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The authors would like to make corrections to their published paper [1].
There were mistakes in some usages of the chemical name “isoplumbagin” in the

original version in Sections 2.1, 3.1, and 3.2. These “isoplumbagin” words should be
changed to “plumbagin”.

Literature reported that the difference between plumbagin and isoplumbagin is the
coupling constant of methyl group (1.5 Hz for plumbagin and 1.2 Hz for isoplumbagin) [2].
We found that the 1H and 13C spectra data (Figures 1 and 2) of the main compound
of EANT is plumbagin because our compound shows a J value of 1.5. Therefore, we
confirmed the major compound of EANT to be “plumbagin” based on spectra data rather
than isoplumbagin.
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We also further performed the detailed physical characters such as melting tempera-
ture. The melting points of these two compounds are different (74–75 ◦C for plumbagin
and 158–159 ◦C for isoplumbagin) [2]. After checking the melting point (77–78 ◦C) of the
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major compound isolated from EANT, we realized it should be plumbagin rather than
isoplumbagin.

Additionally, the paragraph for the Supplementary Materials also needs to be cor-
rected due to missing words. The authors have corrected the error as shown below. The
change does not affect the scientific results. The authors would like to apologize for any
inconvenience that may have been caused to readers of the journal. The manuscript will be
updated, and the original will remain online on the article webpage.

Please find the correct sentences below (only isoplumbagin in the original paper has
been corrected to plumbagin):

2.1. The Identified Components from Fingerprint Profiles of EANT (Page 2: Line 2 of the
First Paragraph)

According to HPLC fingerprinting assay (Supplementary Figure S1), the major bioac-
tive components of EANT are plumbagin, cis-isoshinanolone, quercetin 3-O-(6”-n-butyl
β-D-glucuronide), and fatty acids.

3.1. EANT Preferentially Inhibits Proliferation of Breast Cancer Cells (page 8: line 6 of the
Second Paragraph of 3.1)

In the current study, we found that the major bioactive components of EANT iden-
tified by HPLC fingerprinting method were plumbagin [21], cis-isoshinanolone [22], and
quercetin 3-O-(6”-n-butyl β-D-glucuronide) [23] (Supplementary Figure S1).

3.2. EANT Induces Oxidative Stress on Breast Cancer Cells (Page 8: line 1 of the Third
Paragraph of 3.2)

Plumbagin is a common naphthoquinone in Nepenthes. Moreover, plumbagin but
not isoplumbagin is identified in EANT.

Supplementary Materials (page 11)

The following are available online at http://www.mdpi.com/1422-0067/20/13/32
38/s1, Table S1: The HPLC method for fingerprint profile of N. thorellii x (ventricosa x
maxima), Figure S1: Components of EANT. (A) Fingerprint profile of EANT. It is monitored
at 365 nm. (B) Retention time of plumbagin (NT-A). Volume is 50 µL. It is monitored at 400
nm. (C) Retention time of cis-isoshinanolone (NT-B). Volume is 10 µL. It is monitored at
254 nm.
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Abstract: Extracts from the Nepenthes plant have anti-microorganism and anti-inflammation effects.
However, the anticancer effect of the Nepenthes plant is rarely reported, especially for breast cancer
cells. Here, we evaluate the antitumor effects of the ethyl acetate extract of Nepenthes thorellii x (ventricosa
x maxima) (EANT) against breast cancer cells. Cell viability and flow cytometric analyses were used
to analyze apoptosis, oxidative stress, and DNA damage. EANT exhibits a higher antiproliferation
ability to two breast cancer cell lines (MCF7 and SKBR3) as compared to normal breast cells (M10).
A mechanistic study demonstrates that EANT induces apoptosis in breast cancer cells with evidence
of subG1 accumulation and annexin V increment. EANT also induces glutathione (GSH) depletion,
resulting in dramatic accumulations of reactive oxygen species (ROS) and mitochondrial superoxide
(MitoSOX), as well as the depletion of mitochondrial membrane potential (MMP). These oxidative
stresses attack DNA, respectively leading to DNA double strand breaks and oxidative DNA damage
in γH2AX and 8-oxo-2′deoxyguanosine (8-oxodG) assays. Overall these findings clearly revealed
that EANT induced changes were suppressed by the ROS inhibitor. In conclusion, our results have
shown that the ROS-modulating natural product (EANT) has antiproliferation activity against breast
cancer cells through apoptosis, oxidative stress, and DNA damage.
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1. Introduction

Breast cancer is the most common cancer in women, comprises 30% of all new female cancer
cases, and accounts for 15% of all female cancer-related deaths [1]. Breast cancer is complex and
an effective cure remains elusive. Resistance to clinical drugs and radiation reduces the therapeutic
effect against breast cancer and is partly attributed to the loss of apoptosis function [2]. Accordingly,
apoptosis-inducing drugs may improve the therapeutic effect against breast cancer cells.

Accumulating evidence suggests that natural products contain many bioactive components for
cancer prevention and therapy, and sometimes provide advantages over isolated compounds. This is
partly because natural products consist of many bioactive components that can suppress the function of
multiple targets [3]. Natural products provide valuable resources for drug discovery for breast cancer
treatment through apoptosis [2,4–7]. For example, Phyla nodiflora L. extracts were found to inhibit cell
proliferation by inducing apoptosis in human breast cancer cells [2]. The study of additional natural
products for drug discovery against breast cancer cells is thus warranted.

Nepenthes (also known as tropical pitcher plants) are tropical carnivorous plants. Nepenthes
comprise a number of natural and cultivated hybrids and present diverse species development.
Many species of Nepenthes are commonly used in herbal medicine in several Southeast Asian
countries [8]. Some types of extracts from Nepenthes are known to have anti-bacterial and anti-fungal
properties. For example, methanolic extract of N. bicalcarata inhibited growth of gram-positive bacteria
(Staphylococcus aureus, Bacillus subtilis and B. spizizenii) with the minimum inhibitory concentration
(MIC) at 256 µg/mL [9]. Hexane extract of N. ventricosa x maxima inhibited the growth of several
species of fungi such as Alternaria alternata, Aspergillus niger, Bipolaris oryzae, Fusarium oxysporum,
Phytophthora capsici, Rhizoctonia solani, Rhizopus stolonifer var. stolonifera, and Sclerotinia sclerotiorum
with MIC values ranging from 7.2 to 43.7 µg/mL [10]. Nepenthes extracts have been reported to suppress
inflammation [11]. Anti-inflammation drugs frequently show anticancer effects [12–14]. Recently, the
methanol extract and its sequential partitions of N. alata Blanco as well as its bioactive compound
plumbagin demonstrated the anti-breast-cancer effect [15]. Therefore, we hypothesize that extracts
from other Nepenthes hybrid may have an anticancer effect against breast cancer cells.

This study evaluates the antiproliferation effect from an ethyl acetate extract of Nepenthes thorellii x
(ventricosa x maxima) (EANT) on breast cancer cells. The underlying mechanisms of antiproliferation
(e.g., cell viability, apoptosis, oxidative stress, and DNA damage) were determined on breast cancer
cells following EANT treatment.

2. Results

2.1. The Identified Components from Fingerprint Profiles of EANT

According to HPLC fingerprinting assay (Supplementary Figure S1), the major bioactive
components of EANT are plumbagin, cis-isoshinanolone, quercetin 3-O-(6”-n-butyl β-D-glucuronide),
and fatty acids. In the present study, we focused on the antiproliferation effect of breast cancer cells
using EANT and therefore the detailed involvement of these bioactive components on anti-breast
cancer effect was not addressed.

2.2. EANT Preferentially Inhibits Viability of Breast Cancer Cells

In Figure 1A, EANT dose-dependently more significantly reduces the viability (%) of two breast
cancer cells (MCF7 and SKBR3) than normal breast cells (M10). In Figure 1B, the viability reducing
effects of EANT are suppressed by the inhibitor pretreatments for ROS (NAC). Accordingly, the
role of oxidative stress and apoptosis in EANT-treated breast cancer cells warrants further detailed
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investigation. For comparison to clinical drugs, the cell viability of breast cancer cells treated with
cisplatin was performed (Figure 1C). The drug sensitivity of EANT in breast cancer cells is higher than
that of cisplatin at 24 h treatment. The drug sensitivity of cisplatin in breast cancer cells at 48 and 72 h
is higher than that of 24 h treatment.
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Figure 1. Cell viability following ethyl acetate extract of Nepenthes thorellii x (ventricosa x maxima)
(EANT) treatment. (A) Cell viability of breast cancer cells (MCF7 and SKBR3) and breast normal cells
(M10) treated with 0 (control with DMSO only), 5, 15, and 25 µg/mL of EANT for 24 h. (B) Cell viability
of breast cancer cells after NAC pretreatment (2 mM for 1 h) and EANT post-treatment (25 µg/mL for
24 h), i.e., NAC/EANT. (C) Cell viability of breast cancer cells treated with different concentrations of
cisplatin for 24, 48, and 72 h. For each cell line, treatments labeled without the same lower-case letters
indicate significant difference. p < 0.05~0.0001. Data, mean ± SD (n = 3).

2.3. EANT Changes Cell Cycle Distribution in Breast Cancer Cells

Figure 2A shows the flow cytometry patterns of cell cycle distribution in breast cancer cells (MCF7
and SKBR3) without (up) or with (down) NAC pretreatment. In Figure 2B, the subG1 and G2/M
population gradually accumulates and the G1 population gradually decreases in breast cancer cells
after EANT treatments. After NAC pretreatments, the subG1 accumulation and cell cycle disturbance
recover to the normal distribution as control.
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phase, treatments labeled without the same lower-case letters indicate significant difference.
p < 0.05~0.0001. Data, mean ± SD (n = 3). Positive controls for subG1 accumulation and G2/M
arrest were provided in the Supplementary Figure S2A,B.

2.4. EANT Induces Apoptosis in Breast Cancer Cells

The possibility that subG1 accumulation may lead to apoptosis was further examined by flow
cytometry. Figure 3A shows the flow cytometry patterns of annexin V/7AAD in breast cancer cells
(MCF7 and SKBR3). In Figure 3B (top part), the early apoptosis (%) (annexin V (+)/7AAD (-)) of MCF7
cells is dramatically increased to about 80% in 15 µg/mL of EANT and its late apoptosis (%) (annexin
V (+)/7AAD (+)) is increased to 20% compared to the control. In Figure 3B (bottom part), the early
and late apoptosis (%) of SKBR3 cells is only mildly increased in 15 µg/mL of EANT compared to the
control. In a higher concentration (25 µg/mL), EANT is more likely to induce late apoptosis than early
apoptosis in both breast cancer cells.

Figure 3C,E illustrate the roles of ROS and apoptosis effects on flow cytometry patterns of annexin
V/7AAD in breast cancer cells (MCF7 and SKBR3). At 12 h of EANT treatment, the early apoptosis
population exceeds the late apoptosis population in breast cancer cells. At 24 h of EANT treatment,
the early apoptosis population shifts to late apoptosis in breast cancer cells. In Figure 3D,F, the early
apoptosis population, that is, annexin V(+)/7AAD (−) (%), increases dramatically for 12 h and then
declines at 24 h in breast cancer cells. The late apoptosis population, that is, annexin V(+)/7AAD (+)
(%), increases dramatically for 12 and 24 h in breast cancer cells.
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Figure 3. Apoptosis change of annexin V/7AAD after EANT treatment. (A,B) Concentration effect of
EANT on Annexin V/7AAD patterns and statistics. Breast cancer cells (MCF7 and SKBR3) were treated
with control with DMSO only and EANT (15 and 25 µg/mL) for 24 h. Annexin V (+)/7AAD (−) and
annexin V (+)/7AAD (+) were respectively regarded as early and later apoptosis. (C–F) Time course
effect of EANT on Annexin V/7AAD patterns and statistics. Without or with (C,D) NAC pretreatment
or (E,F) Z-VAD pretreatment, breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of
EANT for 0 (control with DMSO only), 12, and 24 h. For each cell line, treatments labeled without
the same lower-case letters indicate significant difference. p < 0.01~0.0001. Data, mean ± SD (n = 3).
Positive controls for apoptosis are provided in Supplementary Figure S2C,D.
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For EANT post-treatment for 12 h, NAC or Z-VAD pretreatment inhibits both early and late
apoptosis populations. For EANT post-treatment for 24 h, NAC or Z-VAD pretreatment inhibits late
apoptosis populations and the late apoptosis population shifts to early apoptosis.

2.5. EANT Induces ROS Production and GSH Depletion in Breast Cancer Cells

Since NAC reverts the EANT induced changes of cell viability, cell cycle distribution, and apoptosis,
the status of oxidative stress such as the ROS level in EANT-treated breast cancer cells warrants detailed
investigation. Figure 4A,C respectively show flow cytometry patterns of ROS in breast cancer cells
(MCF7 and SKBR3) without or with NAC pretreatment. In Figure 4B, the ROS (+) (%) is dramatically
increased in both 15 and 25 µg/mL of EANT. In Figure 3D, the ROS (+) (%) increases dramatically
within 5 min and is suppressed by NAC pretreatment in breast cancer cells (MCF7 and SKBR3).

Because glutathione (GSH) has a ROS-scavenging function [16], the status of GSH level in
EANT-treated breast cancer cells warrants detailed investigation. Figure 4E shows flow cytometry
patterns of GSH in breast cancer cells (MCF7 and SKBR3). In Figure 4F, the GSH (+) (%) is dramatically
decreased in 25 µg/mL of EANT in breast cancer cells.
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Figure 4. Reactive oxygen species (ROS) and glutathione (GSH) changes after EANT treatment.
(A,B) Concentration effect of EANT on ROS patterns and statistics. Breast cancer cells (MCF7 and
SKBR3) were treated with control with DMSO only and EANT (15 and 25 µg/mL) for 5 min. (C,D) Time
course effect of EANT on ROS patterns and statistics. Without or with NAC pretreatment, breast cancer
cells (MCF7 and SKBR3) were treated with control with DMSO only and 25 µg/mL of EANT for 5
min. (E,F) The concentration effect of EANT on GSH patterns and statistics. Breast cancer cells were
treated with control with DMSO only and EANT for 24 h. For each cell line, treatments labeled without
the same lower-case letters indicate significant difference. p < 0.05~0.0001. Data, mean ± SD (n = 3).
(+) indicates the ROS or GSH (+) population. Positive controls for ROS and GSH were provided in
Supplementary Figure S2E–H.

2.6. EANT Induces MitoSOX Production and MMP Reduction in Breast Cancer Cells

Since NAC reverts the EANT induced changes to cell viability, cell cycle distribution, and apoptosis,
the status of oxidative stress such as MitoSOX and MMP levels in EANT-treated breast cancer cells
warrants detailed investigation. Figure 5A shows flow cytometry patterns of MitoSOX in breast cancer cells
(MCF7 and SKBR3). In Figure 5B, the MitoSOX (+) (%) is dramatically increased in both 15 and 25 µg/mL
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of EANT. Figure 5C,E respectively show flow cytometry patterns of MitoSOX in breast cancer cells (MCF7
and SKBR3) without or with NAC or MitoTEMPO. In Figure 5D,F, the MitoSOX (+) (%) of breast cancer
cells are suppressed by the inhibitor pretreatments for ROS (NAC) or MitoSOX (MitoTEMPO).

Figure 5G shows flow cytometry patterns of MMP in breast cancer cells (MCF7 and SKBR3).
In Figure 5H, the MMP (−) (%) is dramatically increased in both 15 and 25 µg/mL of EANT. Figure 5I
shows the time course for flow cytometry patterns of MMP in breast cancer cells (MCF7 and SKBR3)
without or with NAC. In Figure 5J, the MMP (−) (%) of breast cancer cells is increased at 12 and 24 h
and is suppressed by the NAC pretreatment.
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and 25 μg/mL of EANT. Figure 6C shows time course for flow cytometry patterns of γH2AX in 207 
breast cancer cells (MCF7 and SKBR3) without or with NAC pretreatment. In Figure 6D, the γH2AX 208 
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Figure 6E shows flow cytometry patterns of 8-oxodG in breast cancer cells (MCF7 and SKBR3). 210 
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Figure 5. MitoSOX and MMP change after EANT treatment. (A,B) The concentration effect of EANT
on MitoSOX patterns and statistics. Breast cancer cells (MCF7 and SKBR3 were treated with 0 (control
with DMSO only), 15, and 25 µg/mL of EANT for 24 h. (C–F) Time course effect of EANT on MitoSOX
patterns and statistics. Without or with (C and D) NAC pretreatment or (E,F) MitoTEMPO pretreatment,
breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of EANT for 0 (control with DMSO
only), 12, and 24 h. Annexin V (+) was counted to apoptosis. (G,H) The concentration effect of EANT
on MMP patterns and statistics. Breast cancer cells (MCF7 and SKBR3) were treated with EANT for 24 h.
(I,J) Time course effect of EANT on MMP patterns and statistics. Without or with NAC pretreatment,
breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of EANT for 0 (control with DMSO
only), 12, and 24 h. For each cell line, treatments labeled without the same lower-case letters indicate
significant difference. p < 0.05~0.0001. Data, mean ± SD (n = 3). (+) or (−) respectively indicates
the MitoSOX (+) or MMP (−) population. Positive controls for MitoSOX and MMP were provided in
Supplementary Figure S2I–L.

2.7. EANT Induces DNA Damage in Breast Cancer Cells

ROS is a DNA damage factor [17] and the DNA damage status in EANT-treated breast cancer
cells warrants detailed investigation. Figure 6A shows flow cytometry patterns of γH2AX in breast
cancer cells (MCF7 and SKBR3). In Figure 6B, the γH2AX (+) (%) is dramatically increased in both 15
and 25 µg/mL of EANT. Figure 6C shows time course for flow cytometry patterns of γH2AX in breast
cancer cells (MCF7 and SKBR3) without or with NAC pretreatment. In Figure 6D, the γH2AX (+) (%)
of breast cancer cells are suppressed by NAC pretreatment.

Figure 6E shows flow cytometry patterns of 8-oxodG in breast cancer cells (MCF7 and SKBR3).
In Figure 6F, the 8-oxodG (+) (%) is gradually increased in both 15 and 25 µg/mL of EANT. Figure 6G
shows time course for flow cytometry patterns of 8-oxodG in breast cancer cells (MCF7 and SKBR3)
without or with NAC pretreatment. In Figure 6H, the 8-oxodG (+) (%) of breast cancer cells is increased
at 12 and 24 h and is suppressed by NAC pretreatment.
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Figure 6. γH2AX and 8-oxodG changes after EANT treatment. (A,B) The concentration effect of EANT
on γH2AX patterns and statistics. Breast cancer cells (MCF7 and SKBR3) were treated with 0 (control
with DMSO only), 15, and 25 µg/mL of EANT for 24 h. The dashed box indicates the γH2AX (+)
population. (C,D) Time course effect of EANT on γH2AX patterns and statistics. Without or with
NAC pretreatment, breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of EANT for 0
(control with DMSO only), 12 and 24 h. (E,F) The concentration effect of EANT on 8-oxodG patterns and
statistics. Breast cancer cells (MCF7 and SKBR3) were treated with control with DMSO only and EANT
for 24 h. (G,H) Time course effect of EANT on 8-oxodG patterns and statistics. Without or with NAC
pretreatment, breast cancer cells (MCF7 and SKBR3) were treated with 25 µg/mL of EANT for 0 (control
with DMSO only), 12, and 24 h. For each cell line, treatments labeled without the same lower-case letters
indicate significant difference. p < 0.01~0.001. Data, mean ± SD (n = 3). (+) indicates the 8-oxodG (+)
population. Positive controls for γH2AX and 8-oxodG were provided in Supplementary Figure S2M–P.

3. Discussion

3.1. EANT Preferentially Inhibits Proliferation of Breast Cancer Cells

The antiproliferation effect of cancer cells using Nepenthes has been rarely reported. The current
study demonstrates that EANT inhibited the cell proliferation of breast cancer cells more than that of
normal breast cells at higher concentrations (15 and 25 µg/mL) (Figure 1A). IC50 values of EANT are
respectively 10 and 15 µg/mL for MCF7 and SKBR3 cells at 24 h MTS assay. For comparison to extracts
from other Nepenthes such as N. alata Blanco, IC50 values at 24 h MTT assay using MCF7 cells showed
99.78 µg/mL for its methanol extract and showed 36.60, 90.02, 61.13, and > 100 µg/mL for its CH2CL2,
EtOAc, n-BuOH, and H2O fractions, respectively [15]. These results suggest that our developed ethyl
acetate extract of N. thorellii x (ventricosa x maxima), that is, EANT, has higher sensitivity to breast cancer
MCF7 cells than that of N. alata Blanco. It is possible that extracts from different Nepenthes may have
different components or proportions leading to different drug sensitivity to breast cancer cells.

Antimalarial naphthoquinones such as plumbagin, 2-methylnaphthazarin, octadecyl caffeate,
isoshinanolone, and droserone were isolated from N. thorelii [18]. Several Nepenthes plants reported
that plumbagin is one of the main bioactive components [19,20]. Plumbagin showed IC50 values of
1.155 and 0.658 µg/mL to breast cancer MCF7 cells and noncancerous MCF-10A cells was 2.548 and
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1.882 µg/mL at 24 and 48 h treatments, respectively [15]. In the current study, we found that the
major bioactive components of EANT identified by HPLC fingerprinting method were plumbagin [21],
cis-isoshinanolone [22], and quercetin 3-O-(6”-n-butyl β-D-glucuronide) [23] (Supplementary Figure
S1). Isoplumbagin also isolated from the common leadwort (Plumbago europaea) and showed an
anti-Candida effect [21], however, its anticancer effect was rarely reported. cis-isoshinanolone also
isolated from the plant (Diospyros shimbaensis) and showed antioxidant property without testing
anticancer effect [22]. Quercetin 3-O-(6”-n-butyl β-D-glucuronide) also isolated from a slow-growing
small leafless desert shrub (Calligonum polygonoides) and showed cytotoxic effect against liver cancer
HepG2 and breast cancer MCF7 cells [23], that is, 60.46 and 61.4 µg/mL at 72 h sulphorhodamine-B
assay. It warrants the detailed investigation for the cytotoxic effects of these components in EANT to
breast cancer cells in future.

For comparison to clinical drugs, the IC50 value of cisplatin is 15 µg/mL for SKBR3 cells but it is
undetectable for MCF7 cells (Figure 1C). IC50 value of cisplatin at 48 and 72 h MTS assay is 3.71 and
2.69 µg/mL for SKBR3 cells and 10.45 and 6 µg/mL for MCF7 cells (Figure 1C). Similarly, IC50 values
of cisplatin at 72 h treatment by MTT assay are 3.36 and 4.44 µg/mL [24] for SKBR3 and MCF7 cells.
Although the IC50 values of EANT at 24 h treatment are higher than that of cisplatin at 72 h treatment,
their treatment times are different. For 24 h treatment, EANT has higher drug sensitivity to MCF7 cells
and shows similar sensitivity to SKBR3 cells compared to cisplatin.

3.2. EANT Induces Oxidative Stress on Breast Cancer Cells

Oxidative stress is an imbalance status between ROS production and antioxidant response [25].
When ROS is overproduced, the cellular antioxidant system is unable to remove extra ROS to steady
its state, thus reducing the antioxidant level. The current study found that intracellular ROS and
mitochondrial superoxide MitoSOX were upregulated and MMP was downregulated following EANT
treatment. These results suggest that EANT induces oxidative stress in breast cancer cells (MCF7 and
SKBR3). These oxidative stress changes were validated by NAC or MitoTEMPO pretreatments.

GSH is an ROS scavenging antioxidant in cells [16] to maintain oxidative homeostasis. When
the ROS level exceeds the ROS cleanness ability of GSH, the intracellular ROS level may increase
and the GSH level may decrease. Natural products have been reported to inhibit cellular antioxidant
system of cancer cells and lead to cell death for cancer treatments [26]. For example, ethanolic extract
of red algae Gracilaria tenuistipitata can increase ROS production and decrease the GSH level of oral
cancer cells [27]. Consistently, we found that GSH level declined dramatically at higher concentration
of EANT (25 µg/mL). It is noted that the GSH level was not completely depleted in breast cancer
cells (MCF7 and SKBR3) following EANT treatment. In addition to GSH, this warrants a detailed
investigation for the involvement of other non-GSH members in antioxidant systems.

Plumbagin is a common naphthoquinone in Nepenthes, however, plumbagin but not isoplumbagin
is identified in EANT. Plumbagin was reported to bind to GSH [28], behave as electrophile against
GSH [29], and induce GSH depletion of leukemia Kasumi-1 [30] and U937 [31] cells. However, the GSH
effect of isoplumbagin remains unclear. Accordingly, the role of the naphthoquinones isoplumbagin
in cytotoxic effects against breast cancer cells needs detailed investigation in future. Moreover, the
possible involvement of the other main compounds (cis-isoshinanolone and quercetin 3-O-(6”-n-butyl
β-D-glucuronide)) in EANT-induced cytotoxicity of breast cancer cells cannot be excluded.

3.3. EANT Induces Oxidative Stress-Mediated Apoptosis and DNA Damage on Breast Cancer Cells

Oxidative stress is an activator for triggering apoptosis [32]. SubG1 accumulation is one of the
apoptosis indicators [33]. In the current study, EANT partly induces subG1 accumulation and increases
the intensity of annexin V. These apoptosis events were suppressed by NAC pretreatment, suggesting
that EANT induces apoptosis of breast cancer cells depending on oxidative stress.

Moreover, oxidative stress is an activator for triggering DNA damage [34]. In the current study,
the γH2AX marker [35] for DNA double strand breaks was induced in breast cancer cells after EANT
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treatment. The role of oxidative stress in DNA double strand breaks was further confirmed by evidence
that NAC pretreatment suppresses the γH2AX intensity in breast cancer cells (MCF7 and SKBR3)
following EANT treatment. This finding raises the possibility that oxidative stress may attach DNA to
generate other types of DNA damage. In the example of 8-oxodG [36], we further demonstrated that
oxidative DNA damage is also induced in breast cancer cells after EANT treatment. Again, this type of
oxidative DNA damage in breast cancer cells is suppressed by NAC pretreatment. Therefore, EANT
induces apoptosis and DNA damage to breast cancer cells through oxidative stress.

3.4. Conclusion

Extracts from Nepenthes plants have been reported to have anti-microorganism effects, but the
anticancer effect of Nepenthes has rarely been investigated. This study examines the anticancer effect of
Nepenthes on breast cancer cells in the example of ethyl acetate fraction of N. thorellii x (ventricosa x
maxima) (EANT). EANT shows a greater antiproliferation effect against breast cancer cells than for
normal breast cells. Different flow cytometric assays show that EANT induces oxidative stress and
apoptosis in breast cancer cells and these changes were suppressed by their inhibitors. In conclusion,
EANT exerts an antiproliferation effect on breast cancer cells and the detailed mechanisms as mentioned
are explored in a ROS-dependent manner.

4. Materials and Methods

4.1. Nepenthes Extraction and Inhibitors

The aerial parts of Nepenthes thorellii x (ventricosa x maxima) were collected from Dr. Celica Koo
Botanic Conservation Center (KBCC), Pingtung County, Taiwan, in October 2014. This Nepenthes
hybrid plant was identified by KBCC researcher Ray-Hsuan Kuo, marked with the voucher number
K47512 EA, and stored in the Graduate Institute of Natural Products, Kaohsiung Medical University.

The aerial part of plant material (500 g) was sliced and immersed in MeOH (1 L) for three days.
The organic solvent was removed by a rotavapor (Heidolph, Schwabach, Germany) to afford a methanol
extract (25 g). This extract was partitioned between water and ethyl acetate (EA). The EA-soluble
fraction of N. thorellii x (ventricosa x maxima) (9.5 g) is referred to here as EANT. EANT was stored in
−20 ◦C and dissolved in dimethyl sulfoxide (DMSO) prior to experimentation. All treatments have the
same concentration of DMSO, that is, 0.05%.

To examine the role of oxidative stress, cells were pretreated with 2 mM ROS inhibitor
N-acetylcysteine (NAC) (Sigma-Aldrich; St Louis, MO, USA) [37] for 1 h. The role of mitochondrial
oxidative stress was also examined by pretreating cells with 10 µM of the mitochondrial superoxide
inhibitor MitoTEMPO (Cayman Chemical, Ann Arbor, Michigan, USA) [38] for 1 h. The role of
apoptosis was examined by pretreating cells with 20 µM of an apoptosis inhibitor Z-VAD-FMK (Z-VAD)
(Selleckchem. com; Houston, TX, USA) [39] for 2 h.

4.2. HPLC Fingerprint Profile of EANT

In order to understand the abundance and distribution of the components of EANT, the fingerprint
profile of EANT was studied. A Shimadzu LC-20AD prominence liquid chromatograph HPLC
equipped with SPD-M10A VP diode array detector was used for investigation. Injection of EANT
(volume = 100 µL, concentration = 1 mg/mL, in MeOH) was performed by a Shimadzu SIL-10AD VP
auto injector. The separation of EANT was executed by a Phenomenex Luna 5 µ C18(2) 100 Å column
(250 × 4.6 mm, flow rate = 1.0 mL/min) eluted with two solvents [solvent A = 0.1% trifluoroacetic acid
in aqueous solution; solvent B = acetonitrile]. The gradient program was set up as (a) 0 min (20% B),
(b) 60 min (100% B), (c) 70 min (100% B), (d) 80 min (20% B). The fingerprint profile and separation
method of EANT are shown in Supplementary Figure S1 and Table S1, respectively.

The plant material of N. thorellii x (ventricosa x maxima) was collected from KBCC. However, it is hard
to obtain large amounts of this plant for active component separation and identification. Therefore, we
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bought another Nepenthes plant (N. mirabilis) from a local drug store in China. Because taxonomically
related plants usually produce similar secondary metabolites (chemotaxonomic approaches), we
used the major compounds isolated from N. mirabilis as standard to interpret the components in the
fingerprint profile of our research material. We also used repeated column chromatography to isolate
those major compounds from N. mirabilis. Those major compounds were identified by their NMR and
mass spectroscopic data.

4.3. Cell Culture and Viability

Human breast cancer cells (MCF7 and SKBR3) were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)
(Gibco, Grand Island, NY, USA). Human breast normal cells (M10) were obtained from Bioresource
Collection and Research Center (BCRC) (Hsinchu, Taiwan) and cultured in Minimum Essential Medium
Alpha Medium (αMEM) (Gibco). All cells were supplemented with 10% fetal bovine serum (Gibco) and
antibiotics, and maintained in a humidified 5% CO2 incubator at 37 ◦C. Cell viability was determined
by Promega MTS Assay (Madison, WI, USA) as previously described [27].

4.4. Cell Cycle Assay

Cell cycle distribution was determined using 1 µg/mL of 7-aminoactinmycin D (7AAD) (Biotium,
Inc., Hayward, CA, USA) for 30 min [40]. Following fixation and washing, cells were suspended in
PBS for flow cytometry (Accuri C6, Becton-Dickinson, Mansfield, MA, USA).

4.5. Annexin V/7AAD Assay for Apoptosis

Cells were incubated with annexin V/7AAD reagents (Strong Biotech Corporation, Taipei, Taiwan)
for 30 min [7]. Following suspension in PBS, apoptotic cells were counted by flow cytometry (Accuri C6).

4.6. ROS Assay

Cells were incubated with 2 µM of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA)
(Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37 ◦C [41]. Following suspension in PBS,
intracellular ROS levels were measured by flow cytometry (Accuri C6).

4.7. GSH Assay

Cells were incubated with 0.1 µM of CellTracker™Green CMFDA (5-chloromethylfluorescein)
(Thermo Fisher Scientific, Carlsbad, CA, USA) for 30 min at 37 ◦C [42]. Following suspension in PBS,
intracellular ROS levels were measured by flow cytometry (Accuri C6).

4.8. Mitochondrial Superoxide Assay

Cells were incubated with 5 µM of MitoSOX™ Red (Molecular Probes, Invitrogen, Eugene, OR,
USA) for 30 min at 37 ◦C [43]. Following suspension in PBS, MitoSOX levels were measured by flow
cytometry (Accuri C6).

4.9. Mitochondrial Membrane Potential Assay

Cells were incubated with 50 nM of DiOC2(3) from the MitoProbeTM kit (Invitrogen, San Diego,
CA, USA) for 20 min [44]. Following suspension in PBS, MMP levels were measured by flow cytometry
(Accuri C6).

4.10. γH2AX Assay

Following fixation, cells were incubated with the primary antibody (1:50 dilution) against p-Histone
H2A.X (γH2AX) (Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h at 4 ◦C [45]. Subsequently,
cells were incubated with Alexa Fluor®488-conjugated secondary antibody (Cell Signaling Technology)
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(1:10,000 dilution) for 30 min at room temperature. Finally, cells were stained with 1 µg/mL of 7AAD
for 30 min. Following suspension in PBS, γH2AX levels were measured by flow cytometry (Accuri C6).

4.11. 8-Oxo-2′deoxyguanosine Assay

Following fixation, cells were incubated with the FITC-conjugated antibody (1:100 dilution)
against 8-OxodG (Santa Cruz Biotechnology) for 1 h. Following suspension in PBS, 8-OxodG levels
were measured by flow cytometry (Accuri C6).

4.12. Statistical Analysis

Data were analyzed by JMP12 software (SAS Institute, Cary, NC, USA). The significance between
multiple comparisons was analyzed by one-way analysis of variance (ANOVA) using the Tukey HSD
post-hoc test. Different treatments with the same small letters indicate non-significance, while different
treatments without the same small letters indicate significance.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/13/3238/s1.
Supplementary Table S1. The HPLC method for fingerprint profile of N. thorellii x (ventricosa x maxima).
Supplementary Figure S1. Components of EANT. (A) Fingerprint profile of EANT. It is monitored at 365 nm.
(B) Retention time of plumbagin (NT-A). Volume is 50 µL. It is monitored at 400 nm. (C) Retention time
of cis-isoshinanolone (NT-B). Volume is 10 µL. It is monitored at 254 nm. (D) Retention time of quercetin
3-O-(6”-n-butyl β-D-glucuronide) (NT-E). Volume is 10 µL. It is monitored at 254 nm. UV patterns were inserted
in right side for the Supplementary Figure S1B–D. Supplementary Figure S2. Patterns and statistics for positive
controls for flow cytometry experiments using breast cancer SKBR3 and MCF7 cells. (A, B) Cell cycle, (C, D)
apoptosis, (E, F) ROS, (G, H) GSH, (I, J) MitoSOX, (K, L) MMP, (M, N) γH2AX, and (O, P) 8-oxodG.

Author Contributions: F.O.-Y. and H.-W.C. contributed to original draft preparation. I.-H.T. performed the
cytotoxicity assays and flow cytometry. J.-Y.T., C.-Y.Y., and A.A.F. contributed to methodology, data analysis and
statistics. Y.-B.C., S.-R.C., and S.-Y.Y., contributed to EANT preparation and fingerprint profile characterization.
J.-K.K. and H.-W.C. designed whole experiment and improved the manuscript.

Funding: This work was partly supported by funds of the Ministry of Science and Technology (MOST
107-2320-B-037-016, MOST 107-2314-B-037-048, and MOST 107-2311-B-214-003), the National Sun Yat-sen
University-KMU Joint Research Project (#NSYSUKMU 108-P001), the Kaohsiung Medical University
Hospital (KMUH107-7R74), Changhua Christian Hospital-KMU Joint Research Project (108-CCH-KMU-008),
the Chimei-KMU jointed project (108CM-KMU-11), the Kaohsiung Medical University Research Center
(KMU-TC108A03), and the Health and welfare surcharge of tobacco products, the Ministry of Health and
Welfare, Taiwan, Republic of China (MOHW 108-TDU-B-212-124016).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [CrossRef]
[PubMed]

2. Teoh, P.L.; Liau, M.; Cheong, B.E. Phyla nodiflora L. Extracts induce apoptosis and cell cycle arrest in human
breast cancer cell line, MCF-7. Nutr. Cancer 2019, 71, 668–675. [CrossRef] [PubMed]

3. Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound
mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci. 2017, 18, 656. [CrossRef]
[PubMed]

4. Asadi-Samani, M.; Rafieian-Kopaei, M.; Lorigooini, Z.; Shirzad, H. The effect of Euphorbia szovitsii Fisch.
& C.A.Mey extract on the viability and the proliferation of MDA-MB-231 cell line. Biosci. Rep. 2019, 39,
BSR20181538. [PubMed]

5. Jiang, X.; Cao, C.; Sun, W.; Chen, Z.; Li, X.; Nahar, L.; Sarker, S.D.; Georgiev, M.I.; Bai, W. Scandenolone from
Cudrania tricuspidata fruit extract suppresses the viability of breast cancer cells (MCF-7) in vitro and in vivo.
Food Chem. Toxico.l 2019, 126, 56–66. [CrossRef] [PubMed]

6. Weng, J.R.; Chiu, C.F.; Hu, J.L.; Feng, C.H.; Huang, C.Y.; Bai, L.Y.; Sheu, J.H. A sterol from soft coral induces
apoptosis and autophagy in MCF-7 breast cancer cells. Ma.r Drugs 2018, 16, 238. [CrossRef] [PubMed]

14



Int. J. Mol. Sci. 2019, 20, 3238

7. Huang, H.W.; Tang, J.Y.; Ou-Yang, F.; Wang, H.R.; Guan, P.Y.; Huang, C.Y.; Chen, C.Y.; Hou, M.F.; Sheu, J.H.;
Chang, H.W. Sinularin selectively kills breast cancer cells showing G2/M arrest, apoptosis, and oxidative
DNA damage. Molecules 2018, 23, 849. [CrossRef] [PubMed]

8. Sanusi, S.B.; Bakar, M.F.A.; Mohamed, M.; Sabran, S.F.; Mainasara, M.M. Ethnobotanical, phytochemical,
and pharmacological properties of Nepenthes species: A review. Asian. J. Pharm. Clin. Res. 2017, 10, 16–19.
[CrossRef]

9. Ismail, N.A.; Kamariah, A.S.; Lim, L.B.; Ahmad, A. Phytochemical and pharmacological evaluation of
methanolic extracts of the leaves of Nepenthes bicalcarata Hook. F. Int. J. Pharma. Phyto. Res. 2015, 7,
1127–1138.

10. Shin, K.S.; Lee, S.; Cha, B.J. Suppression of phytopathogenic fungi by hexane extract of Nepenthes ventricosa x
maxima leaf. Fitoterapia 2007, 78, 585–586. [CrossRef]

11. Thao, N.P.; Luyen, B.T.; Koo, J.E.; Kim, S.; Koh, Y.S.; Thanh, N.V.; Cuong, N.X.; Kiem, P.V.; Minh, C.V.;
Kim, Y.H. In vitro anti-inflammatory components isolated from the carnivorous plant Nepenthes mirabilis
(Lour.) Rafarin. Pharm. Biol. 2016, 54, 588–594. [CrossRef] [PubMed]

12. Sugata, M.; Lin, C.Y.; Shih, Y.C. Anti-inflammatory and anticancer activities of taiwanese purple-fleshed
sweet potatoes (Ipomoea batatas L. Lam) extracts. Biomed. Res. Int. 2015, 2015, 768093. [CrossRef] [PubMed]

13. Orlikova, B.; Legrand, N.; Panning, J.; Dicato, M.; Diederich, M. Anti-inflammatory and anticancer drugs
from nature. Cancer Treat Re.s 2014, 159, 123–143.

14. Akunne, T.C.; Akah, P.A.; Nwabunike, I.A.; Nworu, C.S.; Okereke, E.K.; Okereke, N.C.; Okeke, F.C.; Hsu, T.-C.
Anti-inflammatory and anticancer activities of extract and fractions of Rhipsalis neves-armondii (Cactaceae)
aerial parts. Cogent Biol. 2016, 2, 1237259. [CrossRef]

15. De, U.; Son, J.Y.; Jeon, Y.; Ha, S.Y.; Park, Y.J.; Yoon, S.; Ha, K.T.; Choi, W.S.; Lee, B.M.; Kim, I.S.; et al. Plumbagin
from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent
pathway in MCF-7 human breast cancer cells. Food Chem. Toxicol. 2019, 123, 492–500. [CrossRef] [PubMed]

16. Nunes, S.C.; Serpa, J. Glutathione in ovarian cancer: A double-edged sword. Int. J. Mol. Sci. 2018, 19, 1882.
[CrossRef] [PubMed]

17. Richter, C. Reactive oxygen and DNA damage in mitochondria. Mutat Res. 1992, 275, 249–255. [CrossRef]
18. Likhitwitayawuid, K.; Kaewamatawong, R.; Ruangrungsi, N.; Krungkrai, J. Antimalarial naphthoquinones

from Nepenthes Thorelii. Planta Med. 1998, 64, 237–241. [CrossRef]
19. Schlauer, J.; Nerz, J.; Rischer, H. Carnivorous plant chemistry. Acta Botanica Gallica 2005, 152, 187–195.

[CrossRef]
20. Eilenberg, H.; Pnini-Cohen, S.; Rahamim, Y.; Sionov, E.; Segal, E.; Carmeli, S.; Zilberstein, A. Induced

production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. J. Exp.
Bot. 2010, 61, 911–922. [CrossRef]

21. Sobhani, M.; Abbas-Mohammadi, M.; Ebrahimi, S.N.; Aliahmadi, A. Tracking leading anti-Candida
compounds in plant samples; Plumbago europaea. Iran. J. Microbiol. 2018, 10, 187–193. [PubMed]

22. Aronsson, P.; Munissi, J.J.E.; Gruhonjic, A.; Fitzpatrick, P.A.; Landberg, G.; Nyandoro, S.S.; Erdelyi, M.
Phytoconstituents with radical scavenging and cytotoxic activities from Diospyros Shimbaensis. Dis. 2016, 4, 3.
[CrossRef] [PubMed]

23. Ahmed, H.; Moawad, A.; Owis, A.; AbouZid, S.; Ahmed, O. Flavonoids of Calligonum polygonoides and their
cytotoxicity. Pharm. Biol. 2016, 54, 2119–2126. [CrossRef] [PubMed]

24. Kwon, Y.E.; Park, J.Y.; Kim, W.K. In vitro histoculture drug response assay and in vivo blood chemistry of a
novel Pt(IV) compound, K104. Anticancer Res. 2007, 27, 321–326. [PubMed]

25. Poljsak, B.; Suput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: When to use the
synthetic antioxidants. Oxid. Med. Cell Longev. 2013, 2013, 956792. [CrossRef] [PubMed]

26. Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of cancer antioxidant defense by natural
compounds. Oncotarget 2017, 8, 15996–16016. [CrossRef] [PubMed]

27. Yeh, C.C.; Tseng, C.N.; Yang, J.I.; Huang, H.W.; Fang, Y.; Tang, J.Y.; Chang, F.R.; Chang, H.W. Antiproliferation
and induction of apoptosis in Ca9-22 oral cancer cells by ethanolic extract of Gracilaria tenuistipitata. Molecules
2012, 17, 10916–10927. [CrossRef] [PubMed]

28. Inbaraj, J.J.; Chignell, C.F. Cytotoxic action of juglone and plumbagin: A mechanistic study using HaCaT
keratinocytes. Chem. Res. Toxicol. 2004, 17, 55–62. [CrossRef]

15



Int. J. Mol. Sci. 2019, 20, 3238

29. Castro, F.A.; Mariani, D.; Panek, A.D.; Eleutherio, E.C.; Pereira, M.D. Cytotoxicity mechanism of two
naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PLoS One 2008, 3, e3999. [CrossRef]

30. Kong, X.; Luo, J.; Xu, T.; Zhou, Y.; Pan, Z.; Xie, Y.; Zhao, L.; Lu, Y.; Han, X.; Li, Z.; et al. Plumbagin enhances
TRAIL-induced apoptosis of human leukemic Kasumi1 cells through upregulation of TRAIL death receptor
expression, activation of caspase-8 and inhibition of cFLIP. Oncol. Rep. 2017, 37, 3423–3432. [CrossRef]

31. Gaascht, F.; Teiten, M.H.; Cerella, C.; Dicato, M.; Bagrel, D.; Diederich, M. Plumbagin modulates leukemia
cell redox status. Molecules 2014, 19, 10011–10032. [CrossRef] [PubMed]

32. Kashyap, D.; Sharma, A.; Garg, V.; Tuli, H.S.; Kumar, G.; Kumar, M.; Mukherjee, T. Reactive oxygen species
(ROS): An activator of apoptosis and autophagy in cancer. J. Biol. Chem. Sci. 2016, 3, 256–264.

33. Semaan, J.; Pinon, A.; Rioux, B.; Hassan, L.; Limami, Y.; Pouget, C.; Fagnere, C.; Sol, V.; Diab-Assaf, M.;
Simon, A.; et al. Resistance to 3-HTMC-induced apoptosis through activation of PI3K/Akt, MEK/ERK, and
p38/COX-2/PGE2 pathways in human HT-29 and HCT116 colorectal cancer cells. J. Cell. Biochem. 2016, 117,
2875–2885. [CrossRef] [PubMed]

34. Li, Z.; Yang, J.; Huang, H. Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Lett
2006, 580, 6161–6168. [CrossRef] [PubMed]

35. Banath, J.P.; Klokov, D.; MacPhail, S.H.; Banuelos, C.A.; Olive, P.L. Residual gammaH2AX foci as an indication
of lethal DNA lesions. BMC Cancer 2010, 10, 4. [CrossRef] [PubMed]

36. Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and
disease. FASEB J 2003, 17, 1195–1214. [CrossRef] [PubMed]

37. Huang, C.H.; Yeh, J.M.; Chan, W.H. Hazardous impacts of silver nanoparticles on mouse oocyte maturation
and fertilization and fetal development through induction of apoptotic processes. Env. Toxicol 2018, 33,
1039–1049. [CrossRef] [PubMed]

38. Wang, T.S.; Lin, C.P.; Chen, Y.P.; Chao, M.R.; Li, C.C.; Liu, K.L. CYP450-mediated mitochondrial ROS
production involved in arecoline N-oxide-induced oxidative damage in liver cell lines. Env. Toxicol 2018, 33,
1029–1038. [CrossRef]

39. Chen, C.Y.; Yen, C.Y.; Wang, H.R.; Yang, H.P.; Tang, J.Y.; Huang, H.W.; Hsu, S.H.; Chang, H.W. Tenuifolide B
from Cinnamomum tenuifolium stem selectively inhibits proliferation of oral cancer cells via apoptosis, ROS
generation, mitochondrial depolarization, and DNA damage. Toxins 2016, 8, 319. [CrossRef]

40. Vignon, C.; Debeissat, C.; Georget, M.T.; Bouscary, D.; Gyan, E.; Rosset, P.; Herault, O. Flow cytometric
quantification of all phases of the cell cycle and apoptosis in a two-color fluorescence plot. PLoS ONE 2013, 8,
e68425. [CrossRef]

41. Yeh, C.C.; Yang, J.I.; Lee, J.C.; Tseng, C.N.; Chan, Y.C.; Hseu, Y.C.; Tang, J.Y.; Chuang, L.Y.; Huang, H.W.;
Chang, F.R.; et al. Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer
cells involves apoptosis, DNA damage, and oxidative stress. BMC Complement Altern. Med. 2012, 12, 142.
[CrossRef] [PubMed]

42. Lin, K.Y.; Chung, C.H.; Ciou, J.S.; Su, P.F.; Wang, P.W.; Shieh, D.B.; Wang, T.C. Molecular damage and
responses of oral keratinocyte to hydrogen peroxide. BMC Oral Health 2019, 19, 10. [CrossRef] [PubMed]

43. Chang, Y.T.; Huang, C.Y.; Tang, J.Y.; Liaw, C.C.; Li, R.N.; Liu, J.R.; Sheu, J.H.; Chang, H.W. Reactive oxygen
species mediate soft corals-derived sinuleptolide-induced antiproliferation and DNA damage in oral cancer
cells. Onco. Targets Ther. 2017, 10, 3289–3297. [CrossRef] [PubMed]

44. Chang, H.S.; Tang, J.Y.; Yen, C.Y.; Huang, H.W.; Wu, C.Y.; Chung, Y.A.; Wang, H.R.; Chen, I.S.; Huang, M.Y.;
Chang, H.W. Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells
involving apoptosis, oxidative stress, and DNA damage. BMC Complement Altern. Med. 2016, 16, 94.
[CrossRef] [PubMed]

45. Chiu, C.C.; Haung, J.W.; Chang, F.R.; Huang, K.J.; Huang, H.M.; Huang, H.W.; Chou, C.K.; Wu, Y.C.;
Chang, H.W. Golden berry-derived 4beta-hydroxywithanolide E for selectively killing oral cancer cells by
generating ROS, DNA damage, and apoptotic pathways. PLoS One 2013, 8, e64739. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

16



 International Journal of 

Molecular Sciences

Article

Dietary Supplementation with Sea Bass (Lateolabrax
maculatus) Ameliorates Ulcerative Colitis and
Inflammation in Macrophages through Inhibiting
Toll-Like Receptor 4-Linked Pathways

Jiali Chen 1,2 , Muthukumaran Jayachandran 1, Wenxia Zhang 1, Lingyuqing Chen 1, Bin Du 3,
Zhiling Yu 2,* and Baojun Xu 1,*

1 Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal
University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
kellychan123@126.com (J.C.); jmkbio@uic.edu.hk (M.J.); l630013050@mail.uic.edu.hk (W.Z.);
j430013005@mail.uic.edu.hk (L.C.)

2 Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University,
Hong Kong, China

3 Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of
Science and Technology, Qinhuangdao 066004, China; bindufood@aliyun.com

* Correspondence: zlyu@hkbu.edu.hk (Z.Y.); baojunxu@uic.edu.hk (B.X.);
Tel.: +852-34112465 (Z.Y.); +86-756-3620636 (B.X.)

Received: 25 May 2019; Accepted: 12 June 2019; Published: 14 June 2019

Abstract: Sea bass (Lateolabrax maculatus) is a kind of food material commonly consumed in daily
life. In traditional Chinese medicinal books, it has been indicated that sea bass can be applied for
managing many inflammation-associated conditions. However, the studies on the pharmacological
mechanisms of inflammation of sea bass remain scarce. Hence, this study aims to investigate the
molecular mechanisms of the anti-inflammatory activity of sea bass. Anti-inflammatory activities
of sea bass were assessed using dextran sulfate sodium (DSS)-induced colitis in a mice model and
lipopolysaccharide (LPS)-activated macrophages model. Low body weight and short colon length
were observed in DSS-fed mice that were significantly recovered upon sea bass treatments. Moreover,
the colon histopathology score showed that sea bass-treated mice had decreased crypt damage, focal
inflammation infiltration and the extent of inflammation, suggesting that treatment with sea bass
could attenuate intestinal inflammation. In addition, the in-vitro study conjointly indicated that
sea bass could suppress the inflammatory mediators in LPS-activated macrophage by inhibiting the
TLR4-linked pathway. The present findings demonstrated that sea bass has an inhibitory effect on TLR4
signaling; thus, it could be a promising candidate for treating inflammation-associated conditions.
A further justification for the clinical application of sea bass in treating inflammation-associated
conditions is necessary.

Keywords: inflammation; ulcerative colitis; dietary therapy; TLR4 signaling

1. Introduction

Inflammatory bowel disease (IBD) is principally outlined as Crohn’s disease and ulcerative colitis
(UC). Crohn’s disease might have an effect on any part of the digestive tract, from the mouth to the
anus with diarrhea and abdominal pain. Ulcerative colitis (UC) mainly presents in the rectal and
colonic mucosa and is accompanied by weight loss, diarrhea, abdominal pain, and rectal bleeding.
This kind of uncontrolled gut inflammation affects millions of individuals in the world [1,2]. It has
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been reported that the worldwide incidence and prevalence of UC are increasing, especially in newly
industrialized countries. The highest reported prevalence values appeared in Europe and North
America [1,2]. In population-based studies, it also indicated that UC patients will have proximal disease
extension within 10 years [3]. In the 21st century, systematic research into UC prevention and dietary
therapy development seems very significant with an irresistible trend. However, the pathogenesis
of IBD remains unclear due to lack of investigation. IBD is a multifactorial disorder induced by the
interaction of genetic factors, environment, microbiota, and immune response, which are involved
in pathogenesis [4,5]. Recently, many studies have indicated that the breakdown of homeostasis
among the immune system, epithelial barrier, and gut microbiome might be the critical underlying
mechanism responsible for the development of IBD [4,5]. Previous reports suggested that the products
of gut microbiota could positively have an effect on the pathogenesis of inflammation-associated
diseases [6,7]. The gastrointestinal tract provides residence to both beneficial and potentially pathogenic
microorganisms. The imbalance within the microbiota composition may worsen the dysbiosis in the
inflamed gut [6]. Due to the immune modulatory role of gut microbiota, sea bass is hypothesized
to have beneficial effects on the host immune response and amelioration of intestinal inflammation.
Moreover, the dextran sulfate sodium (DSS) model resembles UC in several pathophysiological and
morphological features, including the production of pro-inflammatory cytokines, crypt damage, focal
inflammation infiltration, and ulceration [8]. Generally, colitis is induced chemically in this model
by adding DSS to the drinking water of mice. It mainly affects the distal colon; some inflammatory
responses appeared even in the proximal colon and caecum. The outcome of this model may be affected
by the genetic background of the animals, environment, and the DSS concentration [6,8]. Additionally,
body weight, feed consumption, and colon length were treated as an indication of the disease severity
in the DSS-induced model [9–11]. Therefore, DSS-induced colitis model is employed to study the
efficacy of aqueous extract of sea bass (ASB) in managing inflammation-associated conditions (colitis).
Toll-like receptor 4 (TLR4) signaling is one of the important mechanisms for inflammation-related
studies and it is a key receptor for commensal recognition in gut innate immunity [12]. It was the
subject of target inhibition in ulcerative colitis (UC) [12,13]. Moreover, AP-1 and NF-κB were treated as
the critical and classical pathways in TLR4 signaling. Many researchers have already elucidated that
over-expression of TLR4-linked AP-1 or NF-κB is typical in inflamed colonic tissue [13,14]. Therefore,
it is necessary to evaluate the effects of TLR4 signaling in DSS-induced colitis for studying UC in detail.

Sea bass (Lateolabrax maculatus) is an economically important cultured fish species and has a long
history of managing inflammation-associated conditions. However, the mechanism of action of sea bass
needs to be investigated. Therefore, the aim of this study was to study the efficacy of ASB in managing
inflammation-associated conditions by in vitro and in vivo experiments. The DSS-induced colitis model
was used for discovering ulcerative colitis in vivo. Many studies have reported that the process of colitis
is closely linked with neutrophils and macrophages [14–16]. It is well known that macrophages play
vital roles in innate immunity for the inhibition of inflammatory cytokines [17,18]. As one of the typical
in vitro models for investigating inflammation, lipopolysaccharide (LPS)-activated macrophages
were used in this study [17,19,20]. Moreover, many reports have indicated that inflammation in
macrophages is closely linked to the activation of TLR4 signaling [21–23]. In addition, NF-kB and
AP-1 are the typical pathways in TLR4 signaling which are associated with the inflammation triggered
by the innate immune system [24,25]. The activation of NF-kB or AP-1 pathways will lead to the
production of a series of inflammatory mediators, including interferon gamma (IFN-γ), tumor necrosis
factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). The TNF-α is a pleiotropic
cytokine, which is an important mediator of inflammation [26]. The inhibition of TNF-α secretion
in LPS-induced macrophages results in anti-inflammation [27]. MCP-1 is a highly representative
chemokine, critical for the pathogenesis of liver disease and granulomatous inflammation [28,29]. The
regulation of TNF-α, MCP-1, and IFN-γ via NF-κB, and AP-1 pathways are important mechanisms
in inflammatory responses [28]. The therapeutic potential of sea bass against ulcerative colitis has
not yet been discovered. Therefore, a good understanding of the anti-inflammatory activities of sea
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bass is essential for providing the pharmacological basis for the folk use of sea bass, and further, its
application in the medical industry.

2. Results

2.1. Characterization of the Aqueous Extract of Sea Bass (ASB)

To characterize the aqueous extract of sea bass, the crude protein content of ASB, the molecular
weight of the composition of protein fractions in ASB, and the composition of amino acids in ASB were
evaluated. Results showed that the crude protein value of ASB ranged from 74.91% to 78.87%. As
shown in Figure 1, the molecular weight of protein fractions in ASB ranged from 3.3 to 250 kDa. In
particular, the molecular weight of ASB protein fractions was distributed around 150, 37, and 10 kDa,
respectively. As shown in Supplementary Figures S1 and S2, amino acids in ASB were quantified and
identified in the chromatogram.
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Figure 1. SDS-PAGE images of the aqueous extract of sea bass (ASB).

2.2. ASB Ameliorated DSS-Induced Colitis

DSS-induced colitis model was constructed to explore the role of ASB in UC. After DSS feeding, a
significant body weight loss, less fodder consumption, and bloody stools were observed, especially in
the DSS group. As shown in Figure 2D, mice treated with ASB or sulfasalazine (SASP) showed body
weight recovery compared to the DSS-treated group. Mice body weight did not show any marked
changes in the high dosage reference group, which was similar to the control group. In accordance with
the results shown in Figure 2D, DAI (Figure 2H) also indicated that mice treated with ASB or SASP
could ameliorate the severity of colitis, compared to the DSS-treated group. Meanwhile, the amount
of feed consumption also demonstrated a significant improvement upon ASB or SASP treatments in
comparison with the DSS-treated group (Figure 2E). As shown in Figure 2A,F, DSS-induced colitis
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caused a marked decrease in colon length, while it improved upon ASB or SASP treatment. No obvious
colon length change was observed in the high dosage reference group, compared to the control group.
As is evident from the results, DSS-induced colitis in mice was ameliorated upon ASB treatments at
the dosage of 1.125, 2.25, and 4.5 g/kg b.w. (the human equivalent dose (HED): 200 g/60 kg, 400 g/60 kg,
800 g/60 kg, respectively), which was similar to the treatment with SASP.
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Figure 2. ASB protects against DSS-induced colitis in mice. (A) Representative photographs of colon (C:
control, n = 14; D: DSS model, n = 14; L: DSS+ASB low dosage, n = 14; M: DSS+ASB medium dosage,
n=14; H: DSS+ASB high dosage, n = 14; P: SASP, n = 14; T: ASB high dosage reference, n = 8). (B) Effect
of ASB on rectal bleeding in DSS-treated mice at day 7. (C) Schematic representations of the colitis
model. Effect of ASB on body weight (D), daily feed content (E) and colon length (F) at the end of the
experiment. (G) Effect of intestinal permeability upon ASB treatments at the end of the experiment. (H)
Disease activity index (DAI) evaluation of mice in each group. (I) The scoring criteria for DAI. Results
were expressed as mean ± SD. Parameters marked by the same letter are not significantly different.
Significance is represented as p < 0.05.
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2.3. Hematological Parameters

As shown in Table 1, mice with DSS administration showed significant (p < 0.05) anemia (lower
red blood cell (RBC) levels, hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV),
and platelet distribution width (PDW)) in comparison with the control group. Meanwhile, the results
also showed that supplementation of the diet with ASB could ameliorate these symptoms. Significant
differences (p < 0.05) were found in the RBC levels, HCT, and PDW upon low dosage ASB treatment in
comparison with the DSS model group.

Table 1. Hematological parameters in mice.

Hematological
Parameters Control DSS DSS+ASB

(1.125 g/kg)
DSS+ASB
(2.25 g/kg)

DSS+ASB
(4.5 g/kg) DSS+SASP NVR

RBC (1012/L) 7.39 ± 0.55 a 5.37 ± 1.25 c 6.67 ± 1.15 ab 6.23 ± 0.64 bc 6.01 ± 0.90 bc 6.07 ± 0.56 bc 6.68~8.28
HGB (g/L) 115 ± 8 a 83 ± 20 c 101 ± 17 ab 95 ± 10 bc 93 ± 14 bc 90 ± 8 bc 106~129
HCT (%) 37.2 ± 2.6 a 26.3 ± 6.1 c 32.8 ± 5.7 ab 30.5 ± 3.2 bc 29.3 ± 4.5 bc 29.3 ± 2.5 bc 33.9~41.8
MCV (fL) 50.4 ± 0.8 a 49.0 ± 1.0 b 49.2 ± 0.7 b 48.9 ± 0.5 b 48.8 ± 0.5 b 48.4 ± 1.7 b 49.2~51.3
MCH (pg) 15.5 ± 0.2 a 15.4 ± 0.2 ab 15.2 ± 0.1 b 15.3 ± 0.1 ab 15.5 ± 0.2 a 14.9 ± 0.6 c 15.2~15.9
MCHC (g/L) 308 ± 4 bc 314 ± 8 ab 309 ± 4 bc 314 ± 5 ab 318 ± 5 a 308 ± 4 bc 299~313
PDW 14.8 ± 0.1 a 14.3 ± 0.2 c 14.6 ± 0.2 b 14.5 ± 0.2 b 14.5 ± 0.2 b 14.4 ± 0.1 bc 14.7~14.9
WBC (109/L) 3.76 ± 0.65 ab 3.30 ± 0.87 b 5.14 ± 1.10 a 4.07 ± 2.34 ab 2.59 ± 0.95 b 4.02 ± 1.29 ab 2.53~4.62
Neu# (109/L) 2.08 ± 0.81 abc 1.52 ± 0.34 bc 2.84 ± 0.61 a 2.29 ± 1.91 ab 1.15 ± 0.52 c 1.86 ± 0.63 abc 0.47~3.01
Lymph# (109/L) 1.68 ± 0.35 ab 1.78 ± 0.61 ab 2.29 ± 0.62 a 1.77 ± 0.60 ab 1.43 ± 0.64 b 2.16 ± 0.72 a 1.23~2.31
Mon# (109/L) 0 ± 0 b 0 ± 0 b 0.01 ± 0.01 a 0 ± 0 b 0 ± 0 b 0 ± 0 b 0
Eos# (109/L) 0 ± 0.01 a 0 ± 0 a 0 ± 0 a 0.01 ± 0.01 a 0 ± 0 a 0 ± 0 a 0~0.02
Bas# (109/L) 0 ± 0 b 0 ± 0 b 0 ± 0 b 0 ± 0 b 0.01 ± 0.01 a 0 ± 0 b 0
Neu% (%) 53.3 ± 16.5 a 46.8 ± 6.3 a 55.5 ± 6.7 a 51.6 ± 12.7 a 45.2 ± 13.2 a 46.2 ± 4.9 a 39.6~66.1
Lymph% (%) 46.5 ± 16.4 a 53.1 ± 6.3 a 44.2 ± 6.8 a 48.0 ± 12.4 a 54.1 ± 13.2 a 53.7 ± 5.0 a 33.7~81.3
Mon% (%) 0 ± 0 b 0.04 ± 0.1 ab 0.2 ± 0.2 a 0.1 ± 0.1 ab 0.1 ± 0.2 ab 0.1 ± 0.1 ab 0
Eos% (%) 0.2 ± 0.2 a 0 ± 0 a 0.1 ± 0.1 a 0.2 ± 0.4 a 0.2 ± 0.2 a 0 ± 0 a 0~0.7
Bas% (%) 0 ± 0.1 b 0.1 ± 0.1 b 0 ± 0.1 b 0.2 ± 0.2 b 0.4 ± 0.4 a 0 ± 0 b 0~0.2
RDW-CV (%) 13.3 ± 0.8 b 13.6 ± 2.6 b 13.6 ± 1.3 b 13.7 ± 1.3 b 13.1 ± 0.6 b 17.2 ± 1.6 a 12.6~15.1
PLT (109/L) 611 ± 53 a 576 ± 146 a 681 ± 122 a 631 ± 94 a 569 ± 128 a 688 ± 91 a 526~662
MPV (fL) 5.3 ± 0.2 a 5.3 ± 0.2 a 5.3 ± 0.2 a 5.4 ± 0.2 a 5.3 ± 0.1 a 5.3 ± 0.1 a 5.2~5.7
PCT (%) 0.325 ± 0.032 a 0.304 ± 0.072 a 0.359 ± 0.067 a 0.339 ± 0.058 a 0.299 ± 0.065 a 0.363 ± 0.048 a 0.274~0.362

Results were expressed as mean ± SD, n = 8 independent experiments. WBC, white blood cell; Neu#, neutrophil
values; Lymph#, lymphocyte values; Mon#, monocyte values; Eos#, eosinophil values; Bas#, basophil values; Neu%,
Lymph%, Mon%, Eos% and Bas%, percentages of corresponding cell over white blood cell; RBC, red blood cell;
HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC,
mean corpuscular hemoglobin concentration; RDW-CV, coefficient of variation of erythrocyte distribution width;
PLT, platelets; MPV, mean platelet value; PDW, platelet distribution width; PCT, procalcitonin. Hematological
inflammatory parameters of each row marked by the same letter are not significantly different. Significance is
represented as p < 0.05.

2.4. ASB Reduced Intestinal Permeability

Increase in gut permeability was linked with greater susceptibility to colitis. As shown in
Figure 2G, the permeability of FITC-Dextran was significantly increased in the DSS-treated group,
while such a change was improved upon ASB or SASP treatment. The high dosage reference group
did not demonstrate a significant increase in comparison with the control group.

2.5. ASB Reduced Colonic Tissue Damage

As shown in Figure 3A, 1.5% DSS in drinking water resulted in extensive colonic tissue damage,
including inflammatory cell infiltration, crypt damage, and focal formation. Results showed that less
colonic tissue damage was presented upon ASB treatments, as compared to the DSS-treated group.
Diffuse infiltration of inflammation in mucosa and submucosa and crypt damage in colonic tissue
was markedly increased in the DSS group, while such changes were significantly suppressed in the
ASB-treated groups (Figure 3A,B). Meanwhile, mice in the high dosage reference group presented
normal, similar to the control group.
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Figure 3. Effect of ASB on histopathological changes of mice in DSS-induced colitis. (A) Histological
analysis (scale bar: 50 µm); (B) chart indicating scoring criteria for the evaluation of intestinal
inflammation; (C) histological score. Results were expressed as mean ± SD (n = 3~6). Colon
histopathology score marked by the same letter is not significantly different. Significance is represented
as p < 0.05.

2.6. ASB Inhibited the Neutrophil Infiltration in Impaired Colon

Similar to the colon histopathology scores, the expression level of colonic myeloperoxidase (MPO)
was greatly up-regulated in the DSS group, while the MPO activities in the ASB-treatment groups
were markedly reduced (Figure 4A). As shown in Figure 4B, less MPO-positive cells were detected in
the high dosage reference group, which was similar to the control group.
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Figure 4. Effect of ASB on the levels of an inflammatory factor in the colon. Expression of MPO in
colonic tissue was assessed by immunofluorescence (scale bar: 50 µm) (A) and MPO-positive cells
quantification (B). Results were expressed as mean ± SD (n = 3). The expression levels of MPO marked
by the same letter are not significantly different. Significance is represented as p < 0.05.

2.7. ASB Suppressed the Production of Pro-Inflammatory Mediators in the Impaired Colon

As shown in Figure 5A, treatment with SASP markedly inhibited the secretion of TNF-α (25.06 ±
5.88 pg/mL) in serum as compared to the secretion in the DSS model group (49.77 ± 7.34 pg/mL).
ASB treatments with high, medium, and low dosage also inhibited the production of TNF-α (45.84
± 17.70 pg/mL, 25.45 ± 19.16 pg/mL, 39.96 ± 9.44 pg/mL, respectively) in serum in comparison with
the DSS group, similar to the SASP-treated group. Results also indicated that the expression level of
TNF-α (19.96 ± 6.48 pg/mL) in serum presents normal in the high dosage reference group, similar
to the expression level in the control group (19.57 ± 4.90 pg/mL). Moreover, results in Figure 5B–D
showed that ASB treatments and SASP treatment could greatly down-regulate the expression level of
pro-inflammatory mediators TNF-α, IFN-γ, and MCP-1 in colonic tissue. TNF-α production (54.22 ±
12.61 pg/mL, 63.51 ± 27.83 pg/mL, 79.43 ± 36.41 pg/mL, respectively) in colonic tissue was significantly
suppressed upon ASB treatments with high, medium and low dosage as compared to the production
(98.15 ± 33.93 pg/mL) in the DSS group (Figure 5B). As shown in Figure 5C, DSS-induced colitis
markedly increased the production of IFN-γ (309.23 ± 122.83 pg/mL) in colonic tissue, while the
production was suppressed upon ASB treatments with high, medium and low dosage (235.22 ±
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91.03 pg/mL, 219.13 ± 79.14 pg/mL, 219.52 ± 72.98 pg/mL, respectively). Results in Figure 5D also
indicated that ASB treatments with high, medium and low dosage could significantly suppress MCP-1
production (201.57 ± 38.34 pg/mL, 191.57 ± 47.17 pg/mL, 229.67 ± 84.42 pg/mL, respectively) in colonic
tissue as compared to the production in DSS-induced colitis (278.24 ± 110.97 pg/mL). Meanwhile,
results also indicated that the expression level of TNF-α, IFN-γ, and MCP-1 in colonic tissue were
normal in the high dosage reference group, similar to the control group.
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Figure 5. (A) Effects of ASB on the production of cytokines TNF-α in the serum of mice with DSS-induced
colitis (n = 3). Effects of ASB on the production of cytokines (B) TNF-α (C: control, n = 14; D: DSS
model, n = 14; L: DSS+ASB low dosage, n = 14; M: DSS+ASB medium dosage, n = 14; H: DSS+ASB
high dosage, n = 11; P: SASP, n = 13; T: ASB high dosage reference, n = 8), (C) IFN-γ (C: control,
n = 9; D: DSS model, n = 8; L: DSS+ASB low dosage, n = 9; M: DSS+ASB medium dosage, n = 7; H:
DSS+ASB high dosage, n = 9; P: SASP, n = 9; T: ASB high dosage reference, n = 3), and (D) MCP-1
(n = 7) in the culture supernatants of colonic tissue of mice with DSS-induced colitis. ASB ameliorates
DSS-induced colitis via the TLR4-linked NF-κB signaling pathway. (E) Protein levels of p-Akt and
NF-κB in the colon were assessed by Western blotting. (F,G) Relative protein levels of p-Akt/β-Actin
and NF-κB/β-Actin (n = 3). Results were expressed as mean ± SD. Parameters marked by the same
letter are not significantly different. Significance is represented as p < 0.05.

2.8. ASB Improved UC through TLR4 Signaling Inhibition

As shown in Figure 5E–G, the protein levels of NF-κB and p-Akt in colonic tissues were increased
in DSS-induced colitis, in comparison with the control group. However, results showed that ASB
treatments could significantly down-regulate the protein expression levels of NF-κB and p-Akt in the
inflamed colon tissues, similar to the control group.
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2.9. ASB Down-Regulated the Expression Levels of Inflammatory Mediators in LPS-Activated Macrophages
through TLR4 Signaling Inhibition

As shown in Figure 6C, the production of MCP-1 was markedly increased in the culture of
LPS-activated macrophages compared to the control, while the secretion of MCP-1 was significantly
suppressed upon ASB treatment in a dose-dependent manner. Moreover, significant (p < 0.05)
differences were also found in the phosphorylation of TAK1, ERK, JNK, and p38 in TLR4 signaling,
except for the protein expression level of ERK at 0.1 mg/mL (Figure 6A,D–G). Due to the phosphorylation
of ERK, JNK, and p38, the protein expression levels were down-regulated in the LPS-activated
macrophages with dose-dependency upon ASB treatments. Meanwhile, one of the AP-1 components
(c-Jun) also significantly reduced the corresponding nuclear localization in LPS-activated macrophages
upon ASB treatments (Figure 6C,H,I).
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suppressed upon ASB treatment in a dose‐dependent manner. Moreover, significant (p < 0.05) 

differences were also found in the phosphorylation of TAK1, ERK, JNK, and p38 in TLR4 signaling, 

except for the protein expression level of ERK at 0.1 mg/mL (Figure 6A,D–G). Due to the 

phosphorylation of ERK, JNK, and p38, the protein expression levels were down‐regulated in the 

LPS‐activated macrophages with dose‐dependency upon ASB treatments. Meanwhile, one of the 

AP‐1 components (c‐Jun) also significantly reduced the corresponding nuclear localization in 

LPS‐activated macrophages upon ASB treatments (Figure 6C,H,I). 

 

Figure 6. Effects of ASB on the phosphorylation of protein levels on AP‐1 pathways in LPS‐induced 

macrophages (A), and relative protein levels of p‐TAK1 (D), p‐p38 (E), p‐JNK (F), and p‐Erk (G). 

Expression levels of nuclear proteins of transcription factors NF‐κB and AP‐1 regulated upon ASB 

treatment (C), and relative protein levels of c‐Jun (H) and c‐Fos (I). (B) Effects of ASB on the secretion 

Figure 6. Effects of ASB on the phosphorylation of protein levels on AP-1 pathways in LPS-induced
macrophages (A), and relative protein levels of p-TAK1 (D), p-p38 (E), p-JNK (F), and p-Erk (G).
Expression levels of nuclear proteins of transcription factors NF-κB and AP-1 regulated upon ASB
treatment (C), and relative protein levels of c-Jun (H) and c-Fos (I). (B) Effects of ASB on the secretion
of MCP-1 in the culture of LPS-induced macrophages. Results were expressed as mean ± SD. Relative
protein levels of each column marked by the same letter are not significantly different. Significance is
represented as p < 0.05.
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3. Discussion

The DSS-induced colitis in C57BL/6 mice showed many similarities in appearance to ulcerative
colitis, together with several pathophysiological and morphological features, such as weight loss,
shortened colon length, production of inflammatory mediators, crypt damage, and focal inflammation
infiltration. Sulfasalazine (SASP), a drug which has been used for treating inflammatory bowel disease
(IBD) for decades, is commonly used as a positive control in colitis study [30–32]. The results indicated
that ASB treatments showed many similarities to SASP-positive control treatment in treating colitis.
In this study, the DSS group demonstrated anemia (lower RBC levels, HGB, HCT, MCV, and PDW),
which was significant (p < 0.05) as compared to the control group, and which is in agreement with the
report by Larrosa et al. (2009) [33]. Meanwhile, results showed that ASB treatments could significantly
ameliorate these changes (Table 1). Moreover, body weight, feed consumption, colon length, and
DAI were commonly applied as the indicators for evaluating the disease severity of DSS-induced
colitis [10,11]. Many researchers have shown that the DSS group could markedly shorten the colon
length, lower the body weight, and reduce feed consumption, which is similar to the result in this
study [11,34]. Treatments with ASB could significantly prevent colon length shortening, reduce food
consumption, and help in losing body weight. The current result (Figure 2B,H) indicated that ASB
treatments could reduce rectal bleeding and ameliorate colitis in mice with DSS-induced colitis, similar
to the report by Markovic et al. (2016) and Yan et al. (2018) [14,35]. Intestinal permeability was
performed to evaluate the barrier function, as it is an important indicator for assessing colitis. Results
of various studies indicated that the increase in gut permeability was linked with greater susceptibility
to colitis [36,37]. The FITC-Dextran assay was a typical method for the in vivo assessment of intestinal
permeability [36,37]. Consistent with the results in colon length and body weight, results showed
that ASB could significantly reduce intestinal permeability. Collectively, the results showed that DSS
successfully induced colitis, similar to the previous findings. In addition, the results suggest that ASB
administration might ameliorate UC.

For further confirmation, histopathology was studied for assessing the degree of colonic tissue
damage and neutrophil infiltration. With this context, previous work by Zhu et al. (2017) and Yan et al.
(2018) have already indicated that DSS could cause colonic tissue damage, including inflammatory
cell infiltration and crypt damage, leading to higher histological score, while such a change could be
improved upon suitable treatments [11,14]. The current study showed that ASB could significantly
reduce the colonic tissue damage and lead to a lower histological score as compared to the DSS group.
Moreover, myeloperoxidase (MPO) is a critical marker for neutrophils, correlating with the extent of
neutrophil infiltration [34,38]. Therefore, it is very meaningful to detect the expression level of MPO
in colonic tissue to evaluate the degree of colonic damage. Previous studies have already reported
that neutrophil infiltration into injured colonic tissue could accelerate the damage of colonic tissue
by enzyme MPO [8,34,38]. The current results showed that the expression level of MPO in inflamed
tissue could be down-regulated upon ASB treatment (Figure 4A,B). Together, results suggested that
ASB treatments with different dosages showed dietary efficacy in ulcerative colitis (UC) amelioration.
Based on the evaluation of DAI (Figure 2H), ASB treatment at the dosage of 2.25 g/kg b.w. (the human
equivalent dose (HED): 400 g/60 kg) could be treated as the suggested dose for sea bass consumption.
Based on the current study, it was clearly indicated that ASB possessed potential therapeutic efficacy
against DSS-induced colitis.

Inflammation plays a vital role in DSS-induced colitis. TLR4 signaling, one of the important
mechanisms for inflammation, is a key receptor for commensal recognition in gut innate
immunity [12,39,40]. TLR4 signaling was the subject of therapeutics (target inhibition) in ulcerative
colitis (UC) [12,13,41]. Moreover, AP-1 and NF-κB were treated as the critical and classical pathways in
TLR4 signaling [42,43]. Many researchers have already elucidated that over-expression of TLR4-linked
AP-1 or NF-κB activation is typical in inflamed colonic tissue [13,14]. Therefore, in vivo and in vitro
studies on the efficacy of ASB treatment in inflammation through TLR4 signaling have been studied.
The present in vivo and in vitro studies showed that the activation of TLR4 signaling was up-regulated
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in the DSS-induced colitis and LPS-activated macrophages. However, the up-regulation of TLR4
signaling was markedly inhibited upon ASB treatments. The results indicated that inflammatory
mediators in DSS-induced colitis could be inhibited upon ASB treatments, similar to the previous
researches [36,44,45]. The in vitro study also indicated that ASB could suppress the inflammatory
mediators in LPS-activated macrophage through inhibiting TLR4-linked AP-1 activation. According
to the in vivo and in vitro studies, current results demonstrated that ASB treatments ameliorate
the intestinal inflammation in the gut and are correlated with the suppression of the activation of
TLR4 signaling.

4. Materials and Methods

4.1. Materials and Reagents

Lipopolysaccharide (LPS, purified from Escherichia coli O55: B5) and bovine serum albumin were
obtained from Sigma Chemical Co. (St. Louis, MO, USA). RAW 264.7 cell line (ATCC no.: TIB-71)
derived from murine macrophages was purchased from ATCC (Rockville, MD, USA). TNF-α (D2D4),
Akt (11E7), phospho-Akt (Ser473), and NF-κB (p65) were obtained from Cell Signaling Technology
(Boston, MA, USA). Myeloperoxidase (MPO) was obtained from Abcam (Cambridge, UK). Other
antibodies in NF-κB pathways were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
ELISA kits for the determination of the cytokines TNF-α, MCP-1, and IFN-γ were purchased from
Invitrogen (Carlsbad, CA, USA). All other chemicals were of analytical grade.

4.2. Sea Bass Materials and Preparation of Aqueous Extract of Sea Bass

Baijiao sea bass (Lateolabrax japonicus) was collected from Estuarine Fisheries Research Institute in
Zhuhai, Guangdong Province, China. Aqueous extract of sea bass (ASB) was prepared via steaming,
size reduction, sonication, and freeze-drying [46]. Briefly, the edible parts of sea bass were dissected and
steamed for 10 min. After steaming, fish bones were removed and the edible parts were homogenized.
Then, the homogenized meat was weighed in the beaker, and distilled water (ratio of solid to liquid at
1:5) was added, and then extracted by ultrasonication for 2 h at 90~100 ◦C. It was followed by freezing at
−80 ◦C and freeze-drying via vacuum freeze—drier (FreeZone Benchtop, Labconco Company, Kansas
City, MO, USA). The final products (the aqueous extract of sea bass, ASB) were weighted and stored in
−80 ◦C refrigerator for further analysis.

4.3. Characterization of the Aqueous Extract of Sea Bass (ASB)

Crude protein content was determined using the Kjeldahl method based on the procedure
described by Kirk (1950) [47]. The molecular weight of the protein fractions of ASB was analyzed by
SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) based on the method of
Jambrak et al. (2014) with some modifications [48]. The amino acids content of ASB from each batch
was analyzed using Biochrom 30 amino acid analyzer (DKSH management Ltd., Shanghai, China).

4.4. Animals

Male C57BL/6 mice (8 weeks, ~22 g) were purchased from SPF (Beijing) Biotechnology Co., Ltd.
Animal procedures were approved by the Ethics Committee of Hong Kong Baptist University with an
ethical code (REC/18-19/0008, 18 October 2018, committee on the use of human & animal subjects in
teaching and research, Hong Kong Baptist University). All animal treatments complied with the “Guide
for the Care and Use of Laboratory Animals” published by the National Institutes of Health (NIH).

4.5. Establishment of Ulcerative Colitis (UC) Model

Ulcerative colitis was induced by the oral administration of 1.5% (w/v) DSS (relative molecular
mass 36–50 kDa; MP Biomedicals) dissolved in drinking water for 7 days according to Heinsbroek et
al. (2015) and Zhu et al. (2017) with some modifications [9,11]. Mice were arbitrarily allocated into
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seven groups: control group (DDI water, n = 14 per group), DSS model group (n = 14 per group), three
ASB treated groups (low-dosage: 1.125 g/kg b.w./day; mid-dosage: 2.25 g/kg b.w./day; high-dosage:
4.5 g/kg b.w./day, n = 14 per group), high-dosage reference group (high-dosage: 4.5 g/kg b.w./day, n =

8 per group) and sulfasalazine (SASP)-positive control group (SASP, 50 mg/kg b.w./day, n = 14 per
group). ASB, SASP, and DDI water were given orally by gavage, once daily for 9 days. Meanwhile,
drinking water was replaced with 1.5% (w/v) DSS solution in the DSS model group, three ASB-treated
groups, and SASP-treated group for the first 7 days. Control group and high dosage reference groups
received drinking water without DSS throughout the experiment period.

4.6. Intestinal Permeability In Vivo

The measurement of intestinal permeability towards FITC-Dextran (4 kDa, Catalog#4009,
Chondrex, Redmond, WA, USA) was performed according to the manufacturer’s protocol and
Cani et al. (2009) [36]. Briefly, mice that had fasted for 4 h were given FITC-Dextran by oral gavage
(500 mg/kg body weight, 25 mg/mL). After maintaining fasting conditions for 3 h, blood was collected
from the orbital venous plexus. Then, blood was centrifuged at 14,000× g for 5 min at 4 ◦C. Plasma was
diluted in an equal volume of PBS and read on a fluorescent plate reader at an excitation wavelength of
485 nm and an emission wavelength of 520 nm. A standard curve was prepared by making dilutions
of the stock FITC-dextran in normal mouse plasma diluted with PBS.

4.7. Disease Activity Index (DAI)

The characterization of colitis symptoms was monitored by the underlying body weight, stool
consistency, stool color, and occult bleeding. The DAI was evaluated based on the scoring methods of
Chen et al. (2017) and Yan et al. (2018) with some modifications [10,14]. Weight loss was calculated
based on the difference in body weight of mice between day 0 and testing day. Stool consistency and
stool color were monitored base on the fecal pellet formation and visible blood by visual identity.
Occult blood was analyzed using a fecal occult blood test kit (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). The DAI values were conducted by the sum of the score from weight loss,
stool consistency, stool color, and occult bleeding.

4.8. Histology and Immunofluorescence

At the end of the experiment, all mice were euthanized. The colon was dissected and the length
between ileo-cecal junction and anal verge was measured. The colonic tissues were fixed in 10%
formalin solution overnight and then processed, embedded in paraffin and cut into 4-µm-thick sections.
Histopathological examination was conducted by H & E staining according to the manufacturer’s
instructions. Images were obtained by Nikon Eclipse C1 microscopy (Japan). The histological
scoring system (Figure 3B) was described by Xiao et al. (2013) and Winter et al. (2013), with some
modifications [34,49]. To quantify the inflammatory responses in colonic tissue, the expression of MPO
was detected by immunofluorescence (IF) analysis. The positive expression levels in IF images were
processed and quantified using Image-Pro Plus 6.0.

4.9. Cell Culture

RAW 264.7 cells were cultured in DMEM containing 10% FBS and 1% antibiotics
(penicillin-streptomycin) at 37 ◦C under a humidified atmosphere of 95% air and 5% CO2 by referring
to the method described previously [50].

4.10. Western Blotting

For the immunoblot analysis of TLR4, cytoplasmic protein extraction method and analysis were
applied, based on the method of Lai et al. (2017) with slight modifications [51]. RAW 264.7 macrophages
were grown to confluence in 6-well plates for overnight adhesion and subsequently treated with
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various concentrations (0.1, 0.4, and 1.6 mg/mL) of ASB for 1 h before LPS (1 µg/mL) stimulation. After
24 h incubation, the cells were collected for Western blotting. The cells were washed with ice-cold
PBS twice and then incubated with lysis buffer for 30 min on ice. Supernatants were collected by
centrifugation at 13,523× g for 15 min. For nuclear protein extraction, the method of Cheng et al.
(2015) was applied, with slight modifications [28]. The collected cells were washed with PBS, and then,
hypotonic buffer (15 nM MgCl2, 10 mM KCl, and 20 nM Tris-HCl (pH 7.9)) was added for extraction
for 15 min on ice. Then, 12 µL NP-40 (10%, v/v) was added for another 10 min. The supernatants were
collected as cytoplasmic extracts by centrifugation at 15,777× g at 4 ◦C for 1 min. The remaining pellets
were washed with 100 µL hypotonic buffer and then suspended in a high salt buffer (0.2 mM EDTA,
1.5 mM MgCl2, 0.42 M NaCl, 25% glycerol, and 20 mM Tris-HCl, pH 7.9) on ice for 30 min. The nuclear
protein was obtained via centrifugation at 15,777× g for 10 min at 4 ◦C. For the in vivo experiment,
colonic tissues were homogenized in RIPA lysis buffer containing proteinase and phosphatase inhibitor
and incubated for 20 min on ice. Supernatants were collected by centrifugation at 13,523× g for 60 min.
The concentrations of the extracted proteins were measured using a BSA protein assay. An equal
amount of extracted proteins (20–40 µg) was loaded onto the prepared gel (8~12% (w/v)) for Western
blotting. The membranes were blocked with milk for 1 h and then washed with TBST for 10 min.
Primary antibodies were diluted in 3% BSA and overnight cultured with membranes at 4 ◦C for shaking.
Subsequently, membranes were washed with TBST for 20 min three times and then incubated with
secondary antibody at room temperature for 1 h. Finally, the membranes were visualized by soaking
in a chemiluminescent substrate and then exposed to obtain the signal. Band images were obtained
using EPSON scanner, and band densities were analyzed using the Image J software (BioTechniques,
New, York, NY, USA).

4.11. Enzyme-Linked Immunosorbent Assay (ELISA) Analysis

The secretion of cytokine (MCP-1) (eBioscience, San Diego, CA, USA) in the culture of
LPS-stimulated macrophages was measured using ELISA kits by following the manufacturer’s
instruction. Additionally, the production of cytokines TNF-α in serum and MCP-1, TNF-α, and IFN-γ
in the culture supernatants of colonic tissue of mice upon treatments (eBioscience) were quantified
using ELISA kits according to the manufacturer’s instructions.

4.12. Statistical Analysis

Analyses were performed in triplicates, and results were expressed as mean ± SD. For multiple
group comparisons, one-way analysis of variance (ANOVA) was conducted by Dunnett’s post hoc test
and applied for determining the significance (p < 0.05) differences. Statistical analyses were performed
using Microsoft 2016 package and SPSS (SPSS 17.0, SPSS Inc., Chicago, IL, USA).

5. Conclusions

The current results clearly indicate that ASB possesses potential anti-inflammation therapeutic
efficacy through inhibiting the activation of TLR4 signaling against DSS-induced colitis and
LPS-activated macrophages. According to the in vivo and in vitro studies, the activation of TLR4
signaling was significantly inhibited upon ASB treatments. The production of pro-inflammatory
cytokines in inflamed models was markedly reduced upon ASB treatments. Results also indicated
that ASB could significantly ameliorate several pathophysiological and morphological features in
DSS-induced colitis. The current work illustrated that ASB demonstrated an inhibitory efficacy on
TLR4 signaling activation, and thus, could be a promising candidate for treating UC. In addition, it
also establishes a pharmacological basis for the folk use of sea bass.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/12/
2907/s1.
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DSS Dextran sulphate sodium
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MCP-1 Monocyte chemoattractant protein-1
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Abstract: Sesquiterpene lactones constitute a major class of bioactive natural products. One
of the naturally occurring sesquiterpene lactones is costunolide, which has been extensively
investigated for a wide range of biological activities. Multiple lines of preclinical studies have
reported that the compound possesses antioxidative, anti-inflammatory, antiallergic, bone remodeling,
neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Many of these
bioactivities are supported by mechanistic details, such as the modulation of various intracellular
signaling pathways involved in precipitating tissue inflammation, tumor growth and progression,
bone loss, and neurodegeneration. The key molecular targets of costunolide include, but are not
limited to, intracellular kinases, such as mitogen-activated protein kinases, Akt kinase, telomerase,
cyclins and cyclin-dependent kinases, and redox-regulated transcription factors, such as nuclear
factor-kappaB, signal transducer and activator of transcription, activator protein-1. The compound also
diminished the production and/expression of proinflammatory mediators, such as cyclooxygenase-2,
inducible nitric oxide synthase, nitric oxide, prostaglandins, and cytokines. This review provides an
overview of the therapeutic potential of costunolide in the management of various diseases and their
underlying mechanisms.

Keywords: costunolide; antioxidants; anti-inflammatory; anti-allergic; bone regenerating;
neuroprotective; antimicrobial; hair growth promoting; anticancer; antidiabetic properties

1. Introduction

Drug development from natural sources, particularly from plants, has long been the mainstay in
medical management of various human ailments. A wide variety of non-nutritive plant constituents,
commonly known as phytochemicals, are being used as therapy for many disease processes, including,
but not limited to, infections, diabetes, heart diseases, neurological disorders, and cancer. In fact, it is
estimated that about 40% of all medicines are natural compounds or their semisynthetic derivatives [1].
One of the major classes of bioactive phytochemicals is the terpenoids, which are widely present
in various plants and marine organisms, and are being examined for developing new antifungal,
anticancer, anti-inflammatory, and antiviral agents [2]. For example, artemisinin and paclitaxel are
terpenoids used clinically as antimalarial and anticancer agents, respectively. The largest group of
sesquiterpene lactones is germacranolides [3], which possesses a 10,5-ring structure and is present
in several plant families. Germacranolides are key precursors of other sesquiterpene lactones with
various polycyclic skeletons, such as guaianolides, eudesmanolides, etc. [4]. Costunolide, a colorless
crystalline powder with a molecular formula of C15H20O2 and a molecular weight of 232.318 g/mol,
is a well-known sesquiterpene lactone in the germacranolides series. This compound was first isolated
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from costus (Saussurea lappa Clarke) root and then isolated from various other plant species. [5].
Structurally, costunolide (Figure 1) is a monocarboxylic acid having three double bonds which
by catalytic hydrogenation generates hexahydrocostunolide. Partial hydrogenation of costunolide
produces dihydrocostunolide [6]. The bioactivity of costunolide is mediated through its functional
moiety, α-methylene-γ-lactone, which can react with the cysteine sulfhydryl group of various proteins,
thereby altering intracellular redox balance [5]. This review is aimed at summarizing the recent
research on costunolide, focusing on its therapeutic potential, underlying mechanisms of action,
and the prospect of using costunolide for future drug development.
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2. Therapeutic Potential of Costunolide

2.1. Antioxidant and Anti-Inflammatory Effects of Costunolide

Oxidative stress resulting from cellular redox imbalance leads to many diseases, such as diabetes,
atherosclerosis, and cardiovascular diseases [7]. The antioxidant activity of costunolide was studied
in streptozotocin (STZ)-induced diabetic rat model, which demonstrated marked reduction in the
levels of glutathione (GSH) in the brain, heart, liver, pancreas, and kidney. Oral administration of
costunolide restored the GSH level in these tissues [8]. Increased levels of GSH may increase the levels
of GSH-dependent enzymes, such as glutathione peroxidase (GPx) and glutathione-S-transferase (GST),
thereby reducing tissue damage [9]. Oxidative stress oxidizes and damages membrane phospholipid
to produce lipid peroxides, such as malondialdehyde (MDA) and hydroxynonenals (HNE), which
by forming DNA adducts may cause oxidative tissue damage. Costunolide also decreased lipid
peroxidation levels and increased in SOD, catalase, and GPx activity in MCF-7 & MDA-MB-231
cells [10]. In a rat intestinal mucositis (IM) model, administration of costunolide restored 5-floirouracil
(5FU)-depleted plasma superoxide dismutase (SOD) levels in rat intestinal mucosa [11]. Costunolide
also abrogated hydrogen peroxide (H2O2)-induced ROS production in rat pheochromocytoma (PC12)
cells [12].

Persistent tissue inflammation plays an important role in the pathogenesis of various infectious
and noninfectious diseases, such as rheumatoid arthritis, Alzheimer’s disease, and arteriosclerosis [13].
Costunolide exhibited anti-inflammatory properties in a number of preclinical studies. The
compound attenuated carrageenan-induced paw edema, myeloperoxidase (MPO) activity and
N-acetylglucosaminidase (NAG) activity in mice [13]. One of the transcriptional regulators of
proinflammatory gene expression is the transcription factor nuclear factor-kappaB (NF-κB). Costunolide
negated NF-κB activation via blockade of IκBα phosphorylation in lipopolysaccharide (LPS)-stimulated
RAW264.7 cells, thereby reducing the expression of proinflammatory markers, such as inducible
nitric oxide synthase (iNOS), and the production of nitric oxide (NO) [14]. Chen et al. also
demonstrated that treatment with costunolide inhibited 5-fluorouracil (5-FU)-induced expression of
iNOS, cyclooxygenase-2 (COX-2), TNF-α, and the production of nitric oxide (NO) in a mouse model
of intestinal mucositis by blocking the activation of NF-κB [11]. Costunolide diminished STAT1 and
STAT3 phosphorylation in IL-22 or IFN-γ-induced human keratinocytes [15]. Likewise, treatment of
human THP-1 cells with costunolide inhibited interleukin (IL)-6-induced phosphorylation and the
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DNA binding activity of signal transducer and activator of transcription (STAT)-3 via downregulation
of Janus-activated kinase (JAK)-1 and -2 [16]. Moreover, costunolide showed an anti-inflammatory
effect as evidenced by amelioration of ethanol-induced gastric ulcers in mice. This study also
reported that the compound suppressed the activation and/or induction of NF-κB, TNF-α, NO,
iNOS, and COX-2 [17]. Costunolide inhibited interleukin (IL)-1β protein and mRNA expression
in LPS-stimulated RAW264.7 cells by blocking activator protein (AP-1) transcriptional activity via
downregulation of mitogen-activated protein kinase (MAPK) phosphorylation [18]. In addition,
costunolide alleviated lung inflammation in carrageenan-induced mouse pleurisy model as evidenced
by reduced accumulation of polymorphonuclear cells and reduced expression of TNF-α, intracellular
adhesion molecule-1 (ICAM-1), P-selectin, and nitrotyrosine [19].

Heme oxygenase-1 (HO-1) has been reported to mediate anti-inflammatory and cytoprotective
activity [20]. Pae and colleagues [21] have reported that the production of TNF-α and IL-6 in
LPS-stimulated RAW264.7 cells was decreased by treatment with costunolide, which increased the
expression and activity of HO-1 via enhanced nuclear accumulation of a redox-regulated transcription
factor, nuclear factor erythroidrelated factor-2 (Nrf2). Pretreatment with a HO-1 inhibitor abrogated the
inhibitory effect of costunolide on LPS-induced TNF-α and IL-6 production [21]. CD4+ T cell activation
and proper differentiation into T helper (Th) cells are important for establishing an adaptive immune
response against foreign pathogens. However, an excessive activation of Th cells leads to inflammation
and autoimmune diseases [22]. When CD4+ T cells were induced to differentiate, costunolide markedly
reduced the differentiation into a population of Th1, Th2, and Th17 subsets. Costunolide also inhibited
the expression level of Th subset-polarizing master genes such as T-bet, GATA3, and RORγt. The
compound reduced the level of CD4+ T cell activation marker CD69 and attenuated T cell proliferation
by blocking phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK [23].

2.2. Anti-Allergic Effects of Costunolide

Chemokines play an important role in inducing various allergic and inflammatory skin diseases,
such as atopic dermatitis, psoriasis, and eczema. Keratinocytes are known to respond to various
chemokines, such as chemokine (C-C motif) ligand (CCL)-17 (also known as TARC), CCL-22
(alternatively known as MDC), CCL-5 (synonym RANTES), and IL-8, which are involved in precipitating
atopic dermatitis [24]. Costunolide significantly reduced mRNA expression of various chemokines
including TARC/CCL17, MDC/CCL22, RANTES/CCL5, and IL-8 in HaCaT cells stimulated with
TNF-α and IFN-γ [25]. In the OVA-induced asthmatic mouse model, costunolide reduced eosinophil
infiltration, inflammation score, and mucin secretion in the lungs. In particular, the increase of
eosinophil count in BALF (bronchoalveolar lavage fluid) by OVA was significantly inhibited by
costunolide. Moreover, the compound decreased the expression and secretion of Th2 cytokines
(IL-4 and IL-13) in BALF and lung tissue [26]. Costunolide reduced the activity of β-hexosaminidase,
an enzyme involved in mast cell degranulation, and decreased IL-4 mRNA transcript in IgE-sensitized
rat basophilic leukemia (RBL-2H3) cells. In addition, the inhibition of IL-5-dependent growth of
Y16 pro-B cells suggests the potential of costunolide or its derivatives to be developed as mast cell
stabilizers and pro-B cell proliferation inhibitors in allergic diseases [26,27].

2.3. Costunolide in Bone Remodeling

Osteoporosis, a disease of the bone generally characterized by excessive bone resorption due to
poor osteoblastic and enhanced osteoclastic activity, is very common among the elderly population.
Although few therapeutic interventions, such as the use of calcium and vitamin D3, parathyroid
hormone analogs, bisphosphonates, and monoclonal antibodies, are current clinical recommendations,
there is emerging need of developing new drugs [28]. Several studies have demonstrated the potential
of costunolide in improving bone health. Costunolide stimulated the growth and differentiation
of murine osteoblastic cells (MC3T3-E1) cells, as characterized by increased alkaline phosphatase
(ALP) activity, collagen deposition and mineralization. These osteoblastic activity of costunolide
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was abrogated by cotreatment with pharmacological inhibitors of either estrogen receptor (ER) or
phoaphatidylinositol-3-kinase (PI3K), suggesting that the increased mineralization by the compound
was associated with increased activation of ER and PI3K [29]. Likewise, costunolide increased the ALP
activity and matrix mineralization, and elevated the transcription of a number of differentiation factors,
such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), and osteocalcin
(OC) in mouse mesenchymal stem cell (C3H10T1/2) by stimulating activated transcription factor 4
(ATF4)-dependent increased expression and activity of HO-1. The blockade of HO-1 by treating cells
with tin (IV) protoporphyrin IX dichloride (SnPP) blocked costunolide-induced Runx2 expression,
suggesting that costunolide-induced osteoblast differentiation is regulated by ATF4-dependent HO-1
expression [30]. The receptor activator of nuclear factor kappa-B ligand (RANKL) induces the
differentiation of bone marrow-derived macrophages into osteoclasts, a key mediator of bone resorption.
Treatment with costunolide inhibited osteoclast differentiation by blocking the expression of nuclear
factor of activated T cells, cystoplasic-1 (NFATc1) through the inhibition of c-Fos transcriptional
activity, without affecting c-Fos expression. The compound also attenuated the mRNA expression of
tartrate-resistant acid phosphatase (TRAP) and osteoclast-associated receptor (OSCAR) (Figure 2). Thus,
costunolide inhibited RANKL-induced osteoclast differentiation by inhibiting c-Fos transcriptional
activity [31].
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Figure 2. Effect of costunolide on differentiation of osteoblast and osteoclast. Costunolide induces
osteoblast differentiation through ATF-4-induced HO-1 expression in mesenchymal stem cells. On
the other hand, costunolide suppressed RANKL-mediated osteoclast differentiation via inhibiting
RANKL-mediated c-Fos transcriptional activity in bone marrow cells.

2.4. Costunolide as a Neuroprotective Agent

Parkinson disease (PD) is one of the neurodegenerative diseases characterized by reduced
dopaminergic (DAergic) neuronal transmission in the substantia nigra (SN). One of the key regulators
of DAergic nerve transmission, especially the regeneration of synaptic vesicles, and the storage,
metabolism, and release of DA at nerve endings is α-synuclein (ASYN), which is transcriptionally
regulated by nuclear receptor related-1 (Nurr1). In PD patients with Nurr1 mutations, Nurr1
expression was decreased and ASYN expression was increased. Whereas the expression of the Nurr1
gene is essential for the development and maintenance of nigral DAergic neurons, overexpression
of ASYN causes selective degeneration and toxicity of DAergic neurons. Nurr1 also participates
in DA metabolism by regulating vesicular monoamine transporter type 2 (VMAT2) and dopamine
transporter (DAT) [32]. Ham et al demonstrated that costunolide inhibited DA-induced apoptosis of
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human neuroblastoma (SH-SY5Y) cells which was associated with decreased ASYN expression and
the restoration of DA-mediated reduced Nurr1, VMAT2, and DAT level [33]. These results suggest
the potential of costunolide in the management of PD. Since oxidative stress-mediated neuronal
cell death is a well-known cause of many neurodegenerative diseases, the reduction of reactive
oxygen species (ROS) can be a pragmatic approach to delay the disease progression. Treatment with
costunolide inhibited H2O2-induced apoptosis of PC12 cells by reducing intracellular ROS, stabilizing
mitochondrial membrane potential (MMP), and decreasing the caspase-3 activity (Figure 3). Moreover,
costunolide reduced H2O2-induced cell death by blocking the phosphorylation of p38 MAPK and
ERK [12]. Besides oxidative stress, persistent inflammation often leads to neurodegeneration. By virtue
of its anti-inflammatory properties costunolide inhibited LPS-induced apoptosis of BV2 microglial
cells by decreasing the expression of a series of neuroinflammatory mediators, such as TNF-α, IL-1,
IL-6, iNOS, macrophage chemoattractant protein-1 (MCP-1), and COX-2 via the inhibition of NF-κB
and MAPK activation [34].
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Figure 3. The effect of costunolide on apoptosis of neurons. Costunolide reduced intracellular ROS
caused by oxidative stress. As a result, mitochondrial membrane potential (MMP) stabilized and
apoptosis-related proteins such as caspase 3 decreased.

2.5. Antimicrobial Properties of Costunolide

Several studies have demonstrated the antimicrobial activity of costunolide (Table 1). The
antibacterial activity of costunolide against Mycobacterium tuberculosis H37Rv (M. tuberculosis) [35] and
Mycobacterium avium (M. avium) [36] in fluorometric Alamar Blue microassay and radiorespirometric
bioassay, respectively, suggest that the compound may be considered for developing antitubercular
drugs. In addition, in vitro agar diffusion test showed that costunolide exhibited antimicrobial
activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa
(P. aeruginosa) [37]. Costunolide also inhibited the growth of H. pylori [38], which is causally linked with
gastric and duodenal ulcers. In vitro disc diffusion assay revealed that costunolide inhibited the growth
of various pathogenic fungi, such as Trichophyton mentagrophytes, T. simum, T. rubrum, Epidermophyton
floccosum, Scopulariopsis sp., Aspergillus niger, Curvulari lunata, Magnaporthe grisea, and Candida
albicans [39]. Costunolide also showed antifungal activity against Botauttis cinereal, Colletotrichum
acutatum, Colletotrichum fragariae and Colletotrichum gloeosporioides [40], and C. echinulata [41]. The
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antiviral property of costunolide was evident from the inhibition of hepatitis B surface antigen (HBsAg)
expression in human hepatoma Hep3B cells and that of hepatitis B e antigen (HBeAg), a hepatitis B
virus genome replication marker, in human hepatocytes and HepA2 cells [42].

Table 1. Antimicrobial activity of costunolide.

Effect Tested Organisms Concentration Reference

Antibacterial
activity

M. tuberculosis MIC (mg/L) 12.5 [35]

S. aureus
E. coli

P. aeruginosa
MIDZ (mm)

18
19
14

[37]

M. avium
M. tuberculosis MIC (µg/mL) 128

32 [36]

H. pylori MIC (µg/mL) 100–200 [38]

Antifungal activity

Trichophyton mentagrophytes
T. simum
T. rubrum

Epidermophyton floccosum
Scopulariopsis sp.
Aspergillus niger
Curvulari lunata

Magnaporthe grisea

MIC (µg/mL)

62.5
62

31 or 62
125
250
125
250

[39]

Colletotrichum acutatum
Colletotrichum fragariae MDIZ (mm) 4

6 [40]

C. echinulata EC50 (µg/mL) 6 [41]

Antiviral activity Hepatitis B virus (HBV) IC50 (µM) 1 [42]

MIC: minimum inhibitory ceoncetration, MDIZ: mean diameter of inhibition zone, EC50: effective concentration,
IC50: inhibiton concentration.

Lipoteichoic acid (LTA)-induced acute lung injury (ALI) in mice is a model to represent
experimental pneumonia. Treatment with costunolide significantly reduced LTA-induced inflammatory
cell infiltration and lung tissue damage by decreasing the production of various cytokines and
chemokines. Moreover, the compound inhibited LTA-induced iNOS expression in mouse bone
marrow-derived macrophages by blocking phosphorylation of TAK1, p38 MAPK, and ERK, without
affecting the activation of NF-κB [43]. Thus, costunolide may be considered as a lead compound for
developing novel antimicrobial agents.

2.6. Costunolide in the Treatment of Alopecia

The cosmetic use of herbal products, especially for preventing hair loss or promoting hair growth,
have long been practiced throughout the world. The herbal therapies used as hair growth promoters
are expected to have low toxicity, be easy to use, low cost, and have high patient compliance. As the
physiological and biochemical pathways in hair follicle dermal papillary cells (hHFDPCs) are unfolded,
the mechanistic basis of hair growth promotion by many natural products is being explored [44,45].
It has been reported that topical application of costunolide significantly improved hair growth in
C57BL/6 mice in vivo and promoted the proliferation of hHFDPCs in vitro [46]. Mechanistically,
costunolide inhibited 5α-reductase activity and suppressed transforming growth factor (TGF-β1)
induced phosphorylation of Smad-1/5 (mothers against decapentaplegic-1/5) in hHFDPCs, whereas the
compound increased the levels of β-catenin and Gli1 mRNA and protein [46]. Thus, the development
of costunolide-based formulation for the treatment of alopecia would be an interesting approach
pending further studies on the toxicity and pharmacokinetic properties of the compound.
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2.7. Costunolide as an Anticancer Agent

The search for anticancer agents from natural sources, especially plants, has led to the discovery
of many clinically useful drugs. Extensive investigation of the anticancer effects of costunolide have
shown that the compound induces apoptosis and inhibits proliferation of various cancer cells in vitro,
and suppresses angiogenesis and metastasis. The following section will shed light on the biochemical
processes and molecular targets of costunolide in exerting its anticancer effects.

2.7.1. Inhibition of Cell Proliferation

Costunolide decreased the proliferation of various cancer cells including those of the colon, breast,
prostate, liver, gastric, and blood cancer cells [47–51]. Treatment of HCT-116 cells with costunolide
decreased cell proliferation by inhibiting phosphorylation of mammalian target of rapamycin (mTOR)
and its downstream kinases p70S6K and 4E-BP1, and increasing the phosphorylation and nuclear
localization of p53 [52]. The antiproliferative effect of costunolide was mediated, at least in part,
through suppression of cellular glutaminolysis via blockade of the promoter activity of glutaminase 1
(GLS1). The compound also decreased GLS1 mRNA and protein expression in p53-dependent manner
since pretreatment with a p53 inhibitor reversed costunolide-mediated suppression of GLS1 activity
and expression [52]. The antiproliferative effect of costunolide in MCF-7 cells was associated with
microtubule polymerization and alteration of spindle morphology. [47].

Several other studies have reported that costunolide inhibits various tumor cell proliferation by
blocking G2/M phase of the cell cycle and modulating the effect of cyclins and cyclin-dependent kinases
(Cdk) [51,53,54]. The growth inhibition of SW-480 cells upon treatment with costunolide was associated
with the downregulation of cyclin D1 and survivin, which was mediated via inhibition of nuclear
translocation of β-catenin and its co-activator molecule galectin-3 [49]. Peng et al. [55] reported that
costunolide induced cell cycle arrest at G2/M phase in MCF-7 and MDA-MB-231 cells via activation of
p53 and p-14-3-3 expression and inhibition of c-Myc, p-AKT, and p-BID expression. Moreover, the ratio
of BAX/BCL-2 was significantly increased upon costunolide treatment, which led to the induction of
apoptosis in these cells [55]. Another study showed that costunolide-induced G2/M cell cycle arrest
in MDA-MB-231 cells, which was mediated through the inhibition of Cdc2 and cyclin B1, and the
elevation of p21WAF1 expression was independent of p53 activation [56]. Roy and colleagues have
demonstrated that the G2/M phase of cell cycle arrest in MCF-7 and MDA-MB-231 cells incubated
with costunolide was mediated through the downregulation of cell cycle regulatory proteins, such as
cyclin D1, D3, CDK-4, CDK-6, p18INK4c, p21CIP1/Waf-1, and p27KIP1. However, the compound did not
affect the proliferation of normal mammary epithelial (MCF-10A) cells [57]. Likewise, the increase
level of p21WAF1 and reduced expression of cyclin B1 and CDK2 by costunolide led to the G2/M phase
arrest in K562 cells. According to this study, the compound enhanced imatinib-induced apoptosis
in K562 cells via modulation of B cell receptor (Bcr)/Abl and STAT5 signaling pathways. In another
study, these authors reported that costunolide sensitized K562 cells to doxorubicin via inhibition of the
PI3K/Akt activity [58]. In another study, costunolide arrested the cell cycle at the G2/M phase through
the downregulation of Chk2/Cdc25c/Cdk1/cyclin B1 signaling in human hepatoma HA22T and VGH
cells [51]. Incubation of human prostate cancer (PC-3, DU-145, and LNCaP) cells with costunolide
arrested the cell cycle at the G1 phase, which was associated with the inhibition of the CDK2 activity
and Rb phosphorylation [50]. Moreover, costunolide upregulated p53 and p21 expression in human
esophageal squamous Eca-109 cells, thereby inducing G1/S phase arrest [59].

2.7.2. Induction of Apoptosis

Mitochondria-Mediated Apoptosis

Costunolide induced mitochondria-mediated apoptosis as evidenced by the inhibition of Bcl-2,
induction of Bax, and release of cytochrome c in human prostate (PC3 and DU-145) [60], leukemia
(K562) [48], oral cancer (Eca-109) [59], gastric cancer (SGC-7901) [54], lung squamous carcinoma
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(SK-MES1) [53], and bladder cancer (T24) [61] cells. Treatment of PC3 and DU-145 cells with costunolide
led to the generation of ROS, the phosphorylation of c-Jun-N terminal kinase (JNK) and p38 MAPK,
the inhibition of Bcl-2 and Bcl-xl, and the induction of Bax, thereby leading to reduced mitochondrial
membrane potential and cytochrome c release and caspase 3 activation. The apoptosis induction by
costunolide resulted in the reduced growth of PC3 cells xenograft tumors in nude mice [60]. Likewise,
costunolide induced mitochondria-mediated apoptosis by upregulation of Bax, downregulation of
Bcl-2, and activation of caspase-3 and poly ADP-ribose polymerase via ROS production and loss of
mitochondrial membrane potential in oral cancer Eca-109 cells [59]. The compound also activated
JNK in human leukemic U937 cells, thereby leading to mitochondrial cell death via phosphorylation
of Bcl-2 and translocation of Bax to mitochondria [62]. Hua et al. demonstrated that the apoptosis
of SK-MES-1 cells upon treatment with costunolide was mediated through upregulation of p53 and
Bax expression, downregulation of Bcl-2 expression, and caspase-3 activation [53]. In addition to
inducing Bax, caspase-3 and PARP cleavage in T24 bladder cancer cells, costunolide also attenuated
expression of survivin and Bcl2 as a mechanism of apoptosis induction [61]. Costunolide induced
mitochondrial-mediated apoptosis through activation of caspase-3, -8, and -9 in ovarian cancer cell lines
(MPSC1PT, A2780PT, and SKOV3PT) and the human endometriotic epithelial cells (11Z, 12Z) [63,64].
Furthermore, incubation of multidrug resistant ovarian cancer cells (OAW42-A) with costunolide
attenuated cell growth with an IC50 of 25 µM, and induced apoptosis, which was mediated through
induction of Bax, decreased the expression of Bcl-2 and cleavage of caspase-3 and 9. Moreover,
the compound induced autophagy as evidenced by the elevated expression of LC3 II and Beclin 1 [65].

Endoplasmic Reticulum (ER) Stress-Mediated Apoptosis

Apoptosis may result from continued ER stress that activates unfolded protein response (UPR)
signaling pathways. Costunolide activated the ionositol requiring enzyme (IRE)-1α, a resident ER
membrane protein, which further activated JNK by recruiting adapter molecules TRAF2 and ASK1
in cultured lung adenocarcinoma cell line A549 cells [66]. Costunolide-activated JNK led to Bcl-2
phosphorylation at serine 70, a mechanism to convert antiapoptotic Bcl-2 to play proapoptotic functions,
thereby causing cytochrome c release, caspase-3 activation, and PARP cleavage, leading to induction of
apoptosis. Authors have further demonstrated that costunolide-induced ROS generation played a
critical role in this process as pretreatment of cells with ROS scavenger N-acetyl cysteine abrogated
costunolide-induced ER stress and apoptosis [66]. A similar mechanism of ROS-mediated ER stress
induction by costunolide led to the expression of Bip and IREα, and the activation of the JNK pathway,
leading to apoptosis in human osteosarcoma U2OS cells [67]. Recent studies have shown that the
thioredoxin/thioredoxin reductase (TrxR) system causes tumor cell resistance to oxidative stress-induced
apoptosis. Surface plasmon resonance analysis and molecular docking study revealed that costunolide
directly interacted with TrxR1 via its lactone oxygen atom with Gln-494 of TrxR1 and inhibited the
activity of TrxR1, thereby increasing the production of ROS and inducing ROS-dependent ER stress
and apoptosis in colon cancer cells (HCT-116, SW-620, and HT-29 cells). This study also demonstrated
that the compound arrested G2/M phase of cell cycle and attenuated the expression of cyclin B1, CDC2,
MDM2, and Bcl2 and increased the expression of Bax and cleavage of caspase 3, which was reversed
by cotreatment with N-acetyl cysteine, suggesting the involvement of ROS in costunolide-induced
retardation of tumor cell growth. Furthermore, costunolide treatment of mice transplanted with colon
cancer cells inhibited tumor growth and decreased TrxR1 activity and ROS levels [68].

Death Receptor-Mediated Apoptosis

Extrinsic mechanisms of apoptosis induction by costunolide have also been reported. The
induction of apoptosis in estrogen receptor-negative human breast cancer (MDA-MB-231) cells by
costunolide involves the activation of Fas, caspase-8, caspase-3, and the degradation of PARP [56].
Costunolide also increased the phosphorylation of Fas-associated death domain (FADD) at serine 194,
leading to apoptotic cell death in human B cell lymphoma. [69].
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2.7.3. Telomerase Reverse Transcriptase (TERT) Inhibition

Telomeres, which maintain genomic integrity in normal cells, are shortened upon each cell
division, thus leading to chromosomal instability, cellular senescence, and aging. However, the length
of the telomeres is maintained by high levels of telomerase enzyme present in tumor cells, thereby
allowing cancer cells to be immortal. Therefore, telomerase has been considered as a possible target for
cancer treatment [69]. It has been reported that costunolide caused significant inhibition of telomerase
activity in human B cell leukemia (NALM-6) cells by decreasing the mRNA and protein expression of
human telomerase reverse transcriptase (hTERT), which controls the enzymatic activity of telomerase,
and induced apoptosis in these cells [68]. Likewise, costunolide showed strong inhibition of telomerase
activity in MCF-7 and MDM-23-231 cells through the downregulation of hTERT mRNA via inactivation
of c-Myc and Sp1 transcription factors [69]. The antiproliferative and apoptosis-inducing effects of
costunolide was also associated with inhibition of hTERT in human glioma cells [70,71] and human
hepatocellular carcinoma (HepG2/C3A, PLC/PRF/5) (A172, U87MG) cells [72].

2.7.4. Inhibition of Angiogenesis

The persistent growth and spread of a tumor require a constant supply of nutrients and oxygen to
the cancer cells. The formation of new blood vessels, a process known as angiogenesis, is therefore an
essential step in tumor invasion and metastasis. The discovery of angiogenesis inhibitors (e.g., avastin)
helps reduce the morbidity and mortality from various cancers. A key angiogenic molecule is vascular
endothelial growth factor (VEGF), which by binding with VEGF receptors (VEGFR) on vascular
endothelial cells promotes formation of new blood vessels [73].

In a murine cannulated sponge implant angiogenesis model, administration of costunolide to
Swiss albino mice implanted with polyester polyurethane sponges used as a framework for fibroblast
tissue growth reduced the levels of VEGF and hemoglobin content in fibrovascular tissue, suggesting
the antiangiogenic property of the compound [74]. Jeong et al. reported that costunolide attenuated
VEGF-induced proliferation and chemotaxis of human umbilical vein endothelial cells (HUVECs), and
blocked VEGF-induced phosphorylation of KDR/Flk-1 in NIH 3T3 cells overexpressing KDR/Flk-1.
In addition, VEGF-stimulated neovascularization in mouse corneal micropocket analysis was reduced
by costunolide treatment [75]. In another study, costunolide significantly reduced VEGF secretion
and decreased VEGF mRNA levels in human gastric cancer (AGS), colon cancer (Caco-2), and liver
cancer (HepG2/C3A) cells. This study also reported that costunolide significantly reduced VEGFR1
and VEGFR2 expression at both mRNA and protein levels [76].

2.7.5. Inhibition of Tumor Metastasis

Cancer metastasis refers to the spread of tumor cells from their site of origin to other distant
parts of the body. Metastasis consists of multistep processes including tumor cell spread, extracellular
matrix (ECM) degradation, tumor cell invasion in ECM, angiogenesis, and secondary metastatic
tumor growth [77]. Costunolide inhibited TNF-α-induced migration and invasion of MDA-MB-231
breast cancer cells by downregulating the expression of matrix metalloproteinase (MMP)-9 gene via
blockade of NF-κB activation. Moreover, the xenograft tumor growth of MBA-MB-231 cells in athymic
nude mice was diminished upon treatment with costunolide [77]. The MMP-2 and MMP-9 are key
molecules involved in tumor invasion and metastasis. Costunolide significantly inhibited invasion and
decreased MMP-2 expression in human neuroblastoma (NB-39) cells [78]. The invasion of soft tissue
sarcoma (TE-671, SW-872, and SW982) cells was also inhibited by costunolide via modulation of MMPs
expression [79]. Of the various forms of metastasis, lymphatic metastasis is an important determinant
in cancer therapy and staging. Costunolide inhibited the proliferation and capillary formation of TR-LE
(temperature-sensitive mouse lymphoid endothelial cells) cells, suggesting that the compound can
provide clinical benefits as an inhibitor of lymphoproliferative growth during tumor metastasis [80].
Epithelial–mesenchymal transition (EMT) is critical step in tumor invasion and metastasis. One of
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the mechanisms that the EMT process initiates in tumor invasion is the detyrosination of tubulin
via inhibition of tyrosine ligase, and the detyrosinated tubulin forms microtentacles (McTN) which
promotes tumor cell reattachment to the endothelial layer during tumor invasion. Costunolide
significantly reduced detyrosinated tubulin and the frequency of McTN in multiple invasive breast
tumors, thereby preventing tumor cells attachment with endothelial tissue and blocking invasion [81].

2.8. Antidiabetic Effects of Costunolide

An in vitro assay has revealed that the methanol extract of leaves of Costus speciosus inhibited
α-glucosidase activity with an IC50 value of 67.5 µg/ml and attenuated α-amylase activity with an IC50

value of 5.88 mg/ml, which is lower than the reference compound acarbose [82]. Since costunolide
is abundantly present in leaves of Costus speciosus, this study indicates the potential of costunolide
in managing glycemic control. A subsequent study demonstrated that costunolide significantly
reduced blood glucose level, glycosylated hemoglobin (HbA1c), serum total cholesterol, triglyceride,
and LDL cholesterol level in streptozotocin (STZ)-induced diabetic rats [83]. Moreover, the compound
remarkably increased plasma insulin, tissue glycogen, HDL cholesterol, and serum protein level [83].
Since oxidative stress affect the pathogenesis and progression of diabetic tissue injury, the induction
of antioxidant enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase in
STZ-induced diabetic rat’s pancreas indicates the role of costunolide in improving glycemic control
in diabetes [8]. However, additional studies are warranted to ascertain the antidiabetic property of
this compound.

3. Pharmacokinetics and Toxicity Profile

Pharmacokinetic studies are an integral part of the drug discovery process. The understanding
of the absorption, distribution, metabolism, and elimination of the drug-to-be is an essential step in
new drug development. There have been several studies reporting the pharmacokinetic profile of
costunolide. The maximum plasma concentration (Cmax) and time required to attain highest plasma
level of the molecule (Tmax) after oral administration of costunolide to Wistar rats were found as
0.024 ± 0.004 mg/L and 9.0 ± 1.5 h, respectively. The half-life (t1/2) and area under the curve (AUC)
were 4.97 h and 0.33 ± 0.03 mg·h/mL, respectively [84]. However, a subsequent study reported that
after oral administration of costunolide to Wistar rats, the Cmax and Tmax were 19.84 ng/mL and
10.46 h, respectively, and the half-life (t1/2) and AUC were 5.54 h and 308.83 ng·h/mL, respectively [85].
According to a recent study, oral administration of costunolide to SD rats showed Cmax, Tmax, t1/2,
and AUC as 0.106 ± 0.045 µg/mL, 8.00 h, 14.62 ± 3.21 h, and 1.23 ± 0.84 µg·h/mL, respectively [86]. The
large variation in pharmacokinetic parameters between these studies may be due to the use of different
assay techniques and/or animal models. In addition, intravenous administration of costunolide to
Sprague–Dawley rats revealed the Cmax as 12.28 ± 1.47 µg/mL, and the half-life (t1/2) and AUC were
detected as 1.16 ± 0.06 h and 3.11 ± 0.13 µg·h/mL, respectively [87]. These results would have immense
importance in further development of costunolide-based therapy.

Although costunolide has been examined extensively for its therapeutic potential in various
animal models as discussed in the previous sections of this review, acute and chronic toxicity studies are
scarce. A recent study demonstrated that the compound induced apoptosis in normal Chinese hamster
ovarian cells by inducing clastogenic and genotoxic effects as evidenced by micronuclei formation and
chromosomal breaks [88]. Thus, more rigorous toxicity studies to determine the lethal dose (LD50) and
ensure safety of the compounds is of paramount importance in further progressing the development of
costunolide as a drug candidate.

4. Conclusions

Sesquiterpene lactones form a large, structurally diverse group of natural products found almost
universally in plants. Extensive investigation of the therapeutic potential of sesquiterpene lactones
has yielded important candidates for pharmaceutical development [89]. Costunolide is a well-known
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sesquiterpene lactone, which has been isolated from various plant species. As has been discussed in
earlier sections, costunolide has been reported to possess antioxidant, anti-inflammatory, antiallergic,
bone remodeling, neuroprotective, antimicrobial, hair growth promoting, anticancer, and antidiabetic
properties (Figure 4 and Table 2). Limited pharmacokinetic studies have also shown that the compound
can be bioavailable. However, the majority of these studies have been conducted in cultured cells or
using an in vitro system. Considering the therapeutic value of the compound, it would be interesting
to further examine the effects of costunolide in various other animal models to reveal the subacute and
chronic toxicities, detailed elucidation of molecular mechanisms of action, and structural modifications
to develop new therapeutics based on costunolide or its derivatives.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  11 of 20 
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Figure 4. Bioactivities of costunolide. Costunolide could exert its therapeutic potential including
antioxidant, anti-inflammatory effect, anti-allergic effect, bone remodeling effect, prevention of
neurodegenerative disease, anti-microbial effect, inhibition of alopecia, prevention of lung disease and
anti-diabetic effect. In particular, costunolide elicits anti-cancer activities partly through induction of
apoptosis, Inhibition of cell proliferation, TERT, angiogenesis, metastasis and microtubule disassembly.
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F-
α

,I
C

A
M

-1
,

P-
se

le
ct

in
an

d
ni

tr
ot

yr
os

in
e

[1
9]

LP
S-

st
im

ul
at

ed
R

A
W

26
4.

7
ce

lls
0.

1,
0.

5,
1
µ

M
In

du
ce

d
H

O
-1

ex
pr

es
si

on
an

d
N

rf
2

nu
cl

ea
r

ac
cu

m
ul

at
io

n;
in

hi
bi

te
d

pr
od

uc
ti

on
of

T
N

F-
α

an
d

IL
-6

[2
1]

C
D

3/
C

D
28

-s
ti

m
ul

at
ed

C
D

4+
T

ce
lls

0.
5,

1,
2
µ

M
In

hi
bi

te
d

th
e

ex
pr

es
si

on
of

T-
be

t,
G

A
TA

3
an

d
R

O
R
γ

t;
su

pp
re

ss
ed

th
e

pr
ol

if
er

at
io

n
of

C
D

4+
T

ce
lls

an
d

ex
pr

es
si

on
of

C
D

69
;d

ec
re

as
ed

th
e

ph
os

ph
or

yl
at

io
n

of
ER

K
an

d
p3

8
[2

3]

A
nt

ia
lle

rg
ic

eff
ec

t

TN
F-
α

/I
FN

-γ
-s

ti
m

ul
at

ed
H

aC
aT

ce
lls

2.
5,

5,
10

µ
M

In
hi

bi
te

d
th

e
ex

pr
es

si
on

of
TA

R
C

,M
D

C
,R

A
N

TE
S

an
d

IL
-8

[2
5]

Ig
E-

se
ns

it
iz

ed
R

BL
-2

H
3

10
µ

M
In

hi
bi

te
d

th
e

ex
pr

es
si

on
of

β
-h

ex
os

am
in

id
as

e
[2

6]

O
VA

-i
nd

uc
ed

m
ou

se
as

th
m

a
m

od
el

10
m

g/
kg

R
ed

uc
ed

eo
si

no
ph

il
fil

tr
at

io
n,

in
fla

m
m

at
io

n
sc

or
e

an
d

m
uc

in
se

cr
et

io
n;

de
cr

ea
se

d
th

e
ex

pr
es

si
on

of
IL

-4
an

d
IL

-1
3

K
et

ot
if

en
-s

ti
m

ul
at

ed
R

BL
-2

H
3

0.
32

,1
.6

,8
,4

0
µ

M
In

hi
bi

te
d

th
e

re
le

as
e

of
β

-h
ex

os
am

in
id

as
e

[2
7]

IL
-5

-s
ti

m
ul

at
ed

Y
16

ce
lls

0.
16

,0
.8

,4
,2

0,
40

µ
M

In
hi

bi
te

d
th

e
pr

ol
if

er
at

io
n

Y
16

ce
lls

Bo
ne

re
m

od
el

in
g

M
C

3T
3-

E1
ce

lls
di

ff
er

en
ti

at
io

n
10

µ
M

In
cr

ea
se

d
A

LP
ac

ti
vi

ty
,c

ol
la

ge
n

de
po

si
ti

on
an

d
m

in
er

al
iz

at
io

n
[2

9]

C
3H

10
T1

/2
ce

lls
di

ff
er

en
ti

at
io

n
1,

10
,1

02 ,1
03 ,1

04
ng

/m
l

In
cr

ea
se

d
th

e
ex

pr
es

si
on

of
D

lx
5,

R
un

x2
,A

LP
,a

nd
O

C
;r

ed
uc

ed
th

e
ac

ti
vi

ty
of

A
TF

4
an

d
ex

pr
es

si
on

of
H

O
-1

[3
0]

R
A

N
K

L-
in

du
ce

d
os

te
oc

la
st

di
ff

er
en

ti
at

io
n

5
µ

M
Su

pp
re

ss
ed

N
FA

Tc
1

ex
pr

es
si

on
an

d
c-

Fo
s

ac
ti

vi
ty

[3
1]
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D

os
e/

C
on

ce
nt
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ti

on
M

ec
ha

ni
sm

of
A

ct
io

n
R

ef
.

N
eu

ro
pr

ot
ec

ti
ve

ag
en

t

D
A

-s
ti

m
ul

at
ed

SH
-S

Y
5Y

0.
8,

4,
2
µ

M
D

ec
re

as
ed

th
e

ex
pr

es
si

on
of

A
SY

N
;i

nc
re

as
ed

th
e

ex
pr

es
si

on
of

N
ur

r1
,V

M
A

T2
an

d
D

A
T

[3
3]

LP
S-

st
im

ul
at

ed
BV

2
m

ic
ro

gl
ia

lc
el

ls
1
µ

M
A

tt
en

ua
te

d
th

e
ex

pr
es

si
on

of
T

N
F-
α

,I
L-

1,
6,

iN
O

S,
M

C
P-

1
an

d
C

O
X

-2
;i

nh
ib

it
ed

th
e

ac
ti

va
ti

on
of

N
F-
κ

B
[3

4]

Tr
ea

tm
en

to
fa

lo
pe

ci
a

Te
st

os
te

ro
ne

-s
ti

m
ul

at
ed

hH
FD

PC
s

3
µ

M
Pr

om
ot

es
th

e
gr

ow
th

of
hH

FD
PC

s;
in

hi
bi

ts
th

e
5α

-r
ed

uc
ta

se
ac

ti
vi

ty
[4

6]
H

ai
r

gr
ow

th
in

m
ic

e
3
µ

M
/L

Im
pr

ov
ed

th
e

ha
ir

gr
ow

th

In
hi

bi
ti

on
of

pr
ol

if
er

at
io

n

M
C

F-
7

br
ea

st
ca

nc
er

ce
lls

10
,1

00
nM

In
hi

bi
te

d
th

e
ce

ll
gr

ow
th

;s
ti

m
ul

at
ed

tu
bu

lin
as

se
m

bl
y

[4
7]

K
56

2
le

uk
em

ia
ce

lls
15

µ
M

In
du

ce
d

ce
ll

cy
cl

e
ar

re
st

;i
nd

uc
ed

ap
op

to
si

s
[4

8]

S4
80

co
lo

n
ca

nc
er

ce
lls

5
µ

M
Su

pp
re

ss
ed

cy
cl

in
D

1,
su

rv
iv

in
,β

-c
at

en
in

,a
nd

ga
le

ct
in

-3
;i

nh
ib

it
ed

pr
ol

if
er

at
io

n
an

d
su

rv
iv

al
of

ce
lls

[4
9]

LN
C

aP
,P

C
-3

,D
U

-1
45

pr
os

ta
te

ca
nc

er
ce

lls
1.

3
µ

M
In

hi
bi

te
d

ce
ll

pr
ol

if
er

at
io

n;
in

du
ce

d
ce

ll
cy

cl
e

ar
re

st
at

th
e

G
1p

ha
se

[5
0]

H
A

22
T/

V
G

H
he

pa
to

ce
llu

la
r

ca
rc

in
om

a
ce

lls
5
µ

M
C

au
se

d
G

2/
M

ar
re

st
;u

p-
re

gu
la

te
d

ph
os

ph
or

yl
at

io
n

of
C

hk
2,

C
dc

25
c,

C
dk

1,
an

d
cy

cl
in

B1
[5

1]

H
C

T-
11

6
co

lo
re

ct
al

ca
nc

er
ce

lls
10

,2
0,

40
µ

M
In

hi
bi

te
d

pr
ol

if
er

at
io

n;
su

pp
re

ss
ed

m
TO

R
ph

os
ph

or
yl

at
io

n
an

d
G

LS
1

ac
ti

vi
ty

[5
2]

SK
-M

ES
-1

lu
ng

sq
ua

m
ou

s
ca

rc
in

om
a

ce
lls

40
,8

0
µ

M
In

hi
bi

te
d

gr
ow

th
of

ce
lls

;i
nd

uc
ed

ce
ll

cy
cl

e
ar

re
st

at
G

1/
S

ph
as

e;
up

re
gu

la
te

d
ex

pr
es

si
on

of
p5

3
an

d
Ba

x;
do

w
nr

eg
ul

at
ed

Bc
l-

2
ex

pr
es

si
on

;a
ct

iv
at

ed
ca

sp
as

e-
3

[5
3]

SG
C

-7
90

1
ga

st
ri

c
ad

en
oc

ar
ci

no
m

a
ce

lls
20

,4
0
µ

M
A

rr
es

te
d

ce
ll

cy
cl

e
at

G
2/

M
ph

as
e;

ac
ti

va
te

d
ca

sp
as

e-
3

[5
4]

M
C

F-
7,

M
D

A
-M

B-
23

1
br

ea
st

ca
nc

er
ce

lls
0.

9,
1.

3,
2.

2
µ

g/
m

L
A

rr
es

te
d

ce
ll

cy
cl

e
at

G
2/

M
ph

as
e;

in
du

ce
d

p5
3

an
d

14
-3

-3
ex

pr
es

si
on

;
in

hi
bi

te
d

c-
M

yc
,p

-A
kt

an
d

p-
BI

D
ex

pr
es

si
on

[5
5]

M
D

A
-M

B-
23

1
br

ea
st

ca
nc

er
ce

lls
15

µ
M

In
du

ce
d

G
2/

M
ce

ll
cy

cl
e

ar
re

st
;u

pr
eg

ul
at

ed
p2

1W
A

F1
ex

pr
es

si
on

;
in

hi
bi

te
d

cd
c2

an
d

cy
cl

in
B1

ex
pr

es
si

on
[5

6]

M
C

F-
7,

M
D

A
-M

B-
23

1
br

ea
st

ca
nc

er
ce

lls
40

µ
M

A
rr

es
te

d
ce

ll
cy

cl
e

ar
re

st
at

G
2/

M
ph

as
e;

in
hi

bi
te

d
th

e
ex

pr
es

si
on

of
cy

cl
in

D
1,

D
3,

C
D

K
-4

,C
D

K
-6

,p
18

IN
K

4c
,p

21
C

IP
1/

W
af

-1
an

d
p2

7
K

IP
1

[5
7]

K
56

2/
A

D
R

ch
ro

ni
c

m
ye

lo
id

le
uk

em
ia

ce
lls

0.
1,

1,
10

,1
00

µ
M

Se
ns

it
iz

ed
K

56
2

ce
lls

to
do

xo
ru

bi
ci

n;
in

hi
bi

te
d

PI
3K

/A
kt

ac
ti

vi
ty

[5
8]

Ec
a-

10
9

hu
m

an
es

op
ha

ge
al

ca
nc

er
ce

lls
40

,8
0
µ

M
In

du
ce

d
ce

ll
cy

cl
e

ar
re

st
in

G
1/

S
ph

as
e;

up
re

gu
la

te
d

th
e

ex
pr

es
si

on
of

p5
3,

p2
1,

Ba
x

an
d

ca
sp

as
e-

3;
do

w
nr

eg
ul

at
ed

Bc
l-

2
[5

9]
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A
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M
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te

d
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s
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-3

,D
U

-1
45

pr
os

ta
te

ca
nc

er
ce

lls
20

µ
M

En
ha

nc
ed

do
xo

ru
bi

ci
n

to
ch

an
ge

of
M

M
P;

in
cr

ea
se

d
Ba

x
ex

pr
es

si
on

an
d

cy
to

ch
ro

m
e

c
re

le
as

e
[6

0]

T2
4

hu
m

an
bl

ad
de

r
ca

nc
er

ce
lls

25
,5

0
µ

M
In

cr
ea

se
d

ex
pr

es
si

on
of

Ba
x,

do
w

nr
eg

ul
at

ed
Bc

l-
2

an
d

su
rv

iv
in

g;
ac

ti
va

te
d

ca
sp

as
e-

3
an

d
PA

R
P

[4
8]

U
93

7
hu

m
an

pr
om

on
oc

yt
ic

le
uk

em
ia

ce
lls

5,
10

In
cr

ea
se

d
th

e
ac

ti
va

ti
on

of
JN

K
;i

nh
ib

it
ed

th
e

ex
pr

es
si

on
of

Bc
l-

2;
in

du
ce

d
D

N
A

fr
ag

m
en

ta
ti

on
[6

1]

SK
O

V
3,

A
27

80
,M

PS
C

1
ov

ar
ia

n
ca

nc
er

ce
lls

10
,2

0,
30

µ
M

Tr
ig

ge
re

d
th

e
ac

tiv
at

io
n

of
ca

sp
as

e-
3,

-8
,a

nd
-9

;d
ow

n-
re

gu
la

te
d

Bc
l-2

ex
pr

es
si

on
,

[6
2]

11
Z

hu
m

an
ep

it
he

lia
le

nd
om

et
ri

ot
ic

ce
lls

IC
50

14
.2

1
µ

M
In

du
ce

d
th

e
ac

ti
va

ti
on

of
ca

sp
as

e-
3,

-8
,a

nd
-9

;i
nh

ib
it

ed
th

e
ac

ti
va

ti
on

of
A

kt
an

d
N

F-
κ

B
[6

3]

ov
ar

ia
n

ca
nc

er
ce

ll
lin

e,
O

A
W

42
-A

12
.5

,2
5,

50
µ

M
R

ed
uc

ed
th

e
m

it
oc

ho
nd

ri
al

m
em

br
an

e
po

te
nt

ia
l;

in
cr

ea
se

d
pr

ot
ei

n
ex

pr
es

si
on

of
LC

3
II

an
d

be
cl

in
1

[6
4]

ER
st

re
ss

-m
ed

ia
te

d
ap

op
to

si
s

A
54

9
lu

ng
ad

en
oc

ar
ci

no
m

a
ce

lls
10

,2
0,

30
µ

M
A

ct
iv

at
ed

U
PR

si
gn

al
in

g
pa

th
w

ay
s;

up
re

gu
la

te
d

G
R

P7
8

an
d

IR
E1

α

ex
pr

es
si

on
;i

nd
uc

ed
A

SK
1

an
d

JN
K

ac
ti

va
ti

on
[6

5]

U
2O

S
hu

m
an

os
te

os
ar

co
m

a
ce

lls
,A

54
9

hu
m

an
al

ve
ol

ar
ad

en
oc

ar
ci

no
m

a
ce

lls
,H

el
a

ce
lls

10
,2

0,
30

µ
M

In
cr

ea
se

d
ex

pr
es

si
on

s
of

Bi
p

an
d

IR
Ea

;i
nc

re
as

ed
ex

pr
es

si
on

s
of

p-
A

SK
1,

p-
JN

K
an

d
p-

ER
K

;i
nd

uc
ed

ge
ne

ra
ti

on
of

C
a2+

[6
6]

H
C

T-
11

6,
H

T-
29

,S
W

62
0

co
lo

n
ca

nc
er

ce
lls

10
,2

0,
30

µ
M

In
hi

bi
te

d
th

e
ac

ti
vi

ty
of

Tr
xR

1;
in

du
ce

d
th

e
ex

pr
es

si
on

of
p-

eI
F2

a,
A

TF
4

an
d

C
H

O
P

[6
7]

D
ea

th
re

ce
pt

or
m

ed
ia

te
d

ap
op

to
si

s
N

A
LM

-6
hu

m
an

B
ce

ll
le

uk
em

ia
ce

ll
10

µ
M

In
cr

ea
se

d
th

e
ph

os
ph

or
yl

at
io

n
of

FA
D

D
;a

ct
iv

at
ed

ca
sp

as
e-

8
[6

8]

TE
R

T
in

hi
bi

ti
on

N
A

LM
-6

hu
m

an
B

ce
ll

le
uk

em
ia

ce
ll

10
µ

M
Su

pp
re

ss
ed

te
lo

m
er

as
e

ac
ti

vi
ty

;i
nh

ib
it

ed
th

e
ex

pr
es

si
on

of
hT

ER
T

m
R

N
A

an
d

pr
ot

ei
n

M
C

F-
7,

M
D

A
-M

B-
23

1
br

ea
st

ca
nc

er
ce

lls
10

,5
0,

80
,1

00
µ

M
In

hi
bi

te
d

th
e

ce
ll

gr
ow

th
,t

el
om

er
as

e
ac

ti
vi

ty
an

d
hT

ER
T

m
R

N
A

ex
pr

es
si

on
;i

nh
ib

it
ed

bi
nd

in
gs

of
hT

ER
T

pr
om

ot
er

s;
in

hi
bi

te
d

th
e

ex
pr

es
si

on
of

c-
M

yc
an

d
Sp

1
[6

9]

A
17

2,
U

87
M

G
,T

98
G

gl
io

m
a

ce
lls

10
,2

0,
30

,4
0
µ

M
D

ec
re

as
es

N
rf

2
le

ve
ls

;S
up

pr
es

se
d

te
lo

m
er

as
e

ac
ti

vi
ty

;d
ec

re
as

ed
ex

pr
es

si
on

of
G

6P
D

an
d

TK
T

[7
0]

A
17

2,
U

87
M

G
gl

io
m

a
ce

lls
30

µ
M

In
hi

bi
te

d
hT

ER
T

ex
pr

es
si

on
[7

1]

H
ep

G
2/

C
3A

,P
LC

/P
R

F/
5

H
C

C
ce

lls
5,

10
,5

0
µ

M
In

hi
bi

te
d

A
FP

se
cr

et
io

n
an

d
m

R
N

A
ex

pr
es

si
on

;d
ec

re
as

ed
ce

ll
m

ig
ra

ti
on

[7
2]
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ligand; Cdc2: cell division cycle protein 2 homolog; Cdk: cyclin-dependent kinases; Chk2: checkpoint kinase
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EMT: Epithelial-messenchymal transition; ER: estrogen receptor; ERK: extracellular signal-regulated kinase;
GATA-3: GATA-Binding Protein 3; GLS1: glutaminase 1; GPx: glutathione peroxidase; GSH: glutathione; GST:
glutathione-S-transferase; HBeAg: hepatitis B e antigen; HBsAg: hepatitis B surface antigen; HO-1: heme
oxygenase-1; hTERT: human telomerase reverse transcriptase; ICAM-1: intracellular adhesion molecule-1; IFN-γ:
Interferon gamma; IM: intestinal mucositis; iNOS: inducible nitric oxide synthase; JAK: Janus-activated kinase;
JNK: c-Jun N-terminal kinases; KDR/Flk-1: kinase insert domain receptor; LPS: lipopolysaccharide; MAPK:
mitogen-activated protein kinase; MCP-1: macrophage chemoattractant protein-1; McTN : microtentacles; MDC:
Macrophage-Derived Chemokine; MDM2: Mouse double minute 2 homolog; MMP: matrix metalloproteinase;
MMP: mitochondrial membrane potential; MPO: myeloperoxidase; mTOR: mammalian target of rapamycin;
NAG: N-acetylglucosaminidase; NF-κB: nuclear factor-kappaB; NFATc1: nuclear factor of activated T cells,
cystoplasic-1; NO: nitric oxide; Nrf2: nuclear factor erythroidrelated factor-2; Nurr1: nuclear receptor related-1;
OC: osteocalcin; OSCAR: osteoclast-associated receptor; OVA: ovalbumin; PERK: pancreatic ER kinase; PI3K:
phoaphatidylinositol-3-kinase; RANKL: receptor activator of nuclear factor kappa-B ligand; RANTES: regulated
on activation, normal T cell expressed and secreted; Rb: retinoblastoma protein; RORγt: RAR-related orphan
receptor γt; ROS: reactive oxygen species; Runx2: runt-related transcription factor 2; SN: substantia nigra;
SNPP: Simple Network Paging Protocol; SOD: superoxide dismutase; STAT: signal transducer and activator of
transcription; T-bet: T-box transcription factor; TAK1: transforming growth factor-β-activated kinase 1; TARC:
thymus and activation regulated chemokine; TGF-β1: transforming growth factor; TNF-α: tumor necrosis
factor alpha; TRAP: tartrate-resistant acid phosphatase; TrxR: thioredoxin/thioredoxin reductase; VEGF: vascular
endothelial growth factor; VMAT2: vesicular monoamine transporter type 2.
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Abstract: Several lines of evidence point out the relevance of nucleotide-binding oligomerization
domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome as a
pivotal player in the pathophysiology of several neurological and psychiatric diseases (i.e., Parkinson’s
disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and
major depressive disorder), metabolic disorders (i.e., obesity and type 2 diabetes) and chronic
inflammatory diseases (i.e., intestinal inflammation, arthritis, and gout). Intensive research efforts are
being made to achieve an integrated view about the pathophysiological role of NLRP3 inflammasome
pathways in such disorders. Evidence is also emerging that the pharmacological modulation of
NLRP3 inflammasome by phytochemicals could represent a promising molecular target for the
therapeutic management of neurological, psychiatric, metabolic, and inflammatory diseases. The
present review article has been intended to provide an integrated and critical overview of the available
clinical and experimental evidence about the role of NLRP3 inflammasome in the pathophysiology of
neurological, psychiatric, metabolic, and inflammatory diseases, including PD, AD, MS, depression,
obesity, type 2 diabetes, arthritis, and intestinal inflammation. Special attention has been paid to
highlight and critically discuss current scientific evidence on the effects of phytochemicals on NLRP3
inflammasome pathways and their potential in counteracting central neuroinflammation, metabolic
alterations, and immune/inflammatory responses in such diseases.

Keywords: NLRP3 inflammasome; neurological diseases; psychiatric diseases; metabolic diseases;
inflammatory diseases; phytochemicals

1. Introduction

A growing body of evidence highlights the relevance of nucleotide-binding oligomerization
domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome in the
pathophysiology of several autoinflammatory syndromes (i.e., cryopyrin-associated autoinflammatory
syndromes (CAPS)), neurological and psychiatric diseases (i.e., Parkinson’s disease (PD), Alzheimer’s
disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and major depressive disorder
(MDD)), metabolic disorders (i.e., obesity and type 2 diabetes), and chronic inflammatory diseases (i.e.,
arthritis and intestinal inflammation) [1–4]. In particular, the NLRP3 inflammasome complex, including
NLRP3, adaptor protein apoptosis-associated speck-like protein (ASC), and pro-caspase-1, through the
processing and release of interleukin (IL)-1β and IL-18, acts as a key player both in coordinating the host
physiology and shaping the central and/or peripheral immune/inflammatory responses in neurological,
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metabolic, and inflammatory diseases [5]. Indeed, an overactivation of NLRP3 inflammasome signaling
has been observed in the brain and blood of patients with neurological disorders, adipose tissue
macrophages from obese and diabetic patients, as well as patients with rheumatoid arthritis (RA)
and inflammatory bowel diseases (IBDs) [2,6–9]. In keeping with this knowledge, it is becoming
increasingly appreciated that drugs targeting the NLRP3 pathway could represent suitable therapeutic
options for the management of a large variety of diseases [10]. For instance, the pharmacological
blockade of NLRP3 signaling has been found to exert beneficial effects in animal models of PD, MS,
obesity, type 2 diabetes, arthritis, and colitis [10]. Of note, given the great interest in the therapeutic
potential of phytochemicals, in terms of prevention, cure, and maintenance of remission, intensive
efforts are being made to characterize the effects of natural compounds targeting NLRP3 pathways in
neurological, metabolic, and inflammatory diseases [11]. In this regard, several studies have shown
that various phytochemicals, including polyphenols and glucosinolates, counteract neuroinflammation,
metabolic alterations, and immune/inflammatory responses in experimental models of diseases via
inhibition of NLRP3 signaling [12–14].

Based on the above background, the present review article intents to provide an integrated
and critical overview of the available clinical and experimental evidence about the role of NLRP3
inflammasome in the pathophysiology of neurological, metabolic, and inflammatory diseases, including
obesity, type 2 diabetes, PD, AD, MS, depression, arthritis, and intestinal inflammation. Special
attention has been paid to highlight and critically discuss current scientific evidence on the effects
of phytochemicals on NLRP3 inflammasome pathways and their ability of counteracting central
neuroinflammation, metabolic alterations, and immune/inflammatory responses in such diseases.

2. Mechanisms of NLRP3 Inflammasome Activation

NLRP3 inflammasome, the most characterized inflammasome sensor molecule, is a tripartite
protein of the nucleotide-binding domain and leucine-rich repeat (NLR) family, containing an
amino-terminal pyrin domain (PYRIN) domain, a nucleotide-binding NACHT domain with ATPase
activity, and a carboxy-terminal leucine-rich repeat (LRR) domain [15]. NLRP3 is a key sensor of
cellular stress, which senses changes in homeostatic cellular state. Currently, two modes of NLRP3
activation have been characterized: Canonical and non-canonical inflammasome activation.

Canonical NLRP3 inflammasome activation requires two parallel and independent steps: Priming
(transcription) and activation (oligomerization) (Figure 1) [16]. In the first step, innate immune
signaling via toll-like receptor (TLR)-adaptor molecule myeloid differentiation primary response
88 (MyD88) and/or cytokine receptors, such as the tumor necrosis factor (TNF) receptor, promote
pro-IL-1β and NLRP3 transcription via nuclear factor-κB (NF-κB) activation. In the second step, the
oligomerization and activation of NLRP3 inflammasome lead to caspase-1 activation and, in turn,
IL-1β and IL-18 processing and release [16,17]. Different stimuli, including viral RNA, inhibition of
glycolytic or mitochondrial metabolism, extracellular osmolarity, α-synuclein (α-syn) and β-amyloid
(Aβ) protein accumulation, degradation of extracellular matrix components, and post-translational
NLRP3 modification (i.e., phosphorylation and ubiquitination) can initiate NLRP3 inflammasome
oligomerization and activation. In addition, the permeabilization of cell membranes to potassium efflux
(i.e., mixed lineage kinase domain-like protein (MLKL) activation, exposure to pore-forming gasdermin
D, P2X7 purinergic receptor activation by extracellular adenosine triphosphate (ATP), lysosomal
damage, and cathepsin release), the consequent release of oxidized mitochondrial DNA, the increase in
mitochondrial reactive oxygen species (ROS), and the cardiolipin externalization can activate NLRP3
inflammasome assembly [1,10]. Independently from IL-1β maturation, caspase-1 activation promotes
also pyroptosis, a key defense mechanism against microbial infections, which blocks the replication
of intracellular pathogens, induces phagocytosis of surviving bacteria, and promotes the release of
additional cytosolic proteins, such as high-mobility group box 1 (HMGB1) alarmin, a pro-inflammatory
mediator significantly involved in the pathogenesis of several inflammatory chronic diseases [18,19].
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inflammasome activation. The first step is regulated by toll-like receptors (TLRs)–adaptor molecule 
myeloid differentiation primary response 88 (MyD88) pathway and/or tumor necrosis factor receptor 
(TNFR), which activate pro-IL-1β and NLRP3 transcription via nuclear factor kB (NF-kB) activation. 
TLR4 stimulation by pathogen-associated molecular pattern molecules (PAMPs) and/or damage-
associated molecular pattern molecules (DAMPs) can activate also the receptor-interacting protein 1 
(RIP1)–FAS-associated death domain protein (FADD)-caspase-8 protein complex, which, in turn, 
promotes NF-kB transcription. The second step results in NLRP3 inflammasome oligomerization, 
leading to caspase-1 activation as well as IL-1β and IL-18 release. Permeabilization of cell membranes 
to potassium efflux (i.e., mixed lineage kinase domain-like protein (MLKL) activation, exposure to 
pore-forming Gasdermin D, P2X7 receptor activation by extracellular ATP, lysosomal damage, and 
cathepsin release) leads to a massive release of oxidized mitochondrial DNA, increase in 
mitochondrial reactive oxygen species (ROS) and cardiolipin externalization, which, in turn, promote 
NLRP3 inflammasome oligomerization and activation. α-Syn and Aβ protein accumulation, and post-
translational NLRP3 modifications (i.e., phosphorylation and ubiquitination) can also promote the 
second step of NLRP3 inflammasome activation. 

Besides canonical NLRP3 inflammasome activation, a non-canonical activation, which depends 
on caspase-11 in mice (caspase 4 and caspase 5 in humans), has been characterized (Figure 2) [1]. In 
this setting, in the first transcription step, gram-negative bacteria (i.e., Citrobacter rodentium, 
Escherichia coli, Legionella pneumophila, Salmonella typhimurium, and Vibrio cholerae) activate the TLR4–
MyD88 and toll/IL-1 receptor homology-domain-containing adapter-inducing interferon-β (TRIF) 
pathways which, in turn, promote the transcription of IL-1β, IL-18, and NLRP3, as well as interferon 
regulatory factor (IRF)-3 and IRF7 genes via NF-κB activation. The IRF3–IRF7 complex promotes the 

Figure 1. Diagram showing the different molecular mechanisms of canonical nucleotide-binding
oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3)
inflammasome activation. The first step is regulated by toll-like receptors (TLRs)–adaptor molecule
myeloid differentiation primary response 88 (MyD88) pathway and/or tumor necrosis factor
receptor (TNFR), which activate pro-IL-1β and NLRP3 transcription via nuclear factor kB (NF-kB)
activation. TLR4 stimulation by pathogen-associated molecular pattern molecules (PAMPs) and/or
damage-associated molecular pattern molecules (DAMPs) can activate also the receptor-interacting
protein 1 (RIP1)–FAS-associated death domain protein (FADD)-caspase-8 protein complex, which, in
turn, promotes NF-kB transcription. The second step results in NLRP3 inflammasome oligomerization,
leading to caspase-1 activation as well as IL-1β and IL-18 release. Permeabilization of cell membranes
to potassium efflux (i.e., mixed lineage kinase domain-like protein (MLKL) activation, exposure
to pore-forming Gasdermin D, P2X7 receptor activation by extracellular ATP, lysosomal damage,
and cathepsin release) leads to a massive release of oxidized mitochondrial DNA, increase in
mitochondrial reactive oxygen species (ROS) and cardiolipin externalization, which, in turn, promote
NLRP3 inflammasome oligomerization and activation. α-Syn and Aβ protein accumulation, and
post-translational NLRP3 modifications (i.e., phosphorylation and ubiquitination) can also promote the
second step of NLRP3 inflammasome activation.

Besides canonical NLRP3 inflammasome activation, a non-canonical activation, which depends
on caspase-11 in mice (caspase 4 and caspase 5 in humans), has been characterized (Figure 2) [1]. In this
setting, in the first transcription step, gram-negative bacteria (i.e., Citrobacter rodentium, Escherichia coli,
Legionella pneumophila, Salmonella typhimurium, and Vibrio cholerae) activate the TLR4–MyD88 and
toll/IL-1 receptor homology-domain-containing adapter-inducing interferon-β (TRIF) pathways which,
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in turn, promote the transcription of IL-1β, IL-18, and NLRP3, as well as interferon regulatory factor
(IRF)-3 and IRF7 genes via NF-κB activation. The IRF3–IRF7 complex promotes the expression
of interferon (IFN)-α/β which, in turn, activates the IFN-α/β receptor 1 (IFNAR)/IFNAR2- the
janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway leading to
transcription of caspase-11 gene. In the second step, unidentified scaffold proteins or receptors,
induced by Gram-negative bacteria, cleave and activate caspase-11, which induces pyroptosis, HMGB1,
and IL-1α release, and promotes IL-1β processing and release through activation of the canonical
NLRP3-ASC-caspase-1 pathway (Figure 2) [1].
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Figure 2. Diagram showing the different molecular mechanisms of non-canonical NLRP3 inflammasome
activations. Left panel: Non-canonical caspase-8-dependent NLRP3 activation. TLR4 stimulation
by PAMPs and/or DAMPs activates RIP1–FADD-caspase-8 intracellular signaling, which, besides
promoting the NF-kB transcription step, can activate directly canonical NLRP3 oligomerization
and assembly. In addition, fungi PAMPS (i.e., Candida albicans, fungal cell wall component
β-glucans, and mycobacteria), via dectin-1 stimulation, can promote IL-1β transcription as well
as the formation and activation of a mucosa-associated lymphoid tissue lymphoma translocation
protein 1 (MALT1)–caspase-8– adaptor protein (ASC) complex, which contributes to processing and
release of IL-1β. Right panel: Non-canonical caspase-11-dependent NLRP3 activation. In the first step,
Gram-negative bacteria activate the TLR4–MyD88 and tumor necrosis factor receptor (TRIF) pathways,
with consequent nuclear translocation of NF-κB, which promotes the transcription of IL-1β, IL-18, and
NLRP3 as well as interferon regulatory factor (IRF)-3 and IRF7 genes. The IRF3–IRF7 complex (1)
elicits the expression of IFN-α/β (2) that binds the interferon (IFN)-α/β receptor 1 IFNAR1/IFNAR2
receptor (3), leading to activation of the janus kinase/signal transducers and activators of transcription
(JAK/STAT) pathway (4) and transcription of caspase-11 gene (5). In the second step, unidentified
scaffold proteins or receptors induced by Gram-negative bacteria cleave and activate caspase-11, which
induces pyroptosis as well as high-mobility group box 1 (HMGB1) and IL-1α release, and promotes
the activation of NLRP3–ASC–caspase-1 pathway. Caspase-1 activation promotes also pyroptosis and
HMGB1 release.

58



Int. J. Mol. Sci. 2019, 20, 2876

Of interest, an additional non-canonical caspase-8 dependent NLRP3 activation has been recently
characterized (Figure 2) [20–24]. In particular, TLR4 stimulation by pathogen-associated molecular
pattern molecules (PAMPs) and/or damage-associated molecular pattern molecules (DAMPs) can
activate caspase-8 and its receptor-interacting protein 1 (RIP1)–fatty acid synthase (FAS)-associated
death domain protein (FADD) protein, which, in turn, promote both the transcription step and canonical
NLRP3 oligomerization and activation [24]. Moreover, fungi (i.e., Candida albicans), fungal cell wall
component β-glucans, and mycobacteria, via dectin-1 stimulation, have been found to promote IL-1β
transcription as well as the formation and activation of a mucosa-associated lymphoid tissue lymphoma
translocation protein 1 (MALT1)–caspase-8–ASC complex that contributes to the processing and release
of IL-1β (Figure 2) [22]. In particular, caspase-8 can act as a direct IL-1β-converting enzyme, instead of
caspase-1. Indeed, IL-1β processing and caspase-8 activation were not evident in NLRP3-/- or ASC-/-

bone marrow-derived dendritic cells (BMDCs) [20,23]. Moreover, the release of IL-1β from dendritic
cells stimulated with a fungal infection occurred independently of caspase-1, through the association
of ASC protein with caspase-8 [22].

Overall, this body of evidence points out that the activation of NLRP3 inflammasome is regulated by
several molecular processes, which can be closely interconnected or occur independently. Nevertheless,
further in vitro experiments on cultured cells are required to clarify the molecular mechanisms
underlying the interplay between caspase-1, -8, and -11 in promoting the canonical and/or non-canonical
NLRP3 activations.

3. Effects of Phytochemicals in NLRP3 Inflammasome-Related Diseases

The involvement of inflammasome pathways in the pathophysiology of central nervous system
(CNS) diseases, metabolic disorders, and chronic inflammatory diseases is fostering research on the
potential therapeutic benefits resulting from the pharmacological targeting of NLRP3 inflammasome.
In this field, besides specific programs of novel drug discovery, the scientific community is making
intensive efforts to characterize the effects of natural compounds. Current evidence on the effects of
different phytochemicals (see chemical structures in Figure 3) on NLRP3 inflammasome pathways and
central neuroinflammation, metabolic alterations, and immune/inflammatory responses is addressed
in the following sections and summarized in Tables 1–3.
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acetylated α-tubulin-
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arthritis 
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pathway 
 Inhibition of NF-κB 
transcription signaling  

 30 mg/Kg 
p.o. 30 minutes 

before MSU 
administration  

 MSU-
induced gouty 

arthritis 
[54] 

Morin Flavonol 

 Activation of anti-
oxidative enzymes (i.e., 

CAT and SOD) 
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 Direct blockade of 
NF-κB transcription 

signaling 
 Direct blockade of 

NLRP3, ASC and caspase-1  

 30 mg/Kg 
i.p. 60 minutes 

before MSU 
administration 

 MSU-
induced acute 
gout arthritis 

[56] 

Sulforaphane Isothiocyanate 
 Direct inhibition of 

NLRP3  

 30 mg/Kg 
p.o. 60 minutes 

before MSU 
administration  

 MSU-
induced acute 
gout arthritis 

[57] 
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3.1. Central Nervous System (CNS) Disorders 

Increasing evidence supports the contention that central chronic neuroinflammation represents 
the main process implicated in the pathogenesis of several neurological and psychiatric disorders. 
Indeed, neuroinflammatory processes in the CNS have been documented in AD, PD, MS, ALS, and 
MDD patients at different stages of the disease. In this context, NLRP3 inflammasome is emerging as 
a pivotal driver in the onset of central neuroinflammation and consequent neurodegeneration [58,59], 
and several studies have shown an overactivation of NLRP3 inflammasome pathways in patients 
affected by these disorders. [6,60–71]. 

In support of this view, several studies in animal models of accelerated senescence, AD, PD, MS, 
ALS, and psychiatric disorders have shown a pivotal role of NLRP3 inflammasome in the onset and 
progression of central neuroinflammation and neurodegeneration [26]. Gordon et al. [6] observed an 
increase in IL-1β, caspase-1, NLRP3, and ASC expression in substantia nigra from PD mice induced 
by intranigral injection of 6-hydroxydopamine or α-syn preformed fibril, and that the 
pharmacological inhibition of inflammasome with MCC950, a recognized selective NLRP3 inhibitor, 
counteracted microglia activation, nigrostriatal degeneration, α-syn accumulation, and motor deficits 
in PD animals. Likewise, Zhang et al. [72] showed that mice subjected to chronic mild stress (a model 

Figure 3. Chemical structures of different phytochemicals acting on NLRP3 inflammasome pathways
and related molecular mechanisms through which these compounds modulate NLRP3 activation.
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3.1. Central Nervous System (CNS) Disorders

Increasing evidence supports the contention that central chronic neuroinflammation represents
the main process implicated in the pathogenesis of several neurological and psychiatric disorders.
Indeed, neuroinflammatory processes in the CNS have been documented in AD, PD, MS, ALS, and
MDD patients at different stages of the disease. In this context, NLRP3 inflammasome is emerging as a
pivotal driver in the onset of central neuroinflammation and consequent neurodegeneration [58,59],
and several studies have shown an overactivation of NLRP3 inflammasome pathways in patients
affected by these disorders. [6,60–71].

In support of this view, several studies in animal models of accelerated senescence, AD, PD,
MS, ALS, and psychiatric disorders have shown a pivotal role of NLRP3 inflammasome in the
onset and progression of central neuroinflammation and neurodegeneration [26]. Gordon et al. [6]
observed an increase in IL-1β, caspase-1, NLRP3, and ASC expression in substantia nigra from PD
mice induced by intranigral injection of 6-hydroxydopamine or α-syn preformed fibril, and that the
pharmacological inhibition of inflammasome with MCC950, a recognized selective NLRP3 inhibitor,
counteracted microglia activation, nigrostriatal degeneration, α-syn accumulation, and motor deficits
in PD animals. Likewise, Zhang et al. [72] showed that mice subjected to chronic mild stress (a model
of depression) displayed an increase in IL-1β, caspase-1, NLRP3, and ASC in hippocampus tissues,
and that the pharmacological blockade of NLRP3 attenuated central and peripheral inflammation and
ameliorated depressive-like symptoms. These results suggest that central NLRP3 overactivation shapes
immune/inflammatory responses that contribute to neuroinflammation, microglial activation, neuronal
loss, and cognitive and motor impairments in different CNS disorders, and that the pharmacological
modulation of this enzymatic complex could represent a suitable way for treatment of such diseases.

Of interest, in an attempt of understanding the role of NLRP3 inflammasome in the pathophysiology
of CNS diseases, several efforts have been made to implement research on the effects of NLRP3 gene
deletion and its components in preclinical models of brain disorders. A recent pioneering study by
Haneka et al. [73] showed that NLRP3 gene deletion in amyloid precursor protein (APP)/presenilin 1
(PS1) mice (animal model of AD) attenuated learning and memory deficits, neocortex neuronal loss
and brain Aβ accumulation, by increasing Aβ phagocytic clearance capacity and insulin-degrading
enzyme (IDE) expression (an enzyme able to degrade extracellular Aβ). Bellezza et al. [74] reported
that caspase-1 gene deletion in α-synA53T mice (a transgenic model of PD) counteracted central
neuroinflammation and microglial activation [75]. These findings further support the view that NLRP3
inflammasome plays a key role in the pathophysiology of CNS disorders. In this regard, a recent
and pioneering study by Venegas et al. [76] showed that central NLRP3 activation represent an early
event in AD that contributes to Aβ deposition and disease progression. In particular, they observed
that NLRP3 activation in the brain from AD mice promoted the release of ASC speck proteins in
the extracellular space, which, in turn, rapidly bounded Aβ peptides, leading to an increase in its
aggregation and accumulation [76]. These findings represent a point of novelty, since, for the first time,
they demonstrate that, in AD, NLRP3 activation contributes to Aβ aggregation and accumulation.
However, the molecular mechanisms underlying the interplay between Aβ and NLRP3 as well as its role
in the pathophysiology of central neurodegeneration remain poorly understood. In addition, despite
these interesting results, no distinction between canonical and/or non-canonical NLRP3 inflammasome
activation in CNS diseases has been made. Indeed, at present, only a study by Martin et al. [77] has
shown an involvement of caspase-8-dependent non-canonical NLRP3 inflammasome signaling in
the pathophysiology of MS. In particular, the authors reported that the activation of non-canonical
caspase-8-dependent inflammasome and the consequent massive release of IL-1β promoted Th17 cell
differentiation and infiltration in brain tissues of experimental autoimmune encephalomyelitis (EAE)
mice (a model of MS), thus contributing to diseases progression [77].

Of interest, various phytochemicals have been found to inhibit NLRP3 activation acting on
different steps of the inflammasome cascade and to exert beneficial effects in experimental models of
CNS diseases, including PD, AD, MS, and psychiatric disorders (Table 1 and Figure 4). A pioneering
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study by Fan et al. [25] showed that tenuigenin, a natural extract from Polygala tenuifolia root, endowed
with antioxidant, anti-aging, and anti-inflammatory properties, and able to cross the blood brain
barrier (BBB), exerted beneficial effects in animals with MPTP-induced PD, through inhibition of
NLRP3 activation and consequent decrease in IL-1β release [25]. The molecular mechanism underlying
this effect was proposed to depend on the ability of tenuigenin to suppress ROS generation, thus
suggesting that the blockade of NLRP3 upstream signaling in the CNS could represent a suitable
therapeutic target for treatment of PD. Likewise, Yamamoto et al. [78] observed that in vivo treatment
with cyclic phosphatidic acid (2ccPA), a natural phospholipid, counteracted demyelination, microglial
activation, and motor dysfunctions in mice with cuprizone-induced MS, through NLRP3 inhibition via
suppression of mitochondrial oxidative stress and apoptotic pathways. In addition, 2ccPA reduced
the density of CD4+ T cells as well as macrophage infiltration in brain tissues from EAE mice. These
results support the view that the inhibition of upstream NLRP3 signaling can also counteract the
infiltration of CNS T cells and macrophages. Therefore, the blockade of NLRP3 activation in the
CNS and the consequent decrease of immune/inflammatory cell infiltration could represent a suitable
pharmacological target in the setting of CNS disorders.

Consistent with the above data, Peng et al. [27] observed that treatment with hydroxytyrosol
(3,4-dihydroxyphenylethanol), a main polyphenol metabolite of oleuropein, attenuated neuronal
impairment, central inflammation, and apoptotic activation in brain tissues from APP/PS1 mice,
through the inhibition of NLRP3 inflammasome activation via suppression of ROS, known to activate
NLRP3 inflammasome assembly [1]. In particular, hydroxytyrosol has been found to counteract
ROS formation through the activation of antioxidant agents, including glutathione and superoxide
dismutase. In addition, hydroxytyrosol decreased the expression of C-JunNH2-terminal kinase
(JNK)-/p38-mitogen-activated protein kinase (MAPK)-NF-kB pathway, a molecular pathway that
regulates the first step of NLRP3 activation. Therefore, the NLRP3 blockade by hydroxytyrosol could
be dependent on ROS suppression and inhibition of JNK-/p38-MAPK-NF-kB transcription.

The inhibition of ROS generation as a suitable pharmacological target for inhibiting NLRP3
inflammasome assembly has been confirmed by a subsequent study, showing that in vivo administration
of allicin, one of the main active compounds from garlic, attenuated depressive-like behaviors, CNS
neuroinflammation, abnormal iron accumulation, and neuronal apoptosis in mice with chronic social
defeat stress (CSDS), through NLRP3 inflammasome signaling inhibition by activation of antioxidant
pathways and suppression of ROS generation. In particular, allicin increased SOD and nuclear factor
(erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) anti-oxidative activities, that, in turn,
suppressed ROS levels, thus inhibiting NLRP3 assembly and activation [28].

Besides upstream targeting the inflammasome pathway, a direct blockade of NLRP3 inflammasome
assembly has been shown to exert anti-inflammatory effects in CNS disorders. Feng et al. [12] reported
that dihydromyricetin, a flavonoid compound derived from the medicinal plant Ampelopsis grossedentata
and able to cross the BBB, ameliorated memory and cognition deficits, increased neprilysin (NEP) levels
(enzyme involved in Aβ clearance), reduced Aβ accumulation, and promoted the shift of migroglial
cells towards the anti-inflammatory M2 phenotype in hippocampus and cortex in APP/PS1 mice,
through direct inhibition of NLRP3 activation. In particular, dihydromyricetin decreased NLRP3,
ASC, and cleaved caspase-1 expression in microglial cells from AD mice. These findings suggest that
dihydromyricetin, by counteracting CNS neuroinflammation and Aβ accumulation, could represent a
suitable therapeutic approach for the management of AD. Likewise, Liu et al. [30] observed that in vivo
treatment of TgCRND8 mice (a transgenic model of AD) with Ginkgo biloba extracts improved cognitive
functions, attenuated the loss of synaptic structural proteins, counteracted microglial activation, and
decreased CNS neuroinflammation, through a direct blockade of caspase-1 activation.

67



Int. J. Mol. Sci. 2019, 20, 2876

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 13 of 30 

 

 
Figure 4. Diagram showing the molecular mechanisms through which phytochemicals can inhibit 
NLRP3 inflammasome signaling in the setting of CNS disorders. 

Consistent with the above data, Peng et al. [27] observed that treatment with hydroxytyrosol 
(3,4-dihydroxyphenylethanol), a main polyphenol metabolite of oleuropein, attenuated neuronal 
impairment, central inflammation, and apoptotic activation in brain tissues from APP/PS1 mice, 
through the inhibition of NLRP3 inflammasome activation via suppression of ROS, known to activate 

Figure 4. Diagram showing the molecular mechanisms through which phytochemicals can inhibit
NLRP3 inflammasome signaling in the setting of CNS disorders.

Consistent with the above data, two recent papers by Liu et al. [31] and Jiang et al. [32]
reported that the direct inhibition of NLRP3 activation with two different phytochemicals attenuated
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CNS neuroinflammation in animal models of depression. These authors observed that baicalin (5,
6-dihydroxy-7-O-glucuronide flavonoid glycoside), a major polyphenol compound extracted from
Scutellaria radix roots, and salvianolic acid B, a natural compound extracted from Salvia miltiorrhiza,
counteracted depressive-like behaviors and central neurogenic/inflammatory responses in rats with
chronic unpredictable mild stress (CUMS) and LPS-induced depression, respectively, via direct
blockade of NLRP3 inflammasome assembly. Therefore, the direct inhibition of NLRP3 activation with
phytochemicals might represent a suitable pharmacological strategy for treatment of CNS disorders.

Recent observations have shown that several polyphenols exerted beneficial effects on CNS
disorders via inhibition of the primary TRL–MyD88–NF-κB step of NLRP3 inflammasome activation.
Zhang et al. [33] showed that crocin, a carotenoid isolated from Gardenia jasminoides and Crocus sativus,
counteracted CNS neuroinflammation, locomotor disability, and immobility time, in concomitance
with a shift of M1 pro-inflammatory microglia towards M2 anti-inflammatory phenotype, in mice
with LPS-induced depression, through the inhibition of NLRP3 transcription step. Qi et al. [34]
and Liu et al. [79] reported that treatment with resveratrol (3, 5, 4′-trihydroxystilbene), a stilbenoid
endowed with anti-aging, anti-inflammatory, antioxidant, and anti-apoptotic activities [35,80,81],
improved cognitive and behavioral functions in mice with AD induced by intracerebroventricular
injection of Aβ1-42 as well as in animals with ovariectomy-induced anxiety- and depression-like
behaviors, by inhibiting the NF-κB/NLRP3 signaling. Resveratrol has been found to activate
the anti-inflammatory 5′-adenosine monophosphate-activated protein kinase (AMPK)/sirtuin1
(Sirt1)/peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) pathway. Such
an effect could contribute further to the inhibition of NLRP3 activation. However, the authors did not
demonstrate whether resveratrol influenced NF-κB/NLRP3/IL-1β and AMPK/Sirt1/PGC-1α pathways
in independent ways, or whether the inhibition/activation of one can regulate the other. Thus, further
investigations are needed to characterize the molecular mechanisms underlying the interplay between
AMPK/Sirt1/PGC-1α and NF-κB/NLRP3/IL-1β pathways.

A pioneering study by Li et al. [36] has shown that treatment with apigenin
(4’,5,7-trihydroxyflavone), a bioflavonoid with anti-inflammatory and antioxidant activities, exerted
beneficial effects in CUMS rats, by counteracting behavioral alterations, CNS inflammation, and
oxidative stress, through the inhibition of NLRP3 inflammasome via activation of peroxisome
proliferator-activated receptor gamma (PPARγ). Indeed, the concomitant administration of GW9662,
a PPARγ antagonist, to CUMS rats counteracted the inhibitory effects of apigenin on NLRP3, thus
suggesting that apigenin can exert antidepressant-like effects through the blockade of NLRP3 by
activation of PPARγ. These results represent an interesting point of novelty, since they suggest that
a dynamic interplay between NLRP3 signaling and PPARγ contributes to neurogenic/inflammatory
responses in depression, and that PPARγ blockade could represent a suitable molecular target to
modulate NLRP3 activation.

3.2. Metabolic Disorders

Several lines of evidence have shown that obesity is characterized by a chronic low-grade systemic
inflammation, that seems to contribute to the development of insulin resistance and the pathogenesis
of type 2 diabetes mellitus (T2DM) [82,83]. Indeed, obese patients display an uncontrolled activation
of innate immune/inflammatory cells, with consequent massive release of pro-inflammatory cytokines,
which, in turn, interfere with several metabolic processes, including insulin synthesis and signaling,
and blood glucose levels [83]. In this setting, the NLRP3 inflammasome complex has been found to act
as a key immune sensor involved in shaping immune/inflammatory responses [7,84]. Clinical evidence
has documented an increase in caspase-1 activity and IL-1β secretion in adipose tissue macrophages
from obese and T2D patients, and these patterns were tightly correlated with a condition of insulin
resistance [7,85–87]. However, the causal relationship of inflammasome activation with chronic
inflammation, obesity, and T2D remains to be clarified. In this context, several research efforts have
been made to investigate the effects of NLRP3 gene deletion and its components in pre-clinical models
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of obesity and diabetes. In particular, several studies have shown that NLRP3-/-, caspase-1-/-, and
ASC-/- mice were less susceptible to the development of obesity induced by high-fat diet (HFD). Others
have reported that IL-1β gene depletion in HFD obese mice attenuated adipose tissue inflammation
and insulin resistance [88–90].

Of interest, recent studies have shown that NLRP3 inflammasome activation in obese mice,
besides sensing innate immune responses, also shapes adaptive immune responses through actions
on accumulation and activation of T cells in adipose tissue, that, in turn, contribute to alter insulin
sensitivity [7]. In particular, NLRP3 gene depletion in HFD obese mice significantly decreased
the number of CD4+ and CD8+ effector memory T cells and increased naive T cells in adipose
tissue [7,91,92].

At present, poor evidence is available about the beneficial effects of phytochemicals in animal
models of metabolic disorders.

In the setting of obesity, only one study has reported that treatment with isoliquiritigenin,
a flavonoid with chalcone structure obtained by Glycyrrhiza uralensis, exerted beneficial effects in
mice with HFD-induced obesity. Isoliquiritigenin attenuated body weight gain, insulin resistance,
hyperglycemia, hypercholesterolemia, and adipose tissues inflammation, via inhibition of both steps of
NLRP3 activation. Indeed, isoliquiritigenin inhibited both NF-kB transcription via TLR4/IkB signaling
blockade and ASC oligomerization [13].

Two recent studies evaluated the effects of natural compounds acting on NLRP3 intracellular
cascade in animal models of T2DM. In the first study, Shim et al. [37] observed that treatment with leaf
extracts of Cichorium intybus, containing a variety of phytochemicals, such as lactucin and lactucopicrin
sesquiterpene lactones, attenuated body weight gain, glucose metabolism, insulin resistance, as
well as systemic and adipose tissue inflammation in mice with HFD-induced type-2 diabetes, via
inhibition of NLRP3 activation. In addition, the leaf extracts of Cichorium intybus promoted the
shift of M1 pro-inflammatory macrophages in adipose tissues towards the M2 anti-inflammatory
phenotype, reducing the inducible nitric oxide synthase (iNOS) and TNF M1 markers and increasing
the expression of Arg-1 and IL-10 M2 markers. The molecular mechanism was proposed to depend
on the ability of lactucin and lactucopicrin of inhibiting the translocation of NLRP3 molecular
components in mitochondria-associated endoplasmic reticulum (ER) membranes, a pivotal step in the
process of NLRP3 activation [93,94]. In the second study, Li et al. [38] reported that treatment with
resveratrol counteracted adipose tissue oxidative stress and inflammation in streptozotocin-induced
diabetes through the blockade of NLRP3 activation. In particular, the inhibitory effects of resveratrol
were ascribed to its ability to activate the anti-inflammatory AMPK system through the blockade
of dynamin related protein-1(Drp1)- and ROS-induced mitochondrial fission and the consequent
inhibition of thioredoxin-interacting protein (TXNIP)/NLRP3 interaction. These results, although
generated in different animal models of metabolic disorders, show that natural compounds targeting
both priming and activation steps of NLRP3 activation could represent suitable therapeutic options for
the management of obesity and diabetes.

Of interest, in the setting of metabolic syndromes, the majority of available studies have investigated
the effects of NLRP3-targeting phytochemicals in complications associated with obesity and diabetes,
including hepatic inflammation, non-alcoholic fatty liver disease (NAFLD), diabetic nephropathy,
and cognitive impairment [29,39–43]. Wang et al. [39] observed that the dietary favonol quercetin
alleviated hepatic oxidative stress, inflammation, and steatosis in rats with streptozocin-induced
diabetes, through the blockade of TXNIP/NLRP3 interaction [39]. Likewise, Wang et al. [40]
reported that purple sweet potato color (PSPC), containing anthocyanins, ameliorated the hepatic
histopathologic damage associated with HFD-induced diabetes, through NLRP3 inflammasome
inhibition. The molecular mechanisms were proposed to depend on the ability of PSPC anthocyanins of
inhibiting ER stress-induced inositol-requiring enzyme 1 (IRE1) signaling as well as nucleotide-binding
oligomerization domain-containing protein 1/2 (NOD1/2)-NF-kB transcription, thus suggesting that
this class of flavonoids can act on both steps required for NLRP3 activation. In a subsequent paper,
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Yang et al. [41] showed that resveratrol counteracted hepatic inflammation in HFD mice, through the
inhibition of NLRP3 assembly, by inducing the expression of Sirt1 and Sirt6 anti-inflammatory proteins.
In particular, treatment with resveratrol decreased the levels of hepatic triglyceride along with TNF,
IL-1β, and IL-6 pro-inflammatory cytokines. However, the authors did not investigate the molecular
mechanisms underlying the interplay among SIRT1, SIRT6, and NLRP3 inflammasome.

Two recent papers reported that phytochemicals acting on NLRP3 activation alleviated
obesity-induced renal damage and diabetic nephropathy. In the first paper, Eo et al. [42] observed
that Ecklonia cava polyphenol extract (ECPE) ameliorated the renal histopathological damage and
inflammation in HFD-induced obese mice. In particular, treatment with ECPE decreased systemic and
tissue parameters related to kidney inflammation, including body and kidney weight, sterol regulatory
element-binding protein (SREBP-1), acetyl-coA carboxylase (ACC), as well as fatty acid synthase
(FAS) and renal NFκB, MCP-1, TNF, and C-reactive protein expression, through the activation of the
anti-inflammatory AMPK/SIRT1/PGC-1α pathway and the inhibition of NLRP3 activation. However,
the authors did not clarify whether ECPE blocked directly the inflammasome assembly, or indirectly
through the activation of anti-inflammatory pathways related to NLRP3 activation. In the second
paper, Tao et al. [29] observed that the dihydroflavone dihydroquercetin exerted protective effects
in rats with HFD/streptozotocin-induced diabetic nephropathy, by attenuating urine microalbumin
excretion and renal histopathological lesions, through NLRP3 blockade via both inhibition of upstream
NLRP3 signaling and acting directly on NLRP3 assembly.

Besides the beneficial effects of phytochemicals targeting NLRP3 signaling on liver and
kidney inflammation associated with diabetes, a recent study has shown that the isoflavone
formononetin alleviated cognitive dysfunctions associated with diabetes via NLRP3 inhibition. In this
setting, treatment with formononetin attenuated learning and memory deficiencies and decreased
circulating and hippocampus levels of malondialdehyde (MDA), TNF, IL-1β, and IL-6 in mice with
streptozocin-induced diabetes. The molecular mechanism underlying NLRP3 inflammasome blockade
was proposed to depend on the ability of formononetin to block the priming TLR4/MyD88/NF-κB step
involved in inflammasome activation through the inhibition of extracellular HMGB1. These findings
represent a point of novelty, since they highlight a novel mechanism of inhibition of the first step of
NLRP3 activation. [43].

3.3. Chronic Inflammatory Diseases

An increasing number of phytochemicals, including phenols, polyphenols, triterpenoids, and
isothiocyanates, have been found to exert beneficial effects in several animal models of chronic
inflammatory diseases through the inhibition of NLRP3 inflammasome pathways.

3.3.1. Inflammatory Bowel Diseases

IBDs, including Crohn’s disease (CD) and ulcerative colitis (UC), comprise chronic and relapsing
inflammatory disorders that affect the gastrointestinal tract [95]. Recent studies have shown that
the NLRP3 inflammasome complex, besides acting as a key player in the maintenance of intestinal
homeostasis, shapes innate immune responses during bowel inflammation, thus contributing to sustain
the ongoing inflammatory processes, the disruption of enteric epithelial barrier through a deregulation
of tight junction proteins (i.e., claudin-1, claudin-2, and junctional adhesion molecule-A), as well as
epithelial cell apoptosis [1,96]. Recent clinical evidence has documented an increased IL-1β secretion
from colonic tissues and macrophages of IBD patients, these patterns being correlated with the severity
of the disease [8]. In addition, Liu et al. [97] showed an increased expression of NLRP3, ASC and IL-1β
in the colonic mucosa from IBD patients, as compared with healthy controls.

In an attempt to better understand the role of NLRP3 inflammasome in the pathophysiology
of bowel inflammation, several studies have investigated the effects of gene deletion and in vivo
pharmacological modulation of NLRP3 inflammasome signaling in preclinical models of colitis [1]. In
particular, it has been shown that the gene deletion of molecular components involved in both canonical
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and non-canonical NLRP3 inflammasome activation had both protective and detrimental roles in
bowel inflammation, depending of the choice of experimental model. This led to postulate that, in the
first phase of enteric inflammation, NLRP3 inflammasome contributes to tissue repair and maintenance
of epithelial barrier integrity, while, in the chronic phase of inflammation, an overactivation of NLRP3
pathways leads to a massive release of IL-1β and IL-18, that contribute to immune/inflammatory
responses and impairment of the intestinal epithelial barrier [1]. In support of this view, recent
studies have shown that the in vivo pharmacological modulation of NLRP3 with drugs targeting
different steps of NLRP3 activation, including inhibition of NF-kB transcription, protection against
mitochondrial damage, activation of the Keap-1/NFE-related factor 2 (Nrf2) antioxidant pathway,
inhibition of pro-caspase-1 cleavage, direct blockade of canonical and non-canonical NLRP3 activations,
or IL-1β receptor exerted beneficial effects on bowel inflammation [98–103].

There is a large body of evidence that natural compounds targeting NLRP3 are able to exert
anti-inflammatory effects on dextran sulphate sodium (DSS)-induced colitis in mice and colitis
induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats [1,11]. Guo et al. [44] observed that oral
administration of asiatic acid, a natural triterpenoid compound, dose-dependently attenuated body
weight loss, histological damage, myeloperoxidase activity, as well as colonic TNF, IL-1β, IL-6, and IFN-
γ levels in mice with DSS-induced colitis through the inhibition of NLRP3 inflammasome activation.
In particular, asiatic acid inhibited the upstream signaling of inflammasome activation by suppressing
mitochondrial ROS generation, caspase-1 activation, and the inflammasome assembly [44].

The inhibition of NF-κB signaling and NLRP3 activation has been shown to also exert
anti-inflammatory effects in colitis. Wu et al. [45] observed that treatment with fraxinellone, a
natural lactone, reduced the weight loss, diarrhea, colonic macroscopic damage, enteric TNF, IL-1β,
IL-6, and IL-18 levels, CD11b+ macrophage infiltration, as well as the mRNA levels of intercellular
adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), iNOS, and cyclooxygenase-2
(COX-2) in mice with DSS-induced colitis, through NF-κB signaling and NLRP3 blockade. Likewise,
treatment with wogonoside, a glucuronide metabolite of the bioactive flavonoid wogonin, exerted
beneficial effects on bowel inflammation via direct inhibition of NF-κB and NLRP3 expression, as
well as caspase-1 expression and activity [46]. These results indicate that phytochemicals targeting
both steps of NLRP3 activation could represent a suitable and promising pharmacological target for
treatment of bowel inflammation.

Consistent with the above data, He et al. [47] showed that the alpinetin, a flavonoid isolated
from Alpinia katsumadai Hayata, attenuated diarrhea, colonic shortening, histological damage, and
myeloperoxidase activity as well as colonic TNF and IL-1β expression in mice with DSS-induced
colitis, likely by suppressing TRL4-NF-κB and NLRP3-ASC-caspase-1 signaling. However, the authors
documented the ability of alpinetin of inhibiting NLRP3 activation in in vitro THP-1 cells, omitting
the evaluation of alpinetin effects on NLRP3 activation in DSS mice. A recent study by Wu et al. [48]
reported that formononetin alleviated the colonic shortening, histological damage, macrophage
infiltration, colonic epithelial cell injury, and restored colonic tight junction (zonulin-1, claudin-1, and
occludin) protein expression, by counteracting the increased expression of NLRP3 components (NLRP3,
ASC, IL-1β) in DSS mice. These findings show, for the first time, that the isoflavone formononetin, via
NLRP3 blockade, exerts beneficial effects on colitis both by counteracting colonic inflammation and
restoring the integrity of epithelial barrier.

Of interest, two pioneering papers by Marquez-Flores et al. [14] and Oficjalska et al. [49]
have shown that the inhibition of canonical and non-canonical NLRP3 activation with polyphenols
counteracted bowel inflammation in animals with DSS- and TNBS-induced colitis. In the first paper,
Marquez-Flores et al. [14] observed that a dietary apigenin enrichment decreased the macroscopic
and microscopic signs of colitis, and reduced colonic PGE, COX-2 and iNOS expression as well as
serum matrix metalloproteinase (MMP-3) levels in DSS mice, through the inhibition of both canonical
and non-canonical NLRP3 inflammasome pathways, through a decrease in caspase-1 and caspase-11
expression and activity. In the second study, treatment with bergenin, a polyphenolic compound,
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classified as a C glycoside derived from 4-O-methyl gallic acid, in rats with TNBS-induced colitis
alleviated colonic macroscopic and microscopic damage, decreased neutrophilic infiltration, as well as
colonic COX- 2 and iNOS expression and IL-1β, IFN-γ, and IL-10 levels, by modulation of STAT3 and
NF-κB signaling and blockade of canonical and non-canonical NLRP3 inflammasome pathways.

3.3.2. Rheumatoid Arthritis

RA is a chronic autoinflammatory disease characterized by synovial inflammation and irreversible
joint destruction, leading to joint functional impairment and often premature mortality [104]. Several
lines of evidence support the view that NLRP3 inflammasome plays a pivotal role in the pathophysiology
of RA [104]. Indeed, polymorphisms in different regions of NLRP3 gene have been associated with
increased RA susceptibility and disease severity [105–107]. In addition, recent papers showed that
RA patients are characterized by an increased mRNA and protein expression of inflammasome
components, including NLRP3, ASC, caspase-1, and IL-1β levels in the synovia as well as circulating
monocytes/macrophages, dendritic cells, and neutrophils, thus suggesting that the activation of
NLRP3 inflammasome contributes both to tissues and systemic inflammation in RA [108–112].
However, current clinical evidence does not clarify whether NLRP3 inflammasome contributes
to the pathophysiology of RA, or whether its activation occurs rather as a consequence of the initiation
of synovial inflammatory processes.

To better understand the pathophysiological role of NLRP3 in RA, several investigations have
been performed in animal models of arthritis. Wei et al. [113] showed that IL-18-/- mice were less
susceptible to develop collagen-induced arthritis (CIA), as compared with wild-type animals, thus
indicating a role of the pro-inflammatory cytokine IL-18 in the pathophysiology of RA. Guo et al. [9]
observed an increased protein expression of NLRP3 and active caspase-1, along with an increment
of IL-1β levels in the knee joint synovia and sera from CIA animals. In addition, they reported that
the pharmacological blockade of NLRP3 with the selective inhibitor MCC950, through a decrease
in the production of IL-1β, attenuated disease severity counteracting joint inflammation and bone
destruction, thus suggesting that NLRP3-induced IL-1β release contributes to shaping and sustaining
the immune/inflammatory processes in RA, and, most importantly, that inflammasome could represent
a suitable pharmacological target for the management of RA [9].

However, there is very limited evidence that a natural compound targeting NLRP3 inflammasome
can exert anti-inflammatory effects on experimental arthritis. Yang et al. [50] observed that oral
administration of quercetin attenuated arthritic scores and paw edema decreased the joint levels of
TNF, IL-6, PGE2, COX-2, iNOS, and Th17 cells and increased the number of Treg cells in mice with
collagen-induced arthritis, through the inhibition of NLRP3 inflammasome activation. In particular,
the authors found that quercetin inhibited the upstream signaling of NLRP3 activation via activation of
anti-oxidant Nrf2/HO-1 signaling. As a confirmation, the application of HO-1 siRNA to fibroblast-like
synoviocytes abolished the inhibitory effects of quercetin on NLRP3 activation [50].

3.3.3. Gout

Gout is a chronic inflammatory arthritis characterized by an increase in urate concentrations and
deposition of monosodium urate (MSU) crystals in joints [114,115]. In this context, increasing evidence
supports the contention that NLRP3 inflammasome activation and the consequent massive release of
IL-1β and IL-18 following MSU deposition promote mast cell, monocyte, and neutrophil influx into
the synovium and joint fluids, thus contributing to the pathophysiology of gout [116–118]. In support
of this view, several studies have shown that MSU crystals activated NLRP3 assembly in PBMCs from
gout patients [119]. In addition, clinical trials have observed that the blockade of NLRP3 downstream
signaling with IL-1 inhibitors, including rilonacept, canakinumab, and anakinra counteracted joint
inflammation and attenuated the disease severity in patients with acute and chronic gout [120–123].
However, no clinical studies are available about the effects of direct blockade of IL-18 or its receptor
in gout.
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Of interest, the implementation of gouty arthritis animal models has allowed to better clarify
the pathophysiological role of NLRP3 in gout. In particular, Nomura et al. [124] observed that
NLRP3-/- mice were less susceptible to the development of MSU-induced inflammation [105].
Likewise, Martinon et al. [125] showed that MSU-induced gouty arthritis mice with gene deletion
of inflammasome components, including caspase-1, ASC, and NLRP3, displayed a decrease in joint
inflammation and neutrophil influx.

Several lines of evidence have shown that various NLRP3-targeting natural compounds can exert
anti-inflammatory effects on MSU-induced gouty arthritis. Liu et al. [51] reported that administration of
procyanidins, grape seed-derived natural flavonoids, attenuated the ankle circumference increase and
joint inflammation in mice with acute MSU-induced gouty arthritis, through the inhibition of oxidative
stress-induced upstream signaling of NLRP3 activation. Likewise, Jhang et al. [52] observed that
epigallocatechin gallate, a bioactive polyphenol from green tea endowed with antioxidant activities,
attenuated peritoneal inflammation in MSU animals via a blockade of TXNIP/NLRP3 interaction. In
this study, epigallocatechin gallate decreased peritoneal neutrophil infiltration as well as the levels of
neutrophil cytosolic factor 1, IL-6, IL-1β, monocyte chemoattractant protein-1 (MCP-1) in peritoneal
lavage fluid, and amyloid A levels in serum, thus suggesting that NLRP3 blockade could represent a
viable pharmacological strategy for the management of peritoneal inflammation associated with gout.

A pioneering study by Misawa et al. [53] showed that resveratrol administration to MSU mice
exerted anti-inflammatory effects through the blockade of NLRP3 inflammasome assembly by reducing
acetylated α-tubulin-induced mitochondrial damage. In particular, resveratrol, through the decrease in
α-tubulin acetylation, prevented the optimal spatial conformation of NLRP3 and ASC, thus inhibiting
inflammasome oligomerization and activation. These results show, for the first time, a novel mechanism
of inhibition of upstream NLRP3 signaling by natural compounds.

Several studies have reported that different flavonoids exerted anti-inflammatory effects on
experimental gout arthritis through the inhibition of both steps of NLRP3 activation. Trans-chalcone
(1,3-diphenyl-2-propen-1-one), an open-chain flavonoid, attenuated knee joint inflammation and pain
in MSU mice, via activation of antioxidative Nrf2/HO-1 pathway and inhibition of NF-κB/NLRP3
signaling [54]. Likewise, the administration of morin, a dietary bioflavonol, ameliorated ankle swelling,
synovial hyperplasia, inflammatory cell infiltration, and cartilage degeneration as well as ankle levels
of monocyte chemoattractant protein (MCP-1), iNOS, COX-2, and TNF, and IL-6 and IL-1β in rats with
MSU-induced acute gouty arthritis, through the inhibition of NLRP3 activation by both increasing
the activity of anti-oxidative enzymes, such as catalase (CAT) and SOD, and suppressing the NF-κB
transcription step [55].

In further support of the above observations, a pioneering study by Doss et al. [56] showed
that the intraperitoneal administration of ferulic acid, a phenolic phytochemical endowed with
antioxidant, antihyperlipidemic, hypotensive, antimicrobial, anticarcinogenic, anti-inflammatory, and
hepatoprotective activities, attenuated paw edema, elastase levels, lysosomal enzymes, inflammatory
cell infiltration, and TNF and IL-1β levels in ankle joints in MSU rats. Such anti-inflammatory effects
were ascribed to the ability of ferulic acid to inhibit directly both steps of NLRP3 activation. Indeed,
the molecular docking analysis showed that ferulic acid displayed significant ligand efficiency towards
pro-caspase-1, NF-κB, ASC, and NLRP3. These findings provide the first demonstration of direct
molecular interactions between a phenolic phytochemical and NLRP3 inflammasome signaling, thus
paving the way to the identification of novel phenolic compounds acting directly on NF-κB and NLRP3
components for the treatment of gouty arthritis.

One study has shown that sulforaphane (1-isothiocyanato-4-methylsulfinylbutane), a natural
dietary isothiocyanate derivative, abundant in cruciferous vegetables, exerted anti-inflammatory
effects on gouty arthritis via direct inhibition of NLRP3 inflammasome signaling [57]. Indeed,
the oral administration of sulforaphane dose-dependently attenuated foot swelling and neutrophil
recruitment while decreasing foot Il-1β levels and caspase-1 activity in animals with acute gout
induced by MSU and air pouch. In vitro experiments indicated that sulforaphane suppressed MSU,

74



Int. J. Mol. Sci. 2019, 20, 2876

ATP, and nigericin-induced NLRP3 inflammasome activation in bone-marrow-derived macrophages
(BMDMs) [57], thus suggesting that sulforaphane could represent a promising phytochemical entity
for prevention or treatment of gouty inflammation.

4. Discussion

Current data from human studies suggest that NLRP3 inflammasome activation represents a
common path to a variety of diseases, including neurological, psychiatric, metabolic, and chronic
inflammatory disorders. Indeed, even though each disease displays distinct clinical, pathological,
and genetic features, patients with PD, AD, MS, ALS, depression, obesity, diabetes, IBD, RA, and
gout are characterized by an overactivation of the inflammasome signaling that contributes to central
neuroinflammation, metabolic alterations, and immune/inflammatory responses in such disorders.
However, human studies do not provide a clear causal relationship of NLRP3 activation with CNS,
metabolic, or inflammatory diseases.

The development of experimental models of neurological and psychiatric diseases, metabolic
disorders, and chronic inflammatory diseases has allowed us to better understand the
pathophysiological role of NLRP3 in these pathological conditions. Indeed, even though each
experimental model displays distinct pathophysiological features, NLRP3 activation has been shown
to contribute to central neuroinflammation, metabolic dysfunctions, and immune/inflammatory
responses. In support of this view, gene depletion of inflammasome components or in vivo NLRP3
modulation with drugs acting at different levels of the inflammasome cascade in animal models have
been found to counteract the progression of central neuroinflammation, metabolic alterations, and
immune/inflammatory responses.

Based on the above considerations, and pooling together the available human and pre-clinical
evidence, it is conceivable that the NLRP3 inflammasome complex represents a pivotal node for
immune sensing in the innate immune system and that its activation in CNS, metabolic, and chronic
inflammatory disorders contributes to shape the immune/inflammatory responses as well as to
sustain the pathophysiological events underlying these diseases. In addition, NLRP3 activation has
been shown to promote the adaptive immune responses, influencing the differentiation of T cells to
pro-inflammatory Th17 phenotypes, thus suggesting that NLRP3 is not only one of the early immune
sensors for innate immune response, but also for shaping of adaptive immune signals. Nevertheless,
the exact role of NLRP3 in the pathophysiology of CNS, metabolic, and inflammatory disorders
remains to be elucidated, with particular regard for the molecular mechanisms through which NLRP3
inflammasome can influence the adaptive immune system. Moreover, the majority of current human
and pre-clinical studies have focused their attention on the role of canonical NLRP3 inflammasome
activation, thus disregarding the evaluation of possible contributions by non-canonical caspase-8 and
caspase-11-dependent NLRP3 activation pathways. This is a point of high interest, since an involvement
of non-canonical caspase-8- and caspase-11-dependent inflammasome activation in the onset and
progression of demyielinization and bowel inflammation, respectively, has been documented only in
the setting of experimental MS and colitis. In addition, the role of other inflammasomes, including
NLRP6, NLRP1, AIM2, and NLRC4, in the pathophysiology of CNS, metabolic, and inflammatory
disorders remains unclear and poorly investigated [126–128]. Accordingly, there is a strong need for
further studies aimed at characterizing the role of non-canonical NLRP3 inflammasome pathways and
other inflammasomes in the pathophysiology of CNS, metabolic, and inflammatory diseases.

Another crucial issue concerns the rick of adverse reactions following full inhibition of NLRP3,
such as cancer observed in NLRP3-/- mice [129]. Several lines of evidence have shown that NLRP3-/-
mice are more prone to develop colorectal cancer induced by azoxymethane/DSS, suggesting a
protective role of NLRP3 inflammasome in tumorigenesis [130]. Conversely, others reported that
NLRP3 inflammasome activation and the consequent release of IL-1β and IL-18 promoted tumor
growth, proliferation, invasion, and metastasis in lung cancer, melanoma, breast cancer, and head and
neck squamous cell carcinoma [129]. These findings suggest that NLRP3 inflammasome can play both
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protective and detrimental roles in tumors, likely depending on the tissue context. Therefore, further
studies are needed to clarify the role of NLRP3 inflammasome in tumorigenesis, and to characterize
the putative detrimental/protective effects associated with pharmacological agents acting as NLRP3
inflammasome inhibitors.

Of note, despite several issues about the role of NLRP3 in the pathophysiology of CNS, metabolic,
and inflammatory diseases that still need to be addressed, the beneficial effects resulting from
NLRP3 modulation by phytochemicals in various experimental models allow us to postulate that the
inhibition of NLRP3 with natural compounds could represent a viable pharmacological approach for
the management of a variety of diseases. In this respect, current evidence shows that a number of
polyphenols (i.e., flavonoids, stilbenoids, and phenols), triterpenoids, isothiocyanates, and carotenoids,
acting on different steps of canonical or non-canonical NLRP3 inflammasome activation signaling,
can counteract central neuroinflammation and neurodegeneration, metabolic alterations and related
comorbidities, and immune/inflammatory responses in animal models of CNS, metabolic, and
inflammatory diseases. However, in this area, a number of issues remain to be clarified: (1) What
are the exact mechanisms through which 2ccPA and hydroxytyrosol inhibit NLRP3 activation in
MS and AD, respectively? (2) What are the molecular mechanisms underlying NLRP3 inhibition
by sulforaphane in gout? (3) How do some polyphenols block both canonical and non-canonical
NLRP3 assembly? (4) Can phytochemicals targeting both canonical and non-canonical inflammasome
activation be regarded as the most reliable pharmacological approaches for the management of CNS,
metabolic, and inflammatory diseases? (5) Can a dietary supplementation with phytochemicals
prevent or counteract neuroinflammatory and neurodegenerative processes, metabolic alterations, and
immune/inflammatory responses? (6) Can phytochemicals exert beneficial effects in CNS, metabolic,
and inflammatory diseases through the inhibition of other inflammasomes, including NRLP1, NLRP6,
AIM2, and NLRC4? To clarify these points, intensive research efforts should be addressed to investigate,
by means of molecular, biochemical, and pharmacological approaches, the effects of phytochemicals
targeting NLRP3 inflammasome pathways and other inflammasomes in in vitro experiments on
cultured cells and different experimental models.

5. Conclusions and Future Perspectives

Current pre-clinical studies show that several phytochemical compounds can exert beneficial
effects in CNS, metabolic, and inflammatory disorders through different modes of inhibition of
NLRP3 inflammasome activation. In particular, polyphenols (i.e., flavonoids, stilbenoids, and
phenols), triterpenoids, isothiocyanates, and carotenoids, acting on different steps of inflammasome
activation, have been found to counteract central neuroinflammation and neurodegeneration, metabolic
alterations, and immune/inflammatory responses in various experimental models. The main molecular
mechanisms underlying NLRP3 blockade by phytochemicals have been ascribed to their ability of:
(1) Inhibiting upstream NLRP3 activation by suppression of ROS generation; (2) directly blocking
NF-kB-mediated transcription steps and/or NLRP3 oligomerization; (3) activating anti-inflammatory
pathways, including AMPK/SIRT1/PGC-1α, that, in turn, could increase the expression of several
ROS-detoxifying enzymes and inhibit directly NLRP3 assembly.

Based on this body of evidence, it can be proposed that phytochemicals acting at different steps
of NLRP3 signaling could represent suitable pharmacological approaches for the management of a
variety of diseases sharing the presence of chronic and persistent inflammatory conditions.

One considerable gap in our knowledge concerns whether these natural compounds can also
interfere with non-canonical caspase-8 and/or caspase-11-dependent NLRP3 inflammasome activations.
Another relevant issue stems from the lack of translational evidence about the effects of phytochemicals
targeting NLRP3 in patients with CNS, metabolic, or inflammatory diseases. Despite some clinical
trials that have shown the beneficial effects of phytochemicals in patients with CNS, metabolic, and
inflammatory disorders, no evidence is currently available about the effects of natural compounds
targeting NLRP3 in humans. In this respect, a translation of preclinical evidence into clinical practice
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could allow a better understanding of the protective effects of phytochemicals acting on NLRP3 in
patients with CNS, metabolic, and inflammatory disorders. Unraveling these aspects could pave the
way to novel therapeutic options for both the prevention and clinical management of neurological,
psychiatric, metabolic, and inflammatory diseases.
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Abbreviations

α-syn α-synuclein
Aβ β amyloid
AD Alzheimer’s disease
ALS amyotrophic lateral sclerosis
AMPK 5′ adenosine monophosphate-activated protein kinase
AOM azoxymethane
ASC adaptor protein
ATP adenosine triphosphate
CAPS cryopyrin-associated autoinflammatory syndromes
CAT catalase
DAMPs damage-associated molecular pattern molecules
Drp-1 dynamin related protein-1
DSS dextran sulphate sodium
ER endoplasmic reticulum
FADD FAS-associated death domain protein
HFD high fat diet
IKb IkappaB kinase
IRE1 Inositol-requiring enzyme 1
HMGB1 high mobility group box 1
HO-1 heme oxygenase 1
ip intraperitoneal
IRF interferon regulatory factor
IFN interferon
IFNAR interferon-α/β receptor
IL interleukin
JAK/ STAT janus kinase/signal transducers and activators of transcription
JNK JunNH2-terminal kinase
MLKL mixed lineage kinase domain-like protein
MALT1 mucosa-associated lymphoid tissue lymphoma translocation protein 1
MAPK mitogen-activated protein kinase
MDD major depressive disorder
MPTP l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine
MS multiple sclerosis
MSU monosodium urate
MyD88 myeloid differentiation primary response 88
NF-kB nuclear factor kB
NLR nucleotide-binding domain and leucine-rich repeat
NLRP3 nucleotide-binding oligomerization domain leucine rich repeat and pyrin

domain-containing protein 3
NOD1/2 nucleotide-binding oligomerization domain-containing protein 1/2
NRF2/ARE nuclear factor (erythroid-derived 2)-like 2/antioxidant response element
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P2X purinergic receptor 7
PAMPs pathogen-associated molecular pattern molecules
PD Parkinson’s disease
PGC-1α peroxisome proliferator-activated receptor-gamma coactivator-1alpha
p.o. oral
PPARγ peroxisome proliferator-activated receptor gamma
PYRIN amino-terminal pyrin domain domain
RIP1 receptor-interacting protein 1
ROS reactive oxygen species
s.c. subcutaneous
Sirt1 sirtuin1
SOD superoxide dismutase
STAT3 Signal transducer and activator of transcription 3
TLR toll like receptor
TNBS 2,4,6-trinitrobenzenesulfonic acid
TNFR tumor necrosis factor receptor
TRIF toll/IL-1 receptor homology (TIR)-domain-containing adapter-inducing interferon-β
TXNIP thioredoxin-interacting protein
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Abstract: Skullcapflavone II is a flavonoid derived from the root of Scutellaria baicalensis, a
herbal medicine used for anti-inflammatory and anti-cancer therapies. We analyzed the effect
of skullcapflavone II on the expression of matrix metalloproteinase-1 (MMP-1) and integrity of
type I collagen in foreskin fibroblasts. Skullcapflavone II did not affect the secretion of type I
collagen but reduced the secretion of MMP-1 in a dose- and time-dependent manner. Real-time
reverse transcription-PCR and reporter gene assays showed that skullcapflavone II reduced MMP-1
expression at the transcriptional level. Skullcapflavone II inhibited the serum-induced activation
of the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling
pathways required for MMP-1 transactivation. Skullcapflavone II also reduced tumor necrosis factor
(TNF)-α-induced nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activation
and subsequent MMP-1 expression. In three-dimensional culture of fibroblasts, skullcapflavone II
down-regulated TNF-α-induced MMP-1 secretion and reduced breakdown of type I collagen. These
results indicate that skullcapflavone II is a novel biomolecule that down-regulates MMP-1 expression
in foreskin fibroblasts and therefore could be useful in therapies for maintaining the integrity of
extracellular matrix.

Keywords: extracellular matrix; fibroblast; inflammation; MMP-1; skullcapflavone II; type I collagen

1. Introduction

Skullcapflavone II, a naturally occurring flavonoid compound with a polyphenolic structure
also known as neobaicalein, is derived from the roots of Scutellaria baicalensis, S. litwinowii, and
S. pinnatifida [1–3]. Biological functions attributed to skullcapflavone II include reducing inflammation,
inhibiting osteoclastogenesis, decreasing cell growth, inducing apoptosis, and down-regulating
cholesterol [2,4–7]. Skullcapflavone II inhibits ovalbumin-induced airway inflammation via a decrease
in transforming growth factor-β1 expression and subsequent decrease in SMAD2/3 activation [4].
Skullcapflavone II inhibits osteoclastogenesis with reduced activation of mitogen-activated protein
kinases (MAPKs), Src, and cyclic adenosine monophosphate (cAMP) response element binding
protein, and attenuates the survival and bone resorption function of osteoclasts via down-regulation
of integrin signaling [5]. Skullcapflavone II inhibits cell proliferation in a variety of cancer cell lines,
including LNCaP, PC-3, and HeLa [2,6]. In addition, skullcapflavone II reportedly inhibits the mRNA
expression of proprotein convertase subtilisin/kexin type 9, which prevents the recycling of endocytosed
low-density-lipoprotein receptors (LDLRs) to the cell surface, thereby increasing cell-surface LDLR
levels and lowering plasma cholesterol levels [7].
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Collagen is the primary structural protein in extracellular spaces in mammals and functions to
strengthen and support various connective tissues, such as tendons, ligaments, bones, and skin [8,9].
The collagen family contain at least one triple-helical domain consisting of three α-chains with a
repeating amino acid sequence (Gly-X-Y)n [10]. A total of 28 types of collagen identified in humans
can be divided into subfamilies based on their supramolecular assemblies; fibrils, beaded filaments,
anchoring fibrils, and networks [11,12].

Collagen is degraded during various normal physiological processes involving tissue remodeling,
such as organ morphogenesis, wound healing, and skin aging. In addition, collagen is degraded during
numerous pathological conditions, such as inflammation, arthritis, atherosclerotic cardiovascular
disease, and tumorigenesis [10,11]. Matrix metalloproteinases (MMPs) are zinc-dependent
endopeptidases that play a major role in tissue remodeling processes by cleaving extracellular
matrix components, including collagen [13,14]. MMP-1 cleaves the triple helix of fibril-forming
collagens, including types I, II, and III; in type I collagen, it cleaves at Gly775↓Ile776 of the α1 chain and
Gly775↓Leu776 of the α2 chain to generate 3/4- and 1/4-length fragments [15].

Collagen is also frequently degraded in inflammation lesions. In inflamed acne lesions, for
example, collagen degradation is increased as a result of up-regulation of inflammatory cytokine and
MMP expression [16]. Among the various collagen types, type I accounts for over 90% of all collagens
in the human body [9] and is highly expressed in fibroblasts [17]. In addition, MMP-1 is expressed
in unstimulated fibroblasts and is upregulated by inflammation [18,19]. Because skullcapflavone II
exhibits anti-inflammatory activity, we investigated the effect of skullcapflavone II on the expression
of MMP-1 and the integrity of type I collagen in fibroblasts. Specifically, we examined whether
skullcapflavone II affects the production of type I collagen or MMP-1-mediated degradation of type I
collagen. In addition, we analyzed the signaling pathways involved in skullcapflavone II-mediated
suppression of MMP-1 expression. Finally, using three-dimensional (3D) culture of fibroblasts, we
examined the effect of skullcapflavone II on breakdown of type I collagen.

2. Results

2.1. Skullcapflavone II Decreased MMP-1 Expression in Foreskin Fibroblasts

We investigated the effect of skullcapflavone II (Figure S1) on the secretion of MMP-1 and type I
collagen in primary human foreskin fibroblasts and primary human buttock dermal fibroblasts. It was
reported that human fibroblasts secrete MMP-1 as a pro-form; mostly unglycosylated (52 kDa) and
partly glycosylated (57 kDa) [20]. We detected a major band of MMP-1 at 52 kDa in foreskin fibroblasts
and buttock dermal fibroblasts (Figure 1A), suggesting that it should be proMMP-1. Skullcapflavone
II significantly decreased the secretion of MMP-1 in a dose-dependent manner in both cell types but
did not significantly affect the secretion of type I collagen (Figure 1A). Compared with untreated
cells, foreskin fibroblasts secreted significantly lower amounts of MMP-1 in the presence of 3 µM
skullcapflavone II, with the effect decreasing by 24 h in serum-free Dulbecco’s Modified Eagle’s
Medium (DMEM) and by 48 h in DMEM supplemented with 3% fetal bovine serum (FBS) (Figure 1B).

To examine whether the reduction in MMP-1 secretion by cells treated with skullcapflavone II was
associated with a decrease in cell proliferation, we monitored the growth of skullcapflavone II-treated
foreskin fibroblasts using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. Cell growth was unaffected by skullcapflavone II at concentrations up to 3 µM but slightly
decreased at a concentration of 10 µM (up to 15% decrease in growth at 2 days) (Figure 2A). Flow
cytometry analyses indicated that the decrease in the growth of foreskin fibroblasts in the presence of
10 µM skullcapflavone II was not due to cytotoxic effects (Figure 2B). For subsequent experiments,
therefore, we used 3 µM skullcapflavone II, a concentration that had no effect on cell growth.
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Figure 1. Effect of skullcapflavone II on expression of matrix metalloproteinase-1 (MMP-1) and type 

I collagen in fibroblasts. (A) Primary human foreskin fibroblasts and primary human buttock skin 

fibroblasts were incubated for 24 h in serum-free Dulbecco's Modified Eagle's Medium (DMEM) with 

the indicated concentrations of skullcapflavone II. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the sample 

incubated with 0 μM skullcapflavone II; n.s., not significant. (B) Foreskin fibroblasts were incubated 

for the indicated times in serum-free DMEM or DMEM containing 3% fetal bovine serum (FBS) with 

(+) or without (−) 3 μM skullcapflavone II. Conditioned medium and cell lysates were analyzed by 

9% SDS-PAGE and Western blot with anti-MMP-1, anti-pN-ColIα1, and anti-glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) antibodies. * p < 0.05 and ** p < 0.01 vs. the sample incubated 

without skullcapflavone II. 

Figure 1. Effect of skullcapflavone II on expression of matrix metalloproteinase-1 (MMP-1) and type
I collagen in fibroblasts. (A) Primary human foreskin fibroblasts and primary human buttock skin
fibroblasts were incubated for 24 h in serum-free Dulbecco’s Modified Eagle’s Medium (DMEM) with
the indicated concentrations of skullcapflavone II. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the sample
incubated with 0 µM skullcapflavone II; n.s., not significant. (B) Foreskin fibroblasts were incubated for
the indicated times in serum-free DMEM or DMEM containing 3% fetal bovine serum (FBS) with (+)
or without (−) 3 µM skullcapflavone II. Conditioned medium and cell lysates were analyzed by 9%
SDS-PAGE and Western blot with anti-MMP-1, anti-pN-ColIα1, and anti-glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) antibodies. * p < 0.05 and ** p < 0.01 vs. the sample incubated without
skullcapflavone II.
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Figure 2. Effect of skullcapflavone II on proliferation and cytotoxicity of foreskin fibroblasts. Sub-

confluent foreskin fibroblasts were plated in DMEM containing 10% FBS and incubated with 

indicated concentrations of skullcapflavone II. (A) The number of viable cells was measured based on 

the absorbance at a wavelength of 565 nm using 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) reagent. The number of viable cells in the presence of skullcapflavone II is shown as 

fold change relative to that in the absence of skullcapflavone II. ** p < 0.01 vs. the sample incubated 

with 0 μM skullcapflavone II. (B) After 24 h of incubation with skullcapflavone II, apoptotic cells were 

stained with fluorescein isothiocyanate (FITC) annexin V and 7-aminoactinomycin (7-AAD) and then 

analyzed by flow cytometry. 

2.2. Skullcapflavone II Decreased Transcription of the MMP-1 Gene in Foreskin Fibroblasts 

To determine whether the observed skullcapflavone II-mediated inhibition of MMP-1 secretion 

was due to suppression of MMP-1 transcription, we performed real-time RT-PCR and reporter gene 

assays using foreskin fibroblasts. Consistent with MMP-1 protein levels, MMP-1 mRNA levels 

declined in a dose-dependent manner in cells treated with skullcapflavone II (Figure 3A). From the 

reference curve generated by serial dilution of MMP-1 cDNA, the MMP-1 mRNA molecules per cell 

Figure 2. Effect of skullcapflavone II on proliferation and cytotoxicity of foreskin fibroblasts.
Sub-confluent foreskin fibroblasts were plated in DMEM containing 10% FBS and incubated with
indicated concentrations of skullcapflavone II. (A) The number of viable cells was measured based on
the absorbance at a wavelength of 565 nm using 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) reagent. The number of viable cells in the presence of skullcapflavone II is shown as
fold change relative to that in the absence of skullcapflavone II. ** p < 0.01 vs. the sample incubated
with 0 µM skullcapflavone II. (B) After 24 h of incubation with skullcapflavone II, apoptotic cells were
stained with fluorescein isothiocyanate (FITC) annexin V and 7-aminoactinomycin (7-AAD) and then
analyzed by flow cytometry.

2.2. Skullcapflavone II Decreased Transcription of the MMP-1 Gene in Foreskin Fibroblasts

To determine whether the observed skullcapflavone II-mediated inhibition of MMP-1 secretion
was due to suppression of MMP-1 transcription, we performed real-time RT-PCR and reporter gene
assays using foreskin fibroblasts. Consistent with MMP-1 protein levels, MMP-1 mRNA levels declined
in a dose-dependent manner in cells treated with skullcapflavone II (Figure 3A). From the reference
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curve generated by serial dilution of MMP-1 cDNA, the MMP-1 mRNA molecules per cell were
estimated to be 40.0 at 0 uM skullcapflavone II and 27.2 at 10 uM skullcapflavone II. Treatment with
skullcapflavone II also reduced luciferase activity driven by the MMP-1 promoter to 70% of the control
(Figure 3B). These data demonstrate that skullcapflavone II inhibits expression of the MMP-1 gene at
the transcription level.
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Figure 3. Effect of skullcapflavone II on MMP-1 transcription in foreskin fibroblasts. (A) MMP-1 mRNA
levels in DMSO- or skullcapflavone II-treated foreskin fibroblasts were determined using real-time
RT-PCR. * p < 0.05 vs. the sample incubated with 0 µM skullcapflavone II. (B) Foreskin fibroblasts were
transiently co-transfected with pGL3-MMP-1 promoter and pRL-TK as a transfection control. Cells
were treated overnight with 3 µM skullcapflavone II. Luciferase activity was determined as the ratio of
firefly/Renilla luciferase activity. The activity of the MMP-1 promoter in the presence of skullcapflavone
II relative to that in the absence of skullcapflavone II is shown. *p < 0.05 vs. the sample incubated with
0 µM skullcapflavone II.

2.3. Skullcapflavone II Inhibited MMP-1 Expression by Blocking the Activation of Activator Protein-1 (AP-1)

MMP-1 gene expression is positively regulated by the activation of extracellular signal-regulated
kinase (ERK), c-Jun N-terminal kinase (JNK), p38 MAPK, and nuclear factor kappa light chain enhancer
of activated B cells (NF-κB) signaling pathways [21,22]. To investigate how skullcapflavone II suppresses
MMP-1 transactivation, phosphorylation of various signaling proteins was analyzed in foreskin
fibroblasts incubated with and without skullcapflavone II. Serum-induced tyrosine phosphorylation
of cellular proteins was significantly decreased in a dose-dependent manner in cells treated with
skullcapflavone II (Figure 4A). The presence of FBS strongly enhanced the phosphorylation of ERK1/2,
moderately enhanced the phosphorylation of JNK, and weakly enhanced the phosphorylation of p38
MAPK (Figure 4B). Treatment with skullcapflavone II reduced the serum-induced phosphorylation
of ERK1/2 and JNK in a dose-dependent manner but had no effect on the phosphorylation of p38
MAPK (Figure 4B). Phosphorylation of NF-κB p65 was not affected by the presence of FBS and did not
decrease in the presence of skullcapflavone II. In addition, skullcapflavone II significantly decreased the
serum-enhanced phosphorylation of c-Jun (Figure 4C). These findings demonstrate that skullcapflavone
II down-regulates MMP-1 expression by reducing activation of the ERK and JNK pathways and thus
activation of the transcription factor AP-1, which plays an important role in MMP-1 transactivation.
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Figure 4. Effect of skullcapflavone II on phosphorylation of signaling molecules in foreskin fibroblasts.
Sub-confluent foreskin fibroblasts were starved for 24 h. (A,B) Cells were pre-incubated for 30 min
with indicated concentrations of skullcapflavone II and then stimulated for 10 min with 10% FBS.
Cell lysates were subjected to 9% SDS-PAGE and Western blot analysis with anti-phosphotyrosine
(4G10) (A), anti-phospho-extracellular signal-regulated kinase (ERK), anti-phospho-c-Jun N-terminal
kinase (JNK), anti-phospho-p38 mitogen-activated protein kinases (MAPK), and anti-phospho-nuclear
factor kappa light chain enhancer of activated B cells (NF-κB) p65 antibodies (B). (C) Cells were
pre-incubated for 30 min with (+) or without (−) 3 µM skullcapflavone II, and then FBS was added to a
final concentration of 10% and incubated for 30 min. Cell lysates were analyzed by Western blotting
with anti-phospho-c-Jun and anti-c-Jun antibodies. * p < 0.05, ** p < 0.01, and ***p < 0.001 vs. the
sample incubated with 10% FBS alone.

2.4. Skullcapflavone II Inhibited Tumor Necrosis Factor (TNF)-α-Induced MMP-1 Expression by Blocking
Activation of NF-κB

The pro-inflammatory cytokine TNF-α up-regulates MMP-1 expression in diverse cell types,
including dermal fibroblasts [23–25]. As expected, stimulation of foreskin fibroblasts with TNF-α
significantly up-regulated MMP-1 secretion (Figure 5A). Treatment with skullcapflavone II decreased
MMP-1 expression induced by TNF-α. However, consistent with the effect of serum stimulation,
skullcapflavone II treatment did not affect the secretion of type I collagen in TNF-α-treated cells
(Figure 5A).

Since TNF-α is known to activate NF-κB signaling [26], we investigated whether skullcapflavone II
suppresses NF-κB activation for the down-regulation of MMP-1. Treatment with skullcapflavone II also
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reduced the TNF-α-induced phosphorylation of NF-κB p65 (Figure. 5B). Although stimulation of cells
with TNF-α in serum-free medium for 24 h did not lead to a significant increase in phosphorylation
of ERK1/2 and JNK, skullcapflavone II reduced the phosphorylation of ERK1/2 with or without
TNF-α stimulation (Figure 5B). Moreover, phosphorylation of ERK1/2 and JNK was increased by
stimulation with TNF-α for 10 min in serum-free medium but significantly decreased by treatment
with skullcapflavone II (Figure S2). These findings suggest that skullcapflavone II down-regulates
TNF-α-induced MMP-1 expression by reducing the activation of NF-κB and AP-1.
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Figure 5. Effect of skullcapflavone II on tumor necrosis factor (TNF)-α-induced MMP-1 expression
in foreskin fibroblasts. Foreskin fibroblasts were incubated for 24 h in a serum-free medium with
(+) or without (-) 3 µM skullcapflavone II and with (+) or without (−) 1 ng/mL TNF-α. (A) The
serum-free conditioned medium and cell lysates were analyzed by 9% SDS-PAGE and Western blot
with anti-MMP-1, anti-pN-ColIα1, and anti-GAPDH antibodies. (B) Cell lysates were analyzed by
Western blotting using the indicated antibodies. ** p < 0.01 and *** p < 0.001 vs. the sample incubated
with TNF-α alone; † p < 0.05 vs. the sample incubated without TNF-α and without skullcapflavone II;
n.s., not significant.

2.5. Skullcapflavone II Decreased the Breakdown of Type I Collagen in 3D Culture of Foreskin Fibroblasts

MMP-1 is a central enzyme involved in the degradation of type I collagen. Since proMMP-1
secreted from fibroblasts in 2D culture is not activated into mature active form (Figure 1A), it is
difficult to detect cleavage of type I collagen by MMP-1 in the medium. We therefore examined
whether skullcapflavone II affects the degradation of type I collagen by down-regulating MMP-1
expression using 3D culture of foreskin fibroblasts. Consistent with two-dimensional culture conditions,
skullcapflavone II down-regulated the TNF-α-induced secretion of MMP-1 in 3D culture (Figure 6A).
Experiments using collagen type I cleavage-site antibody revealed that TNF-α stimulation increased
the generation of cleaved 3/4 fragments of type I collagen. Interestingly, treatment with skullcapflavone
II significantly decreased the amount of cleaved 3/4 fragments of type I collagen in 3D culture of
foreskin fibroblasts (Figure 6B). These data demonstrate that skullcapflavone II inhibits collagenolysis
via down-regulation of MMP-1 expression.
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Figure 6. Effect of skullcapflavone II on TNF-α-induced type I collagen degradation in 3D culture of
foreskin fibroblasts. Foreskin fibroblasts were embedded within a 3D type I collagen matrix. After
polymerization for 1 h at 37 ◦C, cells embedded in the collagen matrix were incubated for 24 h in
serum-free DMEM with (+) or without (-) 3 µM skullcapflavone II and with (+) or without (−) 1 ng/mL
TNF-α. (A) The conditioned medium in the 3D culture was analyzed by 9% SDS-PAGE and Western
blot with anti-MMP-1 antibody. *** p < 0.001 vs. the sample incubated with TNF-α alone; † p < 0.05 vs.
the sample incubated without TNF-α and without skullcapflavone II (B) The 3D matrix containing
foreskin fibroblasts was stained with anti-type I collagen cleavage-site antibody and Alexa Fluor®

488 goat anti-rabbit IgG (H+L), phalloidin–rhodamine and Hoechst 33258, and cells were analyzed
by confocal fluorescence microscopy (200×). Scale bar, 50 µm. The quantification of cleaved type I
collagen (Alexa Fluor®488) relative to nuclear staining (Hoechst 33258) obtained from six randomly
chosen fields is shown as the mean ± S.D. *** p < 0.001 vs. the sample incubated with TNF-α alone.

3. Discussion

Roots of Scutellaria baicalensis, S. litwinowii, and S. pinnatifida are used as herbal medicines
due to their anti-tumorigenic, anti-fibrotic, anti-inflammatory, and antioxidant effects [2–6,27,28].
Skullcapflavone II is one of the common components of Scutellaria roots, and it is considered a potential
therapeutic compound for use in treating cancer, allergic asthma, and bone diseases. In this study,
we examined whether skullcapflavone II regulates the expression of type I collagen and the enzyme
MMP-1, which degrades type I collagen in fibroblasts.
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We found that skullcapflavone II decreased the secretion of MMP-1 but had no effect on the
secretion of type I collagen by foreskin fibroblasts and buttock dermal fibroblasts. Skullcapflavone
II did not affect the proliferation of foreskin fibroblasts at concentrations up to 3 µM but inhibited
proliferation at a concentration of 10 µM. However, at a concentration of 10 µM, skullcapflavone II did
not induce apoptosis of foreskin fibroblasts. Our findings thus suggest that, at higher concentrations,
skullcapflavone II reduces not only the secretion of MMP-1 by fibroblasts but also their proliferation.

We found that skullcapflavone II inhibits the expression of MMP-1 at the transcriptional level.
Induction of MMP-1 transcription depends on activation of the transcription factors AP-1 and NF-κB.
The MMP-1 promoter has three AP-1 binding sites, at −70, −186, and −1602 bp [22,29], and an NF-κB
binding site at −2886 bp [30,31], upstream of the transcriptional start site. AP-1 is composed of the
polypeptides c-Jun and c-Fos. Activation of JNK subsequently leads to c-Jun phosphorylation, whereas
activation of ERK induces c-Fos transactivation [32,33]. In our study, serum (i.e., FBS) stimulation
induced tyrosine phosphorylation of cellular proteins and phosphorylation of ERK, JNK, p38, and
c-Jun. Skullcapflavone II treatment decreased the serum-induced phosphorylation of cellular proteins,
ERK, JNK, and c-Jun. These results demonstrate that skullcapflavone II reduces MMP-1 expression by
suppressing AP-1 activation under serum-induced conditions.

In addition to inducing MMP-1 expression, AP-1 also up-regulates cell proliferation [32,33]. It
is interesting to note that, in our experiments, skullcapflavone II reduced cell proliferation at higher
concentrations but did not induce apoptosis. As we demonstrated here that skullcapflavone II
suppresses the activation of AP-1, higher concentrations of skullcapflavone II could slow progression
of the cell cycle without causing cell death.

MMP-1 expression is known to be up-regulated by a variety of inflammatory cytokines and
growth factors, such as TNF-α, interleukins-1, -4, -5, -6, -8, and -10, fibroblast growth factors-1,
-2, -7, and -9, epidermal growth factor (EGF), and platelet-derived growth factor [34,35]. Dermal
fibroblasts are often subjected to inflammatory conditions associated with infections involving bacteria,
viruses, or fungi or as a result of ultraviolet or ionized radiation exposure. As expected, treatment of
fibroblasts with TNF-α to mimic an inflammatory state resulted in up-regulated secretion of MMP-1
and increased phosphorylation of NF-κB p65 as well as ERK1/2 and JNK. ERK and JNK were activated
following short-term stimulation with TNF-α, and activation of NF-κB p65 was sustained with
long-term TNF-α stimulation. Skullcapflavone II decreased TNF-α-induced MMP-1 secretion and also
decreased phosphorylation of NF-κB p65, ERK1/2, and JNK. These results suggest that skullcapflavone
II inhibits MMP-1 transactivation by suppressing both the AP-1 and NF-κB signaling pathways under
pro-inflammatory conditions.

Skullcapflavone II also reportedly has antioxidant activity [5]. Reactive oxygen species (ROS) such
as H2O2 and singlet oxygen (1O2) can activate NF-κB under a variety of circumstances [36–38]. For
example, ROS activate IκB kinase by phosphorylation of its subunits on serine and tyrosine residues of
the activation loops [39]. ROS also activate NF-κB through tyrosine phosphorylation of IκBα, without
its degradation [40]. In addition, ROS can activate AP-1 under a variety of physiological conditions such
as inflammation and tumorigenesis [41,42]. ROS activate protein tyrosine kinases by specific oxidation
of cysteine SH groups, inducing an activating conformational change in the enzymes [43,44]. Thus,
ROS induce autophosphorylation of receptor protein tyrosine kinases such as the EGF receptor [43]
and tyrosine phosphorylation of downstream signaling proteins such as Src [45], thus enhancing
activation of AP-1. We demonstrated that skullcapflavone II decreases cellular ROS generation (data
not shown) and suppresses the TNF-α-induced activation of NF-κB and serum-induced tyrosine
phosphorylation of cellular proteins and activation of ERK1/2 and JNK. Therefore, we hypothesized
that the decreased activation of NF-κB and AP-1 by skullcapflavone II is mediated, at least in part, by
its anti-oxidant activity.

Breakdown of collagen by MMP-1 is a critical process in the regulation of tissue remodeling,
development, and morphogenesis [12,46]. Fibroblasts grown in 2D culture secrete the pro-form of
MMP-1 which cannot cleave type I collagen. To characterize the effect of skullcapflavone II on the
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breakdown of type I collagen, we used an in vivo-mimicking 3D culture system of foreskin fibroblasts
with an anti-type I collagen cleavage site antibody that enables detection of cleaved 3/4 fragments of
type I collagen [47,48]. We found that skullcapflavone II decreased TNF-α-induced MMP-1 expression
and degradation of type I collagen in 3D culture of foreskin fibroblasts. Therefore, we assume that
proMMP-1 is at least partially processed into mature MMP-1 in a 3D culture system. Based on these
results, we believe that skullcapflavone II could be useful in therapies aimed at maintaining the integrity
of the extracellular matrix or for treating aging-induced and inflammation-related deterioration of the
extracellular matrix.

Some natural flavonoids, such as quercetin, kaempferol, wogonin, apigenin, and luteolin, have
also demonstrated efficacy at suppressing MMP-1 expression by reducing AP-1 activation [49,50].
However, relatively high concentrations (>10 µM) of these flavonoids are required to suppress MMP-1
expression in human dermal fibroblasts [49]. In our study, much lower concentrations (≤3 µM) of
skullcapflavone II were sufficient to significantly down-regulate the expression of MMP-1. In addition,
skullcapflavone II has methoxy (O–CH3) groups at positions 6, 7, and 8 of the A ring and the 6’-position
of the B ring, which is functionally important because it has been reported that polymethoxyflavones
pass through the cell membrane and are readily transported via the blood circulation [51,52]. Therefore,
we hypothesize that these O–CH3 groups play an important role in the greater bioavailability of
skullcapflavone II compared to other flavonoids.

In summary, this is the first study demonstrating the inhibitory effect of skullcapflavone II on the
expression of MMP-1 and degradation of type I collagen in foreskin fibroblasts (Figure 7). We propose
that skullcapflavone II would be a useful chemopreventive compound for treating physiological
conditions associated with up-regulation of MMP-1 and the loss of extracellular matrix integrity, such
as skin aging.
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4.1. Reagents and Antibodies 

Figure 7. A proposed model describing the role of skullcapflavone II in collagenolysis inhibition.
Growth factors in serum activate the transcription factor activator protein-1 (AP-1) through activation
of the ERK and JNK pathways. TNF-α activates the transcription factor NF-κB as well as AP-1.
Skullcapflavone II inhibits serum- and TNF-α-induced activation of AP-1 and NF-κB, which are
required for MMP-1 expression. Skullcapflavone II thus maintains the integrity of extracellular matrix
by suppressing MMP-1 expression.
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4. Materials and Methods

4.1. Reagents and Antibodies

Skullcapflavone II (5-hydroxy-2-[2-hydroxy-6-methoxyphenyl]-6,7,8-trimethoxychromen-4-one)
was purchased from ChemFaces (Wuhan, Hubei, China). Antibodies against phospho-ERK, ERK2, p38,
and NF-κB p65 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies
against phospho-NF-κB p65 (Ser536), phospho-JNK, JNK, phospho-p38, phospho-c-Jun, and c-Jun
were purchased from Cell Signaling Technology (Danvers, MA, USA). Anti-phospho-tyrosine antibody
(clone 4G10) was purchased from Millipore (Billerica, MA, USA). Anti-collagen type I cleavage-site
antibody was purchased from ImmunoGlobe (Himmelstadt, Germany). Anti-GAPDH antibody was
purchased from AbClone (Seoul, Korea). Horseradish peroxidase-conjugated goat anti-mouse IgG and
rabbit IgG were obtained from KOMA Biotech (Seoul, Korea). Anti-MMP-1 and pro-collagen α1(I)
N-propeptide (pN-ColIα1) antibodies were a gift from Dr. Chung, J. H. (Seoul National University
College of Medicine, Republic of Korea) [53]. Alexa Fluor® 488 goat anti-rabbit IgG (H+L) and
rhodamine-conjugated phalloidin were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

4.2. Cloning of the Human MMP-1 Promoter in a Reporter Plasmid

To generate a reporter construct of the human MMP-1 promoter (GenBank Accession No.
NM_000011.10), a 1938-bp DNA fragment including the promoter of the human MMP-1 gene (−1880
to +40) was PCR-amplified using genomic DNA from human dermal fibroblasts as a template,
PrimeSTAR® GXL DNA polymerase (TaKaRa, Shiga-ken, Japan), and the primer pair 5’-GAA
GCTAGCTCCCTCACAGTCGAGTATATCTGCCAC-3’, which includes a NheI site (italicized) and
5’-GAAAAGCTTGCAAGGTAAGTGATGGCTTCCCAG-3’, which includes a HindIII site (italicized).
The PCR product cleaved with NheI and HindIII was cloned into the pGL3-Basic luciferase
reporter (Promega, Madison, WI, USA) that was digested with NheI and HindIII to generate the
pGL3-MMP-1 promoter.

4.3. Cell Culture

A primary culture of human foreskin fibroblasts was obtained from Welskin (Seoul, Korea). A
primary culture of human dermal fibroblasts derived from a buttock skin of a young individual
was provided by Chung, J. H. (Seoul National University College of Medicine, Seoul, Korea). Cells
were maintained sub-confluently in DMEM (Gibco/Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% FBS (Gibco/Thermo Fisher Scientific), 100 U/mL penicillin, and 100 µg/mL
streptomycin at 37 ◦C in an atmosphere of 5% CO2 and 95% air. Cells were plated on culture dishes
and incubated overnight for attachments. The passage numbers for foreskin fibroblasts or buttock
dermal fibroblasts were 13–18 or 8–13, respectively.

4.4. RNA Isolation and Reverse Transcription (RT)-PCR Analysis

Total RNA was isolated from foreskin fibroblasts using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA) as described previously [54]. cDNA was synthesized from total RNA (2 µg) using AMV RT
system (Promega, Madison, WI, USA) and oligo (dT)15 primer. Real-time PCR was conducted using a
QuantiTect SYBR Green PCR kit (Qiagen, Hilden, Germany) and the QuantStudio 3 Real-Time PCR
system (Applied Biosystems, Foster City, CA, USA). Primer sequences and annealing temperatures are
described in Table S1.

4.5. Preparation of Conditioned Media and Cell Lysates, and Western Blot Analysis

Sub-confluent cells were incubated with serum-free medium for 24 h, and the resulting conditioned
medium was collected by centrifugation at 2000× g for 3 min. Cell pellets were lysed with 1× SDS
sample buffer for analysis of GAPDH or radio-immunoprecipitation assay (RIPA) lysis buffer (50 mM
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Tris-HCl, pH7.4, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, and 0.1% SDS) containing
1 mM NaF, 1 mM NA3VO4, and a SIGMAFASTTM protease inhibitor tablet (Sigma-Aldrich, St. Louis,
MO, USA) for analysis of signaling proteins. Western blot analysis was performed as described
previously [55,56]. The MultiGauge software (Fujifilm, Tokyo, Japan) was used to quantify the
band intensities.

4.6. Cell Growth Assay

Cell growth was analyzed as previously described [57]. Foreskin fibroblasts (0.5 × 104 cells/well)
were plated in 96-well plates and incubated in medium supplemented with 10% FBS and various
concentrations of skullcapflavone II for up to 2 days. Viable cells were stained with MTT, solubilized
with dimethyl sulfoxide (DMSO), and the absorbance was measured at 565 nm using a microplate
reader (Molecular Devices, San Jose, CA, USA).

4.7. Flow Cytometry

Foreskin fibroblasts (0.5 × 104 cells/well) were seeded in 6-well plates and incubated in DMEM
supplemented with 10% FBS and various concentrations of skullcapflavone II for 24 h. Briefly, cells
were washed twice with cold PBS and then resuspended in binding buffer (10 mM HEPES, pH 7.4,
140 mM NaCl, and 2.5 mM CaCl2) to a final density of 1 × 106 cells/mL. A total volume of 100 µL of
detached cells, including 5 µL of FITC annexin V (BD Biosciences, Bedford, MA, USA) and 5 µL of
50 µg/mL 7-aminoactinomycin D (7-AAD, Invitrogen), was incubated for 15 min at room temperature.
Apoptotic cells were then analyzed by flow cytometry (BD FACSCalibur, BD Biosciences, Bedford,
MA, USA).

4.8. Dual-Luciferase Reporter Assay

Transfection of reporter genes into foreskin fibroblasts was conducted using Lipofectamine LTX
(Thermo Fisher Scientific). Foreskin fibroblasts (5 × 104 cells/well) were seeded in 24-well plates, and
the medium was replaced with fresh DMEM supplemented with 10% FBS. Promoterless pGL3-Basic
(0.36 µg) or pGL3-MMP1 promoter (0.5 µg) encoding firefly luciferase driven by MMP-1 promoter and
pRL-TK (0.05 µg, Promega, Madison, WI, USA) encoding Renilla luciferase driven by herpes simplex
virus thymidine kinase promoter in 25 µL Opti-MEM were incubated with Lipofectamine LTX (0.75 µL,
Invitrogen, Carlsbad, CA, USA) and PLUSTM reagent (0.25 µL, Invitrogen, Carlsbad, CA, USA) in
25 µL Opti-MEM (Gibco/Thermo Fisher Scientific, Waltham, MA, USA) for 20 min at room temperature.
Cells were treated with this mixture for 5 h and then incubated with DMEM supplemented with 10%
FBS for 24 h. The cells were then treated with skullcapflavone II or DMSO in serum-free medium for
12 h. Luciferase activity was measured using the dual-luciferase reporter assay system (Promega), and
the firefly luciferase activity in transfected cells was normalized to the Renilla luciferase activity.

4.9. Collagenolysis in 3D Culture, Confocal Fluorescence Microscopy, and Image Acquisition

Foreskin fibroblasts (5 × 105 cells/mL) were trypsinized and resuspended in 2.8 mg/mL of rat tail
collagen I solution (Corning Inc., Corning, NY, USA):5× DMEM:10× reconstitution buffer (260 mM
NaHCO3, 200 mM HEPES, and 50 mM NaOH) = 7:2:1, and then 0.15 mL of the cell mixture was
placed in a glass-bottom (35 mm × 10 mm, hole 13 ϕ) dish (SPL Life Sciences, Gyeonggi-do, Korea).
After solidifying for 1 h at 37 ◦C, 2 mL of phenol red-free DMEM (Hyclone, South Logan, UT, USA)
with or without TNF-α and/or skullcapflavone II was added, and collagen-embedded cells were
incubated for 24 h at 37 ◦C in an atmosphere of 5% CO2 and 95% air. For nucleus staining, cells were
incubated with Hoechst 33258 (2 µg/mL) for 30 min and then fixed in 3.7% paraformaldehyde for 30 min,
permeabilized in 0.2% Triton-X 100 for 10 min, blocked in 3% bovine serum albumin for 30 min, and
immunostained overnight at 4 ◦C with rabbit anti-collagen type I cleavage-site antibody (2.5 µg/mL).
The cells were then washed with PBS and incubated with Alexa Fluor® 488 goat anti-rabbit IgG (H+L)
(Invitrogen, Carlsbad, CA, USA) and phalloidin-rhodamine (1 U/mL). Images were obtained on a
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confocal microscope (LSM700; Carl Zeiss, Feldbach, Switzerland) with 20× Plan-Apochromat objective
lens and Zen software (Carl Zeiss, Oberkochen, Germany). The excitation wavelengths were 405 nm
for Hoechst 33258, 488 nm for Alexa Fluor® 488, and 555 nm for rhodamine. To avoid bias during
image acquisition, all images were obtained from randomly selected fields and acquired using the same
parameters including exposure time, laser power, and offset settings. The intensity of fluorescence was
determined using Image J software (National Institutes of Health, Bethesda, MD, USA).

4.10. Statistical Analyses

All data are expressed as the mean ± S.D. of at least three independent experiments. Statistical
significance was analyzed using the paired two-tailed Student’s t-test, except for the fluorescence image
analysis using the unpaired two-tailed Student’s t-test. A p-value <0.05 was considered indicative of
statistical significance.

5. Conclusions

We were able to show that skullcapflavone II inhibits the expression of MMP-1 and the degradation
of type I collagen in foreskin fibroblasts. Skullcapflavone II suppresses transcription of MMP-1
mRNA through reduced activation of AP-1 and NF-κB. Skullcapflavone II also reduces type I
collagen degradation in the 3D fibroblast culture. We propose that skullcapflavone II would be a
useful chemopreventive compound for the treatment of physiological conditions associated with the
up-regulation of MMP-1 and the loss of extracellular matrix integrity, such as skin aging.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/11/
2734/s1.
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3D three-dimensional
7-AAD 7-aminoactinomycin D
AP-1 activator protein-1
cAMP cyclic cyclic adenosine monophosphate
DMEM Dulbecco’s Modified Eagle’s medium
DMSO dimethyl sulfoxide
EGF epidermal growth factor
ERK extracellular signal-regulated kinase
FBS fetal bovine serum
FITC fluorescein isothiocyanate
GAPDH glyceraldehyde 3-phosphate dehydrogenase
JNK c-Jun N-terminal kinase
LDLR low-density-lipoprotein receptor
MAPK mitogen-activated protein kinase
MMP matrix metalloproteinase
MTT 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide
NF-κB nuclear factor kappa light chain enhancer of activated B cells
pN-ColIα1 pro-collagen α1(I) N-propeptide
RIPA radio-immunoprecipitation assay
ROS reactive oxygen species
TNF tumor necrosis factor
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Abstract: Ulcerative colitis (UC), which is a major form of inflammatory bowel disease (IBD),
is a chronic relapsing disorder of the gastrointestinal tract affecting millions of people worldwide.
Alternative natural therapies, including dietary changes, are being investigated to manage or treat
UC since current treatment options have serious negative side effects. There is growing evidence
from animal studies and human clinical trials that diets rich in anthocyanins, which are pigments in
fruits and vegetables, protect against inflammation and increased gut permeability as well as improve
colon health through their ability to alter bacterial metabolism and the microbial milieu within the
intestines. In this review, the structure and bioactivity of anthocyanins, the role of inflammation and
gut bacterial dysbiosis in UC pathogenesis, and their regulation by the dietary anthocyanins are
discussed, which suggests the feasibility of dietary strategies for UC mitigation.

Keywords: anthocyanins; anti-inflammatory; colitis; colonic inflammation

1. Anthocyanins

Anthocyanins, which is a clan of flavonoids, are water-soluble polyphenolic pigments that are
responsible for the pigmentation of anthocyanin-rich foods including fruits (black plums, blackberries,
blueberries, and grapes), vegetables (black plums, blackberries, blueberries, and grapes), and grains
(black rice, red rice, and black soybeans) [1–5]. Different crops vary in the composition and the content of
anthocyanins ranging from 0.1% to 1.0% [6,7]. Additionally, oxidation, enzymolysis, and environmental
factors such as temperature, light, and pH can alter anthocyanin levels [8]. Previous studies showed
that malonylation enhanced the stability of anthocyanins in water [9]. Most of the anthocyanins
exert better stability under acidic conditions while high pH leads to anthocyanin degradation [10,11].
pH-dependent reversible structure transformation occurs between the following forms: flavylium
cation (red), quinonoidal base (blue), carbinol pseudobase (colorless), and chalcone (colorless) [12] in
aqueous solution [13]. In plants, anthocyanins aid in pollination and anthocyanin pigments can serve
as natural food colorants [11,14].

Anthocyanins are naturally present in plants as glycosides carrying glucose, galactose, arabinose,
rhamnose, and xylose [15]. Deglycosylated anthocyanins known as anthocyanidins are unstable and
rarely found in nature [16]. The instability of anthocyanidins is due to the presence of flavylium ion and
its peculiar electron distribution [17]. To date, a total of 27 aglycones and over 700 anthocyanins have
been identified based on their chemical structures [1,18]. Anthocyanins share a basic C-6 (A ring)-C-3
(C ring)-C-6 (B ring) carbon skeleton (Figure 1) with a varying number of hydroxyl groups and sugars
with different degrees of methylation [19]. Approximately 665 natural anthocyanins are derived from
six commonly found anthocyanidins (Figure 2): cyanidin (Cy), peonidin (Pn), pelargonidin (Pg),
malvidin (Mv), delphinidin (Dp), and petunidin (Pt) [13,20].
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Red-colored or blue-colored fruits, vegetables, and grains serve as sources of various anthocyanins.
For example, 100 g kokum can provide 1000 to 2400 mg anthocyanins [21], 100 g strawberry contains
13-315 mg anthocyanins [22], and 100 g red wine grapes supply 30-750 mg anthocyanins [23]. As reported
by Raul Zamora-Ros et al., daily consumption of anthocyanins varies depending on the region, weather
condition, gender, and lifestyle [24]. Among all European regions that are investigated, Italy had
the highest daily anthocyanin intake (~43.74 mg/day), with men consuming 49% more anthocyanins
daily than women. The opposite pattern was observed in the UK, where daily anthocyanin intake
of women is 21% higher than men [24]. The estimated anthocyanin daily intake in the US is about
11.6 mg/day [25].

1.1. Anthocyanin Bioavailability

The structure of anthocyanins is a key factor that determines their bioavailability and bioactivity.
Bioavailability is defined as the rate and extent to which a compound is absorbed and utilized by the
organism to perform multiple physiological effects [26]. Thus, the bioavailability has been considered
as an essential index in evaluating the efficacy of bioactive compounds. Absorption is the main
factor that influences the bioavailability of anthocyanins. The absorption rate varies depending on
the molecular size, sugar moiety, and acylated groups. Moreover, the interference by other materials
within the food matrix is also a considerable factor that affects the absorption. An in vitro study
conducted by Yi et al. showed that anthocyanins with more free hydroxyl groups and fewer OCH3

groups had lower bioavailability [27]. Anthocyanidin-glucosides exhibited higher bioavailability
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than anthocyanidin-galactosides, while non-acylated anthocyanins have better absorption than the
acylated ones [28,29]. Studies also found that anthocyanins can be absorbed mainly in their intact
glycosidic forms through the stomach and small intestine [19]. Anthocyanins were detected in the
plasma within a few minutes after intake, which indicates the rapid absorption in the stomach [30].
Talavera et al. indicated that 19% to 37% of bilberry anthocyanins were absorbed by gastric fluid within
30 min [31]. An in vivo study showed that the highest absorption of anthocyanins occurred in the jejunum
(55.3 ± 7.6%) whereas minor absorption occurred in the duodenum (10.4 ± 7.6%), which supports the
role of the small intestine as a major site for anthocyanin absorption [32]. Unabsorbed anthocyanins
travel down to the colon. However, both humans [33] and mice studies [34] demonstrated that most
of the cyanidin-3-glucosides (C3G) that enter the large intestine was excreted in feces. Although
anthocyanins display high absorption in the gastrointestinal tract, the bioavailability of anthocyanins
is less than 1% [35–37]. Recent studies suggest that anthocyanins similar to other flavonoids are
metabolized by colonic microbiota (Table 1) [38,39] and the metabolic function might be a direct result
of metabolomic indicators rather than the bioavailability [40].

Table 1. Bacterial metabolites of major anthocyanidins.

Chemical Class Bacteria Major Metabolites Reference

Cyanidin

Lachnospiraceae,
Bifidobacteria,

and Lactobacillus.

Vanillic acid and protocatechuic acid [41–43]

Peonidin Vanillic acid and protocatechuic acid [41,42]

Pelargonidin

4-hydroxybenzoic acid,
hydroxycinnamic acid,

p-coumaric acid, ferulic acid,
and caffeic acid

[41,42]

Malvidin Syringic acid, gallic acid, and
pyrogallol [44]

Delphinidin Gallic acid and syringic acid [41,42,45]

Petunidin Gallic acid [42]

1.2. Anthocyanin and Human Health

Anthocyanins have been indicated to be a group of bioactive compounds with numerous health
benefits because of their anti-inflammatory, anti-oxidant, anti-obesity, anti-angiogenesis, anti-cancer,
anti-diabetes, anti-microbial, neuroprotection, and immunomodulation properties (Table 2) [9]. Studies
demonstrated that anthocyanins exhibited a strong attenuating effect against colitis [46] and colon
cancer [47]. The anti-angiogenic effect of anthocyanins has been proven on human esophageal
and intestinal microvascular endothelial cells [48]. Significant evidence supports the preventive
efficacy of anthocyanins against many neurodegenerative diseases such as Parkinson’s disease and
Alzheimer’s disease [49]. Previous studies indicated that middle-aged and older-aged women
with a high consumption of anthocyanin-rich foods exhibited 32% and 18% reduction in risk of
myocardial infarction, respectively [50,51]. Additionally, human obesity prevention and blood glucose
tolerance effects of anthocyanin have also been reported [52,53]. Anthocyanins have been shown
to reduce oxidative stress either by scavenging reactive oxygen species or by inducing anti-oxidant
enzymes. Anthocyanins in black currant skin induced the anti-oxidant enzymes and eased the
oxidative stress through activation of the Nrf2 signaling pathway [54]. Moreover, oxidative stress
can increase inflammation by enhanced pro-inflammatory gene expression and inflammation, which,
in turn, can lead to oxidative stress (ref-curcumin review). Antioxidative effects of anthocyanins can
contribute to the anti-inflammatory properties, but we will not be covering the anti-oxidative effects of
anthocyanins. In this review, we will focus on the anti-inflammatory effects of anthocyanins against
ulcerative colitis (UC).
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Table 2. Sources of anthocyanins and their health benefits.

Chemical Class Plant Source Health Benefit Reference

Cyanidin

Blueberries, bilberries,
cranberries, elderberries,
raspberry seeds, strawberries,
purple corn, tea, purple carrot,
purple rice

Anti-inflammatory and
anti-cancer activity, prevention
of cardiac disease, amelioration
of perturbations in
mitochondrial energy
metabolism, and scavenging of
reactive oxygen species as well
as the promotion of
neuronal plasticity.

[55–59]

Peonidin

Cranberry, blackcurrant,
blueberry, huckleberry,
bilberry, myrtles, roselle
plants, purple-fleshed sweet
potatoes, raw black rice, and
centella asiatica

Antioxidative,
anti-inflammatory, antimicrobial,
antidiabetic, and
cardioprotective effect.

[55,56,59,60]

Pelargonidin
Cranberry, verbena,
strawberry, red corn,
red potato

Cardiovascular disease
prevention, obesity control,
alleviation of diabetes,
improvement of vision and
memory, and increased
immune defenses.

[61–65]

Malvidin
Red grape, blue pimpernel,
cranberry, blueberries,
saskatoon berries

Antioxidative,
anti-inflammatory,
and anti-cancer activity.

[66]

Delphinidin
Cranberry, Bilberry,
Pomegranate, red potato,
purple potato

Anti-inflammatory, prevention
of bone loss, and
anti-cancer activity.

[61,64,67–70]

Petunidin

Cranberry, grapes, black goji,
color-fleshed potato, mango,
bluberry, red banana,
black bean

Antioxidative,
anti-inflammatory, anti-diabetic,
and neuroprotective effect.

[55,56,71–77]

2. Ulcerative Colitis Pathogenesis

Ulcerative colitis (UC), which is a chronic and idiopathic inflammatory disease of the colon, is one
of the major forms of inflammatory bowel disease (IBD). UC occurs with several clinical symptoms,
such as abdominal and/or rectal pain, diarrhea, bloody stool, weight loss, fever, and even rectal
prolapse under the severe scenario. UC is also associated with an increased risk of colon cancer [78].
Recent studies have identified various genetic and environmental factors involved in UC pathogenesis.
Studies showed that UC is more common in western and northern countries when compared with
eastern countries [79]. The peak age for UC occurrence is 30 to 40 years [80] and people with infection
history of nontyphoid Salmonella or Campylobacter exhibit eight to 10 times more risk to develop UC in
later years [81]. Moreover, former smoking [82], high fat, and/or sugar diets [83], hormone replacement,
and anti-inflammatory therapy have been shown to be closely related to increased risk of UC [83–86].
Collectively, UC is a wide-spread inflammatory disease all over the world and can worsen the quality of
a patient’s life due to the continuous, serious clinical symptoms, possible complications, and sustained
medical intervention [46].

2.1. Impaired Barrier Function and Inflammatory Signaling Pathways

Pathologically, UC is characterized by epithelial ulceration, immune cell infiltration in the
lamina propria, crypt abscess, enlarged spleen and liver, and impaired intestinal epithelial barrier
function [87,88]. The integrity of the mucus layer, the production, and assembly of tight junction (TJ)
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proteins are two main factors to evaluate intestinal barrier function. Decreased thickness of the mucus
layer and expression of TJ proteins (claudins, occludin, and zonula occluden-1 (ZO-1)) and increased
gut permeability against bacterial product have been found in chemical-induced colitis models [89–91].
Weakened epithelium barrier function with increased permeability allows for the translocation of
commensal bacteria and microbial products into the bowel wall and, ultimately, activates the innate
and adaptive immune response.

Several components involved in the gut immunity have been highly implicated in UC pathogenesis
including dendritic cells (DCs), macrophages, eosinophils, neutrophils, T-cells, B-cells, and their secreted
cytokines and chemokines. Disturbed responses of effector T-cells, T-helper 2 (Th2), and Th17 were
observed in the context of UC. Th2 produces cytokines such as tumor necrosis factor alpha (TNF-α),
IL-5, IL-6, and IL-13 while Th17 produces IL-17A, IL-21, and IL-22 to activate multiple target cells and
downstream signaling pathways to exert their pro-inflammatory functions by binding to corresponding
receptors [92–94]. TNF, IL-6, IL-17A, and IL-22 levels are significantly elevated in experimental colitis
and UC patients [95–97]. TNF binds to TNFR1 and TNFR2, followed by the recruitment of TNF
receptor-associated factor 2 (TRAF2) and activation of JNK-dependent kinase cascade, MEKK kinase
cascade, and the nuclear factor-κB (NF-κB) signaling pathway to induce apoptosis, necroptosis, and
production of other pro-inflammatory cytokines [93,98]. IL-6, which is another key cytokine in UC,
functions in governing the proliferation and survival of Th1 and Th2 cells by pairing with IL-1β to serve
as a signaling molecule for the generation of regulatory B cells and mediate STAT3-dependent T cell
production of anti-inflammatory cytokine IL-10 [99,100]. IL-13 is identified to be an important effector
cytokine in UC to induce epithelial cell apoptosis and compromise epithelial restitution velocity [101].
Similar to IL-10, IL-22 is an anti-inflammatory cytokine involved in wound healing and production
of defensins and mucins against bacterial invasion [102]. Up-regulation of antigen-presenting cells
(APCs) expressing Toll-like receptors 4 (TLR4) is another scenario in human UC. Binding of TLR4 to
ligand lipopolysaccharide (LPS) triggers activation of NF-κB via protein adaptor MyD88 and allows
for transcription of numerous inflammatory genes such as TNF-α, IL-6, IL-1β, and cyclooxygenase-2
(COX-2) [103,104].

2.2. Gut Microbiota Dysbiosis

Gut-commensal bacteria have a profound impact on host health and the pathogenesis of UC.
Gut microbiota play an important role in nutrition, immunomodulation, and various metabolic
processes to exhibit their beneficial function in maintaining gut homeostasis [105]. Intestinal symbiotic
bacteria help in maintaining intestinal stability and prevent the colonization of pathogens. For example,
capsular polysaccharide A (PSA) of Bacteroides fragilis can be delivered to regulatory T cells (Tregs) to
induce interleukin-10 (IL-10) production against experimental colitis [106]. Gut microbial metabolites
such as short-chain fatty acids (SCFAs) produced via dietary fiber fermentation also play a key role
in maintaining colon health [107,108]. Moreover, utilization of non-pathogenic commensal bacteria
Lactobacillus and Bifidobacterium as probiotics have shown promising results in UC remission [109–111].
Dysbiosis of gut bacteria with respect to diversity and bacterial load might be one of the contributing
factors to the pathogenesis of UC because of the overstimulation of mucosal immune response [112].
16S rRNA sequencing performed on fecal and biopsy samples from UC patients revealed a reduction
in bacterial alpha diversity and an increase in total bacterial load compared to healthy subjects [113].
Evident reductions of bacterial phyla in UC patients include Bacteroidetes and Firmicutes, among which
two SCFA producing bacteria from the genus, Phascolarctobacterium, and Roseburia, were significantly
reduced in abundance [114]. Conversely, concentrations of adhesive invasive E.coli have increased
under the UC condition [115]. The impaired intestinal mucosal barrier in predisposed subjects is
marked as one of the early events of UC as the consequence of gut microbial dysbiosis. Gut bacterial
dysbiosis-induced release of enterotoxins lead to increased intestinal permeability and immune
dysfunction [116,117].
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3. Anthocyanin and Ulcerative Colitis

The rapidly rising incidence of UC makes the prevention, therapy, and control of this
disease important. Current standard UC therapies utilize aminosalicylates, immunosuppressants,
and biologicals to interfere with the inflammatory cascade. However, the long-term use of these
therapeutic agents may result in undesirable side effects such as vomiting, nausea, headache,
and fatigue [91]. Hence, there is an urgent demand for developing effective and evidence-based
therapeutic strategies with minimal side effects. Bioactive compounds such as anthocyanins might
be potential candidates against UC [92]. There is extensive evidence from laboratory animal studies
and human clinical trials that dietary anthocyanins derived from fruits and vegetables protect against
intestinal inflammation and provide health benefits to the colon [48,118–120]. Anthocyanins exert
its anti-inflammatory effects against UC through effective protection of intestinal mucosal integrity,
restoration of epithelial barrier function, immunomodulation, and regulation of gut microbiota [90,121].

3.1. Anthocyanins: Mucosal Integrity and Intestinal Epithelial Barrier Function

The integrity of the mucus layer and tight junction proteins are two key factors to maintain regular
intestinal epithelial barrier function. The mucus layer provides a physiochemical barrier to protect the
epithelial cell surface. Previous studies indicated that anthocyanins-rich food consumption significantly
increased the secretion of membrane-associated mucins and wound-enclosure proteins including
MUC1, MUC2, MUC3, Cdc42, Rac1, GAL2, GAL3, GAL4, and RELMβ, which play a vital role in the
mucus injury repair process [121,122]. Tight junctions establish the paracellular barrier that controls the
flow of molecules in the intercellular space between epithelial cells. As the building blocks of epithelial
tight junction, different TJ proteins play different roles. Claudin 1 and Claudin 4 contribute to the
tightening of the epithelium, whereas Claudin 2 may be partially responsible for the luminal uptake
of antigenic macromolecules because of induction of TJ strand discontinuities [123–125]. Occludin
involved in cellular adhesion regulates paracellular permeability [126]. ZO-1, which is a classic TJ
marker, functions as an “anchor” and is responsible for linking occludin, claudin, and actin cytoskeleton
to enhance the epithelial barrier [127,128]. Anthocyanins from a purple-fleshed potato reduced the
cell permeability in vitro using a Caco-2 cells [129]. In another study, mice were supplemented with
100 mg/kg black rice extract via oral gavage, and then provided with 2% DSS in their drinking water
for five days to induce colitis. Mice on black rice supplementation showed a reduced histological
score, which suggests alleviated mucosal injury and edema compared to DSS treatment [90]. In a
DSS-induced murine colitis model, the cooked black bean diet (20%) consumption for two weeks
significantly inhibited the colon shortening and spleen enlargement in mice [130]. Shima Bibi et al.
evaluated the intestinal barrier protective activity of anthocyanins from red raspberries and reported
that the red raspberries supplementation observably suppressed the elevation of claudin-2 protein
and enhanced the expression of claudin-3 and ZO-1 under DSS treatment [122]. These above results
indicate that anthocyanins can protect the tight junctions by modulating the ratio of TJ-positive and
negative proteins and confirm the protective effect of anthocyanins from different fruits and vegetables
against colonic inflammation [131].

3.2. Anthocyanins and Immunomodulation

Anthocyanin-rich bilberry extract (ARBE) and single anthocyanin cyanidin-3-O-glycoside (C3G)
application significantly inhibited the expression and secretion of TNF-α in stimulated human colon
epithelial T84 cells [132]. Blueberry supplementation in an obesity-associated chronic inflammation
rat model showed elevated production of acetate and reduced expression levels of TNF-α and IL-1β
compared to control rats [133]. The protective effect of blueberry anthocyanin extract has also been
confirmed in trinitrobenzene sulfonic acid (TNBS)-induced colitis mice model, where researchers
found that anthocyanin treatment restored not only IL-10 secretion but also reduced serum levels of
IL-12, TNF-α, and IFN-γ. In the same study, anthocyanin supplementation showed amelioration of
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morphological and histological symptoms of colitis in a dose-dependent manner [134]. In a recent
study by Lei Zhao et al., mice supplemented with 100 mg/kg black rice extract via oral gavage showed
a reduction in DSS-induced colonic IL-6, IL-1β, and TNF-α expression levels and MPO levels that are
linearly related to the neutrophil infiltration [90]. Anthocyanin fraction from the tubers of purple yam
down-regulated TNF-α, IFN-γ, and inflammation-associated ROS-producing enzyme myeloperoxidase
(MPO) in mice treated with TNBS to induce colitis [135]. Similar observations are reported in a study
using grapes, where anthocyanin-rich grape pomace extracts were found to prevent a DSS-induced
increase of IL-6, MPO, and nitric oxide synthase (iNOS), whose production is triggered by bacterial
products and pro-inflammatory cytokines [136]. Administration of purple-fleshed potatoes rich in
malvidin and petunidin have shown to reduce the secretion of pro-inflammatory cytokines and, thereby,
attenuate dextran sodium sulfate (DSS)-induced colitis in mice [88]. Anthocyanins also play a role in
inhibiting chemokine release and the subsequent NF-κB signaling pathway (Figure 3). Cyanidin and
C3G displayed a clear inhibitory effect on macrophage migration and pro-inflammatory chemokines
monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-related protein-2
(MRP-2) in vitro [137]. The p-Coumaroyl anthocyanin mixture (contains petanin, peonanin, malvanin,
and pelanin) extracted from a dark purple-fleshed potato cultivar Jayoung displayed an inhibitory
effect on the transcriptional activity and translocation of NF-κB in RAW264.7 macrophages [138].
Another in vitro study reported that a pure sour cherry anthocyanin extract addition to human Caco-2
cells receded the translocation of a p65 subunit from the cytosol to nuclei [139]. Studies also linked the
anti-inflammatory activity of anthocyanins to the inhibition of the COX-2 cascade. Both in vivo and
in vitro evidence show that anthocyanins can suppress the expression level of COX-2 as well as the
transactivation of AP-1, which is a transcription factor that regulates COX-2 gene expression [140,141].
Moreover, C3G can reduce COX-2 producing prostaglandin E2 (PGE2) production in human intestine
HT-29 cells [142]. Additionally, a six-week ARBE treatment on UC patients revealed decreased
serum levels of TNF-α, IFN-γ, and activated NF-κB subunit p65 and increased serum levels of IL-10
and IL-22 [143]. These results suggest that anthocyanins act as anti-inflammatory agents by their
transcriptional and translational regulation of cytokines to inhibit/suppress pro-inflammatory cytokines
and elevate the anti-inflammatory cytokines.

3.3. Anthocyanins and Gut Microbiota

The health-promoting effects of individual anthocyanins and their mixtures have been attributed
not only to their direct effects in the colon but also to their metabolism by intestinal microbiota and their
alteration of intestinal microbial populations. Anthocyanins and gut microbiota exhibit a two-way
interaction to impact host physiology. Intestinal microbiota as a “metabolizing organ” plays a critical
role in maintaining gastrointestinal health [144] and host metabolism [145,146]. Gut microbiota is a
crucial determinant of anthocyanin bioavailability.

In the lumen of the large intestine, unabsorbed anthocyanins are exposed to microbiota-mediated
biotransformation, which includes three significant conditions: hydrolysis (breaking glycosidic
linkages), fission (cleaving heterocycle), and demethylation. Bacterial species that carry corresponding
β-glucosidase, β-glucuronidase, α-rhamnosidase, or demethylase such as Clostridium spp., Butyrivibrio
spp., Lactobacillus spp., B. fragilis, and B. ovatus, etc., are actively involved in this process [147,148].
Anthocyanin biotransformation also produces glucose, which is an essential energy source required
for bacterial growth [144]. Primary anthocyanin-derived metabolites are phenolic acids, whose
anti-inflammatory effects have been verified by substantial studies. For example, the predominant
metabolite of cyanidin and protocatechuic acid (PCA) has been shown to suppress COX-2 and
iNOS protein expression and attenuate DSS-induced UC in mice [149]. Gallic acid as another
anthocyanin-derived metabolite was shown to reduce the growth of potentially harmful bacteria such
as Clostridium histolyticum and Bacteroides spp. without any negative effect on measured beneficial
bacteria [150].
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Figure 3. The mechanisms through which anthocyanins act as anti-inflammatory agents. Inflammatory
signaling pathways including NF-kB, MAPKs (P38, ERK, JNK), and STATs were activated by ligand
binding of the pro-inflammatory cytokines TNF-α, LPS, IL, and IFN, which eventually leads to the
translocation of transcription factors to the nucleus, transcriptional activation, and cytokine production.
Anthocyanins attenuated the cascade of inflammatory responses by inhibiting the translocation of
transcription factors (P50 and P65), the phosphorylation of IRAK1, NIK, IKK, STAT1, STAT3, P38,
ERK, and JNK, the secretion of inflammatory cytokines (IL-6, IL-1β, TNF-α, iNOS, COX-2, and IFN-γ),
and activation of NF-kB, MAPK, and STAT inflammatory signaling pathways.

There is broad agreement that dietary anthocyanins and their metabolites have potential health
benefits via modulation of the gut microbiota [44,150]. Increasing evidence supports the idea that
anthocyanins can function as prebiotics, which contributes to the growth of certain commensal
bacteria [44,151,152]. Both in vitro and in vivo studies have shown an elevated growth of potentially
beneficial bacteria such as Lactobacillus spp. and Bifidobacterium spp. after administration of
anthocyanin-rich products [44,151,152]. Anthocyanins can also interact with starch, SCFAs, and ferric
iron to indirectly modulate gut microbiota. Anthocyanins exert the beneficial effect by increasing
the levels of SCFAs, which has the antimicrobial impact on pathogens [153]. Moreover, it was found
that anthocyanins were able to affect the digestion of starch by inhibiting digestive enzymes, such as
α-amylase [154,155]. The indigestible starch goes down to the large intestine, where it can act as an
energy source for several probiotic bacteria such as lactobacilli, bifidobacteria, and streptococci, which are
beneficial to human health [155,156]. Another impressive result showed that indigestible dietary
fiber components, such as β-glucans and resistant starch, can significantly increase the production
of SCFAs [157,158]. Evidence indicated that the dysbiosis of the gut microbiota and impaired
intestinal barrier function could be induced by Fe deficiency [159]. However, this situation can be
alleviated with anthocyanin supplementation. Studies reported that C3G, cyanidin-3-5-diglucoside,
petunidin-3-glucoside, and delphinidin-3-glucoside exerted substantial ferric ion chelating activities.
Ferric ion chelation increases its solubility and bioavailability and may contribute to the intestinal
homeostasis [160–162].

The above evidence demonstrated the anti-inflammatory properties of anthocyanins and the
potential of anthocyanin to be used as novel therapeutic agents in UC treatment. Even though the
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mechanism behind anthocyanin-induced UC mitigation is not entirely known, it is highly likely that
anthocyanin and bacteria interplay while anthocyanin-derived metabolites play a crucial role. There is
no proven consensus regarding the bioavailability of anthocyanins, and minimal research has been
done to elucidate the bioactivity of anthocyanins in vivo. Majority of studies focusing on the anti-colitis
effect of anthocyanins utilize fruit or grain extract containing other bioactive compounds that are known
to have an anti-oxidant effect. Thus, it is challenging to ascribe the observed UC relief to anthocyanins
solely. Moreover, the possible synergistic effect of anthocyanins with other phytochemicals and fiber is
a topic that requires more attention and effort to address the need for searching for a natural and safe
anti-colitis strategy.
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Abbreviations

APCs Antigen-presenting cells
ARBE Anthocyanin-rich bilberry extract
C3G Cyanidin-3-glucoside
Cdc Cell division control protein
COX-2 Cyclooxygenase-2
DCs Dendritic cells
DSS Dextran sodium sulfate
ERK Extracellular signal-regulated kinase
GAL Galectin
IBD Inflammatory bowel disease
IFN-γ Interferon gamma
IL Interleukin
iNOS Nitric oxide synthase
JNK c-Jun N-terminal kinase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MCP-1 Chemoattractant protein-1
MPO Myeloperoxidase
MRP-2 Macrophage inflammatory protein-related protein-2
MUC Mucin
NF-κB Nuclear factor-κB
PCA Protocatechuic acid
PGE2 Prostaglandin E2
PSA Polysaccharide A
RELMβ Resistin-Like Molecule-beta
ROS Reactive oxygen species
SCFA Short chain fatty acid
STAT Signal transducer and activator of transcription
Th T-helper
TJ Tight junction
TLR4 Toll-like receptors 4
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TNBS Trinitrobenzene sulfonic acid
TNFR Tumor necrosis factor receptor
TNF-α Tumor necrosis factor alpha
TRAF TNF receptor-associated factor
Tregs Regulatory T cells
UC Ulcerative colitis
ZO-1 Zonula occludens-1
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Abstract: Phytochemicals are known to benefit human health by modulating various cellular
processes, including cell proliferation, apoptosis, and inflammation. Due to the potential use of
phytochemicals as therapeutic agents against human diseases such as cancer, studies are ongoing to
elucidate the molecular mechanisms by which phytochemicals affect cellular functions. It has recently
been shown that phytochemicals may regulate the expression of microRNAs (miRNAs). MiRNAs
are responsible for the fine-tuning of gene expression by controlling the expression of their target
mRNAs in both normal and pathological cells. This review summarizes the recent findings regarding
phytochemicals that modulate miRNA expression and promote human health by exerting anticancer,
photoprotective, and anti-hepatosteatosis effects. Identifying miRNAs modulated by phytochemicals
and understanding the regulatory mechanisms mediated by their target mRNAs will facilitate the
efforts to maximize the therapeutic benefits of phytochemicals.

Keywords: phytochemicals; microRNA; health-promoting effects

1. Introduction

Phytochemicals are plant-derived compounds abundant in a variety of fruits, vegetables, herbs,
and many other plants [1]. More than 10,000 phytochemicals have been identified to date, and their
medicinal properties including anti-inflammatory and anticancer effects, are being investigated [2].
Polyphenols, alkaloids, terpenoids, and organosulfur compounds are well-known phytochemical
groups with anticancer properties [3]. For example, polyphenols such as resveratrol and curcumin
modulate oxidative stress and inflammatory signaling, and perform antioxidant and anti-inflammatory
activities [4,5]. In addition, they inhibit angiogenesis by regulating the gene expression of key
regulators, such as vascular endothelial growth factor and hypoxia inducible factor 1 subunit alpha,
and promote apoptosis by modulating levels of Bcl2, BCL2-associated X (Bax), and p53 [6,7]. These
activities cooperatively lead to the prevention of carcinogenesis. Due to the medicinal properties of
phytochemicals and their availability as therapeutic agents, their underlying molecular mechanisms
are being investigated.

Emerging data suggest that some phytochemicals regulate the expression of various microRNAs
(miRNAs). MiRNAs are small, noncoding RNAs involved in a wide variety of cellular processes, such
as development, proliferation, differentiation, and apoptosis [8]. MiRNAs regulate gene expression
by binding to target mRNAs via base pairing with the 3′-untranslated regions (3′UTRs) of the target
mRNAs [9]. The miRNA-target mRNA interaction usually results in the degradation or translational
repression of the target mRNA. As a single miRNA can target multiple mRNAs implicated in
various cellular phenomena, miRNAs are crucial post-transcriptional regulators for the fine-tuning
of normal cellular physiology [8]. Expression of miRNAs is tissue- or developmental stage-specific,
and their aberrant expression is associated with the development of pathogenic conditions [10].
For example, abnormal expression of several miRNAs is associated with the initiation and progression
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of carcinogenesis and metastasis [11]. Therefore, miRNA profiles in a wide range of diseases have
been analyzed for their potential use as diagnostic or prognostic indicators.

Extensive emerging evidence suggests that phytochemicals affect the expression profiles of
miRNAs in pathological conditions, especially cancer. Moreover, several studies have identified novel
target mRNAs of phytochemical-modulated miRNAs and investigated the underlying mechanism
for the miRNA-mediated therapeutic activities of a few phytochemicals. Herein, we review
the current information on phytochemicals that benefit human health by modulating miRNA
expression. Specifically, we discuss phytochemicals that exhibit anticancer, photoprotective,
and anti-hepatosteatosis effects. This not only helps to understand health-promoting effects of
phytochemicals at the molecular level, but also allows us to think about further research and
therapeutic development.

2. Phytochemicals and miRNAs

Although emerging data clearly suggest that miRNA expression is specifically regulated by
phytochemicals, relatively little is known about their molecular relationships to date. Baselga-Escudero
et al. suggested that polyphenols directly bind to mature miRNAs and that the chemical structure
of polyphenols influences the expression of miRNAs [12]. In 1 H NMR spectroscopy studies,
direct binding of resveratrol and (-)-epigallocatechin-3-gallate (EGCG) to miR-33a and miR-122 was
observed [12]. While resveratrol binds miR-33a and miR-122 through an A ring interaction and
increases the expression levels of these miRNAs, EGCG decreases miR-33a and miR-122 expression by
direct binding through an interaction with all rings in the molecules. Additionally, phytochemicals
have been shown to affect miRNA levels by regulating molecules associated with controlling miRNA
expression [13,14]. For example, EGCG binds the HIF-1α protein, which is a transcriptional activator of
miR-210, and interferes with the hydroxylation of Pro residues in the oxygen-dependent degradation
domain [14]. As the hydroxylation of Pro residues is essential for proteasome-mediated degradation
of HIF-1α [15], EGCG binding increases HIF-1α expression and consequently enhances miR-210
expression levels. Pan el al. demonstrated that resveratrol regulates the expression of c-Myc, which is
a transcriptional activator of miR-17, resulting in the suppression of oncogenic miR-17 levels [13].

3. Phytochemicals with Anticancer Effects

The anticancer effect is a well-known phytochemical function that is important for promoting
human health [16]. We summarize the recent reports on phytochemicals that exert their intracellular
anticancer effects by altering miRNA expression (Figure 1).Int. J. Mol. Sci. 2019, 20, x 3 of 14 
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3.1. Resveratrol

Resveratrol (trans-3, 5, 4′-trihydroxystilbene) is a polyphenol found in various plants, including
berries and grapes [17]. Resveratrol is known for its beneficial properties in human health and has been
intensively studied for its anticancer function in multiple cancers such as breast, prostate, stomach,
pancreas, and thyroid cancers since 1997 [18,19]. Recently, resveratrol was tested in clinical trials
for colon cancer [20]. Several studies provide evidence that the anticancer function of resveratrol is
mediated by modulating miRNA expression [13,21–26].

Yang et al. analyzed changes in the profiles of 754 human miRNAs following resveratrol treatment
in osteosarcoma cells [24]. In response to resveratrol, miR-328 is the most highly upregulated miRNA.
MiR-328 targets the 3′UTR of matrix metalloproteinase 2 (MMP2), an essential regulator of metastasis.
Therefore, resveratrol exerts its anticancer effects, such as inhibition of migration, invasion, and adhesion
of osteosarcoma cells, by regulating the expression of miR-328 and MMP2.

In lung cancer cells, miR-520h is downregulated following resveratrol treatment, and consequently
its target genes, PP2A/C, are derepressed [25]. PP2A/C inhibits AKT/NF-κB-mediated FOXC2 expression.
Since the FOXC2 is a key regulator that activates epithelial-mesenchymal transition (EMT) and
metastasis, suppression of FOXC2 by resveratrol-mediated regulation of the miR-520h-PP2A/C axis
induces mesenchymal-epithelial transition (MET) and exerts anticancer effects in lung cancer cells.

In the breast cancer cell line MCF7, resveratrol treatment increases the expression levels of miR-663
and miR-744, and inhibits cell proliferation [21]. Vislovukh et al. demonstrated that the putative
oncogene, isoform A2 of eukaryotic translation elongation factor 1A (EEF1A2), is a direct target of
both miR-663 and miR-744, and downregulation of EEF1A2 negatively affects cell proliferation [21].
Therefore, the anticancer effect of resveratrol on breast cancer progression could be mediated by
regulating the expression of miR-663 and miR-744 that suppress EEF1A2. Resveratrol also promotes
natural killer (NK) cell-mediated anticancer immune responses in breast cancer [13]. Oncogenic
miR-17, which belongs to the miR-17-92 cluster, is transcriptionally upregulated by the binding of
c-Myc and promotes proliferation, migration, and angiogenesis of breast cancer cells [13]. Resveratrol
downregulates c-Myc expression and consequently miR-17 expression is suppressed. Suppression of
miR-17 upregulates its target genes, such as major histocompatibility complex class I chain-related
proteins A and B (MICA and MICB). Ultimately, MICA and MICB increase the susceptibility of breast
cancer cells to lysis by NK cells.

Resveratrol also affects the proliferation, migration, invasion, and apoptosis of colorectal cancer
cells by regulating miR-34c-mediated stem cell factor (SCF) expression [23]. In HT-29 cells in vitro and
in mouse xenografts in vivo, exposure to resveratrol increases the level of miR-34c while decreasing
the level of SCF, a known target of miR-34c.

It has been reported that the anticancer effect of resveratrol in acute lymphoblastic leukemia (ALL)
is mediated by miRNAs [26]. Zhou et al. observed that miR-196b and miR-1290 are highly expressed
in T-cell ALL and B-cell ALL, respectively, and their expression is downregulated by resveratrol [26].
Both miR-196b and miR-1290 directly bind to the 3′UTR of insulin-like growth factor binding protein 3
(IGFBP3) and the downregulation of IGFBP3 is associated with the development of leukemia. Therefore,
the resveratrol-induced decrease in miR-196b and miR-1290 levels and consequent recovery of IGFBP3
expression might ultimately inhibit the proliferation and migration of ALL cells.

Mitochondrial dynamics are involved in the development of human diseases including cancer;
increased fission or decreased fusion leads to the formation of fragmented mitochondria that triggers
apoptosis [27]. Resveratrol may exert an anticancer effect by regulating mitochondrial dynamics via
modulating miRNA levels [22]. In several cancer cell lines, such as DLD1, HeLa, and MCF-7, resveratrol
increases the expression of miR-326, which in turn directly targets a regulator of mitochondrial fusion,
pyruvate kinase M2 (PKM2) [28]. In this way, resveratrol promotes cancer cell apoptosis by decreasing
mitochondrial fusion induced by the miR-326-PKM2 axis.
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3.2. (-)-Epigallocatechin-3-Gallate

EGCG is a major polyphenol in green tea and has been shown to have anticancer effects [29]. In a
variety of cancer cells, miRNA profiling studies have been performed to determine the role of miRNAs
in regulating EGCG-mediated anticancer functions [14,30,31]. In human hepatocellular carcinoma
HepG2 cells, 13 miRNAs were upregulated, while 48 miRNAs were downregulated by EGCG [30].
Tsang et al. demonstrated that miR-16 potently promoted apoptosis [30]. EGCG-induced miR-16
expression suppresses the anti-apoptotic protein Bcl-2 level, leading to the apoptosis of HepG2 cells.

Wang et al. found that the expression of miR-210 was prominently increased by EGCG in both
human and mouse lung cancer cells in vitro [14]. Upregulation of miR-210 inhibits the proliferation and
anchorage-independent growth of lung cancer cells. Zhou et al. further supported the significant role
of miRNAs in the anticancer function of EGCG in vivo [31]. EGCG inhibits tobacco carcinogen-induced
lung tumors in A/J mice by modulating the expression of 21 miRNAs, including miR-210. Additionally,
Jiang et al. showed that EGCG enhances the expression levels of miR-485 which directly targets
the retinoid X receptor (RXRα) in non-small cell lung cancer (NSCLC) cells [32]. EGCG-induced
miR-485-RXRα axis represses cancer stem cells (CSC)-like characteristics of NSCLC cells, resulting in
the inhibition of cell growth and promotion of apoptosis.

The anticancer function of EGCG in suppressing cell proliferation has been shown to be mediated
by miRNAs in osteosarcoma and oral squamous cell carcinomas [33,34]. In an miRNA profiling study,
miR-1 was identified as a mediator of EGCG anticancer activities [34]. miR-1 levels are downregulated
in osteosarcoma tumor tissues and miR-1 is increased by EGCG to target a proto-oncogene c-MET.
In oral squamous cell carcinomas, miR-204 is upregulated by EGCG and targets Slug and Sox4,
which are associated with cancer stemness and EMT [33].

Moreover, it has been reported that EGCG affects the expression of several miRNAs known to
act as oncogenes or tumor suppressors [35,36]. In prostate cancer cells of mice treated with EGCG,
oncogenic miR-21 is downregulated and tumor suppressive miR-330 is upregulated [36]. In human
malignant neuroblastoma SH-SY5Y and SK-N-DZ cells, oncogenic miR-92, miR-93, and miR-105b are
downregulated and tumor suppressive miR-7-1, miR-34a, and miR-99a are upregulated by EGCG [35].
Therefore, EGCG may exert its anticancer effects by regulating miRNAs involved in tumorigenesis.

3.3. Curcumin

Curcumin is a natural phytochemical derived from the root and rhizome of Curcuma longa and has
been known to have antioxidant, anti-inflammatory, and anticancer properties [37,38]. Recent studies
suggest that the anticancer effect of curcumin is mediated by modulation of miRNAs. Zhang et al.
demonstrated the anti-proliferative and pro-apoptotic activities of curcumin in NSCLC cells via the
miR-21-phosphatase and tensin homolog (PTEN) axis [39]. In NSCLC cells, curcumin downregulates
the expression of miR-21, which is a typical oncogenic miRNA implicated in cancer development
and progression. Downregulation of miR-21 by curcumin results in the derepression of its target
gene, PTEN. Since PTEN is a tumor suppressor, the elevation of PTEN expression might mediate the
anticancer effects of curcumin [40].

Aberrant activation of the Wnt signaling pathway affects cell growth, the cell cycle, and invasion
in carcinogenesis [41]. Curcumin was shown to suppress cancer cell growth by regulating the Wnt
signaling pathway [42]. In oral squamous cell carcinoma, miR-9 is downregulated, and curcumin
increases miR-9 expression [43]. The upregulation of miR-9 by curcumin elevates the levels of GSK-3β
and phosphorylated GSK-3β, resulting in inhibition of the Wnt signaling pathway. Xiao et al. observed
that the expression level of cyclin D1, a putative target of miR-9, was reduced when miR-9 was
overexpressed in SCC-9 cells, although whether cyclin D1 is targeted by miR-9 via direct binding
was not verified [43]. The direct target gene of miR-9 under curcumin-treated conditions remains to
be identified.
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3.4. Quercetin

Quercetin is a flavonoid derived from fruits and vegetables, such as berries, apples, onions,
and broccoli [44]. Recently, anticancer functions of quercetin through miRNA modulation were reported
in pancreatic cancer cells [45]. Nwaeburu et al. performed a miRNA profiling analysis of pancreatic
ductal adenocarcinoma following treatment with quercetin [45]. They found 105 differentially expressed
miRNAs in quercetin-treated cells; 80 miRNAs including let-7c, miR-200a-3p, and miR-200b-3p were
upregulated, while 25 miRNAs including miR-103a-3p, miR-125b, and miR-1202 were downregulated.
Nwaeburu et al. then investigated how let-7c, one of the most highly upregulated miRNAs, inhibits
pancreatic cancer progression [45]. While most miRNAs inhibit the expression of their target genes,
let-7c directly targets the 3′UTR of Numbl, an inhibitor of Notch expression, and increases the expression
of Numbl. Induction of Numbl by let-7c subsequently antagonizes Notch signaling, known to be
involved in cell proliferation, angiogenesis, and development [46], thus leading to tumor growth
inhibition and increased apoptosis of pancreatic ductal adenocarcinoma cells.

In addition, an anti-proliferative function of miR-200b-3p induced by quercetin in cancer stem
cells (CSCs) has been reported [47]. Notch and Numb are crucial for the regulation of CSC self-renewal;
Notch is required for symmetric division and Numb is a marker for asymmetric division [48]. Nwaeburu
et al. demonstrated that miR-200b-3p targets Notch by directly binding its 3′UTR, which in turn
inhibits proliferation and self-renewal of CSCs [47]. Together, these results indicate that quercetin
exerts its anticancer effects by regulating Notch signaling via miRNAs.

3.5. 3,3′-Diindolylmethane

One of the natural derivatives of indoles from cruciferous vegetables, 3,3′-diindolylmethane (DIM),
has been reported to have an anticancer function in various cancer cells [49]. Ye et al. demonstrated
that DIM inhibited the proliferation of gastric cancer cells in vitro and tumor growth in vivo in a
xenograft mouse model [50]. DIM downregulates miR-30e, which is highly expressed in multiple
types of tumors. Autophagy-related gene 5 (ATG5), an essential component for the generation of
autophagosomes [51], was validated as a direct target of miR-30e. These observations suggest that
the suppression of miR-30e by DIM rescues ATG5 expression and induces autophagy, which in turn
inhibits the proliferation of gastric cancer cells. Therefore, autophagy regulation mediated by the
miR-30e-ATG5 axis is crucial for the anticancer function of DIM in gastric cancer cells.

In addition, DIM inhibits breast cancer cell growth in vitro and in vivo [52]. DIM treatment
inhibits the proliferation of MCF-7 and MDA-MB-468 breast cancer cells, and the growth of transplanted
human breast carcinoma cells in a mouse model. The inhibitory effect of DIM on cell proliferation
is due to cell cycle arrest. Jin et al. observed that in response to DIM, miR-21 is upregulated and
cdc25A, a putative target of miR-21, is downregulated [52]. As cdc25A is a crucial regulator of cell
cycle progression, the anticancer function of DIM via cell cycle arrest might be mediated in part by the
modulation of miR-21 and cdc25A expression.

3.6. Sulforaphane

Sulforaphane (SFN), a dietary phytochemical converted from cruciferous plants, such as broccoli,
carrots, and kale, is known to have anticancer functions [53]. Wang et al. reported that SFN enhances
the anticancer function of cisplatin, a DNA-targeting cytotoxic platinum compound, by modulating
miRNA expression in gastric cancer cells [54]. Treatment with cisplatin alone causes side effects that
increase the CSC-like properties of gastric cancer cells by activating the interleukin-6 (IL-6)-mediated
signal transducer and activator of transcription 3 (Stat3) signaling; however, cotreatment with SFN
improves the chemotherapy efficacy. SFN increases the expression of miR-124, which targets the IL-6
receptor (IL-6R) and Stat3 by directly binding their 3′UTRs. IL-6R is known to mediate activation of the
downstream molecules of IL-6 signaling, such as mitogen-activated protein kinase, phosphatidylinositol
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3-kinase (PI3K), and Stat3 [55]. Therefore, SFN inhibits the CSC-like viability of gastric cancer cells by
regulating the expression levels of miR-124 and its target genes, IL-6R and Stat3.

In breast cancer cells, SFN affects cell cycle arrest, senescence, apoptosis, and autophagy [56].
Lewinska et al. investigated the changes in the miRNA profiles of three breast cancer cell lines, MCF-7,
MDA-MB-231, and SK-BR-3, upon treatment with SFN [56]. Sixty miRNAs were upregulated and 32
were downregulated. Specifically, the levels of miR-23b-3p, miR-92b-3p, miR-381-3p, and miR-382
were significantly reduced in the three cell lines. The target genes recognized by these miRNAs that
link them to their anticancer functions remain to be identified.

3.7. Genistein

Genistein is a major isoflavonoid isolated from soybeans [57]. Genistein has been shown
to prevent multiple cancers by regulating the expression of specific oncogenic miRNAs, such as
miR-27a and miR-1260b [58–63]. Genistein downregulates miR-27a expression in uveal melanoma,
ovarian cancer, pancreatic cancer, and lung cancer cells to inhibit cell proliferation, migration,
or invasion [60–63]. Zinc finger and BTB domain (Broad-Complex, Tramtrack and Bric a brac)
containing 10 and Sprouty2 were validated as targets of miR-27a in uveal melanoma cells and ovarian
cancer cells, respectively [60,62]. Oncogenic miR-1260b is downregulated by genistein in renal and
prostate cancer cells [58,59]. The Wnt signaling pathway is typically activated in cancer cells to promote
tumorigenesis and miR-1260b targets tumor suppressor genes associated with Wnt signaling, such as
sFRP1, Dkk2, and Smad4 [58,59]. Therefore, genistein-induced downregulation of miR-1260b rescues
the expression levels of target genes that antagonize Wnt signaling and ultimately inhibits cancer cell
proliferation and invasion.

3.8. Acetyl-11-Keto-β-Boswellic Acid

Boswellic acids, the major components of a gum resin derived from Boswellia serrata,
have been known to perform anti-inflammatory functions [64]. Takahashi et al. reported that
acetyl-11-keto-β-boswellic acid (AKBA), an active component in boswellic acids, has an anticancer
function in colorectal cancer cells [64]. AKBA inhibits cell viability, colony formation, proliferation, and
migration, and enhances apoptosis in colorectal cancer cells. This anticancer effect is partly mediated by
the regulation of well-known tumor suppressive miRNAs, such as the let-7 and miR-200 families [64].
AKBA increases the expression levels of let-7b, let-7i, miR-200b, and miR-200c, and decreases expression
of their known target genes implicated in EMT, such as CDK6 and vimentin. Therefore, AKBA-mediated
regulation of the let-7 and miR-200 families may play an important role in inhibiting metastasis in
colorectal cancer.

3.9. Silymarin

Silymarin is a flavonoid isolated from the milk thistle, Silybum marianum L. Gaertn, and has been
shown to have anticancer activities [65]. Singh et al. reported that silymarin inhibits the migratory
activities of NSCLC cells, including A549, H1299, and H460, by modulating the expression of miR-203,
a tumor suppressor [65]. Silymarin enhances miR-203 expression and decreases histone deacetylases
and zinc finger E-box binding homeobox 1 (ZEB1) expression. As ZEB1 is implicated in the activation
of EMT, downregulation of ZEB1 by silymarin might inhibit the metastasis of cancer cells. Although a
novel target gene of miR-203 was not identified in the study, it was shown that miR-203 plays its tumor
suppressor role in multiple cancers by suppressing its known target genes, such as annexin A4 and
apoptosis inhibitor 4 [66,67].

3.10. β-Sitosterol-d-glucoside

β-Sitosterol-d-glucoside (β-SDG) is a phytosterol found in Salvia sahendica and Arctotis arctotoides
and reported to possess anti-inflammatory, antimicrobial, immunomodulatory, and anti-proliferative
functions in multiple cancer cells [68]. Xu et al. demonstrated that β-SDG isolated from sweet potato
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has an anticancer function in breast cancer cells [69]. β-SDG inhibits the proliferation of breast cancer
cells by elevating the levels of pro-apoptotic Bax and BCL2 associated agonist of cell death (Bad),
and reducing the levels of anti-apoptotic Bcl-2 and Bcl-xl. β-SDG also suppresses tumor growth in
MCF7 cell-injected xenograft models. Moreover, Xu et al. showed that the expression level of miR-10a
is increased by β-SDG, and this induction of miR-10a promotes apoptosis and suppresses PI3K and
p-Akt levels [69]. Therefore, the anticancer function of β-SDG is probably mediated in part by miR-10a.
A direct target gene of miR-10a involved in its anticancer activities needs to be identified to shed light
on the specific molecular mechanism involved.

3.11. Arctigenin

Arctigenin is a lignan from the seeds of Arctium lappa. Several studies demonstrated the anticancer
functions of arctigenin in pancreatic, breast, and lung cancers through the regulation of apoptosis
and proliferation [70]. Wang et al. studied the effects of arctigenin on the miRNA profile of mouse
prostate tumor tissues; the levels of miR-126 and miR-21 decrease whereas those of miR-135a, miR-205,
miR-22-3p, miR-455, and miR-96 increase in response to arctigenin [71]. The molecular mechanism that
connects these regulated miRNAs and the anticancer function of arctigenin remains to be elucidated.

3.12. Cinnamic Acid Derivatives

Propolis is a plant mastic that contains many chemical components including flavonoids,
benzoic acid, and cinnamic acid derivatives such as artepilin C, baccharin, and drupanin [72].
Chemical components isolated from propolis have been shown to possess anti-inflammatory and
anticancer properties [72,73]. Kumazaki et al. demonstrated that artepilin C, baccharin, and drupanin
inhibit the proliferation of colon cancer cells, such as DLD-1 and SW480 [74]. Specifically, the combined
treatment with baccharin and drupanin has a synergistic effect on apoptosis activation in DLD-1 cells.
Moreover, the expression level of miR-143 is increased by cotreatment with baccharin and drupanin,
and miR-143 subsequently represses the expression of a target gene, Erk5, resulting in cell cycle
arrest [74]. These observations support the idea that the pro-apoptotic anticancer function of propolis
cinnamic acid derivatives is due to modulation of miRNAs and their target genes.

4. Phytochemicals with Photoprotective Effects

In addition to their anticancer effect, phytochemicals have been recently reported to inhibit or
protect against UV-induced cellular damage [75,76]. Analysis of the altered miRNA profiles in arctiin-
or troxerutin-pretreated keratinocytes upon UVB stimulation suggests that the phytochemical-induced
regulation of miRNAs is functionally associated with the photoprotective effect.

4.1. Arctiin

Arctiin is a lignan found in plants, such as Arctium lappa and Forsythiae fructus, and is known to
inhibit cell proliferation and inflammation [77,78]. Recently, Cha et al. demonstrated the photoprotective
activities of arctiin in keratinocytes, the predominant cell type in the epidermis [75]. Arctiin inhibits cell
death and cytotoxicity and enhances DNA repair and wound healing in UVB-exposed keratinocytes.
UV radiation induces DNA damage in keratinocytes, which results in cellular senescence, apoptosis,
or cancer. MiRNA profile analyses of arctiin-pretreated HaCaT cells under UVB radiation revealed that
the expression levels of four miRNAs were increased and those of 62 were decreased (>2-fold) [75].
These results raise the possibility that the protective function of arctiin against UVB-induced cellular
damage is mediated by the modulation of miRNA expression.

4.2. Troxerutin

Troxerutin {vitamin P4; 3′, 4′, 7′-Tris[O-(2-hydroxyethyl)]}, is a natural flavonoid rutin found
in extracts of Sophora japonica, which exhibits antioxidant and anti-inflammatory activities [79,80].
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Lee et al. demonstrated that troxerutin promotes cell migration and inhibits cell death in UVB-exposed
HaCaT cells [76]. Since the expression of miRNAs involved in apoptosis and cell cycle arrest is
aberrantly regulated under UVB radiation, Lee et al. hypothesized that the protective function of
troxerutin against UVB-induced DNA damage and apoptosis is mediated by modulating miRNA
expression [76]. Indeed, miRNA microarray analysis indicated that five miRNAs were upregulated and
63 were downregulated in troxerutin-pretreated HaCaT cells under UVB exposure, suggesting that the
photoprotective effect of troxerutin in UVB-induced cellular damage is mediated by miRNA regulation.

5. A Phytochemical with Anti-Hepatosteatosis Effects

MiRNAs are known to regulate lipid homeostasis, and the aberrant expression of miRNAs
has been examined in multiple metabolic diseases, including obesity and diabetes [81]. Jeon et al.
demonstrated that fisetin (3, 3′, 4′, 7-tetrahydroxyflavone), a natural flavonol found in various fruits
and vegetables, regulates lipid metabolism by modulating miRNA expression [82]. In high-fat mouse
liver, the levels of five miRNAs: miR-22*, miR-146a, miR-146b, miR-802, and miR-378, are increased,
and fisetin suppresses the expression of miR-378 [82]. In addition, Jeon et al. identified nuclear
respiratory factor-1 (NRF-1), a transcription factor implicated in mitochondrial function, as a target of
miR-378 [82]. These results suggest that a high-fat diet increases miR-378 levels and the consequent
repression of NRF-1 expression leads to mitochondrial dysfunction and development of hepatosteatosis
(hepatic fat accumulation). Furthermore, Jeon et al. provide evidence that this metabolic alteration is
rescued by fisetin via modulation of miRNA expression [82].

6. Discussion and Conclusions

We provided an overview of the recent research on miRNA-mediated health-promoting effects of
phytochemicals (Figure 2). There have been efforts to elucidate the molecular mechanisms underlying
the regulation of miRNA expression by phytochemicals. To date, the majority of studies have been
focused on the phytochemical-induced changes in miRNA profiles in pathological conditions such
as cancer, and more profiling data continue to emerge. Since miRNAs play an important role in
maintaining normal cell physiology as well as inducing pathological conditions [83,84], it is perhaps
not surprising that phytochemicals exert their medicinal effects through miRNA regulation. As a single
miRNA can affect numerous target mRNAs, and a phytochemical can play a wide range of regulatory
roles via miRNAs in cells. Elucidating the molecular mechanisms underlying the health-promoting
effect of phytochemicals by identifying the crucial regulatory miRNAs and their targets will facilitate
the efforts to maximize the therapeutic benefits of phytochemicals.

Understanding the anticancer function of phytochemicals mediated by miRNA regulation is
currently an active area of research. As several miRNAs function as either oncogenic miRNAs or
tumor suppressors [11], phytochemicals could exert their anticancer effects by directly controlling
miRNA expression. In general, miR-21, miR-17, miR-30e, and miR-520h function as oncogenic miRNAs,
whereas miR-200, miR-34c, miR-143, and let-7 function as tumor suppressors [11]. One phytochemical
could regulate several oncogenic or tumor suppressive miRNAs in various cancers. For example,
resveratrol controls miR-520h, miR-17, miR-328, miR-196b, miR-1290, miR-34c, miR-663, and miR-744
in leukemia, osteosarcoma, lung, prostate, breast, and colorectal cancers [13,21,23–26]. On the other
hand, a typical oncogenic or tumor suppressive miRNA may be modulated by multiple phytochemicals,
as in the case of miR-200, whose expression is regulated by at least two phytochemicals, AKBA and
quercetin [64].

The phytochemical SFN enhances the anticancer function of the conventional therapeutic drug
cisplatin by modulating miRNAs [54]. Moreover, combined treatment with two phytochemicals,
baccharin and drupanin, exerts a synergistic anticancer effect in colorectal cancer cells [74]. These results
suggest that phytochemicals possess great potential for development as effective health-promoting
and anticancer therapeutic agents. However, since the majority of studies have focused on identifying
miRNAs modulated by phytochemicals, future studies are required to explore the direct targets of
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the miRNAs and verify their associated functions. For example, although SFN, silymarin, β-SDG,
and arctigenin exert anticancer effects, and arctiin and troxerutin exert a photoprotective effect
through controlling miRNA expression, the direct targets of the miRNAs have yet to be thoroughly
investigated [54,65,69,71,75,76].
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Finally, little is known about the mechanism by which the expression levels of miRNAs are
modulated by phytochemicals. A few studies suggested that phytochemicals can bind to miRNAs
directly or affect the transcription or processing of miRNAs by regulating a third molecule [12–14].
Interestingly, genistein regulates specific microRNAs, such as miR-27a and miR-1260b, in various
cancer cells to elicit anticancer functions [58–63]. A distinct mechanism likely exists to regulate specific
microRNA expression. If so, understanding the molecular mechanism by which genistein regulates
the expression of specific miRNAs will be useful for controlling multiple types of cancers. Therefore,
more extensive studies of the molecular mechanisms responsible for regulating miRNA expression
levels are warranted.
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miRNAs microRNAs
Bax BCL2 associated X
UTR untranslated region
MMP2 matrix metalloproteinase 2
EMT epithelial-mesenchymal transition
MET mesenchymal-epithelial transition
EEF1A2 isoform A2 of eukaryotic translation elongation factor 1A
NK natural killer
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MICA major histocompatibility complex class I chain-related protein A
MICB major histocompatibility complex class I chain-related protein B
ALL acute lymphoblastic leukemia
IGFBP3 insulin-like growth factor binding protein 3
PKM2 pyruvate kinase M2
NSCLC non-small cell lung cancer
PTEN phosphatase and tensin homolog
DIM 3,3′-diindolylmethane
CSC cancer stem cell
ATG5 autophagy-related gene 5
SFN sulforaphane
Stat3 signal transducer and activator of transcription 3
IL-6R interleukin-6 receptor
PI3K phosphatidylinositol 3-kinase
AKBA acetyl-11-keto-β-boswellic acid
β-SDG β-Sitosterol-d-glucoside
NRF-1 nuclear respiratory factor-1
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Abstract: Many medicinal plant species are currently threatened in their natural habitats because of
the growing demand for phytochemicals worldwide. A sustainable alternative for the production
of bioactive plant compounds are plant biofactories based on cell cultures and organs. In addition,
plant extracts from biofactories have significant advantages over those obtained from plants, since
they are free of contamination by microorganisms, herbicides and pesticides, and they provide
more stable levels of active ingredients. In this context, we report the establishment of Satureja
khuzistanica cell cultures able to produce high amounts of rosmarinic acid (RA). The production of this
phytopharmaceutical was increased when the cultures were elicited with coronatine and scaled up to
a benchtop bioreactor. S. khuzistanica extracts enriched in RA were found to reduce the viability of
cancer cell lines, increasing the sub-G0/G1 cell population and the activity of caspase-8 in MCF-7 cells,
which suggest that S. khuzistanica extracts can induce apoptosis of MCF-7 cells through activation
of the extrinsic pathway. In addition, our findings indicate that other compounds in S. khuzistanica
extracts may act synergistically to potentiate the anticancer activity of RA.

Keywords: Satureja khuzistanica; rosmarinic acid; plant cell cultures; coronatine; MCF-7 human breast
adenocarcinoma cells; HepG2 human hepatoma cells

1. Introduction

Rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyl lactic acid, is widely
distributed in the plant kingdom, including the genera Ajuga, Agastache, Calamintha, Cedronella,
Coleus, Collimsonia, Dracocephalum, Elsholtzia, Glechoma, Hornium, Lavandula, Lycopus, Melissa, Mentha,
Micromeria, Monarda, Origanum, Perilla, Perovskia, Plectranthus, and Salvia from the Lamiaceae family,
Cerinthe, Echium, Heliotropium, Lindefolia, Lithospermum, Nonea, Symphytum, Hydrophyllum, Nemophila
and Phacelia from the Boraginaceae family, Chlorantus from the Chloranteaceae family and Blechnum
from the Blechnaceae subfamily [1,2].

Interest in RA has grown due to increasing awareness of its potential benefits for human
health as a pharmaceutical or dietary supplement. Among its promising biological activities are
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cognitive-enhancing and cardioprotective effects, cancer chemoprevention properties, and a potential
use in the treatment of Alzheimer’s disease [3].

Among diseases affecting our society, cancer is one of the most widespread and has the highest
mortality rate. Thus, the search for new antineoplastic agents and the confirmation of recently
discovered action mechanisms is a major challenge for medicine. In a review of the biological effects
of RA, Moore et al. [4] concluded that it could be used as a phytochemical to induce apoptosis.
RA can reduce survival of cancer cell lines such as HT-28 (colorectal adenocarcinoma), MCF-7 (breast
carcinoma), DU145 (prostate carcinoma) or MKN45 (gastric carcinoma), among others. In the same
pipeline, RA, which is currently exploited as an antioxidant and food additive, could also function as a
nutraceutical to enhance the effects of other chemotherapeutics.

As a result of overexploitation, many species of medicinal plants are now under threat of extinction
in their original habitats. This is the case of Satureja khuzistanica, an endangered native Iranian plant
that accumulates up to 1.81% of RA [5]. When the natural source of a phytochemical cannot meet the
market demand, or is becoming increasingly limited because of over-harvesting or habitat deterioration,
plant biotechnology can provide an alternative production system. Plant cell cultures producing
phytochemicals have several advantages over field cultivation: (a) The target product can be harvested
anywhere in the world, while maintaining strict production and quality control; (b) herbicides and
pesticides are not required; (c) problems related with climate and ecology are avoided; and (d) growth
cycles are significantly reduced compared to the intact plant, taking weeks rather than years [6].

In this scenario, our group has recently been developing a biotechnological platform for the
production of RA based on plant cell cultures of S. khuzistanica [7]. In optimal conditions, plant cells
cultured in shake flasks and elicited with 100 µM methyl jasmonate reached an RA production of
245 mg·g·DW−1 after 16 days of culture. Moreover, when the system was scaled up to a wave-mixed
bag of the BIOSTAT CultiBag RM (working volume of 1 L) running in batch mode for a growth period
of 21 days, the RA productivity was 3601 mg·L−1, which demonstrated the suitability of the process for
the commercial production of RA.

In the current work, with the aim of further improving the RA productivity of this culture
system, we studied the action of the new elicitor coronatine (COR), which acts as a molecular mimic
of the isoleucine-conjugated form of jasmonic acid [8]. We also tested the anticancer activity of
biotechnologically produced S. khuzistanica extracts by analyzing their effects on the viability of MCF-7
and HepG2 cancer-derived cell lines, as well as the cell cycle and caspase activity of MCF-7 cells.

2. Results and Discussion

2.1. Effect of Coronatine on a Small Scale

Elicitation with COR has been shown to have a positive impact on intracellular taxane accumulation
in in vitro cultures of Taxus spp. [9]. However, the eliciting effects of COR on metabolite production
depend on the concentration used and time of exposure, the plant species and cell line.

To optimize the growth capacity of the S. khuzistanica cell suspension cultures, a starting packed
cell volume (PCV) of 10% was prepared under previously established optimal conditions [7]. As shown
in Figure 1A, after more than a week in the lag phase (until day 11), growth measured as cell fresh
weight (CFW) shifted to the exponential phase, which lasted until day 16. Thereafter, a slight increase
of CFW was observed and at day 18 the cultures entered the stationary phase, reaching a final biomass
of 339.5 g·L−1 in control conditions.
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addition of COR on day 14. A similar effect was reported for methyl jasmonate (MeJA) in the same 
cell line [7], but the reduction in biomass was considerably less (1%) compared to COR (nearly 10%), 
indicating the latter is more toxic. These results differ from those obtained with Taxus cell cultures, 
in which COR was more effective than MeJA as an inducer of taxol production without significantly 
affecting the growth capacity of the cultures [10]. 

The time course of growth measured as cell dry weight (CDW) was very similar to that of the 
CFW. The lag phase also lasted until day 11 and the CDW significantly decreased in the COR-treated 
cultures compared to the control during the exponential growth phase, being significantly lower at 
the end of the culture period (Figure 1B). Thus, whether measured by CFW or CDW, the growth 
capacity of S. khuzistanica cell suspension cultures was significantly reduced by the elicitor. 

A comparison of the time course of growth measured as CFW and CDW (Figure 1A,B) with 
previous growth curves obtained by Khojasteh et al. [7] with the same S. khuzistanica cell culture 
revealed that the cell line growth capacity had changed over time and after subculturing, even in 
control conditions. Differences in growth between different subcultures could be attributed to small 
variations in the culture conditions and the inherent changes associated with the culture age [11–13]. 
In this context, our group has recently demonstrated that epigenetic modifications appear in cell lines 
with successive subcultures, which can affect not only the growth capacity but also secondary 
metabolite production [14]. This could also have occurred in our S. khuzistanica cell line, although an 
epigenetic study of the degree of DNA methylation is required to prove this hypothesis. 

Cells absorb nutrients from the medium, including the macro- and microelements that are added 
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continued to be slight (Figure 1C). This difference was probably due to the higher consumption of 
medium salts in control cultures and the lower growth capacities of the treated cultures. In other 
words, the increase in CFW and CDW in control cultures inversely correlated with nitrate 
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Figure 1. Time course of changes in cell fresh weight (CFW) (A), cell dry weight (CDW) (B) expressed
as g·L−1, conductivity (C) and pH (D), over a growth period of 24 days. Each result is the average of
3 replicates ± SD.

The growth capacity of the suspension cultures was significantly reduced (p < 0.05) by the addition
of COR on day 14. A similar effect was reported for methyl jasmonate (MeJA) in the same cell line [7],
but the reduction in biomass was considerably less (1%) compared to COR (nearly 10%), indicating the
latter is more toxic. These results differ from those obtained with Taxus cell cultures, in which COR
was more effective than MeJA as an inducer of taxol production without significantly affecting the
growth capacity of the cultures [10].

The time course of growth measured as cell dry weight (CDW) was very similar to that of the
CFW. The lag phase also lasted until day 11 and the CDW significantly decreased in the COR-treated
cultures compared to the control during the exponential growth phase, being significantly lower at the
end of the culture period (Figure 1B). Thus, whether measured by CFW or CDW, the growth capacity
of S. khuzistanica cell suspension cultures was significantly reduced by the elicitor.

A comparison of the time course of growth measured as CFW and CDW (Figure 1A,B) with
previous growth curves obtained by Khojasteh et al. [7] with the same S. khuzistanica cell culture
revealed that the cell line growth capacity had changed over time and after subculturing, even in
control conditions. Differences in growth between different subcultures could be attributed to small
variations in the culture conditions and the inherent changes associated with the culture age [11–13].
In this context, our group has recently demonstrated that epigenetic modifications appear in cell
lines with successive subcultures, which can affect not only the growth capacity but also secondary
metabolite production [14]. This could also have occurred in our S. khuzistanica cell line, although an
epigenetic study of the degree of DNA methylation is required to prove this hypothesis.

Cells absorb nutrients from the medium, including the macro- and microelements that are added
as ions/salts. Thus, when cells grow, the concentration of ions decreases, which in turn reduces the
medium conductivity [15]. In our study, the conductivity decreased continuously throughout the
experiment. Under the control conditions it dropped significantly at day 16 (exponential growth phase),
whereas in the COR-treated suspension cultures the decline on this day and thereafter continued to be
slight (Figure 1C). This difference was probably due to the higher consumption of medium salts in
control cultures and the lower growth capacities of the treated cultures. In other words, the increase in
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CFW and CDW in control cultures inversely correlated with nitrate consumption and the decrease
in conductivity.

The cell suspension cultures were initiated at a pH of 5.8, which dropped to 4.9 at day 7, possibly
as a result of the high uptake of ammonium. When the exponential growth phase began, the pH
started to increase again, probably due to the nitrate uptake. COR had a clear effect on the pH, which
increased after the day of elicitation (day 14). The pH then decreased gradually until day 21, before
increasing again when the cells entered the death phase (Figure 1C).

The specific production of RA in S. khuzistanica suspension cultures was determined every two
days throughout the experiment and expressed as mg·g·CDW−1 and in mg·L−1. The presence of RA was
confirmed in all the S. khuzistanica methanolic extracts, as shown in Supplementary Figure S1, which
depicts the corresponding UV chromatogram (330 nm) with a main peak for RA at a retention time of
16 min. In control conditions (untreated cells), the specific production of RA increased throughout the
culture period, reaching a final content of 164 mg·g·CDW−1 (Table 1). The addition of COR significantly
enhanced the accumulation of RA (Table 1). In the treated cells, the RA production reached a maximum
of nearly 221 mg·g·CDW−1 between days 4 and 10 after elicitation. At day 18 (96 h after elicitation), the
RA content was about 1.5-fold higher than in the control cells.

The RA production of the biotechnological system was also expressed as mg·L−1 of culture volume
(Table 1), which takes into consideration the biomass-producing capacity of the system, unlike when
expressed as mg·g·CDW−1. As COR significantly reduced the CDW, the productivity of RA also
decreased significantly after the elicitation (Table 1). However, at day 21 (168 h after elicitation), the
RA production levels of COR-treated cells started to overtake those of the control cells, reaching more
than 2600 mg·L−1 after 240 h, which was significantly (p > 0.05) higher than the control.

In previous experiments [7], MeJA elicitation of cells resulted in a maximum RA production
of about 3858 mg·L−1 at day 16, whereas the maximum production with COR was reached at day
24 (Table 1). In the study by Khojasteh et al. [7], production in control conditions peaked at day 14
(1436 mg·L−1), compared to day 24 (2221 mg·L−1) in the current work, indicating that age affects the
production rate and growth course of the cell line. In contrast with studies on other plant species,
which lost the capacity to produce secondary metabolites with age, production in our S. khuzistanica
cell line did not decrease with time [13,14,16].

Table 1. Time courses of rosmarinic acid (RA) production expressed as mg·g·CDW−1 and mg·L−1 in S.
khuzistanica suspension cultures elicited with pre-optimized coronatine (COR) (1 µM), up to 10 days
after inoculation. Each result is the average of 3 replicates ± SD.

Day Specific Production (mg·g·CDW−1) Production (mg·L−1)

Control COR Control COR

0 67.1 ± 2.1 179.4 ± 3.7

2 94.6 ± 1.9 319.3 ± 3.8

4 96.5 ± 2.3 264.7 ± 4.6

7 117.3 ± 2.4 312.0 ± 4.0

11 128.4 ± 2.9 456.0 ± 4.9

14 132.5 ± 2.7 1184.2 ± 8.6

16 127.4 ± 3.1 147.3 ± 2.6 1901.8 ± 11.0 1288.5 ± 13.1

18 132.0 ± 2.1 195.5 ± 3.2 2121.3 ± 11.7 1873.8 ± 7.6

21 150.9 ± 3.2 206.2 ± 3.6 2134.0 ± 9.0 2460.8 ± 12.1

24 163.9 ± 3.5 221.6 ± 4.0 2221.8 ± 7.0 2665.6 ± 12.6
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2.2. Scaling Up the Process to a Benchtop Bioreactor

The elicitation assay was scaled up to a 2 L culture bag (CellBag). This type of power input and
bioreactor are suitable for the culture of mammalian and plant cells with a low oxygen demand [17].
The time course of the biomass production measured as CFW showed a typical growth curve with a lag
phase of 2–4 days, followed by an exponential growth phase that finished at day 14, when the culture
entered the stationary phase. Thereafter, the CFW did not increase for the remainder of the culture
period (up to day 21) (Figure 2A). A similar curve was obtained when the growth was measured
as CDW, although in this case the lag phase of the culture was not apparent (Figure 3B). In control
conditions (untreated cells), the lag phase in the bioreactor was clearly shorter than in the shake flask
experiment (Figures 1 and 2). In contrast, under elicitation, the negative effect of COR on growth
capacity was lower in the bioreactor cultures (Figures 1 and 2).

As in the shake flasks (Table 1), COR significantly increased (p > 0.05) the RA production capacity
of the bioreactor system, achieving a specific production of 338.2 mg·g·CDW−1 at day 16, which was
1.7 times higher than in control conditions (untreated cells) (Figure 3). When measured as mg·L−1 of
culture medium, the RA production pattern was similar, and from day 14 the yield was higher in the
COR-treated cultures (Figure 2). Notably, the cultures grew better in the orbitally shaken bag than in
shake flasks and the negative effects of COR on biomass production were much less apparent. This fact,
together with a high specific RA production (mg·g·CDW−1) in bioreactor conditions, resulted in yields
that were 2.3-fold higher at day 16 than in the small-scale system.
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Figure 2. Biomass measured as cell fresh weight (CFW) and dry cell weight (CRW), and rosmarinic acid
(RA) production in S. khuzistanica control and COR-elicited cultures in a benchtop bioreactor during a
growth period of 21 days. The data are the average of two replicates ± SD.

Taken as a whole, these results demonstrate the suitability of the orbitally shaken CellBag for
scaling up the suspension cultures of S. khuzistanica. Similar results have been achieved with Centella
asiatica cell cultures, where growth and centelloside production also improved at bioreactor level [18].
Comparison of biomass and RA production of the S. khuzistanica cell line obtained in the wave-mixed
and the orbitally shaken bag [7] revealed that both bioreactor systems are effective. In all cases,
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the growth rate was higher at bioreactor level than in shake flasks, as was the case for maximum
RA production (Figure 2). However, if we compare the final yield achieved in control conditions
(un-elicited cells) in both types of bioreactor, it was higher (3600 mg·L−1) in the orbitally shaken
bag than in the wave-mixed bag (3102 mg·L−1). This points to different degrees of adaptation of
the S. khuzistanica cell cultures to the two systems, but as mentioned, the two experiments were not
developed simultaneously, and as reported in other studies, the age of a cell culture can have a dramatic
effect on the system productivity [13,16].

2.3. Reduction of MCF-7 Cell Viability by S. Khuzistanica Extracts

The predominance of RA in the methanolic S. khuzistanica extract (SKE), obtained as described
in Section 3.5 (see Supplementary Figure S1), was confirmed by electrospray ionization (ESI-MS) in
positive and negative mode (Figure 3). The effect of SKE on cell viability was studied in MCF-7 and
HepG2 cells, either non-treated or incubated for 48 h with different amounts of SKE, RA (positive
control known to reduce cell viability) or vehicle (dimethyl sulfoxide, DMSO).
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Figure 3. Electrospray ionization (ESI-MS) base peak chromatogram of a rosmarinic acid (RA)-enriched
methanolic extract of S. khuzistanica cell cultures (SKE) in negative ion mode. Mass spectra were
detected in the range of m/z 100–1000. A molecular weight of 359 was assigned to [M−H]−, and 741 to
[2M−2H+Na]− of RA.

As shown in Figure 4, the use of up to 0.4% (v/v) of DMSO as a vehicle did not significantly
affect MCF-7 and HepG2 cell viability. Therefore, DMSO was selected as the solvent for subsequent
experiments at concentrations of up to 0.4%. The highest concentration of SKE assayed (0.6 mg·L−1)
significantly reduced the viability of HepG2 cells up to about 25% of the values observed in control
cells, and decreased MCF-7 cell viability to barely detectable levels. A similar cytotoxic effect on MCF-7
and HepG2 cells was observed with the highest concentration of RA used (0.2 mM). Remarkably, even
though RA content in 0.6 mg·L−1 SKE was estimated to be 0.064 mM, the biotechnologically produced
extract had a stronger effect on MCF-7 and HepG2 cell viability than 0.2 mM RA.
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Yousefzadi et al. [19] demonstrated the in vitro cytotoxicity of the essential oil of S. khuzistanica,
which reduced the cell viability of human colon adenocarcinoma (SW480), MCF7 and choriocarcinoma
(JET3) cells. This suggests that other parts of S. khuzistanica plants, in this case essential oil obtained
from leaves, which contain carvacrol as the main component but no RA, could have a similar anticancer
activity to our biotechnological extract based on S. khuzistanica cell cultures, containing RA as the
major component. More recently, Esmaeili-Mahani et al. [20] also reported cytotoxic activity of an
S. khuzistanica ethanolic extract obtained from dry leaves against the MCF-7 cell line. Unfortunately,
the authors did not determine the composition of the leaf extract, but they attributed the biological
activity to carvacrol, being the main compound of S. khuzistanica aerial parts. Both RA and carvacrol
have anti-proliferative activity, which may explain their similar biological effects, despite having a
different phytochemical composition [4,21].

2.4. Induction of MCF-7 Cell Cycle Arrest by S. Khuzistanica Extracts

Given that SKE had a stronger impact on the viability of MCF-7 cells than HepG2 cells, and based
on reports showing that RA induces cell cycle arrest in human-derived cell lines such as MCF-7 [22],
the effect of SKE on the cell cycle was studied in the latter, using flow cytometry. To this end, MCF-7
cells were incubated for up to 48 h with SKE, RA or DMSO (vehicle). As previously reported, RA
significantly increased the sub-G0/G1 cell population at 48 h post-treatment. Flow cytometry analysis
revealed that 0.6 mg·mL−1 of SKE also significantly increased the percentage of sub-G0/G1 cells both at
24 h (Figure 5A) and 48 h (Figure 5B) post-treatment, and a trend to reduce the cell fractions in the
G0/G1 and G2/M phases was found. Similarly as for cell viability, 0.6 mg·mL−1 SKE had a stronger
effect on MCF-7 cell cycle than the maximum RA concentration used (0.4 mM).
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2.5. Effect of S. Khuzistanica Extracts on Caspase Activity of MCF-7 Cells

The fact that induction of the sub-G0/G1 cell population is associated with cell apoptosis and that
RA is known to induce apoptosis in human cancer-derived cell lines [23,24] prompted us to analyze
the impact of SKE on the activity of inflammatory caspase-1 and -5, initiator caspase-2, -8 and -9, as
well as executioner caspase-6 (Figure 6).

No effect on the activity of inflammatory caspases was observed at 48 h after treatment. However,
compared to non-treated cells, SKE significantly enhanced caspase-8 initiator activity, which is known
to mediate activation of the extrinsic apoptosis pathway [25]. Although not significant, the same trend
was observed in MCF-7 cells incubated with RA. No significant effects were found on the activity of
caspase-2 and -9. Regarding executioner caspases, SKE, and to a lesser extend RA, showed a tendency
to increase the activity of caspase-6. Previous studies have reported that involvement of caspases in
apoptosis induction by RA is cell type-specific [22]. Taken together, our findings suggest that SKE
and RA may induce apoptosis of MCF-7 cells by activating the extrinsic pathway. Conceivably, ligand
binding to death receptors in the cell membrane would trigger caspase-8 dimerization and activation,
which in turn may lead to direct cleavage and activation of executioner caspases. However, SKE and
RA failed to significantly modify the activity of caspase-9, which is the initiator caspase responsible
for the intrinsic apoptosis pathway. Given that 0.6 mg·mL−1 SKE (containing 0.064 mM RA) had
a stronger effect on MCF-7 cells than 0.4 mM RA, it may be due to the anticancer activity of other
minority components of the extract, although this hypothesis would need to be confirmed by their
chemical characterization.

The activation of caspase-3 by extracts of S. khuzistanica leaves has been previously
demonstrated [20]. In the current work, this particular caspase was not studied, so we cannot
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affirm if our S. khuzistanica extract has a similar effect. As mentioned above, the plant extract is rich in
carvacrol, whereas the predominant compound in our biotechnological extract was RA.
Int. J. Mol. Sci. 2019, 20, x 9 of 14 
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Figure 6. Assay of caspase activity in MCF-7 cells treated with S. khuzistanica extracts. The activity of
inflammatory (A), initiator (B) and executioner (C) caspases was assayed in MCF-7 cells treated for 48 h
with 0.6 mg·mL−1 S. khuzistanica extract (SKE), 0.4 mM rosmarinic acid (RA) or 0.4% DMSO (vehicle).
Control cells were non-treated (NT). Each bar represents the mean ± SD of three replicates. Different
letters indicate significant differences between treatments (p < 0.05).

3. Materials and Methods

3.1. S. Khuzistanica Plant Cell Cultures

The experiment was performed using 125 mL flasks with a working volume (WV) of 20 mL and an
inoculum PCV of 10% from a week-old S. khuzistanica cell suspension obtained as previously described
by Khojasteh et al. [7]. As in the previous experiments, the culture conditions were as follows: T of
25 ◦C, 110 rpm shaking frequency and darkness. After a growth period of 14 days (near the end of
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the exponential phase), COR at a final concentration of 1 µM was added as an elicitor to the flasks.
The culture period consisted of 21 days and samples were harvested at 0, 2, 4, 7, 11, 14, 16, 18, 21, and
24 days of growth in order to determine in-process control measurements CFW, CDW, pH, conductivity,
as well as RA production. Samples were taken in triplicate and the results compared with control
conditions (without elicitation).

3.2. Benchtop Bioreactor Scale

In order to scale up the process, a 2 L CellBag (GE Healthcare Bio-Sciences AB, Uppsala, Sweden)
with a working volume of 1 L, shaken in a Khuhner orbital shaker (Birsfelden, Basel, Switzerland)
in the dark at 25 ◦C and 35–38 rpm, with a shaking diameter of 50 mm, was used. The culture was
initiated at 35 rpm and gradually the shaking was increased up to 38 rpm to obtain a good distribution
of cell biomass and oxygen transfer without foaming. The sterile airflow was 0.2 L·min−1 and the
inoculum size was 10% (w/v). In previous experiments, these conditions were determined as optimal
for the growth of the cell line and to avoid out-of-phase phenomena [7]. After 11 days of culture (near
the end of the exponential phase in these conditions), 1 µM COR was added. Samples were taken at
days 0, 4, 7, 9, 11, 14, 16, 18 and 21. The experiment was run in duplicate.

3.3. In-Process Controls

PCV, CFW, CDW, pH and conductivity were determined as previously described by
Khojasteh et al. [7]. In brief, for the PCV, 10 mL of cell suspension was transferred to 15 mL
Falcon tubes, then centrifuged at 4000 rpm for 10 min and the PCV was read in the tube. For CFW,
10 mL of the cell suspension was centrifuged at 4000 rpm, the pellet was transferred to a tube connected
to a vacuum pump for 3 min and the CFW was measured. For the CDW, frozen biomass was
freeze-dried for 24 h and the CDW of each sample was registered.

3.4. Rosmarinic Acid Extraction and Quantification

Extraction and quantification of RA from the samples of lyophilized cells and supernatants were
performed according to Georgiev et al. [26] with some modifications as described in Khojasteh et al. [7].
In brief, 20 mg of the freeze-dried cells were suspended with 9 mL methanol. The extracts were
vortexed for 2 min and incubated for 20 min in an ultrasonic bath, and then centrifuged (4000 rpm).
The supernatants were evaporated under reduced pressure (vacuum evaporator, BUCHI Corporation,
New Castle, Delaware, USA) at 40–45 ◦C, and the residue was dissolved in 1.5 mL of methanol. For cell
culture extraction, 10 mL of filtered culture medium was frozen and lyophilized. The extract was
dissolved in 5 mL of methanol, incubated for 24 h at 4 ◦C, and then filtered (0.45 µm) to remove sugars.
The methanolic extracts were passed through a 0.2 µm filter. An aliquot of 20 µL of the filtrate was
injected into the HPLC for RA analysis following the method previously described and validated
by Sahraroo et al. [27] with some modifications [7]. The HPLC column was a Spherisorb ODS-2
(5 µm) reverse phase 4.6 mm × 250 mm connected to an HPLC-UV system ((Agilent 1100, Santa Clara,
California, USA). The mobile phase A was 0.1% (v/v) formic acid solution in water and acetonitrile was
the mobile phase B. A gradient system with A and B was used as follows: (0 min) 88% A and 12% B,
(30 min) 80% A and 20% B, (45 min) 70% A and 30% B up to 60 min. Throughout the chromatography
the flow rate was 0.1 mL·min−1 and the injection volume 40 µL. For calibration, an RA standard was
used in various concentrations ranging from 0.5 to 200.0 µg·mL−1. The retention time for RA was
16 min (Supplementary Figure S1). Standard graphs were prepared by plotting concentration versus
area. Quantification was carried out from integrated peak areas of the samples using the corresponding
standard graph.

3.5. Preparation of the S. Khuzistanica Extract for Biological Assays

In order to prepare a S. khuzistanica methanolic extract enriched in RA (SKE), 10 g of CDW from a
24-old cell suspension treated with COR was distributed in Falcon tubes, each containing 100 mg of
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CDW supplemented with 40 mL of methanol. RA was extracted as described above from the tubes and
the extracts were dried in a rotary evaporator. Due to the toxicity of methanol for the biological analyses,
we utilized the minimum quantity of DMSO to dissolve the dry extract and obtain the S. khuzistanica
RA-enriched extract. An aliquot of the extract was evaporated and re-dissolved in methanol for HPLC
analyses. The final concentration of RA in the S. khuzistanica extract was 5.8 ± 0.2 mg·RA·mL−1.

3.6. Electrospray (ESI-MS) Analyses

The instrument LC/MSD-TOF (2006) (Agilent Technologies, Santa Clara, California, USA) was
utilized to detect the mass of the components of the SKE. The electrospray ionization method (ESI-MS)
was used in both positive and negative mode, at a fragmentation voltage of 215 V for the positive and
175 V for the negative mode, with a drying gas temperature of 300 ◦C, and drying gas (N2). Flow was
7.01 L·min−1, with a nebulizer pressure of 15 psi, and capillary voltages of 3.5 KV (negative) and 4 KV
(positive). The mass spectra were detected in the range of m/z 100–1000. Samples were introduced into
the source with an HPLC system (Agilent 1100, Santa Clara, California, USA), using the mixture of
H2O/CH3CN 1:1 with a flow of 200 µL·min−1.

3.7. Human Cancer-Derived Cell Lines

Human breast adenocarcinoma-derived MCF-7 (ATCC no. HTB-22) and human hepatoma-derived
HepG2 (ATCC no. HB-8065) cells were grown at 37 ◦C and 5% CO2 in Dulbecco’s Modified Eagle’s
medium (DMEM) supplemented with 2 mM glutamine, 110 mg·L−1 sodium pyruvate, 10% fetal bovine
serum, 100 IU·mL−1 penicillin and 100 µg·mL−1 streptomycin.

3.8. Cell Viability Assay

MCF-7 and HepG2 cells were seeded in 24-well plates at a density of 2× 104 cells/well. Twenty-four
hours later, different amounts of SKE, RA or vehicle (DMSO) were added to the cell cultures.
Forty-eight hours after the addition of the compounds, cell viability was determined by means of the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as previously described [28].
The cells were incubated in the presence of 0.63 mM of MTT and 18.4 mM of sodium succinate for 3 h
at 37 ◦C. Following removal of the medium, formazan was re-suspended in DMSO supplemented
with 0.57% CH3COOH and 10% sodium dodecyl sulphate. Spectrophotometric determinations were
performed at 600 nm in a Cobas Mira S analyzer (Hoffman-La Roche, Basel, Switzerland). The results
are expressed as a percentage of cell survival relative to non-treated control cells.

3.9. Cell Cycle Analysis

Analysis of the cell cycle was performed using the PI/Cell Cycle Analysis Kit (Canvax Biotech,
Córdoba, Spain). MCF-7 cells were seeded in 6-well plates at a density of 5 × 105 cells/well and left to
grow for 24 h. Afterwards, the cells were incubated in the presence of 0.15 mg·mL−1 or 0.6 mg·mL−1 of
SKE, 0.1 mM or 0.4 mM of RA or DMSO (vehicle) for 48 h. The cells were harvested, sedimented by
centrifugation (1000 rpm, 5 min), washed with ice cold PBS, centrifuged again in the same conditions
and fixed in ice cold 70% ethanol for 45 min. Cells were recovered by centrifugation, washed with PBS,
centrifuged again, re-suspended with 200 µL of staining solution containing propidium iodide and
RNase A, and incubated at 37 ◦C for 30 min in the dark. The cells were analyzed by flow cytometry
using a Gallios analyzer and Kaluza software (Beckman Coulter, Brea, CA, USA). The percentage of
cells in each phase of the cell cycle was calculated and the apoptotic cells were considered to constitute
the sub-G0/G1 cell population.

3.10. Caspase Activity Assays

Activity assays for caspase-1, -2, -5, -6, -8 and -9 were performed using the Caspase-Family
Colorimetric Substrate Set Plus kit (BioVision, Milpitas, CA, USA). Following treatment with
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0.6 mg·mL−1 of SKE, 0.4 mM RA or DMSO (vehicle) for 48 h, 5 × 106 MCF-7 cells were harvested,
sedimented by centrifugation, re-suspended in 50 µL of chilled cell lysis buffer and incubated on
ice for 10 min. After centrifugation at 10,000 g for 1 min, the supernatant was recovered to assay
the protein concentration and caspase activities. Total protein in cell extracts was assayed with
the Bradford method [29] using BSA as a standard. For each caspase activity, the reaction mixture
contained 100 µg of cell extract protein, 4.8 mM dithiothreitol and 190 µM of the corresponding caspase
p-nitroaniline conjugated substrate in a total volume of 52.5 µL. The reaction proceeded at 37 ◦C for 2 h.
Spectrophotometric determinations were performed at 30 ◦C in a Cobas Mira S analyzer (Hoffman-La
Roche, Basel, Switzerland) at a wavelength of 405 nm (caspase activity assays) and 600 nm (total
protein). The results are presented as a percentage of caspase activity relative to the control (non-treated
cells).

3.11. Statistical Analysis

The statistical analysis was performed with SPSS version 24 (IBM, Armonk, NY, USA). Data were
submitted to one-way ANOVA. Significant differences among treatments were determined with the
Scheffé post hoc test.

4. Conclusions

Taken as a whole, our results demonstrate that plant cell cultures of S. khuzistanica could constitute
a biosustainable source of RA and that COR is an effective elicitor for increasing its production, despite
negatively affecting growth in the small-scale system. We also demonstrated that when the system
was scaled up to the benchtop scale (orbitally shaken 2 L culture bag with working volume of 1 L) the
negative effect of COR on biomass production was reduced and the productivity of the biotechnological
system increased significantly. RA and even more so SKE reduced the viability of HepG2 and MCF-7
cancer cell lines. The fact that SKE increased the sub-G0/G1 cell population and enhanced caspase-8
initiator activity supports the notion that it activated the extrinsic apoptosis pathway in the MCF-7
cancer cell line.
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Abstract: Dysregulation of cellular energy metabolism is closely linked to cancer development
and progression. Calorie or glucose restriction (CR or GR) inhibits energy-dependent pathways,
including IGF-1/PI3K/Akt/mTOR, in cancer cells. However, alterations in proton dynamics and
reversal of the pH gradient across the cell membrane, which results in intracellular alkalinization
and extracellular acidification in cancer tissues, have emerged as important etiopathogenic factors.
We measured glucose, lactate, and ATP production after GR, plant-derived CR-mimetic curcumin
treatment, and curcumin plus GR in human hepatoma cells. Intracellular pH regulatory effects,
in particular, protein–protein interactions within mTOR complex-1 and its structural change, were
investigated. Curcumin treatment or GR mildly inhibited Na+/H+ exchanger-1 (NHE1). vATPase,
monocarboxylate transporter (MCT)-1, and MCT4 level. Combination treatment with curcumin and
GR further enhanced the inhibitory effects on these transporters and proton-extruding enzymes, with
intracellular pH reduction. ATP and lactate production decreased according to pH change. Modeling
of mTOR protein revealed structural changes upon treatments, and curcumin plus GR decreased
binding of Raptor and GβL to mTOR, as well as of Rag A and Rag B to Raptor. Consequently,
4EBP1 phosphorylation was decreased and cell migration and proliferation were inhibited in a
pH-dependent manner. Autophagy was increased by curcumin plus GR. In conclusion, curcumin
treatment combined with GR may be a useful supportive approach for preventing intracellular
alkalinization and cancer progression.

Keywords: hepatoma; intracellular pH; curcumin; glucose restriction; tumor suppression
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1. Introduction

Dysregulation of cellular energy metabolism, known as the Warburg effect, is closely linked
to cancer development and progression. Inhibition of enhanced glycolytic activity in cancer cells
via calorie restriction (CR) or glucose restriction (GR) is under clinical investigation as a supportive
anticancer therapy. CR inhibits energy-dependent signaling pathways, including the insulin-like
growth factor 1 (IGF-1)/phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR)
pathway, and activates AMP-dependent protein kinase (AMPK) activity [1].

Recently, alterations in proton dynamics have emerged as an important factor contributing
to the etiopathogenesis of cancer cells, and energy dysregulation is thought to be attributable to
increased intracellular pH (pHi) [2]. In fact, intracellular alkalinization and extracellular acidification
are commonly observed in malignant tumor tissues. This occurs as a result of the export of excess
intracellular lactate and protons into the extracellular space by the transmembrane monocarboxylate
transporter-4 (MCT4), coupled with the secretion of protons by Na+/H+ exchanger-1 (NHE1) or
proton-extruding enzymes, including vacuolar H+-ATPase (v-ATPase) and carbonic anhydrases.
Altered activities of transporters or enzymes in cancer cells, and reversal of the pH gradient across
the cancer cell membrane, play pivotal roles in cancer progression and metastasis [3,4]. A decrease in
the extracellular pH (pHe) stimulates angiogenesis, activates stromal cells for tumor invasion, and
impairs the immune reaction as a result of decreased cytolytic functions of T cells [5]. Resistance to
chemotherapeutics is also related to increased extracellular acidity [6]. Intracellular alkalinization has
important biological effects, and even small changes in the pHi significantly affect protein activities.
Therefore, inhibition of intracellular alkalinization is a potential anticancer approach, and various
NHE1 inhibitors, such as cariporide, are under investigation [7].

GR decreases lactate production in cancer cells [8], which suggests that energy restriction might
be an alternative approach for preventing intracellular alkalinization. GR lowers intracellular ATP
concentrations and decreases the pHi [9]. Curcumin prevents the extrusion of intracellular protons by
functioning as an NHE1 inhibitor [10]. Furthermore, the pHi affects the conformation and binding
affinity of various proteins [11].

As we have previously demonstrated that GR combined with CR-mimetic plant-derived polyphenols
has synergistic anticancer effects in malignant tumors [12], we investigated the anti-cancer effects of GR
or curcumin treatments, and especially combination treatment in terms of intracellular pH regulation
in human hepatoma cell lines because glucose metabolism is closely linked to cytosolic pH regulation.
Furthermore, protein–protein interactions within mTOR complex-1 (mTORC1) following curcumin and/or
GR treatment were studied as mTORC1 plays critical roles in cell size regulation, cell growth, and
nutrient sensing.

2. Results

2.1. Curcumin and GR Inhibit Intracellular Alkalinization and Function as NHE1 Inhibitors

Enhanced aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer cells. Because
glycolysis is closely linked to the cytosolic pH and export of H+ ions, whether curcumin and/or GR
affect the pHi was investigated in the hepatoma cell lines HepG2, Hep3B, and SNU449. The pHi in
these cell lines was decreased when cells were cultured with standard RPMI-1640 medium (11 mM
glucose) with curcumin, low glucose concentration (5.5 mM, GR), and more decreased under GR
plus curcumin as compared to standard medium (11 mM glucose) without curcumin. Treatment
effects were more prominent in HepG2 cells (Supplementary Figure S1). The pHi of HepG2 cells
grown in the standard medium was 8.15 ± 0.16, and it was significantly decreased after curcumin
administration (7.19 ± 0.05, p < 0.05), and mildly decreased under GR condition (7.73 ± 0.04, p > 0.05).
Curcumin administration under GR condition decreased the pHi to a lower normal limit (6.91 ± 0.16,
p < 0.01). Curcumin inhibited intracellular alkalinization as effectively as the NHE1 inhibitor, cariporide
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(7.25 ± 0.11, p < 0.05). However, the NHE1 activator PMA did not significantly increase the pHi
(7.89 ± 0.08, p > 0.05) (Figure 1A).
Figure 1
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Figure 1. pHi-lowering effect of curcumin and glucose restriction. (A) HepG2 cells were cultivated
with standard medium, standard medium containing 20 nM curcumin, 100 nM cariporide, or 100 nM
PMA, GR (5.5 mM), or GR containing 20 nM curcumin, then pHi was measured. The experiment
was conducted five times independently. (B) pHi imaging was performed using confocal microscopy
(400×). Bright green color and dark blue color indicate acidic and alkaline condition, respectively.
The scale bar is 50 µm. Con, standard RPMI-1640 medium; Cur, curcumin; Car, cariporide; PMA,
phorbol-12-myristate-13-acetate; GR, glucose restriction, 5.5 mM glucose medium; GR Cur, glucose
restriction plus curcumin. * p < 0.05 vs. control; ** p < 0.01 vs. control.

Fluorescence visualization of the pHi by BCECF-AM confirmed that curcumin decreased the pHi
similar to cariporide, and combination of curcumin with GR resulted in more effective pHi suppression
on fluorescent imaging (Figure 1B). However, the pHi of human dermal fibroblast cells was within the
normal range after GR plus curcumin (Supplementary Figure S2).

2.2. Curcumin and GR Inhibit Level of Proton-Extruding Proteins

To elucidate the pHi regulatory mechanisms of curcumin and GR, the effect of curcumin and
GR on the level of the proton-extruding proteins NHE1, MCTs, and v-ATPase was investigated in
HepG2 cells by immunoblotting. Protein level of NHE1 was decreased in HepG2 cells grown in
standard medium with curcumin, or GR alone, and these effects were more prominent in the GR plus
curcumin group (Figure 2). Protein level of MCT1 and MCT4 was also significantly decreased under
the treatment conditions. ATP synthase (ATP subunit alpha, ATP5A) and v-ATPase were decreased
under the same treatment conditions (Figure 2). These findings indicated that the level changes of
these proteins by curcumin and GR were correlated with pHi changes. Thus, curcumin and GR might
in part regulate pHi by modulating the level of proton-extruding proteins. Curcumin suppressed
NHE1 mRNA to the same level as cariporide. Upon treatment with PMA, the mRNA level of NHE1
was slightly increased. Combination of GR and curcumin reduced the mRNA level of NHE1 the most
significantly (Supplementary Figure S3). In contrast, AMPK and p-AMPK were markedly increased
under GR conditions (>3-fold increases, p < 0.01) (Figure 2).
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regulating pHi, and the energy regulator AMPK. HepG2 cells were cultivated under the conditions
indicated in the legend of Figure 1, and immunoblotting was performed using appropriate antibodies
to NHE1, MCT1, MCT4, ATP5A, v-ATPase1, p-AMPK, and AMPK, respectively. β-Actin was used as a
loading control. The experiment was conducted three times independently. Con, standard RPMI-1640
medium; Cur, curcumin; GR, glucose restriction, 5.5 mM glucose medium; GR Cur, glucose restriction
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2.3. Glucose Uptake and Lactate Production are Affected by pHi, and Inhibited by Curcumin and GR

Because enhanced glucose uptake and enhanced lactate formation are key features of cancer
cells, whether changes of pHi by curcumin and GR affect glucose uptake and lactate formation was
investigated in HepG2 cells. Glucose uptake was significantly decreased after treatment with curcumin,
and/or GR as NHE-1 inhibitor cariporide when compared with the control (Figure 3A). Lactate
production was mildly decreased after treatment with curcumin, cariporide, and/or GR (Figure 3B).
Therefore, glucose uptake and lactate production appear to be associated with pHi changes by curcumin
and GR, although curcumin did not produce synergic effect with GR.

2.4. Intracellular ATP is Linked to pHi Change

Next, ATP production in HepG2 cells treated with curcumin and GR was assessed. ATP production
was mildly decreased after curcumin treatment or GR alone. It was significantly further decreased after
curcumin treatment in a GR condition (Figure 4A). Confocal imaging of intracellular ATP confirmed
these results with a marked decrease in ATP, and smaller cell size after curcumin treatment in a GR
compared to cells grown in the standard medium (Figure 4B). ATP concentrations were also decreased
in Hep3B and SNU449 cells after curcumin treatment in a GR condition (Supplementary Figure S4A,B).
These findings suggested that ATP production is controlled by pHi changes due to curcumin and GR.
No significant treatment effects on ATP production were observed in human melanocytes and dermal
fibroblasts (Supplementary Figure S4C,D)
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Figure 4. Effect of curcumin and glucose restriction on ATP production. HepG2 cells were cultivated
under the conditions indicated in the legend of Figure 1, and (A) ATP production was measured.
Experiment was conducted five times independently. (B) Confocal imaging of ATP production in
HepG2 cells. High and low ATP concentrations are indicated by bright red and dark blue color,
respectively. The scale bar is 50 µm. Con, standard RPMI-1640 medium; Cur, curcumin; Car, cariporide;
PMA, phorbol-12-myristate-13-acetate; GR, glucose restriction, 5.5 mM glucose medium; GR Cur,
glucose restriction plus curcumin. * p < 0.05 vs control; ** p < 0.01 vs. control; ++ p < 0.01 vs. GR;
### p < 0.005 vs. Cur.

2.5. Curcumin and GR Induce Structural Changes in the mTOR Protein and Changes in the Binding of
mTORC1 Interacting Proteins by Affecting pHi

To compare the original structure of mTOR protein crystallized at pH 8, ionization of the
mTOR-GβL protein-binding site at pH 7 was evaluated by computational analysis using Pipeline Pilot
8.5. The pattern and total numbers of hydrogen bonds between ATP and mTOR protein were changed,
and the active binding cavity size increased from 7.08 A to 8.09 A (Figure 5A).
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Figure 5. pH-dependent structural changes and alteration of mTORC1 interaction degree according to
pHi changes induced by curcumin and glucose restriction. (A) Structural changes of the mTOR-GβL
complex at the ATP-binding site (PDB code: 4JSV) were analyzed by computational modeling using the
Pipeline Pilot 8.5. In the original structure at pH 8, the activity-site cavity size is 7.08 A, whereas at pH
7, the activity-site cavity size is 8.09 A. The ATP-binding site is indicated by yellow (pH 7) and green
(pH 8) solid lines, respectively. Green dashed lines indicate hydrogen bonds. The names of residues
involved in hydrogen bonding are indicated. (B) Using HepG2 cells, co-immunoprecipitation was used
to detect mTOR interacting proteins. The experiment was conducted three times independently. (C) For
the determination of mTOR activity, the mTOR downstream signal phosphor-4EBP1 was detected
by immunoblotting. β-Actin was used as a loading control. The experiment was conducted three
times independently. (D) Confocal imaging of autophagosomes. Cells were immunostained with
an LC3 antibody. The scale bar is 50 µm. Con, standard RPMI-1640 medium; Cur, curcumin; Car,
cariporide; PMA, phorbol-12-myristate-13-acetate; GR, glucose restriction, 5.5 mM glucose medium;
GR Cur, glucose restriction plus curcumin. * p < 0.05 vs. control.

Because GR alters energy-dependent signaling pathways, such as the IGF-1-PI3K-Akt-mTOR
pathway [1], and pHi affects the conformation and binding affinities of various proteins [11], mTOR
co-IP and Raptor co-IP were carried out. Co-IP of the mTOR protein showed a decrease in binding
of both GβL and Raptor to mTOR after curcumin and/or GR treatment as cariporide, especially GβL
binding was more significantly decreased by GR plus curcumin. However, PRAS40 binding to mTOR
was not significantly reduced (Figure 5B). Consequently, phosphorylation of eukaryotic translation
initiation factor 4E-binding protein 1 (p-4EBP1), one of the downstream targets of mTOR [13], was
decreased upon treatment with curcumin, cariporide, or GR. In accordance with the pHi pattern,
phosphorylation of 4EBP1 was the most strongly decreased by GR plus curcumin treatment (Figure 5C).
Consequently, autophagy was remarkably induced after curcumin treatment under GR condition in
both HepG2 and Hep3B cells (Figure 5D and Supplementary Figure S5A). In human dermal fibroblasts,
the treatments had no significant effects (Supplementary Figure S5B).
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2.6. GR Plus Curcumin Treatment Results in Diminished Cell Migration, Growth Inhibition, and Apoptosis

Migration and proliferation are malignant phenotypes of cancer cells. Therefore, the migration
and proliferation potential of HepG2 cells treated with curcumin and/or GR were assessed. Significantly
attenuated migration potential was observed in HepG2 cells treated with curcumin and/or GR when
compared to cells cultivated in standard medium (Figure 6A). The cell migration rate was found to
be related with pHi changes induced by curcumin and/or GR. GR plus curcumin led to a significant
reduction in cell proliferation potential of HepG2 cells. Glutamine addition in the culture media by
2 mM did not increase cell proliferation (Figure 6B). IP experiments conducted using Raptor antibody
showed that the RagA and RagB proteins did not achieve good complex with raptor under CR+Cur
condition (Figure 6C).
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Figure 6. Effect of curcumin and glucose restriction on cell migration, proliferation, and death in
HepG2 cells. (A) Transwell migration of HepG2 cells. Results were obtained from three independent
experiments, and bar graphs represent the cell number per image field (mean± SE). The experiment was
conducted five times independently. (B) Cell proliferation rates of HepG2 cells were measured using a
Cell Counting Kit-8 (CCK-8). The presence or absence of glutamine was observed. The experiment was
conducted five times independently. (C) Co-immunoprecipitation was used to detect RagA and RagB.
The experiment was conducted three times independently. (D) Bax, Bcl-2, Caspase-3 and -9, cleaved
Caspase-3 and -9 proteins were expressed by immunoblotting. Beta actin was used as an internal
control. The experiment was conducted three times independently. Con, standard RPMI-1640 medium;
Cur, curcumin; Car, cariporide; PMA, phorbol-12-myristate-13-acetate; GR, glucose restriction, 5.5 mM
glucose medium; GR Cur, glucose restriction plus curcumin. * p < 0.05 vs. control; ** p < 0.01 vs.
control; ++ p < 0.01 vs. GR; ## p < 0.01 vs. Cur.

Bax protein level was increased, and protein level of Bcl-2, a negative regulator of Bax, was
decreased with curcumin and/or GR. Caspase-3 protein level was suppressed by curcumin and/or
GR treatment, whereas cleaved caspase-3 was increased by curcumin and/or GR treatment. Cleaved
caspase-9 protein level was similar to that of cleaved caspase-3 (Figure 6D). Thus, curcumin and/or GR

154



Int. J. Mol. Sci. 2019, 20, 2375

suppressed Bcl-2 protein level and induced Bax protein level and cleavage of Caspase-3 and -9, which
indicates activation of apoptotic pathways.

3. Discussion

Reversal of the pH gradient across the cell membrane with intracellular alkalinization and
extracellular acidification is a hallmark of cancer cells. In healthy cells, the pHi is approximately 7.2
and the pHe is 7.4. In tumor cells, the pHi is >7.2, whereas the pHe decreases to 6.7–7.1 [3]. Reversal of
the pH gradient has important effects on cell physiology. Protonation or deprotonation significantly
affect the charge status of many amino acid side chains, resulting in post-translational modifications of
various proteins via phosphorylation, acetylation, and ubiquitination. It may disrupt protein–protein
binding affinities, localization of proteins on the cell membrane, and the assembly of macromolecular
subunits [14,15]. Limited increases in pHi, especially alkaline pHi, have important advantages for cell
growth [3], inhibit apoptosis [16], and enhance glycolytic enzyme activity [17]. However, acidification
of the extracellular microenvironment potentiates tumor invasion and metastasis.

Previous studies have demonstrated that intracellular alkalinization is the primary transforming
event in cancer cells. Transfection of a yeast proton-pumping ATPase into mouse NIH3T3 cells or
monkey Vero fibroblasts resulted in intracellular alkalinization with malignant transformation. Thus,
yeast ATPase gene behaves as an oncogene [18]. Another study revealed that NIH3T3 cells infected
with recombinant retroviruses expressing E7 oncogene of the human papilloma virus type 16 displayed
cytoplasmic alkalinization driven by NHE1 activation. Subsequently, glycolytic activity was increased [2].
Conversely, NHE1 inhibition diminishes tumorigenic potential [19], and acidification of the cytoplasm
leads to apoptosis [20]. Therefore, targeting proton dynamics associated with the intracellular pH gradient
has been proposed as a potential cancer prevention strategy and therapeutic approach.

This study revealed that curcumin plus GR lowered the pHi in several hepatoma cell lines as
effectively as the NHE1 inhibitor cariporide. Among the hepatoma cell lines, HepG2 cells were the
most significantly affected, although GR alone could mildly inhibit NHE1. As NHE1 activation is
energy- and Akt-dependent [21,22]. GR appears to potentiate the ability of curcumin to inhibit NHE1
synergistically, and vice versa.

The exact mechanism by which curcumin inhibits NHE1 needs to be elucidated. However, studies
have demonstrated that curcumin affects various ion channels and transporters [23] and intracellular
proton extrusion [10]. In this study, both mRNA and protein levels of NHE1 were decreased by
curcumin treatment regardless of GR. This suggests that pHi alterations might affect both transcription
and translation of various proteins, as previously reported [24]. In addition, proton-extruding enzymes,
including v-ATPase and ATP synthase, were also decreased in our study. This is consistent with a
previous report that v-ATPase can be inhibited by GR through disruption of v-ATPase assembly [9].

MCT4 regulates pHi by exporting excess lactate and protons from the cytoplasm of cancer cells.
Lactate in the extracellular space affects cancer development and progression by acidifying the cellular
microenvironment and by inducing the secretion of cytokines and growth factors needed for tumor
growth. When lactate is extruded from hypoxic cancer cells by MCT4, it can be imported into less
hypoxic cancer cells, stromal cells, or vascular endothelial cells by MCT1 as an energy metabolite [25].
Imported lactate activates hypoxia inducible factor-1 (HIF-1) through stabilization of the HIF-1α
subunit, independently of hypoxia [26]. Therefore, MCT4 and MCT1 form a lactate shuttle between
cancer cells and stromal cells (reverse Warburg effect), hypoxic cancer cells, and oxidative cancer cells
(metabolic symbiosis), as well as between hypoxic cancer cells and vascular endothelial cells [27,28].
This provides the energy required for tumor growth [29]. In this study, the protein level of both MCT1
and MCT4 was decreased by curcumin treatment in a low-glucose condition. This suggests that the
curcumin plus GR might restrain not only hypoxic cancer cells, but also oxidative cancer cells, stromal,
and vascular endothelial cells.

In this study, glucose uptake and lactate formation were decreased by curcumin plus GR. These
findings suggest that low glucose uptake and low lactate production were associated with the pHi
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changes induced by curcumin and GR. The intracellular ATP concentration was decreased by 26%
in HepG2 cells upon curcumin treatment under low-glucose condition (p < 0.01). This was a more
profound reduction than that induced by cariporide treatment. In contrast, curcumin treatment
or low-glucose condition alone induced only a mild reduction. The dynamics of intracellular ATP
concentrations appear to correlate with changes in pHi and lactate production. Although curcumin
treatment alone can inhibit ATP synthase [30], the low-glucose condition restricted the energy supply
needed for intracellular ATP synthesis (Figure 4). Finally, growth inhibition and cell death of cancer cells
was induced by treatment with curcumin under low-glucose condition, likely through a decline in ATP
synthesis and a decrease in pHi [31,32]. Therefore, curcumin plus GR might be an effective anticancer
approach by reducing the pHi. Additionally, this treatment strategy might prevent chemoresistance
because high intracellular ATP levels are associated with chemoresistance, particularly in colon cancer
cells [33].

Intriguingly, the protein levels of AMPK and p-AMPK significantly increased in the low-glucose
condition, possibly as a result of diminished glucose availability and low intracellular ATP levels.
However, it is also possible that curcumin might mildly activate AMPK [34–36]. Therefore, GR would
synergistically enhance the anticancer activity of pHi-lowering agents because GR-induced AMPK
activation enhances NHE1 inhibitor activity [37].

Next, structural changes in mTOR protein and pH-dependent protein–protein interactions required
for mTORC1 assembly were investigated using computer modeling and co-IP, respectively. It is well
known that mTOR forms a complex, especially with Raptor [38] and GβL [39]. Computer modeling
of mTOR protein showed that the mTOR structure is affected by pHi, and mTOR binding with GβL
and Raptor was significantly diminished by curcumin treatment under low-glucose condition. This
was correlated with the reduction in pHi. Consequently, downstream 4EBP1 phosphorylation was
decreased, because GβL is a positive regulator of mTOR kinase activity in conjunction with Raptor [39].
In addition, hepatoma cells were smaller, with intensely stained autophagosomes, especially under
curcumin treatment plus GR. mTOR is well known as a regulator of autophagy. mTOR basically
is an inhibitor to autophagosome formation. PI3K and AKT control mTOR, and under nutrient
starvation, mTOR induces autophagy [40,41]. Accordingly, in this study, autophagy was observed
in the starvation condition, and the addition of curcumin further enhances autophagy induction.
GR and curcumin treatment reduced the intracellular pH, which might have altered the structure of
mTOR and consequently weakened interactions with interactors such as Raptor, GβL, which together
form mTORC1.

In cancer cell metabolism, amino acids are as important as glucose as an energy source. mTORC1
plays a pivotal role in amino acid-dependent cell proliferation. Therefore, it needs to be elucidated whether
high concentrations of amino acids attenuate the anticancer effects of GR. During amino acid-dependent
mTORC1 activation, Ras-related small guanosine triphosphate (GTP)-binding proteins, RagA or RagB,
bind to RagC or RagD to form heterodimers. These heterodimers actively bind to Raptor [42], which
recruits mTORC1 to the surface of the lysosomal membrane [43]. In addition, v-ATPase is necessary for
lysosome-associated mTORC1 activation [44]. However, our data demonstrated that Raptor binding
to mTOR, RagA, and RagB, and v-ATPase protein level were all diminished after curcumin treatment
under GR. Furthermore, amino acids such as leucine (data not shown) or glutamine supplementation did
not affect cell growth. These findings imply that in clinical practice, protein restriction—e.g., through
ketogenic diet—may not be necessary.

Reducing cytoplasmic alkalinization might significantly affect the conformation of various
proteins [9], which in turn affects post-translational modifications of other proteins in a chain reaction,
leading to tumor cell death or delayed cell growth. Additionally, polymerization and remodeling of
the actin filaments that regulate cancer cell migration [4,11,45] can be inhibited. Likewise, HepG2 cell
migration was significantly inhibited by curcumin or GR, and most effectively by curcumin plus GR.
These effects were observed to be pHi-dependent.
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Curcumin has long been reported to have a problem with bioavailability such as low serum levels
and limited tissue distribution due to its poor absorption and rapid metabolism [46]. For these reasons,
various strategies are used to enhance bioavailability through innovative drug delivery systems such as
liposome, nanoparticle, phospholipid encapsulation, and developing new curcumin analogues [47–49].
Currently, products that enhance bioavailability are being sold, and it is thought curcumin products
will continue to be released in the future [49].

4. Materials and Methods

4.1. Chemicals and Antibodies

Cariporide, curcumin, and phorbol-12-myristate-13-acetate (PMA) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Antibodies against NHE1, MCT1, MCT4, ATP5A, v-ATPase,
β-actin, α-tubulin, Rag-A, Rag-B, Raptor, Caspase 3, Caspase 9, cleaved Caspase 3, and cleaved Caspase 9
were purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Antibodies against AMPK, p-AMPK,
GβL, PRAS40, and p-4EBP1 were purchased from Cell Signaling Technology (Danvers, MA, USA).

4.2. Cell Lines and Cell Culture

HepG2 and Hep3B human hepatocellular carcinoma cell lines were obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA). The HDFa normal human dermal fibroblast
line and HEMa normal human epidermal melanocyte line were obtained from the ATCC. The human
hepatoma cell line SNU449 was obtained from the Korean Cell Line Bank (Seoul, Korea). All cells were
maintained in RPMI-1640 medium (Welgene, Gyeongsan, Korea) supplemented with 10% fetal bovine
serum (FBS) (HyClon, Tauranga, New Zealand), 100 U/mL penicillin, and 100 µg/mL streptomycin
(HyClone). The cells were maintained at 37 ◦C in a 5% CO2 humidified incubator. For growing cells at
high glucose concentration, standard RPMI-1640 medium was used. For growing cells at low glucose
concentration, a mixture (1:1, v/v) of standard and glucose-free RPMI-1640 medium was used.

4.3. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated from HepG2 cells using TRIZOL Reagent (Takara, Kusatsu, Shiga, Japan)
and the RNA concentration was measured spectrophotometrically (Gen5TM) (BioTek, Winooski, VT,
USA). RNA (2 µg) was reverse-transcribed using 5× PrimeScript RT Master Mix (Takara, Japan). The
cDNA was used as a template for PCR amplification using the following thermal cycles: 95 ◦C for
5 min, 30 cycles of 95 ◦C for 30 s, 58 ◦C for 30 s, and 72 ◦C for 60 s. PCR products were analyzed on
a 1% agarose gel. PCR primer sequences were as follows: NHE1, 5′-TCT TCA CCG TCT TTG TGC
AG-3′ and 5′-CTT GTC CTT CCA GTG GTG GT-3′; GAPDH, 5′-CTC ATG ACC ACA GTC CAT GCC
ATC-3′ and 5′-CTG CTT CAC CAC CTT CTT GAT GTC-3′.

4.4. Real-Time (q)RT-PCR

RNA was extracted from cells using TRIZOL reagent (Invitrogen, Carlsbad, CA, USA) and
reverse-transcribed using random hexamers and SuperScript IV Reverse Transcriptase (Invitrogen).
cDNA was used for qPCR with TaqMan Universal Master Mix II (Applied Biosystems, Foster City,
CA, USA). Taqman primers used were: NHE1 (SLC9A1): Hs00300047_m1, GAPDH: Hs03929097_g1.
Thermal cycles were: 95 ◦C for 20 s, 40 cycles of 95 ◦C for 3 s and 60 ◦C for 30 s, and finally, 95 ◦C for
15 s, 60 ◦C for 1 min, and 95 ◦C for 15 s. Relative level was analyzed according to the comparative
cycle threshold (Ct) method and was normalized to the mRNA level of GAPDH in each sample [50].
NHE1 mRNA level was examined in triplicate and the experiment was repeated at least three times.

4.5. Immunoblotting

After harvesting cells by centrifugation, pellets were resuspended in 100 µL of lysis buffer (20 mM
HEPES, (pH 7.5), 1.5 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1 mM EGTA, 250 mM sucrose, 0.1 mM
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PMSF, 1 mM dithiothreitol, 4 µg/mL pepstatin, 4 µg/mL leupeptin, and 5 µg/mL aprotinin). After
incubation on ice for 10 min, the cells were centrifuged at 750× g at 4 ◦C for 10 min. The supernatant
was collected and centrifuged at 10,000× g for 10 min at 4 ◦C. Protein concentrations were determined
using bicinchoninic acid (Thermo Fisher Scientific, Waltham, MA, USA). Proteins were separated by
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) using 8–15% polyacrylamide
gels and then electrotransferred to methanol-treated polyvinylidene difluoride membranes. The
membranes were blocked with Tris-buffered saline with 0.1% Tween 20 (TBS-T) containing 5% fat-free
powdered milk at room temperature for 1 h. Then, they were washed twice with TBS-T and incubated
with primary antibodies at room temperature for 1 h or overnight. The membranes were washed three
times with TBS-T for 10 min and then incubated with horseradish peroxidase-conjugated secondary
antibodies at room temperature for 1 h. After thorough washing, protein bands were detected using
chemiluminogenic reagent (GE Healthcare Life Sciences, Marlborough, MA, USA).

4.6. pHi Measurement

Cells were cultured on coverslips with 10% standard RPMI-1640 medium containing 11 mM
glucose (control), RPMI-1640 containing 5.5 mM glucose (GR), standard RPMI-1640 medium with 20 nM
curcumin dissolved in dimethylsulfoxide, or low-glucose medium with curcumin. The concentration
of curcumin may vary depending on the cells and experimental conditions. Experiments were
conducted at various concentrations and changed in physiological phenomenon were observed at
20 nM. In addition, HepG2 cells were incubated with 100 nM cariporide (an NHE1 inhibitor) or 100 nM
PMA (an NHE1 activator) for 30 min. Then, the cells were washed with cold phosphate-buffered
saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2 PO4). The cells were incubated
with 1.5 mg/L of the fluorescent pH probe 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein
acetoxymethyl ester (BCECF-AM; Thermo Fisher Scientific) for 10 min. The cells were resuspended in
gradient pH calibration solution (4 mM KOH, 2 mM H3PO2, 135 mM KCl, 20 mM HEPES, 1.2 mM
CaCl2, 0.8 mM MgSO4). Read fluorescence intensity was determined by fluorescence-assisted cell
sorting using the FL-1 channel (Accuri C6 plus; BD Biosciences, Franklin Lakes, NJ, USA).

4.7. Glucose Uptake Measurement

Uptake of 2-deoxyglucose was estimated by an enzymatic NADPH-amplifying system. Briefly,
HepG2 cells were seeded into 4-well plates and incubated overnight. Then, the cells were incubated
with each culture medium at 37 ◦C for 12 h. The cells were washed three times with PBS, and lyzed
to prepare a 50-µL reaction system. Cell lysates were diluted 1:1, and HepG2 cells were diluted
1:10. After a series of reactions, samples were analyzed spectrophotometrically at excitation and
emission wavelengths of 535 nm and 587 nm, respectively. A standard curve was generated by placing
2-deoxyglucose-6-phosphate standard solutions in the wells of a culture plate that had been prepared
without cells. Cells were allowed to rest for at least 5 min before measurements.

4.8. Lactate Assay

From each well of the 24-well plates, 25 µL of medium was collected and mixed with 100 µL
of NADH solution (0.03% β-NAD in the reduced form of disodium salt in phosphate buffer) and
25 µL of pyruvate solution (22.7 mM pyruvic acid in phosphate buffer) at room temperature. NADH
consumption was quantified for 2 min by measuring the absorbance at 340 nm. The mean absorbance
change (∆A/min) was calculated for each treatment condition and was expressed as a percentage of the
level from cells (100%) induced by 500 µM NMDA. Each treatment was tested in four replicate wells,
and the experiment was repeated five to six times.

4.9. ATP Assay

Intracellular ATP was analyzed using an ATP Fluorometric Assay Kit (Abcam, Cambridge, MA,
USA), according to the manufacturer’s instructions. HepG2 cells were cultured on coverslips with
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10% standard RPMI-1640 medium containing 11 mM glucose (control), RPMI-1640 containing 5.5 mM
glucose (GR), standard RPMI-1640 medium with 20 nM curcumin dissolved in dimethylsulfoxide, or
low-glucose medium with curcumin. In addition, HepG2 cells were incubated with 100 nM cariporide,
or 100 nM PMA for 12 h. In total, 1 × 106 cells were washed twice with cold PBS and resuspended
in 100 µL of ATP assay buffer. A 50-µL volume of cell suspension (0.5 × 106 cells) was mixed with
2 µL of ATP probe. After the mixture was gently vortexed, the cells were incubated in the dark at
room temperature for 30 min and then subjected to immunofluorescence analysis using a microplate
reader (Varioskan Flash; Thermo Fisher Scientific, Waltham, MA, USA). The ATP assay protocol relies
on the phosphorylation of glycerol to generate a product that is easily quantified by fluorometry
(Ex/Em = 535/587 nm).

4.10. In Silico Analysis of mTOR Protein Structure

Structural changes of mTOR-GβL complex at the ATP-binding site (PDB code: 4JSV) [51] were
analyzed using Pipeline Pilot 8.5 (Biovia, San Diego, CA, USA). Chemistry at Harvard Macromolecular
Mechanics (CHARMm) force-field was assigned to the structure, and the Momany–Rone method [52]
was used for partial charge estimation. Parameters were set to default settings.

4.11. Co-Immunoprecipitation (-IP)

Cells were lyzed in IP lysis buffer (Thermo Fisher Scientific) on ice for 30 min. Cell lysates were
centrifuged at 10,000× g for 20 min, and the supernatant was collected. After protein quantification,
the lysates were incubated with antibodies against mTOR, Raptor, GβL, PRAS40, Rag-A, or Rag-B.
The tubes were rotated at 4 ◦C for 1 h. Then, Protein G Dynabeads (Thermo Fisher Scientific) were
added to the lysates and incubated overnight at 4 ◦C. The Dynabeads-antibody-mTOR complexes and
antibody-Raptor complexes were centrifuged at 2500× g at 4 ◦C for 30 min, and the antibody-mTOR
and antibody-Raptor complexes were eluted with elution buffer. The eluted proteins were heated at
99 ◦C for 10 min and subjected to SDS-PAGE.

4.12. Immunohistochemistry for Autophagy

Cells were cultured in 4-well slide chambers, washed twice with PBS, and fixed in a 1%
paraformaldehyde solution for 10 min. The cells were washed twice with PBS prior to permeabilization
in 0.1% Triton X-100 for 10 min. Next, the cells were blocked in blocking solution (2% BSA and 10%
horse serum in PBS) for 1 h. They were then incubated with LC3 primary antibody (1:100 dilution, Santa
Cruz Biotechnology), followed by incubation with FITC-conjugated mouse or Texas Red-conjugated
rabbit secondary antibody (Jackson ImmunoResearch Laboratories, West Grove, PA, USA). Nuclei
were counterstained with DAPI (Thermo Fisher Scientific) for 30 min. The cells were rinsed six times
with PBS to remove excess DAPI. Immunofluorescence was detected by confocal microscopy (LSM780;
Carl Zeiss, Oberkochen, Germany).

4.13. Cell Viability Assay

Cell viability was determined using a WST-8 (2-[2-methoxy-4-nitrophenyl]-3-[4-nitrophenyl]-5-
[2,4-disulfophenyl]-2H-tetrazolium) assay kit (CCK-8 assay kit; Dojindo, Kumamoto, Japan). HepG2
cells were seeded into 96-well plates (Corning Inc., Corning, NY, USA) at 5 × 103 cells/well. After
incubation for 24 h, the cells were treated with curcumin (20 nM) in 10% RPMI-1640 containing glucose
at different concentrations (11, 5.5, or 2 mM). The cells were washed twice with culture medium,
and 100 µL of CCK-8 reagent was added to each well. The plates were incubated at 37 ◦C for 2 h.
Absorbance in each well was measured at 450 nm using a microplate reader (Bio-Rad, Hercules, CA,
USA) and corrected for background. L-glutamine concentration was 2 mM.
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4.14. Cell Migration Assay

Cell migration was assayed using a modified version of the Boyden chamber method [53], which
employs microchemotaxis chambers and polycarbonate filters with a pore size of 8.0 µm. Cells were
trypsinized and suspended at 5 × 105 cells/mL in culture medium supplemented with 10% FBS. Cell
suspension (100 µL) was placed in the upper chamber, and the experimental medium (600 µL/well)
was added to the lower chamber. The chamber was incubated at 37 ◦C under 5% CO2 for 48 h. Then,
the filter was removed, and cells on the upper side of the filter were scraped off using a cotton tip. Cells
migrated to the lower side of the filter were fixed in methanol and stained with hematoxylin. Cells in
three randomly selected fields were counted at a magnification of 200× under an inverted microscope.
Each treatment was analyzed in triplicate and the experiment was repeated at least three times.

4.15. Statistical Analysis

Data are expressed as the means ± standard errors (SEs). Data for two groups were compared
using Student’s t-test. Comparisons among more than two groups were conducted by one-way analysis
of variance (ANOVA) followed by Bonferroni tests. p < 0.05 was considered significant.

5. Conclusions

In conclusion, curcumin treatment in combination with GR without calorie or protein restriction
could be a useful anticancer approach to prevent intracellular alkalinization and inhibit enhanced
glycolysis. In clinical practice, this might be a more useful chemoprevention strategy than CR or GR
diets, such as a ketogenic diet.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/10/2375/
s1. Supplementary Figure S1. pHi-lowering effect of curcumin and glucose restriction in the human hepatoma
cell lines HepG2, Hep3B, and SNU449. The experiment was conducted five times independently. Con, standard
RPMI-1640 medium; Cur, curcumin; GR, glucose restriction, 5.5 mM glucose medium; GR Cur, glucose restriction
plus curcumin. * p < 0.05 vs. control; ** p < 0.01 vs. control. Supplementary Figure S2. Effect of curcumin and
glucose restriction on the pHi in HDFa human dermal fibroblasts. The pHi is within the normal range, even after
curcumin treatment under glucose restriction condition. experiment was conducted five times independently.
The experiment was conducted five times independently. Con, standard RPMI-1640 medium; Cur, curcumin;
Car, cariporide; PMA, phorbol-12-myristate-13-acetate; GR, glucose restriction, 5.5 mM glucose medium; GR
Cur, glucose restriction plus curcumin Supplementary Figure S3. NHE1 mRNA level affected by curcumin,
cariporide, PMA, and glucose restriction conditions. NHE1 mRNA level was detected by (A,B) RT-PCR and
(C) qRT-PCR. The experiment was conducted three times independently. Con, standard RPMI-1640 medium;
Cur, curcumin; Car, cariporide; PMA, phorbol-12-myristate-13-acetate; GR, glucose restriction, 5.5 mM glucose
medium; GR Cur, glucose restriction plus curcumin. * p < 0.05 vs. control; ***** p < 0.0005 vs. control; +
p < 0.05 vs. GR. Supplementary Figure S4. Effect of curcumin and glucose restriction on ATP production in (A)
Hep3B, (B) SNU449, (C) HEMa, and (D) HDFa cells. Confocal ATP images were taken after 30-min treatment
of human melanocytes with curcumin under low-glucose condition (magnification, 400 µL). Con, standard
RPMI-1640 medium; GR Cur, glucose restriction plus curcumin. Supplementary Figure S5. Confocal imaging
of autophagosomes of (A) HepG3B and (B) HDFa cells. Cells were immunostained with an LC3 antibody. Con,
standard RPMI-1640 medium; GR Cur, glucose restriction plus curcumin
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Abbreviations

CR calorie restriction
GR glucose restriction
IGF-1 insulin-like growth factor 1
PI3K phosphoinositide 3-kinase
mTOR mammalian target of rapamycin
AMPK AMP-dependent protein kinase
pHi intracellular pH
MCT monocarboxylate transporter
NHE1 Na+/H+ exchanger-1
v-ATPase vacuolar H+-ATPase
pHe extracellular pH
mTORC1 mTOR complex-1
4EBP1 4E-binding protein 1
HIF-1 hypoxia inducible factor-1
GTP guanosine triphosphate
PMA phorbol-12-myristate-13-acetate
FBS fetal bovine serum
SDS-PAGE sodium dodecyl sulfate–polyacrylamide gel electrophoresis
TBS-T tris-buffered saline with 0.1% Tween 20
PBS phosphate-buffered saline
BCECF 2’,7’bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester
SEs standard errors
ANOVA analysis of variance
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Abstract: Ewing Sarcoma (ES) is an aggressive paediatric tumour where oxidative stress and
antioxidants play a central role in cancer therapy response. Inhibiting antioxidants expression, while
at the same time elevating intracellular reactive oxygen species (ROS) levels, have been proposed
as a valid strategy to overcome ES cancer progression. Flavonoid intake can affect free radical and
nutritional status in children receiving cancer treatment, but it is not clear if it can arrest cancer
progression. In particular, apigenin may enhance the effect of cytotoxic chemotherapy by inducing
cell growth arrest, apoptosis, and by altering the redox state of the cells. Little is known about the
use of apigenin in paediatric cancer. Recently, β3-adrenergic receptor (β3-AR) antagonism has been
proposed as a possible strategy in cancer therapy for its ability to induce apoptosis by increasing
intracellular levels of ROS. In this study we show that apigenin induces cell death in ES cells by
modulating apoptosis, but not increasing ROS content. Since ES cells are susceptible to an increased
oxidative stress to reduce cell viability, here we demonstrate that administration of β3-ARs antagonist,
SR59230A, improves the apigenin effect on cell death, identifying β3-AR as a potential discriminating
factor that could address the use of apigenin in ES.

Keywords: apigenin; β3-adrenoreceptor; Ewing Sarcoma

1. Introduction

Ewing Sarcoma (ES) is one of the most common paediatric malignant tumours, accounting for
2% of all childhood cancers [1]. In recent decades, the therapeutic choice, consisting of a multi-drug
chemotherapy regimen combined with radiotherapy and surgery, has significantly improved the
survival to 70% in localised disease, but the outcome remains poor for patients with metastatic disease
at diagnosis, occurring in approximately 25–30% of ES patients [2,3]. These cases often show resistance
to multi chemotherapeutic agents [4]. It has been observed that response to the induction of cell death
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carried out by chemotherapeutic agents is different between ES patients and cell lines, reflecting the
different levels of intracellular antioxidants and the variable ability to neutralize the action of reactive
oxygen species (ROS) [5]. ES cells show a dysfunction in oxidative phosphorylation’s activity and
a redox state imbalance due to their abnormal metabolic activity with an increased glucose uptake
and activation of accelerated glycolysis that provide the energy required by cancer cells. These cells
also show a high sensitivity to rapid changes in the intracellular redox environment. In this context a
fine regulation of ROS production and detoxification is critical for the growth or reduction of an ES
tumour. Therapeutic drugs act on the reduction of cellular antioxidant activity to promote oxidative
stress increase and induction of cell death in ES. Cellular antioxidants are differentially expressed in
ES cell lines and their levels can be associated with poor prognosis [6]. Glutathione (GSH) is one of
the cellular antioxidants whose function is important in ES cell lines. It was observed that depletion
of intracellular GSH decreases cell viability and enhances the efficacy of ROS-generating anticancer
agents such as fenretinide [5].

Nutraceutical antioxidant supplement may improve tumour response to therapy and patient
survival, leading to a long-term outcome or interference with chemo- and radiation- therapy by
reducing their effectiveness [7,8]. Among nutraceutical antioxidants, flavonoid supplementation
during cancer therapy is a controversial and questionable subject. Flavonoids have been implicated in
tumour regression by either antioxidant or prooxidant activity. A plant flavonoid naturally abundant
in vegetables and fruits is apigenin (5,7,4′-trihydroxyflavone) [9]. It is a bioactive flavonoid that shows
anti-inflammatory, antioxidant, and anticancer properties against several human-cancer cell lines,
including prostate carcinoma, colon carcinoma, breast cancer, leukemia cells, cervical carcinoma, lung
cancer, and hepatoma [10–19]. The cellular effects of apigenin are associated with cell-cycle arrest
and apoptosis induction mediated by the increase of p21 levels, regardless of the Rb status and p53
involvement [16,18,20,21], alteration of the Bax/Bcl-2 ratio, release of cytochrome C, and induction of
Apaf-1, leading to caspase activation and PARP-cleavage [15–17,21,22].

Recently, β3 adrenergic receptors (β3-ARs) became incredibly attractive in cancer biology because
of their role in reducing tumour growth and metastasis. Overexpression of β3-ARs has been associated
with cancer growth, recruitment of circulating stromal cell precursors to the tumour sites, and
enhancement of stem cell traits [23]. It has also been reported that β3-ARs stimulation exhibits dual
antioxidant properties: it directly inhibits NADPHoxidase (NADPHox) activity, which regulates ROS
production, and induces the expression of Catalase, which has a role as an endogenous antioxidant.
Moreover, it has been observed that the stimulation of β3-ARs by noradrenaline increased the
intracellular GSH levels [24].

In this study we investigated the effect of apigenin treatment on human Ewing Sarcoma cell lines,
showing the partial decrease of cell viability and induction of cell apoptosis. Interestingly, the impact
of apigenin in these cancer cells results in an improvement of the contemporaneous treatment with
β3-ARs antagonist in a synergistic effect revealing a new possible approach for ES therapy.

2. Results

2.1. Apigenin Induces Cell Death and Inhibition of ROS and Antioxidant Activity in ES Cells

In order to investigate the effect of apigenin on the human ES cells, A673 cells were exposed
to different concentrations of apigenin and the cellular viability was determined with four different
methodologies. MTT analysis, ViobilityTM Fixable Dyes and Annexin V/PI staining showed that
apigenin 50 µM decreased partially ES cell viability of about 35–39% (Figure 1A–C) and showed that
the treatment affected early apoptosis to a higher extent than late apoptosis and necrocrotic cell death
(Tables 1 and 2). Moreover, investigation of the expression and cleavage of PARP-1 enzyme confirmed
induction of the apoptotic process (Figure 1D). Furthermore, to exclude a massive toxic effect of high
dose apigenin treatment, we performed cell viability assays on healthy human peripheral lymphocytes:
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no evidence of any toxic effect was observed after apigenin treatment (Figure 1E). Altogether, these
results demonstrated that apigenin 50 µM reduced ES cell viability by activating the apoptotic pathway.
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24 h of treatment with apigenin (10-20-50 µM); (B) Percentage of live cells after ViobilityTM Fixable Dyes
assay after 24 h of treatment with apigenin (10-20-50 µM); (C) The apoptotic effect of apigenin analysed
after 24 h of treatment (10-20-50 µM); (D) Western Blot analysis of PARP1 enzyme after treatment with
apigenin (10-20-50 µM) with β-actin as loading control; (E) Percentage of live cells after ViobilityTM

Fixable Dyes assay and apoptotic effect on healthy lymphocytes after 24 h of treatment with apigenin
(10-20-50 µM). Apig: apigenin, ns: not significant. p values for treatments: * p < 0.05, ** p < 0.01 and
*** p < 0.001.

Table 1. Percentage of early apoptotic, late apoptotic and dead cells expressed by the annexin V assay
in A673 cells and normal lymphocytes. APIG: apigenin.

A673 Cells
% Dead Cells

Early Late Necrotic Total

0 2.59 4.95 5.36 12.09

APIG 10 µM 6.51 8.36 8.56 23.43

APIG 20 µM 7.89 9.70 8.11 25.70

APIG 50 µM 19.00 16.3 3.68 38.68

Lymphocytes

0 4.26 1.35 2.02 7.63

APIG 10 µM 5.66 2.42 2.28 10.36

APIG 20 µM 5.74 2.23 2.05 10.02

APIG 50 µM 7.04 3.22 7.01 17.27
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Table 2. Percentage of live cells expressed by the ViobilityTM Fixable Dyes assay in A673 cells and
normal lymphocytes. APIG: apigenin.

A673 Cells % Live Cells

0 87.20

APIG 10 µM 78.88

APIG 20 µM 76.90

APIG 50 µM 65.90

Lymphocytes

0 92.70

APIG 10 µM 92.14

APIG 20 µM 93.41

APIG 50 µM 81.95

The expression levels of antioxidants were examined upon treatment with apigenin at different
concentrations 10-20-50 µM after 24 h. Apigenin treatment in A673 cells displayed a significantly
lower amount of protein levels of all antioxidants examined, superoxide dismutase 2 (SOD2),
Catalase, Thioredoxin, sirtuin-1 (SIRT1), thioredoxin interacting protein TXNIP (VDUP-1), glutathione
S-transferase Mu4 (GSTM4), and nuclear factor erythroid 2-related factor 2 (Nrf2) (Figure 2A).
The analysis of various ROS species levels measured at different times showed that the amount of
most of ROS species decreased at the highest dose of apigenin (50 µM) after 24 h of treatment when it
inhibits the expression of the most antioxidant proteins examined. Also, the amount of peroxide levels
decreased after 6h of treatment (Figure 2B–D). Results indicated that apigenin partially reduced ES cell
viability principally by inducing cell apoptosis.
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of treatment (1-6-24 h) on oxygen reactive species production (ROS) with MitoSOXTM Red assay.
(C) Effect of apigenin 50 µM after different times of treatment (1-6-24 h) on peroxide levels with
Amplex® Red Hydrogen Peroxidase Assay Kit (D) Effect of apigenin 50 µM after different times of
treatment (1-6-24 h) on oxygen reactive species production (ROS) with DCFDA assay. ns: not significant.
P values for treatments: ** p < 0.01, and *** p < 0.001.

2.2. Apigenin Controls ROS Levels by Activation of UCP2 and GSH Accumulation

Recently, it has been reported that a role of β3-adrenoreceptors in ROS balancing both in
melanoma cells and in glioma cells, respectively controlling Uncoupling Protein 2 (UCP2) and
glutathione levels [25]. In order to elucidate the mechanism by which apigenin reduced ROS levels,
expression of UCP2 and GSH contents were analysed upon different time and doses of apigenin
treatment. Results indicated that apigenin induced UCP2 protein expression and increased GSH
levels after 24 h of treatment (Figure 3A,B), thus causing ROS levels decrease. Moreover, here we
demonstrated the expression of β3-ARs in mitochondria of ES cells as it has been previously reported
in melanoma cells [25] (Figure 3C). To address the involvement of β3-AR receptor in controlling ROS
levels in ES cells, we used the selective antagonist of β3-AR, SR59230A. We showed an increase of
mitochondrial ROS levels and an inhibition of GSH amount after 24h of treatment with SR59230A
(Figure 3D). Interestingly, SR59230A inhibited the UCP2 expression in accord with previous data
reported in melanoma cells (Figure 3E) [25]. These results indicate that the treatment with SR59230A
could improve the effects of apigenin action by increasing ROS mitochondrial levels. Therefore, we
tested the impact of the administration of apigenin and/or SR59230A (10 µM) on the survival of A673
cells (Figure 3F). Results clearly indicate that double treatment reduced cell viability with a higher
extent respect to single treatments confirming the synergistic effect of both drug usage.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 15 
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as loading control; (B) Measurement of reduced glutathione levels (GSH) after 24 h of treatment with
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apigenin; (C) WB analysis of β3-AR on mitochondria proteins; (D) Mitochondria mtROS measurement
after treatment with β3-AR antagonist, SR59230A, at the concentration of 10 µM and measurement
of GSH levels at the same time and concentration of SR59230A; (E) WB analysis of UCP2 expression
after treatment with β3-AR antagonist SR59230A with β-actin as loading control; (F) MTT survival
experiment with double treatment with SR59230A (10 µM) and apigenin (50 µM). SR10: SR59230A
10 µM, Apig50: apigenin 50 µM, ns: not significant. P values for treatments: ** p < 0.01 and *** p < 0.001.

2.3. The Agonism of β3-AR Reproduces the Effect of Apigenin

Even if β3-AR antagonism increased the levels of ROS, apigenin treatment did not increase β3-AR
expression in A673 cells (Figure 4A), and so therefore we hypothesised that apigenin could work as
β3-AR agonist. To address this question, we analysed the expression of UCP2 and the GSH production
under the agonism of β3-AR with BRL37344 (10 µM), and we observed an increased expression of
the protein and production of GSH comparable to the treatment with apigenin 50 µM (Figure 4B,C).
Moreover, we observed that the expression of antioxidant levels was decreased after 24 h of treatment
with BRL37344, and the same reduction was observed with apigenin treatment (Figure 4D). In addition,
results clearly indicated that the agonism of β3-AR dramatically decreased ROS levels after 24 h of
treatment in the same way as the apigenin treatment (Figure 4E).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 15 
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played by the residues involved in the binding of β-ARs agonists/antagonists with the receptor, i.e., 
D117, F309, and N332. In particular, the 7-OH moiety of apigenin established two H-bond 
interactions with the side chains of D117 and N331, acting as a donor and acceptor, respectively. 
Moreover, the chromone core (i.e., the moiety formed by A+B in Figure 4A) of the ligand is 
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Figure 4. (A) Western Blot analysis of β3-AR expression after 24 h of treatment with apigenin (10-20-50
µM) with β-actin as loading control; (B) WB analysis of UCP2′s expression under treatment with
β3-AR’s agonist, BRL37344 (10 µM) and apigenin (50 µM); (C)Measurement of GSH levels after 24 h
of treatment with BRL37344 (10 µM) and apigenin (50 µM); (D) WB analysis of antioxidants SOD2,
SIRT1, Nrf2, GSTM4, Catalase, Thioredoxin, TXNIP after 24 h of treatment with BRL37344 (10 µM)
and apigenin (50 µM) with β-actin as loading control; (E) Mitochondrial mtROS measurement after
treatment with BRL37344 (10 µM) and apigenin (50 µM) for 24 h. Brl10: BRL37344 10 µM, Apig50:
apigenin 50 µM. p values for treatments: ** p < 0.01, and *** p < 0.001.
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2.4. Apigenin Could Be a β3-AR Agonist

To support the hypothesis on the β3-AR agonist profile of apigenin, in silico studies were
performed and the ability of the ligand to bind the receptor was evaluated using two homology-built
models (HM1 and HM2) based on the crystal structures of turkey β1-AR (pdb code 2Y03) [26] and
human β2-AR (pdb code 3PDS) [27] as single template. The templates were chosen according to their
sequence homology (55% and 42% for 2Y03 and 3PDS, respectively) as well as to their activation
state. Indeed, agonist-bound templates were chosen basing on the putative agonist activity shown by
apigenin in the biological assays.

The conformational changes within the HMs induced upon ligand (apigenin) binding were
evaluated by means of the induced fit docking procedure in order to allow both the receptor and the
ligand to freely move during docking. The best protein-ligand complex (poses, one for each homology
HM1 and HM2 models) resulting from this procedure were selected basing on the IFD scored values
and binding energies estimated by applying the MM-GBSA method [28].

Insights into the binding mode of apigenin with the two modelled targets revealed a key role
played by the residues involved in the binding of β-ARs agonists/antagonists with the receptor, i.e.,
D117, F309, and N332. In particular, the 7-OH moiety of apigenin established two H-bond interactions
with the side chains of D117 and N331, acting as a donor and acceptor, respectively. Moreover,
the chromone core (i.e., the moiety formed by A+B in Figure 4A) of the ligand is sandwiched by
F309 and V118, forming π-π and π-alkyl interactions. Other common interactions are a T-shaped π-π
stacking engaged by the phenyl ring of apigenin (C in Figure 5A) and the side chain of F198 as well
as a H-bond formed by the hydroxyl group in position 4′ and the guanidinium group of the R315
side chain. The outcomes of the in silico study substantiate the binding of apigenin to the β3-AR and
support the findings of the biological assays.
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As further proof, an analysis of the second messenger cyclic AMP (cAMP) levels was performed
showing increased cAMP levels in the presence of BRL37344 and in the same way with apigenin 50 µM
after 30 min of exposition, confirming that apigenin could act as β3-AR agonist (Figure 5B).

3. Discussion

The fine regulation of ROS production and detoxification is fundamental for the growth or
reduction of a Ewing Sarcoma tumour. Therapeutic drugs that act on the reduction of cellular
antioxidant activity, promote oxidative stress increase, and induction of cell death in ES. In this
context, an antioxidant-inhibiting strategy has been evaluated in order to enhance the efficacy of some
chemotherapeutics used in the standard treatment of ES such as doxorubicin and etoposide, which
increase generation of ROS and oxidative stress in mitochondria [29]. In this study we demonstrated
that apigenin induces partial cell death by activating the apoptotic pathway without increasing
mitochondrial ROS production, which conversely is observed by administration of β3-AR antagonist.

Therapeutic strategies that are aimed to disrupt the redox homeostasis with bioactive nutrients of
malignant cells of ES is constantly under debate. Unfortunately, despite the great interest, there is no
consistent data regarding the use of apigenin and other flavonoids in humans as an anticancer therapy.
Inconsistent reporting and study design for the investigation of flavonoids in both epidemiologic
and intervention trials have significantly prevented development of clear recommendations about
the intake of flavonoids to support or promote human health [30]. Apigenin has been reported to
induce apoptosis in HepG2 cells by inhibiting Catalase activity and enhancing the expression of high
levels of ROS, as well as preventing hepatocellular carcinogenesis via decreasing oxidative stress [31].
Flavonoids used in clinical practice may not confirm data of preclinical efficacy due to low/moderate
anti-cancer activity when used alone at human physiological dosages [32–34]. Furthermore, usage at
higher dosages has no known safety profile, with the possibility of unacceptable toxicities. Transition
ions, as Cu2+ and Fe2+ present in biological systems, can affect the pro-oxidant activity of flavonoids,
leading to inhibition of mitochondrial breathing. This activity of natural antioxidant plays an important
role in their selective cytotoxicity toward cancer cells that contain more copper than normal cells [35–38].

Here we demonstrated that apigenin inhibits the expression of antioxidant proteins such as SOD2,
Catalase, SIRT1, GSTM4, TXNIP, Thioredon1, and Nrf2, but increased the level of UCP2 and GSH which
conversely are strongly inhibited by β3-AR antagonism. UCPs have been related to ROS production
for the first time in 1997 in experiments where GDP, an inhibitor of UCP1, caused an increase of ROS
production. Subsequent studies demonstrated that superoxide directly activates UCPs, leading to
negative feedback controlling both ROS production and UCPs levels [39,40].

The β3-ARs antioxidant activity could be mediated by UCP2 protein expression that could work
as a guardian for the redox homeostasis in ES cells. The redox homeostasis of cells is balanced by
ROS generation and ROS quenching capacity. Undoubtedly, an imbalance in favor of increased ROS
production within the cellular microenvironment by disruption of UCP2 signalling, and by inhibiting
β3-ARs, can lead to excessive oxidative stress resulting in massive cell death.

The link between β3-ARs and UCP2 has been well described in white and brown adipocytes.
Selective pharmacological β3-ARs stimulation has been shown to affect adipose tissue morphology
and metabolism. The activity of CL-316,243, a potent and highly selective β3-ARs agonist [41] leads to
improved thermogenesis in brown adipose tissue (BAT), lipolysis in white adipose tissue (WAT), and an
acute decrease in food consumption [42,43]. Thermogenesis in BAT is mediated by activation by UCP1.
β3-ARs agonists reduce fat stores, improved obesity-induced insulin resistance and increased brown
adipocytes content in WAT tissue [44,45]. It is well known that β3-ARs control thermogenesis through
activation of UCPs, in particular UCP1. UCPs maintain redox state of the cells in the respiratory chain
transport. Interestingly, UCP2 has been shown to control GSH/GSSH in beta pancreatic cells [24,46].

More recently, data reported theβ3-AR antioxidant activity by showing dual antioxidant properties:
the reduction of NADPHox activity and induction of the expression of Catalase [46]. β3-ARs are
expressed and functional in the human macrophages where their antioxidant effects lead to a potent
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anti-inflammatory response and play an important role in PPARγ activation through the Erk1/2
pathway [46]. In the second paper, authors show an increased intracellular concentration of GSH
induced by GLCc protein in both U-251 MG cells and mouse astrocytes through noradrenaline-mediated
β3-adrenoreceptor activation. This study revealed the importance of β3-ARs in the maintenance of
GSH homeostasis in glioma cells by Gi/0-protein but not by Gs-protein in U-251 cells. These results
indicated that the activation of intracellular signalling in response to β3-ARs stimulation may have
been required for the induction of GSH by noradrenaline [24]. Even if apigenin inhibits antioxidant
proteins, it works as β3-AR agonist, by avoiding the elevation of mitochondrial ROS useful to reach a
massive cell death in ES cells.

In this work we confirm that the inhibition of antioxidants may be strategically useful in Ewing
sarcoma therapy, and that the use of β3-ARs antagonist could be the limiting factor to reach a large
amount of cell death.

4. Materials and Methods

4.1. Materials

Human Ewing Sarcoma (ES) cells A673 were purchased from the American Type Culture
Collection (ATCC® CRL-1598 TM, Manassas, VA, USA). Dulbecco’s modified Eagle’s medium (DMEM)
high-glucose, fetal bovine serum (FBS), penicillin-streptomycin, L-glutamine, and trypsin-enzyme
were obtained from Euroclone Group (Pero, MI, Italy). Phosphate buffered saline (PBS) was
purchased from Gibco (Gaithersburg, MD, USA). Dimethylsulfoxide (DMSO), apigenin (>97%),
MTT (3-[4,5-dymethilthiazol-2-yl-]-2,5-diphenyltetrazolium bromide; thiazol blue) assay, BRL37344
and SR59230A were obtained from Sigma-Aldrich (St. Louis, MO, USA). Precast gels, PVDF membranes,
Milk Blotting-Grade Blocker, and ECL, HRP Chemiluminescent Substrate Reagent kit were obtained
from Biorad® (Hercules, CA, USA); Tween®20 was obtained from Sigma-Aldrich. The primary
antibodies used include the following: β3-adrenergic receptor (ab-77588), Catalase (ab-16731) and
glutathione S-transferase Mu4 (GSTM4) from Abcam (Cambridge, MA, USA), superoxide dismutase-2
(SOD2) (sc-137254),β-actin (sc-1615), uncoupling protein 2 (UCP2) (sc-390189), erythroid 2-related factor
2 (Nrf2) (sc-305948) from Santa Cruz Biotechnology (Dallas, TX, USA), Thioredoxin 1 (MA5-14941) from
Invitrogen by Thermo Fisher® (Waltham, MA, USA); thioredoxin interacting protein TXNIP (VDUP-1)
from Life Technologies (Waltham, MA, USA), Sirtuin 1 from Millipore (Darmstadt, Germany); Poly
(ADP ribose) polymerase 1 (PARP-1) from Cell Signaling Technology (Beverly, MA, USA). The specific
secondary antibodies, conjugated with horseradish peroxidase (HRP), anti-rabbit, anti-goat, and
anti-mouse were purchased from Santa Cruz Biotechnology. Glutathione Fluorometric Assay Kit and
cAMP Direct ImmunoAssay Kit (Colorimetric), were purchased from Biovision® (Milpitas, CA, USA).
Mitochondria isolation kit, and Annexin V-FITC kit were obtained from Miltenyi Biotec® (Bergisch
Gladbach, Germany). For ROS detection, MitoSOXTM Red mitochondrial superoxide indicator from
Invitrogen by Thermo Fisher® was used. ViobilityTM Fixable Dyes were obtained from Miltenyi
Biotec®. H2DCFDA Assay Kit and Amplex® Red Hydrogen Peroxidase Assay Kit was obtained
from Invitrogen by Thermo Fisher®. Separation Media Lymphosep for lymphocytes separation was
obtained from Biowest (Nuaillè, France).

4.2. Cell Cultures

Human Ewing Sarcoma (ES) cells A673 were cultured in 100mm plates in DMEM high
glucose medium supplemented with 10% fetal bovine serum (FBS), 1% of L-glutamine, 1% of
penicillin-streptomycin and were maintained at 37 ◦C in a 5% CO2 humidified atmosphere incubator.
Cells were usually stored in liquid nitrogen in a freezing solution, containing 95% complete DMEM
medium and 5% DMSO and then plated in petri p100. For defrosting, the vials were rapidly brought
to 37 ◦C by immersion in the thermostat bath, then centrifuged to remove the toxic DMSO from the
cells, re-suspended in DMEM high glucose FBS 10, and appropriately plated.
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Sub-confluent cells were detached from the plate with trypsin-enzyme after aspirating the medium
and one wash with PBS to eliminate medium and serum residues. Then DMEM high glucose was
added and the cell suspension obtained was counted and plated in fresh DMEM high glucose with
appropriate dilutions. Human lymphocytes were isolated from peripheral blood with Separation
Media Lymphosep to test the effect of apigenin in healthy control cells.

4.3. Cell Treatments

A673 ES cells were plated to reach 70% confluence in complete high-glucose DMEM medium.
In order to promote cell entry into a G0 phase and better evaluate cells responsiveness to exogenous
treatments, after 24 h the medium was removed, the cells were washed in PBS solution, and finally
starved overnight with starvation medium (DMEM high glucose without FBS). The consequent
morning, cells were treated with a single dose of apigenin at the concentrations of 10 µM, 20 µM,
50 µM [47–50] and subsequently left in an incubator for 24 h, then collected for the experiments.
Apigenin was dissolved in DMSO 2.7 mg/mL to obtain a final concentration stock of 10mM, then
appropriate dilutions from the stock solution were made for treatments.

4.4. MTT Assay

Viability of tumour cells after treatment with apigenin was detected by MTT
(3-[4,5-dymethilthiazol-2-yl-]-2,5-diphenyltetrazolium bromide; thiazol blue) assay. A673 cells were
transferred into a 96-well plate at a density of 10 × 104 cells/well in 150 µL DMEM complete and were
incubated with apigenin at different concentrations (10 µM, 20 µM, 50 µM) for 24 h. A total of 10µL of
MTT was added to each well and incubated under darkness for 1h at 37 ◦C. Then, the culture medium
was removed and 150 µL of DMSO was added to each well. The intensity of absorbance was detected
at 570 nm using a spectrophotometer (PerkinElmer, Waltham, MA, USA).

4.5. Western Blot Analysis

After homogenization and protein quantification, samples (15–20 µg of total proteins) were loaded
on SDS-PAGE and subjected to Western Blot analysis. Subsequently PVDF membranes were incubated
for 1 h in slow agitation at room temperature in a blocking solution of non-fat dry milk 5% and Tween
PBS 0.1% in order to avoid the formation of unspecific ties. Membranes were then incubated with
the following primary antibodies: β3-adrenergic receptor, Catalase, Superoxide dismutase-2, TXNIP,
Thioredoxin 1, Sirtuin 1, β-actin, UCP2, Nrf2, GSTM4. The primary antibody was added generally
in a concentration of 1:1000 and incubated, in shaking, over-night at 4 ◦C. The next day membranes
were washed three times with a washing solution containing Tween PBS 0.1% in order to remove
unbound primary antibody in excess. Then, the specific secondary antibody, which was conjugated
with horseradish peroxidase (HPR), was added, in a dilution of 1:5000 in Tween PBS 0.1% and incubated
for 1 h. Chemiluminescent protein’s revelation was carried out with ECL reagent and developing
of blots was carried out by Chemidoc Imaging System (Biorad®). To verify the application of equal
amounts of protein, the intensity of the corresponding protein bands of interest was normalised based
on that of the the β-actin band for each sample.

4.6. Glutathione Fluorometric Assay Kit

For the detection of reduced glutathione (GSH) the Glutathione Fluorometric Assay Kit was
used, following the manufacturer instructions and intensity of fluorescence being analysed with
spectrophotometer (PerkinElmer).

4.7. Cell Viability Analysis

For the detection and discrimination of live and dead cells (apoptotic, necrotic) in A673 line and
lymphocytes, the ViobilityTM Fixable Dyes and Annexin V-FITC Kit were used after 24 h of treatment
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with apigenin at different concentrations, following the manufacturer’s instructions. Results were
analysed by flow cytometry MACSQuant FACS (Miltenyi Biotec®).

4.8. cAMP Direct ImmunoAssay Kit

The Adenosine 3′,5′-cyclic monophosphate (cyclic AMP, cAMP) was measured by the cAMP Direct
ImmunoAssay Kit (Colorimetric) after 30 min of treatment with BRL37344 (10 µM) and apigenin (50 µM)
following the manufacturer’s instructions and absorbance at 450 nm detected using spectrophotometer
(PerkinElmer).

4.9. ROS Analysis

For the intracellular ROS measurements, A673 cells plated into 24-wells plates at a density of
10 × 104 cells in 1 mL complete high glucose DMEM medium, were treated with apigenin as described
above. After 1-6-24 h of treatment, cells were stained with 1 µL of MitoSOXTM Red mitochondrial
superoxide indicator reagent at a concentration of 2.5 µM. After 15 min of incubation at room
temperature under darkness, cells were washed with PBS, detached with 250 µL of trypsine-enzyme,
spun at 1300 rpm for 5 min, and pellet was resuspended in 300 µL of PBS + 0.2% of FBS, and then
evaluated by flow cytometry MACSQuant FACS (Miltenyi Biotec®). For peroxide measurements
Amplex® Red Hydrogen Peroxidase Assay Kit was used, following the manufacturer’s instructions.
H2DCFDA Assay Kit was performed according to manufacturer’s instructions to measure levels of
different species of ROS.

4.10. Mitochondria Isolation

To isolate the mitochondria from A673 cells the Mitochondria Isolation Kit was used. At the
end of the kit procedure after the centrifugation at 13,000× g for 2 min at 4 ◦C, the supernatant was
aspirated and the mitochondria pellet was resuspended in an adequate buffer for further analysis.
We resuspended in lysis buffer for Western Blot analysis, and in PBS for analysis by flow cytometry
MACSQuant FACS.

4.11. In Silico Methods

The primary sequence of the human β3-AR was retrieved from UniProt. The crystal structures of
turkey β1-AR (2Y03) and human β2-AR (3PDS) were downloaded from the Protein Data Bank and
used as a template in the homology modelling procedure. Prime module of the Schrödinger suite was
used in the sequence alignment and model building procedures [51]. Then, the models were submitted
to loop refinements and the quality checked by the analysis of the Ramachandran plots and evaluation
of the QMEAN value.

The two HMs were prepared with Maestro (a of [51]) applying an energy minimization with RMSD
value of 0.30 using the OPLS-3 force field. Apigenin structure was prepared by Maestro (a of [51]) and
Macromodel (e of [51]) with the OPLS-3 force field was used for energy minimization.

The Induced Fit Docking protocol implemented in the Schrödinger package was used.
The procedure consists of a Glide SP docking, (f of [51]) followed by a Prime refinement of the
residue side chains within 5 Å and then by a final Glide XP docking of the ligand into the receptor in
the refined conformation. The docking grid were centred on the centre of mass of the bound ligands.
In the initial Glide SP docking, the vdW scaling was set to 0.7 for non-polar atoms of receptor and
0.5 those of the ligand.

The best poses for each model were submitted to MM-GBSA calculations (d of [51]) in VSGB solvent
model enabling residue flexibility 5 A around the ligand to compute the binding free energies [52,53].
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4.12. Statistical Analysis

In vitro data are presented as means ± Standard Deviation (SD) from at least three experiments.
Results were normalised versus control expression levels.

Statistical analysis was performed using Graph Pad Prism software (GraphPad, San Diego, CA,
USA) by one-way analysis of variance (ANOVA) and two-way analysis for all experiments except for
the analysis of GSH levels after SR59230A treatment, followed by Bonferroni post hoc analysis.
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Abstract: Skin provides the first defense line against the environment while preserving physiological
homeostasis. Subcutaneous tissues including fat depots that are important for maintaining skin
structure and alleviating senescence are altered during aging. This study investigated whether
theaflavin (TF) in green tea (GT) has skin rejuvenation effects. Specifically, we examined whether
high ratio of TF contents can induce the subcutaneous adipogenesis supporting skin structure by
modulating lipid metabolism. The co-fermented GT (CoF-GT) fraction containing a high level of
TF was obtained by co-fermentation with garland chrysanthemum (Chrysanthemum coronarium) and
the conventionally fermented GT (F-GT) fraction was also obtained. The effects of the CoF- or
F-GT fractions on adipogenesis were assessed using primary human subcutaneous fat cells (hSCF).
Adipogenesis was evaluated based on lipid droplet (LD) formation, as visualized by Oil Red O staining;
by analyzing of adipogenesis-related factors by real-time quantitative polyperase chain reaction
(RT-qPCR); and by measuring the concentration of adiponectin released into the culture medium by
enzyme-linked immunosorbent assay. TF-enriched CoF-GT fraction did not adversely affect hSCF cell
viability but induced their adipogenic differentiation, as evidenced by LD formation, upregulation
of adipogenesis-related genes, and adiponectin secretion. TF and TF-enriched CoF-GT fraction
promoted differentiation of hSCFs and can therefore be used as an ingredient in rejuvenating agents.

Keywords: anti-aging; adipogenesis; green tea; human subcutaneous fat cells; theaflavin

1. Introduction

Skin senescence is caused by intrinsic and extrinsic factors and leads to a loss of integrity
and physiological functions of skin [1]. A decline in skin stiffness is a characteristic of aging [2].
Intrinsic factors related to skin aging include ethnicity (e.g., pigmentation), anatomical variations,
and hormonal changes; extrinsic factors include environment (e.g., temperature and humidity),
lifestyle (e.g., smoking/nicotine intake), and exposure to sunlight (e.g., ultraviolet radiation, UVR) [3,4].
Healthy skin maintains homeostasis and metabolic functions through communication among dermal
cells such as keratinocytes, fibroblasts, melanocytes, and subcutaneous fat cells [5].

Subcutaneous adipose tissue plays an important role in skin rejuvenation [6]; subcutaneous
adipocytes interact with fibroblasts and associate with elastic fibers in the dermal layer,
thereby influencing the mechanical and structural properties of skin layers [7]. However, these fat-storing
cells become thinner with aging and show a reduction in thermogenic capacity and structural stability
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including dermal elasticity, leading to skin wrinkling [8,9]. For example, UVR-induced photo-aging
can modulate lipid metabolism, leading to reduced free fatty acid and triglyceride (TG) levels in
adipocytes [10]. Therefore, the decreased function of adipocytes influences lipid metabolism in skin
and cellular uptake of circulating free fatty acids, which can cause adverse health outcomes such as
dyslipidemia [11], metabolic syndrome [12], and insulin resistance [13].

Green tea (GT) made from Camellia sinensis leaves is a widely consumed beverage that contains
polyphenolic compounds with various health benefits [14] such as catechins, theaflavins (TFs),
and thearubigins [15], whose abundance may be altered during the fermentation process [16]. TFs are
known to influence lipid metabolism [17–19]. There are four major types of TFs—i.e., theaflavin (TF),
theaflavin-3-gallate (TF3G), theaflavin-3′-gallate (TF3′G), and theaflavin-3,3′-digallate (TFDG)—that
are produced in vitro from fresh tea leaves through oxidation by polyphenol oxidase; additionally,
tea catechins in black tea leaves are generated by horseradish peroxidase [20,21]. Black tea polyphenols
including TFs were found to have an anti-obesity effect in a mouse model [19]. Consumption of black
tea prevents fat storage in liver, lowers lipid as well as glucose levels, increases fecal excretion of
TGs, and diminishes adipose tissue [22]. TFs were also shown to block UV-induced skin cancer by
suppressing UVB-induced activator protein-1 activity via inhibition of extracellular signal-regulated
protein kinase and c-Jun NH2-terminal kinase [23]. TFDG has anti-melanogenic effects that are exerted
via downregulation of tyrosinase protein and mRNA levels [24]. Black tea extract containing TFs may
be used as a skin-lightening agent in the cosmetic industry owing to its anti-melanogenic effect [25].
Therefore, TFs have both anti-obesity and hypopigmentation-inducing properties. However, although
TFs have been linked to lipid metabolism, their effects on subcutaneous tissue—and particularly
adipocytes—are not known.

To address this issue, the present study was conducted to investigate the potential anti-aging effects
of TFs. TF-enriched co-fermented GT extract (CoF-GT) was obtained from natural GT by co-fermentation
with garland chrysanthemum (GC; Chrysanthemum coronarium) to increase TF concentration, and its
effects were evaluated in cultured human subcutaneous fat cells (hSCF).

2. Results

2.1. Preparation of Theaflavin (TF)-Enriched Fraction by Co-Fermentation with Chrysanthemum
Coronarium (GC)

Polyphenols in tea leaves are altered during the transformation from GT to black tea by fermentation
via enzymatic oxidation [21,26]. Secondary polyphenols are generated through this process, with some
changing the color of tea to brown [15,27]. To achieve high concentrations of TF, we prepared a
TF-enriched fraction by co-fermentation with GC, and changes in the components were assessed by
high-performance liquid chromatography (HPLC) (Figure 1). It was first confirmed that the four major
TFs were well-isolated and showed different retention times after injection of TFs as standard chemicals
(Figure 1A), comparing to the GT extract (Figure 1B). Then, it was verified whether CoF- or F-GT had
different composition of polyphenols. As result, the content ratio of TF was higher than that of other
components in CoF-GT (Figure 1C). F-GT fermented in a conventional manner without GC showed
similarly increases for the four major TFs, without a significant change in overall TF content (Figure 1D
and Table S1). CoF- and F-GT fractions obtained in the preceding fermentation step were used for
subsequent experiments. In addition, representative polyphenols such as TF and TFDG were also used
as a positive control for a better understanding of CoF- and F-GT effects.
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Figure 1. High-performance liquid chromatography (HPLC) analysis of theaflavins (TFs). (A) 
Standard chemicals; (B) Green tea extract; (C) co-fermented green tea (CoF-GT) fraction; (D) 
fermented green tea (F-GT) fraction. Data were monitored at 270 nm and compounds were assigned 
as follows: Peak 1, theaflavin (TF); Peak 2, theaflavin-3-gallate (TF3G); Peak 3, theaflavin-3’-gallate 
(TF3’G); and Peak 4, theaflavin-3,3’-digallate (TFDG). 

2.2. TF-Enriched Fraction Does Not Adversely Affect Human Subcutaneous Fat Cells (hSCF) Cell Viability 

We next investigated the effects of TFs on cell proliferation and viability by treating 
undifferentiated hSCF cells with CoF-GT, F-GT, TF, or TFDG at concentrations ranging from 1 to 5 
μg/mL for 24 and 72 h (Figure 2). After 24 h, cell proliferation was increased in the CoF- and F-GT 
groups relative to the TF and TFDG groups (Figure 2A). After 72 h, there was no evidence of 
cytotoxicity in any group and in some cases cell viability was slightly increased (Figure 2B). 
Therefore, polyphenols in CoF- and F-GT extracts promote hSCF cell growth and are safe for human 
cells. 

 

Figure 2. Effect of TF on human subcutaneous fat cells (hSCFs) viability. (A,B) Proliferation (A) and 
cytotoxicity (B) were evaluated 24 and 72 h after treatment, respectively. Data are presented as mean ± 
standard deviation (SD). * p < 0.05, ** p < 0.01. 

2.3. TF-Enriched Fraction Induces Lipogenesis in hSCF Cells 

Pre-adipocytes and mature adipocytes were prepared from hSCF cells. The differentiation of 
hSCF cells was confirmed by the formation of intracellular lipid droplets after 21 days of culture 

Figure 1. High-performance liquid chromatography (HPLC) analysis of theaflavins (TFs). (A) Standard
chemicals; (B) Green tea extract; (C) co-fermented green tea (CoF-GT) fraction; (D) fermented green tea
(F-GT) fraction. Data were monitored at 270 nm and compounds were assigned as follows: Peak 1,
theaflavin (TF); Peak 2, theaflavin-3-gallate (TF3G); Peak 3, theaflavin-3′-gallate (TF3′G); and Peak 4,
theaflavin-3,3′-digallate (TFDG).

2.2. TF-Enriched Fraction Does Not Adversely Affect Human Subcutaneous Fat Cells (hSCF) Cell Viability

We next investigated the effects of TFs on cell proliferation and viability by treating undifferentiated
hSCF cells with CoF-GT, F-GT, TF, or TFDG at concentrations ranging from 1 to 5 µg/mL for 24 and
72 h (Figure 2). After 24 h, cell proliferation was increased in the CoF- and F-GT groups relative to the
TF and TFDG groups (Figure 2A). After 72 h, there was no evidence of cytotoxicity in any group and in
some cases cell viability was slightly increased (Figure 2B). Therefore, polyphenols in CoF- and F-GT
extracts promote hSCF cell growth and are safe for human cells.
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Figure 2. Effect of TF on human subcutaneous fat cells (hSCFs) viability. (A,B) Proliferation (A)
and cytotoxicity (B) were evaluated 24 and 72 h after treatment, respectively. Data are presented as
mean ± standard deviation (SD). * p < 0.05, ** p < 0.01.

2.3. TF-Enriched Fraction Induces Lipogenesis in hSCF Cells

Pre-adipocytes and mature adipocytes were prepared from hSCF cells. The differentiation of hSCF
cells was confirmed by the formation of intracellular lipid droplets after 21 days of culture (Figure 3A,
lower left panel) because lipid droplet formation is closely related to adipocyte differentiation and its
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observation could be useful for monitoring the differentiation. The amount of intracellular lipid in
mature hSCF cells was evaluated by Oil Red O staining (Figure 3A,B) and by analysis of triglyceride
(TG) content (Figure 3C). We examined the effect of TF and TFDG on hSCF cell differentiation and found
that TF at concentrations ranging from 0.5 to 2 µg/mL increased the abundance of intracellular lipid
droplets (Figure 3A, the right upper panel). Similar results were obtained for TG content. TFDG had
the opposite effects in the same concentration range. Therefore, TF induces whereas TFDG inhibits
lipogenesis in hSCF cells.
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Figure 3. Effect of TF on hSCF differentiation. Pre- and mature adipocyte states of hSCFs fixed and
stained with Oil Red O (ORO) at indicated time points and examined by light microscopy. (A) Left,
untreated group; right, TF- and TFDG-treated groups used as a positive control; (B) CoF- and F-GT
treated groups. Scale bar, 200 µm; (C) TG content was determined by measuring the absorbance at 490
nm. Data are presented as mean ± SD. * p < 0.05, ** p < 0.01.

To assess the effects of CoF- and F-GT on hSCF cell differentiation, cells were treated with the
test substances at concentrations ranging from 1 to 10 µg/mL for 21 days (Figure 3B). Treatment with
10 µg/mL CoF-GT induced lipogenesis (Figure 3B, upper panel), while the same concentration of
F-GT had the opposite effect. We analyzed the content of TGs, a major component of lipid droplets,
and found that TF (2 µg/mL) and CoF-GT (10 µg/mL) increased whereas TFDG (2 µg/mL) and F-GT
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(10 µg/mL) decreased TG levels (Figure 3C). The latter effect was accompanied by inhibition of hSCF
cell differentiation. These results indicate that TF and TF-enriched fractions (e.g., CoF-GT) stimulate
the lipogenic differentiation of hSCF cells.

2.4. TF-Enriched Fraction Increases Expression of Lipogenesis-Related Genes in hSCF Cells

We measured the mRNA expression of lipogenesis-related genes including peroxisome proliferator
activated receptor gamma (PPARγ) and adiponectin (ADIPOQ) by real-time quantitative polyperase chain
reaction (RT-qPCR) (Figure 4A). The transcript level of PPARγ, a master regulator of adipogenesis,
was about six times higher in mature as compared to undifferentiated hSCFs after 21 days of
differentiation (Figure 4A, black bar). TF treatment increased PPARγ expression in a dose-dependent
manner; however, the level was decreased and reached a minimum value upon treatment with 2 µg/mL
TFDG. In the CoF-GT group, PPARγ gene expression showed a dose-dependent increase, which is in
accordance with the ORO staining results (Figure 3B). Furthermore, PPARγ expression was higher in
cells treated with 10 µg/mL CoF-GT than in those treated with 2 µg/mL TF, and was downregulated in
a dose-dependent manner in the F-GT treatment group.
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Figure 4. Changes in the expression of adipogenesis-related genes and quantitative analysis of
adiponectin release into culture medium. (A) After 21 days of hSCF differentiation, peroxisome proliferator
activated receptor gamma (PPARγ) and adiponectin (ADIPOQ) mRNA expression levels were evaluated
by real-time quantitative polyperase chain reaction (RT-qPCR); (B) Adiponectin concentration in cell
culture supernatant after 21 days of differentiation was measured by enzyme linked immunosorbent
assays (ELISA). Data are presented as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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The expression of ADIPOQ, a mature adipocyte marker [28], was four times higher in mature
as compared to undifferentiated hSCF cells (Figure 4A, white bar). ADIPOQ level was increased by
2 µg/mL TF and decreased by 2 µg/mL TFDG treatment. Overall, the changes in ADIPOQ expression
in the presence of TF and TFDG were similar to those observed for PPARγ, and were in agreement
with the histological findings.

2.5. TF-Enriched Fraction Stimulates Adiponectin Secretion in hSCFs

Adiponectin (APN) is one of the adipocyte-secreted cytokine (adipokine) that is synthesized in
LDs. The amount of APN in the culture media was higher for differentiated cells than for pre-adipocytes
(Figure 4B). APN level was increased by treatment with TF (2 µg/mL) and CoF-GT (10 µg/mL) and
reduced by TFDG (2 µg/mL) and F-GT (10 µg/mL), exhibiting a trend comparable to that of ADIPOQ
mRNA expression in the RT-qPCR analysis. These results confirm that TF and CoF-GT promote
lipogenesis in hSCF cells.

Based on the above findings, we propose the following model for the role of TFs in skin aging.
TF and TF-enriched CoF-GT fraction promotes the differentiation of hSCF cells whereas conventionally
fermented F-GT fraction has the opposite effect, as evidenced by up- and downregulation, respectively,
of PPARγ and ADIPOQ expression. The increase in adipocyte marker gene expression was accompanied
by intracellular LD formation. Therefore, TF enhances whereas TFDG inhibits hSCF differentiation.
Additionally, although TF-enriched CoF-GT stimulated adipogenic differentiation, there were no
changes in polyphenol content. Therefore, polyphenol content ratio varies according to the fermentation
conditions and is the main factor regulating hSCF differentiation. These results suggest that TF and
TF-enriched extracts stabilize skin structure by inducing subcutaneous fat production (Figure 5).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 12 
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3. Discussion

Tea is a widely consumed drink around the world that is a dietary source of bioactive compounds
with numerous health benefits [29]. Various types of tea can be produced via different manufacturing
processes, such as non-fermented (e.g., GT), semi-fermented (e.g., oolong tea), and fermented
(e.g., black tea) [30]. Fermentation or extraction modifies chemical components in tea, which can alter
their medicinal effects [30,31]. Polyphenolic compounds in tea are of particular interest due to their
antioxidant and anti-obesity activities [32,33]; indeed, many previous studies have demonstrated the
health benefits of polyphenol-enriched tea extracts [34–36]. However, few studies to date have focused
on the individual chemical components such as TF, TF3G, TF3′G, and TFDG (Figure S1), especially in
the context of lipid metabolism. Possible reasons for this limited research are as follows: (1) it is easier
to evaluate the effects of the whole extract rather than individual components; (2) effective separation
of individual components is technically challenging; and (3) fat cells are derived from visceral tissues
that benefit from reduction. In this study, we investigated the effects of TF on subcutaneous adipocytes
since these cells play an important role in lipid metabolism beneath the dermal layer and are a potential
target for anti-aging products.

Adipocytes of murine origin (e.g., 3T3-L1 and 3T3-F442A cells) have been widely used as a model
system since they can form LDs within 14 days after differentiation. However, in this study we used
hSCF cells as a model of subcutaneous fat cells despite their long period of differentiation, since they
are derived from human tissue. hSCF cells required approximately three weeks for differentiation,
which was observed at a rate of 60–80%. LDs formed in the differentiated hSCF cells, accompanied by
upregulation of lipogenesis-related gene expression (Figure 3A, left panel and Figure 4A).

The effect of CoF-GT on hSCFs differed markedly from that of conventional polyphenols.
Unlike F-GT, CoF-GT stimulated lipogenesis in hSCF cells; this effect is presumably distinct from its
anti-obesity effects such as lipid disruption or suppression of differentiation (Figure 3). The treatment
of F-GT, which increased overall polyphenol content, indicates that TF content ratio in the extract is a
critical determinant of LD formation in hSCF cells (Figure 3B, lower panel and Figure 3C).

The hSCFs used in this experiment are responsible for the structure of human skin despite being
fat-producing adipocytes, and function as brown adipose tissue to maintain thermogenesis [37–39].
As such, hSCFs are more suitable for anti-skin aging experiments than cells derived from white adipose
tissue in visceral fat, which increases with age and is a site of inflammation [40,41]. Cellular changes
caused by TF or TFDG treatment were accompanied by altered expression of lipogenesis-related genes
and adipokine release (Figure 4). In particular, increased level of PPARγ could stimulate adiponectin
with anti-aging properties through inhibiting destruction of extracellular matrix (e.g., type 1 collagen
and elastin) in skin [41,42]. The opposing effects of CoF- and F-GT on hSCF cell differentiation are due
to the ratio of TF contents. CoF-GT, which has an exceptionally high TF content, stimulates lipogenesis
and the formation of LDs (Figure 5).

4. Materials and Methods

4.1. Reagents and Materials

Fresh C. sinensis leaves were harvested between August and September 2017 in Jeju, Korea.
C. coronarium L. was purchased from a market in Kyungdong, Korea. TFs were from Wako Pure
Chemical Industries (Osaka, Japan). Acetonitrile and methanol for chromatography were from Thermo
Fisher Scientific (Waltham, MA, USA). Water for analytical high-performance liquid chromatography
(HPLC) was from Burdick and Jackson (Morris Plains, NJ, USA). Ultra-pure deionized water for
preparative HPLC (18.2 MΩ·cm) was prepared from a Direct-Q system (Merck, Darmstadt, Germany).
Dimethylsulfoxide (DMSO) and formic acid were from Sigma-Aldrich (St. Louis, MO, USA). All other
chemicals were of analytical grade or higrer.
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4.2. Production of TF-Enriched CoF-GT and Conventionally Fermented F-GT Fractions

Fresh GT and GC leaves were washed twice with deionized water and excess water was removed
by light tapping. The leaves were soaked in liquid nitrogen and then crushed into a fine powder
that was stored at −80 ◦C. CoF- and F-GT were prepared as follows. CoF-GT was fermented from
a mixture of fresh GT powder (100 g) and frozen fresh GC (50 mg). F-GT was also fermented from
frozen fresh GT powder (100 g) in a thermal jacket z-blade mixer (IKA, Staufen im Breisgau, Germany)
at 37.5 ◦C. After 3 h incubation, the mixture was extracted with 70% ethyl alcohol (v/v) for 2 h.
Solid particles/debrises were removed by passage through a 90-mesh sieve followed by a 0.22 µm pore
filter (Dow Corning, Corning, NY, USA). Filtered samples were evaporated with a Hei-VAP Rotary
Evaporator (Heidolph Instruments, Schwabach, Germany) and then powdered using a FreeZone freeze
dryer (Labconco, Kansas City, MO, USA).

4.3. HPLC Analysis of CoF- and F-GT Fractions

Each powered extract (8 g) was dissolved in a mixture of 100 mL DMSO/methanol/ethanol
(5:45:50, v/v) with 30 min sonication and then centrifuged, followed by filtration through a 0.45 µm
polytetrafluoroethylene syringe filter (Pall Corp., Port Washington, NY, USA). An 82 mL volume of
filtered sample was injected into ÄKTApurifier 10 (GE Healthcare, Stockholm, Sweden) equipped with
a 50 mL sample loop and a photo diode array detector at 275 and 365 nm. Preparative separation was
performed with an AQ-HG octadecylsilyl column (120 Å, 10 µm, 20 × 250 mm, column volume =

78.5 mL) (YMC Co., Kyoto, Japan). Gradient elution was carried out with pure water (solvent A) and
acetonitrile (solvent B). The flow rate of the mobile phase was 10 mL/min with an injection volume of
8.2 mL. All solvents were filtered, degassed, and maintained under pressure. Fractions (110 mL) were
collected after sample injection. Four fractions were prepared for each cycle and collected in separate
bottles over 10 injection cycles (Figure S2). Every fourth fraction was evaporated in a Hei-VAP Rotary
Evaporator (Heidolph Instruments), freeze dried, and stored at −20 ◦C until analysis.

4.4. Cell Culture and Differentiation

hSCF cells and subcutaneous pre-adipocyte medium were purchased from ZenBio
(Research Triangle Park, NC, USA). The cells were cultured in a humidified 5% CO2 incubator.
To induce differentiation, the cells were cultured in Dulbecco’s modified Eagle’s medium (Lonza,
Walkersville, MD, USA) containing 10% fetal bovine serum (PAA, Pasching, Austria) along with
10 µg/mL insulin, 0.5 mM 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, and 1 µM troglitazone
(all from Sigma-Aldrich) for 21 days. The medium was replaced every other day.

4.5. Cell Viability Assay

The viability of hSCF cells was measured with the EZ-Cytox assay kit (Daeil Lab Service, Seoul,
Korea) according to the manufacturer’s instructions. Briefly, cells were cultured for 7 days and treated
with various concentrations of test substance for 24 and 72 h. EZ-Cytox solution (10 µL) was added
to each well followed by incubation at 37 ◦C for 2 h. Absorbance at 450 nm was measured with a
spectrophotometer (Synergy H2; BioTek, Winooski, VT, USA). The experiment was performed in
triplicate and data are presented as the absorbance value.

4.6. Analysis of Triglyceride (TG) Content by Oil Red O (ORO) Staining

Differentiated hSCF cells were washed twice with cold phosphate-buffered saline (PBS) and fixed
with 3.7% formaldehyde (Sigma-Aldrich) for 1 h. The fixed cells were washed with 60% propylene
glycol (Sigma-Aldrich) in PBS and then stained with a working solution of Oil Red O (0.7% ORO
stock in 60% propylene glycol; Sigma-Aldrich) for 30 min. The cells were washed three times with
85% propylene glycol and rinsed with tap water. Lipid droplets (LDs) stained with ORO dye were
visualized with an IX71 microscope (Olympus, Tokyo, Japan).
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To quantify LDs, stained cells were washed with 70% ethyl alcohol (Sigma-Aldrich) and the
triglyceride (TG)-bound ORO was extracted with 4% Nonidet P-40 (Sigma-Aldrich) in isopropyl
alcohol for 20 min. The absorbance of the extract at 490 nm was measured with a spectrophotometer.

4.7. Real-Time Quantitative Plymerase Chain Reaction (RT-qPCR)

Total RNA was extracted using TRIzol reagent (Life Technologies, Carlsbad, CA, USA) according
to the manufacturer’s instructions, and cDNA was synthesized from approximately 1 µg total RNA
using a reverse transcription kit (Promega, Madison, WI, USA). The cDNA was used as a template for
RT-qPCR amplification on a 7500 Fast Real-Time PCR System (Life Technologies) using the following
TaqMan probes: peroxisome proliferator activated receptor gamma (PPARγ) (#Hs01115513_m1),
adiponectin (ADIPOQ; #Hs00605917_m1), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH;
#4352339E). Data were obtained from three independent experiments and are presented as fold change
relative to the GAPDH level in the sample.

4.8. Enzyme-Linked Immunosorbent Assay (ELISA) for Secreted Adiponectin

hSCFs were treated with various concentrations of TG, TFDG, CoF-GT, and F-GT and differentiated
for 21 days. The culture medium was collected and centrifuged at 13,000 rpm for 15 min to remove any
debris. Secreted adiponectin level was measured by ELISA using a commercial kit (Enzo Life Sciences,
Farmingdale, NY, USA) according to the manufacturer’s instructions.

4.9. Statistical Analysis

Data are presented as mean ± SD. One- or two-way ANOVA analysis of variance were used
to analyze differences between two and multiple groups, respectively. The threshold for statistical
significance was set at p < 0.05.

5. Conclusions

The results of this study demonstrate that TF and TF-enriched CoF-GT plays an important role in
hSCF cell differentiation due to different biological effects depending on cell types whereas TFDG and
conventionally fermented GT inhibits LD synthesis. Our findings suggest that with rapid fermentation
and effective trans-dermal delivery, TF and TF-enriched CoF-GT can be an effective agent for preventing
human skin aging.
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s1.
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Abstract: Rapidly developing resistance against different therapeutics is a major stumbling block
in the standardization of therapy. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL)-mediated signaling has emerged as one of the most highly and extensively studied signal
transduction cascade that induces apoptosis in cancer cells. Rapidly emerging cutting-edge research
has helped us to develop a better understanding of the signaling machinery involved in inducing
apoptotic cell death. However, excitingly, cancer cells develop resistance against TRAIL-induced
apoptosis through different modes. Loss of cell surface expression of TRAIL receptors and imbalance
of stoichiometric ratios of pro- and anti-apoptotic proteins play instrumental roles in rewiring the
machinery of cancer cells to develop resistance against TRAIL-based therapeutics. Natural products
have shown excellent potential to restore apoptosis in TRAIL-resistant cancer cell lines and in mice
xenografted with TRAIL-resistant cancer cells. Significantly refined information has previously been
added and continues to enrich the existing pool of knowledge related to the natural-product-mediated
upregulation of death receptors, rebalancing of pro- and anti-apoptotic proteins in different cancers.
In this mini review, we will set spotlight on the most recently published high-impact research related
to underlying mechanisms of TRAIL resistance and how these deregulations can be targeted by
natural products to restore TRAIL-mediated apoptosis in different cancers.

Keywords: apoptosis; cancer; death receptors; natural products; TRAIL
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1. Introduction

Cancer is a multifaceted and therapeutically challenging disease. Groundbreaking discoveries in
the past few decades have enabled us to develop a sharper understanding of intra- and inter-tumor
heterogeneity, loss of apoptosis, oncogenic overexpression, inactivation of tumor suppressors, and
deregulation of spatio-temporally controlled signal transduction cascades which play a central role
in cancer onset and progression [1–4]. Loss of apoptosis has been, and still remains, a subject of
intense discussion for basic and clinical scientists. Cutting-edge research has sequentially revealed
that the inhibition of cell death in combination with mitogenic oncogenes promoted cancer in animal
models [5]. There were some exciting developments which highlighted that many oncogenic pathways
inhibited apoptosis, whereas tumor suppressors (e.g., p53) played an instrumental role in the induction
of apoptosis [6]. More importantly, approval of BH3 (BCL-2 homology domain-3) mimetics by the
Food and Drug Administration (FDA) for the treatment of 17p-deleted CLL is a milestone in the field of
molecular therapy. Therefore, researchers have focused on the identification of pathways and proteins
that can efficiently induce apoptosis and simultaneously induce regression in xenografted mice. There
has always been a quest to identify molecules that can cause maximum damage to cancer cells while
leaving normal cells intact. In accordance with this concept, TRAIL (TNF-related apoptosis-inducing
ligand) has emerged as a scientifically approved protein that can induce apoptosis, specifically in cancer
cells. Initial findings reported by researchers were tremendously encouraging, and urged cotemporary
scientists to further dissect this intriguing and therapeutically important pathway. Consequently,
substantial excitement encompasses the premium potential of natural products to effectively restore
apoptosis in TRAIL-resistant cancers.

There are some detailed reviews about TRAIL-mediated signaling in different cancers, but we
have exclusively focused on the most recent evidence related to positive and negative regulators of
TRAIL-mediated signaling in this review. We have also summarized how different natural products
effectively restored apoptosis in TRAIL-resistant cancers. Before providing an overview of the natural
product-mediated regulation of the TRAIL-driven pathway, we will discuss some of the most important
advancements in the TRAIL-mediated signaling pathway.

2. Molecular Insights of TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Mediated Signaling

Overwhelmingly, increasing and continuously upgrading discoveries in the field of apoptotic
cell death have enabled us to develop a better knowledge of this area. Researchers have extensively
characterized two primary death-signaling cascades, the extrinsic and intrinsic pathways. When
the signaling is “switched on”, it results in the activation of downstream effector molecules for both
pathways that mediate apoptosis. Caspases belong to a group of cysteine proteases which proteolytically
process a variety of cytoplasmic and nuclear substrates [7]. The extrinsic, or death -receptor-mediated,
pathway is activated and functionalized through the binding of death ligands such as TRAIL, TNFα
(tumor necrosis factor α) and Fas ligand (FasL) to specific receptors (e.g., TRAILR1/DR4, TRAIL2/DR5,
TNFR, Fas). Ligand–receptor interaction results in the recruitment of the cytoplasmic adaptor protein
FADD (Fas-associated protein with death domain) to death domains present in the cytoplasmic
segment of the death receptor (shown in Figure 1). Death domains present in death receptors served as
recruiting modules and heterodimerized with the death domains of client proteins. FADD contains
death domains that can link the death receptor to procaspase-8 to form a death-inducing signaling
complex (DISC).

191



Int. J. Mol. Sci. 2019, 20, 2010

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 12 

 

multiple inhibitors of apoptotic proteins (IAPs): XIAP, c-IAP1, and c-IAP2. Therefore, it seems clear 

that TRAIL-mediated signaling following the activation of caspase-8 is dichotomously branched. 

Either caspase-8 can activate its downstream effector caspases or it can proteolytically process the 

Bid protein to initialize the intrinsic pathway that routes through mitochondria. It appears to be 

important that the TRAIL-induced intracellular signaling pathway is not as simple as previously 

surmised. A wealth of information points towards myriad signaling pathways which crosstalk with 

different proteins of the TRAIL-mediated signaling pathway, and play a critical role. Therefore, we 

partitioned our review into negative and positive regulators of TRAIL-mediated signaling to 

comprehensively analyze the most recent breakthroughs made in uncovering mechanisms that 

inhibit or potentiate TRAIL-triggered apoptotic cell death.  

 

Figure 1. TRAIL (TNF-related apoptosis-inducing ligand)-mediated signaling. TRAIL transduces the 

signals intracellularly through death receptors. Death-inducible signaling complex (DISC) is formed 

by the interaction of the death receptor Fas-associated protein with death domain (FADD) and 

pro-caspase-8. Formation of DISC is necessary for the activation of caspase-8. Caspase-8 activates its 

downstream effector caspase-3. However, caspase-8 may also proteolytically process Bid to initialize 

the intrinsic pathway. The intrinsic pathway is triggered following entry of truncated Bid into 

mitochondria. Cytochrome c and SMAC are released from mitochondria and an apoptosome was 

formed in the cytoplasm by the assembly of apoptotic protease activating factor (APAF), cytochrome 

c, and pro-caspase-9. The apoptosome is necessary for the activation of caspase-9 and it can further 

activate caspase-3 to induce apoptosis in cancer cells. In healthy cells, APAF is present as an 

autoinhibitory monomer. However, mitochondrial outer membrane permeabilization (MOMP ) and 

subsequent release of cytochrome c unlocks APAF. 

3. Negative Regulators of TRAIL-Mediated Signaling 
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pathway. The overexpression and stabilization of anti-apoptotic proteins is necessary to induce 

Figure 1. TRAIL (TNF-related apoptosis-inducing ligand)-mediated signaling. TRAIL transduces
the signals intracellularly through death receptors. Death-inducible signaling complex (DISC) is
formed by the interaction of the death receptor Fas-associated protein with death domain (FADD) and
pro-caspase-8. Formation of DISC is necessary for the activation of caspase-8. Caspase-8 activates its
downstream effector caspase-3. However, caspase-8 may also proteolytically process Bid to initialize
the intrinsic pathway. The intrinsic pathway is triggered following entry of truncated Bid into
mitochondria. Cytochrome c and SMAC are released from mitochondria and an apoptosome was
formed in the cytoplasm by the assembly of apoptotic protease activating factor (APAF), cytochrome c,
and pro-caspase-9. The apoptosome is necessary for the activation of caspase-9 and it can further activate
caspase-3 to induce apoptosis in cancer cells. In healthy cells, APAF is present as an autoinhibitory
monomer. However, mitochondrial outer membrane permeabilization (MOMP) and subsequent release
of cytochrome c unlocks APAF.

Activation of the mitochondrial or intrinsic pathway is induced either through radiation or
chemotherapy. Caspase-8-mediated truncation of Bid also played a dominant role in activating
the mitochondrially driven pathway. Translocation of truncated Bid into mitochondria caused
mitochondrial permeabilization and release of apoptogenic proteins, including cytochrome c and
second mitochondrial-derived activator of caspases (SMAC) from the mitochondria into the cytosol.
Cytosolic cytochrome c interacted with apoptotic protease activating factor-1 (APAF1) and formed a
multimeric complex termed the apoptosome (shown in Figure 1). The apoptosome recruited, cleaved,
and activated caspase-9 and -3. SMAC promoted apoptosis by binding to and degrading multiple
inhibitors of apoptotic proteins (IAPs): XIAP, c-IAP1, and c-IAP2. Therefore, it seems clear that
TRAIL-mediated signaling following the activation of caspase-8 is dichotomously branched. Either
caspase-8 can activate its downstream effector caspases or it can proteolytically process the Bid protein
to initialize the intrinsic pathway that routes through mitochondria. It appears to be important that the
TRAIL-induced intracellular signaling pathway is not as simple as previously surmised. A wealth
of information points towards myriad signaling pathways which crosstalk with different proteins of
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the TRAIL-mediated signaling pathway, and play a critical role. Therefore, we partitioned our review
into negative and positive regulators of TRAIL-mediated signaling to comprehensively analyze the
most recent breakthroughs made in uncovering mechanisms that inhibit or potentiate TRAIL-triggered
apoptotic cell death.

3. Negative Regulators of TRAIL-Mediated Signaling

Because TRAIL-based therapies have entered into various phases of clinical trials, it is essential
to drill down deep into TRAIL-mediated signaling and further unfold the mysterious aspects of
this pathway. The overexpression and stabilization of anti-apoptotic proteins is necessary to induce
resistance against TRAIL. Various lines of evidence have revealed that cancer cells developed resistance
against TRAIL mainly through the overexpression and stabilization of anti-apoptotic proteins. We
have partitioned this section into modes and strategies used by cancer cells to develop resistance
against TRAIL. (1) Stabilization of anti-apoptotic proteins; (2) Noncoding RNAs also play their role in
rewiring cell-signaling pathways to potentiate TRAIL resistance; (3) Ubiquitination is a very critical
mechanism in the context of anti-apoptotic and pro-apoptotic protein degradations. It has been seen
that pro-apoptotic proteins are degraded but anti-apoptotic proteins escape from these death-tagging
molecules in TRAIL-resistant cancer cells; (4) Recent discoveries have unmasked unique locations
and functionalities of death receptors. Death receptors not only activate classical pathways to induce
apoptosis, but their movement has also been tracked in the nucleus to modulate miRNA biogenesis.
Therefore, we will discuss these interesting topics in the upcoming section and try to critically evaluate
their implications.

GADD34 (growth arrest and DNA damage-inducible protein 34) overexpression resulted in an
increase in MCL-1 levels. Knockdown of GADD34 resulted in marked reduction in MCL-1 levels in
both SMMC-7721 and HepG2 cells [8]. GADD34 suppressed proteasomal degradation of MCL-1 mainly
through promoting extracellular signal-regulated kinase (ERK1/2)-mediated phosphorylation of proline
(P), glutamic acid (E), serine (S), and threonine (T) (PEST) domains in MCL-1 (shown in Figure 2). TNF
receptor associated factor 6 (TRAF6) played a central role in directing ERK1/2 phosphorylation and the
enhancement of the stability of MCL-1 levels in HepG2 cells. GADD34 knockdown exerted repressive
effects on the levels of MCL-1 in SMMC-7721 and HepG2 cells. Furthermore, TRAF6 knockdown also
enhanced TRAIL-mediated apoptosis, as evidenced by considerably reduced levels of p-ERK1/2 and
MCL-1 [8].

CIB1 (calcium and integrin-binding protein 1) played a contributory role in the development of
resistance against chemotherapeutics and TRAIL [9]. Intriguingly, expression levels of DR5 were noted
to be dramatically enhanced in CIB1-depleted MDA-436 breast cancer cells [9]. These findings appear
to be exciting, but scientists have not provided a comprehensive pathway opted by CIB1 to inhibit DR5.
There is an urgent need to put the missing pieces of information together to uncover the underlying
mechanisms which inhibit, repress, or degrade death receptors.

Ovarian adenocarcinoma-amplified lncRNA (OVAAL) has been shown to play an instrumental
role in the development of resistance against TRAIL [10]. OVAAL interacted with STK3
(serine/threonine-protein kinase-3), which consequently enhanced the structural association between
Raf-1 and STK3. Studies have shown that the ternary complex OVAAL/STK3/Raf-1 activated rapidly
accelerated fibrosarcoma/mitogen-activated protein kinase kinase (RAF/MEK/ERK signaling pathway
and promoted Mcl-1-mediated survival and c-Myc-driven proliferation of the ME4405 and HCT116 cells.
c-Myc has also been noted to transcriptionally upregulate OVAAL (Figure 2). However, expectedly,
TRAIL-mediated apoptosis was considerably enhanced in OVAAL-silenced ME4405 cells [10]. These
findings clearly indicate that non-coding RNAs stabilize anti-apoptotic proteins via the rewiring of
signaling pathways.
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Figure 2. Negative regulation of the TRAIL-driven pathway. (A) OVAAL, a long non-coding RNA, has
been shown to promote interaction between STK3 and Raf-1. STK3 and Raf-1 work synchronously
and activate the MEK/ERK pathway; (B) ERK has also been shown to stabilize MCL-1. ERK is also
activated by TRAF6 and GADD34 to stabilize MCL-1. OVAAL is transcriptionally upregulated by
c-Myc; (C) Post-translational modifications have been shown to effectively regulate caspase-8 and
FADD. FADD is negatively regulated by C terminus HSC70-interacting protein (CHIP); (D) Caspase-8
is negatively regulated by Cullin-7; (E) ITCH involved in the negative regulation of c-FLIP.

Detailed mechanistic insights revealed that cytoplasmic PARP-1 was recruited into the
TRA-8-activated DISC and sustained Src-mediated pro-survival signals [11]. However, the knockdown
of PARP-1 not only interfered with the activation of Src but also improved TRA-8-mediated apoptotic
cell death in BxPc-3 and MiaPaCa-2 cells [11].

Cullin-7 has recently been shown to physically interact with caspase-8 [12]. CUL7 prevented the
activation of caspase-8 by promoting post-translational modifications of caspase-8 by the addition of
non-degradative polyubiquitin chains at the 215th lysine (shown in Figure 2). Knockdown of CUL7
re-sensitized cancer cells to TRAIL-triggered apoptotic cell death. Tumor growth was significantly
inhibited in mice xenografted with CUL7-silenced MDA-MB-231 cells [12]. CHIP (C terminus
HSC70-interacting protein) induced the K6-linked polyubiquitylation of FADD and suppressed the
formation of the DISC (Figure 2) [13].

Monocyte chemotactic protein-induced protein-1 (MCPIP1), a deubiquitinating enzyme, promoted
the lysosomal degradation of DR5 [14]. MCPIP1 knockdown facilitated DISC formation [14]. At a
more basic level, it would be extremely interesting to see how different proteins sort death receptors as
well as pro-apoptotic and anti-apoptotic proteins for degradation in different cancers.

Karyopherin β1 (KPNB1) played an instrumental role in the nuclear import of DR5. KPNB1
transported DR5 into the nucleus, while inhibition of KPNB1 restored DR5 levels on the cell surface of
glioblastoma cells [15]. These findings are exciting, and it needs to be seen how DR5 behaves in the
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nucleus. Certain hints have emerged which have scratched the surface of regulatory role of DR5 in
the biogenesis of microRNAs. Nuclear DR5 inhibited the maturation of a miRNA, let-7, in pancreatic
cancer cells and increased their proliferation abilities [15]. Astonishingly, two functional nuclear
localization signal (NLS) sequences have previously been identified in DR5 [16]. Additionally, it was
shown that importin-β1 interacted with DR5 and shipped it to the nucleus in HeLa cells [16]. It will not
be invalid if we say that shuttling of death receptors in the nucleus is the “tip of the iceberg” and needs
detailed and in-depth research. At the moment, we have a segmented view about the internalization
of death receptors from the cell surface and “moonlight activity” of death receptors in the nucleus.

It has recently been convincingly revealed that circulating tumor cells (CTCs) demonstrated
rapid autophagic flux, characterized by an accumulation of autophagosome organelles [17]. Notably,
there was substantial evidence highlighting the presence of DR5 in the autophagosomes, followed
by degradation by lysosomes [17]. Overall, these findings clearly suggest that CTCs escape from
TRAIL-mediated killing activities by reducing the cell surface expression of DR5.

4. Positive Regulators of TRAIL-Mediated Signaling

RUNX3 (RUNT-related transcription factor-3) played a central role in stimulating the expression
of DR5 [18]. DR5 was markedly increased in RUNX3-overexpressing HT29 cells. RUNX3-mediated
reactive oxygen species (ROS) can lead to an enhanced ER stress in cancer cells. Therefore, the
overexpression of RUNX3 induced DR5 via IRE1α-JNK-CHOP pathway. Treatment of the cells with an
ROS scavenging chemical, N-acetyl-l-cysteine, severely compromised TRAIL-mediated apoptosis in
RUNX3-overexpressing cancer cells [18]. Superoxide dismutases (SODs) constitute the antioxidant
defense grid. RUNX3 has been shown to transcriptionally repress SOD3 to induce ROS generation
and upregulate DR5. Mechanistically it has been shown that RUNX3 occupied RUNX3 binding sites
present within the promoter region of SOD3 and inhibited its transcription [18]. The findings of this
study are exciting, and future studies must converge on the analysis of the role of RUNX3 in different
cancers. It will be informative to see if RUNX3 is functionally active in other TRAIL-resistant cancers.

Fucosylation is a post-translational modification of critical importance that plays a crucial role
in improving TRAIL-mediated apoptosis [19]. Stably and transiently overexpressed FUT3 and FUT6
dramatically enhanced TRAIL-mediated apoptosis in HCT116 and DLD-1 cells. Activation and cleavage
mechanisms of caspase-8 and PARP-1 were noted to be more pronounced in cells overexpressing FUT6
and FUT3. More importantly, a significantly higher fraction of signalosomes was noticed, as evidenced
by highly increased DISC-associated caspase-8 complexes in FUT3-overexpressing cells [19]. Harakiri
(HRK), a BH3-only protein of the Bcl-2 family, has been shown to promote TRAIL-mediated apoptosis
in glioblastoma cells [20].

ITCH, a homologous to the E6AP carboxyl terminus (HECT) domain E3 ligase, is reportedly
involved in the negative regulation of c-FLIP [21]. JNK phosphorylation sites have been mapped in the
protein sequence of ITCH. Levels of phosphorylated ITCH (p-ITCH) were found to be enhanced in
MCF-7- and T47D-derived tamoxifen-resistant and faslodex-resistant cells. Moreover, inhibition of
JNK resulted in the inactivation of ITCH and reduced p-ITCH levels, and consequently c-FLIP levels
were restored in cancer cells [21,22]. Therefore, in future studies it will be paramount to investigate if
additional kinases are involved in the activation of ITCH and if ITCH can post-translationally modify
various other negative regulators of apoptosis in different cancers.

5. Natural-Product-Mediated Restoration of TRAIL-Mediated Apoptosis in Different Cancers

Natural products have captivated tremendous attention because of their premium pharmacological
properties. There has been a longstanding quest to identify products that can be combined with TRAIL
to maximize the apoptosis in TRAIL-resistant cancers. Therefore, in this specific section, we provide
an update about products obtained from natural sources which can restore apoptosis in resistant
cancer cells.
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Auriculasin, a prenylated isoflavone, was highly effective when used in combination with
TRAIL [23]. Auriculasin and TRAIL combinatorially increased the expression of Bax, AIF, endo
G, and cytochrome c. Auriculasin triggered the upregulation of DR5 but levels of DR4 remained
unchanged [23]. Cannabidiol, pharmacologically potent cannabinoid isolated from the Cannabis plant,
induced the upregulation of the protein and cell surface expression of TRAIL-R2/DR5 [24].

Andrographolide isolated from Andrographis paniculata enhanced the expression of DR4 and DR5
mainly through increasing the levels of p53 [25]. As expected, andrographolide-mediated upregulation
of DR4 and DR5 was not observed in p53 knockdown T24 cells [25].

Periplocin obtained from Cortex Periplocae led to a dose-dependent enhancement of the expression
levels of DR4 and DR5 on the surface of MGC-803 and SGC-7901 cells [26]. Periplocin and TRAIL
combinatorially enhanced the levels of p-ERK1/2 and EGR1 (early growth response-1). However, as
expected, treatment with an inhibitor of MEK (PD98059) severely interfered with the upregulation of
DR4 and DR5 in cancer cells. EGR1 overexpression induced the stimulation of DR4 and DR5, while
EGR1 knockdown exerted repressive effects on the expression levels of DR4 and DR5 [26]. Weights
and volumes of tumors from mice treated combinatorially with TRAIL and periplocin were found to
be significantly reduced as compared to mice treated with periplocin or TRAIL alone [26].

In combination with TRAIL, the sesquiterpene coumarin galbanic acid, worked effectively against
non-small-cell lung cancer cells [27]. Galbanic acid and TRAIL induced the upregulation of DR5 and
simultaneously suppressed DcR1. Galbanic acid and TRAIL attenuated the expression of Bcl-2 (B-cell
lymphoma-2), Bcl-xL (B-cell lymphoma-extra-large) and XIAP (X-linked inhibitor of apoptotic proteins)
in H460/R cells (Figure 3) [28].
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Diallyl disulfide (DADS) and TRAIL jointly repressed Bcl-2 in colorectal cancer cells [28].
Bufalin, a cardiotonic steroid isolated from the secretion of parotid glands and skin of Chansu
and black-spectacled toad has recently been shown to restore apoptosis in TRAIL-resistant cancer
cells by the regulation of pro- and anti-apoptotic proteins [29]. Bufalin increased ER stress associated
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proteins (GRP78, caspase-4, IRE-1α, IRE-1β, ATF-6α, GADD153, and Calpain 1). Bufalin increased Bax;
cytochrome c; caspase-3, -8, and -9; AIF; and Endo G, but simultaneously reduced Bcl-2 in NPC-TW
076 cells. Furthermore, bufalin elevated the expression levels of TRAIL, FADD, DR4, and DR5 [29].

Shikonin is a medicinally important product isolated from the root of Lithospermum erythrorhizon
that was shown to work effectively with TRAIL against A549 cells [30]. Shikonin and TRAIL
synergistically reduced Mcl-1, Bcl-2, Bcl-xL, XIAP, and c-FLIP and upregulated the levels of Bid
(Figure 3) [30]. Celastrol, a triterpenoid isolated from Tripterygium wilfordii worked effectively with
TRAIL and inhibited autophagic influx in A549 cells [31].

Remarkable advancements have been made in the molecular biology of autophagy, and scientists
are focusing on solving questions regarding how this pathway can be harnessed to improve clinical
outcomes [32,33]. In 2016 the scientific community acknowledged the true potential of autophagy in
health and disease, and Yoshinori Ohsumi was awarded the Nobel Prize for Physiology or Medicine
for his outstanding work, which elevated our understanding about intricate mechanisms of autophagy
to the next level. Autophagy plays a central role in the maintenance of homeostasis. Autophagy begins
when double-membrane autophagosomes engulf fractions of the cytoplasm, which is followed by the
fusion of these vesicles with lysosomes, and autophagic contents are consequently degraded [33,34].
Phosphatidylethanolamine (PE) is conjugated to cytoplasmic LC3I to generate the lipidated form,
LC3II, and consequently LC3II is incorporated into the growing membrane [34].

Celastrol treatment induced an increase in the levels of LC3II and p62. However, authors did
not report the effects induced by combinatorial treatment with celastrol and TRAIL [31]. It was only
suggested that celastrol and TRAIL synergistically enhanced ROS generation in cancer cells. Various
other natural products, particularly 6-shogaol, were also found to increase the levels of LC3II and p62
in Huh7 cells [35].

2-Deoxy-d-glucose potentiated TRAIL-triggered apoptotic cell death, in part through suppressing
JNK-mediated cytoprotective autophagic signaling in SGC7901 and MGC803 cells [36]. Chloroquine
and TRAIL synergistically enhanced LC3II levels in pancreatic cancer cells [37].

Excitingly, flow cytometry analyses revealed that toosendanin induced a reduction of membrane
DR5 [38]. However, these effects were prevented by inhibitors of autophagy (3-methyladenine).
3-Methyladenine increased the basal level of membrane DR5, which clearly indicated that autophagy
centrally regulated the membrane distribution of DR5 [38,39].

It is important to mention that autophagy has a dualistic role in TRAIL-mediated apoptosis. There
is also sufficient evidence related to the positive regulation of TRAIL-mediated apoptosis by autophagy.
Different natural products have also been shown to potentiate TRAIL-mediated apoptosis through the
induction of autophagy. Ginsenosides are biologically active constituents of ginseng, and potentiate
TRAIL-mediated apoptosis through the induction of autophagy [40]. Juglanin also induced autophagy
and consequently enhanced TRAIL-mediated apoptosis in cancer cells. Juglanin induced the regression
of tumors in mice subcutaneously injected with A549 cells [41].

Ursolic acid stimulated the expression of DR4 and DR5 and simultaneously downregulated
c-FLIPL and re-sensitized TRAIL-resistant triple-negative breast cancer cells to apoptosis [42].

Cepharanthine, a biscoclaurine alkaloid isolated from Stephania cepharantha, has been shown
to be effective against renal carcinoma cells [43]. Cepharanthine time-dependently induced
the downregulation of survivin protein levels. It has been mechanistically demonstrated that
cepharanthine promoted c-FLIP degradation. It was observed that use of proteasome inhibitor
reversed cepharanthine-induced c-FLIP degradation. STAMBPL1 is one of the JAB1/MPN/Mov34
metalloenzymes (JAMM) deubiquitin enzymes, and is reportedly involved in the regulation of
different processes. Cepharanthine dose-dependently downregulated STAMBPL1 and increased
USP53 expression. Ectopic expression of STAMBPL1 significantly inhibited cepharanthine-induced
reduction in the levels of survivin [43]. Overall, these findings clearly suggest that cepharanthine
enhances TRAIL-induced apoptosis by promoting the degradation of survivin through STAMBPL1
downregulation in renal carcinoma cells (Figure 3).
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C-27-carboxylated oleanolic acid derivatives have been shown to stimulate the expression of DR5
through CHOP [44]. Treatment of glioma U251MG and LN428 cells with 3β-hydroxyolean-12-en-27-oic
acid (C27OA-1) induced an increase in the expression of CHOP. C27OA-1 considerably activated
p38 and ERK (extracellular signal regulated kinase). Treatment of U251MG cells with p38 inhibitors
(SB203580) severely abrogated C27OA-1-mediated increase in expression levels of CHOP and DR5 [44].

Lambertianic acid is a biologically active product isolated from Pinus koraiensis that was efficient
against non-small-cell lung cancer. Lambertianic acid and TRAIL upregulated DR4. Furthermore,
lambertianic acid and TRAIL markedly reduced p-NF-κB, p-IκB, and c-FLIP in A549 and H1299
cells [45].

6. Concluding Remarks

The cancer genome atlas (TCGA) network groups have comprehensively reported the genomic
landscape for over 30 different cancer types [46]. More importantly, many of these malignancies have a
subset of cases which harbored genomic alterations in components of extrinsic or intrinsic pathways,
including overexpression and amplification of FADD and IAP (inhibitor of apoptotic proteins), as well
as the identification of mutations in caspase-encoding genes [47,48].

It seems surprising to note that although scientists have uncovered tremendous information
about the TRAIL-mediated signaling pathway, we have not sufficiently investigated the
natural-product-mediated regulation of the TRAIL-driven pathway. Even though we have seen
that natural products triggered the upregulation of death receptors and induced the re-balancing of
pro- and anti-apoptotic proteins, we still have unanswered questions and visible knowledge gaps
in our understanding related to the realization of products derived from medicinally important
natural sources.

Different ubiquitin ligases (e.g., MARCH8) have been shown to ubiquitinate DR4 at 273rd lysine
and induce degradation [49]. CHIP (C terminus HSC70-interacting protein) induced the K6-linked
polyubiquitylation of FADD and suppressed the formation of the DISC [13]. CUL7 prevented the
activation of caspase-8 mainly by promoting the modification of caspase-8 with non-degradative
polyubiquitin chains [12]. However, the natural-product-mediated targeting of ubiquitin ligases to
restore TRAIL-mediated apoptosis is an insufficiently studied area of research. There is a need to focus
on the ubiquitin-ligase-targeting abilities of natural products which can later be used effectively in
TRAIL-resistant cancers.

Another important and exciting area of research that needs detailed research is the microRNA
regulation of the TRAIL-driven pathway. Rapidly emerging scientific reports have started to shed light
on the central role of microRNAs in the modulation of the TRAIL-mediated pathway. Certain pieces of
evidence have suggested that maritoclax, isolated from marine bacteria, promoted miR-708-mediated
targeting of c-FLIP and restored apoptosis [50]. Interestingly, α-mangostin, a xanthone isolated from
the mangosteen fruit, restored apoptotic death in TRAIL-resistant colon cancer DLD-1 cells [51].
A-Mangostin effectively promoted DR5 oligomerization. A-Mangostin exerted repressive effects on
miR-133b and stimulated the expression of DR5 [51].

However, we have not yet witnessed considerable experimental work related to the
natural-product-mediated regulation of miRNAs to restore apoptosis in TRAIL-resistant cancers.
Likewise, different xenografted mice model studies are necessary for an effective evaluation of the
potential of natural products in inducing tumor regression.
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Abbreviations

APAF1 apoptotic protease activating factor-1
Bcl-2 B-cell lymphoma-2
Bcl-xL B-cell lymphoma-extra-large
CHIP C terminus HSC70-interacting protein
CIB1 calcium and integrin-binding protein 1
CTCs circulating tumor cells
DISC death-inducing signaling complex
EGR1 early growth response-1
FADD Fas-associated protein with death domain
GADD growth arrest and DNA damage-inducible protein
IAP inhibitor of apoptotic proteins
OVAAL ovarian adenocarcinoma-amplified lncRNA
RUNX3 RUNT-related transcription factor-3
SMAC second mitochondrial-derived activator of caspases
SOD superoxide dismutase
TNFα tumor necrosis factor α
TRAIL TNF-related apoptosis-inducing ligand
XIAP X-linked inhibitor of apoptotic proteins
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Abstract: The anthracycline antibiotic doxorubicin is commonly used antineoplastic drug in breast
cancer treatment. Like most chemotherapy, doxorubicin does not selectively target tumorigenic cells
with high proliferation rate and often causes serve side effects. In the present study, we demonstrated
the cellular senescence and senescence associated secretory phenotype (SASP) of both breast tumor
cell MDA-MB-231 and normal epithelial cell MCF-10A induced by clinical dose of doxorubicin
(100 nM). Senescence was confirmed by flattened morphology, increased level of beta galactose,
accumulating contents of lysosome and mitochondrial, and elevated expression of p16 and p21
proteins. Similarly, SASP was identified by highly secreted proteins IL-6, IL-8, GRO, GM-CSF,
MCP-1, and MMP1 by antibody array assay. Reciprocal experiments, determined by cell proliferation
and apoptosis assays and cell migration and cell invasion, indicated that SASP of MDA-MB-231
cell induces growth arrest of MCF-10A, whereas SASP of MCF-10A significantly stimulates the
proliferation of MDA-MB-231. Interestingly, SASP from both cells powerfully promotes the cell
migration and cell invasion of MDA-MB-231 cells. Treatment with the natural product ginsenoside
Rh2 does not prevent cellular senescence or exert senolytic. However, SASP from senescent cells
treated with Rh2 greatly attenuated the above-mentioned bystander effect. Altogether, Rh2 is a
potential candidate to ameliorate this unwanted chemotherapy-induced senescence bystander effect.

Keywords: cellular senescence; doxorubicin; breast cancer cell; breast epithelial cell; ginsenoside Rh2

1. Introduction

Chemotherapeutic drugs are designed to eliminate tumor cells with high proliferation rates in
treatment of malignancies [1]. Generally, tumor cells are deprived of reproductive potential and
undergo apoptosis [2]. However, there is a growing body of literature that recognizes apoptosis may
not be the confined mechanism whereby cancer cells lose their ability of self-renewal after exposure
to chemotherapy treatment, especially in solid tumors [3]. Among these alternative pathways, the
theory of cellular senescence provides a useful account of how thermotherapy prevents tumor growth
both in vitro and in vivo [4]. Cellular senescence is characterized by an irreversible cellular growth
arrest in response to DNA damage. Additionally, cellular senescence was proposed to be regulated by
two main tumor suppressor pathways of cell, the ARF/53 and INK4a/RB pathways [5]. Since most
clinical or under-investigation chemotherapeutic drugs induce severe DNA damage to tumor cells,
they are conceivably engaged and, correspondingly, trigger cellular senescence. However, the tumor
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suppression of senescence is quickly challenged by massive emerging envidence. Senescent cells still
metabolically active preserving the potential to secrete paracrine acting factors [6]. Manipulation of
p53 and p16 activation can reverse cellular senescence in human cells, suggesting that chemotherapy
resistance may be partly driven by the subsets of tumor cells emerging from a senescence state [7].
In addition, DNA damage-induced cellular senescence develops a typical senescence-associated
secretory phenotype (SASP), involving a spectrum of secreted growth factors, proteases, and cytokines,
many of which are attributive to the microenvironment promoting resistance [8]. On the other hand,
most cytotoxic chemotherapy agents target cancer cell by sensing tumor cell characteristics, such
as high proliferation rates. However, this manner also targets normal counterparts and senescent
cell disrupts the normal function of tissues and organs [9]. Evidence suggests that a regimen with
anthracycline and alkylating agents on patients with breast cancer durably induces cellular senescence
and SASP [10]. Interestingly, senescent cells, especially SASP, are often recognized and cleared through
an antigen-specific immune response termed senescence surveillance [11], which might be a potential
strategy to treat cancer patients. However, SASP also can promote the proliferation and invasion of
neighboring cancer cells that escape the senolytic and immune system, leading to cancer relapse [12].
Importantly, the accumulation of senescent cells in tissue with age gives rise to chronic maintenance
of senescent cells since the immune system declines in function during aging [13]. This indicates
that targeting senescent cells and SASP could be a strategy for cancer therapy and aging-related
cancer relapse.

Ginsenoside is of interest because it has been receiving considerable attention as a general tonic
on longevity and body enhancement [14,15]. Recently, there has been renewed interest in synergistic
effects of ginsenoside on chemotherapy treatment. Ginsenoside Rh2 treatment combined with selected
chemotherapy agents sensitizes toxicity on prostate cancer cells [16] and hepatoma cells [17], and
inhibits angiogenesis and growth of lung cancer [18] and ovarian cancer [19]. Rh2 enhances efficacy of
paclitaxel or mitoxantrone in prostate cancer cells [20]. Accordingly, these above synergistic effects are
mainly due to regulation of drug efflux, enhancement of subcellular distribution, and induction of
apoptosis. Importantly, the interaction between ginsensoides and chemotherapy agents allows lower
doses in clinical application. Furthermore, this chemotherapy regimen is reported to induce unwanted
impairment and a proposed protection of ginsenoside Rh2 reverses this side effect in mice with lung
tumor [21]. Collectively, ginsenoside Rh2 possesses great potential in sensing chemotherapy agents
and ameliorating unwanted side effects.

In the present study, we determined the effects of ginsenoside Rh2 on the following circumstances.
(1) Senolytic effect on Doxorubicin-induced cellular senescence of breast cells. (2) Doxorubicin induces
cellular senescence of breast epithelial cells. (3) Senescent breast cancer cells induces bystander effects
on normal counterparts. (4) Senescent normal counterparts stimulate proliferation, migration, and
invasion of breast cancer cells. The present work suggested that Rh2 extenuated the bystander effect
induced by chemotherapy in breast cells.

2. Results

2.1. Low Dose Doxorubicin Induces Senescence of Human Breast Cells

To screen out the concentration of doxorubicin to induce senescence in human breast cells,
MDA-MB-231, and MCF-10A cells were exposed to various concentrations of doxorubicin for 72 h and
cell viability was determined by WST-1 method. Doxorubicin concentration-dependently reduced the
cell viability of both cell lines (Figure 1A). We observed that concentrations initiating from 0.1 to 5 µM
significantly decreased the cell viability than vehicle (distilled water) control. However, concentrations
higher than 0.1 µM induced evidenced cellular apoptosis with a large amount of debris. Hence we
used 0.1 µM doxorubicin for subsequent experiments. Concomitantly, immunostaining for Ki-67, a
proliferation marker, corroborated the profound cell growth arrest at 100 nM doxorubicin.
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To further identify whether cells with inhibited growth turned senescent, we evaluated typical
markers for senescence. One biomarker of senescence is the accumulating lysosomal contents.
Non-treated and treated (100 nM doxorubicin) cells were labeled with Lysotracker Red (Figure 1B).
Notably, treated cells displayed a marked redistribution of lysosome with diffused perinuclear pattern.
Apart from enhanced lysosomal content, an increased percentage of canonical marker SA-β-gal in
treated cells was correspondingly observed (Figure 1C). Another biomarker is increased mitochondrial
biomass. We therefore labeled the non-treated and treated (100 nM doxorubicin) cells with Mitotracker
Red (Figure 1D). A remarkable mitochondrial signal was detected in treated cells. Senescent cells
showed nuclear foci termed DNA-SCARs, requiring for SASP development. Treated cells significantly
altered the number of 53BP1 foci compared with Nontreated con (Figure 1E). Senescence was further
confirmed by elevated levels of proteins p16 and p21 in treated cells using Western blot analysis
(Figure 1F). Importantly, the above evaluations indicated that 100 nM doxorubicin induces typical
cellular senescence in human breast cell lines.
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Figure 1. Doxorubicin induces senescence of breast normal and cancer cells. (A) MDA-MB-231 cells
and MCF-10A cells were treated with indicated doses of doxorubicin for 72 h. Cells were either
assayed for viability (left panel) or fixed and stained for Ki-67 (right panel, green). Cell viability was
determined by WST-1 method and normalized with nontreated con cells. (B–D) Cells were treated with
100 nM doxorubicin for 72 h to induce senescence. Then, cells (B) were incubated with Lysotracker Red
(200 nM) for 1 h. Cells (C) were fixed and stained for SA-β-gal. The upper panel shows the bright-field
images. The lower panel was the percentage of positive cells (>200 cells scored). Cells (D) were
incubated with Mitotracker Red (100 nM) for 30 min. Blue, DAPI stained nuclear. Representative
images were captured by a Fluorescence Microscope (100× for A,C; 200× for (B,D). (E) Then days
after senescence induction, nontreated con and senescent cells were immunostained with 53BP1, a
DNA-SCAR marker. The number of the foci was determined by CellProfiler. Shown was the percentage
of cells with >5 foci. (F) Extracts from nontreated con and senescent cells were measured for the
indicated proteins by western blotting. Beta-actin was used as the loading control. *** indicates
p < 0.001 versus nontreated con.
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2.2. Doxorubicin-Induced SASP in Human Breast Cell Lines

To determine whether senescent cells developed SASP, a conditioned medium from senescent
MDA-MB-231 and MCF-10A cells was applied to a human cytokine array assay with 120 secreted
proteins. In contrast to nontreated con cells, for senescent human breast cancer MDA-MB-231 cells, the
factors detected by arrays and secreted at a significant level are FGF-6, GM-CSF, IGFBP-1, MCP-1, IL-6,
IL-1α, GRO a/b/g, GRO α, IL-8, MIP, MIP-1α, uPAR, ICAM-1, and MMP-1(Figure 2). In senescent
nontumorigenic MCF-10A cells, proteins secreted at substantial level are FGF-6, MCP-1, GRO a/b/g,
GRO α, IL-8, uPAR, IGFBP-6, OPG, TNFR1, IP10, CD14, and MMP-13 (Figure 2). Additionally, we
observed in certain proteins (PDGF-AA, PDGF-BB, ANGPT2, IGFBP-2, and ALCAM) that secretion
was downregulated in senescent MCF-10A cells. Intriguingly, although a similar secretion pattern of
major SASP factors such IL-6 and IL-8 was observed in both cell lines, two cell lines displayed differed
secretory phenotype. We postulated that these differences may lead to various paracrine effects.
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Figure 2. Senescent human breast cancer and normal cells developed SASP. Conditioned medium from
nonsenescent (nontreated Con) or senescent (100 nM of doxorubicin exposure, Sen) MDA-MB-231 (A)
and MCF-10A (B) cells were analyzed with human cytokine antibody arrays. Levels of each cytokine
factor in untreated cells were arbitrary set to zero. Data shown represent log2-fold change in expression
relative to untreated cells. Signals higher than the untreated control are shown in red; signals lower
than the untreated control are shown in green.
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2.3. SASP Stimulates Migration and Invasion of Breast Cancer Cells

To address the possibility that SASP (high secretions of IL-6 and IL-8) from senescent cells
affects carcinoma cells migration, we examined the consequences of treatments with conditioned
medium (CM) on the motogenic response of human breast cancers. Monolayers of MDA-MB-231
cells were scraped to create a cell-free area, and cell migrations were evaluated 48h later. Conditioned
medium from senescent cells produced a marked increase in breast cancer migration (Figure 3A).
As expected, quantitative assay showed that CM of MDA-MB-231 induced significant migration than
that of non-treated con (p < 0.01). Importantly, similar to CM of MDA-MB-231, CM of MCF-10A also
strongly stimulated breast cancer migration (p < 0.01). As expected, Rh2 treatment notably inhibited
these elevated migrations. For invasion assay, CM of both senescent cell lines vigorously stimulated
the cancer cell invasion by over 10-fold, which were noticeably mitigated by Rh2 treatment (Figure 3B).
Since epithelial–mesenchymal transition (EMT) gives rise to caner invasion, we measured several
hallmarks by western blot and immunofluorescence analysis. Intriguingly, CM of MDA-MB-231
elevated the expression levels of beta-catenin and snail while reduced the level of ZO-1 when in
comparison to nontreated control cells. Rh2 exposure exerted decreased levels of beta-catenin and
snail, while no changes of ZO-1 were noted. Importantly, Rh2 treatment powerfully abated the
expression of vimentin though no noticeable increase was observed in CM treated cells. CM of
MCF-10A induced higher expression level of slug, but lower than that of ZO-1 in comparison to
normal cells; these alterations were ameliorated by Rh2 treatment (Figure 3C).
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Figure 3. Rh2 inhibited SASPs-induced migration and invasion of breast cell lines. (A) MDA-MB-231
cells were cultured with conditioned medium from senescent MDA-MB-231 and MCF-10A cells treated
with or without Rh2 for 48 h. The cell-free areas were imaged with microscope at 0 h and 48 h,
respectively. The changes in cell-free area were calculated using CellProfiler Software (2.2.0). At least
three wound scratches were analyzed per experiment. (B) Invasion of MDA-MB-231 cells (5× 104/well)
as determined by 24-well plate transwell system. Cells on the lower side of membranes were stained
and quantified. (C) Western blot analysis of representative epithelial–mesenchymal transition (EMT)
markers of MDA-MB-231 cells after CM treatment. Immunostaining for the tight junction protein
ZO-1(Red) and the nuclear regions were counterstained with DAPI (blue). * indicates p < 0.05 versus
Nontreated con, ** indicates p < 0.01 versus Non-treated con; *** indicates p < 0.001 versus nontreated
con. ## indicates p < 0.01 versus CM alone group. ### indicates p < 0.001 versus CM alone group.
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2.4. Ginsenoside Rh2 Does Not Exert Senolytic but Suppress the Paracrine Effects of Sasp in Human Breast
Cell Lines

To check whether Rh2 exerts senolytic effects on both senescent cell lines, senescent MDA-MB-231
and MCF-10A cells were exposed to Rh2 (20 µg/mL) and caspase 3/7 activity was determined 48h
later. Interestingly, Rh2 did not induce statistical apoptosis as compared to nontreated control group.
Additionally, senescent cells in both cell lines showed apoptosis resistance as elaborated by reduced
caspase 3/7 activity with staurosporin (Figure 4A).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 15 
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pathways that regulate cell growth, differentiation, response to proinflammatory cytokines, growth 
factor receptors, inflammation, and cellular stress in the Signaling Nodes Multitarget Sandwich 
ELISA Kit. Endogenous levels of Akt1, phosphor-Akt(Ser473), phosphor-MEK1(Ser217/221), 
phosphor-p38 MAPK(Thr180/Tyr182), phosphor-Stat3(Tyr705), and phosphor-NF-κB p65(Ser536) 
were determined. For MDA-MB-231 cells, senescence significantly induced the phosphorylated 
forms of MEK1, p38, Stat3, and NF-κB p65, while no phosphorylation of Akt1 was noted. Treatment 
with ginsenoside Rh2 strongly reduced those elevations to the level of nontreated control but with 
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Figure 4. Rh2 suppressed paracrine effects of SASP in breast cell lines. (A) Senescent MDA-MB-231 and
MCF-10A were exposed to Rh2 for 48 h, after which caspase 3/7 activity was quantified. The dotted
line indicates fluorescence level in nontreated senescent cells. (B) MDA-MB-231 and MCF-10A cells
were cultured with indicated CM for 24 h. The cell viability was assayed by WST-1 method. (C) Fold
changes in mRNA levels of IL-8, IL-6, CXCL1, and MCP-1. The dotted line indicates expression level
in control cells, set at 1 for each gene. N = 3. A.U., arbitrary units. (D) ELISA assay of IL-6 and IL-8.
* indicates p < 0.05 versus Non-treated con. ** indicates p < 0.01 versus Non-treated con; *** indicates
p < 0.001 versus Nontreated con. # indicates p < 0.05 versus CM group. ## indicates p < 0.01 versus CM
group. ### indicates p < 0.001 versus CM alone group.

Given senescent cells can reprogram neighboring cells through SASP, we determined whether
ginsenoside Rh2 mitigated the cancer-promoting effect on MDA-MB-231 cells and senescent paracrine
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effect on MCF-10A cells. As seen in Figure 4B, CM from senescent MDA-MB-231 cells significantly
inhibited the cell proliferation of MCF-10A cells, which was clearly ameliorated by treatment of
senescent MDA-MB-231 cells with Rh2. On the contrary, CM from senescent MCF-10A cells exerted
profoundly tumorigenic effect on MDA-MB-231 cells, while CM prepared from senescent cells treated
with Rh2 attenuated the stimulated effect. Intriguingly, CM from both cell lines showed obviously
self-senescence paracrine effect with manifested growth arrest. Additionally, CM from Rh2 treated
senescent cells slightly rescued the cell proliferative ability.

Further, we measured the effect of Rh2 on the expression of some representative SASP genes
associated with inflammation, proliferation, and invasion. As shown in Figure 4C, Rh2 significantly
reduced the mRNA level of MCP-1 and CXCL1 in both senescent cells lines, while it selective
suppressed that of IL-6 and IL-8. Additionally, the enzyme-linked immunosorbent assay (ELISA)
further confirmed the highly secreted SASP components IL-6 and IL-8, which were significantly
diminished by Rh2 treatment (Figure 4D).

2.5. Ginsenoside Rh2 Suppresses Potential Signaling Pathways Inferred SASP Secretion in Human Breast
Cell Lines

To address the potential signaling pathways that activated SASP, we investigated the major
pathways that regulate cell growth, differentiation, response to proinflammatory cytokines, growth
factor receptors, inflammation, and cellular stress in the Signaling Nodes Multitarget Sandwich ELISA
Kit. Endogenous levels of Akt1, phosphor-Akt(Ser473), phosphor-MEK1(Ser217/221), phosphor-p38
MAPK(Thr180/Tyr182), phosphor-Stat3(Tyr705), and phosphor-NF-κB p65(Ser536) were determined.
For MDA-MB-231 cells, senescence significantly induced the phosphorylated forms of MEK1, p38,
Stat3, and NF-κB p65, while no phosphorylation of Akt1 was noted. Treatment with ginsenoside Rh2
strongly reduced those elevations to the level of nontreated control but with further statistical decrease
of Stat3 (Figure 5A). For MCF-10A cells, senescence evidently induced the phosphorylated forms of
p38, Stat3, and NF-κB p65, while profoundly decreased phosphorylation of Akt1 and MEK1 was noted.
Treatment with ginsenoside Rh2 only significantly reduced the elevated levels of phosphorylated
p38 and Stat3, with no effects on Akt1, MEK1, and NF-κB p65 (Figure 5B). Interestingly, Rh2 exerted
different suppression manner between two cell lines.

Given that two signaling pathways are well-documented regulator of SASP, we herein again
verified that low-dose exposure to doxorubicin induced SASP with robust activation of p38 MAPK
and NF-κB pathways. Additionally, inclusion of the p38 MAPK inhibitor SB230580 (10 µM), NF-κB
inhibitor Bay 11-7082 (10 µM), or Rh2 (20 µg) in the incubation medium evidently suppresses the SASP
in both cell lines (Figure 6).
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Figure 5. Rh2 suppressed potential signaling pathways regulating SASP in breast cell lines. Senescent
MDA-MB-231 (A) and MCF-10A (B) cells treated with or without Rh2 were lysed and subjected to the
Signaling Nodes Multitarget Sandwich ELISA assay. ** indicates p < 0.01 versus nontreated con; ***
indicates p < 0.001 versus nontreated con. ## indicates p < 0.01 versus CM alone group. ### indicates
p < 0.001 versus CM alone group.
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Figure 6. Rh2 suppressed SASP secretion in breast cell lines. Conditioned medium, prepared from
senescent cells treated with DMSO, SB203580 (10 µM), Bay11-7082 (10 µM), and Rh2 (20 µg/mL), was
analyzed with human cytokine antibody arrays. Levels of each cytokine factor in untreated cells were
arbitrary set to zero. Data shown represent log2-fold change in expression relative to untreated cells.
Signals higher than the senescent control are shown in red; signals lower than the senescent control are
shown in green.

3. Discussion

Cellular senescence, originally described as an irreversibly proliferative arrest in normal fibroblasts
after a limited number of divisions [22], is an important tumor-suppressive mechanism. However,
accumulated evidence challenged that cellular senescence exerts several deleterious biological
functions encompassing tumorigenesis and age-related pathologies especially involving SASP [23].
Doxorubicin is the mainstay drug in the treatment for breast cancer. Intriguingly, since the required
dose of chemotherapy drug to induce cellular senescence is much lower than that necessary to kill
cells, breast cancer cells exposed to doxorubicin undergo widespread senescence [24]. In this study, we
provided further evidence for the reciprocal effects of senescent breast tumor and normal cells under
stimulation with clinical dose of doxorubicin. Additionally, we proposed that ginsenoside Rh2 is a
potential candidate for the extenuation of chemotherapy-induced senescence bystander effect.
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Doxorubicin induces the formation of DNA-Dox-topoisomerase II cleavable complexes and
subsequent DNA damage, by which cellular senescence was initiated in many cancer cells. Clinically,
the reported steady-state plasma level of doxorubicin achieved in patients receiving a total dose of
165 kg/m2 was 0.1 µM to avoid cardiac toxicity [25]. Accordingly, our results showed that 0.1 µM
of doxorubicin successfully induced cellular senescence of breast carcinomas cell MDA-MB-231 and
normal cell MCF-10A, as elaborated by typical flatten morphological changes, increased mitochondrial
biomass, SA-β-gal expression, and redistribution of lysosomes. Additionally, elevated levels of
senescence markers p16 and p21 were noted. Stable nuclear foci 53BP1 was observed, indicating the
potential SASP development. Intriguingly, pretreatment or post-treatment of Rh2 does not affect the
alterations of the senescence markers, suggesting Rh2 may acts downstream of signaling pathways
involved in senescence.

To test the possibility that senescent cells develop SASP after challenge with doxorubicin, we
assessed the levels of 120 secreted cytokines from CM using antibody arrays. As acknowledged, SASP
presents variations relying on tissue and stimulus. A large number of cytokines consisting of SASP
components secreted at significant level after doxorubicin induction, encompassing proinflammatory
cytokines (e.g., IL-1α/β, IL-6, and IL-8), growth factor (e.g., PDGF and GM-CSF), chemokines (e.g.,
CXCL1 and MCP-1), and matrix remodeling enzymes (e.g., MMPs) were noted in the present study.
Among the above typical SASP components, IL-1, IL-6, and IL-8 are reported to exert pleiotropic effects
including maintenance of senescence, promotion of tumorigenesis and chemotherapy resistance [26].
GM-CSF has been reported to be overexpressed in a variety of human cancers including melanoma and
hepatocellular carcinoma and was proposed to regulate tumor progression [27]. MCP-1 and CXCL1
(GRO) influence breast carcinogenesis by facilitating tumor growth and metastatic spread [28]. MMPs
are another major SASP factor usually secreted by senescent fibroblasts, which can enhance the invasion
of multiple epithelial cell types [29]. Apart from abovementioned SASP factors, certain cytokines
were detected at remarkable levels as follows: insulin-like growth factor-binding proteins (IGFBPs),
urokinase plasminogen activator (uPA), and fibroblast growth factor (FGF-6). These cytokines are
closely associated with cancer invasion and metastasis [30]. Importantly, Rh2 treatment reversed these
alterations of secreted cytokines in the present study. Intriguingly, nontumorigenic MCF-10A cell
exhibited different pattern of SASP, with significant decreased secretion of PDGF-AA and PDGF-BB
compared to nontreated normal cells, which might indirectly lead to tissue dysfunction and impaired
regeneration. Similarly, Rh2 exposure restored the levels of PDGF-AA and PDGF-BB. Next, we
measured the ability of SASP from both senescent cell lines to stimulate migration and invasion of
MDA-MB-231 cells by a transwell system. Accordingly, significant migration and invasion were
observed with CM supplement in culture medium, which were clearly suppressed by Rh2 treatment.
Rh2 profoundly reduced the expression of EMT markers (beta catenin, slug, and snail) in MDA-MB-231
cells. Moreover, CM from Rh2 treated cells reduced carcinomas cell proliferation and restored normal
cell doubling population when compared with CM-treated cells. Collectively, our results herein
demonstrated that SASP is able to promote cancer progression and inhibit proliferation ability of
normal cell in breast tissue, while Rh2 is a potential candidate for the amelioration of this deleterious
effect. However, the present study did not explicitly address how Rh2 inhibited SASP-associated
migration and invasion of malignant breast cancer cells. Chemotherapy-induced senescence has been
proposed as a potential approach to combat cancer through induction of a persistent growth arrest
state, whereas SASP is challenging, this possible strategy with reprogrammed and complicated tumor
microenvironment as well as declined immune response in aging population.

How might Rh2 suppress SASP in senescent breast cell lines? Initially, DNA damage response
and downstream activation of ATM are sufficient to activate certain SASP [31], which apparently
can be induced by anticancer drug doxorubicin in the present study. Correspondingly, we detected
DNA-SCARS via identifying 53BP1 foci in senescent cells. Currently, the NF-κB signaling pathway is
proposed as the potential inducer and signaling pathway that activate NF-κB signaling subsequently
triggers SASP [32]. Furthermore, the p38MAPK signaling pathway is a crucial inducer for SASP
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without genotoxic stress in human fibroblasts [33]. Consistent with these well-documented inducers,
our results again confirmed the evident activation of p38MAPK and NF-κB signaling pathways
in senescent breast cells. Additionally, we also verified noteworthy upregulation of Akt and MEK
pathways, which are potential mediators for SASP development and maintenance. However, decreased
expression of Akt and MEK pathway were noted in nontumorigenic cell MCF-10A. Concomitantly,
inhibitors SB203580 for p38MAPK and BAY11-7082 for NF-κB significantly suppressed the SASP from
both tumorigenic and nontumorigenic cells evidenced by antibody array test. Moreover, notable
activation of Stat3 may potentiate the deleterious effect of doxorubicin-induced senescence, since this
signaling pathway mediates immune suppression in tumor [34]. Impressively, for doxorubicin-induced
senescent breast tumor cell line MDA-MB-231, Rh2 not only suppressed the accepted p38MAPK and
NF-κB pathways but also prohibited Stat3 pathway. Together, Rh2 may attenuate SASP development
through regulation of above mentioned multipathways.

4. Materials and Methods

4.1. Cell Culture

Human breast cancer cells MDA-MB-231 and normal breast cells MCF-10A were purchased
from the American Type Culture Collection (ATCC). Breast cancer cell line MDA-MB-231 was
maintained in high glucose Dulbecco’s Modified Eagle’s Medium (Themro Fisher Scientific, Seoul,
South Korea), supplemented with 10% Fetal Bovine Serum and penicillin/streptomycin (Invitrogen,
Seoul, South Korea). MCF-10A was maintained in Dulbecco’s Modified Eagle’s Medium/F-12 (Thermo
Fisher Scientific, Seoul, South Korea), supplemented with Mammary Epithelial Cell Growth Medium
SingleQuot Kit Supplement & Growth Factors (Lonza, CC-4316, Alpharetta, GA, USA) and 100 ng/mL
cholera toxin (Sigma, St. Louis, MO, USA). The cells were incubated at 37 ◦C in a 5 % CO2 atmosphere.

4.2. Reagents

Ginsenosides Rg1, Re, F1, Rh1, Rh1, PPT, Rb1, Rd, Gyp75, F2, Rg3, Rh2, CK, and PPD, with a
purity of more than 98%, were prepared with High Performance Liquid Chromatography (HPLC,
Agilent, Seoul, South Korea). Each ginsenoside was dissolved in dimethyl sulfoxide (DMSO, St. Louis,
MO, USA) as 10 mg/mL solution. Bay 11-7082, SB203580 and doxorubicin were purchased from Sigma
(St. Louis, MO, USA).

4.3. Senescence Induction and Assessment

Human breast cancer cells MDA-MB-231 and normal breast cells MCF-10A were induced to
senescence by exposure to doxorubicin in complete culture medium. Briefly, proliferating cells were
treated with indicated concentrations of doxorubicin for 72 h. Later, cells were scored for senescence
markers, including senescence-associated β-galactosidase (SA-β-gal) activity and the amount of
persistent DNA damage foci. SA-β-gal staining was performed using a SA-β-gal kit (#9860, Cell
Signaling Technology Inc., Beverly, MA, USA) in accordance with the manufacture’s manual. The cells
were fixed for 15 min at room temperature, then rinsed with PBS and stained with staining solution at
a final pH of 6.0 for overnight (at least 16 h). The SA-β-gal positive cells develop blue color and were
counted under a phase-contrast microscope. DNA damage foci were estimated by immunostaining for
53BP1. For DNA damage foci and SA-β-gal positivity, random fields were selected. Fluorescent images
were quantified using CellProfiler (2.2.0, Cambridge, MA, USA), an open source software program.
SA-β-gal staining was quantified by researcher that was blind to the treatments.

For SASP development, cells were treated with 100 nM doxorubicin for 2 cycles (day 0 and day 4)
for 10 days. Specific inhibitor of p38MAPK (SB203580), NF-κB inhibitor, Bay 11-7082, and ginsenoside
Rh2 were added at day 6. Then 48 h later (day 8), cultures were replaced with fresh serum-free medium.
Lastly, medium were collected and prepared for the subsequent tests (day 10).

213



Int. J. Mol. Sci. 2019, 20, 1244

4.4. Cell Proliferation Assay

Cell viability (proliferation) was evaluated by the WST-1 assay, which is based on the enzymatic
cleavage of the tetrazolium salt WST-1 to formazan by cellular mitochondrial dehydrogenase present
in viable cells. In brief, after 72 h treatment, 20 µL of WST-1 was added to each well and the plates
were incubated at 37 ◦C for 2 h. The plates were then centrifuged and 100 µL of the medium was
withdrawn for measuring the absorbance value at a wavelength of 450 nm using a microplate reader
(Tecan, Männedorf, Switzerland).

Seventy-two hours after senescence induction, cells were also assessed by immunostaining for
Ki-67, a key proliferation marker. Fluorescent images were captured by a Nikon i2 U microscope
(Tokyo, Japan).

4.5. Assay of Caspase 3/7 Activation

Cells were plated in 12-well plates and subjected to senescence induction. Six days after that,
DMSO or ginsenoside Rh2 was added into culture medium. Forty-eight hours after addition, live
imaging was initiated by 30 min preincubation of CellEvent Caspase 3/7 green detection reagent
(5 µM, Thermo Fisher Scientific, Seoul, South Korea) using a Nikon i2 U microscope (Tokyo, Japan)
and quantification was measured by microplate reader (Tecan, Männedorf, Switzerland).

4.6. Cytokine Antibody Array

The conditioned medium (CM) for antibody analyses were prepared by washing approximately
6 × 106 presenescent and senescent cells 3 times with PBS, and incubating them with serum-free
medium for 48 h. The conditioned medium were collected and the remained cells were counted
to normalize conditioned medium volumes for cell number. Then medium were centrifuged for
20 min at 5000 rpm, filtered through 0.22 µM bottle-top filters (Sartorius Stedim Biotech, Göttingen,
Germany) diluted with serum-free medium to a concentration equivalent to 1 × 106 cells per 1.5 mL,
and applied to antibody array (Ray Biotech, Norcross, GA, USA). The signals were detected with
Odyssey-LC chemiluminescent imaging system. Signals were averaged and expressed as described in
the figure legend.

4.7. Migration and Invasion Assay

MDA-MB-231 and MCF-10A cells were plated in 24-well plates (5 × 104 cells per well) in a
complete corresponded medium. Cells were scraped off from the bottom of a culture plate using a
pipette tip to produce a cell-free area. Cells were washed with DMEM or DMEM: F12 (1:1) to remove
the cell debris and incubated with indicated conditioned media in 3% FBS prepared from senescent
MDA-MB-231 and MCF-10A cells treated with or without ginsenoside Rh2 for 24 h. The wound areas
were captured at 0 h and 48 h and quantified using CellProfiler Software (2.2.0, Cambridge, MA, USA).

MDA-MB-231 cells were serum-starved overnight, trypsinized, then seeded in the upper chamber
with Matrigel-coated transwells in serum-free medium, with cells migrating towards the lower chamber
in response to SASP-containing CM (R&D systems, Minneapolis, MN, USA). Cells on the lower side of
the membranes were stained with 0.1% crystal violet (Sigma) after 24 h and enumerated.

4.8. Quantification of SASP Major Factors

IL-6 and IL-8 levels in conditioned media were quantified using Human IL-6 and IL-8 ELISA Ray
Biotech protocol respectively.

Major SASP factors were analyzed by real-time PCR. Total RNA was prepared with the
RNeasy Micro Kit (Qiagen, Germantown, MD, USA). qRT-PCR reactions were performed using the
QuantiNova SYBR Green RT-PCR Kit (Qiagen) according to the manufacture’s protocol. Primer/probe
sets for human IL-6, IL-8, MCP-1, GRO were used: IL6F: 5′-GCCCAGCTATGAACTCCTTCT-3′;
IL6R: 5′-GAA GGCAGCAGGCAACAC-3′; IL-8F: 5′-AGACAGCAGAGCACACAAGC-3′; IL-8R:
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5′-ATGGTTCCTTCCGGTGGT-3′; MCP-1F: 5′-AGTTCTTGCCGCCCTTCT-3′; MCP-1R: 5′-GTGACTG
GGGCATTGATTG-3′; CXCL-1F: 5′-TCCTGCATCCCCCATAGTTA-3′; CXCL-1F: 5′-TCCTGCATCC
CCCATAGTTA-3′; CXCL-1R: 5′-CTTCAGGAACAGCCACCAGT-3′.

The Ct-value for targets and endogenous control (GADPH) were used to calculate the relative
expression of the gene of interest. Samples were determined in triplicate.

4.9. PathScan® Signaling Nodes Multitarget Sandwich ELISA Assay

Presenescent and senescent MDA-MB-231 and MCF-10A cells were collected after SASP was
fully developed, and then lysed with ELISA lysis buffer. Cell lysates were applied to specific assay
formulations for the indicated target proteins according to the manufacture’s protocol (Ray Biotech,
Norcross, GA, USA). Briefly, microwell strips were unsealed and placed at room temperature.
One-hundred microliters of sample diluted with equal amount of sample diluent were applied to well
and incubated overnight at 4 ◦C. Then the microwell strips were washed with buffer and incubated
with detection antibody for 1h at 37 ◦C, followed by HRP-linked secondary antibody for 30 min at 37 ◦C.
Next, TMB substrate was added and incubated for 10 min at 37 ◦C. After adding stop solution to each
well, the microwell strips were measured using a microplate reader (Spark 10M, Tecan, Männedorf,
Switzerland) at a wavelength of 450 nm within 30 min.

4.10. Western Blotting

Cell lysates were collected and prepared from indicated treatments. Lysates were subjected to 10%
SDS-PAGE gels; separated proteins were transferred to polyvinylidene difluoride membrane for 1 h at
110 V. Membranes were blocked and incubated overnight at 4 ◦C with the following primary antibodies:
p16, p21, ZO-1, Vimentin, Snail, Slug, and beta-catenin (rabbit monoclonal, 1:1000, CST, USA), with
beta-actin (mouse monoclonal, 1:2000, CST, Norcross, GA, USA) as loading control. Membranes were
washed and incubated with horseradish peroxidase-conjugated (1:5000; CST, Norcross, GA, USA) or
IRDye 800CW or IRDye 680RD (1:10000; Li-COR, Lincoln, NE, USA) for 1 h at room temperature and
washed again. Signals were detected by Odyssey-Fc imaging system (Image Studio, ver5.2, Li-COR,
Lincoln, NE, USA).

4.11. Fluorescence Microscopy

Cells with various indicated treatments were washed twice with PBS, then cells were fixed with
4% paraformaldehyde for 10 min and permeabilized with 0.15% Triton X-100 in PBS for 15 min at
room temperatures. Cells were then blocked with 3% BSA for 30 min and incubated with indicated
primary antibody against ZO-1 (rabbit monoclonal, 1:2000, CST, USA) overnight at 4 ◦C, followed by
incubation with Alexa fluorescein-labeled secondary antibodies (1:200, Thermo Fisher Scientific, Seoul,
South Korea) for 1h and mounted with DAPI (Thermo Fisher Scientific, Seoul, South Korea). Images
were captured with a Nikon i2 U microscope (Japan).

4.12. Statistical Analyses

All data that show error bars are presented as mean ±s.e.m. The significance of difference in
the mean was determined using Student’s t-test and one-way Analysis of Variance (ANOVA) unless
otherwise mentioned. p < 0.05 was considered significant. All calculations were performed using
GraphPad Prism software (7.0, San Diego, CA, USA).

5. Conclusions

In summary, our results provided Rh2 as a potential candidate for ameliorating
chemotherapy-induced senescence bystander effect, which might be associated with such age-related
pathology breast tumor progresses and tissue damage.
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Abstract: Peanut sprouts (PS), which are germinated peanut seeds, have recently been reported to
have anti-oxidant, anti-inflammatory, and anti-obesity effects. However, the underlying mechanisms
by which PS modulates lipid metabolism are largely unknown. To address this question, serial doses
of PS extract (PSE) were added to 3T3-L1 cells during adipocyte differentiation. PSE (25 µg/mL)
significantly attenuated adipogenesis by inhibiting lipid accumulation in addition to reducing the
level of adipogenic protein and gene expression with the activation of AMP-activated protein kinase
(AMPK). Other adipocyte cell models such as mouse embryonic fibroblasts C3H10T1/2 and primary
adipocytes also confirmed the anti-adipogenic properties of PSE. Next, we investigated whether PSE
attenuated lipid accumulation in mature adipocytes. We found that PSE significantly suppressed
lipogenic gene expression, while fatty acid (FA) oxidation genes were upregulated. Augmentation of
FA oxidation by PSE in mature 3T3-L1 adipocytes was confirmed via a radiolabeled-FA oxidation
rate experiment by measuring the conversion of [3H]-oleic acid (OA) to [3H]-H2O. Furthermore,
PSE enhanced the mitochondrial oxygen consumption rate (OCR), especially maximal respiration,
and beige adipocyte formation in adipocytes. In summary, PSE was effective in reducing lipid
accumulation in 3T3-L1 adipocytes through mitochondrial fatty acid oxidation involved in AMPK
and mitochondrial activation.

Keywords: peanut sprouts; resveratrol; adipogenesis; fatty acid oxidation; mitochondrial respiration

1. Introduction

The prevalence of obesity has reached epidemic proportions in the United States and all over
the world [1,2]. Obesity is characterized by the abnormal expansion of white adipose tissue, either
due to an increase in the number of adipocytes from pre-adipocytes or an increase in cell size [3,4].
Obesity increases the risk of metabolic disorders, such as type 2 diabetes, heart disease, hypertension,
and cancer [5]. Therefore, understanding the molecular mechanisms by which hyperplastic and
hypertrophic obesity is driven by adipocytes and identifying the novel molecules for regulating lipid
metabolism is necessary for the prevention of obesity.

The peanut (Arachis hypogaea L.) is a naturally occurring, common, nutritious food, which contains
high levels of protein, unsaturated fatty acid, fiber, potassium, magnesium, copper niacin, arginine,
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fiber, α-tocopherol, and folates. Bioactive compounds, such as phytosterols, and flavonoids are also
rich in the peanut [6]. Peanut seeds can be germinated to create a form called peanut sprouts (PS).
PS have a high total polyphenolic content, including a high content of resveratrol, protocatechuic acid,
gallic acid, and caffeic acid [7]. Among them, resveratrol (3,5,4′-trihydroxystilbene) is a well-known
major component of PS. It has been previously reported that the amount of resveratrol significantly
increases from 4.5 µg/g on day 0 of germination to around 30 µg/g on day 9 of germination [7].
The health-promoting effects of resveratrol are mainly due to the activation of AMP-activated protein
kinase (AMPK)/sirtuin 1 (SIRT1), which regulates energy metabolism in the whole body [8,9].
In particular, resveratrol supplementations have been shown to increase mitochondrial content/activity
in skeletal muscle, brown adipose tissue, and the liver. This enhances body basal energy expenditure,
which protects against diet-induced obesity and metabolic complications such as insulin resistance
and fatty liver disease [8]. Accumulating evidence has reported that PS has anti-oxidant [10],
anti-inflammatory [11], and lipid-lowering effects in vivo [12,13] and in vitro [14]. However, most
studies were descriptive reports and few studies have explored the role of PS in lipid accumulation
and its effect on adipocytes.

In the present study, we first report that PS extract (PSE) is a potent negative regulator of
adipogenesis in 3T3-L1 cells adipocytes. We also confirm the anti-adipogenic properties of PSE
by using another adipocyte model that does not need clonal expansion such as C3H10T1/2 and
primary adipocytes from ear mesenchymal stem cells (EMSCs) [15]. To investigate the regulatory
effects of PSE on lipid metabolism, 3T3-L1 adipocytes were used to examine the induction of fatty acid
oxidation, energy metabolism-related genes and mitochondrial bioenergetics.

2. Results

2.1. Total Polyphenol, Flavonoid, and Resveratrol Contents of PS Extracts

The total polyphenol content of the PSE was 10.87 mg gallic acid/g extract, while the total
flavonoid content was 3.79 mg catechin/g extract (Table 1). The resveratrol content of PSE, determined
by LC/MS, was 18 µg/g.

Table 1. Total polyphenol, flavonoid, and resveratrol contents of peanut sprout extract.

Total polyphenols, Flavonoids, and Resveratrol Contents Peanut Sprout Extract

Total polyphenols (mg Gallic acid/extract g) 10.87 ± 0.11
Total flavonoids (mg Catechin/extract g) 3.79 ± 0.14 1

Resveratrol (µg/g) 18
1 Values are presented as the mean ± SEM of three independent experiments.

2.2. Effects of PSE on Cell Viability 3T3-L1 and C3H10T1/2 Preadipocytes

To determine whether PSE affects the cell viability of pre-adipocytes, the cytotoxic effects of PSE
(10–100 µg/mL) were determined in both 3T3-L1 and C3H10T1/2 pre-adipocytes. PSE was incubated
for 24 h before the 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT)
assay. As shown in Figure 1, there was no significant reduction in cell viability after different doses of
PSE were applied.
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Figure 1. Effects of PSE on cell viability in 3T3-L1 and C3H10T1/2 pre-adipocytes. The culture of
3T3-L1 (A) and C3H1051/2 cells (B) were treated with 10-100 µg/mL of PSE for 24 h. XTT reagent was
added 3 h before measurement of OD 450 nm. Data are expressed as a percentage of the vehicle control
(dimethyl sulfoxide (DMSO)). n.s. represents no significance. Data are represented as the mean ± SEM
of three independent experiments. Values that do not share the same superscript are significantly
different, as determined by one-way ANOVA (p < 0.05).

2.3. PSE Inhibits Adipogenesis in 3T3-L1 Adipocytes

To determine whether PSE was able to inhibit adipogenesis, PSE was added to 3T3-L1 cells during
differentiation; this was maintained for 10 days. The presence (50, 100, 200 µg/mL) of PSE caused
a significant reduction in triglyceride (TG) accumulation, as measured by Oil-red-O (ORO) staining
(Figure 2A–C), which is compatible with 40 µM of resveratrol treatment (resveratrol was used as a
positive control). Next, we investigated whether a low dose of PSE (5–25 µg/mL) has anti-adipogenic
effects. Adipogenic gene and protein expressions were determined by quantitative PCR (qPCR)
and Western blot. PSE treatment, especially 25 µg/mL, significantly suppressed adipogenic gene
expression, including peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid binding
protein 4 (FABP4, aP2), CCAAT/enhancer binding protein α (C/EBPα), and fatty acid synthase (Fas)
(Figure 2D). Based on these results, we used the 25 µg/mL concentration of PSE for the rest of the
experiments to ensure we did not cause cellular damage. Adipogenic protein expression, including
PPARγ and aP2, was also reduced in murine cultures treated with 25 µg/mL of PSE (Figure 2E).

AMP kinase (AMPK) activation is a well-known mechanism behind the anti-adipogenic properties
of several phytochemicals [16–19]. In our study, treatment with PSE (25 µg/mL) increased AMPK
phosphorylation (Figure 2E).
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separate experiments (magnified 4×); (D) adipogenic gene expression of PPARγ, aP2, C/EBP α, and 

Fas by qPCR; (E) adipogenic protein expressions of PPARγ, aP2, phosphor-specific, or total 

antibodies targeting AMPK and β-actin by Western blot analysis. All values are presented as the 
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Figure 2. PSE inhibits adipogenesis in 3T3-L1 adipocytes. 3T3-L1 cells were seeded and induced to
differentiation in the presence of DMSO (vehicle control), resveratrol (20–40 µM) or PSE (50–200 µg/mL)
for 10 days: (A) TG accumulation in 96-well culture plates was visualized by ORO staining; (B) extracted
ORO staining was quantified (OD 500 nm); (C) representative images from three separate experiments
(magnified 4×); (D) adipogenic gene expression of PPARγ, aP2, C/EBP α, and Fas by qPCR;
(E) adipogenic protein expressions of PPARγ, aP2, phosphor-specific, or total antibodies targeting
AMPK and β-actin by Western blot analysis. All values are presented as the mean ±S.E.M. * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001 compared with the vehicle control (DMSO treated cells) by
one-way ANOVA with Bonferroni’s comparison test. +; treatment, -; non-treatment.

2.4. PSE Inhibits Adipogenesis in C3H10T1/2 Mouse Embryonic Fibroblasts Adipocytes and EMSCs

We also utilized a complementary approach by using the models do not required clonal expansion
to confirm the anti-adipogenic effects of PSE, which were C3H10T1/2 mouse embryonic fibroblasts
mimicking primary mouse embryo-fibroblasts [15] and mouse primary adipocytes from EMSCs.
PSE (50 and 100 µg/mL) caused a significant reduction in TG accumulation, as measured by ORO
staining in C3H10T1/2 cells (Figure 3A). To further confirm the anti-adipogenic effects of PSE,
we prepared primary adipocytes derived from EMSCs. The bright-field picture represents the
differentiated primary adipocytes and PSE (25 µg/mL) significantly inhibited lipid droplet formation
(Figure 3B). Consistent with reduced TG accumulation, the adipogenic gene PPARγ, aP2, C/EBP α,
and Fas expression were significantly suppressed by PSE (Figure 3C).
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Figure 3. PSE inhibits adipogenesis in C3H10T1/2 mouse embryonic fibroblasts, adipocytes, and
EMSCs. C3H10T1/2 cells were seeded and induced to differentiation in the presence of either DMSO
(vehicle control) and PSE (5–100 µg/mL) for four days: (A) Triglyceride accumulation was visualized
by Oil red-O staining and representative images from three separate experiments are shown in (left)
(magnified 4×); extracted ORO staining was quantified (OD 500 nm) (right). Primary adipocytes
were prepared from EMSC of Balb/c mice: (B) Phase contrast images of primary adipocytes were
differentiated with or without PSE (25 µg/mL) for seven days (magnified 4×, scale bar = 400 µm);
(C) adipogenic gene expression of PPARγ and aP2 by qPCR. * p < 0.05; ** p < 0.01; **** p < 0.0001
compared with the vehicle control (DMSO treated cells) by one-way ANOVA with Bonferroni’s
comparison test or Student’s t-test. +; treatment, -; non-treatment.

2.5. PSE Attenuates Lipid Accumulation in Cultures of Adipocytes by Upregulating Fatty Acid Oxidation and
Mitochondrial Oxygen Consumption

We next postulated that PSE would antagonize adipocyte hypertrophy. To address this hypothesis,
fully differentiated cultures of 3T3-L1 adipocytes were exposed to PSE (25 µg/mL) for three days based
on the experimental design (Figure 4A). Exposure to PSE (25 µg/mL) caused a significant reduction
of lipogenic activation as measured by mRNA expression while there was upregulation of fatty acid
oxidation-related gene expression (peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC1α), carnitine palmitoyltransferase I (CPT1), PPARα) (Figure 4B).
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Figure 4. PSE attenuates lipid accumulation in cultures of adipocytes by upregulating fatty acid
oxidation and mitochondrial oxygen consumption. (A) Experimental scheme. 3T3-L1 were seeded on
the second day before differentiation (d-2) and induced to differentiation (d0, MDI: methyl isobutyl-
xanthine, dexamethasone, and insulin). Keep 3T3-L1 cells differentiated into fully differentiated
adipocytes until d7. Fully differentiated adipocytes (d7) were incubated with PSE (25 µg/mL) for
three days. (B) Lipogenic and fatty acid oxidation-related gene expression of PPARγ, aP2, PGC1α,
CPT1, and PPARα as determined by qPCR. (C) Conversion of [3H]-OA into [3H]-H2O. (D–F) Oxygen
consumption rate (OCR) in 3T3-L1 adipocytes treated with Veh (blue) and PSE (red) as determined by
Seahorse extracellular analyzer. 3T3-L1 cells differentiated into fully differentiated adipocytes. Fully
differentiated adipocytes (d7) were incubated with PSE (25 µg/mL) for one day. Arrow indicates
the addition of respiratory inhibitors of oligomycin (Oligo), carbonyl cyanide 4-trifluoromethoxy
phenylhydrazone (FCCP) and a combination of antimycin A and rotenone (Rot/AA). (G–H) OCR
in HepG2 cells treated with BSA (black), PA (blue), and PA + PSE (red) as determined by Seahorse
extracellular analyzer. HepG2 cells were pre-incubated with PSE (50 µg/mL)for 48 h. BSA or 0.8
mM BSA-PA complex was loaded for 3 h. (I) Relative expressions of UCP1 and PGC1α by qPCR.
Pre-treatment of the 3T3-L1 cell with PSE for 7 d during adipogenesis, followed by Bt2-cAMP
stimulation for 6 h. All values are presented as the mean ±SEM. n.s. represents no significance.
* p < 0.05; ** p < 0.01; *** p < 0.001 compared with the vehicle control (DMSO-treated cells) by Student’s
t-test or one-way ANOVA with Bonferroni’s comparison test. Means that do not share a common
superscript are significantly different as determined by one-way ANOVA with Bonferroni’s comparison
test. ++ p < 0.01; +++ p < 0.001 compared with the vehicle control (DMSO treated cells) # p < 0.05; ## p
< 0.01; ### p < 0.001 compared with PA-treated HepG2 cells by two-way ANOVA with Bonferroni’s
comparison test. +; treatment, -; non-treatment.

Next, we investigated the enhancement of FA oxidation in PSE-treated cells by determination of
the actual FA oxidation rate using a radiolabeled precursor. [3H]-OA was added to fully differentiated
adipocytes for 2 h, then the conversion of [3H]-H2O released from [3H]-OA was measured by a liquid
scintillation counter. BSA-OA complex treatment significantly increased the FA oxidation rate, which
confirmed the accuracy of this method. PSE (25 µg/mL) markedly increased the conversion of [3H]-OA
to [3H]-H2O (Figure 4C).
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To determine the impact of PSE on mitochondrial activities, OCR was determined by the Seahorse
system, which is a standard method for exhibiting the key parameters of the mitochondrial function.
PSE significantly increased maximal respiration compared to the vehicle control. Moreover, we also
found an increase in the area under the curve (AUC) of OCR (Figure 4D–F). Mitochondrial bioenergetics
properties of PSE were also confirmed in hepatoma HepG2 cells by measuring OCR. Palmitic acid (PA)
treatment conjugated with BSA has a marginal increase of OCR compared to the BSA-treated group.
Pretreatment 50 µg/mL of PSE enhanced OCR even more than PA-treated HepG2 cells (Figure 4G,H).

After this, we investigated whether the upregulation of FA oxidation and alterations in white
adipocyte mitochondrial respiratory function of PSE are involved in the augmentation of beige
adipocyte formation. Differentiated 3T3-L1 adipocytes were treated with dibutyryl cyclic AMP
(Bt2-cAMP), an analog of cAMP, for mimicking beige adipocytes in the presence or absence of
PSE (25 µg/mL). The incubation of mature adipocytes with Bt2-cAMP was correlated with the
induction of uncoupling protein 1 (UCP1) gene expression, which confirmed the accuracy of this
analog. Interestingly, PSE significantly enhanced UCP1 levels at an even higher level compared to
Bt2-cAMP-treated adipocytes. PSE also significantly enhanced the PGC1α gene expression (Figure 4I).

3. Discussion

Peanuts (Arachis hydrogaea L.) have nutritional characteristics that can promote human
health [6,20–22]. Recent reports have suggested that peanut sprouts prepared from the germination of
peanut kernels are rich in phytochemicals. It is suggested that resveratrol (3,5,4’-trihydroxystilbene),
which is a naturally occurring polyphenol present in grapes, berries, and other vegetables, is the major
phytochemical in peanut sprouts. Resveratrol is synthesized by several plants as a defense mechanism
against stress, such as UV irradiation and/or microbial infection [23,24]. In rodents, resveratrol
improves mitochondrial and metabolic health by modulating energy metabolism via activation of
the AMPK/Sirtuin 1 (SIRT1)/PGC-1α axis [8,9]. Some clinical studies have confirmed the metabolic
effects of resveratrol [25,26]. Since several recent reports showed the beneficial health effects of PSE,
such as anti-inflammatory, anti-oxidant, and anti-obesity effects [10–13], it is plausible to assume that
PSE may regulate AMPK/SIRT activation in a similar way to resveratrol to control lipid metabolism in
adipocytes. However, the effect of PSE on lipid metabolism through stimulating changes in adipocytes
and uncovering its detailed molecular mechanisms have not been sufficiently studied. Here, we
demonstrate that PSE is effective at attenuating TG accumulation and increasing mitochondrial
FA oxidation involved in AMPK mechanisms, which may ultimately modulate energy metabolism.
These results may provide insight into PSE as a unique therapeutic method for controlling adiposity.

In this study, we noticed that PSE from PS that germinated for nine days had a high total
polyphenols content (TPC) and total flavonoid content (TFC); moreover, the resveratrol contents were
consistent with other reports [7] (Table 1), which indicates that PS may be a potentially functionally
beneficial food. Therefore, we decided that it is appropriate to investigate the lipid modulating
properties of PSE in adipocytes. By using the high potency of PSE, which has high TPC, TFC, and
resveratrol contents, we first assessed the cytotoxicity of PSE in 3T3-L1 and C3H10T1/2 pre-adipocyte
cells. Consistently, the accumulating data suggested that PSE treatment does not seem to affect cell
viability in several non-carcinogenic cells [27,28]. In a study by Kim et al. [14], there was no significant
difference in the cell cytotoxicity of 3T3-L1 cells within two days of PS ethanol treatment (up to
40 µg/mL). In our data, up to 100 µg/mL concentrations of PSE showed no sign of cytotoxicity in the
tested time frames for both 3T3-L1 and C3H10T1/2 cells (Figure 1). Based on ORO data, adipogenic
gene and protein data, and a literature review of routine PSE concentrations for cellular studies
(25–100 µg/mL), we chose the 25 µg/mL concentration of PSE as a non-toxic concentration to assess
the potency of PSE in regulating lipid metabolism in adipocytes.

In our study, PSE treatment in adipocytes was associated with at least three metabolic
consequences: (i) inhibition of adipogenesis in 3T3-L1 adipocytes and other adipocyte models,
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(ii) enhancement of fatty acid oxidation and mitochondrial respiration, which was correlated to
AMPK activation, and (iii) increase in beige adipogenic conversion pathways of white adipocytes.

The first metabolic outcome that we immediately noticed was that PSE impacted adipogenesis
in several adipocyte cell models (3T3-L1, C3H10T1/2 cells and primary adipocytes from EMSCs)
(Figures 1 and 2). In our data, neutral TG accumulation was reduced significantly from 50–200 µg/mL,
which is similar to 40 µM of resveratrol treatment (Figure 1A–C). We wondered whether the lower
concentration of PSE was also able to inhibit adipogenic and protein expression during adipogenesis
and 25 µg/mL of PSE concentration effectively inhibited adipogenic conversion in 3T3-L1 cells.
In agreement with our notion, Kim et al. reported that PS ethanol extract (40 µg/mL) significantly
attenuated adipogenesis in 3T3-L1 cells [14]. We extracted PSE components with the pressurized
hot water extraction method, not ethanol extraction. It is unclear what concentrations and/or types
of bioactive components are created by PS extraction (pressurized hot water extraction vs. ethanol
extraction), so it would be interesting to compare these two methods regarding the biochemical and
functional aspects of PSE. One of the possible mechanisms that involve inhibiting adipogenesis of PSE
is the inhibition of matrix metalloproteinases (MMP), which are differentially expressed in adipose
tissue during obesity and modulate adipocyte differentiation [29]. Extensive extracellular matrix
occurs during adipose tissue growth and MMP, especially MMP2 and MMP9, which play a pivotal
role in regulating adipose tissue remodeling. Interestingly, a recent report showed that PSE attenuates
MMP2 and MMP9 activity during adipogenesis in 3T3-L1 adipocytes [14]. Apart from PSE, several
other functional food components, such as ginseng [30], have been found to regulate MMP during
adipogenesis. Further studies are necessary to validate the aforementioned MMP inhibition activity
by PSE in adipogenic differentiation. In vivo experiments confirmed the lipid-lowering effects of
PSE by using high-fat-diet-fed Sprague–Dawley rats [12,13]. Although we confirmed the in vitro
anti-adipogenic properties of PSE in our study, we next need to confirm whether it is translated into an
animal and/or human.

Subsequently, we examined the anti-lipogenic properties of PSE by using mature adipocytes.
PSE directly acts on adipocytes and triggers changes in gene expression and related biochemical
parameters, which are consistent with reduced lipogenesis and enhanced substrate oxidation
(Figure 4B). This is confirmed by the FA oxidation rate using a radiolabeled precursor (Figure 4C)
and maximal OCR (Figure 4D–F). Since AMPK is a major energy sensor that triggers a variety of
catabolic processes and suppresses anabolic pathways simultaneously, it is plausible to connect the
lipid-lowering effects of PSE and increase mitochondrial fatty acid oxidation with AMPK activation
(Figure 2E). Until now, little information has been available regarding the AMPK activation by
PSE, although a considerable number of reports have shown an increase in AMPK/SIRT1 due to
resveratrol. Resveratrol activates the AMPK/SIRT1 axis, which inhibits adipogenesis and enhances
brown adipocyte formation in vivo and in vitro [9]. Resveratrol 20 µM is required to inhibit
adipogenesis ([19,31] and Figure 2A–C), and our PS extract contains 18 µg/g resveratrol (Table 1).
Although 18 µg/g resveratrol is a significant amount in PSE, it is possible to assume that the
upregulation of mitochondrial FA oxidation and AMPK activation by PSE was not solely due to
resveratrol. We should examine whether the beneficial effects of PSE in our study were due to
resveratrol or the synergistic effects of other bioactive components. Several plant-derived nutrients,
such as Salvianolic acid B [32], anthocyanins [33], and ecliptal, a natural compound isolated from the
herb Eclipta alba, were recently reported to promote mitochondrial respirations in 3T3-L1 adipocytes.
In our study, maximal respiration from OCR, which is regarded as an index of energetic reserve
capacity, increased after PSE treatment. This indicated that PSE has the potential to have mitochondrial
bioenergetic properties. Although HepG2 cells require a higher concentration of PSE (50 µg/mL)
than adipocytes, OCR was also upregulated in a non-adipocyte model in our study (Figure 4G–H).
We guess that the low sensitivity of PSE was due to the characteristics of HepG2 cells, which are
hepatocyte carcinoma cells, not primary hepatocytes [34]. We are currently undertaking a dose-
and time-dependent experiment using HepG2 cells to unravel these issues. Since the liver and
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adipose tissue are the two major organs regulating systemic lipid metabolism, there needs to be an
investigation into the lipid-lowering properties of PSE in the liver. Gomez-Zorita et al. also showed that
resveratrol-treated obese Zucker rats had reduced fat accumulation and increased fatty acid oxidation
in the liver [35]. Our data showed possible mitochondrial bioenergetic properties in the liver, but it is
still unclear whether PSE has the potential to modulate hepatic steatosis. We are currently undertaking
several experiments related to the hepatic lipid modulation of PSE by mitochondrial activations.

Finally, we have found the impact of PSE on the beigeing of white adipocytes. It has been
suggested that resveratrol could trigger an enhancement in mitochondrial function and metabolic
homeostasis for beigeing and brown adipogenesis [31]. In agreement with this notion, our data showed
that PSE treatment increased the level of Bt2-cAMP-mediated UCP1 expression to higher than the
expression triggered by Bt2-cAMP treatment alone (Figure 4I). This is also involved in the induction of
maximal respiration confirmed by seahorse oxygen consumption rate (Figure 4D–F). Since 3T3-L1 cells
are a classical white adipocyte model, not a ‘good’ beige adipocyte model, we are currently conducting
mechanistic experiments on PSE for the beigeing of white adipocytes in other brite adipocyte models
and also examining the protective effects of PSE on Lipopolysaccharides (LPS), which are known as
lipoglycans/endotoxin-mediated downregulation of UCP1 levels. Further studies are warranted to
investigate these possibilities by measuring metabolic activities in the presence or absence of PSE.

In conclusion, the present study determined that PSE impeded lipid accumulation in adipocytes
by the augmentation of mitochondrial fatty acid oxidation, which may mimic resveratrol. A major
limitation of our study is that it is still vague whether a 25 µg/mL PSE concentration is feasible in
the plasma or adipose depots after nutritional intervention. Thus, determining the clinical relevance
and efficacy of PSE supplementation should be conducted with caution. We are currently planning to
perform in vivo experiments to confirm PSE’s lipid-modulating effects. Nevertheless, we believe that
these discoveries support the potential benefit of PSE as a novel anti-adipogenic and anti-lipogenic
agent in future clinical studies.

4. Materials and Methods

4.1. Materials

All cell cultures were purchased from SPL (Seoul, Korea). Fetal bovine serum (FBS) and
penicillin-streptomycin were purchased from Cellgro Mediatech, Inc. (Herndon, VA, USA).
Rosiglitazone (BRL49653) was purchased from Cayman Chemical (Ann Arbor, MI, USA). All other
chemicals and reagents were purchased from Sigma Chemical Co (St. Louis, MO, USA) unless
otherwise stated.

4.2. Sample Preparation

PS, germinated for nine days, were kindly provided by WooYoung E&T (Jeju, South Korea).
PS were dried, freeze-dried, powdered, and extracted using the pressurized hot water extraction
method (modified from [36]). A 10-g sample (dry weight) of PS was mixed with 100 mL of Milli-Q
water. The extracted solutions were combined and centrifuged at 3000 rpm for 3 min. Next, the
obtained extracts were filtered using Whatman®filter paper and the filtrate was lyophilized to obtain
the powdered extract. Finally, the obtained sample was dissolved in dimethyl sulfoxide (DMSO, Sigma,
St. Louis, MO, USA) at a concentration of 100 mg/mL with several aliquots and utilized freshly in the
in vitro experiments.

4.3. Total Polyphenol and Flavonoid Contents of PS Extracts

The total polyphenols content (TPC) of the PS extract was determined using the modified
Folin–Denis method [37]. The same volume of PS extracts (50 µL) and 1 M Folin–Ciocalteu’s phenol
reagent (FMD Millipore Corporation, Darmstadt, Germany) was added to each well of a 96-well
plate and left at room temperature for 5 min. A total of 100 µL of 4% Na2CO3 solution was added to
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the reaction, which was incubated for another 60 min at room temperature and protected from
light using aluminum foil. The absorbance was obtained at 725 nm at room temperature by a
spectrophotometer (Molecular Devices, San Jose, CA, USA) and the results were expressed as gallic
acid concentration equivalents.

The total flavonoid content (TFC) was determined by the method of Moreno et al. [38]. We mixed
0.1 mL of the sample with 500 µL of water before 30 µL of a solution containing 5% sodium nitrate was
added and the mixture was incubated for 6 min at room temperature. A total of 60 µL of aluminum
nitrate (10%, w/v) was added and the mixture was incubated at 25 ◦C for 5 min. A total of 60 µL of
sodium hydroxide was added and the reactant absorbance was measured at 510 nm. The calibration
curve was calculated using catechin and the results were expressed in mg of catechin equivalent.

4.4. LC/MS Analyses of PS Extracts

Resveratrol content was determined by LC/MS. Extracts analyzed by HPLC tandem mass
spectrometry (LC-MS) were prepared in 0.1% formic acid. A Shimadzu LC system (Kyoto, Japan) was
equipped with a Poroshell 120 EC-C18 (3.0 × 50 mm) column. The column temperature was fixed at
40 ◦C. Mobile phases were 0.1% formic acid in water (solvent A) and 0.1% formic acid in Acetonitrile
(solvent B). The gradient was 0 min (60% A), 5 min (30% A), 8 min (5% A), 10 min (5% A), 10.01 min
(60% A), and 15 min (60% A). This was followed by 0 min (40% B), 5 min (70% B), 8 min (95% B),
10 min (95% B), 10.01 min (40% B), and 15 min (40% B). The column effluent was monitored at 280 nm
and mass spectra data were acquired by electrospray ionization (ESI) in the positive ion mode with a
Tandem Mass Spectrometry(API 3200). The source temperature was 500 ◦C. LC-MS data were collected
and processed by Analyst 1.6.2. (SCIEX) (Concord, Ontario, Canada).

4.5. Cell Culture

The 3T3-L1 cells (American Type Culture Collection (ATCC), Manassas, VA, USA) were grown to
confluence in a basal medium—Dulbecco’s modified Eagle’s medium (Sigma) with 50 IU/mL penicillin
(Sigma), 50 µg/mL streptomycin (Sigma) and 2 mM l-glutamine (Sigma)—supplemented with 10%
newborn calf serum (Linus, Madrid, Spain). Two days after the cells reached confluence (referred as
Day 0), they were induced to differentiate in a basal medium containing 10% fetal bovine serum (FBS;
Invitrogen, Carlsbad, CA, USA), 1 µM dexamethasone (DEX; Sigma), 0.5 mM methylisobutylxanthine
(MIX; Sigma) and 1 µg/mL insulin (Sigma) for 48 h. This was followed by 48 h in a basal medium
containing 10% FBS and 1 µg/mL insulin. The cells were subsequently refed fresh basal medium
supplemented with 10% FBS (without insulin) every other day. For browning induction of white
adipocytes, cells were treated with dibutyryl cyclic adenosine monophosphate (cAMP) (Bt2-cAMP;
0.5 mM) for 6 h at the end of adipocyte differentiation.

C3H10T1/2 cells were obtained from the ATCC and maintained in DMEM supplemented with
2 mM L-glutamine, 100 units/mL penicillin, 100 g/mL streptomycin and 10% (v/v) heat-inactivated
fetal bovine serum in a humidified 5% CO2 atmosphere at 37 ◦C. To induce adipocyte differentiation,
cells (1 × 106 cells/mL) were grown to 70–80% confluency. Differentiation was induced 2 days later by
adding 10 µM of rosiglitazone in an adipogenesis-inducing medium containing 1 µM dexamethasone,
0.5 mM isobutyl-methylxantine, 0.01 mg/mL insulin and 10% FBS in DMEM. After 72 h, the medium
was changed every other day to an adipogenesis-inducing medium containing insulin (0.01 mg/mL)
and 1 µM of rosiglitazone.

To prepare the primary cultures of rodent adipocytes, ear mesenchymal stem cells (EMSC) were
obtained from the ears of Balb/c mice. Briefly, EMSC were isolated from the pools of 6–8 ears from
adult mice (n = 3–4) by collagenase digestion (2 mg/mL). The confluent cultures of EMSC were
stimulated with an adipogenic differentiation mixture according to standard adipocyte differentiation
protocols [39].

HepG2 cells were kindly provided by Dr. Shin and cells were originally obtained from the Korean
Cell Line Bank (KCLB, Seoul, South Korea). HepG2 cells were maintained in Dulbecco’s modification
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of Eagle’s medium (DMEM)/Ham’s F12 containing 1 mM glucose, 1% L-glutamine, 10% fetal bovine
serum, 100 units/mL penicillin, and 100 g/mL streptomycin in 5% CO2 at 37 ◦C and used for OCR.

4.6. Cell Viability Assay

The cytotoxic effect of PSE was determined using the XTT cell viability kit (Cell Signaling
Technology, Beverly, MA, USA) according to the manufacturer’s protocol. Briefly, 3T3-L1 and
C3H10T1/2 cells were cultured in 96-well plates with a seeding density of approximately 20,000
cells/well. Cells were incubated with either DMSO or increasing concentrations of PSE for 24 h
(Figure 1). After this, the medium was replaced with a fresh medium containing XTT solution for 3 h
at 37 ◦C before measurement of OD 450 nm using a microplate reader.

4.7. Lipid Accumulation

To measure the lipid accumulation in adipocytes, cells were fixed with 10% formalin and stained
with oil red O (ORO). Bright-field images were taken by CKX41 Inverted Microscope (Olympus,
Melville, NY, USA) and ORO dye was extracted by isopropanol to quantify the relative triglyceride
(TG) accumulation (at OD 500 nm).

4.8. Total RNA Extraction and qPCR

Gene-specific primers for qPCR were obtained from Cosmo Genetech (Seoul, Korea). Total RNA
was isolated with Trizol reagent (Invitrogen). To remove potential genomic DNA contamination,
mRNA was treated with DNase (Mediatech). RNA concentrations were measured by the NanoDrop
(Nano-200 Micro-Spectrophotometer, Hangzhou City, China). A total of 1 µg of mRNA was converted
into cDNA in a total volume of 20 µL (High-capacity cDNA reverse transcription kits, Applied
Biosystems, Foster City, CA, USA). Gene expression was determined by real-time qPCR (CFX96™
Real-Time PCR Detection System, Bio-Rad, CA, USA) and relative gene expression was normalized
by hypoxanthine guanine phosphoribosyltransferase (HPRT) and/or glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (primer sequences are available in Table S1).

4.9. Western Blot Analysis

To prepare total cell lysates, monolayers of 3T3-L1 adipocytes were scraped with ice-cold
radioimmune precipitation assay (RIPA) buffer (Thermo Scientific, Waltham, MA, USA) containing
protease inhibitors (Sigma). Proteins were fractionated using 8% or 10% SDS-PAGE, transferred to
PVDF membranes and incubated with the relevant antibodies. Chemiluminescence from the ECL
(Western Lightning) solution was detected with ChemiDoc (Bio-Rad, Hercules, CA, USA). Polyclonal
or monoclonal antibodies targeting phospho-AMPK (Thr172, #2535), total AMPK (#5831), PPARγ
(#2435), and β-actin (#4967) were purchased from Cell Signaling Technology. The mouse monoclonal
antibodies for aP2 (sc-271529) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

4.10. Fatty Oxidation Rate Using [3H]-OA

To measure the FA oxidation rate, we followed the previously published methods by Olpin et
al. and Kang et al. [17,40], who utilized cultures of mature 3T3-L1 adipocytes. Briefly, cells were
incubated with serum-free low glucose (1000 mg/L d-(+)-glucose) overnight before the experiment.
[3H]-OA (Perkin Elmer, Norwalk, CT, USA; final concentration of 0.5 µCi/mL) were mixed with
a sodium oleate–bovine serum albumin (BSA) complex (400 µM), before this was added to cells
and the mixture incubated for 2 h. The [3H] radioactive containing medium was harvested and
precipitated using 100% trichloroacetic acid (TCA) solution. After precipitation, we added 6N NaOH
to reach a final concentration of 0.8–1.0 N to obtain an alkaline supernatant. The supernatant was run
through columns filled with Dowex ion-exchange resin (Acros Organics, AC202971000, Geel, Belgium)
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to capture [3H]-H2O. Radioactivity was measured by MicroBeta Microplate counters (PerkinElmer,
(Norwalk, CT, USA).

4.11. Oxygen Consumption Rate (OCR) by Seahorse

To determine the mitochondrial respiration activities, the O2 concentration in the 3T3-L1
adipocytes and human hepatoma HepG2 cells were measured using a XF24 extracellular flux analyzer
(Agilent Technologies, Santa Clara, CA, USA). Briefly, 3T3-L1 cells were seeded in a gelatin-coated
seahorse microplate (24-well) until they reached confluence, which was followed by adipogenic
differentiation as described above. HepG2 cells were pre-incubated with PSE (50 µg/mL) or DMSO
for 48 h and 0.8 mM BSA-palmitic acid (PA) complex was loaded for 3 h. The mitochondrial basal
respiration was assessed in untreated cells. The cells were then treated with oligomycin (oligo, 2 µM)
to measure the ATP turnover. The maximum respiratory capacity was assessed by the addition of
carbonyl cyanide 4-trifluoromethoxy phenylhydrazone (FCCP, 0.5 µM), which is a chemical uncoupler
of electron transport and oxidative phosphorylation. The mitochondrial respiration was blocked by a
combination of antimycin A (1 µM) and rotenone (1 µM) (A + R). The OCR was calculated by plotting
the O2 tension of the medium in the microenvironment above the cells as a function of time, which
was normalized by protein concentrations and expressed in pmol O2/min/µg protein.

4.12. Statistical Analysis

All the data were expressed as means ± standard error (SE), and statistical calculations were
performed using the t-test and ANOVA (one-way analysis of variance) with Tukey’s and Bonferroni’s
multiple comparison tests. Results were considered significant if p < 0.05 (GraphPad Prism Version 7.0,
La Jolla, CA, USA).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/5/
1216/s1.
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Abbreviations

AMPK AMP-activated protein kinase
aP2, FABP4 fatty acid binding protein 4
AUC area under the curve
cAMP Cyclic adenosine monophosphate
CPT1 Carnitine palmitoyltransferase I
EMSCs Ear mesenchymal stem cells
FA fatty acid
MDI methylisobutylxanthine, dexamethasone, and insulin
OA oleic acid
OCR oxygen consumption rate
ORO oil red O
PA Palmitic acid
PGC1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
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PPARγ Peroxisome proliferator-activated receptor gamma
PS Peanut sprouts
PSE Peanut sprout extracts
SIRT1 sirtuin 1
TFC total flavonoid contents
TPC total polyphenol contents
UCP1 uncoupling protein 1
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Abstract: Isodon rugosus (Wall. ex Benth.) Codd accumulates large amounts of phenolics and
pentacyclic triterpenes. The present study deals with the in vitro callus induction from stem and
leaf explants of I. rugosus under various plant growth regulators (PGRs) for the production of
antioxidant and anti-ageing compounds. Among all the tested PGRs, thidiazuron (TDZ) used alone
or in conjunction with α-napthalene acetic acid (NAA) induced highest callogenesis in stem-derived
explants, as compared to leaf-derived explants. Stem-derived callus culture displayed maximum
total phenolic content and antioxidant activity under optimum hormonal combination (3.0 mg/L
TDZ + 1.0 mg/L NAA). HPLC analysis revealed the presence of plectranthoic acid (373.92 µg/g DW),
oleanolic acid (287.58 µg/g DW), betulinic acid (90.51 µg/g DW), caffeic acid (91.71 µg/g DW), and
rosmarinic acid (1732.61 µg/g DW). Complete antioxidant and anti-aging potential of extracts with
very contrasting phytochemical profiles were investigated. Correlation analyses revealed rosmarinic
acid as the main contributor for antioxidant activity and anti-aging hyaluronidase, advance glycation
end-products inhibitions and SIRT1 activation, whereas, pentacyclic triterpenoids were correlated
with elastase, collagenase, and tyrosinase inhibitions. Altogether, these results clearly evidenced
the great valorization potential of I. rugosus calli for the production of antioxidant and anti-aging
bioactive extracts for cosmetic applications.

Keywords: Isodon rugosus; pentacyclic triterpenoid; phenolic acid; plant growth regulators;
anti-aging; antioxidant
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1. Introduction

According to a survey, around 70,000 important plant species are consumed for health and
wellness purposes. Besides this, industry is continuously producing a large amount of bioactive
compounds, but herbal medicines and phytotherapy are still in practice in many areas of the globe [1].
Species members of the genus Isodon (Schrader ex Bentham) Spach from Lamiaceae family are known
universally for their economical and medicinal worth [2]. Plants from family Lamiaceae have been
explored well for their health and wellness properties such as the treatment of hypertension, fever,
rheumatism, dementia, toothache, cancer, antimicrobial, hypoglycemic, phytotoxic, antidiarrheal,
anticholinesterase, lipoxygenase inhibitory, bronchodilator, and anthelmintic [3–8]. Among them,
I. rugosus (Wall. ex Benth.) Codd is one of the most challenging and attractive choices to characterize
its potential compounds and screen the biological activities that are applicable for cosmetic aspects.
This medicinal plant is present in Pakistan, and widely distributed in the Northern areas of the country,
especially in Gilgit; this I. rugosus is also recognized by various vernacular names such as sperkai, boi,
and phaypush [5,6]. This medicinal plant is an aromatic shrub, its stems erect with the quadrangular
branches, its leaves are opposite, broadly ovate shape with green color; leaf blade consist of small
stellate dendroid hairs. Its inflorescence is Cymose, each flower is white or spotted pink or violet,
bilabiate form, Nutlets fruit is an oblong shape with dark brown color. From a pharmacological point
of view, this Isodon species is rich in bioactive compounds, with potential applications in cosmetics,
as well as, traditional and modern medicine industries. I. rugosus is an aromatic medicinal plant
containing essential oils. Previous works examined its essential oil composition by GC and GC-MS
analysis [5,9–11]. Most of the analyzed extracts came from wild fresh living plants or dry plant
materials harvested from the forest or the field [5,9,10,12]. The presence of pentacyclic triterpenes and
caffeic acid phenolic derivatives have been also reported in this plant [13]. Important phytochemicals
including pentacyclic triterpenoids (plectranthoic acid (PA), oleanolic acid (OA), betunilic acid (BA)),
and other phenolic compounds were detected in I. rugosus [13]. As in many Lamiaceae species, both
rosmarinic acid (RA) and caffeic acid (CA) are the predominant phenolic compounds that could be the
reason behind the antioxidant properties of this plant [14–16].

Human beings have extensively exploited medicinal plants as bioactive ingredients for therapeutic
and cosmetic applications since ancient times [17]. The anti-aging activities of plants have been credited
to their intrinsic ability to reduce free radical damages to the skin, along with their ability to modulate
the activity of many enzymes involved in aging process. For example, their capacity to inhibit elastase,
hyaluronidase, or collagenase involve the cleavage of extracellular matrix components, while tyrosinase
inhibition involves hyperpigmentation related to skin aging, or more recently to their capacity to
activate SIRT1, which is a key regulator involved in the control of both oxidative stress response and
regulation of aging processes. Pentacyclic triterpenoids have been regarded as effective enzymes
inhibitors that are involved in the cleavage of the extracellular matrix components [18,19], whereas
phenolic acids are described as strong antioxidants and possible potent SIRT1 activators [19–21].
As a potential rich source of these compounds, I. rugosus could be an attractive plant for cosmetic
applications, however, currently this possibility has never been explored and the rationale of the
possible biological activities of this plant are therefore unknown. Moreover, slow growth, slow
germination, and a conventional way of harvesting large amount of wild plants have threatened this
species. Therefore, alternative strategies are now required for both its conservation and usage. In this
regard, in vitro culturing techniques ensure preservation of the uncommon and scarce medicinal plant
species [22]. Production of secondary metabolites via tissue culture techniques provides imperative
benefits to amplify the assembly of appropriate substances. Consequently, biotechnological strategies
magnify the estimation of these bioactive phytochemicals [23,24]. Herbal products have gained
attention worldwide because of their production of specialized metabolites such as phenolics and
pentacyclic triterpenoids [25,26].

Some in vitro cultivation has been reported on some Isodon species including I. serra [27],
I. wiggthii [28] or I. amethystoides [29]. However, until now, small number of studies are available
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on the establishment of in vitro cultivation, phytochemical analysis, and biological activities of the
resulting cultures of I. rugosus with the exception of biogenic synthesis of ZnONPs from in vitro callus
culture of this plant [30]. In the present study, we report the in vitro callus establishment through
optimization of hormonal combination, significant accumulation of pentacyclic triterpenoids (BA, OA
and PA) and phenolic compounds (CA and RA), as well as antioxidant and anti-ageing properties of
the resulting extracts for future potential cosmetic applications. As per our knowledge, the current
optimization report is the first to address I. rugosus in vitro cultures as a feasible large-scale production
system of bioactive phenolics and pentacyclic triterpenoids.

2. Results and Discussion

2.1. Optimization of Callogenesis from Different Initial Explants

For the determination of callus induction frequency, stem and leaf explants from I. rugosus were
cultured on MS medium encompassing different concentrations (1.0–5.0 mg/L) of several PGRs (TDZ,
NAA and BAP) used either alone or in conjunction with TDZ, as shown in Table 1.

Table 1. Callogenesis, initiation (day) and morphology of stem and leaf callus under different PGRs
after 5 weeks of culture.

S. No. Treatment
(mg/L)

Callus Initiation
(day)

Callus
Induction
Frequency

(%)

Callus Color Callus Texture
Degree of

Callus
Formation

Stem Leaf Stem Leaf

0 Control (MS0) - - - - - - -
1 MS + TDZ 1.0 10 14 80–100 DG F C +++
2 MS + TDZ 2.0 10 14 80–100 DG F C +++
3 MS + TDZ 3.0 10 14 80–100 DG F C +++
4 MS + TDZ 4.0 10 14 80–100 DG F C +++
5 MS + TDZ 5.0 10 14 80–100 DG F C +++
6 MS + NAA 1.0 12 12 40–60 SG F C ++
7 MS + NAA 2.0 12 12 40–60 SG F C ++
8 MS + NAA 3.0 12 12 40–60 SG F C ++
9 MS + NAA 4.0 12 12 40–60 SG F C ++

10 MS + NAA 5.0 12 12 40–60 SG F C ++
11 MS + BAP 1.0 20 20 20–30 SLG F C +
12 MS + BAP 2.0 20 20 20–30 SLG F C +
13 MS + BAP 3.0 20 20 20–30 SLG F C +
14 MS + BAP 4.0 20 20 20–30 SLG F C +
15 MS + BAP 5.0 20 20 20–30 SLG F C +

16 MS + TDZ 1.0 +
NAA 1.0 8 8 90–100 FG F C +++

17 MS + TDZ 1.0 +
NAA 2.0 8 8 90–100 FG F C +++

18 MS + TDZ 1.0 +
NAA 3.0 8 8 90–100 FG F C +++

19 MS + TDZ 1.0 +
NAA 4.0 8 8 90–100 FG F C +++

20 MS + TDZ 1.0 +
NAA 5.0 8 8 90–100 FG F C +++

21 MS + TDZ 1.0 +
BAP 1.0 - - - - - - -

22 MS + TDZ 1.0 +
BAP 2.0 - - - - - - -

23 MS + TDZ 1.0 +
BAP 3.0 - - - - - - -

24 MS + TDZ 1.0 +
BAP 4.0 - - - - - - -

25 MS + TDZ 1.0 +
BAP 5.0 - - - - - - -

Values are means ± SD from three replicates. Note: No callus (−), Scanty callus (+), Moderate callus (++), profuse
callus (+++). F friable, DG dark green, FG fresh green, SG snowy green, SLG snowy light green.

235



Int. J. Mol. Sci. 2019, 20, 452

Callus was initiated after 10–12 days of culturing explants. In case of leaf explants, TDZ (1.0 mg/L,
2.0 mg/L and 3.0 mg/L) and 1.0 mg/L TDZ + NAA (1.0 mg/L, 2.0 mg/L and 3.0 mg/L) led to highest
callus induction (95–100%) as compared to BAP alone or combination of BAP with TDZ. NAA alone
resulted in around 80% callus induction, but the value greatly increased (up to 90%) when TDZ was
used in combination. Similarly, the induction frequency for stem explants was close to 100% when
TDZ was employed either alone or combined with NAA (Figure 1A). However, higher concentration
of all the tested PGRs restricted callus induction in both stem and leaf explants, possibly due to
repression of some endogenic PGRs retarding callus formation. Indeed, changes in callus response
formation have already been ascribed to diverse endogenous hormonal responses pointing to the
variable sensitivity of tissues toward these PGRs. Sreedevi et al. (2013) and Anjum et al. (2017) reported
similar observations [31,32]. No callogenesis was observed on MS medium lacking these PGRs, which
has already been observed for various other plant species such as Stevia rebaudiana [33].
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containing various PGRs on callus induction and growth of stem explants; (B1) TDZ 1.0 mg/L; (B2) 
NAA 4.0 mg/L; (B3) BAP 2.0 mg/L; (B4) 1:1 TDZ 1.0 + NAA 1.0 mg/L; (B5) TDZ 1.0 + BAP 4.0 mg/L; 
(C) Effect of 5 weeks old culture media containing various PGRs on callus induction and growth of 
leaf explants; (C1) TDZ 3.0 mg/L; (C2) NAA 3.0 mg/L; (C3) BAP 4.0 mg/L; (C4) TDZ 1.0 + NAA 1.0 
mg/L; and (C5) TDZ 1.0 + BAP 5.0 mg/L. 

Visual morphological variations were also detected in calli (Figure 1B,C). Generally, stem-
derived calli were more friable, while leaf-derived calli were compact in texture. Similar results have 
previously been reported for several other medicinal plant species [34,35]. We also observed that in 
I. rugosus, the callogenic response and morphological changes were markedly influenced by the 

Figure 1. (A) Callus induction frequency (%) for stem and leaf explants under different PGRs
concentrations. Values are means ± SE from three replicates; (B) Effect of 5 weeks old culture media
containing various PGRs on callus induction and growth of stem explants; (B1) TDZ 1.0 mg/L;
(B2) NAA 4.0 mg/L; (B3) BAP 2.0 mg/L; (B4) 1:1 TDZ 1.0 + NAA 1.0 mg/L; (B5) TDZ 1.0 + BAP
4.0 mg/L; (C) Effect of 5 weeks old culture media containing various PGRs on callus induction and
growth of leaf explants; (C1) TDZ 3.0 mg/L; (C2) NAA 3.0 mg/L; (C3) BAP 4.0 mg/L; (C4) TDZ 1.0 +
NAA 1.0 mg/L; and (C5) TDZ 1.0 + BAP 5.0 mg/L.

Visual morphological variations were also detected in calli (Figure 1B,C). Generally, stem-derived
calli were more friable, while leaf-derived calli were compact in texture. Similar results have previously

237



Int. J. Mol. Sci. 2019, 20, 452

been reported for several other medicinal plant species [34,35]. We also observed that in I. rugosus,
the callogenic response and morphological changes were markedly influenced by the exogenously
applied PGRs. Physiological response of calli also radically varied in accordance to the type of initial
explant. The potential growth rate was higher in stem-derived calli, as compared to the calli derived
from leaf as starting explants.

Murthy et al. (1998) estimated that TDZ is a potent PGR for in vitro culture successive growth [36].
TDZ at a concentration of 3.0 mg/L produced highest biomass (FW 250.65 g/L and DW 18.65 g/L)
in stem-induced callus cultures (Figure 2A,B). Similarly, 1.0 mg/L TDZ + 3.0 mg/L NAA resulted in
FW of 140.22 g/L and DW of 14.98 g/L. Conversely, application of BAP alone or in combination with
TDZ showed least response for biomass accumulation (Figure 2A,B). As for NAA, maximum biomass
(FW 80.79 g/L and DW 5.98 g/L) was observed at 1.0 mg/L concentration, which then gradually
decreased with increase in the concentration of NAA, as shown in Figure 2A,B. In case of leaf-derived
callus cultures, optimum biomass accumulation (FW 115.2 g/L and DW 10.81 g/L) was observed for
1.0 mg/L TDZ + 3.0 mg/L NAA (Figure 2C,D). However, BAP + TDZ resulted in minimum biomass
accumulation (Figure 2C,D).
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hormones. Hypothetically, this was due to the effect and synthesis of endogenously grown regulators 
upon their exogenous presentation. Sahraoo et al. (2014) and Lee (1971) reported similar findings 
[37,38]. TDZ-treated tissues in combination with auxin maintain and enhance their accumulation and 
transport. Our data is supported by Guo et al. (2011), who confirmed that the use of TDZ alone or in 
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Figure 2. Time-course fresh and dry weight of callus cultures at different PGRs (in mg/L). (A) Fresh
weight for stem-derived callus culture (in g/L); (B) dry weight for stem-derived callus culture (in g/L);
(C) fresh weight for leaf-derived callus culture (in g/L); and (D) dry weight for leaf-derived callus
(in g/L) cultured on MS medium fortified with TDZ, NAA, BAP (1.0–5.0 mg/L), TDZ (1.0 mg/L) +
NAA (1.0–5.0 mg/L), TDZ (1.0 mg/L) + BAP (1.0–5.0 mg/L). Values are means of three replicates with
standard deviation.

With respect to anatomical structure of callus, previous reports proved that callus induction
frequency and proliferation increased considerably with the precise ratio of two exogenous hormones.
Hypothetically, this was due to the effect and synthesis of endogenously grown regulators upon
their exogenous presentation. Sahraoo et al. (2014) and Lee (1971) reported similar findings [37,38].
TDZ-treated tissues in combination with auxin maintain and enhance their accumulation and transport.
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Our data is supported by Guo et al. (2011), who confirmed that the use of TDZ alone or in collaboration
with other PGRs provoke high rate of callogenesis and cell proliferation due to high intrinsic activity
and low absorbance in callus [39]. The current investigation explores that despite explants used for
callogenesis, maximum growth is observed with lower concentration of all PGRs, used either alone or
in combination, but biomass is gradually inhibited at higher concentrations. Our data also suggests
that the combined treatment of TDZ and NAA is the best for callogenesis and biomass accumulation
in I. rugosus callus cultures.

2.2. Evaluation of Secondary Metabolites Production

Total polyphenols accumulation in stem-derived calli of I. rugosus on all the tested PGRs ranged
from 49.99 to 90.06 mg/g DW (Figure 3).
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Phenolics accumulation in response to NAA and TDZ gradually declined with increases in hormonal 
concentration. However, Szopa, and Ekiert (2014) observed that PGRs directly influence the 
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Figure 3. Comparison of total phenolic content (TPC) and total phenolic productivity (TPP) of extracts
at different PGRs. (A) TPC (in mg/g DW) for stem-derived callus culture; (B) TPC (in mg/g DW) for
leaf-derived callus culture; (C) TPP (in mg/L) for stem-derived callus culture; and (D) TPP (in mg/L)
for leaf-derived callus cultured on MS medium fortified with PRG (TDZ, NAA, BAP (1.0–5.0 mg/L),
TDZ (1.0 mg/L) + NAA (1.0–5.0 mg/L), TDZ (1.0 mg/L) + BAP (1.0–5.0 mg/L)). Values are means of
three replicates with standard deviation.

Calli cultured on media supplemented with TDZ (1.0 mg/L) and NAA (3.0 mg/L) biosynthesized
optimum levels (90.06 mg/g DW) of phenolic compounds (Figure 3A), while lowest accumulation
(49.9 mg/g DW) was observed in media supplemented with high concentration (5.0 mg/L) of NAA.
Phenolics accumulation in response to NAA and TDZ gradually declined with increases in hormonal
concentration. However, Szopa, and Ekiert (2014) observed that PGRs directly influence the production
of phenolic compounds in plants in vitro cultures [40]. Among all the PGRs, combined treatment of
TDZ + NAA at low concentration exhibited maximum accumulation of TPC in stem-derived calli.
Similar trend was observed for TPC in leaf-derived callus culture (Figure 3B) for which TDZ combined
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with NAA gave highest accumulation as compared to TDZ or NAA used alone. Faizal et al. (2017)
reported that the best treatment for phenolic compounds production in red pitaya callus was 2.0 mg/L
NAA + 4 mg/L TDZ, which is consistent with the results of our study [41]. Similarly, Tariq et al. (2014)
also highlighted that growth regulators such as NAA and TDZ greatly influence the production of
phenolic compounds, flavonoids, and antioxidants in A. absinthium cultures grown in vitro [42].

Antioxidant capacity generally correlated with TPC, thus collinear connection exists between
these two variables, as evident from the literature [43–45]. Likewise, Khandaker et al. (2012) also
indicated that the improved antioxidant activities in apple treated with different PGRs were linked
with the increase in TPC [46]. A similar trend was also observed here with the quenching free radical
activity (Figure S1). Our data suggests that I. rugosus extract could serve as a safe antioxidant agent.

The presence of pentacyclic triterpenes and caffeic acid phenolic derivatives have already been
reported in this plant family [13–16]. Therefore, in order to make a step forward, the presence of these
compounds were investigated in 12 callus cultures (hereafter called Ir#1 to Ir#12) grown on various
culture media (precise PGRs composition of these media is shown in Supplementary Table S1) selected
on the basis of DW accumulation, TPC and radical scavenging activity. A magnification showing and
the quantification results are depicted in Table 2.

Table 2. Quantification of the main phytochemicals accumulated in twelve I. rugosus callus sample
extracts (culture conditions are presented in Table S1).

Sample CA (µg/g DW) RA (µg/g DW) BA (µg/g DW) OA (µg/g DW) PA (µg/g DW)

Ir#1 614.8 ± 20.2 1074.7 ± 18.9 98.0 ± 14.3 536.2 ± 18.8 454.8 ± 39.1
Ir#2 488.4 ± 24.6 751.6 ± 24.1 91.8 ± 19.5 201.7 ± 5.3 113.7 ± 33.9
Ir#3 784.0 ± 14.8 1519.5 ± 17.8 104.3 ± 18.8 348.4 ± 16.3 304.6 ± 33.0
Ir#4 735.6 ± 26.9 1158.3 ± 27.1 141.8 ± 16.3 317.1 ± 19.5 207.6 ± 28.2
Ir#5 728.2 ± 7.6 1685.2 ± 44.7 132.5 ± 24.8 631.0 ± 24.8 379.7 ± 14.2
Ir#6 979.5 ± 12.1 1259.0 ± 27.5 66.7 ± 9.4 198.2 ± 9.4 116.8 ± 23.6
Ir#7 575.6 ± 20.7 1279.0 ± 9.0 54.2 ± 5.4 389.0 ± 19.6 132.5 ± 18.8
Ir#8 901.6 ± 10.3 1708.9 ± 57.1 85.7 ± 9.1 386.0 ± 24.8 207.6 ± 8.8
Ir#9 647.2 ± 19.8 936.7 ± 13.1 22.9 ± 5.8 204.4 ± 23.6 69.9 ± 14.3

Ir#10 779.3 ± 18.0 797.1 ± 37.0 91.8 ± 10.8 248.3 ± 14.3 145.0 ± 23.6
Ir#11 886.8 ± 24.2 2013.5 ± 18.7 171.2 ± 9.2 331.2 ± 16.4 313.8 ± 14.1
Ir#12 835.8 ± 9.9 1335.9 ± 67.2 145.4 ± 5.1 429.8 ± 23.9 429.8 ± 14.3

Values are means ± standard deviations (n = 3).

Following HPLC analysis, phenolic acids contents ranged from 488.4 (Ir#2) to 979.5 (Ir#6) µg/g
DW for CA and 751.6 (Ir#2) to 2013.5 (Ir#11) µg/g DW for RA, whereas, pentacyclic triterpenoids
contents ranged from 54.2 (Ir#7) to 171.2 (Ir#11) µg/g DW for BA, 198.2 (Ir#6) to 631.0 (Ir#5) µg/g DW
for OA and 69.9 (Ir#9) to 454.8 µg/g (Ir#1) for PA (Figure 4). Stem-derived calli were found to be the
most suitable in accumulating highest levels of different phytochemicals, except CA, while lowest
amount was observed for leaf-derived calli, except BA. These results clearly evidenced that the initial
explant could be an important parameter to take into account for an optimal accumulation of secondary
metabolites in callus cultures of I. rugosus. Similarly, TDZ supplementation resulted in a higher
secondary metabolites production in stem-derived callus as compared to leaf-derived callus grown
on the same medium. On the contrary, TDZ combined with NAA favored the secondary metabolites
production in callus initiated from leaf explants (Table 2). TDZ at lower concentration (1.0 mg/L)
resulted in optimal production of PA (Ir#1), while higher concentration (3.0 mg/L) of TDZ favored
maximum accumulation of CA (Ir#6) and OA (Ir#5), but interestingly the nature of the initial explant
differed between these two conditions: leaf-derived callus for optimal CA production vs. stem-derived
callus for optimal OA accumulation. CA and RA are regarded as major phenolic metabolites of
plants from Lamiaceae family [47,48]. In this study, we endeavor an effort to report in vitro culture
condition for accumulation and production of these phenolics and pentacyclic triterpenes metabolites
in I. rugosus callus culture. Until now, no report is available on phytochemical composition of I. rugosus
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in vitro cultures, except GC analysis of the wild extract and characterization and composition of
essential oil [11,49–51]. However, in vitro production and accumulation of pentacyclic triterpenes
have been documented in the literature [47,52–54]. Fedoreyev et al. (2005) and Hagina et al. (2008)
also established callus culture of Eritrichium sericeum that produced a higher amount of both CA and
RA [55,56]. Some other studies dealing with biotechnological approaches to produce RA using plant
in vitro cultures reported a higher amount of this phenolic [57]. However, our I. rugosus callus culture
system has the advantage of producing both types of secondary metabolites. We also anticipate that
elicitation strategies could further stimulate the production of these compounds in future studies.
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caffeic acid (CA, 1) rosmarinic acid (RA, 2) betulinic acid (BA, 3) oleanolic acid and (OA, 4) plectranthoic
acid (PA, 5); (B) Magnification of typical HPLC chromatograms showing the correct separation of the
main phytochemicals accumulated in callus cultures of I. rugosus.

2.3. Evaluation of Antioxidant and Anti-Aging Potential of I. rugosus Callus Extracts

A complete screen of antioxidant and anti-ageing capacities of these 12 extracts with contrasting
phytochemical profiles was also evaluated in the current study (Figure 4A). For in vitro antioxidant
screening, antioxidant mechanisms were based on both electron transfer (FRAP and CUPRAC assays)
and hydrogen atom transfer (ABTS and ORAC assays) [58]. Besides these two antioxidant mechanisms

241



Int. J. Mol. Sci. 2019, 20, 452

involved in the scavenging of reactive oxygen species, transient metal ion chelation was also considered
as an antioxidant mechanism, since the Fenton reaction, responsible for the hydroxyl radical formation,
and subsequently, radical chain reaction propagation, could be inhibited through this chelating
mechanism. The chelation potential of these extracts was evaluated by both FRAP and metal chelating
assays using ferrozine. The results of this antioxidant screening are reported in Table 3. All of the
callus extracts of I. rugosus exhibited marked antioxidant and chelation activities. Extract from sample
Ir#11 (stem-derived calli grown on 1.0 mg/L TDZ + 3.0 mg/L NAA) displayed highest antioxidant
activities for all of the assays with values of 1203.7 TEAC for DPPH, 945.8 for ABTS, 733.3 TEAC for
ORAC, 535.8 for FRAP, 460.2 for CUPRAC and 54.8 µmol of fixed Fe3+. On the other hand, extract of
sample Ir#2 (leaf-derived calli grown on 1.0 mg/L TDZ) presented the lowest antioxidant activities
with values of 474.4 TEAC for DPPH, 434.5 TEAC for ABTS, 306.7 TEAC for ORAC, 211.9 TEAC
for FRAP, 193.3 TEAC for CUPRAC, and 23.0 µmol of fixed Fe3+. Whatever the test used, ET-based
assays gave higher antioxidant capacities than HAT-based assays. The prominence of this action mode
suggested the occurrence of at least one phytochemical involved in this type of antioxidant mechanism
in I. rugosus callus extracts. Here, stem-derived callus extracts displayed higher antioxidant activities
than the callus initiated from leaf explants. Combination of NAA and TDZ appeared to potentially
further this biological activity.

Table 3. Antioxidant activities of 12 I. rugosus callus sample extracts. (Culture conditions are presented
in Table S1).

Sample DPPH
(TEAC)

ABTS
(TEAC)

ORAC
(TEAC)

FRAP
(AEAC)

CUPRAC
(AEAC)

Chelation
(µmol Fe2+)

Ir#1 674.4 ± 4.7 585.5 ± 9.0 421.8 ± 23.1 285.4 ± 6.3 260.3 ± 4.7 31.6 ± 0.9
Ir#2 474.4 ± 13.5 434.5 ± 15.4 306.7 ± 18.5 211.9 ± 3.2 193.3 ± 8.4 23.0 ± 1.4
Ir#3 911.7 ± 14.2 798.8 ± 15.1 529.4 ± 18.3 393.4 ± 6.9 354.2 ± 8.7 41.6 ± 1.0
Ir#4 721.2 ± 5.9 659.6 ± 25.1 453.2 ± 22.3 318.1 ± 6.4 273.5 ± 7.1 33.8 ± 1.7
Ir#5 1005.5 ± 13.8 879.5 ± 60.1 624.8 ± 9.0 456.8 ± 2.6 401.3 ± 2.7 45.2 ± 2.7
Ir#6 779.4 ± 5.4 708.1 ± 9.3 470.9 ± 14.5 354.8 ± 13.6 312.5 ± 8.8 34.3 ± 2.5
Ir#7 780.8 ± 6.2 688.2 ± 8.2 466.8 ± 9.6 349.3 ± 12.3 277.8 ± 8.4 34.9 ± 3.3
Ir#8 1043.2 ± 15.9 945.8 ± 6.4 641.0 ± 11.5 475.3 ± 10.0 410.8 ± 7.8 47.3 ± 1.5
Ir#9 563.1 ± 15.3 522.4 ± 5.2 350.1 ± 5.5 251.3 ± 9.0 235.7 ± 10.7 26.6 ± 2.8

Ir#10 516.3 ± 9.2 444.7 ± 18.2 318.1 ± 13.0 231.0 ± 8.8 186.1 ± 13.4 27.0 ± 2.8
Ir#11 1203.7 ± 53.2 944.7 ± 37.1 733.53 ± 7.3 535.8 ± 9.9 460.2 ± 5.5 54.8 ± 2.2
Ir#12 823.1 ± 25.6 727.1 ± 13.4 581.3 ± 173.5 353.8 ± 8.9 317.0 ± 4.8 35.9 ± 4.1

TEAC: Trolox C Equivalent Antioxidant Capacity (µM); AEAC: Ascorbic acid Equivalent Antioxidant Capacity
(µM); Values are means ± standard deviations (n = 3).

The next step involved the evaluation of anti-aging action of I. rugosus callus extracts (at a
fixed concentration of 50 µg/mL) determined as their in vitro capacities: (1) To inhibit elastase,
hyaluronidase, collagenase (Matrix Metalloproteinase type 1 (MMP1)), tyrosinase and AGEs, and
(2) to activate SIRT-1 activity. Elastase, hyaluronidase and collagenase have been found to degrade
extracellular matrix components in the dermis, thus leading to skin alterations including skin tonus,
deep wrinkles and resilience losses [19,59,60]. Tyrosinase dysfunctions advance with aging and
can lead to malignant melanoma, as well as pigmentary disorders such as freckles or melisma [61].
Oxidative stress has been found to be associated with aging and age-related diseases [62] that could
lead to the buildup of advanced glycation end products (AGEs) [63]. Therefore, compounds with the
ability to inhibit these enzymatic activities or processes have attracted increasing attention in cosmetics.
Several studies have challenged the classical radical theory of aging [64], and SIRT-1 (a class III
deacetylase) have emerged as a new key factor of longevity controlling oxidative stress effects through
the stimulation of antioxidant response via FOXOs and p53 pathways [65]. A stimulation of SIRT-1
activity has been reported to be crucial in the control of oxidative stress and in the regulation of aging
process [65,66]. Interestingly, phytochemicals have been reported to activate SIRT-1 homologs and to
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prolong life span in yeast, drosophila, and Caenorhabditis elegans models [20,67–69]. The identification
of SIRT-1 activators is also of great interest for cosmetic applications.

The results are presented in Table 4, expressed as a percentage of relative activities compared to
control (consisting in extraction solvent addition to the assay). Here, we have considered an inhibition
percentage of 30% as a marked inhibitory effect, we have detected strong inhibitory actions of our
extracts toward tyrosinase (up to 72.2% inhibition observed with the stem-derived callus extract,
Ir#3), collagenase (up to 36.3% inhibition with the stem-derived callus extract, Ir#5), and a strong
inhibition of AGEs formation (up to 34.1% inhibition obtained with the leaf-derived callus extract,
Ir#12). Inhibitory effects observed for elastase and collagenase were less marked (up to 25.3% and
22.2% respective inhibition observed with the same leaf-derived callus extract Ir#12). Interestingly,
we observed that TDZ alone was more efficient in inducing the anti-aging action in stem-derived
callus through the inhibition of these enzymes; whereas, addition of NAA appeared to limit the effect
of initial explant origin and even seemed to reverse it (compare Ir#11 and Ir#12, Table 4). With the
exception of tyrosinase inhibition, Ir#12 extract (leaf-derived callus grown on TDZ (1.0 mg/L) and
NAA (3.0 mg/L)) appeared to be the most promising extract for these anti-aging activities.

Table 4. Anti-aging activities of 12 I. rugosus callus sample extracts expressed as percentage activities
of control (DMSO) (culture conditions of the callus are presented in Table S1).

Sample Elastase Collagenase Hyaluronidase Tyrosinase AGEs SIRT1

Ir#1 77.8 ± 2.9 64.3 ± 3.0 85.8 ± 1.7 62.9 ± 2.3 78.5 ± 0.7 140.8 ± 5.0
Ir#2 90.7 ± 0.8 86.2 ± 2.2 88.4 ± 1.4 85.4 ± 1.7 79.8 ± 1.4 88.9 ± 3.3
Ir#3 79.8 ± 1.2 77.7 ± 3.0 88.6 ± 0.9 27.8 ± 12.1 84.4 ± 0.8 162.0 ± 7.0
Ir#4 83.0 ± 2.2 75.0 ± 3.3 87.7 ± 2.0 75.6 ± 2.6 77.6 ± 2.7 134.3 ± 10.3
Ir#5 76.8 ± 4.6 63.5 ± 4.3 80.1 ± 1.4 52.1 ± 4.4 73.8 ± 1.9 194.1 ± 6.4
Ir#6 87.9 ± 2.2 84.8 ± 0.3 85.6 ± 1.5 87.6 ± 1.9 76.1 ± 2.2 124.3 ± 11.0
Ir#7 85.8 ± 1.7 77.1 ± 1.9 86.6 ± 2.8 79.3 ± 1.4 76.9 ± 2.6 137.8 ± 5.8
Ir#8 85.9 ± 2.7 78.5 ± 0.9 89.2 ± 0.9 82.8 ± 1.7 83.2 ± 1.9 185.4 ± 11.0
Ir#9 90.2 ± 1.2 85.8 ± 1.6 88.7 ± 1.2 87.2 ± 1.5 83.7 ± 1.7 94.8 ± 4.2
Ir#10 86.2 ± 1.3 79.7 ± 1.3 91.5 ± 0.9 85.2 ± 1.1 85.1 ± 1.3 92.6 ± 3.2
Ir#11 79.2 ± 1.9 68.8 ± 2.1 78.7 ± 0.9 74.5 ± 2.7 70.8 ± 1.8 203.3 ± 6.2
Ir#12 74.7 ± 1.1 65.8 ± 2.2 77.8 ± 0.9 63.9 ± 2.5 65.9 ± 2.7 154.4 ± 7.9

Values are means ± standard deviations (n = 3).

Conversely, stem-derived callus was more prompted to stimulate SIRT1 activity with a maximum
2-fold increase measured with Ir#11 extract (stem-derived callus grown on TDZ (1.0 mg/L) and NAA
(3.0 mg/L)). An activation level that is very similar to the stimulatory effect measured with resveratrol
(the reference activator of SIRT1) [20]. However, here we have to note that a simple extract was used
that could be very interesting since no purification steps are needed to obtain this activation. Moreover,
without minimizing the potential synergistic effects, we assumed that all these anti-aging actions could
be further reinforced following the purification steps.

2.4. Correlations Analysis

Hierarchical clustering analysis (HCA) was applied first to discriminate the different sample
extracts based on their qualitative and quantitative phytochemical profiles (Figure 5). Regarding
this HCA, decomposition into two main groups was observed. The first cluster (i.e., cluster A on
Figure 5) grouped together sample extracts with the highest phytochemical accumulation capacities,
with the sub-cluster A1 rich in pentacyclic triterpenes (BA, PA, and OA) and the sub-cluster A2
accumulating highest amount of phenolic acids (RA and CA). In contrast, cluster B shows sample
extracts with the lowest accumulation capacities of these compounds. While we previously observed
that stem-derived callus was generally more attractive than leaf-derived callus when considering
each hormonal treatment individually, here the HCA pointed that the hormonal treatment is a
prominent parameter over explant origin for an optimal accumulation since both stem and leaf-derived
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callus sample extracts were distributed equally in both clusters. Combination of NAA with higher
concentrations of TDZ (Ir#11 and Ir#12) appeared to be the most favorable hormonal balances for
accumulation of both pentacyclic triterpene and phenolic acid compounds in I. rugosus in vitro cultures.
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phytochemical profile.

In order to rationale the apparent complex linkage between phytochemicals and biological
activities, a principal component analysis (PCA) was then conducted (Figure 6). The obtained
separation was satisfactory and allowed explaining 88.28% of the apparent complexity (F1×F2,
Figure 6). The discrimination mainly occurred through the first dimension (F1 axis), explaining 70.13%
of the apparent complexity by itself and allowing the separation of the sample extracts according to
their phytochemical composition and biological activities. This point is of particular interest since
it clearly evidences that it is possible to predict the antioxidant and anti-aging potential of a sample
extract based on its phytochemical profile and that a direct linkage could exist between these two
parameters. The second dimension axis (F2) accounted for only 18.14% of the initial variability, but
intriguingly, it allowed the discrimination between: 1) Sample extracts rich in pentacyclic triterpenes
and showing high inhibition capacities of tyrosinase, elastase and collagenase, and 2) sample extracts
rich in phenolic acids showing the highest antioxidant activities, anti-AGEs, hyaluronidase inhibition,
and SIRT1 activation. From this analysis, it appeared that sample extracts Ir#8 and Ir#11 were the most
attractive for cosmetic applications looking for natural antioxidants, anti-hyaluronidase, anti-AGEs,
and/or activator of SIRT1, whereas sample extracts Ir#1, Ir#2, and Ir#5 were the most promising for a
natural anti-tyrosinase, anti-elastase, and/or anti-collagenase applications. Note that sample extracts
Ir#3 appeared as the most potent extract for these cosmetic applications targeting the whole set of
these activities.
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Figure 6. Principal component analysis (PCA) of the different phytochemicals and biological activities
of I. rugosus callus extracts. Variance of factor 1 (F1) = 70.13% and of factor 2 (F2) = 18.14%.

To better assess the linkage between individual phytochemical and biological activities, Pearson
coefficient correlations (PCCs) between these parameters were also calculated (Table 5). From this
analysis, it appeared that the phenolic acid RA is the main contributor towards the antioxidant
activities of I. rugosus in vitro cultures, with high (ranging from 0.982 for ABTS assay to 0.997 for
DPPH and FRAP assays) and highly significant (p < 0.001) PCCs (Table 5). The anti-AGEs activity
correlated with the presence of phenolic acids RA (PCC = 0.943, p < 0.001), and to a lesser extent, CA
(PPC = 0.608, p = 0.036) could be linked to their well-described antioxidant activity [55]. Furthermore,
it was observed that the pentacylic triterpene PA also significantly contributed towards the antioxidant
ORAC assay (PCC = 0.604, p = 0.038). Concerning anti-aging activities, the analysis revealed a
more complex linkage. The marked activation of SIRT1 activity and the anti-hyaluronidase activity
appeared to be relied on RA and pentacylic triterpenes. Phenolic compounds are known as potent
activator of SIRT1 activity [20], whereas both phenolic compounds and triterpenes are described as
possible hyaluronidase inhibitors [70]. The marked anti-tyrosinase activity of our sample extracts
was significantly linked with PA (PCC = 0.622, p = 0.031) and OA (PCC = 0.603, p = 0.038), but not
with the third pentacylic terpene BA. From a structural point of view, PA and OA originate from the
same olenyl cation precursor [71], which could be one explanation of this observation. The marked
anti-collagenase, as well as less pronounced anti-elastase activities of I. rugosus sample extracts were
correlated significantly with the pentacylic triterpenes.
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Table 5. Pearson coefficient correlation linking the mains phytochemicals accumulated in I. rugosus
callus extracts to their antioxidant and anti-aging activities.

CA RA BA OA PA

DPPH 0.546 0.997 *** 0.471 0.477 0.537
ABTS 0.575 0.982 *** 0.484 0.447 0.466
ORAC 0.562 0.975 *** 0.511 0.550 0.604 *
FRAP 0.555 0.997 *** 0.447 0.423 0.510

CUPRAC 0.566 0.992 *** 0.454 0.466 0.513
Chelation 0.534 0.992 *** 0.456 0.465 0.559
Elastase 0.126 0.525 0.827 ** 0.902 *** 0.748 *

Collagenase 0.097 0.571 0.900 *** 0.936 *** 0.720 **
Hyaluronidase 0.467 0.897 *** 0.572 0.602 * 0.538

Tyrosinase -0.221 0.072 0.440 0.603 * 0.622 *
AGEs 0.608 * 0.943 *** 0.527 0.522 0.447
SIRT1 0.435 0.970 *** 0.665 * 0.646 * 0.625 *

* p < 0.05, ** p < 0.01, *** p < 0.001.

3. Materials and Methods

3.1. Chemicals and Reagents

All the extraction solvents employed in this study were of analytical grade, provided by Thermo
Scientific (Illkirch, France). Standards and reagents were obtained from Sigma-Aldrich (Saint-Quentin
Fallavier, France).

3.2. Plant Material

The seeds of I. rugosus were obtained from wild plant species located in Khyber Pakhtunkhwa
province of Pakistan in December 2015. Seeds were surface sterilized prior to culturing in order to
escape contamination. The air-dried seeds were then germinated on Murashige and Skoog (MS) (1962)
medium comprising 0.8% agar and 30 g/L sucrose [72]. The pH of all the media was maintained
at 5.8 before autoclaving at 121 ◦C for 20 min. For the establishment of callogenesis, stem and leaf
explants were cut out from four weeks old in vitro grown plantlets of I. rugosus and cultured at various
concentrations of PGRs, either alone or in combination.

3.3. Callogenic Frequency

Three different PGRs (NAA, TDZ and BAP) at varied concentrations (1.0–5.0 mg/L), used either
alone or in combination with 1.0 mg/L TDZ, were employed for callus induction in the present
study. The explants were maintained in a growth room for 16/8 h (light/dark cycle) at 25 ± 1 ◦C.
Observation of callogenic frequency and callus morphology was done on weekly basis with visual
eye. Respective calli were then sub-cultured on fresh medium supplemented with the same PGRs
concentrations after every four weeks of the culture. Fresh weight and dry weight were also determined
for subsequent examinations.

3.4. Determination of Total Phenolic Compounds Content

For phytochemical screening, extraction from calli was done according to the method presented
by Ali et al. (2013) [73]. Briefly, 100 mg of dried callus was added to 10 mL of methanol (80%) to prepare
the extract. The samples were then sonicated for 10–15 min, followed by vortexing for five–seven min
and the procedure was repeated twice. After centrifugation at 6000 rpm for 15 min, the supernatants
were collected and kept for further analysis.

Procedure described by Velioglu et al. (1998) was adopted for the estimation of total phenolic
content (TPC) using FC reagent [74]. In brief, 20 µL of sample and l80 µL of FC reagent were mixed
and incubated for five min. Then, 90 µL of sodium carbonate was added to the mixture and the OD
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was recorded at 630 nm with the help of a microplate reader. The calibration curve (0–50 µg/mL,
R2 = 0.968) was generated by using gallic acid as a standard and the TPC was expressed as gallic
acid equivalents (GAE) per gram of dry weight (DW) sample. Total phenolic production (TPP) was
examined by using the following equation: TPP (mg/L) = TPC (mg/g) × Dry Weight (g/L).

3.5. Quantification and Identification by HPLC

The contents of caffeic acid, rosmarinic acid, oleanolic acid, plectranthoic acid and butelinic acid
were determined by HPLC. Following a published protocol, a reversed-phase HPLC equipped with
autosampler, Varian (Les Ulis, France) Prostar 230 pump and a Varian Prostar 335 photodiode array
detector was used and controlled with Galaxie software (Varian v1.9.3.2) [19]. Briefly, the separation
was achieved on an RP-18 column (5 µm, 250 × 4.0 mm id (Purospher Merck, Fontenay sous Bois,
France)) at 35 ◦C. The mobile phase was comprised of acetonitrile (as solvent A) and 0.1% (v/v) formic
acid acidified ultrapure water (as solvent B). The composition of the mobile phase varied during a
60 min run according to a linear gradient ranging from a 5:95 (v/v) to 100:0 (v/v) mixture of solvents A
and B, respectively, at a flow rate of 0.6 mL/min. Detection was accomplished at 210 nm and 254 nm.
Quantification and identification of each compound was done by coupling with retention times, UV
spectra to those of authentic reference standards and by standard additions. Calibration curve (six
points) was used to quantify each standard with the range of 0.05–1 mg/mL and correlation coefficient
of at least 0.9994.

3.6. Antioxidant DPPH Assay

For this assay, 20 µL of each sample extract was combined with 180 µL of DPPH reagent and
absorbance was recorded at 517 nm with the help of a microplate reader. The following equation was
then used to calculate DPPH activity: % scavenging = 100 × (Abc-Abs/Abc).

Where, Abc denotes absorbance of the control, while Abs is absorbance of the sample or expressed
as TAEC (Trolox C equivalent antioxidant capacity).

3.7. Antioxidant ORAC Assay

Oxygen radical absorbance capacity (ORAC) assay was carried out as suggested by Prior et al.
(1998) [58]. In brief, 10 µL of the extracted sample was mixed with 190 µL of 0.96 µM fluorescein
in 75 mM phosphate buffer (pH 7.4) and incubated for about 20 min at 37 ◦C. Then, 20 µL of
119.4 mM 2,2′-azobis-amidinopropane (ABAP) was added and the fluorescence intensity was recorded
every five min during 2.5 h at 37 ◦C with the help of a fluorescence spectrophotometer (BioRad,
Marnes-la-Coquette, France) set with an excitation at 485 nm and emission at 535 nm. Assays were
made in triplicate and antioxidant capacity determined using ORAC assay was expressed as TAEC.

3.8. Antioxidant ABTS Assay

ABTS assay was accomplished with the method of Velioglu et al. (1998) [74]. Briefly, 2,2-azinobis
(3-ethylbenzthiazoline-6-sulphonic acid (ABTS) solution was made by mixing equal proportion of
ABTS salt (7 mM) with potassium persulphate (2.45 mM) and the mixture was kept in the dark for
16 h. The absorbance of the solution was measured at 734 nm and adjusted to 0.7 and then mixed
with the extracts. The mixture was again kept in the dark for 15 min at 25 ± 1 ◦C and the absorbance
was recorded at 734 nm using a BioTek ELX800 Absorbance Microplate Reader (BioTek Instruments,
Colmar, France). Assays were made in triplicate and antioxidant capacity was expressed as TAEC.

3.9. Antioxidant FRAP Assay

Modified method of Benzie and Strain (1996) was used for the determination of ferric reducing
antioxidant power (FRAP) assay [75]. In brief, 10 µL of the extracted samples were mixed with 190 µL
of FRAP solution (composed of 20 mM FeCl3, 10 mM TPTZ, 6H2O and 300 mM acetate buffer (pH 3.6)
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in a ratio 1:1:10 (v/v/v)). Reaction mixtures were then incubated at 25 ± 1 ◦C for 15 min. Absorbance
of the reaction mixture was noted at 630 nm using a BioTek ELX800 Absorbance Microplate Reader
(BioTek Instruments). Assays were made in triplicate and the antioxidant capacity, determined using
this assay, was expressed as TAEC.

3.10. Antioxidant CUPRAC Assay

Cupric ion reducing antioxidant capacity (CUPRAC) assay was evaluated by some modifications
in the method of Apak et al. (2004) [76]. Briefly, 10 µL of samples and 190 µL of CUPRAC reaction
solution (containing 7.5 mM neocuproine, 10 mM Cu(II) and 1 M acetate buffer (pH 7) in a ratio 1:1:1
(v/v/v)) were mixed. Reaction mixtures were then incubated at 25 ± 1 ◦C for 15 min and absorbance
was recorded at 450 nm using a BioTek ELX800 Absorbance Microplate Reader (BioTek Instruments).
Assays were made in triplicate and antioxidant capacity determined using this assay was expressed
as TAEC.

3.11. Metal Chelating Activity Assay

The ferrous ion chelating activity of I. rugosus extracts was evaluated following a slightly modified
method of Srivastava et al. (2012) [77]. In brief, 10 µL of extracts were mixed with ferrous iron at a
final concentration of 50 µM in HEPES (pH 6.8) buffers and 50 µL ferrozine (5 mM aqueous solution).
All experiments were performed in a 96-well microplates at room temperature (25± 1 ◦C). Each sample
was measured with and without (blank) the addition of ferrozine. Absorbance was noted at 550 nm
instantaneously after addition of ferrozine and five min later with a BioTek ELX800 Absorbance
Microplate Reader (BioTek Instruments). Chelating activity values were expressed in µM of fixed Fe3+.

3.12. Collagenase Assay

Collagenase clostridium histolyticum (Sigma Aldrich) was employed for this assay
and its activity was determined with the aid of a spectrophotometer by making use of
N-[3-(2-furyl)acryloyl]-Leu-Gly-Pro-Ala (FALGPA; Sigma Aldrich) as a substrate in accordance to the
protocol of Wittenauer et al. (2015) [78]. The absorbance decrease of FALGPA was followed at 335 nm
for 20 min using a microplate reader (BioTek ELX800; BioTek Instruments, Colmar, France). Triplicated
measurements were used and the anti-collagenase activity was revealed as a % of inhibition relative to
corresponding control (adding same volume of extraction solvent) for every extract.

3.13. Elastase Assay

Elastase assay was performed by using porcine pancreatic elastase (Sigma Aldrich) and its
activity was determined with spectrophotometer by making use of N-Succ-Ala-Ala-Ala-p-nitroanilide
(AAAVPN; Sigma Aldrich) as a substrate and following p-nitroaniline release at 410 nm using a
microplate reader (BioTek ELX800; BioTek Instruments) by adopting the method of Wittenauer et al.
(2015) [78]. Triplicated measurements were used and the anti-elastase activity was expressed as a
% of inhibition relative to the corresponding control (adding same volume of extraction solvent) for
every extract.

3.14. Hyaluronidase Assay

Hyaluronidase inhibitory assay was carried out as suggested by Kolakul et al. (2017) using
1.5 units of hyaluronidase (Sigma Aldrich) and hyaluronic acid solution (0.03% (w/v)) as substrate [79].
The precipitation of undigested form of hyaluronic acid occurred with acid albumin solution (0.1%
(w/v) BSA). The absorbance was measured at 600 nm using a microplate reader (BioTek ELX800; BioTek
Instruments, Colmar, France). The hyaluronidase inhibitory effect was expressed as a % of inhibition
relative to the corresponding control (adding same volume of extraction solvent) for every extract.
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3.15. Tyrosinase Assay

Method of Chai et al. (2018) was used for the determination of tyrosinase assay [80]. In brief,
L-DOPA (5 mM; Sigma Aldrich) was used as diphenolase substrate and mixed in sodium phosphate
buffer (50 mM, pH 6.8) with 10 µL of I. rugosus extract. Finally, 0.2 mg/mL of mushroom tyrosinase
solution (Sigma Aldrich) was added to this mixture to make a final volume of 200 µL. Control, with an
equal amount of extraction solvent replacing the extract, was routinely carried out. The reaction
processes were traced by using a microplate reader (BioTek ELX800; BioTek Instruments) at a
wavelength of 475 nm. The tyrosinase inhibitory effect was expressed as a % of inhibition relative to
the corresponding control for each extract.

3.16. Anti-AGE Formation Activity

The inhibitory capacity of AGE formation was determined as described by Kaewseejan and
Siriamornpun (2015) [81]. I. rugosus extracts were mixed with 20 mg/mL BSA (Sigma Aldrich) solution
prepared in 0.1 M phosphate buffer (pH 7.4), 0.5 M glucose (Sigma Aldrich) solution prepared in
phosphate buffer and 1 mL of 0.1 M phosphate buffer at pH 7.4 containing 0.02% (w/v) sodium azide.
This mixture was incubated at 37 ◦C for five days in the dark and then the amount of fluorescent AGE
formed was determined using a fluorescence (VersaFluor fluorometer; Bio-Rad, Marnes-la-Coquette,
France) set with 330 nm excitation wavelength and 410 nm emission wavelength. The percentage of
anti-AGEs formation was revealed as a % of inhibition relative to the corresponding control (adding
same volume of extraction solvent) for every extract.

3.17. SIRT-1 Assay

SIRT-1 activity was determined using the SIRT1 Assay Kit (Sigma Aldrich) following manufacturer
instructions and fluorescent spectrometer (Biorad VersaFluor, Marnes-la-Coquette, France) set with
340 nm excitation and 430 nm emission wavelengths. The relative SIRT1 activity was revealed as
a percentage relative to the corresponding control (adding same volume of extraction solvent) for
every extract.

3.18. Statistical Analysis

Each experiment was carried out in triplicate and XL-stat_2018 (Addinsoft, Paris, France) was
used for statistical analysis.

4. Conclusions

Our results hypothesized that cell culture protocols provide an excellent reproducible opportunity
to optimize and obtain a uniform and high quality yield of the target compounds. HPLC analyses
confirmed the presence of pentacyclic triterpenes namely plectranthoic acid (PA), betulinic acid
(BA) and oleanolic acid (OA) and phenolic acids like caffeic acid (CA) and rosmarinic acid (RA)
in all in vitro callus culture conditions. The impact of TDZ and NAA, as well as, the origin of
initial explant phytochemical accumulation of the resulting I. rugosus was elucidated and correlated
with relevant biological activities. Little is known about the in vitro biosynthesis, regulation, and
accumulation of triterpenes and phenolic compound of Isodon genera. Hence, present research
emphasizes a possible connection with respect to morphology, growth behavior and metabolic
activity to produce fast-growing friable calli that is constantly able to generate the bulk of the target
substances. Results showed the possibility to produce very contracting sample extracts in term of both
phytochemical profiles and biological activities relying on simple and reproductive initial conditions.
Taking advantage of these contrasting accumulation profiles, we have shown that I. rugosus in vitro
cultures could represent a very promising and sustainable system for the production of anti-aging and
antioxidant extracts for cosmetic applications. Correlation analysis further helped us to elucidate the
complex link connecting phytochemicals accumulated in the callus to the biological activities of the
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resulting sample extracts. The antioxidant, anti-glycation, and SIRT1 activation actions relied on the
presence of RA, whereas anti-tyrosinase, anti-elastase, and anti-collagenase activities were found to be
linked with the occurrence of pentacylic triterpene derivatives. We anticipate that the methodology
employed here could be applied to other health promoting activities of these extracts from I. rugosus
in vitro cultures and to other plant production systems. Our research will facilitate, in the future,
to enhance and examine the production of these bioactive metabolites on large-scale cultivation in
bioreactors involving several biotechnological strategies like plant cell, tissue, and organ cultures.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/2/452/
s1.
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NAA α-Naphthalene acetic acid
BAP 6-Benzyl adenine
TDZ Thidiazuron
DPPH 2,2-Diphenyl-1-picrylhydrazyl
HPLC High-performance liquid chromatography
CE Callus Extract
WPE Whole plant extract
MS Murashige and Skoog
TPC Total Phenolic Content
TFC Total Flavonoid Content
DW Dry Weight
FW Fresh Weight
PGRs Plant Growth Regulators
ROS Reactive Oxygen Species
PAL Phenylalanine ammonia-lyase
FRAP Ferric reducing antioxidant power
CUPRAC Cupric ion reducing antioxidant capacity
ORAC Oxygen radical absorbance capacity
ABTS 2,2-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid)
AGE Advanced glycation end products
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Abstract: Functional dyspepsia (FD) is the most common functional gastrointestinal disorder (FGID).
FD is characterized by bothersome symptoms such as postprandial fullness, early satiety, and
epigastric pain or burning sensations in the upper abdomen. The complexity and heterogeneity
of FD pathophysiology, which involves multiple mechanisms, make both treatment and new drug
development for FD difficult. Current medicines for FD targeting a single pathway have failed to
show satisfactory efficacy and safety. On the other hand, multicomponent herbal medicines that
act on multiple targets may be a promising alternative treatment for FD. DA-9701 (Motilitone), a
botanical drug consisting of Corydalis Tuber and Pharbitidis Semen, has been prescribed for FD since
it was launched in Korea in 2011. It has multiple mechanisms of action such as prokinetic effects,
fundus relaxation, and visceral analgesia, which are mediated by dopamine D2 and several serotonin
receptors involved in gastrointestinal (GI) functions. In clinical studies, DA-9701 has been found
to be beneficial for improvement of FD symptoms and GI functions in FD patients, while showing
better safety compared to that associated with conventional medicines. In this review, we provide
updated information on the pharmacological effects, safety, and clinical results of DA-9701 for the
treatment of FGIDs.

Keywords: functional dyspepsia (FD); DA-9701; botanical drug; multi-targeting

1. Introduction

1.1. Functional Dyspepsia: Evolution of Its Definition and Criteria

Functional gastrointestinal disorders (FGIDs) are the most common functional gastroenterologic
abnormalities associated with physiological and morphological disturbances, and are often
accompanied by conditions including motility dysfunction, visceral hypersensitivity, altered mucosal
and immune functions, altered gut microbiota, and altered central nervous system processing [1–3].
In particular, functional dyspepsia (FD) has been recognized as an unexplained discomfort in the
upper abdomen for over 100 years, and its symptoms include excessive fullness after eating or the
inability to finish a normal-sized meal and recurrent epigastric pain [3,4]. FD is associated with not
only a markedly impaired quality of life and negative impact on the work place, but also a significant
economic burden [5]. The global prevalence of FD has been reported as 21%, with the range being 10%
to 30% among various studies and geographies [6]. The definition and diagnostic criteria of FD have
evolved within the Rome process [7]. The Rome Foundation was established in the late 1980s, at a time
when there was little understanding of the pathophysiology of FGIDs. In Rome II criteria [8], FD was
defined as recurrent upper abdominal pain and discomfort for at least 12 weeks during the preceding
year. The Rome II classification divided patients having a wide range of dyspepsia symptoms into
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four groups on the basis of major symptomatic patterns: Reflux-like, ulcer-like, dysmotility-like, or
nonspecific FD. However, the Rome II categorization lacked reliability, which was attributable to
overlapping symptoms of various FGIDs such as irritable bowel syndrome (IBS), gastroesophageal
reflux disease (GERD), postprandial distress syndrome (PDS), and epigastric pain syndrome (EPS).
Therefore, the Rome III committee subdivided FD into two distinct syndromes: PDS characterized
by postprandial fullness and early satiety, and EPS accompanied by epigastric pain or burning [9,10].
The Rome IV consensus published in 2016 emphasized that FD should not be considered a single
disorder. It retained the subclassification of FD into PDS and EPS but strengthened the notion that
these symptoms are separate entities that could overlap; it also emphasized that the symptoms should
be severe enough to be bothersome (i.e., a discomfort score of at least 2 on a scale of 1 to 5 in daily
life) and occur more frequently than that in the normal population. PDS and EPS were defined as
“bothersome early satiety or postprandial fullness for three or more days per week in 3 months with at
least a 6-month history” and “bothersome epigastric pain or epigastric burning for 1 or more days per
week in the past 3 months with at least a 6-month history”, respectively [3,11]. In addition, the Rome
IV consensus accepted evidence that the symptoms of GERD and IBS are part of the spectrum of FD,
and the brain-gut axis is an important factor in the etiology of functional gastrointestinal (GI) disorders.
It further acknowledged the possibility that pathologic lesions are involved in FD development, even
if FD is a functional disorder, based on the findings that duodenal inflammation and eosinophilia are
associated with FD [12–14]. Helicobacter pylori-associated dyspepsia is classified separately from true
FD in the Rome IV criteria; affected patients are defined as a subset of those with FD-like symptoms
and H. pylori infection, with symptom resolution 1 year after successful eradication of H. pylori [11,15].

1.2. Pathophysiology of FD and Current Treatments

Undoubtedly, FD is a complex and heterogeneous disorder. Accumulating data indicate
that multiple factors including environment factors (food and H. pylori infection), biological
factors (duodenal inflammation, eosinophilia, and cytokines), physiological factors (acid, gastric
emptying, and gastric accommodation), and psychological factors (visceral hypersensitivity, brain pain
modulating circuits, and anxiety/depression) are involved in the pathophysiology of FD [7] (Figure 1).
The multiple mechanisms involved in FD make successful treatment and the development of new
drugs with satisfactory efficacy and safety difficult.

Historically, FD has been considered a motility disorder dominated by disturbances in gastric
physiology including gastric emptying and relaxation. Although gastric emptying was not correlated
with symptoms [9,10], delayed gastric emptying was reported, with an incidence of 20 to 50% among
FD patients, and the overall gastric emptying of solids was 1.5 times slower in FD patients than in
healthy subjects [16]. Usually, a prokinetic is administered as a first-line treatment for PDS patients [6].
Approximately 90% of the human body’s total serotonin (5-hydroxytryptamine, 5-HT) is located in
enterochromaffin cells in the gut. Intestinal movement is regulated via 5-HT receptors, including
5-HT1, 5-HT2, 5-HT3, 5-HT4, and 5-HT7, which are activated by serotonin as their natural ligand.
Serotonin receptors are drug targets for FGIDs [17–20]. After the withdrawal of cisapride, a 5-HT4

agonist and 5-HT3 antagonist, because of its cardiovascular side effects, several serotonergic drugs
including tegaserod and mosapride were launched into the market. However, the efficacy and safety
of these drugs are limited [21,22]. Mosapride failed to provide any benefit [23] and tegaserod was
withdrawn due to cardiovascular side effects [24].

Itopride, a prokinetic agent that works as a dual dopamine D2 receptor antagonist and
acetylcholinesterase inhibitor, was reported to have good efficacy in global patient assessments and
to improve FD symptom scores in a meta-analysis [25], but it failed to demonstrate any efficacy in a
clinical trial [26]. Domperidone (a dopamine D2 and D3 receptor antagonist) and metoclopramide,
(a dopamine D1 and D2 receptor antagonist) were also launched; however, their side effects, which
included ventricular arrhythmia and extrapyramidal movement disorder, respectively, inhibited their
long-term use [27,28].
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Gastric accommodation is relaxation of the fundus, the upper part of the stomach, in response to
food ingestion, which is mediated by a vasovagal reflex generated via nitrergic nerve activation. Tack
et al. reported impaired gastric accommodation in 40% of FD patients [10], which was associated with
early satiety [10]. Drugs that relax the gastric fundus appear to improve FD symptoms, particularly
PDS. Buspirone, an antidepressant having a partial agonistic effect on 5-HT1A, may enhance relaxation
of the gastric fundus and body, and reduce the severity of symptoms including postprandial fullness,
early satiety, and upper abdominal bloating [29]. Sumatriptan, a 5-HT1B/D agonist, was reported to
alleviate FD symptoms by restoration of gastric accommodation with fundus-relaxing effects [30].
Recently, acotiamide, an M1/M2 muscarinic receptor blocker, was approved as a fundic relaxant for
FD in Japan. This drug increases acetylcholine availability in gut nerve synapses [31], and has been
reported to relax the gastric fundus and accelerate gastric emptying in humans [32,33].

Gastric hypersensitivity and/or brain-gut dysfunction has been associated with an impaired
connection between gastric physiology and psychology in FD [34]. Compared to that of normal subjects,
patients with FGIDs have been reported to be more sensitive to balloon distension. Many studies have
confirmed intolerance to gastric distention in patients with FD [35,36]. Gastric hypersensitivity seems
to be associated with postprandial epigastric pain, belching, and weight loss [37]. Approximately 34%
of patients with FD had a lower threshold for the first perception of stimulus, discomfort, and pain
during distention of the proximal stomach by barostat [37,38]. Visceral analgesics including alosetron,
a 5-HT3 antagonist [39], were reported to reduce visceral hypersensitivity and to be beneficial in
symptom relief compared to that of placebo in clinical studies [40]. However, side effects, including
constipation and ischemic colitis, were a concern [41]. Fedotozine, an opioid κ-agonist [42,43], seemed
to be a visceral analgesic; however, in clinical trials, the results of an overall physician assessment
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of this drug were not satisfactory [44]. For EPS patients, acid suppression is beneficial, and proton
pump inhibitors (PPIs) are primarily used. H2 receptor antagonist therapy was reported to be superior
to placebo control to reduce FD symptoms [45]. However, if first-line therapies fail, centrally acting
drugs may be beneficial. Tricyclic antidepressants, including amitriptyline, appeared to provide
a modest benefit for FD patients, especially for those with pain [46]. Interestingly, the tetracyclic
antidepressant mirtazapine, which is an H1 histamine receptor blocker, 5-HT2C and 5-HT3 antagonist,
and α2 adrenergic receptor blocker, seemed to be more beneficial than placebo in a preliminary
randomized controlled trial of FD patients with weight loss [47,48], although it did not alter gastric
function in healthy individuals [49]. Levosulpiride, an atypical antipsychotic drug and dopamine
antagonist, may be efficacious in FD treatment [50]. However, more data including those from large
placebo-controlled trials are needed [51].

Given the lack of medications with satisfactory efficacy and safety and the requirement of multiple
drugs to achieve relief from various symptoms, there remains an unmet need for new treatments.
Researchers have proposed that an agent capable of modulating multiple mechanisms will be more
promising than an agent highly selective for a single mechanism and that a new treatment for FD
should target many, if not all, pathophysiologies [52].

For centuries, herbal preparations have been traditionally used for a variety of GI disorders based on
historical experiences and oriental medicine practices, but there has been a lack of scientific evidence and
qualified clinical data. Herbal medicines, which generally contain multiple herbs, may be good options for
FD treatment. The pathophysiology of FD is heterogeneous and multiple components of herbal medicines
may enable simultaneous targeting of the multiple pathways involved in FD, enhancing efficacy compared
to that of current chemical drugs targeting a single pathway [52]. DA-9701 (Motilitone) was launched as a
new drug for FD in December 2011 in Korea; it is an herbal medicine with multi-acting mechanisms for FD
treatment [53]. In this review, we provide updated information related to the multi-acting pharmacological
effects, safety, and clinical data of DA-9701 and propose further research on it.

2. DA-9701

2.1. Herbal Composition

DA-9701 is a botanical drug for FD treatment in Korea, which is formulated with Pharbitidis
Semen and Corydalis Tuber [53]; both constituent plants have been traditionally used for treating
GI disorders [54–56]. Corydalis Tuber, the root of Corydalis yanhusuo W.T. Wang (Papaveraceae), is
known to control gastric juice secretion and prevent gastric [56] and duodenal ulcers [57]. Extracts
from Corydalis Tuber have been used as antispasmodic agents and analgesics [54] for abdominal
pain because of its soothing and tranquilizing properties. Anti-inflammatory effects of the extract
or its isolated compounds have been reported [58]. Pharbitidis Semen is the seed of Pharbitis
nil Choisy (Convolvulaceae) and has been used as a traditional medicine for the treatment of
abdominal pain [55] and as a strong purgative in Chinese medicine. The extract of Pharbitidis
Semen is also used to stimulate and enhance intestinal peristalsis. Compared to that of a drug
comprising a single synthetized chemical compound, a botanical drug requires more complicated
quality control because of the properties of natural products. DA-9701 contains various components
including corydaline (CD), dehydrocorydalin, chlorogenic acid, caffeic acid, coptisine, berberine,
tetrahydroberberine (THB), palmatine, and tetrahydropalmatine (THP). For batch to batch control,
CD ((13S, 13aR)-2,3,9,10-tetramethoxy-13-methyl-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]), the
main constituent of Corydalis Tuber and CA (1S, 3R, 4R, 5R0-3-[(E)-3-(3,4-)prop-2-enoyl]
oxy-1,4,5-trihydroxycyclohexane-1-carboxylic acid) from Pharbitidis Semen were selected as marker
compounds for DA-9701 [59].

2.2. Pharmacology of DA-9701

The in vitro and in vivo pharmacological study results of DA-9701 are summarized in Table 1.
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2.3. Effects of DA-9701 on GI Motility

The effects of DA-9701 on gastric emptying have been evaluated in not only normal animals
but also models of delayed gastric emptying induced by apomorphine, cisplatin, opioids, and
clonidine. [77–79]. The prokinetic effects of DA-9701 were comparable to those of conventional
drugs such as cisapride (10 mg/kg) in normal animals and a delayed gastric emptying model at
doses of 0.3–3 mg/kg [60] and in an in vitro study of interstitial cells of Cajal, indicating pacemaker
activity of DA-9701 [61]. Further, DA-9701 administration accelerated gastric emptying, as shown
by a 13C-octanoic acid breath test with repeated measurement in normal mice [62]. In rats sutured
with a strain gauge force transducer, DA-9701 administration significantly restored clonidine-induced
hypomotility of the gastric antrum in pre- and postprandial periods [63]. When laparotomy, atropine,
or opioids were administered to animals to examine the effects of DA-9701 on delayed GI transit,
DA-9701 enhanced GI transit in mice who had been subjected to laparotomy or atropine injection [60].
Further, in guinea pigs with opioid-induced bowel dysfunction, delayed GI transit was restored and
fecal output was increased. In organ bath experiments using morphine-treated ileal muscle with
reduced contractility, DA-9701 significantly increased the amplitude of contraction [64]. Additionally,
DA-9701 administration to animals with abdominal surgery was able to ameliorate postoperative ileus
(POI) by reducing delayed GI transit and improving defecation [65]. These effects might be mediated
by decreased expression of corticotrophin releasing factor in the hypothalamus of DA-9701-pretreated
animals with POI [66]. Diverse stresses usually induce dyspeptic symptoms [80], probably by alteration
of gastric sensory and motor functions, and acute stressors are known to be associated with delayed
gastric emptying in animal models and humans [81,82]. The administration of DA-9701 improved
delayed gastric emptying induced by stress, including immobilization and subsequent immersion
in a water bath, which was associated with inhibition of stress-induced increases in plasma levels
of adrenocorticotropic hormone (ACTH) and ghrelin [67]. DA-9701 has a high affinity for multiple
receptors related to GI function. It enhances gastric emptying and GI transit via dopamine D2

antagonism and 5-HT4 agonism [83]. The affinities of DA-9701 for the D2 and 5-HT4 receptors
were 0.381 and 13.2 µg/mL, respectively [53]. THB and THP, two components of DA-9701, showed
dopamine D2 receptor antagonistic effects, and their IC50 values against GTPγS binding to recombinant
human dopamine D2S receptor in Chinese hamster ovary cells were 0.622 µM (211 ng/mL) and 1.32 µM
(469 ng/mL), respectively (Dong-A Pharmaceutical Co., Ltd., Seoul, South Korea). There is some
controversy about the coexistence of relaxation and contraction effects on the stomach. However, this
can be explained by the fact that contractile receptors are dominant in the antrum region and relaxing
receptors are dominant in the fundus region of the stomach [84].

2.4. Effects of DA-9701 on Fundic Relaxation

Currently, the barostat is the most commonly available method for measuring fundus relaxation
in human patients and canine models [37,85]. To evaluate the fundus relaxation effect, two end points
can be measured: Accommodation and compliance [86,87]. The gastric accommodation response
enables proximal stomach relaxation to provide space for receiving foods without an increase in
gastric pressure [88]. Meal-induced gastric accommodation is thought to be the most important
motor index that can be studied currently. Gastric compliance, which is tested in the fasting state,
is a measure of gastric tone in the resting state and seems to be related to the pain and discomfort
perception threshold [87,89]. DA-9701 significantly increased gastric accommodation in Beagle dogs,
shifting the pressure-volume curve toward higher volumes that were comparable to those associated
with the control dogs [60]. This finding was reproduced in the same experimental system by CD, a
component of DA-9701 [68]. In DA-9701-treated dogs, meal-induced gastric volumes significantly
increased and persisted, a finding comparable to that achieved with sumatriptan [69]. DA-9701 may
be effective in restoring restraint stress-induced food intake inhibition in rats, and this effect appears
to be related to enhanced gastric accommodation by 5-HT1A agonism [70]. Further, THB isolated
from DA-9701 alleviated impaired gastric compliance in the rat after stress induction and relaxed
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the proximal stomach via 5-TH1A agonism [71]. Agonism of 5-HT1A and 5-HT1B/D is known to
mediate relaxation of the gastric fundus through activation of a nitric oxide pathway [87,90] and to
decrease the visceromotor response to noxious colorectal distention via smooth muscle relaxation [89].
The affinity of DA-9701 to 5-HT1A was shown to be 6.87 µg/mL. In in vitro studies, DA-9701 inhibited
5-HT-induced contraction in feline esophageal smooth muscle cells by reducing the phosphorylation
of myosin light chain kinase (MLC20) [72]. Using gastric fundus muscle strips triggered with electrical
field stimulation, it was demonstrated that the effect of DA-9701 on rat gastric fundus relaxation is
mainly mediated by nitrergic rather than purinergic pathways [73].

2.5. Effects of DA-9701 on Visceral Hypersensitivity

Visceral hypersensitivity is one of the leading targets of FD drug development. In a neonatal rat
model of colon irritation with colorectal distention (CRD), administration of DA-9701 significantly
decreased mean arterial pressure in a dose-dependent manner, indicating an increase in the pain
threshold with CRD-induced visceral hypersensitivity [74]. Pain signals are transmitted from the
peripheral regions to the spinal cord (dorsal root ganglion) where the information is processed for
transfer to the central nervous system (CNS). In rats treated with DA-9701, phosphorylation of
extracellular signal-regulated kinase (p-ERK), a pain-related factor of the pain transmission pathway,
significantly decreased in response to CRD [76], suggesting modulation of visceral pain. Further,
THP and CD, two components of DA-9701, were reported to have antinociceptive effects on visceral
and somatic nociception in animals [75]. It is known that the adrenergic nervous system plays
a certain role in modulating visceral nociceptive processing. Adrenergic α2 agonists, such as
clonidine, have been shown to reduce pain perception during gastric and colonic distention [89]
and to produce post-operative analgesia in humans [91]. This is probably mediated by modulation of
spinal neurotransmitters at the levels of the dorsal horn, activation of descending inhibitory pathways,
and/or emotional responses to visceral stimuli [92,93]. The affinity of DA-9701 to adrenergic α2

receptors was shown to be 4.81 µg/mL.

3. Safety of DA-9701

In a single-dose toxicity study, the LD50 of DA-9701 was over 2,000 mg/kg, and in a repeated-dose
toxicity study for 26 weeks, the no-observed-adverse-effect level (NOAEL) was 150 mg/kg in rats.
The NOAEL was 100 mg/kg in both 1-week and 13-week repeated-treatment studies in dogs. DA-9701
exhibited no genotoxicity. Due to the D2 antagonism of DA-9701, hyperprolactinemia was the major
safety concern; however, the prolactin ED200 of DA-9701 was approximately 70-fold lower than that
of itopride (3.78 vs. 270.1 mg/kg) in rats [53]. The pharmacokinetics and CNS distribution of THB
and THP from DA-9701, both having dopamine D2 receptor binding affinities, were examined because
D2 antagonists such as metoclopramide have a direct effect on the CNS by crossing the blood-brain
barrier [59]. A tissue distribution study revealed that THB and THP were present at high concentrations
in the stomach and small intestine compared to those in the plasma following administration of
various oral doses of DA-9701, indicating considerable GI distribution. Increased concentrations of
THB and THP, which cross the blood-brain barrier, were measured in the brain after repeated-dose
administration of DA-9701. However, the brain concentration of DA-9701 was not expected to be
sufficient to exert central dopamine D2 receptor antagonism following oral administration of effective
doses in humans [59].

4. Clinical Studies of DA-9701

The therapeutic efficacy of DA-9701 has been investigated in several clinical trials according to
modern guidelines and these clinical studies are summarized in Table 2.
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The first clinical trial using DA-9701 was a multicenter, double-blind, randomized, and controlled
trial with concealed allocation comparing the safety and efficacy of DA-9701 and itopride hydrochloride
in Korea. Four hundred and sixty-four FD patients aged >20 years who were diagnosed with FD
according to the Rome II criteria were randomized to the DA-9701 (30 mg t.i.d.) or itopride (50 mg t.i.d.)
group. There was a 2-week medication-free run-in phase and a 4-week treatment period. Two primary
efficacy end points, including the change in composite score from baseline of the eight dyspeptic
symptoms and the overall treatment effect, were analyzed. Using the Nepean Dyspepsia Index (NDI)
questionnaire, the impact on patient quality of life was assessed. DA-9701 significantly improved both
FD symptoms and quality of life in patients with FD. The efficacy of DA-9701 was not inferior to that
of itopride. Both drugs increased the NDI score of five domains without any differences between the
groups. The safety profiles of both drugs were comparable. DA-9701 was well tolerated and did not
show drug-related serious adverse effects [94].

To investigate the efficacy of DA-9701 for improving FD symptoms in comparison with that
of pantoprazole, a PPI, and to evaluate the additive effect of DA-9701 over PPI treatment only,
a multicenter, double-blind, randomized, parallel-comparative phase IV study was conducted.
Three hundred and eighty-nine patients diagnosed with FD by using the Rome III criteria were
allocated to three groups: 30 mg DA-9701 t.i.d., 40 mg pantoprazole q.d., and 30 mg DA-9701 t.i.d +
40 mg pantoprazole q.d. Patients in all treatment groups reported significant improvements in FD
symptoms and dyspepsia-related quality of life (p < 0.001). The global symptomatic improvement
was 60.5% in the DA-9701 group, 65.6% in the pantoprazole group, and 63.5% in the DA-9701 +
pantoprazole group, as determined using a 5-point Likert scale at week 4; there were no significant
intergroup differences [95].

In another study, 81 patients with minimal change esophagitis presenting with reflux or dyspeptic
symptoms were enrolled and 42 and 39 patients were randomly assigned to receive either DA-9701
30 mg or placebo t.i.d., respectively. After 4 weeks, the NDI questionnaire-Korean version (NDI-K)
symptom scores [96] were significantly reduced in the treatment (p < 0.001) and control groups
(p < 0.001). However, changes in the symptom scores and quality of life scores did not differ between
the two groups. The reflux symptom score significantly improved in the treatment group compared
to that in the placebo group among patients aged 65 years or older (p = 0.035). Although the NDI-K
symptom scores and quality of life scores improved after 4 weeks of treatment compared to baseline
values in patients with minimal change esophagitis, DA-9701 did not improve the symptom scores or
quality of life scores compared with those of the placebo [96].

While PD patients have impaired gastric function, which can cause altered responses to oral
dopaminergic drugs, prokinetics with dopaminergic antagonism are commonly prescribed to prevent
nausea and vomiting induced by anti-parkinsonian drugs. Therefore, to evaluate the clinical utility of
DA-9701 in PD patients, the effects of DA-9701 on gastric motility were evaluated in PD patients by
using magnetic resonance imaging (MRI). In a non-inferiority study with domperidone, 38 participants
completed the 4-week treatment protocol. DA-9701 was not inferior to domperidone in terms of
changes in the 2-h gastric emptying rate (GER) before and after treatment. However, a significant
increase in the 2-h GER was observed only in the DA-9701 group (p < 0.05) without aggravation of PD
symptoms [97].

A clinical study was conducted to evaluate the effects of DA-9701 on gastric accommodation
and emptying after a meal in healthy volunteers by using 3-D gastric volume measurement with
MRI. Forty healthy subjects randomly received DA-9701 or placebo. After 5 days of treatment, the
subjects underwent gastric MRI (60 min before and 15, 30, 45, 60, 90, and 120 min after a liquid test
meal). Whereas DA-9701 did not significantly affect gastric accommodation in healthy volunteers,
pretreatment with DA-9701 increased postprandial proximal-to-distal total gastric volume ratio
compared to that with placebo. Pretreatment with DA-9701 significantly increased gastric emptying
compared to pretreatment with placebo [98].
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In a recent prospective study conducted in 27 patients with functional constipation diagnosed
based on the Rome III criteria, DA-9701 30 mg t.i.d. for 24 days was associated with a significantly
reduced colonic transit time (CTT) (p = 0.001) and decreased segmental CTT (p < 0.001). In addition,
all constipation-related subjective symptoms, including spontaneous bowel movement frequency,
significantly improved compared to those before treatment, without any serious adverse effects [99].

5. Conclusion and Future Prospects

DA-9701, a natural product for FD treatment, is composed of multiple components that act on
multiple targets involved in the pathophysiology of FD. DA-9701 has affinity for dopamine, serotonin,
and adrenergic receptors. Therefore, it has multiple pharmacological actions through antagonistic
effects on D2 and agonistic effects on 5-HT4, 5-HT1A, and 5-HT1B, which are associated with gastric
emptying, relaxation, and hypersensitivity. Although clinical studies for DA-9701 have had some
limitations, beneficial effects of DA-9701 on FD symptoms and GI functions have been demonstrated
in FD patients. Further, the promising results indicate that extended use of DA-9701 for PD patients
and functional constipation may be possible. The effective dose of DA-9701, which is well tolerated
and safe, seems to be smaller than that of conventional drugs targeting a single pathway. Currently,
DA-9701 is a prescription drug for FD in Korea. To be used as a medicine in the global market, further
studies involving active compounds are definitely needed for a deeper understanding of the activities
of DA-9701 in FD management. For example, efficacy and detailed molecular mechanism studies for
each active compound targeting different receptors, alone or in combination for additive, synergistic,
or even inhibitory effects, using various FD animal models are needed. Undoubtedly, larger and
sophisticatedly designed clinical trials are warranted.
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Abstract: The rhizoma of Ligusticum sinense, a Chinese medicinal plant, has long been used as a
cosmetic for the whitening and hydrating of the skin in ancient China. In order to investigate
the antimelanogenic components of the rhizoma of L. sinense, we performed an antimelanogenesis
assay-guided purification using semi-preparative HPLC accompanied with spectroscopic analysis to
determine the active components. Based on the bioassay-guided method, 24 compounds were isolated
and identified from the ethyl acetate layer of methanolic extracts of L. sinense, and among these,
5-[3-(4-hydroxy-3-methoxyphenyl)allyl]ferulic acid (1) and cis-4-pentylcyclohex-3-ene-1,2-diol (2)
were new compounds. All the pure isolates were subjected to antimelanogenesis assay using murine
melanoma B16-F10 cells. Compound 1 and (3S,3aR)-neocnidilide (8) exhibited antimelanogenesis
activities with IC50 values of 78.9 and 31.1 µM, respectively, without obvious cytotoxicity. Further
investigation showed that compound 8 demonstrated significant anti-pigmentation activity on
zebrafish embryos (10-20 µM) compared to arbutin (20 µM), and without any cytotoxicity against
normal human epidermal keratinocytes. These findings suggest that (3S,3aR)-neocnidilide (8) is a
potent antimelanogenic and non-cytotoxic natural compound and may be developed potentially as a
skin-whitening agent for cosmetic uses.

Keywords: Ligusticum sinense; rhizoma; antimelanogenesis; B16-F10 melanoma cell; zebrafish;
pigmentation

1. Introduction

Melanin is a brown black pigment that is principally responsible for the color of skin, hair,
and eyes [1]. Melanin is a biopolymer and includes two major classes of pigments in human
skin, brownish black eumelanin and reddish yellow pheomelanin [1]. Melanin biosynthesis is a
complex multistep process called melanogenesis, which is a physiological response of human skin
to prevent deleterious effects of ultraviolet (UV) radiation and environmental pollutants. However,
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over-melanogenesis can lead to the darkening of the skin, and abnormal hyperpigmentation causes
various dermatological problems, such as freckles, melasma, senile lentigines, and even skin cancer [2].

Melanin is produced in membrane-bound organelles referred to as melanosomes, which are
present in specialized cells called melanocytes. Melanin synthesis starts from the hydroxylation
of L-tyrosine to L-dihydroxyphenylalanin (DOPA) and is followed by oxidation to dopaquinone.
The two reactions are catalyzed by a rate-limiting enzyme tyrosinase. In the absence of thiol
substances, dopaquinone cyclizes to leukodopachrome, followed by a series of oxidoreduction
reactions which involve tyrosinase-related protein-2 (Tyrp-2) to produce the intermediate dopachrome
and 5,6-dihydroxyindole-2-carboxylic acid (DHICA). DHICA undergoes subsequent oxidation
catalyzed by Tyrp-1 and polymerization to form eumelanin. Dopaquinone also conjugates with cysteine
and glutathione to yield cysteinyldopa and glutathionyldopa, which are progressively transformed
into pheomelanin [1].

The cells surrounding melanocytes such as keratinocytes and fibroblasts are involved in the
regulation of melanogenesis [3]. Continuous exposure to UV irradiation induces DNA damages in
keratinocytes and leads to p53-mediated up-regulation of proopiomelanocortin (POMC). POMC
undergoes posttranslational cleavage to produce the melanocyte stimulating hormone (α-MSH)
and β-endorphin. In turn, α-MSH binds to the melanocortin 1 receptor (MC1R) on adjacent
melanocytes, resulting in the upregulation of cAMP. Elevated cAMP stimulates expression of
microphthalmia-associated transcription factor (MITF). MITF then regulates the transcription of
pigmentation enzymes, including tyrosinase, Tyrp-1 and Tyrp-2. The UV-triggered pathway eventually
leads to melanin synthesis and transfer of melanosomes to keratinocytes [4–6]. In addition to extrinsic
stimuli, melanin production is also influenced by intrinsic factors, such as hormone change, genetic
disorders, inflammation, and age [3].

In East Asia, most women expect to avoid uneven skin pigmentation and pursue skin lightening.
For instance, arbutin, kojic acid, azelaic acid, ascorbic acid, and white mulberry and licorice root extract
have been used as whitening ingredients in cosmetic preparations [7]. The exploitation of effective
and preventive skin whitening agents from natural sources is of great interest in the cosmetic field,
primarily due to relative nontoxicity and fewer side effects [7,8]. The rhizoma of Ligusticum sinense
Oliv. (Umbelliferae) have long been used as traditional Chinese medicine for 2000 years and till
today its roots are a highly recommended herbal tea [9]. L. sinense, namely “Gaoben” in Chinese,
also known as Chinese lovage, was used for expelling wind-cold, relieving pain and rheumatic
arthralgia, and alleviating anemofrigid headache. The main external use of L. sinense is for skin
whitening and hydrating [10]. To date, the reported chemical constituents present in L. sinense include
terpenoids, phthalide analogues, and phenylpropanoid glycosides [11–16]. Such constituents have
been reported to exert numerous pharmacological effects. For example, the essential oils from the roots
and rhizomes of L. sinense were reported to possess analgesic, sedative, and antimicrobial effects [15,17].
Ligustilide, a main phthalide widely found in Umbelliferae plant, demonstrated dilatory effect on
myometrium, and reduced inflammatory and neurogenic pain [18]. Cnidilide, another phthalide
abundant in Umbelliferae plant, was proven to possess antispasmodic and inflammatory effects [19,20].
Previous studies have indicated that the extract of L. sinense inhibited melanogenesis on B16-F10
murine melanoma cells [21]. However, the active components for melanogenesis inhibitory activity
were still unreported.

In our preliminary biological screening, it was found that the methanolic extracts of L. sinense
exhibited antimelanogenesis activity in B16-F10 cells with an IC50 value of 50 µg/mL [22], and the
antimealnogenesis principles are still undisclosed thus far. We thus set out to investigate the active
principle of the rhizoma of L. sinense by a bioassay-directed method, and that has led to the isolation
and identification of two new compounds 1 and 2 along with 22 known compounds 3–24. This article
also aimed to investigate the effects of compounds 1 and 8 on B16-F10 melanoma cells in vitro and
zebrafish in vivo, assess the safety by normal human epidermal keratinocyte MTT assay, and quantify
1 and 8 in the rhizoma of L. sinense.
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2. Results and Discussions

2.1. Isolation and Structural Elucidation

In an attempt to isolate and identify the melanogenesis inhibitors efficiently from the active
fractions, we employed a bioassay-guided fractionation strategy. A methanolic extract of the
rhizoma of L. sinense was partitioned to give ethyl acetate, n-butanol and water soluble layers.
The obtained three layers were then tested for antimelanogenesis activity in murine melanoma
B16-F10 cells. The mouse B16 melanoma cell is a sensitive, reliable, and feasible platform for
screening large number of small molecular melanogenesis regulators [23–25]. At the concentrations
of 25–100 µg/mL, the ethyl acetate-soluble layer demonstrated the most potent inhibitory activity,
while slight inhibition was observed for either the n-butanol or water-soluble layers (Figure 1A)
as evidenced by melanin contents in lyzed B16-F10 melanoma cells (Figure 1B). Open column
separation of ethyl acetate layer over silica gel followed by HPLC purification afforded two
previously unreported chemical entities 1 and 2 (Figure 2A) together with 22 known compounds.
The known compounds were characterized to be eugenol (3) [26], 2-hydroxy-4-methylacetophenone
(4) [27], 3S*,3aR*,7aS*-3-butylhexahydrophthalide (5) [28], carvacrol (6) [29], squalene (7) [30],
(3S,3aR)-neocnidilide (8) [31], coniferyl alcohol 9-methylester (9) [32], bergapten (10) [33],
methoxsalen (11) [34], methyl vanillate (12) [35], 2,5-dihydroxy-4-methylacetophenone (13) [36],
2-methoxy-4-nitrophenol (14) [37], 2,6-dimethoxyphenol (15) [38], falcarindiol (16) [39],
(9Z)-heptadecene-4,6-diyne-1,8-diol (17) [40], 3-O-(p-coumaroyl)ursolic acid (18) [41], pregnenolone
(19) [42], (9Z,11E,13R)-13-hydroxyoctadeca-9,11-dienoic acid (20) [43], ferulic acid (21) [44], coniferyl
ferulate (22) [45], p-hydroxyphenethyl ferulate (23) [46], and vanillic acid (24) [47].
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Figure 1. (A) The antimelanogenesis effect of different extraction layers with particular concentration
on B16-F10 melanoma cells. The B16-F10 melanoma cells were seeded and incubated overnight to allow
cells to adhere. The cells were exposed to various concentrations (25, 50 and 100 µM) of the different
extraction layers or arbutin for 72 h in the presence of 100 nM α-MSH. At the end of the treatment, the
cells were washed with PBS and lyzed with 150 µL of 1 N NaOH containing 10% DMSO for 1 h at
80 ◦C. The absorbance at 405 nm was measured using a microplate reader. (B) Melanin contents in
lyzed B16-F10 melanoma cells of vehicle control (C), positive control (arbutin 100 µM), treatments of
crude extract (GBC, 25, 50 and 100 µg/mL), ethyl acetate layer (GBE, 25, 50 and 100 µg/mL), n-BuOH
layer (GBB, 100 µg/mL), and H2O layer (GBH, 100 µg/mL) from rhizoma of L. sinense.
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Compound 1, obtained as colorless oil, had a formula of C20H20O6 as deduced from 13C NMR
and positive-ion HRESI-MS, which showed a fragment ion at positive HRESI-MS m/z 357.1331
[M + H]+ (calcd for C20H21O6, 357.1333). Its IR absorptions at 3444, 1633, and 1509 cm−1 indicated
the presence of hydroxy, olefinic, and aromatic functionalities, respectively. In the 1H NMR of 1,
a 1,3,4,5-tetrasubstituted aromatic moiety [δH 7.07 (d, J = 1.8 Hz, H-6) and 7.22 (d, J = 1.8 Hz, H-2)],
an ABX-type aromatic functionality [δH 6.69 (dd, J = 7.9, 1.8 Hz, H-6′), 6.74 (d, J = 7.9 Hz, H-5′) and
6.87 (d, J = 1.8 Hz, H-2′)], two trans-mutual coupled olefinic protons [δH 6.33 (d, J = 15.9 Hz, H-8) and
7.56 (d, J = 15.9 Hz, H-7)], a terminal allylic group [δH 4.99 (ddd, J = 17.1, 1.8, 1.8 Hz, H-9′a), 5.10, (br d,
J = 7.6 Hz, H-7′), 5.15 (ddd, J = 10.1, 1.8, 1.8 Hz, H-9′b) and 6.40 (ddd, J = 17.1, 10.1, 7.6 Hz, H-8′)] and
two methoxyl resonances [δH 3.77 (s, 3′-OCH3) and 3.92 (s, 3-OCH3)] were observed. Twenty carbon
resonances, attributable to seven non-protonated aromatic carbons [δC 126.7 (C-1), 131.2 (C-5), 135.3
(C-1′), 146.1 (C-4′), 148.6 (C-3), 147.2 (C-4) and 148.2 (C-3′)], one acid carbonyl (δC 168.4, C-9), one
methine (δC 48.2, C-7′), eight olefinic methines [δC 108.9 (C-2), 113.2 (C-2′), 115.6 (C-5′), 116.1 (C-8),
121.8 (C-6′), 123.8 (C-6), 141.5 (C-8′) and 146.2 (C-7)], one exomethylene (δC 115.9, C-9′) and two
methoxyls [δC 56.4 (3′-OCH3) and 56.6 (3-OCH3)], were observed in the 13C NMR spectrum coupled
with the DEPT spectrum of 1 (Table 1). The connectivity of 1 was further deduced by cross-peaks of δH

5.10 (H-7′)/δC 113.2 (H-2′), 115.9 (H-9′), 121.8 (H-6′), 123.8 (C-6), 131.2 (C-5), 135.3 (C-1′), 141.5 (C-8′)
and 147.2 (C-4), δH 7.56 (H-7)/δC 108.9 (C-2), 116.1 (C-8), 123.8 (C-6), 126.7 (C-1) and 168.4 (C-9), δH 3.77
(3′-OCH3)/δC 148.2 (C-3′) and δH 3.92 (3-OCH3)/δC 148.6 (C-3) in the HMBC spectrum (Figure 2B),
which were further corroborated by the mutually-correlated signals of δH 3.77 (3′-OCH3)/δH 6.87
(H-2′) and δH 3.92 (3-OCH3)/δH 7.22 (H-2) in the NOESY spectrum (Figure 2B). Accordingly, 1 was
characterized as shown, and was named as 5-[3-(4-hydroxy-3-methoxyphenyl)allyl]ferulic acid. To our
knowledge, 1 with two sets of C6–C3 unit connected at C-7′ was a new skeletal type of lignan.

Compound 2 was isolated as colorless oil with molecular formula C11H20O2 as deduced by
positive-ion HR-ESIMS, showing an [M + H]+ ion at m/z 185.1501 (calcd for C11H21O2, 185.1541).
Conspicuous absorptions at 3445 and 1660 cm−1 in the IR spectrum of 2 indicated the presence
of hydroxy and olefinic functionalities, respectively. The 1H NMR (Table 2) coupled with COSY
spectrum of 2 showed two aliphatic chains at δH 0.85–1.97 (–H2-7–H3-11) and δH 1.66–5.44
(–H-3–H-2–H-1–H2-6–H2-5–). The above assignments also reflected in the 13C NMR of 2 supported
by DEPT spectra, in which one methyl (δC 14.2, C-11), six methylenes [δC 22.7 (C-10), 26.3 (C-6),
27.2 (C-5), 27.4 (C-8), 31.8 (C-9) and 37.4 (C-7)], three methines [δC 67.1(C-2), 69.2 (C-1) and 121.0 (C-3)]
and one quaternary carbon (δC 144.1, C-4) were observed. In the HMBC spectrum of 2 (Figure 2C),
cross-peaks of δH 5.44 (H-3)/δC 27.2 (C-5) and 37.4 (C-7), δH 1.92–2.01 and 2.04–2.10 (H2-5)/δC

144.1 (C-4) and δH 1.97 (H2-7)/δC 144.1 (C-4) indicated C-1–C-6 was a cyclohexene moiety with a
double bond at ∆3, and C-7–C-11, a saturated linear aliphatic chain, was attached at C-4. The relative
configurations of hydroxy-bearing chiral C-1 and C-2 were approached by the J values of carbinoyl
protons H-1 (9.1, 4.2 Hz) and H-2 (4.2 Hz), which indicated that H-1 and H-2 were pseudo-axial- and
pseudo-equatorial-oriented, respectively (Figure 2C). The relative configuration of 1,2-dihydroxy in 2
was thus deduced to cis. Conclusively, the structure of 2 was elucidated as shown, and was named as
cis-4-pentylcyclohex-3-ene-1,2-diol.
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Figure 2. (A) Chemical structures of compounds 1, 2, and 8 isolated from the rhizoma of L. sinense.
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Table 1. 13C (125 MHz), 1H NMR (500 MHz), and HMBC data for compound 1 (in acetone-d6, δ in ppm).

Position
13C NMR a 1H NMR HMBC

δC (multi.) δH (multi., J in Hz) H→C

1 126.7 (s)
2 108.9 (d) 7.22 (d, 1.8) C-1, C-3, C-4, C-6
3 148.6 (s)
4 147.2 (s)
5 131.2 (s)
6 123.8 (d) 7.07 (d, 1.8) C-2, C-4, C-7′

7 146.2 (d) 7.56 (d, 15.9) C-1, C-2, C-6, C-8, C-9
8 116.1 (d) 6.33 (d, 15.9) C-1, C-7, C-9
9 168.4 (s)
1′ 135.3 (s)
2′ 113.2 (d) 6.87 (d, 1.8) C-1′, C-3′, C-4′, C-6′, C-7′

3′ 148.2 (s)
4′ 146.1 (s)
5′ 115.6 (d) 6.74 (d, 7.9) C-1′, C-3′, C-4′

6′ 121.8 (d) 6.69 (dd, 7.9, 1.8) C-2′, C-4′, C-7′

7′ 48.2 (d) 5.10 (br d, 7.6) C-4, C-5, C-6, C-1′, C-2′,
C-6′, C-8′, C-9′

8′ 141.5 (d) 6.40 (ddd, 17.1, 10.1, 7.6) C-5, C-1′, C-7′

9′ 115.9 (t)
4.99 (ddd, 17.1, 1.8, 1.8) C-7′, C-8′

5.15 (ddd, 10.1, 1.8, 1.8) C-7′

3-OCH3 56.6 (q) 3.92 (3H, s) C-3
3′-OCH3 56.4 (q) 3.77 (3H, s) C-3′

a Multiplicities were obtained from DEPT experiments.
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Table 2. 13C (125 MHz), 1H NMR (500 MHz) and HMBC data for compound 2 (in chloroform-d, δ in
ppm).

Position
13C NMR a 1H NMR HMBC

δC (multi.) δH (multi., J in Hz) H→C

1 69.2 (d) 3.73 (dt, 9.1, 4.2) C-3, C-5
2 67.1 (d) 4.08 (br t, 4.2) C-1, C-3, C-4, C-6
3 121.0 (d) 5.44 (m) C-1, C-2, C-5, C-7
4 144.1 (s)

5 27.2 (t)
1.92–2.01 (m) C-1
2.04–2.10 (m) C-1, C-3, C-4, C-6, C-7

6 26.3 (t) 1.66–1.78 (m) C-1, C-2, C-5
7 37.4 (t) 1.97 (br t, 7.3) C-4, C-9
8 27.4 (t) 1.38 (m) C-4, C-7, C-9, C-10
9 31.8 (t) 1.20 (m) C-7, C-10
10 22.7 (t) 1.27 (m) C-8, C-9, C-11
11 14.2 (q) 0.85 (t, 7.0) C-9, C-10

a Multiplicities were obtained from DEPT experiments.

2.2. Effects of Compounds 1 and 8 on Melanin Content in α-MSH-Stimulated B16-F10 Cells

To ascertain the depigmentation constituents in rhizoma of L. sinense, all the pure isolates
were subjected to antimelanogenesis assay in B16-F10 melanoma cells. Murine melanoma B16-F10
cells are a well-established model for antimelanogenic principles discovery, and have been widely
adopted in previous studies [48]. α-Melanocyte-stimulating hormone (α-MSH) is a peptide hormone
and responsible for the production of melanin by melanocytes through activating melanocortin 1
receptor [49]. In this research, B16-F10 cells were stimulated with α-MSH (100 nM) and simultaneously
treated with each compound at concentrations of 25, 50, or 100 µM. The melanin content of B16-F10
melanoma cells without compound treatment was assigned as 100%. Arbutin, a common skin
whitening agent in cosmetic products, was used as positive control. Of these compounds, 1 and
8 inhibit α-MSH-induced melanin production in a dose-dependent manner. The IC50 values of
compounds 1 and 8 were 78.9 and 31.1 µM, respectively (Figure 3B). Compound 1 and 8 at the effective
concentrations did not show obvious effects on MTT assay (Figure 3A). The MTT results may arise
from the combined effects of cell proliferation reduction and cell viability inhibition according to the
experimental conditions. These results suggested that the anti-melanogenic effects of compound 1 and
8 did not attribute to the cell death or growth inhibition.

Using the HPLC-DAD method, the main effective constituents (1 and 8) were characterized from
the crude extract (Figure 4) by comparing with the retention time of pure 1 (from laboratory synthesis,
data not published yet) and 8 (from Sigma) as standards. Stock solutions of 1, 10, 20, 40, 60, 80 and 100
µg/mL were utilized. Each concentration was injected in triplicate. The content ratios of 1 and 8 in
the extract of dried material were quantified to be 0.009% and 0.15% (w/w) by linear regression of the
respective peak areas.

2.3. In Vivo Zebrafish Pigmentation Assay

In addition to evaluate the effect of 8 on in vitro antimelanogenesis, its in vivo anti-pigmentation
ability through zebrafish pigmentation assay was further investigated. Zebrafish has been considered
as an advantageous vertebrate model organism due to its small size, high fecundity, and similar gene
sequences and organ systems to human beings. Additionally, the melanin pigmentation process on its
surface allowing easy observation makes zebrafish a particular useful model for investigating in vivo
melanogenic inhibitors or stimulators [50]. In this study, arbutin at 20 mM was used as positive control,
and arbutin of 20 µM was included to compare with compound 8 at same concentration level. After
the incubation of zebrafish embryos from 7 hpf to 72 hpf, compound 8 exhibited higher pigmentation
inhibitory activity at concentrations of 10 and 20 µM compared to arbutin (20 µM) (Figure 5). Upon
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the treatment of 20 µM compound 8, the pigmentation level of zebrafish markedly decreases about
31%; while compound 8 at 10 µM decreases 26.2% pigmentation level.Int. J. Mol. Sci. 2018, 19, x 7 of 18 
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Figure 3. (A) The effects of compounds 1 and 8 on cell viability determined by MTT assay. Melanoma
cells pretreated with 100 nM α-MSH were seeded at a density of 1 × 104 cells/well in a 12-well plate.
Then, the melanoma cells were left to adhere overnight. Pure isolates (25, 50 and 100 µM) or arbutin
(100 µM) were added to each well and incubated for another 72 h. Subsequently, the treated cells were
labelled with MTT dye reagent in PBS (2 mg/mL) for 3 h. The formazan precipitates were dissolved
by DMSO, and the concentrations were measured at 570 nm in a microplate reader. (B) The effects of
compounds 1 and 8 on melanin contents in B16-F10 cells. Melanoma cells were seeded at a density
of 1 × 104 cells/well in a 6-well plate and incubated overnight. The cells were exposed to various
concentrations (25, 50 and 100 µM) of the pure isolates or arbutin for 72 h in the presence of 100 nM
α-MSH. The cells were washed with PBS and lyzed with 150 µL of 1 N NaOH containing 10% DMSO
for 1 h at 80 ◦C. The absorbance at 405 nm was measured using a microplate reader. Results were
expressed as % control and data mean ± S.D. n = 3 in each group. * p < 0.05, ** p < 0.01 compared to the
control group.
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Figure 5. Depigmenting effect of compound 8 and melanogenic regulators on melanogenesis of
zebrafish in an in vivo phenotype-based system. Zebrafish embryos were exposed to (A) E3 buffer
(containing 1% alcohol), (B) arbutin (20 µM), or (C) compound 8 (20 µM) from 7 hpf (post-fertilization)
to 72 hpf. (D) Pigmentation levels of zebrafish treated with arbutin (20 mM and 20 µM) and compound 8
(10 µM and 20 µM). Results were expressed as % control and data mean ± S.D. n = 15 in each group.
* p < 0.05 and *** p < 0.001 compared to the control group.
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2.4. Viability Assay of Human Epidermal Skin Equivalents

The safety of cosmetic products is a serious concern. For instance, hydroquinone, an effective
skin lightening agent, has been banned from the market because of numerous adverse reactions
and controversy over the potential carcinogenic risk [7]. Kojic acid, a potent tyrosinase inhibitor,
may induce contact dermatitis and potential genotoxicity [51,52]. In order to assess the safety of
compounds 1 and 8 on human skin, we performed a cell viability assay on Human skin equivalents
(HSEs) model. HSEs are three-dimensional culture systems that are generated by seeding human
keratinocytes onto an appropriate dermal substrate pre-seeded with human fibroblasts. HSEs are
physiologically comparable to the natural skin and provide suitable alternatives for animal testing.
Under controlled culture conditions, the HSEs demonstrate high similarity with the native tissue from
which it was derived [53]. In this study, viability assays on the normal human epidermal keratinocytes
(NHEKs) in Leiden epidermal models (LEMs) were performed. Compounds 1 and 8 did not affect the
cell viability at the concentrations of 10–100 µM. The cell viabilities of compound 1 are 98% and 106 %
at the concentrations of 10 and 100 µM, respectively. The cell viabilities of compound 8 are 97% and
92% at the concentrations of 10 and 100 µM, respectively. Accordingly, compounds 1 and 8 did not
exert cytotoxicity against NHEKs in the Leiden epidermal models at concentrations below 100 µM
(Figure 6). Since the effective concentration of 8 is below 100 µM, which suggests that 8 might be safe
for skin whitening below the tested concentrations. However, in practice, cosmetic products may be
applied on human skin for a long time, thus an extended experimental period of tested compounds on
HSEs has to be further conducted.
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Figure 6. The effect of compounds 1 and 8 on cell viability in normal human epidermal keratinocytes
(NHEKs). NHEKs were exposed to 1, 8, and vehicle at the indicated concentrations for 24 h. Cell viability
was determined by MTT assay.

2.5. Molecular Docking Study of B16-Mus Musculus Tyrosinase

Tyrosinase catalysis is the rate-limiting step of melanin biosynthesis. Thus, inhibition of tyrosinase
is the most common approach to achieve skin whiteness [54,55]. In order to determine whether
L. sinense suppressed melanogenesis in B16-F10 cells through tyrosinase inhibition, 3D stick models
(Figure 7A) and a 2D diagram (Figure 7B) of molecular docking using DS software were performed,
which revealed the possible inhibitory mechanism of compound 8 on mouse (Mus musculus) tyrosinase.
It was shown that the active site of mouse tyrosinase was located at a domain surrounded by amino
acids His377, Asn378, His381, Gly389, Thr391, Ser394 together with two copper ions. The CDOCKER
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interaction energy between the enzyme and inhibitor was −46.0067 kcal/mol. The simulation results
showed that hydrophobic amino acids including Gly389, Asn 378, Thr391 Ser394, His 404, and His192
around the catalytic site formed van der Waals forces with compound 8. Additionally, the oxygen
atom of γ-lactone moiety of 8 forms hydrogen bonds with His377 and His215, while its carbonyl group
forms coordination bonds with two copper ions. It was also observed that the cyclohexene ring and
butane exerted weak π-alkyl interaction with His381 and His215, respectively. Previous studies have
demonstrated that L. sinense extract displayed mushroom tyrosinase inhibition and down-regulation
of tyrosinase mRNA expression in B16-F10 cells [21,56]. Since the molecular docking illustrated a
strong interaction between the active domain of mouse tyrosinase and compound 8, it was thus
proposed that (3S,3aR)-neocnidilide (8) exhibited antimelanogenesis activity due to tyrosinase activity
attenuation and further decreasing melanin production. However, in addition to tyrosinase inhibition,
the other underlying mechanisms of antimelanogenesis activity of (3S,3aR)-neocnidilide (8) remains to
be further investigated.Int. J. Mol. Sci. 2018, 19, x 11 of 18 
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(A) 3D stick model and (B) 2D diagram of molecular interactions to the active site.

3. Materials and Methods

3.1. General

HPLC-grade solvents, n-hexane, ethyl acetate, methanol and acetonitrile, were purchased from
J. T. Baker (Phillipsburg, NJ, USA). Ethanol was purchased from Merck (Darmstadt, Germany).
α-Melanocyte-stimulating hormone (α-MSH), dimethyl sulfoxide (DMSO), phosphate-buffered saline (PBS),
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were purchased were purchased from
Sigma Aldrich (St. Louis, MO, USA). Open column chromatography was performed on silica gel (70–230
mesh, Merck, Darmstadt, Germany). Pre-coated silica gel plates 60 F254 and Aluminum Sheets RP-18
F254S for TLC were purchased from Merck (Darmstadt, Germany). Optical rotations were measured on a
JASCO P-1020 polarimeter (Jasco, Tokyo, Japan). 1H and 13C NMR were acquired with a Bruker Avance
DRX-500 spectrometer (Bruker, Rheinstetten, Germany). Low resolution and high resolution mass spectra
were obtained using an ABI API 4000 Q-TRAP ESI-MS (Applied Biosystem, Foster City, CA, USA) and
Q-Exactive Plus HR-ESI-MS (Thermo Fisher Scientific, MA, USA), respectively. IR spectra were recorded on
a JASCO FT/IR 4100 spectrometer (Jasco, Tokyo, Japan).

3.2. Plant Materials

Dried rhizoma of L. sinense Oliv. was purchased from Sheng Chang Pharmaceutical Co., Ltd.,
Taoyuan, Taiwan.
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3.3. Isolation and Structural Elucidation

Dried rhizoma (9.9 kg) of L. sinense was smashed and extracted with methanol (40 L × three
times), which was filtered and evaporated to give a black residue (1758 g). This residue was then
suspended in H2O (3.0 L) and partitioned with equal volume of ethyl acetate and n-BuOH for three
times, successively. Each layer was concentrated under reduced pressure to obtain EtOAc (415 g),
n-BuOH (147 g), and H2O (896 g) layers. Subsequently, the dried ethyl acetate layer (250 g) was
mixed with 375 g silica gel, and was loaded onto a conditioned open column packed with 3550 g silica
gel and eluted in a step-wise gradient method by mixtures of n-hexane, ethyl acetate and methanol.
Each 500 mL was collected for one fraction and analyzed by TLC. Then, all the fractions were combined
into eight portions I–VIII according to the results of TLC analyses, which were re-dissolved in a
minimum volume of n-hexane—ethyl acetate mixtures used in the subsequent HPLC system. Portion
II eluted by n-hexane—ethyl acetate (95:5) was purified by a semi-preparative HPLC (Hibar®Fertigäute,
10 × 250 mm) using n-hexane—ethyl acetate (96:4) as eluent at a flow rate of 3 mL/min to afford 6
(4.2 mg, tR = 19.8 min), 3 (6.1 mg, tR = 21.2 min), 5 (32 mg, tR = 23.5 min) and 7 (79 mg, tR = 28.0 min).
The same portion was purified by a semi-preparative HPLC (Phenomenex®Luna, 10 × 250 mm) using
n-hexane—ethyl acetate (99:1) as eluent at a flow rate of 3 mL/min to afford 4 (36 mg, tR = 32.5 min).
Portion III eluted by n-hexane—ethyl acetate (90:10) was purified by a semi-preparative HPLC
(Phenomenex®Luna, 10× 250 mm) using n-hexane—acetone (95:5) as eluent at a flow rate of 3 mL/min
to afford 8 (1.7 g, tR = 19.3 min). Portion IV eluted by n-hexane—ethyl acetate (80:20) was purified by
a semi-preparative HPLC (Phenomenex®Luna, 10 × 250 mm) using n-hexane—ethyl acetate (85:15)
as eluent at a flow rate of 3 mL/min to afford 15 (19 mg, tR = 24.4 min), 12 (11 mg, tR = 26.9 min),
9 (25 mg, tR = 33.8 min), 10 (31 mg, tR = 37.0 min), 11 (24 mg, tR = 42.5 min). The same portion was
purified by the same column using n-hexane—ethyl acetate (78:22) as eluent at a flow rate of 3 mL/min
to obtain 14 (10 mg, tR = 20.1 min) and 13 (22 mg, tR = 24.6 min). The same portion was purified by the
same column using n-hexane—ethyl acetate—acetone (80:10:10) as eluent at a flow rate of 3 mL/min
to obtain 20 (25 mg, tR = 13.2 min), 17 (15 mg, tR = 16.3 min), 18 (28 mg, tR = 18.5 min), 16 (132 mg,
tR = 21.8 min) and 19 (39 mg, tR = 25.6 min). Portion V eluted by n-hexane—ethyl acetate (60:40)
was purified by a semi-preparative HPLC (Hibar®Fertigäute, 10 × 250 mm) using n-hexane—ethyl
acetate—acetone (68:27:5) as eluent at a flow rate of 3 mL/min to afford 21 (5.3 g, tR = 10.2 min),
23 (63 mg, tR = 20.0 min), 22 (84 mg, tR = 22.0 min) and 24 (33 mg, tR = 26.5 min). The same portion
was purified by a semi-preparative HPLC (Hibar®Fertigäute, 10 × 250 mm) using n-hexane—ethyl
acetate (72:28) as eluent at a flow rate of 3 mL/min to afford 2 (24 mg, tR = 24.3 min). Portion VI
eluted by n-hexane—ethyl acetate (40:60) was purified by a semi-preparative HPLC (Hibar®Fertigäute,
10 × 250 mm) using n-hexane—ethyl acetate (53:47) as eluent at a flow rate of 3 mL/min to afford 1
(47 mg, tR = 13.2 min).

3.4. Spectroscopic Data

5-[3-(4-Hydroxy-3-methoxyphenyl)allyl]ferulic acid (1): colorless oil; [α]25
D +5.6◦ (c 0.12, CH3OH);

IR (neat) νmax 3444, 2935, 1633, 1509, 1434, 1376, 1267, 1153; positive ESI-MS m/z 357.2 [M + H]+;
positive HRESI-MS m/z 357.1331 [M + H]+ (calcd for C20H21O6, 357.1333); 1H and 13C NMR data
see Table 1.

Cis-4-pentylcyclohex-3-ene-1,2-diol (2): colorless oil; [α]22
D -20.3◦ (c 0.20, CH3OH); IR (neat) νmax 3445,

2919, 1660, 1455, 1371, 1225, 1084; ESIMS m/z 185.2 [M + H]+; HRESI-MS m/z 185.1501 [M + H]+

(calcd for C11H21O2, 185.1541); 1H and 13C NMR data see Table 2.

3.5. HPLC–DAD Analysis

Chromatographic analyses were performed on a Hitachi HPLC system consisting of L-7100
pump, L-7200 autosampler, L-7455 detector and D-7000 system manager data acquisition software,
on an XBridgeTM C18 column (250 mm length, 4.6 mm internal diameter, 5 um particle size; Waters).
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The mobile phase consisted of H2O (solvent A) and CH3CN (solvent B). The flow rate was 1.0 mL/min.
The elution program was as follows: isocratic with 2% B (0–5 min), 2–20% B (5–25 min), 20–90% B
(25–30 min), and isocratic with 90% B (30–35 min). The injection volume was 10 L. UV–visible spectra
were recorded at 240 nm.

3.6. Cell Culture

The B16-F10 murine melanoma cells (CRL6475) were purchased from the Food Industry Research
and Development Institute (FIRDI, Hsinchu, Taiwan). The cells were cultured in 90% Dulbecco’s
Modified Eagle’s Medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10%
fetal bovine serum (FBS, Sigma, St. Louis, MO, USA) and 1% penicillin–streptomycin solution in
culture flasks in a CO2 incubator with a humidified atmosphere containing 5% CO2 in the air at
37 ◦C. The culture medium was changed every two days. The cells were harvested by trypsinization
when they were about 85% confluent, counted with a haemocytometer (Neubauer Improved.,
Marienfeld, Germany) and seeded at the appropriate numbers into wells of cell culture plates for
further experiments.

3.7. Cell Viability Assay

To determine the safety of the various extracts the viability of cells following treatment
with extracts was determined by the MTT assay. This method is based on the reduction of
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to formazan by mitochondrial
enzymes in viable cells [57]. The quantity of formazan formed is proportional to the number of viable
cells present and can be measured spectrophotometrically. Briefly, 100 nM α-melanocyte stimulating
hormone (α-MSH)-pretreated cells seeded at a density of 1 × 104 cells/well in a 12-well plate were
left to adhere overnight. Pure isolates or arbutin were then added to each well and incubated for
another 72 h. Then, the treated cells were labelled with MTT dye reagent (Applichem, Denmark) in PBS
(2 mg/mL) for 3 h. The formazan precipitates were dissolved by DMSO and the concentrations were
measured at 570 nm in a microplate reader. Cell viability was calculated using the following formula:
cell viability (%) = (A sample/A control) × 100, where A sample and A control are the absorbances
from the mixture with, or without the addition of test sample, respectively.

3.8. Melanin Content Assay

Melanin content was measured as described previously with slight modifications [58]. The B16-F10
melanoma cells were seeded with 1 × 104 cells/well in 3 mL of medium in 6-well culture plates
and incubated overnight to allow cells to adhere. The cells were exposed to various concentrations
(25, 50 and 100 µM) of the pure isolates or arbutin for 72 h in the presence of 100 nM α-MSH. At the end
of the treatment, the cells were washed with PBS and lyzed with 150 µL of 1 N NaOH (Merck, Germany)
containing 10% DMSO for 1 h at 80 ◦C. The absorbance at 405 nm was measured using a microplate
reader. The melanin content of B16-F10 melanoma cells without compound treatment was assigned as
100%, and the melanin content of compound-treated cells was calculated relative to the control group.

3.9. In Vivo Zebrafish Pigmentation Assay

The animal use protocol has been reviewed and approved by the Institutional Animal Care
and Use Committee or Panel (IACUC/IACUP) of Taipei Medical University (No. LAC-2017-0311).
The methods were carried out in compliance with the relevant laws and the approved guidelines.
Wild-type zebrafish embryos were collected from Zebrafish Core Facility of Taipei Medical University.
Phenotype-based evaluation of zebrafish embryo was performed according to the previous study
with slight modification [50]. The embryos were incubated at 28 ◦C with 1% ethanol as control
and a different concentration of compounds from 7 hpf (post-fertilization) to 72 hpf. To evaluate
the anti-melanogenesis effects of melanogenic modulators on zebrafish developmental process,
the pigmentation of zebrafish was analyzed at 72 hpf. The embryos were mounted in 1% Low

281



Int. J. Mol. Sci. 2018, 19, 3994

Melting Agarose (Bioshop Canada, Burlington, ON, Canada) and captured images with a ZEISS Stemi
508 stereomicroscope (ZEISS, Oberkochen, Germany). Images pixel measurement analysis was carried
out by Fiji package of ImageJ (http://rsb.info.nih.gov/ij/index.html, NIH, USA). The quantification
of pigmentation data was analyzed (the area below the eyes of the zebrafish) and compared to
control group.

3.10. Viability Assay on Normal Human Epidermal Keratinocytes

All primary human skin cells from healthy donors used by the Department of Dermatology of the
Leiden University Medical Center are isolated from surplus tissue collected according to article 467 of
the Dutch Law on Medical Treatment Agreement and the Code for proper Use of Human Tissue of
the Dutch Federation of Biomedical Scientific Societies. According to article 467 surplus tissues can
be used if no objection is made by the patient. This means that the patient who will undergo plastic
surgery is well informed on the research. None of the authors were involved in the tissue sampling.
The Declaration of Helsinki principles were followed when working with human tissues.

The fresh mamma reduction surplus skin of a single female individual was used for isolation of
normal human epidermal keratinocytes (NHEKs) as described previously [59]. The NHEKs in Leiden
epidermal models (LEMs) were incubated overnight under submerged conditions in keratinocyte
medium. Within four days, fetal bovine serum was gradually omitted and the NHEKs in LEMs were
cultured serum-free at the air-liquid interface for seven days, while culture medium was refreshed
twice a week. Viability assays were performed by adding 0.5 mL of 1 mg/mL MTT to each of the
NHEKs in LEMs for 3 h, after 24 h exposure to the test compounds 1, 8, and DMSO (negative control).
The precipitated blue formazan product was extracted from the cells within 2 h with 0.5 mL isopropanol
per well. The concentration of formazan was measured by determining the OD at 570 nm using a
Tecan Infinite F50 microplate reader.

3.11. Statistical Analysis

All the data in our study were obtained as averages of experiments that were performed at least
in triplicate and expressed as means ± SD (Standard deviation). Statistical analysis was performed by
Student’s t-test. The statistical significance of results was set at p < 0.05 (*) and p < 0.01 (**).

3.12. Molecular Docking Study of B16-Mus Musculus Tyrosinase

3.12.1. Homology Modeling

As no three-dimensional structures for Mus musculus tyrosinase are available now, Homology
modeling is the most assured method for prediction of three-dimensional structures of unknown
protein based on the assumption that the structure of the unknown protein is similar to the known
structures of some homologous reference proteins. We acquired the Mus musculus tyrosinase amino
acid sequence from the National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.
nih.gov/) protein sequence database. A homolog protein template of the query protein Mus musculus
tyrosinase was identified by Phyre2 (Protein Homology/analog Y Recognition Engine V 2.0) [60].
The 446 residues (81% of Mus musculus sequence) have been modelled with 100.0% confidence by
the single highest scoring template as PDB code: c5m8pA was chosen as a receptor for the docking
calculation studies.

3.12.2. Analysis of Ligand-Protein Interaction

The binding site of the Mus musculus tyrosinase was determined based on reference human
tyrosinase (PDB 5M8M) six amino acid residues and the binding pocket have two copper. Therefore,
the binding site sphere was defined. Subsequently, the 3D structure of the compound 8 was prepared
and optimized by energy minimization docked into the binding pocket of the Mus musculus tyrosinase
using the CDOCKER program and the number of docking runs was set to 50 for inhibitor. All other
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parameters were set as default to the analysis of Ligand-Protein Interaction through using Biovia
Discovery Studio v.4.0 (Accelrys Software Inc., San Diego, CA, USA). Finally, from the 50 docking
conformations, the top one with the highest CDOCKER energy score was chosen to explore the binding
mode of docked compound in the Mus musculus tyrosinase active site.

4. Conclusions

In the present study, we adopted a bioassay-guided method using B16-F10 cells to isolate
the antimelanogenesis constituents from L. sinense rhizoma extracts. The active constituents were
determined to be 5-[3-(4-hydroxy-3-methoxyphenyl)allyl]ferulic acid (1) and (3S,3aR)-neocnidilide (8).
According to the HPLC analysis, the content of compound 8 accounts for 0.15% of the crude extract. The
antimelanogenesis activity of 8 was verified by both in vitro B16-F10 cells and in vivo zebrafish assays.
All these findings suggested that 8 may, at least, provide a rationale for the potential antimelanogenesis
effect of L. sinense for its high potency and quantity. The cell viability data on B16-F10 cells and NHEKs
imply that 8 could be developed potentially as an antimelanogenesis agent. The mode of action of
8 on antimelanogenesis was speculated to be the inhibition of the tyrosinase activity based on the
results of molecular docking; however, that remains to be further confirmed. Our finding revealed
that compound 8 exhibited anti-melanogenesis effects and safety through in vitro, in vivo, and ex vivo
studies, however, the depigmenting efficacy and biosafety on human skin need to be evaluated and
validated by clinical trials in the future.

5. Patents

An earlier version of the manuscript has been published as a patent (patent number: EP 2832719,
TW I507390).
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