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Preface

Dear Colleagues,

The expression “quantum geometry” means different things to different people. Although

virtually all researchers agree that the quantum theory of gravity, whatever form it may take, must

involve a description of quantised spacetime, there is no accepted definition of this term. In this

Special Issue, we invited contributions exploring the multi-faceted meanings of these two deceptively

simple words.

We aimed to collect, in one volume, a range of contributions representing the diverse meanings

that have been attached to this innocent-sounding phrase over the past 95 years of research into

quantum physics, information science, and gravity. Contributions from all fields were welcomed,

with a particular emphasis on the following topics:

• Noncommutative geometry;

• Spin foams and loop quantum gravity;

• Nonlocal geometry;

• Generalised uncertainty relations and minimum-length scenarios;

• Quantum reference frames;

• Emergent geometry from quantum entanglement and the “it from bit” scenario;

• Information, stringy, and holographic geometry;

• Causal dynamical triangulations, asymptotically safe gravity, and fractal spacetimes;

• Weyl geometry in gravity and cosmology and Finsler geometry in physics.

Papers addressing other, less mainstream, approaches were also welcomed. The resulting

collection includes both original research articles and review papers. A comprehensive summary

of such a huge field is, of course, impossible within a single volume, but we hope that this issue

will provide a valuable reference and starting point for dialogue between diverse approaches to a

common theme: the problem of quantum geometry.

Shi-Dong Liang, Tiberiu Harko, and Matthew J. Lake

Editors
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1. Introduction

Presently, we are in a period of rapid and intensive changes in our understanding
of the gravitational interaction, triggered by the important observational findings of the
late 1990s. We have witnessed the emergence of new cosmological paradigms and a better
understanding of black hole properties, as well as a tremendous increase in the precision
of observational data. However, in the understanding of one of the most fundamental
questions of present day physics, the nature of quantum gravity, many unsolved questions
still remain. Can gravity be quantized at all? Is the gravitational force a purely geometric
effect, or is it field theoretic in nature? And, if gravity is pure geometry, what is the relation
between geometry and the quantum? Is it possible to quantize geometry, to create a unified
quantum geometric framework for gravity?

2. Scope and Aims of the Project

This Special Issue is focused on the fundamental question of quantum geometry, its
various meanings, and its implications for the standard theoretical concepts in gravitation
and cosmology. The Issue includes state-of-the-art research contributions in the following
areas: the quantum geometry created by quantum matter [1], quantum metric fluctua-
tions [2], cosmology in modified gravity models [3,4], de Sitter gauge theory [5], and matrix
theory models of the gravitational interaction [6]. The nature of quantum configurations in
phase space [7], momentum operators in intrinsically curved manifolds [8], uncertainty re-
lations in the presence of a minimal length [9], generalized uncertainty black holes [10], and
the effects of quantum gravity on mass scales at high energies [11] are also addressed. These
fascinating topics, in which geometry, gravity and quantum mechanics are brought together,
provide deeper insights into the unsolved mysteries of the gravitational interaction, at the
smallest possible scales.

Review papers also play an essential role, both in synthesizing the available knowledge
in a given field of science and in providing the key information required to understand the
most advanced topics in contemporary research. Two reviews, one on noncommutativity in
physics [12] and another on the Barbero–Immirzi parameter in loop quantum gravity [13],
provide good introductions to these subjects, and overviews of some important recent
results in these fascinating fields of basic research.

Physics 2023, 5, 688–689. https://doi.org/10.3390/physics5030045 https://www.mdpi.com/journal/physics
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As the Guest Editors of this Special Issue, we hope that this collection will serve as a
standard reference for initiating and continuing state-of-the-art research in the fundamental
fields of quantum geometry, quantum gravity, and geometric theories of gravitation. More-
over, we hope that the Issue opens up some new perspectives on the quantum-geometric
aspects of the gravitational field and its applications in astrophysics and cosmology. Our
sincere thanks to all the authors who contributed to this volume, and without whom it
would not have been possible, for their time and efforts.

Funding: This work was supported by the Grant of Scientific and Technological Projection of Guang-
dong Province (China), no. 2021A1515010036.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In this paper, the effects of the quantum metric fluctuations on the background cosmological
dynamics of the universe are considered. To describe the quantum effects, the metric is assumed to
be given by the sum of a classical component and a fluctuating component of quantum origin . At the
classical level, the Einstein gravitational field equations are equivalent to a modified gravity theory,
containing a non-minimal coupling between matter and geometry. The gravitational dynamics
is determined by the expectation value of the fluctuating quantum correction term, which can be
expressed in terms of an arbitrary tensor Kμν. To fix the functional form of the fluctuation tensor, the
Newtonian limit of the theory is considered, from which the generalized Poisson equation is derived.
The compatibility of the Newtonian limit with the Solar System tests allows us to fix the form of
Kμν. Using these observationally consistent forms of Kμν, the generalized Friedmann equations are
obtained in the presence of quantum fluctuations of the metric for the case of a flat homogeneous
and isotropic geometry. The corresponding cosmological models are analyzed using both analytical
and numerical method. One finds that a large variety of cosmological models can be formulated.
Depending on the numerical values of the model parameters, both accelerating and decelerating
behaviors can be obtained. The obtained results are compared with the standard ΛCDM (Λ Cold
Dark Matter) model.

Keywords: semiclassical gravity; quantum metric fluctuations; cosmological models

1. Introduction

General relativity and quantum mechanics are the basic, and widely accepted, branches
of theoretical physics, confirmed by a large number of experiments and observations. In
particular, general relativity, a theory of gravity [1–3] is a typical example of a physical
theory with a very beautiful geometric structure. Moreover, it is one of the very successful
existing physical theories, with its predictions being confirmed in the past one hundred
years with a high degree of accuracy [4–6]. In addition to the classical tests of general
relativity performed at the Solar System level, recently two other fundamental predictions
of general relativity, the existence of the gravitational waves, and the existence of black
holes, have also been confirmed [7,8].

Despite the remarkable achievements of both quantum mechanics and general rela-
tivity, it had been known for a long time that these two fundamental theories of physics
cannot be unified, and they seem to be incompatible with each other. The first in depth
analysis of the possibility of the unification of quantum mechanics and general relativity
was performed by Bronstein [9], whose analysis indicated the existence of an essential
difference between quantum theory and the quantum theory of the gravitational field
based on general relativity. These early results already pointed out to the fundamental

Physics 2021, 3, 689–714. https://doi.org/10.3390/physics3030042 https://www.mdpi.com/journal/physics
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difficulty of unifying quantum theory and general relativity. Even after almost ninety
years of intensive effort the task of building a quantum theory of gravity is still unfulfilled,
remaining an open assignment for modern theoretical physics. There are many approaches
to quantum gravity, and for an introduction to the field, see, e.g., [10,11].

One possible avenue for the quantization of gravity would be its reformulation as a
gauge theory, an approach pioneered in [12], and further developed in [13–17]. Another
attempt to a quantum theory of gravity was initiated in [18–20], and it is based on the
rewriting of the Hilbert-Einstein action in terms of a spin connection and a set of tetrads.
Since both the tetrads and the spin connection are vector fields, the theory of gravitation
can be reformulated as a vector gauge theory.

However, from a fundamental physical point of view, such an approach is not sat-
isfactory, since in the case of gravitation the principles of equivalence and of the general
covariance are more important than the gauge principle, on which the standard model of
particle physics and its extensions are based [21]. Moreover, the theory is still based on the
standard Hilbert-Einstein action, and it is not clear at this moment if it can be quantized.
Various other approaches have been proposed for the quantization of the gravitational field
in [22–29].

A possible way of dealing with the problem of the quantization of gravity, and a
first step in this direction, is to assume that the matter fields are quantized, and that
evolve in a classical spacetime, described by a metric gμν, where the indices, denoted by
Greek letters, take on the values 0, 1, 2, 3. There is an important difference in this case as
compared to the evolution in a Minkowski spacetime, in the sense that in general there is
no preferred vacuum state for the fields. Consequently, particle creation effects naturally
take place. In semiclassical gravity the gravitational field is described classically, using the
Hilbert-Einstein action, S =

∫ (
−R/2κ2)√−gd4x, where R denotes the Ricci scalar, κ is the

gravitational coupling constant, g is the determinant of the metric tensor, and x represents
the time (x0) and space (x1, x2, x3) coordinates. Hence, in semiclassical gravity quantum
matter is coupled to the gravitational field via the semiclassical Einstein equations,

Rμν −
1
2

gμνR =
8πG

c4

〈
Ψ
∣∣T̂μν

∣∣Ψ〉, (1)

where G is the Newtonian constant of gravitation, c is the speed of light, and T̂μν is the
quantum operator associated with Tμν.

The above equations are obtained by replacing in the Einstein gravitational field
equations Tμν, the classical matter energy-momentum tensor by the expectation value,
〈· · · 〉, in an arbitrary quantum state Ψ of the quantum operator associated with Tμν. The
semiclassical approach to quantum gravity was proposed initially in [30,31], and it has
been further developed and discussed in [32–44].

From Equation (1) it follows that the matter energy-momentum tensor Tμν is obtained
in the classical limit by assuming 〈Ψ|T̂μν|Ψ〉 = Tμν. The semiclassical Einstein Equation (1)
can also be derived from the variational principle δ

(
Sg + Sψ

)
= 0 [35], where Sg is the

standard Hilbert-Einstein general relativistic classical action of the gravitational field, while
the second component of the total action, generated by quantum effects, is given by:

SΨ =
∫ [

Im
〈
Ψ̇|Ψ

〉
−
〈
Ψ|Ĥ|Ψ

〉
+ α(〈Ψ|Ψ〉 − 1)

]
dt,

where α is a Lagrange multiplier, while Ĥ is the Hamilton operator of matter.
A more general pathway to semiclassical gravity was introduced in [35]. It is essen-

tially based on the idea of the introduction of a nonminimal coupling between the classical
Ricci scalar R, and the quantized matter fields. Specifically, one can introduce in the total
action a term containing the quantum matter-geometry coupling with the simple form:∫

RF(〈 f (φ)〉)Ψ
√−gd4x. In the coupling term, F and f denote some arbitrary functions,

4
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while (〈 f (φ)〉)Ψ = 〈Ψ(t)| f [φ(x)]|Ψ(t)〉 denotes the average value of a function over the
quantum fields. Then, the effective semiclassical Einstein equations are given by [35]:

Rμν −
1
2

Rgμν = 16πG

[〈
T̂μν

〉
Ψ + GμνF−∇μ∇νF + gμν�F

]
. (2)

The semi-classical effective gravitational model described by Equation (2) has one
important consequence, namely, that the mean value of the matter energy-momentum ten-
sor

〈
T̂μν

〉
Ψ is not conserved directly, since generally ∇μ

〈
T̂μν

〉
Ψ �= 0. Thus, the theoretical

model described by Equation (7) can be interpreted theoretically as describing a process of
particle production that is the direct result of an energy removal from geometry to matter.

An alternative method for the quantization of classical physical structures is the
stochastic quantization method, introduced initially in [45]. In this approach to quantiza-
tion of the classical systems the quantum fluctuations are characterized with the help of
the stochastic Langevin equation. The stochastic quantization method goes back to the
study initiated in [46], in which the Schrödinger equation was from the classical dynamics
obtained using stochastic methods. However, the rigorous formulation of the stochastic
quantization method was presented in [45]. In stochastic quantization the quantum me-
chanical picture of physical processes is constructed through the limit, with respect to a
fictitious time variable t, of a hypothetical higher-dimensional stochastic process, assumed
to be described by a Langevin type equation. For the early advancements in stochastic
quantization theory see [47,48]. For the gravitational field the stochastic quantization
procedure was introduced in [49,50], by assuming that the classical metric tensor obeys the
covariant stochastic Langevin equation, given by [49]:

ġμν = −2i
[

Rμν −
λ + 1

2(2λ + 1)
gμνR

]
+ ξμν,

where ξμν is a stochastic source term, λ is a parameter, and a dot denotes the derivative
with respect to λ. For recent discussions on the stochastic quantization of gravity see [35].
For alternative Einstein-Langevin type equations, see, e.g., [51,52].

The quantum fluctuations of the space time are assumed to play an important role
in the quantum description of gravity. In fact, long time ago, it was suggested that due
to the Heisenberg uncertainty principle over extremely small distances and sufficiently
small intervals of time, the geometry of spacetime may fluctuate [53,54]. The quantum
fluctuations of the spacetime could be large enough to induce important deviations from the
smooth spacetime one experiences at macroscopic scales, and giving spacetime a "foamy"
character [53,54].

Quantum fluctuations play a central role in the alternative semi-classical description
of quantum gravity, introduced in [55]. In this approach to quantum gravity, the quantized
metric is assumed to have two components, and is given as the sum of classical and quan-
tum terms. After performing this decomposition, the quantized Einstein equations can be
approximated at the classical level by a modified gravity theory that includes a nonmini-
mal coupling between matter and geometry. After introducing some natural hypotheses
for the two-points expectation value of the product of the fluctuating quantum metric,
one can obtain the effective semiclassical gravitational and scalar field Lagrangians [56].
For a vanishing expectation value of the first-order terms of the metric, the second order
corrections can also be calculated. The second order quantum corrections also lead to a
modified gravity theory.

The gravitational field equations and the modified conservation laws were obtained
within the framework of the fluctuating metric approach in [57]. It was also shown that
due to the quantum fluctuations a bouncing universe model can be constructed. Moreover,
in a dark energy dominated phase, a decelerated expansionary cosmological evolution
is also possible. Gravitational models with fluctuating metric were studied in [58–60]. In
particular, after expressing generally the expectation value of the quantum correction in

5
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the form of a general second order tensor, in [61] the effective gravitational field equations
at the classical level have been derived in a general formulation. Cosmological models
with the quantum correction tensor given by the coupling of a scalar function and of a
scalar field to the metric tensor, as well as by a quantum term proportional to the ordinary
matter energy-momentum tensor, were analyzed. These models can describe the present
day accelerated expansion of the universe.

One of the important implications of the gravitational theories with fluctuating quan-
tum type metric is that they typically lead to modified gravity models in the presence of
a geometry-matter coupling. Such theoretical models have been proposed already in the
framework of standard classical general relativity as viable explanations of the recent cos-
mological observations that have determined a fundamental change in our comprehension
of the universe. Very precise and detailed astronomical and astrophysical observations indi-
cate that recently the universe experienced a transition from deceleration to an accelerating,
de Sitter type regime [62–67]. These cosmological observations are usually interpreted
through the postulation of the existence of a dominant constituent of the universe, called
dark energy, and whose presence can give a reason for all recent cosmological observa-
tions [68,69]. However, a second major constituent, called dark matter, is also required to
fully explain the observations [70,71].

On the other hand, one cannot reject a priori the possibility that the two major con-
stituents of the universe, dark energy (usually modelled as a cosmological constant [72,73]),
and dark matter, could be explained as a common and basic property of a generalized
gravity theory that goes ahead of standard general relativity, and its Hilbert-Einstein
variational formulation. Many extended gravity theories, modifying and generalizing
Einstein’s general relativity have been suggested recently. One of the first extensions
of general relativity is represented by the f (R) gravity theory, with gravitational action
of the form S =

(
1/2κ2) ∫ f (R)

√−gd4x +
∫

Lm
√−gd4x [74–79], where Lm denotes the

matter Lagrangian density. f (R) gravity generalizes only the geometric part of the gravita-
tional action, and thus it ignores the profound role the matter Lagrangian could have [80].
Moreover, f (R) theory is still based on a minimal coupling between geometry and matter.

Extended gravity theories with arbitrary matter-geometry couplings were introduced
initially in [81–84] in the form of the f (R, Lm)-modified gravity theory, with the gravita-
tional action given by S = 1

2κ2

∫
f (R, Lm)

√−gd4x. In this approach, geometry becomes
equivalent with matter, and thus matter plays a more important role in describing the
properties of space-time as the one ascribed to it in standard general relativity.

The f (R, T) gravity theory introduces an other type of matter-geometry coupling,
with the gravitational action given by S =

∫ [
f (R, T)/2κ2 + Lm

]√−gd4x [85,86]. Hence,
in f (R, T) theory matter and geometry are coupled through the trace T of the energy-
momentum tensor. Many other gravitational theories with geometry-matter couplings have
been proposed and studied widely up to now. Among them are the f

(
R, T, RμνTμν

)
gravity

theory [87,88], the f (R,R) hybrid metric-Palatini gravity theory, withR representing the
Ricci scalar, formed with the help of a connection not depending on the metric, such as
in the case of the Levi-Civita connection [89–91], the Weyl-Cartan-Weitzenböck (WCW)
theory [92], and the f (Q, T) modified gravity theory [93,94], where Q is the non-metricity.

Modified gravity theories in which the torsion scalar T̃ couples nonminimally to the
trace T of the matter energy-momentum tensor are called f (T̃, T ) gravity theories. These
types of theories have also been extensively investigated [95]. In [96] theories with higher
derivative matter fields were considered in detail. Extensive reviews of the f (R, Lm),
f (R, T), and hybrid-metric-Palatini type gravity theories can be found in [97,98].

All gravitational theories with matter-geometry coupling have the curious partic-
ularity implying that the four-divergence of the matter energy-momentum tensor does
not vanish generally, so that ∇μTμν �= 0. This non-conservation of Tμν can be under-
stood from a physical point of view using the formalism of the thermodynamics of open
systems [86,99,100]. Hence, in these gravitational theories, one can presume that the energy
and momentum balance equations describe irreversible particle creation processes. Thus,
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the non-conservation of Tμν indicates an irreversible matter and energy transfer from the
gravitational field to the newly produced particles.

The creation of particles from the cosmological vacuum is one of the significant pre-
dictions of the quantum field theory in curved space-times [101–105]. Quantum field
theoretical approaches to gravity lead naturally to particles creation processes, and they
play an essential role in the understanding of the foundations of the theory. In the ex-
panding Friedmann-Lemaitre-Robertson-Walker geometry, quantum field theory in curved
spacetimes predict that quanta of the minimally coupled scalar field are produced perma-
nently from the cosmological vacuum [105–107].

Hence, the presence at the theoretical level of the particle creation processes in both
quantum theories of gravity in curved space-times and in modified gravity theories with
geometry-matter coupling suggests that a deep relationship may exist between these two,
seemingly distinct physical theories. In fact, such a relationship was already obtained
in [57], where it was found that in the nonperturbative approach for the quantization of the
metric, as introduced in [55,56,58], as a consequence of the fluctuations of the spacetime, a
specific f (R, T) type gravitational model naturally emerges. The Lagrangian density of the
theory is given by:

L =

[
(1− α0)

R
2κ2 +

(
Lm −

α0

2
T
)]√

−g, (3)

where α0 is a constant. This result suggests that a phenomenological description of quantum
mechanical particle production processes may be possible in the f (R, Lm) or f (R, T) type
theories. Such a semiclassical approach could lead to a better understanding of the quantum
processes describing matter creation through an equivalent semi-classical description
essentially involving the coupling between geometry and matter.

It is the main goal of the present study to further investigate the physical, astrophysical
and cosmological implications of the effective modified gravitational theories induced by
the quantum fluctuations of the space-time metric, as developed in [55–58], and further
considered in [61]. Let us start the analysis by assuming that within a semiclassical
approximation the quantized gravitational field can be described by a quantum metric,
which can be decomposed into two terms. They are the classical, and a stochastic fluctuating
component of quantum origin. Hence, the metric is obtained as the sum of these two
components. As a result of this decomposition, the Einstein quantum gravity leads to an
effective gravitational theory, analogous to the modified gravity models with a nonminimal
coupling between geometry and matter, which have been already analyzed in [81,85,87].
Hence, it is proposed that a quantum gravitational theory can be illustrated within a
semiclassical approximation.

To obtain some specific predictions from the effective gravitational theory obtained
from the fluctuating quantum metric, one has to introduce the assumption that the ex-
pectation value of the quantum correction tensor Kμν can be constructed from the metric,
and from the thermodynamic quantities describing the ordinary matter content of the
universe. In the present approach, the functional form of Kμν is fixed using the Newtonian
limit of the theory. By assuming that Kμν can be represented as a linear combination of
the metric, the Ricci tensor and the matter energy-momentum tensor, with the coefficients
depending on the Ricci scalar R and on T, one derives first the Poisson equation in the
presence of quantum fluctuations. Then, the functional form of Kμν is determined by
requiring compatibility with the Solar System observations. Hence, from the Newtonian
limit, one obtains the form of Kμν that satisfies all the Solar System constraints. Then, the
cosmological implications of the obtained forms of Kμν is investigated by considering four
distinct cosmological scenarios.

The present paper is organized as follows. In Section 2, the field equations, induced by
the quantum fluctuations of the metric, are obtained in general form using the variational
principle. The modified Poisson equation for this modified gravity theory is also derived,
and a set of constraints on the model parameters are obtained. The general cosmological
implications of the modified gravity theories in the presence of quantum metric fluctuations
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are discussed in Section 3. Several cosmological models, obtained for different choices
of the fluctuation tensor are investigated in detail in Section 4, using numerical methods.
The results are discussed and concluded in Section 5. The full form of the generalized
Friedmann equations obtained in the presence of a fluctuation tensor satisfying the Solar
System tests are presented in Appendix A. In the present paper, a system of units with the
speed of light c = 1 is used.

2. Quantum Metric Fluctuations Induced Gravitational Field Equations

Quantum mechanics is a very successful fundamental theory of physics, providing
an excellent description of atoms, molecules, elementary particles, and classical fields,
excluding gravitation. The quantum mechanical approach requires that all physical quan-
tities must be described by operators acting in a Hilbert space. If gravity can also be
described quantum mechanically, then it follows that all geometrical quantities character-
izing the gravitational field must be quantized by identifying them with some suitably
chosen operators. Hence, in one would like to construct a proper quantum theory of the
gravitational field, Einstein’s gravitational field equations must take an operator form,
given by [55,56,58]:

R̂μν −
1
2

R̂ĝμν =
8πG

c4 T̂μν. (4)

This formal representation corresponds to the non-perturbative quantum approach.
Useful physical information should be extracted from the quantum Einstein operator
equations by taking their average values over all possible products of the quantum met-
ric operators ĝ(x1) . . . ĝ(xn) [55,56,58]. By introducing the Green functions, Ĝμν, of the
quantized gravitational field, the exact quantum approach to gravity implies to obtain the
solutions of the infinite system of operator equations,〈

Ψ|ĝ(x1)Ĝμν|Ψ
〉

=
〈
Ψ|ĝ(x1)T̂μν|Ψ

〉
,〈

Ψ|ĝ(x1)ĝ(x2)Ĝμν|Ψ
〉

=
〈
Ψ|ĝ(x1)ĝ(x2)T̂μν|Ψ

〉
.

. . . = . . . ,

In the above equations, |Ψ〉 represents the quantum state associated with the grav-
itational field. As this moment it is important to point out that |Ψ〉 may not necessarily
represent the ordinary vacuum state of the standard quantum field theory in curved
spacetimes. Unfortunately, no exact analytical solutions of the operator equations for the
gravitational Green functions are known so far, and it seems that it may not be possible to
obtain their solutions analytically. Therefore, the investigation of the physical implications
of the quantum gravity models needs to use approximate methods [55–58]. A possible
suggestion for the study of quantum gravity was presented in [55]. This approximations
is based on the decomposition of the quantum metric operator, ĝμν, into the sum of two
components. The first one is the average of the classical metric gμν, while the second one
corresponds to the fluctuating component, δĝμν. Hence, in this approach, the quantum
metric reads:

ĝμν = gμν + δĝμν. (5)

Moreover, at this moment another approximation is introduced. Let us suppose that
the average value of the fluctuating part of the metric, which is typically of a quantum
nature, can be represented with the help of a classical tensor quantity Kμν, so that:〈

δĝμν

〉
= Kμν �= 0. (6)

Hence, in the present approach, the classical and quantum degrees of freedom are
coupled using an expectation value. When such a coupling occurs there will be no effects
of quantum fluctuations on the classical system [108]. Generally, in its Copenhagen inter-
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pretation, for a microscopic physical system quantum mechanics gives the amplitudes for
many different states at a given time t. In the presence of quantum fluctuations, due to
the interactions at later times, one cannot obtain a unique set of values of the physical or
geometric quantities, but only a probability distribution for the different states. On the
other hand, in the present semiclassical approach to quantum gravity, there is a unique
solution for the metric, once the initial data for the metric and wave function are known.
Hence, in this sense, quantum fluctuations do not influence the evolution of the metric.
Moreover, if the metric and the initial state are homogeneous and isotropic, it follows
that these symmetries are preserved by the dynamics of the gravitating system. Hence,
one arrives at the important physical result that quantum fluctuations do not generate
spatial variations in the energy-momentum tensor, or in the gravitational field itself [108].
Therefore, the character of the cosmological evolution is not influenced by the presence of
the quantum fluctuations.

Then, by ignoring higher order fluctuations, the Lagrangian of the gravitational
theories that also considers the consequences of the quantum fluctuations can be obtained
as [55]:

L =
√
−ĝLg

(
ĝμν

)
+
√
−ĝLm

(
ĝμν

)
≈
√
−g(Lg + Lm) +

[
δ(
√−gLg)

δgμν +
δ(
√−gLm)

δgμν

]
δĝμν (7)

=
√
−g

[
1

2κ2

(
R + Gμνδĝμν

)
+ Lm −

1
2

Tμνδĝμν

]
,

where κ2 = 8πG/c4, Lg
(

ĝμν

)
denotes the (quantized) Lagrangian of the gravitational

field, Lm
(

ĝμν

)
is the matter Lagrangian, while Tμν is the energy-momentum tensor of the

classical matter, defined as:

Tμν = − 2√−g
δ(
√−gLm)

δgμν . (8)

Therefore, in the present approach to quantum gravity, the analysis starts with the
full system of the gravitational field equations in operator form. As a next step, the
metric is decomposed into two terms, the first being the classical part, while the second
term a stochastic fluctuating part. Thus, one obtains an effective semiclassical theory
of gravity, completely described in terms of classical concepts and quantities. However,
in this approach one cannot obtain the functional form of Kμν, the important quantum
perturbation tensor, from the first principles. Therefore, the form of Kμν must be chosen
from physical considerations.

The first-order corrected quantum Lagrangian (7) leads to the following general
gravitational field equations:

Gμν = κ2
(

Tμν + γ
αβ
μνTαβ −

1
2

gμνTαβKαβ

+2
δ2Lm

δgαβδgμν
Kαβ − 1

2
LmKgμν +

1
2

KTμν

+LmKμν

)
− 1

2

(
2γ

αβ
μνGαβ − gμνGαβKαβ

+gμν∇α∇βKαβ − KRμν + RKμν

)
+

1
2

[
∇α∇(νKα

μ) +�Kgμν −�Kμν −∇ν∇μK
]

,

(9)
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where K = gμνKμνand AαβδKαβ = δgμν(γ
αβ
μν Aαβ). Moreover, Aαβ is either Rαβ or Tαβ. On

the other hand, γ
αβ
μν may represent an operator, an algebraic tensor, or their combination.

One can also obtain the conservation of the energy-momentum tensor:

(K− 2)∇μTμν = 2∇μ
(

2Kα(νT α
μ) − KμνLm

)
+∇ν

(
KLm − TαβKαβ

)
− Tμν∇μK (10)

+
1

2κ2

{
2Gαμ

(
∇νKαμ − 2∇μKαν

)
+∇μ

[
γ

αβ
μν

(
κ2Tαβ − Gαβ

)]}
.

One can see immediately that in the case of a vanishing Kμν, the matter energy-
momentum tensor becomes a conserved quantity.

The Modified Poisson Equation

The tensor Kμν is a second order symmetric tensor, and it is responsible for the
quantum corrections of the quantum metric tensor. In general, it can be proportional to any
classical second rank tensor existing in general relativity. However, one may assume that
it is a function of the geometric and thermodynamic quantities describing a gravitational
system. Moreover, in the following it is assumed that Kμν has a linear dependence on these
quantities, and hence, a general form of the tensor Kμν is:

Kμν = A1 gμν + A2 Rμν + A3 Tμν, (11)

where Ai = Ai(R, T), i = 1, 2, 3, are general functions of the classical Ricci scalar R, and
of the trace T of the energy-momentum tensor. We would like to emphasize that here
the Latin letters do not denote the spatial coordinates. The background solution for the
Minkowski space time of Equation (9) is Kμν = αημν, where α is a constant.

To obtain the Newtonian limit of this model, one perturbs the field equations around
the Minkowski space time up to first order in perturbed quantities. Then, the perturbed
metric is represented in the Newtonian gauge:

ds2 = −c2
(

1 +
2φ

c2

)
dt2 +

(
1− 2ψ

c2

)
δijdxidxj, (12)

where φ and ψ are general functions of spatial coordinates and the indices, denoted by
Latin letters, stay for spatial coordinates. In the first order of perturbations the Lagrangian
of the matter field and its energy-momentum tensor takes the form:

Lm = −c2ρ, Tμ
ν = diag

(
−c2ρ, 0, 0, 0

)
, (13)

where ρ is the matter energy-density.
One should note that since the Newtonian limit of the model is considered, the matter

is assumed to be non-relativistic with the thermodynamic pressure p = 0. In the first order
of approximation of Equation (11), the coefficients Ai, appearing in Kμν, contribute up to
the linear order in R and T which gives:

Ai(R, T) = αi + βiR + γiT, i = 1, 2, 3, (14)

where αi, βi and γi are constants. The α1 term reproduce the Einstein-Hilbert action. The
term containing β1 is redundant because the same terms are generated by α2 and γ1,
respectively. Hence, in the following, Equation (14) is considered with α1 = 0 = β1.
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With these assumptions, the first-order off-diagonal components of Equation (9) yield:

(
α2�∇2 + 1

)
(φ− ψ) +

c4

2
(α3 + 2γ1)ρ = 0. (15)

Using the above equation, the (ii) components of Equation (9) will be satisfied in first
order, while the (00) component becomes:

α2�∇2
(
�∇2φ

)
+

c4

4

(
2γ1 + 2α3 − κ2α2

)
�∇2ρ

+ �∇2φ = c4κ2ρ. (16)

The above equation differs from the Poisson equation for the gravitational potential
φ due to the presence of the first and second terms in the left-hand side. The generalized
Poisson equation provides a very powerful theoretical tool for investigating the consistency
of modified gravity models. For example, in [109] the modified Poisson equations for
f (R)-gravity were obtained in the form of the system:

∇2φ +∇2ψ− 2 f ′′(0)∇4φ + 2 f ′′(0)∇4ψ = 2X ρ, (17)

∇2φ−∇2ψ + 3 f ′′(0)∇4φ− 3 f ′′(0)∇4ψ = −X ρ, (18)

where X = 8πG/c4, and φ and ψ are the two metric potentials, as introduced in Equation (12).
By a prime we have denoted the derivative with respect to the argument of the function.

After eliminating the higher-order terms, one can recover the standard Poisson equa-
tion of general relativity. As an application of the modified Poisson equation, used together
with the collisionless Boltzmann equation, the Jeans stability criterion in f (R) gravity
was investigated in [109], by considering a small perturbation from the equilibrium and
linearizing the field equations. From the performed analysis, unstable modes, not present
in the standard Jeans analysis, were obtained.

To be compatible with the Solar System observations, the coefficients of these two
terms should be very small. In the following, we set α2 = 0 . Additionally, one should have
γ1 + α3 	 1, a condition that can be safely satisfied for γ1 = −α3.

As a result, the form of the tensor Kμν up to the linear order is obtained:

Kμν = (β2R + γ2T)Rμν + (γ1 + β3R + γ3T)Tμν − γ1Tgμν. (19)

In Section 3, several classes of cosmological solutions of the quantum metric fluctua-
tions, induced modified gravity theory with the above form for the tensor Kμν, are considered.

3. Cosmological Models with Quantum Metric Fluctuations

In this Section, the cosmological implications of the extended gravity models, obtained
from the effective approach to quantized gravity introduced in the previous sections, are
investigated. After presenting the basic geometrical and physical assumptions, defining the
basic parameters used for the characterization of the cosmological models, one considers
four specific models of the universe, obtained by adopting some specific functional forms
for the fluctuation tensor Kμν.

3.1. Metric and Field Equations

In the following, for the metric of the universe, we adopt the homogeneous and
isotropic flat Friedmann-Lemaitre-Robertson-Walker line element [110],

ds2 = −dt2 + a(t)2d�x2, (20)

where the scale factor a(t) is a function of the cosmological time only. At this moment
the Hubble function H, defined as H(t) = ȧ/a, is introduced. Moreover, we assume
that the matter content of the universe consists of a perfect fluid, characterized by two
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thermodynamic quantities only, the energy density ρ, and the thermodynamic pressure p.
Then the matter energy-momentum tensor is given by:

Tμν = (ρ + p)uμuν + pgμν. (21)

For the matter equation of state, let us adopt the linear barotropic equation of state
p = ωρ, where ω is a constant. For the choice of Kμν, as given by Equation (19), the
cosmological field Equation (9), representing the generalized Friedmann equations, are:

3H2 = κ2(ρ + ρeff), (22)

and

2Ḣ + 3H2 = −κ2(p + peff), (23)

where ρeff and peff are given in Appendix A.
To specify the accelerating/decelerating type of the cosmological expansion, one uses

the deceleration parameter q defined as:

q =
d
dt

1
H
− 1 = − Ḣ

H2 − 1. (24)

Using Equations (22) and (23):

q =
1
2
+

3
2

p + peff
ρ + ρeff

=
1
2

[
1 +

3(ω + ωeff)

1 + Ωeff

]
, (25)

where ωeff = peff/ρ and Ωeff = ρeff/ρ. A dust universe reaches the marginally accelerating
state with q = 0 once the condition 1 + Ωeff = 3ωeff is satisfied. The general condition for
accelerating expansion can be formulated as ωeff/(1 + Ωeff) < −1/3.

To simplify the mathematical formalism, a set of dimensionless parameters
(Ωm, τ, h) is introduced:

ρ =
3H2

κ2 Ωm, τ = H0t, H = H0h, (26)

where H0 is the current value of the Hubble parameter.
To expedite the testing of the theoretical predictions of the model with the cosmological

observations, one introduces, instead of the cosmological time variable t, as independent
variable the redshift z, defined as:

1 + z =
1
a

, (27)

where one normalizes the scale factor a by imposing the condition that its present-day
value is one, a(0) = 1. Hence, one replaces in all cosmological evolution equations the
derivatives with respect to the cosmological time t with the derivatives with respect to the
redshift z, so that

d
dt

=
dz
dt

d
dz

= −(1 + z)H(z)
d
dz

. (28)

As a function of the cosmological redshift, the deceleration parameter is obtained as:

q(z) = (1 + z)
1

H(z)
dH(z)

dz
− 1. (29)

In what follows, the cosmological evolution of the universe filled with non-relativistic
matter with ω = 0 for four independent choices of the fluctuation tensor Kμν is considered.
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3.2. The Standard ΛCDM Model

In this investigation, we also include a comparison of the behavior of the physical
and geometric cosmological quantities obtained from the present version of the modified
gravity induced by the quantum metric fluctuations with the standard ΛCDM (Cold Dark
Matter) model, where Λ is the cosmological constant.

The recent results of the study of the cosmic microwave background radiation by
the Planck satellite has provided high precision cosmological data [62,111–117]. In the
following, the simplifying assumption that the present day universe consists mostly of
dust matter, with negligible pressure, is adopted. Hence, the energy conservation equation,
ρ̇ + 3Hρ = 0, of standard general relativity gives for the variation of the matter energy
density the expression, ρ = ρ0/a3 = ρ0(1 + z)3, where ρ0 = ρ(0) is the present-day matter
density. As a function of the scale factor the time variation of the Hubble function is
obtained in the form [115]:

H = H0

√
(Ωb + ΩDM)a−3 + ΩΛ, (30)

where Ωb, ΩDM, and ΩΛ denote the density parameters of the baryonic matter, the cold
(pressureless) dark matter, and the dark energy (described by a cosmological constant), re-
spectively. The three density parameters satisfy the important relation Ωb + ΩDM + ΩΛ = 1,
indicating that the geometry of the universe is flat.

As a function of the redshift the dimensionless form of the Hubble function H(z) = H0h(z)
is obtained as:

h(z) =
√
(ΩDM + Ωb)(1 + z)3 + ΩΛ. (31)

For the deceleration parameter, as a function of the redshift, then one finds

q(z) =
3(1 + z)3(ΩDM + Ωb)

2[ΩΛ + (1 + z)3(ΩDM + Ωb)]
− 1. (32)

In this study, for the density parameters, the numerical values ΩDM = 0.2589,
Ωb = 0.0486, and ΩΛ = 0.6911 [115] are are adopted, as obtained from the Planck data. For
the total matter density parameter, Ωm = ΩDM + Ωb, the value Ωm = 0.3089 is taken. The
present day value of the deceleration parameter is given by q(0) = −0.5381, corresponding
to an accelerating expansion of the universe [115,116]. The dependence of the dimension-
less matter density on the redshift is given, in the standard ΛCDM cosmological model, by
r(z) = Ωm(1 + z)3 = 0.3089(1 + z)3 [115,116].

4. Specific Cosmological Models

Here, a few particular cosmological models are investigated, in which for the fluctua-
tion tensor some particular forms are adopted, which follow from the general represen-
tation (19). These specific forms of Kμν are obtained by fixing the values of the arbitrary
coefficients γi, and βi, i = 2, 3.

4.1. Kμν = (β2 R + γ2 T)Rμν

As a first example of a cosmological model in the modified gravity theory induced by
the metric fluctuations, one considers that the tensor Kμν is proportional to the Ricci tensor:

Kμν = (β2 R + γ2 T)Rμν. (33)
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This form of Kμν is obtained by taking γ1 = γ3 = β3 = 0 in Equation (19). To obtain a
dimensionless form of the cosmological evolution equations, the dimensionless parameters
b2 and g2 are introduced:

b2 = β2H4
0 , g2 =

H4
0 γ2

κ2 . (34)

In terms of redshift z, the field equations (A1) and (A2) in this case take the form:

1−Ωm = 9g2h4Ω2
m − 9b2h4(3Ωm + 4)

+ (z + 1)h3(3b2
(
30h′Ωm − 64h′ + 9hΩ′m

)
+ 3g2

(
−6h′Ω2

m + Ωm
(
16h′ − 3hΩ′m

)
+ 6hΩ′m

))
+ (z + 1)2

(
− 3b2h2(2hh′′(3Ωm − 16) + 3h′2(5Ωm − 18) (35)

+ 6hh′Ω′m
)
− 3g2h2

(
2hh′Ω′m + Ωm

(
2hh′′ + 5h′2

)))
− 12b2h(z + 1)3h′

(
3hh′′ + 2

(
h′
)2
)

,

1−2(z + 1)h′

3h
= 9(Ωm − 4)(b2 − g2Ωm)

+ (z + 1)
(
b2h3(60h′Ωm − 56h′ + 21hΩ′m

)
+ g2h3(3h(2− 3Ωm)Ω′m − h′Ωm(9Ωm + 16)

))
+ (z + 1)2

(
g2h2(3h

(
hΩ′2 − 2hΩ′′m − 16h′Ω′m

)
+ 6Ω2

m

(
hh′′ + 4h′2

)
+ Ωm

(
3h
(
hΩ′′m − 6h′′ + 9h′Ω′m

)
− 67h′2

))
− b2h2(3h

(
4h′′(3Ωm − 8) + 3hΩ′′m

)
(36)

+ h′2(135Ωm − 374) + 81hh′Ω′m
))

+ (z + 1)3

×
(

2b2h
(
27h′3(Ωm − 4) + 21hh′2Ω′m + h2(h′′′(3Ωm − 16)

+6h′′Ω′m
)
+ hh′

(
2h′′(15Ωm − 67) + 3hΩ′′m

))
+ 2g2h

(
h
(
hh′Ω′′m

+
(

2hh′′ + 7h′2
)

Ω′m
)
+ Ωm

(
9h′3 + h2h′′′ + 10hh′h′′

)))
+ 12b2(z + 1)4

(
h2h′′2 + 2h′4 + 6hh′2h′′ + h2h′h′′′

)
,

where a prime denotes the derivative with respect to the independent redshift variable z.
The non-conservation equation of the energy-momentum tensor (see Equation (10))

can be written as:

(z + 1)
(
4h′Ωm + 2hΩ′m

)
− 6hΩm = −216b2h5Ωm

+ 108g2h5(Ωm − 2)Ωm + (z + 1)
(
36b2h4(9h′Ωm + hΩ′m)

+ 18g2h4(h′(16− 7Ωm)Ωm − h(Ωm − 2)Ω′m
))

+ (z + 1)2(18g2h3h′(2h′(Ωm − 3)Ωm + h(Ωm − 2)Ω′m) (37)

− 18b2h3h′
(
10h′Ωm + 3hΩ′m

))
+ (z + 1)3(18b2h2(h′

)2

×
(
2h′Ωm + hΩ′m

)
+ 6g2h2(h′

)2(2h′Ωm + hΩ′m
))

.
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Figures 1–3 show the cosmological parameters h(z), Ωm(z) and q(z), obtained by
numerically solving the generalized Friedmann equations, for different values of b2 and
g2. One can see that there are ascending and descending curves for the density parameter,
depending on the values of the pair of the parameters (b2, g2). Additionally, an accelerated
phase is present at late times, while, for earlier times, a decelerating phase is found.

Figure 1. Variation of the dimensionless Hubble function, h, as a function of the redshift z for the
tensor Kμν = (β2 R + γ2 T)Rμν with different values of the parameters b2 and g2: b2 = 0.044 and
g2 = −0.01 (solid curve), b2 = −0.0076 and g2 = 0.001 (dotted curve), b2 = −0.013 and g2 = −0.0007
(dashed curve), and b2 = 0.013 and g2 = 0.03 (dot-dashed curve). The evolution of the Hubble
function in the standard ΛCDM model is represented by the red solid curve.

As shown in Figure 1, the Hubble function is an increasing function of the redshift z
(and a decreasing function of time), indicating an expansionary evolution of the universe.
The evolution of h depends strongly on the model parameters b2 and g2. For low redshifts
z ≤ 0.3, the evolution is basically independent of b2 and g2. The model can reproduce well
the evolution of h in the standard ΛCDM model. The matter density, displayed in Figure 2,
shows significant differences with respect to standard cosmology. For the chosen set of
parameters, two different behaviors can be observed.

The matter energy density is either increasing or decreasing function of z (decreasing
or increasing function of time). The latter case, implying a matter density that increases
in time, may be considered unphysical. A scenario with an almost constant density is
also possible. For the adopted set of parameters, the evolution of the matter density is
significantly different from the evolution of the matter density in the ΛCDM model.

Figure 2. Variation of the dimensionless matter density, Ωm, as a function of z for Kμν = (β2 R +

γ2 T)Rμν with different values of the parameters b2 and g2: b2 = 0.044 and g2 = −0.01 (solid curve),
b2 = −0.0076 and g2 = 0.001 (dotted curve), b2 = −0.013 and g2 = −0.0007 (dashed curve), and
b2 = 0.013 and g2 = 0.03 (dot-dashed curve). The evolution of the matter density in the standard
ΛCDM model is shown by the red solid curve.

15



Physics 2021, 3

Figure 3. Variation of the deceleration parameter, q, as a function of z for Kμν = (β2 R+γ2 T)Rμν with
different values of the parameters b2 and g2: b2 = 0.044 and g2 = −0.01 (solid curve), b2 = −0.0076
and g2 = 0.001 (dotted curve), b2 = −0.013 and g2 = −0.0007 (dashed curve), and b2 = 0.013 and
g2 = 0.03 (dot-dashed curve) The evolution of the deceleration parameter in the standard ΛCDM
model is depicted by the red solid curve.

The deceleration parameter, q, shown in Figure 3, indicates the existence of a transition
from the decelerating to an accelerating expansion. The evolution of q is strongly dependent
on the model parameters, and a wide variety of cosmological behaviors can be constructed.
The evolution of q in standard cosmology can also be reproduced.

4.2. Kμν = (β3 R + γ3 T)Tμν

In this Subsection, the expression of the fluctuation tensor Kμν, containing only the
energy-momentum tensor, is considered. Hence, the γ1 term is ignored, since it corresponds
to a term proportional to the metric tensor. Therefore, the tensor Kμν is given in this case by:

Kμν = (β3 R + γ3 T)Tμν. (38)

The dimensionless parameters b3 and g3 are defined as:

b3 =
H4

0
κ2 β3, g3 =

H4
0

κ4 γ3. (39)

Then, the field Equations (A1) and (A2) read for this case:

1−Ωm =
9
2

h4Ωm(2b3(Ωm + 3)− g3Ωm(Ωm + 1))

− 9b3h3(z + 1)(2Ωm − 1)
(
2h′Ωm + hΩ′m

)
, (40)

1− 2(z + 1)h′

3h
=

9
2

h4Ωm
(
14b3 − 6Ωmb3 + 3g3Ω2

m

− 5g3Ωm
)
+ (z + 1)h3

(
6g3Ωm

(
3h′Ωm + hΩ′m

)
− b3

(
3h(2Ωm + 3)Ω′m + 84h′Ωm

))
+ 3b3h2(z + 1)2 (41)

×
(

h
(

2hΩ′2m − 7h′Ω′m − hΩ′′m
)
+ 4Ω2

m

(
hh′′ + 4h′2

)
+ 2Ωm

(
h2Ω′′m − hh′′ + 9hh′Ω′m − 3h′2

))
.
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The non-zero component of Equation (10) is:

(z + 1)
(
4h′Ωm + 2hΩ′m

)
− 6hΩm = 108h5(1−Ωm)Ωm

× (g3Ωm − 2b3) + (z + 1)
(
36b3h4(h(1− 2Ωm)Ω′m

− 7h′(Ωm − 1)Ωm) + 9g3h4Ωm(6h′(Ωm − 1)Ωm (42)

+ h(3Ωm − 2)Ω′m)
)
− 18b3h3(z + 1)2h′

×
(
h(1− 2Ωm)Ω′m − 4h′(Ωm − 1)Ωm

)
In Figures 4–6 the behaviors of the Hubble function, the matter density and the

deceleration parameters are shown for different values of the parameters b3 and g3.

Figure 4. Variation of the dimensionless Hubble function h as a function of z for Kμν =

(β3 R + γ3 T)Tμν with different values of the parameters b3 and g3: b3 = 0.073 and g3 = 0.1 (solid
curve), b3 = 0.08 and g3 = 0.097 (dotted curve), b3 = 0.15 and g3 = 0.30 (dashed curve), and
b3 = 0.21 and g3 = 0.12 (dot-dashed curve). The evolution of the Hubble function in the standard
ΛCDM model is described by the red solid curve.

The Hubble function, h(z), represented in Figures 4, is an increasing function of z, and
it can reproduce the evolution of the Hubble function in the standard ΛCDM model.

Figure 5. Variation of the dimensionless matter density, Ωm, as a function of z for Kμν =

(β3 R + γ3 T)Tμν with different values of the parameters b3 and g3: b3 = 0.073 and g3 = 0.1 (solid
curve), b3 = 0.08 and g3 = 0.097 (dotted curve), b3 = 0.15 and g3 = 0.30 (dashed curve), and
b3 = 0.21 and g3 = 0.12 (dot-dashed curve). The evolution of the matter density in the standard
ΛCDM model corresponds to the red solid curve.

However, significant differences do appear in the behavior of the matter density, as
shown in Figure 5. As opposed to the matter behavior in standard cosmology, in this model,
the matter energy density is an increasing function of time. Moreover, its the evolution is
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significantly different compared to the matter density evolution in the standard ΛCDM
model for all adopted values of the model parameters.

Figure 6. Variation of the deceleration parameter, q, as a function of z for Kμν = (β3 R + γ3 T)Tμν

with different values of the parameters b3 and g3: b3 = 0.073 and g3 = 0.1 (solid curve), b3 = 0.08
and g3 = 0.097 (dotted curve), b3 = 0.15 and g3 = 0.30 (dashed curve), and b3 = 0.21 and g3 = 0.12
(dot-dashed curve). The evolution of the deceleration parameter in the standard ΛCDM model is
described by the red solid curve.

However, the deceleration parameter q, shown in Figure 6, indicates a transition from
a decelerating to an accelerating phase, which can reproduce the present day value of q.

4.3. Kμν =
(

β2Rμν + β3Tμν

)
R

Now, let us consider the case where γi = 0, i = 1, 2, 3. Hence, the expression of Kμν,

Kμν = R
(

β2Rμν + β3Tμν

)
, (43)

is obtained.
In this case, the field equations are:

1−Ωm = 9h4(b3Ωm(Ωm + 3)− b2(3Ωm + 4))

+ 3h3(z + 1)
(
b2
(
30h′Ωm − 64h′ + 9hΩ′m

)
− 3b3(2Ωm − 1)

(
2h′Ωm + hΩ′m

))
− 3b2h2(z + 1)2

×
(

2hh′′(3Ωm − 16) + 3h′2(5Ωm − 18) + 6hh′Ω′m
)

− 12 b2 h h′(z + 1)3
(

3hh′′ + 2h′2
)

, (44)
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and

1− 2(z + 1)h′

3h
= 9h4(b2(Ωm − 4) + b3(7− 3Ωm)Ωm)

+ h3(z + 1)(4h′(15b2Ωm − 14 b2 − 21b3Ωm)

+ 3h(7b2 − 2b3Ωm − 3b3)Ω′m)− h2(z + 1)2

×
(
b2(12hh′′(3Ωm − 8) + 9h2Ω′′m + h′2(135Ωm − 374)

+ 81hh′Ω′m) + 3b3(7h h′Ω′m + h2
(

Ω′′m − 2Ω′2m
)

− 4Ω2
m(hh′′ + 4h′2) + 2Ωm(hh′′ − h2Ω′′m − 9hh′Ω′m

+ 3h′2))
)
+ 2 b2 h(z + 1)3(27h′3(Ωm − 4) + 21hh′2Ω′m

+ h2(h′′′(3Ωm − 16) + 6h′′Ω′m) + hh′(2h′′(15Ωm − 67)

+ 3hΩ′′m)
)
+ 12 b2 (z + 1)4(h2h′′2 + 2h′4 + 6hh′2h′′

+ h2h′h′′′
)
, (45)

and the temporal component of Equation (10) in terms of redshift is:

(z + 1)
(
4h′Ωm + 2hΩ′m

)
− 6hΩm = 216h5Ωm

× (b3(Ωm − 1)− b2) + 36h4(z + 1)
(
h′Ωm(9b2

− 7b3(Ωm − 1)) + h
(
b3(1− 2Ωm) + b2

)
Ω′m

)
+ 18h3(z + 1)2h′

(
2h′Ωm(2b3(Ωm − 1)− 5b2)

− h(b3(1− 2Ωm) + 3b2)Ω′m
)
+ 18 b2 h2 h′2(z + 1)3

×
(
2h′Ωm + hΩ′m

)
. (46)

The evolution in terms of redshift z of the cosmological parameters h, Ωm and q are
shown in Figures 7–9 for different values of the parameters b2 and b3. In this case, as well
as in all other cases the parameters were chosen in such a way to obtain the closest possible
approximation of the ΛCDM model.

The Hubble function, h, presented in Figure 7, is an increasing function of z and
reproduces well the standard ΛCDM model. For low redshifts, the behavior of h is basically
independent on the model parameters.

Figure 7. Variation of the Hubble function h as a function of z for Kμν = R
(

β2Rμν + β3Tμν
)

with
different values of the parameters b2 and b3: b2 = −.007 and b3 = 0.011 (solid curve), b2 = −0.08 and
b3 = 0.098 (dotted curve), b2 = −0.02 and b3 = 0.009 (dashed curve), and b2 = −0.01 and b3 = 0.006
(dot-dashed curve). The evolution of the Hubble function in the standard ΛCDM model is described
by the red solid curve.
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The ordinary matter density, Ωm, shown in Figure 8, is found to be a monotonically
decreasing function of time, whose evolution at high redshifts is strongly dependent on
the model parameters. For a particular set of values of b2 and b3, the variation of Ωm in the
standard cosmological model is reproduced almost exactly.

Figure 8. Variation of the matter density Ωm as a function of z for Kμν = R
(

β2Rμν + β3Tμν
)

with
different values of the parameters b2 and b3: b2 = −.007 and b3 = 0.011 (solid curve), b2 = −0.08 and
b3 = 0.098 (dotted curve), b2 = −0.02 and b3 = 0.009 (dashed curve), and b2 = −0.01 and b3 = 0.006
(dot-dashed curve). The evolution of the matter density in the standard ΛCDM model is described
by the red solid curve.

The deceleration parameter, q, represented in Figures 9, shows a transition from a
decelerating to an accelerating cosmological phase. The evolution of the deceleration
parameter depends strongly on the adopted numerical values of the model parameters, b2
and b3. For a range of these parameters, the present model can reproduce quite well the
behavior of q at low redshifts.

Figure 9. Variation of the deceleration parameter, q, as a function of z for Kμν = R
(

β2Rμν + β3Tμν
)

with different values of the parameters b2 and b3: b2 = −.007 and b3 = 0.011 (solid curve), b2 = −0.08
and b3 = 0.098 (dotted curve), b2 = −0.02 and b3 = 0.009 (dashed curve), and b2 = −0.01 and
b3 = 0.006 (dot-dashed curve). The evolution of the deceleration parameter in the standard ΛCDM
model is represented by the red solid curve.

4.4. Kμν = −γ1
(
Tgμν − Tμν

)
Finally, let us consider the case when only the coefficient γ1 is kept in Equation (19),

with all the other coefficients set to zero. Hence,

Kμν = −γ1
(
Tgμν − Tμν

)
(47)

is obtained.
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Let us also introduce the dimensionless parameter g1 defined as:

g1 =
H2

0
κ2 γ1. (48)

With the use of Equations (A1) and (A2), one can obtain the Friedmann and Raychaud-
huri equations in terms of redshift for this case:

1−Ωm =
3
2

g1h
(
Ωm

(
3h− 4(z + 1)h′

)
− 2h(z + 1)Ω′m

)
, (49)

1− 2(z + 1)h′

3h
= g1

(
3
2

h2Ωm(2Ωm − 3)

+ (z + 1)2
(

5hh′Ω′m + h2Ω′′m + 2
(

hh′′ + 2h′2
)

Ωm

)
− 2(z + 1)

(
hh′Ωm + h2Ω′m

))
. (50)

The divergence of the energy-momentum tensor (10) takes the form:

(z + 1)
(
4h′Ωm + 2hΩ′m

)
− 6hΩm = 18g1h3(3−Ωm)Ωm

+ 6g1(z + 1)2
(

2hh′2Ωm + h2h′Ω′m
)

+ g1(z + 1)
(
−9h3Ω′m − 48h2h′Ωm

)
. (51)

The evolutions in terms of redshift z of the Hubble parameter, h, the density parameter,
Ωm, and the deceleration parameter, q, are shown in Figures 10–12. The curves are obtained
for different values of the parameter g1 = −10,−1, 5, 15.

Figure 10. Variation of the Hubble function, h, as a function of z for Kμν = −γ1
(
Tgμν − Tμν

)
with

different values of the parameter g1: g1 = −10 (solid curve), g1 = −1 (dotted curve), g1 = 5 (dashed
curve), and g1 = 15 (dot-dashed curve). The evolution of the Hubble function in the standard ΛCDM
model is represented by the red solid curve.

For this choice of Kμν, no accelerating expansion at late times is found. The evolution
of the universe is still expansionary, as shown by the evolution of the Hubble function in
Figure 10. The matter density, shown in Figure 11, is a decreasing function of the redshift,
in contrast with the ΛCDM model, indicating an increase of the matter density in time. This
effect is due to the non-conservation of the energy-momentum tensor of Equation (51). As
one can see from Figure 12, the deceleration parameter is positive, and is roughly constant
in the considered range of z. The variation of the numerical values of the parameter γ1 has
a little effect on the behavior of the cosmological parameters Ωm, q and h.
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Figure 11. Variation of the matter density, Ωm, as a function of z for Kμν = −γ1
(
Tgμν − Tμν

)
with

different values of the parameter g1: g1 = −10 (solid curve), g1 = −1 (dotted curve), g1 = 5 (dashed
curve), and g1 = 15 (dot-dashed curve). The evolution of the matter density in the standard ΛCDM
model is represented by the red solid curve.

Figure 12. Variation of the deceleration parameter, q, as a function of z for Kμν = −γ1
(
Tgμν − Tμν

)
with different values of the parameter g1: g1 = −10 (solid curve), g1 = −1 (dotted curve), g1 = 5
(dashed curve), and g1 = 15 (dot-dashed curve). The evolution of the deceleration parameter in the
standard ΛCDM model is represented by the red solid curve.

5. Discussions and Final Remarks

The search for quantum gravity is one of the major topics of interest in nowadays
theoretical physics. However, despite the intensive effort invested in this direction, the
quantum properties of gravity are still elusive, and we presently lack a theory fully unifying
the two basic branches of physics. Hence, in order to have at least a basic understanding of
the quantum properties of gravity, we need to resort to some mathematical approximations,
or to some qualitative approaches. One of such semiclassical directions of research was
proposed in [55,57], and it is based on the idea of the decomposition of the quantum metric
into two components, one being the classical metric tensor, while the second one is a fluctu-
ating tensor, of quantum origin. By adopting another semiclassical approximation, one can
substitute the quantum fluctuating part by the average value of the tensor Kμν, representing
an effective classical term to be added to the standard metric of general relativity.

A first interesting consequence of this approach is that it leads, in the first order of
approximation and on a classical level, to several classes of modified gravity theories, with
geometry-matter coupling. For example, by assuming thatKμν ∝ gμν, a particular class
of the modified f (R, T) gravity theory [98] as a function of the Ricchi scalar, R, and the
trace of the energy-momentum tensor T, with geometry-matter coupling is obtained. These
extensions of standard general relativity have been intensively studied in their different
versions [98], but the possible relation with effective semiclassical theories of gravity has
not been pointed out. Modified gravity theories with quantum metric fluctuations, even
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formulated in a semiclassical and effective form may give some insights into the quantum
nature of gravity, and its manifestations at the level of the classical world. An important
property of all modified theories with geometry-matter coupling is the non-conservation
of the matter energy-momentum tensor. This is also a basic property of quantum field
theories in curved space-times. Hence, the particle creation processes present in modified
gravity theories with geometry-matter coupling may point towards a possible relation
between these classes of theories and quantum effects in gravity.

However, in the general formulation of the modified gravity theories in the presence
of quantum metric fluctuations, the mathematical form of the fluctuation tensor Kμν is
arbitrary. In the present paper, the functional form of Kμν is fixed by considering the
Newtonian limit of the theory. This leads to the derivation of the generalized Poisson
equation, which contains several correction terms, with respect to its standard form. By
requiring that the model passes the standard tests of gravity at the level of the Solar System,
we can fix the form of the fluctuation tensor as given by Equation (19). Generally, Kμν can
be obtained as a linear combination of the Ricci tensor, the energy-momentum tensor, and
the metric tensor, with the coefficients functions of the Ricci scalar R and of the trace of the
energy-momentum tensor T.

As a next step, in this investigation, the quantum corrected classical Lagrangian is
obtained along with the general effective Einstein equations, corresponding to an arbitrary
Kμν [61]. Then, using the general form of Kμν, a few classes of cosmological models can be
constructed that are consistent with the Solar System tests. More exactly, four classes of
models are studied. In the first two models, Kμν is proportional to the Ricci tensor, and the
matter energy-momentum tensor, respectively, with the proportionality coefficients given
by linear combinations of R and T. In the third model, we have assumed that Kμν can be
obtained as a linear combination of the Ricci tensor and the energy-momentum tensor. In
the fourth model, Kμν is determined by the energy-momentum tensor and its trace only,
i.e., by the properties of the matter filling the universe.

A detailed investigation of the cosmological properties of the models, obtained for
these specific functional forms of Kμν, was performed using numerical methods. Exact
solutions of the field equations seem to be impossible to be found, due to the extreme
mathematical complexity of the generalized Friedmann equations. The behavior of the
Hubble function, of the matter density and of the deceleration parameter were investigated,
and for each case, the model predictions are compared with the cosmological results,
obtained in the framework of the standard ΛCDM model. Overall, the cosmological
evolution strongly depends on the choice of the function Kμν, and of the parameters of
the specific models. Generally, the models can reproduce the predictions of the standard
ΛCDM model, and, thus, describe both decelerating and accelerating phases. To test
these models, a detailed comparison with the observational data is necessary. In the
present approach, a phenomenological approach is used, by adopting, for the quantum
perturbation tensor, some specific functional forms that passes the Solar System tests.
However, even this strong criterion cannot uniquely fix the form of Kμν, and, thus, for
different choices of the quantum perturbation tensor drastically different astrophysical and
cosmological behaviors may emerge.

In most of the considered models, in the large time (small redshift) limit, the universe
enters into an accelerating phase. The present day value of the deceleration parameter
q ≈ −0.53 can be obtained for large range of parameter values for the first three considered
forms of Kμν. By varying the model parameters, a wide variety of cosmological evolutions
can be constructed, with some of them reproducing almost exactly the results of the
standard ΛCDM model. However, other models do show significant deviations from it.
If the variations of the Hubble function and of the deceleration parameter are, for the
first three models, qualitatively consistent with observations, some significant differences
do appear in the evolution of the matter density. In the first, the second and the fourth
here considered cosmological models, for some specific values of parameters the matter
energy-density is increasing in time. This unusual behavior is a direct consequence of
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the non-conservation of the energy-momentum tensor, which can also be interpreted as
related to the creation of ordinary matter by the gravitational field. Such processes may
play an important role in the early stages of the evolution of the universe, as possible
alternatives to the reheating phase of the post-inflationary era. We would also like to point
out is that purely decelerating cosmological evolution over a large range of redshifts can
also be obtained.

The ultimate challenge present day theoretical physics faces is the problem of the
quantization of the gravitational field. Unfortunately no exact solutions for this problem
are known. Hence to answer the question of the existence of quantum effects in gravity one
should resort to approximate, semiclassical methods. A promising way in this direction
could be represented by the consideration, in an additive way, of some tensor fluctuating
terms in the metric. The quantum mechanical origin of these terms can be well motivated
physically. Such approaches lead to classical gravity models with geometry-matter cou-
pling, and to the non-conservation of the matter energy-momentum tensor. Consequently,
the particle production processes, specific to these classes of theories, may be an indication
of their deep relation with effective descriptions of quantum gravity. On the other hand,
the investigations of the gravitational models with fluctuating quantum metrics could
lead to a better understanding of the physical basis of the modified gravity theories with
geometry-matter coupling. In the present paper, we considered some of the cosmological
implications of the modified gravity models, induced by the quantum metric fluctuations,
and some basic theoretical and mathematical tools were introduced that might be used for
further investigations of the quantum mechanical effects in gravity and in the geometry of
the spacetime.
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Appendix A. The Generalized Friedmann Equations

The generalized Friedmann and Raychaudhuri equations, obtained by adopting for
the fluctuation tensor the expression given by Equation (19), can be written as:

κ2ρeff =
3
2

γ1H(A3 + ρ̇) + γ2
(
3κ2HA1ρ− 18ρ̇H3

−6ρHḦ − 6HḢA3 + 3ρḢ2)− 1
2

γ3ρ2
(

3H2 + κ2ρ
)

+9β2

{
κ2
[
ρ(Ḣ2 − 2HḦ)− 3H3A1 − 2HḢA3

]
(A1)

−12H4(H2 − 8Ḣ) + 2Ḣ2(17H2 − 2Ḣ)

+4HḦ
(

8H2 + 3Ḣ
)}

+ 3β3H
[
3H2(A3 − 2ρ̇)

+κ2ρ(A1 + ρ̇)
]
,
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and

−κ2 peff = γ1

[
ρ̈− 2ρḢ + 3Hρ̇ + ρ (κ2ρ− 9

2
H2)

]
+

1
2

γ3ρ
[
3ρ
(

κ2ρ− 5H2
)
− 4Ḣρ− 4Hρ̇

]
+ γ2

[
18ρH2 ×(

Ḣ + 2H2
)
− 12Hρ̇

(
H2 + 2Ḣ

)
− 2ρ̈

(
Ḣ + 3H2

)
−6ḦA2 − ρ

(
2

...
H + 3Ḣ2

)
+ κ2

(
ρρ̈ + ρ̇A4

−3ρ2(Ḣ + H2)
)]

+ β2

{
12

...
H
(

8H2 + 3Ḣ
)
+ 12Ḧ ×(

48H3 + 3Ḧ + 50HḢ
)
+ 6Ḣ2

(
243H2 + 28Ḣ

)
− 108H4 × (A2)

(H2 − 6Ḣ) + κ2
[
ρ (3H4 − 2

...
H)− ρḢ

(
5Ḣ + 16H2

)
−2ρ̇H(9Ḣ + 5H2)− ρ̈ (2Ḣ + 3H2)− 4ḦA3

]}
+β3

{
3H2(21H2ρ + 2Hρ̇− ρ̈) + 6HḢ(11Hρ− ρ̇)

+6ρḢ2 − 2κ2
[
ρ2
(

4Ḣ + 9H2
)
− 2ρ̇A2 − 2ρρ̈

]}
,

with

An = ρ̇ + n Hρ, n = 1, 2, 3, 4. (A3)
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Abstract: When gravity is quantum, the point structure of space-time should be replaced by a non-
commutative geometry. This is true even for quantum gravity in the infra-red. Using the octonions as
space-time coordinates, we construct pre-spacetime, pre-quantum Lagrangian dynamics. We show
that the symmetries of this non-commutative space unify the standard model of particle physics with
SU(2)R chiral gravity. The algebra of the octonionic space yields spinor states which can be identified
with three generations of quarks and leptons. The geometry of the space implies quantisation of
electric charge, and leads to a theoretical derivation of the mysterious mass ratios of quarks and the
charged leptons. Quantum gravity is quantisation not only of the gravitational field, but also of the
point structure of space-time.

Keywords: quantum gravity; quantum foundations; trace dynamics; noncommutative geometry;
octonions; unification; standard model; mass ratios

1. When Is Quantum Gravity Necessary?

Consider a massive object in a quantum superposition of its two different classical
position states A and B. The resulting gravitational field is also then in a superposition of
the field corresponding to position A and the field corresponding to position B. A clock
kept at a field point C will not register a definite value of time, nor will a measurement of the
metric yield a well-defined result [1]. Let us now imagine a thought experiment in which
every object in today’s universe is in a superposition of its two different position states.
The space-time metric will then undergo quantum fluctuations. Now, the Einstein hole
argument shows that, in order for space-time points to be operationally distinguishable, the
manifold must be overlaid by a (classical) metric [2]. Therefore, in our thought experiment,
the point structure of space-time is lost, even though the energy scales of interest are much
smaller than Planck scale, and the gravitational fields are weak.

When we describe microscopic systems by the laws of quantum theory, we take it for
granted that the universe is dominated by classical bodies, so that a background space-time
can be achieved and is available for defining time evolution of quantum systems. However,
if everything were to be quantised at once, in the sense of the aforementioned thought
experiment, no classical time will be available, and yet we ought to be able to describe
the dynamics. This is an example of quantum gravity in the infra-red (QG in IR): the
action of the gravitational field is much larger than the reduced Planck’s constant, h̄ (unlike
for Planck scale quantum gravity), and yet the point structure of space-time is lost. The
manifold has to be replaced by something non-classical: quantum gravity is quantisation
not only of the gravitational field, but also of the point structure of space-time.

Since the energy scale is not a relevant criterion for deciding whether gravity is classical
or quantum, we propose that a gravitational field is quantum in nature when one or more of
the following three (energy independent) criteria are satisfied: (i) the time scales of interest
are of the order of Planck time, tP; (ii) the length scales of interest are of the order of Planck
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length, LP; and (iii) every sub-system has an action of the order h̄ (and is hence quantum
and obeys quantum superposition). If (iii) holds but (i) and (ii) do not, we have QG in IR If
(iii) holds along with (i) and (ii), then we have quantum gravity in the UV (ultra-violet).

Put differently, there ought to exist a reformulation of quantum (field) theory, even at
low energies, which does not depend on classical time. Such a reformulation is essential
also for the standard model of particle physics. In fact, we show that it helps us understand
why the standard model has the symmetries it does, and why its free parameters take the
specific values they do, and also shows how to unify gravity with the other fundamental
forces: electroweak (EW) and strong. We construct such a dynamics using tP, LP and h̄ as
the only three fundamental parameters in the theory. We note that in these units the low
energy fine structure constant, α f = e2/h̄c ≡ e2 tP/h̄LP ∼ 1/137, where e is electron charge
and c is the speed of light, is order unity and hence quantum gravitational in origin (QG
in IR). On the other hand, particles masses, m ∼ εmP ≡ εh̄tP/L2

P, are not because ε 	 1.
However, mass ratios (at low energies) can be, and, in fact, are quantum gravitational
in origin.

To achieve our goal, we build on Adler’s pre-quantum theory, i.e., trace dynamics
(TD) [3,4]. Starting from classical Lagrangian dynamics, TD retains the classical space-time
manifold, but all configuration variables and their canonical momenta are raised to the
status of matrices (equivalently operators). This step is the same as in quantum theory;
however, the canonical Heisenberg commutation relations, [q, p] = ih̄, are not imposed;
here, q and p are canonical configuration variable and momentum, respectively. Instead, we
have a matrix-valued Lagrangian dynamics, where the Lagrangian is the trace of a matrix
polynomial made from matrix-valued configuration variables and their time derivatives
(i.e., the velocities). A ‘trace’ derivative enables the derivation of Lagrange equations of
motion, and a global unitary invariance of the trace Hamiltonian (this being an elementary
consequence of invariance of the trace under cyclic permutations) implies the existence of
the novel conserved Noether charge, C̃ ≡ ∑i [qi, pi], where i stands for the various degrees
of freedom. The Hamiltonian of the theory is in general not self-adjoint, and dynamical
evolution is not restricted to be unitary. Assuming these dynamics hold on Planck time
scale resolution, one asks what the averaged dynamics on lower energy scales will be, if
one coarse-grains the dynamics on time scales much larger than Planck time. Using the
techniques of statistical thermodynamics, it is shown that, if the anti-self-adjoint part of
the Hamiltonian is negligible, the emergent dynamic is relativistic quantum (field) theory.
The aforementioned Noether charge is equi-partitioned over all bosonic and fermionic
degrees of freedom, and canonical commutation and anti-commutation relations emerge
for the statistically averaged canonical variables, which obey the Heisenberg equations
of motion. If the anti-self-adjoint part of the Hamiltonian becomes significant (this is
enabled by large-scale quantum entanglement), spontaneous localisation results, leading to
the quantum-to-classical transition and emergence of classical dynamics. For a detailed
explanation of the emergence of the classical universe, the reader is referred to Section XIII
of [5].

2. Replacing the Point Structure of Spacetime by the Non-Commutative Geometry of
the Octonions

Next, TD is generalised, so as to replace the four-dimensional (4D) Minkowski space-
time manifold by a higher dimensional non-commutative space-time, and incorporate
matrix-valued pre-gravitation, thus taking TD to a pre-space-time, pre-quantum theory.
Let us recall that, in special relativity, given the four-vector Vμ = dt t̂ + dx x̂ + dy ŷ + dz ẑ
connecting two neighbouring space-time points having a separation (dt, dx, dy, dz), one
can define the line element, ds2 = ημνVμVν, and the four-velocity, dqμ/ds, of a particle
having the configuration variable, qμ = (qt, qx, qy, qz). Here, Greek letters denote the time
(0) and space components, and ημν is the flat spacetime metric. The action for the particle is
mc

∫
ds, where m is the particle mass, and the transition to curved space-time and general
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relativity (GR) is made by introducing the metric gμν, i.e., ds2 = gμνdxμdxν, and writing
down the action,

S =
c4

16πG

∫
d4x

√
−g R + ∑

i
mic

∫
ds + SYM (1)

Here, the first term is the Einstein–Hilbert action, SYM stands for the action of Yang–
Mills fields and also includes their current sources, G is the Newtonian constant of gravity,
g is the deteminant of gμν, and R stands for scalar curvature.

We now generalise this action to construct a pre-spacetime, pre-quantum action prin-
ciple [6], from which the sought for quantum theory without classical time emerges, and
whose symmetries imply the standard model of particle physics and fix its free parameters.
The space-time coordinates (t, x, y, z) are replaced by a set {ei, i = 0, 1, 2, . . . , m− 1} of
m non-commuting coordinates, to be specified later in this Section. The configuration
variable qμ for a particle is replaced by a matrix qF, whose entries are odd-grade Grass-
mann elements over the field of complex numbers (so as to represent fermions). qF has
m components qi

F, one for each of the coordinates ei, i.e., qF = (q0
F e0 + · · ·+ q(m−1)

F em−1).
The point structure of space-time is lost; instead, we have a non-commutative geometry,
and the matrix-valued velocity is defined as dqF/dτ ≡ q̇F. Here, the newly introduced
Connes time, τ, is a unique property of a non-commutative geometry; it is an absolute
real-valued time parameter distinct from the non-commuting coordinates ei, and is used to
describe evolution [7].

To introduce pre-gravitation into trace dynamics, we recall the spectral action principle
of Chamseddine and Connes, according to which the Einstein–Hilbert action can be cast
in terms of the eigenvalues of the square of the (regularised) Dirac operator, DB, on a
Riemannian manifold, by making use of a truncated heat kernel expansion [8]:

Tr [L2
P D2

B] ∼
∫

d4x
√

g
R
L2

P
+O(L0

P) ∼ L2
P ∑

n
λ2

n . (2)

Here, the eigenvalues λn of the Dirac operator play the role of dynamical variables of
general relativity [9]. Following trace dynamics, each eigenvalue λn is raised to the status
of a canonical matrix momentum: λn → pBn ∝ qBn/dτ ≡ DB, and the bosonic matrix
qB (with even grade Grassmann elements as entries) is now the configuration variable,
and it has m matrix components qm

B over the non-commuting coordinates ei. Therefore,
we have N copies of the Dirac operator (n runs from 1 to N, with N → ∞). The trace
Lagrangian (space-time part) of the matrix dynamics for the n-th degree of freedom is
given by L2

P Tr (dqBn/dτ)2. The full action for the total matrix dynamics (space-time part)
is S ∼ ∑n

∫
dτ L2

P Tr (dqBn/dτ)2. Yang–Mills fields are expressed by the matrices qBn,
pre-gravitation by the q̇Bn, the fermionic degrees of freedom by fermionic matrices qFn and
by their ‘velocities’, q̇Fn. Each of the n degrees of freedom has a fundamental action, which
is given by [5,10]

S
h̄
=

a0

2

∫ dτ

τP
Tr
[

q̇†
B + i

α

L
q†

B + a0β1

(
q̇†

F + i
α

L
q†

F

)]
×
[

q̇B + i
α

L
qB + a0β2

(
q̇F + i

α

L
qF

)]
, (3)

where a0 ≡ L2
P/L2, and τP is Planck time. The net action of this generalised trace dynamics

is therefore the sum over n of N copies of the above action, one copy for each degree of
freedom, and this new action replaces action (1) in the pre-theory. This full action defines
the pre-spacetime, pre-quantum theory, with each degree of freedom (defined by the above
action) considered as an ‘atom’ of space-time-matter (an STM atom). L is a length parameter
(scaled with respect to LP; qB and qF have dimensions of length), which characterise the
STM atom, and α is the dimensionless Yang–Mills coupling constant. β1 and β2 are two
unequal complex Grassmann numbers [5].
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The subsequent analysis of this pre-space-time, pre-quantum theory is carried out
analogously to the pre-quantum trace dynamics. Equations of motion are derived, and
there is again a conserved Noether charge. Assuming that the theory is valid at the
Planck time scale, the coarse-grained emergent low-energy approximation obeys quantum
commutation rules and Heisenberg equations of motion, and this is also the sought for
reformulation of quantum theory without classical time. The emergent dynamics is also the
desired quantum theory of QR in IR. If a sufficient number of STM atoms get entangled, the
anti-self-adjoint part of the Hamiltonian becomes important, and spontaneous localisation
results; the fermionic part of the entangled STM atoms gets localised. There hence emerges
a 4D classical space-time manifold (labelled by the positions of collapsed fermions), which
is sourced by point masses and by gauge fields, and whose geometry obeys the laws of GR
given above by Equation (1). Those STM atoms which are not sufficiently entangled, con-
tinue to remain quantum; their dynamics are described by the low energy pre-theory itself,
or approximately by quantum field theory on the 4D space-time background generated by
the entangled and collapsed fermions (these being the macroscopic bodies of the universe).

Note that the non-commutative coordinate system {ei ; i = 1, 2, . . . , n} is not impacted
by the coarse-graining. The averaging takes place only over the time-scale τ and hence
over energy; therefore, the non-commuting coordinates ei remain valid at low energies as
well. What, then, should we choose as our ei, in place of the four real numbers (t, x, y, z)
which label the 4D space-time manifold in classical physics? We take clue from the normed
division algebras, i.e., number systems, in which the four operations of addition, subtrac-
tion, multiplication and division can be defined. There are only four such number systems:
real numbers R, complex numbers C, quaternions H, and the octonions O. A quaternion,
H = (a0e0 + a1 î + a2 ĵ + a3k̂), is a generalisation of complex numbers, such that the ai here
are reals, e2

0 = 1 and

î2 = ĵ2 = k̂2 = −1 ; î ĵ = − ĵî = k̂; ĵk̂ = −k̂ ĵ = î; k̂î = −îk̂ = ĵ . (4)

Quaternions are used to describe rotations in three dimensions, and the automorphism
group formed by the three imaginary directions is SO(3). Complex quaternions C×H

generate the Lorentz algebra SL(2,C) ∼ SO(1, 3) and the Clifford algebra Cl(2), if one of
the three quaternionic imaginary directions is kept fixed. If no direction is kept fixed, they
generate the Lorentz algebra in 6D: SL(2,H) ∼ SO(1, 5) and the Clifford algebra Cl(3).
However, they are not a big enough number system for unifying all the standard model
symmetries with the Lorentz symmetry, whereas the octonions seem to be just right for
that purpose.

An octonion is defined as O = a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 such
that the ai are reals, e2

0 = 1, each of the seven imaginary directions (e1, e2, . . . , e7) squares to
−1, these directions anti-commute with each other, and their multiplication rule is given
by the so-called Fano plane. Octonionic multiplication is non-associative. The imaginary
directions form the automorphism group G2, which is the smallest of the five exceptional
Lie groups G2, F4, E6, E7, E8, all of which have to do with the symmetries of the octonion
algebra. F4 is the automorphism group of the exceptional Jordan algebra: the algebra
of 3× 3 Hermitean matrices with octonionic entries, and E6 is the automorphism group
of the complexified exceptional Jordan algebra [11]. The octonions are what is thought
for non-commuting coordinates ei, on which the action principle (3) is constructed. They
generate 10D space-time: SL(2,O) ∼ SO(1, 9). The coordinate geometry of the octonions
dictates the allowed symmetry groups, and definition and properties of fermions such as
quantisation of electric charge [12], value of the low energy fine structure constant [13], and
mass-ratios [14]. The parameter L and the coupling constant α in (3) are determined by the
algebra of the octonions, not by the dynamics of qF and qB. This way, not only does the
geometry tell matter how to move, it also tells matter what to be. The dynamical variables
(qB, qF) curve the flat geometry {ei}; however, even before the dynamics are switched on,
the low-energy standard model of particle physics is fixed by the ei, unlike when space-time
is R4. The transition ei → qi

Fei + qi
Bei is akin to the transition ημνxμxν → gμνxμxν, with the
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important difference that the former transition takes place at the ‘square-root of metric’
level, as if for tetrads, and the matrices qB and qF incorporate standard model forces besides
gravity, and also fermionic matter. In fact, with the redefinition, ˙̃QB ≡ (iαqB + Lq̇B)/L and
˙̃QF ≡ (iαqF + Lq̇F)/L, the Lagrangian in Equation (3) can be brought to the elegant and

revealing form, as if describing a two-dimensional (because β1 �= β2) free particle:

S
h̄
=

a0

2

∫ dτ

τPl
Tr
(

˙̃Q
†
B +

L2
p

L2 β1
˙̃Q

†
F

)(
˙̃QB +

L2
p

L2 β2
˙̃QF

)
. (5)

In this fundamental form of the action, the coupling constant α is not present. Actually,
α, along with mass ratios, emerges only after (left-right) symmetry breaking segregates the
unifying dynamical variable ˙̃QB into its gravitational part q̇B and Yang–Mills part qB.

3. Spinor States for Quarks and Leptons from the Algebra of the Complex Octonions

The automorphism group G2 of the octonions has two maximal sub-groups SU(3) and
SO(4) ∼ SU(2)× SU(2), the first of which is the element preserver group of the octonions,
and the second is the stabiliser group of the quaternions inside the octonions [15]. The
two groups have a SU(2) intersection. Keeping one of the seven imaginary directions,
say e7, fixed, the remaining six directions can be used to form an MTIS (maximally totally
isotropic subspace) and the following generators (along with their adjoints) for the Clifford
algebra Cl(6):

α1 =
−e5 + ie4

2
, α2 =

−e3 + ie1

2
, α3 =

−e6 + ie2

2
. (6)

(This is a covariant choice as all the imaginary directions are equivalent and interchanging
any of them does not change the analysis or results.) From here, one can construct spinors
as minimum left ideals of the algebra, by first constructing the idempotent ΩΩ†, where
Ω = α1α2α3. The eight resulting spinors are

V = ΩΩ†; Vad1 = α†
1V ; Vad2 = α†

2V ; Vad3 = α†
3V ;

Vu1 = α†
3α†

2V ; Vu2 = α†
1α†

3V ; Vu3 = α†
2α†

1V ; Ve+ = α†
3α†

2α†
1V .

(7)

After defining the operator Q = (α†
1α1 + α†

2α2 + α†
3α3)/3 as one-third of the U(1) num-

ber operator, we find that the states V and Ve+ are singlets under SU(3) and respectively
have the eigenvalues Q = 0 and Q = 1. The states Vad1, Vad2, Vad3 are anti-triplets under
SU(3) and have Q = 1/3 each, whereas the states Vu1, Vu2, Vu3 are triplets under SU(3)
and each have Q = 2/3. These results allow Q to be interpreted as electric charge, and the
eight states represent a neutrino, three anti-down quarks, three up quarks and the positron
having the standard model symmetries SU(3)c ×U(1)em (subscripts ‘c’ and ‘em’ stand for
‘color’ and ‘electromagnetic’, respectively). Anti-particle states are obtained by complex
conjugation. The eight SU(3) generators can also be expressed in terms of the octonions
and represent the eight gluons, whereas the U(1) generator is for the photon. We hence
see the standard model of particle physics emerging from the symmetries of the physical
octonionic space, and the quantisation of electric charge is a consequence of the coordinate
geometry of the octonions [12].

To see how the weak force (and electroweak) and chiral gravity emerge from the other
maximal sub-group SO(4) ∼ SU(2)× SU(2), we must consider three fermion generations
and the larger exceptional Lie group E6 because these symmetries are shared pair-wise
across fermion generations, as shown in Figure 1. Furthermore, the neutrino is assumed to
be Majorana because only then the correct values of mass ratios are obtained [14]. In addi-
tion, notably, E6 is the only one of the exceptional groups having complex representations.
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Figure 1. Unification from symmetries of E6. See text for details.

4. Pre-Gravitation and Mass Ratios from a Left-Right Symmetric Extension of the
Standard Model of Particle Physics

The 78-dimensional exceptional Lie group E6 is the automorphism group of the com-
plexified Jordan algebra, and admits the sub-group structure shown in Figure 1, as moti-
vated by the discussion in [16]. E6 contains three intersecting copies of Spin(9, 1) ∼ SL(2,O),
which have an SO(8) intersection, and the triality property of SO(8) motivates that there
are exactly three fermion generations. In order to account for the symmetries of E6 and to
obtain chiral fermions, we now work with split bioctonions (instead of octonions, which
are used in Equation (5), i.e., before symmetry breaking) [17].

Embedded in the three Spin(9, 1) are three copies of SU(3), one of which is SU(3)c
and one is for generational symmetry—this is shown in the left part of Figure 1. There
is a pairwise intersection amongst a pair of generations, which is the electroweak group
SU(2)L ×U(1)Y (subscript ‘L’ denotes ‘left’ and subscript ‘Y’ stays for ‘hypercarge’) from
which the weak interaction and electromagnetism (EM) can be obtained. There is a three
way intersection marked L which is the 4D Lorentz group SO(3, 1). The Cl(4) generators
of SU(2)L are constructed from the Cl(6) of and Cl(2) of the Lorentz algebra, and it can be
shown that SU(2)L acts only on left handed (LH) fermions. The spinor states for the LH
quarks and leptons of one generation are constructed analogously to those in spinors (7), by
using the LH active Majorana neutrino as the idempotent, with complex conjugation giving
the corresponding antiparticles. The spinor states for the second and third generation are
respectively obtained by applying two successive 2π/3 rotations on the eight states of
the first generation, while staying in the plane defined by the form (ei + iej) of a given
first generation particle (SO(8) symmetry implies eight independent great circles on an
8-sphere, one for each of the eight particles, and three particles of three generations). There
are a total of 24 LH fermions and their 24 anti-particles and 12 gauge bosons. The unified
symmetry group of Lagrangian (5) is E6.

Similarly, three generations of right-handed (RH) fermions are obtained by using split
octonions and the three RH sterile Majorana neutrinos as the idempotent. We identify the
associated SU(3) with SU(3)G—a newly introduced gravitational sector; and identify the
U(1) number operator with (±square-root) of the mass of a quark/lepton (in Planck mass
units), and the eight respective spinor states of one generation are: the sterile neutrino,
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three positrons of three different gravi-colors, three RH up quarks of three colors same
as SU(3)c, and one down quark which is a singlet under SU(3)G, along with the singlet
sterile neutrino [18]. These obtain the respective square-root mass number (0, 1/3, 2/3, 1)
explaining why the down quark is nine times heavier than the electron. The SU(2)R is
RH chiral gravity (LQG, loop quantum gravity) [19], which reduces, in the classical limit
induced by spontaneous localisation, to GR. The Lorentz group (whose Casimir invariant
is the introduced mass number) is common with the LH particles, and its six dimensions,
together with the 24 RH fermions and 12 new gauge bosons, when added to the LH sector,
give the correct count of 78 for E6. The split complex number gives a scalar field that acts
as the Higgs mediating between the LH charge eigenstates, and RH mass eigenstates. Is
U(1) gravity the dark energy? This possibility is discussed further in Section 5.

The group E6 is also the symmetry group for the Dirac equation in 10D [16] for three
fermion generations (either LH or RH). The eigenvalue and eigenmatrix problem for the
Dirac equation is in fact the same as J3(8)X = λX, where J3(8) is the exceptional Jordan
algebra with symmetry group F4. Substituting the above-mentioned spinor states of LH
fermions (these being eigenstates of electric charge) and solving this eigenvalue problem
expresses the LH charge eigenstates as superpositions of the RH mass eigenstates (thus
fixing α and L in Equation (3)), and the ratios of the eigenvalues yield mass ratios of charged
fermions as shown in Figure 2; these exhibit very good agreement with the mysterious
mass ratios, as shown in the Table 1 below [14].

E6 has three copies of 10D spacetime. We never compactify the extra six complex
dimensions—these represent the standard model internal forces which determine the
geometry of these extra dimensions. Quantum systems do not live in 4D spacetime. They
live in E6 and their true dynamics is the generalised trace dynamics, with evolution given
by Connes time. Only classical systems live in 4D spacetime, where they descend as a
result of spontaneous localisation of highly entangled fermions (compactification without
compactification). This overcomes the troublesome non-unique compactification problem
of string theory.

Figure 2. Square-root mass ratios of charged elementary fermions [14].
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Table 1. Comparison of theoretically predicted square-root mass ratios with experimentally known
range [14].

Square Root Mass Ratios

Particles Theoretical Mass Ratio
Minimum

Experimental Value
Maximum

Experimental Value

muon/electron 14.10 14.37913078 14.37913090
taun/electron 58.64 58.9660 58.9700
charm/up 23.57 21.04 26.87
top/up 289.26 248.18 310.07
strange/down 4.16 4.21 4.86
bottom/down 28.44 28.25 30.97

Apart from the two mass ratios of charged leptons, other theoretical mass ratios
lie within the experimental bounds [20]. On accounting for the so-called Karolyhazy
correction [21], we might possibly get more accurate mass ratios for all particles including
charged leptons. This will be investigated in future work.

In quantum theory, even at low energies, assuming a point structure for spacetime is
an approximation; it is because of this approximation that the standard model of particle
physics has so many unexplained free parameters. When we replace this approximate
description by a non-commutative spacetime, we find evidence that these parameter values
get fixed. In particular, we derive the low energy fine structure constant [13,21] and mass
ratios of charged fermions [14] from first principles. We do not need experiments at ever
higher energies to understand the low energy standard model. Instead, we need a better
understanding of the quantum nature of spacetime at low energies, such that the quantum
spacetime is consistent with the principle of quantum linear superposition.

5. Further Developments, Clarifying Remarks, and Current Status of the Present
Unification Programme

The aforesaid essay is intended to give the reader a short overview of a new approach
to quantum gravity and unification, details of which can be found in [5]. This Section
reports on a few new insights not described in our earlier work, and provide clarifying
details on some of the statements in the previous sections.

One further way to motivate the present theory is to recall that, when one takes
the square root of the Klein–Gordon equation to arrive at the Dirac equation for spin-
half fermions described by spinors, one does not take the corresponding square root of
the four-dimensional Minkowski spacetime labelled by four real numbers. However,
suppose one were to take the latter square root as well; then, one arrives at a spinor
description of spacetime, i.e., Penrose’s twistor space, labelled by complex numbers, and
one notes that SL(2, C) is the double cover of the Lorentz group SO(3, 1). We can now
try to describe fermions on this twistor space (both the fermions as well as the space-time
are now spinorial) and we can write down the Dirac equation on this twistor space. We
can go even further and replace the complex numbers by one or the other of the only two
additional division algebras, the quaternions (H) and the octonions (O). Quaternionic
twistor space is equivalent to 6D spacetime because SL(2, H) is the double cover of SO(5, 1),
whereas octonion-valued twistor space is equivalent to 10D spacetime because SL(2, O) is
the double cover of SO(9, 1). When we describe fermions on octonionic twistor space, we
begin to deduce remarkable results such as three generations of quarks and leptons, and
quantisation of electric charge, just as in the standard model. We are now solving the Dirac
equation on the spinor equivalent of 10D Minkowski space-time, and this implies mass
quantisation, a derivation of the low energy fine structure constant and of mass ratios of
quarks and charged leptons. The bosonic sector now includes pre-gravitation in unification
with the standard model forces, and the theory is shown to obey an E8 × E8 symmetry [18].
Indeed, the theory we arrive at is a revised string theory without the troublesome non-
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uniqueness problem of compactification, and the fundamental entities are 2-branes with an
area of the order of Planck area.

It is important to note that, in going from real numbers to complex numbers to
octonions, we have not changed the energy scale of the problem; rather, we have gone from
4D Minkowski spacetime to 8D twistor space. In so doing, we have simply found a new
mathematical description of the standard model which explains the standard model origin
and its unification with pre-gravitation. We therefore arrive at the inescapable conclusion
that elementary particles live in a space with E8 × E8 symmetry even at low energies (built
on a 10D complex non-commutative spacetime). They do not live in ordinary spacetime,
and definitely not in 4D classical space-time. The extra dimensions are not Planck size,
but large extra dimensions, and have an absolute modulus of the order of the scale of the
strong force and the weak force (10−18 m to 10−15 m). This can be approximately justified
by recalling that, in this theory, the absolute modulus, l, of the extra dimensions goes as
l ∼ R1/3 (because of the holographic principle [22]), where R is the cosmic length scale,
and both l and R are expressed in units of Planck length. Further work remains to be done
to make this result rigorous, and also to derive the Higgs mass and the masses of the W
bosons from fundamental considerations.

The action principle in Equation (3) is motivated by the action principle for a free
particle in Newton’s mechanics, which of course is nothing but the integral of the kinetic
energy over absolute time. Now, over octonionic space (more precisely, complex split
bioctonionic space) we have written the equivalent expression for the kinetic energy of a
2-brane over Connes time. The undotted variables are related to the left-chiral sector, this
being the gauge bosons of the standard model and three generations of left chiral fermions,
defined over octonionic space. The dotted variables are related to the right chiral sector,
this being pre-gravitation SU(3)G × SU(2)R ×U(1)G and three generations of right chiral
fermions, defined over the split part of bioctonionic space [18]. A detailed investigation
of the Lagrangian as regards its particle content is currently in progress. q̇B is the Dirac
operator on octonionic space and qB, the Yang–Mills field, is the correction to the Dirac
operator, as in conventional quantum field theory. The spectral action principle tells us the
classical limit of the trace of the Dirac operator squared, when Yang–Mills fields are present.
This classical limit has been discussed briefly in our earlier study [10] and is given by the
following equation, from [6], where DBnew ≡ DB + αA is the corrected Dirac operator
resulting after including the Yang–Mills potential A:

Tr [L2
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where

•
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48π2
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gR term is the Einstein–Hilbert action;

•
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P f0

4π2

∫
d4x
√

g term is responsible for the cosmological constant;

•
f4g2

48π
2

∫
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μνFμνi term is the Yang–Mills action;

• − N f4

320π
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gCμνρσCμνρσ term would be responsible for the conformal gravity;

•
11N f4

960π
2

∫
d4x
√

gR∗R∗ term would be responsible for the Gauss–Bonnet gravity.

This is the expansion of the squared Dirac operator when gauge fields are included
alongside gravity. We do not yet take into account the volume term, and conformal gravity,
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and Gauss–Bonnet gravity in our present work. It is, however, an issue of great significance
that in the classical limit, GR is being modified by conformal gravity, and encourages us
to relate our theory, described to MOND (modified Newtonian dynamics) and RMOND
(relativistic MOND), as an alternative to cold dark matter. Interestingly, there so far seems
to be no cold dark matter candidate particle in our theory, and MOND and sterile neutrinos
seem to arise naturally in our approach to unification; see Section XIV of [5]; further work
is currently in progress in this direction.

The matrix-valued equations of motion are easily written down after first defining:

q1 = qB + a0β1qF, q2 = qB + a0β2qF, (8)

where we have set a0 ≡ L2
P/L2. In terms of these two variables, the above trace Lagrangian

can be written as

TrL =
1
2

a1a0Tr
[

q̇1q̇2 −
α2c2

L2 q1q2 + i
αc
L
(q̇1q2 + q1q̇2)

]
, (9)

where a1 ≡ h̄/cLP. The last term in the trace Lagrangian is a total time derivative, and
hence does not contribute to the equations of motion, so that we can get dynamics from
the Lagrangian:

TrL =
1
2

a1a0Tr
[

q̇1q̇2 −
α2c2

L2 q1q2

]
. (10)

The canonical momenta are given by (δ denotes variation with respect to the matrix
variable)

p1 =
δTrL
δq̇1

=
1
2

a1a0q̇2; p2 =
δTrL
δq̇2

=
1
2

a1a0q̇1 . (11)

The Euler–Lagrange equations of motion are

q̈1 = −α2c2

L2 q1; q̈2 = −α2c2

L2 q2 . (12)

In terms of these two complex variables, the 2-brane behaves like two independent
complex-valued oscillators. However, the degrees of freedom of the 2-brane couple with
each other when expressed in terms of the self-adjoint variables qB and qF. This is because
q1 and q2 both depend on qB and qF, the difference being that q1 depends on β1 and q2
depends on β2.

The trace Hamiltonian is

TrH = Tr[p1q̇1 + p2q̇2 − TrL] = a1a0

2
Tr

[
4

a2
1a2

0
p1 p2 +

α2c2

L2 q1q2

]
, (13)

and the Hamilton’s equations of motion are

q̇1 =
2

a1a0
p2 q̇2 =

2
a1a0

p1; ṗ1 = − a1a0α2c2

2L2 q2; ṗ2 = − a1a0α2c2

2L2 q1 . (14)

It is understood that these generalised trace dynamics are defined over complex
bioctonionic space, and elementary particles and gauge bosons including those for pre-
gravitation are special cases of these dynamical variables, reminiscent of the different
vibrations of the string in string theory.

5.1. Octonions, Elementary Particle Physics, and Gravitation

Octonions have been associated with physics for a very long time. In fact, already in
the 1920s, Jordan discovered the algebraic formulation of quantum mechanics, and the
Jordan algebras, and, in particular, his work led to the discovery of the exceptional Jordan
algebra J3(8) (also known as the Albert algebra). This is the algebra of 3 × 3 Hermitean
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matrices with octonionic entries. Since the 1970s, there have been extensive investigations
of how the octonions bear a fundamental connection with elementary particles, quarks as
well as leptons of the standard model [15,23–34].

How does our work compare with and differ from those earlier works on applications
of octonions to quantum mechanics and particle physics? Our work is strongly inspired by
those earlier investigations and is built on them, especially with regard to the definition
of elementary particle states using Clifford algebras of octonionic chains, applications of
the exceptional Lie groups and the exceptional Jordan algebra. However, our fundamental
perspective is different from those earlier studies, which have been largely focused on
relating octonions to the standard model and its extensions, such as Grand Unified Theories
(GUTs), to the octonions. Our starting point is fully quantum foundational: to seek a
reformulation of quantum theory, which does not depend on classical time. This turns out
to be a pre-quantum, pre-spacetime theory, which is a matrix-valued Lagrangian dynamics
on an octonionic twistor space. Remarkably, it is also a theory of quantum (pre-)gravity and
a unification of the standard model of particle physics with pre-gravitation. The eigenvalue
problem for the Dirac equation on octonionic space (equivalently 10D spacetime) is solved
by the characteristic equation of the exceptional Jordan algebra. In combination with the
Lagrangian of the theory, this leads to a derivation of the low energy fine structure constant,
and mass ratios of quarks and charged leptons. Thus, by bringing in gravitation, and
trace dynamics, our work significantly expands the scope of earlier related research. This
new scenario is summarised in Figure 3. Below, we elaborate on some aspects of these
new developments.

Figure 3. Octonions, and an E8 × E8 unification of standard model and pre-gravitation [18]. Here,
‘GR’ stays for ‘general relativity’, ‘SM’ stays for ‘standard model’.

39



Physics 2022, 4

5.2. Mass Quantisation from a Number Operator

The masses of the electron, the up quark, and the down quark, are in the ratio 1:4:9.
This fact calls for a theoretical explanation. A few years ago, Cohl Furey proved the
quantisation of electric charge as a consequence of constructing the states for quarks and
leptons from the algebra of the octonions [12]. The complex octonions are used to construct
a Clifford algebra Cl(6), which is then used to make states for one generation of quarks
and leptons. The automorphism group G2 of the octonions has a sub-group SU(3), and
these particle states have the correct transformation properties as expected if this SU(3)
is SU(3)c of QCD (quantum chromodynamics). Furthermore, (one-third of) a number
operator, built from the Cl(6) generators, has the eigenvalues (0, 1/3, 2/3, 1) (with 0 and
1 for the SU(3) singlets and 1/3, 2/3 for the triplets) allowing this to be identified with
electric charge. This proves charge quantisation, and the U(1) symmetry of the number
operator is identified with U(1)em. Anti-particle states obtained by complex conjugation
of particle states are shown to have electric charge (0, −1/3, −2/3, −1). Thus, the algebra
describes the electro-colour symmetry for the neutrino, down quark, up quark, electron,
and their anti-particles. Note that it could instead be the second fermion generation, or the
third generation. Each generation has the same charge ratio (0, 1/3, 2/3, 1).

This same analysis can now be used to show that the square-roots of the masses of
electron, up and down are in ratio 1:2:3. All we have to do is to identify the eigenvalues of
the number operator with the square-root of the mass of an elementary particle, instead
of its electric charge. In addition, we also obtain a classification of matter and anti-matter,
after noting that complex conjugation now sends matter to anti-matter, as follows:

Matter
√

mass Anti–matter
√

mass

anti–neutrino 0 neutrino 0

electron 1/3 positron − 1/3

up–quark 2/3 anti–up − 2/3

down–quark 1 anti–down − 1

Compared to the electric charge case above, the electron and down quark have
switched places, and we already have our answer to the mass quantisation question,
placed at the start of this Subsection. There is again an SU(3) and a U(1), but obviously
this is no longer QCD and EM. We identify this symmetry is identified here with a newly
proposed SU(3)G ×U(1)G, whose full physical implications remain to be unravelled (GR
emerges from SU(2)R this being an analog of the weak force SU(2)L). E6 × E6 admits
a sub-group structure with two copies each of SU(3), SU(2) and U(1). Therefore, one
set is identified with the standard model SU(3)× SU(3)×U(1) (electric charge based)
and the other with the newly introduced SU(3)G × SU(2)R ×U(1)G (sqaure-root mass
based). In the early universe, the separation of matter from anti-matter is the separation of
particles with positive square-root mass from particles of negative square root mass. This
separation effectively converts the vector-interaction of pre-gravitation into an attractive
only emergent gravitation.

However, the second and third fermion generations do not have the mass ratios 1:4:9
unlike the electric charge ratios which are the same for all three generations. Why so?
Because mass eigenstates are not the same as charge eigenstates. We make our measure-
ments using eigenstates of electric charge; these have strange mass ratios, e.g., the muon is
206 times heavier than the electron. If we were to make our measurements using eigenstates
of square-root mass, we would find that all three generations have the mass ratios 1:4:9
whereas this time around the electric charge ratios seems to be strange. There is a perfect
duality between electric charge and square-root mass. A free electron in flight—is it in
a charge eigenstate or a mass eigenstate? Neither. It is in a superposition of both, and
collapses to one or the other, depending on what we choose to measure. In fact, the free
electron in flight does not separately have a mass and a charge; it has a quantum number
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which could be called charge-sqrt mass, which is the quantum number for the unified force.
Unification is broken by measurement: if we measure EM effect then we attribute electric
charge to the source. If we measure inertia or gravity, we attribute mass to the source. These
statements are independent of energy scale. A classical measuring apparatus emerges from
its quantum constituents as a consequence of sufficient entanglement: the emergence of
such classical apparatus is the prelude to the breaking of unification symmetry. In the early
universe, sufficient entanglement is impossible above a certain energy (possibly the EW
scale), and it appears as if symmetry breaking depends on energy. This is only an indirect
dependence. The true dependence of symmetry breaking is on the amount of entanglement.
In our current low energy universe, we have both low entanglement systems (quantum,
unified) and high entanglement systems (classical, unification broken).

5.3. Some Further Insights into the Origin of Mass Ratios for Three Fermion Generations

Prior to the left-right symmetry breaking, the E8×E8 symmetry is intact. We have three
identical fermion generations of lepto-quark states having an associated U(1) quantum
number, which we call ‘electric-charge-square-root-mass’ and which takes the values
(0, 1/3, 2/3, 1). These lepto-quarks are excitations of the Dirac neutrino (quantum number
0) and can be labelled as LHdownquark-RHelectron (1/3), LHupquark-RHupquark (2/3)
and LHelectron-RHdownquark (1) with the understanding that all three generations are
identical. The left-right symmetry breaking segregates these lepto-quark states into left
chiral fermions with the associated U(1) quantum number being electric charge, and
the right chiral fermions with the associated U(1) quantum number being square-root
mass. The Dirac neutrino segregates into a LH active Majorana neutrino and a RH sterile
Majorana neutrino. The LH chiral fermions are excitations of the active LH Majorana
neutrino, and are the anti-down quark (1/3), up quark (2/3) and positron (1) and their
antiparticles. The RH chiral fermions are excitations of the sterile LH Majorana neutrino,
and are the electron (1/3), up quark (2/3) and the down quark (1); numbers in brackets
now show square-root mass. A Higgs coming from the right sector gives masses to the
LH fermions; and, remarkably, a charged Higgs coming from the left sector gives electric
charge to the LH fermions. The gauge symmetry associated with the LH sector is the
standard model symmetry SU(3)c × SU(2)L × U(1)Y and that associated with the RH
sector is pre-gravitation SU(3)G × SU(2)R ×U(1)G.

The LH states, being eigenstates of electric charge, are different from the RH states,
which are eigenstates of square-root mass. When we solve the Dirac equation for three
generations of a family with a given electric charge, assuming the neutrino to be Majorana,
it reveals mass quantisation, and the charge eigenstates are superpositions of square-root
mass eigenstates and the corresponding eigenvalues carry information about the mass
ratios across three generations. We called these eigenvalues ‘Jordan eigenvalues’ [21]; they
are shown in the table in Figure 4.

For a given electric charge value q �= 0, the three eigenvalues take the form q± ε
√

3/8
where ε = (−1, 0, 1).

√
3/8 is also the magnitude of the octonion, which describes the state

of the three generations of a family of charged fermions. For the neutrino, the
√

3/8 is
replaced by

√
3/2. If the Jordan eigenvalues are calculated assuming the neutrino to be a

Dirac particle then there is a subtle change in the values: the
√

3/8 is replaced by
√

3/2 for
the charged leptons (no other change), and for the neutrino the eigenvalues are now very
different: (−1/2−

√
3/2, 1,−1/2 +

√
3/2). The shift from

√
3/2 to

√
3/8 results because,

in going from the Dirac neutrino to the Majorana neutrino, the lepto-quark state splits
into two halves—the LH charge eigenstate and the RH mass eigenstate—and hence the
magnitude

√
3/2 is divided into two equal halves of

√
3/8 each. The Jordan eigenvalues

hold for the anti-particles as well, with the charge q being replaced by its negative value
−q. Obviously, the eigenvalues of the neutrino do not change from the values, shown in
Figure 4; consistent with the neutrino being its own anti-particle.
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Figure 4. The eigenvalues of the characteristic equation of the exceptional Jordan algebra, for quarks
and leptons [21].

Furthermore, these Jordan eigenvalues also represent superposition of square-root
mass eigenstates in terms of charge eigenstates, with the down quark family interchanged
with the charged lepton family. This is because the electric charge values 1/3, 2/3, and 1
for the down quark family, up quark family, and electron family, respectively, are numeri-
cally also the same as square-root mass numbers respectively for the electron family, up
quark family, and down quark family. Thus, the eigenvalues for the up quark family stay
unchanged when charge and square-root mass number are interchanged for the electron
family and down quark family. As soon as mass eigenstates are superpositions of charge
eigenstates, the eigenvalues in the superposition determine the peculiar observed mass
ratios, we now elaborate in some detail below using the related data shown in Figure 5.

The first set of three rows are marked [1/3]D, where D stays for ‘Dirac neutrino’ and
1/3 is the ‘electric-charge-square-root-mass’ quantum number prior to symmetry breaking,
identical for three generations. The 4th, 5th, 6th rows are marked [2/3]D for the same
quantum number taking the value 2/3. The 7th, 8th and 9th rows are marked [1]D because
this quantum number takes the value 1. For a given value of this quantum number, the
left-right symmetric lepto-quark can be written as superposition of a LH fermion and a
RH fermion, with the two Jordan eigenvalues in any of the nine rows giving the numerical
coefficient of the superposition. The successive eigenvalues are labelled as the pairs (A1,
B1), (A2, B2), (C1, C2), (D1, D2), (E1, E2), (F1, F2), (G1, G2), (H1, H2), (I1, I2). The first
Jordan eigenvalue in any given row labels the LH fermion, and the second eigenvalue is
the same row labels the right handed (RH) fermion.
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Figure 5. From the Jordan eigenvalues, towards an understanding of the mass ratios. e1, e2, e3 denote
the charged lepton family. d1, d2, d3 denote the down quark family. u1, u2, u3 denote the up quark
family. D stays for the ‘Dirac neutrino.’ See text for more details.

When the left-right symmetry breaks, the U(1) quantum number prior to symmetry
breaking becomes the U(1) number electric charge for all LH fermions and takes the same
set of values (0, 1/3, 2/3, 1) across the three generations. Analogously, it takes the same
set of values (0, 1/3, 2/3, 1) as the square-root mass number across the three generations
of RH fermions, with the relative position of the electron and down quark interchanged.
The up quark family positions stay unchanged at 2/3. Since we make all measurements
using electric charge eigenstates (and not mass eigenstates), the mass eigenstates manifest
in measurements as superpositions of electric charge eigenstates, and the ratios of Jordan
eigenvalues reveal the observed mass ratios. Had we been making measurements using
mass eigenstates, the electric charge eigenstates would manifest as superpositions of mass
eigenstates, and we would have observed strange charge ratios.

Note that, in every set of three rows for a given [1/n]D, there is a row where the left
quantum number is the same as the right quantum number. These are the rows two, five
and eight, with the numbers (B1, B2), (E1, E2) and (H1, H2). These give rise to the mass
ratios (1/3, 2/3, 1) for the lightest charged fermions: electron, up quark, down quark. The
other two rows with any given [1/n]D flip eigenvalues. These are the rows one and three,
four and six, seven and nine. That is, (A1, A2) interchanges eigenvalues with (C1, C2), (D1,
D2) with (F1, F2), and (G1, G2) with (I1, I2).

The mass ratios arrived at, from these eigenvalues, as follows, simplest case being
the up quark family (up, charm, top) with its quarks, labelled u1, u2, u3. The up quark
has the square-root mass ratio u = E1 =2/3. The charm to up square-root mass ratio is
c/u = F1/D1 = (2/3 +

√
3/8)/(2/3−

√
3/8). The top to charm ratio is t/c = E1/D1 =

(2/3)/(2/3−
√

3/8).
The down quark family (down, strange, bottom) and the electron family (electron,

muon, tau lepton) are mixed, as can be seen in the first three and last three rows. For the
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[1/3]D rows, the first entry in every row is from the down quark family, and the second
entry from the electron family, whereas the roles are reversed in the [1]D rows.

As per the last three rows, the down quark has the square-root mass ratio d = H1 = 1.
The strange quark has the square-root mass ratio s/d = I1/G1 = (1 +

√
3/8)/(1−

√
3/8).

The bottom to strange ratio is (I1/G1) (I1/H1). The origin of the peculiar factor I1/H1
remains to be understood.

From the first three rows, we see that the electron has the square-root mass ratio
e = B1 = 1/3. The muon has the square-root mass ratio mu/e = (C1/A1)/(I1/G1), and this
same ratio also holds for tau/mu.

These ratios above are the same as those, shown earlier in Figure 2. We believe that the
octonionic theory provides a reasonably good understanding of the observed mass ratios of
charged fermions. The mixing of the down quark family and the electron family is possibly
the result of a gauge-gravity duality and of the fact that the three generations are not entirely
independent of each other but related by the triality property of SO(8) [18]. Another
remarkable feature we observed is that the eigenmatrices corresponding to the Jordan
eigenvalues for the charged fermions always have the diagonal entry as 1/3, irrespective of
whether the associated quantum number is 1/3 or 2/3 or 1. This seems to suggest that all
charged fermions are made of three base states that all have an associated quantum number
1/3. The possible consequences of these observations are currently being investigated.

5.4. Octonions and the Koide Formula

The Koide formula [35] is the following observation for the experimentally measured
masses of charged leptons:

me + mμ + mτ

(
√

me +
√mμ +

√
mτ)2 = 0.666661(7) ≈ 2

3
. (15)

That is, this ratio is close to (and a little less than) 2/3, but not exactly 2/3. Remarkably,
the octonionic theory explains when the ratio is exactly 2/3, and why it departs from that
exact value.

Prior to the left-right symmetry breaking, we can consider that a LH-electron-RH-
electron state has an associated electric-charge-square-rot-mass of 1, and the neutrino
is a Dirac fermion. In this case, the Jordan eigenvalues, as we mentioned above, are
(1−

√
3/2, 1, 1 +

√
3/2). These give the superposition amplitudes when RH mass eigen-

states are expressed as superposition of LH mass eigenstates. The Koide ratio is then

(1 +
√

3/2)2 + (1)2 + (1−
√

3/2)2

32 =
2
3

. (16)

Thus, the exact value 2/3 is realised prior to symmetry breaking and prior to when
the RH electron and RH down quark switch places. This switch might help understand
why the mass ratios for charged leptons know about the Jordan eigenvalues (1 +

√
3/8)

and (1−
√

3/8), which are otherwise associated with the down quark family.
Using our theoretical mass ratios for the charged leptons as reported in Figure 2, we

get the following theoretically predicted value for the Koide ratio,

me + mμ + mτ

(
√

me +
√mμ +

√
mτ)2 = 0.669163 ≈ 2

3
, (17)

which is greater than the experimentally measured value of the Koide ratio and also greater
than 2/3. The departure from the exact value of 2/3 is a consequence of the left-right
symmetry breaking and of the switch between the RH down quark and RH electron. (It
remains to be seen if the Karolyhazy correction will predict an exact match between theory
and experiment).
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Since unification already takes place at low energies (i.e., whenever the system is
quantum and not yet measured upon), it follows that, before we make a measurement
on the charged leptons to measure their masses, the Koide ratio is exactly 2/3. After
the measurement is made, the theoretical prediction for the resulting value is 0.669163,
whereas the measured value is smaller than 2/3. The uncertainty in the mass of the tau-
lepton 1776.86(12) MeV is such that, by demanding the Koide ratio to be 2/3, one can
predict the mass of the tau-lepton to be 1776.969 MeV. At the upper limit 1776.98 MeV of
the experimentally measured tau-lepton mass, the ratio is 0.66666728706, i.e., larger than
2/3, but smaller than our predicted theoretical value for Minkowski spacetime (the value
realised after measurement).

The above is an important result as we now know when the Koide ratio is exactly
2/3 (it is when the electron is not being observed). In addition, we understand why the
measured value of this ratio is not exactly 2/3. Actually, the measured value coud be
demanded to be equal to the theoretical value, and thereby fixing the mass of the tau-lepton.
It turns out there are no such allowed values for the tau-lepton mass, which is further
evidence that the measured value could lie between the spinor spacetime value (2/3) and
the Minkowski spacetime value if the mass of the tau lepton is greater than 1776.969 MeV.
This is also indirect evidence that sterile neutrinos exist.

5.5. Why Is Matter Electrically Neutral?

When left-right symmetry breaking mechanism in the early universe separated matter
from anti-matter, particles were segregated from their anti-particles. In addition, however,
the sign of the electric charge was not the criterion for deciding what went where. Matter
has the positively charged up quark (2/3) and the negatively charged down quark (−1/3)
and the electron (−1). Anti-matter has their anti-particles. If sign of electric charge was
the deciding criterion for separating matter from anti-matter, all particles in our universe
ought to have had the same sign of charge. That is not the case, and moreover, the matter
is electrically neutral. How could that have come about? Even the algebraic proof based
on the octonions, which shows quantisation of electric charge, naturally clubs positively
charged particles together, when their states are made from a Clifford algebra:

Particles Electric charge Anti–particles Electric charge

anti–neutrino 0 neutrino 0

anti–down quark 1/3 down − 1/3

up–quark 2/3 anti–up − 2/3

positron 1 electron − 1

What picks the up quark from the left, and down and electron from the right, and
clubs them as matter, and yet maintain electrical neutrality? We have proposed that the
criterion distinguishing matter from anti-matter is square-root of mass, not electric charge.
One can make a new Clifford algebra afresh from the octonions, and show that square-root
of mass is quantised, as in the above mass table. Let us now calculate the net electric charge
of matter, remembering that there are three down quarks (color) and three up quarks
(color): 0 + (−1 × 1) + (3 × 2/3) + (3 × −1/3) = 0. It seems remarkable that the sum
of the electric charges of matter (particles with +ve sqrt mass) comes out to be zero. It
need not have been so. This demonstration might help understand how matter-antimatter
separation preserved electrical neutrality. Before this separation, the net square-root mass
of matter and anti-matter was zero, even though individual sqrt masses were non-zero.
In this, we differ from the standard gauge-theoretic picture of EW symmetry breaking
and mass acquisition. In EW, particles are massless before symmetry breaking because
a mass term in the Lagrangian breaks gauge invariance. However, for us, sqrt mass is
not zero before the symmetry breaking—its non-zero value was already set at the Planck
scale (and cosmological expansion scaled down actual mass values while preserving mass
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ratios). Indeed, it is rather peculiar if, prior to the symmetry breaking, particles have
electric charge but no mass. For us, QFT (quantum field theory) on a spacetime background
(and hence gauge theories) are not valid before the left-right symmetry breaking. In fact,
spacetime itself, along with gravitation, emerge after this symmetry breaking, as a result of
the quantum to classical transition. Spacetime emerges iff classical matter emerges. Prior to
the symmetry breaking, dynamics are described by trace dynamics, there is no spacetime,
and we have ‘atoms’ of space-time-matter. The concepts of electric charge and mass are
not defined separately; there is only a charge-square-root mass (a hypercharge can also be
defined, as for EW), and this is the source for a unified force in octonionic space.

5.6. Octonions, Scale Invariance, and a CPT Symmetric Universe: A Possible Explanation for the
Origin of Matter–Antimatter Asymmetry

In the octonionic theory, prior to the so-called left-right symmetry breaking, the
symmetry group is E8× E8 and the Lagrangian of the theory is scale invariant. There is only
one parameter, a length scale, which appears as an overall multiplier of the trace Lagrangian.
Something dramatic happens after the symmetry breaking. Three new parameters emerge,
to characterise the fermions: Electric charge has two signs, sign change operation C is
complex conjugation, and ratios are (0, 1/3, 2/3, 1). Chirality/spin has two signs, sign
change operation P is octonionic conjugation. The ratios are (1/2, −1/2). Square-root
of mass has two signs, sign change operation, T, is time reversal, t → −t. Ratios are
(0, 1/3, 2/3, 1). Thus, there are 2 × 2 × 2 = 8 types of fermions, based on sign of charge,
square-root mass and spin. This could possibly offer an attractive explanation for the origin
of matter–antimatter asymmetry: a CPT symmetric universe. The four types of fermions
which have positive square root mass become matter, our universe, moving forward in
time. The other four types of fermions, which have negative square root mass, become
anti-matter, a mirror universe is surprisingly found moving backward in time. The forward
moving universe and the backward moving universe together restore CPT symmetry. Our
universe by itself violates T, and hence also CP. Matter and anti-matter repel each other
gravitationally, thus explaining their separation. This also explains why gravitation in
our universe is attractive, even though the underlying pre-gravitation theory is a vector
interaction. Prior to the symmetry breaking, an octonionic inflation (scale invariant, time-
dependent in Connes time) precedes the ‘big bang’ creation event, which is the symmetry
breaking itself. Freeze out happens when radiation to matter-antimatter transition is no
longer favorable. Segregation takes place; our matter universe has a one in a billion excess
of matter over anti-matter. The backward in time mirror universe has a one in a billion
excess of anti-matter over matter. The mathematics of complex octonions naturally account
for the C, P, T operations. Scale invariance is transformed into CPT invariance in the
emergent universe. We hope to make this idea rigorous in forthcoming investigations. In
an elegant proposal, Turok and Boyle [36] have also recently proposed a CPT symmetric
universe (mirror universes). They, however, did not use the octonions.

5.7. Prospects of Tests through Particle Physics Experiments and Phenomenology

In Section XV of [5], we have briefly discussed some of the possible experimental
predictions of this theory and prospects for their experimental tests. Below, we discuss some
particle physics related predictions and their possible relevance for collider experiments
and neutrino experiments. These ideas are largely based on a detailed conversation with
Ashutosh Kotwal, and their compilation by Vatsalya Vaibhav.

Our theory predicts specific new particles, though much work remains to be done to
predict their specific properties such as masses. We predict that the neutrino is Majorana
and that there are three right-handed sterile neutrinos. At present, we do not understand
neutrino masses, though there is a very real possibility that the neutrino is massless and
flavor oscillations are caused by spacetime being higher dimensional and octonionic, and
the neutrinos being spacetime triplets [18]. This possibility could be verified if we can
calculate the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix from first principles in
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the octonionic theory; this will be attempted in future work. The Majorana nature of the
neutrino also suggests neutrinoless double beta decay, experimental implications for which
we investigate further below. The possibility that the sterile neutrino could be massive
and light (hence hot dark matter) or heavy (hence cold dark matter) are also investigated,
although it is true that our theory favours MOND over cold dark matter.

Our theory also predicts a new charged Higgs boson, and possibly a doubly charged
Higgs, although their masses and the fundamental origin of their scalar nature remains to
be understood. In addition, of interest is whether the Higgs triplet in this theory can cause
the W mass to depart from the standard model prediction. The hierarchy problem, and
the exact mechanism of the electroweak symmetry breaking and the left-right symmetry
breaking remain to be understood: these could be the same symmetry breaking and could
perhaps be mediated by a quantum-to-classical phase transition. It is also of interest to
try and predict the (g-2) anomaly, some related physics was discussed in [10], and this
issue might also be related to our derivations of mass ratios and the low energy fine
structure constant.

A general line of investigation of serious interest is to note that our predictions are
made on octonionic twistor space, which is non-classical, whereas all measurements are in
Minkowski spacetime, and based on quantum field theory calculations. In transiting from
trace dynamics to emergent quantum field theory, there could be important and smoking
gun corrections, which could possibly be cast in the language of effective field theory.

As per our recent study on E8 × E8 symmetry, we have been able to account for 208
out of the 496 degrees of freedom [18]. While we have commented briefly in that study on
the unaccounted degrees of freedom, more work needs to be done to find if they predict
new particles which can confirm or rule out this theory.

5.8. Why Is There No Black Hole Information Loss Paradox in the Octonionic Theory?

There appears to be an information loss paradox because we are ignoring the phys-
ical process of the quantum-to-classical transition, which keeps the black hole (made of
enormously many quantum constituents) classical in the first place. Let us consider the
following analogy: Consider a box of gas at thermodynamic equilibrium—this is the maxi-
mum entropy and minimum information state. Now, a sudden spontaneous fluctuation
sends the entire set of gas molecules to one corner of the box. This is a transient low entropy
high information and ordered state, far from thermodynamic equilibrium. At the very
next instant, the gas molecules will return to equilibrium, spread all over the box, entropy
will have been gained, and information lost. If we ignore the spontaneous fluctuation,
which sent the gas to a corner, then we have an information loss paradox. Obviously, there
is no paradox in reality: information gained during the spontaneous fluctuation is lost
during the return to equilibrium. It is exactly the same physics, when we work with a
fundamental theory (generalised trace dynamics valid at Planck time resolution), from
which quantum theory and classical gravitation are emergent phenomena. Quantum theory
(without classical time) is emergent as the thermodynamic equilibrium state description in
a statistical thermodynamic approximation of the underlying theory. Classical gravitation,
spacetime, and hence the black hole, is far from the equilibrium transient state which
arises from a spontaneous fluctuation caused by non-unitary evolution. At equilibrium,
the evolution is unitary, except when a large fluctuation kicks in. In Adler’s theory of
trace dynamics, a collection of quantum states at thermodynamic equilibrium constitute
a state of maximum entropy (the most likely state to emerge from coarse-graining of the
underlying system). Departure from equilibrium by way of a spontaneous fluctuation
produces the black hole as a state of relatively low entropy and high information. By way
of Hawking evaporation, the black hole returns to the state of maximum entropy and
thermodynamic equilibrium (one has to be careful here while talking of pure states and
mixed states; there is no classical spacetime at thermodynamic equilibrium, in this theory.).
To this, one could object that not all black holes are formed in the way suggested in the
previous paragraph above. That is true; if one has in mind stellar gravitational collapse
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ending in black hole formation. However, let us trace the star all the way back to the very
early universe: inflationary quantum perturbations became classical, spacetime emerged,
density perturbations grew, the star formed, the black holes formed, it Hawking radiated,
and is going back to the inflationary stage, which was quantum in nature. The formation
of classical large scale structure in the universe is like the gas in the box spontaneously
fluctuating away from equilibrium. Hawking evaporation is like the gas returning to
equilibrium. Interestingly, the above reasoning also throws light on the current accelerating
phase of the universe. de Sitter like inflationary expansion is the natural expansion state
of the universe—the equilibrium quantum state. Emergence of classicality gives rise to
the radiation dominated and matter dominated eras, where matter density is high enough
to dictate a power-law expansion of the scale factor, overriding de Sitter like expansion.
In recent cosmic history, matter density is falling, and hence de Sitter like scale-invariant
expansion (quantum equilibrium) is again dominating. These dynamics are very likely
related to the emergent classical Lagrangian of our theory, which exhibits modification of
GR by conformal gravity, and will be investigated further for its cosmological implications.

5.9. How Taking the Square-Root of Minkowski Space-Time Paves the Way for Unification

In summary, we believe we have a promising theory of unification under development,
as captured in Figure 6 and explained briefly below.

Figure 6. Taking the square-root of 4-dimensional (4D) Minkowski space-time paves the way
to unification.

It is like going from the surface of the ocean to the ocean bed. The ocean floor
can exist without the surface, but the surface cannot exist without the floor. We live
in a 4D Minkowski space-time curved by gravitation, in which standard model gauge
fields and fermions reside. However, there is a more precise description. We take the
square-root of Minkowski space-time and arrive at Penrose’s twistor space, described by
complex numbers. In this spinor space-time, replace complex numbers with quaternions,
then by octonions. More precisely, complex split bioctonions. We arrive at a space with
E8 × E8 symmetry whose geometry is a unified description of the standard model and pre-
gravitation. The gauge group is SU(3)c × SU(2)L ×U(1)Y × SU(3)G × SU(2)R ×U(1)g.
Coupling constants are determined by the geometry. In the classical limit, the 4D curved
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spacetime and the standard model emerge, but with pre-determined values of coupling
constants. Fermions span space-time as well as the space of the gauge fields. Taking the
square root of Minkowski space-time does not involve change of energy scale. It only
gives a more precise mathematical formalism—one that is key to unification, which already
takes place at low energies, if we do not restrict ourselves to 4D classical spacetime: only
classical systems live in 4D. Quantum systems always live in E8 × E8 even at low energies.
If we want a comparison with string theory, then this new theory is string theory without
compactification. Compactification is effectively achieved by the quantum-to-classical
transition; it does not have to be enforced in an ad hoc manner.
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Abstract: The Barbero–Immirzi parameter, (γ), is introduced in loop quantum gravity (LQG), whose
physical significance is still the biggest open question because of its profound traits. In some cases,
it is real valued, while it is complex valued in other cases. This parameter emerges in the process
of denoting a Lorentz connection with a non-compact group SO(3, 1) in the form of a complex
connection with values in a compact group of rotations, either SO(3) or SU(2). Initially, it appeared
in the Ashtekar variables. Fernando Barbero proposed its possibility for inclusion within formalism.
Its present value is fixed by counting micro states in loop quantum gravity and matching with the
semi-classical black hole entropy computed by Stephen Hawking. This parameter is used to count the
size of the quantum of area in Planck units. Until the discovery of the spectrum of the area operator
in LQG, its significance remained unknown. However, its complete physical significance is yet to be
explored. In the present paper, an introduction to the Barbero–Immirzi parameter in LQG, a timeline
of this research area, and various proposals regarding its physical significance are given.

Keywords: loop quantum gravity; Ashtekar variable; Barbero–Immirzi parameter; area operator;
black hole entropy

1. Introduction

Loop quantum gravity (LQG) is one of the supposed candidates of the theory of
quantum gravity. It can unify general relativity (GR) with quantum field theory (QFT). It
is a non-perturbative and background independent approach to quantum gravity theory.
LQG begins with GR; thereafter, it takes some conceptual basis from QFTs to deliver a
quantum theory of gravity. LQG is a theory of constraints, in which various constraints
such as Hamiltonian, diffeomorphism and Gauss constraints are converted into operators.
In the canonical quantization approach of LQG (ADM formalism), 3 + 1 decomposition
of spacetime is necessary to quantize gravity; however, the covariant approach (sum over
geometry) follows a different strategy. Here, due to limited space, basics of LQG are not
given. There are many classic texts [1–10] and papers [11–23] that explain LQG lucidly.

In 1986, Abhay Ashtekar [24] found new kind of variables (Ashtekar’s variable) in
classical and quantum gravity. In Ashtekar’s formulations, the constraints are simplified
by considering a complex valued form for the connection and tetrad variables, and these
are known as Ashtekar’s variables [1–5].

While dealing with the reality condition of the formalism of Ashtekar’s variable, Bar-
bero [25,26] firstly introduced a free parameter in the expression of Ashtekar’s variable and
then in the expression of constraints. Thereafter, Immirzi [27,28] used various possibilities
of this free parameter in the expression of LQG. This free parameter is nowadays known as
the Barbero–Immirzi (BI) parameter, γ. Given γ is complex or real, it provides a number of
results in LQG. In some cases, the real valued BI parameter is required, while in the other
cases, the complex valued BI parameter is necessary [1–5].

The physical significance of the area operator in LQG with the complex BI parameter
becomes ambiguous. The LQG kinematics, i.e., kinematical Hilbert space can only be
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comprehended if the γ is a real number. The SU(2) spin network of LQG can only be
created with the real value of the BI parameter [1–5].

With the complex value of the BI parameter (γ = i), the spatial connection can be seen
as spacetime connection, since it transforms under diffeomorphism in the right way. There
are also some cases that show that the complex valued BI parameter is also crucial in LQG
formalism. For instance, the form of Hamiltonian constraints becomes simpler if γ = i is
taken [1–5].

In the next Section, various proposals regarding the BI parameter are briefly reviewed
in which some proposals advocate the real valued BI parameter, while the other advocates
the complex valued BI parameter.

1.1. Ashtekar’s Formalism

Before the discovery of Ashtekar’s variables, the Palatini action, i.e., the first-order
formulation, was incomplete. However, Ashtekar formalism made it complete. In the
Palatini action, the tetrad, eμ

J , and the spin connection, ω JK
μ , are used as independent

variables. In GR, the Palatini action is written as [1–5]

SP =
∫

d4xeeμ
J eη

KΩJK
μη [ω], (1)

where e =
√−g, where g is the determinant of the 4-dimensional metric, gμν, and ΩJK

μη is
the curvature. The capital Latin letters are the internal indices, the Greek and lower-case
Latin letters denote the time (0) and space coordinates. The [ω] denotes the spin connection.
Using the Palatini action, the Einstein field equation could be derived, but the form of
equation of constraints within this formalism is mathematically complicated [1–5,12,15,17].
The generalization of the Palatini action is equivalent to the Ashtekar formalism, and it is
achieved by the Holst action [29].

In the Ashtekar formalism, by converting tetrads into triads, i.e., three-dimensional
hypersurfaces Σt, one gets eJ

μ → ej
c, where μ → c ∈ {1, 2, 3}, J → j ∈ {1, 2, 3} and

the spin connection is also transformed as Γj
c = ωcklε

klj, where εklj is the Levi-Civita
tensor [1–5,12,15,17].

The Hamiltonian constraint is a complicated non-polynomial function in Palatini
formulation; thus, canonical quantization is not easy within this formalism. In Palatini
formulation, the variables of phase space are (ej

c, Γj
c), where ej

c is the intrinsic metric of the
spacelike manifold Σ and Γj

c is a function of its extrinsic curvature [1–5,12,15,17].
In the Ashtekar’s formalism, complex valued connection Γj

c replaces the real connec-
tion ω JK

μ with duality (either self (+1) or anti-self (−1)) [1–5,12,15,17],

Ẽc
j →

1
i

Ẽc
j , Kj

c → Aj
c = Γj

c − iKj
c , (2)

where Ẽc
j is the scalar density or triad electric field, Aj

c is the Ashtekar–Barbero connection

or spatial connection, Kj
c = kcdedj with kcd the extrinsic curvature of Σ. Thus, there are two

phase space variables, i.e., Aj
c and Ẽc

j [1–5,12,15,17].

Since the Ashtekar’s connection formulation variables, i.e., Aj
c and Ẽc

j , follow rotation
of SU(2) symmetry with respect to the internal indices, the Ashtekar’s formalism plays the
role of SU(2) gauge theory, and this SU(2) group is a subgroup of SL(2,C) [1–5,12,15,17].

All three constraints are simplified in Ashtekar’s variables, and their expressions are
[1–5,12,15,17]:

Gj = DcẼc
j , (3)

Cc = Ẽd
j Fj

cd − Aj
cGj , (4)
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H = ε
jk
l Ẽc

j Ẽd
k Fl

cd . (5)

Here, Dc is the covariant derivative.
Equations (3), (4), and (5) are Gauss, diffeomorphism, and Hamiltonian constraints,

respectively. In Ashtekar’s formalism, the Einstein–Hilbert–Ashtekar (EHA) Hamiltonian
of GR reads [1–5,12,15,17]:

HEHA = NcCc + NH+ TjGj = 0 (6)

where Cc,H,Gj, Nc, and N are the vector constraint, the scalar constraint, the Gauss con-
straints, the shift, and the lapse, respectively. The Tj is a Lie algebra valued function over
spatial surface [1–5,12,15,17].

The unit imaginary, i.e., i =
√
−1, which appears in Equation (2), makes the formalism

complex valued. Therefore, some restrictions in terms of reality conditional on the possi-
ble solutions of the theory must be applied to achieve tangible physical results relevant
to a metric valued in R instead of in C [1–5,12,15,17].

For example, if Ż is used to represent the time derivative of Z, then the reality condition
and constraints, i.e., Gj = DcẼc

j must be satisfied by solutions. In this case, there are two
reality conditions, and the second condition is the time derivative of the first condition;
thus [1–5,12,15,17],

Ẽc
j Ẽd

k δjk ∈ R, (7)

{Ẽc
j Ẽd

k δjk}• ∈ R. (8)

with δjk being the Kronecker delta.
In a standard form, the Ashtekar variables are given as [1–5,12,15,17]

Ẽc
j →

1
γ

Ẽc
j , Kj

c → Aj
c = Γj

c − γKj
c . (9)

If γ = i, then the equation takes the original form.
The Poisson brackets are written as [1–5,12,15,17]

{Kj
c(x), Ẽd

k (y)} = {Aj
c(x), Ẽd

k (y)} = kδ
j
kδd

c δ(x, y), (10)

where k = 8πGγ with G the gravitational constant.
In a standard form [1–5,12,15,17],

{Aj
c(x), Ẽd

k (y)} = 8πGγδ
j
kδd

c δ3(x, y). (11)

The reality condition is not necessary for a real value, and as a result, new variables
and constraints are also real [1–5,12,15,17].

The form of the Hamiltonian constraint becomes complicated with the real value of
the γ, i.e.,

H = ε
jk
l Ẽc

j Ẽd
k Fl

cd − 2(1 + γ2)Ẽ[c
j Ẽd]

k Kj
cKk

d ≈ 0. (12)

If, γ = i; then the form of Hamitonian constraints simplifies [1–5,12,15,17].

1.2. Why the BI Parameter Was Introduced in LQG?

As mentioned, the complex valued Ashtakar’s variables simplified constraints of
quantum gravity based on canonical quantization, i.e., LQG. Thereafter, Barbero [25,26]
came up with a new strategy to tackle Ashtekar’s variable with real value for Lorentzian
signature space-times. In [25,26] Barbero wrote down Ashtekar’s variable with a free
parameter (Equation (9)); namely, γ (denoted β there). Ashtekar used SU(2) and SL(2,C)
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groups of Yang–Mill theory to deliver complex valued constraints, i.e., Ashtekar’s variables.
Meanwhile, Barbero showed that one can use SO(3) Yang–Mill phase space to expressthe
modified Hamiltonian constraint with Lorentz signatures without complex variables to
elaborate space-times without losing the features of Ashtekar’s variables [1–5,25].

Barbero [25,26] also showed that for simple forms of a Hamiltonian constraint, complex
variable is required, while for a complicated form, this constraint could be written with real
variables; for instance, a loop variable of LQG. Barbero derived a Hamiltonian constraint
with γ2 = 1 (real valued and Euclidean signature). Meanwhile, the Lorentzian signature
again yields a complex valued form of the equation. Barbero also derived a Hamiltonian
constraint with γ = −1. The Hamiltonian constraint could also be written with real
Ashtekar variables for Lorentzian general relativity with SO(3) ADM formalism [25].

Thereafter, Immirzi [27,28] further clarified on the importance of this parameter. In
these papers, Immirzi explained canonical quantization of gravity, i.e., LQG with the Regge
calculus. In Immirzi elaborated the basics of LQG with the discussion on the γ. Immirzi
discussed various possibilities of the value of the γ and named this arbitrariness of the γ
the γ crisis [27,28].

Since Barbero introduced this free parameter and Immirzi used it to explain the
canonical quantization method along with Regge calculus, the γ is known as the Barbero–
Immirzi parameter. In short, Barbero used one-parameter scale transformation to generalize
the Ashtekar canonical transformation to a U(γ). Meanwhile, Immirzi observed that such
a transformation modifies the spectra of geometrical quantities of LQG [1–5,27,28].

1.3. The Holst Action and the BI Parameter

Today, there are two types of version for the connection variables: SL(2,C) with a self
duality of Yang–Mills type of connection i.e., the Ashtekar connection, and the connection
with a real SU(2) the Barbero connection. In the latter type of connection, the issue of the
reality condition is not present. With the aid of the Holst action, both of the connections
can be obtained. The γ is introduced in the Holst action as a multiplicative constant that
governs the strength of the dual curvature correction.

The Holst action generalizes the Hilbert–Palatini action using the γ. The Holst action
can be derived in the following way using the Einstein–Hilbert action (EH). In GR, the EH
action is written as [1–5,15,29]

SEH(gμν) =
1

16πG

∫
d4x

√
−ggμνRμν, (13)

where Rμν is the Ricci tensor.
If e =

√−g and 8πG = 1 are taken; then [1–5,15,29],

SEH(gμν(e)) =
∫

d4xeeμ
J eνJ Rμνητeη

KeτK

=
∫

d4xeeμ
J eη

KFJK
μη (ω(e)),

where FJK
μη (ω(e)) = eJμeηKRμνητ(e),

SEH(gμν(e)) =
∫

d4x
1
4

εJKLMεμηαβeL
α eM

β FJK
μη (ω(e)).

Hence, as a functional of a densitized triad, the Einstein–Hilbert action takes the
form [1–5,15,29],

∴ S
(

eJ
μ, ω JK

μ

)
=

1
2

εJKLM

∫
eJ ∧ eK ∧ FLM(ω). (14)

By considering the Palatini identity, i.e., δω = FLM(ω) = dωδLM
ω where dω denotes

derivative with respect to ω, and taking the variation of Equation (14), one gets [1–5,15,29]:

δωS
(

eJ
μ, ω JK

μ

)
=

1
2

εJKLM

∫
eJ ∧ eKdωδLM

ω ,
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∴ δωS
(

eJ
μ, ω JK

μ

)
= −1

2
εJKLM

∫
dω

(
eJ ∧ eK

)
∧ δLM

ω . (15)

If the coupling constant, 1/γ, is added in Equation (14), then one gets the Holst
action [1–5,15,29], i.e,

S(e, ω) =

(
1
2

εJKLM +
1
γ

δJKLM

) ∫
eJ ∧ eK ∧ FLM(ω). (16)

The Holst action is equivalent to the Ashtekar Hamiltonian if γ = i is set in
Equation (16) [1–5,15,29].

In general, the Holst action is written as [1–5,15,29]

S[e, A] =
1

8πG

(∫
d4xeeμ

J eν
KFJK

μν −
1
γ

∫
d4xeeμ

J eν
K ∗ FJK

μν

)
(17)

where the symbol “∗“ denotes the self-duality in Equation (17) in the presence of the BI
parameter.

2. Various Proposals on the Physical Significance of the BI Parameter

In this Section, the historical time line of the research in the BI parameter and various
proposals on the physical significance of the BI parameter are briefly discussed. After
introducing each of the proposals, pros and cons of a proposal are given and the role of the
BI parameter is explained. Here, all proposals are explained only in the context of the BI
parameter to an extent relevant to the necessary mathematical treatment.

2.1. Historical Timeline

Table 1 shows the historical timeline of research on the BI parameter in LQG in a
chronological order. The table lists the enriched literature of the BI parameter and clarifies
on the importance of the study of the BI parameter in LQG. The listing implies that the BI
parameter is itself a crucial research area in LQG.

Table 1. Timeline of research on the Barbero–Immirzi parameter.

Year Research on the BI Parameter and Its Significance

1986 Discovery of the Ashtekar variables
1995 Real Ashtekar variables for Lorentzian signature space–times
1996 Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action
1996 Black hole entropy from loop quantum gravity
1996 From Euclidean to Lorentzian general relativity: the real way
1996 Real and complex connections for canonical gravity
1997 Quantum gravity and Regge calculus
1997 Counting surface states in loop quantum gravity (LQG)
1997 Immirzi parameter in quantum general relativity
1997 On the constant that fixes the area spectrum in canonical quantum gravity
1998 Quantum geometry and black hole entropy
2000 Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity?
2001 Comment on “Immirzi parameter in quantum general relativity“
2003 Quasinormal modes, the area spectrum, and black hole entropy
2004 Black-hole entropy in loop quantum gravity
2004 Black-hole entropy from quantum geometry
2005 Origin of the Immirzi parameter
2005 Physical effects of the Immirzi parameter
2005 On choice of connection in LQG
2007 On a covariant formulation of the Barbero–Immirzi connection
2007 Renormalization and black hole entropy in Loop Quantum Gravity

2008 From the Einstein–Cartan to the Ashtekar–Barbero canonical constraints, passing through
the Nieh–Yan functional

2008 The Barbero–Immirzi parameter as a scalar field: K-inflation from LQG?
2008 Topological interpretation of Barbero–Immirzi parameter

55



Physics 2022, 4

Table 1. Cont.

Year Research on the BI Parameter and Its Significance

2009 Peccei–Quinn mechanism in gravity and the nature of the Barbero–Immirzi parameter
2010 A relation between the Barbero–Immirzi parameter and the standard model
2011 Complex Ashtekar variables, the Kodama state and spinfoam gravity
2012 The quantum gravity Immirzi parameter—A general physical and topological interpretation
2012 Complex Ashtekar variables and realitycConditions for Holst’s action
2013 Black Hole Entropy from complex Ashtekar variables
2014 Geometric temperature and entropy of quantum isolated horizons
2014 A Correction to the Immirizi Parameter of SU(2) Spin Networks

2014 The Microcanonical Entropy of quantum isolated horizon, “quantum hair” N and the
Barbero–Immirzi parameter fixation

2015 The holographic principle and the Immirzi parameter of loop quantum gravity

2017 Immirzi parameter without Immirzi ambiguity: conformal loop quantization of
scalar-tensor gravity

2018 Horizon entropy with loop quantum gravity methods
2018 Generalizing the Kodama state. I: construction
2018 Generalizing the Kodama state. II: properties and physical interpretation
2018 Chiral vacuum fluctuations in quantum gravity
2018 Black hole entropy from the SU(2)-invariant formulation of Type I isolated horizons
2018 Black hole entropy and SU(2) Chern–Simons theory
2020 On the value of the Immirzi parameter and the horizon entropy

2.2. The Area Operator and the BI Parameter

In LQG, the loop states as a graph or network Θ with edges ei denoted by elements of
some gauge group. In general, this gauge group can be SU(2) or SL(2,C) [1–5,12,15,17],

ψΘ = ψ(g1, g2, . . . , gk), (18)

where k = 0, 1, 2, . . . , n and gk is the holonomy (group element) of connection A on the
kth edge; see Figure 1. In LQG, the spin network is used to describe these loop states.
Penrose [30,31] gave the notion of the spin network. In the spin network, the combinatorial
principle of angular momentum is used, and it defines the space–time in discrete way. In
LQG, the spin network is essential for representing the loop state [1–5,12,15,17].

Figure 1. A diagram of spin network. See text for details.

The area of a two-dimensional (2D) surface, S, that is embedded in any manifold, Σ, is
defined as [1–5,12,15,17]

AS =
∫

d2x
√

(2)m, (19)

where (2)m is the determinant of the metric (2)mEF. The area is 2D; hence, the components
of the 2D metric (2)mEF can be denoted as the dyad basis, eJ

E, and E, F ∈ {x, y} here are
spatial indices
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2mEF = eJ
EeK

F δJK. (20)

The determinant of 2mEF can be written as [1–5,12,15,17]

det
(

2mEF

)
= m11m22 −m12m21 = �ez ·�ez. (21)

Hence, Equation (19) becomes [1–5,12,15,17]:

AS =
∫

d2x
√
�ez ·�ez. (22)

In LQG, the frame field ek
E and the connection AE

k are conjugates. For instance, ek
E →

−ih̄ δ
δAE

k
, where h̄ is the reduced Planck’s constant. Inserting the latter into Equation (22)

[1–5,12,15,17],

ÂS =
∫

d2x

√
δJK

δ

δAz
J

δ

δAz
K

. (23)

In LQG, eJ
EeK

F = δ
δAE

J

δ
δAF

K
= nEnF J J JK. For SO(3) group, the generator is the angular

momentum operator, J J . Here, nE and nF are unit tangent vectors. Therefore, the equation
of the area operator becomes [1–5,12,15,17]

ÂS = Σp

√
δJKnEnF J J JK = Σp

√
δJK ĴJ ĴKΨΘ(∵ ncnc = 1), (24)

∴ ÂS = Σp
√

J2. (25)

However, the quantum state of J is J2|j〉 = h̄2 j(j + 1)|j〉, where j represents the value
of the quantum spin; hence, the equation is [1–5,12,15,17]:

ÂSΨΘ = l2
PΣp

√
jp(jp + 1)ΨΘ, (26)

where l2
P = Gh̄/c3 is the Planck area with c the speed of light.

In LQG, lines of the spin network can intersect. Any surface Σ acquires area through
the puncture of these lines [1–5,12,15,17]; see Figure 2.

Figure 2. A diagram of surface puncture. See text for details.

In standard form, the area operator with the γ can also be written as [1–5,12,15,17]

∴ ÂS = γl2
PΣp

√
jp(jp + 1). (27)

The proportionality coefficient in the formula of area operator in LQG includes the
γ [1–5,23]. In 1998, Krasnov [32] found that the multiplicative factor of the area operator is
8πγ. Hence, the equation is [1–5,12,15,17]

57



Physics 2022, 4

A = 8πγl2
P

√
j(j + 1). (28)

Similar to the area operator, the BI parameter also appears in the volume operator.
The spectrum of volume operator can only be understood; if the γ is real valued [1–5].

Pros and Cons of the Area Operator and the BI Parameter

The spectrum of the area and the volume operator and its eigenvalue can only be
understood with the real valued γ. As mentioned, the complex valued γ makes these
operators complex valued and the significance of these complex valued operators is am-
biguous. Is there any valid significance of the area operator and the volume operator with
the complex valued γ? This question is still unresolved.

In short, there are two difficulties for the complex valued γ for these geometrical
operators. (1) The physical significance of the complex valued geometrical operators such
as the area and the volume operator is yet to be found. (2) The mathematical structure of
the complex valued geometrical operators is not yet clear and complete.

2.3. The BI Parameter and Black Hole Entropy Calculation in LQG

The expression of entropy of a black hole in Planck units calculated semi-classically by
Hawking is written as [1–5,23]

S = A/4. (29)

In 1996, Rovelli [33] calculated black hole entropy within LQG using the statistical frame-
work.

In LQG, any surface obtains area when the link of the spin network punctures that
surface. One can allot micro states to each surface puncture. Thus, the micro states are
associated with the discrete pieces of the surface, which provide the value of area spectrum
by puncturing. So, the entropy, S, is proportional to the log of the number of ways in which
the sphere can be punctured that provides an area within each macroscopic interval (see
Figure 3) [33].

Figure 3. The black hole entropy through puncture in the surface of the event horizon. The rectangles
show micro states.

If the eigenvalue, Ap, of the area operator is expressed via the jp of the form mp/2
(mp ∈ Z), then [33]

Ap = 4πγl2
P

√
mp(mp + 2). (30)

For an interval [A + δA, A − δA], where δA is some small interval (δA/A 	 1),
A is a macroscopic value of area. The allowed number N(M) of sequences of integers
{mp, . . . , mN}, p = 1, 2, 3, . . . , N, is determined by the number N of edges that puncture
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the surface, so that the determined value for the total area lies within the given interval,
M = A/(4πγl2

P) [33].
The number of sequences N(M), in which each sequence is {mp}, can be given as [33]

M =
A

4πγl2
P
= Σp

√
mp(mp + 2). (31)

The number of sequences is indicated by N+(M), such that Σpmp = M and the
number of sequences is indicated by N−(M), such that Σp(mp + 1) = M. Hence, the given
set of inequalities implies that [33]

N−(M) < N(M) < N+(M). (32)

From calculation, ln N+(M) = ln 2, ln N−(M) = ln 1+
√

5
2 and ln N(M) = dM. From

Equation (32), the inequalities are now given as [33]

ln 1+
√

5
2 < d < ln 2,

0.48 < d < 0.69.
(33)

By taking M = A/(8πh̄G), one gets

ln N(A) = d A
8πh̄G ,

S(A) = k ln N(A),
(34)

∴ S(A) = c
k

h̄G
A, (35)

where c = d/(8π) = 1/4 is constant.
In 1997, Ashtekar et al. [34] showed that spin networks explains spacetime geometry

outside a black hole. Some edges of this spin network puncture the event horizon and
provide the value of area through this contribution. The U(1) Chern–Simons theory
explains the quantum geometry of the horizon. In this formalism, the rotation of SO(2)
describes 2D geometry, which is isomorphic to U(1). The entropy of a black hole is
calculated by counting the spin network states relevant to an event horizon. Thus, the
expression of black hole entropy in LQG is [1–5,34],

S =
γ0 A
4γ

. (36)

There are two possibilities for the value of γ0 [1–5,34], i.e.,

γ0 =
ln 2√

3π
(37)

or
γ0 =

ln 3√
8π

. (38)

The value of γ0 relies on the choice of the gauge group. By taking γ0 = γ, one gets
actual black hole entropy formula, calculated by Hawking [1–5,34], i.e.,

S =
γ0 A
4γ0

=
A
4

. (39)

This calculation is true for each sort of black hole. The black hole entropy calculation
in LQG is a quite enriched research area. The value of the γ and black hole entropy formula
in LQG is a topic whose implications are far-reaching [1–5,34].

In 2002, Dreyer [35] fixed the value of the γ using classical quasinormal mode spectrum
of a black hole and gave black hole entropy formula in LQG with SO(3) group instead of
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SU(2). Instead of jmin = 1/2, the value of jmin = 1 is taken in the expression of the area
operator, i.e.,

ΔA = A(jmin) = 8πγl2
P

√
jmin(jmin + 1). (40)

In this case, the change in the mass due to the frequency of the quasinormal modes
(QNM) is [35]

ΔM = h̄ωQNM =
h̄ ln 3
8πM

. (41)

For a Schwarzschild black hole, the area and the mass are related to each other by
the relation A = 16πM2. A change in the area corresponding to the mass change is given
as [35]

ΔA = 4 ln 3 l2
P. (42)

The expression for the γ is obtained through comparison between Equations (40)
and (42) [35],

γ =
ln 3

2π
√

jmin(jmin + 1)
. (43)

If jmin = 1 is taken in Equation (43), then the fixed value of the BI parameter is [35]

γ =
ln 3

2π
√

2
. (44)

Thereafter, Meissner [36] fixed the value of the area in LQG by fixing γM and γ by com-
paring the Bekenstein–Hawking entropy formula with the derived formula. The Bekenstein–
Hawking entropy formula reads:

S =
1
4

A
l2
P

. (45)

In [36], the derived expression of the black hole entropy formula is:

S = ln N(a) =
γM
4γ

A
l2
P
+O(ln A). (46)

Here, by comparing the derived black hole entropy Formula (46) with the Bekenstein–
Hawking Formula (45), one gets [1–5,36].

γ = γM. (47)

The calculated value of γM is [36]

γM = 0.2375 . . . (48)

or
γM = 0.2739 . . . (49)

In 2004, Domagala and Lewandowski [37] defined microscopic degrees of freedom to
count the black-hole entropy. On the basis of a ratio, i.e., ln(N(a))/a, for large a, the value
of entropy (the eigen value of area operator is equal to or less than a that is a number; for
quantum states of black holes) is

ln 2
4πγl2

P
a ≤ ln N(a) ≤ ln 3

4πγl2
P

a. (50)

Hence, the upper and lower bounds value for γ are [37]
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ln 2
π
≤ γ ≤ ln 3

π
. (51)

Since the spin greater than 1/2 also contributes to the entropy, this contribution is also
considered here [37].

In 2007, Jacobson [38] studied the renormalization and the black hole entropy in
LQG. For black holes, he found that the microscopic state counting is related to Newton’s
universal constant

G:

SLQG =
b
γ

A
h̄G

, (52)

where b is a numerical constant. In LQG, from Equation (52), one can see that the entropy
is related to the area of the horizon A (SLQG ∝ A) and the gravitational constant G
(SLQG ∝ 1/G) [38].

Jacobson found that one should compare this formula with the actual Bekenstein–
Hawking entropy formula after accounting the scale dependence of Newton’s constant and
area. For any value of the γ, if some property of the renormalization is followed, then one
can compare both entropy formulas. The BI parameter to be γ = 4b to match the black hole
entropy in LQG with the Bekenstein–Hawking Formula (45) [38].

In 2013, Frodden et al. [39] found that by taking complex valued Ashtekar variables,
the black hole entropy formula is achieved in certain conditions. In this case, the BI
parameter can be complex valued (γ = ±i). Ref. [39] shows that the number of micro
states NΓ(A, γ→ ±i) acts as exp

(
A/(4l2

P)
)

for certain case, i.e., for large area A in the
large spin semi-classical limit. With respect to the complex self-dual Ashtekar connections,
NΓ(A,±i) is the number of states for a theory to be defined.

The SU(2) Chern–Simons theory is related to the study of the black hole entropy in
LQG. From SU(2) to SL(2,C) representation, the formula for the Hilbert space of SU(2)
Chern–Simons theory follows a specific analytic continuation with constraints of self-
duality. The complex formulation (with the Ashtekar variables) within this proposal gives
the derivation of the black hole entropy within LQG formalism for a large spin asymptotic
domain which is semi classical in nature [39]. Hence,

log(NΓ(A,±i)) ∼ A
4 l2

P
. (53)

One can list more papers on black hole entropy in LQG [40–48].

Pros and Cons of the BI Parameter and Black Hole Entropy Calculation in LQG

On the basis of the black hole entropy calculation in LQG, one gets various expressions
for the real valued γ, such as γ0 = ln 2√

3π
, γ0 = ln 3√

8π
and γ = ln 3

2π
√

2
. The numerical value

for the γ is either 0.2375 . . . or 0.2739 . . . based on the calculation. The BI parameter is also
expressed in terms of a numerical constant b, i.e., γ = 4b. With the complex valued γ, the
black hole entropy can also be calculated using SU(2) Chern–Simons theory. Whether it
is the real valued or the complex valued γ; the black hole entropy can be calculated in
LQG. However, the interpretation of the complex valued BI parameter within the black
hole entropy formula in LQG is difficult to comprehend.

One criticism for the black hole entropy calculation in LQG is regarding the different
value of the γ. However, this criticism is easy to address, because a value of the real valued
γ can be applied to all kinds of black holes. The γ is a free parameter; its same value is
applied to all kinds of black hole.

2.4. The BI Parameter as Immirzi Ambiguity

In LQG, the geometrical observables, such as the area and the volume, are quantized
and exhibit a discrete spectrum. In 1996, Immirzi noticed that LQG does not determine
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the complete scale of these spectra [27]. Immrizi also observed that one can have different
spectra for the same geometrical quantities, if starting with the scaled elementary variables.
The algebra of holonomy relies on a free parameter that gives the family of one parameter
of quantum theories with inequivalence. The γ represents this family of one parameter [49].

There is a certain symmetry under study, according to which classical theory is identi-
fied as a canonical transformation; however, one cannot identify it as a unitary transforma-
tion of quantum theory. Since the holonomy is the operator of LQG and because of weird
sort of representation of LQG, one has to consider the γ as an ambiguity [49].

In LQG, there are two connections, i.e., A and Γ. Therefore, one has to create the
γ-scaled connection, namely, Aγ, via interpolation between different connections. Thus,
the elementary excitation of LQG—namely the Wilson loop of Aγ—has different results for
various value of the γ. Therefore, some physical spectrum of quantity of LQG relies on the
γ [49].

Additionally, the metric information resides in the E (conjugate variable). Since E is a
conjugate for connection, in quantum formalism, it is written as a derivative operator that
acts on functions over the group. Over the group manifold, any geometrical quantity that
is a function of E behaves as an elliptic operator that results in the discrete spectrum. Such
elliptic operators possess non-vanishing scalar dimension relative to the affine scaling of the
connection. Hence, in the elliptic geometric operators spectrum, ambiguity is introduced,
i.e., the Immirzi ambiguity. This ambiguity influences the discreteness of the space in LQG.
In [49], the The authors also described that various interpretations regarding the γ are
incorrect in context with the Immirzi ambiguity. The authors also gave various models such
as harmonic oscillator with no Immirzi ambiguity, a particle on a circle with no Immirzi
ambiguity, and a simple model with γ as a free parameter. Due to lack of space, here, only
the cause of the Immirzi ambiguity and its effect in LQG are given [49].

In the year 2001, Samual [50] commented that interpretations of the Immirzi ambiguity
are unclear and do not give any agreement on its origin and significance. All interpretations
of the BI parameter as Immirzi ambiguity seem unclear, and do not give any satisfactory
explanation about the origin and significance of it. Moreover, the examples of the Immirzi
ambiguity are not real, but are artificially generated through the compactification of the
configuration space.

In 2017, Veraguth and Wang [51] gave a proposal in which they explained LQG
without Immirzi ambiguity using conformal LQG. The conformal LQG provides a way to
achieve loop quantization through a conformally equivalent class of metrics. The conformal
geometry gives an extended symmetry to permit a reformulated BI parameter. In scalar–
tensor gravity, this can be achieved via conformal frame transformations. In this proposal,
the authors showed that the LQG, along with a conformally transformed Einstein metric
which has dissimilar values of the relevant BI parameter, are connected by a conformal
frame with global change. The conformal LQG is free from the Immirzi ambiguity. They
defined the Ashtekar variables in the following way [51]:

A
′ j
c = Γj

c + γκKj
c,

1
γκ

Ej
c. (54)

Pros and Cons of the BI Parameter as Immirzi Ambiguity

Research on the Immirzi ambiguity is still incomplete. As mentioned, there is a
specific symmetry under study, according to which classical theory is identified as a
canonical transformation, but one cannot identify it as a unitary transformation of quantum
theory. This is the reason behind the Immirzi ambiguity. One-parameter family of the BI
parameter is another reason. The γ-scaled connection, namely Aγ for various values of
the BI parameter, is also different. The elliptic nature of the geometric operator due to the
frame field E that is a conjugate to the connection A is also responsible for the Immirzi
ambiguity. However, the conformal formalism of LQG may remove the Immirzi ambiguity.

The BI parameter was added into the LQG framework to remove mathematical com-
plexities (in the connection formalism, constraints equations, geometrical operators equa-
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tions and many other important equations); however, it emerged as ambiguity because of
the above-mentioned causes.

2.5. Origin of the BI Parameter

In 2005, Chou et al. [52] found a technique, through which a ratio which equals the γ
is obtained. They used quadratic spinor techniques, in which the physical significance and
effect of the γ become obvious in GR. The authors also inferred that without other matter
fields in GR, the γ as a observable is a physical property of the sector of gravity.

Firstly, the Holst action is defined in a novel way [52], i.e.,

S[e, ω] = α
∫
∗
(

ec ∧ ed
)
∧ Rcd(ω) + γ

(
ec ∧ ed

)
∧ Rcd(ω), (55)

where the γ is a ratio, i.e., γ = α/β, c, d, . . . = 0, 1, 2, 3, and “∗“ denotes duality. Thereafter,
the authors compared the Equation (55) with the quadratic spinor Lagrangian [52], i.e.,

Lψ = 2D(ψ̄e)γ5D(ψe) , (56)

where ψ is auxiliary spinor field, e is e = ecγc, D is the covariant derivative, and γc is the
Dirac gamma matrix.

By defining the spinor curvature identity [52],

2D(ψ̄e)γ5D(eψ) = ψ̄ψRcd ∧ ∗
(

ec ∧ ed
)

+ ψ̄γ5ψRcd ∧ ec ∧ ed + d[D(ψ̄e)γ5eψ + ψ̄eγ5D(eψ)].
(57)

For ω[e], the equation of motion is [52]:

D[ψ̄ψ ∗
(

ec ∧ ed
)
+ ψ̄γ5ψ

(
ec ∧ ed

)
] = 0. (58)

It was found that the γ can be written as a ratio of scalar and pseudoscalar contribu-
tions in the theory [52], i.e.,

γ =
〈ψ̄ψ〉
〈ψ̄γ5ψ〉 . (59)

If ψ̄ψ = 1 and ψ̄γ5ψ = 0, then γ = ∞. The BI parameter γ = i corresponds to Ashtekar
formalism with self duality; meanwhile, γ = 1 satisfies the action of the Hamiltonian given
by Barbero. Therefore, the γ implies that Einstein gravity can be distinguished from the
other gravitation theories via general covariance. In other words, this ratio the ratio (59)
can be seen as a measure of how gravity differs from covariant gravity. Such a technique
permits the renormalization scale, μ, regarding the γ via spinor’s expectation value in
quantization process (∴ 〈ψ̄ψ〉μ, 〈ψ̄γ5ψ〉μ). Here, ψ̄γ5ψ is not a real function. To get ψ̄γ5ψ to
be real, one has to use an anti-commuting spinor to achieve the real Ashtekar variables [52].

Pros and Cons of Origin of the BI Parameter

This proposal gives the origin of the γ using quadratic spinor techniques in which
a ratio of scalar and pseudoscalar contributions is defined as the γ. In essence, in this
proposal, the γ can be real as well as complex valued under different condition. The
anti-commuting spinor is necessary to get real valued ψ̄γ5ψ and the Ashtekar variables.

2.6. On a Covariant Formulation of the BI Connection

In 2007, Fatibene et al. [53] gave a proposal on covariant formulation of the BI connec-
tion in which they defined a global covariant SU(2)-connection over whole spacetime that
limits generalizations of the Barbero–Immirzi connection on a given slice of space. The BI
connection is a collective SU(2) gauge connection on a 3D surface S ⊂M in 4D spacetime
M. On the basis of groups and spacetime involved in the theory, the BI connection is
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global. However, the SU(2) principal bundles +Σ over one 3D base S should be trivial.
In this paper, the global aspects of the BI connection, the covariant formulation of the BI
connection with its spacetime interpretation and the Lorentzian case are investigated. Here,
the point of study is the BI connection. The γ is less emphasized in this study. Thus, this
investigation is covered with the necessary details.

Pros and Cons of a Covariant Formulation of the BI Connection

This proposal advocates the usual interpretation of the γ (real valued) on the basis of
the black hole entropy calculation in LQG. In this proposal, the complex valued γ is also
less emphasized due to its obscured significance.

2.7. The BI Parameter as a Scalar Field

In 2008, Taveras and Yunes [54] (see also [55]) gave a proposal on the γ as a scalar field.
They studied the LQG-based generalization of GR, in which they modified the Holst action
was modifeid.

The authors scalarized the γ in the Holst action. This meant that the γ was promoted
as a field under the integral of the dual curvature term. In this formalism, the γ acts as a
dynamical scalar field. This formalism gives a non-zero torsion tensor which modifies the
field equations through quadratic first derivatives of the BI field. Such a modification is
similar to the general theory of relativity with non-trivial kinetic energy in the presence of
a scalar field [54].

Before promoting the the authors firstly modified the Holst action [54], i.e.,

S =
1

4κ

∫
εJKLMeJ ∧ eK ∧ FLM +

1
2κ

∫
γ̄eJ ∧ eK ∧ FLM + Smat , (60)

where κ = 8πG, the coupling field γ̄ is γ̄ = 1/γ, andSmat is the action for additional matter
degrees of freedom. To introduce torsion and contorsion in Equation (60) one can simplify
the Holst action as follows [54]:

S = 1
4κ

∫
εJKLMeJ ∧ eK ∧ eQ ∧ eR 1

2 FLM
QR + 1

2κ

∫
γ̄eJ ∧ eK ∧ eL ∧ eM 1

2 FJKLM + Smat

= 1
8κ

∫
εJKLM(−σ̃)εJKQRFLM

QR + 1
4κ

∫
γ̄(−σ̃)εJKLMFJKLM + Smat.

(61)

Through simplification, one gets [54]

∴ S =
1

2κ

∫
σ̃

[
δ
[QR]
LM FLM

QR −
γ̄

2
εJKLMFJKLM

]
+ Smat , (62)

where σ̃ = d4xe = d4x
√−g, and eJ ∧ eK ∧ eL ∧ eM = −σ̃εJKLM.

In the simpler form, the modified form of the Holst action is [54]

S =
1

2κ

∫
d4xepJK

LMeμ
J eν

KFLM
μν (63)

where pJK
LM = δ

[L
J δ

M]
K −

γ̄
2 εLM

JK .
Thereafter, the authors gave field equations with the modified Holst action and its

solutions. They also gave effective action and the inflation with the γ as a dynamical scalar
field [54].

In 2009, Calcagni and Mercuri [54] also promoted the γ as a field in the canonical
formalism of pure gravity. In this paper, the authors investigated the parity properties of
the field of the γ by performing the decomposition of torsion into irreducible components.
Under a local Lorentz group, they suggested that the γ ought to be pseudoscalar to conserve
the transformation properties of these components.

To understand the Riemann–Cartan space–time, one has to generalize the Holst for-
malism. This can be achieved by adding a torsion part in the Holst action. It gives net
coupling with the γ, which gives rise to Nieh–Yan density [54].
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The field of the γ is a real canonical pseudoscalar field for γ = γ(x) coupled with the
Nieh–Yan invariant. The γ is pseudoscalar in nature because of the axial component of
torsion, which is proportional to the partial derivative of the In the absence of matter, the
field of the was studied in the first-order Hamiltonian formalism. Here, the derivation of
the action in the Lagrangian formalism is avoided, since the subject of study is the field of
the BI parameter in the Hamiltonian formalism (canonical). The authors also compared the
Holst case with the Nieh–Yan case. The total Hamiltonian in the form of the action in the
Holst case is expressed as [54]

HD =
∫

d3x
(

ΛjRj + NβHβ + NH
)

, (64)

where Λj, Nβ and N are Lagrange-undetermined multipliers. Rj, Hβ andH are the rotation,
super momentum and super Hamiltonian constraints, respectively.

The expression of all constraints is written as [54],

Rj ≡ εl
jkKk

βEβ
l , (65)

Hβ ≡ Eη
j D[βKj

η]
+ Π∂βγ ≈ 0 , (66)

H ≡ − 1
2e

Eβ
j Eη

k

(
ε

jk
l Rl

βη + 2Kj
[β

Kk
η]

)
+

1 + γ2

3e
Π2 − 3

4
e

1 + γ2 ∂βγ∂βγ ≈ 0 . (67)

Here, ∂β denotes the coordinate derivative.
For the Nieh–Yan case, the super Hamiltonian is denoted as [54]H, i.e.,

H ≡ − 1
2e

Eβ
j Eη

k

(
ε

jk
l Rl

βη + 2Kj
[β

Kk
η]

)
+

1
3e

Π2 − 3
4

e∂βγ∂βγ ≈ 0 . (68)

Here, in the canonical formalism, the factor
(
1 + γ2) disappears in the contribution of

the pseudo-scalar field for the Nieh–Yan term. The Nieh–Yan term exhibits a shift symmetry,
i.e., γ→ γ + γ0 [54].

Pros and Cons of the BI Parameter as a Scalar Field

Taveras and Yunes defined the γ as a dynamical scale field in the Holst action with
non zero torsion tensor, while Calcagni and Mercuri defined the γ as a field in the canonical
formalism. These proposals provide new significance of the BI parameter; however, the γ,
which is sometimes complex valued, is still unclear.

2.8. Topological Interpretation of the BI Parameter

In 2008, Date et al. [56] gave a proposal on the topological interpretation of the γ.
In terms of the Holst formalism, the Hilbert–Palatini Lagrangian as the Lagrangian

density can be written as [56]

L =
1
2

eΣμν
JKRJK

μν(ω) +
γ

2
eΣμν

JKR̃JK
μν(ω) (69)

where Σμν
JK := 1

2

(
eμ

J eν
K − eμ

Keν
J

)
, RJK

μν(ω) := ∂[μω JK
ν]

+ ω JK
[μ

ω J
ν]L and R̃JK

μν(ω) :=
1
2 εJKLMRμνLM(ω).

Here, with γ−1, the second term is the Holst term, while with γ = −i, this Lagrangian
density gives the complex value SU(2) Ashtekar connection. For γ = 1, one gets the real
valued SU(2) Barbero connection [56]. This has been already discussed in the introduction.

The expression of the Nieh–Yan (NY) density is given as [56]

INY = εμνβη

[
Dμ(ω)eJ

νDβ(ω)eJβ −
1
2

ΣJK
μν Rβη JK(ω)

]
, (70)
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where Dμ(ω)eJ
ν = ∂μeJ

ν + ω J
μKeK

ν . For a torsion-free connection, the Nieh–Yan density
disappears.

In this proposal, in the time gauge, Nieh–Yan topological density of a theory of gravity
permits us to explain gravity as a real SU(2) connection. For γ = 1, the set of constraints for
both the Hamiltonian and the Barbero formalism are the same. For the rest of the values of
the γ, the Immirzi formulation exhibits 1

γ . The parameter γ is analogous to the θ parameter
of the quantum chromodynamics. This parameter (γ) implies an enriched vacuum structure
of gravity. The Nieh–Yan density is fully constructed from geometric quantities, while
the modified Holst terms exhibit fields of matter. With the aid of connection equation of
motion, both are connected [56].

Pros and Cons of Topological Interpretation of the BI Parameter

In this proposal, the authors gave the interpretation of the γ topologically using the
Nieh–Yan density with the real valued SU(2) connection. From this proposal, the γ can be
compared to the θ parameter of the quantum chromodynamics. The complex valued γ is
also less emphasized in this proposal.

2.9. The Peccei–Quinn Mechanism in Gravity and the Nature of the BI Parameter

Promoting the γ as a field was an active research area between 2007 and 2011; that
added new physical significance for the γ with the topological perspective in LQG.

In 2009, Mercuri [57] gave a proposal on the nature of the γ using the Peccei–Quinn
mechanism in gravity, in which the γ is taken as a field. Using the Holst formalism,
the modified Hilbert–Palatini (HP) action is obtained. This modified (total) action with
the Nieh–Yan invariant (spacetime with the torsion) and the matter coupling is given as
Stot = SHP[e, ω] + SNY[e, ω] + Smat. Hence,

Stot = −
1

16πG

∫
ec ∧ ed ∧ �Rcd +

γ

16πG

∫ (
Tc ∧ Tc − ec ∧ ed ∧ Rcd

)
+

i
2

∫
�ec ∧

(
ψ̄γcDψ− Dψγcψ +

i
2

mecψ̄ψ

)
,

(71)

where Tc denotes the torsion two-form. The author suggested promoting γ as a field, the
contribution from divergence to the chiral anomaly must be reabsorbed [57].

The author also implied that the Peccei–Quinn mechanism (this mechanism is used
for charge-parity (CP) conservation for a strong force, in which pseudo-particle effects
are considered with a scalar field) permits one to connect the constant value of the γ to
the other certain topological ambiguities. This connection creates an interaction between
gravity and the field of the BI parameter [57].

From the spontaneous symmetry breaking (SU(2)×U(1)), the obtained quark mass
matrices M is not diagonal and Hermitian. A chiral rotation is needed to diagonalize it.
Similar to this, the chiral rotation of the fermionic measure in the Euclidean path integral
produces a NY term with Pontryagin class in space–time with torsion that is diverged as
the square of the regulator [57].

The following equation is a part of regularization procedure when γ is considered as a
field:

δψδψ̄→ δψδψ̄ exp
{

i
8π2

∫
β
[

Rcd ∧ Rcd + 2Λ2
(

Tc ∧ Tc − ec ∧ ed ∧ Rcd
)]}

, (72)

where β is the transformation parameter and Λ is a regulator. In short, Equation (72)
shows the regularization. Hence, the effective action after the regularization procedure in
Equation (72) reads:
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Seff = SHP[e, ω] + SD[e, ω, ψ, ψ̄] +
1

8π2 β
∫

Rcd ∧ Rcd +
1

16πG

(
γ +

4G
π

βΛ2
)

×
∫ (

Tc ∧ Tc − ec ∧ ed ∧ Rcd
)

.
(73)

Any attempt at removal of the regulator results in the divergence of β. By promoting
γ as a field, this divergence is reabsorbed [57]. Hence,

Seff = SHP[e, ω] + SD[e, ω, ψ, ψ̄] +
1

16πG
×
∫

γ
′
(x)

(
Tc ∧ Tc − ec ∧ ed ∧ Rcd

)
, (74)

where γ
′
(x) = γ(x) + 4G

π βΛ2.

Pros and Cons of the Peccei–Quinn Mechanism in Gravity and the Nature of the BI Parameter

In this proposal, the γ is promoted as a field using the Peccei–Quinn mechanism in
LQG. This notion is essential, since it removes divergence from the total effective action.
However, the origin of the complex valued γ is still open for exploration.

2.10. The Kodama State and the BI Parameter

In year 2006, suggested Randono [58,59] the generalization of Kodama states, in which
the real valued γ was used to generalize these states and derived physical interpretation
of these states. The Kodama state is special, providing an exact solution to all the normal
constraints of canonical quantum gravity.

The Kodama state has an unambiguous semi-classical interpretation as a quantum
sort of classical spacetime (anti-de Sitter space). However, the structure of the phase space
is complex. Therefore, a generalization of the real valued γ state is needed [58].

The state of Lorentzian Kodama is a solution to the quantum constraints in the
Ashtekar formalism, in which the connection is complex valued. However, to get the
classical GR, one has to execute the reality conditions ensuring the reality of the metric [58].

In the Euclidean framework formalism, the SO(4) group is divided into two left and
right parts, as in the complex framework. The Ashtekar variables exhibit a real valued
SO(3) connection, and its real valued momentum conjugate for the left-handed part of the
group. The corresponding state in the Euclidean framework is a pure phase, because the
connection is real. Thus, the state is written as [58],

Ψ[A] = N e−
3

4κλ

∫
YCS[A], (75)

where
∫

YCS[A] is the Chern–Simon term, λ = Gh̄Λ with Λ the cosmological constant, and
N being topology dependent normalization.

For this result, no reality condition is required, since the structure of the phase space
of the Euclidean framework is simple. Hence, the complexification of the phase space (in
which the γ is the complex valued γ = i) is the main reason for the requirement of the
reality conditions [58].

The Kodama state beginning with the Holst action with the cosmological constant is
given as [58],

SH =
1
κ

∫
M

�e ∧ e ∧ R +
1
γ

e ∧ e ∧ R− λ

3
� e ∧ e ∧ e ∧ e , (76)

where e = 1
2 γJ eJ , R = 1

4 γ[JγK]ω
JK, � = −iγ5 = γ0γ1γ2γ3, andM is the manifold.

The chiral symmetric Holst action is written as [58]
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S = 1
κ

∫
M 2(αLPL + αRPR) � Σ ∧

(
R− λ

6

)
= 2

κ

∫
M αL � ΣL ∧

(
RL − λ

6 ΣL

)
+ αR � ΣR ∧

(
RR − λ

6 ΣR

)
.

Here, ΣR = (e ∧ e)R, PL and PR are left-handed and right-handed chiral projection
operators, RL and RR are the left-handed and right-handed chiral curvatures for spin(3, 1)
connection.

If αL + αR = 1 and γ = −i
αL−αR

, the equation becomes [58]

S =
1
κ

∫
M
(αL + αR) � Σ ∧

(
R− λ

6
Σ
)
+ i(αL − αR)Σ ∧ R. (77)

In year 2011, Wieland [60] gave a proposal, namely complex Ashtekar variables, the
Kodama state and spinfoam gravity, in which the complex valued Ashtekar variable and
the real valued γ were used. In Ref. [60], the author used SL(2,C) Kodama state and
proposed a spinfoam vertex amplitude.

As per the usual method, it also started with the Holst action with the cosmological
constant, Λ [60], i.e.,

S[e, ω] =
h̄

4l2
P

∫
M

eJ ∧ eK ∧
(

εJKLMRLM[ω]− 2
γ

RJK[ω]− Λ
6

εJKLMeL ∧ eM
)

. (78)

where γ ∈ R.
As mentioned, in this proposal, the real valued γ and the complex valued Ashtekar

variable are considered [60].

Pros and Cons of the Kodama State and the BI Parameter

The generalization of the Kodama state can only be achieved with the real valued γ,
since, the γ with the complex value makes the state complex and ambiguous. Here, the
significance of the complex valued BI parameter is also unclear.

2.11. The Quantum Gravity BI Parameter—A General Physical and Topological Interpretation

In the year 2013, El Naschie [61] gave a proposal on general physical and topological
interpretation of the γ. This proposal is not directly related to LQG. In this paper, the γ of
LQG is considered as a definite quantum entanglement correction.

According to this proposal, the γ is not only a free basic parameter of LQG; it is also
an exact sort of a basic constant of the micro-spacetime topology [61].

As mentioned in Section 2.3, one of the fixed values of the γ from black hole entropy
calculation in LQG is given as [61]

γ =
log 2
π
√

3
= 0.055322. (79)

From Hardy’s quantum entanglement, the author proposed that the value of the γ is
same as that obtained from quantum entanglement correction [61], i.e.,

γ = φ6 =

(√
5− 1
2

)6

= 0.055728. (80)

Pros and Cons of the Quantum Gravity BI Parameter—A General Physical and Topological
Interpretation

This proposal advocates the real valued γ. It does not explain the physical significance
of the γ in LQG.
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2.12. A Correction to the BI Parameter of SU(2) Spin Networks

In year 2014, Sadiq [62] gave a correction to the γ of SU(2) spin networks. In this
paper, by taking j = 1 and to preserve the SU(2) symmetry of theory, twice the value of
the γ is proposed. Previously in LQG, the γ was fixed by j = 1 transitions of spin networks
as the dominant processes instead of j = 1/2 transitions. This means SO(3) should be a
gauge group instead of SU(2).

This proposal begins with [35] (see Section 2.3) and gave a correction to the γ. The
author investigated that if SU(2) is the compatible gauge group and jmin = 1 process
governs, then the change in the mass of the black hole during the transition is [62]

ΔM = 2h̄ωQNM. (81)

Since the value of ωQNM is ωQNM = ln 3/(8πM), the change in the mass is [62]

ΔM =
2h̄ ln 3
8πM

. (82)

Therefore, the fixed value of γ for jmin = 1 is [62]

γ =
ln 3

π
√

2
. (83)

Pros and Cons of a Correction to the BI Parameter of SU(2) Spin Networks

In this proposal, the author modified the fixed value of the γ; that was proposed
in [35]. This proposal advocates the real valued γ. The physical significance is based on the
black hole entropy calculation in LQG.

2.13. Physical Effect of the Immirzi Parameter in LQG

In this proposal, Perez and Rovelli [63] proposed that the BI term in the (Holst) action
does not disappear on the shell when fermions are there. The BI term is also present in the
equations of motion. The γ governs the coupling constant of a four-fermion interaction
(it is mediated by a torsion). In other words, the γ is a coupling constant that governs the
strength of a four-fermion interaction. Thus, the γ may show physical effects that can be
observed independently from LQG.

The Holst action with the fermionic field is expressed as [63]

S[e, A, ψ] = S[e, A] +
i
2

∫
d4xe

(
ψ̄γJ ec

J Dcψ− DcψγJ ec
Jψ
)

, (84)

where S[e, A] = 1
16πG

(∫
d4xeec

Je
d
KFJK

cd − 1
γ

∫
d4xeec

Je
d
K ∗ FJK

cd

)
, Dc is a covariant derivative,

and γJ is the Dirac matrix. In this proposal, D[ceJ
d] is the fermionic current. In the connection,

the fermion current behaves as a source for a torsion component [63].
In the fermionic current, the linear terms are total derivative; hence, the resulting

action is

S[e, ψ] = S[e] + S f [e, ψ] + Sint[e, ψ] ,

∴ S[e, ψ] =
1

16πG

∫
d4xeec

Je
d
KFJK

cd [ω[e]] + i
∫

d4xeψ̄γJ ec
J Dc[ω[e]]ψ

− 3
2

πG
γ2

γ2 + 1

∫
d4xe(ψ̄γ5γAψ)

(
ψ̄γ5γAψ

)
.

(85)

The standard coupling of the Einstein–Cartan theory is recovered in the third term
with the limit γ→ ∞ [63].
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Pros and Cons of Physical Effect of the Immirzi Parameter in LQG

In this proposal, the γ is a coupling constant that governs the strength of a four-
fermion interaction. Here, the γ is indeed free parameter. γ = i gives the self-dual Ashtekar
canonical formalism and γ = 1 (real valued) gives the SU(2) Barbero connection.

2.14. A Relation between the BI Parameter and the Standard Model

In the year 2010, Broda and Szanecki [64] established the relationship between the γ
and the standard model.

In this proposal, Sakharov’s method was used with the Nieh–Yan term (in the Holst
action) that fixed the γ by considering the Lagrangian density [64], i.e.,

L = α �
(

ec ∧ ed
)
∧ Rcd − β

(
Tc ∧ Td − ec ∧ ed ∧ Rcd

)
, (86)

where γ = α/β.
The Einstein–Hilbert Lagrangian is written as [64]

LEH = − 1
12

(
M
4π

)2(
N0 + N1

2
− 4N1

)
�
(

ec ∧ ed
)
∧ Rcd , (87)

where N1 is the gauge fields number, N1
2

the two-component fermion fields number, and
N0 is the minimal scalar degrees of freedom number. Here, the γ is defined as [64]

γ =
− 1

12

(
N0 + N1

2
− 4N1

)
− 1

4 NL
=

1
9
≈ 0.11. (88)

Here, NL is the number of the chiral left-handed modes. By taking N0 = 4 (for Higgs),
N1 = 12, N1

2
= 45 and NL = 3 (3 neutrinos) [64].

This is approximately equal to one of the values of the BI parameter in black hole
entropy calculation in LQG [64],

γ =
ln 2

π
√

3
≈ 0.13. (89)

Pros and Cons of a Relationship between the BIParameter and the Standard Model

This proposal established a relationship between the γ and the standard model. It
advocates the real valued γ by comparing the results with the black hole entropy calcu-
lation in LQG. Similar to other proposals, the significance of the complex valued γ is less
emphasized.

2.15. The Holographic Principle and the BI Parameter of LQG

In the year 2015, Sadiq [65] gave a proposal that correlates the γ in LQG and the
holographic principle. In this proposal, the γ is fixed using the equipartition theorem
based on LQG at holographic boundary in such a way that the Unruh–Hawking law of
temperature holds and follows. Such derived value of the γ exhibits validity universally. In
this way, this approach correlates the value of the γ in LQG and the holographic principle.
In this proposal, the real valued BI parameter is considered. Since the relation between the
holographic principle and LQG demands more research, this proposal is given in brief.

Pros and Cons of the Holographic Principle and the BI Parameter of LQG

Similar to majority of the proposals, this proposal also advocates the real valued BI pa-
rameter.
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2.16. Discussion

The γ is a free parameter as well as an enigmatic parameter of LQG. It is a free
parameter because it can be real valued as well as complex valued. It is enigmatic parameter
because its significance for either the real value or with the complex value is still obscure.

As mentioned, there are two kinds of version for the connection variables: SL(2,C),
with a self-duality of Ashtekar formalism, γ = i, and the connection with a real SU(2)
Barbero connection, γ = 1.

If LQG is compared with the other quantum gravity theory, it has only one free
parameter in its formalism. Here, several proposals on the physical significance of the γ are
discussed. Some argue in favor of the real valued BI parameter, while the others argue in
favor of the complex valued BI parameter. The real valued proposals on BI parameter are
more tangible. The value of the BI parameter found from the Black hole entropy calculation
in LQG has more consent than other proposals because the same value is applied for all
sorts of black holes.

Still, the exact physical significance of the γ is yet to be found. There are several ques-
tions regarding the choice of the BI parameter, which are discussed via various proposals.
The most important question is regarding the physical significance of the area operator
and the volume operator spectrum with the complex valued BI parameter. The complex
valued BI parameter is also important because it removes the mathematical complexities
from the equations of the constraints, especially from the Hamiltonian constraint. Research
on the physical significance of the complex valued BI parameter γ = i will open up a new
direction in the field of quantum gravity. Time will shed light on these mysteries.

3. Concluding Remarks

• In this paper, initially, a short introduction of the Barbero–Immirzi (BI) parameter, γ,
along with the introduction to the Ashtekar formalism, the origin of the BI parameter,
the Holst action and a historical timeline of research on the physical significance of
the γ in LQG are given.

• The value of the γ and its implication are very important, especially in the area
operator spectrum and the black hole entropy calculation in LQG; afterwards, these
are elaborated on.

• Thereafter, various proposals on the physical significance of the γ in LQG are given in
brief with their pros and cons.

• Most of the proposals advocate the real valued BI parameter γ, since the significance
of the complex valued BI parameter γ is not yet clear. However, the complex valued
γ is also important, as it removes mathematical complexities from the LQG frame-
work. Research on the complex valued BI parameter will shed light on its physical
significance in future.

• Hence, the γ, whether it is complex valued or the real valued, is a crucial free parameter
of LQG.
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Abstract: In the de Sitter gauge theory (DGT), the fundamental variables are the de Sitter (dS)
connection and the gravitational Higgs/Goldstone field ξA, where A is a 5 dimensional index.
Previously, a model for DGT was analyzed, which generalizes the MacDowell–Mansouri gravity
to have a variable cosmological constant, Λ = 3/l2, where l is related to ξ A by ξ AξA = l2. It was
shown that the model sourced by a perfect fluid does not support a radiation epoch and the accelerated
expansion of the parity invariant universe. In this paper, I consider a similar model, namely, the Stelle–
West gravity, and couple it to a modified perfect fluid, such that the total Lagrangian 4-form is
polynomial in the gravitational variables. The Lagrangian of the modified fluid has a nontrivial
variational derivative with respect to l, and as a result, the problems encountered in the previous
study no longer appear. Moreover, to explore the elegance of the general theory, as well as to write
down the basic framework, I perform the Lagrange–Noether analysis for DGT sourced by a matter
field, yielding the field equations and the identities with respect to the symmetries of the system.
The resulted formula are dS covariant and do not rely on the existence of the metric field.

Keywords: Stelle–West gravity; gauge theory of gravity; cosmic acceleration

1. Introduction

The gauge theories of gravity (GTG) aims at treating gravity as a gauge field, in partic-
ular, constructing a Yang–Mills-type Lagrangian, which reduces to general relativity (GR)
in some limiting cases, while providing some novel falsifiable predictions. A well-founded
subclass of GTG is the Poincaré gauge theory (PGT) [1–5], in which the gravitational field
consists of the Lorentz connection and the co-tetrad field. Moreover, the PGT can be reformu-
lated as de Sitter gauge theory (DGT), in which the Lorentz connection and the co-tetrad field
are united into a de Sitter (dS) connection [6,7]. In fact, before the idea of DGT is realized, a
related Yang–Mills-type Lagrangian for gravity was proposed by MacDowell and Mansouri
(MM) [8], and reformulated into a dS-invariant form by West [9], which reads:

LMM = εABCDE ξEFAB ∧ FCD

= εαβγδ (lRαβ ∧ Rγδ − 2l−1Rαβ ∧ eγ ∧ eδ + l−3eα ∧ eβ ∧ eγ ∧ eδ), (1)

where εABCDE and εαβγδ are the 5-dimensional (5d) and 4d Levi–Civita symbols, ξA is a dS
vector constrained by ξAξA = l2, l is a positive constant, FAB is the dS curvature, Rαβ

is the Lorentz curvature, and eα is the orthonormal co-tetrad field. The 5d indexes are
denoted by capital Latin letters and take on the values 0, 1, 2, 3, 4, and the 4d indexes are
denoted by Greek letters and take on teh values 0 (time), 1, 2, 3 (space). This theory is
equivalent to the Einstein–Cartan (EC) theory with a cosmological constant Λ = 3/l2 and
a Gauss–Bonnet (GB) topological term, as seen in Equation (1).

Note that some special gauges with the residual Lorentz symmetry can be defined
by ξA = δA

4l , where δA
B is the Kronecker delta. Henceforth, ξA is akin to an unphysical
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Goldstone field. To make ξ A physical, and become the gravitational Higgs field, one
may replace the constant l by a dynamical l, resulting in the Stelle–West (SW) theory [7].
The theory is further explored in Refs. [10,11] (see also the review [12]), in which the
constraint ξAξA = l2 is completely removed, in other words, ξAξA needs not to be positive.
Suppose that ξAξA = σl2, where σ = ±1. When l �= 0, the metric field can be defined
by gμν = (D̃μξ A)(D̃νξA), where D̃μξA = δ̃A

BDμξB, δ̃A
B = δA

B − ξAξB/σl2, DμξA =
dμξA +ΩA

BμξB, and ΩA
Bμ is the dS connection. It was shown [11] that σ = ±1 corresponds

to the Lorentz/Euclidean signature of the metric field, and the signature changes when
ξAξA changes its sign.

On the other hand, it remains to check whether the SW gravity is viable.
Although the SW Lagrangian reduces to the MM Lagrangian when l is a constant, the field
equations do not. In the SW theory, there is an additional field equation coming from
the variation with respect to l, which is nontrivial even when l is a constant.
Actually, a recent study [13] presents some negative results for a related model, whose
Lagrangian is equal to the SW one times (−l/2). For a homogeneous and isotropic universe
with parity-invariant torsion, it is found that l being a constant implies the energy density
of the material fluid being a constant, and so l should not be a constant in the general
case. Moreover, in the radiation epoch, the l equation forces the energy density to be equal
to zero; while in the matter epoch, a dynamical l only works to renormalize the gravitational
constant by some constant factor, and hence, the cosmic expansion decelerates as in GR.

In this paper, it is shown that the SW gravity suffers from similar problems encountered
in the model considered in Ref. [13]. Furthermore, I solve these problems by using a new
fluid with the Lagrangian being a polynomial in the gravitational variables. The merits
of a Lagrangian polynomial in some variables are that it is simple and nonsingular with
respect to those variables. In Refs. [14,15], the polynomial Lagrangian for gravitation and
other fundamental fields were proposed, while in this paper, the polynomial Lagrangian
for a perfect fluid is proposed, which reduces to the Lagrangian of a usual perfect fluid
when l is a constant. It turns out that, in contrast to the case with an ordinary fluid, the SW
gravity coupled with the new fluid supports the radiation epoch and naturally drives
the cosmic acceleration. In addition, when writing down the basic framework of DGT,
a Lagrangian–Noether analysis is performed, which generalizes the results of Ref. [16]
to the cases with arbitrary matter field and arbitrary ξA.

The article is organized as follows. In Section 2.1, a Lagrangian–Noether analysis is
conducted for the general DGT sourced by a matter field. In Section 2.2, I reduce the analysis
of Section 2.1 in the Lorentz gauges, and show how the two Noether identities in PGT
can be elegantly unified into one identity in DGT. In Section 3.1, the SW model of DGT is
introduced, with the field equations derived both in the general gauge and the Lorentz
gauges. Further, the matter source is discussed in Section 3.2, where a modified perfect
fluid with the Lagrangian polynomial in the gravitational variables is constructed, and
a general class of perfect fluids is defined, which contains both the usual and modified
perfect fluids. Then, I couple the SW gravity with the class of fluids and study the coupling
system in the homogeneous, isotropic, and parity-invariant universe. The field equations
are deduced in Section 4.1, solved in Section 4.2 for the vacuum case, and, in Section 4.3, for
the material case. In Section 4.4, the above results are compared with observations, which
determines the value of the coupling constant. In the last section, I give some conclusions,
and discuss the remaining problems, possible solutions, and extensions.

2. De Sitter Gauge Theory

2.1. Lagrangian–Noether Machinery

The DGT sourced by a matter field is described by the Lagrangian 4-form:

L = L(ψ, Dψ, ξA, Dξ A,FAB), (2)

where ψ is a p-form valued at some representation space of the dS group SO(1, 4), Dψ =
dψ + ΩABTAB ∧ ψ is the covariant exterior derivative, TA

B are representations of the dS
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generators, ξA is a dS vector, DξA = dξA + ΩA
BξB, ΩA

B is the dS connection 1-form, and
FA

B = dΩA
B + ΩA

C ∧ΩC
B is the dS curvature 2-form. The variation of L resulted from

the variations of the explicit variables reads:

δL = δψ ∧ ∂L/∂ψ + δDψ ∧ ∂L/∂Dψ + δξA × ∂L/∂ξ A + δDξ A ∧ ∂L/∂Dξ A

+δFAB ∧ ∂L/∂FAB, (3)

where (∂L/∂ψ)μp+1···μ4 ≡ ∂Lμ1···μpμp+1···μ4 /∂ψμ1···μp , and the other partial derivatives are
similarly defined. The variations of Dψ, DξA, and FAB can be transformed into the
variations of the fundamental variables ψ, ξA, and ΩAB, leading to:

δL = δψ ∧Vψ + δξ A ×VA + δΩAB ∧VAB

+d(δψ ∧ ∂L/∂Dψ + δξA × ∂L/∂Dξ A + δΩAB ∧ ∂L/∂FAB), (4)

where,
Vψ ≡ δL/δψ = ∂L/∂ψ− (−1)pD∂L/∂Dψ, (5)

VA ≡ δL/δξA = ∂L/∂ξ A − D∂L/∂DξA, (6)

VAB ≡ δL/δΩAB = TABψ ∧ ∂L/∂Dψ + ∂L/∂Dξ [A × ξB] + D∂L/∂FAB. (7)

The symmetry transformations in DGT consist of the diffeomorphism transformations
and the dS transformations. For the diffeomorphism transformations, they can be promoted
to a gauge-invariant version [16,17], namely, the parallel transports in the fiber bundle with
the gauge group as the structure group. The action of an infinitesimal parallel transport
on a variable is a gauge-covariant Lie derivative (the gauge-covariant Lie derivative has
been used in the metric-affine gauge theory of gravity [18]) Lv ≡ v�D + Dv�, where v
is the vector field, which generates the infinitesimal parallel transport, and � denotes
a contraction, for example, (v�ψ)μ2···μp = vμ1 ψμ1μ2···μp . Put δ = Lv in Equation (3), utilize
the arbitrariness of v, then one obtains the chain rule:

v�L = (v�ψ) ∧ ∂L/∂ψ + (v�Dψ) ∧ ∂L/∂Dψ + (v�DξA)× ∂L/∂DξA

+(v�FAB) ∧ ∂L/∂FAB, (8)

and the first Noether identity:

(v�Dψ) ∧Vψ + (−1)p(v�ψ) ∧ DVψ + (v�DξA)×VA + (v�FAB) ∧VAB = 0. (9)

On the other hand, the dS transformations are defined as vertical isomorphisms
on the fiber bundle. The actions of an infinitesimal dS transformation on the fundamental
variables are as follows:

δψ = BABTABψ, δξA = BABξB, δΩAB = −DBAB, (10)

where BA
B is a dS algebra-valued function, which generates the infinitesimal dS transforma-

tion. Substitute Equation (10) and δL = 0 into Equation (4), and make use of Equation (7)
and the arbitrariness of BAB, one arrives at the second Noether identity:

DVAB = −TABψ ∧Vψ −V[A × ξB]. (11)

The above analyses are so general that they do not require the existence of a metric
field. In the special case with a metric field being defined, ξAξA equating to a positive
constant, and p = 0, the above analyses coincide with those in Ref. [16].

2.2. Reduction in the Lorentz Gauges

Consider the case with ξ AξA = l2, where l is a positive function. Then, one may
define the projector δ̃A

B = δA
B − ξ AξB/l2, the generalized tetrad D̃ξ A = δ̃A

BDξB, and
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a symmetric rank-2 tensor (this formula has been given in Refs. [11,19], and is different from
that originally proposed by Stelle and West [7] by a factor (l0/l)2, where l0 is the vacuum
expectation value of l),

gμν = ηAB(D̃μξA)(D̃νξB), (12)

which is a localization of the dS metric, g̊μν = ηAB(dμξ̊ A)(dνξ̊B), where ηAB is the 5d
Minkowski metric, and ξ̊ A are the 5d Minkowski coordinates on the 4d dS space.

Though Equation (12) seems less natural than the choice g∗μν = ηAB(DνξA)(DνξB),
it coincides with another natural identification (15) (the relation between Equations (12)
and (15) is discussed below in this Section). If gμν is non-degenerate, it is a metric field with
Lorentz signature, and one may define D̃μξA ≡ gμνD̃νξA. Put vμ = D̃μξA in Equation (9)
and utilize (D̃μξA)(D̃μξB) = δ̃A

B, one obtains:

ṼA = −(D̃ξA�Dψ) ∧Vψ − (−1)p(D̃ξA�ψ) ∧ DVψ − (D̃ξA�d ln l)×VCξC

−(D̃ξA�FCD) ∧VCD, (13)

where ṼA = δ̃B
AVB. When l is a constant, Equation (13) implies that the ξA equation

(ṼA = 0 for this case) can be deduced from the other field equations (Vψ = 0 and VCD = 0),
as pointed out in Ref. [19]. Substitute Equation (13) into Equation (11), and make use
of Ṽ[A × ξB] = V[A × ξB] and D̃ξ[A × ξB] = Dξ[A × ξB], one attains

DVAB = −TABψ ∧Vψ + (Dξ[A × ξB]�Dψ) ∧Vψ + (−1)p(Dξ[A × ξB]�ψ) ∧ DVψ

+(Dξ[A × ξB]�d ln l)×VCξC + (Dξ[A × ξB]�FCD) ∧VCD. (14)

When l is a constant, Equation (14) coincides with the corresponding result in Ref. [16].
As shown later in this Section, Equation (14) unifies the two Noether identities in PGT.

To see this, let us define the Lorentz gauges by the condition ξA = δA
4l [7].

If hA
B ∈ SO(1, 4) preserves these gauges, then hA

B = diag(hα
β, 1), where hα

β belongs
to the Lorentz group SO(1, 3). In the Lorentz gauges, Ωα

β transforms as a Lorentz connec-
tion, and Ωα

4 transforms as a co-tetrad field. Therefore, one may identify Ωα
β as the space-

time connection Γα
β, and Ωα

4 as the co-tetrad field eα divided by some quantity with
the dimension of length, a natural choice for which is l. Resultantly, ΩAB is identified with
a combination of geometric quantities as follows:

ΩAB =

(
Γαβ l−1eα

−l−1eβ 0

)
. (15)

In the case with constant l, this formula is given in Refs. [7,20], and, in the case with
varying l, it is given in Refs. [10,19]. In the Lorentz gauges, D̃ξ4 = 0, D̃ξα = Ωα

4l =
eα (where Equation (15) is used), and so gμν defined by Equation (12) satisfies gμν =

ηαβeα
μeβ

ν, implying that Equation (12) coincides with Equation (15). Moreover, according
to Equation (15), one finds the expression for FAB in the Lorentz gauges as follows [19]:

FAB =

(
Rαβ − l−2eα ∧ eβ l−1[Sα − d ln l ∧ eα]

−l−1[Sβ − d ln l ∧ eβ] 0

)
, (16)

where Rα
β = dΓα

β + Γα
γ ∧ Γγ

β is the spacetime curvature, and Sα = deα + Γα
β ∧ eβ is

the spacetime torsion.
Now one can interpret the results in Section 2.1 in the Lorentz gauges. In those gauges,

Dψ = DΓψ + 2l−1eαTα4 ∧ ψ, Dξα = eα, Dξ4 = dl, and so Equation (2) becomes:

L = LL(ψ, DΓψ, l, dl, eα, Rαβ, Sα), (17)

where DΓψ = dψ + ΓαβTαβ ∧ ψ. It is the same as a Lagrangian 4-form in PGT [21], with
the fundamental variables being ψ, l, Γαβ, and eα. The relations between the variational
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derivatives with respect to the PGT variables and those with respect to the DGT variables
can be deduced from the following equality:

δξ A ×VA + 2δΩα4 ∧Vα4 = δl × Σl + δeα ∧ Σα, (18)

where Σl ≡ δLL/δl and Σα ≡ δLL/δeα. Explicitly, the relations are:

Σψ ≡ δLL/δψ = Vψ, (19)

Σl = V4 − 2l−2eα ∧Vα4, (20)

Σαβ ≡ δLL/δΓαβ = Vαβ, (21)

Σα = 2l−1Vα4. (22)

It is remarkable that the DGT variational derivative VAB unifies the two PGT varia-
tional derivatives Σαβ and Σα. With the help of Equations (19)–(22), the αβ components and
α4 components of Equation (14) are found to be:

DΓΣαβ = −Tαβψ ∧ Σψ + e[α ∧ Σβ], (23)

DΓΣα = DΓ
α ψ ∧ Σψ + (−1)p(eα�ψ) ∧ DΓΣψ + ∂αl × Σl

+(eα�Rβγ) ∧ Σβγ + (eα�Sβ) ∧ Σβ, (24)

which are just the two Noether identities in PGT [21], with both ψ and l as the matter fields;
∂αl = eα�dl This completes our proof for the earlier statement that the DGT identity (14)
unifies the two Noether identities in PGT.

3. Polynomial Models for DGT

3.1. Stelle–West Gravity

It is natural to require that the Lagrangian for DGT is regular with respect to the fun-
damental variables. The simplest regular Lagrangians are polynomial in the variables,
and, in order to recover the EC theory, the polynomial Lagrangian should be at least linear
in the gauge curvature. Moreover, to ensure FAB = 0 is naturally a vacuum solution,
the polynomial Lagrangian should be at least quadratic in FAB (when the Lagrangian is
linear in FAB, one may add some ‘constant term’ (independent of FAB) to ensure FAB = 0
is a vacuum solution, but this way is not so natural). The general Lagrangian quadratic
in FAB reads:

LG = (κ1 εABCDE ξE + κ2 ηACξBξD + κ3 ηACηBD)FAB ∧ FCD

= κ1LSW + κ2(Sα ∧ Sα − 2Sα ∧ d ln l ∧ eα)

+κ3[Rαβ ∧ Rαβ + d(2l−2Sα ∧ eα)], (25)

where the κ1 term is the SW Lagrangian, the κ2 and κ3 terms are parity odd, and the κ3
term is a sum of the Pontryagin and modified Nieh–Yan topological terms. This quadratic
Lagrangian is a special case of the, at most, quadratic Lagrangian proposed in Refs. [10,22],
and one should note that the quadratic Lagrangian satisfies the requirement mentioned
above about the vacuum solution, while the, at most, quadratic Lagrangian does not always
satisfy that requirement.

Among the three terms in Equation (25), the SW term is the only one that can be
reduced to the EC Lagrangian in the case with positive and constant ξAξA. Thus, the SW
Lagrangian is the simplest choice for the gravitational Lagrangian, which (i) is regular with
respect to the fundamental variables; (ii) can be reduced to the EC Lagrangian; (iii) ensures
FAB = 0 is naturally a vacuum solution.
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For the above reason, the gravitational Lagrangian is taken to be LSW, i.e., put κ1 = 1
and κ2 = κ3 = 0 in Equation (25). The SW Lagrangian 4-form LSW takes the same form
as LMM in the first line of Equation (1), while ξA is not constrained by any condition.
Substitute Equation (1) into Equations (6)–(7), make use of ∂LSW/∂FAB = εABCDE ξEFCD

and the Bianchi identity DFAB = 0, one obtains the gravitational field equations:

− κ εABCDE FAB ∧ FCD = δLm/δξE, (26)

− κ εABCDE DξE ∧ FCD = δLm/δΩAB, (27)

where Lm is the Lagrangian of the matter field coupled to the SW gravity, with κ as the cou-
pling constant. In the vacuum case, Equation (27) is given in Ref. [22] by direct computation,
while here, Equation (27) is obtained from the general Equation (7).

In the Lorentz gauges, LSW takes the same form as LMM in the second line of
Equation (1), while l becomes a dynamical field. The gravitational field equations read:

− (κ/4)εαβγδ εμνσρe−1Rαβ
μνRγδ

σρ − 4κ l−2R + 72κ l−4 = δSm/δl, (28)

− κ εαβγδ εμνσρe−1∂νl × Rγδ
σρ + 8κ e[α

μeβ]
ν∂νl−1 + 4κ l−1Tμ

αβ = δSm/δΓαβ
μ, (29)

− 8κ l−1(Gμ
α + Λeα

μ) = δSm/δeα
μ, (30)

where e = det(eα
μ), R is the scalar curvature, Gμ

α is the Einstein tensor, Tμ
αβ = Sμ

αβ +

2e[αμSν
β]ν, and Sm is the action of the matter field. Although when l is a constant LSW

reduces to the EC Lagrangian with a cosmological constant and a GB topological term,
the field equations do not reduce to those of EC with a cosmological constant. The rea-
son lies in the existence of Equation (28), which is nontrivial, even when l is a constant.
As a result, the coupling constant κ cannot be fixed by simply comparing Equations (29)
and (30) with the EC equations. As shown below in Section 4.4, κ could be determined by
a comparison between the theory and cosmological observations.

3.2. Polynomial dS Fluid

For the same reason of choosing a polynomial Lagrangian for DGT, I intend to use
those matter sources with polynomial Lagrangian. It has been shown that the Lagrangian
of fundamental fields can be reformulated into polynomial forms [14,15]. However, when
describing the universe, it is more adequate to use a fluid as the matter source. The La-
grangian of an ordinary perfect fluid (PF) [23] can be written in a Lorentz-invariant form:

LPF
μνρσ = −εαβγδeα

μeβ
νeγ

ρeδ
σρ + εαβγδ Jαeβ

νeγ
ρeδ

σ ∧ ∂μφ, (31)

where φ is a scalar field, Jα is the particle number current which is Lorentz covariant
and satisfies Jα Jα < 0, ρ = ρ(n) is the energy density, and n ≡ √−Jα Jα is the particle
number density. The Lagrangian (31) is polynomial in the PGT variable eα

μ, but it is not
polynomial in the DGT variables when it is reformulated into a dS-invariant form, in which
case the Lagrangian reads:

LPF
μνρσ = −εABCDE(DμξA)(DνξB)(DρξC)(DσξD)(ξE/l) ρ

+εABCDE JA(DνξB)(DρξC)(DσξD) ∧ (ξE/l) ∂μφ, (32)

where JA is a dS-covariant particle number current, which satisfies JA JA < 0 and JAξA = 0,
ρ = ρ(n) and n ≡

√
−JA JA. Because l−1 appears in Equation (32), the Lagrangian is not

polynomial in ξ A.
A straightforward way to modify Equation (32) into a polynomial Lagrangian is

to multiply it by l. In the Lorentz gauges, J4 = 0, and one may define the invariant
Jμ ≡ Jαeα

μ. Then, the modified Lagrangian L′PF
μνρσ = −eεμνρσρl + eεμ′νρσ Jμ′ ∧ l × ∂μφ.

It can be verified that this Lagrangian violates the particle number conservation law
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∇μ Jμ = 0, where∇μ is the linearly covariant, metric-compatible and torsion-free derivative.
To preserve the particle number conservation, we may replace l × ∂μφ by ∂μ(lφ), and
the corresponding dS-invariant Lagrangian is:

LDF
μνρσ = −εABCDE(Dμξ A)(DνξB)(DρξC)(DσξD) ξEρ(n)

+εABCDE JA(DνξB)(DρξC)(DσξD) ∧
(

1
4

DμξE × φ + ξE∂μφ

)
. (33)

The perfect fluid depicted by the above Lagrangian is called the polynomial dS fluid,
or dS fluid (DF) for short. In the Lorentz gauges,

LDF
μνρσ = −eεμνρσρl + εαβγδ Jαeβ

νeγ
ρeδ

σ ∧ (∂μl × φ + l ∂μφ)

= −eεμνρσρl + eεμ′νρσ Jμ′ ∧ ∂μ(lφ), (34)

which is equivalent to Equation (31) when l is a constant.
Define the Lagrangian function LDF by LDF

μνρσ = LDF eεμνρσ, then LDF = −ρl +
Jμ∂μ(lφ). To compare the polynomial dS fluid with the ordinary perfect fluid, let us
consider a general model with the Lagrangian function:

Lm = −ρlk + Jμ∂μ(lkφ), (35)

where k ∈ R. When k = 0, it describes the ordinary perfect fluid; when k = 1, it de-
scribes the polynomial dS fluid. The variation of Sm ≡

∫
dx4eLm with respect to φ gives

the particle number conservation law ∇μ Jμ = 0. The variation with respect to Jα yields
∂μ(lkφ) = −μUμlk, where μ ≡ dρ/dn = (ρ + p)/n is the chemical potential, p = p(n) is
the pressure, and Uμ ≡ Jμ/n is the 4-velocity of the fluid particle. Making use of these
results, one may check that the on-shell Lagrangian function is equal to plk, and the varia-
tional derivatives:

δSm/δl = −kρlk−1, (36)

δSm/δΓαβ
μ = 0, (37)

δSm/δeα
μ = (ρ + p)lkUμUα + plkeα

μ. (38)

One can see that δSm/δl = 0 for the ordinary perfect fluid, while δSm/δl = −ρ for
the polynomial dS fluid.

Finally, it should be noted that the polynomial dS fluid does not support a signature
change corresponding to ξ AξA varying from negative to positive. The reason is that when
ξAξA < 0, there exists no JA. which satisfies JA JA < 0 and JAξA = 0.

4. Cosmological Solutions

4.1. Field Equations for the Universe

In this Section, the coupling system of the SW gravity and the fluid model (35) is
analyzed in the homogenous, isotropic, parity-invariant and spatially flat universe charac-
terized by the following ansatz [13]:

e0
μ = dμt, ei

μ = a dμxi, (39)

S0
μν = 0, Si

μν = b e0
μ ∧ ei

ν, (40)

where a and b are functions of the cosmic time t, and i = 1, 2, 3. On account of
Equations (39) and (40), the Lorentz connection Γαβ

μ and curvature Rαβ
μν can be calcu-

lated [13]. Further, assume that Uμ = e0
μ, then Uμ = −e0

μ, and so Uα = −δ0
α. Now,

the reduced form of each term of Equations (28)–(30) can be attained. In particular,

εαβγδ εμνσρe−1Rαβ
μνRγδ

σρ = 96(ha).a−1h2, (41)
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R = 6[(ha).a−1 + h2], (42)

ε0iγδ εμνσρe−1∂νl × Rγδ
σρ = −4h2 l̇ ei

μ, (43)

εijγδ εμνσρe−1∂νl × Rγδ
σρ = 0, (44)

Tμ
0i = −2b ei

μ, Tμ
ij = 0, (45)

Gμ
0 = −3h2e0

μ, (46)

Gμ
i = −[2(ha).a−1 + h2]ei

μ, (47)

δSm/δe0
μ = −ρlke0

μ, (48)

δSm/δei
μ = plkei

μ, (49)

where dot on top of a quantity or being a superscript denotes the differentiation with
respect to t, and h = ȧ/a− b. Substitution of the above equations into Equations (28)–(30)
leads to:

(ha).a−1(h2 + l−2) + l−2(h2 −Λ) = kρlk−1/24κ, (50)

(h2 + l−2)l̇ − 2b l−1 = 0, (51)

8κl−1(−3h2 + Λ) = ρlk, (52)

8κl−1[−2(ha).a−1 − h2 + Λ] = −plk, (53)

which constitute the field equations for the universe.
Generally, if the requirement of parity invariance is removed, then the ansatz (40)

should be replaced by [24]:

S0
μν = 0, Si

μν = b(t)e0
μ ∧ ei

ν + c(t)εi
jkej

μ ∧ ek
ν. (54)

Correspondingly, Equations (50)–(53) are generalized to be:

(ha).a−1(h2 − c2 + l−2)− 2hc(ca).a−1 + (h2 − c2 − 3l−2)l−2 =
k

24κ
ρlk−1, (55)

(
h2 − c2 + l−2

)
l̇ − 2bl−1 = 0, (56)

c
(

hl̇ + l−1
)
= 0, (57)

−3(h2 − c2) + Λ =
lk+1

8κ
ρ, (58)

−
[
2(ha).a−1 + h2 − c2

]
+ Λ = − lk+1

8κ
p. (59)

When c = 0, the above equations reduce to Equations (50)–(53). In virtue of
Equation (57), there are two branches of solutions—one is parity even (c = 0) and the other
is parity odd (c �= 0), which satisfies hl̇ + l−1 = 0. In this paper, only the parity-even case is
considered.

4.2. The Vacuum Solution

In the vacuum, ρ = p = 0, then Equations (50)–(53) read:

(ha).a−1(h2 + l−2) + l−2(h2 −Λ) = 0, (60)

(h2 + l−2)l̇ − 2bl−1 = 0, (61)

−3h2 + Λ = 0, (62)

−2(ha).a−1 − h2 + Λ = 0. (63)
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It can be shown that Equations (60) and (63) can be deduced from Equations (61) and (62),
and the solution for the latter reads:

a/a0 = (l/l0)e
∫ t

t0
(±l−1)dt, (64)

b = l−1 l̇, (65)

where l is an arbitrary positive function, and a0 and l0 are the values of a and l at some
moment t0. In particular, if l is a constant, then:

a = a0eH(t−t0), b = 0, (66)

where H = ȧ/a = ±l−1 is a constant. This solution is just the dS space, which describes
an inflationary universe.

4.3. The Material Solution

In the general case with matter, let us first derive the continuity equation from the field
Equations (50)–(53). Rewrite Equation (52) as:

h2 = l−2 − ρlk+1/24κ. (67)

Substituting Equation (67) into Equation (53) yields:

(ha).a−1 = l−2 + (ρ + 3p)lk+1/48κ. (68)

Multiply Equation (68) by 2h, making use of Equation (67) and h = ȧ/a− b, one gets:

2hḣ = (ρ + p)lk+1 ȧa−1/8κ − 2b(ha).a−1, (69)

in which, according to Equations (50), (51), and (67),

2b(ha).a−1 = l̇[(k + 1)ρlk/24κ + 2l−3]. (70)

Differentiate Equation (67) with respect to t, and compare it with Equations (69) and (70),
one arrives at the continuity equation:

ρ̇ + 3(ρ + p)ȧa−1 = 0, (71)

which is, unexpectedly, the same as the usual one. Suppose that p = wρ, where w is
a constant. Then, Equation (71) has the solution:

ρ = ρ0(a/a0)
−3(1+w), (72)

where a0 and ρ0 are the values of a and ρ at some moment t0.
Now, one can solve Equations (50)–(52), while Equation (53) is replaced by Equation (71)

with the solution (72). First, substitute Equations (67) and (68) into Equation (50), one finds:

ρlk+3 = 48κ(3w− k− 1)/(3w + 1). (73)

Assume that κ < 0, then according to the above relation, ρlk+3 > 0 implies (3w− k−
1)/(3w + 1) < 0. The only concern are the cases with k = 0, 1, and assume that k + 1 > −1,
then ρlk+3 > 0 constrains w by:

− 1
3
< w <

k + 1
3

. (74)

For the ordinary fluid (k = 0), the pure radiation (w = 1/3) cannot exist. In fact,
on account of Equation (73), ρl3 = 0 in this case, which is unreasonable. This problem
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is similar to that appeared in Ref. [13]. On the other hand, for the dS fluid (k = 1),
Equation (74) becomes −1/3 < w < 2/3, which contains both the cases with pure matter
(w = 0) and pure radiation (w = 1/3). Generally, the combination of Equations (72) and (73)
yields:

l = l0(a/a0)
3(w+1)

k+3 , (75)

where l0 is the value of l when t = t0, and is related to ρ0 by Equation (73).
Second, substituting Equation (67) into Equation (51), and utilizing Equations (73) and (75),

one obtains:

b =
3(w + 1)(k + 2)
(3w + 1)(k + 3)

ȧ a−1, (76)

and hence,

h =
3w− 2k− 3

(3w + 1)(k + 3)
ȧ a−1. (77)

Third, substitution of Equations (73) and (77) into Equation (52) leads to:

ȧa−1 = H0(l0/l), (78)

where H0 ≡ (ȧ a−1)t0 is the Hubble constant, being related to l0 by:

H0 =

√
3w + 1

−3w + 2k + 3
× (k + 3)l−1

0 . (79)

Here, note that Equation (74) implies that 3w + 1 > 0, −3w + k + 1 > 0, k + 1 > −1,
and so −3w + 2k + 3 > 0. In virtue of Equations (75), (76), and (78), one has:

b = b0(a0/a)
3(w+1)

k+3 , (80)

where b0 is related to H0 by Equation (76). Moreover, substitute Equation (75) into Equa-
tion (78) and solve the resulting equation, one attains:

(a/a0)
3(w+1)

k+3 − 1 =
3(w + 1)

k + 3
× H0(t− t0). (81)

In conclusion, the solutions for the field Equations (50)–(53) are given by
Equations (72), (75), (80), and (81), with the independent constants a0, H0, and t0.

4.4. Comparison with Observations

If k is specified, one can determine the value of the coupling constant κ from the ob-
served values of H0 = 67.4 km × s−1 ×Mpc−1 and Ω0 ≡ 8πρ0/3H2

0 = 0.315 [25].
For example, put k = 1, then according to Equation (79) (with w = 0), one has:

l0 = 4/
√

5H0 = 8.19× 1017 s. (82)

Substitution of Equation (82) and ρ0 = 3H2
0 Ω0/8π = 1.79 × 10−37 s−2 into

Equation (73) yields:
κ = −ρ0l4

0/96 = −8.41× 1032 s2. (83)

This value is an important reference for the future work, which will explore the viability
of the model in the solar system scale.

Furthermore, the deceleration parameter q ≡ −aä/ȧ2 derived from the above models
can be compared with the observed one. With the help of Equations (78) and (75), one finds
ȧ ∼ a(k−3w)/(k+3), then ä = k−3w

k+3 × ȧ2a−1, and so:

q =
3w− k
k + 3

. (84)
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Putting w = 0, one can find that the universe accelerates (q < 0) if k > 0, linearly
expands (q = 0) if k = 0, and decelerates (q > 0) if k < 0. In particular, for the model
with an ordinary fluid (k = 0), the universe expands linearly (this result is different
from that of Ref. [13], where the cosmological solution describes a decelerating universe;
as stated before, the gravitational Lagrangian in Ref. [13] is equal to (−l/2)LSW, which is
not equivalent to LSW); while for the model with a dS fluid (k = 1), the universe accelerates
with q = −1/4, which is consistent with the observational result −1 ≤ q0 < 0 [26–28],
where q0 is the present-day value of q. It should be noted that Equation (84) implies that q
is a constant when w is a constant, and so the models cannot describe the transition from
deceleration to acceleration when w is a constant.

5. Remarks

It is shown that the requirement of regular Lagrangian may be crucial for DGT,
as it is shown that the SW gravity coupled with an ordinary perfect fluid (whose La-
grangian is not regular with respect to ξ A when ξAξA = 0) does not permit a radiation
epoch and the acceleration of the universe, while the SW gravity coupled with a polyno-
mial dS fluid (whose Lagrangian is regular with respect to ξA) is out of these problems.
Yet, in the latter model, there exists the problem that it cannot describe the transition from
deceleration to acceleration in the matter epoch. Actually, only the parity-even branch
of the model is analyzed here. One may further analyze the parity-odd branch and check
whether the transition problem exists in that case.

Moreover, there are two possible ways to refine the present model. The first is to modify
the gravitational part to be the general quadratic model (25), which is a special case
of the, at most, quadratic model proposed in Refs. [10,22], but the coupling of which with
the polynomial dS fluid is unexplored. It is unknown whether the effect of the κ2 term
could solve the problem encountered in the SW gravity.

The second way is to modify the matter part. Although the Lagrangian of the polynomial dS
fluid is regular with respect to ξA, it is not regular with respect to JA when ξAξA = 0, in which
case there should be JA JA ≥ 0, and so the number density n ≡

√
−JA JA is not regular. One

could find a new fluid model whose Lagrangian is regular with respect to all variables, based
on the polynomial models for fundamental fields proposed in Refs. [14,15].

Moreover, the present study may be extended to the inflationary epoch. As was
shown in Section 4.2, in the vacuum, the theory contains the dS solution, which describes
an inflationary universe. Then there should be a transition from the inflationary epoch
to the radiation epoch. As usual, this might be achieved by introducing a particle production
rate Γ given by some quantum theory. In GR, with the help of energy conservation,
the contribution of Γ to the effective pressure peff can be derived [29,30]. As indicated
in Section 4.3, energy conservation in the present theory takes the same form as that in GR,
and so it could be believed that the derivation of peff also applies to the present theory.
Replacing p by peff in the dS fluid, one could further explore the corresponding dynamics.
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Abstract: Motivated by the recent study about the extended uncertainty principle (EUP) black
holes, we present in this study its extension called the generalized extended uncertainty principle
(GEUP) black holes. In particular, we investigated the GEUP effects on astrophysical and quantum
black holes. First, we derive the expression for the shadow radius to investigate its behavior as
perceived by a static observer located near and far from the black hole. Constraints to the large
fundamental length scale, L∗, up to two standard deviations level were also found using the Event
Horizont Telescope (EHT) data: for black hole Sgr. A*, L∗ = 5.716× 1010 m, while for M87* black
hole, L∗ = 3.264× 1013 m. Under the GEUP effect, the value of the shadow radius behaves the same
way as in the Schwarzschild case due to a static observer, and the effect only emerges if the mass, M,
of the black hole is around the order of magnitude of L∗ (or the Planck length, lPl). In addition, the
GEUP effect increases the shadow radius for astrophysical black holes, but the reverse happens for
quantum black holes. We also explored GEUP effects to the weak and strong deflection angles as an
alternative analysis. For both realms, a time-like particle gives a higher value for the weak deflection
angle. Similar to the shadow, the deviation is seen when the values of L∗ and M are close. The strong
deflection angle gives more sensitivity to GEUP deviation at smaller masses in the astrophysical
scenario. However, the weak deflection angle is a better probe in the micro world.

Keywords: black hole; strong gravitational lensing; weak gravitational lensing; shadow cast; Gauss–
Bonnet theorem; generalized extended uncertainty principle

1. Introduction

Black hole theory has never been more exciting than before when the Event Horizon
Telescope (EHT) Collaboration revealed the first image of a black hole in M87 galaxy [1],
and more recently, the black hole Sgr. A* in our galaxy [2]. These pictures, with very special
algorithms, provided further evidence that black holes exist in nature. Black holes are
compact objects with gravity so strong that not even light can escape its gravitational grip.

Black hole solutions are found by solving the Einstein field equation, and the simplest
black hole model that is static and spherically symmetric was found by Karl Schwarzschild [3]
(see [4] for English translation). Later on, the metric of a spinning black hole, which is static
and axisymmetric, was found by Roy Kerr [5]. Conceptually, black holes are massive objects
where all the mass is concentrated into a point, thus giving the object an infinite density. In
essence, there is no doubt that there must be some interplay between gravity and quantum
mechanics in these extreme regions. Indeed, black holes are laboratories where one can probe
the quantum nature of gravity [6].

Central to the microscopic realm is the Heisenberg uncertainty principle (HUP), which
states that

Δx Δp ≥ h̄/2, (1)
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which is derived from the commutation relation of the position, x̂, and momentum, p̂,
operators, with h̄ the reduced Planck’s constant. That is, [x̂, p̂] = ih̄. Equation (1) can
provide limitations in testing predictions, but nonetheless a hypothetical energy probe
can still detect very short distance scales. The main problem is that, beyond the Planck
length, lPl, there is no guarantee that the spacetime observed is still smooth. Such a chaotic
spacetime in the microscopic realm is called the quantum foam [7]. It is only then that
the HUP must be modified to accommodate the Planck length, and the most accepted
modification is called the generalized uncertainty principle (GUP) [8–10], which adds
uncertainty quadratic in momentum:

Δx Δp ≥ 1 + β l2
Pl Δp2, (2)

where β is a dimensionless quantity usually taken as unity and can be either positive or
negative [11].

As nature is fond of symmetry and duality, similar to the yin-yang symbol, it is only
natural to suspect that if there is a minimum fundamental length, there must be a large
fundamental length scale in our Universe. Hence, the GUP is naturally extended [12], to
include the large fundamental length, L∗, through a quadratic correction in the position
uncertainty. That is,

Δx Δp ≥ 1 + α Δx2/L2
∗, (3)

which is commonly called the extended uncertainty principle (EUP), with α being another
dimensionless constant. Equation (3) was also derived from first principles in Ref. [13].
While GUP is commonly analyzed in the literature due to its vast application in the
microscopic world [14], the application of EUP seems to be dearth in the literature. For
instance, the analysis of EUP effects on the thermodynamics of Friedmann–Robertson–
Walker (FRW) Universe [15] was analyzed long ago and a year later applied to the geometry
of de Sitter (dS) and anti-de Sitter (AdS) spacetime [16]. The effects of the EUP correction
has also been studied in Rindler and cosmological horizons [17], relativistic Coulomb
potential [18], bound-state solutions of the two-dimensional Dirac equation with Aharonov–
Bohm–Coulomb interaction [19], Jüttner gas [20]. With the help of the GUP and EUP
parameters, bounds for the Hubble parameter’s value were also studied to resolve the
Hubble tension [21]. It is only recently that EUP correction has been applied in the context
of black holes [22], with rh ∼ Δx given the gravitons are considered the quantum particles
inside such confinement. Since then, various studies have explored the black hole with
EUP correction; see Refs. [23–31].

We are motivated to continue the analysis of Ref. [22] and further investigate the most
general form of the uncertainty principle [32],

Δx Δp ≥ 1 + β l2
Pl Δp2 + α Δx2/L2

∗, (4)

as been applied to the shadow cast and gravitational lensing of astrophysical black holes
and quantum black holes [33,34]. To this end. the black hole metric that contains the GEUP
correction must be expressed as (in time and cylindrical space coordiantes) [22]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dθ2 + D(r)dφ2, (5)

where

A(r) = 1− 2M
r

, B(r) = A(r)−1,

C(r) = r2, D(r) = r2 sin2 θ. (6)

With the GEUP correction in Equation (4), the mass, M, of the black hole corrected
to [22]:

M = M
(

1 +
4αM2

L2∗
+

βh̄
2M2

)
. (7)
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Here, we first show h̄ to emphasize the quantum correction for quantum particles.
Note that, since M is geometrized, one can relate h̄ to the Planck length representing the
known minimal length lPl = 1.616× 10−35 m. Furthermore, α = β = 1, and L∗’s value is
estimated based on the observational constraints from the EHT in Section 2. First, we explore
the behavior of the shadow radius of the object being considered (i.e., supermassive black
hole (SMBH) for macroscopic and some elementary particles for the microscopic realm).
Shadows are important since they can reveal imprints that allow one to test gravity theories
in the strong field regime; shadows were first studied in Ref. [35]. In 1979, Luminet gave the
formula for the angular radius of the shadow [36]. Then several studies have explored the
shadows of quantum black holes [37–44]. In this paper, we are also interested in probing the
GEUP effects using the strong and weak deflection angles. Gravitational lensing is one of the
most successful tools as it verified Einstein’s general theory of relativity in 1919 [45] through
the Sun’s solar eclipse. Since then, it has been crucial in probing various tests of gravitation
theories. Several tools have been developed [46–48], and in 2008, the Gauss–Bonnet theorem
on the optical geometries in asymptotically flat spacetimes was developed [49]. It was
extended by Werner [50] to include stationary spacetimes in the Finsler–Randers type optical
geometry on Nazim’s osculating Riemannian manifolds. Ishihara and others then found a
way to extend the Gauss-Bonnet theorem (GBT) to incorporate finite distance effects [51,52],
which also applies to non-asymptotic spacetimes. Finally, instead of using points at infinity
as integration domain for the GBT, the study in [53] used the photonsphere to naturally
find an alternative to the Ishihara method, which also accommodates the deflection angle
of massive particles. For recent works about quantum black holes’ deflection angles, see
Refs. [24,29,54–58].

The paper is organized as follows. Section 2 is devoted to exploring the shadow
behavior of the GEUP black hole and microscopic entities been viewed as quantum black
holes. In Section 3, the Gauss–Bonnet theorem is used to study the weak deflection angle of
the mentioned objects. Section 4 considers the strong deflection angle as a generalization
of the weak deflection angle studied in Section 3. Then, in Section 5, we formulate the
conclusion based on the results of the prior Sections. In this paper, geometrized units
are used wherein G = c = 1, with G being the gravitaion constant and c the speed of
light, and the metric signature (−,+,+,+); hence, h̄ in Equation (7) can be replaced by the
Planck length.

2. Shadow and Constraints to the Large Fundamental Length Scale

In this Section, we study the shadow of the GEUP black hole. Thanks to r and t
independence of the metric, such symmetry allows us to analyze light-like geodesics along
the equatorial plane (θ = π/2) without compromising generality. Thus, D(r) = C(r) in the
metric (5). These geodesics can be derived through the Lagrangian,

L =
1
2
[−A(r)ṫ + B(r)ṙ + C(r)φ̇]. (8)

Here on, the dot denotes the time derivation.
Through the variational principle, the Euler–Lagrange equation gives two constants

of motion
E = A(r)

dt
dλ

, L = C(r)
dφ

dλ
, (9)

from where one can define the impact parameter as

b ≡ L
E
=

C(r)
A(r)

dφ

dt
. (10)

Here, λ denotes the affine parameter defined by τ = μλ, where τ is the proper time
and μ is the particle’s rest mass.

For light-like geodesics, the metric can be set as ds2 = 0, and using Equation (9), one
obtains the orbit equation:
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(
dr
dφ

)2
=

C(r)
B(r)

(
h(r)2

b2 − 1
)

, (11)

where by definition [59],

h(r)2 =
C(r)
A(r)

. (12)

Through the above equation, we can obtain the location of the photonsphere by taking
h′(r) = 0, where the prime denotes r-derivation. To this end, since the mass M is just
imbued with quantum correction, the location of the photonsphere is

rph = 3M. (13)

Our concern in this Section is how the observer will perceive the GEUP black hole
at near and far away locations. Let the observer be at the coordinates (tobs, robs, θobs =
π/2, φobs = 0). Then, the observer can construct [60] the relation,

tan(αsh) = lim
Δx→0

Δy
Δx

=

(
C(r)
B(r)

)1/2 dφ

dr

∣∣∣∣
r=robs

, (14)

which can be rewritten as

sin2(αsh) =
b2

crit
h(robs)2 , (15)

where bcrit is a function of the photonsphere given in Equation (13). A spacetime may have
a different expression for h(r), thus for a general spacetime, the critical impact parameter
reads [61]:

b2
crit =

h(rph)[
B′(rph)C(rph)− B(rph)C′(rph)

][h(rph)B′(rph)C(rph)

− h(rph)B(rph)C′(rph)− 2h′(rph)B(rph)C(rph)

]
, (16)

and, for the GEUP black hole, one finds:

b2
crit = 27M2. (17)

Finally, one obtains the behavior of the shadow radius, applicable for both macroscopic
and quantum black holes:

Rsh = 3M
√

3
(

1− 2M
robs

)
. (18)

Note that this expression is valid even when the static observer is near the black hole.
In addition, if robs → ∞, Equation (18) can be approximated with Rsh = 3

√
3M.

Let us start first with astrophysical black holes, such as Sgr. A* and M87*, and
discuss some observational constraints. According to Refs. [1,2], the mass (M� denotes
the mass of the Sun), distance from Earth, and angular shadow diameter of M87* are [62]:
MM87* = 6.5± 0.90 × 109 M�, D = 16.8 Mpc, and αM87* = 42± 3 μas, respectively. For Sgr.
A*, these values are: MSgr. A* = 4.3± 0.013 × 106 M� (Very Large Telescope Interferometer,
VLTI), D = 8277± 33 pc, and αSgr. A* = 48.7± 7μas (EHT), respectively [1,2]. The diameter
of the shadow size using these empirical data and in units of the black hole mass can be
calculated using

dsh = Dθ/M. (19)

Then, the diameter of the shadow image of M87* and Sgr. A* are
dM87*

sh = (11 ± 1.5)M, and dSgr. A*
sh = (9.5 ± 1.4)M, respectively. Meanwhile, the theo-
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retical shadow diameter can be obtained as dtheo
sh = 2Rsh. The observational constraints’

results are plotted in Figure 1.

Figure 1. Observational contraints for the M-normalized theoretical shadow diameter for var-
ious M-normalized fundamental length scales, L∗, for black holes Sgr. A* and M87*, where
M is the black hole mass. (Left): one standard deviation (1σ) for L∗ ∼ 5.716 × 1010 m,
2σ for L∗ ∼ 2.985 × 1010 m. (Right): 1σ for L∗ ∼ 4.224 × 1013 m, 2σ for L∗ ∼ 3.264 × 1013 m.
At the mean, L∗ ∼ 7.950× 1013 m.

Theoretically, let us now consider how the static observer perceives the shadow radius
at different locations in the radial coordinate for different values of L∗. In the literature,
only the case of robs → ∞ were considered [22,29].

In Figure 2, left plot, the dashed line is the Schwarzschild case for both SMBHs, which
overlaps the shadow radius coming from empirical data [1,2] shown for comparison. Note
that the GEUP effect merely increases the shadow radius while the trend of the behaviour
of the curve is the same as in the Schwarzschild case. In the right plot, one can see how the
shadow radius behaves due to the GEUP effect. For instance, deviations begin to manifest
if the value of L∗ is close to the mass of the black hole, which is also visible from the green
line as soon as L∗ comparable to the Hubble length is used. In this scenario, the effect of
the parameters in the microscopic realm does not even manifest.

Figure 2. (Left): the shadow radius of Sgr. A* and M87* with observer location dependency. The
dashed line represents the Schwarzschild case and the solid line for the general extended uncertainty
principle (GEUP) case. The horizontal black and blue dotted lines represent the shadow radius of Sgr.
A* and M87* based on the Event Horizon Telescope (EHT) data [1,2]. (Right): the shadow radius as a
function of the black hole mass. The black and blue vertical lines in the inset plot represent the mass of
the Sgr. A* and M87*, respectively. “Schw” denotes the Schwarzild case and M� denotes the mass of
the Sun.
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Equation (18) also admits analysis for quantum black holes. The results are plotted in
Figure 3.

Figure 3. (Left): Observer-dependent shadow radius of some elementary particles: proton (p),
neutron (n), electron (e), and neutrino (ν). (Right): The shadow radius plotted under the assumption
that the observer/detector is at robs � M, where M is the quantum black hole’s mass, for different
values of L∗. The overlapping of these lines means that L∗ has no effect in the microscopic realm. lPl

denotes the Planck mass.

The left plot shows the case where the static observer may be represented by a detector
that can probe masses as small as the proton, neutron, electron, and neutrino [63], where
their geometrized masses are used. The dashed and solid lines represent the Schwarzschild
and GEUP cases, respectively. The right plot reveals that L∗ is indeed irrelevant in the
microscopic realm. Nonetheless, with the GUP correction, the plot reveals the detector’s
position where the shadow of the particle manifests. Take, for example, the neutrino.
Without GUP correction, the shadow radius is around 10−63 order of magnitude for a wide
range of detector locations. The GUP correction lessens this range and makes the shadow
radius larger. For instance, if the detector is at r = 1.59× 10−67 m, then the shadow radius
is around Rsh = 5.03× 10−6 m. Note how the shadow radius of these particles levels at
greater distances. Finally, one observes that, without GUP correction, the shadow radii are
nearly identical to each other. With the GUP correction, we have seen that, as the mass of
the particle decreases, the shadow radius tends to increase while the range where a detector
can observe it decreases.

3. Weak Deflection Angle

In this Section, we explore a different phenomenon and examine the effect of the GEUP
correction on the weak deflection angle by black holes in the macroscopic and microscopic
realms. To do so, we use the GBT. Consider the domain (Da, ḡ) (where a = 1, 2, ..., N and ḡ
is the optical geometry metric) that is connected over an osculating Riemannian manifold
(M, ḡ) along some boundaries, and let κg be the geodesic curvature of the boundary ∂Da.
Then the GBT states that [49,64]

∫∫
Da

KdS +
N

∑
a=1

∫
∂Da

κgd�+
N

∑
a=1

θa = 2πχ(Da), (20)

where χ(Da) is the Euler characteristic, K is the Gaussian optical curvature, dS =
√

gdrdφ,
� denotes the line element, and θa is the exterior angle at the Nth vertex.

Although the spacetime herein is asymptotically flat under the GEUP correction, we
used the generalized GBT that considers non-asymptotically flat spacetime and massive
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particle deflection. In Ref. [53], the photonsphere radius rph is the one considered as part of
the quadrilateral for integration domain. It is shown that the weak deflection angle,

α̂ =
∫∫

R
rph

�S
rph

KdS + φRS, (21)

where integral is taken over through rph → S → R → rph Here, S and R are the radial
positions of the source and receiver, respectively, and φRS is the coordinate position angle
between the source and the receiver defined as φRS = φR − φS. g is the determinant of the
Jacobi metric in static and spherically symmetric spacetime:

dl2 = gijdxidxj = (E2 − μ2 A(r))
(

B(r)
A(r)

dr2 +
C(r)
A(r)

dΩ2
)

. (22)

Here, E is the energy of the massive particle defined by

E = μ/
√

1− v2, (23)

where v is the particle’s velocity. As only the equatorial plane is considered here due to
spherical symmetry, the determinant of the Jacobi metric reads:

g =
B(r)C(r)

A(r)2 (E2 − μ2 A(r))2. (24)

Following Ref. [53], one obtains the final expression for the weak deflection angle:

α̂ ∼ M
(
v2 + 1

)
bv2

(√
1− b2u2

R +
√

1− b2u2
S

)
(25)

which also involves the finite distance uS and uR. The obtained expression for α̂ can still be
further approximated as soon as b2u2 ∼ 0:

α̂ ∼ 2M
(
v2 + 1

)
bv2 (26)

For the case of photons, when v = 1, one finds:

α̂ ∼ 4M/b. (27)

The weak deflection angle result is usually applied to SMBH. As soon as α̂ is usually
plotted against the impact parameter b/M, in Figure 4 we are interested how α̂ changes as
the black hole mass under the effect of GEUP varies. Without the GEUP correction, the plot
would only represent straight lines. From Figure 4, one observes that similar to the shadow
radius, the deviation occurs when M is close to the value of L∗. The time-like deflection also
produces a higher value of α̂, and the lower the impact parameter, the greater the deflection.
Note that in this plot, b = 10M is still in the regime for weak deflection angle since this is
higher than the critical impact parameter, bcrit = 3

√
3M. We use this information for the

weak deflection for quantum black holes and strong deflection angle.
As a final remark to the plots is that showing how α̂ changes as the mass M varies has

its shortcomings since b/M is constant. For instance, if one considers the mass of the Earth,
b = 1000M equals 4.4 m, which is too small compared to the radius of the Earth (6371 km).
Thus, the line plot in Figure 4 may have its range of validity relative to the chosen value
of the impact parameter. Such a result has a critical implication as far as the GEUP model
in this study is concerned. One can verify that if the dimensional reduction is used in the
metric in Equation (7) to calculate α̂, that is when lPl = 1 [22], one can observe a very high
value for α̂ for low mass compact objects (such as Earth, for example).
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Figure 4. Weak deflection angle by Sgr. A* (Left), and M87* (Right) for different values of impact
parameter. The vertical dotted line is the mass of the black hole considered. See text for details.

We also apply the weak deflection angle for quantum black holes [33,34]. We do this
by plotting α̂ versus log10(M/lPl) in Figure 5. Let us note that when one geometrizes
the Planck mass, the Planck length is obtained, so, for simplicity, α̂ is plotted in terms of
M/lPl in Figure 5. Qualitatively, from Figure 5, one observes the same features as those are
known for the weak deflection for astrophysical black holes. Here, one can see that the
deviation begins to manifest when the log10(M/lPl) ∼ 0, and these are the masses that are
comparable with lPl (∼2.176× 10−8 kg in metric units). In this case, α̂ ∼ 114,815 μas and
can be detectable if one directs a photon at an impact parameter of b ∼ 1.62× 10−32 m.
Such particle is still massive, and its physical dimension may cause a collision instead of a
deflection. Weak deflection may occur unless the particle is compressed to allow such a
small value for the impact parameter. In the plot shown, the vertical dotted line represents
the neutrino’s mass. One can see that α̂ ∼ 3.89× 1060μas for b = 1000M. Such a large weak
deflection angle can be made smaller by increasing b. However, the main obstacle in this
case is that one cannot observe neutrinos at rest.

Figure 5. Weak deflection angle by quantum black hole. The red vertical dotted line corresponds to
the mass of neutrino.

4. Strong Deflection Angle

Near the black hole region, specifically in the critical impact parameter, the deflection
angle is described by the strong deflection expression as shown in Refs. [48,65,66]. The
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photonsphere region is crucial in strong deflection calculation; hence, we use Equation (13).
Following Refs. [48,65,66], one obtains the strong deflection angle to read:

α̂str = −ā ln(b0/bcrit − 1) + b̄ +O(b− bcrit), (28)

where ā and b̄ are the coefficients of strong deflection and b0 and bcrit correspond to
the impact parameters evaluated at the closest approach and critical impact parameter,
respectively. The coefficients of the strong deflection are calculated based on Ref. [65],
namely:

ā =

√
2B(rph)C(rph)

C′′(rph)A(rph)− A′′(rph)C(rph)
, (29)

and

b̄ = ā ln

[
rph

(
C′′(rph)

C(rph)
−

A′′(rph)

A(rph)

)]
+ IR(rph)− π, (30)

where A(rph), B(rph), and C(rph) are metric functions evaluated at the photon sphere
region, and IR denotes the regular integral evaluated from 0 to 1. The double prime
signifies second derivative with respect to r evaluated at the photonsphere, r → rph.

The second term in Equation (30) can be calculated using the procedure illustrated
in [65,66], where

IR(rph) =
∫ 1

0

⎡⎣ 2(1− Aph)
√

A(z, rph)B(z, rph)

A′(z, rph)C(z, rph)
√

Aph/Cph − A(z, rph)/C(z, rph)

⎤⎦dz, (31)

and A(z, rph), B(z, rph), and C(z, rph) are metric functions A(r), B(r), and C(r) evaluated
using the new variable [65],

z ≡ 1− rph/r. (32)

Let us express Equation (32) in terms of r and substitute it to the metric functions.
Applying the expression in Equations (29)–(31) to the black hole metric (5), one finds:

ā = 1, (33)

and
b̄ = ln

[
216(7− 4

√
3)
]
− π. (34)

When α and β are set to zero, the Schwarzschild expression is retrieved for strong
deflection [67]:

α̂str = − ln[b/bcrit − 1]− 0.40023, (35)

with the critical impact parameter from Equation (16) [61], resulting to Equation (17). In
choosing the value of b it is essential to note that the ratio, b/bcrit, must not be significantly
far from 1. Equation (35) diverges for bcrit = b. This shows that the photonsphere captures
particles in this region. In the plots shown below in Figures 6 and 7, b (in units of M)
is chosen to be slightly larger than bcrit = 3

√
3M. We plot the strong deflection angle

demonstarting how GEUP affects astrophysical and quantum black holes.
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Figure 6. Behavior of strong deflection angle by Sgr. A* (Left) and M87* (Right). The black vertical
dotted line is the corresponding mass of the supermassive black hole (SMBH). See text for details.

Figure 7. Strong deflection angle by quantum black holes.

Figure 6 shows that the strong deflection angle curves are steeper than the weak de-
flection angle. While one observes the same feature of the low impact parameter producing
higher deflection angle, one can see that the deviations due to the GEUP in the strong
deflection regime occur early (at lower mass) than that obsreved for the weak deflection
angle (cf. Figure 4), thus providing with an enhanced detectability.

Due to Equation (35), there is some value for mass M where the strong deflection
ceases, and this value is near the value of the GEUP parameters L∗ and lPl (see also Figure 7).
Without the influence of GEUP, the strong deflection angle seems to have no limit for any
values of mass M (as shown by the dashed black line). The same feature can be observed
for quantum black holes. Again, while strong deflection is theoretically possible for small
particles, a problem in its detectability is looming in the impact parameters, b, since it might
be small compared to the particle’s physical dimension.

5. Conclusions

While the effects of the generalized (GUP) and extended (EUP) uncertainty principles
are commonly analyzed separately in the literature, our study in this paper is about unifying
these two quantum corrections as applied to black hole physics. Motivated by the study of
Ref. [22], we investigated the effect of GEUP on the shadow and lensing for astrophysical
black holes and very small particles viewed as quantum black holes.
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We first find constraints to the values of the fundamental length scale, L∗, using
astrophysical data from the Event Horizon Telescope (EHT) Collaboration. For the two
standard deviations level of uncertainty, we found an upper bound, L∗ ∼ 2.985× 1010 m,
for Sgr. A* and L∗ ∼ 3.264× 1013 m for M87* black holes. Interestingly, for M87*, there is a
value for L∗ which crosses the mean of the shadow diameter, which is L∗ ∼ 7.950× 1013 m.
We note that this order of magnitudes agrees with the constraints of gravitational lensing
observables, position, magnification, and differential time delays in [23]. We also examined
how the shadow radius behaves based on the position of the observer from the GEUP
black hole. The results obtained indicate that a black hole with GEUP generally follows the
same pattern for the shadow radius curve as that retained. in the Schwarzschild case. In
particular, the GEUP parameter L∗ generally increases the shadow radius for black hole
masses with the same order of magnitude as L∗. We also did not find any influence of GUP
on the shadow of astrophysical black holes. Shadows for quantum black holes are also
investigated. Here, as the quantum black hole’s mass, M, under GEUP correction decreases,
we found that quantum black hole’s corresponding shadow increases. The position of
detectors also affects the radius of such shadows. Lastly, it is shown that L∗ does not affect
the quantum black hole’s shadow.

Alternatively, we probe more into the effects of GEUP by considering the strong
and weak deflection angles. For the weak deflection angle, the main result indicates that
deviation caused by GEUP occurs when the masses are comparable to the fundamental
length scales. Such a deviation occurs early at a strong deflection angle. Furthermore, due
to the fundamental length scales, there is a limitation for the occurrence of strong deflection
angle. For example, if hypothetically the deflection angle by a neutrino is observed, then
strong deflection cannot be applied due to the limitations imposed by the Planck length, lPl.

Nonetheless, the weak deflection angle is still a better probe since it can be applied for
relatively high impact parameters. The drawback is that measurement may not be possible
due to the quantum nature of a particle. Finally, as far as the GEUP model in this study
is concerned, the strong and weak deflection angles cannot probe whether L∗ affects the
quantum realm, and vice versa. Lowering the value of L∗ may give an interesting result,
but it may have some implications in the astrophysical phenomena that might be ruled out
by observation. In theory, this direction is worth investigating.
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Abstract: A non-minimally coupled cosmological scenario is considered in the context of f (R, T) =
f1(R) + f2(R) f3(T) gravity (with R being the Ricci scalar and T the trace of the energy-momentum
tensor) in the background of the flat Friedmann–Robertson–Walker (FRW) model. The field equations
of this modified theory are solved using a time-dependent deceleration parameter for a dust. The
behavior of the model is analyzed taking into account constraints from recent observed values the
deceleration parameter. It is shown that the analyzed models can explain the transition from the
decelerating phase to the accelerating one in the expansion of the universe, by staying true to the
results of the observable universe. It is shown that the models are dominated by a quintessence-like
cosmological dark fluid at the late universe.

Keywords: f (R, T) theory; deceleration parameter; non-minimal coupling; dark energy

1. Introduction

The cosmological portrait of the universe has been changed by some indications of
recent type Ia supernovae data [1–3] and the results of Planck Collaboration [4]. The
revolutionary sign of these observations is that the expansion of the universe is currently
accelerating. Various theories have been developed in the literature to explain this cosmic
acceleration. It is believed that the cause of this acceleration is an energy called dark energy,
which cannot be explained by the baryonic matter distribution. This dark energy is now
known to have a large proportion of about 70% of the total energy distribution in the
universe. In Λ-cold-dark-matter (ΛCDM) cosmology, this dark energy is usually explained
by adding the cosmological constant Λ to the field equations of the general theory of
relativity (GR).

However, such a cosmological scenario is pregnant with some cosmological prob-
lems [5], so some alternative models have been proposed [6–8]. In these alternative cos-
mologies, the model that behaves similar to the ΛCDM model is obtained without using
the cosmological constant. The main reason here is the need for a cosmological model
that can give the results of the observable universe, but on the other hand, will keep the
problems brought by ΛCDM at bay. For example, it is one of the consequences of such a
need to take the matter–energy content of the universe as the scalar field as exotic matter
in Einstein’s field equations that can produce enough negative pressure to accelerate the
expansion of the universe; see Refs. [9–14].

In this context, modified gravity theories that serve this purpose are of great interest
in current cosmological studies. The f (R, T) theory of gravity is one of the most popular of
these modified gravitational theories [15]. Here, the gravitational Lagrangian is given by an
arbitrary function of the Ricci scalar, R, and the trace, T, of the energy–momentum tensor,
the dependence of which can be induced by exotic imperfect fluids or quantum effects [15].
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Since it was proposed in 2011, many researchers have performed a wide variety of research
on this theory. Some to be mentioned are as follows. Xu et al. [16] studied quantum
cosmology effects of the gravitational interaction described by the model. Friedmann–
Robertson–Walker (FRW) model was examined by Myrzakulov [17]. Sharif and Zubair [18]
obtained exact solutions of the field equations of f (R, T) theory using the anisotropic
behavior of spacetime for exponential and power expansion laws. Moraes et al. examined
the transition from deceleration to acceleration in this theory [19]. Shamir [20] studied
the locally rotationally symmetric (LRS) Bianchi type-I model. A string cosmological
model was considered by Sharma and Singh [21] for Bianchi type-II universe. In order to
understand the dynamic behavior of the anisotropic universe in f (R, T) gravity, a large-
scale search was made for the Bianchi-type VIh model [22,23] by Mishra et al. Tiwari
and Sofuoğlu [24] investigated the cosmological implications of a quadratically varying
decelariton parameter in locally-rotationally-symmetric (LRS) Bianchi type-I model. Tiwari
et al. studied Bianchi type-I universe taking into account time dependent gravitational
and cosmological parameters [25]. Evolution of axially symmetric anisotropic sources was
investigated in f (R, T) theory by Zubair and Noureen [26]. Alfedeel and Tiwari showed
that the generalized Friedman equation’s exact solution for the average scale factor involves
the hypergeometric function considering a novel approach [27]. An accelerating model
studied in the presence of varying cosmological term by Tiwari et al. [28]. A cosmological
model with variable deceleration parameter in f (R, T) theory was constructed by Tiwari
et al. [29]. Sahoo et al. [30] studied on Bianchi type-I universe taking bulk viscous fluid.
Moraes and Sahoo [31] considered nonminimal coupling between geometry and matter
in this theory. Sharma et al. [32] examined the existing of non-minimal matter–geometry
interaction in Bianchi type-I model. Tiwari et al. [33] studied a non-minimal cosmological
model in the presence of a varying deceleration parameter.

In the current study, inspired by the above discussion, we consider the f (R, T) modi-
fied theory of gravity in the background of flat FRW universe by considering a variable
deceleration parameter to investigate the phase change (from decelerating to accelerating
expansion phase) in the expansion of the universe. For the choice of a particular case
of the non-minimally function f (R, T) = f1(R) + f2(R) f3(T), exact solution of the field
equations has been obtained. In Section 2, a basic formalism of f (R, T) theory is presented,
the solutions of the field equations are obtained in Section 3, and the conclusions are given
in Section 4.

2. f (R, T) Gravity

Throughout this section, we review the basic derivation of the f (R, T) theory of gravity.
Let us start by introducing the the action of f (R, T) gravity is defined by Harko et al. [15]:

S =
∫ √

−g d4x
(

1
16πG

f (R, T) + Lm

)
, (1)

where f (R, T) is an arbitrary function of R and T = gijTij the trace of the energy–momentum
tensor, Tij; Latin letters i, j, k, l, . . . denote 4-dimensional tensor indices and take on the
values 0 (time), 1, 2, and 3 (space); g = det|gij| is the determinant of the metric tensor, gij;
G is Newtonian constant of gravity, and Lm is the matter Lagrangian. Accordingly, the
energy–momentum tensor, Tij, is defined as

Tij = −
2√−g

δ(
√−gLm)

δgij = Lmgij − 2
δLm

δgij . (2)

Here, we assume that Lm is a function the metric tensor, gij, rather than of its deriva-
tives. By varying the action S in Equation (1) with respect to the metric tensor, gij, the
modified gravitational field equations for f (R, T) gravity reads:

fR(R, T)Rij −
1
2

f (R, T)gij − (∇i∇j − gij�) fR(R, T) = 8πTij − fT(R, T)(Tij + Θij) , (3)
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where ∇i is the covariant derivative, � ≡ ∇i∇i is the d’Alembertian operator and the
fractions moved to a linear form better visible in the text. Please confirm. fR(R, T) =
∂ f (R, T)/∂R, fT(R, T) = ∂ f (R, T)/∂T, Θij = gabδTab/δgij. Contracting Equation (3) with
metric tensor gij produces

fR(R, T)R + 3� fR(R, T)− 2 f (R, T) = 8πT − fT(R, T)(T + Θ) , (4)

where Θ = gijΘij. Upon using the matter Lagrangian Lm, the energy–momentum tensor of
matter is given by

Tij = (ρ + p)uiuj − pgij , (5)

where ρ, p, ui are the fluid energy density, the pressure of the fluid and the fluid 4-velocity,
respectively. Further, ui is time-like quantity that satisfies uiui = 1 and ui∇jui = 0. The
variation of stress energy of perfect fluid is obtained by following Shamir [34] argument
where the matter Lagrangian Lm = −p is assumed, thus

Θij = −2Tij − pgij . (6)

Substituting Equation (6) into Equation (3), the field equations take the form

fR(R, T)Rij −
1
2

f (R, T)gij − (∇i∇j − gij�) fR(R, T) = 8πTij + fT(R, T)(Tij + pgij) . (7)

Equation (7) leads to the modified f (R) and GR theories of gravity when f (R, T) =
f (R) and f (R, T) = R, respectively. Ref. [15] investigated three different functional forms
of f (R, T). More justification about the choice of f (R, T) is given in [35]. These forms are
given by

f (R, T) =

⎧⎨⎩
R + 2 f (T),

f1(R) + f2(T),
f1(R) + f2(R) f3(T).

In this paper, we adopt the last functional form,

f (R, T) = f1(R) + f2(R) f3(T) = R + λRT , (8)

thus transforming Equation (7) into the following form:

Rij −
1
2

gijR = +8πTij − λ[gij� − ∇i∇j]T − λT[Rij −
1
2

gijR] + λR[Tij + pgij] , (9)

or, alternatively,

Rij −
1
2

gijR =
8π + λR
(1 + λT)

Tij −
λ

(1 + λT)
[gij� − ∇i∇j] T +

λR
(1 + λT)

pgij . (10)

Here, λ is the coupling parameter of the model and vanishes automatically for GR.
The right-hand side of Equation (10) can be viewed as a total-effective energy momen-

tum tensor, Tt
ij,

Tt
ij = Tij + T f

ij , (11)

with T f
ij defined as

T f
ij =

λ

1 + λT
(

RTij + Rpgij − [gij�−∇i∇j]T
)

, (12)

showing the contribution term from f (R, T). The limiting case λ = 0 in Equation (9) gives
standard GR results.
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The FRW Metric and Field Equations

The homogeneous and isotropic flat FRW universe is given as

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (13)

where a(t) is the scale factor. In the flat FRW background, the non-minimally coupled
f (R, T) gravity for T = ρ− 3p, the time-time and space-space components of the modified
field equations of Equation (9) gives the following Friedmann equations:

3H2 = 8πρ− 3λH(ρ̇− 3ṗ)− 3λH2(ρ− 3p)− 6λ(Ḣ + 2H2)(p + ρ) , (14)

2Ḣ + 3H2 = −8πp− λ(2Ḣ + 3H2)(ρ− 3p)− λ(T̈ − 2HṪ) . (15)

Here, H is the Hubble constant and the dot denotes time derivation.
As soon as Ṫ = ρ̇− 3ṗ and T̈ = ρ̈− 3p̈, Equation (15) becomes:

2Ḣ + 3H2 = −8πp− λ(2Ḣ + 3H2)(ρ− 3p)− λ[ρ̈− 3p̈− 3H(ρ̇− 3ṗ)] . (16)

Equations (14) and (16) are the generalized Friedmann equation in f (R, T) theory of
gravity. These equations cannot be solved since they contain λ, ρ̇, ṗ, ρ̈ and p̈. On the other
hand, Equation (9) gives the Bianchi identity as

− 8π∇jTij =
λR
2

(∇iT) + λ(∇jR)[Tij + pgij] + λR[∇jTij +∇j p] , (17)

which gives

(8π + λR)ρ̇ + 3H(p + ρ) = −λR
2

(ρ̇− ṗ)− λṘ(ρ + p) . (18)

Assuming that p = wρ, Equation (17) can be re-arranged for ρ̇ as

ρ̇ = − 3H(1 + w) + λṘ
8π + 1

2 λR(3− w)
ρ , (19)

upon differentiating with respect to time yields:

ρ̈ =

{
− 3Ḣ(1 + w) + λR̈

8π + 1
2 λR(3− w)

+
[3H(1 + w) + λṘ(5− w)][3H(1 + w) + λṘ]

[8π + 1
2 λR(3− w)]2

}
ρ , (20)

where for a flat FRW metric,

R = −6(Ḣ + 2H2) , (21)

Ṙ = −6(Ḧ + 4HḢ) , (22)

R̈ = −6(
...
H + 4Ḣ2 + 4HḦ) (23)

are the Ricci scalar and its time deviatives. The generalized Friedmann Equations (14)
and (16) now read:

3H2 = 8πρ− 3λ(1− 3w)H[ρ̇ + Hρ]− 6λ(1 + w)(Ḣ + 2H2)ρ , (24)

2Ḣ + 3H2 = −8πwρ− λ(1− 3w)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈] . (25)

Subtracting Equations (24) and (25) one from another produces the generalized Ray-
chaudhri equation,

2Ḣ = −8π(1 + w)ρ− λ(1− 3w)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈]

+3λ(1− 3w)H[ρ̇ + Hρ]− 6λ(1 + w)(Ḣ + 2H2)ρ . (26)
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Having known the value of ρ̇ and ρ̈ (from Equations (19) and (20), respectively) and
H, Equation (26) is solved in Section 3 below to obtain an expression for the energy density
ρ of the matter content of universe directly. In this model, the Hubble parameter, H, and
deceleration parameter (DP) are defined, respectively, as

H ≡ ȧ
a

and q ≡ −1− Ḣ
H2 . (27)

Using Equation (9), Equations (24) and (25) give the total-effective density, ρt, and the
total-effective pressure, pt:

ρt = ρ− 3λ(1− 3w)H(ρ̇ + Hρ) + 6λ(1 + w)(Ḣ + 2H2)ρ , (28)

pt = wρ− λ(1− 3w)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈] . (29)

From Equations (28) and (29), with the help of Equation (11), one obtains the density ρ
in terms of H, Ḣ, ρ̇, and ρ̈:

ρ =
1
4

[
2Ḣ − 5λH(1− 3w)ρ̇ + λ(1− 3w)ρ̈

−2π(1 + w) + λ(1 + 3w)Ḣ + 3λ(1 + w)H2

]
. (30)

3. Solutions of the f (R, T) Field Equations

To solve the system of Equations (20)–(24) containing two equations and three un-
knowns (a, ρ, and p), one more equation is needed. Since the Type Ia supernova obser-
vations and various astronomical observations [1,2,36,37] indicated that the universe is
accelerating, a time-dependent DP is needed that can explain the transition from decelera-
tion expansion in the past at z ≥ 1 to acceleration expansion at present. In concordance with
this argument, many parametrization have proposed that DP is time-dependent to study
various problems in cosmology [38–40]. For instance, for Berman [41] and Gomide [42],
the law of variation for Hubble parameter that yields a constant DP. Ref. [43] introduced a
linear function of the Hubble parameter, and well motivated by [44,45]. Motivated by the
above discussion, in this paper, we adopt a generalization form of deceleration parameter
that is introduced in Equation (27) as a function of Hubble parameter:

q = α− β

H2 , (31)

where α is a dimensionless constant, while the other constant, β, has the dimensions of H2.
Using this relation along with Equation (27) for solving the scale factor and the Hubble
parameter, one obtains:

a =

{
sinh

[√
(1 + α)β t + c

]} 1
1+α

, (32)

H =

√
β

1 + α
coth

[√
(1 + α)β t + c

]
, (33)

where c is the constant of integration.
Substituting the values of H, R, and Ṙ into Equation (19) gives:

ρ̇ =
3Acoth(τ)[1 + w + 4Bλ(2A− B)cosech2(τ)]

8π + Aλ(w− 3)[Acoth2(τ)− 3Bcosech2(τ)]
ρ , (34)

where A =
√

β
1+α and B =

√
(1 + α)β.
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Integrating Equation (34) results into the following expression for energy density:

ρ = ρ0exp
{∫ 3Acoth(τ)[1 + w + 4Bλ(2A− B)cosech2(τ)]

8π + λ(w− 3)[A2coth2(τ)− 3ABcosech2(τ)]
dt
}

, (35)

where τ ≡
√
(1 + α)β t + c, and ρ0 is a constant of integration. It is worth mentioning

that the processes of obtaining a simplified expression for the energy density ρ from
Equations (20)–(25) is not straightforward as soon as it depends on R, Ṙ, ρ̇, and ρ̈. If λ = 0,
Equation (35) give the GR limit as

ρ =
3(1 + w)ρ0

8π

√
β

1 + α
sinh(τ) . (36)

It is always viable to write the explicit expression of ρ using its temporal derivatives,
but the expression is large and complex. Instead, it is possible to calculate the integral of
Equation (34) or Equation (35) for w = 0, which gives the following expression for the
energy density ρ:

ρ = ρ0

[
(sinh(τ))−1

] 3A
4B(−9 λ A2+4 π)

[
9λA(−2A cosh2 τ + B)

sinh2 τ
+ 8π

]−72 λ A2B+32 π B+9 A
−12B(−9 λ A2+4 π)

. (37)

To show the graphical representation of the model, let us first write the expressions of
the parameters in terms of redshift, z. Using the relation a = (1 + z)−1, one obtains:

q = α− b
h2 = α− b(1 + α)

1 + (1 + z)2+2α
, (38)

h =

√
(1 + α)−1

√
(1 + z)2(1+α) + 1 , (39)

ρ = ρ0(1 + z)
3(1+α)A

4B(−9 λ A2+4 π)×[
(1 + z)2 α

(
9 λ A

(
(−2A + B)[z2 + z + 1] + (−2A + 7B)z− 2

)
+ 8 π

)]−72 λ A2B+32 π B+9 A
−12B(−9 λ A2+4 π) , (40)

where h = H/H0 is the normalized expansion rate and b = β/H2
0 is a normalized constant

with H0 being the Hubble constant.
To plot the graphs, different values of the constants α and b were selected considering

the observable universe as initial conditions (z = 0). We take into account the results of
three different observations for the current values of the deceleration parameter, namely
q0 = −0.54 [46], q0 = −0.73 [47] and q0 = −0.81 [48]; the models obtained for each of the
observational values called Model 1 (M1), Model 2 (M2), and Model 3 (M3), respectively.
In what follows, the graphs are plotted for the corresponding three different α and b pairs:
α = 0.4761, b = 1.3903 for M1, α = 0.5685, b = 1.6557 for M2, and α = 0.6054, b = 1.7633
for M3.

From Figure 1, one can see that the normalized Hubble parameter, h, has a larger value
at high redshift zone and it is smaller at the low redshift zone for all the models. Figure 2
shows that while the sign of the deceleration parameter was initially positive, it became
negative in the late universe for each model. This sign change indicates that the universe
has moved from its decelerating expansion in the past to its current accelerating expansion.
It is seen that the transition from slowing expansion to accelerating expansion takes place
at almost z = 1/2 for three of the models.
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Figure 1. The normalized expansion rate, h (39), versus redshift, z, for three observational models
M1, M2, and M3. See text for details.

Figure 2. The deceleration parameter, q (38), versus redshift, z, for three observational models M1,
M2, and M3. See text for details.

Figure 3 shows that the energy density ρ decreases from the high redshift region to the
low redshift region and always remains positive.
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Figure 3. The energy density, ρ (40), versus redshift, z, with λ = 0.1 and ρ0 = 1 for three observational
models M1, M2, and M3. See text for details.

Now, let us use the relation

wt =
1
3
(2q− 1) (41)

between the deceleration parameter and total-effective equation of state (EoS) parameter,
wt, to obtain

wt =
1
3

[
2α− 2b(1 + α)

(1 + z)2+2α
− 1

]
. (42)

Figure 4 shows the evolution of the total-effective EoS parameter in redshift for each
model. It is seen that while the EoS parameter has positive values at high redshift regions,
it decreases and takes negative values at low redshift regions. Current values of wt indicate
that the models are dominated by a quintessence-like dark fluid currently.

Figure 4. The The equation of state (EoS) parameter, wt (42), versus redshift, z, for three observational
models M1, M2, and M3. See text for details.

108



Physics 2022, 4

4. Conclusions

In this study, we investigated a non-minimally coupled cosmological model in the
context of f (R, T) theory for the flat Friedmann–Robertson–Walker (FRW) metric. For the
choice of the function f (R, T) in the form of f (R, T) = f1(R) + f2(R) f3(T) with f1(R) =
f2(R) = R and f3(T) = λT, the solutions of the field equations were solved under the
assumption of a time-dependent deceleration parameter, which can explain the evolution
of the expansion of the universe from beginning to current epoch. Results obtained were
discussed by means of their graphs in redshift space, by taking into account three different
observed values of the deceleration parameter as three different observational models (M1,
M2, and M3).

The evolution of the deceleration parameters shows that the phase change in the
expansion of the universe occurs at almost z = 1/2 redshift, and the deceleration parameter
current values (q0) are −0.55, −0.729, and −0.81 for M1, M2, and M3 models, respectively.
These values of q0 are consistent with the observational values of the deceleration parameter.

The total or effective equation of state parameter, wt, is found to have positive values
initially, but continue their evolution by taking negative values, for each model. The current
values of wt are less than −1/3 and greater than −1. These values tell us that each model
is dominated by a quintessence-like dark fluid.

As a next step, it is worth constraining the parameter space of these models with cur-
rent and upcoming astronomical data, as well as studying the cosmological perturbations
in the context of these models to analyze large-scale structure formation scenarios.
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Exploring Quantum Geometry Created by Quantum Matter
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Abstract: Exactly soluble models can serve as excellent tools to explore conceptual issues in non-
perturbative quantum gravity. In perturbative approaches, it is only the two radiative modes of
the linearized gravitational field that are quantized. The goal of this investigation is to probe the
‘Coulombic’ aspects of quantum geometry that are governed entirely by matter sources. Since there are
no gravitational waves in three dimensions, 3-dimensional (3-d) gravity coupled to matter provides
an ideal arena for this task. The analysis presented here reveals novel aspects of quantum gravity that
bring out limitations of classical and semi-classical theories in unforeseen regimes: non-linearities of
general relativity can magnify small quantum fluctuations in the matter sector to large effects in the
gravitational sector. Finally, this analysis leads to thought experiments that bring out rather starkly
why understanding of the nature of physical reality depends sensitively on the theoretical lens with
which it is probed. As theories become richer, new scales emerge, triggering novel effects that could
not be imagined before. The model provides a concise realization of this well-known chain.

Keywords: non-perturbative quantum gravity; exactly soluble models; quantum nature of Coulombic
interaction; trans-Planckian frequencies

1. Introduction

This paper has several different motivations stemming from various aspects of quan-
tum gravity. A number of bold ideas have been put forward in 4-dimensional (4-d) quantum
gravity that appear to be plausible from one perspective but puzzling, and even unsettling,
from another. Exactly soluble models with local degrees of freedom (sometimes called
midi-superspace in the literature) can be used to examine these issues non-perturbatively.
Of course, one has to make simplifying assumptions to arrive at these models. Therefore,
one can miss important aspects of the full theory and has to exercise due caution in assess-
ing the conclusions reached. Nonetheless, these models can provide pointers and bring to
the forefront new conceptual issues in a crisp manner.

One such issue concerns the potential implications of ‘trans-Planckian modes’ asso-
ciated with extremely high frequency fields that arise, e.g., in the analysis of Hawking
radiation. Over the years, there have been suggestions that an adequate handling of these
modes may lead to novel physics by, e.g., having to abandon local Lorentz invariance (see,
e.g., [1]). Exactly soluble models provide a natural arena to analyze this issue. Models
discussed here, for example, have unforeseen effects induced by high frequency modes.
It is then natural to ask if they lead to a loss of local Lorentz invariance in the final non-
perturbative theory or if this symmetry is preserved by the new physics. Another example
comes from the widely held view that the usual counting of states in quantum field theory
becomes inadequate at high frequencies and the correct counting would lead to a holo-
graphic picture in which physics in the bulk is fully captured by states residing on the
boundary (see, e.g., [2–4] for early works and [5] for a recent review). Is this view supported
in exactly soluble models?

A third example comes from another commonly held view first introduced by Wheeler [6]
that there is a ‘space-time foam’ at the microscopic level because of the perpetual quantum
fluctuations of the gravitational field. In Wheeler’s paradigm, these fluctuations are to
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emerge as novel non-perturbative effects associated with the quantum nature of geometry,
rather than from the ultraviolet behavior of graviton-mediated interactions in perturbative
approaches. This view then leads one to visualize the ‘non-perturbative ground state’ of
full quantum gravity as having a very different micro-structure to that suggested by the
smooth, tame geometry of Minkowski space and the associated perturbative vacuum. Is
this idea borne out in exactly soluble models? If so, the standard positive energy theorem
of classical general relativity may not extend to non-perturbative quantum gravity; the
energy density in the ground state could well be Planck density with either sign. Is this
what happens?

Exactly soluble models can also be well-suited to probe an issue at the opposite corner
of the theory: semi-classical gravity. This is a mathematically well-defined theory in which
gravity/geometry is treated classically and matter fields quantum mechanically, and the
two are related by semi-classical Einstein’s equations in which the right-hand side is pro-
vided by the expectation value of stress-energy of quantum matter. It is generally assumed
that the theory would provide a good approximation to the predictions of quantum gravity
so long as the space-time curvature is low compared to the Planck scale. Exactly soluble
models can shed light on the validity of this conjecture. Can one arrive at this theory from
full quantum gravity in the appropriate regime? Are there potential surprises about its
domain of validity?

Another motivation for this work comes from the ongoing debate on whether quantum
matter can genuinely inject quantum information into the gravitational field or if it is only
the radiative, or ‘true’, degrees of the gravitational field that are quantum mechanical (see,
e.g., [7–10]). The soluble models discussed here can be thought of as three-dimensional
general relativity coupled to the Maxwell (or Klein–Gordon) fields. The three-dimensional
viewpoint provides a conceptually clean arena to probe this issue since the gravitational
field is now completely determined by matter; there are no gravitons (or gravitational
waves) in three dimensions. Nonetheless, quantum geometry does exhibit specific and
quintessentially quantum features. In fact, the nonlinear coupling between matter and grav-
ity can magnify small quantum fluctuations in the matter sector to large quantum effects in
space-time geometry, leading to consequences that could not have been foreseen classically.

Finally, these soluble models also suggest a thought experiment that yields more
general conceptual insights. The understanding of physical reality is deeply influenced
by the theoretical paradigm one chooses to work in. Indeed, possibilities envisaged and
experiments designed to test subsequent hypotheses are dictated in this paradigm. For the
specific models we discuss, two constants of nature play a fundamental role: Planck’s
constant, h̄, which dictates the size of quantum effects, and Newton’s constant, G, which
governs gravitational phenomena. We will find that ‘switching them on and off’ results in
drastic changes in our understanding of the underlying physical reality.

The material is organized as follows. Section 2 discusses the classical ‘midi-superspace
models’ and, Section 3, the unforeseen quantum gravity effects in these models. Section 4
summarizes the main results and puts them in a broader context. The key mathematical
results presented here were summarized in a letter [11] quite some time ago. The current
paper provides detailed derivations that have been been circulated only in private commu-
nications so far and examines the results from different angles, putting them in a broader
conceptual perspective. Since significant time has lapsed, the paper also discusses related
results in other that have appeared since (in particular, in [7–10,12–18]) as well as the above
mentioned thought experiment, which has not appeared in the literature.

In the main discussion, 2 + 1 dimensional general relativity coupled with a scalar or
Maxwell field is used. Space-time metric gab has the signature (−,+,+) and its derivative
operator is denoted by ∇, its Riemann tensor is defined by Rabc

dkd = 2∇[a∇b]kc, its Ricci
tensor by Rac = Rabc

b, its scalar curvature by R = gac Rac, and its Einstein tensor by
Gab. We set c = 1 but display the dependence of various quantities on G and h̄. For the
convenience of the reader, let us note that, in 3-d, Newton’s constant has dimensions
[G] ∼ M−1. Therefore, unlike in 4-d general relativity, there is a natural mass scale in the
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classical theory. However, one cannot associate a given mass M◦ with a length; there is no
notion of ‘Schwarzschild radius’ of M◦. It is also helpful to keep in mind the differences
that arise in quantum gravity from the more familiar 4-d situation. While there is a natural
notion of Planck length ([h̄G] ∼ L) and, therefore, of Planck frequency, there is no notion
of Planck mass that would be relevant to quantum gravity. Section 2 briefly discusses how
the 3-d models considered here arise from a symmetry reduction of 4-d general relativity,
à la Kaluza–Klein. There, the 4-dimensional fields explicitly carry a prefix of 4.

2. Exactly Soluble Models

In this Section, we first recall the model of primary interest, and then briefly discuss
other similar models that have been considered in the literature. These are often referred to
as ‘midi-superspace models’ because they result from a symmetry reduction of 4-d general
relativity but have an infinite number of true degrees of freedom (in contradistinction
with the ‘mini-superspace’ of homogeneous cosmological models, which have only a finite
number of degrees of freedom). While these models and their structure has been discussed
in the literature, their salient features are reviewed here because the paper is intended for a
broad audience. This discussion also enables us to fix the notation used.

As mentioned above, in most of this paper, we work primarily in three space-time
dimensions and with the signature (−,+,+). Let us denote this space-time by (M, gab). M
is assumed to be topologically R3 and the metric gab to be asymptotically flat both at null
and spatial infinity in the sense of Refs. [17–19], respectively. Matter fields are taken to
be either Maxwell fields, Fab or Klein–Gordon fields, Φ. In 3-d, there is a well-known
duality between the two. Maxwell’s equations imply that Fab satisfies Maxwell’s equations
if and only if its the dual �Fa := 1

2 εa
bcFbc is exact, i.e., �Fa =: ∇aΦ, where Φ satisfies the

Klein–Gordon equation, ∇a∇bΦ = 0, and εa
bc is the totally anti-symmetric, non-degerate

tensor field, defined by gab. (Here, the fact that the topology of M is trivial has been used.)
Interestingly, the dictionary �Fa := ∇aΦ translates the Maxwell stress-energy tensor, TMax

ab ,
to the Klein–Gordon stress-energy, TKG

ab :

TMax
ab ≡ Fa

m Fbm −
1
4

gab FmnFmn = �Fa
�Fb −

1
2
�Fm�Fm gab

= ∇aΦ∇bΦ− 1
2
∇mΦ∇mΦ gab ≡ TKG

ab . (1)

Therefore, the pair (gab, Φ) satisfies the coupled Klein–Gordon and Einstein’s equa-
tions if and only if the pair (gab, Fab) satisfies the Einstein–Maxwell equations. For nota-
tional simplicity, we work with a Klein–Gordon field Φ in calculations. However, conceptu-
ally, it is often more convenient to regard the source as a Maxwell field Fab and its quantum
excitations as photons.

Thus, the Klein–Gordon field Φ and the space-time metric satisfy the following coupled
set of equations:

�Φ = 0 and Gab = 8πG Tab ⇔ Rab = 8πG∇a∇bΦ . (2)

Hamiltonian analysis of this system has also been carried out in some detail else-
where [20]. However, because Equations (2) are rather complicated partial differential
equations, one still does not have good control on the detailed properties of their solutions.
However, it is known that equations simplify greatly if one restricts oneself to the axisym-
metric sector of this system consisting of solutions, in which gab admits a rotational Killing
field, ∂θ∂/∂θ, with a regular axis, and Φ is Lie-dragged by the Killing field. Then, one can
cast the space-time metric in the form

gab dxa dxb = eGΓ(R,T) (dT2 + dR2) + R2dθ2 , (3)

where T ∈ (−∞, ∞) and 0 ≤ R < ∞. The chart is unique up to the transformation
T → T + const, and, by inspection, R is the norm of the rotational Killing field. Note
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that if the metric coefficient, Γ(R, T) = 0, the metric becomes the Minkowski metric, g◦ab.
The second consequence of the assumption of axisymmetry is technically more powerful:
it is straightforward to check that a scalar field Φ satisfies the Klein–Gordon equation,
�Φ = 0, with respect to the metric gab if and only if it satisfies �̊Φ = 0 with respect
to the Minkowski metric g◦ab where �̊ is the d’Alembertian defined by the Minkowski
metric g◦ab. Therefore, the two equations in Equation (2) now decouple: one can just solve
the wave equation �̊Φ = 0 in Minkowski space, obtain a solution Φ, and then use it in
Rab = 8πG∇aΦ∇bΦ to determine the only unknown Γ(R, T) in the metric physical gab.
The final simplification is that this last equation can be readily solved to obtain

Γ(R, T) =
1
2

∫ R

0
dR̄ R̄ [ (∂TΦ)2 + (∂R̄Φ)2 ](R̄, T) . (4)

Note that the right side has a straightforward interpretation: it is just the energy of the
scalar field Φ with respect to the Minkowski metric on a disc of radius R at time T. Therefore,
in the axisymmetric case, there is a large class of asymptotically flat solutions on which one
has excellent control [17,18]. This is our midi-superspace.

To summarize, in the midi-superspace of interest, to solve field Equation (2), one
only needs an axisymmetric solution Φ(R, T) to the Klein–Gordon equation in Minkowski
space-time, (M, g◦ab). Given Φ, one can just write down the metric of Equation (3) such that
the pair (gab, Φ) solves the coupled Einstein–Klein–Gordon equations. This is the general
solution in the axisymmetric sector of 3-d gravity coupled to a Klein–Gordon (or Maxwell)
field. Finally, recall that a general solution, Φ of �̊Φ = 0 can be readily constructed by going
to the frequency domain: it is given as an expansion on the basis f+ω (R, T) := J0(ωR)e−iωT

of positive frequency solutions, where J0 is the zeroth order Bessel function of first kind:

Φ(R, T) =
∫ ∞

0
dω

[
φ(ω) f+ω (R, T) + φ̄(ω) ¯f+ω(R, T)

]
. (5)

This is the precise sense, in which the midi-superspace under consideration is an exactly
soluble sector of 3-d gravity (and, as discussed below, also of 4-d vacuum gravity). For each
choice of a regular function φ(ω), one obtains a solution Φ(R, T) to �̊Φ = 0, which then
determines the only unknown coefficient Γ(R, T) in the metric (3) such that (Φ, gab) satisfy
the coupled Einstein–Klein–Gordon system (2). This is a midi-superspace because the
system has one local degree of freedom that is neatly coded in the function φ(ω) in the
above formulation.

To make the conceptual considerations sharper, it is often convenient to focus on
solutions, in which Φ(R, T) has initial data of compact support on a Cauchy slice (although
this restriction can be relaxed by allowing the much milder fall-off specified in [19]). It then
follows that the Φ(R, T) vanishes outside some radius R = R◦(T) for each T. Denote by
M′ the complement of the support of the given solution Φ. In the region M′, one has

Γ(R, T) =
1
2

∫ ∞

0
dR R [(∂TΦ)2 + (∂RΦ)2](R, T)

=
∫ ∞

0
dω ω |φ(ω)|2 =: H◦(φ) , (6)

where, in the first step, the initial integral over the interval R ∈ (0, R◦(T)) could be
extended to that on R ∈ (0, ∞) because Φ(R, T) vanishes for R > R◦(T). Note that H◦(φ)
is a constant because it equals the total, conserved energy of the solution Φ with respect
to the Minkowski metric, g◦ab; H◦(φ) is independent of T. Therefore, on M′, the metric
assumes the form,

gab dxa dxb |M′ = eGH◦ (dT2 + dR2) + R2dθ2 , (7)
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showing that the metric gab is flat in this region. This also follows more directly from the fact
that the Ricci tensor Rab vanishes in the absence of sources and, in 3-d, Rabcd is determined
entirely by Rab. However, unless H◦ = 0—i.e., unless Φ vanishes identically—the physical
metric gab is not globally flat. Also, although it is smooth everywhere on all of M, it has a
‘conical structure with a deficit angle’ in M′. Note also that gab admits a time translation
Killing vector ∂/∂T on M′, in addition to the rotational Killing vector. The solution is
asymptotically flat both at spatial and null infinity [17–19].

Hamiltonian analysis of this midi-superspace [19,21] reveals a striking result: The
Hamiltonian H(g, Φ), i.e., the generator of the asymptotic time translation for the full
system, is not the energy H◦(φ) of the Klein–Gordon field in Minkowski space but is
non-polynomially related to it:

H(g, Φ) =
1

4G
(
1− e−4GH◦(φ)

)
. (8)

This is the physical energy of the system in the Einstein–Klein–Gordon theory; as with the
Arnowitt–Deser–Misner (ADM) energy in 4-d, it includes all contributions, including those
from gravity. (While the Hamiltonian analysis refers to spatial infinity, H is also the past
limit of the Bondi energy at null infinity [17].) H is manifestly positive and, in striking
contrast to H◦, it is bounded from above. This property is genuinely non-perturbative: if one
were to expand H in powers of G, to the leading order G 0, one would obtain H◦; if one
truncates the series to any finite order, the expression would again be unbounded from
above. It is only when one sums all the terms that one finds that H is bounded. For a
flat conic space-time, this result was obtained by Henneaux already in 1983 [22] and for
geometries sourced by N point particles, by Deser, Jackiw, and ’t Hooft [23] in 1984. But
note that positivity and boundedness of H is a general result in 3-d general relativity, so
long as the matter satisfies the positive energy condition, Tab ta

1 tb
2 ≥ 0, for all time-like

vectors ta
1, ta

2 [19]. Finally, note that the non-perturbative form (8) is possible because the
3-d Newton’s constant has physical dimensions of inverse mass.

In 4-d gravity, the ADM or the Bondi energy is expressible as a 2-surface ‘charge-
integral’ at infinity that involves only geometrical/gravitational fields. In the 3-d case, the
expression (8) of energy, on the other hand, involves H◦, which is a bulk integral involving
just the matter fields. However, since it measures the deficit angle of the metric gab in M′, it
has a geometric interpretation (see [23] for geometries sourced by point particles). Moreover,
as explained below, it can also be expressed as a line integral involving only geometry. Since
the isometry group in the tangent space of any point of (M, gab) is the 3-d Lorentz group,
there is a natural notion of SU(1, 1) spinors, λA, where the capital Latin letters indexes,
e.g., A, B, . . . , refer to the 2-dimensional spin space. Parallel transporting any λA at a point
p ∈ M along a closed curve (C) starting and ending at p yields another spinor λ′A at p,
related to the original λA via λ′A = U(C)

A
B (p) λB, where U(C)

A
B (p) is an SU(1, 1) rotation.

Now, the trace, Tr U(C) = U(C)
A

A(p), is independent of the choice of point p on the curve.
Furthermore, since the curvature of gab vanishes in M′, Tr U(C) is also independent of the
choice of the curve (C) that lies entirely in M′. Let us restrict to such curves. Then, the trace
is a function only of the total energy H(g, Φ) of the following system:

Tr U(C)(g) = 2 cos
[πH(g, φ)

4G

]
. (9)

Consequently, there is an elementary thought experiment that one can make in the asymp-
totic region to determine H and, therefore, also the metric coefficient, gRR (or GTT), in the
source-free region M′: transport particles with spin 1

2 around any closed loop C in M′,
measure the SU(1, 1) rotation UC(p) they undergo, and take the trace. Since Φ vanishes on
M′, this experiment can be carried out without reference to matter fields. This experiment will
be used again in Section 4.

Finally, there is another striking feature of 3-d gravity: the absence of gravitational
collapse leading to the formation of black holes. This is related to a fact noted above: in
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3-d, there is no analog of the Schwarzschild radius associated with a given mass M◦. In the
midi-superspace considered here, this feature is seen in detail: for regular initial data for Φ
(e.g., of compact support), no matter how densely one packs the scalar field is packed, one
obtains a non-singular solution gab on all of M = R3 without any horizons.

Let us conclude with a number of remarks addressed primarily to the general relativ-
ity community.

Remarks

1. An important difference in the asymptotic structure of 4-d and 3-d gravity is the
following. In 4-d, one can and does ask that all physical metrics gab of interest approach a
fixed Minkowski metric g◦ab asymptotically and the information about the mass is encoded
in the leading deviation. In 3-d, noted above, gab does not approach the fixed Minkowski
metric even to the zeroth order because of the factor involving H◦ that varies from one
space-time to another, depending on its energy content. This fact complicates the discussion
of the asymptotic symmetry group in both spatial [19] and null [17] regimes. In particular,
the notion of ‘time translation’ is now more subtle. This issue of time is discussed in [14,21].

2. The model presented here is a symmetry reduction of the celebrated Einstein–Rosen
waves of 4-d, vacuum general relativity [24,25]. These solutions have cylindrical symmetry,
i.e., two hypersurface orthogonal, commuting Killing vector fields; a spatial translation,
for example, along the z direction and a rotation around the z axis. The Kaluza–Klein
reduction is carried out for the translational Killing field with norm, e.g., eψ, and the 3-d
scalar field Φ is given by Φ = ψ/4πG [17]. The rotational Killing field of 4gab descends
from the 4-manifold 4M to the 3-manifold M and becomes a Killing field of the 3-metric gab.
Einstein’s vacuum equations 4Rab = 0 in 4-d are equivalent to the 3-d field in Equation (2).
For details, especially of the asymptotic analysis from a 4-d perspective, see Ref. [18]. In the
context of Einstein–Rosen waves, H◦ is called the ‘c-energy’ and is sometimes interpreted
as the energy ‘per unit length along the z-axis’ in these waves. Careful Hamiltonian
analysis [19,21] shows that it is more appropriate to assign this interpretation to H.

3. There is an interesting variation [12] of the midi-superspace of 4-d Einstein–Rosen
waves in which the space-time topology is R2 × T2 rather than R4 and, consequently,
the corresponding I+ has topology T2 × R. In the Kaluza–Klein reduction, the 3-d space-
time has topology R2 × S1, rather than R3. Locally, the structure of equations is the same
as the one discussed in this Section, but there are global differences. In particular, there
is a right and a left spatial infinity. This model has been analyzed from a Hamiltonian
perspective in detail and then used as a point of departure for non-perturbative quantization
in [15]. The canonical analysis follows the same lines as [21] but with interesting conceptual
differences that arise from the difference in boundary conditions. Another interesting
exactly soluble model is provided by Gowdy space-times, where the spatial topology is
that of a 3-torus T3. Here, the midi-superspace is significantly richer in that the 4-d Killing
vector used in the Kaluza–Klein reduction is not hypersurface orthogonal. Consequently,
there is an additional local degree of freedom in the 3-dimensional description. The phase
space and non-perturbative canonical quantization of this model is discussed in [14] in the
setting of 4-dimensional connection dynamics.

3. Non-Perturbative Quantum Theory

This Section is divided into three parts. In the first, the quantum framework is intro-
duced; the second part discusses the unforeseen results on the nature of quantum geometry
that follow from this framework; and the third part introduces a thought experiment that
brings out the deep interplay between our notion of physical reality and the theoretical
paradigm used to frame it.

3.1. The Framework

Classically, the model is exactly soluble because the matter field, Φ, and the dynamical
space-time metric, gab could be decoupled. This procedure led us to encode the uncon-
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strained degree of freedom of the total system in Φ satisfying �̊Φ = 0, or, equivalently,
in the freely specifiable function φ(ω). Therefore, a natural strategy is to first focus on Φ
and quantize it, and then investigate the nature of the quantum geometry ĝab it determines.
This procedure makes the underlying mathematical structure simpler since the first step
involves just quantum fields in 3-d Minkowski space-time (M, g◦ab).

Let us first collect the equations from the textbook quantization of the Klein–Gordon
field Φ(R, T) in the 3-d Minkowski space-time (M, g◦ab) that are needed. The positive and
negative frequency expansion (5) of the solution immediately leads to the ‘field operator’

Φ̂(R, T) =
∫ ∞

0
dω

[
φ+

ω (R, T) Â(ω) + φ+
ω(R, T) Â†(ω)

]
, (10)

where Â(ω) and Â†(ω) are the annihilation and creation operators satisfying [Â(ω), Â†(ω′)]
= h̄ δ(ω, ω′), where δ(x, y) is there Dirac distribution. These operators act the symmetric
Fock space, F , where the underlying 1-particle Hilbert space, H, is spanned by φ(ω) or,
equivalently, classical solutions, Φ(R, T), which have a finite norm:

||φ||2 :=
1
h̄

∫ ∞

0
dω |φ(ω)|2 . (11)

Note that while solutions Φ(R, T) and their ‘frequency components’ φ(ω) are classical
concepts that make no reference to h̄, the presence of h̄ is essential in expression (11)
since the norm has to be dimensionless; (11) is a quintessentially quantum expression.
The Hamiltonian operator Ĥ◦ has the standard expression,

Ĥ◦ =
∫ ∞

0
dω ωÂ†(ω) Â(ω) . (12)

(There is no explicit factor of h̄ because [Â(ω), Â†(ω′)] = h̄ δ(ω, ω′)). Now, in the free
field theory, coherent states play a key role in the discussion of the relation of quantum
and classical theories: Given a classical solution Φ̊(R, T), or equivalently, φ̊(ω), one has a
normalized coherent state |Ψφ̊〉:

|Ψφ̊〉 = N e
1
h̄
∫

dω φ̊(ω)Â†(ω) |0〉 ,

where N = e
1

2h̄
∫

dω |φ̊(ω)|2 is the normalization constant. (13)

Recall that the expectation values of Φ̂(R, T) and Ĥ in this state just yield the classical
solution Φ̊(R, T) and its energy:

〈Ψφ̊|Φ̂(R, T)|Ψφ̊〉 = Φ◦(R, T) and 〈Ψφ̊|Ĥ◦(R, T)|Ψφ̊〉 = H◦(φ̊) . (14)

Furthermore, the state |Ψφ̊〉 is sharply peaked at the classical solution Φ◦(R, T) in the sense
that the uncertainty in the field and its momentum is saturated and equally distributed in
the appropriate sense at all times T. The uncertainty in the Hamiltonian H◦ is given by

(
ΔĤ◦

)2
= h̄

∫ ∞

0
dω ω2 |φ̊(ω)|2 and

(
ΔĤ◦

)(
〈Ĥ〉

) ≈ 1( 1
h̄

∫ ∞
0 dω |φ̊|2(ω)

) 1
2

=
1

〈N̂ 〉 1
2

. (15)

In the second equation, it is assumed that the profile φ̊(ω) is sharply peaked at some fixed
frequency to bring out the physical meaning of the right side and denoted the number
operator on the Fock space, F , by N̂ . Thus, the relative uncertainty is proportional to
the inverse of the square root of the expected number of ‘photons’ in the coherent state
under consideration. The more intense the classical beam φ̊(ω)—i.e., the greater the
value of

∫
dω |φ̊|2(ω) relative to h̄—the less the relative uncertainty in the quantum state

and more trustworthy are the classical results vis a vis the correct quantum answer. Note
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that the frequency, at which φ̊(ω) is peaked is irrelevant in this consideration; the classical
approximation will continue to be excellent one even if the peak is shifted to arbitrarily high
frequencies as long as

∫ ∞
0 dω |φ̊|2(ω) � h̄. This is a standard result in quantum optics.

All these considerations referred only to the matter sector—either a scalar field Φ, or a
Maxwell field, Fab = εabc∇cΦ—which, thanks to the integrability of the model, could be
analyzed without knowing the physical metric gab. Now, in the classical theory, the physical
metric gab is determined completely by Einstein’s equations for any given matter field
Φ̊(R, T). In the quantum theory, one can let the true degree of freedom reside in Φ̂(R, T),
represented as an operator (10) on F . Therefore, the metric coefficient gRR = −gTT in the
asymptotic region, namely, eGH◦ of Equation (7), also becomes an operator on F :

ĝRR |asym := eGĤ◦ = eG
∫ ∞

0 dω ω Â†(ω) Â(ω) . (16)

Similarly, the non-perturbative Hamiltonian H of the total system—matter and gravity—
becomes the operator,

Ĥ :=
1

4G
(
1− e−4GĤ◦

)
(17)

on F . These operators encode the non-perturbative information contained in gravity–
matter interactions.

Generally, non-trivial models are exactly soluble because they can be mapped to a
trivial model. In the case under consideration, the Einstein–Klein–Gordon (or Einstein–
Maxwell) system (gab, Φ) could be mapped to a free field, Φ(R, T), in Minkowski space.
Non-triviality is then transferred to the map that relates the two models.The relation is
now given by Equations (7) and (8) in the classical theory and Equations (16) and (17) in
the quantum theory. As shown in Section 3.2, these equations have certain unforeseen
consequences that bring out the non-triviality of the original Einstein-matter system.

Remarks

1. While defining various operators, one encounters the issue of factor ordering.
For the free Hamiltonian Ĥ◦ of the scalar field Φ̂ in Minkowski space, there is an unambigu-
ous answer: normal ordering used in Equation (12). Relation (7) between the classical H◦
and metric coefficients gRR = −gTT and relation (8) between H◦ and the Hamiltonian H of
the full system led us to define quantum operators ĝRR|asym and Ĥ. However, it is natural
to ask whether one could also use other choices. For example, could one not have normal
ordered the operator after exponentiation and used Ĥ′ = : Ĥ : instead? The operator Ĥ′

shares several attractive properties with Ĥ. In particular, it annihilates the vacuum state
|0〉 ∈ F and its expectation value in coherent states |Ψφ̊〉 also yields the value of the classical
Hamiltonian H(φ̊). However, in sharp contrast to Ĥ, the spectrum of Ĥ′ is the entire real
line. Given that the classical observable H takes values only in the finite interval [0, 1

4G ],
Ĥ′ is an inadmissible choice for the corresponding quantum observable. The choice made
in Equations (16) and (17) is free of such drawbacks. In particular, the spectrum of Ĥ is
precisely [0, 1

4G ].
2. The ‘field operator’ Φ̂(R, T) of Equation (10) is actually an operator-valued distribu-

tion. Consequently, there are technical subtleties in giving precise mathematical meaning to
ĝRR = −ĝTT in full space-time (discussed, e.g., in Ref. [21]). However, for conceptual issues
that are at the forefront of the current analysis, one could bypass this issue by focusing only
on the asymptotic region, where the classical matter fields Φ◦(R, T), at which the coherent
states |Ψφ̊〉 are peaked, vanish. More precisely, careful treatment yields the same results as
those obtained in this Section by restricting the discussion to the asymptotic region from
the beginning.

3. In the present framework, the true degree of freedom lies in the scalar field Φ(R, T).
Therefore, it was natural to construct the Hilbert space of states for this field and represent
geometric observables by appropriate operators thereon. However, one might be concerned
that this procedure is somewhat unnatural from the perspective of general relativity and
only the physical metric gab should be used in the quantization procedure. This is indeed

120



Physics 2022, 4

possible using a canonical quantization procedure, which refers only to the physical metric
as was first discussed in the 4-d context of cylindrically symmetric waves in a remarkably
early work by Kuchař [26], and later in the 3-d context in [27] (albeit, without realizing
that the second is a Kaluza–Klein reduction of the first). However, these investigations
overlooked subtle issues related to boundary conditions and the distinction between
diffeomorphisms representing gauge and the true dynamics they imply. Careful handling
of these issues is needed to put the Hamiltonian theory and the canonical quantization
procedure on a firm footing. When this is done, the framework also brings out subtleties
associated with the issue of time. Finally, the Hilbert space of quantum states can also be
selected without having to introduce the Minkowski metric g◦ab. For details on both of these
points, see [21].

3.2. Unforeseen Quantum Gravity Effects

The Hilbert space of quantum states is the Fock space F , constructed entirely from the
matter sector. As shown above, if one uses observables—such as Φ̂ and Ĥ◦—that refer only
to the matter sector, then the classical theory is an excellent approximation if the system
is in a coherent state |Ψφ̊〉. In these states, the expectation values of quantum observables
equal values of their classical counterparts and their quantum fluctuations are negligible
provided that the expected number of ‘photons’, 〈Ψφ̊|N̂ |Ψφ̊〉, is large, irrespective of the
choice of φ̊. Now, observables—such as ĝRR that encodes the quantum metric and Ĥ that
represents the Hamiltonian Ĥ of the full system, including gravity—are also represented
by operators on F . In the classical theory, values of these observables can be computed
using the matter sector alone. Therefore, one’s first expectation would be that the classical
theory would again provide an excellent approximation for these observables if the system
is in a coherent state |Ψφ̊〉. However, as shown in this Subsection, this expectation is not
borne out. Even though geometry is completely determined by matter and coherent states
|Ψφ̊〉 are sharply peaked on classical configurations φ̊, quantum properties of gravitational
observables in these states can be very different from their classical analogs. For brevity,
from now on, the suffix ‘asym’ in gRR |asym is dropped since the subsequent discussion
refers only to the asymptotic metric.

Let us begin with the action of the operator ĝRR = eGĤ◦ on coherent states:

eGĤ◦ |Ψφ̊〉 = N eGĤ◦ e
1
h̄
∫ ∞

0 dω φ̊(ω) Â†(ω) |0〉

= N eGĤ◦
∞

∑
n=0

1
h̄n n!

∫ ∞

0
dω1 . . . dωn φ̊(ω1) . . . φ(ωn) |ω1, . . . ωn〉

= N
∞

∑
n=0

1
h̄n n!

∫ ∞

0
dω1 . . . dωn φ̊(ω1) . . . φ(ωn) eGh̄(ω1+...+ωn) |ω1, . . . ωn〉

= N
∞

∑
n=0

1
h̄n n!

∫ ∞

0
dω1 . . . dωn ϕ̊(ω1) . . . ϕ̊(ωn) |ω1, . . . ωn〉 , (18)

where, as before, N = e
1

2h̄
∫

dω |φ̊(ω)|2 is the normalization constant for the coherent state,
and ϕ̊(ω) in the last step is given by ϕ̊(ω) = eGh̄ω φ̊(ω). Using the definition of the
normalized coherent state |Ψϕ̊〉, one can express the result as

eGĤ◦ |Ψφ̊〉 = e
1

2h̄
∫ ∞

0 dω |φ̊(ω)|2(e2Gh̄ω−1) |Ψϕ̊〉 . (19)

Thus, the action shifts the peak of the coherent state from φ̊ to ϕ̊ and multiplies it by a
constant. Note that the shift rescales φ̊(ω) by a factor that is exponential in Gh̄ω. Finally,
since the inner-product between these two coherent states is given by

〈Ψφ̊|Ψϕ̊〉 = e−
1

2h̄
∫ ∞

0 dω|φ̊(ω)|2(1+e2Gh̄ω−2eGh̄ω) , (20)
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the expectation value of ĝRR|asym is given by

〈Ψφ̊| ĝRR |Ψφ̊〉 = e
1
h̄
∫ ∞

0 dω |φ̊(ω)|2 (eGh̄ω−1) , (21)

in contrast to the classical value,

gRR = eG
∫ ∞

0 dω ω |φ̊(ω)|2 . (22)

There are several notable differences between the expectation value (21) and the
classical value (22). First, even though the expectation value is evaluated in a coherent
state, it depends explicitly on h̄. Thus, unlike 〈Ψφ̊|Φ̂(R, T)|Ψφ̊〉 or 〈Ψφ̊|Ĥ◦|Ψφ̊〉 in the
matter sector, in the geometric sector, the expectation value (21) itself carries a signature of
quantum effects. Second, since the matter sector knows only about h̄ and c, one does not
have a preferred frequency scale; with the availability of both G and h̄ one does, and the
Planck frequency is given by ωPl = (Gh̄)−1. Therefore, one can examine the expectation
value in various limits by assuming that φ̊(ω) is sharply peaked at various frequencies ω̊.

Let us first consider the low frequency limit, Gh̄ω̊ 	 1. Then, the expectation value
(21) can be approximated as

〈Ψφ̊| ĝRR |Ψφ̊〉 ≈ eG
∫ ∞

0 dω ω |φ̊(ω)|2 (1 +N (Gh̄ω̊)2) . (23)

where, as before, N is the expected number of ‘photons’ in the state |Ψφ̊〉. Thus, the
classical value of gRR is recoverd provided the frequency is low enough that N Gh̄ω̊ 	 1.
Interestingly, while in the matter sector the classical approximation becomes better as
N increases, for geometry, it becomes worse as N increases even when ω̊ is in the low-
frequency regime. (I thank Don Marolf for pointing out that, in hindsight, this second
condition can be understood by first noting the relation gRR = eGH◦ and then using the
form (15) of fluctuations in Ĥ◦. Although the result refers only to to the expectation value
of ĝRR and not to fluctuations, the argument makes the disagreement between classical
expectations and exact quantum results plausible.)

In the high-frequency regime, Gh̄ω̊ � 1, there is always a huge disagreement between
the expectation value and the classical expression:

〈Ψφ̊| ĝRR |Ψφ̊〉 ≈ eN (eGh̄ω̊) so that
〈Ψφ̊| ĝRR |Ψφ̊〉

gRR
≈ eN (eGh̄ω̊ −Gh̄ω̊) . (24)

In this regime, h̄ does not disappear; in fact, terms involving h̄ swamp the classical
term since, in the numerator, Gh̄ω̊ appears exponentially in the exponent itself. Further,
again, the larger the expected number of ‘photons’ in the source, the larger the disagreement
between the quantum and the classical results.

One can also calculate the quantum fluctuations. In the matter sector, these are very
small provided N � 1, irrespective of the frequency at which φ̊(ω) is concentrated.
The situation is again quite different for quantum geometry. Since Ĝ2

RR = e2GĤ◦ , the same
calculation that was used to evaluate 〈Ψφ̊| ĝRR |Ψφ̊〉 yields

〈Ψφ̊| ĝ2
RR |Ψφ̊〉 = e

1
h̄
∫ ∞

0 dω |φ̊(ω)|2 (e2Gh̄ω−1) , (25)

whence the relative uncertainty is given by(�ĝRR
〈ĝRR〉

)2
= [e

1
h̄
∫

dω |φ̊(ω)|2(1−eGh̄ω)2 − 1] . (26)
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Again, this exact expression can be simplified using φ̊(ω), which is sharply peaked at
some frequency ω̊. Then, in the low-frequency regime with Gh̄ω̊ 	 1, one has(�ĝRR

〈ĝRR〉

)2
≈ eN (Gh̄ω̊)2 − 1 . (27)

Note, again that the uncertainties in geometry grow with the number N of ‘photons’.
Thus, there is an interesting tension: to reduce quantum fluctuations in the matter sector,
one needs a large number N of ‘photons’ in the coherent state |Ψφ̊〉. However, for a fixed
ω̊, the larger the value of N—i.e., the more intense the beam—the larger its influence on
gravity. In quantum theory, this gives rise to larger relative uncertainties. The qualitative
nature of this effect is not surprising. Nonetheless, it is pleasing to see it appear in a sharp,
precise, and quantitative form. This is possible because the model is exactly soluble.

In the high-frequency regime, as one would expect from the above results on expecta-
tion values, quantum fluctuations in geometry(�ĝRR

〈ĝRR〉

)2
≈ eN (e2Gh̄ωo ) , (28)

are huge since Gh̄ω � 1 and appears exponentially in the first exponent. Again, these effects
refer to the asymptotic form of the metric in a region in which the classical profile φ̊ can be
vanishingly small. In the classical theory, the metric in this region is as tame as it can be
since the curvature vanishes. Yet, quantum geometry exhibits very large, quintessentially
quantum mechanical effects even though it has no degrees of freedom of its own and is
completely determined by the matter sector.

Finally, for the total Hamiltonian Ĥ of the matter–gravity system, the analysis can
be carried out using the same techniques. For completeness, let us list the final results.
The expectation value of Ĥ is given by

〈Ψφ̊|Ĥ|Ψφ̊〉 =
1

4G
[
1− e

1
h̄
∫ ∞

0 dω |φ̊(ω)|2(e−4Gh̄ω−1)] , (29)

while the value of the classical Hamiltonian H(φ̊) is

H(φ̊) =
1

4G
(
1− e−4G

∫ ∞
0 dω|φ̊(ω)|2) . (30)

In the low-frequency regime, Gh̄ω̊ 	 1, one has

〈Ψφ̊|Ĥ|Ψφ̊〉 ≈ H(φ̊)− 4
G
N (Gh̄ω̊)2e−4GHo(φ̊) , (31)

while in the high-frequency limit, Gh̄ω̊ � 1:

〈Ψφ̊|Ĥ|Ψφ̊〉 ≈
1

4G
(
1− e−

H◦(φ̊)
h̄ω̊

)
, (32)

which is quite different from H◦(φ̊). The uncertainties can also be calculated exactly.
However, the significance of quantum effects is now overshadowed by the fact that the
spectrum of Ĥ is bounded in the finite interval [0, 1

4G ].
Let us summarize. One of the primary motivations here was to analyze the quan-

tum effects on geometry induced by quantum matter. Therefore, one is naturally led to
the following question: can matter induce interesting quantum effects on the geometri-
cal/gravitational sectors, even when it is itself in ‘tame’ quantum states? This question led
us to focus on standard coherent states in the matter sector because they provide canonical
‘quantum representations of classical matter fields’. The analysis showed that the quantum
effects induced on geometry/gravity can be very large even when quantum fluctuations
in the matter sector are small. This unforeseen behavior arises because of the non-linear
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structure that is specific to Einstein dynamics: these non-linearities can magnify small
fluctuations in the matter sector to huge quantum effects on geometry/gravity. Unsurpris-
ingly, the effect is very pronounced when the classical configuration φ̊(ω) is peaked at a
trans-Planckian frequency ω̊ � ωPl =

1
h̄G . Then, the expectation value 〈Ψφ̊| ĝRR |Ψφ̊〉 is

wildly different from the classical gRR(φ̊), even in the asymptotic region where φ̊ vanishes.
However, there are interesting effects also in the ‘tame’ sub-Planckian frequency regime
Gh̄ω̊ 	 1, because what enters in the explicit expressions of quantum effects in the gravita-
tional sector is

√
N × Gh̄ω̊—rather than just Gh̄ω̊—where N is the expected number of

‘photons’ in the coherent state |Ψφ̊〉. In the matter sector, classical theory provides better

and better approximation to the full quantum theory as
√
N increases. Therefore, it is

also natural to consider the limit in which Gh̄ω̊ 	 1 but
√
N (Gh̄ω̊) > 1. In this regime,

the matter sector is extremely well approximated by the classical theory. However, Equa-
tion (23) implies that 〈Ψφ̊| ĝRR |Ψφ̊〉will not be well approximated by the gRR of the classical
solution. Furthermore, Equation (27) implies that in this regime quantum fluctuations will
also be small in the geometrical sector. Thus, the state |Ψφ̊〉 will be peaked on a classical

geometry but different from the one determined by the classical source φ̊(ω) ∼ Φ̊(R, T).
Finally, since ĝRR is a (positive definite) self-adjoint operator on F , one can use its

spectral decomposition to construct states in F that are sharply peaked at a classical value
gRR(φ̊). What happens to the surprising quantum effects in these states? This interesting
issue is discussed in Ref. [13]. It turns out that the large quantum effects are then transferred
to the matter sector. In this work the focus is on |Ψφ̊〉 quantum effects on geometry induced
by matter. Since matter observables have tame behavior in states |Ψφ̊〉, these states are best
suited to bring out the unforeseen effects induced on quantum geometry.

Remark

The point of departure of the current analysis was the standard description of general
relativity in terms of the metric. Now, in the asymptotically flat context, there exists in the
literature an alternate formulation of Einstein’s equations where the basic variable is not
a metric gab but a so-called ‘cut-function’, Z, that, at the end of the analysis, determines
gab. In the final picture, Z specifies intersections of light cones, emanating from space-time
points, with future null infinity, I+ [28]. The underlying idea was to pass to quantum
general relativity via an appropriate quantization of Z, rather than gab, with the hope that
in the final theory, space-time points themselves would become fuzzy [29,30]. In the 2 + 1
theory under consideration, the metric gab(R, T) is replaced by a single function Z(ξ; R, T),
where (u, ξ) label points of I+ and, in the final picture, the 3-parameter family of ‘cuts’
defined by space-time points is given by u = Z. In the 3 + 1 theory, it has not been possible
to implement this idea beyond linearized approximation. However, it could be carried
out non-perturbatively in the 2 + 1 theory using the framework outlined in this Section
as the point of departure [16]. Interestingly, it was found that, even though there are
large quantum fluctuations in the metric, fluctuations in Ẑ are strongly damped. In this
framework, there are dynamical variables that correspond to space-time points and their
fluctuations are similar to those of ĝRR. In this sense, the idea of ‘fuzzy points’ is realized in
an interesting manner: space-time points can have large fluctuations but fluctuations of the
intersections of their light cones with I+ are highly suppressed.

3.3. Lessons from a Thought Experiment

As explained in Section 1, exactly soluble models are often well suited to sharpen
conceptual issues. One such issue is how does one’s description of physical reality change
when one passes from a less accurate theory to a more accurate one? General relativity,
for example, opened entirely new classes of phenomena and possibilities that could not
be envisaged in Newtonian gravity. These arise because, with both G and the velocity of
light c at one’s disposal, a new scale arises. One can now associate a length with a mass,
namely the Schwarzschild radius, RSch = 2GM/c2, which is not available in the Newtonian
theory which knows only about G. This new scale then unleashes an entirely new class of

124



Physics 2022, 4

phenomena. Similarly, in the quantum theory, Planck’s constant, h̄, provides new scales,
dramatically changing our understanding of the atomic world and leading to a plethora
of unforeseen phenomena that have shaped the physics of the micro-world. In quantum
gravity, one has access to all three of these fundamental constants and there have been
speculations, dating back to Planck himself, on the nature of new physics that would arise
from Planck length, Planck frequency, and Planck density. Exactly soluble models provide
a clean-cut platform to discuss the nature of this new physics. In this Subsection, the idea
is to leave c as in special relativity but switch on and off h̄ and G, and examine how the
nature of physical reality changes.

Consider a trivial thought experiment in a 3-dimensional space-time: Switch on a
beam of laser light and then switch it off after some time. (The laser beam would be
naturally axisymmetric. The focus will be just on the light beam and not on the details
of the source that produced it. Therefore, the relevant source-free solution of Maxwell’s
equations is obtained as the retarded minus the advanced solution produced by the source.)
The task is is to describe what ‘really’ happens in the space-time around us when this is
done. Interestingly, there are four quite different answers to this question: (i) A description
of a classical physicist, who ignores both general relativity (GR) and quantum field theory
(QFT) and sees only a Maxwell field propagating in flat space-time, setting h̄ = G = 0;
(ii) that of a quantum field theorist, who knows of h̄ and describes the laser beam as a coherent
state of photons but sets G = 0; (iii) that of a general relativist, who ignores h̄ but knows that
the beam curves space-time with surprising consequences in the non-perturbative regime;
finally, (iv) that of a quantum gravity theorist, who knows about both G and h̄. As the
discussion of the last two Subsections shows, the fourth description of physical reality has
both subtle and truly novel elements.

Let us begin with the first description. The physical system of interest for the classical
physicists is the Maxwell field, F̊ab = εabc∇cΦ̊, that propagates in a 3-d Minkowski (M, g◦ab).
The Maxwell field has initial data of compact support on every Cauchy surface and,
therefore, vanishes in a finite neighborhood of spatial infinity, i◦. The total energy in the
system is entirely from the Maxwell field and equals H◦(F̊), which can also be read-off
at I (for detailed expressions, see Ref. [18]). This energy is unbounded from above and
increases linearly with the frequency and intensity (i.e., |φ̊(ω)|2) of the beam. With only
the velocity of light, c, at one’s disposal, there is no frequency (nor energy) scale in the
theory. Therefore, one cannot speak of low or high frequency (nor of low or high energy)
fields and the general description holds for any frequency or intensity of the laser beam.
The second description is that of a quantum field theorists. With availability also of h̄, the
quantum theorists can regard the beam as consisting of photons. They would point out
that what the classical physicist referred to as a classical Maxwell field F̊ab ∼ Φ̊ is in fact a
coherent state |Ψφ̊〉 and calculate the expected number N = 1

h̄

∫ ∞
0 dω |φ̊|2 of photons in it.

They now point out that although the expectation value 〈Ψφ̊| F̂ab(R, T) |Ψφ̊〉 of the Maxwell

field operator agrees with that of the classical physicist’s F̊ab(R, T), there are quantum
fluctuations that the classical physicist missed and these would become measurable if N
were small, decaying as 1/

√
N . However, in this description, since G = 0, the physical

space-time is again Minkowski space (M, g◦ab).
The third description is that of the general relativists, who have access to G and

Einstein’s equations but not to h̄. Therefore, the general relativists continue to describe the
light beam using the classical Maxwell field. Their description of physical reality is quite
different from that of the classical physicist. Now, the physical metric is gab rather than
g◦ab. This metric is dynamical within the support of the beam. More interestingly, although
gab is flat outside the support, if one parallel transports a test spinning particle around a
closed curve C lying entirely in this region, one would find that its state changes when it
returns to the starting point. The change is encoded in the non-trivial holonomy U(C) of
(9). Thus, by performing experiments with probes that never interact with the light beam,
the general relativists can determine H◦—and hence, the non-trivial metric components
gRR (= −gTT)—and know that space-time is not described by the Minkowski metric g◦ab
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even in the asymptotic region. Perhaps the most startling discovery they would make is
that the total energy H of the system, including the gravitational contributions, is bounded
from above, irrespective of how high the frequency of the intensity of the laser beam is.
This qualitatively new phenomenon occurs because G−1 has dimensions of mass that set
the scale for the upper limit. Furthermore, the general relativist would discover that this
interesting fact about nature cannot be captured using a perturbative expansion in G, no
matter how high an order n in (GM)n is used in the truncation of the theory.

Finally, let us introduce the quantum gravity experts. With both G and h̄ available,
they can introduce a new notion of Planck frequency ωPl = 1

Gh̄ . With this new scale
available, not only can they design new experiments to probe aspects of physical reality
that have remained unexplored, but they can also solve some mysteries that the classic
al physicists, quantum field theorist and general relativists were left with. The quantum
gravity experts can design experiments to probe the quantum nature of geometry in the
asymptotic region where there are no photons at all. Furthermore, since there are no
gravitons—or radiative degrees of freedom—in the gravitational field, these are ‘clean’
tests of the nature of quantum information in geometry induced entirely by the quantum
properties of matter. If the quantum gravity experts could create laser beams peaked at
a trans-Planckian frequency ω̊ > 1/Gh̄, they would discover that even in the asymptotic
regions, 〈Ψφ̊| ĝRR |Ψφ̊〉 is very different from gRR predicted by the classical theory. Much
to the surprise of the general relativist, this can occur even when the amplitude of φ̊(ω)
is chosen to be sufficiently small for the space-time curvature computed using classical
Einstein’s equations to be quite small everywhere. A second regime would surprise the
quantum field theorist. Consider the case when the intensity of the beam is so high that
N � 1. Then, the quantum fluctuations in the matter sector are small and the quantum
field theorist would expect the induced quantum fluctuations in the geometry to be at least
as small, if not much smaller. As shown in Section 3.2, this is not the case; as N increases,
the relative quantum uncertainties in ĝRR grow both in the low- and high-frequency regimes
(see Equations (27) and (28), respectively).

Next, consider the regime where Gh̄ω̊ 	 1 but N × Gh̄ω̊ > 1, discussed at the end
of Section 3.2. Neither the quantum field theorist nor the general relativist would have
a reason to suspect their descriptions because they would see nothing unusual in the
matter sector. The quantum field theorist would only see a coherent state with a large
number of photons, which is therefore well-approximated by a smooth, classical Maxwell
field F̊ab, and the general relativist would see the gravitational field F̊ab sources. Yet, both
descriptions are inadequate. Had the general relativist carried out a careful measure of
gRR, they would have found that their theoretical prediction is significantly different from
the observed value. This would have been regarded as an anomaly by the community,
analogous to that in the perihelion shift of mercury before the discovery of general relativity.
Had the quantum field theorist carried out a careful measurement of gRR and constructed a
statistical distribution, they would have been puzzled that an irreducible minimum persists
in the relative uncertainty, no matter how accurately they measure this (to them) ‘classical
quantity’; this is somewhat like the puzzle experienced by Penzias and Wilson before they
knew about the cosmic microwave background. Thus, the quantum gravity expert would
be able to resolve the uncomfortable puzzles that the general relativity and quantum field
theory communities had encountered by confronting their detailed theoretical calculations
with careful measurements in specific regimes.

4. Discussion

Let us now explore the lessons offered by the discussion of the last two Sections of
an exactly soluble sector of non-perturbative quantum gravity in 2 + 1 dimensions. Recall
that there are a number of paradigms and conjectures in (3 + 1)-d quantum gravity. Are
they realized in the soluble sector? Do results on the (2 + 1)-d model offer hints on the
validity of these paradigms? Do they bring out subtleties that were missed in the (3 + 1)-d
investigations?
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Let us begin with the list of illustrative examples of proposals from Section 1. The first
proposal pertains the possibility of violation of the local Lorentz invariance due to trans-
Planckian quantum effects. Thanks to the underlying simplicity of the (2 + 1)-d sector, it
was possible to carry out explicit calculations. They brought to the forefront the surprising
role of trans-Planckian frequencies. If the matter profile, φ̊(ω), at which the coherent
state |Ψφ̊〉 is peaked has even a small ‘blip’ at a frequency ω̊ > ωPl, the induced quantum
effects on the space-time geometry become large; even in the asymptotic region away
from the support of the matter source, the classical value gRR is a poor approximation
to the expectation value 〈Ψφ̊| ĜRR |Ψφ̊〉 and the relative quantum fluctuations in ĝRR are
large (recall that, starting from Section 3, the suffix ‘asym’ has been dropped in ĝRR|asym).
Thus, the intuition that trans-Planckian frequencies may change the paradigm suggested
by classical GR and standard QFT is indeed borne out in a precise sense. Do these effects,
then, lead to the violation of local Lorentz invariance? The frequency ω̊ does refer to the
asymptotic time-translation Killing field ∂/∂T. However, the dynamics do not break local
Lorentz invariance. The field equation satisfied by Φ̂(R, T), for example, is fully covariant.
In particular, there is no quantum-gravity-induced vector field in dynamical equations that
can be the source of such a breakdown. Next, let us consider the status of ‘holography’ in
this model. As in 3 + 1 dimensions, neither general relativity nor quantum field theory have
a built-in length scale to define an ultraviolet regime. Quantum gravity does and theory
departs radically from classical GR and QFT in the ultraviolet regime ω > ωPl =

1
Gh̄ . Do

these effects, then, force one to adopt a holographic view in the non-perturbative quantum
description? In the classical theory, in the (2+1)-theory the true degrees of freedom are
encoded in the matter field that resides in the 3-manifold M. As the discussion of Section
3 showed, the situation is the same in non-perturbative quantum theory; the quantum
scalar field continues to reside in the bulk as in any standard quantum field theory. Bulk
degrees of freedom are not replaced by ‘surface degrees of freedom’. Thus, even though the
model exhibits novel features in the Planck regime, these features arise from the standard
bulk degrees of freedom of quantum field theory. Now, one can construct the quantum
Hilbert space F using just null infinity I+ [17,21] which serves as the future boundary
of space-time. However, this is not what is meant by ‘holography’. Indeed, one can also
construct the standard Fock space of photons in 3 + 1 dimensions using just I+.

Next, recall that quantum geometry also has novel features already in the low-frequency
regime. In particular, many ‘seemingly tame’ classical solutions turned out to be physically
‘spurious’. Consider, for simplicity, solutions (Φ̊, gab), for which φ̊ is sharply peaked at a
frequency ω̊ 	 ωPl. It would seem natural to assume that such solutions are ‘tame’ and
should arise in the classical limit of the full quantum theory. That is, one would have
expected the quantum theory to admit states |Ψφ̊〉 that are sharply peaked at such solutions.
However, the discussion of Section 3 showed that, for this to occur, two inequalities have to
be satisfied: N � 1 and N (Gh̄ω̊)2 	 1. The first is required to ensure that |Ψφ̊〉 is sharply

peaked at Φ̊ but the second inequality is surprising in that it requires that N cannot be ‘too
large’. Why is it needed? Suppose N is large as per the first inequality and N (Gh̄ω̊)2 = K.
Then, 〈Ψφ̊|ĝRR|Ψφ̊〉 ≈ e

K
2 gRR. Thus, the classical answer would not be a good approx-

imation even at the expectation value level unless K 	 1. Consequently, a large class
of apparently ‘tame’ classical solutions are simply not realized as approximations to the
quantum theory; from the more complete perspective of quantum gravity, they are spurious.
This surprising limitation seems to point in the same direction as Wheeler’s ‘space-time
foam’ idea that the quantum vacuum state would also be quite different from the pertur-
bative vacuum that is peaked at Minkowski space. Is this expectation borne out? Recall
that the perturbative vacuum |0〉 is the coherent state |Ψφ̊〉 with φ̊ = 0, and is annihilated
by the matter Hamiltonian Ĥ◦. Now, the full Hamiltonian Ĥ and the asymptotic metric
operator ĝRR are both self-adjoint and well-defined functions of Ĥ◦. Therefore, |0〉 is an
eigenstate of both, with eigenvalue 0 for Ĥ and 1 for ĝRR. Thus, the perturbative vacuum
|0〉 is in fact an eigenstate of the quantum metric operator with the Minkowski metric g◦ab
as its eigenvalue. Contrary to one’s first expectation, there is nothing unruly about the
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ground state. Finally, as noted in Section 2, there is a positive energy theorem in classical
2 + 1 dimensional general relativity [19]. It goes over to the quantum theory since Ĥ is a
non-negative self-adjoint operator and the vacuum |0〉 is the unique state that is annihilated
by it. Thus, again one finds that, while several aspects of proposals for novel physics in
quantum gravity are realized, closely related aspects that were assumed to follow are not.

These considerations have implications also on semi-classical gravity, an approxima-
tion in which gravity is treated classically but matter quantum mechanically and the effect
of quantum matter on the classical metric is computed using semi-classical Einstein’s equa-
tions, Gab = 8πG 〈 T̂ab 〉, in which the left side refers to a classical metric tensor gab and the
right side to the expectation value of the (renormalized) stress-energy tensor of quantum
matter that propagates on the classical geometry defined by gab. It is often assumed that
this theory would serve as an excellent approximation to full quantum gravity away from
the Planck regime. In 3 + 1 dimensions, exact solutions to semi-classical gravity are difficult
to come by. Even for those available, it has not been possible to check if these solutions
are good approximations because one does not have full quantum gravity. Let us examine
this issue through the lens of the model discussed here, since one can work out predictions
of full quantum gravity and compare them with the semi-classical theory. A solution to
semi-classical gravity consists in specifying a classical metric gab and a quantum state of
matter |Ψ〉 such that the quantum field Φ̂ satisfies its field equation with respect to gab
and the pair (gab, |Ψ〉) satisfies the semi-classical Einstein’s equation. Choose a classical
solution (gab, Φ) in the (2+1)-d model. Then, it follows that in the asymptotic region the
pair (gab, |Ψφ̊〉) solves semi-classical equations exactly. Thus, now, there is an infinite
class of solutions to semi-classical gravity. However, as results of Section 3 show, there
are regimes—i.e., choices of φ̊(ω)—for which gab is a poor approximation to full quantum
geometry. This occurs even in the asymptotic region where curvature vanishes identically.
This suggests that the domain of validity of the semi-classical approximation can be quite
subtle; it may not be dictated just by space-time curvature.

Interaction between quantum gravity and quantum information communities has
increased over the last 5 years or so, giving rise to a healthy exchange of ideas. As mentioned
in Section 1, this dialog has sparked interest in manifestation of quantum gravity effects
that do not involve the ‘radiative degrees of freedom’ of gravity but are instead induced
by the quantum nature of matter sources (see, e.g., Refs. [7–10]). These effects involve the
‘Coulombic’ part of the gravitational field. As discussed in Section 2, (2 + 1)-gravity is
especially well suited to analyze these quantum effects because the gravitational field does
not carry any radiative degrees of freedom—it is determined entirely by matter: while there
is an infinite number of degrees of freedom, in our analysis they all reside in the matter
sector. Therefore, all quantum properties of geometry/gravity are induced by the quantum
properties of matter. Nonetheless, in quantum theory, the space-time metric has a number
of quintessentially quantum properties. If the quantum state of matter |Ψφ̊〉 is sharply

peaked on a classical field, Φ̊(R, T), we are in a regime that is tame from the perspective of
quantum matter. Yet, the expectation value of ĝRR can differ significantly from that of the
classical solution determined by Φ̊(R, T). The difference is entirely due to non-perturbative
quantum effects, and of course goes to zero in the h̄ → 0 limit. There is also a trans-
Planckian regime in which matter continues to behaves in a tame manner—i.e., its quantum
state |Ψφ̊〉 is sharply peaked at a classical field Φ̊(R, T) ∼ φ̊(ω) with small fluctuations—but
the quantum metric experiences large quantum fluctuations. In both these regimes, one can
carry out thought experiments. One can use spinning test particles in the asymptotic region
where Φ(R, T) vanishes: there is no direct interaction between quantum matter that sources
the gravitational field and test particles. One can parallel propagate the spinning particles
around a closed loop C and measure the change in its spin. This results in a measurement
of the holonomy U(C) of the gravitational spin connection. Although the curvature of
the physical metric vanishes everywhere along C, the holonomy is non-trivial; this is
the gravitational analog of the well-known Aharonov–Bohm effect in electromagnetism.
Measurement of this holonomy determines the non-trivial metric component, gRR = −gTT ,
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as well as the Hamiltonian/energy of the total matter plus gravity system. One can carry out
repeated measurements and determine the expectation values and quantum uncertainties
in these observables. Since these experiments are carried out entirely in the gravitational
sector, they provide an unambiguous test of the quantum nature of geometry/gravity that
is induced entirely by matter. As the discussion in Section 3 showed, the specific non-
linear coupling between matter and geometry of general relativity can enhance the small
quantum fluctuations in the matter sector to produce large quantum effects in geometry.
These effects are non-perturbative, and not considered in current discussions where gravity
is treated perturbatively and, furthermore, matter is generally modeled by non-relativistic
particles rather than quantum fields. The frmework used in this paper is free of both these
limitations. It provides a proof of principle that quantum information can be transferred to
the gravitational sector from the matter sector through Coulombic interaction without any
reference to gravitons or radiative modes.

It is natural to ask if the effects that were uncovered by our analysis are specific to
gravity or if they would also arise in electromagnetism. (I thank Norbert Straumann for
raising this question. The calculation summarized below resulted from that inquiry.) Are
there interesting quantum effects on the non-radiative, Coulombic aspects of the Maxwell
field by the charged quantum fields that source them? Now, as the discussion in Section 2
showed, in 2 + 1 dimensions, Maxwell fields are dual to scalar fields and, even with the
axis-symmetric restriction, they carry radiative degrees of freedom. Therefore, (2 + 1)-d
electromagnetic theory, the Maxwell field would not be determined entirely by charged
sources; it would have its own radiative degree of freedom. A better candidate is provided
by the spherically symmetric sector of (3 + 1)-d system consisting of Maxwell and charged
Klein–Gordon fields. In this sector, there are no photons, just as in the current gravitational
(2 + 1)-d model there are no gravitons. Therefore the quantum Maxwell field, F̂ab, is
represented as an operator on the Hilbert space of Φ̂, just as the quantum metric ĝab was an
operator on the matter Fock space in Section 3. Thus, any quantum features one encounters
in the Maxwell field F̂ab are induced by the quantum Klein–Gordon field via Coulombic
interaction. It turns out that this model is also exactly soluble in Minkowski space-time.
Spherical symmetry singles out a time-translation Killing field ta, which one can use to
decompose Fab into its electric and magnetic parts and introduce a canonical notion of
frequency for the Klein–Gordon field. In the asymptotic region, one can express the only
non-trivial component Er of the electric field in terms of the total charge Q of the Klein–
Gordon field, just as gRR = −gTT could be expressed in terms of the total (Minkowski)
energy H◦ of matter sources in the gravitational case. Again, one can introduce coherent
states |Ψφ̊〉 in the charged Klein–Gordon sector, where (for simplicity) Φ̊ has compact
support on every Cauchy slice, and calculate expectation values and fluctuations of Êr

in the asymptotic region. These are again non-zero. However, whereas the sophisticated
non-linearities of Einstein dynamics in the (2 + 1)-d theory imply the relation gRR = eGH◦ ,
the (3 + 1)-d Maxwell theory implies that the relation between Er and Q is linear: Er = Q/r2.
Therefore, while quantum fluctuations in the Klein–Gordon sector do induce quantum
effects in the Maxwell sector even in the absence of photons, they are not exponentially
magnified as in the gravitational case. Indeed, the expressions one obtains in the Maxwell
case resemble those in the weak field approximation of our (2 + 1)-d gravitational analysis.
(In general relativity, the gravitational interaction ‘dresses’ the bare mass to yield surprising
results also in 3 + 1 dimensions. These are genuinely non-perturbative effects that are
lost if one expands the result in powers of Newton’s constant; for a discussion of this
phenomenon, see Chapter 1 of Ref. [31].)

These concrete insights on a number of conceptual issues could be reached because
the model is exactly soluble. However, the very reasons that make it exactly soluble also
limit its reach. As explained in Section 2, from a 4-d perspective, the model represents
Einstein–Rosen waves, which have cylindrical symmetry. These symmetries make it totally
unsuitable for the laboratory experiments being considered. Nonetheless, the analysis
brought to light a number of unforeseen effects and conceptual subtleties in 3-d quantum
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gravity coupled to matter. To what extent can one take them over to four dimensions?
An obvious strategy would be to consider general relativity coupled to scalar fields in
4-d but restrict oneself to the spherically symmetric sector. Then again, one would have
an infinite dimensional midi-superspace where again there are no ‘radiative degrees of
freedom’ in the gravitational field. The metric would be determined entirely by matter and
one can investigate quantum gravity effects that are induced by quantum matter, just as
in the present case. However, now, the analysis becomes significantly more complicated
mathematically because one cannot decouple the scalar field dynamics from that of the
metric. From a physical perspective, in 4-d is now the possibility of a gravitational collapse
leading to a black hole. While this is a rich sector, it has its own deep puzzles associated
with Hawking evaporation and, therefore, it is not directly useful to extract clean insights
of the type that our 3-d model provided. However, one can focus just on ‘sub-critical’ initial
data sets so that the scalar waves come in from infinity and scatter off to infinity. This
restriction would prevent us from addressing interesting issues such as the Bekenstein
bound [2] and related conjectures [3,4] that led to the idea of holography. However, one
could still probe the status of other issues discussed in this section. That analysis will
have to take into account another key difference between the 3-d and 4-d general relativity.
In 2 + 1 dimensions, the metric is flat outside sources, while in the 4-d context, it only
approaches the flat metric as 1/r as one recedes from the matter sources. Therefore,
in 4-d asymptotically flat situations, the effects found here—such as those due to the
presence of trans-Planckian frequencies—will decay as one moves away from sources and
the fluctuations will be non-negligible only near the sources. However, this limitation is
present also in the experiments that are currently contemplated. Thus, while the most
striking predictions of the 3-d model will not carry over to 4-d situations, the subtleties
illuminated by the analysis may provide useful guidance. At a conceptual level, its detailed
analysis unearthed directions in which one can look for novel effects; at a mathematical
level, it suggests strategies to represent matter sources by quantum fields, rather than
non-relativistic particles, and to beyond perturbation theory in the gravitational sector.
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Abstract: In this paper, we investigate the modified symmetric teleparallel gravity or f (Q) gravity,
where Q is the nonmetricity, to study the evolutionary history of the universe by considering the
functional form of f (Q) = αQn, where α and n are constants. Here, we consider the parametrization
form of the deceleration parameter as q = q0 + q1 z/(1 + z)2 (with the parameters q0 (q at z = 0),
q1, and the redshift, z), which provides the desired property for a sign flip from a decelerating to an
accelerating phase. We obtain the solution of the Hubble parameter by examining the mentioned
parametric form of q, and then we impose the solution in Friedmann equations. Employing the
Bayesian analysis for the Observational Hubble data (OHD), we estimated the constraints on the
associated free parameters (H0, q0, q1) with H0 the current Hubble parameter to determine if this
model may challenge the ΛCDM (Λ cold dark matter with the cosmological constant, Λ) limitations.
Furthermore, the constrained current value of the deceleration parameter q0 = −0.832+0.091

−0.091 shows
that the present universe is accelerating. We also investigate the evolutionary trajectory of the energy
density, pressure, and EoS (equation-of-state) parameters to conclude the accelerating behavior of
the universe. Finally, we try to demonstrate that the considered parametric form of the deceleration
parameter is compatible with f (Q) gravity.

Keywords: f (Q) gravity; accelerated expansion; deceleration parameter; EoS (equation-of-state)
parameter; cosmic chronometer dataset; observational constraint

1. Introduction

Recently, several cosmological observations [1–6] have supported the late-time cosmic
acceleration expansion of the universe. However, based on the same cosmological observa-
tion, it is estimated that dark energy (DE) and dark matter (DM) cover up 95–96% of the
universe’s composition, comprising mysterious dark components, the so-called dark matter
and dark energy, whereas baryonic matter covers up 4–5% of the content of the universe.
Presently, general relativity (GR) is believed to be the most successful theory of gravitation,
and its few gravitational tests have been discussed in Ref. [7]. However, it cannot provide a
satisfactory explanation for the dark energy and dark matter problem; hence, it may not be
regarded as the ultimate gravitational force theory for dealing with the current cosmological
problems. Several alternative approaches have been proposed in the literature over the last
several decades to overcome the current cosmological problems. Nowadays, the modified
theory of gravity is the most admirable candidate to solve the current difficulties (the DE
and DM problem) of the universe. One of the most prominent schemes to address the dark
content issue of the universe is the modification of GR called the f (R) theory of gravity,
where R is the Ricci scalar [8]. Some other modified theories are also developed to solve
this issue, such as the f (T ) theory, where T is the torsion [9,10]; the f (R, T) theory [11,12];
the f (R, Lm) theory, where Lm is the matter Lagrangian density [13,14]; the f (R, G) theory,
where G is the Gauss–Bonnet invariant [15,16]; and many more.

Jimenez et al. [17] recently proposed a novel proposal by considering a modification of
the symmetric teleparallel equivalent to GR called f (Q) gravity, where Q is a nonmetricity
scalar. The nonmetricity, Q, of the metric geometrically characterizes the variation in the
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length of a vector in parallel transport, and it represents the primary geometric variable ex-
plaining the features of a gravitational interaction. Recently, several studies were conducted
on f (Q) gravity. Mandal et al. studied cosmography [18] and the energy condition [19]
in nonmetric f (Q) gravity. For the purpose of examining an accelerated expansion of the
universe with the recent observations, Lazkoz et al. [20] examined several f (Q) gravity
models. Furthermore, Solanki et al. [21] studied the effect of bulk viscosity in the accelerat-
ing expansion of the universe in f (Q) gravity. Esposito et al. [22] examined exact isotropic
and anisotropic cosmological solutions using reconstruction techniques. Moreover, f (Q)
gravity easily overcomes the limits set by Big Bang Nucleosynthesis (BBN) [23]. Many
other studies have been completed within the context of the f (Q) gravity theory [24–29].
Although various theoretical approaches exist to explain the phenomenon of cosmic ac-
celeration, none are definitively known as the appropriate one. The current model of
late-time cosmic acceleration is known as reconstruction. This is the inverse method of
locating a suitable cosmological model. There are two kinds of reconstruction: parametric
reconstruction and non-parametric reconstruction. The parametric reconstruction relies
on estimating the model parameters from various observational data. It is also known
as the model-dependent approach. The main idea is to assume a specific evolution sce-
nario and then determine the nature of the matter sector or the exotic component that is
causing the alleged acceleration. Several authors have used this method to find a suitable
solution [30–32].

In this paper, we consider the parametrization form of the deceleration parameter
in terms of the redshift, z, as q(z) = q0 + q1z/(z + 1)2 (with the parameters q0 and q1),
which provides the desired property for the sign flip from a decelerating to an accelerating
phase and investigate the Friedmann–Lemaître–Robertson–Walker (FLRW) universe in the
framework of nonmetric f (Q) gravity by using the functional form of f (Q) as f (Q) = αQn,
where α and n are arbitrary constants. The present paper is arranged as follows. In Section 2,
we start with the basic f (Q) gravity formalism and develop the field equation for the FLRW
line element. In Section 3, we adopt the parametric form of a deceleration parameter and
then find the Hubble solution. In Section 4, we estimate the constraints on the associated
free parameters (H0, q0, q1) by employing the Bayesian analysis for the Observational
Hubble data (OHD). Then, we check the evolutionary trajectory of the energy density,
pressure, and the equation-of-state (EoS) parameters to conclude the accelerating behavior
of the universe in Section 5. Lastly, we conclude our result in Section 6.

2. f (Q) Gravity Formalism

The most generic action of nonmetric f (Q) gravity is given by [17]

S =
∫ [1

2
f (Q) + Lm

]√
−gd4x, (1)

where f is an arbitrary function of nonmetricity scalar Q, Lm is the matter Lagrangian
density, and g is a determinant of the metric tensor, gαβ, where four-dimensional tensor
indices are denoted by lower-case Greek letters and take the values 0 (time), 1, 2, 3 (space).

The definition of nonmetricity tensor in f (Q) gravity is

Qσαβ = ∇σ gαβ (2)

and the corresponding traces are

Qσ = Q α
σ α , Q̃σ = Qα

σα . (3)

Moreover, the superpotential tensor Pλ
μν is given by

4Pσ
αβ = −Qσ

αβ + 2Q σ
(α β) −Qσgαβ − Q̃σgαβ − δσ

(α Q β), (4)
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Hence, the nonmetricity scalar can be obtained as

Q = −QσαβPσαβ. (5)

The gravitational field equation derived by varying the action (1) with regard to the
metric tensor is presented below:

2√−g
∇σ

(
fQ
√
−g Pσ

αβ

)
+

1
2

f gαβ + fQ

(
PασλQ σλ

β − 2QσλαPσλ
β

)
= −Tαβ, (6)

where Tαβ ≡ − 2√−g
δ(
√−g)Lm

δgαβ and fQ = d f /dQ.
Similarly, by varying the action (1) with regard to the connection, the following result

can be obtained:
∇α∇β

(
fQ
√
−g Pαβ

σ

)
= 0. (7)

We shall consider a spatially flat FLRW universe throughout the investigation, whose
metric is given by

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (8)

Here, a(t) is a cosmic scale factor. The nonmetricity scalar Q = 6H2 obtained for
the above FLRW metric, where H = ȧ/a is the Hubble parameter, and the dot denotes
the time derivative. In this case, the energy-momentum tensor of a perfect fluid, Tαβ =
(p + ρ)uαuβ + pgαβ, where p and ρ are pressure and energy density, respectively, and uα

denotes the four-velocity vector of the fluid.
For the metric (8), the corresponding Friedmann equations are [17]:

3H2 =
1

2 fQ

(
−ρ +

1
2

f
)

, (9)

Ḣ + 3H2 +
ḟQ

fQ
H =

1
2 fQ

(
p +

1
2

f
)

. (10)

Using the preceding Friedmann equations in the context of f (Q) gravity, one may
now study possible cosmological applications.

3. Parametrization of the Deceleration Parameter

The parametrization of the deceleration parameter q plays a significant role in deter-
mining the nature of the universe’s expanding rate. In this regard, some research employed
various parametric forms of deceleration parameters, while other research investigated
non-parametric forms. These methods have been widely discussed in the literature to
characterize the concerns with cosmological investigations, such as the initial singularity
problem, the problem of all-time decelerating expansion, the horizon problem, Hubble
tension, and so on [33–35]. Motivated by this fact, in this paper, we consider the simplest
parametric form of the deceleration parameter q in terms of redshift z as [36]

q(z) = q0 +
q1 z

(z + 1)2 , (11)

where q0 = q(z = 0) indicates the present value of deceleration parameter, and q1 depicts
the variation in the deceleration parameter as a function of z. Certainly, one of the most
well-liked parametrizations of the dark energy equation of state served as inspiration for
this parametric form for q(z) [37], and it seems to be versatile enough to fit the q(z) behavior
of a broad class of accelerating models.
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The derivative of the Hubble parameter with respect to time t is Ḣ = −(1 + q)H2.
Then, there exists a relation between the Hubble parameter and the deceleration parameter
in virtue of an integration:

H(z) = H0 exp
[∫ z

0
(1 + q(x))d ln(1 + x)

]
, (12)

where x is a changing variable. By using Equation (11) in Equation (12), we obtained the
Hubble parameter in terms of redshift z as

H(z) = H0(z + 1)q0+1e
q1z2

2(z+1)2 , (13)

where H0 is the current Hubble constant (at z = 0). Furthermore, utilizing the relation-
ship between redshift and the universe’s scale factor a(t) = 1

1+z , we may describe the
relationship between cosmic time and redshift as

d
dt

=
dz
dt

d
dz

= −(1 + z)H(z)
d
dz

. (14)

Using Equations (13) and (14) in Fridemann equations, we obtained the energy density
ρ, pressure p, and equation of state parameter ω in terms of redshift z as

ρ = α
(
−2n−1

)
3n(2n− 1)

(
H2

0 (z + 1)2q0+2 e
q1z2

(z+1)2

)n

, (15)

p = α6n−1

(
H2

0(z + 1)2q0+2e
q1z2

(z+1)2

)n(
−2n

(
q0(z + 1)2 + z(q1 + z + 2) + 1

)
(z + 1)2

−4(n− 1)n(z + 1)−q0−3 e
− q1z2

2(z+1)2
(
q0(z + 1)2 + z(q1 + z + 2) + 1

)
H0

+ 6n− 3

⎞⎟⎠, (16)

w = −
− 4 n (n−1)(z+1)(−q0−3) e

− q1z2

2(z+1)2 (q0(z+1)2+z(q1+z+2)+1)
H0

− 2n(q0(z+1)2+z(q1+z+2)+1)
(z+1)2 + 6n− 3

3(2n− 1)
, (17)

respectively. The behavior and essential cosmological properties of the model described in
Equation (11) are wholly dependent on the model parameters (q0, q1). In the next section,
we constraint the model parameter (H0, q0, q1) by using the recent observational datasets
to investigate the behavior of the cosmological parameters.

4. Observational Constraints and Cosmological Applications

Now, one can deal with the various observational datasets to constraint the parameters
H0, q0, q1. In order to study the observational data, we use the standard Bayesian
technique, and to obtain the posterior distributions of the parameters, we employ a Markov
Chain Monte Carlo (MCMC) method. Moreover, we use the emcee package to perform the
MCMC analysis. Here, in this study, we used the Hubble measurements (i.e., Hubble data)
to complete the stimulation. The following likelyhood function is used to find the best fits of
the parameters;

L ∝ exp(−χ2/2), (18)

where χ2 is the pseudo chi-squared function [38]. The χ2 functions for various datasets are
discussed below.
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Cosmic Chronometer (CC) Sample

Recently, a list of Hubble measurements in the redshift range 0.07 ≤ z ≤ 1.965
were compiled by Singirikonda and Desai [39]. This H(z) dataset was measured from
the differential ages Δt of galaxies [40–43]. The complete list of datasets is presented in
Ref. [39]. To estimate the model parameters, we use the chi-squerd function which is
given by

χ2
CC(ps) =

31

∑
i=1

[Hth(ps, zi)− Hobs]
2

σ2
H(zi)

, (19)

where Hth(ps, zi), Hobs(zi) represents the Hubble parameter with the model parameters,
observed Hubble parameter values, respectively. σ2

H(zi)
is the standard deviation obtained

from observations. The marginalized constraining results are displayed in Figure 1. In
Figure 2, the profile of our model against Hubble data is shown.

Figure 1. The marginalized constraints on the coefficients in the expression of Hubble parameter,
H(z), in Equation (13) are shown by using the Hubble sample [39].
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Figure 2. The evolution of Hubble parameter, H(z), with respect to redshift z. The red line represents
our model and dashed line indicates the ΛCDM model with the pressureless matter parameter,
Ωm0 = 0.3 [44] and the dark energy density parameter, ΩΛ0 = 0.7 [44]. The dots show the Hubble
dataset with error bars [39].

5. Cosmological Parameters

One of the cosmological parameters that is significant in explaining the state of the
expansion of our universe is the deceleration parameter q. When the value of the decelera-
tion parameter is strictly less than zero, it shows the accelerating behavior of the universe,
and when it is non-negative, the universe decelerates. Furthermore, the observational data
employed in this study revealed that our current universe is in an accelerating phase, with
the present value of the deceleration parameter becoming q0 = −0.832+0.091

−0.091. This type of
result is seen in the existing literature [45,46].

Figure 3 indicates that the energy density of the universe increases with a redshift
and still seems to as the universe expands, but Figure 4 demonstrates that the pressure
decreases with the redshift and has large negative values throughout the cosmic evolution.
The present cosmic acceleration induces this isotropic pressure behavior.

The EoS parameter w is also helpful in categorizing the decelerating and accelerating
behavior of the universe, and it is defined as w = p/ρ. The EoS categorizes three possible
states for the accelerating universe which are the quintessence (−1 < w < − 1

3 ) era, phan-
tom (w < −1) era, and cosmological constant (w = −1). Figure 5 shows the evolutionary
trajectory of the EoS parameter, and it can be seen that the whole trajectory lies in the
quintessence era. From Figure 5, One can see that w < 0 and the current value of the EoS
parameter is w0 = −0.9+0.08

−0.12. Our result aligned with some of the studies [32,47], which
indicates an accelerating phase.
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Figure 3. Evolution trajectory of the energy density, ρ (15), versus z with constraint values from the
Hubble datasets [39] and α = −0.01, n = 1.2.
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Figure 4. Evolution trajectory of the pressure, p (16), versus z with constraint values from the Hubble
datasets [39] and α = −0.01, n = 1.2.

0 1 2 3 4
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3

z

w

Figure 5. Evolution trajectory of the equstion-of-state parameter, w (17), versus z with constraint values
from the Hubble datasets [39] and α = −0.01, n = 1.2.

6. Conclusions

The current scenario of the accelerated expansion of the universe has grown increas-
ingly fascinating over time. Numerous dynamical DE models and modified gravity theories
have been employed in various ways to find a suitable description of the accelerating uni-
verse. In this paper, we explored the accelerated expansion of the universe by adopting the
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parametric form of the deceleration parameter in the framework of f (Q) gravity, where Q
is the nonmetricity scalar depicted in the gravitational interaction.

We have examined the functional form of f (Q) as f (Q) = αQn, where α and n are the
arbitrary constants, and the parametrization form of the deceleration parameter as q = q0 +
q1 z/(1 + z)2, where (q0, q1) are the model parameters. By utilizing the above parametric

form, we find out the solution of the Hubble parameter as H(z) = H0(z + 1)q0+1e
q1z2

2(z+1)2 .
Furthermore, we used the Hubble datasets containing 31 data points to determine the
best-fit values for the model parameters (H0, q0, q1) as H0 = 67.69± 0.68, q0 = −0.832±
0.091, and q1 = 4.02 ± 0.45. Here, the q0 shows the current value of the deceleration
parameter, which depicts that the present expansion of the universe is accelerating. We
analyzed the evolution of the various cosmological parameters corresponding to these
best-fit values of the model parameters. The EoS parameter exhibits negative behavior and
lies in the quintessence era, which depicts that the present universe is in an accelerating
phase. Figure 3 indicates that the energy density of the universe increases with a redshift
and still seems to as the universe expands, but Figure 4 demonstrates that the pressure
decreases with the redshift and has large negative values throughout the cosmic evolution.
Lastly, we conclude that the considered parametric form of the deceleration parameter in
the framework of f (Q) gravity theory plays an important role in driving the universe’s
accelerated expansion.
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On Majorization Uncertainty Relations in the Presence of a
Minimal Length

Alexey E. Rastegin
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alexrastegin@mail.ru

Abstract: The emergence of a minimal length at the Planck scale is consistent with modern develop-
ments in quantum gravity. This is taken into account by transforming the Heisenberg uncertainty
principle into the generalized uncertainty principle. Here, the position-momentum commutator
is modified accordingly. In this paper, majorization uncertainty relations within the generalized
uncertainty principle are considered. Dealing with observables with continuous spectra, each of the
axes of interest is divided into a set of non-intersecting bins. Such formulation is consistent with real
experiments with a necessarily limited precision. On the other hand, the majorization approach is
mainly indicative for high-resolution measurements with sufficiently small bins. Indeed, the effects
of the uncertainty principle are brightly manifested just in this case. The current study aims to reveal
how the generalized uncertainty principle affects the leading terms of the majorization bound for
position and momentum measurements. Interrelations with entropic formulations of this principle
are briefly discussed.

Keywords: generalized uncertainty principle; minimal observable length; majorization uncertainty
relations

1. Introduction

One of the key problems of modern physics is to build a quantum theory of gravita-
tion [1]. The existence of a minimal observable length has long been suggested due to these
efforts. Let us refrain from listing them and refer to the papers [2,3]. There are proposals
to investigate the testable effects of the minimal length, including astronomical observa-
tions [4,5] and experimental schemes seemingly feasible within current technology [6–8].
Papers [9–12] discussed measurements in which one may be able to probe the effects of
quantum gravity. The implications of the deformed forms of the commutation relation
have attracted large attention [13–18]. In particular, researchers analyzed the consequences
for the harmonic oscillator [17,18], the free particle, and potentials with infinitely sharp
boundaries [14]. Going beyond the linear regime in graphene, in Ref. [19], a generalized
uncertainty framework compatible with quantum gravity scenarios with a minimal length
was obtained.

The Heisenberg uncertainty principle [20] emphasizes fundamental limitations on the
simultaneous knowledge of observables in the quantum world. Uncertainty relations in
terms of the product of standard deviations were formally derived by Kennard [21] for posi-
tion and momentum and later by Robertson [22] for any pair of observables. An alternative
to this traditional approach is provided by entropic characterization. For the position-
momentum pair, an entropic formulation was initiated by Hirschman [23] and later devel-
oped in Refs. [24,25]. With a primary focus on observables with discrete spectra, the use of
entropies to characterize quantum uncertainties was explored in Refs. [26,27]. Being the
subject of current research, entropic uncertainty relations are reviewed in Refs. [28–32]. The
majorization approach provides another flexible way to pose uncertainty relations [33–37]
with a natural transition to entropic characterization when required.
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Heisenberg’s uncertainty principle per se does not impose a restriction separately
on the spreads of position or momentum. Below the scale linked to the Planck length,
�Pl =

√
Gh̄/c3 ≈ 1.616× 10−35 m, the very structure of space-time is an open question [38].

Here, G is the Newtonian constant of gravitation, h̄ is the reduced Planck’s constant, and
c denotes the speed of light. The Heisenberg principle is replaced here with the gen-
eralized uncertainty principle, which declares a non-zero lower bound on the position
spread [39–41]. The generalized uncertainty principle can be reinterpreted as an effective
variation of the Planck constant [42], with a link to Dirac’s large numbers hypothesis [43].
Using the preparation scenario, entropic uncertainty relations in the presence of a min-
imal length were examined in Refs. [44–46]. At each stage of the scenario of successive
measurements, an actual pre-measurement state depends on the results of previous mea-
surements [47,48]. This viewpoint is closer to Heisenberg’s thought experiment with
microscope [49]. The generalized uncertainty principle with successive measurements of
position and momentum was analyzed in Ref. [50].

This paper is devoted to majorization uncertainty relations in the presence of a min-
imal length. To focus on changing the majorization bound for position and momentum
measurements, a consideration is restricted here to the preparation scenario. In addition,
the case of high-resolution measurements with small bins is most interesting from the
physical viewpoints. Hence, one naturally obtains a small dimensionless parameter, with
respect to which the quantities of interest can be expanded. For practical purposes, several
leading terms in expansion of the majorization bound should be taken into account. It
turns out that an effect of the generalized uncertainty relation is actually revealed in this
way. The paper is organized as follows. Section 2 reviews the preliminary findings and
fix the notation. The derivation of basic terms of the majorization bound is presented in
Section 3. Section 4 concludes the paper with a summary of the results. In Appendix A, a
perturbation theory is developed to solve an auxiliary eigenvalue problem.

2. Preliminaries

In this Section, the generalized uncertainty principle and related findings are recalled.
Further, basic points of the majorization approach to quantum uncertainties are discussed.

2.1. The Generalized Uncertainty Principle

The generalized uncertainty principle declares the deformed commutation relation
for the position and momentum operators [13]. Some different representations of the same
algebra exist. However, the physical content is determined by the physical observables.
Namely, these operators provide access to the explicit information on the position and
momentum measurements [51]. For convenience, the wavenumber operator, κ̂, is used
instead of the momentum operator, h̄κ̂. Let us consider the commutation relation,[

x̂, κ̂
]
= i

(
1 + βκ̂2) . (1)

Here, the positive parameter β is rescaled by factor h̄2 from its known sense, and 1

is the identity operator. In the limit β → 0, Equation (1) gives the known commutation
relation of ordinary quantum mechanics. This is a most straightforward modification
leading to the presence of a minimal length. Instead of Equation (1), more general forms of
the additional term can be placed in the right-hand side [17]. Due to the results of [14], the
used formulation allows us to study questions of interest with a more apparent analogy
with the ordinary case. It is suitable at the first step in probing potential effects of the
generalized uncertainty principle. In addition, the formulation (1) is asymmetric with
respect to the role of position and momentum. It seems to be natural in topics concerning
just the existence of a minimal length.

144



Physics 2022, 4

A quantum state is represented by a positive self-adjoint operator ρ̂ with Tr(ρ̂) = 1
called the density matrix. Combining Equation (1) with the known Robertson formula-
tion [22] leads to the inequality,

(Δx̂)ρ̂ (Δκ̂)ρ̂ ≥
1
2
(
1 + β〈κ̂2〉ρ̂

)
≥ 1

2
(
1 + β(Δκ̂)2

ρ̂

)
. (2)

As in general, for any operator Q̂ one has:

〈Q̂〉ρ̂ = Tr(Q̂ρ̂) , (ΔQ̂)2
ρ̂ =

〈
Q̂2〉

ρ̂
− 〈Q̂〉2ρ̂ .

It further follows from Equation (2) that (Δx̂)ρ̂ ≥
√

β for every state ρ̂. Thus, it is
impossible to localize a particle below the scale corresponding to the square root of β.

It is helpful to introduce the auxiliary wavenumber operator q̂ [14]. Let x̂ and q̂ be self-
adjoint operators that obey [x̂, q̂] = i 1. In the q-space, the action of q̂ results in multiplying
a wave function ϕ(q) by q, whereas x̂ ϕ(q) = i dϕ/dq. Following [14], let us define

κ̂ =
1√

β
tan

(√
β q̂
)

. (3)

So, the auxiliary wavenumber obeys the ordinary commutation relation but ranges
between ± qmax(β) = ±π/(2

√
β ). The function q �→ κ = tan(

√
βq)

/√
β provides a

one-to-one correspondence between q ∈ (− qmax,+ qmax) and κ ∈ (−∞,+∞). So, the
eigenvalues of κ̂ fully cover the real axis. For a pure state, one actually has the three
wave functions φ(κ), ϕ(q), and ψ(x). The auxiliary wave function ϕ(q) is a convenient
mathematical tool as connected with ψ(x) via the Fourier transform. Let the eigenkets |q〉
of q̂ be normalized through Dirac’s delta function and satisfy the completeness relation,∫ +qmax

−qmax
dq |q〉〈q| = 1 . (4)

In the q-space, the eigenfunctions of x̂ are expressed as 〈q|x〉 = exp(−iqx)
/√

2π.
Combining this with Equation (4), any wave function in the coordinate space reads:

ψ(x) =
1√
2π

∫ +qmax

−qmax
exp(+iqx) ϕ(q)dq . (5)

Wave functions in the q- and x-spaces are connected by the Fourier transform [14],
namely,

ϕ(q) =
1√
2π

∫ +∞

−∞
exp(−iqx)ψ(x)dx . (6)

The only distinction from ordinary quantum mechanics is that each wave function
ϕ(q) in the q-space should be treated as 0 for all |q| > qmax(β). However, a distribution
of physical wavenumber values is determined by φ(κ). Let us consider the probability to
find the momentum between two prescribed values. Due to the one-to-one correspondence
between κ and q, there is a bijection between the intervals (κ1, κ2), and (q1, q2). Thus, the
probability of interest is expressed as∫ κ2

κ1

|φ(κ)|2 dκ =
∫ q2

q1

|ϕ(q)|2 dq , (7)

whence the probability density functions are related via |φ(κ)|2 dκ = |ϕ(q)|2 dq.

2.2. On Majorization Uncertainty Relations

Let us proceed to a general formulation of majorization uncertainty relations. Let
y = (y1, · · · , yn) and z = (z1, · · · , zn) be two n-dimensional vectors with real components.
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By adding zero components, one can always reach that the two vectors have the same
number of elements. One says that y is majorized by z, in symbols y ≺ z, if [52]

∑m
j=1 y↓j ≤∑m

j=1 z↓j (8)

for all m = 1, . . . , n and
∑n

j=1 y↓j = ∑n
j=1 z↓j . (9)

The arrows down mark that the components should be taken in non-increasing order.
To pose majorization uncertainty relations, the following notions will be used [33]. The

infimum of a set of vectors is defined as the vector that is majorized by every element of the
set and, in turn, majorizes any vector with that property [53]. The supremum is similarly
defined as the vector that majorizes every element of the set and is, in turn, majorized
by any vector with that property. The procedure to calculate the desired vectors are also
discussed in Refs. [33,53] with a reference to the MATHEMATICA codes prepared for these
purposes. Let us refrain from discussing some subtle points related to such calculations.
Even if continuous observables are dealt with, one can nevertheless restrict a consideration
to a finite set of large number of bins. This holds not only due to non-zero sizes of bins but
also in view of boundness of values available to be measured in practice.

To formulate majorization uncertainty relations, one should fix operators that describe
each measurement of interest. By xα1 < xα2, one denotes the least points of α-th bin in the
position measurement. The corresponding projection operator reads:

Π̂α =
∫ xα2

xα1

dx |x〉〈x| . (10)

To the momentum measurement, let us assign a set of projection operators of the form,

Λ̂γ =
∫ κγ2

κγ1

dκ |κ〉〈κ| , (11)

where κγ1 < κγ2 are the least points of γ-th bin. The above form of the operators cor-
responds to an orthogonal resolution of the identity in each case. Strictly speaking, the
finiteness of the detector resolution is typically addressed in terms of acceptance func-
tions [48]. Certainly, the projection operators are obtained with an acceptance function in
the form of boxcar one. A consideration is restricted to boxcar acceptance functions since
the aim here is to focus on the corollaries of the generalized uncertainty principle. At the
same time, the use of Gaussian acceptance functions is apparently closer to practice [48].
On the other hand, the case of high-resolution measurements with small bins is of primary
interest. Moreover, little changes of the form of acceptance functions have no actual bearing
on the principal possibility to observe the effects of a minimal length.

One of the advantages of the majorization approach is that uncertainty relations are
expressed directly in terms of probabilities. For the prepared pre-measurement state ρ̂, one
obtains the probabilities,

Tr(Π̂αρ̂) =
∫ xα2

xα1

〈x|ρ̂|x〉dx , Tr(Λ̂γρ̂) =
∫ κγ2

κγ1

〈κ|ρ̂|κ〉dκ ,

which respectively constitute the vectors px̂(ρ̂) and pκ̂(ρ̂). The majorization uncertainty
relation of the paper [33] is posed as follows. It was shown that

px̂(ρ̂)⊗ pκ̂(ρ̂) ≺ sup
{
px̂⊕κ̂(�̂) : �̂ ≥ 0, �̂† = �̂, Tr(�̂) = 1

}
. (12)

In the case of discrete observables, one a priori has a unitary matrix connecting two
orthonormal bases. Inspecting the norms of the submatices of this unitary matrix, the
majorization uncertainty relations follow straight away [34,36]. Moreover, such relations
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are straightforwardly converted into inequalities for Rényi and Tsallis entropies. An
application of these results to neutrino flavor and mass was studied in Ref. [54] since the
Pontecorvo–Maki–Nakagawa–Sakata matrix is dealt with here. In a general case, however,
finding the right-hand side of Equation (12) or some of its components can be more tractable
than building a suitable unitary matrix. In addition, one will not necessarily be dealing
with projective measurements.

In paper [33] it is described how to calculate the first term in the right-hand side of
Equation (12). Overall, one seeks for the maximum value of Tr(Π̂αρ̂)Tr(Λ̂γρ̂), where the
projectors are fixed and ρ̂ is varied. The desired extremal value is realized with a pure state,
for example, |ψ∗〉. As was shown in Ref. [33], the task is reduced to the eigenvalue problem,

Π̂α Λ̂γ Π̂α|η∗〉 = μ2 |η∗〉 (13)

with |η∗〉 = Π̂α|ψ∗〉. One should find the maximal eigenvalue of the problem (13). The first
component in the right-hand side of Equation (12) is then equal to (1 + μmax)2/4. Further
terms are more difficult to calculate. For high-resolution measurements with small bins,
however, many components differ little from the first, except for the tails of the distributions
and the intermediate zones. In effect, the bins should be such that many of them are lying
around distribution peaks. One can leave this assumption by replacing Equation (12) with
the uncertainty relation in terms of the min-entropies. For the given probability distribution
p = {pj}, its min-entropy is defined as

H∞(p) = − ln
(
max pj

)
. (14)

The latter is obtained when the order of Rényi’s entropy [55] tends to infinity. It follows
from Equations (12) and (14) that

H∞
(
px̂(ρ̂)

)
+ H∞

(
pκ̂(ρ̂)

)
≥ 2 ln 2− 2 ln(1 + μmax) . (15)

The next Section examines how the above relations are affected by the generalized
uncertainty principle.

3. Main Results

The previous Section provides a ground to study the question how the generalized
uncertainty principle affects the majorization bound for position and momentum measure-
ments. It is natural that the analysis here begins with the case β = 0.

3.1. The Case of Ordinary Commutation Relation

In Ref. [33], the problem (13) was reformulated as

1
π

+Δx/2∫
−Δx/2

sin
(
Δκ(x− x′)/2

)
x− x′

η∗(x′)dx′ = μ2 η∗(x) , (16)

where the variables x and x′ are both restricted to the range
[
−Δx/2,+Δx/2

]
and

η∗(x) = 〈x|η∗〉. One uses Equation (16) under the assumption that the origins of both the
x and κ axes are placed into centers of the two bins for which the optimality is reached.
Surely, this holds for the ordinary commutation relation. To analyze consequences of the
generalized uncertainty principle, one needs also to examine Equation (16) in more detail
than it was made in the paper [33].

Substituting x = ξΔx, s = ΔxΔκ/(2π) and μ2 = sλ, one rewrites Equation (16) as

∫ +1/2

−1/2

sin[sπ(ξ − ξ ′)]
sπ(ξ − ξ ′)

u(ξ ′)dξ ′ = λ u(ξ) , (17)
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where u(ξ) = η∗(ξΔx). Here, the kernel is expanded as

sin[sπ(ξ − ξ ′)]
sπ(ξ − ξ ′)

= 1− s2π2

3!
(ξ − ξ ′)2 +

s4π4

5!
(ξ − ξ ′)4 + · · · . (18)

It then follows from Equations (A16) and (A19) that

μ2
max

∣∣∣
β=0

= s
(

1− s2π2

36
+ O(s4)

)
, (19)

η∗(x)
∣∣
β=0 = 1− s2π2

6

(
x2

Δx2 −
1
12

)
+ O(s4) . (20)

In the limit s→ 0, the term (19) tends to s as mentioned in Ref. [33]. The result (19) is
useful also in the sense of characterizing a level of smallness for s. For example, for s < 1/2,
one has:

s2π2

36
< 0.069 , (21)

i.e., the eigenvalue correction turns out to be of several percents. Thus, the validity of
perturbation expansions up to the first order does not require exceptionally high resolution.
Within the given scheme, one can further derive second and higher-order perturbations,
though complexity of expressions grows quickly.

3.2. The Case of Modified Commutation Relation

For β �= 0, one keeps kernels of the Fourier transform by means of the auxiliary
wavenumber. The eigenvalue problem (13) straightforwardly leads to

μ2〈x|η∗〉 =
∫ κγ2

κγ1

dκ
∫ xα2

xα1

dx′ 〈x|κ〉〈κ|x′〉 η∗(x′)

=
1

2π

∫ xα2

xα1

dx′
∫ qγ2

qγ1

2dq
1 + cos(2

√
βq)

exp[i(x− x′)q] η∗(x′) , (22)

where one used
dκ

dq
=

2
1 + cos(2

√
βq)

. (23)

Let us now seek a possibility to translate the wavenumber axis as it was made to obtain
Equation (16). Strictly speaking, this step can be used with the generalized uncertainty
principle only approximately. Indeed, the standard kernels of the Fourier transform stand
in Equations (5) and (6) due to the auxiliary wavenumber that ranges between ± qmax(β).
The latter indeed prevents translational invariance with respect to the q axis. On the
other hand, the value qmax(β) corresponds to extremely high energies that are completely
beyond the capabilities of modern experiments. Actually, reaching such high energies is
inevitably coupled with approaching the Planck scale per se. Therefore, one deals with
wavepackets supported in the momentum space far away from values of the mentioned
order. In addition, such bins are advisably inclined to use that are small in comparison
with characteristic spreading of typical wavepackets. Under these circumstances one is
able to use shifts along the q and κ axes.

The eigenvalue problem (16) is then replaced with

1
2π

+Δx/2∫
−Δx/2

η∗(x′)dx′
+Δq/2∫
−Δq/2

2 exp[i(x− x′)q]dq
1 + cos(2

√
βq)

= μ2 η∗(x) . (24)
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Separating explicitly the term assigned to β = 0, one obtains:

1
π

+Δx/2∫
−Δx/2

η∗(x′)dx′
{

sin
(
Δq(x− x′)/2

)
x− x′

+
1
2

+Δq/2∫
−Δq/2

(
2

1 + cos(2
√

βq)
− 1

)
exp[i(x− x′)q]dq

}
= μ2 η∗(x) . (25)

Let us take q = yΔq/2, s = ΔxΔq/(2π) and

κ = (x− x′)
Δq
2

= sπ(ξ − ξ ′) , (26)

then

1
2

+Δq/2∫
−Δq/2

(
2

1 + cos(2
√

βq)
− 1

)
exp[i(x− x′)q]dq =

βΔq3

8
I2(κ) + O(β2) , (27)

with In(κ) = (1/2)
∫ +1
−1 yn exp(iκy)dy for n = 1, 2, . . . . One can see from Equations (25)

and (27) that

+Δx/2∫
−Δx/2

(
sinκ

π(x− x′)
+

βΔq3

8π
I2(κ) + O(β2)

)
η∗(x′)dx′ = μ2 η∗(x) .

By changing the variable to ξ ′ = x′/Δx, one finally obtains:

∫ +1/2

−1/2

(
s sinκ

κ
+

sβΔq2

4
I2(κ) + O(β2)

)
u(ξ ′)dξ ′ = μ2 u(ξ) . (28)

Substituting μ2 = sλ again, Equation (28) is reduced to the form,(
K(0) + εK(1) + · · ·

)
u(ξ) = λ u(ξ) , (29)

with intent to use the formulas of Appendix A for ε = βΔq2/4,

K(0) f (ξ) =
∫ +1/2

−1/2

sinκ

κ
f (ξ ′)dξ ′ ,

K(1) f (ξ) =
∫ +1/2

−1/2

κ2 sinκ + 2κ cosκ − 2 sinκ

κ3 f (ξ ′)dξ ′ .

It follows from Equation (A15) that the factor of βΔq2/4 in the first-order correction
reads as

〈
w̃0,K(1)w̃0

〉
=
∫ +1/2

−1/2
dξ

∫ +1/2

−1/2
dξ ′

κ2 sinκ + 2κ cosκ − 2 sinκ

κ3 w̃0(ξ) w̃0(ξ
′) , (30)

where

w̃0(ξ) = 1− s2π2

6

(
ξ2 − 1

12

)
+ O(s4)

due to Equation (A19). Again, a consideration is aimed to be restricted to the case of
sufficiently high resolution. The calculations show that

κ2 sinκ + 2κ cosκ − 2 sinκ

κ3 =
1
3
− s2π2

10
(ξ − ξ ′)2 + · · · , (31)
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and further,

〈
w̃0,K(1)w̃0

〉
=
∫ +1/2

−1/2
dξ

∫ +1/2

−1/2
dξ ′

{
1
3
− s2π2

10
(ξ − ξ ′)2 − s2π2

18

(
ξ2 − 1

12

)
− s2π2

18

(
ξ ′2 − 1

12

)
+ · · ·

}
=

1
3
− s2π2

60
+ O(s4) . (32)

Summing up, the result is obtained in the form,

μ2
max
s

= λ = 1 +
βΔq2

12
− s2π2

12

(
1
3
+

βΔq2

20

)
+ · · · . (33)

The latter allows us to probe how the generalized uncertainty principle affects ma-
jorization uncertainty relations for position and momentum.

3.3. Discussion

Thus, expressions have been obtained for the leading term in majorization uncer-
tainty relations in the presence of a minimal length. As is seen from the right-hand side
of Equation (33), for measurements with sufficiently high resolution the maximal eigen-
value grows with an increase in β. Hence, the lower bound of the uncertainty relation
(15) will decrease. This tendency is interesting in comparison with other uncertainty re-
lations. It also follows from Equation (33) that the effects of changing Δx and Δq on the
actual level of uncertainty differ. The position bin governs μmax only via s, whereas the
auxiliary-wavenumber bin Δq does also through the terms involving β. At the fixed s,
changes of a typical size of momentum bins are more influential on the amount of un-
certainties. Certainly, these findings are stipulated by the initial choice of the deformed
commutation relation.

Substituting Equation (33) into Equation (15) leads straight to

H∞
(
px̂(ρ̂)

)
+ H∞

(
pκ̂(ρ̂)

)
≥ 2 ln 2− 2 ln

{
1 +
√

s
(

1 +
βΔq2

24
− s2π2

24

(
1
3
+

βΔq2

20

)
+ · · ·

)}
. (34)

It is instructive to compare Equation (34) with the uncertainty relation,

H1
(
px̂(ρ̂)

)
+ H1

(
pκ̂(ρ̂)

)
≥ ln

(
eπ

ΔxΔκ

)
+
〈
ln(1 + βκ̂2)

〉
ρ̂

, (35)

proved in Ref. [45]. By H1(p), the Shannon entropy of the corresponding probability
distribution is meant. Since the left-hand side of Equation (34) includes the two min-
entropies, it differs from entropic uncertainty relations of Refs. [45,50]. Therein, the entropic
parameters are connected due to the use of inequalities between the corresponding norms
of a function and its Fourier transform. Hence, the obtained inequalities cannot involve
min-entropies for both the observables. In this regard, the discussion here completed
the consideration of the paper [45]. Another difference is that the right-hand side of
Equation (34) decreases with β, at least for high-resolution measurements. In contrast,
the correction term in the right-hand side of Equation (35) increases. This distinction
reflects that the min-entropies depend only on the maximal probabilities. Naturally, the
scope of Equation (34) is restricted to measurements with sufficiently high resolution. In
the meantime, only such measurements are recognized as capable to verify uncertainty
relations of various forms.

A natural question arises about the right-hand side of Equation (33). What are, in
order of magnitude, the terms depending on β? To answer the question, let us make
some plausible assumptions about the typical values of Δx and Δq. Surely, they are mainly
determined by the capabilities of modern experimental techniques. Any detailed discussion
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is beyond the scope of this paper. Instead, one can refer to the concrete experimental results
of the verification of the Heisenberg uncertainty principle [56]. On average, typical bins
can be estimated as Δx ∼ 100 nm and Δκ ∼ 107 1/m. The latter also holds for Δq in view of
κ = tan(

√
βq)

/√
β and given that√

β ∼ �Pl = 1.616× 10−35 m .

The calculations then give s ∼ 1/(2π) ≈ 0.159 and

βΔq2

s2π2 ∼ 10−55 . (36)

This value characterizes a ratio of the second term to the third one in the right-hand
side of Equation (33). It is not surprising that the effects of the generalized uncertainty
principle are estimated as extremely small.

Direct observational evidence for a foamed structure of space-time at the Planck scale
seem to be currently unfeasible with an elementary particle as probe. In this way, the
theoretical results of the form of Equation (34) are also unable to assist the presence of a
minimal length in testing. Instead, paper [7] considered the use of a macroscopic probe for
exploring space-time “roughness” at the relevant scale. It was found that, within the given
level of ultrahigh vacuum and cryogenic technology, the proposed tabletop experiment
could already be sensitive sufficiently. A witness for space-time “roughness” is provided
the frequency of a certain event with a single photon turns out to be significantly less than
the expected level. Applications of uncertainty relations to experiments of such a kind
deserve to be studied in a separate investigation.

4. Conclusions

We have considered majorization uncertainty relations for position and momentum
measurements in the presence of a minimal length. In particular, the uncertainty relation in
terms of min-entropies was also formulated. In general, the proposed approach develops
the treatment of Ref. [33] in combination with the generalized uncertainty principle. It was
advisable from the physical viewpoint to focus on position and momentum measurements
with sufficiently high resolution. In this way, one has derived corrections to leading terms of
the majorization bound for the corresponding observables discretized into bins. Naturally,
the changes of interest are determined by the parameter β that controls the modified
commutation relation (1). The presented results allow us to reveal typical behavior and to
estimate an order of corrections induced by the presence of a minimal length.

The obtained expressions with β are closely related to the structure of the modified
commutation relation. These terms reveal some features that one could expect from the
physical viewpoint. It is natural enough that lower bounds on uncertainty quantifiers will
rather increase with the growth of β. The commutation relation (1) is indeed asymmetric in
handling with position and momentum. The correction terms reflect this property, and the
shortening of the momentum bins has a greater effect than the shortening of the position
ones. At the same time, all of the mentioned changes lie in a so narrow range that they
can hardly be probed within the capabilities of the modern experiment. A relative weight
of the correction terms was estimated at a level undetectable in practice. It is apparent
that a real successful experiment to show the presence a minimal length would be an
exceptional advance.
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Appendix A. Solution of the Eigenvalue Problem

It is useful to consider the eigenvalue problem in a form posed as

∫ +1/2

−1/2
k(ξ, ξ ′) u(ξ ′)dξ ′ = λ u(ξ) , (A1)

where the kernel is expanded as

k(ξ, ξ ′) = k(0)(ξ, ξ ′) + ε k(1)(ξ, ξ ′) + ε2k(2)(ξ, ξ ′) + · · · . (A2)

The case (18) is gained for ε = s2, k(0)(ξ, ξ ′) = 1, k(1)(ξ, ξ ′) = A(ξ − ξ ′)2 with
A = −π2/6, and so on. The operator in the left-hand side of Equation (A1) is a Hilbert–
Schmidt one, whenever ∫ +1/2

−1/2
dξ

∫ +1/2

−1/2
dξ ′

∣∣k(ξ, ξ ′)
∣∣2 < ∞ . (A3)

It is known that Hilbert–Schmidt integral operators are both continuous and com-
pact. The current study deals with symmetric real kernels, i.e., k(ξ, ξ ′) = k(ξ ′, ξ) and
k(ξ, ξ ′) = k(ξ, ξ ′)∗. Then, the integral operators of interest are self-adjoint.

For ε = 0, one obtains from Equation (17) the eigenvalue problem,

∫ +1/2

−1/2
w(ξ ′)dξ ′ = ν w(ξ) , (A4)

with the eigenvalues ν0 = 1 and ν1 = 0. The function w0(ξ) = 1 corresponding to ν0 = 1 is
normalized as ∫ +1/2

−1/2
w0(ξ)

2dξ = 1 . (A5)

The eigenvalue ν1 = 0 is degenerate, and there is a countably infinite set
{

wn(ξ)
}∞

n=1
of eigenfunctions such that

∫ +1/2

−1/2
wn(ξ)dξ = 0 ,

∫ +1/2

−1/2
wm(ξ)wn(ξ)dξ = δmn , (A6)

where δmn is the Kronecker delta. The first of these formulas implies 〈w0, wn〉 = 0 for
n = 1, 2, . . . as well. One can recall here the Legendre polynomials Pn(y) with the generat-
ing function,

1√
1− 2yt + t2

=
∞

∑
n=0

Pn(y) tn . (A7)

Taking y = 2ξ, one can herewith write

wn(ξ) =
√

2n + 1 Pn(2ξ) (n = 0, 1, 2, . . .) . (A8)

Apparently, the choice (A8) is not unique, but it is sufficient for the purposes here.
In general, the quantities of interest are represented by expansions,

λn = λ
(0)
n + ε λ

(1)
n + ε2λ

(2)
n + · · · , (A9)

un(ξ) = u(0)
n (ξ) + ε u(1)

n (ξ) + ε2u(2)
n (ξ) + · · · . (A10)
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For the problem (17), one has λ
(0)
n = δn0 and u(0)

n (ξ) = wn(ξ). One also deals with the
Hilbert–Schmidt operators of the form,

K(n) f (ξ) =
∫ +1/2

−1/2
k(n)(ξ, ξ ′) f (ξ ′)dξ ′ , (A11)

K = K(0) + εK(1) + ε2K(2) + · · · . (A12)

Let us write the total equation as(
K(0) + εK(1) + · · ·

)(
u(0)

n (ξ) + ε u(1)
n (ξ) + · · ·

)
=
(
λ
(0)
n + ε λ

(1)
n + · · ·

)(
u(0)

n (ξ) + ε u(1)
n (ξ) + · · ·

)
, (A13)

whence
K(1)u(0)

n (ξ) +K(0)u(1)
n (ξ) = λ

(1)
n u(0)

n (ξ) + λ
(0)
n u(1)

n (ξ) (A14)

in the first order. Due to self-adjointness, one finally obtains:

λ
(1)
n =

〈
u(0)

n ,K(1)u(0)
n
〉

. (A15)

For the problem (17), the first-order correction to the eigenvalue reads as

λ
(1)
n = (2n + 1)

∫ +1/2

−1/2
dξ

∫ +1/2

−1/2
dξ ′ k(1)(ξ, ξ ′) Pn(2ξ) Pn(2ξ ′) .

For n = 0, this formula gives

λ
(1)
0 =

∫ +1/2

−1/2
dξ

∫ +1/2

−1/2
dξ ′ k(1)(ξ, ξ ′) =

A
6

, (A16)

provided that k(1)(ξ, ξ ′) = A(ξ − ξ ′)2.
In order to examine Equation (29), one needs to know the corresponding eigenfunction

of the problem (17). For n = 0, the first-order correction to the eigenfunction is obtained
from 〈w0, u(1)

0 〉 = 0. The latter can be rewritten as

K(0)u(1)
0 (ξ) =

∫ +1/2

−1/2
u(1)

0 (ξ ′)dξ ′ = 0 , (A17)

since w0(ξ) = 1 and k(0)(ξ, ξ ′) = 1. Combining Equation (A14) with Equation (A17)
finally gives

u(1)
0 (ξ) = K(1)w0(ξ)− λ

(1)
0 w0(ξ) . (A18)

By k(1)(ξ, ξ ′) = A(ξ − ξ ′)2, one has:

u(1)
0 (ξ) = A

(
ξ2 +

1
12

)
− A

6
= A

(
ξ2 − 1

12

)
. (A19)
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On Momentum Operators Given by Killing Vectors Whose
Integral Curves Are Geodesics
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Abstract: The paper considers momentum operators on intrinsically curved manifolds. Given that
momentum operators are Killing vector fields whose integral curves are geodesics, the corresponding
manifold is flat or of the compact type with positive constant sectional curvature and dimensions
equal to 1, 3, or 7. Explicit representations of momentum operators and the associated Casimir element
are discussed for the 3-sphere S3. It is verified that the structural constants of the underlying Lie
algebra are proportional to 2 h̄/R, where R is the curvature radius of S3 and h̄ is the reduced Planck’s
constant. This results in a countable energy and momentum spectrum of freely moving particles in S3.
The maximal resolution of the possible momenta is given by the de Broglie wave length, λR = πR,
which is identical to the diameter of the manifold. The corresponding covariant position operators
are defined in terms of geodesic normal coordinates, and the associated commutator relations of
position and momentum are established.

Keywords: generalized uncertainty principle; curved spacetime; extended uncertainty principle;
quantization in curved space

1. Introduction

Every generalization of the ordinary momentum operator in quantum mechanics to
intrinsically curved manifolds strongly depends on the assumptions that are supposed to
be established. Those assumptions are mostly based on the rules of quantum mechanics in
Cartesian coordinates of the flat Euclidean space.

Let M be an n-dimensional smooth Riemannian manifold with metric g (occasionally
denoted by 〈·, ·〉). At every point p ∈ M, smooth manifolds admit a tangent space, Tp M,
which is an n-dimensional real vector space. For every smooth function f on M, consider
the action of differential form, d f . Since d f is a map on tangential space Tp M at point
p ∈ M, the gradient of f is defined, such that

d f (v) = 〈v, grad f 〉 (1)

for every smooth vector field v ∈ Tp M. From this definition, one can obtain the formal
expression of the gradient vector field by

grad f = (grad f )k∂k (2)

with contravariant components (grad f )i = gik∂k f , where gik are components of the inverse
metric g, {∂k} is the natural basis of Tp M, and the Latin letters denote the space indexes,
k = 1, 2, · · · , n. With this notation, the traditional momentum operator of Euclidean space
in Cartesian coordinates is given by covariant components, p̂k f = −ih̄(grad f )k, which are
commonly written as

p̂k = −ih̄∂k (3)
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in physics textbooks; here, h̄ is the reduced Planck’s constant. Following De Witt [1,2], for
intrinsically curved manifolds, one can obtain more general momentum operators that also
satisfy the canonical commutation relations:[

x̂j, p̂k

]
= ih̄δ

j
k, (4)[

p̂j, p̂k
]

=
[
x̂j, x̂k

]
= 0. (5)

This yields an enhanced quantization rule

p̂k = −ih̄
(

∂k + Γj
jk(x)

)
, (6)

where the curvature of the manifold is reflected by the contracted Christoffel symbols
Γj

jk(x). Compared to the Cartesian quantization rule in Euclidean space (3), the ordinary
partial derivative is replaced by the definition (6). An advantage of this quantization
rule is its applicability to a wide range of curved spaces and the validity of the canonical
commutator relations. However, in order to set up a quantum Hamiltonian, one has to
keep in mind that there is no unique prescription to quantize the classical curved space
Hamilton function. This is because of operator orderings of the kinetic energy term result
in different, inequivalent quantum corrections, such that the correct Hamiltonian can only
be confirmed empirically.

On the other hand, a particular property that is, in a sense, self-evident for the Cartesian
case is that the partial derivatives ∂k of the momentum representation in Equation (3) can be
understood as orthonormal Killing vectors whose isometries are “translations” in Euclidean
space. Strictly speaking, the integral curves of this Killing vectors (called Killing trajectories)
are geodesics, especially for a particle moving in a force-free surrounding. If this idea is
generalized, for instance, to a freely moving particle on the 3-sphere of radius R, then it
is already known that the (geodesic) Killing trajectories are the greater circles. Hence, the
structural coefficients of the underlying Lie algebra are proportional to the fraction h̄/R and
thereby different from zero; one is compelled to relax the form of canonical commutator
relations (4) and (5).

One of the first attempts in this direction was proposed by Segal [3], and later de-
veloped by Śniatycki [4], Doebner, Tolar, and Nattermann [5,6]. Without going into any
detail (a review can be found in Ref. [7]), a generalized momentum operator is obtained by
projection onto a given smooth vector field X on M according to

PX = −ih̄
(
∇X +

1
2

divX
)

, (7)

where divX is the covariant divergence of vector field X. A straightforward computation
(that is here omitted) yields the general commutation relation,

[PX , PY ] = −ih̄P
[X,Y] , (8)

where [X, Y] denotes the commutator of two vector fields X and Y in the usual sense of the
theory of manifolds [3]. In the case of a linear manifold, this vanishes for two infinitesimal
translations, and Equation (8) specializes to the commutativity of the conventional linear
momenta.

Apparently, operator (6) of De Witt can be recovered for vector fields X of the special
form Xk = ∂k, with Γj

jk = ∂k log
√

g ≡ Γk. However, that means divXk = Γk �= 0,
such that the vector fields Xk cannot be Killing vectors if the underlying manifold is
intrinsically curved.

The paper is organized as follows. In Section 2, the question of the hermiticity of
momentum operators (7) is discussed. This draws attention to the special importance of
Killing frame fields. A classification of manifolds with such a structure and the correspond-
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ing Lie algebra are discussed in Section 3. Possible examples S1, S3, and S7 are considered
in Section 4. In Section 5, a covariant position operator on S3 is defined in terms of geodesic
normal coordinates and the associated commutator relations of position and momentum
are established. Lastly, a summary and outlook are given in Section 6.

2. Hermitian Momentum Operators

Let us consider the Hilbert space of square integrable complex functions L2(U, μ) on a
compact subset, U ⊆ M, with smooth boundary ∂U endowed by the inner product,

( f , g) =
∫

U
dμ f ∗g, f , g ∈ L2(U, μ), (9)

where μ is the standard volume measure on U ⊆ M. The statement that momentum
operators are Hermitian with respect to an inner product is typically based on the assump-
tion that the boundary terms vanish after partial integration. Indeed, one cannot define a
momentum operator on a bounded domain without specifying boundary conditions. In
mathematical terms, choosing the boundary conditions amounts to choosing an appro-
priate domain for the operator. If one uses no boundary conditions, too many functions
are eigenvectors, so the spectrum of PX is the whole complex plane. On the other hand, if
Dirichlet boundary conditions are imposed, the situation is too restrictive, and one cannot
find an orthonormal basis. Thus, if functions f ∈ L2(U, μ) are smooth on U, but constant
functions at ∂U, finding a domain such that PX is self-adjoint is a compromise to obtain
an orthonormal basis of countable spectrum. In what follows, the focus is on the Hilbert
spacesHU ⊂ L2(M, μ), with

HU =
{

f ∈ C1(U) : f |∂U = const.
}

(10)

At this point, one must check whether momentum operator (7) still remains Hermitian
because the elements inHU are not supposed to vanish at the boundary.

Proposition 1. Let X be a smooth and divergenceless vector field on U ⊆ M. Then, PX is Hermitian
onHU.

Proof. Let f , h ∈ HU . The divergence of product f X can be written as

div( f X) = f div(X) +∇x f . (11)

On the other hand, one has the decomposition

h∗∇x f = 〈h∗X, grad f 〉
= div( f h∗X)− f div(h∗X). (12)

This equation can be integrated with respect to the volume form dμ on U as follows:

(h,∇x f ) = −
∫

U
dμ f div(h∗X)

+
∫

∂U
dμ∂ f h∗〈X, ν〉. (13)

Here, Stokes’ theorem is applied, where dμ∂ is the volume measure with respect to the
boundary ∂U and ν is the non-negative outward normal on ∂U. Now, since f and h were
assumed to be constant at the boundary of U, they could be taken out of the integration
in (13), and one can apply Stokes’ theorem once more, such that the remaining boundary
integral on the right-hand side in (13) becomes∫

∂U
dμ∂〈X, ν〉 =

∫
U

dμdivX. (14)
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With the assumption divX = 0, it follows

(h,∇x f ) = −
∫

U
dμ f div(h∗X). (15)

Finally, Equation (11) is applied and one gets

(h,∇x f ) + (∇xh, f ) =−
∫

U
dμh∗f div(X). (16)

The term on the right-hand side can be absorbed into each term on the left-hand
side with a prefactor 1/2. By multiplication of the equation with −ih̄, and after applying
definition (7), one lastly obtains

(h, Px f ) = (Pxh, f ) (17)

for all f , h ∈ HU .

At this point, to emphasise is that the boundary term in Equation (14) is not necessarily
zero under more general conditions. This renders the divergence criterion of the vector
field X necessary to ensure hermiticity. The possible manifolds that are available under
these circumstances are discussed in the next Section.

3. Geodesic Momentum Operators

The classification of manifolds that are compatible to the conditions of Proposition 1
can be described with the following definition of Killing frames:

Definition 1. (Killing frame) [8]. A Riemannian manifold M has the Killing property if, in some
neighborhood of each point of M, there exists an orthonormal frame, X1, ..., Xn, such that each
Xi, i = 1, ..., n is a Killing vector field (local infinitesimal isometry). Such a frame is called a
Killing frame.

Since any linear combination with constant coefficients of Killing vector fields is again
a Killing vector field, a manifold has the Killing property if and only if it is always possible
to find frames consisting of Killing vector fields, such that 〈Xi, Xj〉 = const for each choice
of i and j. The normality condition of the definition implies that the integral curves of
the isometries are geodesics, since a necessary and sufficient condition for this is that the
Killing vector fields have constant length ([9], p. 349; [10], p. 50).

For instance, let x, y and r, ϕ denote Cartesian and polar coordinates on the Euclidean
plane R2 endowed with Euclidean metric. Then, the Killing vector fields corresponding
to translations and rotations are X1 = ∂x, X2 = ∂y and X3 = ∂ϕ. Their squared vector
norms are X2

1 = 1, X2
2 = 1 and X2

3 = r2. Killing vector fields X1 and X2 had a constant
length on the whole plane. Their trajectories are straight lines, which are geodesics. The
Killing trajectories corresponding to rotations X3 are concentric circles around the origin.
The length of X3 is constant along the circles, but nonconstant on the whole plane. The
corresponding Killing trajectories are circles that are not geodesics [11].

In the context given so far, one comes to the following.

Definition 2. (Momentum operator).
Let M be an n-dimensional Riemannian manifold with Killing frame X1, ..., Xn on M. The set

of operators defined by

PXk
= −ih̄Xk, (18)

k = 1, ..., n, are called (geodesic) momentum operators in the direction Xk on M.

160



Physics 2022, 4

This definition is compatible with Equation (7), since every Killing vector field Xi is a
priori divergenceless, i.e., divXi = 0, i = 1, ..., n. Moreover, the Lie bracket of two Killing
fields is still a Killing field. The momentum operators (18) thus form a Lie subalgebra of
vector fields on M. If M is a complete manifold, this is the Lie algebra of the translation
group. In this case, the commutation relations of the Killing vector fields are given by

[Xi, Xj] = ck
ijXk , (19)

where structural coefficients, ck
ij, express the multiplication of pairs of vectors as a linear

combination. The corresponding commutator relations of the momenta are obtained by
multiplication with the physical units (−ih̄)2 on both sides of Equation (19) and subse-
quently applying the definition (18), i.e.,

[PXi
, PXj

] = −ih̄ck
ijPXk

, (20)

which is compatible with the general expression (8). The associated Casimir element of this
Lie algebra is given by [8]:

Proposition 2. Let M be an n-dimensional manifold and X1, ..., Xn be a Killing frame on M. There
is a decomposition of the Laplace–Beltrami operator, such that

n

∑
j=1

P2
Xj

= −h̄2Δ. (21)

Proof. Vector fields, Xj, can be expressed as a linear combination of the coordinate vector
fields, ∂α = ∂/∂xα, with the Greek letters denoting indices of the local chart, such that

Xi = ξα
i ∂α , (22)

where each ξα
i is a function. For every smooth f on M, one can write

∑
j

X2
j f = ∂α(gαβ∂β f )− δij(∂αξα

i )ξ
β
j ∂β f , (23)

which was obtained by the product rule of differentiation. On the other hand, the Laplace–
Beltrami operator in the natural frame is

Δ f = ∂α(gαβ∂β f ) +
1√
g
(
√

g),α gαβ∂β f . (24)

Now, it follows that expression (23) is equal to Equation (24) for every f if it can be
shown that

1√
g
(
√

g),α gαβ + δij(∂αξα
i )ξ

β
j = 0. (25)

Using the basic property,∇g = 0, of the Levi-Civita connection together with δijξα
i ξ

β
j =

gαβ, one obtains the following condition:

δij(∇Xi
ξα

j ) = 0. (26)
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This identity can be confirmed as follows:

0 = ∇
∂l

glk

= δij∇
∂l
(ξ l

i ξ
k
j )

= δij
(

divXiξ
k
j +∇Xi

ξk
j

)
= δij∇Xi

ξk
j (27)

and thus,

∑
j

X2
j f = Δ f . (28)

With Definition (18), in physical units, one obtains statement (21).

According to this decomposition of the covariant Laplacian, there is no ambiguity con-
cerning operator orderings of the kinetic energy term. Decomposition (21) is independent
of the particular choice of the orthonormal basis [12]. Moreover, the commutator of Δ with
the elements Xj of Lie algebra (19) is given by

[Xj, Δ] = 0. (29)

From a mathematical point of view, the Casimir element has a meaning only for the
theory of representations, but not as an element of the Lie algebra, since the product in
Equation (21) is not defined for the algebra itself. However, from linear algebra we know
that the eigenvectors of a linear operator always form a basis for the vector space in ques-
tion. In addition, for any Lie group, one or more of the generators can be simultaneously
diagonalized using similarity transformations. The set of generators that can be diagonal-
ized simultaneously are called Cartan generators. Thus, a suggestive and particularly easy
basis for the vector space of each representation is given by the eigenvectors of the Cartan
generators (see below).

The scope of the concept given so far asks for a mathematical classification of manifolds
with Killing property. A Riemannian manifold having the Killing property must be locally
symmetric [8]. Thus, each point of a connected Riemannian manifold having the Killing
property has an open neighbourhood that is isometric to an open neighbourhood in a
simply connected Riemannian symmetric space M. Then, M also has the Killing property
and global Killing frames. Actually, a local Killing frame exists on M because of the given
local isometry and can be extended uniquely to give a global Killing frame. The extension
of each Killing vector field to a global Killing vector field is possible since the symmetry
implies completeness. This extension remains orthonormal, since the Riemannian structure
on M is subordinate to a real analytic Riemannian structure (cf. [13], p. 240; [14], p. 187).
A simply connected Riemannian symmetric space is said to be irreducible if it is not the
product of two or more Riemannian symmetric spaces. It can then be shown that any simply
connected Riemannian symmetric space is a Riemannian product of irreducible ones.

Therefore, the calculations furthermore are restricted to the irreducible, simply con-
nected Riemannian symmetric spaces. Any simply connected Riemannian symmetric space
M is of one of the following three types: (i) Euclidean type: M has a vanishing curvature
and is thereby isometric to a Euclidean space. (ii) Compact type: M has a non-negative (but
not identically zero) sectional curvature. (iii) Noncompact type: M has a nonpositive (but
not identically zero) sectional curvature. Strictly negatively curved manifolds imply that
there are no nontrivial (real valued) orthonormal Killing fields.

Manifolds of constant positive curvature [8] have the Killing property only if the
dimension of M is equal to 1, 3, or 7. For the spheres S1, S3 and S7, actually, there is a global
Killing frame. The construction depends essentially on the existence of a multiplication in
R2 (complex numbers), R4 (quaternions), and R8 (Cayley numbers).
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4. Applications

From the discussion of the previous Section and the particular role of Killing frames,
it is straightforward to consider the designated cases of constant curvature manifolds S1,
S3 and S7 in more detail. Let us begin with the "trivial" case S1.

4.1. Circle

For the circle, one can take X1 to be the unit tangent vector field pointing, say, in the
counterclockwise direction. More precisely, consider the situation of a compact subset
M ⊂ S1 embedded in R2. The general solution of the Killing equation LX1 g = 0 on S1,
with metric ds2 = ρ2dϕ2 is given by X1 = ξϕ∂ϕ, for ξϕ ∈ R. Let ξ ϕ = 1/ρ, where ρ is the
constant (hyper-)radius of the circle; then, we have X2

1 = 1, and the Killing trajectory is a
geodesic. The associated momentum operator is

Pϕ = −ih̄
1
ρ

∂

∂ϕ
. (30)

This operator is symmetric on any compact set M ⊂ S1, with f = const. on the
boundary. In Ref. [15], it is reported that, in quantum mechanics on a circle with stan-
dard commutation relation for ϕ and pϕ, the uncertainty relation cannot be stronger than
σpσϕ ≥ 0, where σϕ and σp are the standard deviations of position and momentum. Indeed,
this inequality is not informative at all, since a product of two nonnegative values cannot be
negative. Alternatively, one is referred to the approach in Ref. [16], which is not affected by
difficulties arising in defining a proper measure of position uncertainty on manifolds men-
tioned in Ref. [17]. By applying the substitution r = ρϕ that corresponds to the arc-length
on S1, the uncertainty principle of Ref. [16] is given by

σpΔr ≥ πh̄, (31)

where Δr is the measure (length) of a compact domain on S1.
Before turning over to the case of S3, let us briefly mention that indeed each single

component, L1, L2, and L3 of the ordinary textbook angular momentum operator L is a
Killing vector on S2 and moreover, L2 = L2

1 + L2
2 + L2

3 actually corresponds to the Laplace–
Beltrami operator on S2. Although this seems quite promising, these vector fields are not
normalizable. All vector fields on the 2-sphere are actually inappropriate for this purpose
because of the hairy-ball theorem of differential topology that states that there is generally
no nonvanishing continuous tangent vector field on even-dimensional n-spheres. This
hinders thinking about what kind of vector fields should be appropriate for an adequate
description of momentum operators on S2. The discussion in the literature regarding
which momentum operators on S2 might be considered to be appropriate extends up to the
present day.

4.2. 3-Sphere

The 3-sphere of radius R > 0 can be understood as the three-dimensional hypersurface
in the four-dimensional Euclidean space. This can be naturally described by the standard
spherical coordinates of R4 given by [18]

x1 = R cos χ,

x2 = R sin χ cos θ,

x3 = R sin χ sin θ cos ϕ,

x4 = R sin χ sin θ sin ϕ.
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In order to cover all points of the 3-sphere with both positive and negative values of
the coordinates xi, it is necessary that 0 ≤ χ, θ ≤ π, 0 ≤ ϕ < 2π. In these coordinates, the
metric of S3 takes the form:

ds2 = R2(dχ2 + sin2χ(dθ2 + sin2θdϕ2)
)
. (32)

The corresponding Killing equation is solved for the unit sphere (R = 1) and the
following orthonormal Killing frame is selected :

X1 = sin θ cos ϕ∂χ (33)

+ (cot χ cos θ cos ϕ− sin ϕ)∂θ

− (cot χ csc θ sin ϕ + cot θ cos ϕ)∂ϕ,

X2 = sin θ sin ϕ∂χ (34)

+ (cot χ cos θ sin ϕ + cos ϕ)∂θ

+ (cot χ csc θ cos ϕ− cot θ sin ϕ)∂ϕ,

X3 = cos θ∂χ − cot χ sin θ∂θ + ∂ϕ. (35)

Case R �= 1 can be obtained by dividing the right-hand side by R. The orthonormality
relation g(Xi, Xj) = δij is straightforwardly verified. The corresponding representation
in Cartesian coordinates, p = (x1, x2, x3, x4), of the Euclidean embedding space R4 is also
determined and given by

X1(p) = (−x4,−x3, x2, x1), (36)

X2(p) = ( x3,−x4,−x1, x2), (37)

X3(p) = (−x2, x1,−x4, x3), (38)

which satisfies Xi(p) ·Xj(p) = δij with respect to the Euclidean scalar product. One can also
check that the Lie algebra generated by {X1, X2, X3} is given by the following commutation
relations,

[Xi, Xj] = −
2
R

εijkXk, (39)

where εijk is the Levi-Civita symbol in three dimensions. In physical units, this can be
rewritten as

[PXi
, PXj

] =
2ih̄
R

εijkPXk
. (40)

The corresponding Hamilton operator, H, of a free particle is given by

H =
1

2m

3

∑
i=1

P2
Xi

= − h̄2

2m
Δ, (41)

which is equal to the Casimir element of Proposition 2 in three dimensions. Thus, it
follows that

[H, PXi
] = 0 (42)

for i = 1, 2, and 3.
Alternative decompositions of the Laplacian in Equation (41) by using six (nonorthonor-

mal) Killing vector fields instead of three were proposed in Santander et al. [19]. One
essential point of the approach in Ref. [19] is that the structural coefficients of the associated
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commutator relations are not constants, such that the Hamiltonian cannot be considered
as a Casimir element of the operator algebra. This makes the analysis of the eigenvalues
and the corresponding eigenspaces quite complicated. There seems to be no reason why
one should regard a decomposition of the free Hamiltonian in terms of additional angular
momenta whose integral curves are not geodesics.

Another interesting approach is the momentum-space quantization of a particle mov-
ing on the SU(2) group manifold by Guerrero et al. [20]. Their algorithm also exhibits a
proper and unambiguous realization of the basic operators and of the Hamiltonian, which
also turns out to be the Laplace–Beltrami operator on S3. Although the right-invariant
generators (62) in Ref. [20] are different from the Killing frame fields Xi introduced above,
they are compatible with the algebra given in (39). However, the question whether the
generators in Ref. [20] also form a Killing frame was not explicitly discussed.

The eigenvalues of H can be obtained by the hyperspherical harmonics on S3, which
were discussed as part of investigations of a variety of gravitational physics problems in
spaces with the topology of the 3-sphere [21,22]. According to Ref. [22], these hyperspher-
ical harmonics on S3 are denoted by Ynlm. The integers n, l and m with n ≥ l ≥ 0 and
l ≥ m ≥ −l indicate the order of the harmonic. These harmonics are eigenfunctions of the
covariant Laplacian according to

ΔYnlm = −n(n + 2)
R2 Ynlm. (43)

The corresponding energy eigenvalues En of H are given by

En =
h̄2

2m
n(n + 2)

R2 . (44)

for n = 0, 1, ...
Now let us consider the corresponding eigenvalue spectrum of the momentum op-

erators. Although PXi
and H are commuting Hermitian operators, it is not necessarily

given that each eigenbasis of H is also an eigenbasis of PXi
. Indeed, most of the functions

Ynlm given in Equation (43) are not eigenfunctions of the momentum operator PX3
. A

simultaneous eigenbasis can be obtained by applying the standard textbook formalism, but
on the basis of the specific algebra given by Equation (40). Rather then working with the
operators PX1

and PX2
, it is convenient to work with the non-Hermitian linear combinations:

P± = PX1
± iPX2

, (45)

where by definition (P−)
† = P+ . Using (40) and (42), it is straightforward to show that

[P+ , P− ] = 4
h̄
R

PX3
, (46)[

PX3
, Pk
±
]

= ±2k
h̄
R

Pk
± (47)

for k = 0, 1, 2, . . . Certainly, one also has[
H, Pk

±
]
= 0. (48)

In order to obtain a simultaneous eigenbasis of H and PX3
for every fixed n ∈ N, let us

consider the set of orthogonal states {ψnk
± }n

k=0 given by applying the "ladder" operators P±
according to

ψnk
± = Pk

±Ynn(∓n), (49)
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where k = 0, 1, ..., n. From this definition it follows that P∓ψn0
± = 0. By applying the

general commutator rule (47), all of these states are eigenstates of the momentum operator,
such that

PX3
ψnk
± = ±pnkψnk

± , (50)

pnk = (k− n
2
)

2h̄
R

(51)

for k = 0, 1, ..., n. The physical interpretation becomes straightforward by recalling that the
diameter of the 3-sphere is, by definition, the maximal possible geodesic distance (πR) be-
tween two points on S3. If one applies the original definition of Planck’s constant h̄ = h/2π,
the maximal resolution Δpnk = pnk+1 − pnk of the possible momenta in Equation (51) is
given by

Δpnk =
h

πR
. (52)

This unit of momentum corresponds to the de Broglie wavelength,

λR = πR, (53)

which is identical to the diameter of the manifold. It is hard to think of higher resolutions
than this.

On the other hand, the energy eigenvalues can be verified by applying commuta-
tor (48), such that we obtain the following eigenvalue equations:

Hψnk
± = Enψnk

± , (54)

where En is given in Equation (44). For numerical purposes, it is helpful to know the explicit
form of the initial functions ψn0

± , which are given by

ψn0
± = Cn sinnχ sinnθe∓inϕ, (55)

and the normalization constant is

Cn =

√
22n−1(n + 1)

π

n!(2n− 1)!!
(2n)!

. (56)

The representation of operators PX1
and PX2

can be obtained by inverting relation (45)
in order to express them in terms of the ladder operators. This completes the brief analysis
of momentum operators on S3.

4.3. 7-Sphere

Physical applications involving higher-dimensional spheres can be found almost
exclusively in the context of N = 1 supergravity in 11 dimensions, which is beyond
the scope of this study. Therefore, let us discuss (for information only) some aspects
regarding the approach given so far. The sphere S7, considered to be a Riemannian
manifold embedded in R8 in the usual way, is also designated to have the Killing property.
Explicitly, writing points p in R8 as column vectors and identifying the tangent spaces to S7

with hyperplanes, the vector fields Xi(p), for i = 1, ..., 7, are expressed in Table 1 below [8].
Since p · Xi(p) = 0 and Xi(p) · Xj(p) = δij, this gives a global orthonormal frame on S7,
which is also a Killing frame. If R4 is embedded in R8 as a subset x5 = x6 = x7 = x8 = 0,
the restrictions of X1, X2, X3 yield a Killing frame on S3 corresponding to the previous
Section (up to sign conventions).
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Table 1. Orthonormal Killing vector representation at point p on S7 embedded in R8.

p X1(p) X2(p) X3(p) X4(p) X5(p) X6(p) X7(p)

x1 x2 x3 x4 x5 x6 x7 x8

x2 −x1 −x4 x3 −x6 x5 −x8 x7

x3 x4 −x1 −x2 −x7 x8 x5 −x6

x4 −x3 x2 −x1 x8 x7 −x6 −x5

x5 x6 x7 −x8 −x1 −x2 −x3 x4

x6 −x5 −x8 −x7 x2 −x1 x4 x3

x7 x8 −x5 x6 x3 −x4 −x1 −x2

x8 −x7 x6 x5 −x4 −x3 x2 −x1

According to this representation, the Killing vector fields Xi of the frame bundle
and their associated momentum operators PXi

on S7 can be well expressed in terms of
hyperspherical coordinates. Moreover, the calculation of eigenvectors and eigenvalues of
the corresponding Laplace–Beltrami operator on S7 is straightforward and can be obtained
by projecting harmonic fields in Euclidean R8 onto the unit sphere.

5. Covariant Position Operator on S3

Lastly, some remarks concerning the notion of position operators. Segal defines [3] the
position operator Q as follows: if f is a general function on M, then Qf is defined as the
operation of multiplication by f . For real f , g, operators Qf and Qg are Hermitian, such that
there is no difficulty in verifying the commutation relations:[

Qf , PX

]
= ih̄QXf , (57)[

Qf , Qg

]
= 0. (58)

In order to define a covariant position operator on S3, it is straight to consider the
notion of geodesic distance. Since no point of S3 is particularly distinguished, without
loss of generality, the origin in hyperspherical coordinates is chosen by the "North Pole"
p = (R, 0, 0, 0) ∈ R4. Geodesic normal coordinates, q = (q1, q2, q3), around this origin are
such that every element of S3 can be reached by the exponential map

expp : TpS3 −→ S3; (59)

expp(X) = p cos
( s

R
)
+ R sin

( s
R
) X(p)
||X(p)|| , (60)

with X = qiXi ∈ TpS3 and the geodesic distance function,

s : q −→ s = ||q||, (61)

where || · || is the Euclidean norm in TpS3. Let

Xq = q̂kXk (62)

be the corresponding tangent vector field in the unit direction, q̂ = q/s. Then, applying the
smooth transition map from the hyperspherical chart to geodesic coordinates,

q1 = Rχ sin θ cos ϕ,

q2 = Rχ sin θ sin ϕ,

q3 = Rχ cos θ,

167



Physics 2022, 4

it follows via straightforward computation that Xq can be expressed by

Xq =
∂

∂s
. (63)

Accordingly, a geodesic position operator on S3 is defined by Qs, and commutator (57)
can be expressed by

[Qs, PXq
] = ih̄. (64)

A covariant uncertainty relation of position and momentum that is compatible with
this approach and was applied to S3 can be found in Refs. [23,24]. A further generalization
to the case of S7 is also possible, but it is left to further considerations.

6. Summary and Outlook

The description of momentum operators by Killing vector fields is a long-established
concept in momentum-space quantization on differentiable manifolds. On the other hand,
from classical general relativity, the fundamental importance of geodesic trajectories as a
key concept of the theory is also known.

If one wishes to unify these two concepts together in the approach of momentum-
space quantization, this leads to the notion of Killing frames on manifolds. These special
frames are implicitly part of the classical Cartan formalism. However, the orthonormal
frame fields in the Cartan approach are usually not provided as Killing vector fields. A
fundamental principle in the Cartanian approach is to chose the moving frames most
suitable to the particular problem. Some consequences for the possible manifolds arising
from the additional Killing frame property were discussed.

The present study is mainly focused on irreducible, simply connected Riemannian
manifolds. However, many product manifolds can be constructed out of these irreducible
components which also possess the Killing frame property. A straightforward example
would be the temporally infinite but spatially finite case R× S3. A further generalization
is the case of 11-dimensional supergravity with R× S3 × S7. Such possibilities and the
extended analysis of the associated spin connections are the subject of further investigations.
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Abstract: We review a proposal to obtain an emergent metric space-time and an emergent early uni-
verse cosmology from the Banks–Fischler–Shenker–Susskind (BFSS) matrix model. Some challenges
and directions for future research are outlined.
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1. Introduction

The current models of the very early universe are generally based on effective field
theory (EFT), i.e., on considering matter fields minimally coupled to Einstein gravity. This is
true both for the inflationary scenario [1–4] and for most alternatives to it (see, e.g., [5–7] for
a comparative review of alternatives to inflation). However, there are conceptual challenges
that effective-field-theory descriptions of cosmology face. For example, in the case of scalar
field matter—ubiquitously used in early universe models—the range of such fields [8]
and the shape of [9] of their potentials are constrained if we demand that the effective
fields descend from some fundamental physical theory (the best candidate of which is
superstring theory). Independent of superstring theory, the Trans-Planckian Censorship
Conjecture (TCC) [10] severely constrains inflationary models that are based on an EFT
analysis [11] (see, e.g., [12,13] for discussions of some arguments in support of the TCC;
note that scenarios of inflation that are not based on EFT analyses (see [14–19] for examples)
are not necessarily subject to these constraints).

An EFT analysis of matter also leads to the famous cosmological constant problem:
considering matter fields coupled to Einstein gravity, and canonically quantizing the fields
by expanding them in plane wave modes and quantizing each mode like a harmonic oscilla-
tor, then the vacuum energy of all of these modes yields a contribution to the cosmological
constant that is many orders of magnitude (120 orders in a non-supersymmetric model)
larger than what is compatible with current observations (to avoid the Planck catastro-
phe, an ultraviolet (UV) cutoff scale must be imposed, the value of which determines the
predicted cosmological constant).

The abovementioned problems indicate that one needs to go beyond point-particle-
based EFT to obtain a consistent picture of cosmology. Here, we review an
approach [20,21] to obtain a model of the very early universe that is not based on EFT.
Our starting point is the Banks–Fischler–Shenker–Susskind (BFSS) matrix model [22], a
proposed non-perturbative definition of superstring theory (see also [23,24] for early paper
on the quantum theory of membranes, and [25–33] for other matrix models related to
superstring theory). We outline an avenue of how to obtain an emergent space-time, an
emergent metric, and an emergent early universe cosmology. We consider the matrix model
to be in a thermal state. This leads to density fluctuations and gravitational waves on the
emergent space-time, and we indicate how the resulting power spectra of these fluctuations
are scale-invariant and consistent with current observations.

In this context, we remind the reader that the inflationary scenario [1–4] is not the
only early universe scenario that is consistent with current cosmological observations (see,
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e.g., [5–7] for comparative reviews of inflation and alternatives). An alternate scenario is
the emergent scenario, which is based on the assumption that there is a primordial phase
that can be modelled as quasi-static (from the point of view of the Einstein frame) and that
then undergoes a phase transition to the Standard Big Bang phase of expansion.

A model for an emergent scenario is string gas cosmology (SGC) [34] (see also [35]
for earlier study and [36] for a review), where it is assumed that the universe begins in a
quasi-static Hagedorn phase, a phase in which a gas of closed superstrings is in thermal
equilibrium at a high temperature close to the limiting Hagedorn value [37]. The initial
size of all of the spatial dimensions is taken to be the same. However, a dimension of space
can only expand if the winding modes in that direction disappear, and since strings are
two-dimensional world sheets, the intersection of winding strings (which is necessary for
winding modes to disappear) is not possible in more than four large space–time dimensions
(in this argument, it is assumed that there are no long-range attractive forces between
winding strings. Since the local curvature perpendicular to gauge strings vanishes [38], it is
reasonable to make this assumption). This helps to clarify why only three of the nine spatial
dimensions that superstring theory predicts can become large. It can then be shown [39,40]
that thermal fluctuations of this string gas lead to scale-invariant spectra of cosmological
perturbations and gravitational waves, with a slight red tilt for the curvature fluctuations
and a slight blue tilt for the gravity wave spectrum.

What was missing in SGC is a consistent dynamical framework for analyzing the cos-
mological evolution. To obtain such a framework, one needs to go beyond an EFT analysis,
and this is where our study comes in (see also [41] for a different approach to obtaining an
emergent cosmology from superstring theory that matches well with the SGC model).

Note that, as we review below, the computation of cosmological perturbations and
gravitational waves in our BFSS model is based on the same formalism used in SGC, with
very similar results.

In the next Section, we present a brief review of the BFSS matrix model. In Section 3,
we then present our proposal for emergent time, space, and metric from the matrix model.
On this basis, in Section 4 we develop a new picture of an emergent universe and compute
the curvature fluctuations and gravitational waves that are predicted if one starts with a
high temperature state of the BFSS matrix model. We use natural units in which the speed
of light and Planck’s constant are set to one.

2. BFSS Matrix Model

Starting point is the BFSS matrix model [22], a quantum theory involving ten bosonic
time-dependent N×N Hermitean matrices, A0(τ) and Xi(τ), i = 1, . . . , 9, and their sixteen
Fermionic superpartners θa,b(τ) (also N × N matrices), which transform as spinors under
the SO(9). The Lagrangian is

L =
1

2g2

[
Tr
{

1
2
(DτXi)

2 − 1
4
[
Xi, Xj

]2
}

−θT Dτθ − θTγi

[
θ, Xi

]]
, (1)

where g is a coupling constant and the covariant derivate involves the temporal bosonic
matrix A0:

Dτ := ∂τ − i[A0(τ), ·] , (2)

with ∂τ ≡ ∂/∂τ.
In the above, τ is the BFSS time, and γi are Clifford algebra matrices (see, e.g., [42,43]

for reviews of the BFSS matrix model).

172



Physics 2023, 5

This Lagrangian has both a U(N) symmetry and a SO(9) symmetry under rotations
of the spatial matrices (and the corresponding transformation of the spinors). The partition
function of the theory is given by the functional integral,

Z =
∫

dAdθeiSBFSS , (3)

where SBFSS is the action obtained by integrating the Lagrangian over time, and the integra-
tion measures are the Haar measure for the bosonic variables and the spinorial counterpart.

This matrix model was introduced [22] as a candidate for a non-perturbative definition
of superstring theory (more precisely of M-theory). String theory emerges in the limit
N → ∞ with λ ≡ g2N held fixed.

Here, we consider this matrix model in a high-temperture state, with the temperature
being denoted by T. By this assumption, there is no evolution of the system in BFSS time
τ. However, below we extract an emergent time, t (which is different from the time τ) in
terms of which there are non-trivial dynamics.

In the high-temperature state considered here, the spatial matrices, Xi, are periodic in
Euclidean BFSS time τE, and one can expand them in Matsubara modes:

Xi(τE) = ∑
n

Xn
i e2πnTτE , (4)

where n runs over the integers (note that this integer n is unrelated to the integers ni used
in later Sections to introduce comoving coordinates). At high temperatures, the BFSS action
is dominated by the n = 0 modes,

SBFSS = SIKKT +O(1/T) , (5)

where SIKKT is the bosonic part of the action of the Ishibashi–Kawai–Kitazawa–Tsuchiya
(IKKT) matrix model [44], which, in terms of rescaled matrices, Ai,

Ai ≡ T−1/4X0
i , (6)

is given by

S = − 1
g2 Tr

(
1
4

[
Aa, Ab

]
[Aa, Ab]

)
. (7)

In what follows, the matrices A0 and Ai (i.e., the zero modes of the BFSS matrices A0
and Xi) are used to extract an emergent space-time. The n �= 0 modes of the matrices play
an important role when obtaining cosmological fluctuations and gravitational waves.

3. Emergent Metric Space-Time

Without loss of generality, one can work in a basis in which the temporal matrix A0 is
diagonal. The expection values of the diagonal elements are identified with the emergent
time. We order the diagonal elements in increasing value,

A0 = diag(t1, ..., tN) , (8)

with ti ≤ tj for i < j.
Numerical simulations of the IKKT model [45] indicate that

1
N
〈
TrA2

0
〉
∼ κN , (9)

where κ is a (small) constant. Assuming that the eigenvalues are separated equidistantly,
it then follows that the maximal eigenvalue (the maximal value of the emergent time)
scales as
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tmax ∼
√

N , (10)

and that hence the difference between the discrete values of time scales as

Δt ∼ 1√
N

. (11)

Thus, in the N → ∞ limit, one obtains emergent continuous and infinite time. Since
the eigenvalues are symmetric about t = 0, the time that emerges is infinite both in the past
and in the future. Hence, there is neither a Big Bang nor a Big Crunch singularity.

Turning to the spatial matrices, we follow the proposal of [46] and consider, for each
integer m, ni × ni (where ni is an integer sufficiently smaller than N) spatial submatrices
Āi(t(m)) centered a distance m down the diagonal (see Figure 1):

(Āi)I,J(t(m)) ≡ (Ai)m+I,m+J , (12)

where t(m) is the m’th temporal eigenvalue. Following [46], one can define the extent of
space parameters xi(t) in the i’th spatial direction at the time t via

xi(t)2 ≡
〈

1
n

Tr(Āi)(t))2
〉

. (13)

With this definition of emergent space, there is non-trivial time evolution in terms of the
emergent time.

Figure 1. In the basis in which the A0 matrix is diagonal with the diagonal elements defining emergent
time, we can use spatial ni × ni submatrices Āi(t) located a distance t down the diagonal to define
the i’th spatial direction at time t. The figure is taken from [42] with permission.

In the IKKT model, it has been observed via numerical simulations that, in the presence
of the fermionic terms in the action, the state that minimizes the free energy breaks the
SO(9) symmetry into SO(6)× SO(3). Of the nine extent of space parameters, six remain
small and three increase [47–52]. This result can also be confirmed by means of Gaussian
expansion calculations [53,54]. The emergence of three macroscopic spatial dimensions with
the other six remaining microscopic dimensions reminds one of the same phenomenon that
was discovered in the context of string gas cosmology [34], where string winding modes
prevent spatial dimensions from expanding. In order to obtain large dimensions, the string
winding modes near these dimensions must be annihilated, and this is not possible in
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more than three large spatial dimensions since string winding modes will have vanishing
intersection probability (see [55,56] for a more detailed analysis).

Very recently, we have been able to show [57] that in the presence of the fermionic
terms, the SO(9) symmetry will also be spontaneously broken in the BFSS matrix model.
This result was derived using a Gaussian expansion calculation. With this tool, it is not
yet possible to determine the symmetry of the state that minimizes the free energy, but the
intuition gained from string gas cosmology leads us to expect that the symmetry breaking
pattern will be the same as what was observed in the IKKT model.

Making use of the Riemann–Lebesgue Lemma, it can be shown from the bosonic IKKT
action that the off-diagonal elements of the spatial matrices decay once one departs beyond
a critical distance, nc, from the diagonal:

∑
i

〈
|Ai|2ab

〉
→ 0 for |a− b| > nc , (14)

where
nc ∼

√
N (15)

This result can be confirmed by numerical simulations (see [58–61] for recent investi-
gations of the IKKT matrix model), which also indicate that

∑
i

〈
|Ai|2ab

〉
∼ constant when |a− b| < nc , (16)

a result, for which we at present do not have any analytical evidence.
Our proposal [21] is to view ni as the i’th comoving spatial coordinate and

l2
phys,i(ni, t) ≡

〈
Tr(Āi)(t))2

〉
, (17)

as the physical length square of the curve from ni = 0 to ni along the i’th coordinate
direction. It then follows from Equation (16) that

lphys,i(ni) ∼ ni for ni < nc . (18)

Given the definition of length and comoving coordinates, we can extract the spatial
metric component gii in the usual way:

gii(ni)
1/2 =

d
dni

lphys,i(ni) (19)

and we obtain
gii(ni, t) = A(t)δii i = 1, 2, 3 , (20)

whereA(t) is an increasing function of t at late times and δii is the Kronecker delta. Making
use of the remnant SO(3) symmetry, one obtains:

gij(n, t) = A(t)δij i, j = 1, 2, 3 , (21)

where n stands for the comoving 3-vector corresponding to the three large dimensions.
We have thus indicated how one may obtain emergent time, space, and spatial metrics

from the zero modes of the BFSS matrix model. The emergent space-time is infinite both
in temporal and spatial directions, and from Equation (21) it follows that the metric that
emerges on the emergent large three-dimensional space is spatially flat. Hence, in the sce-
nario that we are proposing the famous horizon and flatness problems of Standard Big Bang
cosmology are automatically solved without the need for any phase of inflation [1–4] or
superslow contraction [62,63]. In the next Section we show that the thermal fluctuations in
the BFSS state automatically lead to approximately scale-invariant spectra for cosmological
perturbations and gravitational waves.
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4. Emergent Early Universe Cosmology

The cosmology that emerges from the BFSS matrix model is an emergent cosmology. The
classical notion of space-time only makes sense at late emergent time. Solving the classical
bosonic matrix equations for the three large spatial dimensions at late times yields [64–66],

A(t) ∼ t1/2 , (22)

i.e., expansion like in a radiation-dominated universe. We expect that the inclusion of the
fermionic sector will change this scaling and produce a matter component that scales as
pressureless dust. Thus, in our cosmology there is a direct transition from the emergent
phase to that of Standard Big Bang cosmology, like in string gas cosmology. Note that there
is no sign of a cosmological constant. Thus, it appears that the cosmology that emerges
from the BFSS matrix model will be free of the infamous cosmological constant problem.
On the other hand, it is at the present time unclear how dark energy will emerge. Based
on the swampland criteria [8,9] and the TCC [10], it follows that dark energy cannot be a
cosmological constant. It may be a quintessence field [67–69] that emerges from the matter
sector (see, e.g., [70] for an attempt to obtain a unified dark sector (dark matter and dark
energy) from string theory).

Since we are considering the BFSS matrix model in a high-temperature state, there
will be thermal fluctuations, and these will lead to curvature fluctuations and gravitational
waves like in SGC (see [39,40] for analyses of the generation of cosmological perturbations
and gravitational waves in SGC).

At late times, the classical metric of the 3 + 1 dimensional space-time can be expressed
at the level of linearized fluctuations as (see, e.g., [71,72] for reviews of the theory of
cosmological perturbations)

ds2 = a2(η)
(
(1 + 2Φ)dη2 − [(1− 2Φ)δij + hij]dxidxj) , (23)

where Φ (which depends on space and time) represents the curvature fluctuations, η denotes
the conformal time, and the transverse tracelss tensor, hij, stands for the gravitational waves
(in writing, the perturbed metric in this form we have chosen to work in longitudinal gauge).

According to the linearized Einstein equations, the curvature fluctuations of the
geometry are determined in terms of the energy density perturbations via

〈|Φ(k)|2〉 = 16π2G2k−4〈δT0
0(k)δT0

0(k)〉 , (24)

and the gravitational waves are given by the off-diagonal pressure fluctuations,

〈|h(k)|2〉 = 16π2G2k−4〈δTi
j(k)δTi

j(k)〉 (i �= j) , (25)

where G is the Newtonian constant of gravitation.
Since the energy density perturbations in a region of radius R are determined by the

specific heat capacity, CV(R), on that scale, the power spectrum of curvature fluctuations is
given by

P(k) = k3(δΦ(k))2 = 16π2G2k2T2CV(R) , (26)

where k is the momentum scale associated with R.
For thermal fluctuations, the matter correlation functions are given by taking partial

derivatives of the finite temperature partition function. Since the partition function of
the BFSS matrix model is our starting point, we are able to compute the observables.
Specifically, the specific heat capacity is related to the internal energy, E(R), via

CV(R) =
∂

∂T
E(R) , (27)

and the internal energy is given by the derivative of the partition function with respect to
the inverse temperature, β:
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E = − ∂

∂β
lnZ(β) . (28)

The computation of the internal energy E(R) was carried out in Ref. [20], based on the
study [73] in the context of the IKKT matrix model. We find:

E2 = N2〈E〉BFSS (29)

with

E = − 3
4Nβ

∫ β

0
dtTr([Xi, Xj]

2) . (30)

Evaluating E , we obtain:

E2 =
3
4

N2χ2T − 3
4

N4αχ1T−1/2 , (31)

where χ2 is a constant while χ1 depends on R via

χ1 = 〈R2〉BFSST−1/2 . (32)

The first term in Equation (31) yields a Poisson spectrum that dominates on ultraviolet
scales, while the second term yields a scale-invariant contribution to the curvature power
spectrum that dominates on the infrared scales relevant to current cosmological observations.

5. Challenges and Future Directions

To summarize, we have presented a proposal to obtain time, space, and a metric
as emergent phenomena from the BFSS matrix model, taken in a high-temperature state.
In the N → ∞ limit, the time that emerges is infinite in both directions and continuous.
Similarly, the emergent space is of infinite extent. Given our proposal, the background
metric that emerges is spatially flat and isotropic. Since we are considering a thermal
state of the BFSS model, there are thermal fluctuations, and we have reviewed here how
these perturbations yield scale-invariant spectra of curvature fluctuations and gravitational
waves. Hence, our cosmological model solves the famous horizon and flatness problems
of standard cosmology and provides a causal mechanism for the origin of scale-invariant
spectra of curvature fluctuations and gravitational waves, all without the need to postulate
a phase of cosmological inflation. The cosmology is non-singular, and the cosmological
constant problem is absent.

The SO(9) symmetry of the BFSS action is spontaneously broken. In the case of the
IKKT model, the state that minimizes the energy has SO(6)× SO(3) symmetry, with the
extent of space increasing only in three spatial dimensions. Based on solving the classical
matrix equations, it appears that the cosmological expansion of the three large spatial
dimensions is as in a radiation-dominated universe. The presence of fermions plays a key
role in obtaining this symmetry breaking. On the other hand, the fermionic sector has not
been included in studying the late time dynamics of the three large spatial dimensions. An
important open problem is to include the fermionic sector. A careful study of the full BFSS
matrix model may also shed some light on the nature of dark energy.

An important open problem is to study the dynamics of this phase transition and to
determine the key physical reason for the distinguished symmetry breaking pattern. We
speculate that the reason may be related to the reason why three dimensions become large
in SGC. Once the dynamics of the phase transition are understood, one may be able to
make predictions for the tilts ns and nt of the spectra of cosmological perturbations and
gravitational waves, and determine consistency relations between the tilts. One may be
able to recover the same consistency relation nt = 1− ns as in SGC (and as in the recently
proposed ekpyrotic scenario mediated by an S-brane [74]).
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While our scenario yields emergent space and time, and an emergent metric, it is
important to investigate what effective action describes the evolution of localized matrix
excitations. At low energies, we need to be able to recover Einstein gravity coupled to
regular matter and radiation.

In conclusion, although we have indicated a promising approach to the emergence of
space and time, and of early universe cosmology, a lot of work needs to be done before one
will be able to make successful contact with testable low-energy physics.
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Abstract: In this paper, we reviewtwo approaches that can describe, in a geometrical way, the
kinematics of particles that are affected by Planck-scale departures, named Finsler and Hamilton
geometries. By relying on maps that connect the spaces of velocities and momenta, we discuss the
properties of configuration and phase spaces induced by these two distinct geometries. In particular,
we exemplify this approach by considering the so-called q-de Sitter-inspired modified dispersion
relation as a laboratory for this study. We finalize with some points that we consider as positive and
negative ones of each approach for the description of quantum configuration and phases spaces.

Keywords: quantum gravity phenomenology; Finsler geometry; Hamilton geometry

1. Introduction

Since the original works by Bronstein [1] that demonstrated uncertainty in the localiza-
tion of events when geometrical degrees of freedom are quantized, it has been argued that
attempts to formulate quantum gravity in a differentiable manifold endowed with smooth
geometric quantities would not be an interesting path to follow if one aims to pursue
a fundamental approach to this problem. Attempts in this direction have accumulated
over the years, having prominent representatives such as loop quantum gravity (LQG) [2]
and causal dynamical triangulation [3]. These approaches to quantum gravity predict
or describe several effects that should be manifest at the Planckian regime of length and
energy, such as the discretization of geometry, which requires a language that obviously
departs from the usual Riemannian construction of general relativity. Despite the elegance
of such approaches, with current technology we are far from being able to concretely
address the regime in which such discretization would become evident. Nevertheless, the
notion that spacetime could effectively behave like a medium formed by “atoms of space”
has led to a rich phenomenological approach to quantum gravity, which by encoding
generic departures from relativistic equations, can describe common predictions expected
to be present at an intermediate stage between classical and quantum gravity. Such an
approach is encompassed in the area of quantum gravity phenomenology, which addresses
a myriad of effects beyond the one described in this paragraph, as can be seen in Ref. [4],
and in particular, has found in multimessenger astronomy a fruitful environment to be
explored [5].

Usually, the regime, in which this idea is considered, is the regime, in which the test
particle approximation is valid consisting of the approximation, in which one would have
simultaneously faint gravitational and quantum effects, described by the limits of the
gravitational constant, G → 0, and the reduced Planck’s constant, h̄ → 0, however, with
the Planck energy, EP =

√
c5h̄/G, being finite, with c the speed of light. This deformed

“Minkowski limit”, which presents departures from Minskowski spacetime’s structure
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has been suggested by various quantum gravity proposals, such as the linearization of
the hypersurface deformation algebra inspired by LQG [6–8] and non-commutative ge-
ometry [9–12] (for more details on this Miskowski limit, see Section 3.1.1 of Ref. [4], and
for more references on other theoretical approaches, in which such limit emerges, see
Section 2.2 of Ref. [5]). It is expected that the path between the differentiable Riemannian
description of special (and general) relativity and the complete quantum gravity theory
should pass through an intermediate regime, in which one has departures from the Rieman-
nian character of spacetime but still has geometric features that could describe a bottom-up
phenomenology.

Furthermore, geometry plays an important role in the description of principles that
have guided the developments of relativistic theories; for example, the principle of co-
variance is manifest through the use of tensorial equations of motion, the local relativity
principle is a physical manifestation of having local equations of motion invariant under
the Poincaré group (which is the group of isometries of Minkowski space), the equivalence
principle of general relativity is manifest in the fact that the motion of free particles is
realized through geodesics, and the clock postulate can be expressed by stating that an
observer measures its proper time by the arc-length of its own trajectory.

An important part of quantum gravity phenomenology is devoted to the question of
whether, in the aforementioned Minkowski limit, the Lorentz invariance, and consequently,
the local relativity principle, is preserved or broken due to Planck-scale effects [13]. As
is known, a length/energy scale is not invariant under Lorentz transformations, which
implies that either a quantum gravity scale breaks the equivalence of inertial frames in the
aforementioned Minkowski limit, or the Lorentz or Poincaré group only describes a low
energy/large distance approximation of a deeper transformation between inertial frames.
The former possibility is known as a Lorentz invariance violation (LIV) scenario [14,15],
and the latter is known as doubly (or deformed) special relativity (DSR) [16,17]. As the
geometrization of special relativity, due to Minkowski, paved the way to more fundamental
descriptions of nature, we shall follow a similar path, but of geometrizing DSR.

Geometric descriptions of DSR through non-commutative geometry are known [9–12],
but we revise some continuous, differentiable ways of exploring non-Riemannian degrees
of freedom and the possibilities for preserving the aforementioned principles. This way, we
critically analyze two extensions of Riemannian geometry that are capable of describing
aspects of an emergent “quantum configuration and phase spaces” that preserve the
intuition of those principles: they are Finsler and Hamilton geometries. Finsler geometry
originally is related to the space of events and velocities (for this reason we refer to a
quantum configuration space), and Hamilton geometry originally described the space of
events and momenta (for this reason, we call it a quantum phase space). In this paper, we
revise the phenomenological opportunities that emerge from these approaches and the
interplay between them. We also condensate the utility of each of these geometries and
their limitations in the current scenario.

We should also stress that the approaches described in this review, refer to configura-
tion and phase spaces probed by a single particle. The geometry probed by a multi-particle
system and its interplay with Finsler and Hamilton languages (or even geometries that go
beyond them) should still be further explored, in which, possibly the intuition gained from
the relative locality framework [18] would play a prominent role in this approach.

The paper is organized as follows. Section 2 revisits the origin of the idea of describing
the effective spacetime probed by a particle that propagates through a modified dispersion
relation (MDR) by the proposal of rainbow metrics. Section 3 revisits how this general idea
is realized by the use of Finsler geometry in the tangent bundle, whose dual version in the
cotangent bundle is discussed in Section 4, which is illustarated by considering the curved
non-trivial case of q-de Sitter-inspired Finsler geometry. Section 5 considers the situation of
deriving the geometry of the cotangent bundle, and, in Section 6, its dual tangent bundle
formalization defined by Hamilton geometry is considered, which is illustrated by the q-de
Sitter case. In Section 7, we comparatively discuss these two approaches and highlight
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points that we consider as useful as well as their limitations. Finally, some important
remarks are drawn in Section 8. Throughout the paper, a system of units with c = h̄ = 1 is
used, so that the Planck length is the inverse of the Planck energy:

√
G = � = E−1

P .

2. Preliminaries on Rainbow Geometries

As described above, over the years, the intuition that spacetime would behave like
material media, where instead of atoms of matter, one would have atoms of spacetime,
has been solidified through some approaches of quantum gravity. Just as occurs in matter,
in which one does not need to know the specific details of the granular structure of a
given medium to study the propagation of particles through it, in spacetime, one can
build phenomenology-inspired ways of modeling how elementary particles interact with
discrete gravitational degrees of freedom while traveling through space, a so-called “in-
vaccuum dispersion”. One could say that the most popular way of doing this is through the
assumption that particles would obey a modified dispersion relation, whose corrections are
given perturbatively by powers of the quantum gravity scale, which we could assume as
being in the order of Planck units. (The dispersion relation furnishes the group velocity of
waves and defines the trajectory that on-shell particles follow from the Hamilton equations.)
Actually, when the interplay between the presence of amplifiers of observables and the
uncertainties of observations allows us to constrain this parameter at a level close to its
Planckian version, we say that we are at Planck-scale sensitivity [4].

Such behavior also happens in meta-materials [19], in which it is possible to describe
the motion of particles through it by geodesics in a given geometry; it also appears in
the motion of a charged particle in a pre-metric formulation of electromagnetism [20], in
the description of seismic waves [21], etc.; for a review, see Ref. [22]. Additionally, one
could wonder if the motion of particles, determined by Planck-scale modified dispersion
relations, could also be described by geodesics of a non-Riemannian geometry. Besides, the
dispersion relation itself is usually determined by the norm of the 4-momentum measured
by a Riemannian metric, which also determines the symmetries observed by measurements
in that spacetime.

This intuition was early realized by the so-called “rainbow geometries” [23], idealized
by João Magueijo and Lee Smolin which aimed to extend the DSR formulation proposed
by them in Ref. [17] to curved spacetimes. In that case, the way found to express local
modified dispersion relations through a norm, consisted in absorbing functions of the
particle’s energy divided by Planck energy, ε = E/EP, such as f (ε) and g(ε), which would
appear in the MDR that follows:

m2 = f 2(ε)E2 − g2(ε)|�p|2 , (1)

(with the three-momentum �p) into the definition of new spacetime tetrads, ẽ μ

(0) (ε) = f (ε)e μ

(0)

and ẽ μ

(I) (ε) = g(ε)e μ

(I) , such that the MDR reads

m2 = ηABẽ μ

(A)
ẽ ν
(B) pμ pν = g̃μν(ε)pμ pν , (2)

where gμν(ε) = ηABẽ μ

(A)
ẽ ν
(B) is the rainbow metric, ηAB is the Minkowski metric diag(+−

−−) , Greek letters denote four-dimensional indices and take on the values 0 (time) 1, 2, and
3 (space), low-case Latin letters denote the space indices, and pμ is the 4-momentum. This
description would imply that when an observer uses the motion of a particle with energy E
to probe spacetime, then the line element assigned to that spacetime is the following:

ds2 = g̃μνdxμdxν =
g00

f 2(ε)
(dx0)2 +

gij

g2(ε)
dxidxj + 2

g0i
f (ε)g(ε)

dx0dxi , (3)

where gμν is the metric found from undeformed tetrads. Thus, in a nutshell, one identifies
the rainbow functions, f and g, from a MDR that is usually inspired by fundamental
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theories of quantum gravity or by phenomenological intuition; then, one uses g̃μν as an
input into the classical gravitational field equations. Considering modifications of the
stress-energy tensor due to the rainbow functions, one derives what should be gμν (since f
and g are determined a priori). Usually, this procedure gives that gμν is the Riemannian
metric found from the usual gravitational field equations. Therefore, this approach gives
basically the usual metric components of a given theory, just modified by factors of the
rainbow functions as in Equation (3).

Effective energy-dependent spacetimes have emerged in different approaches to the
description of the quantization of gravitational/geometric degrees of freedom [24–26].
Along this line of research, Magueijo-Smolin’s proposal has been applied in a myriad of
contexts, such as in black hole physics [27,28], cosmology [29], wormholes [30,31], cosmic
strings [32], disformal geometries [33,34], and electrostatic self-interaction of charged par-
ticles [35]. However, despite its range of applicability and utility in furnishing intuition
about extreme scenarios, this approach presents some conceptual and technical limitations
that seem unavoidable, such as the lack of a rigorous mathematical framework in which
this idea is formulated or the imposition of a preferred vielbein in which the particle’s
energy is measured, which seems in contradiction with the local DSR intention of this
proposal. As shown below, the solution to these problems is actually coincident, and the
search for a rigorous mathematical formulation for these ideas will be responsible for giving
a framework, in which proper physical questions can be answered and novel phenomeno-
logical opportunities to born. The main issue here is what is the proper formulation of a
geometry that should not only depend on spacetime points, but also should carry energy
dependence of the particle itself that probes this spacetime. This paper deals with the two
main proposals—Finsler and Hamilton geometries— solving some of the raised problems
and also discusses limitations on their owns.

3. Geometry of the Tangent Bundle: Finsler Geometry

The 1854 Habilitation Dissertation by Bernhard Riemann presents the germ of the idea
behind what would later be called Finsler geometry. In the second part of the dissertation,
it is said (see Ref. [36], p. 35):

“For Space, when the position of points is expressed by rectilinear co-ordinates,
ds =

√
∑(dx)2; Space is therefore, included in this simplest case. The next case

in simplicity includes those manifoldnesses in which the line-element may be
expressed as the fourth root of a quartic differential expression. The investigation
of this more general kind would require no really different principles, but would
take considerable time and throw little new light on the theory of space, especially
as the results cannot be geometrically expressed; I restrict myself, therefore, to
those manifoldnesses in which the line-element is expressed as the square root of
a quadric differential expression”.

The exploration of such more general cases of line elements will be done only 64 years
later, in 1918, in the Ph.D. thesis of Paul Finsler [37], where at least from the metric point of
view, the distance between points is measured by a 1-homogeneous function (homogeneous
with the degree of 1) Such a metric tensor would be defined in the tangent bundle of the base
manifold, since it would depend not only on the manifold points, but also on a direction,
which is a manifestation of the non-Pythagorean nature of this space. Later on, the issue of
non-linear connections was further developed and incorporated as a fundamental structure
for the dynamical description of Finsler spaces (for a historical perspective on Finsler
geometry, we refer the reader to the Preface of Ref. [38] and references therein). The
case of pseudo-Finsler geometries, as an arena for describing spacetime, has been recently
discussed [39,40], where, for instance, different definitions are presented and important
theorems regarding its causal structure among other issues are being derived [41].

In Section 2, a glimpse of the non-Riemannian nature of spacetime was notified emerg-
ing as a manifestation of the quantization of gravitational degrees of freedom. Actually, as
one can anticipate, the non-quadratic, i.e., non-Pythagorean nature of a dispersion relation

184



Physics 2023, 5

is connected to a possible Finslerian nature of spacetime through an intermediate step that
connects the kinematics of particles in a Hamiltonian to a Lagrangian formulation. Actually,
the MDR corresponds to a Hamiltonian constraint, which physical particles supposedly
obey, the way that the trajectories of free particles, induced by such a deformed Hamilto-
nian, capture the propagation of a particle through a quantized spacetime. For this reason,
the Helmholtz action, associated with such a particle, is naturally given by the functional,

S[x, p, λ] =
∫

dμ(ẋα pα − λ f (H(x, p), m)) , (4)

where the dot denotes differentiation with respect to the parameter μ, pμ is the particle’s mo-
menta, f is a function that is null if the dispersion relation is satisfied, namely, H(x, p) = m,
and λ is a Lagrange multiplier. This is a premetric formulation that is actually defined in
the space T∗M×R, where T∗M is the phase space of analytical mechanics or cotangent
bundle. In order to find an arc-length, and consequently, a geometric structure, one needs
to calculate an equivalent Lagrangian defined in the configuration space or the tangent
bundle TM described by points and velocities (such an observation was firstly presented
in Ref. [42]). The algorithm for doing so is as follows [43]:

1. variation with respect to λ enforces the dispersion relation;
2. variation with respect to pμ yields an equation ẋμ = ẋμ(p, λ), which must be inverted

to obtain pμ(x, ẋ, λ) to eliminate the momenta pμ from the action;
3. using pμ(x, ẋ, λ) in the dispersion relation, one can solve for λ(x, ẋ); and
4. finally, the desired length measure is obtained as S[x] = S[x, p(x, ẋ, λ(x, ẋ)), λ(x, ẋ)]H .

This is a Legendre transformation, whose conditions of existence and capability of
providing a physical framework are discussed in Refs. [44,45]. These formal conditions
are always guaranteed when one considers deformations at the perturbative level. This is
crucial because the following algorithm cannot be applied in practice if it is not possible
to invert the velocity function to find the momenta as a function of the other variables.
In general, this cannot be done, especially for complicated dispersion relations, such as
those that depend on sums of hyperbolic functions [46]. Anyway, since quantum gravity
phenomenology is usually concerned with first order effects, which are those attainable by
experiments nowadays, we shall concentrate on the perturbative level in order to derive
our conclusions.

For example, if this algorithm is applied to a Hamiltonian of the form,

H(x, p) = g(p, p) + εh(x, p) , (5)

where g(p, p) = gab(x)pa pb is an undeformed dispersion relation, h(x, p) is a function of
spacetime points and momenta that depends on the model under consideration, and ε is
the perturbation parameter that is usually a function of the energy scale of the deformation
(such as the Planck or quantum gravity length scale). As shown in Ref. [43], after the
Legendre transformation, the equivalent action takes the form,

S[x] = m
∫

dμ
√

g(ẋ, ẋ)
(

1− ε
h(x, p̄(x, ẋ))

2m2

)
, (6)

where p̄a(x, ẋ) = mẋa/
√

g(ẋ, ẋ). In particular, when h is a polynomial function of momenta
as (the index is shifted: n → n + 2, in comparison with Ref. [43], such that now n
corresponds to the power of Planck length in the MDR),

h(x, p) = hμ1μ2....μn+2(x)pμ1 pμ2 ...pμn+2 , (7)

and ε = �n, one finds an action of the form,

S[x] = m
∫

dμ
√

g(ẋ, ẋ)

(
1− (�m)n hμ1μ2....μn+2(x)ẋμ1 ẋμ2 ...ẋμn+2

2g(ẋ, ẋ)
n+2

2

)
, (8)
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where we lowered the indices of h with the components of g. The connection between
the mechanics of free particle and geometry takes place when the above expression is
identified with the arc-length functional, s[x], of a given geometry, i.e., s[x] = S[x]/m. Such
an identification makes sense if we want to state that the trajectories of free particles are
extremizing curves or geodesics in a given geometry, it is related to the preservation of the
equivalence principle even in this Planck-scale deformed scenario.

In this case, the spacetime in which a particle propagates by a MDR is described by an
arc-length functional that generalizes the one of Riemannian geometry and is given by a
function F(x, ẋ) that is 1-homogeneous in the velocity ẋ, such that the arc-length is indeed
parametrization invariant, as it must be:

s[x] =
∫

F(x, ẋ)dμ . (9)

Actually, this is the kind of scenario envisaged by Riemann in his dissertation, and
explored by Finsler, that emerges here quite naturally. There are some definitions of a
pseudo-Finsler spacetime in the literature, but we rely on that given in Ref. [39] (the
differences in comparison to other definitions are discussed in Ref. [39]). First of all,
we are going to work with a smooth manifold, M, endowed with a real valued positive
function L that takes values on the tangent bundle TM, described by coordinates (x, y),
where {xμ} are spacetime coordinates and {yμ} refer to vector or velocity coordinates.
Actually, we shall need the slit tangent bundle T̃M = TM/{0}, in which we remove
the zero section, and we also need the projection π : TM → M. A conic subbundle is a
submanifold D ⊂ T̃M such that π(D) = M and with the conic property that states that if
(x, y) ∈ D ⇒ (x, λy) ∈ D, ∀λ > 0.

In a nutshell, a Finsler spacetime is a triple (M,D, L), where L : D → R is a smooth
function satisfying the conditions:

1. positive 2-homogeneity: L(x, αy) = α2L(x, y), ∀α > 0;
2. at any (x, y) ∈ D and in any chart of T̃M, the following Hessian (metric) is non-

degenerate:

gμν(x, y) =
1
2

∂2

∂yμ∂yν
L(x, y) ; (10)

3. the metric gμν has a Lorentzian signature.

The function L is actually the square of the Finsler function, L(x, y) = F2(x, y), and
from it the Finsler arc-length is defined as given in Equation (9). Condition 1 above
guarantees that Equation (9) does not depend on the parametrization used to describe the
curve and that using Euler’s theorem for homogeneous functions, this expression can be
cast as

s[x] =
∫ √

gμν(x, ẋ)ẋμ ẋνdμ . (11)

From a coordinate transformation,

x̃μ = x̃μ(x) , (12)

ỹμ =
∂x̃μ

∂xν
yν , (13)

the functions gμν transform according to

g̃μν(x̃, ỹ) =
∂xα

∂x̃μ

∂xβ

∂x̃ν
gαβ(x, y) . (14)

186



Physics 2023, 5

Due the property (14), gμν is referred here as the components of a distinguished tensor
field (or d-tensor field) on the manifold T̃M, which follows the notation adopted in Ref. [47].
The extremization of the arc-lenght functional (9) gives the following geodesic equation,

d2xμ

dμ2 + 2Gμ(x, ẋ) = 2
dF
dμ

∂F
∂ẋμ , (15)

where Gμ = Gμ(x, ẋ) are the spray coefficients [48] and are given in terms of the Christoffel
symbols, γα

μν, of the metric gμν:

Gα(x, ẋ) =
1
2

γα
μν(x, ẋ)ẋμ ẋν , (16)

γα
μν(x, ẋ) =

1
2

gαβ

(
∂gμβ

∂xν
+

∂gνβ

∂xμ −
∂gμν

∂xβ

)
. (17)

If we choose the arc-length parametrization, i.e., the one in which F = 1, we have a
sourceless geodesic equation. This expression means that the trajectories generated by a
MDR of the form H(x, ẋ) = m2 are, actually, geodesics of a Finsler metric. The presence
of spray coefficients allows us to construct another quite a useful quantity, the so-called
Cartan non-linear connection, given by (in this paper, we interchange the notation ẋ ↔ y
freely)

Nμ
ν(x, y) =

∂

∂yν
Gμ(x, y) , (18)

that transforms according to

Ñμ
ν =

∂x̃μ

∂xα

∂xβ

∂x̃ν
Nα

β −
∂2 x̃μ

∂xα∂xβ

∂xβ

∂x̃ν
yα . (19)

The introduction of this quantity allows us to introduce a useful basis of the tangent
space of the tangent bundle at each point. In fact, since according to the coordinate
transformation (12) and (13), the usual coordinate basis transforms as

∂

∂x̃μ =
∂xν

∂x̃μ

∂

∂xν
+

∂2xν

∂x̃μ∂x̃α

∂x̃α

∂xβ
yβ ∂

∂yν
, (20)

∂

∂ỹμ =
∂yν

∂ỹμ

∂

∂yν
. (21)

In addition, a non-linear connection allows us to define the following frame:

δ

δxμ = δμ =
∂

∂xμ − Nν
μ

∂

∂yν
, (22)

∂̇μ =
∂

∂yμ . (23)

Due to the transformation properties of the non-linear connection, this basis trans-
forms as

δ̃μ =
∂xν

∂x̃μ δν , (24)

˜̇∂μ =
∂xν

∂x̃μ ∂̇ν . (25)

This means that one is able to split the tangent space of the tangent bundle into hor-
izontal, HTM = span{δμ}, and vertical, VTM = span{∂̇μ}, spaces, such that TT̃M =
HTM ⊕ VTM in each point (x, y). Similarly, the same reasoning applies to the cotan-
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gent space; i.e., we split T∗T̃M = H∗TM⊕ V∗TM spanned as H∗TM = span{dxμ} and
V∗TM = span{δyμ}, where

δyμ = dyμ + Nμ
νdxν , (26)

which transforms as

dx̃μ =
∂x̃μ

∂xν
dxν , (27)

δỹμ =
∂x̃μ

∂xν
δyν . (28)

Such a decomposition of the tangent and cotangent vector spaces implies that a vector
X and a 1-form ω with horizontal and vertical terms can read as

X = Xμδμ + Ẋμ∂̇μ = XH + XV , (29)

ω = ωμdxμ + ω̇μδyμ = ωH + ωV . (30)

Endowed with this basis, the metric G(x, y) of the configuration space is described by
the so-called Sasaki-Matsumoto lift of the metric gμν:

G(x, y) = gμν(x, y)dxμ ⊗ dxν + gμν(x, y)δyμ ⊗ δyν . (31)

Definition 1. A tensor field T of type (m + n, p + q) on the manifold T̃M is called a distinguished
tensor field (or d-tensor field) if it has the property

T
(

1
ω, . . . ,

m
ω,

1
τ, . . . ,

n
τ, X

1
, . . . , X

p
, Y

1
, . . . , Y

q

)
= T

(
1
ωH , . . . ,

m
ωH ,

1
τV , . . . ,

n
τV , X

1
H , . . . , X

p
H , Y

1
V , . . . , Y

q
V
)

. (32)

This definition implies that one can write a d-tensor T in the preferred frame as

T = Tμ1...μmν1...νn
α1...αp β1...βq

δ

δxμ1
⊗ · · · ⊗ δ

δxμm
⊗ ∂

∂yν1
⊗ · · · ⊗ ∂

∂yνn

⊗ dxα1 ⊗ · · · ⊗ dxαp ⊗ δyβ1 ⊗ · · · ⊗ δyβq , (33)

and that it transforms according to the rule,

T̃μ1...μmν1...νn
α1...αp β1...βq (34)

=
∂x̃μ1

∂xε1
. . .

∂x̃μm

∂xεm

∂x̃ν1

∂xλ1
. . .

∂x̃νn

∂xλn

∂xγ1

∂x̃α1
. . .

∂xγp

∂x̃αp

∂xρ1

∂x̃β1
. . .

∂xρq

∂x̃βq
Tε1...εnλ1...λm

γ1...γpρ1...ρq .

An example of d-tensor field is the metric whose components are given by Equation (14).

3.1. N-Linear Connection

Given a linear connection, D, on the manifold T̃M, if it preserves the parallelism of
the horizontal and vertical spaces, i.e., if it can be written as

Dδν
δμ = Lα

μνδα , Dδν
∂̇α = Lμ

αν∂̇μ , (35)

D∂̇ν
δμ = Cα

μνδα , D∂̇ν
∂̇μ = Cα

μν∂̇α , (36)
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then is called an N-linear connection. Let us consider a coordinate change; thus, the
coefficients (35) and (36) transform as

L̃α
μν =

∂x̃α

∂xβ

∂xλ

∂x̃μ

∂xε

∂x̃ν
Lβ

λε +
∂2xβ

∂x̃μ∂x̃ν

∂x̃α

∂xβ
, (37)

C̃α
μν =

∂x̃α

∂xβ

∂xλ

∂x̃μ

∂xε

∂x̃ν
Cβ

λε . (38)

Endowed with these coefficients, the derivative of a d-tensor can be decomposed into a
horizontal and a vertical parts, such that one can apply the covariant derivative of a tensor
T of type (m + n, p + q) in the direction of a vector X as a direction of a vector X as

DXT = DXH T + DXV T

=
(

Tμ1...μmν1...νn
α1...αp β1...βq |εXε + Tμ1...μmν1...νn

α1...αp β1...βq ||εẊε
) δ

δxμ1
⊗ · · · ⊗ δ

δxμm

⊗ ∂

∂yν1
⊗ ...⊗ ∂

∂yνn
⊗ dxα1 ⊗ · · · ⊗ dxαp ⊗ δyβ1 ⊗ · · · ⊗ δyβq , (39)

where

Tμ1...μmν1...νn
α1...αp β1...βq |ε (40)

=
δ

δxε
Tμ1...μmν1...νn

α1...αp β1...βq + Lμ1
γεTγ...μmν1...νn

α1...αp β1...βq + ...− Lγ
α1εTμ1...μmν1...νn

γ...αp β1...βq ,

Tμ1...μmν1...νn
α1...αp β1...βq ||ε (41)

=
∂

∂yε
Tμ1...μmν1...νn

α1...αp β1...βq + Cμ1
γεTγ...μmν1...νn

α1...αp β1...βq + ...− Cγ
α1εTμ1...μmν1...νn

γ...αp β1...βq ,

and the property that the covariant derivative is linear in the direction X is used. The
triple DΓ(N, L, C) describes the parallel transport and decomposition of the tangent and
cotangent spaces of the tangent bundle into horizontal and vertical spaces. At this point,
we need to comment on some remarkable N-linear connections that are considered in
the literature.

The first connection is the metrical Cartan connection, CΓ(Nμ
ν, Lα

μν, Cα
μν). In this

case, Nμ
ν is given by the canonical Cartan non-linear connection, defined by the spray

coefficients (18). The coefficients Lα
μν and Cα

μν are given, respectively, by

Lα
μν =

1
2

gαβ

(
δgμβ

δxν
+

δgνβ

δxμ −
δgμν

δxβ

)
, (42)

Cα
μν =

1
2

gαβ

(
δgμβ

δyν
+

δgνβ

δyμ −
δgμν

δyβ

)
. (43)

This connection is metrical (i.e., without non-metricity tensors) considering both
horizontal and vertical covariant derivatives of the Finsler metric.

Besides, the Berwald connection is given by the triple BΓ(Nμ
ν, ∂Nα

μ/∂yν, 0) and
presents horizontal and vertical non-metricities. The Chern–Rund connection, RΓ(Nμ

ν, Lα
μν, 0),

is horizontally metrical, but represents vertical non-metricity. Additionally, the Hashiguchi
connection, HΓ(Nμ

ν, ∂Nα
μ/∂yν, Cα

μν), represents horizontal non-metricity, but it is verti-
cally metrical. In these expressions, N is the canonical Cartan non-linear connection (18), L
is given by Equation (42), and C is given by Equation (43).

3.2. Symmetries

Geometrical language naturally realizes the concept of symmetry of physical equations.
General relativity given in terms of Riemannian geometry encompasses the invariance
under general coordinate transformations, and the isometries of the Minkowski space
describe the Poincaré transformations (actually, one can further apply this technique
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for maximally symmetric spaces, including de Sitter and anti-de Sitter ones). Finsler
geometry, as we have been using, allows us to go beyond this scope and to define deformed
Lorentz/Poincaré transformations that present Planck scale corrections even in the presence
of a local modified dispersion relation. One can see how this will naturally emerge, since
the invariance of the arc-length (9) is compatible with the invariance of the action in the
Hamiltonian formulation (4), from which such an arc-length was derived. This idea was
firstly noticed in Ref. [42] and later explicitly explored in Refs. [49,50]. The master equation
for this purpose is the one that follows from the invariance of the Finslerian interval ds2,
as done in Appendix A of Ref. [49]. From this invariance, the Finslerian killing equation
for the killing vector was found, with components ξα, which should be solved in order to
derive the deformed symmetries in the DSR context,

ξα∂αgμν + gαν∂μξα + gμα∂νξα + yα∂αξβ∂̇βgμν = 0 . (44)

3.3. Finsler–q-de Sitter (Tangent Bundle Case)

As an example that presents a non-trivial non-linear connection, we shall consider
the case of a Finsler geometry inspired by the so-called q-de Sitter deformed relativity.
This case has been previously studied in the literature, e.g., in Refs. [50–53], and can
be described by an algebra that deforms the one of Poincaré in a way that gives the de
Sitter symmetry when a quantum gravity parameter goes to zero, and on the other hand,
gives the so-called κ-Poincaré algebra (that deforms the Poincaré one by an energy scale
parameter, supposedly the Planck energy) when the de Sitter curvature parameter goes to
zero. Therefore, it corresponds to an authentic realization of a deformed relativity scenario,
even in the presence of what can be interpreted as spacetime curvature. In this Subsection,
we initially consider results that were originally presented in Ref. [52] in 1 + 1 dimensions.

The MDR related to this algebra (in a given basis) can be perturbed to first order in the
Planck length and de Sitter curvature parameters � and H, respectively, as

H(x, p) = p2
0 − p2

1(1 + �p0)(1− 2Hx0) . (45)

By using the action given by Equation (4) and the algorithm that follows it, the
following Finsler function can be obtained:

F(x, ẋ) =
√
(ẋ0)2 − (1− 2Hx0)(ẋ1)2 + �

m
2

(1− 2Hx0)ẋ0(ẋ1)2

(ẋ0)2 − (1− 2Hx0)(ẋ1)2 , (46)

from which the Finsler metric can be found from Equation (10):

gF
μν(x, ẋ) =

⎛⎝ 1 + 3a4m�ẋ0(ẋ1)4

2[(ẋ0)2−a2(ẋ1)2]5/2
m�a4(ẋ1)3[a2(ẋ1)2−4(ẋ0)2]

2[(ẋ0)2−a2(ẋ1)2]5/2

m�a4(ẋ1)3[a2(ẋ1)2−4(ẋ0)2]
2[(ẋ0)2−a2(ẋ1)2]5/2 −a2 + m�a2(ẋ0)3[2(ẋ0)2+a2(ẋ1)2]

2[(ẋ0)2−a2(ẋ1)2]5/2

⎞⎠ , (47)

where a = a(t) = eHt = 1 + Ht +O(H2) (in this paper, the terms that grow with higher
orders of H and � are discarded). The geodesic equation is found from the extremization of
the Finsler arc-length defined by F, from which Christoffel symbols and spray coefficients
can be calculated. Actually, the γα

μν(x, ẋ) are given, for an arbitrary parametrization, by the
set of Equations (44) of Ref. [52], from which the spray coefficients are given by

G0(x, ẋ) =
1
8

a2H(ẋ1)2

[
4− �mẋ0

[(ẋ0)2 − a2(ẋ1)2]
7/2

(
−28a6(ẋ1)6 + 12a2(ẋ0)4(ẋ1)2

+a2
(

17a2 + 28
)
(ẋ0)2(ẋ1)4 + 16(ẋ0)6

)]
, (48)

G1(x, ẋ) = Hẋ0 ẋ1 + �

[
a2Hm(ẋ1)3(a6(ẋ1)6 − 6a4(ẋ0)2(ẋ1)4 + 3a2(ẋ0)4(ẋ1)2 − 28(ẋ0)6)

4((ẋ0)2 − a2(ẋ1)2)
7/2

]
. (49)
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As can be seen, these coefficients are 2-homogeneous in the velocities, as expected.
The Cartan non-linear connection coefficients read:

N0
0(x, ẋ) =

H�m(ẋ1)4(−28(ẋ1)6 − 33(ẋ1)4(ẋ0)2 + 240(ẋ1)2(ẋ0)4 + 136(ẋ0)6)
8((ẋ0)2 − (ẋ1)2)

9/2 , (50)

N0
1(x, ẋ) =Hẋ1 − H�mẋ1 ẋ0

8((ẋ0)2 − (ẋ1)2)
9/2

(
28(ẋ1)8 − 179(ẋ1)6(ẋ0)2 + 306(ẋ1)4(ẋ0)4

+128(ẋ1)2(ẋ0)6 + 32(ẋ0)8
)

,

N1
0(x, ẋ) =Hẋ1 +

H�m(ẋ1)3 ẋ0(5(ẋ1)6 + 18(ẋ1)4(ẋ0)2 + 159(ẋ1)2(ẋ0)4 + 28(ẋ0)6)
4((ẋ0)2 − (ẋ1)2)

9/2 , (51)

N1
1(x, ẋ) =Hẋ0 − H�m(ẋ1)2(2(ẋ1)8 − 9(ẋ1)6(ẋ0)2 + 36(ẋ1)4(ẋ0)4 + 97(ẋ1)2(ẋ0)6 + 84(ẋ0)8)

4((ẋ0)2 − (ẋ1)2)
9/2 , (52)

where the worldlines are autoparallel curves of this non-linear connection. Let us note that
some terms of the connection are only present due to the coupling between the spacetime
curvature parameter, H, and the one that gives a non-trivial velocity space, �. Some
curvature-triggered effects in quantum gravity have been recently analyzed [54].

Endowed with these coefficients, the preferred frames that induce the horizontal and
vertical decomposition can be immediately found, in addition the N-linear connection
coefficients Lα

μν and Cα
μν, as discussed in Section 2. Till now, only kinematical properties

were discussed, but the choice of the given connection should be given either by physical
conditions imposed on the dynamics of the spacetime or by possible effective gravitational
field equations for a quantum configuration space.

To finalize this Section, let us discuss the symmetries of the spacetime. A deep
analysis of the killing vectors of the H → 0 limit of this Finsler framework was carried
out in Ref. [51]. Even in that simplified scenario, the equations are quite lengthy which we
omit here. However, some properties should be mentioned. Firstly, the transformations
generated by the killing vectors seem to not exactly preserve the line element, but contribute
with a term that is given by a total derivative in the action parameter; therefore, the
kinematical results of these two line elements coincide. Secondly, the results found are
compatible with the κ-Poincaré scenario that inspired this approach. From the Finsler
perspective, it is possible to derive more general results, but they reduces to those of
the bicrossproduct basis of κ-Poincaré by an appropriate choice of free functions and
parameters. The third point is that a finite version of transformations that preserve the κ-
Poincaré dispersion relation was recently made in Ref. [55] through an alternative approach,
which does not rely on the killing vectors but is determined by the Finsler function and the
definition of momentum (explored in Section 4 below); however, a complete integration
of the finite isometry and a comparison between these approaches is still missing in the
literature. To finalize, the case of H �= 0 was investigated in Ref. [50], but in conformal
coordinates (which are not the ones that are considered in this application), and was not
done in so much detail as the flat case, but a generator of the corresponding curved boost
transformation was made explicit in Equation (25) of Ref. [50].

4. The Cotangent Bundle Version of Finsler Geometry

As was discussed in Ref. [42], by mapping the velocity of the particle to its momentum,
it is possible to find the version of the Finsler metric defined in the cotangent bundle or
phase space. Already from the definition of the 4-momentum,

pμ = m
∂F
∂yμ , (53)
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when it is possible to invert this expression to find y = y(p), one can substitute this result
in the Finsler metric as hF

μν(x, p) = gF
μν(x, y(p)). This metric is defined on the slit cotangent

bundle, T̃∗M = T∗M/{0}, where we also remove the zero section in each spacetime point
for the same technical reasons as discussed in Section 3 above. Since the quantities are
now defined in the cotangent bundle, we need to also address some issues that were raised
in Section 3 concerning the tangent bundle. This Section’s notation is applied according
to Ref. [47]. For instance, under a change of coordinates, the spacetime and momentum
variables transformed according to

x̃μ = x̃μ(x) , (54)

p̃μ =
∂xν

∂x̃μ pν , (55)

which means that the frame (∂/∂xμ, ∂/∂pν) transforms as

∂

∂x̃μ =
∂xν

∂x̃μ

∂

∂xν
+

∂pν

∂x̃μ

∂

∂pν
, (56)

∂

∂ p̃μ
=

∂x̃μ

∂xν

∂

∂pν
. (57)

On the other hand, the natural coframe (dxμ, dpν) changes as

dx̃μ =
∂x̃μ

∂xν
dxν , (58)

dp̃μ =
∂xν

∂x̃μ dpν +
∂2xν

∂x̃μ∂x̃λ
pνdx̃λ . (59)

Simlarly to that in Section 3, the presence of a nonlinear connection, Oμν, allows one
to split the cotangent bundle into a horizontal and a vertical subbundle. Inspired by the
consideration of the Hamilton case considered in Ref. [56] (discussed below), we propose
the following dual non-linear connection (constructed in Appendix A):

Oμν(x, p) = −m
[

Nα
μ
(gαν − pα pν/m2)

F
− ∂μ∂̇νF

]∣∣∣∣∣
(x,y(p))

, (60)

where p = p(y) is the kinematical map defined by Equation (53). By construction, these
symbols have the transformation properties of a nonlinear connection,

Õμν =
∂xλ

∂x̃μ

∂xε

∂x̃ν
Oλε +

∂2xβ

∂x̃μ∂x̃ν
pβ . (61)

Endowed with a nonlinear connection Oμν, one can decompose the tangent bundle
of the cotangent bundle by the Whitney sum in each point TuT̃∗M = Ou ⊕Vu, ∀u ∈ T̃∗M.
The subbundle Ou is called horizontal space and is spanned by the frame,

δ

δxμ = δμ =
∂

∂xμ + Oμν
∂

∂pν
, (62)

and the subbundle Vu is called vertical space and is spanned by the frame in each point of
T̃∗M:

∂̄μ =
∂

∂pμ
, (63)
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such that TuT̃∗M = span{δμ, ∂̄ν}. The transformation properties of the nonlinear connec-
tion are implied in the following rule for transforming this basis:

δ

δx̃μ = δ̃μ =
∂xν

∂x̃μ

δ

δxν
=

∂xν

∂x̃μ δν , (64)

∂

∂ p̃μ
= ˜̄∂μ =

∂x̃μ

∂xν

∂

∂pν
=

∂x̃μ

∂xν
∂̄ν . (65)

Equivalently, with the nonlinear connection, we can decompose the cotangent space
T∗u T̃∗M = span{dxμ, δpν}, where

δpμ = dpμ −Oνμdxν . (66)

Therefore, the dual basis transforms as

dx̃μ =
∂x̃μ

∂xν
dxν , (67)

δ p̃μ =
∂xν

∂x̃μ δpν . (68)

Similarly to what has been done for the tangent bundle case, such a decomposition
allows us to express a vector and a 1-form via horizontal and vertical components, where
now, the vertical component is considered along momenta instead of velocities,

X = Xμδμ + X̄μ∂̄μ = XH + XV , (69)

ω = ωμdxμ + ω̄μδpμ = ωH + ωV . (70)

Besides, the metric H(x, p) of the configuration space is defined as follows. Given a
metric hμν(x, p), and the nonlinear connection Oμν(x, p), the quantum phase space presents
metrical properties given by the tensor,

H(x, p) = hμν(x, p)dxμ ⊗ dxν + hμν(x, p)δpμ ⊗ δpν . (71)

We refer to the tensor H as the N-lift to T̃∗M of the metric hμν. The map between y
and p cannot be done, in general, involving quantities that are parametrization-dependent
because p itself is parametrization-invariant, whereas y is not. That is why one can only
assume y(p) for the definition of the metric hF

μν.
Endowed with these quantities, one can just extend the definition of d-tensors 1 to the

cotangent case, in which one only needs to consider the use of the nonlinear connection
Oμν and the adapted basis defined in this Section.

The above implies that a d-tensor T of type (m + q, n + p) can be rewritten in the
preferred basis as

T = Tμ1...μm
ν1...νnα1...αp

β1...βq
δ

δxμ1
⊗ ...⊗ δ

δxμm
⊗ ∂

∂pν1

⊗ ...⊗ ∂

∂pνn

⊗ dxα1 ⊗ ...⊗ dxαp ⊗ δpβ1 ⊗ ...⊗ δpβq , (72)

whose components transform according to usual linear transformation rules, as the one of
Equation (34).
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4.1. N-Linear Connection

Equivalently, the notion of differentiation can be defined in the cotangent bundle
through the N-linear connection D, which has the following coefficients in the frame
(δμ, ∂̄ν) (see Theorem 4.9.1 in Ref. [47]):

Dδν
δμ = Hα

μνδα , Dδν
∂̄μ = −Hμ

αν∂̄α , (73)

D∂̄ν δμ = Cαν
μ δα , D∂̄ν ∂̄μ = −Cμν

α ∂̄α . (74)

Otherwise, in the frame (dxμ, δpν) one has (see Proposition 4.9.1 in Ref. [47])

Dδν
dxμ = −Hμ

ανdxα , Dδν
δpμ = Hα

μνδpα , (75)

D∂̄ν dxμ = −Cμν
α dxα , D∂̄ν δpμ = Cαν

μ δpα . (76)

Considering a N-linear connection D with set of coefficients, DΓ(N) = (Hα
μν, Cα

μν), one
can add to it a nonlinear connection, Nμν, that is in general independent of the coefficients
of D, such that the new set is DΓ = (Nμν, Hα

μν, Cα
μν). For this reason, the derivative of

a d-tensor in the cotangent bundle presents similar usual rules for dealing with up and
down indices:

Tμ1...μm
ν1...νnα1...αp

β1...βq |ε (77)

=
δ

δxε
Tμ1...μm

ν1...νnα1...αp
β1...βq + Hμ1

γεTγ...μm
ν1...νnα1...αp

β1...βq + ...− Hγ
ν1εTμ1...μm

γ...νnα1...αp
β1...βq ,

Tμ1...μm
ν1...νnα1...αp

β1...βq ||ε (78)

=
∂

∂pε
Tμ1...μm

ν1...νnα1...αp
β1...βq + Cμ1ε

γ Tγ...μm
ν1...νnα1...αp

β1...βq + ...− Cγε
ν1 Tμ1...μm

γ...νnα1...αp
β1...βq .

Let us note that from the kinematical map relating velocities and momenta, the
coefficients Hα

μν(x, y(p)) and Cα
μν(x, y(p)) can be found as been parametrization-invariant.

4.2. Finsler–q-de Sitter (Cotangent Bundle Case)

Here, we again consider the q-de Sitter-inspired case. Then, using the Finsler function
(46), the momentum is given by Equation: (53)

p0 =
mẋ0√

(ẋ0)2 − a2(ẋ1)2
− �

m2a2(ẋ1)2(a2(ẋ1)2 + (ẋ0)2)

2[(ẋ0)2 − a2(ẋ1)2)]2
, (79)

p1 = − ma2 ẋ1√
(ẋ0)2 − a2(ẋ1)2

+ �
m2a2(ẋ0)3 ẋ1

((ẋ0)2 − a2(ẋ1)2))2 , (80)

which furnishes a helpful expression that is throughout this Section and is a common trick
when trying to find momentum-dependent quantities from the Finsler approach:

mẋ0√
(ẋ0)2 − a2(ẋ1)2

= p0 + �
a−2(p1)

2(a−2(p1)
2 + (p0)

2)

2m2 , (81)

maẋ1√
(ẋ0)2 − a2(ẋ1)2

= −a−1 p1

(
1 + �

(p0)
3

m2

)
. (82)

The above expressions allow us to express the Finsler metric through its momentum
dependence:

gF
μν(x, ẋ(p)) = hF

μν(x, p) =

⎛⎝ 1 + 3�p0(p1)
4

m4 − �a(p1)
3[(p1)

2−4(p0)
2]

2m4

− �a(p1)
3[(p1)

2−4(p0)
2]

2m4 −a2 + �a2(p0)
3[2(p0)

2+(p1)
2]

m4

⎞⎠ , (83)
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which can be called a “Finsler-rainbow metric”.
One can also find the induced non-linear connection in the cotangent bundle through

the definition (60) to read as

O00(x, p) =− H�(p1)
2

8m10

[
4(p0)

10 + 44(p0)
8(p1)

2 + 190(p0)
6(p1)

4 − 196(p0)
4(p1)

6

+31(p0)
2(p1)

8 + 32(p1)
10
]

, (84)

O01(x, p) =Hp1 −
�Hp0 p1

8m10

[
−4m8(p0)

2 + 8(p0)
10 + 32(p0)

8(p1)
2 + 206(p0)

6(p1)
4

−212(p0)
4(p1)

6 + 43(p0)
2(p1)

8 + 28(p1)
10
]

, (85)

O10(x, p) =Hp1 −
H�p0 p1

8m10

(
−4m8(p0)

2 + 4(p0)
10 + 140(p0)

8(p1)
2 + 2(p0)

6(p1)
4

−106(p0)
4(p1)

6 + 61(p0)
2(p1)

8 + 4(p1)
10
)

, (86)

O11(x, p) =Hp0 +
H�

8m10

(
4(p0)

2(p1)
2
(

m8 + 3(p1)
8
)
+ 8m8(p1)

4 − 8(p0)
12 − 124(p0)

10(p1)
2

−30(p0)
8(p1)

4 + 138(p0)
6(p1)

6 − 89(p0)
4(p1)

8 − 4(p1)
12
)

. (87)

From these expressions, one can construct the decomposition of the tangent and
cotangent spaces of the cotangent bundle into horizontal and vertical parts, accordingly.

5. Geometry of the Cotangent Bundle: Hamilton Geometry

Besides the Finsler geometry, another interesting proposal for building a natural
geometry for propagation of particles that probe a modified dispersion relation consists
of the so-called Hamilton geometry. In this case, different from the Finsler geometry, we
start with a geometric structure defined in the cotangent bundle (the definitions used in
this metric follow that in the book [47] and in papers [56–59]).

A Hamilton space is a pair, (M, H(x, p)), where M is a smooth manifold and H :
T∗M → R is a continuous function on the cotangent bundle that satisfies the following
properties:

1. H is smooth on the manifold T̃∗M;
2. the Hamilton metric, hH , with components,

hμν
H (x, p) =

1
2

∂

∂pμ

∂

∂pν
H(x, p) , (88)

is nondegenerate.

Since one does not have an arc-length functional, worldlines as extremizing curves
are an absent concept in this approach. Instead, the equations of motion of a particle that
obeys a given Hamiltonian are given by the Hamilton equations of motion:

ẋμ =
∂H
∂pμ

, (89)

ṗμ = − ∂H
∂ẋμ . (90)

Since this is just another metric structure defined in the cotangent bundle, the same
results regarding the tools for coordinate transformations given by Equation (54) are
applicable here. As the case of Hamiltonian mechanics, the definition of Poisson brackets is
useful enough for our purposes. For two real valued functions F(x, p) and G(x, p), their
Poisson brackets are given in [56] (the geometry of the cotangent bundle with deformed
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Hamiltonian can also be described with the language of symplectic geometry, which is
reviewed in Ref. [60]):

{F(x, p), G(x, p)} = ∂μF∂̄μG− ∂μG∂̄μF . (91)

As above, in order to divide the tangent and cotangent spaces of the cotangent bundle
into horizontal and vertical spaces, a non-linear connection is necessary, and the canonical
choice is given in Theorem 5.5.1 of Ref. [47] and Definition 2 of Ref. [56] as

Oμν(x, p) =
1
4
({hH

μν, H}+ hH
μα∂ν∂̄αH + hH

να∂μ∂̄αH) , (92)

where hH
μν is the inverse of the metric hμν

H . This non-linear connection allows us to use

the basis δμ = ∂μ + Oμν∂̄ν and ∂̄μ as a special basis of T(x,p)T̃∗M, and to use the basis dxμ

and δpμ = dpμ −Oνμdxν as a special basis of T∗(x,p)T̃
∗M, which transforms according to

Equations (64), (65) and (67), (68).
Endowed with these coefficients, following Theorem 5.6.1 of Ref. [47], there exists a

unique N-linear connection DΓ(O) = (Hα
μν, Cμν

α ) such that:

1. Oμν is the canonical non-linear connection;
2. the metric hμν

H is h-covariant constant (no horizontal non-metricity):

Dδα
hμν

H = 0 ; (93)

3. the metric hμν
H is v-covariant constant (no vertical non-metricity):

D∂̄αhμν
H = 0 ; (94)

4. DΓ(N) is horizontally torsion free:

Tα
μν = Hα

μν − Hα
νμ = 0 ; (95)

5. DΓ(N) is vertically torsion free:

S μν
α = Cμν

α − Cνμ
α = 0 ; (96)

6. the triple (Oμν, Hα
μν, Cμν

α ) has coefficients given by

Oμν(x, p) =
1
4
({hH

μν, H}+ hH
μα∂ν∂̄αH + hH

να∂μ∂̄α H) , (97)

Hμν
α =

1
2

hαβ
H (δμhH

βν + δνhH
βμ − δβhH

μν) , (98)

Cμν
α = −1

2
hH

αβ∂̄μhβν
H . (99)

This is called a Cartan N-linear covariant derivative. Equivalently, the notion of
d-tensors and their derivatives discussed in Section 4.1 are applicable.

5.1. Symmetries

Hamilton geometry also allows one to encompass a DSR language, as was the case
for Finsler geometry discussed in Section 3.2. However, its realization does not come
from the invariance of an interval ds2, since one does not have it, but from the invariance
of the Hamiltonian function H(x, p). The approach, which we highlight here, was done
starting from Definition 4 of Section II-D of Ref. [56]. In a Hamilton space (M, H) with
manifold M, and Hamiltonian H, let X = ξμ∂μ be a vector field in the basis manifold M
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and XC = ξμ∂μ − pν∂μξν∂̄μ be the so-called complete lift of X to T̃∗M. A symmetry of the
Hamiltonian is a transformation generated by XC, whose components satisfy

XC(H)ξμ∂μ H − pν∂μξν∂̄μ H = 0 . (100)

If one derivates this expression twice with respect to momenta, one gets the follow-
ing result:

0 =
1
2

∂̄μ∂̄νXC(H) = ξα∂αhμν
H − hμα

H ∂αξν − hνα
H ∂αξμ − pβ∂αξβ∂̄αhμν

H . (101)

This is just the generalization of the killing equation to a general Hamilton space.
In general, if hH does not depend on momenta, then it reduces to the standard Rieman-
nian case. Besides, from the expression of the Poisson brackets (91), it can verified that
such symmetries give rise to conserved charges ξμ pμ; i.e., that Poisson commutes with
the Hamiltonian:

{ξμ pμ, H} = 0. (102)

These are the charges that, at an algebraic level, can generate translations, boosts, and
rotations, for instance.

5.2. Hamilton–q-de Sitter (Cotangent Bundle Case)

As an example, we rely on the results presented in Ref. [56], which are as well
inspired by the q-de Sitter Hamiltonian (45). In this case, the Hamilton metric, defined by
Equation (88), reads:

hμν
H (x, p) =

(
1 −�p1(1 + 2Hx0)

−�p1(1 + 2Hx0) −(1 + 2Hx0)(1 + �p0)

)
, (103)

which, as can be seen, acquires a shape much simpler than the rainbow-Finsler one (83)
due to the much direct way in which it is calculated.

The non-linear connection can be read from Equation (92) and can be cast in a matrix
form due to its simplicity:

Oμν(x, p) =
(

H�p2
1 Hp1

Hp1 Hp0(1− �p0)

)
. (104)

As expected, it coincides with the case (84) in the Riemannian case, i.e., when � = 0.
The Hamilton equations of motion can be found from Equation (89) and read:

ẋ0 − 2p0 + �p2
1(1 + 2Hx0) = 0 , (105)

ẋ1 + 2p1(1 + Hx0) + 2�p0 p1(1 + 2Hx0) = 0 , (106)

ṗ0 − 2Hp2
1 − 2H�p0 p2

1 = 0 , (107)

ṗ1 = 0 . (108)

The autoparallel (horizontal) curves of the non-linear connection satisfy (see Equation (8.2)
in Ref. [47])

ṗμ −Oνμ ẋν = 0 , (109)

and, as can be seen from Equation (104) for Oμν, the worldlines, defined from the Hamilton
equations of motion, are not autoparallels of the non-linear connection.

The symmetries have also been analyzed in Ref. [56], where it has been noticed that
the conserved charges that generate translations and the boost coincide with the results
from Ref. [51] that do not rely on the geometrical approach used in this paper.
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6. The Tangent-Bundle Version of Hamilton Geometry

Endowed with Hamilton equations of motion (89), one has a map between the mo-
menta and velocities from ẋμ = yμ = ∂H/∂pμ. When it is possible to invert this map to find
pμ = pμ(y) (as done in Appendix B of Ref. [58]), one derives an interesting map between
the cotangent and tangent space version of Hamilton geometry. Indeed, using this map, a
Hamilton metric defined in the tangent bundle reads:

gμν
H (x, y) .

= hμν
H (x, p(y)) . (110)

The dual non-linear connection in this case has been discussed in Appendix C of Ref. [56],
and is given by

N(x, y)μ
ν = 2O(x, p(y))ναhαμ

H (x, p(y))− (∂ν∂̄μ H)|p=p(y) . (111)

Its main property is the preservation of the horizontal tangent spaces of the cotangent
and tangent bundle connected through the kinematical map yμ = ∂H/∂pμ.

With this map, it is possible to define the dual non-linear and N-linear connections,
now defined in the tangent bundle. It should be stressed that although this gives geometri-
cal quantities defined in the tangent bundle, this does not represent a Finsler geometry, since
there is no arc-length functional and the Hamilton metric is not, in general, 0-homogeneous
to start with.

Hamilton-κ-Poincaré (Tangent Bundle Case)

The kinematical map that allows us to describe y = y(p) is found by inverting the
relation yμ = ∂H/∂pμ for the q-de Sitter Hamiltonian, given by

p0 =
y0

2
+ �

(y1)2

8
, (112)

p1 = −y1

2
+ H

x0y1

2
+ �

y0y1

4
. (113)

The metric in the tangent bundle reads:

gμν
H (x, y) =

(
1 �(Hx0y1 + y1)/2

�(Hx0y1 + y1)/2 −(1 + 2Hx0)(1 + �y0/2)

)
. (114)

The dual non-linear connection reads

Nμ
ν(x, y) =

(−H�(y1)2/2 �hy0y1 + hy1

Hy1 −hy0 − 3�h(y1)2/4

)
. (115)

In Section 7 below, some key points of each approach are discussed while comparing
the descriptions of configuration and phase spaces.

7. Advantages and Difficulties of Each Formalism

The approaches considered—Finsler and Hamilton spaces—present the points that
can be considered positive or negative. In this Section, we highlight some of those points
which look to be most important from theoretical and phenomenological points of view.

7.1. Finsler Geometry

Let us emphasize that here not a complete list of positive or negative points is given, and,
certainly, the points listed represent just our view on the subject under scrutiny and some
points we are classifying in one way or another can be seen by others completely differently.
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7.1.1. Advantages

Preservation of the equivalence principle. Due to the presence of an arc-length func-
tional, the extremizing geodesics of the Finsler function are the same worldlines of the
Hamiltonian, from which the arc-length was derived. This means that, in the Finslerian lan-
guage, the equivalence principle is satisfied, as soon as the worldlines are trajectories of free
particles in this spacetime. There is a fundamental difference in comparison to the special
or general relativity formulation, since these trajectories are now mass-dependent, since
the Finsler function and the metric carry the mass of the particle due to Planck-scale effects.
Intriguingly, although the metric does not present a massless limit (which is discussed
below), it is possible to find trajectories of massless particles, which are compatible with
the Hamiltonian formulation, by taking the limit m→ 0 in the geodesic Equation [49,50].
This finding leads to some effects due to modifications of the trajectories of particles. For
instance, one of the most explored avenues of quantum gravity phenomenology (maybe
competing with threshold effects) is the time delay until particles with different energies
might arrive at a detector after a (almost) simultaneous emission [61,62] (for reviews,
see [4,5]). This kind of experimental investigation is not exhausted, and novelties have
arrived in the analysis of sets of gamma-ray bursts and candidate neutrinos emitted from
them in the multimessenger astronomy approach [63,64].

Preservation of the relativity principle. This formalism allows one to derive and
solve the killing equation, which furnishes infinitesimal symmetry transformations of the
metric. It has been shown in Ref. [49] that generators of these transformations can be
constructed and identified with the transformations that are generally depicted in the
doubly special relativity. The latter implies, in a preservation of the relativity principle, that
inertial frames should assign the same MDR to a given particle which, in its turn, implies
that the deformation scale of quantum gravity is observer-independent, i.e., two observers
would not assign different values, in the same system of units, to the quantum gravity scale.
This preservation has important phenomenological consequences, such as the point that the
threshold constraints on the quantum gravity parameter do not apply in the DSR scenario.
The reason is that, accompanied by the deformation of the Lorentz (Poincaré) symmetries,
comes a deformation of the composition law of momenta of particles (for instance p and q),
such that the nature of interaction vertices to not get modified when transforming from
one frame to another:

Λ(p⊕ q) = Λ(p)⊕Λ(q) , (116)

where Λ is a deformed Lorentz transformation induced by the killing vectors and ⊕
represents a modified composition of components of the involved momenta (this covariance
condition usually needs a back-reaction on the boost parameter, but we do not dwell on that
here; for more details, see [55,65] and references therein). Threshold constraints, such as the
one placed in Ref. [66], assumes that the composition of momenta is undeformed, although
the dispersion relation is modified in a Lorentz invariance violation (LIV) scenario. When
this is the case, processes that are forbidden in special relativity, such as the decay of the
photon into an electron–positron pair, becomes kinematicaly allowed for a given threshold
energy. The no observation of such decays allows one to place constraints on the quantum
gravity parameter. When the dispersion relation is modified as well, what happens is
that generally these kinds of processes remain forbidden or modifications in the threshold
energies are so minute that they are unobservable for a quantum gravity parameter in the
order of the Planck energy [55]. This is an important feature of “deforming” instead of
“violating” the Lorentz symmetry.

Preservation of the clock postulate. The availability of an arc-length functional leads
to a possibility to analyze the consequences of having the proper time of a given particle
given by it. If this is the case, then the worldlines or geodesics are just paths that extremize
the proper time an observer measures in spacetime, similar to that in special relativity.
One of the consequences of this feature consists of the possibility of connecting the time
elapsed in the comoving frame of a particle during its lifetime (which is its lifetime at
rest) and the coordinate time, which is the one that is assigned to this phenomenon in
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the laboratory coordinates. Using this expression, one can investigate the relativistic time
dilation (responsible for the “twin paradox”) or the so-called first clock effect (for further
details on the first and also on the second clock effect, which can appear in theories with
a non-metricity tensor, see Ref. [67]), in which, for instance, the lifetime of a particle is
dilated in comparison to the one assigned in the laboratory. Due to Finslerian corrections,
the lifetime of a particle in the laboratory would receive Planckian corrections, which,
actually, is a novel avenue of phenomenological investigation that is being currently carried
out [43,55] through the search for signatures in particle accelerators and cosmic rays.

7.1.2. Difficulties

Absence of massless rainbow Finsler metric. The Finsler approach had emerged as
an opportunity to describe in a consistent way the intuition that the quantum spacetime
probed by a high-energy particle would present some energy-momentum (of the particle
itself) corrections, which is justified by different approaches to quantum gravity [24,25].
Since then, proposals of rainbow metrics have considered a smooth transition from massive
to massless cases, not only from the point of view of the trajectories, but from the metric
itself. This is not the case for the Finsler approach presented here. Although the trajectories
and symmetries are defined for both massive and massless cases by considering the m→ 0
limit, the rainbow metric of Finsler geometry, given by Equation (83), is certainly not
defined for massless particles. The reason for this is the point that when passing from the
Hamiltonian to the Lagrangian formalism, we defined an arc-length functional, which is
not a legitimate action functional for massless particles. In other words, a crucial step for
deriving the Finsler function is the handling of the Lagrange multiplier λ of action (4),
which can only be solved if the particle is massive, as can be found in Refs. [43,49,50,53]. A
possibility that has been explored consisted of not solving the equation for λ and defining
a metric that depends on λ and on velocities from a Polyakov-like action for free particles
(instead of the Nambu–Goto one given by the arc-length), which turned out to be out of
the Finsler geometry scope [50,53]. However, this possibility has not been further explored
beyond preliminary investigations. The issue of the absence of a massless rainbow-Finsler
metric could be circumvented by proposing a different kind of geometry, which from the
very beginning started from the momenta formulation, like the other possibility described
in this paper, namely the Hamilton geometry.

Definition only through perturbations. The Finsler geometry was considered in this
paper in this context at most perturbatively around the quantum-gravity-length scale
(or inverse of energy scale), which may be considered as a negative point if one aims to
make it at a more fundamental or theoretical level. Nevertheless, from the pragmatic
perspective of phenomenology, since such effects, if they exist, are minute, then the per-
turbative approach is enough for proposing new effects that could serve as avenues of
experimental investigation.

The handling of finite symmetries. Another issue that can be problematic is the
handling of finite symmetries in the Finsler context. Up to today, the connection between
Finsler geometry and quantum gravity phenomenology has not faced the issue of integrat-
ing the symmetries and finding finite versions of deformed Lorentz transformations. Some
initial investigations were carried out in Ref. [55] from the momentum space perspective,
but further issues are being currently faced by some authors of the present paper.

7.2. Hamilton Geometry

The descriptions of the points here is rather short, without discussion of some universal
points already described above, so those universal points can be addressed there when that
is the case.
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7.2.1. Advantages

Presence of a massless rainbow Hamilton metric. Differently from the Finsler case,
the Hamilton geometry does not need an arc-length functional; instead, it only needs a
given Hamiltonian, from which the metric, non-linear connection, and symmetries are
derived. This means that from the very beginning, the massless limit of geometrical
quantities exists.

Does not require perturbative methods. Another positive point about the Hamilton
geometry is the finding that one can handle with the exact form of the proposed Hamil-
tonian, and it does not need to consider perturbations around a certain scale. Instead,
independently of the form of the (smooth) dispersion relation that arises from de facto
approaches to quantum gravity, the geometry can be handled, as has been considered, e.g.,
in Refs. [57,58].

Preservation of the relativity principle and the handling of symmetries. Due to the
proximity of this approach to the way that the DSR formalism generally handles with Planck
scale corrections, i.e., from the point of view of momentum space and Hamilton equations,
the handling of symmetries is facilitated in this approach. For instance, it is straightforward
to find the conserved charges from the killing vectors, which generate finite transformations
that are momenta-dependent without tedious terms in the denominator of the equations
when one is working in velocity space, as Finsler geometry is initially formulated (or
without mass terms in the denominator in the Finsler version of the phase space).

Generalization to curved spacetimes. This approach is considered in more curved
space cases, beyond the q-de Sitter exemplified in this paper; for instance, its spherically
symmetric and cosmological versions were explored giving rise to interesting phenomeno-
logical opportunities, from the point of view of time delays and gravitational redshift,
among others (for some applications of Hamilton geometry in this context, see [59] and
references therein).

7.2.2. Difficulties

Non-geodesic trajectory. An issue that may be considered problematic is the point
that the worldlines of particles, given by the Hamilton equations, are not geodesics of the
non-linear connection that means that there exists a force term in the geodesic equation,
which is in contrast with the Finsler case. This is a property of the Hamilton geometry, as
has been shown in Ref. [56], and is not specific to the q-de Sitter case analyzed here.

Absence of the arc-length. The Hamilton geometry does not dwell with an arc-length
functional that means that the only geodesics present are those of the non-linear or of the
N-linear connections and there are no extremizing ones. The absence of a function that
allows one to measure distances in spacetime can be seen as a difficulty of this geometry;
if the distances cannot be calculated, one could wonder what such a metric means. Even
if the norm of a tangent vector can be integrated, this integral would not be, in general,
parametrization-independent, which is also a drawback of this tentative. Besides, the
absence of an arc-length limits the phenomenology of the preservation of the clock postulate
that was discussed in the Finsler case.

8. Final Remarks

We revised two proposals that have been considered as candidates for describing
the quantum configuration and phase spaces probed by particles whose kinematics are
modified by a length scale identified as the quantum gravity scale.

Finsler geometry starts from a configuration space framework that presents applica-
tions on its own in biology, thermodynamics, and modified gravity; and it finds a natural
environment in quantum gravity phenomenology due to its power to describe a scenario in
which important principles that guided physics in the XXth century, such as the relativity
principle, are preserved even at a Planckian regime. Besides its traditional description in
terms of the couple spacetime and velocity space (configuration space), we also explored its
development in terms of the induced couple spacetime and momentum space (phase space),
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which is actually more appropriate for a pure quantum description than the configuration
space. Some points that we consider positive and negative and which are consequences of
the requirements for using the Finsler language, the derivation of an arc-length functional
defined in the slit tangent bundle, are discussed in Section 7.

The second case of the present study is the Hamilton geometry, whose properties
are derived directly from the Hamiltonian itself, without the need to go through the def-
inition of an arc-length. Actually, in general, the Hamilton metric does not even define
a curve-parametrization-invariant length measure which brings some limitations to phe-
nomenological investigations of this subject in quantum gravity. On the other hand, this
issue circumvents some intrinsic difficulties of Finsler geometry, which were also discussed
in Section 7.

The goal of this paper was to review some topics of these two important geometries
by using kinematical descriptions of particles whose behavior might present departures
from special relativity results due to the effective quantum gravity influence. We also
aimed to bring some points that we consider as under-explored perspectives on the subject
by explicitly presenting some geometric quantities that are dual to those, in which those
quantities were originally presented, such as the dual metrics and non-linear connections
(whose Finslerian one was proposed in this paper, by inspiration of definitions in the
Hamilton geometry literature) of Finsler and Hamilton geometries in the cotangent and
tangent bundles, respectively.

At least two global points could be considered insufficiently explored or unexplored
in this subject. One is the geometry probed by an (non-)interacting multi-particle system.
Some challenges of this problem can be found, for instance, in Ref. [68], but the relations
between the approaches there described and Finsler/Hamilton geometries remains unclear.
Another point that remains unexplored consists of the dynamics of the configuration/phase
space in a way that is compatible with quantum gravity phenomenology-inspired ap-
proaches. For instance, one could wonder if there exists a gravitational field theory defined
in Finsler or Hamilton spaces that has q-de Sitter or other proposals as solutions, and how
matter would interact in this scenario. The exploration of this topic might shed light on the
one regarding a multi-particle system. These are more challenges that might be subjects of
the future research in this area and which may help to build a bridge between quantum
and modified gravities.
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Abbreviations

The following abbreviations are used in this manuscript:

DSR Doubly/Deformed Special Relativity,
LQG Loop Quantum Gravity,
LIV Lorentz Invariance Violation,
MDR Modified Dispersion Relation

Appendix A. Dual Finsler Nonlinear Connection

The momenta of a particle in Finsler geometry, given by the following expression,

pμ = m
∂F
∂yμ ≡ m∂̇μF , (A1)

defines a kinematical map between velocity and momenta variables at each given point in
the base manifold M. We refer to such a map as

� : T̃M→ T̃∗M (A2)

(x, y) �→ �(x, y) = (x, m∂̇F(x, y)) = (x, p(x, y)) . (A3)

Inspired by the construction of Ref. [56], the condition that a nonlinear connection in
the tangent bundle is dual to one in the cotangent bundle by a kinematical map, �, is that
such an application maps the tangent space of the tangent bundle onto the tangent space of
the cotangent bundle. This means that the differential of such a map maps the preferred
basis of one tangent space, δμ = ∂μ − Nν

μ∂̇ν, onto the other, d �(δμ) = δ′μ = ∂μ −Oμν∂̇ν.
This means that the action of this differential on a vector X = Xμ∂μ + Ẋμ∂̇μ is given by

d �(x,y) : T(x,y)T̃M→ T�(x,y)T̃∗M , (A4)

X = Xμ∂μ + Ẋμ∂̇μ �→ d �(x,y)(X) = Xμd �(x,y)(∂μ) + Ẋμd �(x,y)(∂̇μ) (A5)

= Xμ(∂μ + m∂μ∂̇νF∂̄ν) + mẊμ∂̇μ∂̇νF∂̄ν . (A6)

By acting on the basis vectors δμ = ∂μ − Nν
μ∂̇ν, one finds:

d �(x,y)(δμ) = d �(x,y)(δμ)− Nν
μd �(x,y)(∂̇ν) = ∂μ + m∂μ∂̇νF∂̄ν −mNν

μ∂̇ν∂̇αF∂̄α . (A7)

In order to simplify this expression, the relation 2gνα = ∂̇ν∂̇αF2 = ∂̇ν(2F∂̇αF) is used
that leads to

∂̇ν∂̇αF =
gνα − pν pα/m2

F
. (A8)

From this expression, one finds that

d �(x,y)(δμ) = ∂μ −m
[

Nα
μ
(gαν − pα pν/m2)

F
− ∂μ∂̇νF

]
∂̄ν = ∂μ + Oμν∂̄ν , (A9)

which leads to the dual nonlinear connection,

Oμν(x, p) = −m
[

Nα
μ
(gαν − pα pν/m2)

F
− ∂μ∂̇νF

]∣∣∣∣∣
(x,y(p))

. (A10)
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Abstract: Noncommutativity in physics has a long history, tracing back to classical mechanics. In
recent years, many new developments in theoretical physics, and in practical applications rely on
different techniques of noncommutative algebras. In this review, we introduce the basic concepts and
techniques of noncommutative physics in a range of areas, including classical physics, condensed
matter systems, statistical mechanics, and quantum mechanics, and we present some important
examples of noncommutative algebras, including the classical Poisson brackets, the Heisenberg
algebra, Lie and Clifford algebras, the Dirac algebra, and the Snyder and Nambu algebras. Potential
applications of noncommutative structures in high-energy physics and gravitational theory are also
discussed. In particular, we review the formalism of noncommutative quantum mechanics based on
the Seiberg–Witten map and propose a parameterization scheme to associate the noncommutative
parameters with the Planck length and the cosmological constant. We show that noncommutativity
gives rise to an effective gauge field, in the Schrödinger and Pauli equations. This term breaks
translation and rotational symmetries in the noncommutative phase space, generating intrinsic
quantum fluctuations of the velocity and acceleration, even for free particles. This review is intended
as an introduction to noncommutative phenomenology for physicists, as well as a basic introduction
to the mathematical formalisms underlying these effects.

Keywords: noncommutative quantum mechanics; noncommutative phase space; quantum Hall
effect; Seiberg-Witten map

1. Introduction

Different physical theories depend on different mathematical structures. For example,
classical Hamiltonian mechanics is defined on a symplectic manifold, and relativistic
gravity theories describe the dynamics of pseudo-Riemann geometries, while quantum
theories are defined by using complex vector spaces [1]. Noncommutativity naturally arises
in various formalisms, tracing back to the descriptions of angular momentum and work
in classical mechanics, through to the Heisenberg algebra and its associated uncertainty
relations in canonical quantum mechanics, and on to more speculative recent theories
regarding the noncommutative nature of spacetime at the Planck scale [2–5]. The latter
include the Snyder algebra [6], Heisenberg–Weyl algebra, various types of Lie algebra,
and the so-called noncommutative phase space algebra [2,7].

Snyder proposed a five-dimensional noncommutative spacetime, with global Lorentz
invariance, to remove singularities in particle physics without renormalization techniques [6].
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His model was generalized to curved spacetimes by C. N. Yang, in order to include grav-
itational effects [8]. These early studies were among the first to suggest that quantized
spacetime should be described by a kind of noncommutative geometry (NCG), which, it is
hoped, can provide a self-consistent formalism to unify quantum theory with gravity [9–11].
Thus, it is believed that NCG could play a vital role in removing the infinities and singular-
ities that unavoidably emerge in both particle physics and cosmology.

In addition, the recent discoveries of dark energy and dark matter in cosmological
observations lead to many puzzles, and the fundamental physics behind these phenomena
is not well understood. There are many candidate theories, and, even though dark energy
can be interpreted phenomenologically as a cosmological constant, there is still no direct
experimental evidence capable of determining the physical mechanism that gives rise to
it [12,13]. One possibility is that the small but nonzero vacuum energy emerges from the
quantum fluctuations of the spacetime background at the Planck scale, which is expected
in the framework of noncommutative field theory and quantum gravity models based on
noncommutative geometry [14–16].

In less speculative fields, noncommutativity also plays a vital role in describing a
range of important physical phenomena. In condensed matter physics, it may be shown
that a two-dimensional electronic system, immersed in a strong magnetic field, is equiva-
lent to its free electron counterpart, formulated in a noncommutative phase space [17–22].
Thus, by generalizing the canonical Heisenberg algebra to include nontrivial space–space
and/or momentum–momentum commutation relations, this so-called noncommutative
quantum mechanics (NCQM) can successfully model known phenomena, such as the
Aharonov–Bohm effect [23–26], the quantum Hall effect [22,27,28], the existence of mag-
netic monopoles [17] and the Berry phase [29,30], by using a different language and mathe-
matical formalism.

Currently, there are several schemes used to implement such phase space noncommu-
tativity [7,27,31–33], including the Seiberg–Witten (SW) map [34–36], the Moyal product
formalism [3] and the Wigner–Weyl phase space approach [37–40]. Based on these non-
commutative algebras, the Heisenberg uncertainty principle can be extended to include
new space–space and momentum–momentum uncertainty relations, which are clearly of
great phenomenological interest to physicists. These physical phenomena also stimulate
mathematical interest in noncommutative algebras and noncommutative geometry [14–16].

An example of a new mathematical formalism, with potential applications in high-
energy physics and gravitational theory, is the Nambu generalization of symplectic geome-
try, in which the Poisson algebra is generalized to the so-called Nambu bracket, yielding
generalized Hamiltonian [41–43] and Lagrangian mechanics [44,45]. The quantisation of
the classical Nambu brackets generates a deformed Heisenberg algebra [46–49], which
leads to new physical phenomenology [50–52], and to a new phase space structure, which
is also of interest to mathematicians [53–55].

In this paper, we present an accessible introduction to noncommutative physics in a
pedagogical format with a strong focus on phenomenology. For completeness, and so
that the text can be read as a self-contained reference, we also include brief summaries of
the basic mathematical formalisms needed to implement noncommutative structures in a
range of example systems. We begin by reviewing important examples of noncommutative
phenomena in physics in Section 2, including the canonical Poisson brackets of classical
mechanics, permutation symmetries in statistical mechanics, and the classical and quantum
Hall effects.

In Section 3, we give an overview of some known noncommutative algebras, including
the Poisson algebra in classical symplectic geometry, the Heisenberg, Lie, Clifford, and Dirac
algebras in canonical quantum theory, the Snyder and Nambu algebras in theoretical
physics, and the deformed Heisenberg algebra used to generate models of NCQM [7].

In Section 4, we give a detailed presentation of NCQM, based on the deformed Heisen-
berg algebra, and review its phenomenological implications for gravitational theories and
high-energy particle physics. Based on the SW map, we give the Heisenberg representation
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of the Schrödinger, Heisenberg, and Pauli equations, and consider some basic properties
of the model, including the existence of anomalous velocity and acceleration terms in the
free-particle dynamics induced by the noncommutativity of the background. We propose
a parameterization scheme that associates the noncommutative parameters of the space–
space and momentum–momentum commutators, respectively, with the Planck length and
the cosmological constant and discuss its implications for particle physics and cosmology.

However, in this pedagogical introduction to noncommutative physics we do not
discuss Conne’s approach to noncommutative geometry, K theory, noncommutative field
theory, the Moyal star product technique, or κ−deformed symmetries of spacetime. For
details of these (more mathematical) approaches, readers are referred to [14–16,56–59] and
references therein. We summarise our conclusions, and offer a few opinions on the outlook
for noncommutative geometry in physics research in Section 5.

2. Noncommutative Phenomena in Physics: Important Examples

In this Section, we review important examples of noncommutative phenomena in
classical and quantum physics.

2.1. Noncommutativity in Classical Physics

The best known example of noncommutativity in classical physics comes from Hamil-
tonian mechanics, in which the Poisson bracket is defined as

{ f , g} :=
∂ f
∂qi

∂g
∂pi
− ∂ f

∂pi

∂g
∂qi . (1)

This relation implies that the generalised coordinates, qi, i ∈ {1, 2, . . . d}, where d is the
dimensionality of the system, and their corresponding canonical momenta, pi = ∂L/∂qi,
obey the commutation relations [60] {

qi, qj
}

= 0, (2)

{
pi, pj

}
= 0, (3)

{
qi, pj

}
= δi

j, (4)

where δi
j is the Kronecker delta. These relations are called the fundamental Poisson brackets.

Together, the coordinates and canonical momenta define the phase space of the system. All
physical quantities are expressed in terms of maps on the phase space and the evolution of
the system follows the integral curves generated by the flow of the Hamiltonian vector field,

γ̇ = {γ,H}. (5)

The physical quantity γ is conserved if {γ,H} = 0 [60].

2.2. Permutation Symmetries in Statistical Mechanics

In statistical physics, the statistical behavior of multiparticle systems depends sen-
sitively on the permutation symmetries of elementary particles. The mean occupation
numbers for free particles in thermal equilibrium states are given by

n = e−(ε−μ)/kBT (6)

209



Physics 2023, 5

for classical particles, and

n =

{ 1
e(ε−μ)/kBT−1

for bosons,
1

e(ε−μ)/kBT+1
for fermions

(7)

in quantum physics, where T is the temperature of the system, kB is Boltzmann’s constant,
and μ is the chemical potential. The differing bosonic and fermionic distributions, known
as the Bose–Einstein (BE) distribution and the Fermi–Dirac (FD) distribution, respectively,
are governed by different algebras. In the particle number representation, the particle
creation and annihilation operators for bosons and fermions obey, respectively,[

b̂i, b̂†
j

]
= δij�̂,

[
b̂i, b̂j

]
=
[
b̂†

i , b̂†
j

]
= 0 (BE), (8)

{
âi, â†

j

}
= δij�̂,

{
âi, âj

}
=
{

â†
i , â†

j

}
= 0 (FD), (9)

where �̂ is the identity operator, [A, B] ≡ AB− BA denotes the commutator of AB and B,
and {A, B} ≡ AB + BA is the anticommutator. The anticommutative property of fermion
operators (âi âj = −âj âi, â2

i = 0) is known as a Grassmann algebra. The relationship between
the Fermi–Dirac distribution, spin, and the Grassmann algebra, is called the spin-statistics
theorem [54].

2.3. The Heisenberg Algebra

To understand the discrete atomic spectrum of hydrogen, Bohr proposed an orbital
model of the atom in which discrete spectra are generated by the transitions of electrons
between orbits with different energy levels, ωnm = (En − Em)/h̄, where En(m) label the
discrete energy levels and h̄ is the reduced Planck’s constant. Heisenberg proposed an
equation of motion, now known as the Heisenberg equation, from which Bohr’s empirical
formula could be derived in a more rigorous way,

ih̄
dÔ
dt

= [Ô, Ĥ], (10)

where Ô is the operator corresponding to any physical observable and Ĥ is the Hamilto-
nian operator of the system. For any system, all observables, with the exception of spin
(discussed in Section 2.2 above), are functions of the canonical position and momentum
operators, x̂i and p̂j. These are governed by the noncommutative algebra,

[x̂i, p̂j] = ih̄δi
j�̂, [x̂i, x̂j] = 0, [ p̂i, p̂j] = 0, (11)

where i, j ∈ {1, 2, 3} and (x1, x2, x3) ≡ (x, y, z) denote global Cartesian coordinates in three-
dimensional Euclidean space, R3. The noncommutativity of the position and momentum
variables leads directly to the Heisenberg uncertainty relation,

ΔxiΔpj ≥
h̄
2

δi
j, (12)

and Equation (11) is known as the Heisenberg algebra. The uncertainty relation reveals
the intrinsic quantum fluctuations caused by the wave–particle duality of matter in the
microscopic world. This form of noncommutativity not only leads to the emergence of
quantum mechanics, but was also the original inspiration stimulating many attempts to
extend noncommutative concepts to different fields in physics [2,7].
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2.4. The Classical and Quantum Hall Effects

The current density in a conductor is given by

Ji = σijEj, (13)

where σij are the components of the conductivity matrix and Ej are the components of the
applied electric field. In the equilibrium state, σxx = σyy = 0, the transverse conductivity
obeys the noncommutative relation,

σxy − σyx = 2σH , (14)

where σH = nee/B, e is the charge of the electron, ne is the density of electrons per unit area,
and B = |B| is the magnitude of the magnetic field strength [22]. Discovered by Edwin Hall
in 1879, this is the canonical example of noncommutativity in classical electrodynamics.
Practically, the noncommutative relation (14) can be applied to detect the types of charge
carriers in semiconductors, namely, electrons (−) or holes (+).

In the quantum Hall effect, which occurs in the presence of strong magnetic fields, the
quantized Hall conductivity emerges, σij = νe2εij/h̄, where εij is the antisymmetric (Levi–
Civita) tensor. Here, ν is the filling factor defined as ν = ne/nB ∈ N, where nB = 2πeB/h̄
is the maximum number of electron states per unit area of a single Landau level [22].

In a strong constant magnetic field, the electron feels a Lorentz force and undergoes cir-
cular motion in the plane perpendicular to the magnetic field lines. The planar coordinates,
(x, y), may be decomposed into the “guiding center” (X, Y) and the “relative coordinate”
(Rx, Ry) parts, such that x = X+R, where Rx = −PY/eB, Ry = PX/eB and (PX , PY) denote
the covariant momenta. The guiding center coordinates are then given by [22]

X̂ = x̂− 1
eB

P̂Y, (15)

Ŷ = ŷ +
1

eB
P̂X , (16)

where [x̂, P̂X ] = [ŷ, P̂Y] = ih̄�̂. We then have[
X̂, Ŷ

]
= i�2

B�̂, (17)

[
P̂X , P̂Y

]
= i

h̄2

�2
B
�̂, (18)

and [
X̂, P̂X

]
=

[
X̂, P̂Y

]
= 0, (19)

[
Ŷ, P̂X

]
=

[
Ŷ, P̂Y

]
= 0, (20)

where

�B =

√
h̄

eB
(21)

is called the magnetic length, which describes the fundamental scale in the quantum
Hall system.
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To solve the quantum Hall system, we introduce two kinds of boson operators [22],

â =
�B√
2h̄

(P̂X + iP̂Y), (22)

â† =
�B√
2h̄

(P̂X − iP̂Y), (23)

b̂ =
1√
2�B

(X̂ + iŶ), (24)

b̂† =
1√
2�B

(X̂− iŶ), (25)

which obey the commutation relations:[
â, â†

]
=

[
b̂, b̂†

]
= 1, (26)

[
â, b̂

]
=

[
â, b̂†

]
= 0, (27)

[
â†, b̂

]
=

[
â†, b̂†

]
= 0, (28)

and the Fock vacuum is defined by the conditions â|0〉 = 0 and b̂|0〉 = 0. The Fock states
are explicitly constructed as

|N, n〉 =
√

1
N!n!

(â†)N(b̂†)n|0〉, (29)

and the orthonormal completeness relations are

〈M, m|N, n〉 = δMNδmn, (30)

∑
N,n
|N, n〉〈N, n| = 1. (31)

Consequently, the Hamiltonian can be rewritten as

Ĥ =

(
b̂† b̂ +

1
2

)
h̄ωc, (32)

where ωc = h̄/(me�2
B) = eB/me, and me is the effective mass of the quantum Hall system.

The corresponding eigenenergies (Landau levels) are then obtained as

EN =

(
N +

1
2

)
h̄ωc. (33)

Each level is multiply degenerate and the state |N, n〉, given in Equation (29), is called
the nth Landau site in the Nth Landau level. Each Landau site occupies an area ΔA = 2π�2

B
in real space. The density of states is given by

ρφ =
1

2π�2
B
=

B
φD

, (34)
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where φD = 2πh̄/e is the Dirac flux quantum. The quantization of the Hall conductance
then leads to the relation [22]

ν =
ne

ρφ
= 2π�2

Bne. (35)

In Section 4.8 below, we show how constructing a quantum Hall system in a non-
commutative phase space modifies the effective magnetic field, giving Bnc = B + Bη ,
where Bη is related to the noncommututivty parameter of the momentum–momentum
commutation relations, η. In the proposed parameterization scheme (see Section 4.8),
η = m2

dSc2 ≡ h̄2Λ/3, where mdS = (h̄/c)
√

Λ/3 is the de Sitter mass, Λ # 10−52 cm−2 is
the cosmological constant [13], and c denotes the speed of light. The effective magnetic

length becomes �nc
B =

√
h̄

e(B+h̄Λ)
and the quantized Hall conductivity is σij = νe2εij/h,

where ν = 2π(�nc
B )2ne, and h is Planck’s constant, 2πh̄. However, since Bη 	 B, the non-

commutative effect is too small to be observable with current technology [7,24,25].

3. An Overview of Noncommutative Algebras

Noncommutative phenomena are governed by noncommutative algebras. Here, we
present several typical examples of noncommutative algebras in physics.

3.1. The Poisson Algebra in Symplectic Space

In classical mechanics, the Poisson bracket corresponds to the quantum mechanical
commutator, in the limit h̄→ 0 of a canonical quantization scheme. The Poisson bracket
can be regarded as a generalized product that defines an algebra (the Poisson algebra),
which gives rise to the symplectic structure of Hamiltonian mechanics in the canonical
phase space. The canonical phase space is defined, formally, as the cotangent bundle, T∗Qn,
of the configuration space, Qn, with the symplectic structure given by [60]

Ω = dqi ∧ dpi, (36)

where A ∧ B = A⊗ B− B⊗ A is the Cartan wedge product. In the matrix representation
of the symplectic structure, the generalized coordinates and momenta are redefined as
{zα} = {z1, · · · , z2n} := {q1, · · · , qn, p1, · · · , pn�, where i = 1, · · · , n for q and p, while
α = 1, · · · , 2n for z. The symplectic 2-form Ω is defined as a bilinear map, Ω : Z× Z → R,
where Z is a linear vector space [60], i.e.,

Ω(z, z) = zT Jz, (37)

where z is a column vector with 2n components z ∈ Z, the subscript T denotes the transpose,
and J = (Jαβ) is the 2n× 2n symplectic matrix

J =
(

0 I
−I 0

)
. (38)

Here, 0 denotes the n× n-zero matrix, and I is the n× n unit matrix. It can be seen that J is
skewed and regular, det J = 1.

For any pair differentiable functions on the phase space, f , g ∈ F (T∗Q), one has

d f ∧ dg =
∂ f
∂qi

∂g
∂pi

dqi ∧ dpi

=
1
2

(
∂ f
∂qi

∂g
∂pi
− ∂ f

∂pi

∂g
∂qi

)
dqidpi, (39)

and the Poisson bracket is defined by Equation (1). The Poisson bracket is skew-symmetric
and bilinear, and obeys the Leibniz rule and the Jacobi identities, namely [60]

{ f , g} = −{g, f }, (40)
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{α f + βg, h} = α{ f , g}+ β{ f , h}, (41)

{ f , αg + βh} = α{ f , h}+ β{g, h}, (42)

{ f , gh} = { f , g}h + g{ f , h}, (43)

{{ f , g}, h} + {{g, h}, f }+ {{h, f }, g} = 0, (44)

where α and β are real constants.

3.2. From Poisson to Heisenberg

The canonical quantization procedure is based on a correspondence between the
classical Poisson brackets and the Heisenberg algebra, in which classical dynamics are
regarded as the h̄→ 0 limit of quantum theory,

lim
h̄→0

1
ih̄

[
x̂i, p̂j

]
:=

{
xi, pj

}
= δi

j, (45)

lim
h̄→0

1
ih̄

[
x̂i, x̂j

]
:=

{
xi, xj

}
= 0, (46)

lim
h̄→0

1
ih̄
[
p̂i, p̂j

]
:=

{
pi, pj

}
= 0. (47)

Note that here the xi denote global Cartesians, not generalised coordinates, and the pi
denote the corresponding linear momenta [1]. For a classical observable O(x, p), the corre-
sponding quantum operator is then defined as Ô(x̂, p̂), up to ordering ambiguities caused
by the noncommutativity of the position and momentum operators.

In general, any pair of operators f̂ , ĝ preserves the canonical structure

lim
h̄→0

[
f̂ , ĝ

]
= { f , g}. (48)

The position–momentum commutator defined by canonical quantization therefore inherits
all the familiar properties of the Poisson bracket, namely, skew-symmetry, bilinearity,
and compatibility with the Leibniz rule and the Jacobi identities (40)–(44).

3.3. From Heisenberg to the Lie, Clifford, and Dirac Algebras

Based on the canonical quantization procedure, the angular momentum operator
is defined as L̂i = iεij

k x̂j p̂k. The components of the angular momentum obey the Lie
algebra [1]

[L̂i, L̂j] = ih̄εij
k L̂k, (49)

where εij
k is the three-dimensional Levi-Civita symbol. Similarly, the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ2 =

(
1 0
0 −1

)
, (50)

which are used to define the spin-1/2 operators ŝi = (h̄/2)σi, also obey the Lie algebra[
σi, σj

]
= 2iεij

kσk, (51)

as well as the Clifford algebra {
σi, σj

}
= 2iδij�, (52)
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where
{

σi, σj
}

:= σiσj + σjσi again denotes the anticommutator [61].
To describe both particles and antiparticles, Dirac introduced a set of operators known

as the gamma matrices, which are often denoted by using the slightly inconsistent notation
(γμ, γ5) = (γ0, γi, γ5), where μ ∈ {0, 1, 2, 3} and i ∈ {1, 2, 3}. Explicitly, these may be
written as

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi
−σi 0

)
, γ5 =

(
0 I
I 0

)
, (53)

and it is straightforward to demonstrate that γ5 := iγ0γ1γ2γ3. The Dirac operators obey
the following relations [61]

{γμ, γν} = 2ημν
� (Clifford algebra), (54)

{
γ5, γν

}
= 0, (55)

{
γ5, σμν

}
= 0, (56)

γμγν = (ημν − iσμν)�, (57)

(γμ)2 = ημμ
�, (58)

γμγμ = 4, (59)

where ημν = (1,−1,−1,−1) is the Minkowki metric and σμν := i
2 [γ

μ, γν]. These
(anti-)commutation relations are called the Dirac algebra.

3.4. The Snyder Algebra

To regularise the emergence of singularities in particle physics, while preserving
Lorentz invariance, Snyder introduced a noncommutative algebra formulated in five-
dimensional spacetime with a constraint, namely

x = ia
(

η4 ∂

∂η1 − η1 ∂

∂η4

)
, (60)

y = ia
(

η4 ∂

∂η2 − η2 ∂

∂η4

)
, (61)

z = ia
(

η4 ∂

∂η3 − η3 ∂

∂η4

)
, (62)

t =
ia
c

(
η4 ∂

∂η0 + η0 ∂

∂η4

)
, (63)

where a is the noncommutative parameter, the ηi are real variables, and the constraint

− η2 = η2
0 − η2

1 − η2
2 − η2

3 − η2
4 (64)
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defines the embedding of a four-dimensional de Sitter geometry [6]. Consequently, the space-
time variables obey the following commutation relations,

[xi, xj] =
ia2

h̄
εijkLk, (65)

[t, xi] =
ia2

h̄c
Mi, (66)

where

Li = ih̄εi
jkηj

∂

∂ηk , (67)

Mi = ih̄
(

η0 ∂

∂ηi
+ ηi ∂

∂η0

)
. (68)

When a→ 0 the Snyder algebra (65) and (66) reduces to the standard commutative relations
of ordinary Minkowski space. This noncommutative algebra preserves Lorentz invariance
and can help to alleviate or avoid singularities in quantum field theories, defined on the
associated background geometry, without the use of renormalization techniques [6].

3.5. Beyond Poisson: The Nambu Algebra

Nambu’s original idea was to look for an alternative formalism for Hamiltonian
mechanics, which preserves the volume of the phase space (the Liouville theorem), and
which, therefore, can be applied to statistical ensembles [41]. To achieve this, he introduced
the so-called N-triplet canonical variables, and an “extended” Poisson bracket. The Nambu
formalism of extended Hamiltonian mechanics was later quantized, giving rise to the so-
called “Nambu quantum mechanics” [46,48], which can be used, among other applications,
to describe quark triplets [62], magnetic monopoles [50], and superconductivity [53]. The
Nambu dynamics also inspired various mathematicians, who later reformulated the theory
in geometric terms [55]. Here, we introduce the basic formulation of Nambu dynamics and
briefly describe the procedure for quantizing classical Nambu systems.

In Nambu mechanics, the Poisson pair of canonical variables in two-dimensional
phase space, (x, p), is extended to a triplet of dynamical variables in a three-dimensional
phase space, x = (x1, x2, x3). Two Hamiltonian functions are introduced on this space,
denoted as H1 and H2, yielding a generalized Hamilton equation [41–43],

dx

dt
= ∇H1 ×∇H2. (69)

The divergence of the velocity field, v = dx/dt, is given by∇ · v = ∇ · (∇H1×∇H2). The
invariance of the phase space volume requires ∇ · (∇H1 ×∇H2) = 0, which corresponds
to a generalized Liouville theorem. Similarly, for any function F(x1, x2, x3), the equation of
motion is given by

dF
dt

= ∇F · (∇H1 ×∇H2), (70)

where
∇F · (∇H1 ×∇H2) = εijk∂iF∂j H1∂k H2. (71)

The Nambu bracket, which is a generalization of the canonical Poisson bracket, is
defined as

{A1, A2, A3} := εijk∂i A1∂j A2∂k A3. (72)

It possesses the following properties and obeys the following relations.
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1. Skew-symmetry:

{A1, A2, A3} = (−1)ε(p)
{

Ap(1), Ap(2), Ap(3)

}
, (73)

where p(i) is the permutation of indices and ε(p) is the parity of the permutation.
2. Leibniz rule:

{A1 A2, A3, A4} = A1{A2, A3, A4}+ {A1, A3, A4}A2. (74)

3. Fundamental identity:

{A1, A2, {A3, A4, A5}} = {{A1, A2, A3}, A4, A5}+ {A3, {A1, A2, A4}, A5}+ {A3, A4, {A1, A2, A5}}. (75)

In particular, one has that {
xi, xj, xk

}
= εijk (76)

and {
Aj, Aj, Ai

}
=
{

Aj, Ai, Aj
}
=
{

Ai, Aj, Aj
}
= 0, (77)

for any i, j ∈ {1, 2}. The corresponding generalisation of Hamiltonian mechanics on a
2d-dimensional symplectic manifold, with canonical variables (xi, pj), i, j ∈ {1, 2, . . . , d} is
straightforward, but the relations are cumbersome to write, and we neglect them here for
the sake of pedagogical clarity.

The Nambu bracket structure is preserved under differential maps xi → yi(x), which
preserve the volume of the phase space, such that

{
y1, y2, y3} = 1, i.e.,{

y1, y2, y3} := εijk∂iy1∂jy2∂ky3. These are called the volume-preserving diffeomorphisms
(VPD). In general, these involve two independent functions, f and g, and the infinitesimal
three-dimensional generator of VPDs is defined as [47]

D( f , g) := εijk∂i f ∂jg∂k ≡ Dk( f , g)∂k. (78)

The volume-preserving property implies ∂iDi( f , g) = ∂k

(
εijk∂i f ∂jg

)
= 0, which is equiva-

lent to the divergencelessness of the velocity ∇ · v = 0.
We may also consider parametrizations of the triple phase space, of the form

{xα} → {Xα}, where α = 0, 1, · · · , d. The induced infinitesimal volume element is given
by [47]

dσ =
√{

Xα, Xβ, Xγ
}

dx1dx2dx3, (79)

where the volume element is invariant under the transform Y = X + εD( f , g)X. The
Nambu bracket is also invariant under this transformation,{

Yα, Yβ, Yγ
}
−
{

Xα, Xβ, Xγ
}

= εD( f , g)
{

Xα, Xβ, Xγ
}
+O(ε2). (80)

The quantization of the classical Nambu brackets in Equation (72) should preserve
the properties in Equations (73)–(75). Following the canonical quantization procedure,
the quantum Nambu bracket is defined as

lim
h̄→0

1
ih̄
[A1, A2, A3] = {A1, A2, A3}, (81)

such that it obeys the the following properties [46,47].

1. Skew-symmetry:

[A1, A2, A3] = (−1)ε(p)
[

Ap(1), Ap(2), Ap(3)

]
, (82)

where p(i) is the permutation of indices and ε(p) is the parity of the permutation.
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2. Leibniz rule:
[A1 A2, A3, A4] = A1[A2, A3, A4] + [A1, A3, A4]A2. (83)

3. Fundamental identity:

[A1, A2, [A3, A4, A5]] = [[A1, A2, A3], A4, A5] + [A3, [A1, A2, A4], A5] + [A3, A4, [A1, A2, A5]]. (84)

In particular, [
xα, xβ, xγ

]
= ih̄εαβγ, (85)

and [
Aβ, Aβ, Aα

]
=
[
Aβ, Aβ, Aβ

]
=
[
Aα, Aβ, Aβ

]
= 0, (86)

for all α, β. Written explicitly, the quantum Nambu bracket can be expressed in terms of the
Heisenberg canonical bracket as [47–49]

[A, B, C] = A[B, C] + B[C, A] + C[A, B]. (87)

The quantum Nambu equation is given by

ih̄
dF
dt

= [F, H1, H2] (88)

for an arbitrary function F.
When the triple variables are generalized to n-component vectors xi and n− 1 Hamilto-

nian functions, the n-component Nambu bracket also keeps the above properties. However,
it is still unclear how to link Nambu mechanics to Hamiltonian and Lagrangian mechanics,
directly, and what relationship should exist between the extended and canonical variables.
Most importantly, it remains unclear how to construct multiple Hamiltonian functions on a
phase space with an odd number of dimensions [42,44].

3.6. The Deformed Heisenberg Algebra: Noncommutative Phase Space

Various generalizations of the Heisenberg commutation relations have been considered
in the existing literature on noncommutative geometry, and these have been based on
various physical arguments. In this Section, we review some of the best explored and
motivated proposals; for more details, see [2–5,7,17,18] and references therein.

Model I: Gedanken experiments in phenomenological quantum gravity, as well as
several specific approaches to this problem, including string theory, loop quantum gravity,
and others, suggest the existence of a minimum resolvable length scale in nature, of the
order of the Planck length [3,9]. The minimal implementation of this idea therefore suggests
that the spatial coordinates may be noncommutative but that the canonical Heisenberg
commutation relations between the positions and momenta are preserved, giving [26,28]

[X̂i, P̂j] = ih̄δi
j�̂, (89)

[X̂i, Ŷj] = iθij
�̂, (90)

[P̂i, P̂j] = 0. (91)

The noncommutative relations (90) yield additional quantum fluctuations between dif-
ferent spatial components, giving rise to the generalized uncertainty relations
ΔXiΔYj ≥ θij/2.

Model II: In some models, the existence of dark energy, which drives the present-
day accelerated expansion of the universe, is associated with the existence of a minimum
resolvable momentum, and hence energy [12,13]. The physical scenario considered here is
one in which there exists a minimum energy density, and hence a minimum curvature of
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spacetime, which arises directly from quantum fluctuations of the canonical momentum
components, yielding [11]

[X̂i, P̂j] = ih̄δi
j�̂, (92)

[X̂i, Ŷj] = 0, (93)

[P̂i, P̂j] = iηij�̂. (94)

The noncommutative relations (94) yield additional quantum fluctuations between
different momenta, such that ΔPiΔPj ≥ ηij/2.

Model III: Combining both arguments above motivates us to include both spatial
and momentum noncommutative relations, while still leaving the canonical position–
momentum commutator of the Heisenberg algebra intact, giving [24,25,33]

[X̂i, P̂j] = ih̄δi
j�̂, (95)

[X̂i, Ŷj] = iθij
�̂, (96)

[P̂i, P̂j] = iηij�̂. (97)

In this case, we obtain additional quantum fluctuations arising from the noncommuta-
tivity of both the spatial and momentum components.

Model IV: The physical scenario considered in Model III can be generalized even
further, to modify the canonical Heisenberg relation between position and momentum,
such that [24,25,33]

[X̂i, P̂j] = iκi
j�̂, (98)

[X̂i, Ŷj] = iθij
�̂, (99)

[P̂i, P̂j] = iηij�̂, (100)

where κi
j �= h̄δi

j. We discuss this generalization in detail in Section 4 below.
However, before concluding this Section, let us note that each of the models above can

also be motivated in a number of different ways. For example, models, in which [P̂i, P̂j] �= 0
can be derived from the theory of relative locality [63], where the noncommutativity of the
momentum components is generated via the curvature of momentum space. Noncommuta-
tive generalizations of the canonical Heisenberg algebra can also be derived by considering
deformations of the canonical spacetime symmetries, as in the κ−Poincare approach to
noncommutative geometry, which has been extensively applied in the construction of
noncommutative field theories [59]. These results suggest deep geometric connections
between the deformed phase space, noncommutative algebras, and quantum geometry.

4. Noncommutative Quantum Mechanics

In this Section, we give a pedagogical introduction to one of the most studied methods,
used to generalize the canonical Heisenberg algebra to noncommutative phase space,
namely, the SW map [7,27,31–33].
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4.1. Position and Momentum in Noncommutative Phase Space

In general, the canonical Heisenberg phase space can be generalized to a noncommuta-
tive phase space by imposing the algebra (98)–(100). For simplicity, one may assume that all
nonzero components θij, ηij are equal in magnitude, i.e., θii = 0, ηii = 0 and θij = −θ ji = θ,
ηij = −ηji = η, for i �= j. Similarly, we assume that the diagonal components of the
matrix κi

j are equal, κi
i = κα, and that the off-diagonal components differ by at most a

change of sign, κi
j = −κ j

i = κβ, as required by the symmetries of the noncommutative
relations (98)–(100). For later convenience, we write down the noncommutative matrices,
explicitly, as

[θij] =

⎛⎝ 0 θ θ
−θ 0 θ
−θ −θ 0

⎞⎠, [ηij] =

⎛⎝ 0 η η
−η 0 η
−η −η 0

⎞⎠, [κi
j] =

⎛⎝ κα κβ −κβ

κβ κα κβ

−κβ κβ κα

⎞⎠. (101)

Note that here we choose to parameterize the antisymmetric matrices θij and ηij and the
symmetric matrix κi

j with the minimum possible number of independent parameters, i.e., θ,
η, κα and κβ. However, this choice is made for the sake of simplicity and pedagogical
clarity, and more complicated models, with more parameters, may be more suitable for the
description of various physical scenarios. In the Section 4.8 below, one can see how this
“minimal” set of noncommutative parameters can be naturally associated with universal
physical constants, such as the Planck length and cosmological constant, which may provide
a physical scenario for dark energy and quantum gravity, in terms of noncommutative
geometry. Moreover, one can see that the κi

j matrix parameters, κα and κβ, can be naturally
expressed in terms of θ and η, based on the SW map with the Bopp shift [29].

The corresponding generalised uncertainty relations are

ΔXiΔPj ≥
κi

j

2
, (102)

ΔXiΔYj ≥ θij

2
, (103)

ΔPiΔPj ≥
ηij

2
. (104)

4.2. Angular Momenta in Noncommutative Phase Space

In the canonical quantum mechanics, the angular momentum operators are the gener-
ators of the rotation group SO(3). A vector rotation is expressed as

x̂′ = x̂ + δφ× x̂, (105)

where δφ = (δφx, δφy, δφz) are the infinitesimal Euler anglers. The wave function trans-
forms under rotations according to

ψ′(x, t) = ÛR(δφ)ψ(x̂, t), (106)

where
ÛR(δφ) = I − i

h̄
δφ · L̂, (107)

and L̂ = x̂× p̂ is the operator counterpart of the orbital angular momentum pseudovector.
The components of the angular momentum thus satisfy the closed relations
[L̂α, L̂β] = ih̄εαβ

γ L̂γ, which are equivalent to the su(2) Lie algebra. In isotropic space,
[ÛR(φ), Ĥ] = 0 and [L̂, Ĥ] = 0, which implies that the angular momentum is conserved.
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In the noncommutative phase space, we assume the rotation transformations (105)–(107)
still hold, but x̂→ X̂, p̂→ P̂ and L̂→ L̂ = X̂× P̂. In other words, the angular momentum
operator in the noncommutative phase space is given explicitly as

L̂i = εijkX̂j P̂k. (108)

By using the basic noncommutative relations in (98)–(100), the commutation relations for
the components of angular momenta can be obtained as

[L̂α, L̂β] = iεαj
kεβb

c[(κ j
cX̂bP̂k − κb

kX̂j P̂c) + (ηkcX̂jX̂b + θ jb P̂c P̂k)]. (109)

It can be seen that the angular momentum does not obey the SO(3) Lie algebra. It can
be verified that [L̂, Ĥ] �= 0, which implies that rotational symmetry is broken in the
noncommutative phase space.

However, it should be noted that in some approaches to noncommutative geometry,
such as the κ−Minkowski model of noncommutative spacetime, generalized operators
are taken, by definition, as the generators of deformed-symmetry transformations [57,58].
In this approach, the Lie algebras of canonical quantum mechanics are replaced by Hopf
algebras, and the dynamics of the canonical theory are generalized to include additional
couplings between matter and gravity, as required by the structure of the κ−Poincare Hopf
algebra [57,58].

4.3. The Heisenberg Equation and Conservation Laws

As in canonical quantum mechanics, it is assumed that the equation of motion for a time-
dependent operator, Q̂, in the noncommutative phase space, is the Heisenberg equation

d
dt

Q̂ =
1
ih̄
[
Q̂, Ĥ

]
, (110)

where [Q̂, Ĥ] is the appropriate (perhaps noncanonical) commutator.
According to Noether’s theorem, a physical variable Q̂ is conserved under a unitary

transformation, Û = e−iαQ̂, where α ∈ R is a continuous parameter, if [Q̂, Ĥ] = 0. In
canonical quantum mechanics, the spatial translation operator, which acts according to
T̂X : X̂ → X̂ + a, ψ

(
X̂, t

)
→ T̂Xψ

(
X̂, t

)
= ψ

(
X̂ + a, t

)
, is given by T̂X = e

i
h̄ a·P̂. Hence,

the momentum operator can be regarded as the generator of the translation group. However,
in the noncommutative phase space, we have [T̂X, Ĥ] �= 0 and [P̂, Ĥ] �= 0, even for the free
particle with Hamiltonian, Ĥ = P̂2/(2m). As with the generalized angular momentum
operators, discussed in Section 4.3, one can just define generalised “translations” as a group
of transformations in the noncommutative phase space, then identify their generators with
the (noncommutative) components of the generalized momenta (c.f. [57,58]).

In addition, assuming that the vector momentum operator is given in the usual way,
P̂ = P̂Xi+ P̂Yj+ P̂Yk, and using the basic noncommutative relations in (98)–(100), we obtain

[P̂, Ĥ] =
η

m
K̂p, (111)

where
K̂p =

(
P̂y + P̂z

)
i−

(
P̂x − P̂z

)
j.−

(
P̂x + P̂y

)
k. (112)

The noncommutative relation in (111), between the momentum and Hamiltonian op-
erators, implies that d

dt
〈
P̂
〉
= η

m
〈
K̂p
〉
�= 0. Namely, that momentum is not conserved in the

noncommutative phase space, even for a free particle. This is because spatial translational
symmetry is broken. However, interestingly, it can be verified that [P̂2, Ĥ] = 0, which
implies that the amplitude of the momentum is still conserved. In other words, the direction
of the momentum shows an intrinsic stochastic behavior, in the noncommutative phase
space, due to fluctuations of the background geometry, but this does not alter the total
energy of the system.
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The commutation relation between the angular momentum operator and the Hamilto-
nian of the free particle is obtained as

[
L̂, Ĥ

]
=

ih̄
m
(
Ω̂Xi + Ω̂Yj + Ω̂Zk

)
≡ ih̄

m
Ω̂, (113)

where

Ω̂X =
η

h̄
(
−
{

Ŷ, P̂Y
}
−
{

Ẑ, P̂Z
}
−
{

Ŷ, P̂X
}
+
{

Ẑ, P̂X
})

+
κβ

h̄

({
P̂X , P̂Y

}
+
{

P̂X , P̂Z
}
+ 2P̂2

Y + 2P̂2
Z

)
, (114)

Ω̂Y =
η

h̄
({

X̂, P̂X
}
+
{

X̂, P̂Y
}
+
{

Ẑ, P̂Z
}
+
{

Ẑ, P̂Y
})

+
κβ

h̄

({
P̂X , P̂Y

}
−
{

P̂Y, P̂Z
}
− 2P̂2

X + 2P̂2
Z

)
, (115)

Ω̂Z =
η

h̄

(
−
{

X̂, P̂X
}
−
{

Ŷ, P̂Y
}
+
{

X̂, P̂Z
}
−
{

Ŷ, P̂z

})
+

κβ

h̄

(
−
{

P̂X , P̂Z
}
−
{

P̂Y, P̂Z
}
− 2P̂2

X + 2P̂2
Y

)
. (116)

In general, for η �= 0 and κβ �= 0, we have Ω̂ �= 0. This implies that d
dt
〈
L̂
〉
= ih̄

m
〈
Ω̂
〉
�= 0,

i.e., that the angular momentum is not conserved in noncommutative phase space, even for
free particles. However, whether there exist specific states, and/or specific nonzero values
of η and κα, such that 〈Ω̂〉 = 0, is an interesting question, although we do not attempt to
answer it here. In addition, the commutation relation between the square of the angular
momentum and the Hamiltonian can be expressed as

[L̂2, Ĥ] =
ih̄
m
(
L̂ · Ω̂ + Ω̂ · L̂

)
, (117)

which implies that the amplitude of the angular momentum is also not conserved, in con-
trast to the energy. In general, both spatial translation and rotation symmetries are broken
in the noncommutative phase space.

By contrast, time translations are defined implicitly through the Heisenberg equation,
as the transformations generated by the Hamiltonian, Ĥ. Hence, the preservation of
time-translation symmetry is a direct consequence of the Heisenberg equation, which is
assumed to also hold in the noncommutative phase space model. More specifically, the time-
translation operator, which acts according to T̂t : t → t + τ and ψ(X̂, t) → T̂tψ(X̂, t) =

ψ(X̂, t + τ), is given by T̂t = eτ ∂
∂t = e−

i
h̄ τĤ , where Ĥ = ih̄ ∂

∂t . We then have
[
T̂t, Ĥ

]
= 0 and

[Ĥ, Ĥ] = 0, i.e., time-translation symmetry still holds in the noncommutative phase space,
which corresponds to the conservation of energy.

However, since spatial translation symmetry is broken in the noncommutative phase
space, let us investigate the velocity and acceleration of a free particle. The velocity of the
particle is defined as v̂ := d

dt X̂, so that by using the Heisenberg equation (110) one has:

v̂ =
1
ih̄
[X̂, Ĥ]. (118)

For the free particle, the velocity is obtained, explicitly, as

v̂ =
1
m

(
καP̂ + κβK̂v

)
, (119)

where
K̂v =

(
P̂Y − P̂Z

)
i +

(
P̂X + P̂Z

)
j +

(
−P̂X + P̂Y

)
k. (120)

It can be seen that there exists an intrinsic velocity, associated with the noncommu-
tative parameters, and driven by the stochastic fluctuations of the background geometry.
However, when the canonical momentum of the particle vanishes,

〈
P̂
〉
= 0, we obtain
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〈
K̂v
〉
= 0. In Section 4.4 below, we give the Heisenberg representation of the velocity

based on the SW map. This raises interesting issues regarding the nature of the principle of
relativity in noncommutative space, but an in-depth discussion of these points lies outside
the scope of the present review;. for further literature, see references in Ref. [64].

Consistent with the definition of velocity, the acceleration is defined as â := d
dt v̂. Again,

by using the Heisenberg equation, this gives

â =
1
ih̄
[v̂, Ĥ]. (121)

For the free particle, the acceleration is obtained, explicitly, as

â =
η

m2h̄
(κα + κβ)K̂p, (122)

where
K̂p =

(
P̂y + P̂z

)
i−

(
P̂x − P̂z

)
j−

(
P̂x + P̂y

)
k. (123)

Hence, there also exists an intrinsic stochastic acceleration. We can interpret this intrinsic
acceleration as arising from quantum fluctuations of the noncommutative phase space
background. This is associated with fluctuations in the components of the momentum,
but we note that the direction of the acceleration is not, in general, the same as the direction
of the momentum fluctuations.

4.4. Seiberg–Witten Map and the Heisenberg Representation

The noncommutative phase space provides a new operator algebra, beyond the canon-
ical Heisenberg algebra, with which to explore unsolved puzzles in physics. To establish a
rigorous mathematical basis for the model, and to allow clearer comparison with the canoni-
cal quantum formalism, several methods have been proposed in the literature to implement
the noncommutative algebra (98)–(100) via a map on the canonical quantum operators. The
three most used methods are the SW map, the Moyal star product, and the Wigner–Weyl
phase space formulation [19–21]. Here, we outline the method of Seiberg and Witten (SW),
which constructs a map linking the noncommutative phase space relations to the canonical
Heisenberg algebra [29,34,35].

Formally, the SW map is defined as a map from the noncommutative phase space
to the canonical Heisenberg phase space, which preserves the form of functions of the
canonical variables, i.e.,

φSW :
(
X̂, P̂

)
→ (x̂, p̂),

Ô
(
X̂, P̂

)
→ Ô(x̂, p̂),

(124)

where (X̂, P̂) obey the algebra (98)–(100) and (x̂, p̂) obey Equation (11).
In other words, the noncommutative relations between the operators in

Equations (98)–(100) can be implemented equivalently by the Heisenberg commutation
relations, together with the SW map. The SW map may be implemented, explicitly, via the
so-called Bopp shift [29], which is expressed as

X̂i = x̂i + αik p̂k, (125)

P̂j = p̂j + β jl x̂l , (126)

where

θij := h̄(αji − αij), ηij := h̄(β ji − βij) (127)

and

κi
j := h̄(δi

j − αikβ jk). (128)
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By using the matrices (101), this gives⎛⎝ X̂
Ŷ
Ẑ

⎞⎠ =

⎛⎝ x− θ
2h̄
(

p̂y + p̂z
)

y + θ
2h̄ ( p̂x − p̂z)

z + θ
2h̄
(

p̂x + p̂y
)
⎞⎠, (129)

⎛⎝ P̂X
P̂Y
P̂Z

⎞⎠ =

⎛⎝ p̂x +
η
2h̄ (y + z)

p̂y − η
2h̄ (x− z)

p̂z − η
2h̄ (x + y)

⎞⎠, (130)

which implies [
αij
]
=

⎛⎝ 0 − θ
2h̄ − θ

2h̄
θ

2h̄ 0 − θ
2h̄

θ
2h̄

θ
3h̄ 0

⎞⎠ (131)

and [
βij
]
=

⎛⎝ 0 η
2h̄

η
2h̄

− η
2h̄ 0 η

2h̄
− η

2h̄ − η
2h̄ 0

⎞⎠. (132)

This representation of the position and momentum operators can be regarded as the
Heisenberg representation of noncommutative quantum mechanics. The SW map provides
an efficient way to modify the Heisenberg algebra, giving rise to a noncommutative phase
space, even though the map is not unitary or canonical.

By using the SW map (125) and (126) together with the noncommutative matrices
(101), we obtain the explicit form of the noncommutative parameters that generalises the
position–momentum commutator as

κα = h̄
(

1 +
θη

2h̄2

)
, κβ =

θη

4h̄
, (133)

which implies that the noncommutative phase space can be described by two independent
parameters, θ and η.

However, it should be remarked that there is actually no unique SW map between
the noncommutative phase space and the canonical Heisenberg phase space. The SW map
with the Bopp shift, defined by Equations (131) and (132), provides a straightforward way
to capture, approximately, the essential features of the noncommutative algebra in terms of
the usual canonical Heisenberg algebra [29]. Moreover, for two general operators Â(X̂, P̂)
and B̂(X̂, P̂), the SW map does not preserve the form of the canonical commutator, namely,

φSW [Â(X̂, P̂), B̂(X̂, P̂)] �= [φSW Â(X̂, P̂), φSW B̂(X̂, P̂)]. (134)

Hence, there exists additional ordering ambiguity.
Before concluding this section, we again stress that the choice of independent parame-

ters for the antisymmetric matrices, θ and η, and for the symmetric matrix, κα and κβ, is
the simplest “natural” choice available. Nonetheless, in principle, the SW map and non-
commutative algebras do not require constant matrices. Furthermore, for the SW map with
the Bopp shift, (131) and (132), this relatively simple choice is truly “minimal”, since even
κα and κβ can be expressed in terms of θ and η, according to Equation (133). In Section 4.8
below, we associate the two noncommutative parameters, θ and η, with the Planck length
and the cosmological constant, respectively, which, it may be hoped, could provide a
physical scenario for the emergence of dark energy from noncommutative geometry.
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4.5. The Schrödinger Equation in Noncommutative Phase Space

Based on the SW map, the momentum operators in Equations (129) and (130) can be
rewritten as P̂ = p̂−Aη , where

Aη
X = − η

2h̄
(y + z), (135a)

Aη
Y =

η

2h̄
(x− z), (135b)

Aη
Z =

η

2h̄
(x + y), (135c)

and the Aη
i can be regarded as the components of an effective gauge potential. Thus,

the Schrödinger equation for the free particle can be expressed as

ih̄
∂ψ

∂t
=

1
2m

(p̂−Aη)2ψ. (136)

It can be seen that the Schrödinger equation for a free particle in noncommutative
phase space is analogous to that obtained, in the canonical theory, for a charged particle in
an electromagnetic potential. The continuity equation is given by

∂ρ

∂t
+∇ · J = 0, (137)

where ρ = |ψ|2 is the probability density and the probability current density is defined as
J = 1

m 〈ψ|p̂−Aη |ψ〉. It should be noted that the current density is not equal to the velocity
given by Equation (119).

4.6. Noncommutative Gauge Fields and the Pauli Equation

We suppose that spin in noncommutative phase space has the same form as in canon-
ical quantum mechanics, because spin is an intrinsic property of the particle, which is
independent of the spacetime background [61]. Thus, the Pauli equation for a particle with
nonzero spin and charge q, in the noncommutative space, may be written as

ih̄
∂ψ

∂t
=

[
1

2m
[σ · (p̂−Anc)]2 + qφ

]
ψ, (138)

where σ = σxi + σyj + σzk and φ is the electric potential. The effective vector potential
contains two terms,

Anc = A + Aη , (139)

where A is the canonical vector potential and Aη is the effective contribution arising from
the noncommutativity of the momentum components. The total effective magnetic field is
Bnc = ∇×Anc, where Bnc = B + Bη with B = ∇×A and Bη = ∇×Aη . Thus, the Pauli
equation can be rewritten as

ih̄
∂ψ

∂t
=

[
1

2m
(p̂−Anc)2 − h̄q

2m
σ · Bnc + qφ

]
ψ. (140)

By analogy with canonical electrodynamics, we also define the effective electromag-
netic field tensor, generated from the effective gauge potential in the noncommutative
phase space, as

Fη
μν = ∂μ Aη

ν − ∂ν Aη
μ. (141)

Substituting the gauge potential (135) into Equation (141), the explicit form of Fη
μν is

obtained as [
Fη

μν

]
=

⎛⎝ 0 −η/h̄ −η/h̄
η/h̄ 0 −η/h̄
η/h̄ η/h̄ 0

⎞⎠. (142)
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Interestingly, the effective gauge field is induced by the noncommutativity between dif-
ferent directional components of momentum, in the noncommutative phase space. This
noncommutative effect can be interpreted as a spacetime curvature, so that the resulting
gauge field can be naturally related to the value of the scalar curvature. For this reason, we
relate η to the observed value of the cosmological constant, in Section 4.8.

Following Equation (124), any observable operator in the noncommutative phase space
can be mapped to the Heisenberg representation, based on the SW map. Actually, the wave
function in noncommutative phase space is also given by Ψ(X) = 〈X|Ψ〉 or Ψ̃(P) = 〈P|Ψ〉,
by analogy with the canonical theory. However, as a first-order approximation, it is
convenient to assume that [24,25,33]

Ψ(X) # ψ(x) +O(θ), (143)

Ψ(P) # ψ(p) +O(η). (144)

4.7. Noncommutativity-Induced Anomalous Velocity and Acceleration

For the free particle, using the SW map in Equations (124)–(126), the expectation value
of the velocity in the Heisenberg representation can be expressed as

〈v̂i〉 = 1
h̄m

(
κi

j〈 p̂j〉+
η

2
γi

j〈xj〉
)

, (145)

where

[
γi

j

]
=

⎛⎜⎜⎜⎝
0

(
1 + 3θη

4h̄2

) (
1 + 3θη

4h̄2

)
−
(

1 + 3θη

4h̄2

)
0

(
1 + 3θη

4h̄2

)
−
(

1 + 3θη

4h̄2

)
−
(

1 + 3θη

4h̄2

)
0

⎞⎟⎟⎟⎠. (146)

Similarly, the expectation value of the acceleration is obtained as

〈âi〉 =
1

m2h̄

(
1 +

3θη

4h̄2

)(
ηij〈 p̂j〉 −

η2

h̄
χij〈xj〉

)
, (147)

where [
χij
]
=

⎛⎝ 1 1/2 −1/2
1/2 1 1/2
−1/2 1/2 1

⎞⎠. (148)

As noted previously, in Section 4.3, the velocity and acceleration contain an intrin-
sic stochastic perturbation arising from the noncommutativity of momenta in different
directions of the phase space. Here, these are expressed in terms of the two independent
parameters of our specific implementation of the SW map, θ and η. This anomalous accel-
eration can be interpreted as a quantum effect, since it is induced by the noncommutative
algebra. In Section 4.8 below, we express the noncommutative parameters in terms of the
Planck length and the cosmological constant, linking the noncommutative algebra with the
spacetime background and nonzero minimal energy density.

4.8. Physical Interpretations of the Noncommutative Parameters

In canonical quantum mechanics, Planck’s constant plays an essential role in quantiz-
ing the phase space of elementary particles, such that quantum states are described by state
vectors in a Hilbert space. Roughly speaking, h̄ represents the minimum (incompressible)
volume of a phase space fluid element, ΔXiΔPj [9,10]. In noncommutative phase space,
the noncommutative parameters θ and η play analogous roles with respect to physical
space and momentum space, respectively, inducing minimum bounds on the volumes
ΔXiΔXj and ΔPiΔPj, which cannot be further compressed below their minimum values.
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Actually, one can adopt different parametrization schemes for the noncommutative
parameters, for various physical problems, associated with different energy and spacetime
scales. In other words, how one endows the noncommutative parameters with physical
meanings (and scales) depends on what physical problems are being addressed. Therefore,
let us note that many studies suggest that spacetime should be quantized, inducing a
minimum length scale of the order of the Planck length [11]. Similarly, the emergence
of dark energy implies that there exists a minimum curvature of spacetime, expressed
in terms of the cosmological constant [12,13], which can be naturally associated with the
nonzero energy/momentum density obtained in a noncommutative phase space model.
(We recall that a minimum positive curvature is equivalent, according to the gravitational
field equations, to a minimum positive energy density.)

In particular, gedanken experiments in quantum gravity, together with various the-
oretical approaches, such as string theory [11], loop quantum gravity [9,10], and others,
suggest spacetime quantization at the Planck scale. While the status of a minimum possible
momentum is less clear, several models also propose this [12,13], and it is worth noting
that in a universe governed by dark energy there exists a finite de Sitter horizon [12,13].
This places on upper bound on the value of a particle’s de Broglie wavelength and, hence,
a lower value on its momentum uncertainty, of the order of the de Sitter momentum,
mdSc = h̄

√
Λ/3, mentioned previously in Section 2.3.

Thus, we propose a parametrization scheme for the noncommutative parameters,
which is associated with the Planck length and the cosmological constant, namely

θ = �2
Pl, η = m2

dSc2, (149)

where we define the Planck and de Sitter mass scales explicitly as

�Pl =

√
h̄G
c3 # 10−33 cm, mPl =

√
h̄c
G
# 10−5 g, (150)

�dS =

√
3
Λ
# 1028 cm, mdS =

h̄
c

√
Λ
3
# 10−66 g. (151)

Combining the relations (149) and (150), we obtain the independent components of
the generalised position–momentum commutator, in the noncommutative phase space, as

κα = h̄(1 + Δ), κβ =
h̄Δ
2

, (152)

where

Δ :=
ρΛ

ρPl
# 10−122, (153)

and

ρΛ =
Λc2

8πG
, ρPl =

3
4π

c5

h̄G2 , (154)

are the dark energy and Planck densities, respectively, with G the gravitational constant.
Interestingly, a new model of generalised uncertainty relations was developed [65,66],
in which the action scale β := 2h̄

√
Δ # h̄×O(10−61) was proposed as the fundamental

quantum of action for spacetime, as opposed to matter. In this model, the generalised
uncertainties were obtained without modifying the canonical space–space or momentum–
momentum commutators, but the parameterization above suggests that an extension of this
approach could be used to provide a physical mechanism for noncommutative geometry.
This intriguing possibility will be analysed in detail in a future work.
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5. Conclusions and Outlook

The interplay between physics and mathematics stimulates new ideas to resolve
unsolved puzzles in nature. In this review, we have given a brief introduction to the
interplay between physics and mathematics in the fields of noncommutative geometry
and noncommutative phase space, encompassing topics in both classical physics and
quantum mechanics.

Although noncommutative phenomena were discovered, even in classical mechanics,
their true significance became apparent only with the advent of quantum theory in the 1920s.
Since then, noncommutative structures have inspired bold new attempts to solve unsolved
problems in gravity and high-energy theory, and, arguably, their significance to modern
theoretical physics has only increased since the heady days of the early twentieth century.

From classical Poisson brackets to the Heisenberg commutation relations and the
quantum Hall effect, physicists have found real-world phenomena described by noncom-
mutative algebras and geometries. Furthermore, as we attempt to extend our current
physical theories into previously unprobed regimes at the Planck scale, or dark energy
scale, infinities and singularities unavoidably emerge, suggesting new types of noncom-
mutative structures which may be able to cure them. Increasingly, a large number of
researchers believe that the infinities and singularities which break all known physical laws
may be cured if there exist quantum fluctuations of the spacetime background, governed
by noncommutative algebras, which are able to prevent such divergences. Thus, noncom-
mutative phenomena inspire many attempts to construct a unified framework for both
gravity and high-energy particle physics [2–4].

In this review, we have introduced the basic concepts underlying noncommutative
phenomena in classical and quantum mechanics and presented some important examples
in condensed matter and statistical physics. We discussed the basic noncommutative alge-
bras that arise in physical theories, including the classical Poisson brackets in symplectic
geometry, the Heisenberg algebra of fundamental operators, acting on the Hilbert space of
canonical quantum mechanics, and the Lie, Clifford, and Dirac algebras associated with
rotational symmetry and spin. On a more theoretical note, we also gave brief expositions of
the Snyder and Nambu algebras, which have been proposed as extensions of existing phys-
ical theories, and are intended to help cure the emergence of the singularities mentioned
above [12,13].

Based on the SW map, we outlined the basic properties and novel phenomena that
occur in the noncommutative extension of the Heisenberg phase space, incorporating both
space–space and momentum–momentum noncommutativity. These include the breaking of
translation and rotational symmetries, as well as important phenomenological predictions
like the existence of anomalous, stochastic perturbations to the velocity and acceleration of
free particles, induced by noncommutativity. The stochastic perturbations can be viewed
as an additional quantum force, driving particle motion due to quantum fluctuations of
the background geometry, and we showed that the noncommutative terms give rise to
an effective gauge field in the Schrödinger and Pauli equations. With this in mind, we
proposed a parametrization scheme for the noncommutative parameters, which associated
them with both the Planck length and the dark energy density, where the latter is expressed
in terms of the cosmological constant.

Based on this parametrization scheme, the effective gauge field that arises from the
noncommutativity of the phase space can also be interpreted in terms of the minimum
length, and minimum energy density of the universe. We showed that this gives rise
to phenomenologically interesting effects on the dynamics of free particles, which are
subjected to intrinsic stochastic velocity and acceleration perturbations. These perturbations
depend on the initial momentum and position, and can be regarded as a quantum effects
induced by the noncommutative phase space. The quantum anomalous acceleration of free
particles could actually provide a microphysical model for dark energy.

However, we note that noncommutative models in physics have been developed in
many different ways, including Conne’s approach to noncommutative geometry [14,15],
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noncommutative M-theory [4,56], noncommutative field theory based on the Moyal star
product [3], the principle of relative locality, and κ−deformed spacetime symmetries based
on Hopf algebras [57–59]. These interesting results suggest that noncommutative phase
space may provide a deep connection between the dynamics of microscopic particles and
the quantum theory of gravity, including dark energy; for details of these and other ap-
proaches to noncommutative phenomena, that were not covered in the present pedagogical
introduction, see the bibliography and references therein.

Author Contributions: Conceptualization, S.-D.L.; methodology, S.-D.L. and M.J.L.; validation,
S.-D.L. and M.J.L.; formal analysis, S.-D.L. and M.J.L.; resources, S.-D.L. and M.J.L.; writing—original
draft preparation, S.-D.L.; writing—review and editing, S.-D.L. and M.J.L.; visualization, fund-
ing acquisition, S.-D.L. and M.J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors thank the Grant of Scientific and Technological Projection of Guangdong
Province (China), no. 2021A1515010036. The research of M.J.L. was supported by the Natural Science
Foundation of Guangdong Province (China), Grant no. 008120251030.

Data Availability Statement: Not applicable.

Acknowledgments: M.J.L. wishes to thank the Department of Physics and Materials Science, Faculty
of Science, and the Office of Research Administration, Chiang Mai University (Thailand), for provid-
ing research facilities.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Takhtajan, L.A. Quantum Mechanics for Mathematicians; American Mathematical Society: Providence, RI, USA, 2008.
2. Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977–1029. [CrossRef]
3. Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep. 2003, 378, 207–299. [CrossRef]
4. Konechny, A.; Schwarz, A. Introduction to M(atrix) theory and noncommutative geometry. Phys. Rep. 2002, 360, 353–465.

[CrossRef]
5. Rosenbaum, M.; Vergara, J.D.; Juarez, L.R. Noncommutative field theory from quantum mechanical space-space noncommutativity.

Phys. Lett. A 2007, 367, 1–10. [CrossRef]
6. Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38–41. [CrossRef]
7. Gouba, L. A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A 2016,

31, 1630025. [CrossRef]
8. Yang, C.N. On Quantized space-time. Phys. Rev. 1947, 72, 874. [CrossRef]
9. Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [CrossRef]
10. Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [CrossRef]
11. Fredenhagen, K. Gravity induced noncommutative spacetime. Rev. Math. Phys. 1955, 7, 559–565. [CrossRef]
12. Matarrese, S.; Colpi, M.; Gorini, V.; Moschella, U. Dark Matter and Dark Energy; Springer Science+Business Media/Canopus

Academic Publishing Limited: Dordrecht, The Netherlands, 2011. [CrossRef]
13. Peebles, P.J.E. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [CrossRef]
14. Connes, A.; Marcolli, M. A walk in the noncommutative garden. In An Introduction to Noncommutative Geometry; Khalkhali, M.,

Marcolli, M., Eds.; World Scientific: Singapore, 2008; pp. 1–128. [CrossRef]
15. Connes, A. Non-commutative differential geometry. Int. Hautes Etudes Sci. Publ. Math. 1985, 62, 257–360. [CrossRef]
16. Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The quantum structure of spacetime at the Planck scale and quantum fields. Commun.

Math. Phys. 1995, 172, 187–220. [CrossRef]
17. Delduc, F.; Duret, Q.; Gieres, F.; Lefrancois, M. Magnetic fields in noncommutative quantum mechanics. J. Phys. Conf. Series 2008,

103, 012020. [CrossRef]
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