increasing share of renewables in a cost-effective way. This research
provides concrete evidence for energy policymakers, DSOs, and technology developers
by validating a complete proof of concept of RESOLVD solution in the real-life pilot to
improve energy efficiency and hosting capacity with reduced investment cost.

The IT and smart LV grid solutions developed, implemented, and tested in the project
RESOLVD justified the economic viability of a complete solution. The research impact was
substantiated by doing a detailed cost–benefit analysis (CBA) and the results revealed that
the solution offered by RESOLVD is economically viable with high scale-up and replication
potential. The major savings were found from increased renewables hosting capacity
and reduction in DSO investment (see Tables 4 and 6). Both direct and indirect benefits
quantified based on carefully defined KPIs, control indicators (CI), and shadow price
(retribution and willingness to pay) showed positive results. These results substantiate the
relevance of the proposed solution and give evidence for policymakers and other DSOs
so that they can enable a speed up and facilitate the transition from the traditional grid
upgrade towards intelligent grid operation and management.

Another interesting finding from the DSO, technology providers, and future smart
grid business standpoint of view is the scenario test of software as a service (SaaS). The
willingness to pay (WTP) scenario test based on SaaS showed that the three-software devel-
oped in the project (ILEM, ESB, and LVD-DST) reduced the payback period significantly
(about 3 years on average), with higher NPV, IRR, and benefit–cost ratio. This has strong
implications to the DSOs and technology developers to plan for the large-scale deploy-
ment of the solution considering the whole value chain, including manufacturing of the
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necessary hardware and software components for the complete solution. This paves a
way forward and provides an in-depth insight to exploit the benefits gained from grid
operational expenditure (OPEX) and transforms the traditional CAPEX to TOTEX. From
the DSO perspective, intelligent local energy managers under the SaaS plan can make the
solution economically attractive in the short term not only from the NPV values, but also
from the need of high interactions with the end-user and proximity of the ILEM.

To summarize, the findings in this research strengthen the EU policy in the context
of improved energy efficiency, increasing hosting capacity, and promoting low-carbon
and clean energy technologies to drive the energy transition through the RESOLVD cost-
effective solution, which, in turn, improves competitiveness. Further, it facilitates and
speeds up the process of ensuring energy security through solidarity and co-operation
between EU countries, which is one the EU energy policies (e.g., in RESOLVD, seven
partners from Spain, Norway, Austria, Slovenia, and Greece involved).
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Abbreviations

AMI Advanced Metering Infrastructure
BAU Business As Usual
BMS Battery Management System
CAPEX Capital Expenditures
CBA Cost–Benefit Analysis
CIM Common Information Model
DER Distributed Energy Resource
DG Distribution Generation
DMS Distribution Management System
DSO Distribution System Operator
EES Electrical Energy Storage
EF Energy Forecaster
GIS Geographic Information System
GW Gateway
IED Intelligent Electronic Device
ILEM Intelligent Local Energy Manager
JRC Joint Research Centre
KPI Key Performance Indicator
LV Low Voltage
MDMS Metering Data Management System
MV Medium Voltage
OPEX Operating Expenditure
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PCS Power Conversion System
PED Power Electronic Device
PMU Phasor Measurement Unit
PQM Power Quality Monitoring
RQ Research Question
RES Renewable Energy Source
SaaS Software-as-a-Service
SCADA Supervisory Control and Data Acquisition
SG Smart Grids
SGT Smart Grid Technologies
SGAM Smart Grid Architecture Model
SM Smart Meter
SS Secondary Substation
TOTEX Total Expenditure
TSO Transmission System Operator
WAMS Wide Area Monitoring System
WTP Willingness-To-Pay

Appendix A

Table A1. Some list of cost and benefit attributes.

Investment Costs (Development and Service) Costs in EUR

Intelligent Local Energy Manager (ILEM) development
(PED + Personnel+ batteries) xxxxxxx

Remote Terminal Unit (RTU) xxxx
Low voltage switchgear (LVSG) xxxx

Phasor Measurement Unit (PMU) xxxx
Phasor quality meter (PQM) xxxx

Operation cost(effort) xxxx (DSO retribution)
PSS power system supply xxxx

Gateway xxxx
Router xxxx

EBS software platform (development cost) xxxxxxx
LVD-DST software platform/forecasting and scheduling xxxxxxx

Cyber security service xxxxxx
Other investment costs

Replacement cost xxxx
Residual cost (xx)

Revenue/Savings Savings in EUR per Year

KPI-1: Power loss reduction due to waveform quality
improvement xxx

KPI-2 Improvement of the energy profile in the secondary
substations xxxx

CI-1 Efficiency rate of the PED and the energy storage system -xxx
KPI-3 Increase of DERs hosting capacity in LV network xxxxx

KPI-4 Reduction of DSO investment xxxxx
CI-2 DSO operation expenditures with respect to the BAU

solutions xxxx

KPI-5 Percentage of improvement in line voltage profiles with
power injection and consumption xx

KPI-6 Rate of prevented critical events in the LV grid due to
forecasting and remote control of grid actuators x

KPI-7Quality of online event detection in LV grid x
KPI-8 Quality and time needed for awareness and localization

of grid fault MV grid (per incident 1785) xxxx

KPI-9 Quality of LV grid operation in island mode xxxx
CI-3 Waveform quality in LV grid xx
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Appendix B

Figure A1. Average price used for some of the KPIS to quantify the benefits (source: OMIEData).
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Abstract: Microgrids are among the promising green transition technologies that will provide enor-
mous benefits to the seaports to manage major concerns over energy crises, environmental challenges,
and economic issues. However, creating a good design for the seaport microgrid is a challenging
task, considering different objectives, constraints, and uncertainties involved. To ensure the opti-
mal operation of the system, determining the right microgrid configuration and component size at
minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system
for a seaport microgrid with optimally sized components. The selected case study is the Port of
Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources
(photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The
seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand
by considering important parameters such as solar global horizontal irradiance, temperature, and
wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy
reliability, and environmental impacts.

Keywords: cold ironing; energy management system; optimal sizing; renewable energy sources;
seaport microgrids; maritime; HOMER

1. Introduction

Ports worldwide have different sizes, operations, geological, geographical features,
and a variety of energy sources that will affect their power demand as well as energy
production. The main sources of energy supply come from the utility grid and diesel
generators, constantly emitting greenhouse gas emissions. Moreover, the energy sector
is encountering primary energy depletion, considering that the growing load demand
is exceeding power generation. With a rising awareness of the jeopardy from resource
depletion issues and environmental pollution, many ports around the world are taking
action toward the zero-carbon footprint goal. The urge to use alternative clean energy
resources makes microgrids one of the best solutions for future green seaports. In 2019,
Denmark showed a remarkable result by generating half of its electricity from wind and
solar power [1]. The advantage of the climate’s constant breezes and bluster in this country
makes the wind turbine practical for use and well established. The Danish maritime
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industry has set a target of 70% reduction in CO2 emission by implementing wind energy
and energy management systems in the ports [2].

Although microgrids are widely used in different land applications, there are limita-
tions for their real implementation in the seaport sector. This situation is a good opportunity
to introduce microgrids into the seaports, but at the same time it is challenging to access the
references in terms of system requirements, optimal framework, stability, and maintenance
needs. Especially during the initial planning phase, it is a vital task to find the optimal
design of the seaport microgrid with a compatible configuration and the right sizing for
each component.

In recent years, a lot of effort has been devoted to the optimal design of microgrids.
Di Wu et al. [3] conduct a study on a two-stage stochastic mixed-integer programming
technique for finding the optimal size of multiple distributed energy resources (DERs). The
proposed model considers the optimal outcome in terms of economic benefits and system
resilience. A comparative study in [4] evaluates the optimal framework for a standalone
microgrid by using four different metaheuristic algorithms. The merit of the study is taking
into account the uncertainty in RES power production and load consumption. Moreover,
a sensitivity analysis for several battery prices and capacities is provided to find the best
framework. The same technique is applied in [5] but with a three-level planning framework
for the extreme event cases in a microgrid power system. The purpose of the study is
to preserve system security for better power delivery. Furthermore, although numerous
studies are available for the optimal sizing of batteries for microgrids, the battery sizing
problem is still far from being mature. Different research strategies and schemes are applied
in [6–10] to identify the optimal design for ESSs. Despite extensive research on design and
optimal sizing of microgrid technologies in various applications, there is still a shortfall of
this research in seaport microgrids. As the seaport itself is a very complex system consisting
of various dynamic loads in different regions (shore and seaside), the maritime industry has
traditionally been slow and reluctant in acknowledging this technology. However, seaport
microgrids have been attracting a great deal of attention over recent years to improve
maritime power systems’ performance.

Therefore, this paper presents a simulation-based method using the HOMER opti-
mizer to investigate the seaport microgrids configuration and sizing problem in terms
of cost minimization, energy production, and environmental impact. Seaport microgrids
in this paper refer to the integration of microgrid power systems into seaports with cold
ironing facilities.

The evolvement of trading activities worldwide is increasing the reliance on maritime
transportation. This situation resulted in the growing concern about the carbon footprint
of ships when docked at ports [11]. When a ship is at berth, the auxiliary engine keeps
on to supply onboard power demand [12]. It consumes a huge amount of heavy diesel
oil depending on the berthing hours and ship’s power requirement that emits hazardous
gases and degrades air quality. Hence, ships’ electrification alternative comes to the scene
to reduce the air pollution during berthing by using cold ironing technology. Cold ironing
is an emission-free technology that prevents vessels from continuously burning fossil fuels
by supplying onboard electric power directly from the onshore grid [13]. The auxiliary
engine is turned off (cold process), but the ship can continue to operate normally since the
switchboard draws the power from the shore side (ironing). There are three types of cold
ironing topologies: (1) centralized cold ironing, (2) distributed cold ironing, and (3) DC
distribution cold ironing [14]. According to D. Colarossi and P. Principi [15], the size of the
ship power plant varies with the type of the ship, with a typical distributed power system
of 400 V. On the shore side, ships are generally connected with a medium voltage (MV) of
6.6 kV/11 kV. In order to step down or step up to the desired voltage level, transformers
play a vital role in the system. Nevertheless, there are some obstacles in terms of frequency
where most of the ports use 60 Hz, whereas Europe and Asia’s ports use 50 Hz [13]. When
the frequency on the shore side and the frequency on the ship do not match, a frequency
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converter is required. Figure 1 illustrates a typical cold ironing connection from the shore
side to the shipside.

 

Figure 1. Typical cold ironing system from shore side to the seaside.

One of the challenges for port operation is the uncertainty in power demand, where the
volume of traffic of berthing ships can suddenly change. Another scenario is the docking
of large ships with heavy loads at the same time where the load demand might be larger
than the available supply. Energy security to ensure the reliable port operation will be in
low efficiency if cold ironing solely depends on the grid supply. These challenges are main
motivations of this paper for investigating seaport microgrids with cold ironing facilities.

The emerging concept of the microgrid into the cold ironing is beneficial for the
maritime industry. Collaboration between these two electrification technologies provides
seaports with several advantages including resiliency, emission control, and economics.
Cold ironing can cause power disturbances if the continuous high demand from the ships
during berthing overtakes the supply capacity that cold ironing can provide. In the case
of power breakdown, many of the port operations will be affected, leading to losses
of billions of dollars. In this case, local distributed energy from the seaport microgrid
is capable to offer the required energy in time of stress [16], thereby increasing energy
security and resiliency. In addition, seaport microgrids can achieve high levels of port
electrification by embracing cold ironing technology which the grid is unable to support.
In terms of emission control, cold ironing itself eliminates a portion of emission by shutting
down the conventional auxiliary engines while docking [17]. Seaport microgrids result in
more pollution reduction by providing zero-carbon power from renewable energy sources.
Moreover, seaport microgrids are economically efficient to reduce ports’ operation costs,
decrease peak-hour demand, and have the potential to sell back energy to the grid in case
of having excess power. The contribution of this paper is three-fold:

• First, this paper attempts to integrate two of the most noteworthy maritime electri-
fication technologies (cold ironing and microgrid) to enhance the sustainability of
seaports energy systems. Although the microgrid concept is widely used in land-based
applications, this technology remains scarce for the seaport sector.

• Second, this paper presents an optimal design for the seaport microgrid with the least
cost providing a comparative study between three models.

• Third, in response to the three major concerns of the seaport sector, an optimal config-
uration for a seaport microgrid is provided with an analysis of economic feasibility,
energy reliability, and environmental impacts. This analysis aims to investigate how
integrating the microgrid concept into seaport applications may resolve the above-
mentioned maritime issues.

The remainder of this paper is structured as follows. In Section 2, a review of the design
optimization and sizing approaches for microgrids is provided. The methodology used for
the design of the seaport microgrid, design parameters, and optimizer are introduced in
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Section 3. Afterwards, the outcome from the proposed design is discussed and analyzed in
Section 4. Finally, in Section 5, all significant findings of the paper are summarized.

2. Sizing

The optimal design and operation of microgrids have recently been the subject of
extensive research. This is supported by an increasing trend of publications and research
findings in this area. Ports are critical to the global economy, accounting for a big percentage
of global trade and transportation. As a result, ports are preoccupied with providing
labor for processing and handling goods, as well as other port-related services. Today’s
aggressive development in seaport trading necessitates an efficient power system capable
of covering ports’ electricity needs. Here, comes the concept of hybrid microgrid systems,
in which the power generation is a mix of available clean energy sources with or without
grid connection. The process to plan and develop this power system at seaports involves
preliminary actions such as modeling, data collection, load and generation forecasting,
initial simulation, evaluation, and performance assessment.

Sizing is a vital task to identify the optimal system configuration and the right capacity
of the components to fulfill the load demand. Moreover, optimization is required to ensure
that the system operates at high efficiency to maximize economic benefits while minimizing
energy consumptions and environmental footprint. The study of microgrid systems in
harbor areas by A. Roy et al. [18] emphasizes the importance of knowing the load demands
and several evaluation criteria such as economic, pollution, and reliability, as well as
geographical information to determine the sizing of the microgrid.

However, energy demands in seaports are highly dynamic and uncertain due to a
variety of unpredictable factors such as the port’s daily routine, activity handling, and
environmental variables (weather conditions, temperature, and sea waves). Accordingly,
there are sudden uncertain high loads that affect the stability of the system [19]. Considering
this situation, ensuring the availability of power supply is significant to prevent disturbance
in the maritime power system. P.Xie et al. [20] identify three common objectives and seven
constraints of the seaport sector, which are summarized in Table 1. Based on the selected
objectives and constraints, an optimization algorithm is developed and simulated to find
the optimal design.

Table 1. Common objectives and constraints used in the port optimization problems.

Objectives Constraints

� Fuel consumption minimization.
� Environmental footprint reduction.
� Economic investment minimization.

� Power and energy balance.
� Restraints for power quality.
� Restraints of power plants.
� Restraints of ESSs.
� Environmental constraints.
� Ship voyage constraints.
� Constraints for the auxiliary system.

For this purpose, both the computational resources and the required data related to
the system are significant in the modeling phase. However, there are real-time data limita-
tions, especially in the port sector. To overcome this challenge, computational simulation
is a useful method to formulate and evaluate the microgrid performance before being
implemented in real applications. The HOMER optimizer is one of the most widely used
techniques in microgrid designs, which allows a flexible power system design with an
integrated weather database for the RESs components. Table 2 presents an overview of
the conducted studies on microgrid system designs using HOMER software in different
sectors. Design objectives, system configuration, investigated sensitivity cases, site location,
and the related sector are identified for each study.
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Table 2. Summary of the Microgrid case study using HOMER optimizer. (Abbreviation: Photovoltaic (PV)).

References Sector Objectives Configuration
Sensitivity
Analysis

Case Study
Location

[21]
2018

Residential
Cottages

- Cost and emission
minimization

- Nonderivative
optimization

A standalone MG including PV,
diesel generator, ac load,

lead-acid battery, li-ion battery,
and power converter

- Fuel price
- PV generation

Kea,
Greece

[22]
2020 General

- Optimizing the size of
the MG components

A grid-connected MG
including wind turbine, PV,

battery, load, and
power converter

N/A
Bahir Dar

City,
Ethiophia

[23]
2016

City,
general

- Optimal sizing
- Optimal management of

RESs and storage systems
to fulfill the load
demands and reduce the
dependency on
fossil fuels

A standalone MG including
wind turbine, PV, microturbine,

battery, and fuel cell
N/A Nain, Iran

[24]
2016

ATM
machine

- Feasibility analysis of
solar- wind-diesel hybrid
power system with
maximum utilization of
non-conventional
generation systems while
minimizing the total
system cost

A standalone MG including PV,
wind turbine, diesel generator,
power converter, battery, and

ac load

N/A Vatar,
Kolhapur

[25]
2011 Forest

- Analyzing real-time
dynamic data

A standalone MG including PV,
wind turbine, hydro, diesel
generator, power converter,

battery, ac load, and fuel cell

- Renewable
resources

- Hourly load data
- PV array lifetime

Kondapalli,
India

[26]
2020

Rural area
(residential)

- Developing a microgrid,
to explore the effect of
certain problems such as
power price, grid failure
frequency, and grid mean
repair time and studying
its effects on cost (total
operating cost, total
capital cost, net present
cost), electricity
production, and
unmet load

A grid connected MG
including PV and battery

- Grid failure
frequency

- Grid mean repair
time

South Africa

[27]
2020

Agricultural
Load

(residential
and water
pumping)

- Investigating the
feasibility of the hybrid
system

A standalone MG including
battery, PV, diesel generator, ac
load, water pumping load, and

power converter

- Variations in PV
cost

- Diesel fuel price
- Maximum annual

capacity
shortages
(MACS)

Ein Albaida,
Palestine

[28]
2017 Remote area

- To study two sizing
methods for a standalone
hybrid generation system
using basic equations and
Simulink Design
Optimization (SDO) and
HOMER optimizer

A standalone MG including
Hydrokinetic, PV, diesel

generator, battery, and ac load
N/A Isla Santay

(Guayaquil)

[29]
2018 Seaport - Energy planning

A grid-connected MG
including PV, wind, battery, ac

load, and power converter
N/A Copenhagen,

Denmark

[30]
2021

Domestic
load

- Minimizing the
system cost

A standalone MG Biomass, PV,
wind, battery, dual power

converter, electrical load, and
dumb load

N/A Yanbu, Saudi
Arabia
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This paper develops a simulation-based method to determine the best configuration
and overall sizing for a hybrid generation system in a seaport microgrid by utilizing the
HOMER optimizer. The flow of the proposed methodology from the MG structure design,
parameter selection, simulation, and sensitivity analysis are given in the following sections.

3. Optimization Framework

3.1. Structure of the Proposed Seaport Microgrid

In the proposed seaport microgrid design approach, RESs and ship demand during
berthing are considered. The Port of Aalborg has been selected as a case study, which is
located approximately at latitude 57◦3.0′ N and longitude 10◦3.2′ E, where energy sources
mainly come from the utility grid, diesel generators, wind turbines (WTs), and PV systems.
The Port of Aalborg handles a wide variety of goods and services such as container, cargo,
railway, road, cruise, ships, and custom warehouse. However, in the modeling process,
only the required power of ships during berthing is considered as it imposes a high energy
demand on the port.

This paper aims to find the optimal seaport microgrid configuration and the optimal
size of each component with the goal of cost minimization. Moreover, identifying the
lowest net present cost (NPC) for the candidate architecture is a vital step in the seaport
microgrid planning process. For instance, the payback period is very important for the
investment by stakeholders as the energy consumption would be free during the rest of
the project’s lifetime. From the environmental perspective, RESs in microgrids provide the
solution to the natural resources depletion issue and offer a green port landscape. Figure 2
illustrates the overview of the seaport microgrid configuration. The schematic design
shows that the proposed system in this paper is connected with the main grid and consists
of PV, WT, and a diesel generator, lithium-ion battery as a storage solution to complement
RESs, a power converter between AC/DC busbars, and ships as electrical loads.

 

Figure 2. Overview and schematic diagram of the proposed system.

3.2. Load Profile

In the Port of Aalborg, ships are among the big energy consumers. Conventionally,
when a ship is at berth, the auxiliary engines are turned on to support some basic functions
and auxiliary loads in the ship that need electrical power. However, burning fuel by
diesel generators harms the environment. Nowadays, with the green maritime goals of the
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shipping industry to reduce ship emission, cold ironing that also known as the onshore
power supply (OPS) has come to the scene [31]. This technology allows ships to shut down
their engines while berthed and plug into a power source at the shoreside [15]. In this
way, ships have an adequate power supply to cover the onboard energy demand such as
emergency equipment, cooling, heating, lighting, and refrigeration without the need to
burn diesel fuels.

The load profile of ships during berthing varies according to three factors including
time of berthing, the number of ships berthing per time, and the required power by a
particular ship. There are different times of berthing for each ship and various numbers of
ships berthing at the port from time to time. N. Ahamad et al. [32] summarize the average
time of berthing and typical power requirement for different types of vessels, as listed
in Table 3.

Table 3. Average berthing time and average power requirement for various types of vessels.

Type of Ships Average Time Berthing (hrs) Average Power

Chemical and other tankers 24–28 5 MW–6 MW
Bulk carrier 52 N/A
Container 21 1 MW–4 MW

General cargo 25 300 kW–6 MW
Ferries and RoRo 24 700 kW

Cruise 28 7 MW

The load profile used in the simulation in this study is shown in Figure 3. Peak
hours are observed to be between 6 a.m. to 7 p.m. and the load slowly reduces afterward.
According to this load profile, the average energy consumption is 23,977 kWh/day, which
indicates that the average power per hour is 999.07 kW with a peak value of 2734.2 kW.
Even though the power consumed by ships at the port depends on a few factors mentioned
above during different periods and seasons of the year, it can be generally assumed that
the peak load occurs during the afternoon as fewer ships are berthing between 8.00 p.m.
and 5.00 a.m.

 

Figure 3. Hourly load profile in one day.

3.3. Meteorological Data
3.3.1. Solar Radiation and Temperature

All the meteorological data used in this simulation such as solar global horizontal
irradiance (GHI) data, wind resources, and temperature information are from the NASA
Prediction of Worldwide Energy Resources (POWER) database. The extracted data are
related to the site location specified by the port coordination so that the approximation
of the WT and PV output power produced in the simulation will be more accurate. The
bar chart in Figure 4 shows that the highest daily radiation readings occur in May, June,
and August. It is because Denmark is in the midst of its summer season at the time. Most
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of the days are sunny with a longer daylight period. Meanwhile, in other seasons, sun
irradiation is low because it is cloudy and rainy most of the days. The irradiance ranges from
0.35 kWh/m2/day to 6.06 kWh/m2/day with an annual average of 3.02 kWh/m2/day.
The orange line indicates that the maximum and the minimum clearness indexes are 0.55
and 0.338, respectively.

 

Figure 4. Solar GHI resources in one year.

The bar chart in Figure 5 displays the readings of the monthly average air temperature
for this location. The range of temperature is between 0.94 ◦C and 16.66 ◦C with an annual
average of 8.36 ◦C. The warmest months are June, July, August, and September, with
an average temperature of 14.11 ◦C, 16.66 ◦C, 16.66 ◦C, and 13.44 ◦C, respectively. The
temperature begins to fall sharply at the end of autumn and reaches its lowest point in
February (0.94 ◦C).

 

Figure 5. Average monthly temperature data of the target site in one year.

A. Haidar et al. [33] in their article highlighted that the generated power from PV
modules is directly related to solar irradiance, temperature, the capacity of PV array, and its
derating factor. This can be explained by Equation (1) that is used to determine the optimal
capacity of the solar PV at time t.

Ppv(t) = Pra
pv(t)× fpv ×

(
I
Ie

)
× [1 + Tc (CT − CTc)] (1)

where Pra
pv(t) is the PV array rated capacity (kW), fpv is derating factor, I is irradiance

incident on PV plate (kW/m2), Ie is irradiance at the standard test condition (kW/m2), Tc is
temperature coefficient, CT is cell temperature, and CTc is cell temperature at the standard
test condition.

3.3.2. Wind Resources

The power generation of WTs relies heavily on weather conditions such as wind speed
and wind direction [34]. A common linear mathematical model for wind energy generation
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estimation used to find the dynamical power curve of WTs output power is defined in
Equation (2) [35]:

Pw(v) =

⎧⎪⎪⎨⎪⎪⎩
0,
Pr
Pr,
0,

· v − vin
vr − vin

,

0 ≤ v ≥ vin
vin ≤ v ≥ vr
vr ≤ v ≥ vout

v ≥ vout

(2)

where Pw(v) is the power output of the WT at wind speed v, Pr is the WT rated power, vr is
the rated wind speed, vin is cut-in wind speed, and vout is cut-out wind speed.

Figure 6 illustrates the monthly average wind speed at the height of 50 m above the
surface of the earth over one year period. The annual average wind speed is 8.17 (m/s),
with the highest value of 9.62 (m/s) in January and the lowest value of 6.81 (m/s) in July.
Due to the wind speed variation with height, it is plotted on a logarithmic scale. As can be
seen in this figure, the wind speed increases with height because there are fewer obstacles
and turbulence.

 

Figure 6. Wind speed profile of the target site in one year.

3.4. HOMER Optimizer
3.4.1. Schematic and Design Parameters of the Proposed Seaport Microgrid

Hybrid Optimization of Multiple Energy Resources (HOMER) is a simulation-based
software used to optimize any integrated system by finding the right size of the equipment
and the best possible system configuration while minimizing the net present cost (NPC). It
stimulates the designed electric power system hour by hour for a year in the specific region
considering the available energy resources present at the target location. For each time step,
HOMER searches for many different configurations that satisfy the technical constraints
at the lowest life cycle cost to meet the electrical load. Users can simulate their proposed
power system and HOMER delivers the optimal candidate design.

Furthermore, it can perform sensitivity analysis to examine the impact of uncontrol-
lable variables to see how they may affect the designed system costs. These variables
include the price of fuel, which is always volatile, the price of components, lifetime data,
efficiency, and other parameters that their change in the future is not known. Sensitivity
analysis is critical for understanding the design’s robustness. It enables users to be aware
of how changing the input parameters affects the system architecture and cost.
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Based on the proposed system in Section 3.1, the required components are added to
the software. The schematic diagram of the system is shown in Figure 2. All the technical
parameters and economic features are either from the software database or real data from
commercial datasheets. Replacement cost is assumed to be 5–10% less than the capital cost.

3.4.2. Optimization Algorithm

HOMER has two optimization algorithms, which are: (1) the derivative-free algorithm
and (2) the search algorithm. During the design process, the user may encounter a problem
with determining the appropriate sizing or capacity for components that are compatible
with the system. For the derivative-free algorithm, the software will automatically choose
the appropriate sizing aiming for the least system cost. On the other hand, the search
algorithm will simulate every possible system configuration by the quantity defined in
the search space. The input value of the ‘search space’ varies depending on the peak load
measurement. The selected size has a portion that is at the upper or lower end of the search
space. It then specifies the best realizable system configuration capable of meeting the
electric demand and finalizes it into a few categories. Table 4 shows the type of optimization
option used for each of the components in this simulation.

Table 4. Optimization option used to determine the size for each component in the proposed design.

Component HOMER Optimizer Search Space

Diesel generator � -

Wind turbine - 5, 10, 15, 20, 25

PV - 250, 500, 1000, 1500, 2000,
2500, 3000, 3500

Battery � -

Converter - 0~2880

The evaluation indices that are used in the software are net present cost (NPC), lev-
elized cost of energy (COE), operating cost, and renewable fraction. The NPC or the
life-cycle cost of a component is the present value of all the costs of establishing and operat-
ing every component in a system over the project lifetime, minus the present value of all
the revenues that are earned over the project lifetime as shown in (3).

CNPC = CP − CR (3)

where CP and CR are the present values of all costs and revenues earned over the project
lifetime, respectively.

Costs calculated in the algorithm include capital costs, replacement costs, O&M costs,
fuel costs, emissions penalties, and the costs of buying power from the grid. Meanwhile,
salvage value and grid sales income are included in the revenue. Overall, NPC is the
HOMER’s main economic output which is used to rank all system configurations in the
optimization results and is the basis from which the total annualized cost and the levelized
cost of energy (COE) are calculated as follows:

COE =
Cann,tot − Cboiler Hserved

Eserved
(4)

where Cann,tot is the total annualized cost of the system [USD/yr], Cboiler is the boiler
marginal cost [USD/kWh], Hserved and Eserved are the total thermal and electrical loads
served [kWh/yr], respectively. Meanwhile, to calculate the operating cost of the system,
Equation (5) is utilized.

Coperating = Cann,tot − Cann,capital (5)
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where Cann,capital is the total annualized capital cost [USD/yr]. To have an efficient system,
it is highly recommended to include the RESs in the architecture. The renewable fraction
used in the software refers to the percentage of the energy supplied to the loads that come
from RESs. It can be calculated using the following equation:

fren = 1 − Enonren − Hnonren

Eserved − Hserved
(6)

where Enonren is nonrenewable electrical production [kWh/yr], Hnonren is nonrenewable
thermal production [kWh/yr].

3.4.3. Mathematical Formulation of the Objective Function and Constraint

The objective of the optimization problem is to minimize the operation cost, as follows:
Objective function:

min(Ctotal) = ∑ PgridCgrid + PgenCgen + PWTCWT + PPVCPV + PbatCbat + PconCcon (7)

where the cost of each components includes capital cost, operation, maintenance, replace-
ment, and fuel costs as given below:

Celement = ∑ Ccapital + CO&M + Creplacement + Cfuel (8)

The objective function is subject to the power balance constraint between generation
and demand and also the percentage of renewable energy.

Constraints:
Pgrid + Pgen + PWT + PPV + Pbat + Pcon ≥ Pload (9)

PWT + PPV ≥ 60% (10)

3.5. Energy Management System (EMS) in the Design Phase

The complexity of multiple power resources coordination, varying electrical loads,
fluctuation in economic variables, and assessing the environmental impact require the use
of an EMS in both design and planning phases. EMS focuses on the use and coordination
of energy sources over a specific time frame and is often combined with future forecasting
and projection systems [20]. It is strongly related to both energy efficiency as well as cost
savings. However, different functionalities and requirements can be defined for the EMS
depending on the situation and the microgrid application.

In this design, three key concerns that are taken into account are the minimization
of fuel consumption, environmental impact, and economic investment. The big question
is what kind of system configuration and sizing specification should be considered. To
satisfy this, RESs and storage elements are included in the design process. PVs and WTs
in the schematic diagram represent the RESs; meanwhile, battery represents the storage
component. The use of RESs will help to sustain the energy supply and its environmentally
friendly characteristic will protect the environment from harmful emissions. Since the
energy sources are from nature (sun and wind), RESs also provide the microgrids with a
cost-effective power generation solution. Furthermore, any excess energy generated by
RESs can be sold back to the grid bringing further economic benefits.

Utilization of the battery as an ESS is beneficial for both having an energy backup
during critical periods (energy shortage and peak hours) and storing the excess energy
when energy generation is abundant. RESs such as PV and WT have some limitations for
power production. PVs are only able to generate power during the day, depending on
solar radiation and temperature. PV power output is also reduced on cloudy and rainy
days. The same situation exists for the WTs, where wind speed varies depending on the
site location and seasonal wind patterns. ESS is a vital component to store excess energy
from both solar and wind sources when they have high power generation and supply the
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loads during periods of low energy availability, such as peak hours and power shortage
intervals. Figure 7 illustrates how EMS plays part in the seaport microgrid system.

 
Figure 7. Energy Management System (EMS) in seaport microgrid.

4. Optimal Sizing of Seaport Microgrid

In this section, three different models, namely, Model 1, Model 2, and Model 3, are
investigated for the optimal hybrid seaport microgrid, where Model 1 is the proposed
system, Model 2 is the best system recommended by HOMER, and Model 3 is a conventional
system without a battery and RESs. Table 5 shows the detailed comparison between
optimization results for Model 1, Model 2, and Model 3. All models are simulated during
the 25-year lifetime of the project.

Table 5. Optimization results (All the data are retrieved from Homer Pro, accessed on 5 May 2021.
Abbreviations: net present cost (NPC), levelized cost of energy (COE), renewable energy source (RES),
Operation and Maintenance (O&M)).

Parameter Proposed System
(Model 1)

Optimal System
(Model 2)

Conventional
System

(Model 3)

Architecture

Configuration Grid/Generator/PV/
WT/Converter/Battery Grid/PV/WT/Converter Grid/Generator

Difference - -no battery
-no diesel generator

-no RESs
-no battery

PV (kW) 250 250 -
PV-MPPT (kW) 500 500 -
Wind turbine 25 25 -

Generator (kW) 3100 - 2800
Battery 1 - -

Grid (kW) 999,999 999,999 999,999
Converter (kW) 90 90 -

96



Energies 2022, 15, 431

Table 5. Cont.

Cost

NPC (USD) 5,920,870 4,718,247 26,981,960
COE (USD) 0.0309 0.0246 0.2385

Operating cost
(USD/yr) −42,392 −14,748 1,978,877

Initial capital (USD) 6.47 M 4.91 M 1.4 M

System
RES frac (%) 85.2 85.2 -

Total fuel (L/yr) 0 0 0

PV
Capital cost (USD) 300,000 300,000 -

Production
(kWh/yr) 315,315 315,315 -

Wind turbine

Capital cost (USD) 4,500,000 4,500,000 -
Production
(kWh/yr) 12,435,239 12,435,239 -

O&M 125,000 125,000 -

Battery

Autonomy (h) 0.0801 - -
Annual throughput

(kWh/yr) 320 - -

Nominal capacity
(kWh) 100 - -

Usable Nominal
Capacity (kWh) 80 - -

Converter

Rectifier Mean
Output (kW) 0.0385 0 -

Inverter Mean
Output (kW) 24.4 24.3 -

Grid

Energy purchased
(kWh) 2,189,430 2,189,312 8,751,839

Energy sold (kWh) 6,085,820 6,085,762 -

Emission

Carbon Dioxides
(kg/yr) 1,383,720 1,383,645 5,531,162

Sulfur Dioxide
(kg/yr) 5999 5999 23,980

Nitrogen Oxides
(kg/yr) 2934 2934 11,727

Optimization results from the proposed design indicate that the best architecture for
the target hybrid seaport microgrid is the grid/PV/WT/power converter configuration
(Model 2) with the optimally sized components featuring the lowest NPC. The best system
is selected based on the lowest value of NPC, which is USD 4,718,247 for Model 2, USD
5,920,870 for Model 1, and USD 26,981,960 for Model 3. The significant change that can be
seen from Model 2 compared with the proposed system concerns its components where it
has no diesel generator and battery.

Conventionally, without microgrid technology, the seaport sector relied only on the
supply of electricity from the main grid and diesel generators to run their daily operation.
According to Table 5, this architecture (Model 3) has the lowest initial capital cost, which
is USD 1.4M, as the system does not need to invest in any other component such as RESs,
ESSs, and power converters. Unfortunately, the system has the highest NPC value with
USD 26M. The conventional system is highly dependent on the raw material of the power
resources such as coal and diesel that produce very high greenhouse gas emissions. In
terms of emission, this system produces 5,531,162 kg/yr of CO2, 23,980 kg/yr of SO2, and
11,727 kg/yr of NOx. Meanwhile, the hybrid microgrid system with optimal sizing in
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Model 2 offers a big amount of emission reduction with a total reduction of 82.51% in CO2,
74.98% in SO2, and 74.98% in NOx compared with the conventional model. Significant
emission reduction in Model 2 gives a positive impact to the environment toward achieving
the green port goal. Besides producing hazardous pollutants, the conventional system
also faces the problem of fossil resource depletion [36,37]. That explains, the reason why
microgrid technology utilization is important for the seaport sector. The advantage of
hybrid RESs and ESSs from microgrids will increase energy efficiency and provide sus-
tainable energy while offering a long-term cost-effective solution for port electrification
and decarbonization. This is supported by the significant amount of emission reduction in
Model 1 and Model 2 that will certainly result in a better port environment.

According to the simulation results, the best architecture for the seaport microgrid
in this project which is Model 2 consists of a 250 kW-PV, 25 100 kW-WTs, and a 90 kW-
converter with a connection to the main grid. This microgrid requires 40,665 kWh/day and
has a peak power demand of 2734 kW. The amount of excess electricity is 93,388 kWh/yr.
Figure 8 shows the graph of energy production from both the utility grid and RESs that
serve the electrical load. According to this figure, a big share of the produced power is
related to RESs where 12,435,239 kWh/year is produced by the WTs, 315,315 kWh/year
from PV, and only 2,189,312 kWh energy is purchased from the main grid. This indicates a
RES fraction of 85.3%, whereas 14.7% of the power is from the main grid. The total energy
production from PV, WT, and the main grid is equal to 14,939,866 kWh, from which 59% is
used to supply the required power of the electrical loads (ships) and the remaining 41% of
excess energy is sold back to the main grid. The amount of sold energy is 6,085,762 kWh,
which is much higher than the energy purchased from the grid. In terms of emission,
1,383,645 kg/yr of CO2, 5999 kg/yr of SO2, and 2934 kg/yr of NOx are produced. The
opportunity to gain extra money from selling back the energy to the main grid and reduce
emissions compared with the conventional model is due to the deployment of RESs in
the microgrid. Elimination of diesel generator and ESS in this model compared with the
proposed system is due to the fact that power generation from RESs is more than enough to
supply the current load. Thus, energy from the diesel generator and battery is not necessary
in this case. Moreover, including a battery will increase the capital cost.

 
Figure 8. Energy generation and load consumption of Model 2.
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Figure 9 shows both the PV and WTs power generation in Model 2 for a one-year
duration. From the 85.3% of renewable energy fraction, 2.11% is from solar PV SM500
whereas the remaining 83.2% comes from Norv22 WT. The amount of energy produced
by RESs and its reliability depend on the site location and the available natural resources.
In this case study, Denmark as a seasonal country experiences high irradiation during the
warm months (May, June, and July) due to the sunny climate and long hours of daylight.
In those particular months, the output from the PV system is be higher compared with the
power produced in other months with a high chance of having cloudy and rainy days. This
limitation explains the reason for the small contribution of the PV system.

 

Figure 9. Solar and Wind generation of Model 2.

In the meantime, Denmark is a rich country in terms of wind resources as this country
has relatively average wind speeds of 4.9–5.6 m/s measured at a height of 10 m. Denmark
has vast offshore and onshore wind resources, as well as large swaths of sea territory with
shallow water depths of 5–15 m, ideal for sitting WTs. Higher wind speeds, in the range of
7.08–9.62 m/s at 50 m height, are also available at these locations. There have been no big
issues from wind variability.

A sensitivity analysis has been performed to evaluate the impact of the electricity price on
the optimal system design. Four values of 0.20 USD/kWh, 0.4 USD/kWh, 0.6 USD/kWh, and
0.8 USD/kWh were evaluated. Table 6 summarizes the results obtained for various electricity
rates loaded into the software. There is an increasing value of the NPC as the electricity rate
increase. This is due to the growing share of the RES fraction and the requirement for more
battery units to store the access energy from renewable sources. This makes sense considering
that the optimizer is attempting to reduce the expenditure in electricity cost, hence increasing
the utilization of power from RESs. In addition, as the RES fraction increases, a significant
amount of emission is also reduced for CO2, SO2, and NOx gases.

Table 6. Sensitivity analysis of electricity price (all the data are retrieved from Homer Pro, accessed
on 18 October 2021).

Electricity
Price

(USD/kWh)

Battery
(Unit)

NPC
USD

RES
Fraction

%

Emissions Production

CO2

kg/yr
SO2

kg/yr
NOx

kg/yr

0.2 - 4.72 M 85.2 1,383,645 5999 2934

0.4 38 8.71 M 91.8 746,512 3236 1583

0.6 51 10.8 M 92.9 641,640 2782 1360

0.8 128 11.4 M 97.1 251,339 1090 533
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5. Conclusions

This paper provided an optimal architecture for a seaport microgrid to support cold
ironing services at ports. The design goal was to minimize the net present cost by opti-
mizing the size of the components. A comparative discussion between a conventional
seaport power system (grid/diesel generator) and two other hybrid designs of seaport
microgrids was provided highlighting their difference in terms of cost, energy production,
and emissions. The conclusion was that a grid/PV/wind/converter configuration with a
250 kW-PV, 25,100 kW-WTs, and a 90 kW converter with an NPC of USD 4,718,247 is the
best seaport microgrid design to serve the given ship’s load at the target port. More than
80% of electricity was generated from RESs, whereas only 14.7% of energy was purchased
from the main grid. The proposed seaport microgrid was also able to sell a considerable
amount of energy back to the main grid. In terms of emissions, the optimal design could
offer a significant reduction in CO2, SO2, and NOx emissions, with a total reduction of
82.51%, 74.98%, and 74.98%, respectively. Emission reduction and cost-effectiveness of
the optimal design of the seaport microgrid results in a promising solution for electrifi-
cation of the future seaports following green maritime goals and the sustainable energy
systems paradigm.
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Abstract: In an effort to improve the stability and secure operation of the grid, regulatory bodies are
opening Ancillary Services Markets participation to Distributed Energy Resources (DERs), energy
storage systems, and demand response. Within this framework, this study proposes a model that
simulates the coordinated operation of an aggregate of power plants, including non-dispatchable
DERs and, as regulating units, Combined Heat and Power (CHP) generation and electrochemical
energy storage systems. A Monte Carlo procedure is adopted to realistically create a population of
aggregation scenarios. The real-time operation of the DER portfolio is managed through a Heuristic
Greedy-Indexing logic, which allows the Aggregator to select the optimal control action to implement
according to the technical and economic quantities characterizing the market and the grid. The
techno-economic performance of the proposed algorithm is evaluated by simulating its interaction
with the electricity markets. Finally, a sensitivity analysis is performed to analyze the profitability in
different scenarios. The novel mathematical model proposed showed to be effective in managing
a complex problem like the one at hand with an acceptable computational effort. The numerical
results obtained confirmed that the aggregated participation in the market could provide interesting
economic returns, especially if a CHP unit is involved as regulating unit, while the feasibility of the
batteries adoption is still limited by the actual cost of the technology.

Keywords: aggregator; ancillary services; distributed resources; enabled virtual unit; energy storage
systems; heuristic greedy-indexing; Monte Carlo; virtual power plant

1. Introduction

The formidable growth of Distributed Energy Resources (DERs) in the last decades was
both a boon and a major challenge for the safe and economical dispatch of electric power
systems. Larger adoption of DER raises concerns regarding the reliability of transmission
and distribution systems, which must improve their flexibility to face the issues introduced
by the variability and unpredictability of renewable energy sources [1]. Designs aimed
to improve the fitness of the electricity markets for a high DER penetration have been
thoroughly researched in recent years, with a focus on two matters:

1. Counteracting the problem of number and small size of involved power plants, which
causes DERs to be often unmanageable and “invisible” to the Transmission System
Operator (TSO), by aggregating them into bigger market entities, able to deliver
electricity with dispatchable and controllable production schedules.

2. Reducing the costs arising on the Ancillary Services Market (ASM) for the collection of
the regulation services required to ensure to the power system an adequate degree of
reliability (operation performed, for example, by relaxing the restrictions on technical
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requirements to get access to the market, with the purpose to involve new subjects,
e.g., DERs) [2].

In this framework, in Italy, Resolution 300/2017/R/eel [3] started a pilot regulation,
consisting of a reformation of the dispatching discipline in place, aimed to enable the
participation of DERs in the ASM, in an aggregated form and on a voluntary basis, for
the provision of balancing services to the power system. This new entity, named Enabled
Virtual Unit (EVU), can include small power plants, storage systems, controllable loads,
and electric vehicles, managed and coordinated by an Aggregator (commonly known also
as Balance Service Provider).

DER aggregation has been proven to yield several improvements to grid operation
and market performance: not only does it help to hedge against the risks of imbalance fees
within the Day-Ahead Market (DAM) by the sheer effect of technological diversification
(initially the first driver for market aggregates), but it also provides better controllability
of small scale generators [4], increased visibility [5], and allows the participation in the
ASM by increasing their flexibility when coupled to controllable units (e.g., combined
heat and power, storage systems and demand response) [6]. As far as previous studies
addressing the operation and optimization of DERs aggregates are concerned, the use of
Stochastic Linear Programming to model the uncertainties associated with power output
and market prices is very common [7]. These studies focus on bidding decisions [8,9], as
well as on power control [7,10] and minimization of imbalances [11]. Non-Linear Program-
ming strategies are employed to determine bidding strategies for dispersed generation,
storage, and demand response participating in an aggregated form in energy and secondary
reserve markets in [12], while the optimal sizing of DER for minimization of operational
costs is studied in [13,14].

However, these methods require large computational effort to reach an optimal so-
lution, with high modeling complexity; heuristic or meta-heuristic methods, on the other
hand, are easier to implement and can give more feasible results for real-time operation.
An example of these techniques is seen in [15], where hill-climbing algorithms are used
to evaluate the optimal dispatch of a virtual power plant, or in [16], where a large fleet of
electric vehicles is aggregated and managed by a centralized heuristic scheduler to provide
Ancillary Services (ASs) to the power system.

According to the issues at hand, the problem of DER aggregation for ASM participation
is tackled in this work through a Heuristic Greedy-Indexing model (similar to the one
proposed in [17] to evaluate the e-vehicles charging dispatch), which defines, by means
of a centralized architecture, the optimal control actions to be performed by a Combined
Heat and Power (CHP) unit and an Energy Storage System (ESS) to make programmable
an aggregate of Non-Dispatchable Renewable Energy Sources (NDRES) and provide ASs
(secondary and replacement reserve services) to the power system. In the literature, greedy
algorithms are widely used when computation time is crucial, but the solutions do not
have to be optimal [18]. In the study, uncertainties related to NDRES production are
reproduced through a Monte Carlo procedure, generating stochastically a suitable number
of aggregation scenarios in which the performance of the Heuristic Greedy-Indexing model
is assessed. Technical and economic analyses are developed in compliance with the features
of the Italian power system and electricity market. The purposes of this work are: (i) to
evaluate the effectiveness of the coordination strategy proposed based on the Heuristic
Greedy-Indexing; (ii) to evaluate the business opportunities and technical challenges that
arise from the participation of a DER portfolio in the ASM; (iii) to determine the most
profitable and effective configuration for the aggregate and the best regulating units size.

In the following of the present work, in Section 2, the framework of the model is set up
and the algorithms and approaches developed are presented. In Section 3, the case study taken
as reference is described. Results are then assessed and commented in Section 4, and a sensi-
tivity analysis is performed in Section 5. Finally, some conclusions are drawn in Section 6.
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2. The Proposed Approach

The proposed architecture, based on a Heuristic Greedy-Indexing approach [19],
controls the real-time EVU operation, making the aggregate of units dispatchable and
enabling the provision of Secondary Reserve and Replacement Reserve services (hereinafter
SR and RR). Different EVU scenarios are created through a Monte Carlo procedure, which
defines the number, technology, and size of the NDRES plants involved. The configuration
of choice for the aggregate comprises PhotoVoltaic (PV) plants, Wind Turbines (WTs), and
run-of-river Hydro Power (HP) generators. Then, CHP generators and ESS are introduced
in the EVU as regulating units, providing the system with imbalance correction, as well
as with reserve capabilities that can be offered on the ASM. The model runs through the
simulation period (up to one year), determining in advance, with the information available,
the market commitments, based on historical market data and the operational constraints of
the power plant. Real-time decisions enacted by the Heuristic Greedy-Indexing algorithm
are based both on the technical characteristics of the generation (such as their production
unpredictability, available flexibility, and ramp limits) and on economic figures (fuel cost
and market prices). The overarching logic that governs the model is presented in Figure 1.

Figure 1. Flowchart of the simulation procedure adopted in the study.
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2.1. Enabled Virtual Unit Portfolio Definition

The EVU configuration, for each Monte Carlo run, is chosen through a sequence of
random selections that define the technology and size of each NDRES unit i within the
aggregate: first, the technology j (j ∈ PV, WT, HP) is picked from a stepwise distribution
with weights wtech,j, then a power class is selected from wpower,j and the nominal power
PnomDG,i of the considered unit i is randomly drawn within that class. This process is
repeated until the cumulative power of the current EVU scenario (∑

i
PnomDG,i) reaches a

fixed total nominal power (PtotEVU).
As already mentioned, once having defined each EVU configuration (Monte Carlo

scenario) as a set of NDRES power plants, a regulating unit is introduced in the aggregate.
In the study, ESSs and CHP plants are considered for this purpose. ESSs are assumed to be
totally devoted to respecting the market commitments (imbalance correction, secondary
and replacement reserve regulations). This assumption is made by taking as reference the
scenario in which an Aggregator, managing an NDRES portfolio, decides to adopt an ESS
to make the portfolio programmable enough to enable its market participation. The ESS
size, in terms of both rated power and energy capacity, respectively PnomESS and EnomESS, is
set as a parameter of the simulation. To avoid economic penalties, the ESS must guarantee
the provision of the service requested on the market, which in the worst situation could
last even several hours (for example, according to the prescriptions in place in Italy for
the secondary frequency control, a power equal to the full band offered could be required
for 2 h). Therefore, to allow the exchange of power for the time needed, ESSs with an
energy/power ratio of some hours must be adopted for this application. For this reason,
electrochemical ESSs are considered in this study.

Concerning the CHP unit, on the other hand, it is assumed aimed to follow the elec-
tricity demand (hereinafter pind) of the industry it serves. Therefore, the Aggregator, to
supply ASs to the system, can only exploit the remaining CHP flexibility (Pf lexCHP): i.e., the
available up/downward power production margins determined with respect to the work-
ing point of the generator (i.e., power production required to cover at a given instant the
industrial load). In particular, starting from the production profile of the considered CHP
plant, the remaining up/downward flexibility is calculated considering the number of
engines in operation (n), and their technical limits (max/minimum power).

Each EVU scenario generated by the Monte Carlo procedure is then processed on
a given time frame (e.g., one year) through the model described in the following of the
work; timesteps of Δt = 15 min are adopted, coherently with the time resolution used in
the Italian ASM. In order to arrest the generation of new scenarios, a converge criterion
is applied based on the error evaluated on the estimates of the quantities of interest
(e.g., revenues, costs, imbalances, etc.): when the uncertainty relevant to the selected
quantities becomes lower than a given threshold (emin), the algorithm is stopped, and the
results are deemed satisfactory.

2.2. DAM Commitments and Schedule Forecasts

Due to the heuristic nature of the model, all decisions regarding the control actions
to be performed on the EVU by the Heuristic Greedy-Indexing logic must be taken with
the knowledge and information available at the time of closure of the relevant market
session. This is assumed, for the DAM, 12:00 of day D − 1 (where D is the day of dispatch).
Regarding the ASM, the market structures in the EU are very different, even if a general
trend is ongoing to reduce the distance to the delivery time of market gate closure [2]. For
example, in Italy, it has been recently set for some services one hour in advance. Despite
this, in the present study, for the sake of simplicity and to keep the approach as far as
possible general, a gate closure 4 h before the delivery time has been considered. For the
same reasons and the minor impact on the Aggregator operation, the commitments arising
from the intra-day market are neglected.

During the participation in the DAM, the EVU defines the binding schedule of the
commitments for the sale of the energy produced by the NDRES power plants. Indeed,
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the CHP and the ESS will not participate in the DAM, since they are assumed just de-
voted to, respectively, supply the relevant industrial load and provide flexibility on the
ASM to the Aggregator.

To forecast the NDRES production, a persistence model is adopted. This prediction
technique is based on the assumption that meteorological phenomena vary slowly enough
that the most likely outcome for the weather in day D + 1 is to be the same as D. A
simplistic forecasting approach has been purposefully used, being the development of
ad-hoc designed forecasting methods beyond the scope of the study. In real-life, the
Aggregator will be free to choose the preferred forecasting method and utilize, for instance,
data collected from weather forecast providers. In this case, the forecasting error committed
will be lower, thus it will be easier for the EVU to follow the power schedule agreed on
the market. According to the persistence model technique, the NDRES production profile
used in the DAM (Pexpected) is computed considering the actual power profile measured
(Pmeasured) the day before:

Pexpected(t) = Pmeasured(t − d·24 h) (1)

Therefore, the schedule of commitments for the electricity offered on the DAM
(Pexpected) is obtained by time-shifting the available production data forward by 1 day
or 2 days (d), for hours respectively before and after noon time. On the other hand, the up-
dated prediction used in the ASM bidding process (Pupdt) is entirely based on the previous
day’s data, as described in the next section.

2.3. Reserve Bidding

Bids for the ASM are defined through the available flexibility of CHP and ESS, in both
up/downward directions, suitably adjusted to take into account the imbalance correction
with respect to the forecast (updated at the time of ASM sessions) and the deviation of the
ESS State of Charge (SoC). Indeed, the formulation of bids on the ASM exploits the EVU
flexibility, taking into account also the requirements of:

• minimizing the imbalances with respect to the DAM schedule, defined in Equation (1);
• maintaining at a predetermined reference value the battery SoC (EsetESS), assumed

equal to 50% of ESS rated capacity.

In the Italian market framework, both the bids for SR and RR must include a quantity-
price pair, and—if accepted—they are remunerated on a pay-as-bid basis. To compute the
most adequate bidding price to be used by the Aggregator on the ASM, in this work, a
point estimate based on historical price data is implemented. The same approach is also
used to determine, in advance, the most convenient service to bid (RR or SR).

The bidding price for service X (X ∈ {SR; RR}), calculated for both for upward and
downward reserve (respectively, eX,up and eX,dn), is determined considering the mean value
of the nav-day historical price data from the same market session:

eX,up(t) =
Kpup
nav

∑D−1
d=D−1−nav

pX,up,d(t)

eX,dn(t) =
Kpdn
nav

∑D−1
d=D−1−nav

pX,dn,d(t)
(2)

In Equation (2), Kpup and Kpdn are parametric coefficients that modulate the ag-
gressiveness of bid prices as a compromise between earnings and likelihood of accep-
tance (the greater the value of coefficients, the greater the aggressiveness of bid prices),
whilst pX,up,d/pX,dn,d are the historical price data from the market session of day d for
up/downward reserve.

Once price estimations are calculated, the capacity available for the reserve should be
assessed considering: (i) the energy required to bring storage to the set level, (ii) the CHP
flexibility, and (iii) the requirement to reduce the imbalance (i.e., the gap between the actual
power profile and the power schedule offered on the DAM).
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Firstly, the SoC of the ESS is verified, to determine the amount of energy in excess or
deficit to reach the set level (EsetESS) in the next 4 h. The power required to bring the ESS to
the set level (PreqESS) can be calculated as:

PreqESS(t) = min
[

1
4
· (EsetESS − SoC(t))·ηESS, Plim,ch/dis(SoC)

]
(3)

where:

• SoC(t) is the State of Charge of the ESS at time t;
• Plim,ch/dis(SoC) is the charge/discharge technical limitation on power, calculated from

the ESS characteristic curve presented in Figure 2 [20];
• EsetESS is the ESS set level, assumed equal to half of its capacity to consider symmetric

up/downward regulating bands;
• Finally, the ESS round trip efficiency is defined as:

ηESS =

{
ηch ΔSoC > 0

1
ηdis

ΔSoC < 0 (4)

 
Figure 2. Maximum power exchangeable by the ESS, as a function of SoC.

Please note that, according to Equation (3), to allow the battery to charge or discharge to
a given power PreqESS, it is necessary that both the conditions about the technical limitation
on power and the current SoC are satisfied. Therefore, in practice, when the ESS is almost
fully charged or discharged, it will be able to absorb/release an amount of energy lower
than the one reported in the chart in Figure 2.

Secondly, the CHP flexibility (PCHP f lex) in both directions is assessed. To this purpose,
a real CHP power plant, having two internal combustion engines, is taken as a reference. As
already introduced, the power plant operates at the power needed to cover the industrial
load it serves pind(t). At time t, the number of combustion engines in operation is defined as
the lowest integer quantity n (0 ÷ 2), making true the inequality pind(t) ≤ ∑

n
(n · PnomCHP).

Consequently, the up/down flexibilities are defined, respectively, as PCHP f lex,up(t) = n ·
PnomCHP − pind(t) and PCHP f lex,dn(t) = pind(t)− n · PminCHP, where PnomCHP and PminCHP
is the maximum (nominal) and minimum admissible power of each combustion engine.

Finally, the expected error (Perr) between the DAM schedule (PDAM = Pexpected) and
updated forecasts available at the time of ASM bidding (Pupdt) is evaluated as:

Perr(t) = Pupdt(t)− PDAM(t) (5)

Therefore, Perr is an estimate of the expected imbalance, which the EVU will attempt
to fix later through the bid in the ASM.

From these quantities, the available band for up/downward regulation (PavEVUup/dn)
for each period (15 min) of the session can be calculated as:
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PavEVU,up(t) = PCHP f lex,up(t) + Perr(t)− PreqESS(t) ·
[
max

(
eRR,up(t), eSR,up(t)

)− pDAM(t) > cwear
]

PavEVU,dn(t) = PCHP f lex,dn(t)− Perr(t) + PreqESS(t) · [pDAM(t)− min(eRR,dn(t), eSR,dn(t)) > cwear]
(6)

In Equation (6), pDAM is the DAM clearing price, while eRR,up/dn and eSR,up/dn are
defined according to Equation (2). PreqESS is multiplied by a logic operator, in square
brackets, which models the economic profitability of the ESS employment for the ASM bid.
In particular, the logic operator is defined as inequality between the quantities:

• (
max

(
eRR,up, eSR,up

)− pDAM
)

and (pDAM − min(eRR,dn, eSR,dn)) are the expected net
earnings from up and downward regulation, respectively;

• cwear is the cost of wearing down the batteries, calculated as

cwear =
cinvESS

2 · ncycles,tot · DoD
(7)

where cinvESS

[
€

kWh

]
is the investment cost of the ESS, and ncycles,tot is the number of

expected cycles with a Depth of Discharge (DoD) equal to 80%.
Therefore, the logic condition is introduced in Equation (6) to enable the ESS regulation

only when the ASM estimated revenues at least cover the battery wear costs.
Note that Perr has been included in Equation (6) because if an imbalance is predicted

when the production forecast is updated, the best option is to take advantage of the expected
imbalance by offering the excess or deficit of production on the ASM as SR/RR reserve.

Given the available regulation bands (PavEVU,up(t) and PavEVU,dn(t)), in each time
interval, the most profitable service (i.e., RR or SR) shall be identified. If

(
eRR,up > eSR,up

)∨
(eRR,dn < eSR,dn), the supply of RR is more convenient than the SR one. Therefore, the
quantity quantities bid on the ASM are computed as:

bidRR,up(t) = min
(

PavEVU,up(t), qRR,up

)
bidRR,dn(t) = min

(
PavEVU,dn(t), qRR,dn

) (8)

where qRR,up/dn is the average amount of RR service acquired by the TSO in the previous
ASM sessions. The minimum value between the available regulating band and the histori-
cally requested service is offered on the market. With the purpose to maximize the revenues
from the ASM participation, the remaining regulating band is offered for the SR service:

bidSR,up(t) = Kqup ·
(

PavEVU,up(t)− PavRR,up(t)
)

bidSR,dn(t) = Kqdn · (PavEVU,dn(t)− PavRR,dn(t))
(9)

In Equation (9), Kpup/dn is a parameter that modulates the quantities committed
to SR, based on the accepted level of risk, since the SR control signal delivered by the
TSO (sSR,ctrl), which will modulate in real-time the amount of secondary frequency con-
trol requested to the EVU, often does not command the whole of the auctioned band
(i.e., typically sSR,ctrl < 1, so Kqup/dn can be >1).

In the opposite case, when SR is deemed more profitable than RR
(
eSR,up > eRR,up

) ∨
(eSR,dn < eRR,dn), the opposite approach is adopted: most of the available flexibility is
offered for the SR regulation and the remaining one for the RR service.

2.4. Market Commitment

After the definition of the flexibility offered on the market and the relevant bidding
prices, it is determined whether bids for reserve services are actually accepted, checking if
the price presented by the Aggregator for the X-th service (with X ∈ {SR; RR}) is more
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profitable than the other market players’ offers (i.e., eX,dn > pX,dn and eX,up < pX,up).
Accordingly, the accepted quantities (qaccX) are defined as:

qaccX,up(t) = min
(
bidX,up(t), qX,up(t)

)
qaccX,dn(t) = min(bidX,dn(t), qX,dn(t))

(10)

In Equation (10), qX,up and qX,dn are the quantities that, according to the historical data
available, have been accepted by the TSO in the ASM for the service X. Then, the amount
of AS offered by the EVU that can be accepted on the market has to be lower than, or equal
to, the quantity required in real-life by the system operator at that time. The regulation
needed by the TSO (energy measured in the quarter-hour Δt, EregSR,up/dn) is calculated
using Equation (11) for SR and Equation (12) for RR.

EregSR,up(t) = ∑
>0

sSR,ctrl(t)·qaccSR,up(t)· 1
60

EregSR,dn(t) = ∑
<0

sSR,ctrl(t)·qaccSR,dn(t)· 1
60

(11)

EregRR,up/dn(t) = ±qaccRR,up/dn(t)·14 (12)

where, as already mentioned, sSR,ctrl is the SR control signal (1 min. resolution) sent by the
TSO to the EVU to modulate the real-time regulation. This quantity has been determined
by using the actual control signal delivered by the Italian TSO to power plants on the
European continental power system [21]. Whereas for RR regulation, following the Italian
market rules, the quantity of service that the EVU is requested to provide is considered
equal to the accepted one.

Therefore, the final commitment toward the market, resulting from the combination
of DAM and ASM, is calculated as:

Esold(t) = EDAM(t) + EregSR,up(t) + EregSR,dn(t) + EregRR,up(t) + EregRR,dn(t) (13)

and the real-time regulation (Ereg(t)) required to the EVU to fulfill the market obligation is:

Ereg(t) = Esold(t)− Eprod(t) = Esold(t)−∑
i

Pi(t)/4

Ereg,up(t) = Esold(t)− Eprod(t) sr > 0
Ereg,dn(t) = Eprod(t)− Esold(t) sr < 0

(14)

In Equations (13) and (14), EDAM is the energy exchanged on the DAM resulting
from the power forecast performed the day-ahead (Pexpected), Eprod is the sum of the en-
ergy produced in the current timestep by all RES power plants of the EVU, sr is the
sign of Ereg, and Ereg,up and Ereg,dn is the energy required respectively for upward and
downward regulation.

Once the commitments to the market for SR and RR services are defined, the control
actions requested in real-time to regulating units have to be defined. To this purpose, as
explained in the following section, the scheduling logic evaluates, by means of the proposed
Heuristic Greedy-Indexing, the costs and benefits of each corrective action that could be
taken to supply the ASs and to extinguish imbalances. To quantify the contribution to
the AS provision admissible for each regulating unit, the relevant operative limits must
also be considered.

2.5. Real-Time Operation

The final step in the logic is the decision on the regulation to be performed in real-time,
which is performed as shown in Figure 3. At time t, the algorithm receives in input the
current state of the EVU and performs proper evaluations on the costs and earnings related
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to the regulating options considered admissible. Then, a list of feasible options is defined,
sorted in order of increasing cost, among which the most cost-efficient one is selected. In
particular, four possible actions are considered, aiming, when possible, to eliminate the
imbalance and respecting the power schedule offered in the DAM and ASM:

1. exploiting the CHP flexibility;
2. activating the ESS;
3. reducing the energy generated by the RES (i.e., energy curtailment);
4. maintaining the residual imbalance.

Figure 3. Real-time regulation—Greedy-Indexing Heuristic.

To choose the proper regulating action to be undertaken, the costs of the following
options are considered:

1. Costs (earnings) deriving from the regulation performed through the ESS (cESS);
2. Costs (earnings) deriving from the regulation performed through the CHP (cCHP);
3. Cost of NDRES curtailment (ccurt);
4. Costs of residual imbalance (cimb).

It is relevant pointing out that, as is obvious, the EVU will earn from the provisions
of the AS to the power system but, since all the possible regulations performed by the
Aggregator are feasible to provide the services sold, all control actions are expected to
bring the same profit. Therefore, to carry out the selection of the optimal action to be
implemented, the algorithm evaluates the costs relevant to each one rather than the net
earnings. In the following, the procedure adopted for the evaluation of costs and availability
of each action is reported.
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2.5.1. Cost and Availability of ESS Regulation

In order to evaluate the cost of intervention of the ESS (cESS), different aspects need to
be taken into account. First of all, due to the large investment cost associated with the ESS,
and the comparatively low number of cycles that batteries can withstand [22], the batteries
wearing has to be considered. To this purpose, the penalty factor cwear is used, as defined
in Equation (7), evaluated as investment cost for a unit of ESS capacity spread out on the
ESS lifetime (expected number of charge/discharge cycles).

Moreover, the decision on the regulation of the ESS at the present time depends also
on the price of the services expected in the following hours, because a control action
performed at time t determines a deviation of the battery’s SoC from the reference value,
which needs to be adjusted in the future (otherwise, the ESS would tend to saturate to the
max/minimum SoC).

Therefore, the cost assigned by the real-time logic to the ESS regulation (cESS) is
evaluated as:

cESS(t) = [cASM · sr(t) + cwear] · ηESS (15)

where cASM is the average cost associated with the requirement of restoring the battery
SoC during the next ASM sessions, evaluated by a point estimate method similar to the
one in Equation (2), cwear are the ESS wearing costs, and ηESS is the efficiency of the storage
depending on the direction of the power flow. In particular, ηESS = ηch if sr > 0 and
ηESS = 1/ηdis if sr < 0 (i.e., the regulation requires the battery to discharge).

After the evaluation of the cost of ESS regulation (cESS), it is necessary to quantify
the availability of down/upward regulation (EavESS). To this purpose, both the amount of
energy stored in the batteries and their charge/discharge power limits (Plim,ch/dis) must be
taken into account. In particular, at time step t, the energy available for the regulation is:

EavESS,up(t) = min
(

SoC(t)
ηdis

, Plim,dis·Δt
)

sr > 0
EavESS,dn(t) = min((EnomESS − SoC(t))·ηch, Plim,ch·Δt) sr < 0

(16)

where Plim,ch and Plim,dis are, respectively, the charge and discharge power limits of the ESS,
shown in Figure 2.

2.5.2. Cost and Availability of CHP Regulation

The cost of the regulation performed through the CHP power plant is mostly depen-
dent on the savings/losses related to the reduction/increase of fuel required to power
the internal combustion engines. As a consequence, it can be calculated as cCHP = c f · sr,
where sr = sign

(
Ereg

)
and c f is the fuel cost, meaning that if an upward control action is

required (Ereg > 0), this will entail burning more fuel; vice versa, in case of a downward
regulation, the fuel saving will allow for a reduction in the working costs of the genera-
tor. The availability of CHP regulation is evaluated according to its flexibility, defined in
Section 2.3. Therefore, in a quarter-hour, the energy that can be exchanged for the regulation
is EavCHP,up/dn(t) = PCHP f lex,up/dn(t)/4.

2.5.3. Cost and Availability of NDRES Curtailment

A further option to consider for providing downward regulation is the possibility
to curtail NDRES production. The cost of the curtailment (ccurt) is set equal to 0 €/kWh,
assuming that NDRES power plants can reduce the power injected into the grid without
additional costs with respect to the investment costs covered for the power plant realization
and without an increase of the expenses compared to the standard operation. At time slot
Δt, the energy available to be curtailed can not exceed the total energy produced by the
NDRES units (Eprod).

Please consider that, usually, this option is less convenient than performing the same
regulation by the ESS or CHP, since in both cases a downward regulation usually brings to
savings: in the former case (ESS), earnings are given by the energy stored in the battery
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that can be used to supply ASs in the next timesteps; in the latter one (CHP), they are given
instead by a reduction in the fuel costs.

2.5.4. Cost of Residual Imbalance

If the EVU flexibility is not enough to fulfill the system operator’s dispatching orders,
an energy imbalance occurs. To evaluate the costs that the Aggregator must cover in this
case, a dual pricing mechanism is applied [23]: therefore, the imbalance cost depends on the
sign and amplitude of the error (respectively sr and Eimb), but also on the zonal imbalance
sign sz, that is the direction of the overall imbalance in the market zone where the EVU is
located. If sz is opposite to the imbalance registered by the EVU (sr · sz < 0), the energy gap
is not penalized, since such an error actually helps the system stability; thus, the unitary
imbalance cost is set equal to the DAM price (cimb = sr · pDAM). In case of concordant signs,
the imbalance caused by the EVU is detrimental for the grid, hence it shall be penalized:

cimb(t) = max
(

pDAM(t), pmaxASM,up
)

sr > 0
cimb(t) = −min(pDAM(t), pminASM,dn) sr < 0

(17)

where pmaxASM,up and pminASM,dn are the max/minimum prices for the up/downward
regulation, estimated considering the data of the previous market sessions. Since the sign
of the zonal imbalance is not known in real-time by the Aggregator (only the TSO has all
the information to evaluate it), a conservative approach is assumed to estimate cimb for the
real-time decisions performed by the Heuristic Greedy-Indexing, in particular by taking
the worst-case scenario (i.e., concordant signs sr · sz > 0).

2.5.5. Selection of the Best Control Action

Once technical and economic quantities associated with each control action are known,
a list of options, sorted in order of increasing cost, is produced by the Heuristic Greedy-
Indexing algorithm. The logic runs through all options in order, calculating Eex,k, up/dn,
that is the energy exchangeable through the k-th option (k ∈ {ESS, CHP, curtailment}) for
up/downward regulation:

Eex,k, up/dn(t) = min
(

Eav,k,up/dn(t), Ereg,up/dn(t)
)

(18)

After each regulation action, the residual regulation required Ereg,up/dn to fulfill the mar-
ket commitments is updated:Ereg,up/dn = Ereg,up/dn − Eex,k,up/dn, until either Ereg,up/dn = 0,
or the selected option is more expensive than keeping the imbalance (in this case Eimb = Ereg).

As the last step of the real-time regulation algorithm, the battery SoC is updated
(SoC(t + Δt) = SoC(t) − EexESS(t)/ηESS) and cash flows in the current timestep t are
calculated as:

CF(t) = EDAM(t) · pDAM(t) + EregSR,up(t) · eSR,up(t) + EregSR,dn(t) · eSR,dn(t) + EregRR,up(t) · eRR,up(t)
+EregRR,dn(t) · eRR,dn(t)− cCHP(t) · EexCHP(t)− CFimb (t)

(19)

In Equation (19), a pay-as-bid approach has been adopted to calculate the revenues
from the AS provision (i.e., EregX · eX,up) and cash flows related to imbalance are evaluated
as CFimb = sr|cimb||Eimb|.
3. Case Study

The proposed method runs through each timestep in the simulated period (one year),
defining the best control action to perform through the Heuristic Greedy-Indexing algo-
rithm. To achieve statistically significant outcomes, the proposed method has been tested
through the Monte Carlo procedure described in Section 2.1, which randomly generates a
population of different EVUs. In each scenario, the production of NDRES power plants
is modeled through weather data (solar radiation and wind speed, respectively for PV
and WT generation) from 135 stations scattered around Northern Italy. These profiles are
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suitably transformed to per-unit power and then fed to the Monte Carlo algorithm. The
technology and size of each power plant involved in the EVU are defined according to the
real distribution of NDRES in Italy (see Table 1) [24,25]. Rated power of DER units ranges
from Pmin = 100 kW to Pmax = 6 MW, assuming the latter as maximum rated power of
dispersed generation units that can be connected to medium voltage networks according to
the Italian regulation framework [26]. Regarding the CHP power plant usage, it has been
derived from the real power profile measured in 2016 on an industrial user in Northern
Italy, equipped with 2 × 1605 kW natural gas-powered generators.

Table 1. Distribution of technology (wtech ) and power (wpower ) classes.

Class
I

Class
II

Class
III

Class
IV

Class
V

Class
VI

Class
VII

Class
VIII

Class
IX

Class
X

Class
XI

Class
XII

Class
XIII

Class
XIV

Pclass_min
[kW]

100.0 134.0 179.5 240.5 322.1 431.6 578.2 774.6 1037.7 1390.3 1862.6 2495.3 3342.9 4478.6

Pclass_max
[kW]

134.0 179.5 240.5 322.1 431.6 578.2 774.6 1037.7 1390.3 1862.6 2495.3 3342.9 4478.6 6000.0

Photovoltaic 16.18% 10.47% 17.90% 5.78% 6.22% 8.19% 6.59% 24.21% 0.57% 0.91% 0.94% 0.86% 0.57% 0.63% 91.93%

Wind 2.87% 3.58% 48.03% 0.72% 0.36% 0.00% 2.51% 34.41% 0.36% 1.43% 1.43% 1.08% 2.51% 0.72% 1.50%

Hydroelectric 10.59% 6.65% 9.03% 10.34% 9.77% 10.76% 11.00% 8.78% 7.96% 4.93% 3.37% 2.96% 2.05% 1.81% 6.57%

The real prices and quantities registered on the Italian market in 2016 [27] are used
to determine the accepted average, maximum, and minimum prices and quantities for
each session of DAM and ASM. An example of the price trend in a given day is shown in
Figure 4, where maximum (Max), average (avg), minimum (min) prices for upward (Up)
and downward (Dn) Secondary (SR) and Replacement Reserve (RR) are shown.

Figure 4. Prices trend in the ASM for a day of example.

Zonal sign (required to determine imbalance settlements in the ex-post economic
analysis) and secondary regulation control signal—which modulates the regulation over
the bands accepted in the ASM—have been downloaded from the website of the Italian
TSO (Terna) [21].

The performance of the strategy proposed in optimizing the Aggregator’s revenue is
evaluated by simulating the EVU operation during the entire year, for a PtotEVU = 10 MW
sized configuration. Table 2 shows the technical characteristics adopted for the ESS, such as
the number of expected cycles (ncycles,tot), charge/discharge efficiency (ηch/dis) and relevant
investment costs (cinvESS), and the parameters that modulate the aggressiveness of bid
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prices (Kq,Kp). For what concerns the ESS and CHP sizing, their power is defined as a
percentage of the EVU total rated power. A detailed sensitivity analysis on these parameters
is provided in Section 5. For the batteries, an energy/power ratio equal to 4 is assumed.

Table 2. Simulation parameters.

heq 4 MWh/MW
ηch/dis 0.85
cinvESS 500 €/kWh

ncycles,tot 4000
Kq 1.2–1.4
Kp 0.95–1.05

About capital and operating expenditures, proper assumptions are needed, defined
in compliance with the scenario under investigation. Since the CHP plant is in charge of
supplying the relevant industrial load, and the Aggregator only uses its residual flexibility
for market participation, the investment cost for the power plant realization and the
fuel expenditure needed to cover the local consumption are considered in charge to the
industrial user. Hence, they are excluded from the economic analysis of the present work
(developed from the Aggregator’s perspective). However, the fuel costs/savings caused by
the AS provision are included in the economic evaluation. Concerning the ESS, it is assumed
entirely devoted to supplying AS to the power system (e.g., it is installed and managed by
the Aggregator), then the investment costs are included in the economic analysis.

4. Numerical Results

To assess the validity of the mathematical model developed, it is crucial to verify its
performance in providing the regulation required by the power system and the economic
viability of the investment made by the Aggregator. To this purpose, the Heuristic Greedy-
Indexing control logic is tested in the case study described in Section 3.

4.1. EVUs Generation

As a first step, a suitable number of EVU scenarios is generated to test the proposed
method. To this purpose, the Monte Carlo procedure is used to randomly create an
adequate number of EVU scenarios able to represent the typical NDRES distribution
in Italy. The random generation procedure is stopped when the uncertainty measured
on the quantities of interest (Q) compared to the expected value becomes lower than a
predefined threshold (emin).

eQ =
1

N · QN
·

√√√√√ N

∑
n=1

(Qn − E[Q])2 (20)

The following quantities (Q) are taken into account:

• total energy produced by NDRES power plants of the EVU over the year (EtotEVU);
• total imbalances (Eimb_tot) and average nonzero (t� = t : Eimb_tot 	= 0) imbalance to

grid Eimb_avg = mean(|Eimb(t�)|);
• average relative imbalance calculated with respect to the energy sold on the DAM

Eimb_rel = mean
( |Eimb(t�)|

EDAM(t�)

)
;

• total revenues in the considered period R = ∑
t

CF(t);

• total revenues in the ideal scenario Rid, i.e., assuming a perfect day-ahead forecasting
of EVU production.

According to the convergence criterion identified, the Monte Carlo procedure has been
stopped after the generation of 15 EVU scenarios, reaching an adequate trade-off between
the uncertainty of results and computational effort. In particular, for what concerns the
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former aspect, Table 3 presents the results in terms of expected values (E[Q]) and uncertainty
(eQ) for each quantity of interest. It is worth noting that 15 EVU scenarios allow keeping,
for almost all the quantities, eQ ≤ 3%.

Table 3. Results relevant to the base case scenario.

E[Q] eQ

EtotEVU [MWh/y] 13, 611 ±1.50%
Eimb_tot [MWh/y] 4341 ±0.69%
Eimb_avg [MWh/y] 129.67 ±0.33%

Eimb_rel [p.u.] 0.241 ±3.72%
R [€/y] 343, 496 ±2.49%

Rid [€/y] 486, 509 ±2.38%

The distribution of the NDRES power plants as a function of the relevant rated power
units, resulting from the Monte Carlo simulations, is shown in Figure 5, where continuous
lines represent the mean value evaluated over the whole simulated scenarios and bars
the max/minimum values. It is possible to observe that, despite the low probability of
occurrence, also some large power plants are selected in the EVU scenarios generation
process (the largest one is a PV plant of 4.9 MW). Even if the limited number of EVU
scenarios did not allow getting samples over the whole admissible range (since, as men-
tioned before, the maximum NDRES rated power according to the probability distributions
in Table 1 was equal to 6 MW), the NDRES plants actually selected are quite near to its
limits. Therefore, the numerical simulations performed are considered able to provide a
satisfactory representation of the situation in place in Italy. Figure 6 shows an example of
EVU production profile obtained in output to the Monte Carlo procedure.

Figure 5. Distribution of NDRES power plants in the EVU: overall generation (left) and number of
NDRES units (right) per category of plant’s rated size (200 kW).
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Figure 6. Example of EVU production profile.

4.2. Discussion on Test Results

To validate the model and compare the techno-economic results obtained in the
different possible EVU configurations, several setups of the aggregate under analysis are
considered:

• No Reg scenario: in this configuration, no regulation is performed by the Heuristic
Greedy-Indexing; this scenario is used as a benchmark to compare results.

• C scenario: only the CHP power plant (sized PnomCHP = 1605 kW × 2) is considered
as regulating unit in the EVU, providing imbalance relief, secondary and replacement
frequency reserve.

• C(RR) scenario: CHP regulation is limited to imbalance relief and replacement reserve.
• S scenario: ESS (sized 20% of EVU total rated power: 2 MW/8 MWh) is used to adjust

the EVU power profile and to supply ancillary services to the power system.
• S(RR) scenario: only energy imbalance correction and replacement reserve are pro-

vided through the ESS (20% of EVU’s rated power).
• C+S scenario: the regulation is supplied by both CHP and ESS units, each one sized

according to the above-mentioned criteria.
• C+S-half scenario: CHP and ESS are used, each one sized half than in the previous

scenarios (PnomCHP = 802.5 kW × 2 and PnomESS = 1 MW).
• C+S(RR) scenario: ESS regulation is limited to imbalance correction and replacement

reserve, while CHP also supplies secondary reserve.

Figure 7 shows, for the different EVU configurations listed before, the average value
of revenues R and costs C, categorized by source. The net average profit is plotted in red
with the relative Monte Carlo uncertainty, which is always ≤3% (maximum admitted value,
adopted as the threshold to arrest the Monte Carlo procedure for the scenario generation).
As a reference, the average revenue obtained in the No Reg configuration is shown in
dashed green. The bar diagram reports as positive values the average yearly revenues
from the energy sold on the DAM (RDAM) and from the supply of SR and RR services
on ASM (respectively RSR and RRR), as well as the imbalance costs avoided thanks to the
CHP/ESS regulation (Rerr,corr), and as negative ones the costs incurred by the Aggregator
due to energy imbalance (Cimb) and ESS wearing (Cwear).

In general, configurations with only the CHP as regulating unit, i.e., C and C(RR)
scenarios, show promising economical returns, as highlighted by the red continuous line in
the figure. The Heuristic Greedy-Indexing logic applied to a portfolio of NDRES power
plants and a CHP unit improves the EVU returns compared to the non-regulating case (No
Reg) by 27.93% in the case of both SR and RR services provision (C scenario), or even more
(32.71%), if only RR is offered (C(RR) scenario).
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Figure 7. Economic results of the proposed EVU configurations.

On the other hand, ASM participation and imbalance correction seem to provide
economic yields insufficient to justify investments in large electrochemical storages (S
configuration). This is mainly due to the current cost of the technology, despite its high
potential in terms of technical capability. In particular, the ESS wearing costs, compared
to the prices rewarded on the market for the AS provision, cause limited employment of
storage capacity. Regarding the scarce affordability of the ESS, it is worth noticing that in
perspective other remunerated services may be implemented through the batteries, such
that Uninterruptible Power Supply and Fast Reserve [28], which have been neglected in
this study. Their coordinated provision (service stacking) could further justify from an
economic point of view the adoption of electrochemical storage technologies for behind-
the-meter and front-of-the-meter services. The configuration with both CHP and batteries
undersized compared to the benchmark case (C+S-half scenario) shows promising results,
but it achieves marginally better results than the No Reg case.

Figure 8 displays the energy exchanges resulting from market commitments: positive
values represent an increase in the energy injected into the network (or a decrease in the
power absorption), vice versa for negative values. As a consequence of the modulating
effect of SR control signal (sSR,ctrl), the configurations in which only RR is considered
(e.g., C(RR) and C+S(RR) scenarios) show much larger energy quantities. In general, CHP
regulation is biased toward the downward direction, due to the available flexibility of the
power plant resulting from the working point to cover the local load.

Figure 9 provides an analysis about the use of the ESS, in the configurations in which
it is adopted: the average number of yearly cycles performed, with a DoD of 80% (ncycles),
is plotted in solid blue line against the number of hours per year in which the storage is
empty (SoC = 0) and the number of hours at which the storage is full (SoC = 1), drawn
respectively in orange solid and dotted lines. The corresponding Monte Carlo uncertainty
is also displayed with the two horizontal lines. The trends of these quantities provide a
useful figure to assess the proper sizing of ESS: high ncycles and a few hours of saturation
are index of a correct sizing of the storage system for the required operation. This is far
from being the case when only Replacement Reserve is offered (S(RR) scenario), since, for
the small average profit margins, the ESS usage is rarely justified.
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Figure 8. Enabled Virtual Unit’s market exchanges.

Figure 9. Usage of the ESS: charge/discharge cycles per year (ncycles), axis on the left, and hours/year
at a given SoC, on the right.

Table 4 reports more in detail the EVU market exchanges (Figure 7) and ESS usage
(Figure 8) with the statistical uncertainties over the different Monte Carlo scenarios related
to each quantity, assessed through the Equation (20). According to the approach explained
in Section 4.1, the Monte Carlo procedure adopted to define the EVU scenarios is designed
to keep the uncertainty affecting the quantities of interest (reported in Table 3) below
a predefined threshold (3%). Other quantities involved in the analysis could also be
affected by greater uncertainty, but this only happens for those having little impact on the
outcomes of interest of the simulation, i.e., very small compared to the others (as one can
observe in Table 4).
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Table 4. Detail of the EVU market exchanges and ESS usage, and related statistical uncertainties.

C C(RR) S S(RR) C+S C+S-Half C+S(RR)

ESR,up [MWh] 523.30 ± 0.14% - 649.88 ± 0.24% - 1078.26 ± 0.21% 836.02 ± 0.44% -

ESR,dn [MWh] −2354.39 ± 0.06% - −1090.71 ± 0.18% - −2728.71 ± 0.09% −2476.71 ± 0.43%

ERR,up [MWh] 29.11 ± 0.19% 1234.00 ± 0.16% 68.01 ± 0.50% 307.18 ± 0.96% 112.97 ± 0.49% 81.80 ± 0.62% 605.84 ± 0.70%

ERR,dn [MWh] −3.26 ± 0.02% −4057.72 ± 0.06% 0.00 ± 3.23% −1664.26 ± 0.20% −3.26 ± 0.02% −3.15 ± 0.57% −4574.25 ± 0.09%

Eimb,up [MWh] 58.09 ± 0.92% 172.26 ± 0.76% 42.89 ± 6.99% 55.84 ± 16.36% 34.33 ± 3.36% 47.90 ± 4.45% 63.39 ± 10.38%

Eimb,dn [MWh] −185.90 ± 0.77% −347.92 ± 1.76% −132.83 ± 4.26% −365.28 ± 4.22% −112.73 ± 1.04% −137.65 ± 1.11% −298.69 ± 1.38%

ncycles - - 176.25 ± 0.83% 52.68 ± 2.65% 201.49 ± 0.86% 253.93 ± 0.54% 59.19 ± 2.60%

h@SoC = 0% - - 3358.38 ± 1.51% 7316.98 ± 2.33% 2193.18 ± 2.01% 2302.77 ± 1.72% 5791.02 ± 2.70%

h@SoC = 100% - - 528.45 ± 3.35% 37.22 ± 13.38% 751.68 ± 2.73% 1232.78 ± 1.84% 52.44 ± 11.97%

5. Sensitivity Analysis

In this section, a sensitivity analysis is performed by parametrically changing the CHP
and ESS size, and the costs in charge to the Aggregator for their use. In particular, the
relationship between revenues of the EVU and size of the regulating unit is evaluated by
iteratively changing the CHP/ESS size (respectively, PnomCHP and PnomESS) from 500 kW
up to 4 MW (from 5 to 40% of the total rated power of the aggregate of NDRES units
considered in the study, equal to 10 MW).

The effect of different values of PnomCHP on yearly revenues R are reported in Figure 10.
An increase in CHP rated power results in an almost linear proportional improvement
of revenues (linear correlation coefficient equal to = 0.99). This fact occurs because the
investment costs of the CHP plant are assumed totally in charge to the industrial user
where the power plant is deployed. As already introduced, this hypothesis corresponds to
a scenario in which the power unit is installed by the user to supply the local load; therefore,
no investment cost is required to the Aggregator. However, to develop an economic analysis
sticking to reality, it should also be considered that, to exploit the CHP regulation in the
EVU, the Aggregator should acknowledge to the CHP owner a proper wage. The amount
of this remuneration is very hard to estimate, since it depends on both the Aggregator
and user’s business plans and strategies. Therefore, in this work, a parametric analysis
is provided to highlight its effects on the economic viability of the EVU. To this purpose,
assuming as a raw estimation of investment costs required for the realization of the CHP
unit 1000 k€/MW and a lifespan of the power plant of 20 years, a yearly depreciation
expense is evaluated (for example, for a CHP unit with rated power 2 MW, the yearly
depreciation is equal to 1000 k€

MW ·2 MW/20 y = 100 k€/y). Then, a percentage of that
amount (from 0 to 50%) is assumed in charge to the Aggregator. With the increase of the
share of investment costs applied to the Aggregator, as expected, the revenues of the EVU
reduce. As one can observe in Figure 10, the Aggregator can easily cover expenses up
to 30 ÷ 40% of the overall CHP investment costs. Over that threshold, revenues rapidly
decline with the increase of the CHP size. This fact is somewhat related to the hypotheses
adopted in the study: with the increasing of CHP size, investment costs are assumed to
increase proportionally (even if, in real-life, economies of scale cause the cost per unit of
power to decrease with the increasing of the power plant size), whilst revenues from ASM
participation growth less than proportionally.

Concerning the ESS, a similar approach has been adopted to set up the parametric
analysis, iteratively changing the system rated power (PnomESS) as a percentage of the EVU
nominal power (PnomEVU). In all cases, for the sake of simplicity, the energy/power ratio
has been kept equal to 4 h. Moreover, since with a cost of the technology of 500 €/kWh
batteries have shown not to be yet competitive compared to other more consolidated
solutions, the revenues of the Aggregator have been reported for different costs per unit of
energy capacity (from 100 to 500 €/kWh) [29].
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Figure 10. CHP power plant size and cost sensitivity analysis.

As shown in Figure 11, increasing the ESS size results in a general reduction of yearly
revenues of the Aggregator, because the investment costs tend to outweigh the benefits
of the regulation. In this regard, it is important to recall that the cost for the adoption
of the ESS has been supposed in this study totally in charge to the Aggregator, because
batteries are only used to supply ASs to be sold on the market and provide imbalance
correction. Therefore, with the increasing of ESS size, the expenses related to the wearing
and depreciation of batteries (supposed to be replaced in any case after 15 years) also grow,
making the investment rapidly unprofitable. In particular, in Figure 11, it is possible to
observe that, even if a cost of the technology ≤ 400 €/kWh yields a positive net result over
the case with no regulation, a significant reduction of the price of batteries (for example,
up to 100 €/kWh) is still required to make the adoption of large ESSs (e.g., 100 ÷ 200 kW)
interesting from the Aggregator’s perspective. Finally, even if the results of numerical
analyses seem to suggest that a very small ESS is the best opinion for the Aggregator, it
should be recalled again that in practice, as for the CHP power plant, the price of the ESS
per unit of power usually increases with the reduction of its size (for the effect, for example,
of fixed costs, such as of installation and connection to the network). Thus, even if the price
of electrochemical storage technologies is expected to drop significantly in the near future,
the lowest prices reported in the chart (100 ÷ 200 €/kWh) will be most probably a target
feasible only for large ESSs (hundreds or thousands kW/kWh).

Figure 11. Storage size and cost sensitivity analysis.

121



Energies 2022, 15, 1037

6. Conclusions

In this work, an approach based on a Heuristic Greedy-Indexing logic has been pro-
posed to make controllable a portfolio of DER power plants including, as regulating unit, a
CHP generator and an ESS. The purpose of the numerical methods developed is twofold.
On the one hand, the logic and approaches designed will enable in perspective an Aggre-
gator to participate in the Ancillary Service Market, opening to the possibility of making
profits by selling regulation services to the network and limiting possible penalties related
to power imbalances. On the other hand, the value of this work stands in the simulation
framework proposed, having modeled with a Monte Carlo procedure an aggregated of
NDRES power plants, coupled with a controllable unit, and the economic variables af-
fecting its operation. This allowed to simulate, in a comprehensive and realistic way, the
behavior of the portfolio of power plants managed by the Aggregator and to evaluate
under which conditions the participation in the ASM market can be economically viable.
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Nomenclature
Acronyms:
AS Ancillary Services
ASM Ancillary Services Market
C Costs
CF Cash Flow
CHP Combined Heat and Power
DAM Day-Ahead Market
DER Distributed Energy Resources
ESS Energy Storage System
EVU Enabled Virtual Unit
HP Hydro Power
NDRES Non-Dispatchable Renewable Energy Sources
PV PhotoVoltaic
R Revenues
RR Replacement Reserve
SoC State of Charge
SR Secondary Reserve
TSO Transmission System Operator
WT Wind Turbine
Parameters and Variables:
bidRR/SR Quantities bid in a RR/SR market session
cCHP/curt/ESS Cost of the regulation performed by the CHP/NDRES curtailment/ESS
cASM Average cost expected on future ASM sessions
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c f Fuel cost of the CHP generator
CF Total cash flow of the EVU
CFimb Cash flows related to imbalance
Cimb/cimb Cost of residual imbalance (total/per unit of energy)
cinvESS Investment cost per unit of power capacity of the ESS
Cwear/cwear Battery wearing cost (total/per unit of energy)
Δt Timestep of the simulation
Eav,k,up/dn Energy available by the k-th regulation action (up/downward regulation)
EavCHP/ESS,up/dn Energy available by the CHP/ESS unit for up/downward regulation
EDAM Energy sold on the DAM
EexCHP/ESS Energy exchanged by the CHP/ESS unit
Eex,k,up/dn Energy exchanged through the k-th regulation action (up/downward regulation)
Eimb Residual imbalance
Eimb_avg/rel/tot Residual imbalance (average/relative/total value)
emin Threshold of the Monte Carlo stopping criterion
EnomESS Nominal ESS capacity
Eprod Energy produced by the NDRES
Ereg,up/dn Total energy required to fulfill the market commitments

(up/downward regulation)
EregRR/SR,up/dn Energy required to fulfill the commitments for RR/SR service

(up/downward regulation)
eRR/SR,up/dn Bidding price of the RR/SR service (up/downward regulation)
EsetESS Set level for the ESS state of charge
ηch/dis ESS charge/discharge efficiency
ηESS ESS round trip efficiency
Kpup/dn Factor modulating bid price aggressiveness (up/downward regulation)
Kqup/dn Factor modulating the aggressiveness of the SR service offering process

(up/downward reserve)
ncycles,tot Number of expected storage cycles at DoD = 80%
PavEVU,up/dn Up/downward band available for the ASM bidding
PCHP f lex,up/dn CHP residual up/downward flexibility bands
PDAM DAM power schedule
pDAM DAM clearing price
Perr Error correction in bidding
Pexpected Power forecast used in the DAM
Pind Power absorbed by the industrial load supplied by the CHP generator
Plim,ch/dis Technical limit for charging/discharging power of the ESS
pmaxASM,up Maximum price accepted in the ASM for upward service
pminASM,dn Minimum price accepted in the ASM for downward service
PminCHP CHP minimum admissible power production
PnomCHP/DG/ESS Nominal power of the CHP/NDRES/ESS unit
PreqESS Power required to bring the ESS to the set level
PtotEVU Total rated power of the EVU
Pupdt Updated power forecast used in the ASM
pX,up/dn Historical AS prices for the X service
qaccRR/SR,up/dn Quantities accepted on the market for RR/SR service

(up/downward regulation)
qRR/SR,up/dn Average quantity accepted on the market for RR/SR service

(up/downward regulation)
RDAM Revenues from DAM
Rerr,corr Cost avoided for the imbalance correction
Rid Revenues relevant in the ideal scenario (perfect forecast)
RRR/SR Revenues from the provision of RR/SR service
sr Sign of Ereg
sSR,ctrl Secondary regulation control signal
sz Imbalance zonal sign
wpower Power statistical distribution of NDRES
wtech Technology statistical distribution of NDRES
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Abstract: Electricity theft is one of the challenging problems in smart grids. The power utilities
around the globe face huge economic loss due to ET. The traditional electricity theft detection (ETD)
models confront several challenges, such as highly imbalance distribution of electricity consumption
data, curse of dimensionality and inevitable effects of non-malicious factors. To cope with the
aforementioned concerns, this paper presents a novel ETD strategy for smart grids based on theft
attacks, long short-term memory (LSTM) and gated recurrent unit (GRU) called TLGRU. It includes
three subunits: (1) synthetic theft attacks based data balancing, (2) LSTM based feature extraction,
and (3) GRU based theft classification. GRU is used for drift identification. It stores and extracts
the long-term dependency in the power consumption data. It is beneficial for drift identification. In
this way, a minimum false positive rate (FPR) is obtained. Moreover, dropout regularization and
Adam optimizer are added in GRU for tackling overfitting and trapping model in the local minima,
respectively. The proposed TLGRU model uses the realistic EC profiles of the Chinese power utility
state grid corporation of China for analysis and to solve the ETD problem. From the simulation
results, it is exhibited that 1% FPR, 97.96% precision, 91.56% accuracy, and 91.68% area under curve
for ETD are obtained by the proposed model. The proposed model outperforms the existing models
in terms of ETD.

Keywords: theft attacks; long short term memory; gated recurrent unit; deep learning techniques;
machine learning techniques; electricity theft detection; smart grids

1. Introduction

From global perspective, the traditional metering system is still a commonly applied
system, especially in the residential sector [1]. However, the electrical meters used in the
traditional metering system, i.e., electromechanical meters, do not perform as accurately
as expected and their measurement ability is mostly affected by the waveform distortion,
operating temperature, and other factors. Moreover, this category of meters allows uni-
directional communication [2]. In addition, the consumed electricity measurement needs
manual reading by the electric utility personnel, in which there are many chances of mea-
surement errors. Furthermore, it should also be considered that manual meter readings
lead the utilities to incur high operational cost, which is in fact charged from the energy
users. Therefore, the advanced metering infrastructure [3] is introduced to overcome the
issues caused by the conventional metering systems.
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The electricity theft detection (ETD) is one of the major issues and a trending research
area in the current era. It lies in the category of non technical losses (NTLs). Generally,
NTLs along with technical losses (TLs) are the categories in which losses of electricity
are grouped [4]. Majorly, TLs occur in power system’s equipment owing their resistance
against the power flow. While NTLs arise because of the electricity theft in terms of meter
hacking, bypassing, or tampering. The theft of electricity leads to many dangerous issues
like huge economic loss, operational inefficiency in electric grids, public safety hazards,
etc. The economic loss arises due to the electricity theft that amounts around 100 million
Canadian dollars per year according to the British Columbia power and hydro authority [5].
In addition, the revenue loss incurred due to the NTL throughout the world is around
96 billion USD yearly [6]. Hence, it is very crucial to have an efficient and effective ETD
approach in the smart grids (SGs).

The detection approaches of the electricity theft used in the literature are grouped into
three main categories: the hardware based approaches, the classification based approaches,
and the game-theory based approaches. The ETD approaches based on the hardware
devices [7,8] employ different hardware equipment to obtain higher theft detection accuracy.
However, these techniques require high monetary cost for the installation and maintenance
of the hardware equipment. ETD is referred as a game, in game-theory based approaches,
between two players [9,10] where both players try to optimize their utility functions.
Furthermore, a zero-sum game is introduced among the power entities for achieving the
equilibrium state. These methods do not require extra payment. However, they are still not
a suitable and optimal remedy to minimize electricity theft because the formulation of a
suitable utility function in a real environment is a tiresome job in hand.

Several deep learning (DL) and machine learning (ML) based classification models are
developed in [5,6,11–16] for ETD and they use energy consumption data stored in smart
meters (SMs). Therefore, their costs are reasonable. However, there are some issues with
the existing DL and ML based classification models, which negatively affect the classifiers
in terms of false positive rate (FPR) and true positive rate (TPR). One crucial problem that
causes the DL and ML based classifiers to perform poorly in detecting the electricity theft
is imbalanced class problem. The imbalanced class or data imbalanced issue denotes that
the count of the data points related to the abnormal consumers is not equal to the count
of the normal consumers’ present in a dataset. The data related to the normal electricity
consumers is easily available in comparison with abnormal class data because the abnormal
data are gathered in a limited amount from the real environment. Hence, the problem of
data imbalance leads the DL and ML classifiers to be biased towards the majority class
(normal users) when performing classification, which results in high FPR. In addition,
another crucial issue that negatively affects the classification algorithms in terms of TPR,
FPR, and overfitting is the curse of dimensionality. It occurs while dealing with the data
of high dimensionality. In other words, the curse of dimensionality refers to a principle
in which the increment in number of features (dimensions) is directly proportional to the
increment in the classification error. Furthermore, another crucial issue that affects the ML
and DL classification algorithms negatively is ignoring the drift. It refers to the irregular
consumption of the electricity that occurs from non theft factors like changes in the number
of family members, seasonal changes, changes in electric appliances in terms of their type
or number, etc.

This paper presents the extended version of the work already published in [17]. This
work uses six theft attacks (TAs) to produce theft data samples for balancing the data. The
combined model having TAs, long short-term memory (LSTM) [18], and gated recurrent
unit (GRU) [19], termed as TLGRU, is proposed for efficient ETD. Moreover, the proposed
approach learns and pinpoints the real abnormal consumers instead of pinpointing the
drift as theft. In this way, it reduces the FPR. The research article comprises the following
major contributions.

• A TLGRU model is proposed for effective and reliable ETD in SGs. In the proposed
model, the synthetic TAs are implemented to generate theft samples in the dataset

128



Energies 2022, 15, 2778

acquired from state grid corporation of China (SGCC) for tackling imbalance problem.
Moreover, LSTM is employed to efficiently extract and maintain the vital characteristics
from the huge time series data, which handle curse of dimensionality problem.

• A powerful recurrent memory network, termed as GRU, is utilized to initially in-
vestigate the electricity consumption (EC) profiles of consumers and then tackle the
problem of drift accordingly.

• An efficient regularization technique, known as dropout, is integrated in the proposed
TLGRU model to avoid overfitting and increase the convergence speed.

The remaining sections of the article are arranged as discussed. Section 2 comprises the
study of the existing literature. While, the subject matter of Section 3 is the proposed system
model. The outcomes obtained after performing extensive simulations are elaborated in
Section 4. Finally, the concluding remarks are given in Section 5 .

2. Literature Review

Tuning the hyperparameters, data imbalance, ensuring privacy, and the dimensional-
ity curse problems are the four broad categories in which the existing literature is divided
and studied into four groups in this section. The research articles that deal with the hy-
perparameters’ tuning of the ML techniques are given in initial category. In [4–6,11–14],
those ML and DL techniques are under consideration that deal with efficient tuning of
hyperparameters. In [4], a stacked sparse denoising autoencoder (SSDAE) is proposed to
extract the most effective features to deal with the FPR and generalization issues. The low
value for FPR, high detection rate, high robustness, and important feature extraction are
achieved by introducing the noise and sparsity parameters into SSDAE. The hyperparame-
ters of SSDAE are tuned using particle swarm optimization algorithm. Moreover, the SGCC
hourly data are used for analysis in this work. Furthermore, in [5], to detect electricity
theft, a wide and deep convolutional neural network (WDCNN) is proposed. The theft
detection is performed by using both one dimensional and two dimensional data for model
training and model testing. The wide component is used to process the global features and
the deep component is utilized to find whether the periodicity exists between EC patterns
or not. Moreover, the behavior of the data are checked using a statistical technique, i.e.,
pearson correlation coefficient. The proposed classifier is validated using area under the
curve (AUC) and mean average precision (MAP).

However, manual hyperparameter tuning is done in the work, which reduces the
accuracy and efficiency of the classifier.

To ensure correct identification and detection of the theft patterns, a hybrid model of
two deep neural networks is proposed in [6]. The hybrid model comprises of multi layer
perceptron (MLP) and LSTM. LSTM is responsible for analyzing EC data while MLP deals
with the exogenous variables. Clearly, it is proved that the hybrid model outperforms the
benchmark models. However, the proposed hybrid model is prone to overfitting issue due
to the full connectivity of neurons. Furthermore, the class imbalance problem is not tackled,
which reduces the model’s generalization ability.

The adjustment of the hyperparameters’ values and the imbalanced data problem
are tackled by the studies conducted in [11–13]. The authors in [11] propose a consump-
tion pattern based ETD (CPBETD) model. The data imbalance problem is resolved by
generating a synthetic attacks’ dataset. In the model, low sampling rate of EC values is
considered to preserve customers’ privacy. Furthermore, a sustainable energy authority of
Ireland (SEAI) dataset is employed to check the performance of the model. The proposed
model is validated using FPR, DR, and bayesian detection rate (BDR) performance metrics.
However, the feature extraction step is not considered, which increases the computational
complexity. One of the main performance indicators, i.e., accuracy is ignored in this paper.
The authors in [12] utilize ensemble learning models for ETD. The ensemble ML mod-
els employed in the study are extreme gradient boosting (XGBoost), random forest (RF),
adaptive boosting (AdaBoost), light gradient boosting (LGB), extra trees, and categorical
boosting (CatBoost). The commission for energy regulation (CER) data are used for models’
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evaluation. The data preprocessing step is also performed for the TPR improvement. The
class imbalance problem is tackled using SMOTE. However, it requires high computational
cost for training and testing processes. Another issue with synthetic minority oversampling
technique (SMOTE) is that it lacks in capturing probability distribution curve from the
complex EC data, which degrades the generalization ability of the classifiers. Similarly,
the authors in [13] employ a variant of generative adversarial network (GAN) [20], named
as wasserstein GAN (WGAN), and K-nearest neighbor for balancing imbalanced data
and classifying data points that are near to support vector machine (SVM’s) hyperplane,
respectively. Moreover, a combined technique of supervised and unsupervised methods
is proposed, i.e., decision tree combined with the K-nearest neighbor SVM (DT-KSVM)
and WGAN techniques. In [14], the authors propose an XGBoost technique for detecting
anomalies present in the dataset of SMs. The hyperparameters’ values are adjusted using
a grid search method in this paper. However, the grid search method is computationally
expensive. Moreover, feature extraction is not efficiently performed in this work.

The second group of literature review focuses on imbalanced problem in SM data.
In [15,21–25], the data imbalance problem is resolved by the authors using several sampling
techniques. In [15], the authors tackle the data imbalance problem using a hybrid of k-
means SMOTE (K-SMOTE) technique while RF is used for theft classification. The proposed
model is evaluated and validated using the EC data obtained from Hebei province of China.
The authors in [21] propose a framework that consists of maximal overlap discrete wavelet
packet transform (MODWPT) and random undersampling boosting (RUSBoost) for feature
extraction and theft classification, respectively. The data imbalance problem is tackled
using a random undersampling (RUS) technique. The EC data of commercial and industrial
users from Honduras is employed for the evaluation of the framework. Further, the
proposed framework is validated using AUC, Matthews correlation coefficient (MCC),
accuracy, precision, recall, Fβ score, and specificity. However, some important information
is lost because of random removal of observations from the majority class using RUS.
This information loss results in a high FPR. In addition, the authors in [22] propose a
combined model of CNN and LSTM for detecting energy theft in SGs. Furthermore, the
class imbalance problem in the EC data is resolved using an oversampling technique,
known as SMOTE. Eventually, validation of the proposed model is performed using MCC,
recall, F1-score, accuracy, and precision. In addition, the EC data of Multan electric power
company (MEPCO) is considered for conducting simulations. However, SMOTE based
synthetic data generation leads to a class overlapping problem. Furthermore, in [23], the
authors propose a methodology based on ensemble bagged tree (EBT) for detecting the
fraudulent electricity consumers.

The research articles in the third group consider the electricity users’ privacy preser-
vation problem. The authors in [16,26–28] focus on dealing with the maintenance of the
consumers’ privacy. The study in [16] proposes a semi supervised auto encoder (SSAE) for
extracting significant features from the SM data of the industrial consumers. The proposed
SSAE model, for addressing the overfitting issue, makes use of the data that is unlabeled.
Along with that, an adversarial module is also used. The proposed model’s exceptional
performance with a small set of samples and preservation of consumers’ privacy are exhib-
ited through simulations. In addition, the research conducted in [26] proposes an efficient
ETD model. Privacy preservation is ensured using a functional encryption (FE) method
used by the SMs of the users to encrypt their readings. The issue of imbalance between
classes is tackled through adaptive synthetic (ADASYN) and by creating a malicious attack
dataset. Similarly, in [27], the authors propose a privacy preserving based ETD (PPETD) al-
gorithm. The generalized CNN (GCNN) classifier is employed for ETD using the encrypted
small-sized consumption slots data. However, it has high computational complexity due
to training of the excessive parameters of GCNN. Furthermore, in [28], a multiple linear
regression model (MLRM) is proposed for NTL detection in SGs. A significant benefit of
this method is that it detects electricity theft after performing comparison between the
data recorded by an SM and the collector (a sensing device attached with the SM) without
violating the customers’ privacy.
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The research articles in the final category deal with the curse of dimensionality issue
using different feature generation, feature selection, and feature extraction strategies. The
authors in [29] employ feature generation using mean, standard deviation, and minimum
and maximum values of features. They develop a gradient boosting theft detector (GBTD)
for electricity theft identification in SGs. A framework of practical feature engineering is
proposed in [30]. The framework is the combination of the finite mixture model (FMM)
based clustering for segmentation of the customers and genetic algorithm (GA) based
feature generation from one or more already available features to improve prediction
accuracy. A gradient boosting machine is used for classification. The model’s validation
is done using various performance measures. Furthermore, the authors in [31] focus
on the important features’ selection for pinpointing the anomalous consumers. They
practice binary black hole algorithm (BBHA), which is a metaheuristic technique, for
feature selection. The proposed algorithm is validated using accuracy and execution time
metrics, which are not sufficient for a fair evaluation. Moreover, many novel optimization
algorithms are developed that can be used for selecting the most suitable features in order
to achieve better performance as compared to BBHA in terms of accuracy and execution
time. In [32], a probabilistic technique is put forward for classifying patterns along with the
mathematical formulation on the levenberg-marquardt technique’s basis. Feature extraction
is performed using the encoding algorithm. However, the model input parameters’ tuning
is ignored, which becomes the reason for overfitting.

The summarized form of the available literature review is given in Table 1. Moreover,
the problems addressed from the aforementioned literature and motivation of this work
are finalized as follows.

Table 1. Literature review summary.

Methodology Objectives Dataset Performance Metrics Limitations

SSDAE [4] To tackle NTLs SGCC hourly data FPR, TPR and AUC Inadequate evaluation metrics

WDCNN [5]
To secure SGs by

detecting electricity
theft

SGCC daily data AUC and MAP Data imbalance issue

LSTM-MLP [6] To overcome NTLs Endesa
AUC, precision, recall

and
precision-recall-AUC

Data imbalance issue

CPBETD [11] To improve ETD
performance SEAI TPR, FPR and BDR

No feature extraction is
performed

RF, AdaBoost, XGBoost,
LGB, ensemble tree and

CatBoost [12]

To detect energy theft
in power grids CER Precision, AUC and

accuracy
Ensemble techniques are
computationally complex

DT-KSVM [13] To decrease power
losses SEAI AUC and accuracy Inadequate performance metrics

XGBoost [14] To enhance ETD
performance Endesa AUC, precision-recall

and execution time High computational time

RF [15] To detect NTL
behavior Hebei province AUC and accuracy No feature extraction is done
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Table 1. Cont.

Methodology Objectives Dataset Performance Metrics Limitations

SSAE [16]
To reduce NTLs by

employing
semi-supervised data

SGCC daily data
Accuracy, TPR, FPR,
precision, recall and

F1-score

Inappropriate hyperparameter
tuning

MODWPT, RUSBoost
[21] To reduce NTLs Honduras

F1-score, MCC,
precision, recall, AUC

and accuracy

Important information is lost
due to RUS

CNN-LSTM [22]
To detect abnormal

EC profiles of
consumers

SGCC daily data
F1-score., MCC,

precision, recall and
accuracy

Classes overlap due to SMOTE

EBT [23] To minimize NTLs MEPCO
Accuracy, sensitivity,
specificity, F1-score

and FPR

Curse of dimensionality problem
is not tackled

ETDFE [26]
To detect ET by

preserving
consumers’ privacy

CER
Highest difference
(HD), FPR, DR and

Accuracy

High computational complexity
due to improper hyperparameter

optimization

PPETD [27]
To perform ETD

while maintaining
consumers’ privacy

CER HD, DR and FPR Improper hyperparameter
tuning

MLRM [28] To overcome NTLs
Neighborhood
area network

dataset

Accuracy, sensitivity
and specificity

Curse of dimensionality problem
is not handled

The authors of [4] introduce SSDAE for ETD in SGs. The principal challenge they con-
sidered is high value of FPR because of the low generalization of classification techniques.
The CPBETD technique is presented in [11]. CPBETD uses the data of the electric users as
well as the transformer meters for ETD. The imbalanced data issue is handled by creating a
synthetic TA dataset. Finally, motivated from [4,11], we focused on anomalies’ prevention
and detection due to nonmalicious intermediaries (drift), curse of dimensionality, and
dealing with the data imbalance problem. The authors in [5,6] introduce new WDCNN [33]
and LSTM-MLP based techniques for electricity theft classification, respectively. However,
the unavoidable issue of data imbalance is not considered that leads to classifier’s biasness
with respect to the normal class that causes high FPR. In addition, the high value of the
FPR is neglected by these research articles. In addition, in the wide module of the WDCNN
model, only one layer, i.e., fully connected layer, is employed, which causes the model to
be trapped into the local optima. Furthermore, the authors in [11] present CPBETD for
efficient detection of NTL as previously metioned. Moreover, CPBETD obtained better
performance even with a low granularity of EC data, which assists to maintain consumers’
privacy. However, the curse of dimensionality issue is ignored, which leads to high FPR
and overfitting issues.

3. Proposed System Model

The model designed for the underlying work is made of two main units and some
subunits. The main units are (1) preprocessing unit and (2) theft classification unit. The
details of the units and their relevant subunits are given in the subsequent sections. Figure 1
exhibits the graphical view of the system model.
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Figure 1. Overview of the proposed ETD model.

3.1. Dataset Description

The data of energy consumption acquired from SGCC (which is both realistic and
easily accessible) is employed for the proposed model’s validation via different performance
metrics [5]. The SGCC possesses imbalanced EC data.

The total number of consumers’ data records is 42,372 of which 38,752 are the normal
users’ records and 3615 are theft consumers’ records. The sampling frequency of the dataset
is set to daily. In the dataset, the overall EC values are represented in terms of rows while
the EC value on a specific day is given in terms of a column. Furthermore, the data are
collected after conducting onsite inspections. So, it contains NaN values, outliers, and data
being dispersed on a huge scale. These abnormalities should be treated before proceeding
to the development of the ETD model. In this regard, to recover the missing values, mitigate
the outliers, and scale the data in a specific range, the preprocessing step is required, which
is discussed in detail in the next subsection. Before preprocessing, the total number of
consumers’ data is 42,372, whereas, after the preprocessing, 5 rows are dropped by the
simple imputer (SI) method because all the values in these rows are NaN values. In such
cases, the SI does not know what value is to be imputed. The imputer will impute some
values instead of deleting a record if it finds atleast one non-NaN value in the targeted
record. It is also important to note that SI method works column-wise, so you need to take
the transpose of your data before applying the imputer method. After imputation, again
take the transpose of the data to revert it to the original shape. Table 2 presents details of
the used dataset.
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Table 2. Dataset detail.

Dataset Description Values

Dataset acquisition intervals 2014–2016

Total abnormal users count before the data balancing 3615

Total benign users count before the data balancing 38,752

Total abnormal users count after the data balancing 21,183

Total benign users count after the data balancing 21,184

Total users count before the initial preprocessing of raw data 42,372

Total users count after the initial preprocessing of raw data 42,367

3.2. Preprocessing Unit

The data balancing, initial preprocessing and the feature extraction are the subunits of
the preprocessing unit. These subunits are elaborated below.

3.2.1. Initial Preprocessing of the Raw Data

The preprocessing of the raw data is very important as the performance of any model
is not only limited to the classification of electricity theft using ML models, but related
to the data quality as well. Generally, the consumption data stored by the electric meters
mostly has the missing values or the outliers. In our case, we considered the real EC data
from a Chinese dataset, i.e., SGCC [5], that also contains the outliers and the missing values.
The values exist because of various causes like the unreliable dispatch of the consumption
data, the faulty meters, the storage related problems, etc., [5]. We utilized an SI technique
for computing the mean of the consumption data present in the previous and the next cells
to deal with the missing data by. The SI working mechanism is taken from [34] and is given
in Equation (1).

f (xi,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi,s−1+xi,s+1
2 , xi,s ∈ NaN, xi,s−1,

xi,s+1 /∈ NaN

0, xi,s ∈ NaN, xi,s−1 or
xi,s+1 ∈ NaN,

xi,s, Otherwise,

(1)

where, i and s show a specific electricity customer and a time slot (day), respectively.
xi,s−1 and xi,s+1 denote the EC data of a consumer for the previous day and the next day,
respectively. Not a number (NaN) represents the missing values.

The availability of the outliers in the dataset negatively affects the classifier’s perfor-
mance and maximizes the FPR value. Hence, the outliers need to be removed from the
dataset. Therefore, we use the three-sigma rule (TSR) of thumb method to remove the
outliers from the dataset. The mathematical representation of TSR is taken from [5] and is
given in Equation (2).

f (xi,s) =

⎧⎨⎩
avg(X) + 2 · σ(X), xi,s > avg(X) + 2 · σ(X),

xi,s, Otherwise,
(2)

where, X shows a vector that is made of multiple xi,s values. The term avg(X) and σ(X)
represent the average and standard deviation of X, respectively.

As up to now, the NaN and outlier values are successfully dealt with, so now, the
dataset normalization is required because DL techniques are sensitive to the sparsed,
diversed, and unscaled data. Therefore, we use min-max data scaling method in order to
scale or normalize the data. The data scaling is performed using the Equation (3) [5].
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f (xi,s) =
xi,s − min(X)

max(X)− min(X)
(3)

where, min(X) and max(X) functions return the minimum and the maximum values of
vector X, respectively.

3.2.2. Data Balancing by TAs’ Implementation

The synthetic TAs are employed for balancing the data in the SGCC dataset. All the
six TAs are introduced in [11] while the updated and revised version of the attacks are
introduced in [29]. We select the updated TAs to create more practical and real abnormal
consumption patterns to balance the dataset. The real consumption of a user is denoted by
et, where, (t ∈ [0, 1034]). In this study, the employed dataset contains the total of 1035 days’
consumption data. The mathematical representations of all TAs are taken from [29] and are
presented in Equations (4)–(9).

t1(xt) = xt ∗ random(0.1, 0.9), (4)

t2(xt) = xt ∗ rt, rt = random(0.1, 1), (5)

t3(xt) = xt ∗ random[0, 1], (6)

t4(xt) = mean(X) ∗ random(0.1, 1), (7)

t5(xt) = mean(X), (8)

t6(xt) = x1034−t, (9)

where, X = {x1, x2, . . . , x1034}. In theft attack 1, t1(.) multiplies the complete row (actual
reading) by the same randomly generated value between 0.1 and 0.9. It is argued in [29]
that it is not necessary that a theft might occur continuously in the real world but some
discontinuous values may also be reported by the theft. Therefore, in theft attack 2,
t2(.) multiples each timestamp in a row with a different random value ranges from (and
including) 0.1 to 1. Here, when the upper limit (1) of the random number is generated, the
actual reading of that particular timestamp will be reported as theft. In theft attack 3, the
theft consumer sometimes reports the real EC value and sometimes reports a 0 value. In
theft attacks 4 and 5, the mean value of the actual readings is involved. Where, in attack
4, the mean value is multiplied with the same randomly generated value. Finally, theft
attack 6 mimics the behaviour of a theft consumer when it sends the actual readings in a
reverse order.

We applied the TAs on benign users’ consumption data to establish an appropriate
balance between the theft and honest data points. The SGCC dataset has 3615 abnormal
and 38,757 normal consumers’ data instances out of total of 42,372 records. The ratio of
the normal and abnormal consumers in the dataset is 1:9. There are large number of data
points in the dataset and it is difficult to use all of them for analysis due to the higher
computational complexity problem. So, as a sample, 9999 records out of the 42,372 are
employed for analysis. In this way, the last 900 real theft records out of 3615 (2714–3615)
are selected and the other real theft records (0–2713) are ignored. Moreover, the remaining
deficient abnormal records (4098) are synthetically created using the TAs, generation over
the benign consumers’ data starting from 901th and ending at 4998th record. Attacks 1–6
are implemented on the benign consumers’ data ranges 901–1583, 1584–2266, 2267–2949,
2950–3632, 3633–4315, and 4316–4998, respectively. The TAs’ pattern and the normal user’s
consumption pattern are shown in Figures 2 and 3, respectively. Furthermore, the data
from 4999–9998 is the benign consumers’ data. So now, the data are balanced (where 0–4998
is theft consumers’ data and 4999–9998 is normal consumers’ data) and is forwarded to
LSTM for extracting the necessary features from them, which improves the classification
performance. Finally, the GRU classifier is trained using the extracted data received for
efficient and effective electricity theft classification. The dataset contains 1035 days’ energy
consumption data and the attacks are implemented on the entire data. However, in the
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figures referred above, only 30 days’ synthetic TAs and normal patterns are given as
an example.

Figure 2. Synthetic theft attack patterns.

Figure 3. Normal pattern.

3.2.3. Long Short Term Memory Based Feature Extraction

Once the initial preprocessing and balancing of the data are performed, LSTM [35] is
used for extracting important features. SGCC dataset contains huge and high dimensional
(features) data and we need to perform dimensionality reduction. In such situations,
the conventional recurrent neural network (RNN) [36] can not be employed as it faces
the problems of the vanishing gradient and exploding gradient while dealing with the
huge amount of data for dimensionality reduction. LSTM, an advanced RNN variant, is
employed widely for successfully dealing with exploding and vanishing gradients issue.
In training process, the temporal correlation between the current input and the previous
state is found via using the previous data by RNN, and the output is finalized. However,
because of its short and temporary memory, it fails to re-achieve and re-gain the previous
information for the huge time series data and therefore, it fails to capture the temporal
correlation between the current and the previous states. On the other hand, LSTM is able
to easily and smoothly capture the temporal correlation. It also helps in dimensionality
reduction of the huge time series data. The reason is that it has special and unique memory
cells, which make use of the historical information. Furthermore, the significant features
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from the huge time series data are retained and memorized using the cells. This information
is kept and maintained by the cell state (long term memory) in the LSTM. The significant
features enfold the necessary information of the whole dataset.

The LSTM comprises the forget gate ( ft), the input gate (it), and the output gate (ot).
The determination and decision that whether the information taken from the current input
(xt) and the previous hidden state (ht−1) should be retained or discarded from the cell
state is made by the forget gate. In this way, the information from ht−1 and xt are passed
through the sigmoid (σ) activation function and it will decide either to keep or discard
the previous output from the cell state by generating 1 or 0, respectively. The input gate
determines that which values or data are employed for updating memory state or cell state,
denoted by (Ct). Again the details from ht−1 and xt are passed from the second sigmoid
and decision will be made that what to do with the information; either discard it or save it.
Similarly, in the cell state (Ct), the tanh activation function is applied on ht−1 and xt, and
the output is stored into the cell state. The results from the cell state and the input gate are
multiplied and added with the multiplication result of the forget gate and cell state. It is
finally stored into the current cell state C′

t, which is now an updated cell state. Similarly, the
final output gate (ot) takes the xt and ht−1 as the inputs, applies the sigmoid operation on
them and the final result is stored in ot. In order to calculate the next hidden state (ht), the
multiplication of tanh(C′

t) and ot is performed, sigmoid is applied on their multiplication
result and the final output is stored into ht. Moreover, the mathematical formulations of
the forget, input, and output gates are given in Equations (10)–(15) [37].

ft = σ(Wf (xt, ht−1) + b f ), (10)

it = σ(Wi(xt, ht−1) + bi), (11)

Ct = tanh(Wc(xt, ht−1)), (12)

C′
t = ( ft ∗ (Ct)) + (it ∗ (Ct)), (13)

ot = σ(Wo(xt, ht−1) + bo), (14)

ht = σ(ot ∗ tanh(C′
t)). (15)

where, bo, bi, and b f are the biases for the output, input, and forget gates, respectively. The
Wo, Wi, and Wf denote the weights of the output, input, and forget gates, respectively.
Moving ahead, for denoting previous hidden state information along with the updated cell
state information, Ct and C′

t are used, respectively.
The optimal adjustments of the hyperparameters’ values are very important to attain

better results for feature extraction using LSTM. In order to perform better feature extraction,
we perform manual parameter tuning. We set 200 and 100 neurons for each LSTM’s layer.
Whereas, the dense or fully connected layer has only one neuron. The dropout layer
value is set to be 0.2 in order to protect the proposed TLGRU model from overfitting.
The more detailed picture of the hyperparameters’ values are given in Table 3. In our
proposed LSTM feature extractor, we employ six layers, i.e., two LSTM, two LeakyReLU,
one BatchNormalization, and one Dropout layer. We use 200 neurons in the first LSTM
layer, the learning rate (Alpha) for both LeakyReLU layers is chosen to be 0.001, 100 neurons
are used for the second LSTM layer, and finally, 0.2 is selected as the dropout probability
for Dropout layer.

Table 3. Optimal settings of the hyperparameters’ values.

Hyperparameters Values

Units 200 and 100

Alpha 0.001

Dropout 0.2
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3.3. Theft Classification Unit

TLGRU based classification is put forward for detecting the thefts in in electricity
usage in SG. Furthermore, the popular benchmark models, LR, DT, SVM and GRU, are used
for performance comparison with the proposed classifier. The details of these classifiers are
given in the following subsections.

3.3.1. GRU

It was developed in 2014 [38]. GRU is a sub module of our proposed TLGRU model.
GRU is used in two ways: (1) as a sub module of our proposed TLGRU model to tackle
drift, ovefitting, high FPR, and local minima trap problems, (2) benchmark method for
comparison purpose. GRU is faster in comparison with RNN and LSTM with respect
to training time. It is employed widely in other research areas [39–42]; but, it is rarely
employed for efficient ETD.

GRU is mainly developed to deal with the vanishing gradient problem with which
the RNN fails to deal. The GRU merges the forget gates and the input gate of the LSTM
into one gate known as the update gate. Moreover, the combination of both cell state and
hidden state is made in GRU. The GRU’s basic architecture is illustrated in Figure 4 [39,40].

Figure 4. Gated recurrent unit architecture.

GRU consists of two gates: update gate (long term memory) and reset gate (short term
memory), which are used to solve the gradient vanishing issue of RNN. These gates are
two different vectors that finalize and determine that which information must be passed
and proceeded to the output. One special and unique property about them is that the gates
have the capability to be trained in order to retain information for a long duration, without
discarding it with time or discarding information that is irrelevant and insignificant for
prediction. By this feature GRU can clearly differentiate between the irregularity because
of nonmalicious intermediaries (drift) and the irregularity due to the real theft factors,
which consequently minimizes the FPR value. Therefore, we select the GRU classifier as
the theft detection module of our proposed TLGRU classifier. The complete mathematical
formulation of reset gate (rt) and update gate (vt) is given in Equations (16) and (17),
respectively [38].

rt = σ(Wrxt + Wrht−1 + br), (16)

vt = σ(Wvxt + Wvht−1 + bv), (17)

where, Wr, br, Wv, bv, and xt denote the weight related to reset gate, the bias value related
to the reset gate, the weight related to update gate, bias related to the update gate, and the
input vector, respectively. The reset gate is used in GRU to decide the amount of historical
information to forget. Whereas, the update gate assists GRU to decide about previous
information to be copied or passed to future. To compute the current or new hidden state
(ht), two steps are need to be performed. The first step is to calculate the candidate hidden
state (h′t) while the second step is to compute the ht. The mathematical forms for h′t, and ht
are depicted in Equations (18) and (19), respectively [38].
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h′t = tanh(Wxt + Wrt � ht−1), (18)

ht = vt � ht−1 + (1 − vt)� h′t. (19)

where, W and ht−1 denote the weights’ values and the hidden state at the previous time-
step, respectively. In addition, the symbol � denotes the Hadamard product. The tanh
and σ show the hyperbolic and sigmoid activation functions, respectively. In addition,
the value of rt is used to know about the role or influence of ht−1 on h′t. If rt value is 0, it
means that the information from ht−1 is totally ignored or discarded. Likewise, if its value
is 1, it means that all the information from ht−1 is considered. Furthermore, in the final ht
equation, unlike LSTM, instead of employing an independent or separate gate, in GRU
only one update gate is employed to control both the previous information from ht−1 as
well as the new information from the h′t. Now, assume that the value of vt is 0 or near to 0
in ht’s equation, the first term of ht equation is going to vanish. It means that ht will not
contain a good amount of information from ht−1 and the ht will have information from h′t
only. Similarly, if the value of vt is 1 or close to 1 in ht’s equation, the second part of the
equation will be 0; it means ht will totally be dependent on the first part of the equation,
i.e., ht−1. Hence, it is proved that the value of vt has a great importance and it ranges from
0 to 1.

In the GRU module of TLGRU, four layers are employed: GRU layer, Flatten layer,
Dropout layer, and Dense layer. In the first layer, 50 neurons are used, 20% of dropout
probability is selected, and only one neuron for dense layer is employed. In the second
layer, the conversion of data from multi dimensional to single dimensional is performed.
Furthermore, the 20% of the dropout probability value is used to randomly deactivate the
20% of neurons, so that the overfitting issue can be avoided.

3.3.2. Support Vector Machine

SVM is one of the most popular and widely used classification techniques that is
employed by many researchers as their basic proposed or benchmark model in the existing
literature [43]. In [11], SVM based CPBETD is proposed and in [35], SVM is employed as an
existing or benchmark classifier for ETD. In our case, we also select SVM as the benchmark
classifier for performance evaluation of our proposed TLGRU classifier. The SVM can be
employed for classification as well as regression. The support vector regression (SVR) and
the support vector classification (SVC) are the two classes of SVM that are used for regres-
sion and classification, respectively. However, as our task is theft detection (a classification
task), so we use the SVC class of the SVM for classification. For classification purpose, the
SVM finds a hyperplane that maximizes the margin of the hyperplane to support vectors.
This is done in order to separate the benign data and the abnormal data from each other
so that the data of both the classes can be more clearly classified. Furthermore, as the EC
data in SGCC dataset is not linearly-separable, therefore, we need to use the kernel SVM.
In this way, the radial basis function (RBF) kernel is utilized for the classification of the non
linearly-separable data (SGCC). The C and γ are the hyperparameters of SVM and their
values are selected by default. The curliness of the decision boundary in SVM is decided by
γ. Whereas, C is used to control the misclassification error.

3.3.3. Logistic Regression

LR is the simplest supervised ML binary classification algorithm [44]. It is an exten-
sively utilized classifier for ETD in SGs (binary classification problem) [35,45,46]. LR follows
the same principles as neural network. Therefore, we can surely say that LR used for binary
classification problems (binary LR) is analogous and similar to the neural network with
only one hidden layer and a sigmoid activation function (spans from 0 to 1). Where, the
value close to 0 is regarded the normal consumer and vice versa. During the coding stage of
LR, we have considered the optimal values for the hyperparameters, i.e., random_state = 5
and solver = liblinear, where random_state is employed to control the random number
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generator and solver specifies that which algorithm to employ for optimization. The values
for other hyperparameters are chosen as default.

3.3.4. Decision Tree

DT is also a popular classification method that divides the attributes into classes on
the basis of their relevant features. DT is widely used by the researchers as the bench-
mark [45] and base model [47]. DT prepares a road map for the state of the art and
advanced ensembled techniques like gradient boosting classifiers, random forest, and
bagging techniques [48].

4. Simulation Results

In this study, simulations are performed using Google Colaboratory. The details of
the selected SGCC dataset for validation of our proposed model are given in Section 3.1.
Section 4.1 comprises the results obtained after performing extensive simulations. Moreover,
the comparison between TLGRU’s performance and the performance of the existing models,
i.e., GRU, SVM, DT, and LR, is made and the validation is done in terms of ETD. Furthermore,
recall, area under the curve (AUC), precision, and F1-score metrics are considered the
appropriate measures in order to compute the classifiers’ performance using the imbalanced
data [35]. Based on the cases mentioned above, the accuracy metric is not an appropriate
performance measure [48,49].

4.1. Proposed TLGRU and Other Benchmark Techniques’ Results

The epoch variable is employed to control the training process of the proposed model.
We run our model for 10 iterations or epochs. The convergence of our proposed TLGRU
model with respect to accuracy and loss performance measures is exhibited in Figures 5 and 6,
respectively. It is visible in the figures that the training accuracy (accuracy on seen data) of
the TLGRU increases moderately at each iteration and finally it reaches to 91.77% at the final
iteration. Whereas, using the testing data (accuracy using unseen data), the TLGRU accuracy
gradually increases as well and it reaches 91.56% at the final iteration. The SGCC dataset
contains some zero values due to which the proposed classifier can not learn it properly at the
early iterations, therefore, during the first three epochs, the training accuracy is better than
testing accuracy, which means that the overfitting issue has occurred. After the 3rd iteration,
the proposed model efficiently learns the zero values and the overfitting issue is removed. The
loss of the TLGRU is also computed and noted at different iterations. As shown in Figure 6,
the training loss is minimizing at every iteration till it reaches to 0.2068 at the 10th iteration.
While, the testing loss also reduces till it reaches to 0.2084 at the final iteration. During the first
three iterations, the model overfits because of the zero values that exist in the dataset. After
the third iteration, the model learns the dataset as well as the zero values and therefore, the
overfitting issue is solved. Now, finally, from training and testing accuracy of the proposed
model, it is concluded that the model generalizes well and avoids overfitting. The overfitting
problem is tackled using the proper tuning of the dropout probability value and powerful
and significant features’ extraction ability of the LSTM in TLGRU model.

The accuracy and loss convergence analysis results for the benchmark GRU model are
shown in Figures 7 and 8, respectively. It is shown that at the final iteration, the training
and testing accuracy value for GRU is 89.99% and 82.65%, respectively. Using the seen
data, the accuracy slowly increases, whereas, on testing data, the accuracy fluctuates till
the 7th iteration and after 7th iteration, it starts decreasing. Moreover, at the 3rd epoch,
the GRU model learns and trains using a batch having some zero values that causes
overfitting. However, after the 7th epoch, the overfitting again starts and continues till
the final iteration. Hence, it is proved that the existing GRU model overfits. The main
reasons for the occurrence of this issue are lack of important features’ extraction to reduce
the data dimensionality and no proper tuning of the dropout regularization probability
value. Furthermore, the training and testing loss values for GRU at the last iteration are
0.2852 and 0.5136, respectively. The same trend continues in the loss as well. The training
loss continuously decreases while the testing loss fluctuates till the 7th epoch and it starts
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increasing after the 7th iteration. At the 3rd epoch, the overfitting issue occurs due to
the presence of zero values in the batch. Later on, after the 7th iteration, the overfitting
issue occurs and it continues till the end, hence, the model overfits. Finally, from the
training and testing accuracy and loss plots, it is concluded that GRU model does not
have good generalization ability and overfitting issue occurs because of neglecting the
tuning of the dropout regularization probability value and features’ extraction. Whereas,
our proposed TLGRU model outperforms the benchmark GRU in terms of tackling the
overfitting problem.

Figure 5. The proposed TLGRU model’s training and testing accuracy.

Figure 6. The proposed TLGRU model’s training and testing losses.
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Figure 7. The GRU model’s training and testing accuracy.

Figure 8. The GRU model’s training and testing losses.

For TLGRU’s comparison with DT, LR, SVM, and GRU models, the AUC, recall,
precision, F1-score, and accuracy are considered, which are the most effective performance
parameters. The comparison of the TLGRU’s performance with the existing benchmark
models is exhibited in Table 4 and Figure 9 with regard to various performance measures.
From the results, the superiority of TLGRU model over all the other conventional models
with regard to the already discussed indicators of performance due to the following reasons.
The first reason is that TLGRU effectively tackles the imbalanced data issue using different
TAs, the second reason is that the LSTM module is used to extract the necessary features
and solve the high dimensionality issue, and finally, the classification using the GRU
module enhances TLGRU’s performance. Moreover, in the GRU module, dealing with
the drift, overfitting, and local optima trapping issues using the update gate (long term
memory), dropout regularization, and Adam optimizer further enhances the performance
of the model being put forward our proposed model with respect to the selected evaluators.
Contrarily, SVM and LR perform very bad. The reason is that they can not tackle the large
and huge time series data and that is why overfitting issue occurs. Whereas, the proposed
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TLGRU classifier smoothly handles the large time series data due to the feature extraction
ability of the proposed model using LSTM algorithm and solves the issue of overfitting.

Table 4. Performance comparison of the proposed and existing schemes.

Classifier Accuracy
AUC
Score

Precision Recall F1-Score FPR

DT 0.6701 0.6702 0.7019 0.6585 0.6795 0.1485

LR 0.5379 0.5365 0.5207 0.7097 0.6736 0.4370

SVM 0.6433 0.6423 0.4678 0.7162 0.5660 0.2646

GRU 0.8265 0.7552 0.8355 0.7176 0.7721 0.0818

Proposed TLGRU 0.9156 0.9168 0.9796 0.8659 0.9192 0.0100

Figure 9. Performance comparison of different classifiers.

FPR is one of the significant performance metrics for ML techniques in which the
benign electricity users are classified and shown as theft. The value of FPR is directly
proportional to the on field inspection cost. There are many solutions or ways to minimize
the FPR value. However, we have only considered and worked on three different ways
to reduce the FPR value: data balancing, extraction of the important features from the
raw data, and correctly identifying the drift. This article uses the GRU for classification
purpose because it has a special quality of keeping the long historical sequence of data
using its update gate (long term memory), and the data are then used for analyzing the long
relationships among the consumption patterns. The GRU model identifies the anomalies or
irregularities in consumption data that arise due to the non-theft reasons. The FPR for DT is
0.1485, for SVM is 0.2646, for LR is 0.4370, for GRU is 0.0818, and for TLGRU is 0.01. Hence,
consequences are clear from the FPR numeric values that the TLGRU classifier exhibits the
least FPR in comparison with all the other benchmark classifiers. The FPR for our proposed
TLGRU and other benchmark models is shown in Figure 10.
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Figure 10. The proposed and benchmark models’ FPR analysis.

4.2. Strengths and Weaknesses of the Proposed Work

The fundamental advantage of this work is to provide an efficient ETD model for
power utilities, which helps them to reduce economic loss. Furthermore, the accurate and
timely detection of energy thieves reduces the line losses in transformers and other grids’
components. Besides, the proposed model has some shortcomings. The low-frequency
EC data are used to train the model, which limits its performance towards capturing the
most granular EC patterns. Consequently, the rate of misclassifying instances increases.
Further, it may incur high computational time due to the absence of a hyperparameter
tuning technique.

5. Conclusions and Future Work

In this research article, the TLGRU model is presented that consists of two main
components and three sub-components. The main components are preprocessing unit and
theft classification unit. The preprocessing component is further divided into three sub-
components: initial preprocessing of the raw data, data balancing, and feature extraction. In
the first sub-component, the NaN values, outliers, and unscaled data are dealt by employing
SI, TSR of thumb, and min-max scaler, respectively. In the second sub-component, TAs
are employed for creation of the synthetic abnormal data samples to solve the imbalanced
data problem. Finally, LSTM classifier is employed for feature extraction and dealing with
dimensionality curse problem. Furthermore, the classification component contains the GRU
model for theft classification. Moreover, the GRU provides solution for drift identification,
overfitting, and trapping in local optima problems. In addition, four popular benchmark
models, DT, LR, SVM, and GRU, are implemented for performance comparison with the
proposed TLGRU classifier. A realistic EC dataset (SGCC) is employed for simulations.
From the simulation results, the superiority of TLGRU over benchmark models in terms
of ETD is exhibited. The simulations provide us with 1% FPR, 97.96% precision, 91.92%
F1-score, 91.68% AUC, 91.56% accuracy, and 86.59% recall, which are better than the
benchmark schemes. Hence, we conclude that the newly developed TLGRU is an efficient
model for ETD with minimum FPR. In future works, we will investigate the novel DL
models for feature extraction and classification to more efficiently perform the ETD task.
Moreover, automated tuning of the hyperparameters’ of the models will also be performed
using meta-heuristic optimization algorithms. In addition, the aim of the underlying study
is the development of a novel deep learning based hybrid model, which helps electric
utilities to detect energy frauds in SGs around the globe. Furthermore, the proposed model
is trained on a massive EC dataset. So, its real time practicability in terms of identifying the
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presence of thieves in the SGs is ensured. Further, the model introduced in the underlying
work is a quite general solution to detect anomalies and frauds in any time series. It
needs only a dataset for its training. So, the EC data collected by the conventional meters
can be used to train the proposed model and then it will be applicable in SGs to detect
energy frauds.

Author Contributions: Conceptualization, P., N.J. and S.A.; methodology, P.; software, P. and S.J.;
validation, N.J., M.A. and M.U.J.; formal analysis, A.S.Y. and S.J.; investigation, N.J.; resources, S.J.;
data curation, P.; writing—original draft preparation, P. and N.J.; writing—review and editing, N.J.
and S.A.; visualization, N.J. and S.A.; supervision, N.J.; project administration, S.A. and N.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset employed in this research is available online at https:
//github.com/henryRDlab/ElectricityTheftDetection (accessed on 30 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Garcia Deluno, F.; Marafão, F.P.; de Souza, W.A.; da Silva, L.C.P. Power metering: History and future trends. In Proceedings of the
2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 29–31 March 2017; pp. 26–33.

2. Weranga, K.S.K.; Kumarawadu, K.; Chandima, D.P. Smart Metering Design and Applications; Springer: Singapore, 2014.
3. Foudeh Husam A.; Mokhtar, A.S. Automated meter reading and advanced metering infrastructure projects. In Proceedings of

the 2015 9th Jordanian International Electrical and Electronics Engineering Conference, Amman, Jordan, 12–14 November 2015;
pp. 1–6.

4. Huang, Y.; Qifeng, X. Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Electr. Power Energy Syst.
2021, 125, 106448. [CrossRef]

5. Zheng, Z.; Yatao, Y.; Xiangdong, N.; Dai, H.; Zhou, Y. Wide and deep convolutional neural networks for electricity-theft detection
to secure smart grids. IEEE Transact. Ind. Inform. 2017, 14, 1606–1615. [CrossRef]

6. Buzau, M.-M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gómez-Expósito, A. Hybrid deep neural networks for detection of non-
technical losses in electricity smart meters. IEEE Trans. Power Syst. 2019, 35, 1254–1263. [CrossRef]

7. Khoo, B.; Ye, C. Using RFID for anti-theft in a Chinese electrical supply company: A cost-benefit analysis. In Proceedings of the
2011 Wireless Telecommunications Symposium (WTS), New York, NY, USA, 13–15 April 2011; pp. 1–6.

8. McLaughlin, S.; Brett, H.; Fawaz, A.; Berthier, R.; Zonouz, S. A multi-sensor energy theft detection framework for advanced
metering infrastructures. IEEE J. Select. Areas Commun. 2013, 31, 1319–1330. [CrossRef]

9. Cárdenas; A.A.; Saurabh, A.; Schwartz, G.; Dong, R.; Sastry, S. A game theory model for electricity theft detection and privacy-
aware control in AMI systems. In Proceedings of the 2012 50th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Monticello, IL, USA, 1–5 October 2012; pp. 1830–1837.

10. Amin, S.; Schwartz, G.A.; Tembine, H. Incentives and security in electricity distribution networks. In Proceedings of the
International Conference on Decision and Game Theory for Security, Virtual Conference, 25–27 October 2012; pp. 264–280.

11. Jokar, P.; Arianpoo, N.; Leung, V.C.M. Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans.
Smart Grid 2015, 7, 216–226. [CrossRef]

12. Gunturi Kumar, S.; Sarkar, D. Ensemble machine learning models for the detection of energy theft. Electr. Power Syst. Res. 2021,
192, 106904. [CrossRef]

13. Kong, X.; Zhao, X.; Liu, C.; Li, Q.; Dong, D.; Ye, L. Electricity theft detection in low-voltage stations based on similarity measure
and DT-KSVM. Int. J. Electr. Power Energy Syst. 2021, 125, 106544. [CrossRef]

14. Buzau, M.M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gómez-Expósito, A. Detection of non-technical losses using smart meter data
and supervised learning. IEEE Trans. Smart Grid 2018, 10, 2661–2670. [CrossRef]

15. Qu, Z.; Li, H.; Wang, Y.; Zhang, J.; Abu-Siada, A.; Yao, Y. Detection of electricity theft behavior based on improved synthetic
minority oversampling technique and random forest classifier. Energies 2020, 13, 2039. [CrossRef]

16. Lu, X.; Zhou, Y.; Wang, Z.; Yi, Y.; Feng, L.; Wang, F. Knowledge embedded semi-supervised deep learning for detecting
non-technical losses in the smart grid. Energies 2019, 12, 3452. [CrossRef]

17. Ashraf Ullah, P.; Shoaib, M.; Muhammad, A.; Kabir, B.; Javaid, N. Synthetic Theft Attacks Implementation for Data Balancing
and a Gated Recurrent Unit Based Electricity Theft Detection in Smart Grids. In Proceedings of the Conference on Complex,
Intelligent, and Software Intensive Systems, Asan, Korea, 1–3 July 2021; Springer: Cham, Switzerland, 2021; pp. 395–405.

18. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

145



Energies 2022, 15, 2778

19. Cho, K.B.; Merrienboer, V.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches.
arXiv 2014, arXiv:1409.1259.

20. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inform. Process. Syst. 2014, 27.

21. Fabian, A.N.; Figueroa, G.; Chu, C. NTL detection in electric distribution systems using the maximal overlap discrete wavelet-
packet transform and random undersampling boosting. IEEE Trans. Power Syst. 2018, 33, 7171–7180.

22. Hasan, M.; Toma, R.N.; Abdullah-Al, N.; Islam, M.M.; Kim, J. Electricity theft detection in smart grid systems: A CNN-LSTM
based approach. Energies 2019, 12, 3310. [CrossRef]

23. Saeed Salman, M.; Mustafa, M.W.; Sheikh, U.U.; Jumani, T.A.; Mirjat, N.H. Ensemble bagged tree based classification for reducing
non-technical losses in multan electric power company of Pakistan. Electronics 2019, 8, 860. [CrossRef]

24. Wang, X.; Yang, I.; Ahn, Su. Sample efficient home power anomaly detection in real time using semi-supervised learning. IEEE
Access 2019, 7, 139712–139725. [CrossRef]

25. Liu, H.; Li, Z.; Li, Y. Noise reduction power stealing detection model based on self-balanced data set. Energies 2020, 13, 1763.
[CrossRef]

26. Ibrahem, M.I.; Nabil, M.; Fouda, M.M.; Mahmoud, M.M.E.A.; Alasmary, W.; Alsolami, F. Efficient Privacy-Preserving Electricity
Theft Detection with Dynamic Billing and Load Monitoring for AMI Networks. IEEE Internet Things J. 2020, 8, 1243–1258.
[CrossRef]

27. Nabil, M.; Ismail, M.; Mahmoud, M.M.E.A.; Alasmary, W.; Serpedin, E. PPETD: Privacy-preserving electricity theft detection
scheme with load monitoring and billing for AMI networks. IEEE Access 2019, 7, 96334–96348. [CrossRef]

28. Micheli, G.; Soda, E.; Vespucci, M.T.; Gobbi, M.; Bertani, A. Big data analytics: An aid to detection of non-technical losses in
power utilities. Comput. Manag. Sci. 2019, 16, 329–343. [CrossRef]

29. Punmiya, R.; Choe, S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing.
IEEE Trans. Smart Grid 2019, 10, 2326–2329. [CrossRef]

30. Razavi, R.; Gharipour, A.; Fleury, M.; Akpan, I.J. A practical feature-engineering framework for electricity theft detection in smart
grids. Appl. Energy 2019, 238, 481–494. [CrossRef]

31. Ramos, C.; Rodrigues, D.; de Souza, A.N.; Papa, J.P. On the study of commercial losses in Brazil: A binary black hole algorithm
for theft characterization. IEEE Trans. Smart Grid 2016, 9, 676–683. [CrossRef]

32. Ghasemi, A.A.; Gitizadeh, M. Detection of illegal consumers using pattern classification approach combined with Levenberg-
Marquardt method in smart grid. Int. J. Electr. Power Energy Syst. 2018, 99, 363–375. [CrossRef]

33. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural
Networks; MIT Press: Cambridge, MA, USA, 1995; Volume 3361.

34. Li, S.; Han, Y.; Yao, X.; Yingchen, S.; Wang, J.; Zhao, Q. Electricity theft detection in power grids with deep learning and random
forests. J. Electr. Comput. Eng. 2019, 2019, 4136874. [CrossRef]

35. Adil, M.; Javaid, N.; Qasim, U.; Ullah, I.; Shafiq, M.; Choi, J. LSTM and bat-based RUSBoost approach for electricity theft detection.
Appl. Sci. 2020, 10, 4378. [CrossRef]

36. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

37. Javaid, N. A PLSTM, AlexNet and ESNN Based Ensemble Learning Model for Detecting Electricity Theft in Smart Grids. IEEE
Access 2021, 9, 162935–162950. [CrossRef]

38. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
2014, arXiv:1412.3555.

39. Zhang, Y.G.; Tang, J.; He, Z.; Tan, J.; Li, C. A novel displacement prediction method using gated recurrent unit model with time
series analysis in the Erdaohe landslide. Nat. Hazards 2021, 105, 783–813. [CrossRef]

40. Aniruddha, D.; Kumar, S.; Basu, M. A gated recurrent unit approach to bitcoin price prediction. J. Risk Financ. Manag. 2020, 13, 23.
41. Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network.

Energy 2020, 196, 117081. [CrossRef]
42. Luo, H.; Wang, M.; Wong, P.K.; Tang, J.; Cheng, J.C.P. Construction machine pose prediction considering historical motions and

activity attributes using gated recurrent unit (GRU). Automat. Construct. 2021, 121, 103444. [CrossRef]
43. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
44. Available online: www.tutorialspoint.com (accessed on 5 June 2021).
45. Gul, H.; Javaid, N.; Ullah, I.; Qamar, A.M.; Afzal, M.K.; Joshi, G.P. Detection of non-technical losses using SOSTLink and

bidirectional gated recurrent unit to secure smart meters. Appl. Sci. 2020, 10, 3151. [CrossRef]
46. Aslam, Z.; Javaid, N.; Ahmad, A.; Ahmed, A.; Gulfam, S.M. A Combined Deep Learning and Ensemble Learning Methodology to

Avoid Electricity Theft in Smart Grids. Energies 2020, 13, 5599. [CrossRef]
47. Jindal, A.; Dua, A.; Kaur, K.; Singh, M.; Kumar, N.; Mishra, S. Decision tree and SVM-based data analytics for theft detection in

smart grid. IEEE Trans. Ind. Inform. 2016, 12, 5–1016. [CrossRef]
48. Available online: www.machinelearningmastery.com (accessed on 17 April 2021).
49. Javaid, N.; Jan, N.; Javed, M.U. An adaptive synthesis to handle imbalanced big data with deep siamese network for electricity

theft detection in smart grids. J. Parallel Distrib. Comput. 2021, 153, 44–52. [CrossRef]

146
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Abstract: In modern Electric Power Systems, emphasis is placed on the increasing share of electricity
from renewable energy sources (PV, wind, hydro, etc.), at the expense of energy generated with the
use of fossil fuels. This will lead to changes in energy supply. When there is excessive generation
from RESs, there will be too much energy in the system, otherwise, there will be a shortage of
energy. Therefore, smart devices should be introduced into the system, the operation of which can
be initiated by the conditions of the power grid. This will allow the load profiles of the power grid
to be changed and the electricity supply to be used more rationally. The article proposes an elastic
energy management algorithm (EEM) in a hierarchical control system with distributed control devices
for controlling domestic smart appliances (SA). In the simulation part, scenarios of the algorithm’s
operation were carried out for 1000 households with the use of the distribution of activities of
individual SAs. In experimental studies, simplified results for three SA types and 100 devices for each
type were presented. The obtained results confirm that, thanks to the use of SAs and the appropriate
algorithm for their control, it is possible to change the load profile of the power grid. The efficacious
operation of SAs will be possible thanks to the change of habits of electricity users, which is briefly
described in the article.

Keywords: renewable energy sources; energy demand control; smart appliances; elastic energy
management algorithm; GRASP algorithm; IoT

1. Introduction

A number of countries have different approaches to problems related to sustainable
development and environmental protection. The European Union (EU) countries have one
of the most developed plans and strategies in this area. The European Commission has
committed to achieving climate neutrality by 2050, as described in the documents of the
“European Green Deal” [1]. Part of the European Green Deal is the “Fit for 55” package.
Its aim is to put the EU firmly on the path to climate neutrality by 2050. The “Fit for 55”
package envisages a revision of the Renewable Energy Directive (RED II) [2]. This change
is expected to help the EU meet its new 55% greenhouse gas emissions target. The revised
RED II directive sets a new EU target of at least 40% of the share of renewable energy in
final energy consumption by 2030. Meeting these requirements will require the connection
of a significant number of renewable energy sources (RES) to the distribution network.
The RES energy generation profile is periodic and depends on weather conditions [3].
On the other hand, the reduction of greenhouse gases will result in the shutdown of a
large number of conventional fossil fuel power plants processing brown coal, hard coal
and petroleum [4]. Such a situation may lead to a very high generation of energy from
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renewable sources in favorable weather conditions, e.g., from Photovoltaic Panels (PV)
on a sunny day. Such production will exceed the energy demand. In contrast, during
unfavorable weather conditions, there will be a shortage of energy in the system, because
RESs will not generate it. Additionally, solar energy from PVs will be available only during
the day-time hours, and it will not be available in the morning, evening and night-time
hours. The complementarity of PV and wind turbine energy generation may also not meet
the energy demand. To meet the energy demand, either very expensive energy storage
systems (ESS) [5] or fossil fuel generators with a high rate of inclusion should be used, e.g.,
gas microturbines. The geopolitical situation in Europe may mean that gas resources may
not be sufficient to balance the electricity system with a large amount of RESs.

Figure 1 shows power measurements for one week, illustrating the load time courses
for 110/15 kV substations, and a comparison with the generation profile of a PV installation
with the power planned for installation in a given MV line. The overproduction of energy
from the PV system is marked in green. This energy should be stored [6], used or sent to
places where there is a demand [7]. As can be seen from the presented figure, the energy
generated by PVs is unstable over time. During one week, there were days with very
little, very high, and extremely variable energy outputs all day long, or with instantaneous
energy bursts in production. Prosumer photovoltaic systems installed on buildings show
a similar behavior. In the local balancing of the system, it is necessary to use/store as
much energy as possible from both local prosumer low-voltage installations and large
photovoltaic power plants connected to the MV.

Figure 1. Sample measurement result in 110/15 kV substations; red: energy consumption from the
transformer; blue: potential PV power generation, including sources to be connected in the future; the
wave forms of PV generation were determined on the basis of measurements from a 1 MWp power
plant; green field: energy that must be sent to the power grid to other loads or stored in the ESS.

The demand for electricity and the penetration of small-scale distributed generators
are rapidly growing in LV distribution networks, thus, the existing electrical systems will
need future adjustments. Inverters for distributed energy resources (DERs) have been
released with standards and grid codes for interconnection with the distribution grid. To
include increased DER penetration and optimize DER value in the grid, the new standard
and grid codes anticipate that DERs will perform a range of power system support roles.
The following are more widespread measures to detect violations of the upper voltage limit:
voltage and reactive power control by PV inverters, demand response (DR) and storage.

148



Energies 2022, 15, 4750

One of the conceptual approaches to using energy overproduction is to manage energy
demand in such a way that its consumption is as high as possible at times of high generation.
Local self-consumption should be increased during a large surplus of energy production
from RESs, and self-consumption should be reduced during an energy shortage in the
system [8]. There are many concepts employed in controlling the demand for electricity
by the use of a smart appliances (SA) described in the scientific literature. This article will
present the concept of using and integrating smart home devices and consumer devices
(e.g., electric vehicles [9], small energy storage) for energy balancing in a local low-voltage
distribution system. An algorithm for elastic energy management will be proposed which
takes into account the priorities of device operation set by the user. In order for such an
energy management system to function properly, it should have information about the
operating status of the system, i.e., the overproduction/shortage of energy in the system.

There are many solutions for the control of the demand for electricity in the scientific
literature. Here, a brief overview of selected applications for use with home appliances will
be provided. An interesting solution to the problem of excessive grid load was presented
in [10]. The proposed Smart Home energy management system takes into account network
constraints and user priorities. It is based on a heuristic technique for the device scheduling
process. The limitation of this approach is the necessity to have information about the power
available from the grid and about the power generated from RESs. As there is no single
leading signal about the state of the power system, the system is quite complex. In another
article [11], the predictive control model for optimal energy management in a district,
involving buildings with vertically placed photovoltaic systems integrated into the building
and energy storage systems, is discussed. The proposed control strategy aims to maximize
the district’s independence from the external power grid, which is achieved through the
collaboration of interactive buildings. The proposed control scheme includes components
such as forecast, optimizer and load in the form of the analyzed district. Another concept
of energy management is presented in [12], which includes a comparative study of two
home micro-grids, one of which is a vehicle-to-home network. Electric vehicle integration
makes an economic contribution by reducing costs, supporting other MG components and
reducing the load on the main network. The next publication [13] presents an overview
of the most recent literature on residential household energy management, especially
holistic solutions, and proposes new viewpoints on residential appliance scheduling in
smart homes.

Due to the stochastic nature of RES generation, and in order to ensure the stable
operation of the system, an increase in the number of control points and control devices
must be achieved, which will significantly increase the burden on the system operator at
the secondary control level. Therefore, a decentralized energy management and control
system should be installed in the customer’s system. Then, in such a system, information
on regulatory needs will either be provided by the distribution system operator or it will be
obtained from local measurement points. A hierarchical control system has been proposed,
as shown in Figure 2 [14].

The simplest solution for a hierarchical control system is a structure with a local central
unit located in an MV/LV transformer station. Information on production from large
generating units (wind or PV) connected to the MV is provided to the central management
unit, e.g., via Wi-Fi or other communication protocols. Additionally, information about the
energy production from the RESs is sent to the central unit, if possible. This information can
be taken directly from an intelligent energy meter, solar inverter or other device providing
information about the generation level of prosumer sources. Information about the amount
of energy in the grid can also be obtained from the voltage level of the consumer grid [8,15].
When there is a need to increase energy consumption or reduce it, the central management
unit sends a signal to distributed control devices (DCD) located in a given building or
at a location. All kinds of information exchange between individual units are realized
using the Message Queue Telemetry Transport (MQTT) protocol. This protocol is based on
published and subscribed topic patterns. Such a use of the MQTT protocol makes it possible
to subscribe only to those data on topics that are essential for the operation of a given
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unit in the proposed hierarchical control system with DCDs. The role of the server with
which clients will connect to publish topics for individual DCDs is performed by the MQTT
broker. For the proposed hierarchical control system with DCDs, external and internal
MQTT brokers are distinguished. Such an approach enables grouping of data from a given
DCD. In the internal MQTT broker, topics may be grouped on energy consumption, e.g.,
on the level of one household and energy generation from RESs. The energy consumption
can be the total value of the energy consumed by all devices, or it can also be grouped for
individual devices of energy consumers. The greatest possibilities for providing additional
data on configuration possibilities will be offered by SAs. For SAs, it is possible to read
the current energy consumption and assess the possibility of modifying the behavior of
a given SA. In this case, the modification will be to change the power level. The scope of
possibilities for changing the power will result from the parameters set by the manufacturer
of a given SA. The possibility of communication between the proposed hierarchical control
system with the DCD and other hierarchical control systems is provided by the use of
solutions based on the concept of the Internet of Things (IoT) with a cloud function. In this
case, IoT Cloud solutions can be based on one of the following solutions: AWS IoT [16],
Google Cloud IoT [17], IBM Cloud IoT [18], Microsoft Azure IoT [19], Oracle IoT Cloud
Service [20] or others.

Internal MQTT broker

Internal MQTT brokerInternal MQTT broker

Internal MQTT broker

Internal MQTT broker
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MQTT broker

EEM algorithm
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Figure 2. Proposed hierarchical control system.

To summarize the above, in the proposed hierarchical control, different system com-
munication tasks can be distinguished. Some of these tasks play a measuring, controlling or
measuring and controlling role. Measurement tasks involve collecting data on the current
demand for and supply of energy. Data is provided from internal MQTT brokers. The
control or measurement and control tasks concern the transfer of guidelines on the method
of controlling a given intelligent device by the EEM algorithm. In addition, there are also
tasks related to maintaining the correct functioning of the hierarchical control system. In
this case, the tasks will concern the verification of the status of a given device. The tasks
also include tasks related to ensuring the security level, such as system access control.

The DCD is also responsible for reacting to changes in the UDCD voltage. After
exceeding the range defined by the formula:

UDCD_MIN ≤ UDCD ∨ UDCD_MAX ≥ UDCD, (1)
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actions are taken through the use of a dedicated algorithm. The proposed algorithm for
the Elastic Energy Management (EEM) is implemented in DCD. The DCD communicates
with individual smart appliances in order to achieve the set goal of reducing or increasing
energy consumption [8]. For the proper operation of the EEM algorithm, all necessary data
on energy consumption or generation will be provided from an external MQTT broker. The
main aim of the article is to present the concept of an electricity management system in a
smart home using SAs.

The innovative part of the research results presented in the article is the ensuring of
the use of the EEM algorithm to respond to an overvoltage in the smart grid and to define
user behavior and the means to model virtually any user device. Such innovation allows
the creation of virtual device prototypes to evaluate their energy efficiency properties.
Verification of the correctness of the assumptions was made based on the Probability
Density Function (PDF) and the estimator PDF. Research studies have been conducted on
datasets describing user behavior in an exemplary 1000-household study. The presented
considerations take into account the IoT technology for data exchange between devices in
the Smart Grid network.

The paper is organized as follows: Section 2 presents the Elastic Energy Management
algorithm, Section 3 describes the simulation research conducted, Section 4 presents smart
appliance functionality and user behavior, Section 5 includes assumptions and results for
the conducted experimental results, and Section 6 includes the conclusions of this study.

2. The Elastic Energy Management Algorithm

In order to manage the demand and supply of energy in DCDs through EEM, it was
necessary to define the parameters of the model. For this purpose, it was defined as:

(PNOM, P, pr, ts) (2)

The requirement for individual parameters of each SA is to have defined properties.
The properties of a given SA are determined on the basis of the technical possibilities
specified by the manufacturers. The PNOM parameter defines the value of the nominal
power with which the given SA works. P is used to define a list of other power values
for which a given SA could adapt, depending on its working conditions. For example, a
boiler could temporarily increase or decrease the power of the heaters. Considering the
user’s comfort and technical capabilities of SAs, the priorities pr were introduced. This
feature makes it possible to determine which SAs can be changed first, and for which the
modification should be made last. For this purpose, a three-step scale was introduced
for pr:

• EEM_PRIORITY_LOW,
• EEM_PRIORITY_MEDIUM,
• EEM_PRIORITY_HIGH.

pr = EEM_PRIORITY_LOW means that the SA with the greatest possibility of
changing its power settings is given priority. The ts parameter is used to define the time
delay property of the given SA startup. This functionality is already known, in particular
in household appliances, such as washing machines. In this case, the user may determine a
desired end time for the washing task in order to prioritize his other household tasks.

In EEM, after describing parameters (2) and taking into account dependencies (1),
the need to use heuristic algorithms was established. The rationale behind this decision
was the necessity to solve NP-hard problems [8]. The Greedy Randomized Adaptive
Search Procedure (GRASP) heuristic algorithm allows the finding of the right solution
(not necessarily the optimal one, but one acceptable due to the cost of calculations) and
is suitable for solving difficult NP problems. For the purpose of the GRASP algorithm, a
fitness function was developed:
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FEEM =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(FDCD + FSA − FRES)

(
1 − USEL_EEM1 − U

U

)
for EEM1 variant,

(FDCD + FSA − FRES)

(
1 − USEL_EEM2 − U

U

)
for EEM2 variant,

(FDCD + FSA − FRES) UDCD_MIN ≤ UDCD ∨ UDCD_MAX ≥ UDCD.

(3)

where

FDCD = CDCD

NSA

∑
i=1

PSA_SELi , (4)

FSA = CDSO

NSA

∑
i=1

(
PNOMi − PSA_SELi

)
, (5)

FRES =
NRES

∑
j=1

(
CRESj − PRES_SELj

)
, (6)

USEL_EEM1 =
∑NSA

i=1 PSA_SELi

∑NRES
j=1 PRESj + PHMAX

, (7)

USEL_EEM2 =
∑NSA

i=1 PSA_SELi

∑NRES
j=1 PRESj + PHDCD

. (8)

CDSO is the cost of purchasing 1 kWh from the Distribution System Operator (DSO);
i and j are indices of SAs and RES, respectively. NRES and NSA are the numbers of RESs and
SAs. PSA_SEL is the power value after modification for the SA. CRES is the cost of obtaining
1 kWh for a given RES. PRES is the value of power obtained from a given RES. When U = 1,
this means that there is a balanced value of power demand for its supply. A block diagram
of the EEM algorithm is shown in Figure 3.

The complexity of the problem of selecting power settings required the development
of an extensive FEEM (3) fitness function. Among the set of all power selection options, one
combination must be selected that meets criteria for the stated requirements, e.g., reduction
of the peak demand phenomenon. The three variants of FEEM are intended to respond to
the EEM algorithm: user comfort (EEM1), requirements set by the DCD (EEM2) and the
situation of exceeding the voltage UDCD in the DCD. Equations (4)–(6) make it possible to
determine the demand for energy supply in a given DCD. Equation (7), as a component
of Equation (3), gives the opportunity to obtain results that, in terms of energy costs and
user comfort, will be the most appropriate choice. In case (8), the greatest emphasis in
selecting the power settings will be placed on the solutions that will be the best choice for a
DCD. In this case, energy costs are a secondary criterion when the most important factor is
to keep the energy system in balance, e.g., during environmental phenomena that would
contribute to the damaging of the power grid infrastructure.

In FEEM, three variants of the implementation of the EEM algorithm for DCDs were
taken into account (3).

The first variant (EEM1) concerns a situation where the task of the EEM algorithm is
to ensure the comfort of users by, inter alia, controlling SAs so that the costs for the energy
used are as low as possible. For this purpose, the value of USEL_EEM1 is determined from
Equation (7). USEL_EEM1 is the current value of power demand for its supply, calculated by
EEM1, based on selected values of appliance power.

The second variant FEEM (3) applies to (EEM2) and takes into account the need to
take action to respond to a crisis situation, e.g., a peak demand phenomenon [21] or
damage to the power grid infrastructure. This variant takes into account USEL_EEM2 from
Equation (8). PHMAX is the maximum sum of power of all enabled consumers after the
reduction process by EEM1, determined individually by the energy consumer. USEL_EEM2

is for the EEM2 variant which, due to a purpose of use other than EEM1, requires the
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adjustment of Formula (7) of SA power reduction over a specified period of time (from
tDCD1 to tDCD2 ) to a value at least equal to PHDCD.

The third variant FEEM (3) takes into account situation (1) when the DCD voltage range
is exceeded UDCD. In this case, the EEM algorithm based on (2) will select PSEL values for
all SAs to ensure condition (9).

UDCD_MIN < UDCD < UDCD_MAX . (9)

The EEM algorithm performs its activities in an endless loop. This approach is required
due to the dynamics of phenomena occurring over time in Electric Power Systems. Each
change requires decisions to be made to ensure a balance between acting for the benefit of
DCDs and the comfort of users.

START

Read off the power generated by the RES (∑PRES) 
and consumed by the appliances (∑PSA_SEL)

 Reading of control signals from the DSO 
(uDCD_MIN, uDCD_MAX, tDCD1, tDCD2, PHDCD)

YES

Reading the current time (t)

SA power modification based 
on properly developed price 
programs (EEM1 algorithm)

NO

YES

uDCD_MIN < uDCD < uDCD_MAX

t ≥  tDR1 ˅ t ≤ tDR2 ˅ 
(∑PA - ∑PRES) ≥ PHDCD

 The DCD voltage 
range is exceeded uDCD_MAX 

(EEM3 algorithm)

SA power modification 
based on the EEM2 

algorithm

NO

Figure 3. EEM flow chart.

3. Simulation Research

Simulation research for the EEM algorithm was performed in Java in the Eclipse
IDE [22]. The implementation of the EEM algorithm in Java required the development of
dedicated classes. Among others, the EEM_Algorithm and EEM_AlgorithmData classes
were implemented for the EEM algorithm itself and for storing the required data. Addi-
tionally, the EEM_Device_RES, EEM_Device_Source and EEM_Device_Appliance classes,
which are extensions to the EEM_Device class, were implemented. The EEM_Priority class
introduces the ability to define one of the three available pr priorities.

The dataset for RESs that was used for simulation research is shown in Figure 4. The
data presented in Figure 4 illustrate the situation of the largest generation of energy by a
PV source at noon. The collection of such data was done to approximate a typical situation
when energy from RESs is available during a selected period of time, so that its excess
adversely affects the National Power Systems (NPS).
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Figure 4. Sample data from a photovoltaic installation.

In earlier studies, research was conducted for one household [8,23]. The next part of
the article presents the results of simulation research for an example of 1000 households.
In each of the households, the possibility of using fifteen different SAs was assumed.
The operating time profiles and the energy consumed by individual SAs at that time are
presented in Figure 5.

Figure 5. Profiles of SAs.
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Figure 5 shows short profiles of SAs, from half an hour to all-day-long in duration. An
example of a short profile is, e.g., the activity of ironing or boiling water in kettles. The
operation of the refrigerator, which is switched on periodically throughout the day, can be
considered a long profile. In the Figure 5 you can also see energy levels ranging from a few
Watts to as much as 3 kW (oven).

The source of data sets defining individual profiles was the recording of measurement
data using energy loggers. Data was recorded on exemplary devices that were intended
to be general in nature. Particular characteristics were determined on the basis of values
obtained from several days of operation of individual devices. The profiles were determined
for the purpose of conducting simulation tests, which will be presented later in the article.

Table 1 lists the values of other parameters required for the correct operation of the
EEM algorithm.

Table 1. Definition of other parameters for SAs.

SA pr P(SA) −3σ σ +3σ

laptop EEM_PRIORITY_MEDIUM 1 07:00 10:00 13:00

kettle EEM_PRIORITY_LOW 0.9
07:30
11:00
17:45

08:00
12:00
18:00

08:30
13:00
18:30

washing machine EEM_PRIORITY_MEDIUM 0.6 10:00 07:00 13:00
vacuum cleaner EEM_PRIORITY_LOW 0.5 06:00

14:15
06:10
14:30

06:20
14:50

tv EEM_PRIORITY_LOW 0.8 07:00
17:00

08:00
18:00

09:00
20:00

refrigerator EEM_PRIORITY_LOW 1 00:10 00:30 01:00
dishwasher EEM_PRIORITY_LOW 0.8 08:00

18:00
09:00
19:00

10:00
20:00

iron EEM_PRIORITY_LOW 0.8 08:00
18:00

09:00
19:00

10:00
20:00

boiler EEM_PRIORITY_LOW 0.9 06:30 07:00 07:30
oven EEM_PRIORITY_HIGH 0.9 13:30 14:00 14:30

air conditioner EEM_PRIORITY_LOW 0.9
09:30
12:30
15:30

10:00
13:00
16:00

11:00
14:30
17:30

microwave EEM_PRIORITY_LOW 0.9
07:30
15:30
20:30

08:00
16:00
19:00

09:00
17:30
18:00

coffee maker EEM_PRIORITY_MEDIUM 0.8 08:00
18:00

09:00
19:00

10:00
20:00

cooker hood EEM_PRIORITY_LOW 0.9
13:30
14:00
14:30
15:00

13:45
14:15
14:45
15:15

14:00
14:30
15:00
15:30

electric cooker EEM_PRIORITY_HIGH 0.9 12:30 13:00 13:30

The values of pr were adopted in such a way as to approximate the typical behavior
of users and their needs. The P(SA) parameter specifies the probability of a given SA
occurrence and its launch within a specified time in the ±3σ range. In order to differentiate
individual households, a random selection was used with a given probability of the time
when individual SAs are launched. For this purpose, a pseudo-random number generator
with a Gaussian distribution, with mean μ = 0 and standard deviation σ = 1, was used.
The value of the time when the SA could be run most often is shown as σ. On the other
hand, the statistical range from when to when a given SA could be run was marked with
the following time intervals: from −3σ to +3σ. Due to the range of SA startup possibilities,
it is assumed for all SAs that there will be no shifting during SA startup time (ts = 0).
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Figure 6 shows a histogram for an example of 10,000 times when SA data could be run.
In this case, it is assumed that σ will correspond to 1:45 p.m., when SAs are most likely to
be run. The period for contingent activation of SAs was set to the following time range:
−3σ = 12:30 and +3σ = 15:00.
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Figure 6. Histogram of the distribution of times for the interval from 12:30 to 15:00.

Using the 3σ rule [24–26], a distribution of time values was obtained with a probability
of 99.7% falling within the ±3σ time intervals. It was anticipated that SAs would be
launched from 12:30 to 15:00.

In order to verify the correctness of the Java implementation of the activation algo-
rithm of different SAs, the Probability Density Function (PDF) f (x) was determined from
Formula (10) and the estimator PDF f̂k (11) [24–27]

f (x) =
1√
2πσ

exp
−(x − μ)2

2σ2 , (10)

f̂k = Sk
W

N(H − L)
, (11)

where S—the number of results in a given range, N—number of results, W—
⌊

3
√

N
⌋

,
k = 1 . . . W, L = min

1≤n≤N
{Sn} and H = max

1≤n≤N
{Sn}.

In Figure 7, as a result of the statement f (x) and f̂k, it can be confirmed that the
randomly selected values of startup times of a given SA accumulate around 13:45 in the
range ±3σ (from 12:30 to 15:00).
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Figure 7. PDF f (x) and estimator PDF f̂k for the interval from 12:30 to 15:00.

The verification for starting individual SAs was repeated for a different time range.
Again, it was assumed that σ would correspond to 13:45. The range ±3σ was changed
this time. The time range during which SAs could be run was reduced. The range is from
−3σ = 12: 30 to +3σ = 14:00. Figure 8 shows a histogram of the times obtained when SAs
could be run.
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Figure 8. Histogram of the distribution of times for the interval from 12:30 to 14:00.
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Based on the results shown in the histogram (Figure 8), it is unequivocally confirmed
that the right-hand range was changed when SAs could be run. As before, the correctness
of the obtained results was verified on the basis of the PDF analysis f (x) (10) and the PDF
estimator f̂k (11). The results are presented in Figure 9.
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Figure 9. PDF f (x) and estimator PDF f̂k for the interval from 12:30 to 14:00.

By conducting an analysis of f (x) and f̂k from Figure 9, it can be stated that the
narrowing of the ranges (on the right) did not adversely affect the randomized values of
the activation times of a given SA. SAs are usually run at 13:45 in the range ±3σ from
−3σ = 12:30 until this time +3σ = 14:00.

The developed solution of differentiating the times when a given SA would be ac-
tivated is important in reflecting the behavior in static households for which the EEM
algorithm will be used. For example, Figure 10 shows a diagram of the schedule of air
conditioners in 1000 households.

The differentiation of start-up times for air conditioners (Figure 10) gives an oppor-
tunity to approximate the behavior in typical statistical households. In this case, the data
analysis approximates the pattern of behavior of users who, due to e.g., temperature, will
statistically want to use air conditioning in similar time ranges. A complete summary of
the SA usage pattern in the assumed simulation result is presented in Figure 11.

In the adopted schedule (Figure 11) assumptions were made to approximate the
behavior in typical households. It is noticeable that household refrigerators are used all
day long. There are also patterns resulting from the desire to use hot water from the boiler.
Activities related to daily tasks, such as cooking, cleaning, etc., were also introduced. Based
on the adopted schedule (Figure 11), simulation research was carried out. The test results
are presented in Figure 12.
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Figure 10. Air conditioner usage schedule.

Figure 11. SA usage schedule.
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Figure 12. Energy consumption levels for different voltage ranges.

Figure 12 summarizes the total value of power consumed by 1000 households during
one day (∑ PHH) for four different variants. The first variant (∑ PNOM) concerns the situ-
ation when the EEM algorithm is not used, so the power values of individual SAs were
not modified. The next three variants concern the use of the EEM algorithm when the
fitness function (3) is used. The values marked with ∑ PULOW refer to the situation when
the EEM algorithm would increase the load in the DCD network due to the excessively low
voltage level UDCD. Similarly, the EEM algorithm reduced the load in the network due to
the excessively high value of UDCD. In the case ∑ PU230 , the task of the EEM algorithm was
to take into account the adjustment to the power generated from RESs (Figure 4). The use
of the EEM algorithm resulted in a balance between acting for the benefit of DCDs and the
comfort of users. When analyzing the data presented in the Figure 11, the value of UDCD is
adjusted based on the possibilities specified in pr.

The EEM algorithm modified the power settings of the SAs only when it was possible.
The priorities and the possibility of modifying the power settings of individual SAs are
taken into account. The biggest changes in power settings were made between 12:30
and 14:30. Additionally, in Figure 12, changes of power settings are visible from 18:30
to 20:15. Each modification of the power settings of SAs by the EEM algorithm has a
direct impact on the total power consumed in the test households (∑ PHH). Noticeable
changes in energy consumption in households (∑ PHH) are the result of activities that are
performed statistically. In most cases, it will be activities related to cooking or cleaning.
Using an air conditioner also affects energy consumption. These activities are mainly the
most energy-intensive. The case marked as sum230 is not without significance for the
user’s comfort and expenses related to the purchase of energy. In this case, the availability
of energy from RESs shapes how SAs are used. In such cases, devices such as boilers are
activated. This is an example of storing the results of an electrical device.
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4. SA Functionality and User Behavior

SA devices should be characterized by the possibility of a flexible switching-on mo-
ment activated by a given control signal, e.g., from a DCD or another signal that triggers
their operation. In order to provide energy management services in the power grid, SAs
should be able to set parameters such as: priority of action, time period during which it
can be remotely activated and, if there is such a possibility, operating power. Devices that
can be freely turned-on or turned-off are heating/cooling devices. In these cases, it may be
possible to turn the device on/off at any point in time, as well as to set the operating power.
These devices include fans, air conditioners, electric heaters, boilers, etc. This group of
devices also includes all kinds of electric chargers, e.g., electric cars, other electric vehicles,
and other battery-powered devices. ESSs should also be included in this group of SAs.
They can be charged when there is energy production from RESs. When there is no RES
energy production, it should be possible to regulate the charging time and current so as to
minimize the impact on power system loading, of course taking into account the comfort of
use. On the other hand, ESSs can be discharged at a time of increased demand for electricity
by loads, when there is no energy from the power grid (power reduction on demand) [15].

Another group of SAs are those devices that operate continuously but can be deacti-
vated for a short time without detriment to the user’s comfort. These are devices such as a
refrigerator or a food freezer. Their operation (on/off) depends on the temperature change
set on the thermostat. Due to the large time constant of temperature changes, it is possible
to temporarily turn off the devices without significant increases in temperature inside them,
which may result in defrosting or spoiling the food [28]. Devices from this group will be
used to control the load reduction rather than to increase the load on the power line.

The third group of SAs will be devices whose operation cannot be interrupted af-
ter they are turned on due to interference with and poor results of the function per-
formed. This group includes appliances such as dishwashers, electric cookers, washing
machines, electric dryers, etc. Disabling them may result in poor quality of washing/dish-
washing/cooking etc. Often, interruption of the set operation scenario may result in higher
electricity consumption after lowering the operating parameters such as temperature of
washing/drying/cooking etc.

A separate group of SAs are devices that are used sporadically or depending on
need. These are devices such as irons, hair dryers, electric kettles, coffee makers, etc.
Their functionality should be set with a high priority for action, without the possibility of
deactivating them. Nevertheless, devices of this type can give information about the state
of the power system through some indicator or information on the operator panel. The
functionality of individual SAs is summarized in Table 2.

In addition to the availability of smart home devices with the possibility of flexible
control, in order to be able to effectively manage the electricity consumed in the home, the
behavior and habits of electricity users should also be changed [29]. SA users should set
their operation to when there is a need to increase the load on the power line, unless it
is related to a drastic reduction in their operating comfort. Whenever it is possible, the
settings of washing machines and dishwashers should be programmed for the period
when the local production from renewable energy sources is at a high level. Similarly, you
can change your eating habits for dinner. Often, these meals are prepared after people
return home from work. Nevertheless, some of the meals can be remotely set to cook/bake.
Then, after people come home from work, the dinner may be already cooked or partially
prepared. These activities will require users to be particularly careful in setting up the
devices for operation.
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Furthermore, some battery-powered devices can be connected and set to charge during
energy generation from RESs. The group of such devices includes: home laptops, tablets,
portable vacuum cleaners, etc. Electric vehicles should be charged at night, except for the
evening peak load of the system. The exception will be when the user defines that he needs
the availability of a charged electric vehicle at a designated time. Another change in the
habits of electricity users is, for example, ironing clothes, which can be moved to a day
when the user is not at work. Of course, this behavior makes sense if there will be energy
generation from PV systems on that day. Ironing clothes before going to work increases the
morning peak load on the power line.

It is not possible, in a short chapter, to indicate all the functionalities of SAs and
changes in the behavior of electricity users. Nevertheless, the description indicates that the
use of electricity in the future will involve the intelligent use of home appliances, especially
when there is a shortage of power in the electricity system during peak demand and at
night. High energy generation from PV systems during the day will imply the problem of
excess energy in the system, which must either be stored (expensive solution) or consumed
(change in energy use).

5. Experimental Results

Performing full-scale research on a network with available SAs is currently not feasible.
Therefore, the article presents simplified results of experimental tests with simulation of
SA load changes. The proposed EEM algorithm was implemented in the Programmable
AC Load 3091LD [30], while the measurements were made using the HIOKI PW3337
Power Meter [31] (Figure 13). These changes were then scaled and applied to the grid load
variability profile and the distributed generation profile from PV installations.

The Programmable
AC Load 3091LDPC with 

EEM algorithm

The HIOKI PW3337
Power Meter

Figure 13. Photo of the laboratory experimental setup.
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Experimental studies were conducted on a group of appliances limited to three SAs,
which included a washing machine, an electric boiler and an electric cooker. With the use
of the approach proposed in the article, a random load distribution was generated with the
use of the indicated SAs.

Each new activation of the algorithm enables the generation of other load data resulting
from the probability distribution. The research assumed that for each assay, 100 items of
the indicated SM are attached, with an assumed distribution. The proposed experimental
verification assumes that all 100 devices will always be in operation in the current study.
An example of the variability of a SA switching on based on a washing machine is shown
in Figure 14. The top of Figure 14 shows the load distribution for the operation of 1,
2, 5 and 10 washing machines, respectively, while at the bottom of Figure 14, the load
distribution for 50, 75 and 100 washing machines is shown. In further studies, a load
profile for 100 washing machines was adopted. In addition, similar load distributions were
generated for 100 water-heating electric boilers as well as 100 electric cookers.

Figure 14. Load profile for different number of washing machines.

Figure 15 shows an example of the transformer station load profile and the generation
of 500 kWp PV installations. Generation values are averaged over 15 min intervals (magenta
line at the top of Figure 15). These are the values for a solar day with good PV energy
generation. The typical load profile of the power grid is shown with the blue line at the top
of Figure 15. The morning and evening grid load peaks are visible. In the hours from about
8:00 to about 15:00, a decrease in the load is visible. At the same time, during these hours,
the largest generation profile for PV installations is observed.
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Figure 15. Experimental results: (top) load profile and generation profile of PV installations;
(middle) the power consumed by the SA devices as a result of the proposed EEM algorithm,
and an exemplary power profile shifted from the evening hours as a result of not switching on
the SA; (bottom) load profile after applying the proposed EEM algorithm and PV installation
generation profile.

The task of the algorithm was to shift the load for 100 SAs (washing machine, electric
cooker, electric boiler) from evening hours to hours with the highest PV energy generation.
The switching-on of the appropriate SAs took place depending on their suitability for the
user. The initiation of switching on a selected group of devices and the period of their
operation were defined in the tests. Throughout the period of operation of a given group of
devices, they were switched on with a given probability distribution. The switching-on of
other devices resulted in an increase in the instantaneous load power. Summing up the
power consumed in a given period, the energy consumed by a given group of devices was
calculated. Then, the power consumed by the given SA group was subtracted from the
evening load profile. The power profile that was subtracted was identical to the SA load
power profile. The timing of the evening hours during which the load power was shifted
was also defined in the proposed test. The data from the performed test are summarized
in Table 3. The washing machines were the first to start, as their operation does not have
to be coordinated with the user. The wash cycle can start and end at any time of the day.
Therefore, the operation of the washing machines was activated at the beginning of the day
when there was a large generation of energy from the PV plant. The power consumed by
the washing machines was shifted from the evening hours around 19:50 to 23:40. Other
devices that were switched on are electric boilers for heating domestic hot water. Due
to the good accumulation of heat energy, the heating of the water may be a little earlier
than the return of people from work/school. They were turned on from around 11:30 to
14:30. The corresponding power needed to heat the water was shifted from the afternoon
hours of 17:40 to 20:40. The last group of devices are electric cookers for preparing dinner.
Usually, dinner is prepared after the residents return home from 15:00 to 17:00. If there is a
possibility of cooking/baking some dishes, this activity can be performed earlier without
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the participation of people. The inclusion of smart electric cookers in our research was
initiated from 13:40 to 16:40. The power needed to prepare dinner was shifted from the
afternoon hours 15:30–18:30. The red color in the middle part of Figure 15 shows the power
of devices connected by the proposed EEM algorithm, while the green color shows one of
the possible reductions of the peak load. The lower diagram in Figure 15 shows the load
profile taking into account the EEM algorithm. There was an increase in load during higher
generation from PV and a reduction in power for the evening peak.

Table 3. Selected SA operating times and energy.

Device Name SA Operating Period Power Shifted from Hours Consumed/Shifted Energy [W]

washing machines 9:30–13:20 19:50–23:40 84,790
electric boilers 11:30–14:30 17:40–20:40 190,130
electric cookers 13:40–16:40 15:30–18:30 116,930

∑391,850

Figure 16 compares the load profile with and without the EEM algorithm. Additionally,
at the bottom of Figure 16, the surplus of energy production from PV generation, which
should be stored or sent to other loads, is presented. Without the proposed algorithm, the
unused energy is exactly 1,039,892 Wh (around 1 MWh), and with the EEM algorithm,
it is 648,042 Wh (around 0.65 MWh). The use of the proposed algorithm increased the
consumption of electricity during the high output from PV installations and at the same
time allowed for a reduction in the evening load on the line. Surplus energy produced from
PV sources should be sent to other consumers or stored in ESSs. In the proposed algorithm
and the analyzed test, a reduction of the volume of energy to be transmitted or stored by
391,850 Wh was obtained.

Figure 16. Experimental results: (top) load profile comparison with and without EEM algorithm;
(bottom) comparison of unused energy from PV installation.
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6. Conclusions

The use of RESs and temporary load changes (e.g., as a result of the peak demand
phenomenon) in Smart Grid (SG) networks require the use of energy management algo-
rithms. The lack of such algorithms would in the worst case result in unstable operation or
damage to the electric power system. This article proposes the use of the EEM algorithm
for energy management in a hierarchical control system with DCDs. We added the use of
the MQTT protocol to our considerations. Such an approach would effectively enable data
collection from DCDs. We proposed to use external and internal MQTT brokers to publish
data. The data are published with messages that are organized into topics. The topics can
contain plain text information. Structures in JavaScript Object Notation (JSON) format can
be stored in the text. This format is independent of the specific programming language.
This gives the possibility of scalability of the implemented system with new functionalities
that would result from the addition of additional IoT devices.

Earlier works [8] considered the use of the EEM algorithm in a single household. Here,
the application of the EEM algorithm in 1000 households during simulation studies was
outlined. In order to verify the correct operation of the EEM algorithm, test data were
developed from the example of a photovoltaic installation (Figure 4). The load profiles
of SA devices, which were used in the energy management process, were also developed
(Figure 5). Simulation research was carried out with additional assumptions about the
priorities for the use of SAs pr. Differentiation in the use of individual SAs was also
obtained on the basis of their parameter specificities and the probability of a given SA
occurrence (P(SA)) launched within a specified time in the ±3σ range. The correctness of
a SA’s usability being differentiated from others was confirmed by the determination of the
PDF f (x) (10) and the estimator PDF f̂k (11).

On the basis of the simulation results, it was determined how SAs are used in the
exemplary households (Figure 11). The simulation results are presented in Figure 12. In
this case, the results of the EEM algorithm for four scenarios are compared. The individual
variants reflect the situation where the EEM algorithm is not used, the EEM algorithm is
used to increase/decrease the load in the DCD network, or it is used to produce a balance
between acting for the benefit of DCDs and the comfort of users.

Experimental studies were carried out for the simplified case with the use of three
SAs—a washing machine, an electric boiler and an electric cooker. The algorithm was
implemented on an appropriate scale with an adjustable AC load. Then, the obtained
results, after scaling, were added/subtracted to/from the previously measured load profile
and compared with the generation profile of the PV installation. The obtained results show
that by using the proposed EEM algorithm, with the use of SAs, it is possible to change the
load profile of the power grid. The evening peak load on the line was reduced and the use
of energy produced from the PV installation increased. About 0.35 MWh of energy was
shifted using these three types of SA (Figure 16). This means that much less energy from
RESs needs to be stored in very expensive ESSs, or that such a volume of energy should
be sent to other loads. However, such activities will only be possible if the SAs have the
functionality described briefly in Section 4. Additionally, such changes will be related to
the change of habits of electricity users. They will have to consciously set the operation
of their home appliances to operate at times of high generation coming from renewable
energy, i.e., at times when there is a large supply of energy in the grid. They will also have
to avoid using their electrical devices (unless there is specific need) in times of heavy load
on the grid, when the energy supply in the grid is too small.

At the present stage of research, the biggest limitation for the EEM algorithm is the lack
of mass use of SAs in all households. Additionally, data privacy may be an important issue.
In this case, it may be about issues related to a lack of will to provide data on activities and
tasks carried out by members of society. A solution to this problem may be price incentives
encouraging the exchange and sharing of data from new smart devices (SAs).

In our further plans, we intend to design and implement selected types of SAs. Original
versions of SAs would be created. Additionally, we plan to implement a prototype of a
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complete, universal SG network system with SAs. The scope of this work would be the
analysis and verification of the EEM algorithm for the IoT concept in electronic device
systems. These devices could automatically communicate and exchange data over the
network without human intervention. We are also interested in studying the use of energy
storage and their inclusion in the EEM algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

DCD Distributed Control Devices
DER Distributed Energy Resources
DR Demand Response
DSO Distribution System Operator
EEM Elastic Energy Management
ESS Energy Storage Systems
GRASP Greedy Randomized Adaptive Search Procedure
IoT Internet of Things
JSON JavaScript Object Notation
MQTT Message Queue Telemetry Transport
NPS National Power Systems
PDF Probability Density Function
PV Photovoltaic Panels
RED II Renewable Energy Directive
RES Renewable Energy Sources
SA Smart Appliance
SG Smart Grid
∑ PHH sum of power consumed in test households during one day
∑ PU230 sum of power consumed when the EEM algorithm was to take into account the

adjustment to the power generated from RESs
∑ PUHIGH sum of power consumed when the EEM algorithm would decrease the load in the

DCD network
∑ PULOW sum of power consumed when the EEM algorithm would increase the load in the

DCD network
f (x) The Probability Density Function (PDF)
f̂k The estimator Probability Density Function (PDF)
FDCD Component part of the fitness function (FEEM) aimed at determining the influence of

DCD on the choice of power settings
FEEM The fitness function
FRES Component part of the fitness function (FEEM) aimed at determining the influence of

RESs on the choice of power settings
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FSA Component part of the fitness function (FEEM) aimed at determining the influence of
SAs on the choice of power settings

P A list of other power values for which a given SA could change depending on its
working conditions

P(SA) The probability of a given SA occurrence and its launch within a specified time
PNOM The nominal power with which the given SA works
pr SA priority
ts The time delay property of the given SA startup
UDCD DCD voltage
USEL_EEM1 Component part of the fitness function (FEEM) aimed at taking into account the

user’s comfort
USEL_EEM2 Component part of the fitness function (FEEM) aimed at taking into account the

DCD requirements
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Abstract: The rising demand for electricity, economic benefits, and environmental pressures related
to the use of fossil fuels are driving electricity generation mostly from renewable energy sources.
One of the main challenges in renewable energy generation is uncertainty involved in forecasting
because of the intermittent nature of renewable sources. The demand also varies according to the
time of day, the season, the location, the climate, and the availability of resources. Microgrids offer
a potential solution for the integration of small-scale renewable energy sources and loads along
with energy storage systems and other non-renewable sources. However, intermittent generation
and varying demand need to be matched to provide stable power to consumers. Therefore, it is
crucial to design an energy management system to effectively manage the energy sources and supply
loads for reliable and efficient operation. This paper reviews different techniques proposed in the
literature to achieve the objectives of a microgrid energy management system. The benefits of existing
energy management systems and their challenges are also discussed. The challenges associated with
uncertainties and methods to overcome them are critically reviewed.

Keywords: energy management; forecast uncertainties; microgrids; optimization; renewable
energy integrations

1. Introduction

In the last two decades, the electric power industry strived to increase the electricity
generation from renewable energy sources (RES) due to the environmental issues associated
with the use of fossil fuels and associated economic benefits. Being proven cost-effective
technologies, currently solar PV and wind are the fastest deployed RESs in power genera-
tion [1]. However, solar PV power generation is impacted by changing weather conditions
and passing cloud cover, while the amount of energy generated by wind varies with wind
speed. The intermittent nature of renewable energy resources complicates power system
operation and control. These uncertainties introduced to the generation of resources, in
addition to the varying electric demand, make energy management more challenging.

The microgrid (MG) concept, schematically illustrated in Figure 1, has become a
smart candidate for integrating RESs, as it can be operated as a single controllable system.
A microgrid is usually comprised of energy resources, energy storages, and loads and
operated within a clearly defined electrical boundary. The energy mix of a microgrid
usually includes solar PV and wind as primary sources of renewable energy, and a few
non-renewable resources, such as diesel generators, micro turbines, and gas turbines are
also used as backup energy resources. Various energy storages, such as batteries, super
capacitors, fuel cells, are considered to ensure the availability of power throughout the
entire time horizon [2–4].

Energies 2022, 15, 8525. https://doi.org/10.3390/10.3390/en15228525 https://www.mdpi.com/journal/energies
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Figure 1. Generalized structure of a microgrid.

A microgrid can be either connected to or isolated from the grid and operate with
full controllability. The output power from energy sources must, therefore, meet the
requirements of local loads in the islanded mode. In the grid-connected mode, the microgrid
shares the energy with the main grid (supply or absorb) via the point of common coupling
(PCC). Microgrids can be classified based on voltage, such as AC microgrids, DC microgrids,
and hybrid AC/DC microgrids. In AC microgrids, DC generating RES such as solar PV
and wind are connected via DC/AC power inverters. The DC microgrid is similar to its
AC counterpart, possessing a common DC bus. A hybrid microgrid is a combination of
both AC and DC microgrids, offering the best solution for grid integration of RES. Various
models and layouts are used to describe the microgrid operations in the literature [5].

A microgrid control system is responsible for ensuring desired voltages, currents,
and frequency through proper management and control, including performing economic
dispatch, balancing power supply and demand, demand side management, etc., under all
modes of microgrid operation. An energy management system (EMS) is usually designed
to optimize power generation to meet the demand at the minimum operational cost while
maintaining the integrity of the system. Among the various definitions, the IEC 61970
standard has defined EMS as “a computer system comprising a software platform provid-
ing basic support services and a set of applications providing the functionality needed for
the effective operation of electrical generation and transmission facilities so as to assure
adequate security of energy supply at minimum cost” [6]. Microgrid energy management
systems (MG EMS) also have the same aforementioned features to provide the required
functions to ensure safe and efficient operation. An energy management problem is typ-
ically formulated as an optimization problem with the objective of minimizing the total
cost of operation over a chosen time horizon (often over 24 h), subjected to operational
constraints. The optimization is based on the forecasted load variation. When intermittent
generation is involved, a resource forecast is also required to solve the optimization prob-
lem. The MG energy management is complicated by forecast uncertainties. The forecast
uncertainty, which is the deviation of actual load and renewable generation from their
respective forecast values, affects optimum scheduling and raises new challenges in micro-
grid systems with a high penetration of renewables. Therefore, uncertainty management
needs to be incorporated into the energy management problems.

Several comprehensive reviews related to MG EMS can be found in the literature, and
they address different aspects of energy management function. The review of microgrid
EMS presented in [7] is organized based on four categories: (1) the optimization techniques
employed, (2) the type of grid taken into consideration, (3) the mode of operation of the
microgrid, and (4) the software used as a platform for solving the EMS problems. Two major
categories of microgrid energy management strategies are discussed, including classical and
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intelligent methods for residential applications in [8]. A comparative and critical analysis
of the literature on decision-making strategies and their solution methods for MG EMSs
is presented in [6]. A comprehensive description of control and optimization methods to
identify the most common and effective methods for MG EMS is highlighted in [9]. In [10],
the review is conducted in terms of uncertainty modeling approaches, objective functions,
constraints, optimization techniques, and simulation and experiment results for EMSs.
However, the uncertainty issues are not comprehensively addressed. Recent techniques
to model the uncertainties from renewable energy sources and loads in microgrids are
reviewed in [11]. Methods of uncertainty management, parameter modelling, simulation
tools, and test system in unit commitment in power systems are discussed in [12]. Methods
for uncertainty modelling in power systems, comparison between these methods, strengths,
and weaknesses are studied in [13]. A standard classification of uncertainty handling
methods is proposed in [14], where the models are compared, and their strengths and
weaknesses are investigated.

Proper modelling and managing forecast uncertainties are an important aspect of an
efficient and effective energy management system for a microgrid with high penetration
of renewables. The main objective of this paper is to present a comparative review of
effective energy management methods used in microgrids along with forecast uncertainty
management. This study identifies the techniques used for managing forecast uncertainties
and modeling those uncertainties in microgrid systems. The paper is organized as follows:
the concept of a microgrid energy management system is discussed in Section 2. Energy
management problem formulation and solution approaches are discussed in Sections 3
and 4, respectively. Section 5 addresses the potential challenges caused by the uncertainties
from forecasted data along with managing methods in MG EMS. Section 6 discusses the
application of artificial intelligence (AI) and machine learning (ML) in MG EMS. The paper
concludes with future research opportunities related to microgrid energy management
under source and load uncertainties.

2. Microgrid Energy Management System (MG EMS): The Concept

A microgrid energy management system (MG EMS) performs a variety of functions for
the efficient and effective operation of the system. Energy management is an optimization
problem with the target of properly scheduling the short-term operation of production by
generators, storage, as well as controllable loads, to cover the system demand and minimize
the generation costs. The EMS generates a schedule of unit commitment and the optimized
output of each source considering the results of the optimization. Figure 2 illustrates the
overall outline of the MG EMS.

Figure 2. Energy management system outline.

Control Systems Used in EMS

The control system associated with MG EMS can be implemented using centralized,
decentralized, and hierarchical control methods [7,15,16]. In centralized control-based EMS,
a single central controller that receives all the information, such as RES energy generation,

173



Energies 2022, 15, 8525

load profile, market price, weather conditions, etc., is used. Based on the inputs, a central
controller decides the optimum microgrid energy schedule and then sends these decisions
to all local controllers. The basic structure of the centralized control is shown in Figure 3.
However, the failure of the central control could cause the entire system to fail. Unlike
centralized control-based EMS, in decentralized control shown in Figure 4, a few local
connections are needed, and only local measurements are used to make control decisions.

Figure 3. Centralized control structure.

Figure 4. Decentralized control structure.

Hierarchical control approaches are used to provide a compromise between totally
centralized and decentralized control structures, and they includes primary, secondary, and
tertiary controls. The primary control provides local voltage and current control, as well
as power sharing control. It generally follows the instructions of higher-level controllers.
The secondary control is responsible for the power management of the system. It is also
used for microgrid synchronization to the main grid when switching from islanded to grid
connected mode. Tertiary control is used to control the power flow. It can also be used
for other objectives, such as islanding detection. The hierarchical control approach is the
most widely used conventional method, and its objective is to enhance the efficiency and
effectiveness of microgrid operation [17]. However, hierarchical control is challenging with
the consideration of the intermittency of RES. Recent studies have extensively focused on
hierarchical control approaches to improve the energy management aspects of microgrid
systems. A typical hierarchical control scheme is illustrated in Figure 5.
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Figure 5. Hierarchical control.

Table 1 summarizes the features, advantages, and disadvantages of implementing
EMS based on different control aspects.

Table 1. Comparison of control methods used in EMS.

Features Advantages Disadvantages

C
en

tr
al

iz
ed

co
nt

ro
l

Centralized control has complete
knowledge of the entire system and is in
charge of ensuring its optimal operation.

It provides wide control over the entire system.
Established control approach.

Simple architecture.
Easy to implement and maintain.

It ensures optimal decision.

It requires a high performance
computing unit and

communication network.
The failure of central control could

cause the entire system to fail.
Computational complexity is high.

Low flexibility.

D
ec

en
tr

al
iz

ed
co

nt
ro

l

Functions provided by centralized
control are realized

in a decentralized way.
Local decisions contribute to achieving

the goal.

It does not require a high performance computing
unit and a high-level connectivity.

Easy realization of plug-and-play functionality.

It requires an effective method to
ensure corporation among

local controllers.
Low performance compared to
centralized control due to low
response time and incomplete

information about the total microgrid
system installation.

High implementation complexity.

H
ie

ra
rc

hi
ca

lc
on

tr
ol

Ba
se

d
m

et
ho

ds Each level provides supervisory control
over lower-level systems.

Three layers: tertiary, secondary, and
primary control layers.

The bandwidths of different control
levels are separated.

Combining the centralized and
decentralized controllers.

Higher levels attempt to optimize the
microgrid operation.

Local controls regulate the voltage and current.
It simplifies modelling and analysis of

microgrid systems.

Proper coordination of all three
layers is required.

3. Microgrid Energy Management: Problem Formulation

Microgrid energy management is used to either minimize or maximize an objective or
set of objectives while ensuring the constraints of individual units and the system as a whole.
These objectives are quantitative in nature and usually include cost reduction, emission
reduction, increased renewable energy integration, etc. The associated constraints include
power balance, individual unit ratings, charge and discharge rates of ESS, maximum and
minimum limits of the state of charge (SOC) of ESS, power import and export limits, and
other technical constraints of the microgrid. Most of the existing literature focuses on
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microgrid cost minimization in a single-objective format. The considered cost factors are
related to fuel, start-up, shut-down, maintenance, degradation, utility purchases, etc. When
several objectives are optimized, the optimization framework is formulated in a multi-
objective framework. In such cases, each objective is assigned a weighting factor. These
weighting factors are usually assigned based on the significance of individual objectives in
relation to the final objective function.

Various solving techniques, such as mixed integer linear and non-linear programming
(MILP and MINLP) methods, heuristic optimization methods, etc. are used to solve
the optimization problem, sometimes together with rule-based and fuzzy logic control
methods to simplify the problem. These optimization strategies use various optimization
time windows (horizon) on different time scales. A suitable selection is used to improve
the energy management system. Recently, the rolling horizon is considered to reduce the
impact of uncertainties from the renewable energy output and load forecasting.

The design of an EMS for a microgrid includes the task of the mathematical formulation
of objective functions and constraints, selection of the optimization time horizon and the
time step, as well as choosing an optimization technique to solve the problem.

The typical mathematical representation of the EMS problem is shown below:
Objective function:
Minimize the total cost of the microgrid operation;

• Operational cost = fuel cost + maintenance cost + startup cost of the thermal unit + shutdown
cost of the thermal unit + cost of buying and selling power to the main grid + load
shedding penalty cost + losses cost

• Environmental cost = carbon emission + penalties for emissions
• Energy storage cost = charging cost + discharging cost + degradation cost
• Constraints:
• Power balance: load demand at each time must be equal to the summation of power

from microgrid resources and receiving/sending power from the main grid.
• Emission constraints: emissions caused by each fossil-fueled thermal generators cannot

exceed the maximum limits at each time.
• Capacity limits: each RESs, ESS, and interconnection has a maximum and minimum

capacity during the operating mode.
• Limit of ESS: charging and discharging power rates for batteries during operation

mode and the operating SOC range must be limited as it may affect battery life time.
• Operating reserve: extra storage and generation capacity
• Generator start/stop limits: the number of generator starts/stops cannot exceed a

certain number.
• Ramp rate power limit: the maximum power fluctuation of each unit is defined.

System variables:

• Load profile: the demand forecast varies according to time, geographical location,
season, weather, and other factors.

• PV and wind sources: the wind and PV power availability depends on wind speed fore-
casts and solar irradiation forecasts, respectively. Seasonal and local weather impacts
these forecasts, and there is always some uncertainty associated with the forecasts.

• Electricity price: it is related to the price of the buying/selling power to the main grid.
Prices may be time-sensitive.

The energy management problem in a microgrid becomes a mono objective when a
single cost function is presented. The problem becomes multiple objectives when it simul-
taneously presents a solution to the competing technical, economic, and environmental
problems. The weighting coefficients of each function must be properly defined when
multiple objectives, such as operational cost minimization, emission reduction, and other
objectives, are taken into account for the optimization problem. Effectively setting the
weighting factors of the objective function is still being researched.
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In addition to the typical objectives and constraints, there are other elements that
needs to be incorporated into the MG EMS. Some such aspects include real-time or time-
varying electricity tariffs and demand response, which add further benefits for both energy
providers and consumers. From the consumer perspective, consumer comfort and a prof-
itable electricity bill are important considerations. From the energy providers’ perspective,
efficient load profile reshaping is essential. Techniques such as peak clipping, valley filling,
and load shifting can be employed to successfully execute the reshaping of the load profile
while considering factors such as cost, dependability, control strategies, targeted customers,
and supporting infrastructure [18]. The impact of electric vehicles (EVs) is an emerging
factor because the use of EVs is expected to significantly increase in the next decade, causing
a major increase in demand and demand pattern. Energy storage available in EV batteries
can be used in the MG EMS with proper infrastructure for EV charging. Consumer comfort
maximization can be defined as one of the objective functions in the formulation of the MG
energy management problem, which includes demand response and EV energy storage.
However, it makes optimization tasks computationally complex. The proposed method
in [19] ensures customer satisfaction by optimal allocation of demand in a distribution
feeder using autonomous decision-making entities.

4. Microgrid Energy Management: Solution Approaches

The selection of EMS methods depends on the microgrid system and the requirements.
The solution methods for energy management problems can be classified in various ways.
In this paper, those EMS solution methods are classified as shown in Figure 6.

Figure 6. Classification of microgrid EMS methods.

4.1. Mixed Integer Linear and Non-Linear Programming Methods

Mixed integer programming methods deal with optimization problems where vari-
ables can be discrete and continuous. Therefore, the methods fit perfectly for applications
in microgrid EMS. In mixed integer linear programming (MILP) based EMS, mathematical
models of microgrid components are developed using MILP to optimize the cost function.
The MILP model considers wind speed and irradiation, loads, and cost parameters of the
components. For MILP methods, the objective function and constraints are linear, but for
mixed integer non-linear programming (MINLP) methods, they are non-linear. Typically,
MINLP models make use of approximations to obtain a linear model. In MINLP models,
continuous variables are the power imported/exported at PCC, the power generation from
available generators, and the power injection of the ESS. When considering the power
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flow equation of microgrids, they introduce non-linearity and complexity to the energy
management problem and increase the computational burden.

In [20], considering a distribution network with radial structure, power flow of a line
(referred to as Sij(t)) is expressed using Equation (1), which shows non-linearity.

Sij(t) = Vi(t) I∗ij(t) (1)

Vi (t)�2 × Iij (t)�2 = Pij
2 + Qij

2 (2)

Thus, voltage is considered equal to a constant value as voltage changes are very small.
With the said assumption, a linear approximation of the current in power flow is calculated
using the piecewise linearization method. In a similar manner, nonlinear constraints and
equations are converted into linear form to simplify.

Mixed integer linear and non-linear optimizers are often used because of their high
efficiency and modelling flexibility. However, complex problems with a large number of
variables take a long time to calculate. The MILP and MINLP-based EMS are applied in a
variety of ways in the reported literature [21,22].

4.2. Heuristic Optimization Methods

There are many heuristic optimization methods that can be applied to the MG EMS
optimization problem. Among them, the genetic algorithm (GA) and particle swarm
optimization (PSO) are used frequently to solve energy management optimization prob-
lems. Similar techniques, such as the ant colony algorithm [23], Lagrange algorithm [24],
crow search algorithm [25], and simulated annealing [26] are also utilized for microgrid
energy management.

a. Genetic Algorithm

The genetic algorithm (GA) is a frequently used heuristic optimization method to solve
optimization problems, and it has the capacity to optimize multi-dimensional problems.
The genetic algorithm is developed through various stages, as shown in Figure 7. The GA
repeatedly modifies a population of individual solutions. Individuals can be defined as
arrays, trees, or lists of variable values to be optimized. Solutions are typically represented
as strings of zeros and ones in binary, but other representations are also available. In a
binary implementation of genetic algorithms, GA starts from a population of randomly
created individuals. The objective function of every individual in a population will be
evaluated and ranked. Selection determines which ones are to be selected from the current
population and allowed to reproduce. There are various approaches to implementing selec-
tion in GA, such as roulette selection, tournament selection, stochastic universal selection,
and Boltzmann selection. Frequently used genetic operators are crossover and mutation.
Crossover is a recombination operator by swapping the values between two strings to
create new solutions from the existing population. There are various crossover methods,
such as uniform crossover, arithmetic crossover, permutation encoding crossover, value en-
coding crossover, tree encoding crossover etc., being applied based on the application [27].
A new population is full of individuals after selection and crossover. Some are formed by
crossover, while others are directly copied. Mutation is the change of a small amount or
the replacement of a value with a new one in order to ensure genetic variability among the
population. The probability of a mutation is typically 1 to 2%.
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Figure 7. Basic GA algorithm for MG EMS.

In order to solve the optimization problem for MG EMS, GA considers the system
variables, constraints, parameters, and the objective function, as shown in Figure 7. The
GA is developed to schedule the generators, battery storage systems, and controllable
loads. The total running cost, microgrid emission, and other objectives are optimized while
satisfying all equality and inequality requirements using a suitable ON or OFF state. The
GA optimizes with continuous or discrete variables, and it can also optimize variables in
an extremely complex problem. It can handle a large number of variables. However, the
challenges associated with GA are the long calculation time involved and the possibility of
ending up with one or more solutions. Each run could produce a different result. In the
case of EMS in microgrids, it is challenging to find the optimal solution through GA.

b. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based heuristic optimization
technique and can be deployed in a wide range of microgrid-related applications. Particles
use both the personal best solution and the best solution found by the swarm to collectively
move towards the optimum. Figure 8 illustrates the typical PSO algorithm used for
microgrid energy management applications.

The system starts with a population of random solutions and then updates generation
to search for an optimum solution. It can handle a wide range of problems while achieving
a set of goals, such as minimizing energy costs and reducing emissions. It is feasible to
update the PSO objective function at a smaller interval. In PSO methods, it is important
to define parameters such as population size, maximum number of iterations, etc. The
initial particles are selected randomly between the minimum and maximum values of the
variables. Each particle is evaluated using the objective function to find the best solution.
The performance of PSO depends on the selection of suitable PSO parameters and stopping
criteria. The main advantage of PSO-based EMS is its fast convergence time, which is
essential for real-time energy management applications. The PSO is also used by many
researchers to solve microgrid optimal sizing problems [28,29].
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Figure 8. Typical PSO algorithm.

4.3. Rule-Based Methods

With the rule-based methods, the inter-dependability of the resources of the microgrid
are defined using predefined logical rules. If-then-else rules are applied for assigning
values to binary decision variables used in the optimization procedure of the microgrid
operation. Load, PV generation, and wind generation values are not affected by values
from the present or the past. However, changes in battery storage have an impact on
future schedules. Rule-based algorithms can also be used to develop a method for BESS
scheduling to determine the optimal charge/discharge of the battery. Such methods use
the energy generated by RESs and the battery SOC level to determine whether the battery
energy storage system (BESS) should be charged or discharged. Rules also ensure that SOC
is kept under allowable levels while performing perfect dispatch. The analysis takes into
account a variety of operational modes. For example, in the case of islanded microgrids,
if the output power from renewable resources (solar and wind) is higher than the power
demand, the excess power will be used to charge the battery storage up to its maximum
capacity. If the generation is higher than the demand and the battery is at its maximum
capacity, the remaining power will be discarded to a dump load. Similarly, rules are
developed for the optimum operation of microgrid systems. The rule-based method is easy
to execute on various storage types once the essential rules have been established [30,31].
The rule-based method allows for a significant reduction in computational complexity.

4.4. Fuzzy Logic Control Methods

Figure 9 shows the block diagram of a fuzzy logic system. The fuzzy logic controller
(FLC) contains mainly three parts: the fuzzifier, the fuzzy interface, and the defuzzifier.
The fuzzifer converts the input into a linguistic variable, and this process is referred to as
fuzzification. The defuzzifier returns the output by converting from linguistic variable, and
the process is called defuzzification. The interface system is a rule-based system. Fuzzy
controllers do not require complex mathematical modelling.
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Figure 9. Fuzzy logic system.

Fuzzy logic-based energy management is used for various objectives. Fuzzy logic
controller generates the output whether the battery should be charged or discharged, as
well as the charging or discharging rates. The fuzzy logic control is designed to meet energy
demands and maintain the SOC of the energy storage level within predefined margins
while attempting to optimize the utilization cost and lifetime of the ESS [32]. The fuzzy
controller is also used to find the status of the power received or supplied from the grid. An
optimal fuzzy-based EMS for a residential grid-connected microgrid is used to minimize
grid fluctuation and to preserve the storage system lifetime in [33].

In microgrid operations, hybridization of fuzzy logic with other methods such as
GA and PSO are used. The problem of energy flow management system optimization
in a microgrid is investigated using a fuzzy-GA paradigm in [34]. A hybrid approach
combining a fuzzy approach and a neural network is used in EMS presented in [35].

The advantages and disadvantages of the energy management solution approaches
discussed above are summarized in Table 2.

Table 2. Advantages and disadvantages of optimization techniques.

Techniques Advantages Disadvantages

Mixed integer linear and non-linear
programming methods

Availability of efficient software packages.
Most flexible modelling.

Optimal solution.
Computational complexity.

Generic algorithm
Possibility to use complex formulation.

It can handle many objectives and constraints.
Widely used in many fields.

GA is unable to ensure mathematical
optimality in its output.

Particle swarm optimization (PSO)

It has fast convergence time.
Commonly used in the sizing

of distributed generators.
It can handle a wide range of problems while

achieving a set of goals.

PSO is unable to ensure mathematical
optimality in its output.

Rule-based methods

The approach allows for a significant
reduction in computational complexity.

The method is easy to execute on various
storage types once the essential rules have

been established.

Solution could be a sub-optimal solution.

Fuzzy logic control methods
Gain more flexibility.

It can be easily incorporated with
other methods.

Solution could be a sub-optimal solution.
High-quality processing unit is required.

5. Uncertainties in Microgrid Energy Management

Power generation from the RESs offers an intermittent and uncertain power supply.
Solar and wind are the most popular and widely used resources among all the renewable
energy resources used in microgrid applications. However, the intermittent nature of
solar and wind energy is always a challenge. Solar energy is only available during the
day, and it also varies with other factors such as cloud movements and shadow. Wind
patterns change according to the weather. Consumer loads connected to the grid are also
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continuously varying, and these variations can become more complex with the introduction
of demand response and EV charging. The high intermittency leads to an uncertain
operational environment for microgrids. Therefore, one of the main challenges is to handle
the uncertainty of renewable energy generation and power demand.

In this regard, it is important to properly model the uncertainties in the parameters
and components. Researchers consider a variety of sources of uncertainty, such as wind
power, load demand, electricity prices, PV generation, EV demand, etc. [36]. In MG EMS,
the uncertainty from renewable energy sources and load demand are important factors. To
address uncertainty management, modelling the uncertainty of renewable sources and load
becomes the consequential issue. Accurate modelling has a high effect on the operational
cost of a microgrid. Modelling uncertainty is always a challenge; hence, several approaches
are employed to model these uncertainties with respect to their applications. This section
provides an overview of all recent uncertainty modeling approaches used by an EMS.

a. Monte Carlo Simulation (MCS)

The MCS is used to calculate the probabilities of various outcomes in a process that
is difficult to forecast because it contains random variables. This method can accurately
handle the uncertainty variable. For each input parameter, a sample is generated using
its probability density function (PDF), and the sample generation process is repeated for
many iterations. Therefore, the method is computationally complex. Most of the studies
are focused on developing uncertainty models for PV, wind power, and load demand [12].

b. Worst Case Scenario Method

Even though it is not a new concept, the worst-case scenario approach is frequently
used in recent studies. The worst-case scenario approach restricts the range of the random
variables to a set of predetermined uncertainty with defined upper and lower boundaries.
Prediction intervals (PIs) are calculated to evaluate the measure of prediction uncertainty.
Upper and lower limits are used to define PIs [11].

c. Point Estimate Method (PEM)

The PEM is one of the approximate methods with a low computation burden. The
method focuses the statistical data of a random variable on a specific number (K) of points
in order to create a connection between input and output variables. Solar radiation and
wind speed are treated as two random variables, and the function is developed using
power flow equations in [37]. In [38], PEM is used to determine power exchanges between
MGs and evaluates the optimal solutions in terms of accuracy and computational effort.

d. Fuzzy Method

Each uncertain parameter can be assigned a degree of membership based on fuzzy
theory by using membership functions. After a suitable fuzzy membership function is
applied to each parameter, the defuzzification will be carried out. The fuzzy method is
used to model the uncertainty in forecasting day-head demand in [39]. Although uncer-
tainty is handled in fuzzy systems, the issue of randomness is not properly accounted for.
Approaches, such as probabilistic fuzzy systems, have been introduced for overcoming
this issue [18].

e. Autoregressive Moving Average

It is another model used in recent days to model uncertainties from load demand and
wind power. The autoregressive moving average model is a combination of auto regression
and moving average. This method can be used to forecast future estimates of a variable if
historical data of the variable with uncertainty is presented by a time series, such as load
demand, wind, etc. A significant amount of historical data, as well as data mining and
analysis, are required for developing proper autoregressive models, and the predictions
with these models are valid only over a short horizon [11].
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Other methods, such as kernel density estimation, hyper-heuristics, and two stage
scheduling strategy, are also used to model these uncertainties. Each model has its own
advantages and disadvantages that determine its application.

There are various approaches that could be used to deal with different sources of
uncertainty. Generally, optimization under uncertainties can be broadly categorized as
stochastic programming [40,41], robust optimization [42,43], and other methods, such
as model predictive control and chance constrained programming. These methods are
implemented as either a single-layered or multi-layered framework.

5.1. Stochastic Optimization

In stochastic programming methods, uncertain parameters are described using proba-
bilistic distributions. Stochastic optimization, which is based on statistical data, is widely
used for energy scheduling under uncertainty due to its effective performance in the
case of uncertainties [44]. Stochastic programming can be classified into four main meth-
ods, including the three-point estimating technique, the Monte Carlo simulation-based
method (MCS), the scenario-based modelling approach, and the approximate analytical
method. The scenario-based modelling approach is utilized to handle the uncertainties
from wind in [45–47].

However, there are significant limitations to stochastic optimization in some situations,
such as the large presence of uncertain data, dependence between uncertain parameters,
and a lack of historical data. The computational complexity of the model also increases
along with its scale. Stochastic programming methods may lead to an infeasible solution
due to the constrained violation [12].

5.2. Robust Optimization (RO)

Robust optimization (RO) is an interval-based approach, and RO methods do not
require prior knowledge of the probability distribution of the uncertain parameter. The
RO method addresses data uncertainty by considering a single worst-case scenario over
an uncertainty set, and it can improve the performance of MG EMS even under the lack
of full information on the nature of uncertainty. The typical extreme cases in real-world
applications can be included in the uncertainty set in the RO methods. Robust optimiza-
tion has significantly reduced the computational complexity compared with stochastic
approaches [48]. The RO method has received attention for being able to handle the uncer-
tainty optimization problem. However, complexities in deriving the uncertainty set can
lead to a computationally intractable solution. Additionally, focusing on the worst-case
scenario can lead to a more conservative resource-handling option degrading the benefits
achievable through an optimized solution.

A two-stage robust optimization approach is proposed for the islanded microgrid
system to reduce the uncertainty impacts from energy sources and loads in [49]. Uncertain
parameters were used to classify decision variables for two stages: (1) the day ahead stage
decision (pre-scheduling) and (2) the real-time stage decision (rescheduling). This approach
is moderately effective in reducing the impact of uncertain factors.

5.3. Chance Constrained Programming (CCP)

The chance constrained programming (CCP) approach is also used to solve energy
management problems under uncertainties. It is a mathematical program containing chance
constraints which only needs to be satisfied with a probability. The requirement for power
balance in the microgrid is formulated as chance constraints. Approximated methods have
been commonly employed to solve the CCP. In general, CCP is employed only for special
cases due to being computationally challenging, conservative, or incapable of guaranteeing
the satisfaction of chance constraints [50].
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5.4. Model Predictive Control

The traditional deterministic frameworks have a feedback mechanism to adjust the
initial dispatch solution to compensate for variations in the uncertain decision variables.
Among them, model predictive control (MPC) is gaining considerable attention in microgrid
systems as a promising control scheme with several advantages, such as the possibility
of incorporating optimization techniques and the ability to integrate the constraints and
disturbances in forecasted control decisions. The MPC is a discrete time control scheme
in which each time step solves an open-loop optimal control problem for a chosen control
horizon. Figure 10 illustrates the block diagram of a typical MPC structure.

Figure 10. Basic structure of MPC.

Model predictive control is usually implemented by developing a model with relevant
and controllable variables and then minimizing a cost function between reference values
and candidate values of controlled variables. The minimal difference to actuate the next
period is chosen. The general MPC-based optimization process is shown in Figure 11.

Figure 11. MPC-based optimization process.

The MPC framework models for microgrids have advantages, as they use the dy-
namic behavior of microgrid components, particularly the battery charge and discharge
models [51]. Typical control methods are no longer effective against fluctuations, but MPC
has received more attention due to its flexibility to include constraints and non-linearity [52].
Another advantage of MPC over other control techniques is its simple expansion to the
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multivariable case. The MPC method can provide a receding prediction horizon with a
feedback mechanism that also effectively reduces the impacts of uncertainties [53]. Model
predictive control is typically used for MG EMS with a prediction horizon of 24 h, con-
sidering the daily periodicity of generation and load profiles. The performance of MPC
is affected by the selection of the prediction horizon. One of the main drawbacks of MPC
is that computational complexity increases with a larger prediction horizon [54]. With
significant development in recent years, MPC with its variations is used at different levels.

A model predictive control-based energy management is proposed in [55] to provide
an economically optimal operation, and the system is represented by a linear invariant
discrete time model. In this study, the minimization of the cost of energy consumed from
the main grid is considered to be an optimization objective. When renewable generation is
insufficient to supply demand, the battery will start supplying the load. If this energy also
becomes insufficient, EMS has to acquire energy from the main grid. Another economic
MPC is proposed in order to achieve optimal economic performance in terms of the
operational cost of a microgrid in [56].

A MPC rolling horizon approach for the optimal operation of a microgrid for residen-
tial network is proposed in [57]. The MPC problem is formulated using a MILP model used
to optimize the total cost of the microgrid. The objective of the problem is to minimize the
total cost for the DER system over the prediction horizon. Heat and electricity storage terms
are additionally included in the objective function. The overall planning and performance
could have been improved if the uncertainty on solar irradiance and energy demands was
considered in the modelling of the network.

The conventional MPC approach, with techniques such as robust optimization and
stochastic optimization methods, directly incorporate uncertainty in the optimization
models to achieve effective and efficient operation of microgrids.

Stochastic MPC methods are used to take uncertainty due to the stochastic behavior
of renewable energy generation and demand into consideration. A two-stage stochastic
programming-based MPC strategy for microgrid energy management under uncertainties
is proposed in [45]. Stochastic programming is used for the inclusion of uncertainties in
the optimization model. The MPC can effectively compensate for the disturbances in load
profile and power delivered from renewable sources that are connected to the AC microgrid
through a feedback mechanism. The cost of the microgrid is commonly formulated using
start-up/shut down costs, the fuel cost of diesel generators, the degradation cost of a
battery, and the power purchase cost from the utility grid. Here, uncertainties of solar PV,
wind, and load are also considered in the formulation of microgrid cost. In the first stage,
decisions are made before the actual realization of available uncertainty. In the second
stage, correction decisions are made after a particular realization.

Sliding mode control (SMC) is a reliable control technique that can address uncer-
tainties. The combination of MPC and SMC can be applied for the effective and efficient
operation of microgrids. A suboptimal second-order SMC is designed as a low-level
controller to track the power references generated by a high-level MPC component for
EMS [58]. Nonlinear MPC is implemented using nonlinear models that include non-linear
constraints on the state and control variables, as well as the cost functions. The nonlin-
ear MPC type control is implemented for energy management of the batteries and load
shedding purposes in [59].

The reviewed literature shows successful applications of using MPC for handling
uncertainties related to microgrid energy management.

Researchers in this field have been motivated by recent developments in machine
learning techniques to work on more realistic predictive strategies. The MPC is formulated
based on the predictions generated by the predictive model and possible desired targets.
The MPC performance is directly impacted by the modelling quality and accuracy of the
predictive model. This is one of the challenges when using the MPC scheme. When the
MPC strategy is used, the prediction method must be considered. Various methods, such
as physics-based models, the Markov chain, neural networks, the Kalman filter, etc., can be
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used for prediction. For example, in terms of Markov chain prediction, the future value de-
pends on the current value and the transition probabilistic matrix, which is calculated based
on a historical statistical data set. In real-time operation, actual measurements are continu-
ously updated. To predict load demands and renewable outputs, online learning Markov
chain prediction can be used. However, quite often, a physics-based model is needed
for repetitively predicting the MG system behavior. It constitutes high computational
complexity, depending on the type and complexity of the models used.

In MPC-based energy management problems, the design, arrangement, and allocation
of all the control objectives, along with the proper constraints, can reduce the computational
burden. Furthermore, the MPC-based energy management problem formulation can be
simplified by using methods such as fuzzy logic control, rule-based methods, PSO, etc.

The MPC optimization problems are resolved by moving the time horizon window
ahead. Once new predictions are available, the optimization problems can then be recalcu-
lated and resolved. The time horizon is often determined according to multiple factors. One
of the most challenging aspects of MPC is that it needs to deal with short sampling times
for the power electronic technology, and it also needs long-time horizons to improve the
robustness and accuracy of the model. Combining short and long-time horizons at different
stages is an approach used to obtain better system performance. Receding time horizon
methods are also found in recent research because they aid in dealing with uncertainty and
achieving effective performance [60].

Scalability is crucial to address the changing requirements when moving from indus-
trial plants to very large-scale systems with operational and managerial independence.
Distributed model predictive control (DMPC) [61] attempts to address this issue through
the development of multi-level, multi-scale models. The goal is to avoid redesigning the
overall energy management system (EMS) when the additional sources and storage are
connected. In DMPC, the power of each energy source is optimized using an individual
subsystem-based MPC to make the plug-and-play property easier to achieve and to reduce
the computational load [60].

DMPC could be a suitable strategy for large-scale systems to solve the resulting
economic optimization problem. Many researchers are focusing on using stochastic and dis-
tributed model predictive control techniques to optimize large-scale microgrid systems [59].
Another study, in [62], proposes fully distributed water-filling distributed algorithms that
scale to large-scale situations. A decentralized charging control is formulated for large
populations of plug-in EVs [63]. Approaches used to handle uncertainties in microgrid
system are summarized in Table 3.

Table 3. Approaches used to handle uncertainties in microgrid system.

Proposed Approach Modelling Uncertainty Uncertainty Handling Scalability Handling Possibility

Optimal probabilistic energy
management in a typical microgrid
based on robust optimization and

point estimate method [37]

Uncertainties of wind, solar, and load
are used.

PEM and RO are used. The data
determined from PEM are used in the

PSO-based energy management
algorithm. RO generates and transfers

the load demand scenarios to
the PSO algorithm.

The proposed algorithm is used in
order to perform an optimal operation
on a low voltage (LV) MG, including
renewables and conventional DGs, as

well as a battery bank.

Two-stage stochastic programming
based MPC strategy for microgrid

energy management under
uncertainties [45]

Load, PV, and wind uncertainties
are used.

Two stage scheduling strategy is used.
The first stage makes a decision before

the actual reality of the uncertainty
becomes available, and the second

stage makes a correction decision to
compensate for infeasibilities from

the first stage.

The proposed method combines the
advantages of both two-stage SP

and MPC.

A two-stage robust optimization
method based on the expected
scenario for islanded microgrid

energy management [50]

Uncertainties of wind, solar, and load
are considered.

Two stage scheduling strategy is used.
Prescheduling stage and rescheduling
stage are applied to reduce the impact

of uncertain factors.

To manage various constraints during
the optimization process and ensure
the feasibility of individuals in the

evolving population, a
constraint-handling technique

is developed.
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Table 3. Cont.

Proposed Approach Modelling Uncertainty Uncertainty Handling Scalability Handling Possibility

Optimal operation of a smart
residential microgrid based on model

predictive control by considering
uncertainties and storage impacts [59]

Uncertainties from solar, wind, load,
and electricity price are used.

The MILP problem is incorporated
into a MPC framework for

compensating the
potential disturbances.

Stochastic and distributed model
predictive control techniques can be

used to optimize large-scale
microgrid systems.

Distributed MPC for grid-connected
microgrid power management [60]

Uncertainty related to the availability
wind and load are considered.

The MPC-based EMS is implemented
under a distributed framework.

Receding horizon methods are used to
mitigate uncertainties.

The optimization problem is
decomposed into several small-scale
nonlinear continuous optimization

problems and several integer
programming problems.

A two-layer stochastic MPC scheme
for microgrids [64]

Uncertainties from wind and PV
are considered.

Shrinking-horizon MPC is
implemented. A stochastic MPC runs

at a higher frequency at the lower
layer to compensate for uncertainties
and maintain the energy exchange as
close as to the desired value over each

sampling period.

Stochastic MPC is used with
high-level off-line

economic optimization.

Stochastic programming and market
equilibrium analysis of microgrid
energy management systems [65]

Load, PV, and wind uncertainties
are used.

Two-stage stochastic programming
model is used. In the first stage, the
decision for investment in microgrid
devices is deter-mined, and energy

management strategies are
determined in the second stage.

A general algebraic modeling system
is designed for solving large-scale,
complex optimization problems.

Energy management system for
hybrid PV-wind-battery microgrid
using convex programming, model

predictive and rolling horizon
predictive control with

experimental validation [66]

Uncertainties from solar, wind, load
and electricity price are used.

A rolling horizon predictive controller
with a MPC at the lower control layer

with a one-minute sampling time
reduces the impact of prediction and

model uncertainties.

A rolling-horizon predictive controller
does not require a complex

optimization process.

Analysis of robust optimization for
decentralized microgrid energy

management under uncertainty [67]

Uncertainty related to the availability
wind and load are considered.
Prediction intervals are used.

The impact of different levels of
uncertainty is evaluated.

Agent-based modelling (ABM) is used
to describe the system, with each

stakeholder modeled by
an individual agent.

Robust optimization for dynamic
economic dispatch under wind power

uncertainty with different levels of
uncertainty budget [68]

Wind uncertainties is used.
A robust optimization method with an

adjustable uncertainty budget with
different levels is proposed.

Constraint handling technique is also
proposed to handle various

constraints and ensure the feasibility
of individuals in the

evolutionary population.

Robust optimization of microgrid
based on renewable distributed power

generation and
load demand uncertainty [69]

Uncertainties of wind, solar, and load
are considered.

A two stage scheduling strategy is
used. Robust adjustment parameters
are optimized to make the microgrid

have a reasonable robustness.

The robustness of grid operation is
guaranteed by the proposed solution,
which is more in line with technical

realities and has better practical value.

6. Application of Artificial Intelligence and Machine Learning

The use of machine learning and data-driven techniques for MG energy management
is becoming increasingly popular due to the recent development of machine learning
(ML) and artificial intelligence (AI), as well as the availability of advanced processing
in modern control systems. For example, ML has been introduced as a methodology
either for energy management in microgrids or for forecasting weather conditions and
loads. A hybrid approach of a nonlinear MPC controller integrating machine learning
models is presented in [70]. A two-layer ensemble machine learning technique is used to
construct a data-driven multi-model wind forecasting system [71]. Utilizing the statistically
different characteristics of each machine learning algorithm is the focus of this two-layer
model. Additionally, many of the heuristic optimization techniques used in MG EMSs
are considered under the umbrella of AI. The opportunities for ML extend far beyond
forecasting, model improvement, and adaption.

7. Conclusions

The literature review highlighted energy management methods, modelling uncer-
tainties, and forecast uncertainty management in microgrids. The microgrid energy man-
agement systems are developed considering factors such as the operating mode, control
system, intermittent nature of renewable sources, economic and environmental aspects, and
other factors. Different approaches can be used to design microgrid energy management.
It is necessary to choose proper methods based on the required application. This paper
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reviewed recent energy management strategies for microgrids. Several EMS methods
were discussed, including MILP and MINLP methods, heuristic optimization methods,
rule-based methods, fuzzy logic control methods, MPC methods, and others based on
numerous studies. The suitable EMS method is determined by the microgrid system and
its requirements. The MILP methods deal with optimization problems when variables
may be either discrete or continuous. However, it takes a long time to calculate complex
problems with a large number of variables. The GA and PSO are frequently used to solve
heuristic optimization problems due to convenience in application to multidimensional
problems. Finding the optimal solution through GA is difficult. Fast convergence time,
which is necessary for real-time energy management applications, is the main advantage
of PSO-based EMS. Many researchers also use the PSO to address issues with microgrid
optimum sizing. Rule-based methods allow for a significant reduction in computational
complexity compared to other methods. Fuzzy logic control methods gain more flexibility,
and they can be easily incorporated with other methods.

It has been identified that the uncertainty present in microgrid systems must be consid-
ered for proper energy management. Recently, to model the uncertainty, the Monte Carlo
simulation, worst case scenario method, point estimate method, fuzzy method, and auto
regressive method were used. Few uncertainty modelling techniques depend on the latest
data recorded for future projection. Some uses present forecast errors. There is still a lot of
scope for the development of new techniques. Many approaches are used in the reviewed
research to overcome the uncertainty problem. Generally, uncertainty optimization can be
broadly categorized as stochastic programming, robust optimization, and other methods
that include MPC. Among those methods, MPC methods have gained more attention,
especially in the application of MG EMS because of its ability to manage future behavior as
well as the feedback mechanism. The feedback mechanism introduced through the MPC
partially compensates for the uncertainty associated with the microgrid system. To adopt
future power systems, MPC-based research and development must be established. The
MPC has been improved with multi levels and different time horizons, and it has been
incorporated into other methods to mitigate uncertainties and to improve performance.

Uncertainty may also result from stochastic electricity price fluctuations and demand
response. The MG EMS can be formulated to take into account such other sources of
uncertainty; however, when more factors are considered in the formulation of the problem,
it becomes more complex. Possible corrective measures to decrease this complexity require
more investigations.

The use of machine learning and data-driven techniques for MPC is becoming in-
creasingly popular due to the recent development of machine learning (ML) and artificial
intelligence (AI), as well as the availability of advanced processing in modern control
systems. There is great potential for applying machine learning (ML) to MG energy man-
agement for various tasks to improve solutions and computational efficiency.

This paper highlights the research areas in energy management, considering forecast un-
certainty from renewable sources and load in microgrid environment, for further investigation.
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Abbreviations

AC Alternative Current
AI Artificial Intelligence
BESS Battery Energy Storage System
CCP Change Constrained Programming
DC Direct Current
DER Distributed Energy Resources
EMS Energy Management System
ESS Energy Storage System
EV Electric Vehicles
FLC Fuzzy Logic Controller
GA Generic Algorithm
IEC International Electrotechnical Commission
MCS Monte Carlo Simulation
MG Microgrid
MG LC Microgrid Local Controller
MG EMS Microgrid Energy Management System
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
ML Machine Learning
MPC Model Predictive Control
PCC Point of Common Coupling
PDF Probability Density function
PEM Point Estimate Method
PI Prediction Interval
PSO Particle Swarm Optimization
PV Photo Voltaic
RES Renewable Energy Sources
RO Robust Optimization
SOC State of Charge
SOWGP Sparse Online Warped Gaussian Process
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Abstract: Nowadays, the Internet of Things (IoT) has a wide impact on many potential applications.
The impact of IoT on performing demand-side management (DSM) in an Indian educational institu-
tion has not been researched in depth before. In this research work, an IoT-enabled SDSMS (Smart
DSM System) has been deployed with the main objective of minimizing electricity tariff and also
to tweak the quality of user comfort. It can be feasible by prioritizing available renewable PV solar
energy during peak hours in an Indian educational institution. DSM has been performed using
day-ahead load shifting and rescheduling the different classes of institutional loads by applying
hybrid BPSOGSA (Binary Particle Swarm Optimization and Gravitational Search Algorithm). The
BPSOGSA performance on DSM has been evaluated based on electricity tariff, peak demand range,
and PAR and compared with the outcomes of both binary conventional algorithms BPSO and BGSA,
respectively. The proposed method enhances the degree of user comfort (DUC) by tripping the
operation of non-critical institutional loads. Simulation results obtained using MATLAB corroborate
that BPSOGSA outperforms both BPSO and BGSA under both DSM scenarios. Before DSM, Peak
demand, PAR, and Electricity tariffs were found to be 1855.47 kW, 4.1286, and $2030.67 while after
DSM, they reduced to 1502.24 kW, 3.263, and $1314.40 respectively. This indicates a 35.273% reduction
in electricity tariff, a 19.037% scale down in peak demand, and a 20.97% reduction in PAR. Finally, the
real-time IoT-based SDSMS hardware is implemented at the Renewable energy laboratory for real
monitoring of energy consumption via the Blynk application.

Keywords: DSM; BGSA; BPSO; smart grid; load categorizing; DUC; load shifting; Internet of Things

1. Introduction

The growing energy demand, the environmental pollution, and the attractive re-
newable policies lead consumers to adopt renewable energy sources. The emission of
greenhouse gases is reduced by prioritizing the utilization of available renewable resource
energies rather an the utility grid. Even though the reduction in the emission of green-
house gases is a major advantage, the interruption of Distributed Generations (DGs) makes
the reliability of the grid vulnerable. In the Smart Grid context, DSM technique is ex-
tremely promising technique to make the grid stable and dependable, limit consumer
energy usage and decrease power generation. The schematic approach of DSM evolves
around DR Demand Response programs, energy efficiency programs, and of all energy
conservation programs.

It is essential for the DSM framework to have the quality of mitigating certain crite-
ria such as electricity cost minimization, user comfort maximization, and peak demand
reduction. This can be achieved using various optimization algorithms. The literature
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section discusses different optimization algorithms that have been used to implement DSM.
Various optimization algorithms such as CS, GWO, PSO, SA, HS, DEA, ACO and GA
have been employed. All bio-inspired algorithms have their advantages and limitations.
The primitive goal of proposing hybrid forms of algorithms is to achieve better and most
promising results by combining appropriate conventional algorithms. BPSOGSA is a pro-
posed hybrid algorithm proposed which is calibrated as both BPSO and GSA for better
outcomes. The algorithm offers a decent improvement in the resolution of the intended
purpose to minimize electricity costs. The search process in the hybrid BPSOGSA algorithm
is supported by agents that replicate the characteristics of BGSA in the research phase and
BPSO in the utilization phase. The ultimate aim of hybridizing efficient GSA and PSO is
to incorporate the rationale of PSO and the exploration of GSA. Followed by that, distin-
guished performance of optimization algorithms entirely relies on the tuning algorithm
with respect to the system. Generally, it can be achieved by adopting various upgrad-
ing methods such as changing the search space, modifying convergence parameters, and
lastly, hybridizing the individual algorithms. From the mentioned means of improvisation,
hybridizing strengths of individual algorithms results in better performance.

In this extensive study, the hybrid BPSOGSA algorithm is employed in shifting
and scheduling the institutional loads, which are classified into two classes, namely, SLs
(Shiftable Loads) and NSLs (Non-Shiftable Loads). The hybrid BPSOGSA algorithm op-
timizes the operating period of each type of load by shifting the load to a period with a
lower electricity price. An integrated model that schedules loads using the traditional
Ant Colony Optimization (ACO) methodology to minimize overall journey length and
unpredictable demand has been used to estimate delivery routes and truck loads [1]. Four
heuristic-based strategies for optimum DG location and sizing were proposed by using
GSA, PSO, CSA, and GA based on loss minimization criteria [2]. A path for planning
and navigation has emerged using GSA, PSO, and Simulated Annealing (SA) algorithms
involving autonomous mobile robots [3]. A unique methodology by combining PSO with
adaptive GSA for improving FACTS devices to ensure voltage stability in power transmis-
sion networks has been established [4]. A unique GSA (Gravitational Search Algorithm)
has been evaluated as it is useful in multiple objective problems [5].

In a smart grid, a heuristic search-type controller for energy management has been
suggested for the implementation of DSM [6]. Their work examines five different heuristic
algorithms, including GA, BFOA, WDO, BPSO, BFOA strategy, and concluded with a
suggested hybrid genetic wind-driven (GWD) approach. A familiar Supply Chain Man-
agement (SCM) model Vendor Managed Inventory (VMI) model made of a PSO-based
algorithm has been developed to find the near optimum [7]. In [7], for defuzzification, the
centroid defuzzification method has been used to discover ideal retailer order amounts
to minimize overall inventory and transportation costs. A control scheme called PS-GSA
has been developed for a double induction wind turbine generator by means of Fuzzy’s
sliding mode control [8]. A hybrid PSOGSA-based model has been developed to analyze
High-Dimensional (HD) data to provide the solution to the convergence problem [9].

A Binary Grey Wolf Optimisation Algorithm (BGWO)-based DSM has been developed
to solve the non-linear objective of cost minimization, concerning the electricity tariff of a
real-time residential load [10]. Their paper proposes strategic shifting and scheduling of
the residential loads optimally deploying the swarm intelligence-based BGWO algorithm.
A reinforced DSM approach involving enhanced BGWO has been designed and developed
to schedule pre-categorized classes of loads in an educational institution with an aim of
deducing peak demand and thereby indirectly minimizing the electricity tariff [11]. A
DSM technique based on the PSO algorithm has been developed to diminish the electricity
price and schedule different loads in residential, commercial, and industrial areas [12]. A
multi-objective stochastic optimization algorithm for scheduling both reserves and energy
by allowing simultaneous participation of loads with large wind energy penetration has
been proposed [13]. A combination of both the heuristic and randomization algorithms
considering both electricity cost and user convenience changes the non-convex method into
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a convex method [14]. For distributed generation sources, a two-stage optimal scheduler
has been formulated [15] and it employs MILP to deduce the bi-objective problem of
minimizing net annualized cost TAC and net emission TAE to a single-objective problem.
The BPSOGSA algorithm has been utilized in optimally scheduling the available hybrid
renewable energy resources for minimizing LCOE and also the probability of power supply
failure [16].

The clustering problem has been solved by hybridizing GSA with one of the promising
heuristic methods, which is done to improve results gained from GSA [17]. In [18], the
convergence speed of GSA is improved by employing position-based learning GSA. In [19],
the convergence of GSA is improved by a modified Immune Gravitation Optimization
Algorithm (IGOA). The combined quality of both social thinking and individual thinking
of PSO is inherited in hybrid PSOGSA which continues the capability of problem solving
as GSA aids in parameter identification of hydraulic turbine governing systems [20].

In [21], an algorithm GSA was developed by adopting the concepts of Newton’s
laws of motion and gravity that form interaction among the search agents [21]. Similarly,
the binary version of GSA, namely, BGSA (Binary Gravitational Search Algorithm) was
suggested [22]. A DBHS algorithm is developed utilizing pitch variation problems [23].
Whereas, harmony search and pitch adjustments deployed in MBDE have been proposed
to solve distinct optimization problems [24]. The discrete binary version of PSO has been
developed to deal with discrete space [25] while hybrid binary version of PSOGSA, known
as BPSOGSA, has been developed to achieve a better performance with a regard of both
exploitation and exploration utilizing positive aspects of both PSO and GSA [26]. A hybrid
PSOGSA algorithm suggested to train feedforward neural networks for solving a local
convergence problem [27].

A fully distributed and interactive learning approach has been proposed for integrated
charging regulators of electric vehicles, to regulate three socio-technical aspects: depend-
ability, discomfort, and fairness [28]. The daily load profiles of residential loads have
been assessed by incorporating clustering k-means and self-organizing map algorithms
and taking into account the social traits and lifestyles of real-time communities [29]. An
IoT-based DSM is proposed using hardware to dynamically optimize the load pattern in
actual commercial buildings [30]. The smart socket was designed in real time using the
mobile Blynk application for remote monitoring of Power and connected loads manage-
ment [31]. The socket may be accessed remotely over wireless media. This can be further
upgraded by introducing WPC (wireless power communication) for ensuring effective and
efficient communication to facilitate user end [32]. Three modes of communication among
various access points, co-located power station, and wireless user enhances reliable and
fastest means of interaction [33]. For accelerating and promoting user preferences, using an
IoT-enabled recommended system is promising [34]. Following this, introducing remote
monitoring and control options for data physical fusion technology is essential. Mobile IoT
interlinked with appropriate applications paves the way for betterment in performance
and also adds research significance [35]. In this case, investigating the smart grid without
creating an adverse impact on resiliency and efficiency is the requirement. Hence, IoT and
cloud-based detection systems were found to be feasible with integrated AI approaches [36].
All that is necessary for AI is the quality of data for processing. The real-time data retrieved
are stored in the cloud/local storage and undergo AI treatment based on the nature of
labeling data [37]. The data involved in the Smart grid are of various parameters addressing
power quality, operating status, fault detection, and resulting optimal solutions [38].

1.1. Research Gap

From the literature review conducted so far, it can be stated that optimization algo-
rithms were used for different nonlinear problems, in different domains to solve various
real-time optimization objectives. Among the previous works, the DSM approaches and
techniques were hardly deployed using a real-time educational load profile. This research
offers a unique BPSOGSA hybrid optimization algorithm-based demand-side management
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for KCET—Kamaraj College of Engineering and Technology, an academic higher education
institution situated in Southern India.

KCET’s infrastructure spans 47.92 acres of land and is scheduled to work from morning
9:00:00 to evening 16:00:00. The institution offers 16 undergraduate and postgraduate
programs with 58 highly equipped laboratories of the latest machinery. KCET has a
maximum demand of 1000 kVA and is facilitated by a 32 kW solar PV system with battery
storage and converter system along with three diesel generator sets, one DG of 500 kVA,
and the rest two of 250 kVA. These spacial and temporal factors make the load profile of
educational institutions differ from one another. On the whole, the consumption trend of
any institutional building completely relies on their working time, the nature of load types
used, and the shifting of load operating patterns. The placement of DSM techniques and
approaches in educational institutions helps in minimizing the electricity consumption
price considerably.

Thus, the multi-objective SDSM system proposed in KCET for reconciling and high-
lighting following objectives

• Minimize the cost involved in electricity consumption;
• Categorize a wide range of loads for allocating suitable time of operation;
• Accountable reduction in PAR and peak demand;
• To shift and schedule load optimally by considering all the possible constraints;
• Addressing user comfort index (UCI)-based optimization.

1.2. Contributions

The following contributions to the effective implementation of DSM in KCET, an
Indian educational institution, have been proposed:

• Internet of Things (IoT)-enabled Smart Demand-Side Management System (SDSMS)
has been implemented in real time for energy monitoring and connects the solar power
line for the laboratory loads during peak periods;

• The load classification of KCET was obtained based on load shifting with and with-
out interruption;

• The institutional load profile is optimally scheduled by applying the hybrid BPSOGSA
algorithm using MATLAB software;

• The load profile of KCET is shifted and scheduled a day ahead effectively to improve
the degree of user comfort by utilizing the renewable energy (RE) solar source set up
at the institution;

• Next, the real-time hardware implementation of SDSMS was applied to increase the
degree of user comfort (DUC) during the peak hours powered by the Solar PV (SPV)
resource, and all the determining real-time electrical parameters are monitored with
the aid of the Blynk application.

1.3. Novelty of Proposed Work

In this research work, an IoT-based smart demand-side management system is devel-
oped using a hybrid BPSOGSA algorithm to achieve the main goal of lowering the cost
involved in electricity consumption. It can be made possible by optimally scheduling the
different classes of institutional loads considering the operational constraints associated
with each class of load. The outcomes of the hybrid BPSOGSA algorithm highlight its
performance over other two algorithms—BPSO and BGSA—in electricity tariff reduction,
avoiding reach of peak demand, and maintaining PAR. Additionally, the statistical per-
formance of all the three algorithms BPSOGSA, BPSO, and BGSA, has been determined
using statistical tests. Holm, Hommel, and Holland tests are considered for this study.
Next, the degree of user comfort has been improved by utilizing the solar PV generation
located at the institution. Finally, real-time hardware implementation of SDSMS has been
deployed at the Renewable Energy lab to improve the degree of user comfort, and the
electrical parameters obtained are continuously monitored using the Blynk application.
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The paper is organized as follows: The methodology adopted is interpreted in Section 2.
Optimization algorithms are outlined in Section 3. The BPSOGSA algorithm is formulated
in Section 4, while Section 5 emphases on results and discussions. Section 6 concludes the
work with key findings.

2. Proposed Methodology

The hybrid BPSOGSA algorithm is utilized to shift and schedule the two categories of
loads classified as Amenable Loads (ALs) and Unamenable Loads (NDLs). Factors such
as operating period, starting time, and ending time of each load type are used to divide
institutional load data into two classes.

2.1. Design and Development Architecture of SDSMS

The proposed IoT-enabled SDMS is implemented in real time at Renewable Energy
laboratory of KCET-Kamaraj College of Engineering and Technology. The deployed real-
time power monitor switches the power line either from institutional or solar power.
Figure 1 shows the overall implementation of various loads with SDSMS.

Figure 1. Overall implementation of various loads with SDSMS.

The IoT-based Smart Demand-Side Management System (SDSMS) contains a mi-
crocontroller, A.C power measuring module, and relay unit. It successfully reduces the
energy consumption cost by supplying solar power to the loads during peak hours (9 a.m.
to 12 p.m.) and monitors the electrical parameters of the load. These operations are re-
motely monitored, validated, and controlled via the Blynk application through open-source
TCP/IP protocol. To access the consumers, the electrical parameters are accurately mea-
sured and updated with universal timestamps in the cloud server. A power quality analyzer
(PQA) is employed to compare the phase voltages and currents obtained from the proposed
IoT-based SDMS.
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2.2. Classification of KCET Loads

The loads can further be classified based on the functioning of loads as Interruptible
and Non-Interruptible loads, as shown in Figure 2. The Amenable loads (AL) have both
Interruptible Amenable loads (IALs) and Non-Interruptible Amenable loads (NIALs).

Figure 2. Classification of KCET loads.

Similarly, the Unamenable (UAL) loads are classified into Interruptible Unamenable
Loads (IUALs) and Non-Interruptible Unamenable Loads (NIUALs). These loads are
shifted and scheduled optimally using the hybrid BPSOGSA algorithm.

2.2.1. Amenable Loads

The loads which have a higher likelihood of shifting and controlling as per the user’s
comfort within its time of operation are categorized under this category. These schedulable
loads have freedom to shift during peak hours for reducing energy consumption in that
specific period and electricity tariff considerably. The loads of this type are further classified
as IALs and NIALs.

Interruptible Amenable Loads (IALs)

The category of loads which can be both shiftable and schedulable can be operated
in its period of usage are classified into Interruptible Amenable loads (IALs). These loads
are operated on an intermittent basis within the period of start and completion of the
loading process, which corresponds to its duration. Load types such as electric vehicles,
pumps, and compressors are classified under this type of load. The period of operation
of these load types can be interrupted according to the user’s preferences and also with
device performance.

Let A be the set of interruptible amenable loads given by A = {A1, A2, . . . , An}. The
scheduling vector denotes the Turn ON/Turn OFF status of an IAL in each interval (i = [1,
2, . . . , t] ∀i ε I) is depicted as in (1):

ξa =
(
ξ1

a , ξ2
a , . . . . . . .., ξ i

a, . . . ., ξt
a
] ∀ a ∈ A (1)

where na is the interruptible amenable loads, i.e., cardinality of A. These Interruptible loads
are operated discontinuously without violating total duration of this load operation with
discrete starting and ending time. The operating status of an IAL load ‘a’ in a time interval
i is given in Equation (2)

ξ i
a =

{
1, STa ≤ i ≤ ETa and Ni

a ≤ Da and [STa; ETa]
0, i < STa and i > ETa

= Da (2)

where STa = starting time of load ‘a’,
ETa = ending time of load ‘a’,
[STa;ETa] = discontinuous operating period from starting time to ending time,
Na

i = load ‘a’ operating hours up to ith time period,
Da = operating period of load ‘a’ (in total number of hours).
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Non-Interruptible Amenable Loads (NIALs)

This type of load is shiftable but only can be switched for continuous operation in the
specified time slot finds place under Non-Interruptible Amenable loads (NIALs). These
loads are continually operated at their time of commencement and stops within the time to
meet their load operation duration. The operation status of these non-interruptible loads
is monitored and recorded to schedule the institutional loads optimally. The continuous
operation is assumed in these types of loads.

Let B be the set of non-interruptible amenable loads given by B = {B1, B2, . . . , Bn}.
The scheduling vector indicates the Turn ON/Turn OFF status of an NIAL in every interval
(i = [1, 2, . . . , t] ∀i ε I) is stated as in Equation (3):

ξb =
(
ξ1

b , ξ2
b , . . . . . . .., ξ i

b, . . . ., ξt
b
] ∀ b ∈ B (3)

where nb is non-interruptible amenable loads, i.e., cardinality of B. These Interruptible
loads are operated continuously without violating the total duration of this load operation
with specific starting and ending time. The NIAL load ‘b’ nature in the ith time period is
given by Equation (4):

ξ i
b =

{
1, STb ≤ i ≤ ETb and Ni

b ≤ Db and [STb; ETb]
0, i < STb and i > ETb

= Db (4)

where STb = Load ‘b’ starting time
ETb = Load ‘b’ ending time
[STb;ETb] = discontinuous operating period from starting time to ending time
Nb

i = load ‘b’ operating hours up to the ith time period
Db = load ‘b’ total number of operating hours.

2.2.2. Unamenable Loads (UALs)

The loads which are non-feasible for scheduling and controlling and can be operated
with respect to time are modeled under this category. Those loads are non-shiftable, critical,
and primary loads to satisfy the user’s comfort.

Interruptible Unamenable Loads (IUALs)

The temperature-dependent loads which have a high consumption range in operating
mode whilst demanding low power in standby mode are categorized under IUALs. The
temperature-controlled loads may be heating or cooling loads. The cooling type of load
air conditioners (ACs) is modeled with respect to a frequency of Turn ON/Turn OFF
cycle. In short, the hourly operating frequency of the cycle is accounted for by the quality
characteristics of the device. Typical cooling load (air conditioner) considered in this paper
switched Turn ON/Turn OFF at a frequency of once in every 15 min. Thus, normal hourly
operating frequency of cycle for cooling load is 4, which consumes power above or below
this limit during device malfunctions or. For an INAL c, the status of operating c in the
interval i is explained as in Equation (5)

ξ i
c =

{
1, i f Tc

set > (Tc
set + Tc

tot); ( f i
c = 4)

0, i f (T(i)c
act < Tc

set); ( f i
c > 4)||( f i

c < 4)ξ(i−1)
c , i f Tc

set ≤ T(i)c
act ≤ (Tc

set + Tc
tot)

(5)

where Tc
set = set point temperature

Tc
tol = permissible tolerance limit

f i
c = operation frequency of cycle during the ith interval

T(i − 1)c
act = actual ambient temperature by the (i − 1) interval end.

Non-Interruptible Unamenable Loads (NIUALs)

These loads rely entirely on the user’s choice of switching Turn ON/Turn OFF in a
day. The operating pattern on an hourly basis ensures and prevents the probable reach
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of sanctioned maximum hourly demand. The load types such as ceiling fans, tube lights,
chargers, elevators, LAN communication, and DC fans are classified in NIUALs. The status
of these load types is monitored using a separate status controller and the Maximum Power
Load Limit (MPLL) is maintained.

2.3. Design of IoT-Based SDSMS

The SDSMS illustrated in Figure 3 has a sensor module called PZEM-004T linked with
a power supply and an ESP8266 Wi-Fi module that provides details on voltage, power
factor, actual power, current, and reactive power data. A relay is developed to change the
power supply to the user’s convenience load from the institutional power line or solar
power source. The low-cost ESP8266 is a Wi-Fi microchip accompanied with full TCP/IP
(TCP/IP) stack enhanced with functionality of a microcontroller. This module establishes
connectivity with a Wi-Fi network for microcontrollers and easy connections to TCP/IP.
The Wi-Fi in turn delivers data to the authorized consumer over a hot spot for sharing
system time-series data on the cloud server (Message Queuing Telemetry Transportation
MQTT) via Blynk application.

Figure 3. Illustration of the Smart Demand-Side Management System (SDSMS).

In addition, it estimates energy usage and costs so that the user may read the report
from anywhere, the report is then sent to the Blynk application. This SDSMS implements
the demand side management idea which reduces demand overall and restores the demand
profile of the institution. In addition, it boosts the sustainability of the grid by reducing total
costs and carbon emissions. The Blynk application offers a great opportunity to receive
power measurements and cumulative information over a week or month according to
customer requirements at that exact moment in time.

3. Optimization Algorithms

This section details the three optimization algorithms—BPSO Binary Particle Swarm
Optimization Algorithm, GSA Gravitational Search Algorithm, and BPSOGSA Binary
Particle Swarm Optimization—Gravitational Search Algorithm which are nature-inspired
swarm intelligent algorithms. BPSOGSA is a hybrid optimization algorithm.

3.1. Binary Particle Swarm Optimization Algorithm (BPSO)

PSO is a swarm-based optimizer that strives for a rational solution by encoding
the fundamental characteristics to interact amongst participants. The particles are first
dispersed at random in the solution space, and gradually they start to move around in
search of the ideal match for the given optimization problem.
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The position vector of PSO is given by Equation (6)

XA =
(

x1
A, . . . . xd

A

)
, A = 1, 2, . . . , N (6)

where N = number of search agents, d = dimension of the problem, xd
A = Ath agent position

in the dth dimension. The agent A’s velocity vector is given by Equation (7)

VA =
(

v1
A, . . . . vd

A

)
, A = 1, 2, . . . , N (7)

Particle movement in the search space is permitted until the maximum possible
repetition or the convergence criteria are met. The social and individual thinking capability
of the PSO helps in finding the global best solution. The swarming technology with
continuous values is adopted to solve the PSO’s discrete version.

BPSO algorithm proposed by Kennedy and Eberhart [25] handle discrete optimization
problems. The swarming technology with discrete values as decision variables to solve the
optimization problem is employed in BPSO.

The fundamental equation to update particle ‘A’ velocity is in (8) as follows:

VA = VA + R(pA − XA) + R(gA − XA) (8)

where VA, XA, pA, and gA are the determining factors of particle, ‘A’ such as position,
velocity, global best and local best position, respectively and R be the generated random
positive number within the interval [0, 1].

VA ≤ Vmax (9)

The particle ‘A’ velocity (VA) is always less than its maximum velocity (Vmax) in (9).
The change in particle position is defined by the following rule (10):

i f rand < S(VA) then XA = 1 else XA = 0 (10)

where the sigmoidal activation function is represented as S(VA) and the chosen quasi-
random number as ‘rand’ from a uniform distribution [0, 1]. The following Equation (11)
describes the updating of particle position:

XA = XA + VA (11)

The scheduling vector of BPSO algorithm for each load type is a [1 × 24] vector in (12):

SBPSO = (s1 s2 s3 s4 . . . . . . . . . . . . . . . . . . . . . . . . s24 ] (12)

where SBPSO is the scheduling vector and each variable si is either 0 (OFF) or 1 (ON).

3.2. Gravitational Search Algorithm (GSA)

The gravitational force on agent A from agent B at a particular iteration t is expressed
as follows in (13):

Fd
AB (t) = G(t)

MpA(t) ∗ MaB(t)
RAB(t) + α

(Xd
B(t)− Xd

A(t)) (13)

where MpA is the passive gravitational mass related to agent A, MaB is the active gravita-
tional mass related to agent B, G(t) is gravitational constant at iteration t, α is a constant,
XA is the position of agent A, XB is the position of agent B and RAB(t) is assumed as the
Euclidian gap between agents A and B.
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The gravitational constant and the Euclidian gap between agents A and B are deter-
mined as in (14) and (15) as follows:

G(t) = G0 × exp
(
−α ∗ t

maxiter

)
(14)

RAB (t) = ‖XA(t) , XB(t)‖2 (15)

where ∝ is the descending coefficient, G0 indicates the initial gravitational constant, t is the
current iteration, and maxiter shows the maximum limit of iterations.

The total force striking on agent A in a dimension d given by (16):

Fd
A(t) = ∑N

B=1,B 	=A randBFd
AB(t) (16)

where randB is taken as a random number between [0, 1].
The acceleration of agent A at iteration t as (17):

ad
A(t) =

Fd
A(t)

MAA(t)
(17)

where MAA is the inertial mass of the Ath agent.
The velocity and position update equations for agent A are given as shown in (18) and (19):

Vd
A(t + 1) = randA × Vd

A(t) + ad
A(t) (18)

Xd
A(t + 1) = Xd

A(t) + Vd
A(t + 1) (19)

where randA is a number randomly generated between [0 ,1], XA(t) is the position of agent
A during iteration t, and VA(t) is the velocity of agent A during iteration t.

The GSA mass movement is estimated based on its fitness weights. Reaching the best
global optimum is difficult for GSA due to the slower movement of heavy mass particles.
The scheduling vector of BGSA algorithm for each load type is a [1 × 24] vector as in (20):

SBGSA = (s1 s2 s3 s4 . . . . . . . . . . . . . . . . . . . . . . . . s24 ] (20)

where SBGSA is the scheduling vector and each variable si is either 0 (OFF) or 1 (ON).

3.3. Hybrid Binary Particle Swarm Optimization—Gravitational Search Algorithm (BPSOGSA)

The hybrid BPSOGSA optimization algorithm proposed by Mirijalili, Wang, and
Coelho [26] combines the social and individual thinking gbest of PSO and the exploration
capability of the Gravitational Search Algorithm. GSA suffers from sluggish operations
and deteriorates in end iteration and the best solution is used by PSO. The masses with
improved fitness values are heavy objects and they converge slowly. Thus, in the final
step, the masses with almost the same weights gather around the promising solutions.
This finally results in the slow movement of the masses toward the best solution. This
behavior of GSA may result in local optimal value rather than the global optimal value.
This drawback of GSA and a similar Binary Gravitational Search Algorithm (BGSA) is
solved by including the optimal solution by guiding the heavy masses on their way to the
global optimal value. Equation (21) combines both PSO and GSA:

VA(t + 1) = rand ∗ VA(t) + c
′
1 ∗ acA(t) + c

′
2 ∗ (gbest − XA(t)) (21)

where c
′
1 and c

′
2 are accelerating factors, acA(t) is the acceleration of agent A in iteration t,

rand is generated random number using uniform distribution in the interval [0 ,1], gbest is
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the optimal solution, XA(t) is the position of agent A in iteration t, and VA(t) is the velocity
of agent A in iteration t.

The position of agents is modified in each iteration using Equation (22):

XA(t + 1) = XA(t) + VA(t + 1) (22)

The transfer function must be limited between [0 ,1] and increase as velocity increases.
The transfer function is depicted in Equation (23) for relating the velocities of agents with
the probabilities of change in their respective positions:

S
(

Vd
A,B(t)

)
= |

(
tanh

(
Vd

A,B(t)
)∣∣∣ (23)

After calculating the respective probabilities of agents, their position is updated using
the below Equation (24):

I f rand < S
(

Vd
A,B(t + 1)

)
then Xd

A,B(t + 1) = complement
(

Xd
A,B(t)

)
else Xd

A,B(t + 1) = Xd
A,B(t)

(24)

In the gbest variable based on PSO optimisation, the best solution achieved up to now
has been stored. The sluggish operation and degeneration of GSA are addressed by the
optimum solution. The inclusion of gbest to the speed matrix has hampered the exploration
stage as it adds itself to the speed update as a permanent feature. In order to resolve this, a
varied adaptive approach is applied. The variables c

′
1 and c

′
2 detailed in Equations (25) and

(26), respectively, are adaptively decreased or increased, in order that the masses accelerate
toward the optimal solution.

c
′
1 = −2

t3

T3 + 2 (25)

c
′
2 = 2

t3

T3 + 2 (26)

where t is the current iteration and T is the upper limit of iterations.
The scheduling vector of the BPSOGSA algorithm for each load model is a [1 × 24]

matrix vector as in (27):

SBPSOGSA = (s1 s2 s3 s4 . . . . . . . . . . . . . . . . . . . . . . . . s24 ] (27)

where SBPSOGSA is the scheduling vector and each variable si is either 0 (OFF) or 1 (ON).
This adaptive technique is one of the finest ways to permit the transition of an al-

gorithm from the exploration to exploitation stages, given the two phases do not have a
distinct limit. The hybrid BPSOGSA optimization algorithm outperforms BPSO and GSA
by escalating the movement of heavy masses of GSA to reach the global optimum.

4. Formulation of Binary Particle Swarm Optimization—Gravitational Search
Algorithm (Bpsogsa) Based Demand Side Management (DSM)

The classified load is deployed in the proposed BPSOGSA-DSM for scheduling the
loads a day ahead optimally. In BPSO, the fitness value updates the gbest value using
Equation (11) and in GSA it updates the G value using Equation (14). After updating these
values for each agent, the forces and acceleration are determined. The velocity and position
values are determined and updated until the stop criterion is met. Finally, the gbest value
is returned as the optimal result, using which, the particle’s position is determined. The
number of particles is the number of load types considered. The flow diagram of the
proposed methodology is detailed in Figure 4.

The hybrid BPSOGSA algorithm helps the heavier masses of GSA which become
linked at the local optimum and finds it difficult to move towards the global optimum
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by finding the gbest value. The gbest value of BPSO pushes the heavier masses of GSA
to end in global optimum. The institutional load data are classified and the particles
are randomly initialized using BPSO. The agents that support positioning the particles
and the movement of masses in GSA are initialized. The fitness values of the proposed
objective function are determined and the acceleration, forces, velocity, position, and M
values are calculated and updated for the particles of KCET load types considered. The
gbest and G values of the BPSOGSA assist in shifting and re-scheduling the load types
optimally by varying the position of the particles to attain the main objective of electricity
tariff minimization portrayed in Figure 5 and Figure 6, respectively. The hybrid BPSOGSA
algorithm incorporates the strengths of GSA and BPSO. It pushes the heavy masses of GSA
from the local optimum to the global optimum.

Figure 4. Flow diagram of the proposed methodology.

Figure 5. Flowchart of BPSOGSA.
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Figure 6. Pseudocode of BPSOGSA.

4.1. Objective Function

A primary objective using the proposed BPSOGSA-DSM strategy is to attain a minimal
consumption cost, which allows the institution to optimally shift and schedule loads to
recognize user comfort as well. Due to dynamic changes in pricing and power demands,
the objective function is formulated as a non-linear function and is given in Equation (28):

Min : Cost = ∑24
j=1 ∑n

p=1 Sj
p ∗ PDp ∗ Ratej (28)

where cost represents the overall electricity cost consumption, j represents 24 h of a day,
n is the type of loads, p is the index for load type, Sj

p= situation of ‘p’ load at jth hour of
operation (‘1’ as ‘ON’, ‘0’ as ‘OFF’), PDp = Power demand of pth load, Ratej = electricity
price at the jth period of operation.

4.2. Constraints
4.2.1. Operating Hours of Appliances

The operating hours of all appliances are carefully considered and they are given in
Equation (29).

subject to ∑24
j=1 ∑n

p=1 Sj
1p = Dp (29)

where Dp is operating hours of the ‘p’ load type.

4.2.2. Total Demand

The next important constraint is total demand, which in a day should be equal to
before and after what place on the 7-demand side management (DSM). It is given in
Equation (30).

subject to ∑24
j=1 ∑n

p=1 Dj
1p = ∑24

j=1 ∑n
p=1 Dj

2p (30)

where Dj
1p is the power demand before DSM for the pth load at the jth hour, Dj

2p is the
power demand after DSM for the pth load at the jth hour.

4.2.3. Instantaneous Demand

The instantaneous demand should be equal to the maximum power demand always.
Equation (31) satisfies this constraint.

PDj ≤ PDmax ∀ j ∈ (1, 24] (31)

where PDj is jth hour power demand, PDmax is maximum demand sanctioned.

4.2.4. Idle Devices

The idle constraint, which is given in Equation (32), is that some appliances remain
unused or consume no power except during the operating hours.

St
p = 0 ∀ t < ST, t > ET and t ε (1, 24] , p ε (1, n] (32)
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St
p = ON (1) or OFF (0) status of pth load at the tth hour. The Start and End Time are

mentioned as ST and ET, respectively.

5. Results and Discussion

The considered test system consists of institutional loads at KCET that have a specific
operational pattern. By utilizing BPSO, BGSA, and the hybrid BPSOGSA algorithms,
the objective function given in Equation (28) is achieved by implementing DSM in the
considered institutional loads using MATLAB as discussed in Section 5.1. Next, the degree
of user comfort was enhanced by studying unchanged hours of operation for all load type
using the hybrid BPSOGSA algorithm, which was discussed in Section 5.2. Finally, the real-
time hardware implementation of the IoT-based Smart Demand Side Management System
(SDSMS) for the Renewable Energy laboratory loads in KCET is detailed in Section 5.3.

5.1. Demand before and after Deploying the Hybrid BPSOGSA-DSM

Every day, 9:00 to 16:00 are the working hours of the considered institute KCET, in
which 9:00 to 14:00 are considered to be peak hours and before 8:00 and after 15:00 are
considered to be the off-peak hours. The contribution of the proposed implementation
system is to carry out DSM by moving the possible loads from peak to off-peak hours and
reduce peak demand to a maximum level. Figure 7 shows the real-time hourly electricity
price, the operating hours are categorized as off-peak, medium, and peak hours based on
the power prices in real-time. The price reaches its peak at 10:00 to $27.35/kWh and the
lowest price is at 4:00 at $8.1/kWh. Thus, 9:00 a.m. to 14:00 is grouped as peak hour pricing,
5:00 to 8:00 and 14:00 to 19:00 are grouped as medium pricing hours, and 20:00 to 04:00 is
grouped as off-peak pricing hours. The electricity tariff at 10:00 is realized as $27.35/kWh,
which is noted as the highest electricity pricing and thus, the proposed algorithm shifts the
major quantum of loads from 10:00 to off-peak hours. The lowest pricing is $8.1/kWh at
the off-peak hour 02:00. Before implementing DSM, the load consumption exceeds about
1855 kW, which contributes to the major rise in total electricity cost. The off-peak load is
low, which helps in the possibility of moving the load from peak hours, thereby minimizing
the total cost.

Figure 7. Hourly Electricity Price ($/kWh).

The hybrid BPSOGSA algorithm has the functionalities of both BPSO and GSA. Initially,
the gbest of particles of BPSO get randomly distributed to optimally schedule the load types
of KCET. The peak load is reduced effectively to 1704.628 kW using the hybrid BPSOGSA
optimization algorithm.

Figure 8 compares the demand curves of KCET loads after deploying three different
scheduling algorithms, BPSO, BGSA, and BPSOGSA (indicated by yellow, blue, and green
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colors, respectively), with the demand before deploying BPSOGSA-DSM. The electricity
price for each hour is represented by a violet dotted line.

Figure 8. Comparison of demand before and after deployment of DSM with BPSOGSA.

The hybrid BPSOGSA increases the reduction in electricity cost to $716.26, thus proving
that the proposed hybrid optimization algorithm yields good results when compared with
BPSO and BGSA. The percentage reduction in PAR and Peak demand has improved to
81.295% from 20.98%. Table 1 tabulates the optimized findings of the three optimization
algorithms considered along with the decline in PAR, peak demand, and electricity price.

Table 1. Optimized results before and after deployment of DSM techniques.

Criteria
BGSA Indices BPSO Indices BPSOGSA Indices

PD (kW) PAR Cost ($) PD (kW) PAR Cost ($) PD (kW) PAR Cost ($)

Before DSM 1855.4 4.12 2030.6 1855.4 4.12 2030.6 1855.4 4.128 2030.6
After DSM 1756.2 4.012 1532.9 1704.6 3.739 1467.6 1502.2 3.263 1314.4
Reduction 99.24 0.117 497.7 150.84 0.336 562.9 353.2 0.866 716.2
% Reduction 5.349 2.83 24.50 8.129 8.129 27.724 19.03 20.970 35.27

The demand before BPSOGSA-DSM was 1855.47 kW, which is reduced to 1756.23 kW
by BGSA, 1704.62 kW by BPSO, and 1502.24 kW by the hybrid BPSOGSA. This makes
it clear that it is much more effective in peak demand reduction by shifting 353.23 kW
of loads from peak hours of operation. The cost savings achieved by BGSA, BPSO, and
BPSOGSA are $497.7, $526.99, and $716.264 respectively. As discussed, the peak hours
of operation are from 09:00 to 14:00 and the demand reduction during these hours will
boost the reduction in total electricity consumption cost. Figure 9 shows the variation in
demand during the peak hours. At 10:00, the demand has fallen from 1855.468 kW to
384.17 kW before and after the deployment of BPSOGSA-DSM. Eventually, this fall will
greatly aid a great reduction in electricity consumption costs. Two operating times of the
day, 09:00 and 14:00, are considered and the number of load types scheduled at these two
hours is analyzed.
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Figure 9. Variations in demand from 9:00 to 14:00 before and after deployment of BPSOGSA-DSM.

Figure 10 depicts the shifting and scheduling of load types for the two pricing times
09:00 and 14:00 before and after deploying the DSM algorithms. The electricity price at
09:00 is 26.82 ($/kWh), which is much higher than that of the price at 14:00 at 9.19 ($/kWh).
It is seen that the proposed algorithm shifts the load types from higher pricing to lower
pricing. In other words, the individual demand for air conditioner load is 618.35 kW,
which is maximum at 09:00 with a pricing of 26.82 ($/kWh) which will increase the overall
electricity consumption cost. This load is shifted and scheduled to 14:00 with a lower
electricity cost of 9.19 ($/kWh). Thus, the objective of reducing the electricity cost is
attained. Each load type is considered as a particle in BPSO, which moves with the force
of GSA, thus scheduling loads of KCET optimally. Let us consider the air conditioner of
KCET to examine its optimal shifting before and after deploying BPSOGSA-DSM which is
shown in Figure 11.

Figure 10. Scheduling of load types before and after BPSOGSA from 09:00 to 14:00.
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Figure 11. Shifting of 3-phase air conditioner loads before and after deployment of DSM.

Before deploying DSM techniques, the 3-phase air conditioner loads are scheduled
for operation at [9–13] hours, where the load is scheduled in peak pricing hours. The
BGSA schedules the air conditioner load in [9–11,13,14] which is almost the same as before
deploying DSM. This depicts that BGSA does not shift the load effectively to achieve the
main objective of electricity cost minimization. After deploying BPSO, the load is shifted
to [12–16] a period of operation where the peak pricing hours are neglected. Thus, the
total electricity price is reduced considerably. Further, after deploying BPSOGSA, the load
is scheduled at [14–18]. The electricity pricing at the 17th and 18th hours is much lower
than the 12th and 13th hours. This shifting of loads helps in the reduction of the electricity
consumption cost. The performance of algorithms used to plan KCET loads using the
proposed DSM method is individually assessed. Table 2 shows the statistical efficiency of
BPSO, BGSA, and BPSOGSA algorithms. It can be observed from Table 2 that the statistical
performance of BPSOGSA was better than BPSO and BGSA algorithms. The p-values of
the BGSA, BPSO, and BPSOGSA algorithms are described in Table 3. The p-values are
obtained using Holm, Hommel, and Holland tests with a significance level of α = 0.05 for
the considered algorithms.

The statistical tests validate the p-value hypothesis of 0.05. Table 4 shows clearly that
the BPSOGSA suggested is much superior to the current methods. The statistical details
such as the standard deviation of the algorithms were deployed for the test system.

Table 5 shows the load types and their power ratings with the period of operation (in
number of hours). The power ratings have been given for the power demand corresponding
to each load type. Figure 12 shows the convergence curve of the hybrid BPSOGSA algorithm.
The statistical tests performed on these three algorithms depict that the proposed hybrid
BPSOGSA is far better than BGSA and BPSO algorithms.

Table 2. Average rankings—KCET load.

Algorithm Aligned Friedman Test Friedman Test Quade Test

BGSA 80.5 3.0 2.9
BPSO 60.5 2.0 2.0
BPSOGSA 30.5 1.0 1.0
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Table 3. p-value with significance level α = 0.05—KCET load.

Algorithm
Aligned Friedman Test Friedman Test Quade Test

Hommel Holm Holland Hommel Holm Holland Hommel Holm Holland

BGSA 0.0169 0.016 0.0165 0.0165 0.016 0.0169 0.0165 0.016 0.0169
BPSO 0.025 0.025 0.0252 0.025 0.025 0.0251 0.025 0.025 0.0251
BPSOGSA 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 4. Statistical details of algorithms.

Algorithm Best Electricity Cost ($) Worst Electricity Cost ($) Mean Electricity Cost ($) Standard Deviation Simulation Time (s)

BGSA 1531.54 1535.21 1532.97 1.89 280
BPSO 1465.42 1469.54 1467.68 1.04 242
BPSOGSA 1313.10 1315.22 1314.50 0.82 228

Table 5. Power ratings and period of operation of the load types.

Load
Type

Start
Time

End
Time

Period of Operation
(Number of Hours)

Power Demand
(kW)

1 9 16 5 0.055
2 8 16 6 0.055
3 10 17 3 0.0385
4 1 23 12 287.09
5 9 20 6 0.013
6 9 16 5 2.5
7 9 16 5 7.45
8 8 16 2 0.003
9 1 23 12 3.5
10 9 16 6 7.5
11 5 10 4 5.5
12 5 10 3 1.5
13 6 10 2 2.2
14 8 17 6 3.7
15 9 16 3 96.42
16 9 16 4 120.8
17 9 16 5 38
18 9 16 5 39
19 9 16 3 3.27
20 9 16 5 64.7
21 9 16 5 28
22 9 16 6 37
23 9 16 4 13
24 9 16 3 32.9
25 9 16 5 17.4
26 9 16 5 51.06
27 9 16 2 39.9
28 9 16 5 39
29 9 16 5 103.99
30 8 15 1 0.5
31 9 16 1 2.5
32 9 16 2 2.5
33 9 16 1 2.5
34 9 16 1 2.5
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Figure 12. Convergence Curve of the hybrid BPSOGSA.

5.2. Hybrid BPSOGSA-Based Degree of User Comfort (DUC)

The real-time test system where the hybrid BPSOGSA is deployed is set up with
32 kW solar photovoltaic (SPV) generation. Canadian Solar MaxPower CS6U-340 M has
been used in KCET. The considered SPV panel has 72 monocrystalline cells with a module
efficiency of nearly 17.49%, voltage at open-circuit of 46.2 V, current at short-circuit of
9.48 A, nominal maximum power of 340 W and can be used up to 1500 V DC. Some of the
enlisted non-critical institutional loads are categorized as user comfort loads, which have
an impact on the satisfaction level of the user to a greater extent. In the proposed method,
this level of satisfaction is measured as the DUC. The SPV generation is effectively utilized
to increase the DUC with the working of certain user comfort loads.

The hybrid BPSOGSA based DSM technique shifts the operating hours of the load
types and optimally schedules them to attain the main objective of electricity cost minimiza-
tion. This scheduling of loads to different operating hours reduces the user’s comfort level.
Thus, the SPV generation is utilized to increase the comfort level of the users by applying
the hybrid BPSOGSA algorithm. The number of retained hours of operation marks a great
impact in increasing the level of satisfaction of the users to the considered load types. Thus,
by increasing the number of retained hours of operation and combining the SPV generation,
the degree of user comfort (DUC) can be improved.

Table 6 depicts the details of the loads were considered, their operating hours before
and after DSM, and the number of non-shifted operational hours before implementing SPV
generation. To study and improve the degree of UC, hybrid BPSOGSA is applied along
with the SPV generation. The ratio defined here is:

Ratio =

(
Number o f retained hours o f operation

Period o f operation

)
The DUC increases as the ratio increases (i.e.) DUC is directly related to the number of

unchanged operational hours. The period of operation of the load type is constant and so
the ratio changes for the number of retained hours of operation. From Figure 13, it can be
stated that when the ratio is 0.243, the degree of UC is 13.4. To improve the degree of UC,
the generated power from solar energy is utilized.
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Table 6. Operating hours of loads before and after DSM.

Load
Type

Load Name
Operating Hours
before DSM

Operating Hours
after DSM

Number of Retained Hours
of Operation

2 Ceiling fan 2 [8–13] [8,11,12,14–16] 3
3 DC fan [9–11] [14,16,17] 0
5 LED lamps [8–13] [14–16,18–20] 0
6 1 phase air conditioner [9–13] [12–16] 2
7 3 phase air conditioner [9–13] [14–18] 0
11 Compressor 1 [9–12] [6–8,10] 1
13 Compressor 2 [6,7] [7,10] 1
14 Pure water pump [9–14] [8,11,14–17] 2

Figure 13. Increasing Degree of UC with the increase in ratio.

5.3. Real-Time Implementation of SDSMS

Nowadays, various types of DSM techniques are adopted in the residential sectors as
well as institution buildings and commercial building in order to reduce overall electricity
consumption cost. The main objective of DSM implementation is to shift the various cate-
gories of loads from peak to non-peak hours at the same time without reducing the DUC.

Various DSM approaches with different optimization algorithms were proposed to
solve the objective of electricity cost minimization. The hybrid BPSOGSA algorithm
optimizes the scheduling of the load types effectively, to attain the main objective of
electricity cost minimization at KCET. The SDSMS can decide the power supply to the
laboratory loads either from the solar or institutional power line. The measured parameters
by SDSMS are compared with the Power Quality Analyser (PQA) is tabulated in Table 7.

Table 7. Comparison of measured parameters of SDSMS with PQA

Model
Phase Voltage
(Vph )

Phase Current
(Iph )

Utilization Energy in Peak Hours
(kWh)

SDSMS 228.75 7.85 4.84
PQA 229.45 8.25 5.09

The implemented hardware at Renewable Energy Laboratory is shown in Figure 14.
The relay unit can be controlled by the microcontroller, based on the changeover timing in

212



Energies 2023, 16, 1403

the peak period. The PZEM module obtains the electrical parameter from the load power
line and sends the data to the microcontroller unit which will send all the information to
the cloud server. The consumption details are viewed from any mobile device using the
Blynk application.

Figure 14. Implemented hardware setup at Renewable Energy Laboratory.

The measured electrical parameters such as energy consumption, voltage, current, and
cost using the Blynk application are shown in Figure 15. The electrical parameters and cost
are displayed in graph format for viewing the variation at any instant. The changeover
timing can be modified according to the user’s need through the time scheduler in the
Blynk application.

Figure 15. Electrical parameter readings, changeover scheduler, and changeover timing.

6. Conclusions

This paper deploys an Internet of Things (IoT)-based Smart Demand Side Management
System (SDSMS) that connects the solar power line for the laboratory loads during peak
hours to increase the degree of user comfort (DUC) at an educational institution KCET
located at Madurai, Tamilnadu, India. In this paper, DSM for the institutional loads is first
implemented using a hybrid BPSOGSA algorithm and the same is integrated as hardware
in real time. The KCET loads are categorized into shiftable loads and non-shiftable loads
(NSLs) loads. The overall reduction of electricity consumption cost of the institution
is achieved by deploying day-ahead load shifting and scheduling in the shiftable loads
(SLs). The performance of the hybrid BPSOGSA algorithm has been evaluated in terms of
parameters such as PAR and peak demand reduction, and electricity cost minimization by
comparing it with individual optimization algorithms BPSO and BGSA using MATLAB.
A overall cost reduction is achieved by 35.27% using the proposed hybrid BPSOGSA
algorithm, while 27.72% and 24.502% reduction in electricity cost by BPSO, and BGSA
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respectively. PAR without DSM is 4.12 whereas using BGSA, BPSO, and BPSOGSA, PAR is
reduced to 4.01, 3.73, and 3.26 respectively. Furthermore, peak demand without DSM is
1855.47 kW, whereas using BGSA, BPSO, and BPSOGSA, PAR is reduced to 1756.23 kW,
1704.62 kW, and 1502.24 kW, respectively. Hence, BPSOGSA gives the best performance for
the minimization of electricity cost, reduction in PAR, and reduction in peak demand. The
major highlight of using the hybrid BPSOGSA algorithm-based DSM is that it is effective
in eliminating the demerits of both BPSO and GSA algorithms. Further, the degree of
user comfort (DUC) has been improved by deploying hybrid BPSOGSA incorporating the
Solar PV (SPV) generation at the premises of KCET. The ratio of the number of retained
operational hours to the period of operation is directly proportional to the DUC. The use
of SPV in the hybrid BPSOGSA algorithm raises the DUC level without ratio dependency.
Next, the hardware has been implemented in real time at the Renewable energy laboratory
to improve DUC for different load types by optimal scheduling and it reduces the electricity
cost during the peak period for the institution, and the corresponding electrical parameters
are monitored in real time using the Blynk application.
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Abbreviations

The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
BGSA Binary Gravitational Search Algorithm
BGWO Binary Grey Wolf Optimization
BPSO Binary Particle Swarm Optimization
BPSOGSA Binary Particle Swarm Optimization-Gravitational Search Algorithm
CS Cuckoo Search Algorithm
DBHS Discrete Binary Harmony Search algorithm
DEA Differential Evolution Algorithm
DG Distributed Generation
DR Demand Response
DSM Demand-Side Management
DUC Degree of user comfort
DUC Degree of User Comfort
HS Harmony Search algorithm
IoT Internet of Things
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KCET Kamaraj College of Engineering and Technology
LCOE Levelized Cost of Energy
MBDE Modified-Binary Differential Evolution algorithm
MILP Mixed Integer Linear Programming
PAR Peak to average ratio
PAR Peak to Average Ratio
SA Simulated Annealing
SDSMS Smart Demand Side Management System
SDSMS Smart Demand Side Management System
SPV Solar Photovoltaic
TAC Total Annualized Cost
TAE Total Annualized Emission
WDO Wind-Driven Optimization algorithm
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Abstract: Power quality issues can affect the performance of devices powered by the grid and can,
in severe cases, permanently damage connected devices. Events that affect power quality include
sags, swells, waveform distortions and transients. Transients are one of the most common power
quality disturbances and are caused by lightning strikes or switching activities among power-grid-
connected systems and devices. Transients can reach very high magnitudes, and their duration
spans from nanoseconds to milliseconds. This study proposed a deep-learning-based technique
that was supported by convolutional neural networks and a bidirectional long short-term memory
approach in order to detect and characterize power-quality transients. The method was validated
(i.e., benchmarked) using an alternative algorithm that had been previously validated according
to a digital high-pass filter and a morphological closing operation. The training and performance
assessments were carried out using actual power-grid-measured data and events.

Keywords: power quality monitoring; power grid measurements; transient detection; transient
characterization; deep learning; convolutional neural networks

1. Introduction

Power quality (PQ) monitoring consists of measuring and detecting events that disturb
the grid-supplied waveform and may affect the normal behavior of electrical equipment.
Power quality events include overvoltages, undervoltages, sags, swells, waveform dis-
tortions, flickers and transients [1]. In particular, transients occur more frequently than
other events and are short-term disturbances with amplitudes starting at 5–10 % of the
rated voltage. Electrical equipment are designed to resist PQ events up to a certain level.
If the PQ events exceed certain thresholds, either in duration or amplitude, permanent
damage may occur. The acceptable limits are defined by the IEEE and IEC international
standards, such as IEEE 1159-2019 [1] and IEC 61000-2-2 [2]. Although measurement and
event detection methods have been proposed by these international standards, PQ remains
an active research topic, especially in the area of signal processing, with the development
and proposal of new algorithms and techniques [3–5].

Artificial neural networks (ANNs) are inspired by the brain network of neurons. The
inputs of each neuron are the weighted combinations of the outputs of other neurons,
together with a bias component. This combination is applied to an activation function,
which provides the non-linearity required by these methods in order to determine the
neuron output [6]. ANNs have been used in diverse areas of science, usually for pattern
recognition [7] but also in measurements [8] and non-destructive testing [9]. An ANN is
trained by examples, using a back-propagation algorithm [6] until it reaches a suitable
accuracy. Recent advances in computing power, availability of data and advances on
network topologies have led to the development of deep learning (DL) [10]. The main
advantages of DL include the ability to use raw data, minimal human intervention and
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the capacity to search for deeply embedded patterns in the training data. This concept has
enabled breakthrough results in many different areas of science and technology, including
self-driving cars [11], facial recognition [12], and media content suggestions [13], among
many others. The use of DL for power quality event detection and characterization is no
exception, with some recent results presented in the literature [14–17]. However, these have
been limited only to training sets with simulated/synthetic waveforms and without any
real measured data, which cannot capture the full scale of imperfections that characterize
real grid-acquired waveforms.

The most frequent PQ events are transients, and many different methods have been
used to detect and their amplitude and duration. These include, for example, wavelets
[18], time-frequency [19] and morphology methods [20]. The latter can be complex, involv-
ing filtering that is followed by dilation and erosion operations, according to a suitable
threshold to discard the low amplitude transients. This study proposed the use of deep
learning to detect and estimate the amplitude and duration of transients in the electrical
grid. To achieve this goal, a two-stage approach was proposed, in which a convolutional
neural network (CNN) was used to detect the presence of transients, which fed a second
network composed of a convolutional neural network and a bidirectional long short-term
memory (BiLSTM) to estimate the transient duration and amplitude. The two networks
were trained and validated with actual power grid events that were stored in a publicly
available database [21]. The events stored in the database had been detected and character-
ized by the transient detection algorithm presented in [20]. Therefore, this paper presents
the results of the development of a deep learning network, trained and validated with real
acquired signals, for the detection and characterization of PQ transient events.

This paper is divided into four sections, including the Introduction and the Conclu-
sions. Section 2 presents a characterization of the measured transients that were used to
train, validate and test the proposed DL neural network. Section 3 describes the DL net-
work used for transient detection and the subsequent network that estimated the transient
amplitude and duration as well as the main results of this paper.

2. Power Quality Transient Characterization

In Figure 1, four examples of the acquired power grid voltage transients with different
characteristics are presented. The amplitudes are shown in per unit (pu) values, which
are typical in power quality, (e.g., [1]), to normalize the amplitudes using, in this case, the
power grid voltage nominal RMS voltage, which was 230 V in Portugal. The power grid
voltages were continuously acquired at 12.5 kS/s using an LEM Hall Effect sensor (LEM LV
25-P) and a 16-bit data acquisition board (DAQ) from National Instruments—NI-USB-9215.
The segments were 50 ms long, which corresponded to 2.5 nominal periods at 50 Hz, with
625 samples for each segment.

Figure 1 shows the transients at different power grid voltage phases with different
amplitudes, phase locations and durations. Figure 1a shows an oscillatory transient while
b and c show negative transients, and the waveform in d includes a positive transient [1].
Notice that other power quality events were not considered here, as the focus was centered
only on transient detection and characterization. The represented data showed, in addition
to the transient, some harmonic distortion typical in low voltage (LV) power grid voltages.

Transient detection and characterization (e.g., amplitude and duration), can be achieved
for example, using wavelet decomposition [22,23] or using a high-pass digital filter fol-
lowed by a closing morphological operation. The high-pass filter and closing morphological
operation method was presented in [24] and implemented in an embedded measurement
system described in [20]. This method was used in this study as the reference method (i.e.,
benchmark) because it was also the process used to detect and measure the real transients
in the event database [21] that was used.
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Figure 1. (a–d) Example of four acquired power grid voltage normalized segments. Each segment
has 625 acquired samples with 16-bit DAQ at 12.5 kS/s, which corresponds to segments with 50 ms.
The four examples highlight the difference in transient amplitudes, durations and relative phase
locations.

Figure 2 represents an example of the high-pass filter and morphological algorithm
operation used to detect the transients and estimate the transient characteristic parameters
(i.e., amplitude and duration). Figure 2a shows an example of an oscillatory transient
near 32 ms. The high-pass filter extracts the power grid voltage fundamental component,
and the filter-output absolute normalized voltage is represented in Figure 2b. The closing
morphological operation, which relied on the dilation operation followed by the erosion,
grouped together consecutive oscillations as part of the same transient. Figure 2c shows
the result of the morphology closing operation, where the multiple oscillations were joined
together to define one unique transient event.

Transient detection was performed by a threshold analysis of the closing operation
results (in this paper, a 0.1 pu threshold was considered). If the closing operation results
exceeded the pre-defined threshold, a transient was considered detected. The transient
amplitude was the maximum of the closing operation, and the transient duration was
estimated by the time interval between the first and second interceptions of the closing
operation results, with the threshold value using interpolation. For the example in Figure 2,
the transient had a 0.119 pu amplitude and 0.72 ms duration. Notice that the harmonic
distortions in Figure 2a were present at the filter output, as shown in Figure 2b, but they
were not enough to trigger the transient detection process.

The complete dataset used in this work had 9768 transients, and the histogram dis-
tribution of the amplitude of these transients is shown in Figure 3. Notice that since the
threshold transient detection was set at 0.1 pu, there were no transients with an amplitude
below this value. The highest recorded transient in this dataset had a 1.997 pu amplitude.

Figure 4 presents the histogram of the transient durations for the complete dataset.
Recall that the duration values were obtained by interpolation from the closing morpholog-
ical operation interceptions, according to the 0.1 pu threshold, and have, therefore, better
resolution than the inverse of the sampling rate (80 μs). The maximum recorded transient
duration was 6.6 ms. Notice that there was a significant amount of transients with duration
values near 0.2 ms.
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Figure 2. Example of transient detection and characterization using the high-pass filter and closing
morphology operation. The input segment is represented in (a) while the absolute values of the filter
output are presented in (b). The result of the closing morphological operation is depicted in (c).

Figure 3. Histogram of the transient amplitudes in the 9768 database segments. Notice that the
original transient detection used to build the database ignored events with transient amplitudes
below 0.1 pu, and, therefore, there are no events below that amplitude.

Figure 4. Transient duration histogram of the recorded transient database. The duration was obtained
by interpolation of the instances where the closing operation crossed the threshold value.
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Finally, Figure 5 depicts the phase location histogram of the recorded transients.
Notice that the phase location was not uniform, with more transients occurring near or
around 180◦.

Figure 5. Histogram of the phase location of the transients included in the measured database.

3. Deep Learning for PQ Transient Detection and Characterization

While there are many different architectures for deep-learning networks, the convo-
lutional neural network (CNN) is especially suited for image analysis and classification.
These networks have the ability to extract hidden patterns in the provided information by
training their internal filters. Therefore, since the problem under study corresponded to
the detection and characterization of transients in acquired data segments, the proposed
algorithm was based on CNNs. The theory of CNNs is beyond the scope of this work, and
a good survey of their theory and applications can be found in [25].

The proposed deep-learning architecture for transient detection and characterization
is depicted in Figure 6. It was a two-step process, where the purpose of the first step was to
detect the presence of a transient while the second step was only used when a transient
was detected, and its objective was to estimate the amplitude and duration of the transient.

Figure 6. Topology of the proposed deep-learning architecture for the detection and characterization
of power quality transients.

The objective of the first step was to extract the input voltage waveforms without
transients from the 625-sample input time series. This step was obtained with a 1D CNN,
as described in Section 3.1. Power quality transients appeared as spikes in the absolute
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difference between the input time series and the extracted waveform. Transients were
detected by comparison of the absolute difference with a pre-defined threshold.

When a transient was detected, the objective of the second step was to extract infor-
mation that could be used to estimate the transient amplitude and duration. The network
used in the second step was a hybrid CNN-BiLSTM, as described in Section 3.2.

3.1. Transient Detection

The objective of the first network was to obtain the waveform without the transient
from the 625-sample acquired and amplitude normalized time series. The topology used in
this step is depicted in Figure 7 and includes four layers.

This network was a 1D CNN where the first layer was a convolutional layer, which
contains multiple filters with fixed lengths, and its objective is to extract different levels
of information from the input time series. Each filter had different coefficients, and their
numbers depended on the filter length. The output of each filter was the convolution of
the filter with the input time series, along with a stride that was set for the whole layer.
Since the objective of this step was to obtain a time series with a length that was the same
as the input time series (i.e., 625 samples in this particular application), the stride was set
to 1, and padding had to be used to ensure the filter outputs also had the same length.
The convolutional layer had 200 filters with lengths of 240 and 200 bias parameters (one
for each filter), which resulted in a total of 48 200 optimization parameters. The output
of the convolutional layer were 200 time series (the convolution filter outputs), each with
625 samples.

The next three layers were fully connected layers (FCNs), in which the first received
the 200 × 625 data from the convolutional layer and output 100 × 625, for a total of
20 100 optimization parameters. The second FCN received the 100 × 625 from the first
FCN and output 100× 625, for a total of 10 100 optimization parameters. The third and final
FCN received the 100 × 625 from the second FCN and output the final 625 time series, with
101 optimization parameters. Overall, the 1D CNN of this first step had 78 501 parameters
that were then optimized during the back-propagation training process.

In DL applications, the hyperparameters that define each layer are defined before the
training process. If the desired goal is not achieved, these hyperparameters are adjusted,
typically to increase the number of degrees of freedom. The hyperparameters were adjusted
using a random search [26] while avoiding any overfitting of the training data. Although
other methods for hyperparameter-tuning are available (e.g., grid search or Bayesian
search), the use of random search was simple and fast, and it achieved good training results.
In this 1D CNN network, the hyperparameters included the number of filters; their size
and stride for the convolutional layer; and the number of fully connected layers as well as
their distribution to obtain the 625-sample output waveforms without transients.

The training process consisted of inputting the time-series segments of the acquired
power grid voltage without PQ events but with the normal voltage grid distortions and
noise. Then, we trained the network to estimate the same time series. Back-propagation
used the differences between the input time series and the network-estimated time series
to adjust the set of optimization parameters of the network, so that the network output was
similar to the input (only in the training, validation and test steps, as these datasets did not
contain transients). Once the network was trained, whenever a time series with a transient
was inserted, the network should output the time series without the event. The difference
between the input and output time series indicated if a transient had been detected and
included information about the transient for its characterization, namely, the transient
amplitude and duration, which was addressed in the second step, as depicted in Figure 6.

For the training process of the 1D CNN, a dataset of 5585 time series, with 625 samples
per segment without transients, was used. The validation used a different dataset with
621 segments while the test set had 470 segments. Figure 8 shows four examples of the
trained network inputs and outputs, where the blue line corresponds to the network time
series input (on the left-side vertical axis) and the red line is the difference between the
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input and output of the network (right-side vertical axis). In this figure, only one period
of the nominal power grid voltage (20 ms) is shown to improve the transient and spike
visibility. The example in Figure 8a corresponded to a time series without a transient, and
the difference showed the absence of any significant spikes. The difference was always
below 0.05 pu, and the harmonic distortions were not registered. The examples in the
remaining subplots of Figure 8 correspond to the input time series with transients, and
the corresponding spikes are clearly visible and aligned with the time series transients.
The situation depicted in Figure 8c had the largest represented amplitude transient, which
exceeded 0.5 pu near 47 ms.

Figure 7. Internal topology of the 1D CNN that aims to extract the power grid voltage waveform
without transients. This was then used to detect if a transient occurred by subtracting it from the input
time series. The second network used the absolute difference to estimate the transient amplitude
and duration.

Figure 8. Examples of the operation of the 1D CNN: (b–d) depict transients while (a) is a transient-free
segment. The blue lines depict the input time series (left vertical axis) while the red lines represent
the difference between the input and output time series (right vertical axis).

3.2. Transient Parameter Estimation

The second step of the proposed method began with the absolute difference between
the acquired segment and the output segment from the previous step, as shown in Figure 6,
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and its objective was to estimate the transient amplitude (Âi) and duration (D̂i). The
learning process used the transient amplitude (Ai) and duration (Di) values obtained by
the high-pass filter and morphology operation, as described in Section 2. Training was
performed using the mean-squared error (MSE) weighted by the average values of the
transient amplitudes (A) and transient durations (D)

MSEweighted =
1
N

⎡⎣ N

∑
i=1

(
Âi − Ai

A

)2

+
N

∑
i=1

(
D̂i − Di

D

)2
⎤⎦ (1)

where N is the number of data segments used. This weighted MSE was necessary because
the two estimated parameters had significantly different orders of magnitude (i.e., the
average transient amplitude was A = 0.347 pu, and the average transient duration was
D = 0.702 ms). If the same weight were used, the training process would tend to give
more relevancy (i.e., weight) to the highest magnitude parameter (in this case, the transient
amplitude). In this situation, the lowest magnitude parameter estimation, the transient
duration, would become irrelevant in the optimization process, which would result in poor
transient duration estimation.

The proposed network topology for this second stage, represented in Figure 9, was
a hybrid CNN–BiLSTM. It began with a convolutional layer with 64 filters, with a size of
15, a stride of 1 and no padding, as in this case, there was no need to maintain the size of
the time series. The output of this layer was 64 × 611 with 15 × 64 weights and 64 biases,
for a total of 1024 optimization parameters. The output of the convolutional layer was
fed into a bidirectional long short-term memory (BiLSTM) layer with 100 hidden units.
The BiLSTM was used because it could learn from the dependencies of the time-series
sequence data. The bidirectional version considered the dependencies in both directions
by adding one extra LSTM layer with the input data in the reverse order. This BiLSTM
layer had 64 × 800 input weights, 800 × 100 recurrent weights and 800 output biases, for a
total of 132 000 optimization parameters, and it output 200 values. The final layer was a
fully connected neural (FCN) network, which output the two estimated parameters (i.e.,
transient amplitude and duration). This layer had 2 × 200 weights and 2 biases, for a total
of 402 parameters, and these were then optimized during the learning process using the
cost function MSEweighted from (1). The complete network had a total of 133 426 parameters
that were optimized during the back-propagation-based training process.

This network was trained with 7326 acquired data segments with real measured
transients that had been pre-processed by the first network. For validation, a set with
1466 similar data segments was used. The testing stage was conducted with a different set
with 976 segments.

The results obtained from the test set are shown in Figure 10. Figure 10a depicts
the estimated transient amplitudes as a function of the actual transient amplitudes (i.e.,
benchmarks) while Figure 10b is the corresponding representation for the transient duration.
In Figure 10a, the 0.1 pu lower limit of the transient amplitude of the used segments is
clearly visible. Figure 10c,d show the estimated transient amplitude and duration error
histograms. The proposed method was better at estimating the transient amplitude than
the transient duration. This was a reflection of the complexity in estimating the transient
duration, which was tied to the threshold that had been used in the baseline algorithm (i.e.,
high-pass filter and morphological operation) and had never been explicitly used in the
DL networks. Specifically, from the absolute difference between the input segment and the
clear segment estimated by the first 1D CNN, this two-step hybrid CNN–BiLSTM network
must extract the transient duration using only the target values input during the training
process as a reference.

The root-mean-square error (RMSE) of the transient amplitude, as obtained using
the benchmark values from the filter and closing morphology algorithm, was 0.0197 pu,
and the average error was −0.00037 pu. As for the transient duration, the RMSE was
0.2024 ms, and the average error was 0.00039 ms. The estimated amplitude error interval
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[−0.045; 0.034] pu was based on 95 % of the situations shown in Figure 10. For the estimated
duration error, the corresponding 95 % interval was [−0.45; 0.33] ms. These results again
highlighted that the proposed method could achieve better results when estimating the
transient amplitude, as compared to the estimated transient duration.

Figure 9. Hybrid CNN–BiLSTM topology for the second step, which receives the absolute difference
from the output of the first 1D CNN as well as the acquired data and estimates the transient duration
and amplitude.

Figure 10. Test set results. In (a), the relation between the real transient amplitude (i.e., benchmark)
and the proposed method’s estimated amplitude is shown while in (b), the corresponding relation for
the transient duration is plotted. The histogram of the estimated transient amplitude error is shown
in (c), and the estimated transient duration error is shown in (d).
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4. Conclusions

This paper addressed the detection and characterization of power quality transients,
which are the most common type of disturbances in the power grid. Although widely
studied with different approaches, as described in the scientific literature, they usually
require technical knowledge and advanced finely tuned signal processing algorithms, such
as filtering, morphology operations and wavelets, among others. Previous studies available
in the literature have applied deep learning methods to evaluate power quality but only
with simulated/synthetic waveforms, which do not include the diverse characteristics of
actual grid waveforms. The approach described in this paper used only real measured data
to study the performance of deep learning on real grid transients. The strategy used for
the deep-learning network divided the problem into two steps: the detection of transients
and the characterization of amplitude and duration. A 1D CNN was optimized to extract
the voltage waveform without transients, which was not a pure sinewave due to the
presence of harmonics and waveform distortions. The second network, a hybrid CNN–
BiLSTM, received (as input) the absolute difference between the original acquired signal
and the output of the first network, as shown in Figure 6. This network was used to estimate
transient parameters and was composed of a convolutional layer, followed by a bidirectional
long short-term memory layer, and then completed with a fully connected layer.

The proposed architecture was trained with real acquired data, with and without
transients, and the DL test step resulted in a transient RMSE amplitude of 0.0197 pu and
0.2024 ms for the transient duration. This deep-learning approach performed better when
estimating the amplitude of the transient, as compared to its duration estimation, as shown
in Figure 10. These results validated the use of deep-learning algorithms for PQ transient
detection and characterization, using real measured data for training and validation.

Future work will include the implementation of the trained networks in an embed-
ded measurement system (e.g., in an STM32Cube.AI) for the continuous detection and
characterization of real-time power grid transient events. The assessment of the perfor-
mance of the measurement system will be compared with previously developed embedded
measurement systems that use a high-pass filter and morphological operations.
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Abstract: The advent of energy communities will revolutionize the energy market. However, ex-
ploiting their full potential requires innovations in the structure and management of low-voltage
grids. End users shall be aggregated within microgrids, where their physical interaction is possible
and coordinated operation of power sources and energy storage systems can be achieved. Moreover,
meshed network topologies will enable multiple paths for the power flow. The combination of
smart control and meshed networks can dramatically improve microgrid performance in terms of
power quality, efficiency, and resilience to transients and faults. Ubiquitous control of the power
flow becomes possible, as well as active fault clearing and isolation of subgrids without tripping
circuit breakers. This paper proposes a control approach that pursues such goals without requiring
modification of control and communication hardware implemented in commercial inverters. Instead,
a revision of control firmware, integrated with local measurements, allows retrofitting existing plants
to improve microgrid operation. Further improvements may derive from the installation of commu-
nity power sources and energy storage systems, which can extend microgrid operation to pursue
demand response and islanding. The potential of the proposed control methods is demonstrated by
simulation considering a standard microgrid under different operating conditions.

Keywords: energy community; microgrid; local control

1. Introduction

The increasing penetration of renewable energy sources (RES) and energy storage
systems (ESS) in low-voltage networks makes more and more interesting and feasible
the aggregation of end users to form energy communities (EC). According to the EU
directive “Clean energy for all Europeans” [1], these aggregations will become prime actors
in the electrical market and will play a fundamental role to improve grid efficiency and
flexibility and, more generally, to support a safe, reliable, and cost-effective operation of
the electrical network.

From a technical point of view, the most effective type of aggregation consists in the
creation of microgrids connecting neighboring users fed by the same distribution grid [2,3].
This has the potential to allow full exploitation of any local energy sources and control
abilities, resulting in improved quality and efficiency of operation, nearly ubiquitous control
of the power flow, and aggregated demand response [4]. The performances can further
be improved by the inclusion of community energy storage systems (CESS), which can
support the microgrid operation during transients and allow temporary storage or release
of energy, e.g., for demand response, servicing, fault clearing, or even islanding [5,6].

While the installation of energy sources and storage systems is merely an economical
issue, the coordination of their operation within the microgrid is not trivial. A huge
literature is available on this subject, proposing a variety of solutions based on centralized,
distributed or hybrid control, which make use of various types of powerline or wireless [7]
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communication or can be even communication-less. The practical implementation of such
control techniques is often limited by the incompatibility of communication protocols as
well as control features implemented in the power electronic converters interfacing the
sources with the mains, which often rely on proprietary standards [8].

The most widely applicable control approach implements droop techniques [9], which
do not require communication among units, and automatically adjust the active and reactive
power fed by every inverter based on local voltage and frequency measurements. However,
problems can arise under transient conditions, when power oscillations may occur due to
the interaction of distributed control units [10]. Moreover, droop techniques hardly include
reactive power compensation and load unbalance correction, which would help to increase
both power quality at user terminals and distribution efficiency.

In this paper, we analyze control solutions that can be implemented locally, at the level
of each single inverter, and permit significant improvement of microgrid operation without
requiring modification of inverter structure and rating, but a revision of control firmware.
In particular, the implementation of reactive power and load unbalance compensation are
proposed at the local level, according the Steinmetz compensation approach [11,12], which
is currently applied in high-power SVCs (static VAR compensators), e.g., for single-phase
AC railways and arc furnaces. The same principle can further be applied to groups of users,
or to entire subgrids, owing to the flexibility of the approach and the potential benefits in
terms of overall performance.

All proposed control approaches are verified by simulation in a low-voltage benchmark
network proposed by CIGRE, to evaluate the control performance in a standard operation
environment [13].

2. Principles of Local Control

Currently, most commercial inverters interfacing distributed energy sources (RES and
ESS) with the mains operate at unity power factor, i.e., they feed AC currents in phase with
the line voltages with an amplitude determined by the balance between the source power
fed into the DC link and that transferred to the AC grid.

However, some recent standards (e.g., Italian CEI 021-2022) prescribe that PV inverters
shall be able to regulate the power factor down to 0.95 in the inductive or capacitive
region, either by local control or in response to external commands. This may require some
overrating of the inverter, but does not exhaust its control capacity. Actually, pulse-width-
modulated (PWM) inverters can control the waveform of the currents fed to the grid under
the constraint to meet the DC-to-AC power balance. Such constraint can be alleviated by
the storage capacitor connected to the inverter DC terminals [14], which can accommodate
the energy fluctuations corresponding to temporary power unbalance.

In the following, we will show how the wide control ability of PWM inverters can
be used to compensate, by proper control of the AC currents fed to the grid, the reactive
power and phase unbalance generated by the loads nearby.

2.1. Reactive Power Control and Phase Unbalance Compensation

The compensation principle is the same proposed by prominent scientist Charles
Proteus Steinmetz in early 20th century [11,12,15,16]. However, while he solved the problem
by connecting line-to-line a proper set of reactive components, we may approach the
solution by separately controlling the positive, negative, and zero sequence components of
the AC inverter currents. In particular:

• In-phase positive-sequence currents determine the active power; that is, the average power
flowing through the inverter. They can be adjusted to achieve the desired DC-to-AC
power flow;

• In-quadrature positive-sequence currents determine the reactive power fed by the inverter to
the grid, which can be adjusted to compensate for that absorbed by the load and/or to
provide a desired reactive power flow at the inverter terminals.
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While the above terms can be defined for single-phase systems too, the following
apply to three-phase systems only:

• Negative-sequence currents can be adjusted to compensate for the unbalanced active
and reactive power absorption of the loads. Notably, under sinusoidal voltage supply
such current terms do not imply any average DC-to-AC power transfer; rather, they
correspond to a fluctuating power, which must be accommodated by the filter capacitor
in the DC link of the inverter;

• Zero-sequence currents may compensate for any homopolar currents absorbed by the
loads in four-wire distribution grids.

Obviously, the implementation of the compensation duties in the inverter control
requires: (i) the measurement or estimation of load currents, and (ii) the computation of
sequence components.

The theme of current estimation is relevant for implementing any type of compen-
sation techniques, and it is addressed by a wide literature [17,18]. Thus, it will not be
discussed herein.

2.2. Determination of Sequence Components in the Time Domain

The sequence components can be determined in the frequency domain, according
to the method proposed by another prominent scientist, Charles LeGeyt Fortescue, in
1918 [19]. More conveniently, in three-phase inverters, the sequence components can be
determined directly in the time domain according to the method proposed in [20], which
can be implemented by a simple computation algorithm in the inverter control.

Let f1(t), f2(t), and f3(t) be any triplet of variables in the time domain (currents or
voltages) measured in phase 1, 2, and 3 of a three-phase network. We may define their
sequence components as follows.

• Zero-sequence component. The reference term is:

fo(t) =
1
3
( f1(t) + f2(t) + f3(t)) (1a)

The corresponding phase components are:⎡⎣ fo1(t)
fo2(t)
fo3(t)

⎤⎦ =

⎡⎣ fo(t)
fo(t)
fo(t)

⎤⎦ (1b)

• Positive sequence components. Let T be the line voltage period; the reference term is:

fp(t) =
1
3

(
f1(t)− fo(t) + f2(t + T/3)− fo(t + T/3)

+ f3(t + 2T/3)− fo(t + 2T/3)

)
(2a)

The corresponding phase components are:⎡⎣ fp1(t)
fp2(t)
fp3(t)

⎤⎦ =

⎡⎣ fp(t)
fp(t − T/3)

fp(t − 2T/3)

⎤⎦ (2b)

• Negative sequence components. The reference term is:

fn(t) =
1
3

(
f1(t)− fo(t) + f2(t − T/3)− fo(t − T/3)

+ f3(t − 2T/3)− fo(t − 2T/3)

)
(3a)
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The corresponding phase components are:⎡⎣ fn1(t)
fn2(t)
fn3(t)

⎤⎦ =

⎡⎣ fn(t)
fn(t + T/3)

fn(t + 2T/3)

⎤⎦ (3b)

Notably, the sequence components result by simply adding time-shifted terms, and
can be adjourned at the beginning of each period on the basis of the values stored in the
previous cycle. The result is a fast and simple computation algorithm, easily implemented
in the control firmware.

2.3. Types of Local Control

Based on the previous definitions, we may identify various types of local control,
which are characterized by different types of measurements and communication among
neighbor units. In the following section, the impact of such control techniques on microgrid
performance will be analyzed by simulation on a standard benchmark network proposed
by the CIGRE [21].

2.3.1. Autonomous Control

With this type of control, each inverter operates autonomously and no communication
is required among them. Local load currents are measured or estimated and their reactive
and/or sequence components are determined and fed to the inverter control to perform
the desired compensation. Each type of compensation must carefully be analyzed for its
impact on the ratings of the inverter and the filter capacitor. In fact, single-phase reactive
compensation causes a large power fluctuation in the DC link of the inverter, close to
the rated load power, while three-phase reactive compensation causes negligible power
fluctuation. Moreover, load unbalance compensation can involve considerable power
fluctuations associated to negative-sequence currents (up to 150% of rated load power),
while the compensation of zero-sequence currents does not involve power fluctuations at all.

This type of control can be extended to the case of a single inverter compensating
multiple loads nearby. Obviously, the currents of all targeted loads must be measured and
fed to the inverter control, to allow an aggregate compensation.

2.3.2. Cooperative Control

This type of control applies when groups of inverters share the compensation duty.
This requires slow communication within each group, to exchange data about load currents
and implement a power-sharing criterion. Actually, this criterion can be determined offline
if the compensation duty is shared according to nominal quantities; for example, the rated
kVA of inverters, the distance among neighbor nodes, the characteristics of the distribution
wires, etc.

In general, cooperative control methods based on Steinmetz compensation do not
necessarily require knowledge of grid parameters, or sophisticated system modeling,
or advanced estimation algorithms. Therefore, they can be implemented in the control
firmware of commercial inverters with limited additional computation burden, and without
requiring a revision of the control hardware.

This type of solution can effectively be applied in energy communities, where the
energy resources and the inverters partly belong to end users and partly to the community
as a whole. Actually, the synergistic operation of private and collective resources can
significantly improve the network operation without requiring additional equipment
or infrastructure.

2.3.3. Integration of Local Control with Centralized Control

The above local control techniques can be integrated with a centralized control, if
any, either to comply with commands issued at a higher level of the control hierarchy
(e.g., related to demand response, power quality, islanding) or to implement electrical
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safety procedures within the microgrid (e.g., active fault clearing, isolation of faulty lines,
separation of subgrids for maintenance).

3. Benchmark Microgrid, Daily Operation, and Performance Factors

3.1. Microgrid Architecture

To analyze the operation and impact of the local control method proposed in the previ-
ous section, we consider the low-voltage microgrid shown in Figure 1, which corresponds
to a European low-voltage benchmark network proposed by CIGRE [21]. This network has
been already considered in a previous paper [13] and its configuration and parameters are
recalled here for completeness.

 

Figure 1. Considered low-voltage European testbench. Details on network parameters are reported
in Appendix A [13].

The benchmark network includes three subnetworks: residential, commercial, and
industrial. The characteristics and parameters of loads, sources, and distribution feeders
are detailed in [13] and are reported in Appendix A. In particular, Table A1 specifies the
type of feeders; Table A2 shows the connections among grid nodes, the characteristics of
the loads fed by the grid, and the parameters of the MV/LV transformers feeding the three
subnetworks; Table A3 specifies the characteristics of distributed energy sources.

As compared to the CIGRE benchmark network, wind turbines (WT, indicated by
circular marker), photovoltaic systems (PV, diamond marker), and distributed energy
storage systems (ESS, triangular marker) similar to those proposed for the residential
subnetwork were added in the commercial and industrial sections, too. Moreover, energy
storage units have been added as indicated in Figure 1 to allow the implementation of
electrical safety procedures and extended local control. All distributed power sources,
either RES (renewable energy sources) or ESS, interface to the grid by an electronic power
converter that performs as a controllable current source. A special function is assigned to
the utility interfaces (UI, square marker) located next to the points of common coupling
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(PCC) of each subgrid. They include ES units interfaced with the grid by voltage-controlled
inverters and perform as voltage-tracking units during on-grid operation, and as voltage-
forming units during off-grid operation. UIs play a fundamental role in controlling the
power flow from and to the mains and are the basic elements to manage islanding and
demand response and to handle transient situations due to faults or fast variations of
network behavior.

The ESS located at nodes R6 and C6 are community units and support the UIs during
fast transients. Under normal operation, they play as reactive and unbalance compensators
according to the control methods described in the following sections.

To complement the CIGRE network, we also included the connecting lines shown in
red color, which transform the original radial topology of each subnetwork to a meshed
one. In practice, this corresponds to double the main power cable in the cable duct.

As discussed in a previous paper [13], choosing a meshed topology offers considerable
advantages in the case of low-voltage microgrids: (i) the voltage stability at grid nodes
improves; (ii) the power loss in distribution feeders reduces; (iii) faulty lines can be isolated
without shutting down entire subgrids. Moreover, if a faulty area is surrounded by active
nodes equipped with grid-tied inverters, the faulty currents can also be cleared by a proper
control of the inverters, without opening the circuit breakers (electronic fault clearing). The
faulty lines can then be isolated by opening disconnectors or by removing fuses. The same
approach can be followed to isolate subgrids for maintenance.

3.2. Daily Power Profiles

Figure 2 shows typical daily power profiles of the three subgrids of Figure 1, according
to CIGRE standards for residential, commercial, and industrial microgrids in Europe.

 
Figure 2. Typical 24 h power profiles of subgrids in Figure 1.
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The upper diagram shows the daily behavior of residential loads (active and reactive
power absorption) together with the generation profile of renewable energy sources. The
central and lower diagrams show the same quantities for the commercial and industrial
subgrids, respectively. While the residential part is characterized by higher load power ab-
sorption, renewable energy generation is more relevant in commercial and industrial parts.

3.3. Mathematical Definition and Computation of Performance Factors

Figure 3 shows the daily behavior of three specific performance factors measured
at the points of common coupling (PCCs) between each subgrid and the mains. Before
discussing the behavior of such factors, let us introduce their mathematical definition and
physical meaning in general terms.

 

Figure 3. Behavior of three specific performance factors measured at the points of common coupling
(PCCs) between each subgrid and the mains.

In three-phase systems under periodic operation, the power factor (PF) is generally
defined as:

PF =
P
A

=
〈v, i〉

‖v‖·‖i‖ (4a)

where v and i are the vectors of phase voltages and currents at a given network port, P is
the active power flowing through that port, and A is the corresponding apparent power.
The mathematical operator 〈·〉 indicates internal product, while ‖·‖ refers to the square
norm (i.e., L2 norm). In the time domain, for three-phase systems the power factor can be
computed as:

PF =
P
A

=
∑3

k=1
∫ T

0 vk ikdt√
∑3

k=1
∫ T

0 v2
k dt ·

√
∑3

k=1
∫ T

0 i2k dt
(4b)
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where T is the line period, and (vk, ik) indicate instantaneous phase quantities. Under
sinusoidal operation, the PF can be computed as a function of RMS voltages and current as:

PF =
P
A

=
∑3

k=1(Vk·Ik· cos ϕk)√
∑3

k=1 V2
k ·
√

∑3
k=1 I2

k

(4c)

where (Vk, Ik) are the RMS voltage and current in phase k, and ϕk is their angular shift.
Equation (4c) can also be rewritten as a function of the sequence components of phase

voltages
(
Vp, Vn, Vo

)
and currents

(
Ip, In, Io

)
. Owing to the orthogonality of the sequence

terms defined by Equations (1)–(3), from (4c) we derive:

PF = P
A =

∑3
k=1(Vk ·Ik · cos ϕk)

3
√

V2
p +V2

n +V2
o ·
√

I2
p+I2

n+I2
o

≈ ∑3
k=1(Vk ·Ik · cos ϕk)

3Vp ·
√

I2
p+I2

n+I2
o

(4d)

Equation (4d) clearly shows the impact on the power factor caused by reactive power
absorption, which affects angular shifts ϕk, and the asymmetrical behavior of phase cur-
rents, generated by the load unbalance, which may cause non-negligible negative and zero
sequence terms In, Io to appear. In contrast, the impact of voltage asymmetry is usually
minimal, since the negative- and zero-sequence voltage components at PCCs are negligible
as compared to the positive sequence term.

The other two performance factors of Figure 3 describe the current asymmetry (power
unbalance) measured at the PCCs, and are defined as:

Unbalance factor (negative sequence) : χn =
In

Ip
(5a)

Unbalance factor (zero sequence) : χo =
Io

Ip
(5b)

• χn reflects the presence of unbalanced power absorption in the supply cables at the
PCCs, and it is mainly due to asymmetrical single-phase loads connected line-to-line
or line-to-neutral.

• χo reflects the presence of current circulation in the neutral wire, mainly due to single-
phase loads connected line-to-neutral.

As mentioned before, the impact of voltage asymmetry is negligible and is not consid-
ered in our computation.

3.4. Performance Factors at PCC

Figure 3 shows the behavior of the above performance factors measured at the PCCs
for the power profiles shown in Figure 2.

The upper diagram shows the daily behavior of the power factor, separately for each
subgrid, while the central and lower diagrams depict the behavior of unbalance factors.

• The PF behavior of the residential subgrid is nearly constant along the 24 h interval.
This regular profile reflects, on one side, the limited impact of renewable energy
generation as compared to load power absorption and, on the other side, the fact that
the power factor of residential loads keeps nearly constant at all times. Consequently,
the ratio between active power P and apparent power A at residential PCC shows
limited variations. Its relative low value (nearly 0.7) is mostly determined by the
significant load unbalance, which derives from single-phase loads connected line-to-
neutral and causes relevant unbalance factors (nearly 40% for both negative and zero
sequence terms).
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• The PF behavior of the commercial subgrid shows considerable variations, which are
mainly determined by the irregular load power absorption, very low during the night,
and by the impactful generation of renewable energy during daytime (both factors
affect the ratio P/A). In contrast, in this subgrid the effect of load unbalance is limited,
thanks to the significant amount of power absorbed by three-phase symmetrical loads.

• Finally, the industrial subgrid reveals a relatively high PF at all times, due to the
coincidence of high-power absorption and generation during daytime, and low-power
absorption and generation during nighttime. The unbalance factors are always negli-
gible since almost every load is symmetrical in the three phases.

4. Local Control Methods and Their Impact on Performance Factors

In this section, we discuss two types of control approaches.
The first approach, called autonomous control, is applicable to each inverter tied to

the grid without requiring any communication with other units or the grid manager. It
only requires a modification of the inverter control firmware and the measurement (or
estimation) of the active and reactive power absorbed by local loads (connected to the same
grid terminals of the inverter), with a possible extension to surrounding loads.

The second approach, called cooperative control, implies the coordination of a group
of inverters acting in the same subgrid. This method requires: (i) Collection and sharing
of data on the overall active and reactive power absorbed by the loads in the subgrid,
separately for each phase; this can be done by load power measurement, or even by day-
ahead forecast, that should be sufficiently precise and reliable for this type of control,
which is inherently stable and does not significantly degrade the grid operation even
in case of data inaccuracy; (ii) Defining a suitable power sharing criterion among the
inverters; for this purpose, sharing coefficients based on the rated kVA of each inverter can
be determined offline, with the double advantage of avoiding real-time computations and
ensuring uniform exploitation of inverters’ capacity. Even this control method requires
updating the control firmware of the inverters. Moreover, some communication ability is
needed, which is, however, consistent with mandatory requirements of modern grid codes.

4.1. Autonomous Control

The reference operation mode of the microgrid (Mode 0) is that depicted in Figures 2
and 3 and refers to the case when RES inverters feed to the AC grid just the active power
produced by energy sources, without compensating the load reactive power or the power
unbalance. Moreover, all energy storage units remain off.

We now consider three types of autonomous control, which correspond to different
operating modes of the microgrid.

• Mode 1—Local reactive power compensation. In this case, each inverter compensates the
reactive power absorbed by the local loads fed at the same grid terminals. This type of
compensation can be implemented in single- and three-phase inverters.

• Mode 2—Local reactive power and unbalance compensation. In this case, each inverter
compensates for the reactive power absorbed by local loads and for the negative- and
zero-sequence currents generated by the asymmetry of these loads. While negative-
sequence compensation is applicable to any type of three-phase inverter, zero-sequence
compensation requires a connection to the neutral wire. With this type of control, every
grid node equipped with a three-phase inverter can perform at unity power factor.

• Mode 3—Reactive power and phase unbalance compensation of vicinity loads. The previous
control methods do not allow reactive and unbalance compensation of loads connected
to passive grid nodes, i.e., not equipped with inverters. However, Mode 2 can be
extended to the case where inverters receive information on the power absorption of
vicinity loads and develop an aggregate compensating action. For example, in the
network of Figure 1, we aggregate nodes R10 and R17, so that the inverter in R10
compensates for all loads at nodes R10 and R17. Similarly, we aggregate neighbor
nodes R11 and R15, C12 and C13, C17 and C18.
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4.2. Cooperative Control

Following the proposal introduced in Section 2.3.2 and further discussed at the begin-
ning of this section, we may apply cooperative control to all inverters of each subgrid. The
resulting operation mode is:

• Mode 4—Cooperative compensation in subgrids. In this case, we exploit the control
ability of the utility interfaces, located next to each PCC, to strengthen the compensa-
tion action performed by the other inverters connected to the same subgrid.

4.3. Active Node Structure and Control Implementation
4.3.1. Active Node Structure

Figure 4a depicts the general structure of an active node, equipped with an AC/DC
pulse-width-modulated (PWM) inverter interfacing the AC grid with the DC circuit. This
latter generally includes a power source and/or energy storage unit in addition to filter
capacitor Cd. AC loads can also be connected at the same grid terminals of the inverter. In
Figure 4a we define:

 
Figure 4. Control quantities at active node (i.e., inverter) level. (a) general structure of active nodes;
(b) DC voltage control and AC current references; (c) determination of active and reactive load
currents; (d) determination of unbalance current references.
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• ig, iL, and i as respectively the vectors of the total currents drawn from the AC grid,
absorbed by the AC loads, and entering the inverter AC terminals;

• vd and id as respectively the DC voltage and the current fed by the inverter to the
DC link;

• ic and ie as respectively the current absorbed by DC filter capacitor Cd and that fed by
the DC source, either power source or energy storage unit.

4.3.2. General Control Principle

As known, PWM inverters allow a high flexibility to control the waveform of AC
currents, under the constraint of input/output power balance and within the limits set
by kVA power rating. All proposed control methods suit these boundaries, while taking
full advantage of the control flexibility to impress the desired reactive and unbalance
compensation currents. The general control principle is depicted in Figure 4b.

The main control loop refers to DC voltage vd, since keeping vd at the reference value
ensures the balance between inverter input and output power. Actually, any mismatch
between these power terms would cause the energy in capacitor Cd to increase or decrease,
thus causing a variation of vd. Fort this purpose, the voltage control loop adjusts the value
of DC current id which, in turn, reflects on the amplitude of the active currents entering
the inverter.

This is graphically represented in Figure 4b, where the control amplifier Reg adjust
capacitor current reference i∗c to keep voltage vd at desired reference v∗d . Inverter DC current
reference i∗d is then determined by detracting source current ie from i∗c . By multiplying DC
voltage reference v∗d times DC current reference i∗d the control estimates DC power reference
P∗

d which, under the assumption of input/output power balance, also coincides with the
AC active power reference P∗

a . Active ac current references i∗a are then determined as those
quantities proportional to AC voltages v which comply with power reference P∗

a = P∗
d .

Finally, inverter AC current references i∗ are determined by adding compensation terms
icomp to active current references i∗a . Since reactive and unbalance compensation currents
do not alter the active power flow, the inverter will eventually absorb the required active
power while performing the compensation action required by the selected control method.

4.3.3. Determination of Reactive and Unbalance Compensation Currents

According to the above control methods, each inverter is required to compensate
totally or partially the reactive and unbalance currents of one or more vicinity loads. The
compensation duty assigned to each inverter depends on the selected control method and
the power sharing criterion.

Assuming that i∗L is the vector of the equivalent load currents to be compensated by the
inverter of Figure 4a, the control must firstly separate the active and reactive components
of such currents. The separation procedure is shown in Figure 4c. The active components
i∗La are first determined as those currents proportional to line voltages v, which convey
the same active power of currents i∗L. The reactive components i∗Lr are then determined
by difference. If only a reactive compensation is required, compensation terms icomp of
Figure 4b simply coincide with the opposite of equivalent load reactive currents i∗Lr.

If unbalance compensation is also required, the control determines the sequence
component of currents i∗L according to the transformation equations of Section 2.2. The
procedure is depicted in Figure 4d, where negative-sequence term i∗Ln and zero-sequence
term i∗Lo are added to determine total unbalance currents i∗Lu. These latter terms are then
accounted for in the computation of compensation term icomp.

In the most general case of reactive and unbalance compensation, we set:

icomp = −i∗Lr − i∗Lu (6)

Remarkably, the control relies on basic control functions at the inverter level. These
consist of output active and reactive output power, which are foreseen in current grid
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standards [22] too, and inverse sequence current injection, which is a basic functionality
widely discussed in the literature [23].

4.4. Impact of Control Methods on Grid Performance

• In this section, we analyze separately the performances of residential, commercial, and
industrial subgrids, since their different characteristics facilitate the discussion on the
impact of the various control techniques on overall microgrid operation.

4.4.1. Impact on the Power Factor of Commercial Subgrids

First, we analyze the effect of the above control methods on the power factor measured
at the PCC of the commercial subgrid. We refer to this subgrid because of the large
variations of its power factor shown in Figure 3.

The results of the analysis are summarized in Figure 5.

 

Figure 5. Effect of control methods on the power factor at the PCC.

• The upper diagram shows the time behavior of the reactive power fed by the mains
at PCC for the various control methods. The values are expressed in percentage of
the total reactive power absorption of the loads in the subgrid. In every operating
mode, the reduction of the reactive power fed by the mains is impressive. In mode 1,
the maximum value does not exceed 40% of load power, with an average of about
25%, and the same happens in mode 2. The reason for the similar behavior in modes 1
and 2 is that the reactive power fed by the inverters is the same in both cases (it
coincides with the reactive power of local loads), the main difference being related to
load unbalance compensation, which is a minor issue in commercial subgrids. Instead,
modes 3 and 4 provide a greater reduction of reactive power absorption, since the
aggregation of vicinity loads (mode 3) or the cooperative control within the entire
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subgrid (mode 4) allow much better compensation of the overall reactive power taken
by the loads. Note that the compensation is less effective in the central hours of the
day, where renewable energy generation is high, and in late afternoon, where load
power absorption is maximum. In both cases the compensating action is limited by
the kVA ratings of the inverters.

• The central diagram shows the corresponding behavior of the reactive power fed
by the inverters within the subgrid, whose action is increasingly effective when
adopting more sophisticated control methods. This diagram further clarifies that a
full compensation of load reactive power is not possible even for mode 4 (cooperative
control in the entire subgrid) in the central hours of the day. The reason is that in
those hours the generation of renewable energy is maximum, thus the inverters are
primarily committed to feed the active power produced by the sources and their
residual capacity for load reactive power compensation is limited by the kVA ratings.
In presence of an energy storage system, the flexibility of operation could obviously
be extended, e.g., by temporarily storing the energy produced by the power sources to
recover the full reactive power compensation ability.

• The lower diagram shows the effect of the various control methods on the power
factor measured at the PCC. As compared to the reference situation of mode 0, the
benefit is appreciable in modes 1 and 2, and is nearly ideal (unity power factor) in
modes 3 and 4.

Overall, all proposed control methods allow significant improvements over the refer-
ence operating mode. In particular, the compensation of vicinity loads (mode 3) provides
excellent performance without requiring the implementation of collective measurements or
power sharing among inverters.

4.4.2. Impact on the Unbalance Factors of Residential Subgrid

We now analyze the impact of the various control methods on the unbalance factors in
the residential subgrid, which mostly suffers the effects of load unbalance. The results are
summarized in Figure 6.

 
Figure 6. Effect of the control methods on the unbalance factor of the residential subgrid.
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• The upper diagram refers to the behavior of the unbalance factor related to the pres-
ence of negative-sequence currents at PCC. As compared to the reference operation of
mode 0, the pure reactive power compensation method of mode 1 does not reduce the
unbalance factor. In fact, in this mode the inverters feed symmetrical reactive currents
and do not substantially contribute to the elimination of negative-sequence compo-
nents. The other operating modes perform significantly better, and the cooperative
control of mode 4 reduces the unbalance factor to nearly one-third.

• The lower diagram refers to the behavior of the unbalance factor related to the pres-
ence of zero-sequence currents at PCC. As compared to the reference operation of
mode 0, the pure reactive power compensation method of mode 1 slightly increases
the unbalance factor. The reason lies in the symmetrical operation of the inverters,
which increases positive-sequence currents without impacting on zero-sequence load
unbalance. The other operating modes ensure increasingly appreciable reductions of
the unbalance factors when switching from mode 2 to mode 3 to mode 4.

4.4.3. Impact on Overall Efficiency and Total Voltage Deviation

The overall efficiency is defined as:

η =
Pload
Pf ed

= 1 − Ploss
Pf ed

= 1 − Ptrans f + Pwires + Pinv

PPCC + Pgen + PESS
(7)

where Pload is total power absorbed by the loads, and Pf ed is the total of the power fed by
the mains at PCC (PPCC) and that generated by the sources in the microgrid (Pgen, generated
by any type of local power sources, and PESS fed by ESS). Ploss is total power loss, i.e., the
sum of transformer power loss (Ptrans f ), power loss in the distribution wires (Pwires), and
inverter loss Pinv (which accounts for internal losses of energy sources too).

The total voltage deviation is defined as:

Δv =
√

∑N
k=1(Vk − Vnom)

2 (8)

where N is the total number of grid nodes, Vk is the RMS value of the voltage measured at
node k, and Vnom is the rated RMS grid voltage. Term Δv is a root-mean-square factor and
gives a general indication on the steadiness of the voltage profiles across all nodes of the
microgrid. As an alternative indicator, the minimum voltage across the entire microgrid
can be considered.

Figure 7 shows the time behavior of the overall efficiency η and total voltage deviation
Δv in the various operating modes. In all cases, the improvement over the reference
situation of mode 0 is appreciable.

• The upper diagram shows that the efficiency is generally higher for modes 2 and 3, due
to the local elimination of useless current terms (reactive currents and negative/zero-
sequence components), which do not flow through the grid wires toward the PCC. In
mode 1 this happens partially, since only the reactive power absorbed by the loads is
compensated locally. Instead, mode 4 is characterized by additional losses since the
circulation of compensating currents happens through longer paths than for modes 2
and 3. As compared to reference operation mode 0, where inverters do not perform any
compensation actions, all proposed control methods provide considerable efficiency
improvements along the entire time period.

• The lower diagram shows that all control methods ensure a reduction of the total
voltage deviation as compared to the reference situation. This happens because the
local compensation of reactive and unbalance power prevents circulation of useless
reactive and unbalance current terms, thus reducing the voltage drop across the
grid wires.
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Figure 7. Effect of control methods on the overall efficiency and RMS voltage deviations.

It is also interesting to see how the distribution and inverter losses change during
the time for the various control methods. This is shown in Figure 8, where the upper
diagram refers to distribution losses, which essentially track the behavior of load power
and slightly increase in case of cooperative control, where the compensation currents flow
though longer paths. The lower diagram refers to conversion losses, which increase in the
central hours of the day, where the power fed by renewable sources is maximum. Note that
the adoption of cooperative control methods helps to reduce the inverter losses, thanks to
power sharing. It must also be observed that the diagram was drawn assuming inverters
with an efficiency above 94%, which is consistent with, for example, [24].

Finally, Figure 9 shows the minimum node voltage measured across the entire mi-
crogrid for the various control methods. Noticeably, while local compensation of vicinity
loads helps the steadiness of voltage profiles, the requirement of unity power factor at
PCCs affects it, since reactive and unbalance currents flow through the microgrid, causing
additional voltage drops along the distribution lines.
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Figure 8. Loss analysis reporting, from top to bottom, distribution loss, inverters loss, and total loss.

 

Figure 9. Minimum node voltage measured across the entire microgrid for the various con-
trol methods.
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Overall, the proposed local control modes show the ability to reduce the power loss
and stabilize the voltage profiles within the entire microgrid.

5. Integrating Local Control and Central Control

As mentioned in Section 2.3.3, the above local control methods can profitably be
integrated with centralized control to extend the operational limits of the microgrid. Here
we consider an integration approach that does not require any modifications of the above
reactive and unbalance compensation techniques conducted at a local level.

Rather, we extend the same local control approach to include active power too, as-
suming that local energy storage units can be driven to temporarily compensate (e.g., to
accomplish islanding or demand response) for the active power absorbed by their vicinity
loads. This operation mode is toggled on or off by a logical command issued by the central
controller, without any additional data exchange with local units.

The only units requiring bidirectional communication with the central controller
are the utility interfaces, which interact with the grid manager to implement additional
functions such as demand response or islanding.

5.1. Integration of Local and Central Control for Reactive Power and Load
Unbalance Compensation

For the sake of demonstration, let us assume that the compensation functions described
in the previous chapter are integrated with a power factor control action done by the UIs
under the guidance of central control. For this purpose, the information on the reactive
and unbalance currents absorbed at the PCC are fed by the central controller to the UIs,
which adapt their operation to provide the residual compensation needed to complement
that performed by local control methods. The result is a unity power factor operation at all
PCCs irrespective of the type of local control used by the inverters in the microgrid. This
means that at any time the currents fed by the mains are purely active, symmetrical, and in
phase with the line voltages. This means that all reactive and unbalance currents taken by
the loads are compensated within the microgrid, without affecting the mains.

To verify that the integrated control does not affect the overall efficiency and voltage
stability at grid nodes, Figure 10 shows the same quantities of Figure 7 when the UIs
are driven by central control. Noticeably, the voltage deviation factor is substantially
unaffected, while the overall efficiency is further improved. It is also remarkable that
the highest efficiency is achieved by implementing locally the simplest control technique
(mode 2), where the inverters compensate for local loads only, without requiring data
exchange with other units in the same subgrid.

This demonstrates that driving the UIs by central control may ensure nearly ideal
operation at the PCCs, high efficiency, and steady voltage profiles without requiring data
sharing among the inverters in the same subgrid.

5.2. Integration of Local and Central Control for Active Power Management in Case of Islanding

The integration of local and central control has the potential to allow a precise manage-
ment of the power flowing at the PCCs, making possible the implementation of demand
response, or even islanding of entire subnetworks. For the sake of demonstration, we
consider the case when, in the time interval from 12 a.m. to 2 p.m., the residential subgrid is
driven in the islanded mode, while in the remaining time the operation remains in mode 4.

The corresponding time behavior of some relevant quantities of the residential subgrid
is shown in Figure 11.
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Figure 10. Effect of control methods on the overall efficiency and RMS voltage deviations, as in
Figure 7, but with the UI driven by central control. Voltage deviation factor is unaffected, overall
efficiency is improved.

 

Figure 11. Integrating local and central control to implement islanded operation in residen-
tial subgrid.

At 12 a.m. the active power compensation command is issued to all nodes equipped
with energy storage (R6, R10, R15), and each unit suddenly begins to feed the active power
requested by the associated loads (loads R16 and R18 for R6; load R17 for R10; loads R11
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and R15 for R15). The UI at node R1 receives data measured at PCC and arranges its output
currents to compensate for the residual active and reactive power and unbalance factors.

At 2 p.m. the islanding condition is removed, and the energy storage units enter
a charge recovery phase at constant current. At 7.30 p.m. this phase also ends and the
operation returns to regular mode 4.

• The upper diagram shows the active power: fed by the mains at PCC (black line);
absorbed by all loads in the subgrid (red); fed by the utility interface at node R1 (blue);
generated by the renewable energy sources in the microgrid (green); fed by the energy
storage units at nodes R6, R10, and R15 (magenta).

• The lower diagram shows the behavior of the energy stored in the ES units at node
R1 (UI, blue line), R6 (magenta, continuous), R10 (magenta, dash-dotted), R15 (ma-
genta, dashed).

We observe that before 12 a.m. the load power is fed by the mains at PCC and by RES
only. After the islanding command is issued at 12 a.m., the power fed at PCC vanishes, and
the corresponding power gap is quickly filled by UI and ES units. Most of the power is
initially fed by ES units, until at 12.30 a.m. the unit at R6 reaches the minimum charge limit
(30% of rated value) and stops feeding power. The UI steps up suddenly to fill the gap, and
further increases its power contribution at 1.30 p.m., when the ES in R10 also reaches the
lower charge limit. At 2 p.m. the UI’s energy is nearly exhausted (15% of rated value) and
the islanding phase ends. In the following hours the storage units recover the full charge at
constant current, and the mains feeds the load power plus the energy recovery power of
ES units. At 7.30 p.m. the energy recovery phase is completed and the system returns to
mode 4 (unity PF at PCC).

Note that, even for this type of operation, the local units operate autonomously based
on local power data. The required active power control can be implemented by upgrading
the control firmware to include the on/off toggle for load power compensation.

6. Discussion

In this paper, we proposed a control approach that can be applied for retrofitting
existing grid-tied inverters with the aim of improving their individual operation as well as
the performance of the surrounding grid.

In particular, three types of control were discussed, which are characterized by differ-
ent performances but require only handling of the power and current data measured locally:

1. With the simplest type of control, the inverters are driven to compensate the total
reactive power absorbed by the loads fed at the same grid terminals of the inverter.
This only requires a revision of the control firmware and local reactive power measure-
ments. This type of control prevents useless reactive power terms flowing through the
distribution feeders, resulting in reduced distribution loss and limited fluctuations of
the voltages at grid nodes.

2. In the case of three-phase inverters, the above approach can be extended to the
compensation of the power unbalance generated by local loads. This requires a more
sophisticated control algorithm in the inverter control firmware; moreover, local phase
power and currents must be measured to allow computation of negative- and zero-
sequence terms. The result is an increase in the computational burden of each inverter
which, however, keeps well within the capability of commercial controllers. The
corresponding performance improvement is very appreciable in terms of power factor
at the point of common coupling since the symmetry and phase shift of the currents
fed by the mains significantly improve. The overall efficiency also increases, since most
useless current terms are prevented from flowing in the distribution feeders. For the
same reason also, the voltage profiles improve since the asymmetrical voltage drops
caused by the circulation of negative- and zero-sequence currents are attenuated.
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3. A further extension is achieved if each inverter performs reactive and unbalance
compensation for a set of vicinity loads. The control algorithm is the same as in the
previous case; however, the range of measurement extends to cover neighbor loads.

Two additional control methods have been considered, which further improve the
performances but require data sharing among the inverters and/or interaction between the
central control and the utility interfaces:

4. The first method coordinates all inverters of a subgrid to compensate for the total
reactive power absorption and load unbalance generated within the subgrid. While
providing excellent performances, this method requires data exchange within the
subgrid and the implementation of suitable power sharing criteria among the inverters.
Correspondingly, its implementation is more complex and demanding than for the
previous cases.

The second solution requires the implementation of the simple control method mode 2
in all inverters but the utility interfaces. These latter receive data on total power absorption
from the central controller. Correspondingly, each UI computes and compensates for
any residual reactive and unbalance power terms in the subgrid. The results are unity
power factor at the PCCs, high efficiency and voltage stability, without overstressing the UI
inverters, which are supported by any other inverters in the same subgrid.

Overall, the simplicity of control is appreciable as compared to that of solutions based
on centralized or distributed optimum or consensus-based control techniques, which may
require dynamic and adaptive control algorithms and high-frequency communication
of ubiquitous data collected by fast meters. Even though the considered methods are
presented referring to steady-state considerations, they are also effective with typical
load and generation dynamics, as shown by the time-varying 24 h profiles considered
in the presented case studies. In addition, the response in case of the occurrence of fast
transients of similar control algorithms has been already analyzed considering realistic
conditions; for example, in [25], showing that no significant impact occurs on the main
microgrid performances.

Notably, the control methods presented in this paper do not suffer from potential
instability, since the interaction among inverters is minimal; in fact, the limited voltage
variations occurring during normal operation of the grid do not substantially affect the
control methods presented here.

Finally, we observe that the proposed control performs properly even in case of
measurement inaccuracy or estimation error, since moderate control errors by local inverters
do not affect significantly the overall efficiency and voltage stability of the network. In
any case, the performances at PCCs can be adjusted by corrective actions done by the
utility interfaces.

7. Conclusions

The establishment of energy communities as active players in the energy market
requires the capacity to handle the energy resources in a coordinate way. This is the basis
for energy trading, whose reward may justify collective efforts to strengthen the facility
and improve the effectiveness and resilience of energy management.

Microgrids represent the most viable solution to aggregate neighboring end users who
share their resources for mutual benefit. Exploiting the full potential of such aggregations,
however, requires smart control and coordination of energy resources, which may be
difficult if the inverters tied to the distribution grid are not equipped with flexible control
and communication.

To circumvent this limit, we presented some methods of local control which do not
require communication and can be implemented even in existing inverters by updating
their control firmware.

We also discussed more advanced solutions, which rely on community energy storage
units, equipped with flexible control and communication interfaces, and permit control of
the power flow at the points of common coupling with the mains.
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The application of the proposed control methods to a benchmark network demon-
strated that even pure local control techniques can significantly improve the quality of
operation of the microgrid from several perspectives, e.g., energy efficiency, voltage steadi-
ness, and power unbalance. It was also shown that integrating local and central control
makes possible more sophisticated and rewarding interaction with the mains, including
demand response and islanding.

Overall, it seems that several planned benefits of energy communities can be achieved
without substantial renovation of existing infrastructure and equipment. In fact, retrofitting
existing plants and establishing community energy storage systems would provide a wide
set of operational tools to control and trade energy in the wholesale market.
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Appendix A

This appendix reports the parameters of the testbench grid displayed in Figure 1.
Table A1 specifies the type of feeders, Table A2 shows the connections among grid nodes,
the characteristics of the loads tied to the grid, and the parameters of MV/LV transformers
feeding the three subnetworks, and Table A3 specifies the characteristics of distributed
energy sources.

Table A1. Parameters of the cables used in the application example in Figure 1.

Cable Type
Effective Area

(mm2)
R Phase Wire

(Ω/km)
L Phase Wire

(mH/km)
R Neutral Wire

(Ω/km)
L Neutral Wire

(mH/km)
Rated Current

(Arms)

UG1 240 1.63 × 10−1 4.33 × 10−1 4.90 × 10−1 1.50 430
UG2 150 2.66 × 10−1 4.81 × 10−1 7.33 × 10−1 1.81 325
UG3 120 3.26 × 10−1 5.03 × 10−1 8.60 × 10−1 2.01 290
UG4 25 1.54 6.56 × 10−1 2.33 4.63 120
UG5 35 1.11 6.21 × 10−1 1.93 4.03 145
UG6 70 5.69 × 10−1 5.54 × 10−1 1.29 2.75 215
OH1 50 3.87 × 10−1 9.39 × 10−1 6.89 × 10−1 1.50 172
OH2 35 5.24 × 10−1 9.77 × 10−1 8.38 × 10−1 1.56 145
OH3 16 1.15 1.05 1.84 1.69 93

I1 150 2.66 × 10−1 4.81 × 10−1 7.33 × 10−1 1.81 325

Table A2. Details about the connections among grid nodes, the characteristics of the loads tied to the
grid, and the parameters of MV/LV transformers feeding the three subnetworks considered in the
application example in Figure 1.

Residential Subnetwork Commercial Subnetwork MV/LV Transformers (Yn)

Line
Node
from

Node
to

Length
(m)

Cable
Type

Line
Node
from

Node
to

Length
(m)

Cable
Type

Name
Node
from

Node
to

kVA Vcc

R1 R1 R2 35 UG1 C1 C1 C2 30 OH1 RT R0 R1 500 5%

R2 R2 R3 35 UG1 C2 C2 C3 30 OH1 CT C0 C1 300 6%

R3 R3 R4 35 UG1 C3 C3 C4 30 OH1 IT I0 I1 150 2%
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Table A2. Cont.

Residential Subnetwork Commercial Subnetwork MV/LV Transformers (Yn)

Line
Node
from

Node
to

Length
(m)

Cable
Type

Line
Node
from

Node
to

Length
(m)

Cable
Type

Name
Node
from

Node
to

kVA Vcc

R4 R4 R5 35 UG1 C4 C4 C5 30 OH1 Residential loads

R5 R5 R6 35 UG1 C5 C5 C6 30 UG6 Node kW kVAr Conn Random term vs.
CIGRE profile

R6 R6 R7 35 UG1 C6 C6 C7 30 OH2 R11 13 8 Yn ±40%

R7 R7 R8 35 UG1 C7 C7 C8 30 OH2 R15 60 38 Yn ±40%

R8 R8 R9 35 UG1 C8 C8 C9 30 OH2 R16 46 30 Yn ±40%

R9 R9 R10 35 UG1 C9 C3 C10 30 OH2 R17 4.25 2.65 3n ±40%

R10 R3 R11 35 UG4 C10 C10 C11 30 OH2 R18 40 25 Yn ±40%

R11 R4 R12 35 UG2 C11 C11 C12 30 OH3 Commercial loads

R12 R12 R13 35 UG2 C12 C11 C13 30 OH3 C12 17 10.5 Yn ±30%

R13 R13 R14 35 UG2 C13 C10 C14 30 OH3 C13 6.8 4.2 Yn ±30%

R14 R14 R15 30 UG3 C14 C5 C15 30 OH3 C14 21.5 13 Yn ±30%

R15 R6 R16 30 UG6 C15 C15 C16 30 OH3 C17 13.5 8.5 Yn ±30%

R16 R9 R17 30 UG4 C16 C15 C17 30 OH3 C18 6.8 4.2 Yn ±30%

R17 R10 R18 30 UG5 C17 C16 C18 30 OH3 C19 21.5 13 Yn ±30%

Residential subnetwork meshing C18 C8 C19 30 OH3 C20 17 10.5 Yn ±30%

R18 R1 R5 140 UG1 C19 C9 C20 30 UG4 Industrial loads

R19 R5 R18 200 UG1 Commercial subnetwork meshing I2 60 37 Yn 20%

Industrial subnetwork C20 C1 C5 120 UG1

I1 I1 I2 200 UG2 C21 C5 C20 150 UG1

Table A3. Characteristics of the distributed energy resources considered in the application example
in Figure 1.

Type Node
Inverter

Rating (kVA)
Rated/Max Power (kW)

Rated
Energy (kWh)

Random Term vs. CIGRE Profile

PV unit

R16 55 4 ±20%
R18 50 3 ±20%
C14 25 20 ±20%
C19 25 20 ±20%
I2 80 20 ±20%

Wind
turbine

R5 7 5.5 ±30%
C12 25 20 ±20%
C20 25 20 ±20%

Energy
storage

R6 35 15/30 30
R10 25 10/20 20
R15 70 60/120 120
R16 55 50/100 100
R18 50 40/80 80
C6 35 15/30 30

C12 20 20/40 40
C14 25 20/40 40
C17 15 15/30 30
C19 25 20/40 40
C20 20 17.5/35 35
I2 80 60/120 120

Utility
interface

R1 120 50/100 100
C1 120 50/100 100
I1 80 35/70 70
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