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Energy-Efficient Decentralized Broadcasting in Wireless Multi-Hop Networks
Reprinted from: Sensors 2023, 23, 7419, doi:10.3390/s23177419 . . . . . . . . . . . . . . . . . . . . 305

v



Sammy Johnatan Carbajal Ipenza and Bruno Sanches Masiero
Efficient Sigma–Delta Sensor Array Beamforming
Reprinted from: Sensors 2023, 23, 7577, doi:10.3390/s23177577 . . . . . . . . . . . . . . . . . . . . 331

vi



About the Editor

Josip Lorincz

Josip Lorincz received a B.Sc. (M.S. equivalent) and a Ph.D. degree in telecommunications

engineering and computer science from the University of Split, Croatia, in 2002 and 2010,

respectively. In 2003, he joined the Faculty of electrical engineering, mechanical engineering, and

naval architecture, at the University of Split, Croatia, where he currently works as an associate

professor. In the academic year 2009/2010, he was a visiting researcher at the Department of

Electronics, informatics, and bioengineering of the Politecnico di Milano, Italy. As a project leader

or researcher, he participated in more than thirty scientific and professional projects funded by the

EU, public or private sector. He is the founder and chair of the Symposium on Green Networking and

Computing, organized in the frame of the International Conference on Software, Telecommunications

and Computer Networks (SoftCOM). He also serves as the technical program committee member

for many international scientific conferences and as a reviewer for top scientific journals. He was

a guest editor in different scientific journals and an evaluator of international scientific projects.

His current research interests include energy-efficient wireless and wired networks, optimization in

telecommunications, advanced design, management and analyses of sensor networks, and evolution

of routing protocols. He has authored more than 60 research papers published in different scientific

conferences and journals. He is a senior IEEE member, senior ACM member, associate member of

the Croatian Academy of Engineering, and the first president of the Croatian ACM chapter. Since

2004, he has owned Cisco CCNA, CCAI, and BCMSN certificates. In 2012, he received an award

for scientific work from his home institution, FESB, and in 2013, he was awarded as an outstanding

young researcher by the Croatian Academy of Engineering. In 2023, from his home University of

Split, he received a science award for present achievements in science.

vii





Preface

Information and communication systems are integral parts of modern society, facilitating the

exchange of information and connecting people across the globe. However, the usage of information

and communication systems comes with significant environmental costs, which are the consequence

of the two causes. The first one is the high energy consumption required for the operation of

information and communication systems, and the second one is related to the carbon emissions

that occur during their operation. As a consequence, the energy efficiency of information and

communication systems has become an increasingly important topic, as the need to reduce energy

consumption and minimize carbon emissions has become a critical priority.

One of the most significant challenges in improving the energy efficiency of information and

communication systems and consequently reducing carbon emissions is the sheer volume of data

that needs to be processed and transmitted. As the volume of data continues to grow due to

the proliferation of new services and applications and the increase in the number of network

users, the energy required for processing and transmitting this data also increases. This has led

to a continuous increase in the energy consumption of data centers and communication networks,

which are responsible for storing and transmitting data. This growth in energy consumption has

resulted in various negative economic impacts related to the large operational expenditures (OPEX)

of communication networks and system operators and environmental impacts related to the pollution

caused by increased carbon emissions. Hence, there is a constant need for the development of

solutions that can reduce energy consumption while maintaining high performance, quality of

service, and reliability of communication networks and systems.

Although the contribution of communication networks and systems to energy consumption and

carbon emissions on a global level cannot be completely nullified, in order to stop or even reverse

the increasing trend of energy consumption and carbon emissions contributed by communication

networks and systems, these contributions should be maximally decreased. To achieve this,

improved or completely new strategies and approaches in terms of the development and operation

of communication networks and systems must be devised and practically implemented. Hence,

energy-efficient operation of communication networks and systems should be envisioned on all Open

System Interconnection (OIS) layers. This can be realized through developing more energy-efficient

communication protocols, designing more energy-efficient hardware components, envisioning novel

algorithms that will minimize the number of active components at any given time, reusing them in

a better way, and exploiting renewable energy sources in powering communication networks and

systems. To accomplish this challenging task, a joint effort of different participants coming from

governments, standardization organizations, academia, and industry must take place. Hence, energy

efficiency has an important role in ensuring the sustainable development of communication networks

and systems, and it represents a topic of increasing interest and importance in modern society.

Despite such astonishing interests in improving the energy efficiency of communication

networks and systems perceived during the last decade, the research on energy-efficient

communication networks and systems on different levels and in many fields demands enhanced or

completely new solutions. Also, versatile basic or highly sophisticated problems are still unsolved

or are even in their infancy. Hence, improving the energy efficiency of communication networks and

systems are and will proceed in being an actual economic, social, industrial, and particularly research

challenge. This book, entitled “Energy-efficient Communication Networks and Systems”, is dedicated to

all aspects of the research and development related to solving such challenges. The reprint provides

an overview of the latest research and technologies in the field of energy-efficient communication
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networks and systems. It contains the accepted scientific papers gathered in the “Special Issue on

Energy-efficient Communication Networks and Systems” organized for the Sensors journal which is

published by MDPI (Multidisciplinary Digital Publishing Institute). Twelve high-quality articles have

been collected and reproduced in this book, demonstrating significant achievements in the field to

which this reprint is dedicated. Among published scientific papers, one paper is editorial, one paper

is a review type of paper, and the remaining ten works are research articles. Published papers are

consolidated in this reprint as self-contained peer-reviewed scientific works.

(1). The editorial paper “Lorincz J.; Klarin Z.; Begusic D.; Advances in Improving Energy Efficiency

of Fiber–Wireless Access Networks: A Comprehensive Overview, Sensors 2023, 23, 2239.”, gives a

comprehensive survey of recent research on approaches that contribute to energy efficiency (EE)

improvements of Fiber-Wireless (FiWi) access networks. The presented EE analyses are performed for

different types of FiWi networks, including the radio-and-fiber (R&F) networks, the radio-over-fiber

networks (RoF), the FiWi networks based on multi-access edge computing (MEC), and the

software-defined network (SDN)-based FiWi networks. For the R&F networks, energy conservation

techniques and research studies related to the optical and wireless domains were presented, as well

as related works that deal with the improvement of FiWi networks’ EE through the cooperation of

techniques in wireless and optical domains. Furthermore, two basic RoF techniques, the digital-RoF

(D–RoF) and analog-Rof (A–RoF), were elaborated in the context of EE, and an overview of research

studies in the field of improving the EE of D–RoF and A–RoF systems was given. Additionally,

the cloud–radio access network (C-RAN) architecture was reviewed through the prism of energy

consumption with the presentation of current research efforts related to the improvement of the

C-RAN energy efficiency. The MEC-based FiWi networks, which introduce cloud computing at the

edge of the mobile network, were further presented, and articles dedicated to the mechanisms and

concepts for the optimization of the MEC FIWi network’s energy consumption were highlighted.

Finally, flexible SDN FiWi networks that offer high scalability and ease of management were

presented, with an emphasis on research related to energy conservation techniques implemented

in such networks. The last part of the paper also discusses future directions for improving the EE in

the FiWi networks.

(2). In addition, the second review paper, “Depasquale E.-V.; Davoli F.; Rajput H.; Dynamics of

Research into Modeling the Power Consumption of Virtual Entities Used in the Telco Cloud, Sensors 2023,

23, 255.” gives analytical and a graphical survey of the literature over the period 2010–2020, on

the measurement of power consumption and developed power models of virtual entities (virtual

machines (VMs) or containers) implemented in the telecommunication (telco) operators cloud. The

paper presents a thorough analysis of the dynamics of research related to the virtual entities (VEs)

implementation challenges, approaches, pitfalls, fallacies, and research gaps with respect to the

predictive modeling and supporting measurements of individual VEs power consumption that is

relevant to the telco cloud. Research dynamics is characterized through a publication frequency

analysis, performed based on the application of a novel developed method that is unique in its ability

to parse research literature. Through the visual aids and cross-cutting themes, the authors in the paper

provide a thorough characterization of the problems, approaches, developments, formal methods,

pitfalls, fallacies, and research gaps that characterize the research space of predictive modeling and

measurements of individual telco VEs power consumption. The presented survey can serve as a

reference in the selection of the most appropriate power consumption model of VEs implemented in

the telco clouds.

(3). The third published paper, “Lorincz J.; Klarin Z.; How Trend of Increasing Data Volume Affects the

Energy Efficiency of 5G Networks, Sensors 2022, 22, 255.” analyses the impact of the expected increase
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of data volumes (DVs) through the 2020s, on the energy efficiency (EE) of the fifth generation (5G)

radio access network (RAN) by using standardized data and coverage EE metrics. An analysis

was performed for five different macro and small 5G base stations (BSs) implementation and

operation scenarios and for rural, urban, dense-urban, and indoor-hotspot device density classes

(areas). The results of analyses reveal a strong influence of increasing DV trends on standardized

data and coverage EE metrics of 5G heterogeneous networks (HetNets). For every device density

class characterized with increased DVs, elaboration on the process of achieving the best and worst

combination of data and coverage EE metrics for each of the analyzed 5G BSs deployment and

operation approaches have been performed. This elaboration is further extended on the analyses

of the impact of 5G RAN instant power consumption and 5G RAN yearly energy consumption on

values of standardized EE metrics. The presented analyses can serve as a reference in the selection of

the most appropriate 5G BS deployment and operation approach, which will simultaneously ensure

the transfer of permanently increasing DVs in a specific device density class and the highest possible

levels of data and coverage EE metrics.

(4). In the fourth paper “Lorincz J.; Ramljak I.; Begušic D.; Analysis of the Impact of Detection Threshold

Adjustments and Noise Uncertainty on Energy Detection Performance in MIMO-OFDM Cognitive Radio

Systems, Sensors 2022, 22, 631.”, the efficiency of spectrum sensing performed with the energy

detection (ED) method realized through the square-law combining (SLC) of the received signals at

secondary users (SUs) has been analyzed. The analyses take into account the detection threshold

(DT) adjustments performed according to noise uncertainty (NU) variations in multiple-input

multiple-output (MIMO)—orthogonal frequency division multiplexing (OFDM) communication

systems. The mathematical expression of the main parameters used for the evaluation of the ED

performance as a local spectrum sensing technique employing SLC in MIMO-OFDM CR systems

has been introduced. In addition, the algorithm for simulating the ED method in versatile operating

environments characterized by the influence of distinct levels of NU and performed with dynamic

DT (DDT) adjustments has been presented. The analysis of ED sensing efficiency has been performed

through extensive simulations, which indicates how different working parameters, including the

number of samples used in the ED process, the transmit powers of the primary user (PU), the

DDT and NU factors, the probabilities of false alarm, and the signal-to-noise (SNR) level impact the

probability of the detection of PU signals in MIMO-OFDM CR systems.

(5). To improve energy management, in the fifth paper, “Marques D.; Senna C.; Luı́s M.; Forwarding

in Energy-Constrained Wireless Information Centric Networks, Sensors 2022, 22, 1438.”, authors propose

an efficient forwarding scheme in energy-constrained wireless information-centric networks (ICNs).

Analyzed ICNs are composed of a large number of sensors allocated across the smart city. To achieve

the stated goal dedicated to the improvement of sensor nodes’ energy management, authors, among

other parameters, consider the different types of sensor devices, their internal energy consumption,

and the network context. The proposed forwarding strategy extends and adapts concepts of ICNs

through the implementation of packet domain analysis, neighborhood evaluation, and sensor node

sleeping and waking strategies. In order to consistently address sensor mobility and to improve the

quality of content delivery, the proposed solution takes advantage of the neighborhood awareness of

the moments that indicate when to listen and forward data packets. The evaluation of the proposed

strategy is performed by simulation with real datasets obtained based on real urban mobility. The

results show that the proposed data forwarding strategy enables significant improvements in the

network content availability, overall energy savings, and the network lifetime.

(6). In the paper “Liu Y.; Li C.; Li J.; Feng L.; Joint User Scheduling and Hybrid Beamforming Design

for Massive MIMO LEO Satellite Multigroup Multicast Communication Systems, Sensors 2022, 22, 6858.”,
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authors investigated the robust joint user scheduling and hybrid beamforming design scheme that

can maximize the energy efficiency (EE) of the massive multiple-input multiple-output (MIMO)

low Earth orbit (LEO) satellite multigroup multicast communication system. To solve the stated

problem, the authors first adopted the hierarchical clustering algorithm to group users and then

applied the semidefinite programming (SDP) algorithm and the concave-convex process (CCCP)

framework to tackle the optimization of user scheduling and hybrid beamforming design. To obtain

the digital and analog satellite antenna beamforming matrix in a hybrid beamformer, the alternative

optimization algorithm based on the majorization-minimization framework (MM-AltOpt) is also

proposed. Numerical simulation results show that the energy efficiency of the proposed joint user

scheduling and beamforming algorithm is higher than that of the traditional decoupling algorithms.

(7). To improve the power efficiency (PE) of the fifth generation (5G) heterogeneous network, in the

seventh paper “Osama M.; El Ramly S.; Abdelhamid B.; Binary PSO with Classification Trees Algorithm for

Enhancing Power Efficiency in 5G Networks, Sensors 2022, 22, 8570.”, an approach based on switching

on and off the redundant small cells (SCs) using machine learning (ML) techniques is proposed. The

proposed scheme needs to ensure a reduction in the energy consumption of the radio part of the 5G

network, while the quality of service (QoS) for every user must be satisfied. The proposed approach

is based on a linearly increasing inertia weight–binary particle swarm optimization (IW-BPSO)

algorithm for SC on/off switching. Moreover, a soft frequency reuse (SFR) algorithm is proposed

using the classification trees (CTs) approach to alleviate the interference and elevate the system

throughput. The obtained results show that the proposed algorithms, in terms of energy efficiency

improvements, outperform the other conventional energy-saving algorithms for 5G networks. The

proposed algorithms reduce the power consumption of the network and the interference among the

SCs while ensuring improvements in the total throughput and the PE of the system.

(8). Next published paper, “Han D.; So J.; EnergyEfficient Resource Allocation Based on Deep Q-Network

in V2V Communications, Sensors 2023, 23, 1295.”, utilizes the artificial intelligence concept of a deep

Q-network (DQN) to select the transmit resource blocks and transmit power of vehicles in the

vehicle-to-vehicle (V2V) network. The goal of the proposed concept is to maximize the sum rate of the

vehicle-to-infrastructure (V2I) and V2V communication links while reducing the power consumption

and latency of those links. The exploited DQN concept also utilizes the channel state information,

the signal-to-interference-plus-noise ratio (SINR) of V2I and V2V links, and the latency constraints of

vehicles to find the optimal resource allocation scheme. The proposed DQN-based resource allocation

scheme ensures energy-efficient transmissions that satisfy the latency constraints for the V2V links

while reducing the interference of the V2V network to the V2I network. The performance of the

proposed scheme has been evaluated in terms of the sum rate of the V2X network, the average power

consumption of the V2V links, and the average outage probability of the V2V links using a real case

study. The simulation results show that the proposed scheme greatly reduces the transmit power

of the V2V links, especially when compared to the transmit power of the V2V links in conventional

reinforcement learning-based resource allocation schemes.

(9). In the paper “Rau, F.; Soto, I.; Zabala-Blanco, D.; Azurdia-Meza, C.; Ijaz, M.; Ekpo, S.; Gutierrez,

S.; A Novel Traffic Prediction Method Using Machine Learning for Energy Efficiency in Service Provider

Networks. Sensors 2023, 23, 4997.” The authors propose a systematic approach for solving complex

prediction problems with a focus on energy efficiency. The approach involves the usage of neural

networks, specifically recurrent and sequential networks, as the main tool for prediction. In order to

test the proposed methodology, a case study was conducted to address the issue of energy efficiency

in the data centers of telecommunications service providers. The case study involved comparing four

neural network types, more specifically, recurrent neural networks (RNNs), long short-term memory
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(LSTM), gated recurrent units (GRUs), and online sequential extreme learning machine (OS-ELM), for

determining the best network in terms of network traffic prediction accuracy and computational time.

The results show that OS-ELM outperformed the other networks in both accuracy and computational

efficiency. The simulation was applied to real traffic data and showed significant energy savings

potential in a single day, which offers a real solution for energy efficiency and energy savings that

can be applied not only to the core part but also to the aggregation networks. The obtained results

confirmed that utilizing a neural network as the primary tool for prediction enables high accuracy

and adaptability to different data types of data center networks.

(10). In the paper “Kinman, G.; Žilić, Ž.; Purnell, D.; Scheduling Sparse LEO Satellite Transmissions

for Remote Water Level Monitoring. Sensors 2023, 23, 5581.”, authors have presented and evaluated

the transmission scheduling for emerging sparse low earth orbit (LEO) satellite services suitable

for IoT (Internet of Things) applications. More specifically, the authors explore the use of LEO

satellite links in the long-term monitoring of water levels across remote areas. Since emerging sparse

LEO satellite constellations maintain a sporadic connection to the ground station(s), the monitoring

sensor’s transmissions to the satellite need to be scheduled for satellite overfly periods. Thus, for

remote sensing, energy consumption optimization is critical, and this motivates authors to develop

a learning approach for scheduling the transmission times for the monitoring sensors. A detailed

probabilistic energy consumption model was developed in order to evaluate the proposed online

learning scheme for predicting transmission periods. The proposed online learning-based approach

combines Monte Carlo and modified k-armed bandit approaches in order to produce an inexpensive

scheme that applies to scheduling any LEO satellite transmissions. The proposed learning approach

is inexpensive computationally, learns in small increments in a modest number of training epochs,

and is interpretable, unlike most modern machine learning approaches. Results presented in the

paper demonstrate the ability to adapt scheduling transmission time, which results in 20-fold energy

saving of the transmission energy. The presented study applies to a wide range of IoT applications in

areas with no existing wireless coverages.

(11). The paper “Sterz, A.; Klose, R.; Sommer, M.; Höchst, J.; Link, J.; Simon, B.; Klein, A.; Hollick,

M.; Freisleben, B.; Energy-Efficient Decentralized Broadcasting in Wireless Multi-Hop Networks. Sensors

2023, 23, 7419.” presents a novel multi-hop data broadcasting protocol named BTP (Broadcast Tree

Protocol). The proposed protocol uses a game-theoretical model to construct a spanning tree in a

decentralized manner. The goal of the developed spanning tree model is to minimize the transmission

power of each node and consequently minimize the total energy consumption of a network. The

authors in the paper integrate three algorithms capable of inhibiting the creation of graph cycles into

the design of BTP. Although based on a game-theoretical model, the proposed BTP neither requires

information exchange between distant nodes nor time synchronization during its operation, while

BTP inhibits graph cycles effectively. Authors, through simulations, evaluate BTP with respect to

various aspects, compare BTP to other algorithms from the literature, and investigate the scalability

of BTP. The proposed protocol is evaluated in Matlab and NS-3 simulations and through real-world

implementation on a testbed of 75 Raspberry Pis. The evaluation conducted shows that the proposed

protocol can achieve significant energy reduction when compared to a simple broadcast protocol in

real-world experiments.

(12). Last published paper, “Carbajal Ipenza, S.J.; Masiero, B.S.; Efficient Sigma–Delta Sensor

Array Beamforming. Sensors 2023, 23, 7577.” analyses beamforming algorithm implementation for

sensors based on sigma–delta modulators (Σ∆Ms), which are widely used in consumer, industrial,

automotive and medical applications such as micro-electro-mechanical systems (MEMSs) or digital

microphones. Although Σ∆Ms have become a cost-effective and convenient way to deliver data to

xiii



digital processors, the Σ∆Ms output a pulse-density modulated (PDM) bitstream signal, which is the

reason why sensors require either built-in or external high-order decimation filters to demodulate

the PDM signal to a baseband multi-bit pulse-code modulated (PCM) signal. Because of this

extra circuit requirement, the implementation of sensor array algorithms, such as beamforming in

embedded systems (where the processing resources are critical) or in very large-scale integration

(VLSI) circuits (where the power and surface usage are crucial), becomes especially expensive as a

large number of parallel decimation filters are required. Thus, the article proposes a novel architecture

for beamforming algorithm implementation that fuses delay and decimation operations based on

maximally flat (MAXFLAT) filters to make array processing more affordable. As proof of concept,

the paper presents an implementation example of a delay-and-sum (DAS) beamformer at given

spatial and frequency requirements using a novel proposed approach. The presented results show

that in comparison with the most efficient state-of-the-art beamformer architectures, the proposed

architecture requires significantly lower storage and computational resources, which contributes to

the improvement of network energy efficiency.

The 40 different authors coming from academia and industry have contributed to this book.

Their contributions provide valuable insights into the latest research and technologies in the area

of energy-efficient communication networks and systems. The reprint also includes case studies

and examples of the usage of energy-efficient communication technologies in practice, providing

readers with practical insights into the implementation of these technologies. The reprint is intended

for researchers, engineers, and students who are interested in the design and implementation

of energy-efficient communication networks and systems. Hence, the reprint gives insights and

solutions for a range of problems in the field of obtaining energy-efficient communication systems

and networks, and it lays the basis for solving new challenges toward achieving future advances.

The reprint editor would like to thank all authors who have submitted their articles and

all reviewers for their valuable work dedicated to giving an expert review for submitted papers.

Moreover, the reprint editor is grateful to all persons involved in the edition of this reprint for their

invaluable support, including the Sensors Journal Section managing editor Mr. Winston Wang, and

other editorial team members involved in editing the papers submitted to Sensors journal “Special

Issue on Energy-efficient communication networks and systems”.

The reprint editor sincerely hopes that this reprint will be a valuable source of information

presenting the recent advances in different fields related to greening and improving energy efficiency

and sustainability of those communication networks and systems particularly addressed in this

reprint.

Josip Lorincz

Editor
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Editorial

Advances in Improving Energy Efficiency of Fiber–Wireless
Access Networks: A Comprehensive Overview
Josip Lorincz 1,*, Zvonimir Klarin 2 and Dinko Begusic 1

1 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split,
R. Boskovica 32, 21000 Split, Croatia

2 University of Applied Sciences Sibenik, Trg Andrije Hebranga 11, 22000 Sibenik, Croatia
* Correspondence: josip.lorincz@fesb.hr

Abstract: Due to the growing impact of the information and communications technology (ICT)
sector on electricity usage and greenhouse gas emissions, telecommunication networks require new
solutions which will enable the improvement of the energy efficiency of networks. Access networks,
which are responsible for the last mile of connectivity and also for one of the largest shares in network
energy consumption, are viable candidates for the implementation of new protocols, models and
methods which will contribute to the reduction of the energy consumption of such networks. Among
the different types of access networks, hybrid fiber–wireless (FiWi) networks are a type of network
that combines the capacity and reliability of optical networks with the flexibility and availability
of wireless networks, and as such, FiWi networks have begun to be extensively used in modern
access networks. However, due to the advent of high-bandwidth applications and Internet of Things
networks, the increased energy consumption of FiWi networks has become one of the most concerning
challenges required to be addressed. This paper provides a comprehensive overview of the progress
in approaches for improving the energy efficiency (EE) of different types of FiWi networks, which
include the radio-and-fiber (R&F) networks, the radio-over-fiber networks (RoF), the FiWi networks
based on multi-access edge computing (MEC) and the software-defined network (SDN)-based FiWi
networks. It also discusses future directions for improving the EE in the FiWi networks.

Keywords: radio; access; networks; fiber; D-RAN; C-RAN; Mobile fronthaul; RoF; digitized RoF;
analog RoF; NGFI; FiWi; NG–PON; energy efficiency; SDN; NFV; MEC

1. Introduction

Climate change manifested by global warming caused by large amounts of green-
house gas (GHG) emissions presents a serious issue that affects today’s society. This
issue is contributed to by increased energy demand for powering today’s Information
and Communication Technology (ICT) systems. This increased energy demand for ICT
systems additionally poses an economic issue due to the increasing cost and consumption
of energy. Therefore, improving the energy efficiency (EE) of ICT systems has become an
important consideration, since addressing this issue can contribute to the global reduc-
tion of GHG emissions and operating expenditure (OPEX) costs of service providers and
network owners.

Despite the ability to reduce GHG emissions in some real-life scenarios (e.g., trans-
portation reduction and document dematerialization), ICT is becoming a major contributor
to global energy consumption [1]. The EE in telecommunication networks, as one of the
significant contributors to the energy consumption of the overall ICT industry, is attracting
global attention due to its large contribution to increasing OPEX costs and carbon dioxide
emissions. Depending on the usage scenario, it is projected that communication technology
can contribute to an increase in global electricity usage between 8% and 51% by 2030 [2].
Today’s communication networks are dominated by wireless technologies (e.g., mobile
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cellular or wireless local/personal/access networks), and wireless traffic is expected to in-
crease dramatically with the full deployment of the fifth-generation (5G) mobile network [3].
This is a consequence of the basic aim of the 5G technology, which is envisioned to support
a massive number of connected devices through the Internet of Things (IoT) concept. This
will result in usage scenarios where communication technology will be incorporated into
every aspect of today’s society. To support an enormous number of devices, the 5G is
designed as a heterogeneous network (HetNet) with the ultra-dense deployment of small
base stations (BSs) operating in sub-6 GHz and millimeter-wave (mmWave) frequency
bands and employing massive multiple-input multiple-output (mMIMO) transmission
technologies. Hence, an increasing number of connected devices with a constant demand
for higher data rates will support new services and applications, requiring an increase
in the number of supporting network infrastructure elements, which negatively affects
the EE of mobile networks (MNs). Radio access networks (RAN) and particularly BSs are
the largest, in terms of number and power consumption, individual elements of the RAN,
and consequently they add a significant contribution to the overall energy consumption of
telecommunication networks. Therefore, the EE of RAN should be a key concern in the
design and deployment of future MNs [4].
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Figure 1. Comparison of traditional RAN and D-RAN architecture.

Due to the abovementioned necessity for satisfying implementation demands related
to the simultaneous serving of higher numbers of users, offering larger data rates or ensur-
ing a better quality of service, mobile network operators (MNOs) in past decades upgraded
their radio access network (RAN) architectures. One of the main RAN architecture up-
grades is related to the replacement of obsolete and overhauled traditional waveguide and
coaxial-based BSs architecture (Figure 1) with those based on fiber–optic systems. Such
architecture, through exploiting wired fiber–optic links for connecting physically spaced
parts of BSs, establishes a completely new concept of data transmission in the RANs known
as Distributed-RAN (D-RAN) (Figure 1). Introduced for third-generation (3G) mobile
networks, the D-RAN architecture is characterized by modular BS design. This design
decouples BS hardware into a remote radio unit (RRU) dedicated to the transmission and
reception of wireless signals and a Baseband Unit (BBU) dedicated to baseband digital
signal processing (Figure 1). Such D-RAN architecture, also known as Fiber to the Antenna
(FTTA) architecture, creates two physically separated BS components that are connected
with optical fiber at the location of the BS site, or up to a few hundred meters away.

The introduction of such modular BS design with fiber–optic cabling between BBU
and RRU provides numerous advantages which primarily include higher bandwidth,
reduced transmission losses and lower sensitivity to electromagnetic interference and noise.
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However, one additional positive aspect of such architecture is reducing the increased
energy consumption of network equipment, since RRU can exploit the concept of natural
air cooling, which reduces the energy needed for cooling overall BSs composed of BBU and
RRU in the same cabinet (Figure 1).

Additionally, the introduction of optical communication between RRU and BBU in D-
RAN becomes the basis for the development of the newest generation of RAN architectures,
which are based on centralized wireless access networks known as Cloud-RAN (C-RAN). In
the C-RAN, decupled BS RRU and BBU components are placed at different locations which
can be up to tens of kilometers away (Figure 1). Locations are connected with fiber–optic
technology which establishes a new RAN entity defined as a mobile fronthaul network
(MFN). Although the realization of MFN based on the C-RAN architecture was initially
introduced for fourth-generation (4G) mobile networks, the superior bandwidth capabilities
and network scalability that C-RAN provides set the basis for the full exploitation of the
C-RAN concept in the realization of the MFN of 5G networks and future sixth-generation
(6G) mobile networks. Although most of the modern BSs currently use D-RAN architecture,
the C-RAN can be viewed as the architectural evolution of the D-RAN and the C-RAN
architecture and will be essential for the full practical deployment of the 5G and the future
6G RANs.

Besides implementation in mobile cellular networks, the integration of fiber optics
and wireless technology in access networks through the combination of fiber and wire-
less technologies, also known as the fiber–wireless (FiWi) concept, presents an alternative
cost-effective solution to the realization of access networks. FiWi access networks integrate
the high capacity of optical fiber networks with the coverage and flexibility of wireless
networks. They create a robust infrastructure for the development and deployment of
current and future applications and services and they are considered to be the most promis-
ing option for the realization of next-generation access networks [5]. By using optical
networks as the backhaul and wireless networks as the front-end, FiWi networks aim to
provide straightforward access for users [6]. These networks are expected to meet the
demands of future access networks, such as providing high bandwidth, reliability, low
cost and flexibility [7]. Additionally, it has been reported that access networks account for
approximately 70% of energy usage in the ICT industry, and as a result of an increasing
number of communication devices and bandwidth rates, this percentage is likely to increase
in the future [6]. Therefore, to decrease overall network energy consumption, it is crucial to
develop energy-efficient architectures of access networks, and architecture based on the
FiWi concept is seen as a promising contributor to this goal.

In a FiWi network, both radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies
are utilized. Radio-over-fiber (RoF) constitutes a popular communication system design
that addresses the increasing bandwidth demand and enables optical and wireless inte-
gration in modern C-RAN systems. The radio-and-fiber (R&F) network, in contrast, is an
approach based on connecting distributed radio transmitters (such as wireless local area
network (WLAN) access points (APs)) and centralized WLAN controllers with fiber–optic
networks. R&F networks have the advantage of building wireless local area network
(WLAN)-based FiWi networks. These advantages are reflected in the possible coverage
of larger areas without the limitations related to the optical back-end size, while the RoF
network has a limited reach of deployed fiber imposed by the propagation delay in fiber.
Using the same infrastructure for both wired and wireless services, FiWi networks can
merge the traditionally separate optical and wireless access networks, thus leading to
potential cost savings [8].

The high performance requirements of future 5G networks, including extremely low
latency, uninterrupted user experience and high throughput and reliability, will necessitate
the use of localized services that are within RANs located closer to mobile subscribers.

The multi-access edge computing (MEC) paradigm is exploited as a solution for
offering services closer to mobile subscribers. Through telecom operators, information
technology (IT) and cloud computing, the MEC aims to bring cloud services to the users

3



Sensors 2023, 23, 2239

directly from the network edge [9]. However, the concept of MEC over FiWi networks
must address not only the 5G network realization challenges, but it must also address
unique challenges related to the integration of the MEC concept with existing wired and
wireless infrastructures, and managing resources effectively in the context of backhaul and
RAN coordination [9]. Furthermore, a software-defined network (SDN) architecture which
uses a centralized controller to manage networks is a revolutionary approach that has the
potential to greatly improve the control and management of FiWi access networks, and
thus increase the EE of the entire FiWi network [10]. Therefore, in this paper, EE aspects of
the FiWi networks with particular emphases on the RoF, R&F, MEC and SDN technologies
were overviewed.

The paper is further structured as follows: the overview of the FiWi access networks
is presented in Section 2. In Section 3, the EE challenges of R&F networks are discussed.
The energy-efficient RoF solutions are elaborated in Section 4, with an emphasis on the
impact of the C-RAN network architecture on the EE. The EE solutions for MEC-based
FiWi access networks are reviewed in Section 5. In Section 6, the SDN-based energy-saving
schemes in FiWi networks are elaborated. Section 7 discusses the results of performed
analyses dedicated to improving FiWi networks EE. Finally, conclusion remarks related to
the review of EE methods for FiWi networks are given in Section 8.

2. Fiber–Wireless Broadband Access Network

Merging optical fiber and wireless technologies in broadband access networks by
leveraging the advantages of both technologies presents a viable solution to support the
increasing bandwidth demands of future applications [11,12]. The concept of FiWi access
networks is based on the seamless integration of the mobility and coverage offered by
wireless networks and the high bandwidth and better stability offered by optical technology.
In comparison with traditional access networks, FiWi access networks can be considered as
an alternative or transitional solution that provides high data rates more cost-effectively
with the desired quality of service (QoS).

2.1. Architecture of FiWi Networks
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The most common architecture of FiWi access networks comprises optical and wireless
network domains. Ethernet passive optical networks (EPONs) or gigabit passive optical
networks (GPONs) are commonly used in the optical segment of the network. In the
wireless domain, a wireless point-to-point or mesh network (WMN) is operated according
to the IEEE 802.11, WiMAX and LPWAN standards [11] and specific routing protocols [13],
and cellular mobile network (4G, 5G) low-power wireless access network (LPWAN) IoT
standards (LoRa, Sigfox, NB-IoT, etc.) in the wireless segment of the network [14]. The
generic architecture of the FiWi access network is shown in Figure 2 [15]. The optical
transport network between the optical line terminal (OLT) unit and the optical network
unit (ONU) can reach up to 100 km. In the downstream direction, an OLT connects the
FiWi access network to the core network, while in the upstream direction it is responsible
for scheduling resources toward the ONUs located near mobile users.

The allocation of resources by OLTs is usually dynamic. It involves resource planning
in terms of allocating time slots for data transmission to a single ONU device using time-
division multiplexing (TDM) or assigning a single wavelength using the wavelength-
division multiplexing (WDM) mechanisms. Such dynamic bandwidth allocation (DBA)
is a key component of the TDM–PON mechanism that prevents collisions and improves
bandwidth utilization through a polling scheme based on determining the ONU bandwidth
requirements [16]. Connecting the OLT device with several ONU devices is realized through
a shared optical fiber, at the ends of which the passive optical splitters are installed (Figure 2).
Such architecture enables point-to-multipoint topology between single ONU and multiple
OLT devices.

It is also possible to combine these two solutions using time and wavelength divi-
sion multiplexing (TWDM), which is characteristic of Next-Generation Passive Optical
Network 2 (NG–PON2) and 100G-Ethernet Passive Optical Network (100G-EPON). The
TWDM–PON uses the same physical network architecture as TDMA–PON (Figure 2).
However, the OLT in TWDM–PON requires multiple transceivers that operate at different
wavelengths and the ONUs are equipped with either a tunable transceiver (NG–PON2)
or multiple transceivers (100G-EPON) to match specific OLT wavelengths in upstream
transmission. The OLT’s transceiver sends packets to all ONUs on the same wavelength
in the downstream direction, and each ONU determines whether to receive or ignore the
packet that is based on its type and destination address. In order to allow the ONUs to
access the shared upstream channel, the OLT employs dynamic wavelength and bandwidth
allocation (DWBA) scheduling. Depending on the size of its queue, this system allocates a
specific time slot and wavelength for transmission to each ONU.

In classical PON networks, ONU devices terminate at user locations, where it is
possible to offer the service to end users exclusively through optical media. However,
in FiWi networks, ONU devices are deployed in the characteristic locations (Figure 2).
These characteristic locations are planned according to the needs of the spatial coverage
of individual BSs or mesh portal points (MPPs) which are integrated with ONU devices.
Integrated ONU-BS or ONU-MPP devices represent the interface between the optical and
wireless segments of the FiWi access network (Figure 2).

The transmission of optical signals in FiWi access networks can be implemented by
RoF and R&F technology. Generally, both RoF and R&F technologies can be deployed
in FiWi access networks; however, R&F technology is a very good solution for high-
range FiWi networks based on the WLAN standard [14]. In comparison with RoF, the
R&F approach also has certain shortcomings in terms of coordination between optical and
wireless domains. These shortcomings are related to ensuring QoS and service viability [17].
The R&F concept requires the integration of wireless and optical segments on the physical
and media access control (MAC) layers, which then requires the translation of protocols on
ONU and BS interfaces. This translation introduces additional cost and complexity in the
realization of such networks [17].

The application of FiWi networks is particularly interesting in sensor networks which
represent the basis for the realization of IoT concepts in the fields such as telemedicine,
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smart agriculture, Industry 4.0, smart cities, smart buildings, autonomous driving, etc.
This will result in the rapid enlargement of machine-to-machine (M2M) communications,
which are characterized by a massive connectivity of communicating nodes (sensors) and
transmissions of smaller-size data. Improvements to the FiWi network that could facilitate
application within the IoT concept include the use of the millimeter-wave communication
band (mmWave) for the transmission at high data rates over shorter distances and the
concepts of network function virtualization (NFV) and SDN, which could significantly
affect the reduction of capital expenditure (CAPEX) and OPEX of the network [18].

2.2. Challenges in Realization of the FiWi Networks

Although the RoF network exploits the advantages of both the optical distribution
network and wireless mobile network, the main challenge in the realization of the RoF
concept is ensuring appropriate MAC protocol functionality. The merging of wireless and
optical network segments has an impact on RoF network functionality, which is primarily
reflected in the occurrence of additional propagation delays among different network
segments. This can cause the expiration of certain timeouts of wireless MAC protocols
that can significantly reduce network performance [14]. For example, when using the IEEE
802.11 standard, a distributed coordination function (DCF) of the MAC technique, the
additional propagation delay has a large impact on the performance of the FiWi networks.
There are different ways to solve this problem within the RoF concept; however, all of them
are solutions that balance the the length of the optical cable and the network bandwidth [14].

One of the possible solutions related to the elimination of the MAC coordination
problem is the implementation of R&F technology (Figure 2). While, in the RoF approach,
the optical cable is utilized as a medium for transmitting analog signals and management
and access control to optical and wireless media is centralized in the central office (CO),
in R&F technology, access control and management of optical and wireless media are
separated and two different MAC protocols for each used network domain [14]. Therefore,
in R&F networks, the optical and wireless networks are combined to create a single,
integrated network. In general, R&F networks use distinct MAC protocols in each part
of the network and therefore client access control is handled separately [5]. This means
that traffic generated solely from wireless communication does not need to be transmitted
through the optical network, as in the case of the RoF system. Distributed MAC protocols,
such as IEEE 802.11, can avoid the additional propagation delays caused by fiber optic
cables, which can negatively impact their performance. This feature allows for greater
flexibility in the length of the deployed fiber optic cables and also increases the system’s
resilience, since local wireless traffic can still be served even if connectivity with the optical
segment is lost [19].

3. Energy Efficiency Analyses of Radio-and-Fiber Networks

Although flexible and robust FiWi networks have emerged as an attractive solution for
the realization of today’s modern access networks, the low utilization of the optical network
elements and high overhead in packet data communication raise an issue of optimizing the
EE of FiWi networks. The utilization issue is a consequence of the data traffic variations
wherein, during low or no utilization periods, active elements of FiWi networks consume
energy as in the periods of moderate or high utilization. Therefore, improving the EE of
FiWi networks is a non-negligible challenge and an active research area [6].

Over the years, many power-saving (PS) software techniques have been adopted to
increase the EE of hybrid FiWi networks. These mechanisms differ depending on whether
the PS technique is implemented in an optical or a wireless domain. Most research studies
are focused on increasing the EE of these two domains separately (for the optical back-end
and wireless front-end of the network). However, it has been shown that in terms of EE
of hybrid FiWi networks, cooperation between PS mechanisms of both domains achieves
better results [20]. In this section, the recent optical back-end and wireless front-end PS
techniques are first reviewed, and then joint cooperative PS techniques between these two
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domains are analyzed. Table 1 summarizes related work on the improvement of EE of
R&F networks.

3.1. Power-Sawing Techniques in the Optical Domain of FiWi Networks

The most popular optical back-end technology currently used in the realization of the
FiWi network is the passive optical network (PON). The PON is a cost-effective point-to-
multipoint network access architecture. In the PON network, OLT is allocated in the CO
and via a passive optical splitter connected with numerous ONUs which are allocated near
users (Figure 2) [21]. Due to the constant growth in the number of end users, the largest part
of energy consumption in telecommunications falls on access networks [22]. Additionally,
in optical access networks, 90% of the energy is consumed for powering ONUs and,
therefore, the energy-conservation techniques for ONU devices are of great importance [23].
Moreover, in the PONs, the OLT is continuously occupied with transmitting and receiving
data, making it unsuitable for energy-saving strategies. On the other hand, the ONU’s
transmitter is idle for the majority of the time and it is appropriate for the implementation
of energy-saving strategies [16].
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Reducing ONU device power consumption can be achieved primarily through dif-
ferent PS operation modes prescribed by the ITU-T standard [24] (Figure 3). These PS
modes of operation are characterized according to the operational state of the ONU receiver
and transmitter. Accordingly, the ONU operation state can be in one of the following
energy-saving modes: ONU power shedding, ONU dozing or ONU (fast and deep) sleep-
ing modes (Figure 3). The power-shedding mode conserves energy by switching off only
unnecessary ONU features, while keeping the receiver and transmitter fully operational.
Thus, in the power-shedding mode, minimal power savings are ensured (Figure 3), while
the best possible performance is maintained.
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Table 1. Summary of related works on PS methods in R&F networks.

Reference PS Method
Summary of Contributions Related to the

Improvement of FiWi Network
Energy Efficiency

ONU sleeping mechanisms

[25] ONU sleep mode with ALR Hybrid PS technique that includes adaptive
link rate control and sleep functions.

[26] WSM A PS mode that combines the doze and cyclic
sleep modes into a single mode.

[27] ONU sleep mode and WSM Comparative performance analysis of
fast/cyclic and watchful sleep modes

[28] WSM operation mode with DBA Performance of watchful sleep mode that
utilizes the dynamic bandwidth allocation.

[29] AWSM for UNUs An introduction of adaptive watchful
sleep mode

[30] Load-adaptive ONU
sleeping scheme

Load-adaptive ONU PS mechanism that
adjusts the number of sleeping ONUs based

on the overall load on the network.

[16] PS mechanism based on OSC,
GDBA and TSC components A PS method based on the SIEPON standard.

[31]

Decentralized PS mechanism
based on ONU queue manager,
TRx controller, sleep manager,

OLT queue manager and GDBA
components

Decentralized PS solution based on the
SIEPON standard.

[32] Optimization of sleep interval
using ANN

Determination of optimal fast/cyclic sleep
interval for energy-efficient XG-PON. The

ANN model is used to estimate the optimal
sleep interval values.

Wireless power-saving
techniques

[33,34]
Integer linear programming

(ILP) optimization
model and heuristic algorithm

An approach for finding the most efficient way
to save energy in wireless access networks

using heuristics.

[35] Transmit power
scaling and on/off switching

Extensive studies on the impact of changing
the transmit power and turning the BSs on and
off on the instantaneous power consumption
of macro BSs. Real-world measurements are
used from a range of different macro BSs to
develop linear power consumption models.

[36] Adaptive PSM An adaptive PS method in wireless networks
that are based on the IEEE 802.11 standard.

[37] Scheduled PSM based on a
time-slicing mechanism

A PS method based on a time-slicing
mechanism in a multi-traffic environment with

high background traffic.

[38] PSM based on the execution of the
heuristic algorithm

A generic power management model
according to which the wake-up scheduling
mechanism is controlled by the AP. Proposes

two heuristic algorithms to address the
downlink scheduling optimization problem,

identifying the importance of tuning the
length of the beacon interval in order to

conserve energy and reduce delay.

[39] C-PSM
A centralized PS mechanism that improves the

EE of wireless clients in an 802.11
infrastructure network.

[40] SAPSM

A PS method that uses a ML classifier to
assign priorities to applications, where

applications classified as high-priority can
switch to active mode, while traffic classified

as low-priority is optimized for EE.
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Table 1. Cont.

Reference PS Method
Summary of Contributions Related to the

Improvement of FiWi Network
Energy Efficiency

Wireless power-saving
techniques

[41] A ML method of identifying and
categorizing network traffic

A ML-based approach for optimizing power
saving in WLANs by classifying network

traffic based on contextual factors, and
adjusting the listen interval accordingly.

[42] Overview of PS methods

Overview of the power supply system
parameters for powering the BS sites with
renewable energy sources. Approaches for

reducing telecom operator energy and CAPEX
based on different air-conditioning systems for

BS sites.

[43] Overview of PS methods

Overview of the renewable energy sources for
powering base station sites. Comparison of the

EE among hybrid systems that use multiple
renewable energy sources and systems that

use a single renewable energy source.

[44] Save energy and maximize
connectivity (SEMC) algorithm

A generic algorithm for ad-hoc wireless
networks that conserves energy and maintains

good connectivity through adjusting
transmission range and choosing a

transmission time based on data rates, which
results in reduced transmission power and

energy savings.

Cooperating optical and
wireless techniques

[21] ONU sleep mode with PSM

A method for determining the optimal sleep
period and behavior for optical ONUs for

improving throughput and reducing
energy consumption.

[45] ONU sleep mode with radio
interface standby

A wireless–optical topology reconfiguration
scheme that enables integrated energy saving

through reconfiguration of the optical
topology using ONU sleep mode and the

wireless topology using radio
interface standby.

[46] ONU sleep mode with PSM and
adaptive PSM

A method for controlling the ONU sleep
period based on the energy control mechanism

of wireless stations.

[47] ONU sleep mode with
powering off radio interfaces

An ONU sleep algorithm for dynamic
scheduling of the power states of ONUs based
on their traffic profile and load thresholds. An

algorithm for dynamic radios turning off in
order to reconfigure the wireless topology by

dynamically controlling the power states
of radios.

[6]
ONU sleep with adaptive frame

aggregation and load transfer
mechanism

Proposed adaptive frame aggregation
mechanism that optimizes energy

consumption by adjusting frame lengths based
on channel quality. Proposed the delay-aware
load transfer mechanism that maximizes ONU

sleep time and ensures reliable service
transmission by allocating traffic load based

on QoS requirements.

[48] ONU sleep mode with PSM
and DBA

A PS scheme that coordinates power-saving
modes for wireless stations, APs and ONUs, in

order to reduce energy consumption.

[20]

TDMA mechanism
between ONU and wireless

station and between OLT and
ONU with DBA

A technique that aims to reduce delays and
improve EE by organizing the system into

clusters of ONUs and using an equal partition
approach. Using this approach the ONUs in
the back-end and the wireless stations in the

front-end are active only during certain
timeslots in the TDMA cycle.
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Table 1. Cont.

Reference PS Method
Summary of Contributions Related to the

Improvement of FiWi Network
Energy Efficiency

Cooperating optical and
wireless techniques

[49]
Load transfer region sleep

mechanism between ONU and
wireless stations

A collaborative sleep mechanism that uses
load transfer to determine which nodes should
sleep and adjusts routes for affected services

based on service priority.

[50]

Genetic algorithm,
teaching-learning-based

optimization, spiral update
positioning and encircling

prey mechanism

Several different ONU placement optimization
algorithms are compared in

extensive simulations.

In ONU dozing mode, the ONU transmitter is powered off for a considerable amount
of time, while the ONU receiver maintains an active state at all times. This corresponds to
even lower instantaneous power consumption of the ONU dozing mode when compared
with the power consumption of the power-shedding mode (Figure 3). The ONU sleeping
modes are, according to [24], further divided into two subgroups: deep sleep and fast sleep
(also known as cyclic sleep) (Figure 3). The ONU sleeping modes are characterized by
powering off both the ONU receiver and the transmitter for a considerable amount of time.
When using ONU sleeping mechanisms, it is necessary to make a trade-off between energy
savings and network performance. Due to powering off the receiver and the transmitter
during the entire PS mode period, during the ONU deep sleep mode maximum energy
conservation can be achieved at the cost of significant performance degradation. On the
other hand, during the ONU fast/cyclic sleep mode, the transmitter and the receiver
alternate between on and off periods, forming sleep cycles, which results in lower energy
savings when compared with the energy savings of deep sleep mode (Figure 3).

Another PS method in PONs is the implementation of the adaptive link rate (ALR)
concept. It is based on energy reduction that can be achieved by adapting different trans-
mission rates between optical devices [51]. In optical access networks where multiple data
transmission rates are available (e.g., GPON and G-EPON), reducing transmission rates
in low-traffic periods can contribute to the reduction of the energy consumption of the
optical unit and this reduction improves network EE. Moreover, these PS techniques can be
combined with ONU sleep modes for even greater energy savings. The authors in ref. [25]
proposed a hybrid scheme that combines the ONU sleep mode with ALR mechanisms in
order to improve the EE of 10G-EPON systems (Table 1). Such a hybrid PS scheme activates
the ONU sleep mode in the absence of network traffic, while in the presence of network
traffic, the ALR function for adapting the downlink data rates is activated based on the
levels of traffic load. It was shown in ref. [25] that such a hybrid PS approach can contribute
to significant energy consumption reductions in the optical part of the network.

In addition to the aforementioned PS modes, a newer PS scheme called watchful sleep
mode (WSM) has emerged and is also included in all major PON standards [52–54]. The
WSM acts as a unified solution that combines cyclic sleep and doze PS modes. It eliminates
the need for mode negotiation between optical units and maximizes the ONU’s EE. It is
expected that WSM will be used as the only PS mode for PONs in future (Table 1) [26]. In
ref. [27], the authors conducted a performance comparison between PS fast/cyclic sleep
modes and a WSM for a GPON ONU and concluded that both approaches offer similar
energy savings. However, the WSM performed better regarding state transition latency
(Table 1). The simulation results in ref. [28] showed a decrease in downstream and up-
stream transmission delays with a significant energy savings when WSM was implemented
in combination with dynamic bandwidth allocation (DBA) in a 10-gigabit-capable pas-
sive optical network (XG–PON) (Table 1). In addition, the authors in ref. [29] recently
proposed a new energy-efficient scheme called adaptive watchful sleep mode (AWSM).
The AWSM increases the energy savings of the standard WSM scheme by minimizing the
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ONU receiver’s active (on) time during the watch state (Table 1). In ref. [30], a PS strategy
was proposed for edge-enhanced metro FiWi networks using matching game theory. The
proposed method optimizes the number of sleeping ONUs depending on network traffic
(Table 1) and thus improves network EE.

Furthermore, the IEEE service interoperability in the Ethernet passive optical networks
(SIEPON) work group (SIEPON 1904.1) standardized two additional PS mechanisms,
namely, transmitter (Tx) and transceiver (TRx) sleep modes for EPON systems [55]. Similar
to the doze PS mode of the ITU-T standard, in the Tx sleep mode, ONU transmitter
subsystems can enter the sleep (PS) mode, while the receiver components remain fully
operational. In contrast, the TRx sleep mode is equivalent to the ITU-T fast/cyclic sleep
mode and this PS approach enables entering the sleep (PS) state for both the transmitter
and receiver subsystem of the ONU. Compared with the Tx sleep mode, the TRx sleep
mode is more energy efficient at the expense of the increased delay. In both the Tx and the
TRx sleep modes, the OLT is responsible for controlling the ONU sleep intervals, with the
main task of determining the right sleep interval that can satisfy both the delay and the
energy-saving requirements [56].

To optimize Tx sleep interval wile satisfying QoS in TDM PON systems, the authors in
ref. [16] proposed a SIPEON-based energy-saving scheme (Table 1). The proposed scheme is
based on adding new components to the conventional PON architecture, namely the ONU
sleep controller (OSC), the green DBA (GDBA) mechanism, and the Tx sleep controller
(TSC). The OSC and GDBA components are a part of the OLT hardware architecture and
they are used to calculate the ONU Tx sleep periods based on received report messages.
The TSC component, as part of the ONU, is responsible for ONU transmitter control and
for monitoring the incoming traffic. The TSC enables the exit and entering of ONU in
sleep mode according to instantaneous traffic intensity. The simulation results presented in
ref. [16] showed that this energy-saving scheme can decrease the Tx power consumption of
ONU while satisfying desired SIEPON and ITU-T QoS performance requirements.

In contrast to the centralized sleep mechanism introduced in the SIPEON standard, the
authors in ref. [31] proposed a decentralized energy-saving solution that is also based on
the SIPEON standard (Table 1). In the PS solution proposed in ref. [31], instead of the OLT
unit, the Tx or TRx sleep mode is initiated by the ONU. To achieve this, the ONU hardware
architecture is enriched with new components known as the ONU queue manager and TRx
controller, while the OLT hardware architecture is enriched with the sleep manager, OLT
queue manager and GDBA mechanism. The ONU Tx sleep duration is calculated by the TRx
controller and reported to the OLT. Then the sleep manager calculates the sleep intervals of
the ONU receiver and, based on these intervals, the type of sleep mode is determined. The
obtained simulation results showed that significant energy consumption reductions could
be achieved in the optical segment of the network while satisfying QoS requirements.

In the past, the fast/cyclic sleep mechanism of the ONU has been extensively re-
searched to reduce energy consumption in XG-PON. However, due to the emergence of
new types of network traffic with stringent demands, further improvements in sleep time
interval selection are required. Hence, the paper [32] proposed the use of an artificial neural
network (ANN) to enable the ONU to determine the optimal sleep time interval values
by learning from past experiences. The M/G/1 queueing system was used for theoretical
analysis prior to simulation, and the ANN was trained and tested for the XG-PON network
to make optimal sleep time interval decisions. The results indicate that as the network
load increases, sleep time interval decreases for both methods. The ANN network records
a wider range of sleep time interval values than the theoretical values. As a result, these
findings will enable network operators to determine the optimal sleep time interval values
at the current network conditions with more flexibility.

3.2. Power Saving Techniques in the Wireless Domain of FiWi Networks

Besides the optical domain, different PS techniques have been developed in the wire-
less domain of FiWi networks. Since the highest consumers of energy in the radio part of
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the network are wireless network (front-end) devices (e.g., BSs, APs, LPWAN gateways,
etc.), different solutions have been proposed for improving the EE of the wireless segment
of FiWi networks. Most of the proposed solutions are based on dynamic control of the
activity state of wireless network devices in accordance with traffic variations. Besides
ONTs, wireless network devices can also be, at a certain moment, in an active or in a
sleep state. Whether it is transmitting or being idle in the active state, wireless network
devices consume significantly more energy compared with the sleep (partially or fully
turn-off) state [57]. Hence, different PS approaches have been presented in refs. [33–35,58]
as techniques for wireless network station on- and off-activity adjustments depending on
the data load.

Moreover, a mechanism called an adaptive power saving mechanism (PSM) was intro-
duced in ref. [36], which, instead of inefficient fixed wake-up intervals, uses an adjustment
constant in order to adjust the wake-up intervals of wireless network devices in a more
efficient manner (Table 1). Similar to ONU sleep techniques, using PSM and adaptive PSM,
the wireless network station needs to buffer the incoming data, which consequently causes
additional transmission delay [18].

To address these issues associated with initial PSM, the authors in ref. [37] presented a
scheduled access point (AP)-centric PSM protocol based on a time-slicing mechanism. The
proposed protocol enables the improvement of energy-efficient scheduling of AP activity at
the expense of minimal delay in a multi-traffic environment with heavy background traffic
(Table 1). The authors in ref. [38] developed a generic power management model (GPMM),
according to which the wake-up scheduling mechanism is controlled by the AP. Addi-
tionally, to address the downlink scheduling optimization problem and to achieve more
energy savings, in ref. [38] two heuristic algorithms for optimal AP activity adjustments
were proposed (Table 1). Furthermore, the authors identified the importance of tuning the
length of the beacon interval in order to conserve energy and reduce delay. Since both of
the aforementioned scheduling techniques are computationally demanding, the authors in
ref. [39] proposed a centralized power-saving mode (C-PSM). In order to reduce latency
and increase EE, the C-PSM approach uses traffic pattern statistics to calculate the optimal
AP listening intervals, beacon intervals and congestion window size (Table 1).

Effective management of WLAN power consumption on smartphones can have a
significant impact on energy consumption. The authors in ref. [40] have shown through
experiments that the WLAN power management process on various smartphones is au-
tonomous and occurs entirely at the driver level. However, the limitation of driver-level
implementations is that essential power management decisions can only be made by moni-
toring packets at the MAC layer, which disables distinguishing between applications. As
a result, each application has an equal chance to consume more energy and determining
which applications can impact WLAN power management is crucial. To solve this problem,
the authors have introduced a smart adaptive power save mode (SAPSM). SAPSM uses a
machine learning (ML) classifier to assign a priority label to each application. Only applica-
tions that have high-priority can affect the client’s behavior to switch to active mode, while
traffic with low-priority is optimized for EE. It is shown that the SAPSM implementation
on an Android smartphone device significantly improves EE under typical usage scenarios.

As an extension of the SAPSM approach, the authors in ref. [41] have proposed a new
classification method of network traffic using ML classifiers to optimize WLAN power
saving. The approach utilizes the contextual degrees of traffic interaction in the background
for ML classifier applications. The output traffic is then classified to optimize context-aware
listen interval PSMs. The study evaluates the performance of several ML classifiers using a
real-world dataset of several smartphone applications that enable the reflection of various
types of network interactions and behaviors.

In addition to the aforementioned PS methods in the wireless domain of the FiWi
network, methods for powering the locations of wireless network devices (AP and BS)
using renewable energy sources have also been proposed [42,43]. These methods represent
an effective way to save energy and reduce OPEX for network owners [42]. Due to the
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lack of ability for BSs to access the electricity grid, having limited access to daily power
supply or simply having large expenses for consumed electricity, mobile network operators
have a significant interest in using renewable energy sources for powering remote BS
sites. Therefore, using renewable energy sources can reduce OPEX and improve the energy
efficiency of the wireless domain in FiWi networks.

Furthermore, the authors in ref. [44] proposed an algorithm that aims to conserve
energy and maintain connectivity in mobile ad-hoc networks (MANETs). The algorithm
aims to conserve energy in nodes that have limited battery life and maintain connectiv-
ity between nodes, which is crucial for route discovery. The proposed algorithm is a
generic algorithm that can be applied in various situations and operates at layer 2 of the
Open Systems Interconnection (OSI) model, making it independent of routing algorithms.
The simulation results showed that the proposed algorithm significantly reduces energy
consumption while maintaining good connectivity over time.

3.3. Cooperating Power-Saving Techniques in the Optical and Wireless Domain of FiWi Networks

Since the FiWi network consists of optical and wireless domains that are realized
with two different technologies with versatile PS mechanisms, cooperation between these
two PS mechanisms is found to be a desirable option. It was shown in refs. [21,46] that
unsynchronized PS mechanisms between optical and wireless network domains lead to the
degradation of the performance and EE of the FiWi network. To reduce such degradations,
the authors in ref. [21] proposed a method that increases ONU EE and reduces wireless
network stations’ latency without sacrificing throughput in a FiWi network. The proposed
cooperative PS method simultaneously executes the ONU sleep mechanism in the optical
domain and the PSM mechanism in the wireless domain of the network (Table 1).

For the realization of joint EE improvement in both domains of the FiWi access net-
work, another interactive PS method based on the wireless–optical topology reconfiguration
(WOTR) technique is proposed in ref. [45] (Table 1). The proposed reconfiguration scheme
uses the ONU sleep method in combination with the method which puts the radio interface
(RI) in the standby state. Implementation of this method is realized through two interactive
modules: one for the optical back-end and one for the wireless front-end. Through simula-
tions, the authors in ref. [45] demonstrated significant energy consumption reduction with
negligible network throughput degradation when compared with optical-only PS schemes.

Due to the issues related to the increased latency and degraded EE caused by the
simultaneous use of unsynchronized PS schemes in the optical and wireless domains of
the FiWi network, the authors in ref. [46] proposed a cooperative ONU sleep scheme that
dynamically adjusts the ONU sleep period according to the conditions in the wireless
domain (Table 1). By proposing an integrated EE scheme that jointly schedules both
ONU and radio sleep states, the authors in ref. [47] designed an energy-efficient FiWi
network in which power consumption optimization was based on the developed heuristic
algorithms (Table 1). The proposed network design uses an ONU sleep mechanism that
dynamically schedules ONU sleep periods and a “Radios Off” algorithm for wireless
topology reconfiguration. The QoS is ensured by employing wireless rerouting. Moreover,
the frame aggregation scheme introduced in WLANs for boosting the overall performance
of the wireless front-end was proven in ref. [59] to be an effective approach for improving
the EE of the FiWi networks. In order to reduce the power consumption of the FiWi
networks, authors in ref. [6] present an adaptive frame aggregation and load-transfer
scheme. The proposed scheme jointly maximizes the EE and ONU sleeping periods of
the FiWi IoT networks, realized as PON in the optical domain and wireless mesh network
(WMN) in the wireless domain (Table 1).

The authors in ref. [48] proposed a cooperative PS scheme called the energy-conservation
scheme for FiWi networks (ECO-FiWi) that synchronously deploys wireless front-end and
optical back-end PS techniques and integrates them into a dynamic bandwidth allocation
(DBA) procedure by leveraging the time division multiple-access (TDMA) operations (Table 1).
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Table 2. Summary of the related works on PS methods in RoF networks.

References PS Method Summary of Contributions Related to the Improvement
of FiWi Network Energy Efficiency

[60] Number and directivity of antennas and
antenna position optimization

Method for improving EE of a DAS by increasing the
number of antennas and optimizing the antenna position.

[61] Antenna unit output power optimization Comparison of the EE of optimized narrowband
single-service and broadband multi-service DAS solutions.

[62]
Antenna position optimization and the

selection of the optimal number
of antennas

Investigation of the EE of the RoF DAS technologies by
measuring the power consumption of 802.11 APs and

smartphones. Proved the existence of the optimal number
of distributed antennas for a given indoor

environment topology.

[63]
Selection of the optimal number of

antennas with data frame
aggregation mechanisms

A method for evaluating and optimizing energy
consumption in 802.11n RoF DAS systems. Proved the

existence of an optimal number of distributed antennas for a
given scenario, and that the data frame aggregation

mechanisms can further improve EE.

[64]
Centralized

RoF architectures using dedicated RoF
links for each cell

An EE model for RoF networks confirmed better network
EE when designed with small cells and when the energy
usage of the remote units surpasses a certain threshold.

[65]

Analyses of the impact of E/O/E
conversion, number of services and

wireless network capacity on EE of the
RoF links

Confirmed that E/O/E losses degrade EE on an optical link
using the A–RoF technique. Confirmed that the D–RoF link
shows the degradation of EE at higher Nyquist zones due to

RF signal reconstruction. Confirmed that the wireless
bandwidth can improve the EE of both, the A–RoF and

D–RoF connections and that the amount of energy savings
in the presence of multiple services depends on the specific

wireless environment.

The study found that the use of TDMA in FiWi networks significantly improves the
energy efficiency while maintaining delay performance, with the feature of increasing
energy savings proportionally with traffic load. Another cooperative mechanism called the
delay-controlled and energy-efficient clustered (DEC) TDMA scheme was presented for
the FiWi network in ref. [20] (Table 1). This is a cooperative scheme that jointly considers
the EE of the OLT, ONU and wireless network devices by leveraging the TDMA technique.
Moreover, to further decrease delay and energy consumption, the DBA mechanism was
used to allocate data transmission slots between wireless network devices and ONU, and
between ONU and OLT. It was shown that the EE of the DEC TDMA FiWi network was
equivalent to ECO-FiWi, but in terms of transmission delay, DEC TDMA outperformed the
ECO-FiWi scheme.

In order to achieve energy conservation and ensure satisfactory QoS, a collaborative
sleep technique between optical and wireless nodes was developed in ref. [49] (Table 1).
This technique consists of two sub-techniques. The first one is a technique based on load
balancing for achieving optimal planning of transmission route selection, and the second
one is a cooperative sleep technique based on load transfer using priority-based rerouting.
The simulation results showed that this technique can achieve high throughput and EE
with low latency for high-priority services. In ref. [50], the authors proposed a framework
that simultaneously focuses on ensuring the EE and survivability of the FiWi networks
using optimization algorithms for ONU placement (Table 1). Several different optimization
algorithms were compared in extensive simulations, namely, genetic algorithm, teaching–
learning-based optimization, spiral update positioning and encircling prey mechanism.
The authors concluded that the genetic algorithm provides the best performance regarding
EE, with an average performance in terms of the FiWi network survivability.
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4. Energy Efficiency Analyses of Radio-over-Fiber Networks

The implementation of the FiWi networks using the RoF technology is based on
exploiting optical fiber as a means for the direct transport of radio frequency (RF) signals
among one or more remote access (antenna) units (RAU) and network operator central
office (CO) (Figure 4). The CO is responsible for managing access to both the optical and
wireless domains [18].
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The optical modulation of the RF signal is realized through electrical-to-optical (E/O)
conversion, which is required for transmitting an RF signal over an optical–fiber link.
Compared with traditional coaxial-based RAN systems, the RoF network paradigm offers
several advantages. Those advantages are related to the high bandwidth of fiber links
with high data rates and low signal attenuation. This allows greater transport distances
and better resistance to electromagnetic noise and thereby increases the flexibility of the
allocation of network devices, reduces BS size due to the BS design with RRUs and BBUs,
increases installation flexibility, allowing multiple operators to share the same RoF network
and improves the EE through dynamic resource allocation realized using the centralization
of baseband functions at CO premises [66].

Depending on how the RF signal is transmitted through an optical–fiber link, there
are two basic RoF communication techniques known as digitized RoF (D–RoF) and analog
RoF (A–RoF) [67]. In the A–RoF system (Figure 5), the transmission of the RF signal is
carried in the analog domain, where analog RF signal is used for light modulation of the
optical signal transmitted in the fiber. On the other hand, in the D–RoF system (Figure 6),
the D–RoF signal is digitized prior to transmission over an optical communication link.
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For example, the MFH link between the RRU and the BBU designed for the LTE
advanced (LTE-A) C-RAN architecture based on a common public radio interface (CPRI
protocol is a prominent representative of the D–RoF. The main concept of such an MFH
solution based on the CPRI interface is to use a digitized version of the baseband signal
before being transmitted over the optical–fiber link. Although the CPRI-based fronthauling
solution has proven to be effective for previous mobile network generations (i.e., 2G, 3G
and 4G), the D–RoF approach has one major issue. Namely, the CPRI has shown to be
bandwidth-inefficient, as it uses a constant data rate for transmitting the signals [68]. Hence,
this bandwidth inefficiency can become critical in 5G networks using carrier aggregation
(CA) and mMIMO techniques wherein high bandwidth and capacity requirements are
expected. Moreover, the CPRI does not support flexible rerouting that allows automatic
RRU switching to another BBU and the data rate is dependent on a number of antennas
which can also be critical in 5G mMIMO implementations [69].

Presumably, the D–RoF-based solutions may have been sufficient for the early stages
of the 5G network, but as 5G reaches its full potential, digitized optical MFH transmission
based on the conventional CPRI protocol will generally not be sufficient [70]. Analog–
optical transmission, commonly referred to as the A–RoF, presents a traditional RoF tech-
nique that has promising potential to overcome D–RoF’s CPRI limitations (Figure 5).
Analog modulation of the optical signal with no prior digitization addresses bandwidth
limitations, making it more suitable for high-bandwidth networks. On the other hand, due
to the characteristics of the fiber link, transmitted A–RoF signals can experience numerous
link impairments such as attenuation, chromatic dispersion and fiber nonlinearities [71].
Depending on the carrier frequency used for modulation of the optical signal, two common
A–RoF techniques are usually considered, i.e., the radio frequency-over-fiber (RFoF) and
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the intermediate frequency-over-fiber (IFoF). The main difference between the RFoF and
the IFoF techniques is in the carrier frequency used for modulation of the optical signal for
transmission over a fiber–optical link. In the case of the RFoF technique, the analog signal
directly modulates the optical signal, while in the IFoF technique, the signal of intermediate
frequency is used for optical signal modulation.

4.1. Approaches for Improving Energy Efficiency in General RoF Networks
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Figure 7. RoF DAS architecture.

As the RoF integration and mobile broadband access techniques have been developed,
studies focused on improving the EE of the RoF networks have been performed. An
overview of research activities related to the EE improvements of the ROF-based systems
is presented in Table 2. In ref. [60], it was shown that RoF-distributed antenna systems
(DAS) are the most appropriate architecture for the deployment of high-capacity wireless
communication systems (Figure 7). The authors in ref. [60] demonstrated that, for an active
DAS system that utilizes optical fibers, there is a specific number of antennas that results
in the highest EE when the power consumption of both the radio and optical components
is considered (Table 2). In contrast to traditional WLANs, the RoF DAS architecture uses
multiple remote antenna units instead of individual APs while maintaining all signal
processing functions at a CO (Figure 7). This allows for a reduction in the complexity and
power consumption of the remote antenna units [63].

One way to optimize the RoF DAS performance is to minimize the power consumed at
each remote antenna unit, while providing wireless coverage to a specific area. In ref. [61],
the authors proposed a solution to decrease energy usage in the RoF DASs by adjusting the
RF output power at the antenna units for optimal efficiency (Table 2). They found that a
narrow-band DAS is more energy efficient than a wide-band DAS, due to the improved
efficiency of the power amplifiers, for a single wireless service. However, when more than
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two services are needed, a multi-service broadband DAS can be more energy efficient than
multiple narrow-band DASs when used for offering individual wireless services.
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It was shown in ref. [62] that DAS architecture can enhance the coverage and perfor-
mance of wireless communications within indoor RoF DAS deployments (Figure 8). In a
specific study, the authors suggested a method to determine the location of distributed
antennas to optimize network capacity based on the probability of non-uniform user pres-
ence (Table 2). They also used power consumption measurements of smartphones and
802.11 APs to calculate the EE of a DAS that uses radio-over-fiber (RoF) technology. For
the given indoor environment topology, the simulation results indicated that there was a
specific number of distributed antennas that maximized the EE of the system.

In ref. [63], the authors studied the EE of IEEE 802.11n-based RoF DAS architectures
(Figure 7) and developed a method for evaluating and optimizing the energy consumption
in these systems (Table 2). They found that there was an optimal number of distributed
antennas for specific AP implementation scenarios, and that the aggregation mechanisms
of the IEEE 802.11n standard could further improve the EE in the RoF DAS. Additionally,
they demonstrated that MAC protocol data-unit-aggregation techniques are more effective
in providing higher end-to-end throughput and greater EE than MAC service data-unit-
aggregation schemes in the IEEE 802.11n RoF DAS.

The authors in ref. [64] conducted a study on the EE of indoor networks, which provide
high-speed mobile access to end users using hybrid RoF technology (Table 2). Using a
validated EE model, they found that while individual RoF links may not be as energy
efficient as traditional baseband-over-fiber links, the RoF networks could be more energy
efficient when carefully designed with small cells and when the energy usage of the remote
units is above a certain level.

In ref. [65], for an indoor network, a theoretical evaluation model was presented
in order to evaluate the effect of wireless bandwidth, multiple services and loss due to
electrical–optical–electrical (E/O/E) conversion on the EE of the optical links in A–RoF-
and D–RoF-based networks (Table 2). It was shown that E/O/E loss had a large impact
on the EE of the optical link when the A–RoF transmission technique was used. On the
other hand, it was shown that the D–RoF link was less susceptible to E/O/E loss. However,
the D–RoF link showed a degradation of the EE due to RF signal reconstruction at higher
Nyquist zones. Furthermore, it was shown that the EE could be improved on both the
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A–RoF and the D–RoF connections by increasing the wireless bandwidth. It was also
shown that in the presence of multiple services, additional energy savings depend on the
wireless environment.

4.2. Approaches for Improving the Energy Efficiency of Cloud Radio Access Networks
4.2.1. Energy-Saving Potential of Cloud Radio Access Network Architecture

The usage of optical fiber instead of coaxial cabling for connecting BBU and RRU
locations in the D-RAN network architecture constitutes the basis for the realization of
next-generation cellular mobile networks (Figure 1) [72]. Due to communication between
RRUs and BBUs realized over fiber links, such systems can achieve communication over
longer distances than traditional BSs, having collocated RRU and BBU in the same cabinet
or having the connection between RRU and BBU using coaxial cables or waveguides at the
BS site (Figure 1).
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The D-RAN concept is particularly suitable for the realization of RAN as a HetNet
with the large number of distributed small cells realized as elements of DAS. Small-cell
communication systems realized through DAS show potential for increasing the capacity
and data rate of RANs. However, such RAN communication systems must be simple and
have low power consumption. To meet these requirements, the RAN architecture is evolved
from D-RAN to cloud-based RAN (C-RAN). The C-RAN architecture involves separating
the BBU of traditional cell sites from remote RRUs and allocating the BBUs in a central cloud
location (Figure 9). This allows complex and power-inefficient traditional macro BS sites
to be simplified. Simplification means the allocation of just RRUs at the BS site (Figure 9).
This approach reduces BS site power consumption due to RRU natural air conditioning
and decreases BS site maintenance costs due to the lower amount of components installed
at the BS site [73].

Although three communication standards in D-RAN systems have been developed
(i.e., Open Base Station Architecture Initiative (OBSAI), CPRI and Open Radio equipment
Interface (ORI)) for digital–optical interface communication between RRU and BBU [74],
the CPRI has become the most common D–RoF protocol, which is also predominantly
used in C-RAN networks (4G/5G C-RAN). It defines ten different options in terms of
transmission bit rates, which range from 0.61 Gbit/s for Option 1 to 24.33 Gbit/s for
Option 10 [75].
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Table 3. Summary of the related works on PS methods in C-RAN networks.

References PS Method Summary of Contributions Related to the
Improvement of FiWi Network Energy Efficiency

[76] CnR algorithm

A method for estimating the resource utilization rate of
BBUs. Additionally, the CnR algorithm to save energy in

the BBU pool is presented, and it is shown that the
proposed algorithm is effective at decreasing energy

consumption in the BBU pool and overall system.

[77] Wake-on-RRU and
wake-on-BBU approach

An approach that uses WoL packets sent by the RRU to
wake up BBUs and an approach that uses WoL packets
to wake up BBUs sent by the controller in the BBU pool.

[78] Dynamic resource provisioning
(DRP) algorithm

A dynamic resource-allocation algorithm to select active
RAUs and consolidate virtual machines onto computing

units in order to minimize energy consumption in
C-RANs. In order to achieve this goal, the proposed

algorithm uses a context-aware scheme to minimize the
number of virtual machine migrations.

[79] Graph partitioning algorithm and
rejoining algorithm

A scheme for associating BBUs and RRUs based on
graph partitioning and rejoining in order to minimize

power consumption.

[80] Power control algorithm A power control algorithm based on mobility prediction
for improving the EE of 5G H-CRAN.

[81] H-CRAN energy-efficient radio resource
management (HERM) algorithm

The HERM algorithm to solve the network EE
optimization problem. The results showed that the
developed algorithm significantly improves the EE

of H-CRAN.

[82] MIMO–RoF system
An adaptive RoF system for next-generation C-RANs
that takes into account energy consumption, capacity

per wavelength and distribution range.

[83]
Particle-swarm optimization (PSO),
quantum PSO (QPSO) and genetic

algorithm (GA) approaches

The optimal number of virtual machines that maximize
the EE of C-RAN.

[84]
Heuristic-Assisted Deep Reinforcement

Learning (HA-DRL) BBU
aggregation scheme

An aggregation scheme for BBU based on HA-DRL that
ensures both energy efficiency and guaranteed QoS.

[85] Double Deep Q Network (DDQN)
resource allocation framework

Framework based on DDQN resource allocation method
that maximizes the overall EE in C-RAN.

The C-RAN architecture (Figure 9) was introduced in 2010 by China mobile as a
centralized solution to better support the requirements of future HetNets [86]. Since
traditional RAN systems suffered from numerous challenges related to increased CAPEX
and OPEX with spectral and energy inefficiency, in the cloud centralized solution has
become a necessity in designing future RAN systems for next-generation mobile networks.
The C-RAN thus presents a logical evolution step from the D-RAN (and the centralized
D-RAN), where baseband processing is separated from the cell site and is performed in
the remote CO (Figure 9). In comparison with the centralized D-RAN (Figure 1), the C-
RAN architecture enables complete RAN architecture to be based on the cloud-centralized
management and control paradigm (Figure 9). In remote CO, multiple BBUs can be
aggregated in a BBU pool that can utilize the computational resources of multiple BSs
(Figure 9). The RRUs are connected to the BBU pool through C-RAN mobile fronthaul
(MFH) realized with high-speed and low-latency optical links [87]. The distance between
RRUs and the BBUs physically located in the cloud can be up to hundreds of kilometers
away. With such an approach, centralized operation and management of overall RAN can
be ensured [88]. This BBU centralization can significantly reduce mobile operator OPEX,

20



Sensors 2023, 23, 2239

since multiple BBUs aggregated in the same central equipment room (CO) in the cloud can
share the same resources (e.g., power supply, air-conditioning) and thus improve the EE of
the network [89].

Furthermore, in C-RAN network architecture, RRU design and functionality are much
simpler, and this further contributes to the reduction of BS site power consumption and
maintenance costs. Additionally, the C-RAN has an architecture suitable for the imple-
mentation of cooperative techniques such as coordinated multi-point (CoMP) processing
technology. The cooperation of multiple BBUs in the large cloud BBU pool using CoMP
technology enables the sharing of different system information in the cloud. This can
improve the spectral and EE of the RAN and also can contribute to alleviating inter-cell
interference (ICI) of the densely deployed small cells [86].

Therefore, through the implementation of the cloud-computing paradigm, the C-RAN
architecture is able to aggregate multiple BS resources into a central BBU pool in the cloud.
According to ref. [90], with such centralized architecture, it is possible to optimize multi-cell
cooperation processing, which results in more energy-efficient operation of RAN than those
having decentralized BBUs in the cloud. Therefore, full implementation of the C-RAN
architecture can bring considerable potential energy savings to mobile network operators
in the future.

4.2.2. Techniques for Improving Energy Efficiency in Cloud Radio Access Networks

Since energy efficiency has become one of the main concerns when designing RAN,
some initial research analyses have been published with respect to improving the EE of
C-RAN networks and they are summarized in Table 3. In the case of the latest 5G mobile
cellular networks, the heterogeneous C-RAN (H-CRAN) architecture is composed of a
small number of macro BSs and the large number of small BSs (micro, pico, femto) in
combination with algorithms for the effective allocation of radio resources in centralized
and integrated BBU pools is considered as a promising approach for minimizing network
energy consumption. However, to support the expected increase in the number of UDs,
wireless services and applications in the future, the number of network elements (the RRUs
on the front-end side and the BBUs on the back-end side) will also increase, and the need
for improving the RAN’s EE will remain.

One additional issue with C-RAN architecture is that all of its BBUs are always active,
even when user traffic is low. This leads to the high energy consumption of the BBU pool.
To address this issue, the authors in ref. [76] proposed a method for estimating BBUs’
resource-utilization rate. The method takes into account the data rate requirement, the
number of mobile UDs, the RRU bandwidth and the transmission power between the RRU
and mobile UDs (Table 3). They also presented the combine and remove (CnR) algorithm
for deciding when to switch BBUs off and on. The proposed algorithms were developed
with the aim of maximizing the number of sleeping BBUs while maintaining the QoS.
The simulation results showed that when compared with traditional RANs, the proposed
scheme can save the energy consumption of the BBU pool and the overall RAN system.
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Table 4. Summary of the related works on PS methods in networks based on the MEC concept.

References PS Method Summary of Contributions Related to the
Improvement of FiWi Network Energy Efficiency

[9] Unified resource management scheme
The realization of the FiWi network with MEC led to a

significant reduction in power consumption and an
increase in the battery life of edge devices.

[91] Unified resource management scheme
and cloudlet-aware DBA algorithms

A resource management scheme that takes into account
the use of cloudlets and incorporates offloading tasks

into the FiWi DBA process. The proposed management
scheme could significantly reduce the amount of energy

used by edge devices and extend their battery
life significantly.

[92] Priority-based task offloading and
caching (PrO) method

The proposed PrO scheme efficiently manages tasks by
caching, offloading and performing local computing
while preserving the priority order, which resulted in

reduced delay and energy consumption.

[93] ACCO and GT-CCO PS methods

Proposed a two cloud–MEC collaborative computation
offloading mechanisms. Using a combination of MEC

and centralized remote cloud services resulted in
significantly lower energy consumption compared with

solutions without a centralized cloud.

[94] GT-CCO PS method

Proposed a FiWi network architecture that enables the
coexistence of centralized cloud and MEC in the IoT

applications. A game-theoretic collaborative
computation offloading scheme was proposed as a

solution for improving energy efficiency and handling a
large number of mobile devices effectively.

[7] ISA-CCO PS method

Confirmed that the proposed ISA-CCO solution is more
effective than previously proposed ACCO and GT-CCO

in terms of reducing energy consumption and
improving processing response time on mobile devices.

[95] TSGO PS method

Energy-efficient offloading strategy for MEC-enhanced
FiWi. The three EE benchmarks to evaluate EE

mechanisms for MEC FiWi were proposed and it was
confirmed that the proposed strategy could significantly

decrease energy consumption in MEC-enhanced
FiWi networks.

In the C-RAN, the BBU pool serves a large number of RRU units (Figure 9) and by
effectively coordinating the BBUs, network performance in terms of power consumption
can be optimized. In order to minimize power consumption caused by communication
overhead between the BBUs and RRUs, the authors in ref. [79] presented a scheme for the
association of the BBU and the RRU based on graph partitioning and rejoining (Table 3).
By using a partition and rejoin scheme, the authors assigned the BBUs to RRUs based on
both the individual resource requirements of the RRUs and their communication with each
other. The simulation results showed that the algorithm proposed in ref. [79] could reduce
power consumption in the BBU pool with linear computational complexity.

In ref. [80], the authors presented a power-control algorithm that utilizes mobility
prediction to improve EE in the 5G H-CRAN (Table 3). The proposed algorithm predicts the
movement of user equipment in vehicular mobility situations and performs RRU switching
based on the prediction results. The authors proposed an RRU-switching approach using
Markov mobility prediction and a gradient-optimized transmission power method. The
simulation results indicated that the proposed algorithm performed better regarding EE
compared with existing RRU-switching algorithms.

22



Sensors 2023, 23, 2239

Furthermore, the authors in ref. [81] developed a radio resource management method
for energy-efficient H-CRAN (Table 3). The EE of H-CRAN was studied using an energy
consumption model that includes all networking devices. Using this model, the authors de-
veloped an energy-efficient radio resource management algorithm to improve the network
EE of the H-CRAN.

The authors in ref. [82] proposed an adaptive RoF system for reducing energy con-
sumption while maintaining the required transmission rate the next-generation C-RAN
systems (Table 3). The proposed system is based on the 2x2 MIMO–RoF model that em-
ploys coherent optical orthogonal frequency division multiplexing (CO-OFDM) technology.
Through extensive numerical analyses, the authors verified that the proposed system could
achieve significantly lower energy consumption with a high spectrum efficiency.

Additionally, the proliferation of the NFV technique has enabled the adoption of
virtual machines which execute BBU functions in a way such that multiple virtual machines
can run on a single, generic server at the BBU pool (Figure 9). By increasing the number
of deployed RRUs and active virtual machines within the server, the authors in ref. [83]
emphasized the need for solving the problem of increased power consumption. Therefore,
the authors in ref. [83] proposed a power model that maximizes the network energy
efficiency through the estimation of the optimal number of active virtual machines within
the BBU server (Table 3).

To address the unsustainable growth of energy consumption caused by the increased
mobile traffic, the C-RAN architecture separates the BBU from the RRH in the BSs and
consolidates the BBUs into a BBU pool to allow low-utilized BBUs to enter sleep mode
during decreased network activity, thereby reducing energy consumption. However, when
a BBU is in sleep mode, the RRHs connected to it must be switched to another BBU, which
can impact the QoS for those RRHs. To address this issue, the authors in ref. [84] have
proposed a deep reinforcement learning (DRL) based BBU aggregation scheme that ensures
both minimal energy usage of BBU and minimal migration of RRH traffic at the same time.
Furthermore, several heuristic algorithms are introduced to assist with the DRL training.
The proposed heuristic-assisted DRL (HA-DRL) approach is evaluated numerically and is
found that the proposed approach outperforms the benchmarks by achieving the lowest
cost for all scenarios. Additionally, the authors have found that the DRL agent is able to
achieve better results by trading BBU power consumption for RRH traffic migration.

The utilization of C-RAN has proven to be effective in improving network performance.
This gain is due to the smart management of RRHs with regard to power consumption and
on/off operation modes. However, conventional resource allocation techniques maximize
network efficiency without taking into account the overhead of RRH switching in adjacent
time intervals. Therefore, in ref. [85], the authors aim to optimize EE while adhering to
per-RRH transmission power and user data rate constraints. To achieve this, authors have
formulated the EE problem as a Markov decision process (MDP) and have implemented
DRL techniques to gain cumulative EE rewards. Simulation results showed that a proposed
double deep Q network (DDQN)-based framework outperforms traditional approaches
due to its ability to consider future effects of actions, and the ability to overcome the
issue of action overestimation. This leads to a significant improvement in EE compared
to benchmarks.

The presented analyses of related works indicate that many challenges related to
improving EE in FiWI networks based on the C-RAN concept have not been addressed.
It can be observed that further research activities related to the development of advanced
architectures, signalizations, protocols and scheduling algorithms must be performed in
order to make such FiWi networks more energy efficient.
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5. Energy Efficiency Analyses of FiWi Networks Based on Multi-Access
Edge Computing
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The MEC concept introduces the cloud computing processes into FiWi networks, which
are closer to mobile end UDs, more specifically at the mobile network edge. By exploiting
an approach based on processing part of the user traffic in the cloud servers located at the
edge of the mobile network, the transmission delay in the network is reduced and central
servers at the cloud are less loaded. Figure 10 shows the generic network architecture that
encompasses MEC and a centralized cloud paradigm over the FiWi access network. Such a
network is referred to as a cloud–MEC FiWi broadband access network (CM-FiWi).

The architecture presented in Figure 10 consists of a long-reach optical backbone
network connected to a centralized cloud and a standard FiWi access network supporting
different wireless access technologies such as LTE, 5G or WLAN. One or more MEC servers
are connected near the UDs of the fixed-access network or integrated with the ONU with
the AP (ONU-AP) node or the ONU with base station (ONU-BS) node via a direct optical
connection (Figure 10). This connection enables cloud services at the edge of the network,
which can comprise the access of some wireless local/personal networks or cellular mobile
networks (Figure 10). In such a FiWi network based on the MEC concept, ONU devices can
also retain their traditional role, i.e., provide fixed services to users via the fiber-to-the-x
(FTTx) concept (Figure 10).

This technology and architecture are key to the evolution towards full installation of
the 5G networks and especially 6G networks, since it enables the transformation of mobile
networks towards a programmable platform that meets the mobile cellular network require-
ments for increased bandwidth, lower delay and better scalability and configurability [96].
As one of the key technologies for enabling the full potential of 5G networks [97], MEC
creates a pathway for the practical implementation of applications that require extremely
low latencies with high reliability. Some examples of such applications include tactile
internet, augmented reality/virtual reality, connected cars and mission-critical IoT systems.
Moreover, the FiWi networks based on the MEC concept can reduce the overall operator
CAPEX and OPEX through the exploitation of the existing infrastructure and through the
implementation of integrated resource-management mechanisms.

The authors in ref. [9] reviewed the challenges and possible design scenarios for
implementation of MEC-enabled hybrid FiWi networks with various RAN technologies
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(WLAN, 4G, LTE-A and HetNets) (Table 4). Additionally, using the TDMA scheduling
resource-management scheme, the Ethernet-based FiWi network was further inspected
regarding delay performance, battery life of edge UDs and response-time efficiency. The
results showed that the MEC over FiWi can significantly reduce power consumption and
extend the battery life of edge UDs (Figure 10). Furthermore, the same group of authors
proposed, in ref. [91], a cloudlet-aware resource-management scheme that decreases the
delay of offloading tasks and extends the battery life of edge UDs (Table 4). This scheme
incorporates offloading the FiWi dynamic bandwidth allocation process and was designed
using two TDMA layers to improve network performance. Analysis showed that the
proposed solution, which incorporates cloudlets into the MEC FiWi networks, could lead
to a significant reduction in energy usage for edge UDs and extend their battery life by
several hours. The proposed architecture and resource-management strategy could be
a useful solution for the implementation of MEC in future technologies such as the 5G
tactile internet.

For the computational offloading scheme that involves moving intensive computing
tasks to a cloud located at the edge of the mobile network is shown to be beneficial in
improving EE and reducing latency for UDs in the mobile network [92]. Hence, the authors
in ref. [92] proposed a priority-based offloading model that takes into account offloading
and caching optimization that is combined with a local computation policy. The study
shows that the proposed model has a substantial impact on decreasing both, the delay and
energy usage in a cellular network.

Two collaborative computation offloading schemes using the CM-FiWi architecture,
namely, an approximation collaborative computation offloading scheme (ACCO) and a
game-theoretic collaborative computation offloading scheme (GT-CCO), were studied in
ref. [93] (Table 4). The simulation results showed that using both MEC and centralized
cloud services resulted in notably better energy efficiency of the network compared with
the MEC schemes without centralized cloud offloading. Furthermore, in ref. [94], a generic
FiWi architecture with a combination of centralized cloud and distributed MEC for IoT
connectivity was presented (Table 4). The problem of collaborative computation offloading
for the IoT over FiWi was addressed through the GT-CCO scheme. The numerical results
showed that the proposed scheme was energy efficient and able to effectively handle a
large number of mobile devices.

Due to limitations of mobile UDs, e.g., reduced computing resources, memory capabil-
ities and limited battery capacity, offloading compute-intensive tasks to the MEC server
or a remote cloud server emerged as a viable and promising solution for today’s compu-
tation and delay-sensitive applications [7]. This offloading scheme, called cloud–MEC
collaborative computation offloading (CMCCO), takes advantage of both types of cloud
services, i.e., centralized remote cloud service and a decentralized MEC service as two
complementary technologies. The authors in ref. [7] proposed an energy-aware collabo-
rative computation offloading (EA-CCO) system which can perform various computing
tasks in the CM-FiWi network (Table 4). An iterative searching algorithm for collabora-
tive computation offloading scheme (ISA-CCO) was developed in order to decrease task
offloading overhead by taking into account residual battery rate, transmit power allocation
and the scaling of computing resources. The simulation results showed that the proposed
ISA-CCO solution achieved superior results compared with the aforementioned ACCO
and GT-CCO paradigms in terms of energy consumption and processing response time of
the mobile UDs.

Due to the removal of unnecessary data traffic from optical backbone networks, the
MEC-enhanced FiWi network presents a viable choice for practical implementation in cases
where resource-intensive and delay-sensitive mobile applications will be used.

However, the assumption that the FiWi infrastructure offers unlimited and free re-
sources is not realistic and, hence, the energy-efficient offloading techniques must be
considered in the realization of MEC-enhanced FiWi networks. Motivated by the need to
develop energy-efficient offloading mechanisms for the MEC-enhanced FiWi networks, the
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authors in ref. [95] presented the two-layer Stackelberg game offloading (TSGO) strategy
(Table 4). The FiWi layer and mobile edge computation offloading layer of this strategy
are responsible for performing bandwidth allocation and offloading decisions, respec-
tively. In addition, three EE benchmarks were proposed to evaluate the performance of
the proposed strategy. The simulation results showed that the TSGO strategy supports the
concept of green communications and could effectively decrease the energy usage of the
MEC-enhanced FiWi networks.

6. Implementation of SDN-Based Energy Conservation Concepts in the
FiWi Networks

In recent years, traditional access networks have become difficult to manage due
to the constant increase in the number of users and network devices, which is followed
by the increased complexity of the network structure. Compared with traditional com-
munication networks, networks exploiting the SDN concept introduce flexible, dynamic
and programmable networking concepts. The implementation of SDN results in easier
network management and improved overall network performance [10]. The SDN allows
for the virtualization of network functions (NFV) using applications that run on top of
the SDN controller. These applications use a programming language that simplifies the
rapid deployment of new services and capabilities. The SDN and its NFV applications can
be used to manage the PON devices of different standards in a coordinated and dynamic
manner [98].

Table 5. Summary of the related works on PS methods in SDN-based networks.

References PS Method Summary of Contributions Related to the
Improvement of FiWi Network Energy Efficiency

[99] SDN control mechanism through
OpenFlow protocol

Confirmed that SDN-based control architecture has the
potential to reduce energy consumption in the FiWi

access network.

[100]

Enhanced standard PON
devices with OpenFlow SDN technology

and SD
controller

An adaptive SD ONU PS mechanism that uses enhanced
standard PON devices with advanced SDN capabilities.

The simulation results showed that the proposed
scheme could increase the EE while still guaranteeing

the QoS requirements in a TDMA–PON system.

[98]
SD TWDM–PON architecture

with OpenFlow
technology

Development of the architecture that uses SD
orchestration to coordinate wavelength/link speed

deployment and to improve EE by adapting the link rate
or activity state of the OLT/ONU transceivers during

periods of low traffic while still maintaining the
required QoS.

[101] SDN-based 5G EPON architecture
Proposed an open control layer SDN-based framework

that aims to minimize energy consumption in EPON
while avoiding adding additional packet delay.

[102] Controllers in OpenFlow technology Energy-saving scheme for a FiWi access network that
combines the OpenFlow technology in the SDN.

[103] EEWA scheme

Proposed the EE scheme that significantly optimizes
energy usage and workload allocation in a network

combining the neighbor edge servers, local edge servers
and the remote cloud. Proposed a path priority selection
method to decrease the probability of network blocking

and to improve the use of available spectrum.
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Figure 11. Software-defined PON architecture.

According to Figure 11, which presents a visualization of the SDN PON architecture,
the separation of the data and control planes are the main features of SDN. Such separation
enables centralized network management which is executed in the centralized controller.
Two controller interfaces, namely, a northbound and southbound interface, are defined
within the SDN architecture. They enable the centralized controller to communicate with
applications and network equipment (Figure 11). The northbound interface is used to
communicate with the application layer, which enables the application of SDN control
management functions. On the other hand, the southbound interface is used for commu-
nication between a centralized controller located within the control plane and the data
plane (Figure 11). The data plane consists of network equipment and it is responsible for
packet-forwarding decisions. OpenFlow is a commonly used protocol at the southbound
interface (Figure 11). It provides access to the data plane and is considered the enabler of
the SDN concept [104].

Due to the constant network infrastructure growth, the power consumption of access
networks has become one of the main concerns for companies that own larger networks
and telecom operators. The SDN-based approach has emerged as a viable and effective
solution for reducing power consumption of access networks [10]. Table 1 summarizes
the related works on PS methods in SDN-based networks. The authors in ref. [99] showed
through simulation that the proposed SDN-based energy management scheme in the EPON
system can reduce the overall energy consumption of optical access networks (Table 5).

Although PON is considered an energy-efficient fixed network access technology, due
to its mass deployment worldwide, PON systems need to be even more energy efficient to
meet today’s green policy requirements. Due to modern consensual requirements related to
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ensuring more sustainable and energy-efficient operation of access networks, PON devices
need to be enhanced in order to more easily adapt to such an environment. Having this as
a goal, the authors in ref. [100] proposed an energy-conservation scheme through adaptive
SDN-based TDMA–PON system architecture (Table 5). They introduced software-defined
(SD)–, OLT– and SD–ONU architecture and employed an energy-saving scheme using
an OpenFlow-based SD controller (Figure 11). To enable PS operation, the SD–OLT and
SD–ONU devices were enhanced with SD agents connected to the SD controller via the
OpenFlow protocol. The approach uses flow tables for packet classification and forwarding
and an energy-saving table to store SD–ONU receiver sleeping periods. The transceiver of
the SD–ONU was decoupled and thus the independent working state of the transmitter and
receiver was enabled in such an architecture. Hence, depending on the traffic characteristics,
the energy conservation of the SD–ONU was orchestrated via the SD controller through
the assignment of the SD–ONU receiver’s sleep period and the SD–ONU transmitter’s
wake-up threshold. The simulation results performed in low-traffic conditions showed a
significant reduction in energy consumption, while maintaining QoS requirements.

In addition, an energy-efficient SD optical access architecture based on TWDM–PON
was proposed in ref. [98] (Table 5). In this architecture, the authors enhanced existing
fiber–optic network equipment with SD capabilities. SD orchestration was proposed to
manage the use of different wavelengths and link speeds in the network. Through this
management, saving energy could be achieved by turning off or decreasing the data rate
of the OLT/ONU transceivers when traffic was low, while still maintaining the required
quality of service. The authors in ref. [98] also evaluated the performance and EE of the
proposed system in various scenarios which consider factors such as packet delay, link
capacity and data loss in the network. The simulation results showed that various trade-offs
should be considered when evaluating the EE of the system.

In order to minimize power consumption without adding additional delay in the
5G EPONs, the authors in ref. [101] proposed a framework based on the SDN and NFV
paradigms (Table 5). The authors proposed an SDN 5G EPON network design that reduces
the complexity of managing and operating the network, while improving the usage of
network resources. The suggested solution extends the multipoint MAC control sub-
layer in the OLT and divides its responsibilities between the OLT and the SDN controller.
The management and control functions of the OLT and RAN were moved to the SDN
controller, while the other functional components remained in the OLT and were integrated
with the OpenFlow switch. Therefore, the functions that operate on longer time scales
were transferred to the SDN controller, while those related to shorter time scales were
kept in the OLT and RAN. This design allowed for the integration of EPON and RAN
energy conservation techniques and additionally enabled the minimization of CAPEX costs.
Nevertheless, the authors in ref. [101] emphasized the need for further evaluation of the
proposed solution in order to clarify levels of energy savings.

The authors in ref. [102] proposed the PS scheme for FiWi networks based on an SDN
approach (Table 5). The scheme is based on the OpenFlow protocol and a newly introduced
controller that manages ONU’s working and sleeping states based on the traffic flow
threshold. According to the simulation results, such a proposed centralized energy-saving
approach based on SDN has a significant advantage. These advantages are mainly due to
the central management provided by the introduced controllers. The controllers enable fair
distribution of available resources, which results in greater energy savings. The authors
demonstrated that the proposed SDN-based energy-saving scheme in the FiWi networks is
effective and has practical value.

To achieve energy-efficient computing in a specific environment such as cloud-edge
FiWi networks, it is crucial to coordinate the actions of edge servers and cloud servers
in order to reduce energy consumption. Therefore, the authors in ref. [103] presented
a solution for reducing energy consumption in such an environment by improving the
cooperation between edge servers and cloud servers (Table 5). The proposed solution,
called energy-efficient workload allocation (EEWA), was tested on an SDN testbed to
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demonstrate its feasibility. In addition, simulations were conducted to find the best possible
outcomes for a set of task requests. The simulation results indicated that the EEWA
scheme significantly decreased the network blocking probability and the average energy
consumption in edge-cloud FiWi networks.

While implementation of SDN in RAN shows potential for improving EE of the FiWi
networks, much work remains to be done within the areas of algorithms, standardization,
architectures and interfaces.

7. Discussion

The development of new architectures, protocols and algorithms for FiWi networks
has been a hot topic in the telecommunications industry in recent years. These networks
combine the high speed and reliability of fiber optic cables with the convenience and
accessibility of wireless technology, providing a cost-effective solution for delivering broad-
band services to a wide range of customers. Research on FiWi networking involves the
integration of optical fiber and wireless broadband access technologies. FiWi broadband
access networks resulting from the integration of optical fiber and wireless technologies
can utilize both RoF and R&F hybrid networking technologies.

The carbon footprint of ICT infrastructure is gaining increasing public attention and
raises concerns related to global warming. This has led to increased research into devel-
oping energy-efficient solutions and research dedicated to improving the EE of the FiWi
networks is not an exception. The use of fiber optic cables, which transmit data using light
signals, allows FWI networks to operate with lower power requirements than traditional
copper wire or coaxial cable networks. This not only helps to reduce the energy costs of
operating FWI networks, but also has environmental benefits, as it reduces the carbon
footprint of telecommunications infrastructure.

In addition to the energy-efficient nature of fiber optic cables, FiWi networks can
also incorporate other energy-saving technologies. In previous analyses presented for
the RoF, R&F, MEC and SDN-based FiWi networks, it has been shown that advanced
power-management schemes can be used to dynamically completely or partially turn off
components in the FiWi network to reduce the power consumption of certain components
when they are not in use.

While FiWi networks offer significant energy-saving potential, it is important for
telecommunications companies to carefully consider the energy consumption of all aspects
of FiWi networks, which includes the wireless components and the fixed network infras-
tructure required to support them. By adopting energy-efficient technologies and practices,
service providers and telecom operators can significantly help to reduce the overall energy
consumption of their FiWi networks and contribute to a more sustainable future.

Energy efficiency in C-RAN has become an increasingly important topic in recent years
as the demand for mobile data services has continually grown. The C-RAN architecture, in
which the baseband processing is centralized and the RF processing is distributed, has been
proposed as a solution for improving energy efficiency in cellular networks. One of the
main benefits of C-RAN is the ability to centralize baseband processing. By centralizing the
baseband processing, the power consumption of C-RAN is reduced, since the centralized
baseband unit (BBU) can serve more RRUs and thus can be designed to be more energy
efficient in comparison with BBUs serving individual RRUs. Centralization also allows for
the sharing of resources between BSs, which further contributes to reducing RAN power
consumption. Furthermore, the C-RAN enables the dynamic power management of RRUs
and BBUs by allowing them to sleep when the traffic is low, and wake up when the traffic
demand increases. These BBU and RRU sleeping cycles contribute to the reduction of
energy consumption.

Additionally, recent research studies proposed a wide range of methods for reducing
energy consumption in the C-RAN. These methods include techniques for optimizing
the use of resources in the BBUs, strategies for managing the sleep state of the BBUs,
resource utilization algorithms for increased energy savings, approaches for associating
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BBUs and RRUs, power management algorithms of the RRUs and the use of NFV to execute
the functions for improving the EE of BBUs using virtual machines. Therefore, C-RAN
architecture has the potential to significantly improve the energy efficiency of cellular
networks through centralization, fronthaul compression, dynamic power management of
radio resources and the use of the SDN and NFV. However, careful planning is required
to ensure that the high bandwidth requirements of the fronthaul links can be met and to
avoid adding complexity to the network.

In the presented analyses, it is shown that EE is an important concern in the design
and operation of the FiWi networks due to the fact that the energy consumption of these
networks can be a significant portion of the total OPEX of network operators. One way
to improve the EE of FiWi networks is to use MEC technology. The MEC allows the
deployment of computing and storage resources closer to the edge of the network and thus
closer to the users. This can reduce the energy consumption of the network by reducing the
amount of data that needs to be transmitted over long-distance fiber–optic links between
remote cloud servers and users located at the edge of the wireless network, since more
data processing can be carried out locally at the edge servers. Optical fibers are already
recognized for their EE and, implemented with MEC technology, can additionally diminish
unneeded data transfer in optical networks. However, energy efficiency in the MEC-based
FiWi networks is still largely unexplored and it should be a highly prioritized subject of
future research.

In addition, energy-efficient techniques for MEC-enabled FiWi networks include
power-aware resource management schemes. These schemes optimize the allocation
of resources to the fiber–optic and wireless links based on the traffic demand and the
available energy. This optimization can be performed in combination with collaborative
computation offloading schemes, which computationally redirect demanding tasks from
the central remote server in the cloud to a server located closer to the users at the edge of
the network. These concepts have the potential to contribute to the full proliferation of the
green communications paradigm and to significantly decrease energy consumption in the
FiWi networks.

One advantage of using the SDN in FiWi networks is the ability to dynamically control
and optimize network resources. With the SDN concept, network administrators can
use a centralized controller to manage and configure network devices, which allows the
simple allocation of resources and the adjustment of network configurations as needed.
Such an SDN concept can also help to improve the efficiency and performance of FiWi
networks, particularly in dynamic or high-traffic-demand environments. Because network
configurations can be easily adjusted using the centralized controller, it is easier to add
or remove devices and services as needed. This will enable telecommunication providers
to satisfy the changing needs of their customers and adaptation to new technologies and
trends. Overall, the use of SDN in the FiWi networks can help to improve the efficiency,
performance and flexibility of these networks, making them a more attractive option for
telecommunications providers and their customers.

In conclusion, FiWi networks offer a cost-effective and energy-efficient solution for
delivering broadband services to a wide range of customers. By leveraging the energy-
saving potential of fiber optic cables and incorporating other energy-efficient techniques
and strategies, telecommunications providers can help to reduce the environmental impact
of their networks and contribute to a more sustainable future. The use of energy-efficient
techniques presented in this survey can significantly improve the EE of FiWi networks,
thus reducing their operating costs and carbon footprints.

8. Conclusions

This paper presented a comprehensive survey of recent research on approaches that
contribute to energy efficiency improvements of FiWi access networks. Emphasis was given
to the extensive literature review of various power-saving techniques and energy-efficient
models that are dedicated to the improvement of FiWi network energy efficiency. The
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presented review covered energy efficiency analyses of different types of FiWi networks
which include the R&F FiWi networks, the RoF FiWi networks, the MEC-based FiWi
networks and the FiWi networks based on the SDN concept. For the R&F networks, energy
conservation techniques and research studies related to the optical and wireless domains
were presented, as well as related works that deal with the improvement of FiWi networks’
energy efficiency through the cooperation of techniques in wireless and optical domains.
Furthermore, two basic RoF techniques, the D–RoF and A–RoF, were elaborated in the
context of energy efficiency, and an overview of research studies in the field of improving
the energy efficiency of D–RoF and A–RoF systems was given. Additionally, the C-RAN
architecture was reviewed through the prism of energy consumption with the presentation
of current research efforts related to the improvement of the C-RAN energy efficiency. The
MEC-based FiWi networks, which introduce cloud computing at the edge of the mobile
network, were further presented, and articles dedicated to the mechanisms and concepts for
the optimization of the MEC FIWi network’s energy consumption were highlighted. Finally,
flexible SDN FiWi networks that offer high scalability and ease of management of the FiWI
networks were presented, with an emphasis on research related to energy conservation
techniques implemented in such networks. The literature suggests that there are many
areas in which the energy efficiency of the FiWi networks can be enhanced. Overall, the
overview presented in this work showed that EE is one of the major concerns in the FiWi
networks and further intensive research attempts should be carried out in the endeavor of
improving the energy efficiency of the FiWi networks.
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Abbreviations

100G-EPON 100 Gbit/s Ethernet Passive Optical Network
10G-EPON 10 Gbit/s Ethernet Passive Optical Network
3G 3rd Generation Mobile Network
4G 4th Generation Mobile Network
5G 5th Generation Mobile Network
6G 6th Generation Mobile Network
ACCO Approximation Collaborative Computation Offloading
ALR Adaptive Link Rate
ANN Artificial Neural Network
AP Access Point
A–RoF Analog Radio-over-Fiber
AWSM Adaptive Watchful Sleep Mode
BBU Baseband Unit
BS Base Station
CA Carrier Aggregation
CAPEX Capital Expenditure
CMCCO Cloud–MEC Collaborative Computation Offloading
CM-FiWi Cloud–MEC FiWi
CnR Combine and Remove
CO Central Office
CoMP Coordinated Multi-Point
CO-OFDM Coherent Optical Orthogonal Frequency Division Multiplexing
CPRI Common Public Radio Interface
C-PSM Centralized Power-Saving Mode
C-RAN Cloud Radio Access Network
DAS Distributed Antenna System
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DBA Dynamic Bandwidth Allocation
DCF Distributed Coordination Function
DDQN Double Deep Q Network
DEC Delay-Controlled and Energy-Efficient Clustered
D-RAN Distributed Radio Access Network
DRL Deep Reinforcement Learning
D–RoF Digitized Radio-over-Fiber
DRP Dynamic Resource Provisioning
DWBA Dynamic Wavelength and Bandwidth Allocation
E/O Electrical-to-Optical
E/O/E Electrical-Optical-Electrical
EA-CCO Energy-Aware Collaborative Computation Offloading
ECO-FiWi Energy Conservation Scheme for FiWi Networks
EE Energy Efficiency
EEWA Energy-Efficient Workload Allocation
EPON Ethernet Passive Optical Network
FiWi Fiber–Wireless
FTTA Fiber to the Antenna
FTTx Fiber to the x
GA Genetic Algorithm
GDBA Green Dynamic Bandwidth Allocation
G-EPON Gigabit Ethernet Passive Optical Network
GHG Greenhouse Gas
GPMM Generic Power Management Model
GPON Gigabit Passive Optical Networks
GT-CCO Game-Theoretic Collaborative Computation Offloading Scheme
HA-DRL Heuristic-Assisted Deep Reinforcement Learning
H-CRAN Heterogeneous Cloud Radio Access Network
HERM H-CRAN Energy-Efficient Radio Resource Management
HetNet Heterogeneous Network
ICI Inter-Cell Interference
ICT Information And Communications Technology
IFoF Intermediate Frequency-over-Fiber
ILP Integer Linear Programming
IoT Internet Of Things
ISA-CCO Iterative Searching Algorithm for Collaborative Computation Offloading
IT Information Technology
LoRa Long Range
LPWAN Low-Power Wireless Access Network
LTE-A Long-Term Evolution Advanced
M2M Machine-to-Machine
MAC Media Access Control
MANET Mobile Ad Hoc Network
MDP Markov Decision Process
MEC Multi-Access Edge Computing
MFH Mobile Fronthaul
MFN Mobile Fronthaul Network
ML Machine Learning
mMIMO Massive Multiple-Input Multiple-Output
mmWave Millimeter Wave
MNO Mobile Network Operator
MN Mobile Network
MPP Mesh Portal Point
NB-IoT Narrowband Internet of Things
NFV Network Function Virtualization
NG–PON2 Next-Generation Passive Optical Network 2
OBSAI Open Base Station Architecture Initiative
OLT Optical Line Terminal
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ONU Optical Network Unit
ONU-AP Optical Network Unit with Access Point
ONU-BS Optical Network Unit with Base Station
OPEX Operating Expenditure
ORI Open Radio Equipment Interface
OSC ONU Sleep Controller
OSI Open Systems Interconnection
PON Passive Optical Network
PrO Priority-based task offloading and caching
PS Power-Saving
PSM Power Saving Mechanism
PSO Particle Swarm Optimization
QoS Quality Of Service
QPSO Quantum Particle Swarm Optimization
R&F Radio-and-Fiber
RAN Radio Access Network
RAU Remote Access (Antenna) Units
RF Radio Frequency
RFoF Radio Frequency-over-Fiber
RI Radio Interface
RoF Radio-over-Fiber
RRU Remote Radio Unit
SAPSM Smart Adaptive Power Save Mode
SD Software-Defined
SDN Software-Defined Network
SEMC Save Energy and Maximize Connectivity
SIEPON Service Interoperability in the Ethernet Passive Optical Networks
TDM Time-Division Multiplexing
TDMA Time Division Multiple Access
TRx Transceiver
TSC Tx Sleep Controller
TSGO Two-Layer Stackelberg Game Offloading
TWDM Time And Wavelength Division Multiplexing
Tx Transmitter
WDM Wavelength-Division Multiplexing
WLAN Wireless Local Area Network
WMN Wireless Mesh Network
WOTR Wireless–optical Topology Reconfiguration
WSM Watchful Sleep Mode
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Abstract: This article is a graphical, analytical survey of the literature, over the period 2010–2020,
on the measurement of power consumption and relevant power models of virtual entities as they
apply to the telco cloud. We present a novel review method, that summarizes the dynamics as
well as the results of the research. Our method lends insight into trends, research gaps, fallacies
and pitfalls. Notably, we identify limitations of the widely used linear models and the progression
towards Artificial Intelligence/Machine Learning techniques as a means of dealing with the seven
major dimensions of variability: workload type; computer virtualization agents; system architecture
and resources; concurrent, co-hosted virtualized entities; approaches towards the attribution of power
consumption to virtual entities; frequency; and temperature.

Keywords: virtualization; power consumption; power models; power meters; energy-aware algorithms

1. Introduction

Several surveys of the results (see Section 1.6, “Related Surveys”) of research into
modeling the power consumption of virtual entities (VEs, i.e., virtual machines (VMs) or
containers) have been written. In this work, our contribution lies in a thorough analysis
of the dynamics of research itself: the challenges, the approaches, the pitfalls, the falla-
cies, and the research gaps, without neglecting the fruits of the research. Our intended
audience is the prospective researcher, seeking to understand the dynamics of research
into the predictive modeling and supporting measurements of power consumption by
individual VEs relevant to the telco cloud. Dynamics are characterized through a thorough
frequency analysis, which we conduct through the application of a novel method we
have developed [1] that is unique in its ability to parse research literature. Through the
visual aids we provide, and our observations through cross-cutting themes, a prospective
researcher obtains a thorough characterization of the problems, approaches, developments,
formal methods, pitfalls, fallacies and research gaps that characterize this research space.

Among the themes that our survey has brought us to identify, we have pointed out
that all the problem categories we identified touch one or more of a set of seven main
variables that may affect power consumption by virtual entities and the ensuing model
representations: workload type, characteristics of the virtualization agent (VM or container),
host machine resources and architecture, temperature, operating frequency, attribution of a
fraction of consumed power to individual VEs and the mutual influence of concurrent VEs.

Among the major pitfalls that emerged from our thematic analysis, we highlight here
the misconception of the Data Plane Development Kit’s (DPDK) power efficiency (com-
monly misportrayed as a power hog), the often-unacknowledged limitations of the widely
used linear models, the problematic use of benchmarks in model validation, the failure
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to precisely identify the physical contexts of some experimental research, the influence of
synthetic workload generators on measurements and the sometimes-overlooked relevance
of processor organization on power consumption measurements. We have also pointed
out the unavoidable need to precisely identify the scope and limitations of models and the
fallacy of the quest for a “universal” power model.

The research gaps we identify are four: (a) modeling of containers’ power consump-
tion; (b) the effect of overcommitment on power efficiency; (c) investigation and classifica-
tion of DPDK applications; and (d) modeling of power consumption by virtualized I/O (a
challenge which is starting to receive some attention).

1.1. Why Is Research Needed?

Precise measurement of a VE’s power consumption is difficult since measurements of
its host’s power consumption cannot be related directly to it. Hardware power meters are
incapable of measuring the power consumption of individual VEs co-hosted on a physical
machine. Moreover, power consumption of a VE varies with its hosting machine. Therefore,
for VEs, accurate measurement is predicated upon precise modeling of energy- and/or
power consumption.

A general prerequisite to devising energy- and/or power-efficient operations is accu-
racy in power and energy measurements. With specific regard to VEs, it is also essential for
billing in multi-tenant environments, so that the Infrastructure Provider (IPr) can charge
customers the fair amount for the resources (including energy) they consume. Before
proceeding to the scope of our survey, we pose three salient questions that frame our work.

1.2. Why Should Energy Consumption Be a Topic of Interest?

Energy efficiency in the Internet (and in computing and telecommunication networks
in general) has become a significant problem, which has received increasing attention since
the early years around 2000 (see, e.g., [2–4] and references therein), starting from cloud
computing infrastructures, and then extending to mobile and fixed networks. Indeed, it
has been shown that the smaller data centers, within which telecommunications points of
presence (PoPs) may be classified, represent around 95% of the United States’ data center
energy use [5]. Furthermore, this use is comparatively inefficient when compared with that
of the hyperscale server farms (the remaining 5%).

1.3. What Is the Underlying Cause of Increased Energy Consumption?

Traffic growth is the primary cause of increased energy consumption. Table 1 shows
the consistency with which Cisco’s Visual Networking Index (VNI) has been predict-
ing heavy growth in traffic exchanged over the access network by both businesses and
consumers with:

• endpoints over managed networks;
• endpoints over unmanaged networks (“Internet traffic”).

Table 1. Compound Annual Growth Rate (CAGR) reported in Cisco’s VNI over four consecutive years.

Period Fixed Internet Traffic Managed IP Traffic Mobile Data

2014–2019 [6] 23 13 57

2015–2020 [7] 21 11 53

2016–2021 [8] 23 13 46

2017–2022 [9] 26 11 46

(Note that the figures refer to compound annual growth rate (CAGR); they do not
refer to the percentage share of total traffic.).

The key observation lies in the realization that, year after year, significant (heavy, in
the case of mobile data) growth is persistently predicted. This observation is corroborated
by several other researchers, with perspectives varying from traffic at the access segment
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to traffic in transit between Internet Service Providers (ISPs) [10–12]. Cisco [6] and Sand-
vine [13,14] identify “video traffic” and “real-time entertainment” as the drivers of this
growth. A later edition of Sandvine’s Global Internet Phenomena report [15] dedicates
its executive summary exclusively to video traffic; the report shows video as consuming
60% of downstream traffic—a further 2% increase over 2018. Alcatel-Lucent Bell Labs [11]
observed that growth in the metro-core due to video traffic exceeds growth in video traffic
crossing the long-haul core. Clearly, it is widely recognized that video is the prime driver of
this growth in traffic and attendant energy consumption and research has been addressing
this problem [16–28].

1.4. How Is Energy Consumption Being Tackled?

From these (referenced) works, the development of cache architectures emerges as
an important approach to controlling energy consumption, but other mechanisms exist
and yet more are emerging within the general thrust towards “future networks” (ITU-
T Y.3001 [29]). Networks are evolving into flexible and programmable “softwarized”
virtualized infrastructures, and strongly integrated paradigms, such as 5G [30,31], rewrite
the research agenda. We may thus distinguish between radical and reformist approaches:

• Reformist approaches seek to improve the caching of content and are characterized by
their investigation of the reduction of the length of the path between the source and
destination of IP traffic.

• Radical approaches employ the dynamic and reactive control afforded by the soft-
warized, virtualized infrastructures. Radical methods are enabled by standardized
architectures (e.g., [32,33]) that equip the control plane with uniform interfaces that
exploit extant and emerging green capabilities.

Indeed, the impact of virtualization technologies on power consumption in public
telecommunication networks (PTNs) is still unclear. There is a general belief that Network
Functions Virtualization (NFV) should result in reduced energy consumption, owing to a
consolidation of resources and increased flexibility in turning unused hardware (HW) on
and off as needed. However, it is also true that “the massive introduction of general-purpose
HW enabled by NFV would tend to increase power requests with respect to specialized
HW solutions” [30]. Therefore, there is a need to operate power-aware management and
control mechanisms in these environments. At the same time, it is necessary to limit
the complexity of these mechanisms and the level of human intervention therein, to keep
Operational Expenditures (OPEX) within reasonable limits. One approach to understanding
this impact consists of comparative analyses of the implementations of infrastructure, with
and without virtualization. This approach is taken in [34], where the evolved packet core
(EPC) is studied. This work shows that the virtualized implementation is indeed less
energy efficient. Unfortunately, the scope of virtualization and containerization within the
converged wireless and wireline infrastructure is very broad and consideration of a single
“use-case” [35] cannot be generalized to an overall statement. We therefore note that the
scope for our survey needs an operational context which we suggest in the following.

1.5. The Scope of This Survey
1.5.1. Telco Cloud: The Operations Context

We suggest that the telco cloud is our network-operations context. “Telco cloud” is
an evolving notion that evokes a number of common terms in attempts to describe it.
Virtualization, software-defined networking (SDN), automation and orchestration are four
such terms. Other prominent terms are edge computing, containerization, microservices
and resilient infrastructure [36]. We suggest three key observations that organize these
terms into a coherent image of the telco cloud.

1. The telco cloud is, fundamentally, a hybrid cloud:

a. Self-sourced virtualization and containerization;
b. Out-sourced (public cloud) containerization.
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The complementary collaboration of the PTN operator’s (PTNO) network, computing
and storage infrastructure, with that of global providers of infrastructure and applications,
is manifested well in [37]. A distributed cloud infrastructure operates at network (transport
and interconnect) junctions. It includes (cloud) infrastructure owned and operated by the
PTNO, by public cloud providers and by enterprises which consume their joint service.

2. The telco cloud serves both internal and external clients [36]:

a. Internal use can suggestively be referred to as the IT Cloud [38]. This consists of
applications specific to PTNOs: operational support systems (OSS) and business
support systems (BSS), as well as more general applications, such as customer
relationship management (CRM);

b. External uses are growing organically on the basis of use cases seeded by
ETSI [35] and the 5GPPP [39].

3. The service-based architecture (SBA) of the 5G Core is a good fit with cloud-native
computing. Containerization is distinctively central to cloud-native computing [40,41].
The Cloud Native Computing Foundation explicitly identifies containers as compo-
nents of the approach to the concept of cloud native computing [42]. There is a clear
drive towards the use of containers in lieu of virtual machines as the operating envi-
ronment for network functions [40], and the 5G Core’s SBA provides a clear scope for
employing containers.

We end this subsection by indicating the real estate where the VEs in our context may
be deployed:

1. Datacenters: here, the real estate referred to consists of points of presence (PoPs) such
as metro-core PoPs at the near edge;

2. Softwarized and virtualized networks: here, we refer to points of presence such as
central offices (COs) and sites even deeper into the edge, such as remote radio head
(RRH) sites and roadside cabinets.

1.5.2. Identifying the Models in the Scope of This Study

We survey predictive energy and power models, as well as measurements that fa-
cilitate the qualitative and/or quantitative prediction, of consumption by individual VEs
relevant to the telco cloud. A simple interpretation of the rationale that drove our selection
is that we have sought works that measure real-time power consumption by VEs and/or
model real-time power consumption by VEs. The object of measurements and modeling
is strictly the VE.

Nonetheless, the devil is in the details and therefore the details of this simple rationale
must be worked out. One important, finer point regards the VEs themselves. There
are software technologies, which we shall elaborate upon in later sections, which are
functionally critical to VEs. Works that measure, and/or model, such technologies’ power
consumption are in scope. A justification of this claim on scope is not hard. Since power
consumption is a scalar quantity, the reduction of power consumption of a component of a
VE translates into the reduction of power consumption by the VE. In fairness, the translation
is not direct (1:1). A generalization of Amdahl’s law comes to mind: improvement in a
component, measurable by some metric, is attenuated by the ratio of that component’s
use (measurable by that metric) to the system’s (the VE’s) use (measurable by the same
metric). However, we can safely summarize the finer point we alluded to at the start of
this paragraph as follows. Research that studies the measurement and modeling of power
consumption by a component of a VE is in scope. We clarify this by example. For instance,
we would:

1. Include the Data Plane Development Kit (DPDK) [43], as it serves the critical function
of networking (VEs that serve as virtual network functions (VNFs));

2. Include a comparative study that measures power consumption by a VE using two
different implementations of input/output virtualization technology, say: SR-IOV
(single-root IO virtualization) and paravirtualization;
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3. Exclude a comparative study that measures power consumption by various network
adapter (or network interface card (NIC)) architectures, unless it reveals the impact
of these architectures on VEs’ power consumption.

Further detail emerges from the “real-time” requirement. This term is a reflection of
the need for application agnosticism. Power meters that follow from such measurements
and models may be used regardless of whether instantaneous or statistical readings of
power are required. Studies (on measurements and models) meet this requirement by
satisfying the following criteria.

1. Predictors:

a. Must be of fine temporal granularity;
b. Must be updated with the regularity of the temporal granularity;
c. Must enable prediction of power consumption at the same temporal granularity.

2. Workload: Only resource-specific constraints are considered. That is, in the course
of testing using, say, workloads that are processor-intensive (hence the workload
is specific to the processing resource), no other constraints are allowed in works
included in this study. In particular, models must not constrain the stochasticity of
the workload.

Our last detail regards workload. We observe that the universal power model is
a fallacy and the principal reason for this is that the interaction between workload and
architecture cannot be pinned down indefinitely. This does not mean that modeling is
a fruitless endeavor. It simply means that validity constraints must be placed on the
model in terms of workload and architecture. Therefore, we do not exclude modeling
and measurement because of its workload-scope or architectural scope. We do, however,
observe that such models are pitfalls for those who apply them without knowledge of
such limits.

We now proceed to present some recent, related surveys, highlighting their method-
ology and analytical approach. Against this background, we summarize the novelty of
this survey.

1.6. Related Surveys

In recent years, much research has modeled the power consumption of servers in data
centers and cloud environments in general. Several surveys in this regard cover different
aspects of modeling and energy efficiency approaches for servers and virtual entities.

An analysis of power models the from micro- to macro-level is presented in [44]. This
survey covers different aspects and levels of both hardware- and software-centric modeling
techniques. Researchers studied models based on computing resources (CPU, memory,
storage and I/O), system architecture (such as single or multiple cores), the availability
of Graphics Processing Units (GPUs), system/network components, operating systems
and virtualization environments. They categorize the existing models at different layers
moving from architecture level modeling to the level of power models for whole data
centers. However, the survey did not focus greatly on power modeling techniques that
consider the effect of different virtual entities.

According to the categorization in [44], power models depend on different organi-
zational contexts, including the power consumed by system components, running appli-
cations, and/or the execution strategy of processes. These metrics, however, can derive
additive component-based, regression-based or machine-learning-based power models.
Additive models usually present an aggregated view of server power consumption, which
could be based on different resources (such as CPU, ram, I/O, disk), or the disaggregate
static and dynamic power consumption of the server. Regression-based models are mostly
based on the relation of power to the dynamic evolution of some measured system param-
eters. Power modeling using machine learning techniques is an advanced research area
which can be further classified as supervised, unsupervised, reinforcement and evolution-
ary learning. Furthermore, at a much higher level, such as that of data center environments
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as a whole, power models for groups of servers, datacenter networks, conditioning and
cooling systems were studied. The survey also analyzed the modeling methods at operating
system (OS) and virtualization level, and for data-intensive, communication-intensive and
general applications. At the end, the researchers compare the power models against their
complexity, effectiveness, application and use-cases.

The survey carried out in [45] analyzes the power models based on their modeling
approaches. It claims that power modeling methods can be divided into two main themes:
analytical models and formula-learned models. In the former, parameters affecting the
system power are known to the researcher; however, the weight for each parameter needs to
be determined. On the contrary, in high-level formula-learned or machine-learning-based
modeling, no prior knowledge of the system is required and the model is developed from
scratch using the provided data set. The survey further describes commonly used machine
learning techniques, and later focuses on the use and effectiveness of neural networks in
power modeling. According to this survey, the approach to model power for any server
may vary in several aspects. These different characteristics are summarized as (i) degree
of autonomy, i.e., to which level the power model is dependent on external hardware;
(ii) level of granularity, which describes the depth of logical (core, thread, etc.) or physical
(device specific, system level, etc.) levels to which the model can precisely estimate the
power; (iii) methodology, describing the selection of method, which could be simulation,
analytical modeling or data-training; (iv) simplicity, which can be assessed by the number
of variables, method selection and models’ computing overheads; (v) portability, as most of
the models developed are effective for some specific architecture, workload or environment,
and their generalization is still a question; (vi) accuracy, which defines the measurement
accuracy or estimation precision of power for any model; and (vii) power meter (as most
studies use external power meters as a ground truth for their modeling, their accuracy is
also a major concern for developing a more efficient model).

The survey in [46] adopts a slightly different analytical approach and evaluates se-
lected existing power modeling techniques in a unified environment. Comparative analysis
has been performed for twenty-four different software power models and measurement
methods, with nine different benchmarks under a single experimental environment. It
evaluates the existing software power measurement techniques and models for different
applications, benchmarks, systems configuration, server architecture and for their estima-
tion errors. The authors claim that most of the software-based power models use system
performance metrics provided by the operating system, or performance monitoring coun-
ters provided by hardware sub-systems of the server. Software power models considered
in this study are categorized in three types as single variable CPU-based, multi-variable
CPU-based, and single-variable throughput-based. The result of this unified experimental
setup shows that power models based on a support vector machine (SVM) and interpola-
tion techniques show the least error for different resource-intensive applications, whereas
lasso regression with 30 variables was found to be the worst power model with the highest
error. Furthermore, the modeling techniques are mainly divided into two categories; lin-
ear and non-linear, where each category is further classified based on its derivation from
mathematical modeling or machine learning techniques.

Another survey [47], with a more limited scope, focuses on the power modeling of
servers in the cloud while considering the complexity stemming from the diversity of host
hardware platforms, virtualization environment and workload. It presents the usability,
applicability and limitations of the studied approaches, and also presents the analysis
of the traditional existing and emerging modeling techniques. It reviews the existing
power modeling methods at three stages: data acquisition methods, power consumption
models and power modeling methods for servers, VMs and containers. According to
this study, the collection of data for power models could be based on: (a) instruments
such as external power meters, (b) dedicated acquisition systems which are generally
products customized by developers for a specific hardware, (c) simulation-based, and
(d) software monitoring tools. The latter constitute a widely used method that is based
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on system indicators and sensors. For the second stage—i.e., the power modeling—either
hardware-centric, virtualization-centric or application-centric power modeling schemes
can be used. Each type has its own drawback and usability; hence, the domain is still an
open research area for further generalization and measurement precision. The selection
of method, which is considered as the third step of the modeling in [47], is characterized
as power-modeling-based on: (a) empirical parameterization, (b) function regression,
(c) machine learning, and (d) evolutionary algorithms. The survey, after analyzing different
power models, concluded that functional regression and machine learning methods yield
high accuracy when provided with large enough data sets and clear power behavior of
servers. This survey is more similar to ours; however, we distinguish further by providing
statistical analysis of existing approaches, used tools, methods and measurement metrics.
Moreover, our survey focuses on the modeling of power for individual virtual entities
and on the effect of the virtualization environment on server and network functions’
power behavior.

In general, the surveys mentioned above present the literature on server models
irrespective of the operational environment. One of the major trends, not only in data
centers but also in networking, is the presence of virtual entities and the adoption of
virtualization environments. In contrast, our survey concentrates on the power models of
virtualized entities, and focuses mainly on components and parameters that could affect
their power consumption. It further provides a statistical analysis of included research
works with respect to their data acquisition methods, measurement tools and modeling
methods, to give researchers a bird’s-eye view of the existing literature through which one
can identify the approaches carried out in different studies.

1.7. Organization of This Survey

The survey is organized as follows:

1. In [1], we describe our method: a problem–approach–development (PAD) triad, which,
to the best of our knowledge, we are the first to use to identify research dynamics.
We have delegated the description of the method to a separate paper, to resolve the
difficulty of elaborating fully on the method without distracting attention from the
results which we have obtained and which we document separately in this review.

2. Section 2 presents the detailed results.
3. Section 3 is our analysis of the results. There, we give a qualitative assessment through

themes which emerged as we organized the data. We have classified these themes as
“state of the art”, “fallacies” and “pitfalls”, to suggest guidance and warnings which
we were able to glean from others’ experiences.

4. Section 4 concludes by attempting to encapsulate the insights we have gained through
this work.

5. Appendix A illustrates the use of structural coding on a sample of the corpus on a
popular research area: predictive models of renewable energy consumption in the
radio access network.

6. Abbreviations lists and expands the acronyms used in this paper.

We complement this paper with an online repository (https://github.com/humaira-
salam/PowerMeasurementAndModelingRawData, accessed: 23 December 2022), that
carries our raw data.

2. Survey Results: A Digest of Challenges, Approaches and Developments
2.1. A Taxonomy of the Problem Space

As our parsing of the literature proceeded (our method is described in [1]), we ob-
served that the scope of this survey is relatively narrow and the problems in our set are
not fully independent of one another. Rather, the problems diverge from one another
only as aspects (we could also say that they are derivatives) of the core challenge of mod-
eling the power consumption of virtualized entities. Each RU (research unit) (The RU,
or unit of research, is “a publication (excluding surveys) in conference proceedings and
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journals” that “ha[s] three common manifest properties”, i.e., problem(s), approach(es) and
development(s) [1]) is rooted in this core challenge, but the derivative problems (our Prob-
lem categories (P-categories) and their members) addressed differ from one RU to another.
Figure 1 is an illustration of a simple organization of the challenges which have been tackled
in the literature and shows their frequency of presence in RUs. The organization gives
prominence to how challenges have been perceived:

1. One group regards the concern with obtaining an understanding of the dependency
of power consumption on some genre of artifacts. Categories P1,2 and P9–11 are in
this group;

2. The other group regards the concern with how to predict power consumption. Cate-
gories P3–8 and P12 are in this group.
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We now proceed to describe the categories in more detail. Each description is preceded
by a list of references to works that tackle a challenge in the problem category.

2.1.1. Problem Category P1: Host System Hardware Architecture Perspective: Dependency
of VE Power Consumption on Host System Architecture [48–51]

Challenges in problem category P1 address the impact of specific architectural at-
tributes of the host system on the power consumption of VEs. They relate to changes in
power consumption (the behavior) as major attributes of architecture and system-level
designs are adjusted, inserted or removed. Insertions and removals are coarse configurative
actions such as enabling or disabling; adjustments consist of progressive modifications
such as adding increments of a resource. Examples of attributes which have been tackled
include multiple processor cores, processor frequency scaling, Non-Uniform Memory Ac-
cess (NUMA) and hardware threads (e.g., Intel Hyper-Threading). For network functions,
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the importance of knowledge about the power efficiency of NUMA and multiple-core ar-
chitectures has the added relevance of these architectures’ relationship to determinism [37].
We dwell further on the underlying premise of hard partitioning in our consideration of
the impact of the high-performance data plane on power efficiency (see Section 3.3.2).

Research that investigates the dependency of power consumption on architecture is
exploratory, charting work. It attempts to provide a framework for detailed modeling
through the discovery of broad relationships. Problems in this category arise with develop-
ments in architecture and system-level design. For example, while [49] is a comparatively
old work that tackles architecture, [50] is newer and finds scope for research in system
software’s exploitation of NUMA. One recent, highly significant scope is that of the use of
domain-specific architectures (DSAs). Researchers are exploring specialized hardware in
the quest for the improvement of the energy–performance–cost ratio, and will investigate
energy efficiency in the process of their research. As domain-specific cores are mixed
with general-purpose cores, many architectures will be investigated from each of the three
pinnings: energy consumption, performance and cost. A particularly relevant set of DSAs
regards real-time packet processing by computer systems hosting NFs at intermediate
nodes (INs) at the network edge. Concern lies with expediting the common tasks, such as
sending/receiving packets and processing headers. SR-IOV is a good example (see, for
example [52], and its inclusion in [48]), but software-only solutions, such as poll-mode
drivers, may also help to cut through the many middlemen characteristics of general-
purpose operating systems [48,53]. Introduced to serve the perspective of performance, it is
now necessary to understand their impact on power efficiency. Therefrom, it is necessary to
understand how to control their power consumption. We suggest that “profiling”, the term
chosen in [49,54], is a helpful descriptor of this kind of research. Just as a profile produces
an external boundary within which to fill detail, so does this kind of research provide a
framework through which modeling work is facilitated and within which modeling work
provides details of power consumption relationships.

2.1.2. P2: Impact of Alternative Virtualization Genres and Virtualization Platforms on VE
Power Consumption [55,56]

Here, a behavior that consumes power is investigated across different implementa-
tions of a system concept. We have observed investigation of two different system concepts:
(a) virtualization genres and (b) virtualization platforms. There are three members of the
virtualization genre group: containers, para-virtualization and hardware-assisted virtu-
alization. In the virtualization platform group, examples include Xen, Hyper-V, Kernel
Virtual Machine (KVM), Docker and Linux Containers (LXC). Research questions typical
of category P2 seek to control the scope of experimentation through exercise of specific
resources, e.g., per-host networking using emulated switches (software switches) [55,56],
processor-bound and memory-intensive processing [54].

We consider genres and platforms as sub-categories of the same overarching problem
category. Namely, this is system-level exploration that attempts to establish generalizations
about an uncharted space. Like problems in category P1, new problems in this category
arise with fresh alternative virtualization genres and platforms. However, here the scope
of investigation is broader than with works classified under P1. Unlike P1, where specific
architectural aspects (e.g., NUMA, hardware threads) are explored, the perspective taken
here is a concern with the impact of the choice of implementation of a system.

2.1.3. P3: Estimation of Power Consumption of (Virtualization-) Host System [57–69]

Measurement of a single server’s power consumption through the use of an external
power meter is a trivial task. However, at the scale of cloud datacenters, it is a logistical
burden. In addition, travel to the datacenter’s site may be burdensome. Furthermore,
service availability would be reduced by the process of attaching a physical power meter to
the hardware in the virtualization platform, e.g., between the server’s power inlet and the
outlet in the racking cabinet’s power distribution unit (PDU) (naturally, availability would
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only be affected in cases that do not integrate (management and) measurement facilities
within the PDU).

The alternative is the deployment of software power meters. In the scope of this
survey, the cases we consider are meters that attempt to predict host power consumption
on the basis of activity in the VE. This challenge is tackled, for example, in [58–60,62,67,70].
These works then proceed to tackle the problem of attribution of system power to the guest
VEs. Indeed, inclusion within the scope of both challenges (modeling power consumption
of VEs and that of the host system power) seems to significantly enhance the usefulness of
such research, with relatively less effort.

Host power consumption may be predicted in terms of VE resource utilization, or
in terms of a simple characterization of the VEs’ workload. The use of simple workload
characterization as a predictor requires knowledge of workload parameters such as the
number of processes, number of threads, web interactions per second and network interface
utilization. Enokido’s and Takizawa’s work [67,68,71] is noteworthy in its consistency in
modeling in these terms but other variants of this approach have been found: (a) web
interactions per second [65] and (b) number of VMs running processor- and/or network-
intensive workloads [66].

To contrast: works such as [57,72–76] are not included within this category, notwith-
standing their development of models for the prediction of host system power consumption.
In these works, host system models were developed as part of the scope of the challenge
of modeling virtualized entities. Therefrom, the challenge of system power attribution
(problem category P8) was tackled to proceed to guests’ power models.

2.1.4. P4: Dependency of Power Model on Workload [56,62,67–69,71,75–79]

This category regards the perceived dependency of a VE’s power consumption model
on the tasks it is processing. While it is intuitive to expect power consumption to depend
on the workload, it seems far less intuitive to expect the model to depend on the workload.
If this dependency is detected, the problem of model formation must undertake this aspect
of investigation. Two different, major approaches towards achieving adaptability of the
model to the workload have been observed:

1. Adaptation during run-time: the selected mode of instrumentation may not be suited
to a generalizable, closed-form relationship between inputs and power consumption.
In this case, model parameters must be re-trained online. This approach is therefore
of the operating-time, or run-time, kind;

2. Off-line adaptation: a larger set of inputs may need to be identified to comprehen-
sively characterize the variation of power consumption with the workload. This
approach is therefore of the design-time, or off-line, kind.

We conclude this part with a note about two descriptors of the workload: homoge-
neous and specific. The term “homogeneous” is encountered in the literature to refer to the
case where host system deployments within scope are subjected to a single workload. The
term seems to originate in warehouse scale computing (WSC). Conclusions drawn from
this kind of workload have drawn criticism as the results, while significant by virtue of
the mass of WSC, are not generalizable. The other term—“specific”—identifies a single
application; for example, a member of the Standard Performance Evaluation Corporation
(SPEC) CPU2006 suite [80]. This term is used to indicate that models tested under such
a workload are application-dependent and are valid only within a limited range of this
dimension of variability (i.e., the “workload” dimension, see the treatment of the seven
dimensions of variability).

2.1.5. P5: Dependency of VE’s Power Consumption and Power Model on VE’s Resource
Configuration (Heterogeneity) [62,73,78]

This category regards the perceived dependency of a VE’s power consumption and/or
the dependency of its power consumption model on (a) the physical host’s resource con-
figuration and (b) the individual VE’s resource allocation. Research here is concerned
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with two cases of very practical problems: the impact on power consumption of (a) the
differences between hosting machines/containers and (b) the differences between virtual
machines. We have observed that occurrences of research that undertake this challenge
tackle it as an adjoint to another focus, not as the research’s primary objective.

1. Physical host configuration: Host machines in a cloud datacenter may be expected
to come in a limited variety of types, principally differing in resource capacities
such as the number of processor packages per server, cores per processor package,
amount of RAM per server, spread in storage device sizes, etc. Processor power
consumption is notably variable, even within a single family of processors. Indeed,
specialization in optimized power consumption within a family of processors is a
part of the study carried out in [34] within the context of an edge cluster for use in
NFV. As a VE migrates from one processor within a family to a processor of a different
specialization, its power model will change.

2. Individual VE’s resource allocation: The power consumed by a VE varies with the
allocation of resources to (i.e., in use by) a VE, which can be dynamically varied. The
number of virtual cores assigned to a VE is a notable example, see, e.g., [57,61,72–74].
Moreover, VEs are commonly offered in sizes, e.g., small, medium and large, where
allocation varies within all the major resource categories, demanding prediction of
power consumption matched to the size of the purchased VE.

2.1.6. P6: Impact of Temperature and/or Frequency on Models That Predict VEs’ Power
Consumption [60,81,82]

This category regards the challenge of the inclusion of processor package temperature
in models of power consumption. Works that tackle this challenge are concerned with
detailed models of power consumption. Here, the interest lies in obtaining models that
incorporate dependence on hyper-parametric attributes such as temperature.

2.1.7. P7: Loading the VE’s Resources and Measuring Resource
Use [56–59,61,62,65,68,69,71,73,75–79,81–87]

This category regards the use of computing resources and the measurement of such
use by VEs. Interest stems from the role of resources as predictors in modeling. The
researcher is firstly concerned with loading (i.e., effecting the use of) resources. What
means within the operating context of the VE can be used to load a resource? Should it
be loaded in isolation (using synthetic loads) or should it be loaded using representative
(realistic) workloads? Once these problems have been addressed, the concern with the
measurement of resource use arises. The problem here consists of identifying the means
that quantify resource use made by the loading.

2.1.8. P8: Attribution of Host System Power Consumption to Individual
VEs [57–59,61,62,73,75–77,79,81,82,84,86]

The attribution of host system power to individual VEs is a fundamental problem in
proceeding from the directly measurable (host system power consumption) to the indirectly
measurable (individual VEs’ power consumption). Direct measurement of host system
power is possible (e.g., at the wall outlet, or through voltage rail in-line resistors), and such
empirical evidence can be used as a ground truth and compared with power consumption
inferred through modeling. How, then (and herein lies the problem), can this consumption
be attributed to the host’s individual guests (the VEs)?

Within the host system, power consumption may be divided into idle (static), active
(dynamic) and overhead.

1. Idle (static) power consumption:

a. Power consumption while idle is not attributable to any VE at all, as this con-
sumption arises out of the electronic behavior of semiconductor material, not of
computation, communication or storage;
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b. Nonetheless, this power consumption must be accounted for and different ap-
proaches have been followed. For example, the physical machine’s idle power is
attributed to individual VEs in fractions equal to the ratio of each VE’s virtual
CPUs (vCPUs) count to the total complement of vCPUs active on the physical
machine [57,72–74].

2. Active (dynamic) power consumption:

a. The active component can be linked to a particular VE;
b. This includes active power consumption in peripherals, e.g., network interface

cards/adapters (NICs) and mass storage devices.

3. Overhead, e.g.:

a. Operation of heat dissipating units (fans) to prevent thermal runaway;
b. Losses in the power supply.

A “top” (host)—“down” (guest) approach to attribution has been observed.

1. Decide on what host system power consumption is within the scope of the study
and how to divide it. The problem of attribution of the above three causes may be
summarized as follows:

a. Is idle power attributed to the VEs or is it attributed to the host/a privileged guest?
b. Is consumption by peripherals within the scope? How will this be attributed?
c. Are overheads modeled or is correlation with other sources of power consump-

tion going to account for them?

2. Select a set of performance metrics that are correlated to a VE’s power consumption.
3. Select a model that maps a VE’s performance metrics to its power consumption.
4. This fourth consideration is tackled only by those researchers who investigate the

adaptability of the attribution obtained through steps 1, 2 and 3. Does the obtained
attribution adapt well to concurrent, co-hosted VEs? That is: if concurrent, co-hosted
VEs were to be investigated, would the division, metrics and model still result in
accurate prediction?

2.1.9. P9: Implementation of Virtual I/O; P10: Implementation of Network Functions; P11:
Implementation of Software Layer 2 (L2) Data Plane Switching [48,51,53]

These three categories are introduced together, since elements from the respective
categories are commonly implemented as a set for the purpose of the realization of the
virtualization of network functions. Here, researchers seek comparative statements and/or
broad correlations (e.g., independent, positive, negative) between the workload (often in
terms of packet rate and size) and power consumption, across implementations of the
same type. As was observed for categories P1 and P2, researchers seek a profile of the
power characteristics of implementations. It may be helpful to repeat that by “profile”,
we understand that characteristics sought here are not of the detailed form of closed-form
expressions. Examples of elements from the respective categories are:

1. Virtual I/O (P10): virtio [88] and DPDK poll-mode drivers (PMDs) [89];
2. Network functions (P11): Bro (now Zeek) [90] and Snort [91];
3. Software layer 2 data plane switching (P12): Open Virtual Switch (OvS) [92] and

VALE [93].

Problems in each of these three categories merit separate classification as they have
been tackled separately in the literature. For example, in [53], a number of components are
investigated: three different implementations of software virtual switch (P12), two different
I/O virtualization devices and two different implementations of the same network function
(intrusion detection system (IDS)). In [51], power consumption by packet transmission
under DPDK is investigated under the condition of enforcement of (a) the network adapter’s
affinity to NUMA nodes and (b) DPDK process pinning to processor cores.
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2.1.10. P12: Investigation of Processor Green Capabilities [50,60,67,81–83,85,87,94]

Works in this category investigate the low-power idle (LPI) and adaptive rate (AR)
operation of a processor as a means of reducing power consumption. The challenge is broad
enough to permit a sub-categorization into (a) those works that investigate the influence of
frequency as a power-model parameter [81,82] and (b) other works that address improved,
real-time governance of LPI and/or AR [83,87,94] to minimize the power consumed to
process a load.

2.1.11. P13: Improvement of Power Efficiency of High-Performance IO Virtualization
Frameworks [87]

A separate classification was set up for [87] as this work represents an evolution
of those classified under P9. This work extends beyond profiling and suggests use of
low-power instructions as the means to balance performance and power efficiency.

2.2. A Taxonomy of Approaches

Figure 2 illustrates the taxonomy we use to structure the approaches detected in
research work. Line thickness and percentage values represent the utility of the specific
approach. Utility is best understood within the context of all the observed triads in a
literature corpus. For any specific approach, this may be used to solve a variety of problems
and its application may result in a variety of developments. One may therefore think of the
approach as a nexus, or a point of confluence through which many researchers pass as they
attempt to solve problems. Thereafter, researchers diverge radially outward from this point
of confluence towards some achievement (some development). A suggestive image is to
think of the approach as the center of a star, but spokes converge onto it from problems and
diverge away from it onto developments. When the count of these triads (each composed
of two radial lines, or dyads) is divided by the sum of all such counts for all approaches,
we obtain a metric: a normalized quantity obtained within the context of all approaches.
See our method [1] for the formal statement of utility.

We now proceed to describe the categories within the context of the taxonomy. Each
approach-category’s description is preceded by a list of references to works, each one of
which uses a component within that category’s set.

2.2.1. Analytical Foundations

This group of categories regards the theory and hypotheses that comprise the essential
abstractions at the basis of scientific research.

A1: Power attribution principle [48,53,57–59,61,62,69,73,75–77,79,81,82,84,86]: When
host system power is measured, whether at the wall outlet or at one or more of the
power supply’s output lines, there is the problem of attributing the measurement to the
logical divisions (VEs) of the host computer system. The attribution of system power to
modeled entities starts with a decision on which power consumption is within scope (see
Section 2.1.8). Next, power in scope is attributed to (burdened on) one or more entity.
For example: will idle power consumption be attributed to the host system or will it be
attributed to the VEs?

A2: Modeling bias [57–64,72,75–77,79,81,83–85,87,94]: Researchers approach the prob-
lem of developing a model under some bias which conditions their final outcome. This bias
is manifest in researchers’ selection of a particular type of regression to apply to their data.
We note that this same observation is carried in [95]. Here, our purpose is solely to draw
attention to what we have observed as researchers’ modus operandi without analyzing
their choice of approach.
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A3: Green operating principles [83,87,94]: Works in this category weave radical
approaches to power efficiency into their developments. For example, instead of conven-
tional scheduling, run-to-completion [96] is exploited to obtain dedicated (or, at least, very
sparsely shared) resources for the processing of packets. This approach is further nuanced
by the real-time control of adaptive rates and sleep depth. In one particular case [87], the
novel concept of a low-power instruction instead of transitions to/from low-power idle
(sleep) states is used.

A4: Physical analysis [60]: This category regards approaches rooted in the physical
properties of (semiconductor) material in the consumption of energy. Only one work [60]
was found fitting this category. However, another two that used this approach to study
the power consumption of physical entities (and therefore was outside the scope of this
study, which is concerned with VEs) were found and they are described next to illustrate
the approach better. In [70], a study implicitly applies Dennard’s law in the process of
obtaining weights that scale a processor sub-unit’s contribution to power consumption.
In [97], the physical cause of power consumption in metal-oxide-semiconductor (MOS)
material is examined and used as the basis for modeling equations.

A5: Identification and use of metrics of energy efficiency [49,50,65,85]: The relation-
ship between system architecture and power consumption can be investigated through the
identification of the relevant metrics of energy efficiency. For example, an easily recogniz-
able metric, albeit rather broad in possible interpretations, is the J/b (joule/bit). The use of
such metrics encourages joint consideration of function and power consumption.

2.2.2. Experiment Design

The practical, hands-on aspects of the empirical process are the product of a (probably
cyclical) design phase, concerned with a number of stewarding activities pertinent to test
subjects and ancillary objects in the testing scenario, instrumentation, inputs and outputs.
The activities include selection, configuration, interconnection, initiation, observation and
termination. We have identified several examples of such activities within our research
scope and grouped them under resource provision (categories A6, A7), workload selection
(A8, A9) and data collection (A10–A13). We describe these categories next. Admittedly,
the activities referred to (i.e., selection, configuration, etc.) have broad meanings; therefore,
in the course of describing the categories, references to the activities are emphasized by
bold, italicized text.

A6: Managed resource provision [48–51,53,55,56,60,66–68,73,81–83] (selection, con-
figuration): This concerns the provision of resource capacity either to a specific VE (the
guest system) or to the physical entity (the host system) hosting the VEs. Within the em-
pirical process, the techniques in this category provide the means to observe the effect on
the power consumption of managed changes in resource provision. Examples include the
(manual) pre-configuration of:

• The frequency of operation of processor cores [48,50,81];
• Core affinity [51,55] and hardware-thread affinity [68];
• The network interface data rate capacity capping [66].

These techniques are executed as part of the process of selection of the operat-
ing parameters, i.e., setting up experimentation, before operations start. This qualifi-
cation is necessary to distinguish from such approaches as may change the operating,
run-time context.

A7: Controlled resource provision [78,83,85,87] (configuration): Provision of re-
sources may change during the running of an experiment (rather than before it starts).
Approaches in this category include the automated adjustment of:

• Processor frequency (also known as performance state, or P-state) [78,83,85,87];
• The depth of processor sleep (also known as low-power idle state, or C-state) [83];
• The number of hardware threads [78];
• The time spent running a low-power instruction [87].
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These techniques are approaches to solving the problem of full-throttle operation.
Without a guided operation of adjustments such as those listed above, operation of the
processor may quite reasonably be likened to a multi-assembly-line manufacturing plant
that operates line machinery whether there are goods to produce or not.

A8: Resource-specific workload, A9: Representative workloads (selection, configu-
ration, interconnection): These two categories regard the workload selection stage, within
experiment design in the scientific method. The workload comprises the inputs referred
to earlier; inputs must be interconnected to the system under test, and this is often not
a trivial task. In our thematic analysis in Section 3, we identify workload type as one of
the seven dimensions of the variability of power models. The influence of workload type
on the model obtained is evident in the attention paid by researchers to their selection of
workload type. We can distinguish two broad categories of type.

Resource-specific workloads (A8) [48–51,53,55,56,59–61,63,64,66,67,69,71,75–77,84,86]
are applied to investigate the impact of the utilization of specific resources on power con-
sumption. Such synthetic workloads are applied (interconnected) to a machine (whether
virtual or physical) to reduce (as much as possible) the scope of power-consuming re-
sources to a targeted set. Resource-specific workloads are most commonly used in ex-
ploratory work, to gain an understanding of the behavior of a resource’s power consump-
tion. We refer to this approach as resource-specific workloads, synthetic workloads or
resource isolation.

Representative workloads (A9) [48,56–58,60,62,65,68,69,73,75,78,79,81–85,87] may be
used as complementary with, or alternative to, resource-specific (synthetic) workloads.
A notable complementary use is made in the testing (post-training) phase of model de-
velopment, when representative workloads are used to validate a model (obtained using
synthetic workloads). They may also be used in an entirely alternative approach to syn-
thetic loading, to support development of application-agnostic models. Representative
workloads lead to training data that incorporates variation in utilization of more than one
resource at a time; hence providing at least limited application agnosticism.

The next four categories (A10–A13) regard the data collection stage, within exper-
iment design in the scientific method. Categories A8 and A9 regard the selection of
workload type. The approaches described here regard measuring how much of a resource
is being used, or workload is being applied, and how long to apply the workload to obtain
statistically valid results (initiation and termination). Categories A10, A11 and A13 regard
instrumentation (observation) of those variables considered (by the researchers concerned)
to be reliable predictors of power consumption.

Resource instrumentation in microarchitecture and system software
(A10) [48,49,56,58,59,61–64,69,73,75–79,81–87] includes approaches that measure resource
use. These measurements are then used to predict power consumption. We make a
somewhat weak distinction, for reasons we shall refer to, between instrumentation of
microarchitecture and instrumentation by system software. The former regards parts of
the processor interface that address the processor’s infrastructure for monitoring, event
counters (e.g., instructions retired, last-level-cache (LLC) misses and translation lookaside
buffer misses) and, more recently, power counters (e.g., Intel’s Running Average Power
Limit (RAPL)) [98]. On the other hand, system software’s instrumentation is carried out
through intermediary system software and includes, most notably, processor utilization.
We have seen references to these two categories as “hw counters” and “sw counters”,
respectively [99]. The distinction is weak since system software is increasingly exposing
microarchitecture instrumentation (consider, for example, Linux’s perf tool). This reduces
the need to directly access hardware registers and blurs the separation between what is ab-
stracted and what is concrete, raw, hardware data. Nonetheless, through our understanding
of the data used, we have been able to separate the approaches into two sub-categories.

Category A11 regards the use of a simple characterization of workload as a predic-
tor of power consumption [48,49,53,64,65,67,68,71,78,83,85,87]. This is notably different
from approaches in category A10, which are concerned with resource use as a predictor of
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power consumption. Other examples (apart from those given earlier) of workload metrics
as inputs are the “number of processes” [71] (from the same process image), “transmission
rate” [68] and millions of instructions per second (MIPS) [64].

Characterizations may need to be sharper. For example, since packet network traffic
arrival is known to often have the properties of a Batch Markov Arrival (stochastic) Process
(BMAP), this is an operating constraint (selection, configuration and interconnection are
all ingredient activities here) adopted in the approach of several works studying power
efficiency of network functions [83,87,94,100].

Category A12 refers to the measurement of (host) power consumption [48–50,53,55–
59,61–64,67,68,71,73,76,79,84] (observation) which is most usually measured at the wall
outlet or at the power supply inlet. More granular approaches are desirable, and indeed
we do find cases [62] that attempt measurement at the power supply output. The principal
drawback of such granular techniques is not (principally, at least) construction of interme-
diary hardware (e.g., riser boards or line resistors) but the difficulty in attributing power
drawn through any single dc voltage output (or group thereof) to particular consumers.
With the advent of RAPL and certain guarantees on its accuracy, the need for direct power
measurement has been, at least partially, avoided.

Category A13 regards the use of hardware sensors to obtain inputs and/or parame-
ters for the power model [60,81,82,87]. These include:

1. Voltage sensors (processor supply voltage);
2. Temperature sensors (processor package and memory temperatures);
3. Fan speed sensors (processor and chassis fans);
4. Wall-clock time measurement.

Some of these variables are used in models that predict power consumption while ac-
counting for the effect of the drift of temperature and automated supply voltage adjustment
(in dynamic voltage and frequency scaling—DVFS).

2.2.3. Model Validation

Model validation is a multi-faceted endeavor and this is reflected in the approaches
we have detected. The approaches range across the candidates that would typically be
considered: simulation (A14) [87], use of test data (A15) [57,62–64,77,85] and corroboration
through experimentation (A16) [83,87]. We skip elaborating on these categories as they
are either self-evident (A15) or because they are too rarely used to permit general com-
mentary. However, to these three categories we add a fourth (A17), namely, the model
adaptation technique, which we describe below and explain why it fits within this branch of
the taxonomy.

Model adaptation technique (A17) [57–59,61,62,67–69,71,73,75,76,78,79,81,82,84,86]:
This refers to the approach(es) taken (if any) to develop an adaptable model or modeling
system. Here, adaptability refers to the fitness for use which the model exhibits under
changes in one or more of the seven dimensions of variability that will be defined in detail
in Section 3.1.1 below. Model adaptability is essential for practical virtualization, where
changes in, for example, the number of co-hosted, concurrent VEs, or in workload type,
are commonplace. Here, we list the major approaches taken towards producing adaptable
models. Since these approaches emerge in the context of validating a model’s accuracy
under some limited range of the seven-dimensional space of operating conditions, we
classify this category of approaches as an aspect of model validation.

1. Adaptation to change in the number of co-hosted, concurrent VEs is widely achieved
through the time-division multiplexing of event counters [59,62,69,79,86], RAPL coun-
ters and CPU utilization [61,73]. This approach enables the use of such metrics as
predictors of dynamic (active) power consumption, by apportioning counts to VEs in
accordance with the time during which the VEs were active.

2. Adaptation to uncorrelated causes of power consumption can be achieved through
additional predictors [82] to follow causes of power consumption that do not correlate
well with counters within the current set. This case reflects itself as poor accuracy in
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predicted power consumption. Although counter-based models are reported to fit
a variety of processor- and memory-intensive workloads well, it may be necessary
to account for unanticipated activity through the approach of adding previously
unused counters.

3. It may not be possible to fit a single model with parameters known a priori, to the
whole range of inputs within the scope of study, notwithstanding the diversity of
predictors employed in this pursuit. The following adaptive techniques have been
found in the literature.

a. Dataset partitioning, where the dataset is of the form { {predictors}, response }
and is used in [77] to match the best model out of a set of models to the current,
actual operation. An individual model in the set is associated with a single node
in a decision tree and the node is selected according to features pertinent to the
current, actual operation. A simpler, but conceptually similar, approach is taken
in [58]. A number of models are devised and model-selection features are limited
to the number of active VMs and a coarse grading of CPU utilization.

b. Modeling on demand is the term we use to succinctly refer to the fourth adaptation
class of techniques:

i. One early example of this approach is found in [75], where the dependence
of the model on the workload has been addressed through online training,
whenever prediction accuracy of the extant models falls out of a range of
tolerance. The rationale adopted is that if model adaptation to such an
“unseen” case is limited to parametric tuning, then a modeling system might
be able to construct a model while VEs are in operation;

ii. A broader perspective is found in [78]. An automated system for profiling
containerized applications is described and demonstrated. Containerized
applications are profiled from three perspectives: computing resources con-
sumed, energy consumed and performance. In this case, the rationale is that
energy consumption can be optimized by the determination of a frequency-
and-hardware-threads host configuration that meets performance require-
ments. Thus, starting from central functional requirements (performance
requirements), operating conditions are determined that minimize energy
consumption. This approach is capable of meeting the challenges posed by
heterogeneous host hardware and application (workload) diversity, at the
cost of analytical modeling. Indeed, characteristic curves can be derived but
causes underlying observed behaviors remain unaddressed.

2.3. A taxonomy of Developments

Developments fall cleanly into one of two groups: (a) models of power consumption
and (b) observations on dependencies of power consumption. The first group (D1–D10)
includes developments that predict power consumption over a sub-space of the seven-
dimensional space of operating conditions. The second group (D11–D18) includes devel-
opments that are oriented towards the correlation of power consumption with aspects of
system integration. As the taxonomy is rather broad, we present it in three parts:

1. Figure 3: top-level fork into models and dependencies;
2. Figure 4: the taxonomy of models;
3. Figure 5: the taxonomy of dependencies

D1–D4: We first present four categories of developments that concern models of host-
system power consumption characterized by the condition where workload is processed
by VEs:

• D1: linear regression models;
• D2: non-linear regression models;
• D3: machine-learnt models;
• D4: models of local mass storage.
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This contrasts with the scope of developments referred to under categories D5, D6 and
D7, where models of VE power consumption are presented.

Models in these categories are interesting from the perspective of analyses of sets of
hosted VEs that seek to identify operating conditions of optimal host power efficiency. As
predictors, such analyses use instrumentation that measures resources used by the VEs.
Categories D1, D2 and D3 all predict power consumption in terms of resource use but differ
in the type of model produced.

• D1 regards models of power consumption through linear combinations of scalar
predictors [57–59,69,75]. The scalar predictors are resource usage metrics.

• D2 regards polynomial or simple mathematical powers of resource use (the scalar
predictors) [57,60,61,76,81].

• D3 regards models that employ machine learning (e.g., Gaussian Mixture, Support
Vector Machine, Neural Networks) [62,77,79].

Category D4 regards the models of power consumed by mass storage local to the
host system [86]. These models attempt to predict power consumption in terms of activity
metrics such as the total amount of time spent in a known state (in terms of power con-
sumption, e.g., active/idle), the rate of data exchange (MB/s or input/output operations
per second) and the mode of operation (sequential/random and read/write). In the context
of the approximations observed in the development of these models, their accuracy cannot
be fair.
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2.3.1. Models of Power Consumption

Adaptable VE models (D5–D7): Developments within these categories consist of
adaptable models of the virtualized entity’s power consumption and have two important
characteristics in common:

1. They are adaptable to a variable number of concurrent, co-hosted (active on the same
host system) VEs (we refer to the latter scope of variability as the seventh dimension
of variability);

2. The predictors are the measured amount of computing resources used by the VEs.

Models can be distinguished by the predictors they use, workloads employed and
modeling approach:

1. Predictors (of VE power consumption) are obtained from system software’s instru-
mentation, e.g., CPU utilization (see approach categories A10–A13), and from mi-
croarchitecture instrumentation, e.g., LLC misses (again, see approach categories
A10–A13);

2. Workloads used to obtain the model (this restricts the range of workloads within
which the model is valid) may be:

a. Specific workloads: the most restrictive, as they relate to a particular test load;
b. Synthetic workloads: less restrictive than specific but limited to the exercise of

one resource, typically the CPU;
c. Combinational workloads: still less restrictive, involving the exercise of a num-

ber of resources of the host system (e.g., SPEC CPU benchmarks may be both
processor and memory intensive);

d. Representative workloads (e.g., TPC-W [101]) produce models that are readily
associated with use cases.
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3. The modeling approach may be:

a. Linear regression (category D5) [58,59,69,73,75,81,82,84,86];
b. Power (integer- and non-integer powers), exponential and logarithmic regres-

sions (category D6) [61,66,76];
c. Machine-learnt combinations of resource use (category D7) [62,79].

Models of power consumption that use workload profile as predictors (D8, D9):
Categories D8 and D9 group developments from (two) sets of RUs that predict power
consumption of hosts and/or VEs through (the measurement of) some characteristic of
the submitted workload. This contrasts with RUs in categories D1–D7, where prediction
is obtained through (the measurement of) some computing resource (processor and/or
memory and/or I/O). Most developments in this category are obtained through the ab-
straction of hardware by one or more model parameters that express power consumption
under case-specific conditions of operation. Some of these abstractions are identified in the
descriptions of these two categories.

Developments in D8 [63–68,71,78,83,85,87,94] use:

1. Processing load (number of processes, millions of instructions per second (MIPS), etc.)
pertaining to a specific application, as predictors of host system power [63–67,71];

2. Packets per second, through an intrusion detection system implemented in a VNF [85];
3. Transcoded frames per second, through a transcoder implemented in a containerized

network function (CNF), and inferred images per second, also in a CNF [78];
4. Average network transmission rate, as a predictor of host system power [68];
5. Statistics of a Batch Markov Arrival Process (BMAP) (packet traffic) as a means of the

prediction of power consumption by a VNF [83,94].

Hardware is abstracted through the measurement of power consumption at some
operating point (a specific operation is being carried out), or a change in power consumption
over some operating range. Examples follow:

1. In [65], where energy efficiency of an interactive web service is studied, the operating
point is an entire VM running the TPC-W benchmark [101].

2. In [67,71], the operating points are the host’s power consumption when (a) idle, (b) one
core is active (processing load) and (c) maximum, with all cores active. Furthermore,
use is made of the step increment in consumption corresponding to the activation of
each additional core. Cores are activated when they are utilized by VEs.

3. In [68], the operating point is the power consumption when co-hosted VEs are
transferring a file to a client computer. An affine relationship between the host’s
power consumption and its transmission rate (transmissions originate on hosted VEs)
is found.

4. In [64], an operating range is used: the increase in power consumption that corre-
sponds to an increase in MIPS on the VEs.

5. In [83], the operating point is the power consumption when a VE running on a single
processor core is switching packets at the maximum rate for a given performance state.

6. In [85], fifty-four (54) different features of network traffic are input to an artificial neu-
ral network that selects the operating frequency that optimizes power consumption.

With one exception, none of the works in the above list uncovers the hood to peer
at the processor’s internals (to obtain predictors of power consumption). The exception
is [83]; yet even in this case, the performance monitoring counters are not used as direct
predictors of power consumption, but to obtain (a) the timing information necessary for a
queueing model and (b) the operating state (ACPI (Advanced Configuration and Power
Interface [102]) P- and C-states).

Developments in D9 [87] are set within the models branch of the taxonomy. These
developments may be considered as useful observations on the operation of processors’
green capabilities. Examples of these observations (all from [87]) include:

1. Low-power instructions might be a better candidate than low-power idle to save
power under higher link utilization;
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2. Operation in full ACPI P-state, operation with low-power instructions on idle detec-
tion and operation with low-power idle on idle detection are (a) in ascending order
of latency to return to active processing and (b) in descending order of
power consumption;

3. A processor utilization threshold below which low packet latency is guaranteed under
BMAP traffic arrival is 80%.

By “green capabilities”, we refer to a broader range of microarchitectural aspects than
the by-now-conventional adaptive rate and low-power idle operation. While these latter
two remain at the center of attention, there is also the means of low-power instructions [87]
that has been successfully employed to improve power efficiency. Notwithstanding the
origin of these observations in modeling work, it may be argued that they might also be
classified within the dependencies branch of the taxonomy. We have chosen the models
branch, but as further studies add to the body of knowledge on how to operate processor
green capabilities, this category’s position in the taxonomy might need to be changed.

Relative accuracy of modeling approaches (D10) [60,62,63,77]: Developments pre-
sented under category D10 are comparisons of the relative accuracy of alternative modeling
methods with respect to conventional polynomial (including linear), power, exponential
and logarithmic regression. These developments have been found within works that show
models classified under category D9. The purpose is to qualify and quantify improvements
of machine-learnt models with respect to conventional regression models.

2.3.2. Dependencies of Power Consumption

This parent node of the taxonomy is divided into two child nodes that are not strictly
mutually exclusive. For example, the software data plane is considered in works under
D15. Clearly, the software data plane is a logical artifact and might be included within a
child node of “physical and logical artifacts”, or directly thereunder as a leaf node (i.e.,
as a category). The choice of separation of D15–D18 and the inclusion under the parent
node “networking workloads” was taken for two principal reasons. Firstly, the recurrence
of investigation of power consumption’s dependency on networking workload merits
attention through separation. Secondly, as this survey caters for an audience with an
interest in softwarized networking, an emphasis on the power dependency on networking
workload seems justified.

Knowledge about the dependency of power consumption on specific hardware
(D11); the dependency of power consumption on architecture (D12); the dependency
of power consumption on resource provisioning (D13); and the dependency of power
consumption on virtualization genre and technology (D14): Categories D11–D14 are
grouped into a set of works that obtain the sense of the correlation (positive/negative/none)
between power consumption and some genre of artifacts:

1. Specific hardware types (D11);
2. Computer architecture (D12);
3. Resources provided (D13);
4. Virtualization genre and technology (D14).

Category D12 groups works that relate to observations on the impact of architectural
features on power consumption [49,50,67,71,76]. While these observations are useful, they
are generally too coarse to be directly applicable to real-time power control. Their use
emerges from guidance which they provide in the development of power models. For exam-
ple, it was observed that when the number of threads that fully occupy a core’s time (active
100%) exceeds the number of logical cores in the system, the energy efficiency (measured, in
this case, in hash/J, a computational metric of energy efficiency) decreases [50]. Evidently,
this is good guidance; equally evidently, it is not a directly applicable development.

Categories D11, D13 and D14 relate closely to (various aspects of) implementation,
and as such are of particular interest to the system integrator. Data of high quality
from these developments inform and guide the tasks of gathering components into sys-
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tems that meet the non-functional requirements obtained from concern with energy and
power efficiency.

Category D11 gathers observations about the dependency of power consumption on
specific processor hardware [49,69,76]. We have observed that these developments are
gathered as a by-product of the process of research; they are rather incidental. Like any
implementation, their usefulness is limited to the lifetime of the concerned device(s).

Category D13 [73] includes developments that regard the specific resource
configuration of:

1. The instantiating host, i.e., the relationship between a VE’s power consumption and
the specific resources of its host hardware specifics such as the number of cores and
amount of memory carried by the host instance;

2. The guest VE, i.e., the variation of a VE’s power consumption with its resource
assignment, on the same host.

Category D14 gathers observations about the dependency of power consumption on
instances of virtualization genre and technology [55,56]. Developments in this category are
less incidental than those in category D2 and are obtained with the focused intention of
tackling challenges relating the power consumption of implementations. These develop-
ments relate to a less diversified group of implementations. For example, there are fewer
virtualization platforms than processors to choose from. Direct use of these developments is
mostly limited to the specific implementations concerned; however, some generalizable con-
clusions exist. For instance, it was observed that both hardware-assisted virtualization and
paravirtualization are less efficient (in the specific empirical setup) than non-virtualized
operation in the use of processor caches [56]. This empirical evidence favors the hy-
pothesis that cache hit ratios suffer due to the greater thread rotation in virtualized and
containerized environments.

Knowledge about dependency on power consumption while processing a network-
ing workload (D15–D18): Development categories D15, D16, D17 and D18 are grouped
here as their central characterization is knowledge about the behavior of power consump-
tion by VEs while processing a networking workload. Categories D15, D16 and D17 reflect
the challenges described in P11, P9 and P10, respectively.

Category D15 regards contributions to knowledge about the power consumption of
software data planes [48,53]; D16 regards virtualization of network I/O [51,53], and D17 is
about network functions [48,53,85]. Thus, in [51], the power efficiency of DPDK PMDs is
demonstrated with respect to Netmap drivers, for packet transmission. This development
is balanced by [48], where the power efficiency of transmission through a DPDK-enhanced
Open vSwitch is shown to be worse (@500-byte Maximum Transmission Unit (MTU)) than
that of the unenhanced Open vSwitch. In each of these categories, efforts are made to
allocate burden through the isolation of power consumption and the attribution to the
sub-system (data plane/virtualized IO/network function) under study.

Category D18’s developments differ from those of D15–D17 because they cut across
these categories’ sub-system boundaries [56,65]. For example, in [65], the energy efficiency
of web transactions executed on co-located VMs is found to be highest in the operating
condition of processor-core over-subscription (more VMs than cores). In [56], it is shown
that power consumed by packet delivery to a VM through a software packet switch is
much higher than that required for delivery in a non-virtualized environment. In both
these papers, the object of interest incorporates the virtualization of network I/O and the
data plane. In [65], the object of interest encompasses the network function: a web service
and accompanying application and database components.

All four categories are of keen interest to the system integrator. The emphasis is on the
components in the integrator’s set of building blocks, specifically on the behavior of power
consumption of various implementations, and types thereof (in the scope of the categories).
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2.4. P–A Dyads (Problem/Challenge-Approaches) Graphics

Over the following pages, we present a comprehensive set of graphics (Figures 6–17)
that illustrate the approaches detected to tackle specific challenges (reference numbers
for pertinent RUs appear in the shape tags). For example, consider Figure 7. The graphic
shows the component approaches applied to discover “the impact of specific architectural
attributes of the host system on power consumption of VEs” (see problem category P1).
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The presence of approach categories A1, A5, A6, A8 and A10–A12 does not mean that
every RU tackling this challenge uses a component from all of the approach categories. It
does, however, mean that every RU tackling P1 uses a subset of the approaches shown. We
proceed by giving examples (relevant to P1), with references.

1. Managed resource provision (A6): Prior to running experiments, researchers set the
conditions for the experiment through this approach [48–51].

2. Resource-specific workload (A8): This may be used to stress the component imple-
menting the architectural attribute under test [48–51].

3. Simple workload characterization and instrumentation (A11): The workload must
be characterized by some parameter that serves to measure its demand for power [48,49].

4. Resource instrumentation (A10): This is an alternative to the use of workload profil-
ing (A11) as a predictor of power consumption. Rather than use, say, the number
of threads, or transmit bandwidth (for networking workloads) as predictors, this
approach uses resource instrumentation [48,49].

5. Identification of metric of energy efficiency (A5): In certain cases [49,50], energy or
power efficiency is investigated, rather than energy or power consumption. In these
cases, the researchers identify and use a relevant metric of efficiency, rather than
metrics of consumption (watts or joules).
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On any of the dyad graphics, the approaches shown (inside the approach categories)
include only those which are used by at least one RU that tackles the challenge cate-
gory that is the root of the dyads. We delegate a repository with a full tabulation of
all approaches in any approach category. Similarly, all individual developments within
a category are delegated to the same repository (https://github.com/humaira-salam/
PowerMeasurementAndModelingRawData, accessed: 30 October 2022).

2.5. Causality DAG

The Causality Directed Acyclic Graph (DAG) in Figure 18 shows a bird’s eye-view of
the proceedings of research in scope.
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Figure 11. Approaches to solving challenges in category P4; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P4 [56,62,67–
69,71,75–79]; A1 [62,77]; A2 [62,77]; A7 [78]; A8 [56,67,69,71,75,76]; A9 [56,62,68,75,79]; A10 
[62,78,79]; A11 [78]; A12 [56,62,76,79]; A15 [62,77]; A17 [62,67,68,71,75,76,78]. 

24.1%

44.8%

20.7%

3.5%

6.9%

1. POWER ATTRIBUTION PRINCIPLE

1.01 DECOMPOSITION

 1.012 (a) DATA PLANE (b) VIRTUAL IO 
(c) NETWORK FUNCTION

8. RESOURCE-SPECIFIC WORKLOAD

8.03 Network-intensive W/L

10. RESOURCE INSTRUMENTATION

10.01 IN MICROARCHITECTURE
10.012 µ-ARCH POWER INSTRUMENTATION

10.02 ABSTRACTED BY  SYSTEM SOFTWARE

10.026 INSTRUMENTATION INSIDE TRAFFIC SINK 
TOOL (e.g. iperf)

11. WORKLOAD CHARACTERIZATION 
& INSTRUMENTATION

11.05 N/W PACKET RATE
11.06 PACKET MTU

12. DIRECT POWER MEASUREMENT
12.01 SYSTEM POWER METER

11. SOFTWARE L2 DATA PLANE 
SWITCHING

 

Figure 12. Approaches to solving challenges in category P11; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P11 [48,53]; A1 
[48]; A8 [48,53]; A10 [48]; A11 [48,53]; A12 [48,53]. 
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Figure 13. Approaches to solving challenges in category P5; utility metric Uౡ  is shown in line 
thickness and as a percentage. 

RUs in the respective categories are the following: P5 [62,72,78]; A1 [62]; A2 [62]; A6 [72]; A7 [78]; 
A9 [62]; A10 [62,78]; A11 [78]; A12 [62,72]; A15 [62]; A17 [62,78]. 

Figure 13. Approaches to solving challenges in category P5; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P5 [62,72,78];
A1 [62]; A2 [62]; A6 [72]; A7 [78]; A9 [62]; A10 [62,78]; A11 [78]; A12 [62,72]; A15 [62]; A17 [62,78].
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Figure 14. Approaches to solving challenges in category P9; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P9 [51,53]; A1 
[53]; A6 [51]; A8 [51,53]; A11 [53]; A12 [53]. 

Figure 14. Approaches to solving challenges in category P9; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P9 [51,53]; A1 [53];
A6 [51]; A8 [51,53]; A11 [53]; A12 [53].
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Figure 15. Approaches to solving challenges in category P7; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P7 [56–
59,61,62,65,68,69,71,72,75–79,81–85,87]; A6 [56,68,81–83]; A8 [56,59,61,71,76,77,84,85]; A9 [56–
58,62,65,68,69,72,78,79,81–84,87]; A10 [56–59,61,62,69,72,75–79,81–85,87]; A11 [65,68,71,83,84,87]; 
A13 [87]. 

Figure 15. Approaches to solving challenges in category P7; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P7 [56–59,61,62,65,
68,69,71,72,75–79,81–85,87]; A6 [56,68,81–83]; A8 [56,59,61,71,76,77,84,85]; A9 [56–58,62,65,68,69,72,
78,79,81–84,87]; A10 [56–59,61,62,69,72,75–79,81–85,87]; A11 [65,68,71,83,84,87]; A13 [87].

2.6. Triads (Problem/Challenge-Approaches-Developments) Graphic

Figure 19 shows the triads graphic. To improve readability, we limit illustration to the
triads that are in the top twenty percentile of a list ordered according to thickness. These
triads comprise 49.2% of the total number of compiled triads.

2.7. Statistics

Bar charts that illustrate the category metrics described in [1, N. see section on “Statis-
tics”] are presented below:

1. Challenges (Figure 20)

a. Frequency of occurrence in the set of all RUs;
b. Frequency of occurrence in the set of all challenges in all RUs;
b. Frequency of occurrence, weighted by approach diversity, in the set of all chal-

lenges in all RUs.

2. Approaches: (Figure 21)

a. Frequency of occurrence in the set of all approaches in all RUs;
b. Frequency of occurrence in the set of all triads in all RUs.

3. Developments: frequency of occurrence in the set of all developments in all RUs:
(Figure 22)
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Figure 16. Approaches to solving challenges in category P8; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P8 [57–
59,61,62,69,72,75–77,79,81,82,84,86]; A1 [57–59,61,62,69,72,75–77,79,81,82,84,86]; A2 [57–
59,61,62,72,75–77,79,81,84]; A12 [57–59,61,72,76,84]; A15 [57,62,77]; A17 [57–
59,61,62,69,72,75,76,79,82,84,86]. 

Figure 16. Approaches to solving challenges in category P8; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P8 [57–59,61,62,69,72,
75–77,79,81,82,84,86]; A1 [57–59,61,62,69,72,75–77,79,81,82,84,86]; A2 [57–59,61,62,72,75–77,79,81,84];
A12 [57–59,61,72,76,84]; A15 [57,62,77]; A17 [57–59,61,62,69,72,75,76,79,82,84,86].
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Figure 17. Approaches to solving challenges in category P12; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P12: [50,60,67,81–
83,85,87,94]; A2 [83,85,87,94]; A3[83,87,94]; A4 [60]; A5 [50,85]; A6 [50,60,67,81,82]; A7 [85]; A8 [50] 
; A12 [50] ; A14 [87]; A15 [85]; A16 [83]. 

The presence of approach categories A1, A5, A6, A8 and A10–A12 does not mean 
that every RU tackling this challenge uses a component from all of the approach catego-
ries. It does, however, mean that every RU tackling P1 uses a subset of the approaches 
shown. We proceed by giving examples (relevant to P1), with references. 
1. Managed resource provision (A6): Prior to running experiments, researchers set the 

conditions for the experiment through this approach [48–51]. 
2. Resource-specific workload (A8): This may be used to stress the component imple-

menting the architectural attribute under test [48–51]. 
3. Simple workload characterization and instrumentation (A11): The workload must 

be characterized by some parameter that serves to measure its demand for power 
[48,49]. 

4. Resource instrumentation (A10): This is an alternative to the use of workload profil-
ing (A11) as a predictor of power consumption. Rather than use, say, the number of 
threads, or transmit bandwidth (for networking workloads) as predictors, this ap-
proach uses resource instrumentation [48,49]. 

5. Identification of metric of energy efficiency (A5): In certain cases [49,50], energy or 
power efficiency is investigated, rather than energy or power consumption. In these 
cases, the researchers identify and use a relevant metric of efficiency, rather than 
metrics of consumption (watts or joules). 
On any of the dyad graphics, the approaches shown (inside the approach catego-

ries) include only those which are used by at least one RU that tackles the challenge cat-
egory that is the root of the dyads. We delegate a repository with a full tabulation of all 
approaches in any approach category. Similarly, all individual developments within a 

Figure 17. Approaches to solving challenges in category P12; utility metric UAk is shown
in line thickness and as a percentage. RUs in the respective categories are the following:
P12: [50,60,67,81–83,85,87,94]; A2 [83,85,87,94]; A3 [83,87,94]; A4 [60]; A5 [50,85]; A6 [50,60,67,81,82];
A7 [85]; A8 [50]; A12 [50]; A14 [87]; A15 [85]; A16 [83].
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Figure 18. A directed acyclic graph showing the distribution of research into power measurement 
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Figure 18. A directed acyclic graph showing the distribution of research into power measure-
ment and power consumption models in virtualized networking and computing environments.
D1 [57–59,69,75]; D2 [57,60,61,76,81]; D3 [62,77,79]; D5 [58,59,69,72,75,81,82,84,86]; D6 [61,66,76];
D7 [62,79]; D8 [63–68,71,78,83,85,87,94]; D9 [87]; D10 [60,62,63,77,79]; D11 [49,69,76]; D12 [49,50,
67,68,76]; D13 [73]; D14 [55,56]; D16 [51,53]; D17 [48,53,85]; D18 [56,65].
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Figure 19. Triads. D1 [57–59,69,75]; D3 [62,77,79]; D5 [58,59,69,72,75,81,82,84,86]; D8 [63–68,71,78,83,
85,87,94]; D9 [87]; D10 [60,62,63,77,79]; D11 [49,69,76]; D12 [49,50,67,68,76]; D14 [55,56]; D15 [48,53];
D16 [51,53]; D17 [48,53,85].
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Figure 21. Approach metrics.

To improve legibility, the x-axis labels show category numbers only. The codes (“terse,
dense representations of a verbose articulation of a concept”, see [1, N. see sub-section
“what are codes?”]) linked to the numbers are shown in Tables 2–4. In Table 2, we also
show questions that help to clarify articulation of the challenge posed.
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Table 2. Challenge category codes and representative challenge questions.

CAT # CODE PROBLEM

P1 Architecture of VEs and PMs—profiling
power consumption

What is the impact of specific major architectural features of
computer hardware on the power consumption of VEs?

P2 Virtualization genre, platform
Is it possible to meaningfully rationalize the behavior of VE
power consumption across different implementations of
systems for virtualization?

P3 Estimation of power consumption of
virtualization-host systems

Can host system power consumption be predicted on the
basis of VE activity?

P4 Workload-adaptable power models Can workload-adaptable power models be developed?

P5 Resource heterogeneity How do a VE’s power consumption and power model vary
with resource configuration (heterogeneous VEs)?

P6 Influence of temperature on power model How does temperature of operation affect VEs’
power models?

P7 Resource use and measurement of VEs How can load be targeted at specific VE resources? How can
the actual resource consumption be measured?

P8 Host system power attribution How can the (measured) power consumption of a host be
attributed to the hosted VEs?

P9 IO Virtualization What is the impact of specific major implementations of IO
virtualization on the power consumption of VEs?

P10 Network functions Which particular implementation of a network function is
most power or energy efficient?

P11 Software L2 data plane switching
What is the impact of specific major implementations of
software layer 2 data plane switching on the power
consumption of VEs?

P12 Investigation of processor green capabilities How can we model operation under real-time exploitation
of processor green capabilities?

P13 Improvement of power efficiency of high-performance
IO virtualization

How can we improve the power efficiency of
high-performance packet IO frameworks?
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Table 3. Approach category codes.

CAT # CODE

A1 Power attribution principle

A2 Modeling bias

A3 Green operating principles

A4 Physical analysis

A5 Identification and use of metrics of energy efficiency

A6 Managed resource provision (setup time)

A7 Controlled resource provision (operation time)

A8 Resource-specific workloads

A9 Workloads representative of real use

A10 Computing resource instrumentation

A11 Workload characterization and instrumentation

A12 Direct power measurement

A13 Hardware instrumentation of predictors

A14 Simulation

A15 Use of test data in post-training phase

A16 Corroboration through experimentation

A17 Model adaptation technique

Table 4. Development category codes.

CAT # CODE

D1 Host models -> linear regressions: predictors = computing resources

D2 Host models -> non-linear regressions: predictors = computing resources

D3 Host models -> machine-learnt: inputs = computing resources

D4 Host models -> mass storage energy consumption

D5 Adaptable VE models -> linear regressions: predictors = computing resources

D6 Adaptable VE models -> power, exponential and log regressions: predictors = computing resources

D7 Adaptable VE models -> machine-learnt: inputs = computing resources

D8 Host/VE models of power consumption -> predictors = workload characteristics

D9 Host/VE models of power consumption- > observations on operation of processor green capabilities

D10 Relative accuracy of modeling approaches

D11 Power’s dependencies- > physical and logical artifacts -> component implementation

D12 Power’s dependencies -> physical and logical artifacts -> architecture

D13 Power’s dependencies -> physical and logical artifacts -> IT system implementation -> dependence
on resource provision

D14 Power’s dependencies -> physical and logical artifacts -> IT system implementation -> dependence
on virtualization/containerization genre and technology

D15 Power’s dependencies -> networking workloads -> software L2 data plane switching

D16 Power’s dependencies- > networking workloads -> in I/O virtualization

D17 Power’s dependencies- > networking workloads -> in VNFs

D18 Power’s dependencies -> networking workloads -> in general networking
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3. Thematic Analysis

The themes presented in this section are the product of a thematic analysis undertaken
according to the method described in [1]. We first present an overview through a graphic
(Figure 23) that groups the themes and then proceed to an exposition of the themes within
the sub-sections.
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Figure 23. A graphical overview of the thematic analysis of the research space.

3.1. State of the Art
3.1.1. Seven Dimensions of Variability

Through our collation and resolution of the derivatives of the core challenge in this
research space, we observe seven dimensions of variability in modeling power consumption
by a virtual entity. Comparison with the power consumption of physical machines throws
the core challenge into sharper relief. With physical machines:
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• Power consumption can be measured directly;
• There is no virtualizing agent to consider;
• The activity of other physical machines (that do not send or receive workload)

is irrelevant.

The seven dimensions of variability are shown in Table 5. It is not surprising that the
problems we have seen researchers tackle are closely aligned with these dimensions. The
research space is precisely about the need to obtain an understanding of the impact that
these variables have on power consumption. The scope of models we found in the RUs
covers only a subspace of the seven-dimensional space but the extent is not usually stated.
We touch upon this issue briefly in our treatment of the pitfall of research without context
and the fallacy of the universal power model.

Table 5. Seven dimensions of variability.

Dimension Problem Category

1. Workload type P4, P7
2. Virtualization agent P2, P9, P11, P13
3. Host (resources and architecture) P1, P3
4. Temperature P6
5. Power attribution P8
6. Co-hosted, concurrent VEs P8, P5
7. Frequency P12, P13

3.1.2. Adaptable Models

We observe three conditions which must be met for an automated modeling system
to obtain a model of VE power consumption.

1. The first fundamental condition is common to all successful research into modeling
of VE power consumption. Resources utilized by the VE (whether measured through
architectural or microarchitectural instrumentation) must be strongly correlated to
power consumption by the VE as well as power consumption in host system over-
heads. If the overheads are uncorrelated to the VE’s activity, or weakly so, then any
significant power overhead must be modelled through a separate consideration of its
driving causes, e.g., temperature [81].

Furthermore, in order that modeling may apply across a diversity of operating contexts,
two other conditions must hold.

1. Any change in the parameters of correlation must be dynamically learnt and the
model adjusted.

2. Any change in operating context that invalidates the parameters of correlation must
be of finite duration. An indefinite transient precludes the formation of a model.

To this observation on the three conditions, we add another observation. Two of the
seven dimensions of variability are commonly investigated in terms of the validation of the
accuracy of modeling systems: workload type and co-hosted, concurrent VEs. We suggest
that a modeling system may be labelled adaptable if, minimally, it meets the above three
conditions under these two dimensions, i.e., (a) operations of variable workload type per
VE, and (b) a variable number of concurrent, co-hosted VEs. Before proceeding to refer
to validations observed in the RUs, it is useful to draw attention here to the need for a
modeling system, rather than simply a model, in the estimation of power consumption.
Dynamic adjustments are affected through the intervention of such a system, which adjusts
model parameters to the operating context. We now proceed to describe how the variables
in the two dimensions were varied in some studies.

Workload type: Different types of workload correspond to different use of resources;
hence, the behavior of power consumption also differs. Several researchers [48,75,76]
studied the effect of changing workload type either by categorizing the workload itself or
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by categorizing the resources consumed by a specific kind of workload. Both [75] and [76]
characterized the use of CPU utilization for workloads, which is known to have a workload-
type dependent relationship with power consumption [62]. Thus, in both these studies, the
need arises to re-train on the change of workload type (second condition). Further, both
carry an observation about the duration of re-training for refined models (third condition).

On the other hand, each one of [62,69,79,81,82] is capable of adapting to different
workload types without re-training. All predictors here are event counters. However,
events are not necessarily linear predictors of power consumption across all workload
types. In [84], it was found that the model parameters of a linear regression of event
counters onto power consumption are workload specific. Given the contrast with [73,74], it
seems that the root cause is the selection of events for prediction.

Concurrent operation: In [61], a non-linear model of the dynamic power of a multi-
(virtual)-core VM is obtained. The dynamic power pvm is expressed in terms of the average
utilization uv which n virtual cores impose on a total of N physical cores:

pvm(uv, n) = α
( n

N

)β
uβ

v

Parameters α and β are determined through linear regression of the logarithmic form.
The relationship was successfully tested under the operating context of one VM and
three VMs. The model is limited to processor-intensive workloads; indeed, this is not
surprising, since the predictor is (virtual) processor utilization. However, a conclusion can
be drawn: the accuracy of the model in predicting the dynamic power of an individual
VM is independent of the concurrent operation of other VMs (albeit for a limited range of
workload types).

In [75], it is shown that estimation based on processor utilization can accurately predict
the power consumption of multiple concurrent VEs. The prerequisite is that a model for
that VE’s workload type has been learnt. The prediction accuracy for individual VEs is
independent of concurrent operation. The same conclusion can be drawn for [61]; further-
more, here the range of workload types has expanded to a broader range. With regard
to the results obtained in [84], the conclusion is yet again the same: individual prediction
accuracy (albeit workload-type-dependent) is independent of concurrent operation.

Variability in both workload type and number of concurrent, co-hosted VEs is man-
ifestly claimed in [62,69,81]. It is noteworthy, therefore, that not only is the modeling
system adaptable, but it also produces a model that is itself adaptable without the need for
real-time adjustment.

We conclude this sub-sub-section with the observation that limited adaptability (de-
fined as independence of workload type and number of concurrent, co-hosted VEs) has been
achieved. From the surveyed RUs, we conclude that, presently, the limits of adaptability
are the following:

1. Workload type: the power consumption of processor-intensive, memory-intensive,
disk-intensive workloads and mixes thereof has been modeled by a single modeling
system in an automated manner;

2. Co-hosted, concurrent VEs have been modeled up to but not exceeding over-commitment
of processor physical cores.

Caution has been exercised in claiming these limits. For example, while the com-
mitment of logical cores (e.g., Intel Hyper-Threading logical cores) has been investigated,
we have found no evidence that power consumption has been modeled in a manner that
automatically adapts to a transition of consumption from physical to logical cores.

3.1.3. Lack of Use of Metrics of Energy Efficiency and Standards to Address This Deficiency

We note several experiments, e.g., [55,56,68,71,103–105], that target power consump-
tion but less than 12% of the RUs in our corpus approach the problem in terms of some
energy efficiency metric [49,50,65,85]. It is necessary to move beyond measurements of
how much power was consumed, to measurements of how much power was consumed to
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carry out a specific task. This change in approach facilitates comparison between research
works. More importantly, it directly addresses the question about the cost of operation
of infrastructure.

This approach requires identification of a unit of comparison that transcends the
boundaries of disparate systems that deliver this unit. This unit of comparison is referred to
in the Life Cycle Assessment (LCA) framework (ISO 14040) [106] as the functional unit. A
definition specific to telecommunications equipment is given in [107]: the functional unit is
defined as “a performance representation of the system under analysis”. This definition is
too broad; therefore, units specific to a variety of classes of equipment are defined too [107].
In our corpus, two approaches we have seen are hash/J [50] and J/Web Interaction [65].
The functional units in these cases are the performance of one crypto-hash and one web
interaction, respectively. Another is to define a functional unit specific to a digital service
delivered over a telecommunications network, e.g., ten minutes’ time of browsing [108].
Note that L.1310 [107] recognizes both metrics where energy is in the numerator [65] as
well as those where it is in the denominator [50]. Guidance is available: energy efficiency
measurement for several NFV components has been standardized, as well as measurement
standards for servers, switches and virtualization systems [109].

3.1.4. Trends

Here, we present trends which we have identified through our collation of problems,
approaches and developments. This sub-sub-section is divided into four parts, regarding
trends in: challenges, complexity of tackled problems, approaches and developments.
Within each part, trends are numbered using Arabic numerals, to differentiate cleanly
between them.

Challenges

1. The causality DAG (Figure 18) shows that the research space can be characterized
succinctly, note the thickness of the links originating at P7 (VE resource use and
measurement) and P8 (how to attribute host system power to VEs).

a. Figures 1 and 20 show that the challenge-category tackled most frequently
(RP7 = 25.3%) is how to load the VE’s resources and measure the loading (P7).
P7 also has the most frequent presence in RUs: FP7 = 65.7%) (Figure 20).

b. The accurate specification and measurement of load is essential to model forma-
tion. These measurements provide the aggregated (i.e., indiscriminate of which
VE is consuming) predictors (the predictors are the input side of the model).
Disaggregating the predictors and attributing measured power consumption
to the individual VEs (the output side of the model) constitutes the second
most frequently tackled challenge (RP8 = 16.5%). P8 also has the second most
frequent presence in RUs: FP8 = 42.9%.

c. In the following, the vector (P, A, D, weight) will be used to indicate a path (P, A,
D) and the number of triads (weight) through the path:

i. A total of 34.2% of triads collected regard P7 and P8, respectively. The
triads graphic (Figure 19) shows that efforts rooted in these two chal-
lenges converge on a common objective: building adaptable models of
VEs’ power consumption, notably using regressions to linear combinations
of computing resource predictors;

ii. The set of triads leading to linear regressions consists of {(7,10,5,20), (8,17,5,13),
(7,9,5,12), (8,1,5,10), (8,2,5,8), (7,8,5,6), (8,12,5,4) and (7,6,5,3)} and these
account for 11.3%.

2. The third most frequently tackled challenge is that of the estimation of the virtualization-
host-system power consumption (RP8 = 15.4%). This category might be overlooked
in a first inspection of the research space, as it might seem futile to attempt to estimate
a power consumption which can be measured. However, in practice, the logistical
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challenge of the measurement of horizontally scaled system deployments seems to be
well known and several works have been undertaken to develop software meters.

3. Several significant links originate on P1 (profiling power consumption’s dependency
on architecture). The DAG (Figure 18) indicates that approaches to tackling P1 are
spread across a mixture of managing resource provisions, the use of synthetic (resource-
specific) workloads and predictions using system software’s instrumentation.

4. Another large group of links originates on P3 (estimation of host system power
consumption). The DAG (Figure 18) indicates that a primary concern in tackling P3
is the type of model to select. The most common choices are linear and non-linear;
machine-learning techniques are the least common of the three. The thickness of the
triad (3,2,10,11) (D10: relative accuracy of formal approaches) indicates that there is
already significant interest in whether the advanced models are worth the effort to
develop them and the computational resources required to operate them.

5. While FP7 = 65.7% (loading VEs and measuring their use of resources), only 8.6%
( FP7.2 = 8.6%) of all RUs investigate loading containers and measuring their use of
resources. With virtual data plane devices, the figure is even lower: FP7.3 = 8.6%. This
imbalance suggests that there is much room left for research into modeling power
consumption by containers and data plane devices.

Challenge complexity
In [1], we suggest that the diversity of approaches is a metric of the complexity of

the challenge. We note (Figure 20) that challenge complexity (WPk ) generally follows
the frequency with which a particular challenge-category is tackled. That is: the more
frequently the challenge is addressed, the more diverse are the approaches applied to it.
This can be verified by noting that the heights of both sets of bars in the chart (superimposed
on the same graphic) follow roughly the same pattern. However, some categories do stand
out. For example:

1. P6 regards the influence of temperature on the power model. Approach diversity is
poor here because only the use of additional instrumentation can be attributed to this
challenge. Model bias might be attributed to this challenge too but, largely, model
bias is determined by other challenges within the scope of the RU.

2. While host system power attribution (P8) has the second highest research interest (and
frequency of occurrence, FPk ), the number of approaches taken to solve this challenge
is relatively small.

3. On the other hand, power consumption’s dependencies are tackled by a dispro-
portionately large number of approaches. This is not surprising, as the objects of
study (architecture, virtualization platform, virtualization genre) are multi-faceted
and dependencies can be investigated through a variety of approaches.

Approaches
Our approach utility metric, UAk [1] (Figure 21), seems to be a useful one. It com-

municates clearly what we have observed in our surveying. Below, we draw attention to
saliencies perceived during surveying and confirmed by the metrics.

1. Instrumentation of the consumption of computing resources (A10—which includes
microarchitectural instrumentation and that abstracted by system software) is repeat-
edly adopted (UA10 = 15.5%, RA10 = 15.7%) in empirical work in this field. It is
also the most utilized of all approaches. In comparison, workload instrumentation
accounts for 8.2% utilization (RA11 = 5.2%).

2. Resource-specific workloads (A8) are the more utilized approach to loading VEs
(14.3% of all triads). This approach category is the second most utilized. Workloads
representative of real use (A9) account for 9.0% of all triads. The corresponding
frequency of occurrence figures (RAk ) are 13.4% and 10.0%, respectively.

3. Two other high-utility approaches are (a) modeling bias (A2, with UA2 = 11.9%,
RA2 = 11.6%) and (b) the managed provision of resources (A6, with UA6 = 10.2%,
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RA6 = 10.8%). The use of representative workloads (A9) follows at UA9 = 9%,
RA9 = 10.1%.

4. A comparison of the patterns of bar height distribution for UAk and RAk reveals that
some categories stand out.

a. While A12 (direct power measurement) is not as frequent as the other software-
based forms of instrumentation, this approach has a utility that sticks out of the
pattern (Figure 21). The reason is that most, if not all, developments obtained in
an RU that include this approach depend on the directly measured power.

b. Similarly, while workload characterization and instrumentation (A11) are em-
ployed with a frequency that is about one-third that of its alternative (i.e., com-
puting resource instrumentation, A10), it has a far better utility-to-frequency
ratio than A10. The triads graphic (Figure 19) indicates that one important
cause of this high utility is that software-L2-data plane switches and
(virtual) network functions are investigated primarily using measurement of
workload (and not measurement of computing resources consumed to process
a workload).

Developments

1. A total of 55.6% of all identified developments are obtained in modeling power
consumption. The remaining 44.4% regard how power consumption depends on
implementations. The implementations investigated (for their impact on power
consumption) range from entire virtualization platforms (e.g., KVM) to components
(e.g., processors).

2. The most frequent (RD12 = 14.5%) category of developments is that which regards
observations on the dependency of power consumption on architecture. The cause
of this high frequency is that developments in the study of architecture establish
directional (negative, positive, neutral) correlations rather than predictive forms. For
example, in a single RU [67], all of the following developments emerge:

a. D12.08: VM power consumption increases linearly with a vCPU frequency of
operation when the vCPU is operating at 100% utilization;

b. D12.09: Virtualization-host-system power consumption increases linearly with
the number of physical cores operating at 100% utilization;

c. D12.1: Virtualization-host-system power consumption increases with the num-
ber of VMs active on the same core.

3. Amongst developments of models, the most common category (D8) is of the type
where power consumption (host or VE) is predicted in terms of workload charac-
teristics (RD8 = 12.0%). The next most common category regards the prediction
of power consumption as a linear function of computing resources (RD5 = 8.5%)).
Machine-learnt models of VE power consumption comprise the second least frequent
category, with RD7 = 1.7%.

4. Despite the frequency of developments in category D10 (Figure 22), few
works [60,62,63,77,79] compare the accuracy of model types. Models have largely
been treated as a means to an end, with little investigation of their relative accuracy
and range of validity (in the seven dimensions of variability). This may be a reflection
of researchers’ interests. As the popularity of methods from the body of knowledge
of data science increases, works (e.g., [63]) that span a broader range of model types
may be expected to increase in concert.

5. Adaptable, non-linear VE models (D2) occupy a modest 4.3%. Such a distribution
adds weight to the observation that this research space is ripe for exploration using
advanced modeling techniques. Indeed, one attraction for data scientists is the relative
ease with which data can be collected. However, polynomial and other types of re-
gression to closed-form are problematic as suspicion of over-fitting increases with the
order of the polynomial. For example, in [76], a sixth-order polynomial is suggested
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to model the relationship between processor utilization and power consumption by
a host.

3.1.5. Three Levels of Abstraction

We note that existing power models may be classified into one of three levels of
abstraction. In ascending order of abstraction, these are:

• Microarchitecture and architecture;
• Simple characterization of workload;
• Complex characterization of workload.

The meaning of “abstraction” specific to our use here is perhaps most easily grasped by
referring to the variables used as model inputs. In all cases, the variables are some measure
of load. At the lowest level, inputs that quantify the operation of processor sub-units are
used (event counters and event timers). The highest level uses inputs that quantify the
demand for a telecommunications system or service. Clearly, the latter inputs are far more
detached from the underlying, concrete implementation than the former.

With regard to the lowest level of abstraction, many power models use hardware
resource consumption to estimate the power consumed by virtual components. One
survey [105] (while comparing the available power models for processors, VMs and servers)
observes that most of the power models for virtual machines use physical machine counters
to estimate the corresponding resource utilization by the virtual components. We offer
further insight on this matter. We concur in the observation that much current research is
concerned with modeling power consumption of virtual machines. The approach may be
succinctly described as estimates obtained from models trained out of either architectural
or microarchitectural instrumentation data. Note that we distinguish between architecture
and microarchitecture using the classical interpretation [110]. Now, the term “architecture”
is severely overloaded and its interpretation can easily differ from that which we wish
to exploit. In the following description of the levels of abstraction, we use the alterna-
tive “system software’s instrumentation” to convey the same meaning as “architectural
instrumentation” with less ambiguity.

Microarchitectural instrumentation is the lowest level of instrumentation. Power con-
sumption is expressed in terms of variables that are defined at sub-CPU and sub-subsystem
levels. The granularity of this level holds the greatest potential for accuracy, but the rate
of change of the observed variables has deterred several researchers from pursuing this
approach to instrumentation, citing concerns about communicational and computational
overhead. This concern has been dismissed by three groups of researchers [70,86,98] who
have indicated that acceptable accuracy can be achieved with negligible overheads. Given
the proliferation of works based on this approach and the availability of high-level (pro-
gramming) language code (HLL) that facilitates the use and the potential for the capture
of physical behaviors, then our general recommendation is a preference to investigate the
use of microarchitecture instrumentation.

System software’s instrumentation regards a class of instrumentation that has mean-
ing across the spectrum of computer systems. The input variables, such as the CPU or
network interface utilization, are produced by some digest (function) of intermediary
system software. For example, an operating system’s (OS) measurement of core utilization
can roughly be described as the core’s duty cycle on behalf of the OS. This is significantly
removed from knowledge of activity within the core. While models at this level are more
abstract, they are still low-level, especially when compared with the other levels.

Simple characterization of workload is a less frequently encountered abstraction, used
by Enokido, Takizawa and various others with whom they have co-published [68,71,111].
These models describe power consumption in terms of fundamental descriptors of work-
load, e.g., the number of processes and transmit/receive data rate.

Complex characterization of workload is the least granular of the models in the
survey [34,112]. The objective here is to quickly proceed to a good estimate of the power or
energy required to produce the workload. This kind of model has no use in real-time control
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but it is useful for macroscopic comparisons, i.e., comparisons between two disparate sys-
tems for the provision of a service. The comparison might regard two different paradigms
of provision of the service, e.g., classical vs virtualized implementations. Thus in [34], the
implied (system) metric is the amount of power required to deliver 1 million packets per
second of throughput through an evolved packet-core’s (EPC) serving gateway (SGW).
In [112–114], the objective is to minimize the amount of consumed power by virtualizing
baseband processing functions, evolved packet core, customer premises equipment and
radio access network functions.

3.1.6. Service Determinism: A Criterion Particular to the Telco Cloud

The NFV data plane demands determinism [37,96,115]. Strictly, service determinism
is sought since the packet arrival process is generally unconstrained. The root cause of this
need is to correctly size equipment resources to meet load demands, whether throughput,
latency or jitter. This need is intense, as it impinges on a PTNO’s obligations, specified in
legally binding service-level agreements (SLAs). Service determinism has been approached
through the augmentation of GP hardware, with domain-specific architectures (DSAs,
which we first referred to while describing problem category P1). Hardware-centric DSAs
for the NFV data plane are constructed out of elements (or systems thereof) that can be
divided into three groups.

1. IO system architecture: This group comprises the abstraction, directly at a peripheral
interface, of functionality that facilitates the virtualization of hardware, e.g., SR-IOV
(used in PCI—Peripheral Component Interconnect) and N-port ID virtualization
(Fibre Channel).

2. Processor architecture: This comprises architectural change that facilitates the parti-
tioning of processor resources, such as multi-core processors and NUMA.

3. Co-processing: Compression and decompression, encryption and decryption and
packet header processing are examples of high-volume tasks that can be offloaded
to co-processing subsystems. Examples include Intel QuickAssist Technology (QAT)
and TCP Offload Engine (TOE).

We further observe a set of approaches that are complementary to DSAs in the quest
for determinism. These include:

1. Large memory pages: exploitation of the facility to organize virtual memory into
larger pages than the general-purpose 4 KiB;

2. User space programming: diversion of the control of hardware resources away from
the multi-service kernel, to single-common-use user space programs, e.g., DPDK
and AF_XDP.

Notably, resource partitioning (see processor architecture, above, i.e., the second
hardware-centric approach), combined with user space programming (the second comple-
mentary approach), realize the run-to-completion scheduling model [96].

We conclude with an observation on the cost of the current realizations of service
determinism. The (aforementioned) combination of core partitioning and user space pro-
gramming has been widely adopted through Intel’s popularization of DPDK, via Intel’s
open-source liaison efforts. The multi-core processor enables service determinism through
an approach that is anathema to the principles of multiprogramming: the dedication of
hardware to a specific task.

3.1.7. Direct or Indirect Measurement of Power in Virtualized Environments?

We observe that most research in modeling power consumption seeks to obviate the
need for direct measurement through indirect measurement. This indirection consists
of a measurement of resource use which has a discoverable relationship with power
consumption by the entity hosting the resources. Modeling, here, has the objective of
indirect measurement of a variable that is not directly accessible (power consumption by
VEs), through others which have convenient and reliable instrumentation. The accessible
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variables are referred to as power proxies. The RAPL interface provides a unique approach
to measurement as it directly addresses power consumption. However, notwithstanding
appearances of direct measurement, RAPL is actually based on a software model that
uses performance-monitoring counters (PMCs) as predictor variables to measure power
consumption. It is available in processors starting from the Sandy Bridge microarchitecture.
RAPL measures the power consumption of different physical domains, where each domain
consists of either cores, sockets, caches or GPU. We briefly comment on its accuracy through
references to research that has investigated them.

1. In [98] the advantages and drawbacks of using RAPL were investigated. Different
Intel architectures such as Sandy Bridge, Haswell and Skylake were used in the
experiments to analyze RAPL’s accuracy and overhead. Data collected were modeled
using a linear model and a Generalized Additive Model (GAM). The accuracy of
the predicted results was compared with the measured power consumption from a
precise external hardware power meter where RAPL based models show 1.8–4.3% of
error for the various architectures. The prediction accuracy of RAPL-based power
models was also compared with those based on OS counters, where OS-based models
show a higher error of 5–16%. Furthermore, the performance overhead (in terms of
time) of using RAPL was studied at different sampling frequencies and for different
application runs. Results show that even with a high sampling frequency of 1100 Hz,
RAPL incurs overhead of not more than 2%. Some limitations of using RAPL include
poor driver support to read energy counters, the overflow of registers due to their
32-bit size and the measurement of energy consumed by individual cores.

2. Another study to analyze the precision of RAPL is presented in [116], where only the
dynamic change in power consumption is observed. An external power measurement
unit (WattsUp Pro) is used as a reference for power measurement values. Intel Haswell
and Skylake servers were used in the experiments to run different applications and to
find the reliability of RAPL with the help of external power meters. However, in this
research work, only two power domain packages (power consumption of whole socket
and DRAM domain of RAPL) were observed. Applications such as dense matrix
multiplication and 2D Fast Fourier Transform were used for server power profiling.
Results show that the power measurement error varies with changing applications
and its workload size. For different applications the average measurement error
using RAPL was in the range of 13–73% considering WattsUp power meter as the
ground truth. It was concluded that with the modern multi-core parallel processing
and resource contention for shared resources, there is a complex non-linear relation
between performance, workload size and energy consumption. Hence it is difficult to
attain low error percentage for power measurement using on-chip sensors.

3.2. Research Gaps

Three significant challenges remain unaddressed, while a fourth requires further attention:

1. The modeling of containers’ power consumption;
2. The effect of overcommitment on power efficiency;
3. The investigation and classification of DPDK applications;
4. The fourth challenge, which is starting to receive some attention [83,85,87,94], regards

the modeling of power consumption by virtualized I/O.

Note that our treatment of research gaps does not address improvements in approaches.
As we have already indicated, it is in our treatment of developments that more adaptable
modeling methods are required to tackle the dimensionality of the field. Similarly, we
do not include the lack of use of metrics of energy efficiency with research gaps, as it is a
deficiency in the approaches, not a challenge in itself. Rather, here our attention focuses on
where the more pressing challenges lie for the development of power and energy control
of VEs.

Gap #1: Modeling of containers’ power consumption. Few works [78,81,82] tackle
containers from the perspective of their power consumption. However, at least for the
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telco cloud, VMs are no longer the destination (see, for example, [40,117]. Containers have
replaced virtual machines as the base for deployment of virtual network functions. In [78],
the approach(-set) taken is to:

1. Use representative workloads, e.g., HEVC (High Efficiency Video Coding) transcoding
and machine learning image classification;

2. Customize the set of low-level instruments used to correlate power and energy con-
sumption with workload characteristic.

This work develops a profiling tool. It provides guidance that is specific to the appli-
cation and both the hardware and software aspects of the containing platform. “[P]olicy”
for “tradeoff between energy, power and application performance” is the cited objective.
Given the high-dimensionality of the core challenge, this set of approaches to the modeling
and measurement of power consumption, may well be more coherent with the Euro-
pean Telecommunications Standards Institute’s (ETSI) Management and Orchestration
(MANO) standard. Such information would then be included in the infrastructure-resource-
requirement’s meta-data descriptors in the VNF package [118].

Gap #2: The effect of overcommitment on power efficiency. Overcommitment con-
sists of the allocation of more capacity of some compute resource to VEs, than is physically
installed. The concept is very similar to the oversubscription of telecommunications capac-
ity to subscribers, such as when the arithmetic sum of capacities of access links exceeds
the aggregating device’s backhauling capacity to a central office/local exchange. In this
context, overcommitment principally concerns processing cycles and memory space. As
with oversubscription, there is an optimization problem to solve. One problem of interest
to this survey’s scope is understanding the relationship (say, ratio) of committed virtual
resources to installed physical resources that optimizes the total cost of ownership (TCO)
of cloud infrastructure:

• On the one hand, the facility to overcommit has a direct impact on the density of the
packing of VEs (number of concurrently active VEs) on a virtualization-host-system,
thereby reducing the TCO;

• On the other hand, overcommitment may reduce the power efficiency of a workload.

Had this challenge been tackled in any depth, or at least in any breadth, it would
have merited a category of its own. Currently, however, we are only aware of a single
study [65] that tackled this challenge. The results obtained strongly justify overcommitment
of processor cores to vCPUs, for the case of transaction web service workloads, with the
increase in throughput (measured in web interactions per second, or WIPS) increasing at a
faster rate than power consumption. This behavior was observed well into overcommitment
ratios of processor cores to vCPUs equal to 3 (three). The overcommitment of physical to
VM memory was not investigated.

Gap #3: Investigation and classification of DPDK applications. In Section 3.3.2,
we address the relationship between DPDK and power consumption. In the course of a
public discussion in the forum offered by the North American Network Operators’ Group
(NANOG) [119], there emerged a need for clarity on DPDK’s association with inefficiency in
power consumption. Interest was particularly expressed in the knowledge of a classification
of extant DPDK applications according to their power consumption, and contribution to the
code base to improve power-hungry applications. In summary, among high-performance
packet I/O frameworks, a classification of applications that use DPDK APIs in order to
assess their power consumption and correct usage would be of particular interest, given
their diffusion and potential.

Gap #4: Modeling of power consumption by virtualized I/O. Power consumption
of network I/O has been investigated to some extent as this is central to the feasibility of
network functions decoupled from hardware. While software and hardware solutions are
already available (see Section 3.3.2), they require frequency and idling control targeted
to their specific operating conditions. Notably, naive DPDK runs the processor core at
its maximum power consumption, regardless of load. The exploitation of adaptive-rate
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(AR) processing and low-power idle (LPI) should provide a means to save power while
processing high networking loads. However, effective control of these means is still elusive,
despite both using Xeon Haswell microarchitectures, refs. [83,87] reach opposite conclusions
about the feasibility of processor core C-states. The former [83] finds LPI an effective means
of reducing power consumption of packet forwarding (with limitation on latency) while
the latter [87] finds it ineffective, preferring the use of the pause instruction. Furthermore,
in [120], performance state transitions (P-state) are found to impose a high transition latency,
while in [87], P-state regulation is the preferred approach. There is scope for research in the
dynamic adaptation of the processor’s operating state to save power.

3.3. Pitfalls
3.3.1. Power Consumption Does Not in General Increase Linearly with
Processor Utilization

Notwithstanding advances made in identifying operating contexts that manifest a
sub-linear power-utilization relationship [62,69], more recent publications [57,121–128]
persist in using the linear model without acknowledging its limitations. The model is
simple to use and has some foundations in research [129]. It has three premises, described
here with regard to the operation of Microsoft Windows:

1. When Windows has no threads to run on a logical core, it schedules the idle thread [130].
2. The idle thread keeps the processor in a low-power state [131]. The specific state

depends on the processor’s green capabilities.
3. In the complement (non-idle time), the processor issues instructions at a constant rate.

This simple model has limitations [62,132]. It fails to take into account diverse proces-
sor operating contexts, some of which are coming to bear on current use cases. Specifically,
the third premise is true only to the extent to which instructions are being fetched and data
are being loaded from/stored to an instruction and data cache, respectively. Consider the
context of 90% and greater hit ratios. At such cache hit ratios, the rate of instruction issue is
expected to be narrowly distributed about its mean. By contrast, the lower the hit ratio at
the cache level before main memory, the lower the fraction of non-idle time at which power
consumption saturates. This saturation is strikingly illustrated in [62]. The variation of
power consumption due to the execution of tests from the SPEC CPU2000 benchmark suite
is shown. The power consumption diverges at 25% CPU utilization and the consumption
of the processor-bound test (mesa) is greater than that of the memory-bound test (mcf) by a
factor of about 2.6.

Another good (albeit broad) illustration of this pitfall is given in [133]. Data on power
consumption and CPU utilization under a standardized benchmark are plotted for four
different physical server models. None of the relationships are linear. Neither is there a
single, common behavior.

Researchers align themselves into two groups with regard to CPU utilization. One
group favors (operating-)system metrics (of which CPU utilization is one metric) and the
other favors event counters (microarchitectural instrumentation). The arguments posed
by each group against the other’s approach can be summarized as follows. The “system
metrics” group claims that the “event counters” group’s work is (a) not portable (at least
across microarchitecture families) and (b) cannot be exercised without low-level access
to the host (therefore, this approach cannot be exploited by user-level privileges) (see,
e.g., [134] and [75]). The “event counters” group claims that CPU utilization is a workload-
dependent predictor (see, e.g., [59]) and therefore cannot be used without re-training
the model. Indeed, this modification to the “system-counters” approach is employed
in [76], where it is stated that “[b]ecause of changes of VM’s internal applications . . .
parameters must [be] recalculated automatically”. Given these arguments, it seems that the
system metrics group argument is weak: both system metrics and event counters require
re-training if hardware is changed but system metrics lack the granularity to discriminate
between workloads (cf. [62]). This means that CPU utilization can only be used as the sole
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predictor if it is re-trained with a change in workload. We deal with this problem, which
we have termed the fallacy of the universal model, in Section 3.4.1.

With regards to the use of hardware threads (Intel®Hyper-Threading), we have ob-
served that various works concur on the operating context under which a linear relationship
is subject to the lowest error. This includes at least the following two conditions:

1. The processor cores are increasing their instruction issue rate in proportion to the
fraction of time they spend busy. This implies that instruction and data cache hit
ratios are high. This is simply the third premise;

2. Only one logical core is active per physical core at any given time [62,63,69]. Expressed
alternatively, actual utilization must lie below half maximum utilization. The underly-
ing cause is that activation of the second logical core employs fewer organizational
units of the processor than activation of the first logical core.

The first condition is particularly problematic, as cache miss ratios are likely to be
much higher in the context of virtualized environments. In such environments, the number
of runnable threads is the sum of runnable threads controlled by independent operating
systems. Evidently, this is higher than the expected number of runnable threads on a single
server instance.

Other evidence of this “utilization trap” is not hard to find. In [57], the compute
resource is stressed using cpulimit and stress-ng. The “cpulimit” utility runs a speci-
fied process image, then pauses and resumes it until a certain percentage utilization is
reached [127]. The repetitive execution of a single process is highly likely to create condi-
tions for very high instruction- and data-cache hit ratios. Such favorable hit ratios skew
results towards the linear relationship between CPU utilization and power consumption.

3.3.2. DPDK Is Not Intrinsically Inefficient in Power Consumption

Research on power efficiency in DPDK applications [48,51,53,87] has portrayed DPDK
as power inefficient. Before proceeding to our exposition of this pitfall, we distinguish
between data, control and management planes. “Data plane” is a term used to refer to the
infrastructural means that provide the capacity for exchange of customer (or subscriber,
or end-user) data. It is complemented by a control plane, which refers to those means
that facilitate the dynamic setup, maintenance and tear-down of a functional data plane.
Another complementary part is the management plane. This includes the infrastructural
means for a network operator to configure and monitor the control plane and the data
plane, as well as intervene to correct faults arising in either plane. Simpler networks may
have no control plane.

Now, we proceed to the exposition of the pitfall. In one particular case [48], it is
claimed that “we found that a poll mode driver (PMD) thread accounted for approximately
99.7 percent CPU occupancy (a full core utilization).” The implication that seems to emerge
here is that the PMD itself is driving this power consumption.

This portrayal is problematic at best and incorrect at worst. The referenced inves-
tigations of DPDK have indicated a very low power efficiency, but they do not clearly
distinguish between the responsibility of the DPDK API and the application using it
(the API). A recent, public thread [119] has emphasized the responsibility of the applica-
tion developer in the avoidance of the naïve, “default approach” of busy polling. Such
an approach would, indeed, poll network IO hardware continuously [48], truly fitting
the epithet “spinning-hot” [37]. However, a broader (in the sense of including industrial
correspondents) investigation [119] suggests that:

• Contrary to claims in [48], it is the driving behavior of OvS that is inefficient in
power consumption;

• There are simpler, technical means of throttling a polling loop, including, say, the use
of program code to interleave ACPI C1 states with polls according to traffic demands.

These latter observations cast doubt on the claim that automated frequency control
is outside the scope of current frequency governors, since “the OS won’t be able to distin-
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guish whether it’s under a heavy load” [48]. On the other hand, savings through NUMA
awareness [51] (where transmit/receive port, memory and processor core are kept within
the same NUMA node) is affirmed in [119].

3.3.3. Research on Power Models without Power-Relevant Context

This pitfall traps readers who attempt to draw conclusions from published research
which lacks a clear specification of context relevant to power consumption. The pitfall is
best illustrated through examples.

1. Failure to emphasize context: idle power consumption vs frequency. The depen-
dence of idle power consumption on clock frequency is context sensitive. In [49], it is
explicitly stated “idle power consumption remains constant, regardless of the CPU
frequency . . . across the whole frequency range” (1.6–2.6 GHz). The CPU is an Intel
Xeon E5620. In [81,82], a quadratic relationship between idle power consumption
and frequency is observed. Here, the CPU is an Intel Core i5 Haswell. In these two
instances, emphasizing the restricted scope of findings would suffice to spare a reader
from excessively broad inferences.

2. Failure to emphasize context: idle power consumption vs hardware and software
specification. Enokido’s and Takizawa’s work [71] derives a power consumption
model for a server while VMs run computation-bound processes. The servers used
run on Intel Core i5-3230M processors. These processors are used in the mobile
device market [135]. They are capable of low-power idle states [136]. CentOS 6.5
uses a tickless kernel [137]. Combined, these facts, relevant to the context of power
consumption, provide a plausible explanation for the observed increment in power
(denoted, in [71], by minCt), when a core in a package is activated. Again, therefore,
the scope of findings is likely to be restricted.

3. Failure to fully define context: Configuration of power-relevant parameters. We
use [138] as an example. No reference is made to whether Hyper-Threading is enabled.
This is essential to understanding how the ESXi vCPUs are created. Neither is any
information given about how the vCPUs are related to physical (or logical) cores. Nor
are we told how virtual network interfaces and switching are set up. ESXi version
5 offers both paravirtualization (“vmxnet”) and emulation (“e1000”) to implement
virtual network interfaces. The impact on energy consumption of selecting a virtual
network interface implemented by emulation can be expected to be high [56].

The examples cited illustrate the importance for a researcher of power models to
qualify his/her results with a well-defined physical context. Research into power mod-
els involves hard components and a diligent characterization thereof is essential to the
acceptance of work as scientific research.

3.3.4. Benchmarks May Skew Power Consumption According to Their
Organizational Dependencies

We have seen that both “cpulimit” and “stress-ng” do not produce generally repre-
sentative measurements of power consumption. This observation is not limited to the
measurement of power consumption. The use of kernels, toy programs and synthetic
benchmarks to measure performance has been identified as unrepresentative [110] of gen-
eral performance. Benchmarks are standardized workload generators that are used for the
comparison of computer systems for a specific class of application. Unless this application
class is a good representative of the application of the computer system in productive use,
the power consumption measured under test is not a reliable predictor of that obtained
during productive use. It is necessary to plan test workload generators in advance and
state the limits of the validity of results. In [65], TPC-W is used, which is a transactional
web benchmark that can simulate the business-oriented online web servers. The MySQL++
Java version of TPC-W benchmark, suitable for cloud applications, is used to generate the
online traffic, where three different traffic profiles based on the browsing, purchasing and
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ordering of books are generated. The throughput measure for these servers is observed
through the metric Web Interactions Per Second (WIPS).

3.3.5. Processor Organization Significantly Impacts Power Consumption

We illustrate this point with a wide-ranging example [139] which compares the Intel
Xeon X5670 and AMD Opteron 2435.

1. Different idle loops (using no operation, pause, repetition, etc.) were tested to see
their effect on power consumption of both systems. It was observed that the Intel
Xeon has a loop stream detector, which disables the processor’s features such as fetch
and decode. On the other hand, the AMD processor has no hint to process these loops
efficiently; hence, it consumed more power than the Intel processor.

2. A processor consumes a different amount of power depending upon the instruction
(such as load, addition, multiplication, etc.) and the level in the memory hierarchy
which is accessed by the instruction.

a. For the Xeon, data throughput of all instructions from a particular memory
hierarchy level is almost the same, but there is a difference in their power con-
sumption. The ‘load’ operation consumes the lowest power compared with other
instructions, and this holds true for all memory hierarchy levels. The reason is
that the ‘load’ instruction just needs to load the content on the processor registers
whereas ‘add’ and ‘mul’ operations are more computationally demanding.

b. However, the AMD processor’s behavior is the opposite. When the ‘load’ op-
eration accesses the L1 cache, it achieves almost one-and-a-half times the data
throughput of other operations and hence also consumes more power. This
difference in resource utilization is due to the different microarchitecture of
AMD processors, where the ‘load’ instruction is handled by many floating-point
pipelines. Other instructions just use a single pipeline for their operations. More-
over, AMD processors have an exclusive cache level design, which requires
write-back when evicting data among different cache levels. Since Intel’s inclu-
sive cache design does not require this function, it consumes less power. Within
higher memory hierarchy levels (L2 or L3 or main memory), the AMD’s compu-
tation (‘add’ and ‘mul’) and data transfer operations (‘load’) deliver roughly the
same data throughput and consume roughly the same power.

3.3.6. Isolation of VE for Power Modeling and Measurement

Isolation of any VE from its hardware counterparts cannot be achieved completely [140];
thus, the assumption of measuring power consumption of an individual virtual entity irre-
spective of the hardware on which it is implemented is an illusion. The virtual infrastructure
is composed of several components at both hardware and software level, where the effect
of underlying hardware, OS and VNF technology can significantly impact the power con-
sumption. Hence, isolation as well as the modeling of power consumption for an individual
virtual component is difficult to obtain.

3.4. Fallacies
3.4.1. A Universal Power Model

We have suggested that the core challenge in modeling power consumption by VEs
lies in the number of dimensions of variability. This has been demonstrated throughout this
survey, where a number of generalizations have been addressed. In summary, the literature
shows that:

1. Host power consumption does not generally have a linear relationship with
processor utilization;

2. CPU-intensive workloads that repeatedly execute the same code skew power con-
sumption results;
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3. Network-intensive workloads are power- and time-consuming because they employ
emulations of network switches, but the root cause (emulation in the hypervisor
software switch) disappears with SR-IOV [141];

4. Host saturation must be taken into account in predicting VEs’ power consumption;
5. Processor utilization (an architectural attribute) is insufficient to predict host power

consumption and microarchitectural attributes, such as LLC misses, are necessary to
predict host power consumption even for the same level of processor utilization.

This list, while not exhaustive, amply illustrates that the several dimensions of vari-
ability are significant in the determination of VE power consumption. A model claiming
to determine power consumption as a function of fewer variables than the dimensions
we have pointed out must be accompanied by a scoping region that limits its use. While a
precise scope may be an unrealistic demand, it is essential that guidance be given about
the conditions of the use of the model. We now illustrate this point by using two examples
from the corpus.

Example #1: Khan [50] compares energy efficiency (hash/J) obtained by scheduling
process threads on additional cores, with that obtained by scheduling them on hardware
threads on active cores (through Intel Hyper-Threading). He shows that the former is
greater than the latter. In apparent contrast, Enokido and Takizawa [68] show that for
a given data transmission rate through the uplink of a software virtual switch, greater
energy efficiency (W/bps) is obtained by operating an additional hardware thread on an
active core (through Intel Hyper-Threading), than operating an otherwise idle core. An
important difference lies in the task’s processing “intensity”, i.e., the rate of the supply of
instructions. While Khan’s operations are tightly bound to the processor (cryptographic
hashing), Enokido’s and Takizawa’s operations are distributed over the processor and
network input/output. Without delving into detail, it is realistic to hypothesize that the
average instructions per second demanded are far lower in the networking application,
since the transmission of a large file (as is the case here) does not take place in one processing
burst. The operating time is divided between the processor and the media channel. In such
a scenario, the added capacity of the same-core hardware thread suffices.

Example #2: At the time of writing, the scope of validity (where the scope is a sub-
space of the seven-dimensional space) is typically only implicit. Notably, in [75], a “refined
model” is used as a means of the accurate prediction of power consumption by virtual
machines while running very specific benchmarks. It is also noteworthy that the authors
contemplate a type of onboarding process wherein “new” VM entrants to a cloud are
modelled as a prerequisite to their inclusion in the power-prediction system. Indeed, such
a process is already intrinsic to the management and orchestration of virtual network
functions. Just as the virtual deployment unit (VDU) nodes (in virtual network function
descriptors (VNFDs)) store VM properties describing computer system resource demands,
so can the descriptor template be extended to provide properties regarding power con-
sumption demands. This “onboarding” is necessary since the selected predictors and
modeling do not cover a sufficiently broad range of workload types, and a specific model
must be learnt online, i.e., on the fly.

On the other hand, we propose that a comprehensive power model for existing
implementations may be possible, under two conditions.

1. Every resource that consumes power must own a counter that registers its usage, or
lack thereof, during a specific clock cycle.

2. Usage of a specific resource during a specific clock cycle must consume a constant
amount of energy. This has the following corollaries:

a. Energy consumption by the specific resource is a linear function of the number
of clock cycles for which the resource is active;

b. Power consumption of a system can be expressed as a linear combination of the
total set of such resources;
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c. The amount of energy consumption by a specific resource during a specific
clock cycle must be independent of usage of other resources during any other
clock cycle.

4. Conclusions

We conclude by summarizing our contributions (Section 4.1) and suggest a frame-
work for future research into real-time, predictive models of power consumption by VEs
(Section 4.2).

4.1. Contributions

We have identified seven dimensions of variability (workload type; virtualization
agent; host resources and architecture; temperature; power attribution; co-hosted, concur-
rent VEs; and (clock) frequency of operation) and observed that the challenges tackled
have aligned themselves with these dimensions. This breadth has prompted us to em-
phasize the fallacy of the universal power model: no single power model can cover all
seven dimensions through the inclusion of variables and parameters. It is essential that
prospective users of any such power model be aware of the limits of its scope. On the other
hand, we have pointed out that the state-of-the-art includes adaptable modeling systems
that handle variability in more than one dimension. Moreover, at least limited variability
in two of the seven dimensions—workload type and concurrent operation of (multiple)
VEs—is commonly validated, i.e., whether the model is truly capable of predicting power
consumption under variability in workload type and the number of concurrent VEs.

PAD elicits trends in its proceedings through a sample of a corpus. In particular, the
following examples are among the most noteworthy (but not the only) saliencies.

1. The challenge category tackled most frequently is that of how to load the VE’s re-
sources and how to quantify and measure the load; disaggregating the predictors and
attributing measured power consumption to the individual VEs is the second most
frequently tackled.

2. The variety of approaches that tackle a (category of) challenge is positively correlated
to the frequency with which it is tackled.

3. Instrumentation of computing resources (e.g., instrumentation of microarchitectural
artifacts) is the most commonly adopted approach (towards developments), surpass-
ing instrumentation of the workload.

4. Resource-specific workloads (e.g., processor-specific) are the most commonly utilized,
surpassing workloads representative of real use (e.g., web applications).

5. In developments, the most commonly developed model type is that where the power
consumption (of the host or VE) is predicted in terms of workload characteristics;
power consumption as a linear function of computing resources is second.

6. At the other end of the frequency range of developments, machine-learnt models
comprise the second least frequent category of developed models, and adaptable,
non-linear VE models are also very infrequent.

The process of parsing works and aggregating their codes is, however, only the
principal ingredient in the overall progression towards the end goal: a set of themes that
suitably profile the works in an area of research. Indeed, these codes and their inter-
relationships have elicited several research gaps, pitfalls and a fallacy, as well as evidence
of the state-of-the-art and of research domains.

4.2. A Framework for Development of Real-Time, Predictive Power Models

Evolution of the research space on power consumption in virtualized environments
now suggests the following framework for the further development of power models:

1. Division of the problem into:

a. A modeling concern:

i. What components to include;
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ii. What workload(s) to consider;
iii. What state factors (temperature, frequency, performance and idle states) to

account for.

b. An attribution concern, i.e., how to attribute host power to VEs.

2. Division of the approach into:

a. Microarchitectural instrumentation, based on intimate knowledge of the mi-
croarchitecture and the memory system;

b. Granular attribution based on time-division multiplexing;
c. Model selection.

3. Development of parameterized models, subject to continuing (if not continuous)
optimization of the parameters under machine learning.
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NUMA Non-Uniform Memory Architecture
OPEX Operational Expenditure
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PDU Power Distribution Unit
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PV Photovoltaic
QAT QuickAssist ®Technology
QoS Quality of Service
RAM Random Access Memory
RAN Radio Access Network
RAPL Running Average Power Limit
RE Renewable Energy
RES Renewable Energy Source
RRH Remote Radio Head
RU Research Unit
SBA Service-based architecture
SCBS Small Cell Base Station
SDN Software Defined Networking
SGW Serving Gateway
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TCP Transmission Control Protocol
TOE TCP Offload Engine
TOU Time-Of-Use
TPC-W Transaction Processing Performance Council—Web
UA User Association
vCPU Virtual CPU
VDU Virtual Deployment Unit
VE Virtual Entity
VM Virtual Machine
VNF Virtual Network Function
VNI Visual Networking Index
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Appendix A. Application of PAD to the Scope of Renewable Energy Use in Radio
Access Networks

In this appendix, we digress to elaborate on the application of PAD to a topical scope:
research into the use of renewable energy sources (RESs) in radio access networks (RANs).
Our purpose here is to shed light on the mechanics of the method within a context that
complements the principal context of this work.

Nine research units (RUs) [142–150] have been mined. The motivation driving this
research is presented first, followed by a tabulation of the P-, A- and D-node codes and a
categorization of the codes. We do not proceed to thematic analysis, as this sample is not
large enough to support it. Patterns are detected and presented as clusters (part of the PAD
method), but enunciation of a thematic analysis requires the confidence emanating from a
broader search through the corpus.

Appendix A.1. Motivation

A clear sense of motivation emerges: OPEX (energy cost) must be controlled and
greenhouse gas (GHG) emissions must be reduced. The Jevons paradox (alternatively
expressed in the Khazzoom–Brookes postulate) emerges again: the deployment density of
5G base stations (BSs) and 64/32-channel massive multiple-input multiple-output (MIMO)
antenna arrays drives “the power consumption of a 5G BS to be 2-3 times that of an
ordinary 4G BS” [144]. Other works are motivated by the need to control capital expen-
diture (CAPEX) [142,147,148] and understand how RES harvesters compare with conven-
tional hydrocarbon-fueled generators, therein seeking either to reduce CAPEX or to deter-
mine the true cost of wholly autonomous operation under the condition of power supply
from RES.

Motivation, therefore, may be tersely summarized as OPEX control, GHG emis-
sion control, CAPEX control and autonomous operation. Within Figure 1, motivation
may be located at the center of the circle, corresponding to the core challenge driving a
research area.

Appendix A.2. Tabulation and Clustering of P-, A-, and D-Node Codes

The tabulation below (Tables A1–A3) summarizes two rounds about the sample: a
first round of coding (code: “terse, dense representations of a verbose articulation of a
concept”, see [1]) and a second round wherein a first categorization (note the prefixes, for
example “RAN architecture”, “Radio path”, “Comparison”, etc.) took place. Figures A1–A3
illustrate how the nodes have been clustered. An aspect of PAD that bears emphasis here
is that the coding and clustering process is an iterative one: the final categorization only
emerges at the end of several cycles of refinement, comprising consolidation, observation,
disaggregation and re-aggregation as further similarities between the codes emerge. Hence,
the categories shown in Figures A1–A3 are by no means final, but they are an essential
transitory stage in the progression towards the final categorization.
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Appendix A.2.1. Table of P-Node Codes

Table A1. Challenges and representative challenge questions.

Problem # Problem Code

1 [142] How can power supply system parameters be harvested in a
convenient manner?

2 [142] How does CAPEX of diesel fuel generators compare with that of RES plant?

3 [143] How can the limitations of individual RES be overcome?

4 [144] Spatio-temporal distribution of light intensity and communication demand
misaligns energy supply and load.

5 [144] Disparate ownership of RES plant and automatic distribution network (ADN)
infrastructure leads to concerns with security and privacy.

6 [144] How can participation of communications service providers (CSPs) in renewable
energy (RE) harvesting be encouraged?

7 [144] How can real-time energy scheduling be improved to avoid loss of RE,
over-discharge of energy storage (ES) and balance between supply and demand?

8 [145] How well do machine learning (ML) prediction models based on past traffic and
RE harvesting support RE use and Quality of Service (QoS)?

9 [145]
Which long-term strategy of operation should be used over prediction intervals:
(a) turn off/on micro-BSs to match network demand OR (b) turn off/on
micro-BSs to match RE capacity?

10 [146] How can Time-Of-Use (TOU) electricity pricing, RE production and fairness of
allocation of throughput to users be integrated into a modeling scheme?

11 [147]
Which system of autonomous power supply, whether renewable or not,
optimizes one or more of the following objectives: net present cost (NPC), cost of
energy (COE) and GHG emissions?

12 [148] How can we exploit multiple RES to design a RAN that minimizes grid energy
consumption while serving at least 95% of users?

13 [149,150]
How can user association (UA) be exploited over a short timescale in a
hybrid-powered (RES + hydrocarbons) RAN to minimize grid
power consumption?

14 [150] How can traffic and weather forecasts be exploited over a long timescale to
minimize grid power consumption

Appendix A.2.2. Table of A-Node Codes

Table A2. Approaches.

Approach # Approach Code

1 [142] Use a wireless sensor network to measure parameters relevant to power supply.

2 [142] Systematic survey of vendors and consultation with base station operators.

3 [143] Broad comparison of research and industrial (technical specifications) output
concerning use of RES in powering BSs.

5 [144] Organize multiple 5G BSs carrying photovoltaic (PV) panels into an
energy-aggregation system architecture.

6 [144] Regulate the mid-term exchange of energy using contract theory.

7 [144] Regulate the short-term use of energy by a Lyapunov optimization.

8 [145] RAN architecture: a single service area served by one LTE-A macro-BS (MBS)
and six micro-BSs providing additional capacity in the service area’s hot spots.

9 [145] Energy system architecture: PV panels + energy storage (ES − batteries) +
power grid.
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Table A2. Cont.

Approach # Approach Code

10 [145] Traffic model: Traffic data provided by a large Italian mobile network
operator (MNO).

11 [145] RE production data estimated using PVWATT.

12 [145] QoS: percentage of lost traffic.

13 [146] RAN architecture: a single service area served by one LTE-A MBS and two
micro-BSs providing additional capacity in the service area’s hot spots.

14 [146]
Energy system architecture: MBS uses power grid, while one micro-BS is
supplied by the power grid and solar energy, and the other micro-BS is supplied
by the power grid and wind energy.

15 [146] Energy system economics: power-grid energy priced according to Time-Of-Use.

16 [146]
Game theory applied to balance opposing objectives of (a) minimization of
energy cost or energy consumption and (b) maximization of
user-throughput fairness.

17 [146] Alternative energy cost optimization approaches: (a) reduction by decreasing BS
energy consumption; (b) reduction through direct optimization of energy cost.

18 [146] Simulation through bespoke software.

19 [147] Energy system architecture: Alternative combinations: (a) PV + diesel generator
(DG) + ES (b) PV + ES (c) DG + ES (d) DG.

20 [147] Design, simulation and optimization, using HOMER; optimization objective is
minimization of NPC.

21 [147] Energy consumption model: power demand data provided by a Kuwaiti mobile
network operator (MNO).

22 [147]
Energy system component selection: where relevant, mono-crystalline silicon
(Mono-Si) is preferred to polycrystalline silicon (Poly-Si) and Lithium-Ion
batteries is preferred over other technologies.

23 [148] MILP formulation.

24 [148]
Traffic model: Traffic data provided by a mobile network operator (MNO), both
voice and data, for a cell of 0.3 km2, showing number of simultaneous active
users at any time during a day.

25 [148] RAN architecture: eight service areas, each served by one LTE-A MBS and
four micro-BSs.

26 [148] BS power consumption model: linear power model (developed in earlier work),
with hourly load factor reflecting days of the week and of the weekend.

27 [148] RE production data (hourly) obtained from Italian RES operator’s
(Terna) website.

28 [148] Radio path: 3D map of suburban area.

29 [148] Genetic algorithm.

30 [149]
RAN architecture: a single service area served by one 5G MBS and twenty-four
small cell base stations (SCBSs), with microwave backhaul from MBS to core and
SCBS to MBS.

31 [149] Energy system architecture: MBS uses power grid, while SCBSs are supplied
by RESs.

32 [149] Random-uniform spatial distribution of low-data-rate and high-data-rate
users, respectively.

33 [149] Green heuristic: prioritize green SCBSs in the UA process.

34 [150] RAN architecture: a single service area served by one LTE MBS and
thirty-six/sixteen/four small cell base stations (SCBSs).
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Table A2. Cont.

Approach # Approach Code

35 [150] Energy system architecture: MBS uses power grid, while SCBSs are supplied by
wind turbines without ES.

36 [150] Energy system architecture: MBS uses power grid, while SCBSs are supplied by
PV with ES.

37 [150] MILP formulation of problem of UA with minimal grid power consumption.

38 [150]
Short timescale control of UA through three alternative policies:
green-SCBS-preferred vs minimization of energy consumption vs
best-signal-level + transmission rate (greedy).

39 [150] Long timescale control through use of model predictive control (MPC) based on
traffic flow and weather forecast.

40 [150]
RE generation model: Weibull probability distribution to characterize wind
speed, with average wind speed obtained from a two-year study of mean wind
speed profiles in the Moscow air basin.

41 [150] RE generation model: Solar radiation data from the Colombian Institute of
Hydrology, Meteorology and Environmental Studies (IDEAM).

42 [150] BS power consumption model: from ICT-EARTH (linear with traffic load
specified for time slot t).

43 [150]
Traffic model: Short timescale, inhomogeneous Poisson point process (without
temporal variability of traffic) and random-uniform spatial distribution of users
in coverage area.

44 [150] Traffic model: Traffic data provided by a mobile network operator (MNO).

45 [149] Radio path: path loss calculation using rural microcell and data rate obtained
using 5G R16.

46 [149,150] Simulation, using Matlab.

47 [146] RE generation model: solar energy production/15 minutes expressed using
Gaussian distribution; wind-energy production expressed as constant.

Appendix A.2.3. Table of D-Node Codes

Table A3. Developments.

Development # Development Code

1 [142] Enablement of historical analysis of sensor data.

2 [142] Diesel consumption model for BSs powered by a DG.

3 [142] Comparison: energy efficiency of BSs powered by a DG with those powered
by a RES

4 [142] Capacity planning of RES power systems for autonomous operation.

5 [142] CAPEX: PV system < DG system < PV+wind turbine system.

6 [143] OPEX and energy efficiency of BS in rural/remote areas is significantly
improved by using RES.

7 [143] Autonomy improved, possibly indefinitely, using several RESs.

8 [144]
Optimal, long timescale contract between energy aggregator and CSP, based
on availability, during a given time interval of ES discharge capacity at the
CSP’s BS site

9 [144] Lyapunov optimization achieving short timescale objective of stable energy
levels in ESs and full absorption of energy harvested from PV panels.

10 [144] Case study, showing near-complete (99.87%) absorption of PV energy.
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Table A3. Cont.

Development # Development Code

11 [145] ML algorithms: correct prediction of traffic only important around utilization
threshold that activates/deactivates micro-BS sleep mode.

12 [145]
Comparison: ML algorithms: simple Block Linear Regression performs
trade-off between energy consumption and QoS as well as more complex
ones such as 24- and 48-Artificial-Neural-Network (ANN).

13 [145]
Energy consumption control strategy: turn micro-BSs on or off according to
availability of RE (the sum of the predicted harvest and the stored) has less
dependence on ML algorithm than according to demand.

14 [146] Energy-cost model, integrating TOU grid electricity cost, solar energy and
wind energy.

15 [146]

Comparison: algorithms: algorithm minimizing energy cost performs better
than one minimizing energy consumption in the overall objective of
optimizing energy cost and energy price and energy consumption and
fairness of allocation of throughput to users.

16 [147]

Comparison: extensive characterization of the relative merits of four
electricity generation systems: (a) PV + ES (b) PV + DG + ES (c) DG + ES (d)
DG, in five dimensions: (i) optimal dispatch strategy (ii) NPC (iii) COE (iv)
GHG (v) days of autonomy.

17 [148] Genetic algorithm: minimization of energy cost and wastage in a
multiple-RES system.

18 [148] RES mix recommendation for a specific service area.

19 [149] Application of green algorithm in 5G HetNet: for reactive, short timescale
control, consisting of UA with a green (SC)BS.

20 [149] Comparison: Green algorithm vs best-signal strength algorithm: UA with
grid-powered MBS is reduced almost by half.

21 [149] Comparison: Green algorithm vs best-signal strength algorithm: Users
denied service significantly reduced.

22 [149]
Comparison: Green algorithm vs best-signal strength algorithm: Reduction
in MBS energy consumption is limited by the need to backhaul SCBS traffic
through the MBS.

23 [149]
Comparison: Green algorithm vs best-signal strength algorithm: Cell site’s
energy efficiency is improved (MBS’s energy efficiency is worsened but
SCBSs’ improvement over-compensates).

24 [150] Green algorithm: for reactive, short timescale control of UA with a
green (SC)BS.

25 [150]

Comparison: Green algorithm vs on-grid only operation: Energy
consumption reduced, and reduction improves markedly when growing
from four RE-powered SCBSs (11.1%) to sixteen (26.6%), then to
thirty-six (33.7%).

26 [150]
Comparison: Green algorithm vs best-signal-level policy vs best-signal-level
+ transmission-rate (greedy) heuristic: Energy consumption: significantly
better than best-signal-level policy, slightly better than greedy heuristic.

27 [150]
Comparison: Green algorithm vs discrete (MILP) optimizer vs
best-signal-level + transmission-rate (greedy) heuristic: Energy efficiency:
better than MILP optimizer but roughly same as greedy heuristic.

28 [150] Infrastructure dimensioning: Green algorithm’s reduction of energy
consumption does not decrease in direct proportion to number of SCBSs.

29 [150]
Comparison: Green algorithm vs discrete (MILP) optimizer vs
best-signal-level policy: Throughput: slightly worse than best-signal-level,
slightly better than discrete (MILP) optimizer.
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30 [150] MPC for predictive, long timescale control, using 0- (reactive), 1- and 5-h
prediction horizons.

31 [150] Comparison: MPC vs on-grid only operation: Energy consumption: reduced
by 13.1%.

32 [150] Infrastructure dimensioning: optimal storage capacity can be determined
and enables savings up to 22% with respect to on-grid only operation.
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Figure A1. A first categorization of the problem nodes. P1: 8 [145], 9 [145], 10 [146], 11 [147], 14 
[150]; P2 3 [143], 4 [144], 12 [148]; P3 5 [144], 6 [144]; P4 7 [144], 13 [149,150]. Unclustered: 1 [142], 2 
[142]. 

Figure A1. A first categorization of the problem nodes. P1: 8 [145], 9 [145], 10 [146], 11 [147], 14 [150];
P2 3 [143], 4 [144], 12 [148]; P3 5 [144], 6 [144]; P4 7 [144], 13 [149,150]. Unclustered: 1 [142], 2 [142].
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8. RAN architecture: a single service area served 
by one LTE-A macro-BS (MBS) and six micro-BSs 
providing additional capacity in the service area’s 

hot spots. 

13. RAN architecture: a single service area served 
by one LTE-A MBS and two micro-BSs providing 
additional capacity in the service area’s hot spots.

25. RAN architecture: eight service areas, each 
served by one LTE-A MBS and four micro-BSs

30. RAN architecture: a single service area served 
by one 5G MBS and 24 small cell base stations 

(SCBSs), with microwave backhaul from MBS to 
core and SCBS to MBS 

34. RAN architecture: a single service area served 
by one LTE MBS and 36/16/4 small cell base 

stations (SCBSs)

6. Regulate the mid-term exchange of energy 
using contract theory.

7. Regulate the short-term use of energy by a 
Lyapunov optimization.

16. Game theory applied to balance opposing 
objectives of (a) minimization of energy cost or 
energy consumption and (b) maximization of 

user-throughput fairness

17. Alternative energy cost optimization 
approaches: (a) reduction by decreasing BS energy 

consumption; (b) reduction through direct 
optimization of energy cost

26. BS power consumption model: linear power 
model (developed in earlier work), with hourly 

load factor reflecting days of the week and of the 
weekend.

29. Genetic algorithm

23. MILP formulation

33. Green heuristic: prioritize green SCBSs in the 
UA process

37. MILP formulation of problem of UA with 
minimal grid power consumption

38. Short timescale control of UA through three 
alternative policies: green-SCBS-preferred vs 
minimization of energy consumption vs best-

signal-level + transmission rate (greedy)

39. Long timescale control through use of model 
predictive control (MPC) based on traffic flow and 

weather forecast

10. Traffic model: Traffic data provided by a large 
Italian mobile network operator (MNO)

24. Traffic model: Traffic data provided by a 
mobile network operator (MNO) – both voice and 

data, for a cell of 0.3km2, showing number of 
simultaneous active users at any time during a 

day.

32. Random-uniform spatial distribution of low-
data-rate and high-data-rate users respectively.

43. Traffic model: Short timescale, inhomogeneous 
Poisson point process (without temporal 

variability of traffic) and random-uniform spatial 
distribution of users in coverage area

44. Traffic model: Traffic data provided by a 
mobile network operator (MNO)

5. Organize multiple 5G BSs carrying photovoltaic 
(PV) panels into an energy-aggregation system 

architecture.

9. Energy system architecture: PV panels + energy 
storage (ES - batteries) + power grid

14. Energy system architecture: MBS uses power 
grid, while one micro-BS is supplied by the power 

grid and solar energy, and the other micro-BS is 
supplied by the power grid and wind energy.

19. Energy system architecture: Alternative 
combinations: (a) PV + diesel generator (DG) + ES 

(b) PV + ES (c) DG + ES (d) DG
31. Energy system architecture: MBS uses power 

grid, while SCBSs are supplied by RESs.

35. Energy system architecture: MBS uses power 
grid, while SCBSs are supplied by wind turbines 

without ES

36. Energy system architecture: MBS uses power 
grid, while SCBSs are supplied by PV with ES

A1. FORMAL METHODS

A2. TRAFFIC MODEL

A3. RAN ARCHITECTURE

A4. ENERGY SYSTEM 
ARCHITECTURE

 
(a) 

 Figure A2. Cont.
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2. Systematic survey of vendors and consultation 
with base station operators.

3. Broad comparison of research and industrial 
(technical specifications) output concerning use of 

RES in powering BSs.

A5. RE DATA

A6. VALIDATION

A8. BS POWER CONSUMPTION

A9. RADIO PATH DATA
28. Radio path: 3D map of suburban area

29. Radio path:  path loss calculation using rural 
microcell and data rate obtained using 5G R16

A7. LITERATURE REVIEW

 

(b) 

Figure A2. (a) A first categorization of the approach nodes. (b) A first categorization of the ap-
proach nodes. A1: 6 [144], 7 [144], 16 [146], 17 [146], 23 [148], 26 [148], 29 [148], 33 [149], 37 [150], 38 
[150], 39 [150]; A2: 10 [145], 24 [148], 32 [149], 43 [150], 44 [150]; A3: 8 [145], 13 [146], 25 [148], 30 
[149], 34 [150]; A4: 5 [144], 9 [145], 14 [146], 19 [147], 31 [149], 35 [150], 36 [150]. A5 11 [145], 27 
[146], 40 [150], 41 [150], 47 [146]; A6 18 [146], 20 [147], 46 [149,150]; A7 2 [142], 3 [143]; A8 
21 [147], 42 [150]; A9 28 [148], 29 [149]. Unclustered: 1 [142], 12 [145], 15 [146], 22 [147]. 

Figure A2. (a) A first categorization of the approach nodes. (b) A first categorization of the approach
nodes. A1: 6 [144], 7 [144], 16 [146], 17 [146], 23 [148], 26 [148], 29 [148], 33 [149], 37 [150], 38 [150],
39 [150]; A2: 10 [145], 24 [148], 32 [149], 43 [150], 44 [150]; A3: 8 [145], 13 [146], 25 [148], 30 [149],
34 [150]; A4: 5 [144], 9 [145], 14 [146], 19 [147], 31 [149], 35 [150], 36 [150]. A5 11 [145], 27 [146],
40 [150], 41 [150], 47 [146]; A6 18 [146], 20 [147], 46 [149,150]; A7 2 [142], 3 [143]; A8 21 [147], 42 [150];
A9 28 [148], 29 [149]. Unclustered: 1 [142], 12 [145], 15 [146], 22 [147].
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8. Optimal, long timescale contract between energy 
aggregator and CSP, based on availability, during a 

given time interval of ES discharge capacity at the CSP’s 
BS site.

9. Lyapunov optimization achieving short timescale 
objective of stable energy levels in ESs and full 
absorption of energy harvested from PV panels

17. Genetic algorithm: minimization of energy cost and 
wastage in a multiple-RES system

24. Green algorithm: for reactive, short timescale control 
of UA with a green (SC)BS
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optimizer but roughly same as greedy heuristic
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D1. RELATIVE MERITS OF ALGORITHMS IN ENERGY CONSUMPTION AND EFFICIENCY

 

(a)  

 Figure A3. Cont.
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1. Enablement of historical analysis of sensor data

6. OPEX and energy efficiency of BS in rural/remote 
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13. Energy consumption control strategy: turn micro-
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D5. ENERGY COST MODELS

28. Infrastructure dimensioning: Green algorithm’s 
reduction of energy consumption does not decrease in 

direct proportion to number of SCBSs.
32. Infrastructure dimensioning: optimal storage 

capacity can be determined and enables savings up to 
22% with respect to on-grid only operation.
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Figure A3. (a) A first categorization of the development nodes. (b) A first categorization of the de-
velopment nodes. D1: 12 [145], 15 [146], 20 [149], 21 [149], 22 [149], 23 [149], 25 [150], 26 [150], 27 
[150], 29 [150], 31 [150]; D2: 8 [144], 9 [144], 17 [148], 24 [150], 30 [150]. D3: 4 [142], 7 [143], 10 [144], 
18 [148]. D4: 3 [142], 5 [142], 16 [147]; D5: 2 [142], 14 [146]; D6: 28 [150], 32 [150]. Unclustered: 1 
[142], 6 [143], 11 [145], 13 [145], 19 [149]. 
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Abstract: As the rapid growth of mobile users and Internet-of-Everything devices will continue in
the upcoming decade, more and more network capacity will be needed to accommodate such a
constant increase in data volumes (DVs). To satisfy such a vast DV increase, the implementation
of the fifth-generation (5G) and future sixth-generation (6G) mobile networks will be based on
heterogeneous networks (HetNets) composed of macro base stations (BSs) dedicated to ensuring
basic signal coverage and capacity, and small BSs dedicated to satisfying capacity for increased DVs
at locations of traffic hotspots. An approach that can accommodate constantly increasing DVs is
based on adding additional capacity in the network through the deployment of new BSs as DV
increases. Such an approach represents an implementation challenge to mobile network operators
(MNOs), which is reflected in the increased power consumption of the radio access part of the mobile
network and degradation of network energy efficiency (EE). In this study, the impact of the expected
increase of DVs through the 2020s on the EE of the 5G radio access network (RAN) was analyzed
by using standardized data and coverage EE metrics. An analysis was performed for five different
macro and small 5G BS implementation and operation scenarios and for rural, urban, dense-urban
and indoor-hotspot device density classes (areas). The results of analyses reveal a strong influence
of increasing DV trends on standardized data and coverage EE metrics of 5G HetNets. For every
device density class characterized with increased DVs, we here elaborate on the process of achieving
the best and worse combination of data and coverage EE metrics for each of the analyzed 5G BSs
deployment and operation approaches. This elaboration is further extended on the analyses of the
impact of 5G RAN instant power consumption and 5G RAN yearly energy consumption on values
of standardized EE metrics. The presented analyses can serve as a reference in the selection of the
most appropriate 5G BS deployment and operation approach, which will simultaneously ensure the
transfer of permanently increasing DVs in a specific device density class and the highest possible
levels of data and coverage EE metrics.

Keywords: green communications; green networking; 5G; radio access network; base station; energy-
efficiency; metric; data; coverage; power; mobile network operator; wireless

1. Introduction

The trend of constantly increasing the number of mobile users consequently leads
to an increase in traffic data volumes (DVs). It is projected that global mobile data traffic
will exceed 300 EB per month in 2026 [1]. The overall number of Massive Machine-Type
Communications (mMTC) and non-mMTC connected devices in the fifth-generation (5G)
networks will increase from 165.6 million in 2020 to 3.256 billion in 2030, with a compound
annual growth rate (CAGR) of 35% [2]. All 5G connected devices will, by 2030, account for
13% of the overall number of connected devices (25.4 billion) worldwide [2]. Although the
fourth-generation (4G) mobile networks will remain the dominant mobile access technology

Sensors 2022, 22, 255. https://doi.org/10.3390/s22010255 https://www.mdpi.com/journal/sensors
109



Sensors 2022, 22, 255

by 2025, the market uptake of the 5G mobile network is faster than that of 4G, and 5G is
expected to overtake 4G in the second half of the 2020s.

As the next step of wireless network evolution, the 5G network will enable new
applications and services. Most of them will request greater network capacity and data
rates. For some use cases, these requirements are accompanied by a demand for ultralow
latencies, ultra-high reliability or exceptional availability [3]. Additionally, the rapid
growth in the number of connected devices is expected to sustain in the future. This growth
will mainly be due to emerging applications, such as ultrahigh-definition (UHD) video,
augmented and virtual reality, fixed wireless access, intelligent transportation, remote
healthcare, industrial automation, Internet of Everything (IoE) networks, smart agriculture,
smart cities, etc. Such applications will be characterized by an enormous number of devices
that will generate a huge amount of traffic DVs, which will contribute to the continued
global growth of DVs during the 2020s.

As the existing microwave spectrum becomes severely congested, the 5G network,
as the first among all previous mobile network generations, enables communication in a
frequency spectrum above 6 GHz and in millimeter-wave (mmWave) spectrums (above
30 GHz). A larger amount of available bandwidth in above 6 GHz bands enables multi-
gigabit data rates through wider wireless channels. Wider bands also enable higher channel
reuse, which further allows denser implementation of macro and small base stations
(BSs) having significantly higher capacities than those in previous generations of mo-
bile networks.

However, the drawback of transmission in above 6 GHz bands is in high propagation
losses and susceptibility to blockages of short-wavelength signals, which reduces the
operational coverage of such communication systems. As a consequence, the 5G radio
access network (RAN) deployment is envisioned as a heterogeneous network (HetNet).
Such HetNets consist of a small number of 5G macro BSs and a huge number of 5G small
BSs. Macro BSs support indoor and outdoor basic signal coverage and capacity demands
for wider geographic areas, while accompanying small BSs (micro, pico or femto BSs)
accommodate most of the capacity demands for both indoor and outdoor geographic areas
characterized as hotspots with high traffic DVs.

Deployment of such HetNets composed of densely allocated macro and small BSs,
accompanied with the need for satisfying transfer of constantly increasing traffic DVs,
will have a non-negligible impact on energy consumption of radio access part of 5G and
the future sixth-generation (6G) mobile networks. Therefore, in this study, the influence
of the increasing traffic DVs on the energy efficiency of 5G networks was analyzed. The
analyses were performed for energy-efficiency (EE) metrics standardized by the European
Telecommunications Standards Institute (ETSI). Moreover, the DVs used for analyses are
simulated DVs, which amount to specific device density classes (rural, urban, dense urban
and indoor hotspot); they were selected according to the maximal expected number of
5G devices per square kilometer of each device density class defined in ETSI standards.
Analyzed device density classes represent expected device densities which average uplink
(UL) and downlink (DL) throughputs prescribed by ETSI standards and contribute to the
total expected DV of one of four specific device density classes. These device density
classes represent typical operating environments served by corresponding 5G HetNet
deployments. Performed analyses in this study highlight the impact of such an increase in
DVs on future trends of 5G network EE metrics, with respect to different deployment and
operating HetNet scenarios and device density classes.

The rest of the paper is organized as follows: In Section 2, an overview of energy
requirements of 5G networks is been presented. In Section 3, standardized metrics used for
evaluating 5G network EE are elaborated. The types of different device density classes used
in the analyses are explained in Section 4. Modeling of DVs’ increase used for analyses of
the impact of increasing DVs on EE of 5G networks is described in Section 5. The 5G radio
access network (RAN) deployment and operation approaches and their performance in
terms of EE are presented in Section 6. Section 7 analyses the results, which indicate how

110



Sensors 2022, 22, 255

continuous increase in DVs impacts the values of EE metrics, instant power consumption
and yearly energy consumption of the 5G network. In Section 8, a discussion on performed
analyses and obtained results is performed. Finally, conclusions related to the analyses
presented in the paper are given in Section 9.

2. Energy Requirements of 5G Networks

The deployment of a large number of new 5G macro and especially small BSs ded-
icated to satisfying trends of ascending DVs will have a significant impact in terms of
increased energy requirements related to the power supply of BSs in RANs. Even the
energy consumption (EC) reduction expected through the removal of equipment char-
acteristic for some older network generations (e.g., second and especially third), due to
obsolescence, will be diminished with the need for installing a vast number of 5G BSs.
Therefore, the expected future increase of DVs in mobile access networks will undoubtedly
affect the realization of 5G networks according to the goals of the green communications
and networking paradigm. Green communications and networking is an emerging strategy
dedicated to the development of novel energy-efficient solutions, which will minimize the
usage of network resources for reducing network energy consumption whenever possible.

The design of previous cellular network generations was dominantly focused on
improving network performance through maximizing throughput and spectral efficiency
at the expense of EC. The EE improvements contributing to the realization of the green
communications paradigm in pre-5G cellular or local wireless networks were mainly
dedicated to solutions related to BSs transmit power and activity adjustments according
to dynamic variations of DVs [4,5]. Moreover, green communication solutions related to
the supplying of BSs site with renewable energy sources, which have been capacitated
according to the daily and monthly traffic DV variations on BS site, have been envisioned
as a possible solution to improve network energy efficiency [6].

Although hardware components of 5G BSs are more energy-efficient than those of
previous generations of BSs (2G, 3G and 4G), the amount of EC of 5G radio access net-
works is expected to increase due to the need for fulfilling new 5G requirements, such as
accommodation of vast DVs, ultrahigh data rates and/or ultralow latencies needed for
ensuring some new services. This increase in the EC presents not just an economic issue
reflected in an increase of operational costs for mobile network operators (MNOs), but also
in an environmental issue due to increased carbon emissions and strategic issue due to
alienation from the main goals of green communications paradigm. Therefore, ensuring the
energy-efficient operation of RAN in 5G networks has become one of the major challenges
analyzed in the literature [7,8].

This challenge is further contributed to by the fact that MNOs must adapt the num-
ber of BSs and corresponding capacities according to the expected number of users and
their DVs. Classification of device density classes (areas) in 5G networks performed by
ETSI in References [9,10] indicates that the number of users and corresponding DVs can
significantly vary per specific device density class (Table 1).

Table 1. Parameter values for the various device density classes and analyzed BS types.

User Density Class Average UL
Throughput (Mbit/s)

Average DL
Throughput (Mbit/s)

DVs for 10–100%
of Max DV
(Gb/km2)

Maximal Density
of User Devices

(/km2)

DV Percentage (%)
Transmitted by
Macro BSs for

10–100% of Max DV

Indoor hotspot 26.67 200 5667–56,668 250,000 0.420–0.042

Dense urban 50 300 875–8750 25,000 1.370–0.137

Urban 25 50 75–750 10,000 8.00–0.80

Rural 25 50 4.5–45 600 66.70–6.67

Moreover, due to the global population growth, the advent of new and more capacity-
demanding applications, the proliferation of the Internet of Everything (IoE) concept and
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the increase in the number of devices per user, the DV increase in any device density class
will have continuous progress throughout the 2020s. Following this progress in terms of
satisfying the capacity demand of each device density class raises challenges on MNOs in
terms of keeping 5G RAN deployment and operation as energy efficient as possible. These
challenges can be precisely expressed in changes of EE metrics for specific device density
classes of 5G networks. In our preliminary work, the impact of the increasing number of
active users in 5G networks on network EE metrics was analyzed [11]. However, in mobile
access networks, the increasing trend of changes in user densities is not the same as the
increasing trend of changes in data volumes (DVs). Therefore, analyses dedicated to the
explanation of how the expected increasing trend of DVs during the 2020s impacts EE of
5G RAN have not been analyzed yet.

Satisfying this increasing trend of DVs can be performed in 5G RANs through the
exploitation of different small and macro BSs implementation and operation scenarios. They
can differ in the number of used BSs and corresponding ECs, which ultimately influence
on 5G network EE. The EE in the 5G RAN can be validated through recently standardized
metrics which enable consistent evaluation of RAN EE in different device density classes.
Hence, the impact of the increased DVs on EE metrics of 5G RANs in versatile device density
classes was analyzed in this work for the first time. The analyses give an explanation of how
the ascending trend of DVs impacts distinct EE metrics. Moreover, the analyses for the first
time clarify the impact of increased DVs on instant power and yearly energy consumption
of the 5G RAN.

3. Metrics for Evaluating 5G Network Energy Efficiency

Recently, the main standardization organizations, such as the 3rd Generation Partnership
Project (3GPP), the ETSI and the International Telecommunication Union-Telecommunications
Standardization Sector (ITU-T), accepted two types of the EE metrics as the key performance
indicators (KPIs) for expressing the EE of mobile networks (MNs).

The first metric represents the data EE metric of MN expressed in bit/J, and it is
defined as the amount of data transmitted per Joule of energy. For known mobile network
area, A, data EE is expressed as follows:

EEDA =
DVA
ECA

[bit/J] (1)

According to Equation (1), the data EE metric (EEDA) is calculated as the ratio between
the overall DV (DVA) transferred by the analyzed MN area and energy (ECA) needed by
MN equipment installed in this area for transferring these DVs.

Another standardized EE metric expressed in m2/J represents the coverage EE of the
MN area, and it is defined as the unit area which can be covered with the 5G wireless signal,
using Joule of consumed energy. For known mobile network area, A, the coverage EE is
expressed as follows:

EECA =
SA

ECA

[
m2/J

]
(2)

Based on Equation (2), the coverage EE metric (EECA) is calculated as the ratio between
the overall size of the area (SA) covered with the wireless signal of the analyzed MN and
the total energy (ECA) consumed by the equipment allocated in the analyzed MN area. The
total EC (ECA) of the analyzed MN area can include the sum of the energies consumed by
the RAN equipment (BSs), transmission equipment (e.g., wired or wireless backhauling
equipment and radio controllers) and all ancillary equipment (e.g., air-conditioning, power
backup, etc.).

These two standardized metrics are used to effectively analyze the deployment and
operation performance of MN in terms of EE. They can be used for the assessment of MN EE
performance in the case of various deployment and operation strategies of different BS types
and device density classes [1,2]. As different deployment and operation strategies for a new
generation of MN can be implemented in practice, the EE assessment of mobile networks by
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using standardized metrics becomes crucial for MNOs when assessing approaches related
to the deployment and operation of new generations of mobile networks.

4. Device Density Classes for Assessment of Energy Efficiency

The method for EE evaluation of 5G RAN was presented in ETSI standard (ES) 203
228 [9]. According to this method, when the measurement of parameters needed for EE
assessment of complete MN on the large scale is not feasible, the total network can be
divided into a set of smaller sub-networks that are classified according to device densities
of a specific sub-network. For EE assessment of 5G RAN presented in this work, analysis
was performed by using sub-networks categorized by device density classes for an area of
one square kilometer (1 km2). Figure 1 visualizes analyzed 5G HetNet deployments for
different device density classes with the maximal number of installed small and macro BSs
per square kilometer area.
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Figure 1. Visualization of analyzed 5G HetNet deployments for different device density classes with
the maximal number of installed small and macro BSs per square kilometer area.

The impact of DVs on different EE metrics can be analyzed for different device density
classes which are defined in ETSI standards [9,10]. They can range from the rarely populated
rural device density class having up to hundreds of users per square kilometer (km2) to the
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urban, dense-urban and densely populated indoor-hotspot device density classes, having
up to a few hundreds of thousands of users per km2. The maximal densities of user devices
in specific device density classes for the analyzed area of one square kilometer are presented
in Table 1. Hence, the device density classes presented in Table 1 are classified depending
on the maximal user density of the square kilometer area (users/km2).

As an example, Figure 1 visualizes analyzed device density classes of the 5G RAN
deployment in terms of the number of allocated macro and small BSs. Analyzed HetNet
5G RAN deployment architectures are, for each of the device density classes, composed
of a few macro BS(s) and a large number of small BSs (Figure 1). Figure 1 presents a
maximal number of macro BSs allocated in each device density class. In the analyses, it is
assumed that the number of macro BSs is constant during the 2020s and corresponds to the
number of BSs allocated during the initial deployment of the 5G network. This approach
to deployments of macro BSs is frequent in practice, since MNOs deploy macro 5G BSs
to ensure initial coverage and capacity demands of a specific area. In areas expecting
larger DVs, a larger number of macro BSs will be initially deployed, and this explains
the differences in the maximal number of macro BSs deployed in different device density
classes in Figure 1. Moreover, a number of small BSs will be deployed according to different
deployment and operation approaches described and analyzed in further sections. Since
the deployment of the number of small 5G BSs in some analyzed areas depends on different
MNO deployment and operation approaches, in Figure 1, the span of small BSs that can
be deployed is indicated in the range from minimal to the maximal number of small BSs
that are considered for analyzes in different approaches. Therefore, Figure 1 illustrates
basic MNO principles of RAN deployment analyzed in this work, according to which a few
macro BSs are deployed for ensuring basic signal coverage and capacity of the analyzed area
and a larger number of deployed small BSs are dedicated to satisfying capacity demands at
locations of traffic hotspots.

5. Modeling of DVs Increase in 5G Networks

A continuous increase in DVs will ultimately affect the 5G RAN layout in terms
of the needed number of BSs that must be deployed in a specific device density class
(area). According to Reference [12], for each device density class, different requirements
in terms of expected average uplink (UL) and downlink (DL) data rates per active user
have been defined by the ETSI standard [1,2] (Table 1). Defined average UL/DL data
rates assume that less populated areas (e.g., rural) require lower average throughputs and
ultra-densely populated areas (e.g., indoor hotspot) require average throughputs that are
significantly higher.

In this work, the DV increment was simulated for each year in the 2020s. The simu-
lation is based on the total expected DV increase during the 2020s. This increase in DV
is calculated for each year in the 2020s, based on the maximal expected number of 5G
devices per square kilometer in each device density class prescribed by the ETSI standards
(Table 1) [1].

According to values of UL and DL average throughputs and maximal user densities
defined in References [9,10] (Table 1), the overall impact of trend in DV increase on EE
metrics of specific device density classes was modeled. For analyses in this paper, this
impact was modeled by scaling the DV in each device density class in the range from 10%
to 100% of a total average UL and DL DV. The total UL and DL DV were obtained for the
maximal number of user devices per square kilometer area of every device density class
prescribed by the ETSI. More specifically, the 10% of maximal expected DV in 2030 was used
for representing DV in 2021, and for each subsequent year in the 2020s, the increase in DVs
is assumed to be incremented by 10% up to 2030. For the year 2030, the maximal average
DV defined by total UL and DL traffic of the maximal number of user devices per square
kilometer prescribed by ETSI in References [9,10] is used in the analyses (Table 1). Through
modeled increases in DVs for each device density class, it is shown how an increasing trend
of DVs affects the data and coverage EE of the specific device density class.
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Based on the demands for the transfer of DVs in each device density class, a different
number of installed macro (NMA) and small (NSM) BSs were allocated in the analyzed area
of the square kilometer (Figure 1). An increase in DVs ranging from 10% to 100% of a total
maximal DV in each device density class was accommodated through the deployment of
an appropriate number of small BSs. For that reason, ranges of the number of small BSs in
specific device density classes are also presented in Figure 1.

The overall number of installed macro (NMA) and small (NSM) BSs presented in
Figure 1 depends on the increase in DVs of each device density class toward the maximal
expected DV presented in Table 1. The installed number of macro and especially micro BSs
in a specific device density class presented in Figure 1 is related to the overall capacity that
active BSs in RAN must have for ensuring the transfer of expected DVs. The capacity of
each BS type is defined based on operating parameters of macro and small BSs, as presented
in Table 2 [13]. They are characteristic for the typical contemporary 5G BSs market models,
and, based on them, the overall RAN capacity in terms of a minimal number of the macro
and small BSs needed for the transfer of expected DVs in each device density class was
allocated. Allocation of 5G BSs is performed in accordance with an increase of DV in the
specific device density class. As the demand for transfer of higher DVs increases and the
current capacity of installed 5G small BSs reaches maximal exploitation, the new small BSs
are deployed in the network on positions of traffic hotspots (Figure 1). This concept of
adding new BSs in the network simulates some of the analyzed approaches dedicated to the
realization of future 5G networks, which will be realized through the gradual deployment
of new small 5G BSs on positions of traffic hotspots.

Table 2. Operating parameters of different BS types used in the analyses.

BS Parameter 5G Macro BS 5G Small BS

Spectral efficiency (bit/s/Hz/cell) 10 6

Channel bandwidth (MHz) 100 800

Number of sectors (cells)/ BS capacity (Gbit/s) 3/3 1/4.8

Average power consumption in sleep mode (W) N/A 5

Average power consumption in active mode (W) 2000 50

Average power consumption in Tx power
scaling mode (W) 1600 40

According to Table 1, the percentage share of the transfer of DVs performed by macro
BSs is lower for device density classes having higher DVs (user densities), and vice versa.
Hence, in rarely populated rural device density classes, most of the DVs will be transferred
over macro BSs. However, in the indoor-hotspot device density classes characterized by
the necessity of transmitting huge DVs, macro BSs will transfer minor DVs, while the
remaining DVs will be transferred by small BSs. Moreover, with the increase of DVs in
specific device density classes, the involvement of macro BSs in the transfer of DVs will
decrease on the account of small BS.

6. Simulation of 5G RAN Deployment and Operation Approaches

MNOs can exploit different approaches for the initial deployment of new BSs in 5G
RANs. However, the selection of the best 5G network deployment approach in terms of
keeping network EE at optimal levels is still an open question to MNOs. As in the case of
previous generations of the cellular networks, implementation of the 5G network can last
for years until full deployment in terms of needed capacity and coverage on the national
level of complete countries will be achieved. According to the prediction in Reference [1], it
is expected that 60% of the world population will be covered with 5G signal by 2026. By
that period, installed 5G RAN resources will also need to accommodate increased DVs,
which will be significantly higher than the ones at the first years of 2020s.
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However, different deployment approaches of BSs in 5G RANs can be realized through
versatile deployment and RRM techniques. They can have a different long-term impacts on
the EC of the RAN. Selecting an appropriate deployment and RRM approach in terms of EE
can contribute to the reduction of network EC and consequently to the improvement of the
EE metrics. Hence, further analyses reveal how different 5G RAN deployment approaches
and continuous increase of DVs in the 2020s influence the 5G network EE metrics. As
the largest share of the 5G network EC is related to the EC of BSs in 5G RAN [6], further
analyses are performed only for deployment and RRM approaches related to 5G BSs only.

Due to the known fact that many active BSs are lightly loaded for most of their oper-
ating time, during which active BSs consume energy [3], analyzed deployment and RRM
approaches exploit this fact for potential energy savings. More specifically, an operating
strategy based on the switching of small BSs in sleep operation mode during the idle traffic
periods is considered in the analyses [14,15]. This operating strategy is considered, since
the radio resource scaling (in terms of BS transmit (Tx) power levels, number of active
transceivers, number of active subcarriers, etc.) according to dynamics of the user’s activity
has been proven as an approach that contributes to enhancement of the HetNets EE [4,5,16].
Such concepts dedicated to improving BSs EE are included in some contemporary types of
the 5G small BSs [17], and even more advanced concepts will be implemented in the future
releases of 5G BSs.

Three different 5G BSs modes of operation are analyzed in the paper. In Table 2, instant
average power consumption of those operation modes, which can be active, sleep and Tx
power scaling, are presented. The power consumption of 5G BSs in active, sleep and Tx
power scaling modes were selected for analyses based on Reference [3]. The selected BSs
power consumption and configuration parameters presented in Table 2 are inherent to the
preliminary models of 5G small and macro BSs. The power consumption of BS working
in active mode represents the average power consumption of BS for which operating
capacities are fully exploited at the highest Tx powers [3]. The average EC of the small BSs
in sleep mode is estimated to be 10% of the average EC characteristic for small BS operating
in full active mode (Table 2). Due to the necessity of ensuring constant coverage of the area
with 5G signal, the possibility that macro BSs can be in sleep mode is not considered in
the analyses (Table 2). The average power consumption of BSs in Tx power scaling mode
is assumed to be 80% of the average power consumption in active mode (Table 2). The
Tx power scaling mode is analyzed, since it is confirmed in References [4,5] that scaling
of the Tx power of BSs according to the space and time DV variations can additionally
give a contribution to the enhancement of the EE of a mobile access networks. Hence,
a very conservative assumption related to the reduction of average instant BSs power
consumption for 20% on a daily basis in comparison with a power consumption of small
BSs constantly operating in the active state at the highest Tx power is used in this analysis.

Another MN characteristic that is used in the presented analyses is the fact that the
deployment of BSs in cellular RANs is based on ensuring the projected capacity needs for
satisfying peak network traffic volumes during a BS exploitation period of approximately
10 years since initial BSs deployment. Besides the fact that such an implementation imposes
large initial capital investments for MNO, it also imposes increased operational costs in
terms of large monthly energy bills paid by MNO for operating RAN with significantly
larger capacities than those needed during most of the 5G RAN equipment lifetime. These
larger 5G RAN energy costs consequently result in reduced 5G network EE, which can be
improved if an appropriate 5G BSs deployment and operation approach is exploited. Hence,
finding an optimal deployment and RRM approach from the EE perspective represents a
crucial challenge to MNOs.

6.1. Types of 5G RAN Deployment Approaches

As previously emphasized, a rapid increase in mobile users and the high-throughput
requirements of future applications will contribute to the constant increase of the DVs in 5G
HetNets during the upcoming decade. Therefore, the analyzed BS deployment approaches
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simulate this growth of DVs for the 10-year period starting with the year 2021 in every
device density class (Table 1). In Table 3, the main characteristics of the analyzed network
deployment and operation approaches are presented. The analysis takes into account
broadly accepted MNOs practice based on the initial deployment of the fixed number of
macro 5G BSs for each deployment approach in every device density class (Figure 1). The
number of installed macro BSs corresponds to the number of BSs required to provide a
minimal level of signal coverage and capacity requirements for the transfer of expected
DVs in a specific device density class (Figure 1).

Table 3. Analyzed network deployment and operation approach.

Approach
1—Variable

Number of Small
BSs in Active

Mode

Approach
2—Maximal

Number of Small
BSs in Sleep

Mode

Approach 3—All
BSs Constantly in

Active Mode

Approach
4—Variable

Number of Small
BSs in Tx Power

Scaling Mode

Approach
5—Variable

Number of All
BSs in Tx Power

Scaling Mode

Number of macro
BSs in Tx power

scaling mode
N/A N/A N/A N/A Based on DV

changes

Number of small
BSs in Tx power

scaling mode
N/A N/A N/A Based on DV

changes
Based on DV

changes

Number of small
BSs in active mode

Based on DV
changes

Based on DV
changes All Based on DV

changes
Based on DV

changes

Number of small
BSs in sleep mode N/A Maximal N/A N/A N/A

Overall number of
installed small BSs

Changes according
to DV

requirements

Maximal
for satisfying full

DV demand

Maximal
for satisfying full

DV demand

Changes according
to DV

requirements

Changes according
to DV

requirements

The number of installed small BSs and corresponding RRM principles differs among
deployment approaches (Figure 1), and this constitutes the main difference among the
analyzed deployment approaches (Table 3). In order to model various BSs deployment and
RRM approaches and compare their impact on the standardized EE metrics, five different
types of deployment and operation approaches were selected for analysis.

6.1.1. Approach 1—Variable Number of Small BSs in Active Mode

Deployment Approach 1 is characterized by the variable number of small BSs in active
mode during their operational period (Table 3). This approach is based on 5G HetNet
deployment strategy in which the number of installed small BSs is continuously increased
over time. This increase is based on satisfying the demand for transfer of increasing DV
traffic in specific locations of every device density class. This approach does not include
any radio resource management (RRM) technique for improving BSs EE in periods when
BSs are active (Table 3). Hence, those macro and small BSs that are installed (Figure 1)
are constantly active with maximal EC during the entire working period. Their instant
power consumption corresponds to the average instant power consumption of BSs working
constantly in active mode (Table 2).

6.1.2. Approach 2—Maximal Number of Small BSs in Sleep Mode

This deployment approach is characterized by the possibility of having a maximal
number of small BSs in sleep mode during RAN operation (Table 3). In this approach, all
small BSs needed for accommodating expected DVs in the upcoming period of 10 years are
initially installed in the RAN by MNO. This approach exploits the small BSs sleep mode
strategy, which enables the preservation of energy through putting small BSs in a sleep
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operation mode during the periods lacking the data needed to be transferred by those BSs.
When the demand for capacity exceeds the available capacity of the currently active macro
and small BSs, the required number of small BS(s) that are in sleep mode are activated.
Moreover, this approach does not assume the implementation of any RRM method for
improving EE of macro BS(s).

6.1.3. Approach 3—All BSs Constantly in Active Mode

Deployment Approach 3 demonstrates the traditional approach to the deployment of
BSs in which all (macro and small) BSs are constantly in active mode (Table 3). As in the
case of deployment Approach 2, all small BSs needed for the accommodation of expected
DVs in the upcoming 10-year exploitation period of 5G HetNet are initially installed in
the RAN by MNO. The installed BSs operate without any adjustment of radio resources in
accordance with time and space variations of DVs; thus, they consume constantly maximal
energy. This approach characterizes the constant power consumption of small and macro
BSs that corresponds to the average power consumption of BSs working in active mode
(Table 2). This approach, which is traditionally exploited for the deployment of pre-5G BSs,
is considered for comparison purposes with other more advanced BSs deployment and
deployment approaches.

6.1.4. Approaches 4 and 5—Variable Number of Small/All BSs in Tx Power Scaling Mode

Deployment Approaches 4 and 5 correspond to deployment Approach 1 in terms of
the deployment of small BSs according to a gradual increase of DV over time (Table 3). In
these two approaches, a BSs Tx power scaling according to time and space variations of
DV is exploited, since it is proven that such a technique can additionally preserve the EC
of the RAN. The Tx power scaling technique used for the purpose of the EE assessment
in this analysis follows a conservative approach, assuming that implementation of such
technique reduces EC of the BS for 20% of the EC which BSs have in case of transmitting
at the highest Tx power (Table 2). In the case of deployment Approach 4, the Tx power
scaling is applied only to the small BSs, while, in the case of deployment Approach 5, the
Tx power scaling mode is applied to both small and macro BSs (Table 3).

7. Results on the Impact of Increasing DVs on 5G Network EE

The impacts of the increase in DVs on data and coverage EE metrics of 5G RAN for
different device density classes and five deployment approaches are shown in Figure 2a–d.
Figure 2a–d indicated estimated DVs for each year during the 2020s, with 2030 as the
last year for which DV estimation was performed. According to the presented simulation
results, the increase in DVs has a significant impact on data and coverage EE metrics of 5G
RANs. This impact is visible for every device density class and deployment approach. In
the case of all deployment approaches and for every analyzed device density class, the data
EE metric increases with the increase of DV that must be transferred in the 5G network
(Figure 2a–d). Thus, an increase in DVs has a positive impact on data EE metrics of 5G
networks. This implies that a higher amount of DVs can be transferred per Joule of energy
consumed by the network BSs of the same area size. Therefore, the global trend of the
constant increase of DVs in 5G networks will result in the improvement of the data EE
metric. This improvement is a consequence of the fact that higher amounts of data will be
transferred for the same unit of energy consumption of the BSs in the 5G RAN.
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On the other hand, for every device density class and most of the deployment ap-
proaches, the coverage EE metric decreases as the DV of the analyzed square kilometer area
increases (Figure 2a–d). This decrease is not perceived only for deployment Approach 3,
which presents the traditional RAN implementation approach lacking any deployment or
operational mechanisms dedicated to optimizing BSs energy consumption. In the case of
other deployment approaches (Approaches 1, 2, 4 and 5), an increase in DVs has a negative
influence on coverage EE metrics. This implies that ensuring the transfer of higher DVs
over the same area requires more energy which will be consumed by the network elements
(BSs) allocated in this area. Therefore, the global trend of the constant increase of DVs in 5G
networks will result in the degradation of the coverage EE metric of the radio access part of
the network. This decrease is a consequence of the fact that transferring higher amounts of
data in a specific device density class demands an increase in the energy consumption of
the BSs in the 5G RAN.

According to Figure 2a–d, an increase in DVs causes the opposite trends in changes
of data and coverage EE metrics, where an increase in the data EE metric is followed by a
decrease in the coverage EE metric. This is not the case only with deployment Approach 3,
due to the above-explained reasons. Hence, there is no optimal 5G BSs deployment
approach that can simultaneously contribute to the improvement of both standardized
EE metrics. Favoring the data EE metric in terms of transferring higher amounts of DVs

119



Sensors 2022, 22, 255

per unit of consumed energy will be on the cost of the degradation of coverage EE metric,
and vice versa. However, to have as much energy-efficient 5G RAN as possible, both EE
metrics must be simultaneously optimized in terms of obtaining network deployment
and operation, which will have the highest possible data and coverage EE metric. This
makes the realization of 5G HetNets in terms of satisfying both standardized EE metrics
particularly challenging for MNOs. This challenge arises from the fact that there is no
optimal DV around which MNOs should keep the traffic intensity in a specific device
density class, for which both EE metrics will have the best possible values.

7.1. Impact of Increasing DVs on the Power Consumption of 5G Network

Since increasing DVs impact both EE metrics of 5G networks, an increase in DVs will
also have an influence on instant 5G network power consumption. The instant network
power consumption represents the total average instant power consumption of all (small
and macro) BSs located in the analyzed device density class that are in an active and
operating state (Table 2). Obtained results presenting the impact of DV increase on data
EE metrics and instant 5G network power consumption for indoor hotspot, dense urban,
urban and rural device density classes are shown in Figure 3a–d, respectively. Results
presented in each figure have been obtained for all of the five different deployment and
operation approaches and for DVs characteristic for every year in 2020s.

According to Figure 3a–d, for analyzed Approaches 1, 2, 4 and 5, an increase in DV
of each device density class will impose an increase in the instant 5G network power
consumption. This is due to the fact that transferring larger DVs requires more network
resources in terms of activating an additional number of BSs, exploiting more capacity
of active BSs (in terms of transceivers, channels, subcarriers and multiplexing slots) and
transmitting at higher Tx power levels. This consequently results in higher instant power
consumption of individual BSs, which jointly contributes to an increasing trend of total
instant network power consumption in every device density class. The only exception
from this power consumption trend is the instant power consumption of Approach 3
(Figure 3a–d). Since this approach lacks any adaptation of BSs deployment dynamics and
operation activity according to DV variations, instant power consumption of the network
will be constantly at maximal levels (Figure 3a–d). In comparison with other deployment
and operation approaches, this results in the worse data EE metric of Approach 3.

Therefore, for any of the analyzed approaches (Approaches 1, 2, 4 and 5) which exploit
adaptation of BSs deployment dynamics and operation activity according to increasing
DV trend, this DV increase will have a negative impact in terms of increasing the instant
power consumption of the 5G network. This negative impact is not translated to data
EE metrics, which will increase with the increase of DV in all analyzed device density
classes (Figure 3a–d). This is the consequence of the fact according to which instant power
consumption and DV have different increasing rates. Although instant 5G network power
consumption and, therefore, overall network energy consumption increase during the
analyzed period of 10 years, the overall DV during this period also increases with higher
rates, which in total contributes to the increase of data EE metrics calculated based on the
Equation (1).
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7.2. Impact of Increasing DVs on the Energy Consumption of 5G Network

Since trends in the necessity of transferring increasing DVs impact both EE metrics and
power consumption of 5G networks, an increase in DVs will also have an influence on the
total 5G network energy consumption. In the performed analyses, the total network energy
consumption refers to the energy consumption of all (small and macro) BSs located in the
area of the analyzed device density class during the time period of one year. The impacts of
the DV increase through 2020s on coverage EE metrics and total yearly energy consumption
of 5G network for indoor-hotspot, dense-urban, urban and rural device density classes are
presented in Figure 4a–d, respectively.

According to Figure 4a–d, for analyzed Approaches 1, 2, 4 and 5, an increase in DV of
each device density class will impose an increase in the yearly energy consumption of the
5G network. As explained in the previous section, this is due to the fact that transferring
larger DVs requires the exploitation of more BSs and BSs resources, thus resulting in the
higher total instant power consumption. This consequently results in an increase of the
yearly energy consumption of the analyzed device density class area (Figure 4a–d). Due
to explained reasons related to lack of any deployment and RRM approach dedicated to
improving EE, only in the case of Approach 3 will the total yearly energy consumption be
equal to maximal energy consumption for all years in every device density class.
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Although analyzed Approaches 1, 2, 4 and 5 are based on the adjustment of BSs
deployment dynamics and/or operation activity with respect to the increasing DVs trend,
this DV increase will have a negative impact in terms of increase of the yearly energy con-
sumption of the 5G network. This negative impact also negatively impacts the coverage EE
metrics, which will decrease with the increase of DV in all analyzed device density classes
(Figure 4a–d). This is the consequence of the increase of network energy consumption when
the DVs that must be transferred in the network increase. Consequently, larger energy
consumption for the same size of the device density class area will, according to Equation
(2), result in the degradation of the coverage EE metric.

8. Discussion on Performed Analyses and Obtained Results

The obtained results presented in Figures 2–4 show a significant impact on the coverage
and data EE metrics of DV increase in the 5G HetNets. The results presented in Figure 2
reveal the reverse influence of increased DVs on the coverage and data EE metrics. These
adverse changes of data and coverage EE metrics are noticed for all approaches which use
deployment and operation policies that include an adaptation of BSs resources according to
DV increase. While an increase of DV in the area of analyzed device density classes has an
impact on the decrease of the coverage EE metrics (Figures 2 and 4), it also has an impact
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on the increase of the data EE metrics (Figures 2 and 3). Due to such contrary changes in
trends of data and coverage EE metrics, there is no optimal DV that, transferred by the
network, will ensure 5G network operation with the best possible combination of data and
coverage EE metrics.

To simultaneously improve both data and coverage EE metrics, the best approach is
to implement 5G BSs deployment and operation strategies that have the highest level of
adaptation of installed BSs resources for accommodating the increasing DV trend in any
device density class. Based on the results presented in Figure 3, for any device density class,
approaches that will have better data EE metric are those which have the lower instant
power consumption for the same DVs that must be transferred in the same network area.
Those approaches are deployment and operation Approaches 4 and 5 (Table 3), which, in
comparison with Approaches 1 and 2, have lower instant power consumption for transfer
of the same DVs (Figure 3). Additionally, based on the results presented in Figure 4, it
can be noticed that, for any device density class, approaches that have higher coverage
EE metric are also approaches that have lower yearly energy consumption for the case
when the same DV must be transferred in the same area of device density class. Obviously,
approaches that have the lowest energy consumption (Figure 4) will also have the lowest
instant power consumption (Figure 3).

Therefore, only optimization of network instant power consumption (and conse-
quently energy consumption) will result in simultaneous improvement of both data and
coverage EE metrics. Hence, those BSs’ deployment and operation strategies that enable
the best possible adaptation of BSs’ resources according to the increase of network DV will
result in the optimized power consumption, which contributes to the simultaneous increase
of both EE metrics. This observation further raises the necessity of implementing 5G BSs
deployment and operation concepts that will ensure the transfer of constantly increasing
DVs, while keeping both data and coverage 5G HetNets EE metrics at higher values as
much as possible.

The further discussion concerns the values of the coverage and data EE metrics shown
in Figures 2–4. It is necessary to highlight that these values of EE metrics were obtained for
the specific device density classes (Table 1), which consist of versatile numbers of small
and macro BSs (Figure 1). Hence, every analyzed device density class has been defined in
terms of the number of macro and small BSs, with the goal of satisfying the expected DV
increase in the area of specific device density classes during the 2020s. However, different
real-life deployments of 5G HetNets may vary in terms of the dynamics of DV increase
through time and in the type and number of installed small and macro BSs. For that
reason, versatile practical deployments of HetNets can differ in absolute values of coverage
and data EE metrics when compared with those presented in this work. Nevertheless,
the trends of the graphs presenting the impact of DV increase on data and coverage EE
metrics will remain for every device density class, as with those in Figures 2–4. Therefore,
conclusions presented in this paper about trends in changes of data EE metric, coverage EE
metric, instant power and yearly energy consumption caused by an increase in DVs can be
generalized for any practical implementation of 5G network segment which belongs to a
specific device density class.

An additional discussion point is related to the assumption used in the analyses
according to which the DV during a single year is constant in the area of every device
density class (Table 1). In reality, the instant DVs that must be transferred in the area of
every device density class will vary during a day and throughout the year. To approximate
these DV variations, DVs used in the analyses represent the average yearly DVs expected to
be transferred by the 5G BSs located in a square kilometer area of a specific device density
class. They are calculated for every year in the 2020s (Figures 2–4) and for every device
density class. The calculation takes into account an increase in the projected number of
active user devices through the 2020s and the sum of their minimal uplink and downlink
throughputs prescribed by ETSI standard for every device density class [1,2] Hence, it is
reasonable to assume that the DVs used for modeling the effect of DV increase in square
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kilometer area of every analyzed device density class can be set to fixed DVs. For the
purpose of analyses presented in this work, these fixed DVs express an average expected
DVs in each year of the 2020s.

A final assumption is related to performing analyses with the excluded contribution to
the total network energy consumption of other BS site elements, such as backhaul network
equipment, cooling equipment and ancillary equipment. Moreover, the contribution to the
overall network energy consumption of other types of BSs which can be collocated with
5G BSs at the same BSs site (e.g., 2G, 3G and 4G BSs) is not considered in the analyses.
Although the energy consumption of all stated network elements contributes to the overall
MN energy consumption and, therefore, impacts the network data and coverage EE metrics,
this contribution was excluded from the analyses. The reason for this exclusion is in the
main goal of this paper, which is dedicated to enlightening how the expected future increase
in DVs will impact standardized data and coverage EE metrics of 5G networks. The analysis
is, therefore, performed for 5G networks only, due to the fact that the cellular RAN has
the greatest contribution to the overall MN power consumption and 5G networks will
be dedicated to transferring the largest shares of DVs in the future transfer of DVs in
mobile networks. For that reason, only 5G BSs and corresponding power consumption
profiles were considered in the analyses. Therefore, the results of this analysis can be
used for developing energy-efficient implementation and operation strategies of BSs in
contemporary 5G networks.

9. Conclusions

The continuous increase of DVs on the global level caused by an increase in the number
of mobile users and the introduction of novel and more bandwidth-demanding applications
imposes challenges in deploying energy-efficient 5G networks. These challenges will
additionally be contributed to by the fact that heterogeneous 5G networks must be deployed
in areas of different device density classes, which will have different increases of DVs during
the 2020s.

In this work, the influence of constant increase of DV during the 2020s on network
EE was analyzed. The analysis was performed for different 5G network deployment
and operation approaches implemented in rural, urban, urban-dense and indoor-hotspot
device density classes. The two standardized EE metrics, known as data and coverage EE
metrics were used for the assessment of the EE of the proposed 5G BSs deployment and
operation approaches.

Obtained results show that an increase in DVs has an opposite effect on data and
coverage EE metric of every device density class. This opposite trend in changes of data
and coverage EE metric, caused by the increase in DV, indicates that there is no optimal
amount of DVs in any of the analyzed device density classes for which a combination of
both EE metrics will have the highest values. Obtained results reveal that only a reduction
of 5G network instant power consumption and, consequently, energy consumption, will
contribute to the simultaneous improvement of both data and coverage EE metrics. There-
fore, the obtained results confirm that only those deployment and operation approaches
that implement some of the RRM techniques (such as Tx power scaling and/or putting BSs
in sleep mode) can bring the reduction of instant power and energy consumption, thus
consequently contributing to the improvement of EE metrics of 5G RANs.

Additionally, the presented results indicate that the 5G BSs deployment and operation
approaches that have the highest capabilities of adjusting BSs resources according to
the increase of DV, will have the highest contribution to the improvement of both EE
metrics in any device density class. It is further shown that, for any of the analyzed
approaches which exploit adaptation of BSs deployment dynamics and operation activity
according to increasing DV trend, the DV increase will cause an increase of the instant
power consumption of the 5G network. Therefore, the analyses presented in the paper
can serve as a basis in the future processes dedicated to the selection of deployment and
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operation strategies of 5G networks which will bring the highest network EE metrics, with
respect to the permanently increasing DVs in a specific device density class.

Our future research activities will be dedicated to the investigation of the impact of
DV increase on the 5G network EE of complete countries, which are composed of different
in size and proportion device density classes having different DV patterns.
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2G second-generation mobile network
3G third-generation mobile network
3GPP 3rd Generation Partnership Project
4G fourth-generation mobile network
5G fifth-generation mobile network
6G sixth-generation mobile network
BS base station
CAGR compound annual growth rate
DL uplink
DV data volume
EB Exabyte
EC energy consumption
EE energy efficiency
ES ETSI standard
ETSI European Telecommunications Standards Institute
GHz Gigahertz
HetNet heterogeneous network
IoE Internet of Everything
ITU-T International Telecommunication Union—Telecommunications Standardization Sector
KPI key performance indicator
mmWave millimeter-wave
MN mobile network
MNO mobile network operator
mMTC Massive Machine-Type Communications
N/A not applicable
RAN radio access network
RRM radio resource management
UHD ultrahigh-definition
UL uplink
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Abstract: Due to the capability of the effective usage of the radio frequency spectrum, a concept
known as cognitive radio has undergone a broad exploitation in real implementations. Spectrum
sensing as a core function of the cognitive radio enables secondary users to monitor the frequency
band of primary users and its exploitation in periods of availability. In this work, the efficiency of
spectrum sensing performed with the energy detection method realized through the square-law
combining of the received signals at secondary users has been analyzed. Performance evaluation of
the energy detection method was done for the wireless system in which signal transmission is based
on Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing. Although such
transmission brings different advantages to wireless communication systems, the impact of noise
variations known as noise uncertainty and the inability of selecting an optimal signal level threshold
for deciding upon the presence of the primary user signal can compromise the sensing precision of
the energy detection method. Since the energy detection may be enhanced by dynamic detection
threshold adjustments, this manuscript analyses the influence of detection threshold adjustments and
noise uncertainty on the performance of the energy detection spectrum sensing method in single-cell
cognitive radio systems. For the evaluation of an energy detection method based on the square-law
combining technique, the mathematical expressions of the main performance parameters used for the
assessment of spectrum sensing efficiency have been derived. The developed expressions were further
assessed by executing the algorithm that enabled the simulation of the energy detection method
based on the square-law combining technique in Multiple-Input Multiple-Output—Orthogonal
Frequency Division Multiplexing cognitive radio systems. The obtained simulation results provide
insights into how different levels of detection threshold adjustments and noise uncertainty affect the
probability of detection of primary user signals. It is shown that higher signal-to-noise-ratios, the
transmitting powers of primary user, the number of primary user transmitting and the secondary
user receiving antennas, the number of sampling points and the false alarm probabilities improve
detection probability. The presented analyses establish the basis for understanding the energy
detection operation through the possibility of exploiting the different combinations of operating
parameters which can contribute to the improvement of spectrum sensing efficiency of the energy
detection method.

Keywords: spectrum sensing; energy detection; SLC; OFDM; noise uncertainty; dynamic threshold;
MIMO; SISO; cognitive networks; SNR; probability; wireless; false alarm; transmit; receive; power

1. Introduction

The increased popularity of wireless communication networks raises the need for an
improvement of network capacity and the efficiency of spectrum usage. To address the
problem of the efficient usage of the spectrum, the cognitive radio networks (CRN) concept

Sensors 2022, 22, 631. https://doi.org/10.3390/s22020631 https://www.mdpi.com/journal/sensors
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was proposed as a promising solution that can be implemented in wireless communication
systems. In CRNs, two types of users known as the primary users (PUs) and the secondary
users (SUs) are known. The cognitive radio (CR) enables SU to perform dynamic spectrums
access (DSA) in periods when PU does not use the spectrum. This means that the PU always
has the priority when exploiting a dedicated licensed spectrum. SU may use licensed bands
so long as it does not cause interference with PU. Therefore, the main goal of DSA in CRNs
is to improve the efficiency of the spectrum usage [1,2].

Spectrum sensing (SS), as an essential function of CRN, enables users in cognitive
networks to have information about its environment and spectrum availability. The most
widely used SS method is energy detection (ED). The ED method is a local non-cooperative
SS method that does not demand prior knowledge about the characteristics of the PU
signal. Compared to other prominent local SS methods, ED has the least computational
and implementation complexity [3,4]. However, the ED is very sensitive to fluctuations in
noise power, low values of the signal-to-noise ratio (SNR), and fading [5]. Therefore, the
performance of ED is confined by the noise power variations which is also defined as noise
uncertainty (NU). In real wireless communication systems, the NU is caused by phenomena
such as filtering effects, interference from surrounding sources, and thermal noise [6]. An
additional disadvantage of the ED technique is in the lack of ability to distinguish between
SU or PU and interference. Regardless of the presented disadvantages, ED is, due to its
simple deployment and processing, the most applied SS method in practice [5,7,8].

In the ED process, the sensing of the energy of the signal transmitted by the PU in the
licensed frequency spectrum is performed. The final goal of this sensing is to determine the
test statistics that represent a measure of PU transmission activity. The test statistics are
then compared to an in advance set detection threshold (DT). The DT is set from the energy
of the noise. The value of the determined DT is the key to performing an accurate ED. The
level of DT can be specified as a constant or dynamically adjusted value. The process of DT
adjustment enables the dynamic selection of the value of DT according to the NU during
the period of SS [3,9,10].

To accomplish a better level of detection performance in environments impacted with
NU, employing dynamic DT adjustments is a promising solution. However, due to the
influence of NU on the signal sensed at the location of SU, the practical realization of DT
adjustments in the system exploiting Multiple-Input Multiple-Output (MIMO) Orthogonal
Frequency Division Multiplexing (OFDM) transmission is very demanding. In this article,
an assessment of the operational efficiency of the ED-based SS in the MIMO-OFDM CR
system exploiting the DT adjustment according to NU at the position of SU is presented.
The OFDM as technology is widely applied in many communication systems. Recent
studies demonstrate that combining the OFDM with MIMO can improve the spectral
efficiency in CRNs [11]. The transmission based on MIMO-OFDM technologies has the
potential to achieve higher data rates and to alleviate the problem of Inter Symbol Interfer-
ence in CRNs [12–14]. Therefore, combining MIMO and OFDM technologies in CRNs can
contribute to the enhancement of spectral efficiency and transmission capacity and investi-
gations dedicated to the performance efficiency of different SS methods in MIMO-OFDM
CR systems have been done in [15–17].

While in Single-Input Single-Output (SISO) transmission systems a single transmission
and reception chain or branch (antenna) is used for performing ED, in MIMO systems,
multiple transmit (Tx) chains at the PU side and receive (Rx) chains at the SU side are
employed. Therefore, the SS employing ED in the MIMO-OFDM CR system can be realized
by exploiting various Tx-Rx antenna diversity techniques. Among the different diversity
combining techniques, the Square-Law Combining (SLC) technique has the lowest com-
plexity when implemented for the purpose of SS [18]. The ED employing the SLC technique
belongs to the non-coherent SS method and its implementation in the MIMO-OFDM CR
system does not require channel state information (CSI) for realization of ED.

Hence, ED employing the SLC technique represents a simple and efficient concept for
the implementation in the MIMO-OFDM CR system, which motivates presenting the results
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of the performance analysis of such a concept in this paper. Further motivation is based
on the massive exploitation of battery-powered and low-power devices in the emerging
Internet of Things (IoT) concept. Massive practical implementation of the IoT concept will
be supported with the implementation of the fifth-generation (5G) and upcoming sixth-
generation (6G) mobile networks. For enabling the low-power IoT devices to exploit the
concept of CR communications, the practical implementation of simple and low complexity
SS techniques such as the ED method based on the SLC technique will be of particular
interest. The implementation of such an SS technique does not require complex processing
or significant device battery depletion, which makes ED based on the SLC technique a
promising candidate for massive implementation in future IoT devices equipped with
multiple antennas. Hence, the assessment of the ED performance based on the SLC
technique in different operating environments affected with NU and performed with DT
adjustments is of major significance for possible future realization of such an SS concept in
IoT networks.

Therefore, in this paper, the impact of NU and DT adjustments on the efficiency of the
ED employing SLC technique in the SISO and MIMO-OFDM CR systems was analyzed.
This paper makes the following contributions:

• The development of the explicit analytic mathematical expressions for the perfor-
mance assessment of ED process employing SLC method impacted by NU and DT
adjustments in MIMO-OFDM CR systems.

• The introduction of the simulation algorithm for executing the ED process by exploit-
ing the SLC method in MIMO-OFDM CR networks affected by different levels of DT
adjustments and NUs.

• The comprehensive analyses of simulation results through investigation of the influ-
ence of various parameters including the OFDM modulations, the SNRs, the MIMO
Tx-Rx chains number, the false alarm probabilities, the Tx powers of PU, the number
of sampling points used in ED, and the different levels of NU and DT adjustments on
the probability of detection of the PU transmission.

The remaining parts of the paper contain the following sections. A review of the topic
associated with the exploitation of the ED method in the MIMO-OFDM CR systems is
given in Section 2. Section 3 presents the mathematical expression of the ED principles
which involve the effect of DT adjustments and NU on the performance of ED. Section 4
presents a simulation algorithm that enables the ED-based SS in MIMO-OFDM CR systems
and the assessment of ED performance impacted with NU and DT adjustments. The
comprehensive analysis of the extensive simulation results is given in Section 5. Section 6
concludes the paper.

2. Literature Overview

Table 1 presents the literature survey of related work. In the literature, the perfor-
mance analysis of CR in MIMO-OFDM systems was performed in [18–23]. The authors
in [22,23] show that the implementation of the MIMO-OFDM transmission contributes to
the enhancement of SS efficiency performed using the ED method. In [22–26], the ED is
performed employing the SLC method. In [22], the simulation results indicate that the ED
employing SLC can enable precise signal detection for low to moderate SNRs. In [23], SS
based on ED and cyclostationary feature detection with and without multiple Tx-Rx chains
have been analyzed. The comparative performance results indicate that the Equal Gain
Combining (EGC) method requires a precise CSI for performing SS, which consequently
results in more efficient SS. On the contrary, the SLC method lacks the need for CSI, which
results in lower SS efficiency. In addition, the ED method employing SLC requires detec-
tors and combiners which additionally contribute to the increase in implementation cost.
However, the SLC technique is still significantly less complex for implementation when it
is compared with other diversity combining schemes which successful operation demands
precise knowledge about CSI.
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Table 1. Literature survey of related work.

Reference Major Contribution

[18] Improved SS at the SU side in a realistic environment by employing SLC and square-law selection
(SLS) techniques.

[19] Software radio implementation of MIMO-OFDM.

[20] A comprehensive survey of OFDM transmission for wireless communications.

[21] A detailed survey on the performance requirements of 5G wireless cellular communication systems in terms of capacity,
data rate, spectral efficiency, latency, energy efficiency, and quality of service.

[22] In comparison with single antenna CRs systems, significant improvement is observed in PU detection probability when
ED based on the SLC technique is performed in MIMO CRs systems.

[23] Multiple antenna techniques and cyclostationary feature detection-based systems are proposed for ED.

[24] Analysis of cooperative spectrum sensing with ED over various fading channels using the SLC diversity scheme.

[25] Analyses of the problem of ED of an unknown signal over a multipath channel by employing SLC and SLS techniques.

[26] The tutorial presents a comprehensive overview of the ED-based SS and provides tools necessary for performing
analyses of several SS algorithms.

[27] A survey of the NU impact on ED in communication systems with different OFDM system designs has been presented.

[28] A review of ED performance exploiting dynamic DT adaptations in the SISO-OFDM systems.

[29] Presentation of a novel approach based on subchannel and transmission power allocation that adaptively assigns the
radio resources considering the interference caused to the PUs in multi-cell wireless networks.

[30]
Analyses of the new communication approach based on the licensed shared access (LSA) spectrum sharing framework
with in-band full-duplex multi-cell multi-user MIMO communication network as the licensee, which operates in the

service region of a multi-user MIMO incumbent network.

[31] Presentation of the simulation algorithm that enables the performance analysis of the ED method employing the SLC
technique in MIMO-OFDM CR systems and analyses of simulation results.

[32] Analyses of efficiency of ED SS - based on SLC technique in MIMO-OFDM Cognitive Radio Networks without the
impact of NU and dynamic DT adjustments.

[33] Presentation of novel transmission solution based on adaptive beamforming with the coding scheme based on STBCs in
IEEE 802.11 n WLAN systems.

[34]
Presentation of the current state-of-the-art related to the research on SS by using ED with an extensive overview of basic

theories in recent research, architectures for performing ED SS, the possible applications of ED and performance
measurements of ED.

[35] The analysis of optimal DT selection for SS in a CRN using the ED approach is performed for fixed detection and false
alarm probabilities.

[36] A survey of the fundamental concepts of CRN characteristics, functions, network architecture and applications is
presented.

[37] The introduction of the ED SS which reduces the SNR-wall problem caused by the NU effects through the cooperation
of multiple receivers for adapting the DT at each sensing point to the noise power present at the moment of SS.

[38] A new ED algorithm based on dynamic DT selection is presented and the relationship of detection sensitivity and ED
performance with the impact of fluctuation of average noise power is investigated.

[39]
Analyses of the influence of DDT and NU factor in the case of ED SSs on the detection and false alarm probability with

the significance of their ratio on the sensing technique is analyzed and the expression of the empirical relationship
between the sampling number and SNR is also proposed.

[40]
Development of the analytical model for estimation of the statistical performance of the ED which can be used for

setting the appropriate DT such that more spectrum sharing can be exploited, especially when combined with
cooperative SS.

The challenges related to the hardware implementation of ED employing Square-Law
Selection (SLS) and SLC methods are presented in [18]. The authors showed that the
proposed solutions can facilitate hardware reliability and antenna diversity in a realistic
implementation scenario.
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The analyses in [6,27,28] show that the ED performance can be significantly impaired
by NU. To improve the ED sensing efficiency degraded by the influence of NU, the authors
in [6] proposed a kernelized ED concept based on a DT. For the PU signals affected by
Gaussian noise, an assessment of ED performance in communication systems using MIMO
transmission have been presented. The results indicate that by increasing the number of
sampling points, the number of Rx chains, and SNR at the antennas of SU, the ED method
achieves a good level of performance under the Gaussian mixture noise and exceeds the SS
efficiency of the classical non-kernelized ED method.

In [29], the subchannel and Tx power allocation concept for downlink communication
in multi-cell CR-OFDM access (OFDMA) networks with the adaptive fractional frequency
reuse strategy have been proposed. The proposed concept enables maximization of the
throughput of the CR SISO network by efficiently assigning OFDM subchannels to base
station (BS) cells, while controlling the interference to the PUs through restricting the Tx
power on the subchannels used by the PUs. It is shown that the proposed concept improves
the system throughput by up to 50% for the same level of interference at locations of
PUs. In [30], an even larger improvement of system throughput of 60% and interference
reductions have been accomplished. Such improvement is obtained for the proposed
licensed shared access (LSA) spectrum sharing framework with the in-band full-duplex
transmission in multi-cell multi-user MIMO communication network as the licensee, which
operates in the service region of a multi-user MIMO incumbent network. Such significant
system throughput improvements have been obtained through the implementation of a
hierarchical two-phases beamforming approach, where in the first phase, the LSA controller
collects the quality of service demands from the licensee network and based on them, the
beamformers are dedicated to reducing the cumulative interference towards the incumbents.
In the second phase, the interference minimized in the first step is considered as a constraint
for the new beamformer design problem that maximizes the cumulative downlink and
uplink data rates of the licensee network. The analyses presented in this paper have
been performed for single-cell MIMO-OFDM CR systems exploiting ED based on the SLC
technique; however, it can be extended to multi-cell MIMO-OFDM systems.

In [27,28], we analyze the influence of NU on the ED performance in single-input
single-output (SISO)-OFDM systems, whose operations are based on rate or margin-
adaptive or combined transmission techniques. The obtained results indicate that the
ED will predominantly be impacted by NU. To reduce the effect of NU, in [28] the analysis
of ED performance exploiting DT adjustments in the SISO communications systems is
performed. The obtained results indicate that the ED method can be improved by involving
dynamic adjustments of the DT in the ED impacted with NU. Furthermore, in [31], a
simulating algorithm that enabled the performance analysis of the ED method employing
SLC in MIMO-OFDM CR systems is proposed. Based on the algorithm proposed, in [32]
we present the preliminary results of the performance assessment of the ED method em-
ploying SLC in the MIMO communications systems. The results show that increasing the
number of Rx and Tx chains in the MIMO system give a contribution to the enhancement
of ED performance.

Although the earlier research works [18,22–26,31,32] show that using the ED method
employing the SLC technique provides a positive contribution to the improvement of the
efficiency of the ED, an investigation into how NU and DT adjustments impact the ED
sensing efficiency in MIMO-OFDM CRs systems is missing. Therefore, in this paper for
the first time, the mathematical equations which express how the NU and dynamic DT
adjustments, the number of PU Tx and SU Rx chains, the probability of false alarms, the
SNRs, and the number of sampling points impact the ED performance in the MIMO-OFDM
CR system have been developed. In addition, an extensive analysis of the impact of NU
and DT adjustments on the ED employing the SLC technique in MIMO-OFDM CR systems
is presented in this paper. The presented analyses establish the basis for understanding the
ED operation exploiting the capability of the dynamic DT adjustments in the MIMO-OFDM
CR systems affected by NU.

131



Sensors 2022, 22, 631

3. System Design and Explanation of the Energy Detection Operation

The visualization of the block schema of the analyzed single-cell MIMO-OFDM CR
system consisted of single PU and single SU is presented in Figure 1. The signal in the ana-
lyzed MIMO-OFDM CR system is transmitted using space-time block codes (STBCs) [33].
The PU is a licensed user and it has a higher priority when using the dedicated frequency
spectrum. The SU has a lower priority and opportunistically accesses the spectrum in
the absence of PU [3]. The SU is permitted to use the spectrum in a way that does not
cause interference to the PUs. For that reason, the SU performs SS using the ED method
employing the SLC technique (Figure 1). In the process of SLC, the SU equipped with
an energy detector performs a signal squaring operation in the square-law device which
is followed by combining the squared signals received at R Rx chains in the finite time
integrator (Figure 1).
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Figure 1. Main blocks of the MIMO-OFDM wireless communication system for SS based on ED
employing SLC technique.

The PU Tx power in the MIMO system emitted over the m-th Tx chain (antenna) is
formulated as Pm. The P = ∑M

m = 1 Pm defines the overall instant Tx power of the PU
transmitted via M Tx chains (Figure 1). Table 2 lists the descriptions of all parameters used
in the analysis. The complex signal defined as sm = sm,r + jsm,i is assumed as the signal
transmitted via m-th Tx chain of PU (Figure 1). Hence, the signals carried via the M Tx
chains of PU are expressed as s = ∑M

m = 1 sm. The signal received by the SU at every R Rx
chain (antenna) and sampled by n samples where n = 1, . . . , N can be formulated as:

yr(n) =

{
wr(n)

hr (n) sr(n) + wr(n)
(1)

The hr (n) is of size C1XM and it is a complex vector that represents the wireless
channel gain among the M Tx chains of PU and r-th Rx chain of SU (Figure 1). Complex
vector sr(n) is of size CMX1 and represents the Tx signal of PU that is received at r-th Rx
chain of the SU in n-th sample (sensing moment).
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Table 2. Parameters used in the simulation analysis.

Index Description

H1 The hypothesis which defines the existence of the PU signal
H0 The hypothesis which defines the non-existence of the PU signal
m The number of Tx chains on the PU side
r The number of Rx chains on the SU side

M The total number of PU Tx chains
R The total number of SU Rx chains
N The overall number of sampling points utilized for ED without DT adjustment and influence of NU

NDT The overall number of sampling points utilized for ED with DT adjustment
NNU The overall number of sampling points utilized for ED influenced by NU

NNUDT The overall number of sampling points utilized for ED with DT adjustment and influence of NU
sm The complex signal carried via the m-th Tx chain of the PU
s The complex signal of the PU transmitted over the M Tx chains
P The total via M Tx chains transmitted instantaneous Tx power

Pm Instantaneous Tx power transmitted on the PU m-th antenna chain
yr(n) Vector of the signal detected at r-th Rx chain of the SU in the n-th SS period
Y(n) Vector of the signal received by all R Rx chains of the SU in the n-th SS period

hr (n) Vector of channel gain among the M Tx chains and the r-th Rx chain in the n-th SS period
sr(n) Vector of the signal detected within the n-th SS sample point at the SU r-th Tx chain
wr(n) Vector of the noise impacting ED during the n-th SS period at the r-th Rx chain of the SU
σ2

wr(n) The variance of noise for the signal detected in n-th SS period at the SU r-th Rx chain
σ2

sr
(n) The variance of the received signal in the n-th SS period at the r-th Rx chain of the SU

σ2
wNU(n) AWGN variance used in the ED impacted with NU

σ2
wNUDT(n) AWGN variance used in the ED impacted with NU and DT adjustments

Λr Test statistics for signals detected at the r-th Rx chain (antenna) of the SU
ΛSLC The overall test statistics of all signals detected via the R receive (Rx) chains of the SU
γr(n) Signal-to-noise ratio at the r-th receive chain of the SU during the n-th SS period

γSLC(n) The total signal-to-noise ratio associated with the R SU receive antennas (chains) in the n-th SS period
γSLC(n) The mean signal-to-noise ratio detected by the SU during the n-th SS period for all R receive chains

Pf False alarm probability for ED performed without DT adjustments and impact of NU
Pd Detection probability for ED performed without DT adjustments and impact of NU

PNU
f a False alarm probability for ED impacted with NU

PNU
d Detection probability for ED impacted with NU

PDT
f a False alarm probability for ED performed with DT adjustments

PDT
d Detection probability for performed with DT adjustments

PNUDT
f a False alarm probability for ED performed with DT adjustments and impact of NU

PNUDT
d Detection probability for ED performed with DT adjustments and impact of NU
Q(x) Standard Gaussian Q function
λ DT for ED performed without DT adjustments and impact of NU

λ f a False alarm threshold in the case of ED performed based on CFAR principles
λd DT level for ED performed based on CDR principles

λDT
d DT for SLC ED performed with DT adjustments

λDT
f a False alarm threshold for ED performed with DT adjustments

λNU
d DT for ED impacted with NU

λNU
f a False alarm threshold for ED impacted with NU

λNUDT
d DT for SLC ED performed with DT adjustments and impacted with NU

λNUDT
f a False alarm threshold for ED performed with DT adjustments and impacted with NU
λ′DT DT for ED performed without NU

λ′NUDT DT for ED performed with DT adjustments and NU
ρ NU factor
ρ′ DDT factor

Additionally, the complex noise signal wr(n) is the additive white Gaussian noise
(AWGN) impacting the signal received at the r-th Rx chain of the SU. The impact of noise is
assumed to be an identically distributed and independent random process having a mean
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value equal to zero and a variance of σ2
w, which distribution is circularly symmetric and

defined as N
(
0, 2σ2

wr(n)
)
.

Since the PU signal is impacted by noise, the SNR at the SU r-th chain is formulated as:

SNRr(n) = γr(n) =
|hr(n)|2 1

N ∑N
n = 1| sr(n)|2

2σ2
wr(n)

(2)

The total SNR at all M Rx chains (antennas) during the n-th SS period is expressed as:
γSLC = ∑R

r = 1 γr(n). Furthermore, the mean SNR value at the antenna(s) of SU for all R
Rx chains in the n-th sampling period is defined as: γSLC = 1

R ∑R
r = 1 γr(n) = 1

R γSLC.
Spectrum sensing is the process where the SUs continuously supervise the activity

of the PUs in order to detect the spectrum holes. Detailed knowledge about spectrum
availability obtained through the testing of a binary hypothesis H0 and H1 shown in
Equation (3), represents the fundamental operation of the ED. This process aims to decide
between two hypotheses, according to which the PU signal is assumed to be absent (denoted
as H0) or the PU signal is assumed to be present (denoted by H1). Detailed knowledge
about spectrum availability obtained through the testing of a binary hypothesis H0 and
H1 shown in Equation (3), represents the fundamental operation of the ED. Therefore, the
decision on SS occupancy is the result of the testing of the following hypothesis:

Y(n) =





R
∑

r = 1
wr(n) : H0

R
∑

r = 1
hr (n) sr(n) +

R
∑

r = 1
wr(n) : H1

(3)

where Y(n) is the total signal detected from all R Rx chains in the n-th SS period at a position
of SU. The focus of the ED is making a decision on whether the detected signal Y(n) satisfies
hypotheses H0 or H1. Therefore, in the process of deciding whether the PU is present or not,
the threshold is compared with the sensed energy of the signal detected at the antennas of
SU. The decision hypotheses H1 is satisfied when the sensed energy of the signal detected
at the antennas of SU is greater than the threshold. This results in the conclusion that the
PU transmits in the dedicated band. The decision hypotheses H0 is satisfied if the energy
of the detected signal is lower than the DT. This results in the cognition that the signal of
PU is absent. Thus, the result of this binary hypothesis test determines the SU activity in
the terms of possible transmission in the PU frequency band.

3.1. Process of Energy Detection

The procedure of ED employing SLC technique in MIMO-OFDM CR systems aims
to exploit the SS of the PU signal by means of all R Rx chains of SU. In accordance with
the SLC method, the signals received on all R Rx chains are squared and combined to get
the total received signal energy known as the test statistic. The overall test statistic can
therefore be expressed as:

ΛSLC =
R

∑
r = 1

Λr =
R

∑
r = 1

N

∑
n = 1
|yr(n)|2 (4)

where the test statistics of the SU r-th Rx chain is expressed as Λr.
The decision regarding spectrum occupancy by the PU is performed through the

comparison of the test statistic with a DT (λ(n)) that is dynamically selected for each
sample n used in the SS process:

ΛSLC(n) > λ(n) : H0, ∀n ∈ {1, . . . , N} (5)

ΛSLC(n) > λ(n) : H1, ∀n ∈ {1, . . . , N} (6)
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In accordance with [26,34], for an adequate number of sampling points N, the distri-
bution of the total test statistic given in Equation (4) can be approximated using a normal
distribution as:

ΛSLC ∼ N

 ∑R

r = 1 ∑N
n = 1 E

[
|yr(n)|2

]
,

∑R
r = 1 ∑N

n = 1 Var
[
|yr(n)|2

]

, (7)

where E [·] expresses the expectation operator and Var [ · ] expresses the variance operator.
In each observed SS period n, the uniform gain of the wireless channel hr(n) and

the noise variance of the detected signal at the r-th Rx chain (antenna) 2σ2
wr(n) can be

formulated as:
hr(n) = h ∀r = 1, . . . , R; ∀n = 1, . . . , N (8)

2σ2
wr(n) = 2σ2

w ∀r = 1, . . . , R; ∀n = 1, . . . , N (9)

where h represents the complex matrix of the channel gain for all R Rx chains.
Performing the SS using the ED method employing SLC demands knowledge about

the average level of the power received at the antennas of SU Rx chains. Therefore, the
overall instant PU Tx power of the signal transmitted using M Tx chains (antennas) within
the n-th observation period, is equal to all signal variances at the r-th Rx chain of the SU. It
can be formulated as P = ∑R

r = 1|h|22σ2
sr (n). The interdependence among the mean values

of SNR at the antennas of SU and the instant Tx power of the PU can be approximated with
γSLC ≈ P

R2σ2
w

.
Considering the above assumptions, the total test statistics from Equation (7) can be

approximated with:

ΛSLC ∼





N
(

RN
(
2σ2

w
)
, RN

(
2σ2

w
)2
)

: H0

N
(

N
(
2σ2

w
)
(R + γSLC), N

(
2σ2

w
)2
(R + 2γSLC)

)
: H1

(10)

According to the overall test statistic presented in Equation (10) for hypotheses H1 and
H0, the false alarm and detection probability for ED SS employing SLC diversity technique
in MIMO-OFDM CR systems was developed.

3.2. Probabilities of False Alarm and Detection for MIMO-OFDM CR Systems

The performance of ED SS techniques is exploited through two probabilities: detec-
tion probability (Pdi) and false alarm probability (Pf a). The probability of sensing the
transmitted PU signal at the position of SU when it is really transmitted is known as the
probability of detection (Pd). It can be examined through the verification of hypothesis H1
as Pd[Pr(ΛSLC > λ) |H1] . The detection probability for the ED method employing SLC
technique in MIMO communication systems can be defined as

Pd[Pr(ΛSLC > λ) |H1] ≈ Q
(

λd−N(2σ2
w)(R+γSLC )√

N(R+2γSLC) (2σ2
w)

)
≈ Q

(
λd−RN(2σ2

w)(1+γSLC )√
RN(1+2γSLC) (2σ2

w)

)

≈ Q




λd−RN
(

2σ2
wi

)(
1+ P

2Rσ2
w

)

√
RN
(

1+ P
Rσ2

w

)
(2σ2

w)




(11)

where Q (.) is the Gaussian-Q function and λd represents the DT level. For better PU signal
detection, a higher detection probability (Pd) is required. A higher detection probability
(Pd) improves the usage of spectrum and ED performance of the SU.

The false alarm probability (Pf a) is the probability of sensing a PU signal by the
SU, when the signal of PU is not really transmitted. It can be examined through the
verification of hypothesis H0 as Pf a[Pr(ΛSLC > λ )

∣∣∣H0] . The false alarm probability (Pf a)
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as a performance metric of ED employing the SLC method in MIMO communication
systems can be defined as:

Pf a[Pr(ΛSLC > λ ) |H0] ≈ Q

(
λ f a − RN

(
2σ2

w
)

√
RN (2σ2

w)

)
(12)

where λ f a represents the false alarm threshold level. According to Equations (11) and (12),
the detection probability and false alarm probability depend on the number of sampling
points (N), the variance of noise (σ2

w), the number of Rx chains (R) of SU, and the level of
the defined detection or false alarm thresholds. Additionally, Equation (11) indicates that
the detection probability will also depend on the level of PU Tx power P.

From the perspective of the SU, a lower Pf a means more chances that the channel can be
reused when it is available. This consequently results in the possibility of achieving higher
throughputs for the SU. Thus, a fundamental trade-off between the sensing capability and
achievable throughput of the SU exists for SS based on ED. Therefore, a reliable energy
detector should ensure a low false alarm probability (Pf a) and a high detection probability
(Pd). This means that appropriate QoS for a SU when using a wireless network should be
provided, while also establishing an appropriate level of PU protection during periods of
transmitting should be guaranteed.

From Equations (11) and (12), it is possible to define the minimum number of sam-
pling points (Nmin) needed for achieving the precise detection of the PU signal, which is
expressed as:

Nmin =

[√
RQ−1

(
Pf a

)
−
√
(R + 2γSLC)Q−1(Pd)

]2

γSLC
2 =

[
Q−1

(
Pf a

)
−
√
(1 + 2γSLC)Q−1(Pd)

]2

RγSLC
2 (13)

Equation (13) indicates that the calculation of the minimum number of sampling
points does not request knowledge of the DT level. For the number of sampling points
higher than the minimal, the detection of the PU signal will be ensured for any DT level.

Furthermore, it is already known that for low SNR at the antennas of SU, a high
number of sampling points is required for precise sensing of PU signal. The need for a
larger number of sampling points results in a larger sensing duration, which negatively
affects the battery discharge of battery-powered devices. By combining (11) and (12) and
considering that in practice λd = λ f a = λ, the correlation between a detection and false
alarm probability can be formulated as

Pd = Q




Q−1
(

Pf a

)
−
√

N
R γSLC

√(
1 + 2 γSLC

R
)


 = Q




Q−1
(

Pf a

)
−
√

RN γSLC
√
(1 + 2 γSLC)


 = Q




Q−1
(

Pf a

)
−
√

NP
2
√

Rσ2
w√(

1 + P
Rσ2

w

)


 (14)

Based on Equation (14), it can be seen that the detection probability can be expressed
without a DT level, if the targeted probability of false alarm is known. An approach based
on defining the operation of the CR network by setting a constant false alarm probability is
known as the constant false alarm rate (CFAR) ED approach.

3.3. Detection Threshold Estimation

According to what has been presented in the previous section, the false alarm and
detection probabilities are affected by the corresponding threshold values. Determining
the level of DT is the main activity that influences the decision efficiency regarding the
absence or presence of the PU signal. The fixed detection threshold (FDT) and the dynamic
detection threshold (DDT) methods are mainly considered in the literature as two opposing
approaches for the selection of DTs in the ED process. In the case of FDT, the set threshold
has a constant value even when the signal fluctuations in the frequency channel are present.
However, to take into account fluctuations in the state of the wireless channel, the method
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based on DDT adjustments has been introduced. In the DDT method, the level of DT is
adjusted to the channel conditions to maximize the detection probability. The literature
indicates that the DDT method provides better SS performance compared to that of the FDT
method [35]. In addition, a well-chosen level of DT can minimize the SS error, ensuring
that there is enough protection in the usage of the licensed band of the PU, which further
contributes to enhancing the spectrum utilization [36].

According to (12), for a given noise variance σ2
w, the number of Rx chains and the

number of sampling points N used for SS in the ED process, the FDT level can be calculated
for the fixed false alarm probability according to the following:

λ f a =
[

Q−1
(

Pf a

)
+
√

RN
]√

RN2σ2
w (15)

Hence, such an approach known as the CFAR approach calculates the value of the false
alarm threshold that needs to maximize the probability of detection. This CFAR approach
is used for SS employing ED in systems that require the maximal utilization of the wire-
less channel.

Alternatively, to provide an appropriate priority and sufficient protection of the trans-
missions performed by PU, the selection of the DT based on the constant detection rate
(CDR) can be defined from Equation (11):

λd =

[
Q−1(Pd)

√(
1 +

P
Rσ2

w

)
+
√

RN
(

1 +
P

2Rσ2
w

)]√
RN2σ2

w (16)

The CDR approach in SS based on ED is applied when it is important to eliminate the
interference in the observed CR system.

By comparing Equations (15) and (16), it can be noticed that the CFAR approach
does not request the information about the total instant PU Tx power (P) of the signal
transmitted over M Tx chains. This makes the CFAR approach more applicable in practical
implementations. Although the CFAR compared to the CDR approach improves the
throughput of the SU in the CR systems, the CFAR approach is unable to ensure the
adequate protection of the PU transmission in comparison to the CDR approach.

In addition, selecting a low value of false alarm probability (Pf a) results in need for a
high level of the corresponding threshold (λ f a). As a consequence, an interference among
PU and SU can appear and the setting of the fixed false alarm threshold λ f a based on
the CFAR approach is not the most favorable. A more favorable approach is seen in the
DDT adjustments based on dynamic changes in the level of DT according to the wireless
channel conditions.

However, the DDT adjustments according to the conditions in the wireless channel
between PU and SU are highly challenging when it comes to practical realization. In this
work, to mathematically model the DDT adjustments, the DDT factor ρ′ (ρ′ ≥ 1) is used.
The DDT factor ρ′ defines the level of DDT adjustments. The higher values of the DDT
factor enable the modeling of the higher adjustment capabilities of the ED according to
changes in the state of the wireless channel. Hence, instead of being permanently fixed
as in the case of ED with FT, the dynamically selected DT values may be in the interval[
λDT

d /ρ′, ρ′λDT
d
]
.

When the ED employing SLC is performed with a DDT adaptation, the probability of
detection (PDT

d ) and false alarm probability (PDT
f a ) is expressed as:

PDT
d = min

λ′DTε[
λDT

d
ρ′ , ρ′λDT

d ]

Q




λ′DT − RNDT(2σ2
w
)(

1 + P
2Rσ2

w

)

√
RNDT

(
1 + P

Rσ2
w

)
(2σ2

w)


 =Q




λDT
d
ρ′ − RNDT(2σ2

w
)(

1 + P
2Rσ2

w

)

√
RNDT

(
1 + P

Rσ2
w

)
(2σ2

w)


 (17)
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PDT
f a = max

λ′DTε[
λDT

f a
ρ′ ρ′λDT

f a ]

Q

(
λ′DT − RNDT(2σ2

w
)

√
RNDT (2σ2

w)

)
= Q

(
ρ′λDT

f a − RNDT(2σ2
w
)

√
RNDT (2σ2

w)

)
(18)

where NDT and λDT
d represents the number of sampling points and the level of DDT used

in the ED exploiting DDT adjustments, respectively. Based on Equation (17), the level of
DDT can be derived and expressed as:

λDT
d =

[
Q−1

(
PDT

d

)√(
1 +

P
Rσ2

w

)
+
√

RN
(

1 +
P

2Rσ2
w

)]√
RNDT

(
2σ2

w

)
ρ′ (19)

Similarly, the level of false alarm threshold can be derived from (18) and formulated as:

λDT
f a =

[
Q−1

(
PDT

f a

)
+
√

RNDT
]√

RNDT
(

2σ2
w

ρ′

)
(20)

A minimal number of sampling points (NDT) for performing exact ED employing the
SLC technique in MIMO systems with an implemented DDT, can be realized by adapting
Equation (13) as follows:

NDT =

[
Q−1

(
PDT

f a

)
−
√

ρ′2(1 + 2γSLC)Q−1(PDT
d
)]2

R[ρ′2γSLC + (ρ′2 − 1)]2
(21)

The correlation between the probability of false alarm and detection in the case
of systems performing ED with DDT adjustments can be formulated by combining
Equations (17) and (18), and it can be expressed as:

PDT
d = Q

(
Q−1

(
PDT

f a

)
−
√

RNDT(ρ′2γSLC +(ρ′2−1))√
ρ′2(1+2γSLC)

)

= Q




Q−1
(

PDT
f a

)
−
√

RNDT
(

ρ′2 P
2Rσ2

w
+(ρ′2−1)

)

√
ρ′2
(

1+ P
Rσ2

w

)




= Q




Q−1
(

PDT
f a

)
− ρ′2P

√
NDT

2
√

Rσ2
w
−
√

RNDT(ρ′2−1)
√

ρ′2
(

1+ P
Rσ2

w

)




(22)

For the case where the DDT factor ρ′ = 1, Equations (17), (18) and (22) are equal to
Equations (11), (12) and (14), respectively. In the case where the DDT factor ρ′ > 1, the
process of signal detection is based on the DDT adjustments. For the larger values of the
DDT factor, the selection of a larger range of DDT levels is possible.

3.4. Estimation of Noise Uncertainty

As shown in Equations (15) and (16), the calculation of false alarm and detection
thresholds depends on the levels of noise variance σ2

w. However, ED in a wireless MIMO-
OFDM-based communication system is performed by exploiting an estimation of noise
power. The lack of knowledge about noise fluctuations significantly contributes to the
limited knowledge about the properties of the AWGN. This phenomenon of unknown
random variations in the noise power σ2

w is known as NU. The NU negatively affects the
ED performance in terms of reducing the precision of SS accuracy.

To have more realistic conditions for the performance analysis of ED sensing efficiency
in the MIMO wireless communication system, the impact of the NU variations on the PU
signal detection was included in the analysis presented in this paper. The impact of the
fluctuations in noise power on ED performance is characterized by the NU factor (ρ). The
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NU factor ρ (ρ ≥ 1) is a positive parameter that defines the scope of the NU. To express the
influence of NU on the sensing efficiency of the ED, the boundaries of the noise variance

(σ2
wNU) are defined by the finite interval σ2

wNUε
[

σ2
nw
ρ , ρσ2

w

]
. Based on Equations (11) and

(12), the detection (PNU
d ) and false alarm (PNU

f a ) probabilities of the PU signal impacted by
NU can be expressed for the ED method employing the SLC technique as:

PNU
d (Pr(ΛSLC < λ) |H1) = min

σ2
wNUε[
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(23)

PNU
f a (Pr(ΛSLC > λ)|H0) = max
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where λNU
d represents the DT, λNU

f a represents the false alarm threshold and NNU represents
the number of sampling points used in the ED process impacted with NU. Equations (23)
and (24) indicate that the total number of receiving chains (R) of SU, the number of sampling
points (NNU) and the NU variance (σ2

wNU) with NU factor ρ are the parameters that
influence both, the detection and false alarm probability in MIMO communication systems.
Besides these parameters, the total instant Tx power of the PU signal (P) impacts the
detection probability. Based on Equations (23) and (24), it can be noticed that setting
appropriate DT or false alarm thresholds will significantly impact the detection and false
alarm probabilities.

Based on Equations (23) and (24), the DT and false alarm threshold can be expressed as:
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λNU
f a =

[
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f a ) +
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]√
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(

2ρσ2
w

)
(26)

According to Equation (13), the minimal number of sampling points NNU used in
the ED which guarantees the accurate detection of the PU signal affected by NU can be
formulated as

NNU =

[
ρQ−1

(
PNU

f a

)
−
√(

1
ρ + 2γSLC

)
Q−1(PNU

d
)]2

R
(

γSLC − ρ−1
ρ

)2 (27)

Equation (27) indicates that if the average SNR at antennas of SU is lower than the
ρ2−1

ρ , the energy detector cannot sense the signal. For that reason, the SNR level at the
antennas of SU will have an important role in the accurate detection of PU signals.
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According to Equations (22) and (23), when the ED is impacted by NU, the detection
probability can be defined as a function of the false alarm probability:
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(28)
The value of NU factor ρ = 1.00 indicates that fluctuations in noise power do not exist

and that there is no impact of the NU on the ED process. In this case, Equations (22), (23)
and (28) converge into (11), (12) and (14). The modelling of the influence of the NU on the
ED is performed for the case where the NU factor ρ > 1.00. A higher value (than one) of the
NU factor ρ means larger NU fluctuations, for which it is expected to have a more negative
impact on the performance of the ED SS.

3.5. Energy Detection Process with NU and DT

An approach that can contribute to the minimization of the negative effects caused
by NU on the efficiency of the ED is dedicated to involving the DT adjustments during
the ED. This can contribute to the enhancement of SS performance of the ED method. The
ED employing SLC which encompasses the DT adjustments for reducing the impact of
NU, represents the most realistic approach to the analysis of the performance of ED in
the MIMO-OFDM CR systems. However, this approach is the most difficult for either
simulations or practical implementation due to the necessity of the continuous estimation
of NU and the dynamic adjustments of DT during the ED according to the NU.

For the analysis of this ED approach, detection and false alarm probabilities are
expressed as a function of NU variance and the DT adjustment factors. The boundaries
of the NU are assumed to be in the interval σ2

wNUDTε[σ
2
w/ρ, ρσ2

w], while the boundaries
of the DTs are assumed to be in the interval λ′NUDTε[λNUDT

d /ρ′, ρ′λNUDT
d ]. Considering

these boundaries, the probabilities of false alarm (PNUDT
f a ) and detection (PNUDT

d ) for the
ED approach which includes the impact of NU and DT adjustments can be formulated as:
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(29)
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The level of DT (λNUDT
d ) can be derived from (29) as:
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Similarly, for the defined value of false alarm probability, the corresponding threshold
can be derived from (30) as:

λNUDT
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(
PNUDT

f a
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+
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RNNUDT
] 2ρσ2

w
ρ′
√

RNNUDT (32)

In addition, the minimal number of sampling points for the successful detection of
PU signal when ED is impacted by NU and performed based on DT adjustments can be
formulated as:
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By combining Equations (28) and (29), the detection probability can be expressed as a
function of false alarm probability as
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(34)

Equation (34) indicates that the NU and DDT factors have an affect on the detection
probability when SS is performed in MIMO-OFDM cognitive radio systems based on ED.
The joint impact of NU and DT adjustments on sensing performance can be modeled by
selecting the corresponding values of DDT and NU factors (ρ′ > 1.00 and ρ > 1.00). In the
case of the DDT and NU factors equal to ρ′ = 1.00 and ρ > 1.00, the channel is impacted by
NU and there are no DDT adjustments during the ED process. For the same conditions in
the channel and the same number of sampling points (NNU = NNUDT) used during the
ED impacted by NU, Equations (29), (30) and (34) converge into Equations (23), (24) and
(28), respectively. In case of ρ′ > 1.00 and ρ = 1.00, the ED includes DT adjustments during
the SS without an impact from NU. For the same conditions in the channel and the same
number of sampling points (NDT = NNUDT) used in ED performed with DT adjustments,
Equations (29), (30) and (34) converge into Equations (17), (18) and (22), respectively.

4. Simulation Algorithm for the ED Employing SLC

The ED performance employing the SLC technique in the MIMO-OFDM CRs systems
has been tested through the executing the proposed simulation Algorithm 1. The algorithm
is composed of two phases. In the first phase, the procedure of ED is executed according to
the principles of the concept employing SLC of the signals received at the R RX chains of
SU. In the second phase, to simulate the behavior of ED performance in different operating
environments, the execution of the algorithm was continued through the selection of the
impact of different combinations of NU and DDT factors on ED performance. Table 3
indicate parameters used in the process of simulation.
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Algorithm 1 Simulation of the ED in distinct working environments of MIMO-OFDM CR systems.

1: INPUT: MIMO_OFDM_M×r, noise variance (σ2
w), number of sampling points (N), probability of false alarm (Pf a), number of Monte

Carlo simulations(pp), SNR simulation range (SNR), length of the MIMO-OFDM data (mimo_ofdm_len), DDT factor (ρ′), and NU factor (ρ),
2: OUTPUT: Detection probability impacted by DT adjustment (PDT

d ) and Detection probability impacted by NU and DT adjustment (PNUDT
d )

3: ON INITIALIZED: MIMO-OFDM signal (MIMO_OFDM_M×r) do:
Step 1: Execution of simulation indicating detection probability impacted by DT adjustments (PDT

d ) and Detection probability impacted by DT
adjustments and NU (PNUDT

d ) vs. SNR using (14), (22), (28) and (34)
4: set pp = number of Monte Carlo simulations
5: set SNR = signal to noise ratio in interval [−25 dB, 25 dB]
6: FOR b = 1:length (SNR)
7: j1 = 0; j2 = 0;
8: FOR pp = 1:10,000;
Step 2: Modeling AWGN noise with varince σ2

w(n)
9: Noise_DT (ρ = 1.00, ρ′ > 1.00) = sqrt(σ2

w(n) = 1.00).*randn (1, mimo_ofdm_len);
10: Noise_NUDT (ρ > 1.00, ρ′ > 1.00) = sqrt(σ2

w(n) > 1.00).*randn (1, mimo_ofdm_len);
Step 3: Estimation of received signal y(t)
11: finall_OFDM_M×r_DT = MIMO_OFDM_M×r + Noise_DT;
12: finall_OFDM_M×r_NUDT = MIMO_OFDM_M×r + Noise_NUDT;
Step 4: Energy estimation of received signal using SLC concept
13: REPEATE FOR r= 1:R
14: energy_calculation_DT = abs(finall_OFDM_M×r_DT).ˆ2;
15: energy_calculation _NUDT= abs(finall_OFDM_M×r_NUDT).ˆ2;
16: END
Step 5: Estimation of test statistics based on mixing energies of R signals using (4)
17: FOR r= 1:R
18: test_statistc_DT = sum(energy_calculation_DT);
19: test_statistic_NUDT = sum(energy_calculation_NUDT);
20: END
Step 6: Threshold estimation using (18), (20), and (30), (32))
21: threshold_DT (b) = ((qfuncinv(Pf a(b))./sqrt(N))+ 1)./ρ′;
22: threshold_NUDT (b) = ((qfuncinv(Pf a (b)).* ρ./sqrt(N))+ ρ)./ρ′;
Step 7: Making a final decision by using using (5) and (6)
23: IF (test_statistc_DT >= threshold_DT (b));
24: j1 = j1 + 1;
25: END
26: IF (test_statistic_NUDT >= threshold_NUDT (b));
27: j2 = j2 + 1;
28: END
29: END
Step 8: Evaluation PDT

d and PNUDT
d using Monte Carlo simulation (based on (3))

30: Pd_DT (b) = i1/pp;
31: Pd_NUDT (b) = i2/pp;
32: END
33: UNTIL PDT

d , PNUDT
d = [0, 1]

Table 3. Parameters used in the process of simulation.

Parameters Type/Quantity

PU signal modulation scheme OFDM
Number of Tx chains (antennas) of the PU 1–4
Number of Rx chains (antennas) of the SU 1–6

OFDM modulation schemes 64 QAM, 16 QAM, QPSK
Model of the noise [28,34] AWGN

Noise variance σ2
w for DT (ρ = 1.00, ρ′ > 1.00) [37–40] 1.00

Noise variance σ2
w for NU and DT (ρ > 1.00, ρ′ > 1.00) [37–40] 1.01

Number of sampling points for ED (FFT size) [28,34] 128, 512, 1024
SNRs range at SU position (dB) [28,34] −25–25

DT factor ρ′ [37–40] 1.00, 1.03, 1.05
NU factor ρ [37–40] 1.00, 1.03, 1.05

Target false alarm probability [37–40] 0.01, 0.2
Overall number of Monte Carlo simulations 10,000
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The pseudocode of the developed algorithm is shown in Algorithm 1. To obtain the
statistical relevance of the simulation results for different ED operation scenarios, the Monte
Carlo simulations were executed according to Algorithm 1.

Execution Steps of the Simulation Algorithm

The input parameters used in the performance evaluation of the ED method employing
SLC technique are set in the first line of Algorithm 1. The parameters are the noise variance
(σ2

w), the received MIMO-OFDM signal (MIMO_OFDM_M×r), the overall number of
sampling points (N), the length of the MIMO-OFDM data (mimo_ofdm_len), the false alarm
probabilities (Pf a), the Monte Carlo simulation number (pp), the range of simulated SNRs
(SNR), and the NU (ρ) and DDT factor (ρ′).

The MIMO-OFDM signal (MIMO_OFDM_M×r) represents the signal sensed at SU
antennas of the R Rx chains. This signal is generated for the different modulation types,
PU Tx powers, the number of SU Rx and PU Tx chains (antennas), and the number of
sampling points used in the ED. In simulated MIMO-OFDM CR systems, the received signal
(MIMO_OFDM_M×r) is used as an input signal for the evaluation of the ED performance
employing the SLC method. In Table 3, the exact values of the parameters used in the
simulations are presented.

In Algorithm 1 lines 4–8, the overall number of Monte-Carlo simulations is set. The
Monte Carlo simulations are executed for a span of different SNRs (Table 3). In lines 9–10
(Step 2 of Algorithm 1), the AWGN noise with a mean value equal to zero and a variance
of σ2

w is generated. The chosen values of noise variance are typical of those in practical
wireless environments (Table 3).

Lines 11–12 (Step 3) represent the ED of two types of sensed signal during the ED pro-
cess employing the SLC technique. The first signal (finall_OFDM_M×r_DT) is the MIMO-
OFDM signal detected with DT adjustments (ρ′ > 1.00) and without the impact of noise vari-
ations (ρ = 1.00) on the ED process. The second received signal (finall_OFDM_M×r_NUDT)
is the MIMO-OFDM signal detected with the implementation of DT adjustments (ρ′ > 1.00)
and the impact of NU (ρ > 1.00) on the ED process.

In lines 13–15 (Step 4), the calculation of signal energy after the SLC of the signals
for each type of sensed signal (energy_calculation_DT and energy_calculation_NUDT) is
performed. The tested statistic (energy) estimation for the signals sensed at the R Rx chains
(antennas) of SU is shown in lines 17–20 (Step 5). In Algorithm 1, two cases of test statistic
calculated according to Equation (4) are shown. The first one is the test statistic executed
for the OFDM signals sensed without the impact of NU and with the DT adjustments
(test_statistc_DT). In the second case, the signals are sensed for the simulation of the
operating environment in which the impact of NU and with DT adjustments is considered
during the ED (test_statistc_NUDT).

Algorithm 1 lines 21–22 (Step 6) represent two analyzed cases of the DT evaluation. In
the first case (threshold_DT (b)), the DT evaluation is performed without the impact of NU
and with DT adjustments. In the second case (threshold_NUDT (b)), the impact of both, the
NU and ED exploiting the DT adjustments is considered. The mathematical expression for
these two cases is presented in Equations (18), (20), (30) and (32), respectively.

Finally, the decision-making process which results in cognition about the exploitation
of the frequency band by the SU is executed in lines 23–29 (Step 7). The decision-making
process is performed based on testing the binary hypothesis presented by Equation (3). If
the energy of the sensed signal is greater or the same as the set threshold, hypothesis H1 is
confirmed and the PU signal is present. Alternatively, if the energy is lower than a set DT,
hypothesis H0 points to an absence of PU and the presence of a spectrum hole.

In lines 30–33 (Step 8), a large number of repeated Monte Carlo simulations were
executed for the different SNR ranges and for every simulation environment of the ED.
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5. Results of Simulations

In Section 5, the simulation software used for performing comprehensive simulations
for different ED operating environments is presented and the obtained simulation results
have been thoroughly discussed. The process of SS was analyzed through the performance
of the ED method based on the SLC technique in SISO and both asymmetric and symmetric
MIMO-OFDM CR systems. The effect of NU on the transmitted MIMO-OFDM signal was
modeled through simulations performed for the different NU factors. The process of signal
detection at the location of SU was performed for various levels of the DT adjustment
(DDT factors). The presented results analyze how different Tx-Rx antenna combinations at
PU and SU sides, OFDM modulation constellations, the number of sampling points, Tx
power levels, and SNRs influence the detection probability of the PU signal during the SS
performed using the ED method employing the SLC technique.

5.1. Description of the Simulation Parameters and Software

For the simulation of the ED in different operating environments mathematically
formulated in Section 3, the Matlab 2016 software was used. The values of all simulation
parameters are presented in Table 3. The simulations were performed for the transmission
of OFDM signals modulated using the most practically applied modulation schemes such
as 16/64 quadrature amplitude modulation (16/64—QAM) and quadrature phase shift
keying (QPSK). In addition, the ED performance was analyzed for the number of sampling
points used in the ED equal to 128, 512, and 1024 (Table 3). Furthermore, the analysis
examined the SNRs ranging between −25 dB and 25 dB in the position of SU. The values of
SNR in this SNR range are being frequently experienced in real practical environments as
SNRs of many communication systems based on OFDM. To improve the reliability and
accuracy of the simulations, 10,000 Monte Carlo simulations per each simulation run were
executed (Table 3). This number of Monte Carlo simulations were selected for analysis
for the purpose of achieving balance among the simulation durations and simulation
accuracies. This enables the execution of the simulation algorithm for all simulated ED
operation environments in the time frame of a few tens of microseconds.

To analyze the impact of versatile levels of NU and DT adjustments on the performance
of ED employing SLC principles, different combinations of values of DDT and NU factors
have been selected for analysis (Table 3). More specifically, values of DDT and NU factors
equal to 1.03 and 1.05 represent the lower and higher levels of DT adjustments and NU in
the simulation analysis, respectively. To exclude the influence of DT adjustments and NU
from the simulation analysis, DDT and NU factors equal to one (ρ′ = ρ = 1.00) were used in
the simulation analyses.

5.2. Effect of the Number of Transmit Chains on ED Efficiency

The simulation results shown in this section were used to analyze the impact of
SISO, symmetric (Figure 2) and asymmetric (Figure 3) MIMO transmissions on the ED
performance. Simulation results were obtained for the constant values of PU Tx power
(P = 100 mW), the fixed number of sampling points used for the ED (N = 128), and the
predefined false alarm (Pf a) probabilities equal to 0.1. The same results have been obtained
independently of the used OFDM modulation schemes (64 QAM, 16 QAM and QPSK)
and in Figures 2 and 3, this is denoted by the m-PSK/m- QAM notation. For each Tx-Rx
diversity schema, the assessment of the ED performance for diverse levels of DDT (ρ′) and
NU (ρ) factors was performed.
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In Figure 2, the relationship among the SNR and detection probability for different
combinations of DDT and NU factors and versatile symmetric MIMO communications
systems (such as 1 × 1, 2 × 2 and 4 × 4) has been presented. Similar results have been
presented in Figure 3 for the 2 × 3 asymmetric MIMO communications system. The results
presented in Figures 2 and 3 indicate that for higher values of SNR, the detection probability
will be better for any symmetric or asymmetric MIMO Tx-Rx diversity combination and
vice versa. Since the performance of the ED method is poor for lower values of SNR, a
better detection probability can be achieved in the case of communication systems with
a higher number of Rx and Tx chains on the PU and SU side, respectively. In addition,
results in Figure 2 show that for the equal levels of SNRs, higher detection probabilities
of PU signal will be achieved for Tx-Rx diversity combinations with a higher number of
SU Rx and PU Tx chains. This improvement in detection probability is a consequence of
the transmission diversity which enhances the precision of PU signal detection in the case
where the larger numbers of PU Tx and SU Rx chains (antennas) will be used in the MIMO
communication systems.

5.3. Effect of NU and DT Adjustments on ED Efficiency

The results shown in Figure 3 further indicate the absence of the impact of the OFDM
modulation scheme on the probability of detection (Pd). More specifically, for the same
operating environment simulating the ED performance, the probability of detection is
the same for any of the m-QAM or m-PSK constellations. These results indicate that the
OFDM modulation type does not have an effect on the detection probability in the ED
for any combination of the Tx-Rx chains at any SNR level (this can be also confirmed
by Equations (11), (14), (17), (22), (23), (28), (29) and (34)). This is due to the dynamic
adjustments of the OFDM modulation of the signal transmitted at a constant Tx power in
rate-adaptive OFDM systems. In such transmission systems, at the location of SU, the signal
is affected by the fluctuations in noise power (NU). According to this fact, the analysis
further showed a strong influence of the NU and DT adjustments on the ED.

As shown in Figures 2 and 3, for the same channel conditions, the performance of
the ED will be degraded when SS is performed in operating environments with a stronger
NU and with a fixed DT lacking any DT adjustments (ρ = 1.05 and ρ′ = 1.00). The results
presented in Figures 2 and 3 indicate that the ED will achieve a better probability of
detection for the same SNRs when a higher level of DT adjustments according to the NU
(e.g., ρ = 1.03, ρ′ = 1.05 compared to ρ = 1.05, ρ′ = 1.03) will be performed during the ED
(Figures 2 and 3). A better probability of detection will be obtained if ED is performed
in operating environments characterized by a lower level of NU and a higher level of DT
adjustment (ρ = 1.03, ρ′ = 1.05) and vice versa (ρ = 1.05, ρ′ = 1.03). The best detection
performance was obtained by the operating environments characterized by the lack of
any NU and by the implemented DT adjustments during the ED (ρ = 1.00, ρ′ = 1.03).
This operation scenario simulates the ED performed in the systems impacted by noise,
which do not have fluctuations in time. This means that such fluctuations do not impact
the ED. However, these operation scenarios are the least realistic since in real wireless
communication systems, the noise from different sources and their power fluctuations (NU)
occur as a frequent phenomenon.

Hence, for all modulations schemas, a better detection probability can be reached only
if the ED is based on DT adjustment (ρ′ > 1.00). However, setting the DT adjustment at a
too high or too low level can result in exceptionally high or exceptionally low DTs. This
can cause high misdetections of the PU signal or a high sensitivity of ED. In both cases, the
ED performance will be degraded. Therefore, the DT adjustments must be performed in
accordance with the level of NU. This means that higher values of NU variation need to be
followed by a greater level of DT adjustment and vice versa.
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5.4. Effect of the Transmit Power of PU on ED Sensing Efficiency

In this section, the presented results of the simulation explain the effect of the diverse
PU Tx powers on the detection performance in the SISO and symmetric MIMO (2 × 2,
4 × 4) wireless communication systems. The results were obtained for the ED operating
environment characterized by OFDM signals transmitted with QPSK modulation and
sensed with a permanent number of sampling points (N = 128), the fixed false alarm
probability (Pf a) of 0.1 and the different levels of DT adjustments and NU levels.

In Figure 4, the dependency of detection probability on SNR for ED performed with
versatile combinations of DDT and NU factors in SISO and MIMO communication systems,
has been analyzed for two Tx powers of PU equal to 100 mW and 10 W. The obtained
results shown in Figure 4 indicate that in SS environments having equal SNR levels at
the antennas of SU, a higher detection probability will be for the PU signals transmitted
at higher Tx powers. The transmission at Tx powers having higher values consequently
results in a higher amount of the PU signal energy that will be eventually sensed at the
Rx Chains of SU through the process of SLC. Additionally in Figure 4, it can be seen that
the results of simulation show that the transmission of OFDM signal, which combines
a larger number of Tx-Rx chains (4 × 4) and larger PU Tx power (10 W), has a positive
effect on ED performance. As the number of Tx-Rx chains and PU TX powers increase,
the simulation results shown in Figure 4 present that better probabilities of detection can
be achieved for lower SNR values. Hence, the transmission of PU at higher Tx powers
and in communication systems with a higher number of Tx-Rx chains, will always have a
positive effect on the performance of the ED employing the SLC method. In addition, in
ED operating environments characterized with lower values of SNRs at the Rx antennas
of SU, performing transmission of MIMO-OFDM signal with a higher number of Tx-Rx
chains and a higher PU Tx power, yield to the enhancement of the probability of PU signal
detection in the SS process based on the ED method.

5.5. Effect of Differences in the Number of MIMO Tx and Rx Chains on the ED Performance

The results presented in this section show the analysis of the impact of the differences
in the number of SU Rx and PU Tx chains in relation to the ED performance in SISO and
symmetric MIMO systems. The results were obtained for ED realized in the operating
environment characterized by the transmission of QPSK-modulated MIMO-OFDM signal,
a constant number of sampling points (N = 128), constant PU Tx power (P = 100 mW), and
targeted false alarm probability equal to 1.01.

In Figure 5, the dependency of detection probability on SNR for ED performed in SISO
and asymmetric MIMO 2 × 6 and 6 × 2 communication systems have been presented. The
results shown in Figure 5 point that the differences among the number of MIMO Tx and
Rx chains impact ED performance. More specifically, the MIMO communication system
having a higher number of Rx chains, will achieve higher detection probabilities for the PU
signal at the same level of SNRs in the position of SU.

These results are also confirmed in Figure 6, showing the dependency of the probability
of detection on SNR for ED performed in asymmetric MIMO 4× 6 and 6× 4 communication
systems. According to the results presented in Figure 6, for the same SNRs at SU antennas,
the 4 × 6 MIMO communication system will achieve higher detection probabilities than the
6× 4 communication system. Therefore, performing ED with SU having a larger number of
Rx chains will contribute to the enhancement of ED performance. The main reason for this
observation can be found in the fact that a larger number of Rx chains ensure the detection
of more of the total energy of the PU signal in the process of SLC.
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Additionally, the results presented in Figures 5 and 6 indicate that the number of PU
Tx chains also influences ED performance. The comparison of the results presented in
Figures 5 and 6 show that for the fixed number of Rx chains (antennas), a larger number of
PU Tx chains will improve the probability of detection in MIMO-OFDM CR systems (better
detection probability is for 6 × 2 in comparison with 4 × 2 systems). Therefore, it is to be
expected that the ED performance in terms of sensitivity and accuracy of PU detection will
be improved for the new generation of user and network devices which will have more
transmission chains and corresponding antennas.

5.6. Effect of the Number of Sampling Points on ed Efficiency

The impact of the various number of sampling points used in the ED based on the SLC
technique in SISO and asymmetric MIMO systems (2 × 2 and 4 × 4) has been analyzed in
this section. The analysis was performed for the ED operating environment characterized by
the transmission of a QPSK-modulated PU signal, the constant PU Tx power (P = 100 mW)
and the constant values of false alarm probability (Pf a = 0.1).

149



Sensors 2022, 22, 631

In Figure 7, the dependency of detection probability on SNR for ED performed with
versatile numbers of samples and combinations of DDT and NU factors in SISO and
symmetric MIMO 2 × 2 and 4 × 4 communication systems has been presented. The
obtained results indicate that for any combination of MIMO Tx-Rx chains and NU/DDT
factors, the detection probability will be improved with an enlargement of the number of
sampling points used for performing ED employing the SLC method. This is also confirmed
in Equations (13), (21), (27) and (33), showing that ED performed with a larger number of
sampling points N results in higher detection probabilities for the PU signal.
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Figure 7. The dependency of the probability of detection on SNR for ED performed with the versatile
number of sampling points and combinations of DDT and NU factors in (a) SISO, (b) 2× 2 symmetric
MIMO and (c) 4 × 4 symmetric MIMO communication systems.

This is due to the fact that ED performed with a larger number of sampling points in
practice means performing the PU signal sensing with a higher number of sensing attempts
during the ED, which increases the probability of PU signal detection.

Additionally, the results presented in Figures 2–6 including Figure 7 indicate that
there exists an SNR-wall below which the detection probability cannot be ensured (Pd = 0).
According to Figure 7, the levels of the SNR-walls shrink towards lower values of SNRs
for ED performed in MIMO communication systems which have a larger number of Tx-Rx
chains and for ED performed by the SU exploiting a higher number of sampling points.
For example, the SNR-wall for a SISO system (1x1) performing ED with N = 128 samples
(Figure 7a) will be significantly lower than the SNR-wall in symmetric MIMO 4 × 4 system
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performing ED with N = 1028 samples (Figure 7c). Consequently, the trade-off between the
number of sampling points and the number of Tx-Rx chains on the PU and SU sides used
in the ED, can have a significant influence on the probability of detection.

Furthermore, the results presented in Figure 7 were obtained for a different combina-
tion of NU and DDT factors (ρ = 1.05, ρ′ = 1.03 and ρ = 1.03, ρ′ = 1.05). The results
indicate that for the same number of sampling points used in the ED, a better probability
of detection will be obtained for the systems with a higher capability of DT adjustments
(ρ′ =1.05) during the ED impacted by moderate NU (ρ = 1.03), than the systems with the
lower capability of DT adjustments (ρ′ = 1.03) which are impacted by a high NU (ρ = 1.05).
This is the consequence of the fact that lower levels of NU (factor) have a lower negative
impact on ED performance. This can be compensated by the exploitation of the increased
number of sampling points in the ED, which contributes to improving the detection prob-
ability of the PU signals. On the other hand, in ED operating environments impacted by
large NU, an assertion of NU must be followed by an appropriate (dynamic) adjustment
of the level of DT during the ED process. Therefore, the trade-off within the number of
sampling points used for the ED, the appropriate DT adjustment during the ED and the
number of SU Rx and PU Tx chains, strongly impact the effectiveness of the ED at the
location of SU.

5.7. Effect of Probabilities of a False Alarm on the Efficiency of the ED Operation

In this section, the analysis of the results of simulations showing the effect of different
levels of false alarm probabilities on detection probability in SISO and symmetric 4 × 4
MIMO-OFDM CR systems have been presented. The analysis was performed for the
two different values of false alarm probabilities (0.01 and 0.2), the constant Tx power of
PU (100 mW), the number of sampling points equal to 128, the QPSK modulation of PU
signal, and the different levels of DT adjustments and NUs (ρ = 1.05, ρ′ = 1.03 and ρ = 1.03,
ρ′ = 1.05).

In Figure 8, the dependency of detection probability on SNR for ED performed with
distinct false alarm probabilities and combinations of DDT and NU factors in SISO and
symmetric 2 × 2 and 4 × 4 MIMO communication systems have been presented. The
results indicate that for the same SNR level, the detection probability becomes lower
as the values of targeted false alarm probability (Pf a) decrease and vice versa. These
trends are characteristic for both SISO and symmetric MIMO systems and for all analyzed
combinations of NU and DDT factors. These results are a consequence of the fact that when
there is no exploitation of spectrum by PU, the probability that the SUs incorrectly estimate
that the transmission of PU exists increases.

As in the case of the simulation results presented in Figures 2–7, Figure 8 also shows
that higher values of the DT factor (ρ′ = 1.05) improve the detection probability for the equal
false alarm probability (Pf a) at specific SNRs detected at the antennas of SU Rx chains. This
cognition points to the importance of the implementation of appropriate DT adjustments
in the ED process, for any targeted value of false alarm probability (Pf a) characteristic
for ED based on CFAR principles. Furthermore, from Figure 8, it can be seen how the
combination of the larger number of Tx-Rx chains and the higher values of requested false
alarm probability (Pf a), lead to a better detection probability for the same SNR values at the
position of SU. On the other hand, a higher false alarm probability can result in an incorrect
decision being made about PU activity in the ED process performed by SU. For that reason,
an appropriate selection of minimal targeted values of false alarm probability for a specific
number of Tx-Rx chains should be considered in the case of any operating environments in
which the ED occurs.
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6. Conclusions

In this paper, the performance of the ED SS employing the SLC technique with DT
adjustments according to NU variances in MIMO-OFDM CR systems has been analyzed.
The mathematical expression of the main parameters used for the evaluation of the ED
performance as a local SS technique employing SLC in MIMO-OFDM CR stems has been
introduced. In addition, the algorithm for simulating the ED in versatile operating envi-
ronments characterized by the influence of distinct levels of NU and performed with DT
adjustments has been presented. The analysis of ED sensing efficiency has been performed
through extensive simulations which indicates how different working parameters including
the number of sampling points used in the ED, the Tx powers of PU, the DDT and NU
factors, the probabilities of false alarm, and the SNRs impact the probability of the detection
of PU signals in MIMO-OFDM CRs systems.

The results of the analysis reveal that a general improvement in the SS efficiency of the
ED method employing the SLC technique can be achieved if the level of DT adjustments
during the ED follows the intensity of the variances in NU. The analysis also shows
that higher values for the Tx power of PU, the number of sampling points, the false
alarm probability, and the number of SU Rx and PU Tx chains can positively impact
ED performance. Exploiting the cognitions shown in this paper in terms of selecting

152



Sensors 2022, 22, 631

appropriate operational parameters such as the Tx power levels of PU, the number of
sampling points, the number of Tx-Rx chains at PU and SU side and the expected false
alarm probabilities can enable the implementation of more efficient ED SS in MIMO-OFDM
CR systems.

The obtained results further show that ED employing SLC in MIMO-OFDM CR
systems containing multiple PU Tx and multiple SU Rx chains, outperforms in terms of ED
efficiency the SISO communication systems. Additionally, in an asymmetric MIMO-OFDM
CR system, configurations with a number of SU Rx chains larger than the number of PU
TX chains yield better results with respect to ED performance of communication systems
having an opposite ratio of Tx and Rx chains. Therefore, the proliferation of new user and
network devices containing a higher number of build-in transmission chains will enable
the improvement of ED performance in its practical implementation. Our future research
work will be pointed towards the analysis of how massive-MIMO communications in
terms of a large number of SU Rx and PU Tx chains in multi-cell CR networks, impact the
performance of ED SS employing the SLC technique.
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Abbreviations

The following abbreviations are used in this manuscript:

AWGN Additive white Gaussian noise
BS Base station
CFAR Constant false alarm rate
CR Cognitive radio
CRN Cognitive radio networks
CSI Channel state information
DSA Dynamic spectrum access
DT Detection threshold
DDT Dynamic detection threshold
ED Energy detection
EGC Equal Gain Combining
IoT Internet of Things
ISI Inter-symbol interference
LSA Licensed shared access
MIMO Multiple-input multiple-output
MISO Multiple-input single-output
NU Noise uncertainty
OFDM Orthogonal frequency-division multiplexing
PU Primary user
RF Radiofrequency
SISO Single-input-single-output
SIMO Single-input multiple-output
SL Square-law
SLC Square-law combining
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SLS Square-Law Selection
SNR Signal-to-noise ratio
SS Spectrum sensing
STBC Space-time block codes
SU Secondary users
5G Fifth-generation mobile network
6G Sixth-generation mobile network
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Abstract: Information Centric Networks (ICNs) have been considered one of the most promising
candidates to overcome the disadvantages of host-centric architectures when applied to IoT networks,
having the potential to address the challenges of a smart city. One of the foundations of a smart city
is its sensory capacity, which is obtained through devices associated with the IoT concept. The more
sensors spread out, the greater the ability to sense the city. However, such a scale demands high energy
requirements and an effective improvement in the energy management is unavoidable. To improve
the energy management, we are proposing an efficient forwarding scheme in energy-constrained
wireless ICNs. To achieve this goal, we consider the type of devices, their internal energy and the
network context, among other parameters. The proposed forwarding strategy extends and adapts
concepts of ICNs, by means of packet domain analysis, neighbourhood evaluation and node sleeping
and waking strategies. The proposed solution takes advantage of the neighbourhood to be aware of
the moments to listen and forward packets in order to consistently address mobility, improving the
quality of content delivery. The evaluation is performed by simulation with real datasets of urban
mobility, one from the lagoon of “Ria de Aveiro” and the other from a vehicular network in the city of
Porto. The results show that the proposed forwarding scheme resulted in significant improvements in
network content availability, in the overall energy saving and, consequently, in the network lifetime.

Keywords: energy consumption management; content forwarding; information-centric networks;
internet of things; smart city

1. Introduction

In recent years we have seen a radical change in the way devices connect to the Internet.
The best example is the IoT, a recent communication paradigm in which objects of everyday
life will be able to, among others, communicate with one another, becoming an integral
part of the Internet. In this context, wireless networking is expected to sustain the direct
interaction between personal users’ devices and also provide connectivity on a large scale
for resource-constrained devices. However, conventional networking protocols, such as the
traditional Transmission Control Protocol/Internet Protocol (TCP/IP) host-centric network,
fail in large scale mobile wireless distributed environments, such as IoT scenarios, due to
node mobility, dynamic topologies and intermittent connectivity, to name a few [1].

Information Centric Networks (ICNs) [2] have been considered one of the most promis-
ing candidates to overcome the drawbacks of host-centric architectures when applied to IoT
networks. Conceptually, in ICNs, each piece of data has a unique, persistent and location-
independent name that is directly used by the applications for content search and retrieval.
Therefore, ICNs enable the deployment of in-network caching and content replication,
thus facilitating the efficient and timely delivery of information. These features increase
the challenge in building efficient energy management solutions for ICNs, as traditional
solutions for IP networks are of little value in ICN-based environments. In this way, some
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questions arise: In mobile energy-constrained and multi-technology environments, which
interface should be preferred for content resolution and content forwarding? Should we
replicate all the Interest packets back from the same interface or should some contention be
adopted to avoid unnecessary transmissions? Should energy-constrained devices adopt a
conservative approach?

To answer these questions, we are proposing a forwarding strategy for energy-
constrained wireless ICNs. Our solution considers the type of device, network context and
ICN caching, among other parameters, to implement new content resolution for mobile
wireless networks. The proposed forwarding strategy extends and adapts concepts of
ICNs, by means of packet domain analysis, neighbourhood evaluation and node sleeping
and waking strategies to increase the energy saving and reduce the use of resources in
unnecessary situations. This strategy is particularly important in this scenario because IoT
nodes may have small and limited batteries. Furthermore, the proposed solution takes
advantage of each node’s neighbourhood to be aware of the optimal moments to listen
and forward packets in order to consistently address mobility, improving the quality of
content delivery.

To bring our evaluations one step closer to a real scenario, we use two real traces of
urban mobility, one with boat mobility, gathered from the Aveiro lagoon “Ria de Aveiro”,
in the city of Aveiro, Portugal, and the other from a vehicular network running in the city
of Porto, Portugal, gathered from public buses from the Porto Collective Transport Society
(STCP). STCP’s buses form a sensing and data distribution platform composed of 600+ public
transport vehicles equipped with On-Board Units (OBUs) for V2X (Vehicle to Everything)
communications and in-vehicle internet connectivity for passengers. The mobility traces of
STCP buses were collected through the Porto Living lab IoT platform [3] and the mobility
of boats was collected by communication infrastructure of the Aveiro STEAM city project
(https://uia-initiative.eu/en/uia-cities/aveiro (accessed on 28 January 2022)).

The results show that the energy-aware proposed forwarding scheme resulted in
significant improvements in network content availability, in the overall energy saving of
the nodes and, consequently, in the increase in the network lifetime. Moreover, it was
possible to save energy previously spent in listening stages and forwarding packets in
situations of no connectivity, resulting in an increase of 25 min of network lifetime in
the Aveiro scenario and almost 5 h in the Porto scenario. The main contributions of our
work are:

• Design of an efficient forwarding strategy for energy-constrained wireless ICNs that
takes into account inputs from the network structures, as well as context, neighbouring
environment and energy level in the decision process;

• Modification of the Named Data Networking (NDN) framework and the network
simulator 3 (ns-3) energy framework, along with the redesign of the logging module,
to include the proposed forwarding strategy;

• Assessment of the overall network performance and power consumption in IoT
scenarios considering two mobility patterns.

The remainder of this paper is organised as follows: Section 2 discusses the related
work; Section 3 shows the basic characteristics of the ICN paradigm; Section 4 details the
proposed efficient forwarding in relation with energy management; Section 5 describes the
scenarios and metrics and discusses the results obtained by simulation using real mobility
traces; and, finally, Section 6 enumerates the conclusions and points out the future work.

2. Related Work

In the last years, several works have investigated a way to minimise the large broadcast
storm problem and reverse path partitioning in mobile networks [4–6]. However, there
are few works that take into consideration the energy-constrained wireless ICNs, more
specifically, the energy use and management of each node in the routing decision process.

In the work of [7], a forwarding strategy was proposed to select a node from its
neighbourhood as a cluster head responsible for forwarding the Interest packets, based
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on the information regarding the satisfied Interest rate between the neighbouring nodes.
This required the addition of two new data structures, one to store these neighbour values
and another to store its own values. In this case, the security barrier is broken by using the
extraneous information of neighbouring nodes, a list of nodes that have a higher satisfied
Interest rate. In the strategies of [8,9] , the Global Positioning System (GPS) positions are
used by a geolocation mechanism that routes the Interest packets to the Producers. By using
the Producer position, the content-centric paradigm ceases to exist, becoming host-centric.
Moreover, in highly mobile environments, this Producer position is compromised, as there
may be mobile Producers, not maintaining the same position over time. The works of [7,10]
elect a node from their neighbourhood to forward their Interest packets according to their
data delivery success rate. This requires adding new fields and structures for these values
to be stored.

Although these solutions improve content accessibility, transmission reliability and
robustness and minimise the broadcast storm problem, they still change the basics of the
ICN architecture, bringing more complexity and overhead to the network. Therefore, it is
essential to develop new and more efficient forwarding strategies that guarantee higher
network performance while maintaining the basic ICN architecture.

On the other hand, the work in [11] proposes two mechanisms for packets transmission
aiming to minimise the broadcast storm problem and the energy consumption. Two
forwarding modes are combined and switched based on the lookup performed by the
Forwarding Information Base (FIB) and efficient mechanisms are implemented to control
flooding in order to save energy. However, this proposal does not consider mobility
and very specific and static scenarios are evaluated. Similarly, [12] uses greedy packet
forwarding, using Hello packets to send its neighbourhood information (ID, location and
remaining power). In this proposal, the security barrier is broken through the sharing of
confidential information from each node. The works [13,14] implement a sleep scheduler
that is based on monitoring information from the environment and the operating state of
the nodes, choosing one of two states (semi-sleep or sleep) at random times. However, this
work is designed for Wireless Sensor Networks and does not apply to ICNs. The work
in [15] proposes a multihop cooperative caching scheme for green wireless sensor networks
over receiver-triggered ICNs. Using regional caches, the proposal saves energy while
reducing the delay in fetching data. In [16], a Power Saving Mode is proposed to manage
the time spent in idle listening state, consisting of a state machine (transmit, receive, idle,
sleep) that is based on the Pending Interest Table (PIT) state and of a beacon that is sent by
the Access Points containing the Traffic Indication Map (a list of nodes that have to wake
up to be ready to receive data). In this proposal, the network depends on the beacon that is
sent by the APs to be able to decide if the node should wake up to receive or transmit the
content. The solution cannot be applied in fully mobile environments, where there is no
interaction with a static network element and where mobile nodes may experience a long
period of disconnection from the network. Furthermore, it is necessary for such beacons
to circulate through the network and constantly update themselves, which increases the
network overhead.

The works of [17,18] use a Software-Defined Network (SDN) that supports the ICN
approach by having the knowledge of the network topology, communicating any infor-
mation to the nodes and update routing information. The SDN also helps in efficient
neighbourhood discovery and in the communication of the new nodes’ positions. However,
this architecture brings more complexity to the network system using external resources.
Moreover, the communication of the new positions of certain nodes brings security issues
and ends up with spatial and temporal non-reference of the nodes.

An important restriction found in the aforementioned solutions is the addition of
new fields in the packets (Interest and Data), addition of new tables and structures to the
native ICN architecture. These additional fields, which are added to the packets that will
be transmitted through the network, usually refer to parameters or properties of the nodes,
such as their position and remaining energy, which should be private information of each
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node. Many of the works conducted that achieve improvements in network energy saving
do not take into account the mobility of the nodes or overcome the security barrier and
exploit the positions of the Producers to route the Interest packets in the right direction,
which exposes sensitive node information that should be private. Furthermore, they lack
practical evaluation using real-world scenarios with resource-constrained mobile elements.

Our proposal aims to solve the various problems mentioned before. It does not
compromise security with the sharing of information among the nodes, it is intended for
application in highly mobile ICN environments, manages the nodes’ internal energy in
the packet forwarding decision process and maintains the basics of the ICN architecture
without adding new fields to packets, creating new tables or changing structures. Finally,
we evaluated our mechanisms and strategies using real data from boat and bus movements
gathered from the cities of Aveiro and Porto, Portugal.

3. ICN Basics

In an ICN architecture, the Consumer makes a request for content without knowing
where its Producer is. The communication between the Consumer and the Producer
follows a request–response exchange model with native support of multicast, which can be
especially useful both in a Vehicular ad hoc Network (VANET) environment and Internet of
Things (IoT) [19]. During this process, as each piece of data has a unique name, persistent
and independent of their location, the system takes care of mapping the requested data
to their originating location, which facilitates applications in the process of searching and
collecting future data with the same name. When the request arrives at the Producer’s side,
the requested Data follow the reverse path through which the request arrived, following a
receiver-oriented approach. ICN has solved the need for in-network caching by replicating
content across network nodes to improve content delivery by being faster and more efficient,
as can be seen in Figure 1, where the mode of operation of an ICN is explained.

Figure 1. ICN operation mode. Consumers request specific content which is initially stored in the
Producers. Then, as this content passes through the intermediary nodes, it is retained in the cache for
faster response to future requests.

In the example of Figure 1, Consumers request content (be it a PDF document or
a movie) initially stored at the respective Producers. The content request is forwarded
to the Producers, and when the content comes back by the reverse path of the Interest
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packet, the content is cached in the intermediate nodes, enabling the content satisfaction of
future requests.

ICN does not use source-destination host pair communication. Data are identified
by unique names [20]. Naming schemes can be hierarchical, where content names are
human readable and can be hierarchical and structured, such as Uniform Resource Locator
(URL) [21]; flat, where names the contents use are small, unique and self-certified names
(hashes, for example) [22]; attribute-based, where names are expressed through keywords
that are extracted from the contents as attributes, such as type, version; and hybrid, where
names the contents are using are a combination of all the schemes mentioned before to take
advantage of the best parts of each one [23]. An example name for content that circulates a
smart city network could be //SmartCityUrbanPlanning/TrafficManagement/Decision/
“ContentContext” /:::“ContentAttributes”.

The ICN architecture uses two types of packets in all network communication: the
Interest packet and the Data packet [2]. The Interest packet is used to define a request for
a particular content and contains two mandatory fields: the Name, which identifies the
intended content, and the Nonce, which uniquely identifies the packet circulating over
the network. It may also contain Selectors that serve as input parameters to the routing
and content resolution mechanisms, such as the indication that this Interest may receive
stale Data, the lifetime of the Interest, the hop count limit before the Interest is discarded,
among others. The creation of the Data packet is associated with the reception of an Interest
packet, so the Name is the same in both packets (it is extracted from the Interest packet).
It also has the data itself represented by content and the Signature that is divided into
SignatureInfo, which is included in the calculation of the signature and describes itself,
and SignatureValue, which is excluded from the signature calculation and represents the
signature material.

ICN provides temporary storage of content on router nodes that can meet future
requests [24]. Data packets are available closer to the Consumer, reducing the number of
packets that travel through the network. This allows the reduction in the bottleneck of
messages exchanged, greater availability of content spread over the network, reduction in
response latency and, of course, energy savings.

One of the most promising architectures based on the ICN concept is the Named Data
Network (NDN) [2]. The NDN architecture makes use of hierarchically structured content
names, content source reliability (through authentication by the content provider through
cryptographic mechanisms such as public keys) and a routing protocol that executes
forwarding mechanisms using names instead of IP addresses. Due to the facilities provided
by the NDN project [25], especially the NDN simulator (ndnSIM) [26], this architecture
was the one we chose for the development of this work. The NDN allows users to make
a request for data without knowing a priori which entity produces or possesses it. It also
allows user mobility and security issues to be handled more efficiently than the current
Internet Protocol (IP). The entities that exchange information in the NDN network can
be separated into Producers, Consumers and router/intermediate nodes, forwarding the
Interest and Data packets between Consumers and Producers. It is important to say that
a node can assume all three roles concurrently. A node belonging to an NDN network
maintains three important data structures: the Forwarding Information Base (FIB), the
Pending Interest Table (PIT) and the Content Store (CS), illustrated in Figure 2.

The FIB is a table of name prefixes with their output interfaces that allows the for-
warding of Interest packets by searching by their name. The PIT is a table that records the
Interests that are requested, that are waiting for Data, and the interfaces through which they
came. The CS is a cache for incoming Data packets, which can be used for faster responses
to future Interests of that same Data. The Faces are the interfaces that receive and forward
the packets.
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Figure 2. NDN data structures.

Let us now look on how these structures are used in the forwarding process. As shown
in Figure 3, packet forwarding can follow an upstream or downstream direction according
to the information present in the data structures and the type of packet concerned. When an
Interest arrives at a node (upstream), the CS is checked for the intended Data. If the Data are
not in the CS, the Interest is forwarded to the PIT where it is stored along with the interface
through which it arrived (if this entry already exists, only the interface is stored and the
Interest is discarded), and then uses the FIB to forward this packet if possible (otherwise it is
discarded). If an Interest reaches a node that has the Data in the CS, that same node replies
with the desired Data along with a signature from the Producer. This Data packet then
follows the reverse path of the Interest packet, until it reaches the Consumer that requested
that Data. The same procedure is performed with the Negative Acknowledgement (NACK)
packets that will notify the Consumer of some congestion, duplication of Interest or in case
no route was found.

Figure 3. Forwarding process in NDN.

4. Energy-Efficient Wireless NDN Architecture

The main advantage of using the NDN design in a highly mobile environment is
that it increases the availability of content on a network. Excessive power consumption
in dense IoT scenarios brings problems to the forwarding process, causing unnecessary
packet delays and decreasing network performance. To solve these problems, we propose
strategies that aim to minimise excessive energy consumption, optimising the processes
without harming the NDN functionalities. Figure 4 illustrates an NDN macro architecture
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with the main components of the base architecture (Storage, Forwarding and Interfaces and
Mobility) [2] encompassing the proposed Energy Consumption component that supports the
solution for efficient energy management.

Figure 4. Energy-efficient wireless NDN-based architecture.

The central core module is responsible for the interaction between all the modules,
allowing their logical and efficient operation. The Storage represents the Caching process
of a node, which aims to store the contents in memory to be able to respond to future
requests for the same contents. The Forwarding and Content Delivery is composed of three
processes: Routing, Forwarding and Discovery. The Routing is responsible for keeping a
register of the available paths to a given content. Forwarding allows the routing of Interest
and Data packets in an efficient way through the available paths. Discovery complements
Routing by determining the most logical path to forward Interest packets if no other path
to the content is available. This is to make an effort to find a path to the content first, rather
than discarding the packet outright. The main data structures used by these processes are
FIB and PIT.

The module Interfaces and Mobility (I&M) consists of Communication and Mobility
processes. The Communication is responsible for the connection and communication
between devices and the application layer, and between other external devices. The
Mobility is related to all node parameters that may have direct or indirect influence on its
mobility. It allows the mobile characterisation of any mobile element, which is related to
the Node Properties and that are used in the remaining forwarding and caching processes.
Besides, the I&M processes use Faces that symbolise the communication interfaces of the
NDN Stack and Node Properties that contain the node’s properties, such as the mobility
type, among others. Finally, our Energy Consumption module is composed of the Energy
component responsible for measuring the energy consumption and how a node should
react to certain energy situations, presenting two essential components: the Energy Source
and the Device Energy Models. The Energy Source is responsible for the implementation of
the power sources or batteries in a node that can be modelled in a linear or non-linear way.
The Device Energy Models are associated with the way energy is consumed by different
technologies (radio interfaces, processors, sensors, etc.). An example of the information
collected and used by Device Energy Models for Wi-Fi technology is [27]: Sleep = 0.00132 A,
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Transmit/Tx = 0.167 A, Receive/Rx = 0.310 A, Range = 50 m and Frequency = 2.4–5.0 GHz.
Below, we highlight the implementations made for an efficient management of the energy
resources of the network nodes.

4.1. Interfaces and Mobility Module

In the I&M module, we introduce the mechanism responsible for the discovery of the
type and number of nodes in the neighbourhood as well as the mechanism responsible for
processing the direction of the node to predict situations where energy management can
be used.

4.1.1. Neighbourhood Status

The neighbourhood awareness is important for the decision of packet forwarding
and for the sleep strategy. The state of a node’s neighbourhood is based on four essential
aspects: the available interfaces, the number and type of neighbours, the cost associated to
the interfaces and the mobility metrics. A stationary or moving node can have different
communication technologies. As a node is constantly moving, the wireless link conditions
are constantly changing, and picking the best one to communicate is very important to the
forwarding strategy and energy saving, bringing a great value to network efficiency.

The number and type of neighbours (mobile or static) per interface is an important
factor, since it determines how many neighbours it has and what type of mobility they
present, aspects that are considered when deciding which interface a packet should be
forwarded through or whether it is a good time for the node to go in sleep mode.

The Mobility module is responsible for updating neighbourhood parameters, such
as mobility type and Received Signal Strength Indicator (RSSI). However, there are other
factors that influence the neighbourhood relationship such as the speed and direction of a
node. To collect the aforementioned information needed to implement the neighbourhood
awareness module, we present a mechanism whose flowchart is presented in Algorithm 1.
The mechanism runs every 1 s for each mobile node and checks, for the NetDevice of the
wireless interface (LINK_TYPE_ADD_HOC) (line 6), the RSSI value of a given neighbour
(line 14) and the type of node (mobile or static) (line 16). In addition, we can also obtain
the position of the neighbour (line 10), which can be obtained from the RSSI values [28,29],
for example, or from periodic messages transmitted by the nodes through Cooperative
Awareness Messages (CAM) of the Intelligent Transportation System (ITS) [30]. At the end,
this information is communicated to the Forwarder module (line 16).

4.1.2. Node Heading and Direction

In order to determine situations where a node can save energy by entering in sleep
mode, its direction has been considered. For each static node (Road Side Units—RSU) in
the neighbourhood, its position is obtained, and the direction of the static node regarding
the previous position of the node is calculated and then converted to an angle in degrees
(α). The quadrant is also computed, as illustrated in Figure 5. The next step is the definition
of the angles that define the possible directions named as “Towards an RSU” (TRSU) or
“Outwards of an RSU” (ORSU). For this, the range of TRSU angles was considered to be all
those between the RSU +90◦ and RSU −90◦ angle, giving a range of angles with a view of
180◦. All angles that do not belong to this range are considered as ORSU. Whenever the
angle of the node’s direction is within the range TRSU, it means that it is heading towards
that RSU. This proposal is very useful to predict the direction of the node and to estimate
the time when it may be entering an area without connection/low RSSI.
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Figure 5. Node heading calculation: two distinct situations.

Algorithm 1 Neighbourhood status procedure.

1: procedure NEIGHFINDER

2: number ← 0 . neighbour count
3: type← [] . list of node mobility types
4: rssis← [] . list of RSSIs
5: positions← [] . list of positions
6: for each device do
7: if device is TypeAdHoc then
8: Obtain WifiNetDevice of device
9: Obtain nodePosition to WifiNetDevice . Obtain node position

10: positions(device).insert(nodePosition) . insert position on list
11: Obtain phy of WifiNetDevice
12: receiverMobility← phy→ GetMobility()
13: Obtain RSSI to receiverMobility . Obtain RSSI
14: rssis(device).insert(RSSI) . insert RSSI on list
15: nodeType←Wi f iNetDevice→ GetMobilityType() . Obtain node type

(mobile or static)
16: type(device).insert(nodeType) . insert type on list
17: number ← number + 1 . neighbour count increment
18: end if
19: end for
20: Updates number, rssis, and type to Forwarder
21: end procedure

4.2. Energy Consumption Module

Energy management in communication networks is closely linked to the technology
used. In Wi-Fi, a node can be in one of three general states: in the Active Mode state when a
node transmits, receives and is listening for content, in the Power-Save Mode state when a
node is asleep, with no content being transmitted or received, or in the Off state when the
node is off [31]. During Active Mode, there are three ways in which power is consumed: in
Transmitter/Tx mode, in Receiver/Rx mode or in Listening/Idle mode. On the other hand,
during the Power-Save Mode state, the node will be sleeping, without any communication,
and it will only consume the energy defined for that state (Sleep Mode). Finally, in the
Off Mode state the node is disconnected, interrupting communication and not having any
energy consumption. For each of the states defined above, it is important to define how
much energy is consumed by each of them. For Wi-Fi, the following values have been
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considered: Sleep = 0.00132 A, Transmit/Tx = 0.167 A, Receive/Rx = 0.310 A, Range = 50 m
and Frequency = 2.4–5.0 GHz.

The battery level is an important factor to consider in the decision to forward a packet,
because in a device with limited portable battery, it is important to guarantee a minimum
amount of battery. Whenever there is an update from the power state, the battery level (%)
is updated in the Forwarder module of the respective node. In this way, the Forwarder
uses this value in the forwarding decision and checks if it exceeds the minimum value.

An important part of any energy saving strategy is how to evaluate situations where
the node can or cannot communicate. Situations where the mobile node is isolated or
unable to communicate with its neighbours are energy saving opportunities by putting
them to sleep. In this scheme, a node is put into sleep mode in two situations. When there
are no neighbours, mobile or static, it sleeps for 1 s. After that, it wakes up and checks the
channel for neighbourhood. If the same condition remains, it goes back to sleep another
second, and so on. The other situation is when a node is within the range of at least one
RSU, is heading in the opposite direction to it and exceeds a certain RSSI threshold.

Our proposal defines the RSSI threshold as a function of the distance between the
mobile node and the static node [28,29]. The idea is to put the mobile node into sleep when
it is expected to leave the wireless range of the static node in the next second. In addition,
the sleep time will not be one second, but the amount of time needed by the mobile node to
leave the range of the static node. Then, the sleep time T is determined by dl/ds, where
dl is the remaining distance until it reaches the limit of the wireless coverage of the static
node and ds is the expected distance travelled in the next second, and is related with the
current average speed (Figure 6). Whenever a node finds itself in this condition (within
range of at least one static node with low RSSI) but motion is stopped, the node cancels any
sleep mode scheduled that it may have and schedules a new one for the new distance to
the edge of the communication range. On the other hand, if the node changes direction, it
just cancels any sleep mode scheduled. Regarding the transition from sleep mode to “wake
up” it can happen in two situations: every second, periodically, and when it has urgent
content to transmit.

ds  m

T

Figure 6. Illustration of the sleeping situation of a mobile node based.

4.3. Forwarding and Content Discovery Module

This module comprises the entire process regarding packet forwarding. Content is
discovered through Interest packets, which contain the prefixes within the network domain
of the content to be fetched, and this content is retrieved in the form of a Data packet. To
make this module suitable for efficient node power management, we added content priority
and refined the entire caching and forwarding strategy to make the module energy friendly.
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4.3.1. Content Priority

In order to study the degree of importance/urgency of a requested content, they have
been divided according to [32], specifying six domains with specific weights:

• Emergency. These are the most urgent applications that usually follow a pushed-
based approach to be spread across all nodes in the network, being limited in time,
such as an accident or dangerous weather condition. It is time constrained, and we
give it the value 6.

• Decision. These are the applications where requests are important in decision making,
being also time limited, such as traffic management. It is time constrained, and we
give it the value 5.

• Information (Stream). This includes applications that send and receive data that
are limited in time, such as a video stream that should not have latency. It is time
constrained, and we give it the value 4.

• Feedback. These are the applications that work as data notification, not being limited
in time, as is the case of casual meteorological values. It is hybrid, and we give it
the value 3.

• Interaction. These are the applications connected to the communication between
nodes for the exchange of states. It has no time restriction, and we assign the value 2.

• Information (Data). These are the applications that send and receive data which are
not limited in time, for instance, the exchange of a file. It has no time restriction, and
we assign the value 1.

The weight assigned to each domain distinguishes the degree of importance of a given
content base. These values are used in the forwarding decision, along with the different
neighbourhood scenarios and the internal energy state of a node. In the content forward
decision, values equal to or greater than 4 are considered as priority.

4.3.2. Energy-Efficient Forwarding

All the aforementioned factors and metrics provide a set of information about the
conditions around a node that serves as a heuristic to decide about the forwarding of a
given packet. This process is driven by the Forwarding Strategy, through the assessment of
the context, energy, neighbourhood, node properties and data structures. The workflow for
this decision has been implemented in the same way for both Interest and Data packets
and can be seen, in a general and hierarchical way, in Figure 7.

Every time a node has a packet to transmit, it starts by checking whether it is in Sleep
Mode. If so, it cancels all schedulers that may have been created to wake up and wakes
up. Otherwise, it moves to the next phase responsible for updating the neighbouring
information. In the case of not having any neighbour, it enters in sleep mode and does not
transmit the content. In the case of having a neighbour, and the connection is considered
to be stable, the node checks the packet priority and it is transmitted only if the packet
weight is higher than 4. If the connection is considered to be unstable, it checks if it is
facing a mobile-only neighbourhood or with a single static node. If there are only mobile
neighbours, the node forwards everything.

On the other hand, if the node has at least one RSU as a neighbour, the position of the
RSU and its direction of movement regarding the mobile node is computer. If the node is
stopped (direction 0), it cancels all schedulers that may have been created to sleep and sets
a new scheduler to fall asleep after a time T, calculated as explained before. In addition,
the packet weight is checked and if it is considered priority, the packet is forwarded.
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distanceTravelledin1Second)

Figure 7. Packet forwarding decision process.

However, if the node is moving, it is checked if the direction of the node is in the
direction to the RSU or in the opposite direction. If it is in the direction of the RSU, the
node cancels all schedulers that may have been created to sleep and sends the packet. If
the node is going in the opposite direction, it checks if any scheduler to fall asleep was
made. If not, it sets a scheduler to fall asleep after a time T and it checks the remaining
battery level. If it is greater than or equal to the predefined threshold of 20%, the packet is

168



Sensors 2022, 22, 1438

forwarded. Otherwise, the packet weight is checked and the packet is only forwarded if it
is considered to be priority.

Finally, our solution mainly focuses on predicting transition times between static
nodes (RSUs) and dead zones to put some nodes to sleep, thus reducing unnecessary
packet forwarding, and listening times, resulting in energy savings. Not only that, but
we also use the internal power state of each node to decide in which situations it is most
feasible and efficient to send certain packets. This makes each node autonomous and the
entire decision making on energy consumption happens in a decentralised way. It is up to
the mobile node to decide what to do with the information at its disposal, without the need
for any centralised consultation or consultation supported by the static part of the network.
Moreover, it is important to highlight that, despite the breadth of innovations added to the
NDN’s base architecture, its paradigm has not been changed, i.e., the control structures
(PIT, FIB and CS) have not been changed or new types of packets have been created.

5. Performance Evaluation

To bring our evaluations one step closer to a real scenario, we use two real traces of
urban mobility, one with boat mobility gathered from a lagoon of the city of Aveiro and the
other gathered from the vehicular network in operation in the city of Porto, both of them
cities of Portugal. For both scenarios, the Data providers/producers are the static nodes
(RSUs) and the Data consumers are the mobile nodes (OBUs). Each OBU has only one
802.11n (Wi-Fi) interface, while each RSU has two communication interfaces, an 802.11n
(Wi-Fi) interface and a point-to-point connection (Ethernet) with the backend Routers. All
IEEE 802.11n interfaces have been configured to have a range of approximately 50 metres,
considering that they are in an urban environment, and use the same transmission rate
for each packet sent, following a constant data transmission rate of 54 Mbps, while the
point-to-point communication interfaces have a data transmission rate of 1 Gbps and a
delay of 1 ms. All interfaces of all nodes have a cost of 1 that remains fixed until the end of
the simulation.

The Aveiro scenario is composed by the mobility of nine tourist boats (named mo-
liceiros, and simply denoted as OBUs) through the lagoon of the “Ria de Aveiro”. On
each route, the boats can head off in different directions, which means that the contact
time between them is short and intermittent. These OBUs make contact with four RSUs
installed along the boats route and two backend routers to create the connection between
all RSUs. These mobility data were collected from 10:35 a.m. to 17:56 p.m. on 23 February
2018. The boats may request Urgent contents, such as information about accidents, adverse
weather conditions, among others, or Non Urgent contents, such as Points of Interest (POI)
information, traffic, among others.

The Porto scenario uses datasets collected by a vehicular network placed in the city [3].
The dataset with mobility traces is composed by 80 mobile nodes (buses—OBUs) that have
circulated during four hours, from 9:00 a.m. to 13:00 p.m., on 23 January 2018. Besides the
80 mobile nodes, this scenario is also composed of a set of 26 RSUs spread throughout the
city and 4 backend routers that connect the RSUs. The parameters of both scenarios are
represented in Table 1.

The platform used for the evaluation of the proposed forwarding strategy was the
ndnSIM [26] software, an Open-Source Simulator Platform extended from the well-established
NS-3 research-oriented network simulator. To simulate the energy consumed by each of
the PHY states, we defined 90.000 Joules for each node, which is equivalent to a battery of
5.000 mAh with a 5 V output. Different energy levels (% of battery) were defined for each
OBU at the beginning of the simulation to evaluate the implemented forwarding strategy
that depends on a threshold that delimits the low battery, and the battery levels were placed
in the nine Consumers (mobile nodes) of the Aveiro scenario in the following order: 90%,
10%, 55%, 14%, 32%, 88%, 23%, 45% and 76%. For 80 Consumers (mobile nodes) of the Porto
scenario, we have used the following battery pattern (first 10 nodes and repeats the cycle for
the remaining ones): 90%, 56%, 35%, 55%, 19%, 32%, 88%, 20%, 45% and 76%.
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Table 1. Parameters used in the Aveiro and Porto mobile scenarios.

Parameter Aveiro Porto

Number of nodes 15 100
OBUs 9 80
RSUs 4 26

Backend Routers (BR) 2 4
Content size 1024 bytes 1024 bytes
Cache size 20 OBUs, 60 RSUs, 100 BR 20 OBUs, 60 RSUs, 100 BR

Cache eviction policy LRU LRU
Forwarding strategy Best-Route Modified Best-Route Modified

Propagation delay model ConstantSpeedPropagation ConstantSpeedPropagation
Propagation loss model RangePropagationLoss RangePropagationLoss

Simulation time 14,400 s 14,400 s

In order to evaluate the proposed forwarding strategy, four key metrics were consid-
ered [33]: satisfied Interest rate, transmission delay and network overhead (through In/Out
Interests and In/Out Data). In order to evaluate the energy saving of the network, we
considered the total energy consumed in each PHY state. In order to have a better reference
regarding the performance of our solution, called Efficient version, we compared our results
with the results obtained by another NDN implementation (Integrated version [32]) that
has similar characteristics but without any energy management.

The configuration of each network element is described in Table 2. It was assumed
that mobile nodes have a limited cache size; thus, many cache replacements will occur
throughout the simulation. As the OBUs are network elements that have limited resources,
due to their mobility capability, they will obviously have a limited battery capacity and
with that also a lower caching capacity compared to the static network elements. Finally,
OBUs were separated into Consumers and intermediate nodes.

Table 2. Network element’s configuration.

OBUs RSUs Routers

Node Type Consumer Intermediate Producer Backend
Installed

Technologies Wi-Fi 802.11n
Wi-Fi 802.11n

Ethernet Ethernet

Mobility Type Mobile Static
Cache Size 20 20 60 100

Aveiro’s Devices 9 0 4 2
Porto’s Devices 40 40 26 4

The Consumer nodes will request all the available content related to each domain,
both Urgent (U) and Non Urgent (NU), with a frequency of one Interest per second, to
ensure that the requests are being constant and equal for all metrics. The content requests
popularity follows a Zipf–Mandelbrot Distribution [34]. The Producer nodes will provide
5 chunks for each content in the domains of Emergency, Decision, Feedback and Interaction,
and 10 chunks for each content in the domain of Information, which is the content domain
that comprises most of the communications within the Internet. All these contents have
freshness values increasing in relation to the domains. About 900 s for content within the
Emergency domain, 1800 s for Decision content, 3000 for Feedback and Interaction contents
and 3600 for Information contents. Contents that have a higher update rate and that are
volatile have their freshness reduced so that they are not kept as long in Content Stores.
For example, longer freshness for contents within the Information domain (about 3600 s,
equivalent to one hour which is a quarter of the simulation time), because this type of
content is not so volatile and therefore it can stay longer in the Content Stores.
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5.1. Satisfied Interests Rate

In the Aveiro scenario, illustrated in Figure 8a, it can be observed that our implemen-
tation brought an increase of about 13% in the satisfaction of Interests in comparison with
the Integrated version, either in urgent and non urgent packets. The difference comes from
the fact that our implementation does not forward non urgent packets in some specific
situations; hence, there is an increase for urgent packets and a decrease in the non-urgent
packets. As a node goes into sleep mode whenever the surrounding environment justifies
it, it is expected that there is a lower number of expired Interests, due to reverse path parti-
tioning or the broadcast storm problem that happens in this highly mobile environment
where Data follows the reverse path.

(a) (b)

Figure 8. Satisfied Interest Rate (Urgent and Non Urgent). (a) Aveiro scenario. (b) Porto scenario.

In the Porto scenario, illustrated in Figure 8b, our proposal had an increase of about
2% in the satisfaction ratio of Interests in comparison with the Integrated version, either in
urgent and non urgent packets. The difference in the number of satisfied Interests between
this use case and the Aveiro’s scenario (about 13%) is explained by the fact that, in the Porto
scenario, as there is composed by buses moving at high speed compared to the boats, there
is a higher mobility and consequently more intermittent disconnections between the nodes.
That is, the contact between the nodes is faster and in a shorter time, while the slower boats
have a longer connection between the nodes.

5.2. Transmission Delay

Figure 9 depicts the delay between the transmission of an Interest and the reception
of the respective Data (boat scenario), during a period of 14,400 s divided into 34 min
(2057 s) periods.

Our proposal shows, for most of the time, an increase in performance, showing slightly
lower performance only in the first 85 min (2.5 interval) in relation to the Integrated version.
The results obtained reveal that the content is closer to the Consumers since a Leave-Copy-
Everywhere approach is followed in the cache placement. To complement this, the number
of Interests circulating through the network is smaller, which justifies the fact that the
content is closer to the Consumers. The fact that the nodes enter in Sleep mode when
they are in adverse conditions contributes to this, thus reducing the number of packets
transmissions that most likely would be expired and lost in the network.

171



Sensors 2022, 22, 1438

(a) (b)

Figure 9. Transmission delay. (a) Aveiro scenario. (b) Porto scenario.

On the other hand, the delay observed in the Porto scenario (Figure 9b) presents a
higher delay in our version because as the nodes are in a high mobility environment, most
of them will be constantly faced with adverse situations that imply immediate falling asleep
for a short period of time (1 s). During this period, a node that possibly in the Integrated
version would be awake and could be part of the return route of data to a particular
Consumer, would no longer receive packets, interrupting the of data, or Interests to their
destinations. This factor leads that the full delay and last delay present higher values with
our solution.

5.3. Network Overhead

Through Figure 10, we can evaluate the network overhead for the Porto scenario. It
is possible to see that the overall number of Interests flowing through the network has
increased by about 2% for In Interests (Integrated = 7,277,690, Efficient = 7,395,351) and
reduced by about 50% for Out Interests (Integrated = 1,547,405, Efficient = 779,320) with
the new implementation. The increase in the Interests received is due to the fact that there
is more mobility in this scenario, being the contact between the nodes for the exchange of
information reduced, so there will be packets that will be lost in the network or that will
expire, originating retransmissions to obtain the content. On the other hand, the transmitted
Interests are reduced by the reduction in the time in Idle Mode with the sleeping of the
nodes and the fact that there are more nodes in the neighbourhood. Since sending only
one packet through broadcast for the entire neighbourhood, all nodes will receive the
same packet increasing the In Interest number, so there is an increase in In Interest and a
reduction in Out Interests.

Regarding the Data packets, illustrated in Figure 11, it can be observed that although
there are fewer Interest packets being transmitted due to the short contact and intermittent
disconnections between nodes, there are more Data packets moving around the network.
This attests that the Interests that were transmitted were successfully satisfied. In the
Integrated version, the number of Interests satisfied is less, meaning that they could expire
even before receiving Data, which resulted in discarding Data packets and consequently
reducing their transmission by other nodes. Our version shows an increase in Data packets
circulating in the network by 3.3% for In Data (Integrated = 34,073, Efficient = 35,188) and
by 2% for Out Data (Integrated = 664,074, Efficient = 676,766).

172



Sensors 2022, 22, 1438

(a) (b)

Figure 10. Global received and transmitted Interests packets for Porto scenario. (a) In Interests.
(b) Out Interests.

(a) (b)

Figure 11. Global received and transmitted Data packets for Porto scenario. (a) In Data. (b) Out Data.

In the Aveiro scenario, the total number of Interests flowing through the network has
been reduced by about 0.02% for internal Interests and about 38% for external Interests
with our implementation. This is mainly due to the fact that a node reduces its time in idle
mode and goes to sleep when its internal state and the environment demands it, producing
and receiving fewer Interest packets than in the Integrated version. In the Integrated
version, the number of Interests satisfied is less, meaning that they could expire even before
receiving Data, which resulted in discarding Data packets and consequently reducing their
transmission by other nodes. The Efficient version shows an increase in Data packets
circulating in the network by 0.90% for both In Data and Out Data.

Despite having a greater delay in response to the Data, the few Interests that are sent
are satisfied by Data, attesting that our solution has better performance in terms of not
forwarding unnecessary packets and reducing idle times, which will be reflected in the
times in each state and energy saving.
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5.4. Energy Consumption

The results presented in Figure 12a show a reduction of around 63% (Aveiro scenario)
of the energy and time spent in the transmission of packets (TX Mode) in the Efficient
version (Integrated TX = 587, Efficient TX = 215). Considering the increase in energy
and time spent in the reception of packets (RX Mode), it can be concluded that the large
reduction in energy and time spent in both idle Mode and TX Mode impacted only the
packets that would be lost in the network because they could never reach the nodes,
ensuring an almost accurate transmission and reception of the packets that matter and that
actually have a chance of reaching their destination.

(a) (b)

Figure 12. Total energy consumed in each PHY state. (a) Aveiro scenario. (b) Porto scenario.

The increase in the time in receiving mode (Rx) is due to the fact that there are fewer
packets circulating in the network, meaning that the increase in the reception energy
consumed is for the Data packets that successfully reach the Consumer. A reduction of
between 17% (Porto scenario—Integrated IDLE = 1,420,309, Efficient IDLE = 1,170,393) and
30% (Aveiro scenario—Integrated IDLE = 154,149, Efficient IDLE = 106,768) in the energy
consumption performed in idle mode is also visible, as the time spent in this state was
converted into consumption in Sleep Mode.

With the Efficient implementation, a node goes to sleep mode depending on its internal
energy state (battery level) and the environment it is in. This reflects in a reduction in the
number of transmissions and receptions. However, a node wakes up whenever it produces
an Interest request to be sent to the network, waking up the node for that purpose. The
reduction in transmission energy between the Integrated and Efficient version is directly
related to the reduction in the number of Interests circulating in the network, because the
content is closer to the Consumers.

Regarding the network lifespan, which is due to the energy savings considered by the
forwarding strategy and the sleep and wake mechanisms, there is more energy distributed
to the mobile nodes of the network in our Efficient version. Our results show a 1.3%
increase for the Aveiro scenario (boats) and a 1.5% increase for the Porto scenario (buses).
These savings translate into an additional 25 min of network activity for the Aveiro scenario
and 4 h and 40 min for the Porto scenario.

6. Conclusions

In this paper, we are proposing a forwarding strategy for energy-constrained wireless
ICN networks. Our solution considers the mobility of the nodes, which directly impacts
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the forwarding decision of a packet and checks the environment around the node, which
includes the number and type of neighbours, signal strength and direction of movement.
Furthermore, it combines this information with the internal state of each node, both in
its internal energy level and in state transitions between awake and sleep. The proposed
forwarding strategy extends and adapts concepts of ICNs, by means of packet domain
analysis, neighbourhood evaluation and node sleeping and waking strategies so that there
is energy saving and non-use of resources in unnecessary situations, such as the moments
when a node is listening when it is isolated. In addition, our proposal guarantees the privacy
and security of information that ends up not being shared, such as their neighbourhood
and their energetic state. We also ensure that packets are prioritised with a major impact
on how the routing decision and sleeping strategy is made.

The evaluation of our solution was performed by simulation with real traces of urban
mobility in two distinct scenarios: boats in the lagoon of Aveiro and public buses in the city
of Porto, both in Portugal. These scenarios offer different conditions. Boats sailing in low
speed represent less mobility and a longer contact time between the several nodes, while
buses circulate at a higher speed, leading to a shorter time of contact between the several
nodes due to intermittent and faster disconnections. Our tests considered the dissemination
of Urgent and Non Urgent packets to evaluate the satisfied Interest rate, transmission
delay, network overhead and energy consumption, important metrics used in ICN/NDN
performance network evaluation.

Our results have shown that the proposed forwarding strategy resulted in significant
improvements in network content availability, overall node power savings and increased
network lifetime. In addition, we have shown that it was possible to save energy that
was wasted listening and forwarding packets unnecessarily, generating a longer lifetime
distributed by the network nodes, which was more than 25 min in the case of Aveiro and it
was almost 5 h of network activity in the case of Porto.

As future work, we intend to expand our solution by adding mobile node speed
assessment, handling for multiple communication interfaces and a dynamic low battery
threshold among other improvements.
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Abstract: In the satellite multigroup multicast communication systems based on the DVB-S2X
standard, due to the limitation of the DVB-S2X frame structure, user scheduling and beamforming
design have become the focus of academic research. In this work, we take the massive multi-input
multi-output (MIMO) low earth orbit (LEO) satellite communication system adopting the DVB-S2X
standard as the research scenario, and the LEO satellite adopts a uniform planar array (UPA) based
on the fully connected hybrid structure. We focus on the coupling design of user scheduling and
beamforming; meanwhile, the scheme design takes the influence of residual Doppler shift and phase
disturbance on channel errors into account. Under the constraints of total transmission power and
quality of service (QoS), we study the robust joint user scheduling and hybrid beamforming design
aimed at maximizing the energy efficiency (EE). For this problem, we first adopt the hierarchical
clustering algorithm to group users. Then, the semidefinite programming (SDP) algorithm and the
concave convex process (CCCP) framework are applied to tackle the optimization of user scheduling
and hybrid beamforming design. To handle the rank-one matrix constraint, the penalty iteration
algorithm is proposed. To balance the performance and complexity of the algorithm, the user
preselected step is added before joint design. Finally, to obtain the digital beamforming matrix and
the analog beamforming matrix in a hybrid beamformer, the alternative optimization algorithm
based on the majorization-minimization framework (MM-AltOpt) is proposed. Numerical simulation
results show that the EE of the proposed joint user scheduling and beamforming design algorithm is
higher than that of the traditional decoupling design algorithms.

Keywords: LEO satellite communications; massive MIMO; multigroup multicast; user scheduling;
hybrid beamforming; robust; joint design; energy efficiency

1. Introduction

In recent years, LEO satellite communication systems have played an increasingly im-
portant role in wireless communication networks [1]. However, facing the high-performance
requirements of future wireless communication systems, such as higher spectrum efficiency
(SE) and increased EE, the performance of LEO satellite communication systems needs
to be improved [2]. Applying the massive MIMO technology to LEO satellites is a good
choice, and with the advantage of 5G technology [3] and the spatial multiplexing principle
of MIMO technology [4], the performance of LEO satellite communication systems can be
further improved. Meanwhile, by using the high-precision multiple beams generated by
the massive MIMO technology and aggressive full frequency reuse scheme among beams,
the performance of the communication system can be greatly improved. However, the
full frequency reuse scheme will cause severe inter-beam interference [5], and adopting
the beamforming design at the LEO transmitter side can efficiently manage it. In addition,
the super-frame structure of multibeam satellite communications standards such as DVB-
S2X [6] needs to apply the same beamformer to multiple users that share the same frame.
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Therefore, the multigroup multicasting principle can be used in the beamformer design.
In this paper, we concentrate on the massive MIMO LEO satellite communication system
forward link multigroup multicasting beamforming scheme [7].

In the beamforming design of the massive MIMO LEO satellite multigroup multicast
communication system, the following issues need to be considered:

• User scheduling: Due to that only a few users can be bound into a DVB-S2X frame,
and there are a large number of active users in each multicast group, it is necessary
to design the user scheduling algorithm. Meanwhile, it should be noted that the
interference between scheduled users depends on the beamforming design, which in
turn depends on the scheduled users in other beams. Therefore, user scheduling and
beamforming design are coupled, and the joint design scheme of user scheduling and
beamforming needs to be considered.

• Channel errors: The LEO satellite has high orbital speed, which will produce a large
Doppler shift and result in the channel phase deviation [8]. Meanwhile, the factors such
as distortion of high-frequency devices, expiration of the CSI and large propagation
delay also can cause the channel phase disturbance. Therefore, it is difficult to obtain
accurate channel state information (CSI) at the LEO satellite transmitter. Due to the
existence of CSI errors, the designed beamforming vector does not match the actual
CSI, resulting in the reduction in the receiving gain and signal to interference plus noise
ratio (SINR) of the user terminal. Then, the QoS will not be guaranteed. Thus, it is of
practical significance to study the robust user scheduling and beamforming design.

• EE optimization: Due to the limited energy load of LEO satellites, to prolong the service
life of the LEO satellite and improve the stability of the LEO satellite communications
system, under the consideration of green communications and economic benefits, we
need to pay attention to the EE optimization [9].

• Beamforming scheme: In the beamforming architectures of the massive MIMO tech-
nology, although the digital beamforming design can significantly improve the SE,
it would bring high hardware complexity and high power consumption. Although
the hardware overhead of hybrid beamforming architecture based on full connection
is slightly higher than that of the partial connection architecture, it can balance the
hardware complexity and system performance, and has higher cost performance.
Therefore, in this paper, we selected the hybrid beamforming technology based on the
full connection structure [10].

2. Related Works and Main Contributions
2.1. Related Works

There is extensive literature regarding user scheduling and beamforming design in the
wireless multigroup multicast communication system. In Ref. [11], based on the perfect CSI,
taking the throughput maximization as the optimization objective the authors studied the
precoding design of the multibeam satellite communication system, and proposed a decou-
pling scheme of the user scheduling and beamforming design. In Ref. [12], considering the
influence of CSI errors and taking the minimizing transmission power as the optimization
objective, the robust multigroup multicast transmission scheme of the multibeam satellite
communication system was investigated, and the low complexity beamforming algorithm
and the user grouping algorithm were proposed, but the length limit of the DVB-S2X frame
was not considered. In Ref. [13], based on the perfect CSI and taking the maximizing SE as
the optimization objective, the multigroup multicast transmission design scheme of the
frame-based multibeam satellite communication system was investigated, and the authors
proposed a joint design scheme of the user scheduling and beamforming. However, the
influence of CSI errors was not considered, and the user grouping algorithm was simple. In
Ref. [14], based on the perfect CSI, the authors studied the user scheduling problem of the
multicast transmission in the high-throughput satellite communication system. The user
scheduling was decoupled into intra-beam scheduling and inter-beam scheduling, and the
correlation degree was calculated by using the equivalent CSI; therefore, the interaction of
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intra-beam and inter-beam scheduling cannot be fully considered. In Ref. [15], the authors
studied the user scheduling problem of the multibeam satellite communication system but
did not consider the inter-beam interference caused by scheduling. In Ref. [16], based on the
perfect CSI, the authors studied the joint scheduling and beamforming design problem for
multiuser MISO downlink, and the message-based user grouping and scheduling algorithm
was mainly proposed, but the impact of user grouping on system performance was not
fully considered. In Ref. [17], the user scheduling and hybrid beamforming design of the
massive MIMO orthogonal frequency division multiple access (OFDMA) communication
system was studied, in scheme design. First, a joint design algorithm of user scheduling and
analog beamforming was proposed; then, the digital beamforming matrix was solved by
the weighted minimum mean-square error (WMMSE) algorithm. In Ref. [18], the authors
studied the design of user scheduling and subcarrier allocation in the downlink of a massive
MIMO OFDMA communication system and proposed a hybrid beamforming scheme. First,
based on the optimal solution of digital beamforming, the analog beamforming matrix was
obtained by a singular value decomposition algorithm. Then, the authors proposed an
algorithm to solve the digital beamforming matrix and its corresponding scheduling users.

Most of the above research took the geosynchronous earth orbit (GEO) satellite or
the terrestrial cellular network as the research object, and less used the LEO satellite. In
addition, the optimization objectives mainly focused on maximizing SE and minimizing
transmission power, and less on the EE optimization. Meanwhile, the analysis of CSI errors
was insufficient, as some research considered the CSI errors, but did not analyze the influ-
ence of the Doppler shift. In terms of the user scheduling, the common idea was to adopt the
decoupling scheme of user scheduling and beamforming design, without fully considering
the coupling relationship between the user scheduling and the beamforming design.

2.2. Main Contributions

Inspired by the above research, we focus on the downlink transmission design of the
massive MIMO LEO satellite multigroup multicast communication system. In scheme
design, comprehensively considering the influence of CSI errors caused by the residual
Doppler shift and the phase disturbance, we mainly investigate the robust joint user
scheduling and hybrid beamforming design to maximize the system EE. Meanwhile, we
take the constraints of the transmission power and QoS into account. The main works are
summarized as follows:

• We establish the downlink transmission system model and channel model of the
massive MIMO LEO satellite multigroup multicast communication system and analyze
the CSI errors.

• Based on the CSI, we adopt a low complexity hierarchical clustering algorithm based
on the Ward connection method to group users, which can lay a foundation for the
joint user scheduling and beamforming design.

• We establish the joint user scheduling and hybrid beamforming design problem model
based on EE maximization, and binary variables are defined to represent whether the
user is scheduled or not. Then, we transform the optimization problem into a Boolean
fractional programming (BFP) problem, which is also a quadratic constraint quadratic
programming (QCQP) form problem.

• For the BFP problem in QCQP form, we invoke the quadratic transformation algorithm
to handle the fractional programming form problem in the objective function. Mean-
while, the SDP algorithm is invoked to convert the objective function in QCQP form
into a concave function, and some nonconvex constraints can be converted into linear
constraints. In addition, we adopt the relaxation and penalty algorithm to deal with
the Boolean constraint. Then, the optimization problem is equivalently transformed
into a difference of convex (DC) programming problem.

• For the DC programming problem, an iterative optimization algorithm based on the
CCCP framework is proposed. For the rank-one matrix constraint introduced by the
SDP algorithm, a penalty iterative algorithm is adopted.
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• For the solution of the digital beamforming matrix and the analog beamforming matrix
in the hybrid beamformer, the MM-AltOpt algorithm is proposed.

3. System Model and Problem Formulation
3.1. System Model

As shown in Figure 1, we focus on the downlink of the massive MIMO LEO satellite
multigroup multicast communication system, and the LEO satellite uses a UPA, which is
composed of N = Nx × Ny antennas and L(L ≤ N) RF links and covers L multicast groups
and K active users, where K ≥ L, K ≥ N. Let the multicast group covered by the lth beam
be Ul and the number of users in this multicast group be |Ul |, assuming that the number of
users that can be accommodated in each DVB-S2X frame is Us. It should be noted that each
user terminal belongs to only one multicast group, i.e., Ui ∩Uj = ∅, ∀i, j ∈ {1, . . . , L}, i 6= j.
Meanwhile, we assume that the user terminal is equipped with a single antenna capable
of data stream demodulation. According to the DVB-S2X standard, in a transmission slot,
multiple users’ data in a multicast group are multiplexed into a specific forward error
correction (FEC) codeword to provide services for more users. The service process is shown
in Figure 2.
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The received signal yk,l of the kth user in the lth multicast group can be expressed as:

yk,l = hH
k,lFRFFBB[:, l]sl +

L

∑
j=1,j 6=l

hH
k,jFRFFBB[:, j]sl + nk,l , k ∈ {1, . . . , |Ul |}, l ∈ {1, . . . , L}, (1)

where the first term in (1) represents the expected received signal of the kth user in the lth
multicast group, the second term represents the interference of other multicast groups and
the third term represents the additive Gaussian white noise; hk,l ∈ CN×1 represents the
channel vector of the kth user in the lth multicast group, FBB ∈ CL×L represents the digital
beamforming matrix, FBB[:, l] ∈ CL×1 represents the digital beamforming vector of the lth
multicast group, and FRF ∈ CN×L represents the analog beamforming matrix, where each
element of FRF should meet the unit modulus element [19], i.e.,

∣∣∣(FRF)i,j

∣∣∣ = 1. In addition,
sl represents the signal of the multicast group Ul , which meets the unit power constraint,
i.e., E

{
|sl |2

}
= 1, nl ∼ CN(0, σ2) represents the additive Gaussian white noise, which is

related to the Boltzmann constant κ, system bandwidth B and the noise temperature T.
For the convenience of analysis, we set F ∈ CN×L = FRFFBB = [f1, f2, . . . , fL] as the

hybrid beamforming matrix, and fl ∈ CN×1 = FRFFBB[:, l] is the hybrid beamforming
vector of the lth multicast group. Therefore, (1) can be rewritten as:

yk,l = hH
k,lflsl +

L

∑
j=1,j 6=l

hH
k,jfjsl + nk,l , k ∈ {1, . . . , |Ul |}, l ∈ {1, . . . , L} (2)

Due to the high orbital speed of LEO satellites and the long transmission delay, it is
difficult to obtain the precise instantaneous CSI. To cope with this problem, we adopt the
statistical CSI, and the channel vector between the LEO satellite and the kth user in the lth
multicast group at instant t and frequency f can be modeled as follows [20]:

hk,l(t, f ) =
Pk,l

∑
p=1

ak,l,pej2π( fd(k,l,p)t− f τk,l,p) × Vk,l,p, (3)

where f denotes the carrier frequency, ak,l,p, fd(k,l,p),τk,l,p are the complex channel gain,
Doppler shift and propagation delay, respectively, Pk,l denotes the number of propagation
paths and Vk,l,p ∈ CN×1 is the UPA array response vector, which can be given by

Vk,l,p = V(ϕx
k,l,p, ϕ

y
k,l,p) = vNx

(
sin ϕ

y
k,l,p cos ϕx

k,l,p

)
⊗ vNy

(
cos ϕ

y
k,l,p

)
, (4)
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vNx (sin ϕ
y
k,l,p cos ϕx

k,l,p) =
1√
Nx

(
1, e−j 2πd

λ sin ϕ
y
k,l,p cos ϕx

k,l,p , . . . , e−j 2πd
λ (Nx−1) sin ϕ

y
k,l,p cos ϕx

k,l,p

)
, (5)

vNy(cos ϕ
y
k,l,p) =

1√
Ny

(
1, e−j 2πd

λ cos ϕ
y
k,l,p , . . . , e−j 2πd

λ (Ny−1) cos ϕ
y
k,l,p

)
, (6)

where ϕx
k,l,p, ϕ

y
k,l,p represent azimuth angle and pitch angle associated with the propagation

path p of the kth user in the lth multicast group, respectively, λ denotes the wavelength
and d represents the spacing of antenna elements, the value of which is usually λ/2 [5].

Note that the LEO satellite communication system is usually operated under the line of
sight (LOS) transmission, and the channel vector can be modeled using the widely accepted
Rician distribution model as follows:

hk,l = hk,l + h̃k,l , (7)

where hk,l =
√

κk,l γk,l
κk,l+1 ×Vk,l represents the LoS component, h̃k,l =

√
γk,l

κk,l+1 ×Vk,l,c×VH
k,l rep-

resents the multipath component, κk,l denotes the Rician factor, Vk,l,c ∈ CNut×1 ∼ CN(0, ∑)
represents Rician component, Tr(∑) = 1 and γk,l represents the average channel power,
which mainly includes the transmit antenna gain Gleo, receiver antenna gain Gut and link
power loss. The link power loss is mainly caused by the free space path loss LPf s and
the atmospheric absorption loss LPat. Therefore, the average channel power γk,l can be
written as

γk,l = Gleo[dB] + Gut[dB]− LPat[dB]− LPf s[dB], (8)

where LPf s can be given by LPf s = 20
(
log10(Dk,l)

)
+ log10( f ) + log10(4π/c), c is the

speed of light, Dk,l represents the transmission distance, LPat is related to the carrier
frequency, temperature T(h), pressure P(h) and humidity ρ(h), which can be given by
LPat =

∫ hat
hut

LPat( f , T(h), P(h), ρ(h))dh, LPat( f , T(h), P(h), ρ(h)) is the loss per meter, hut is
the user’s height and hat is the atmosphere thickness. The specific calculation method of
LPat can be found in the literature [21].

For the convenience of analysis, it is assumed that the parameters in the channel vector
hk,l are constant within coherence time and change over time in a certain ergodic process. In
(3), the Doppler shift fd(k,l,p) and the propagation delay τk,l,p usually cause CSI errors. Next,
we focus on analyzing the influence of propagation delay and Doppler shift on CSI errors.

Doppler shift: In the LEO satellite communication systems, the Doppler shift is usu-
ally large, which is mainly composed of the Doppler shift f leo

d(k,l,p) generated by the LEO

satellite motion and the Doppler shift f ut
d(k,l,p) generated by the users’ motion [22]. Since the

transmission between the LEO satellite and user terminals is mainly under LOS, f leo
d(k,l,p)

of different transmission paths can be considered to be the same, and we omit the path

index of f leo
d(k,l,p), i.e.,

{
f leo
d(k,l,p)

}Pk

1
= f leo

d(k,l); f leo
d(k,l) can be calculated using the LEO satellite

ephemeris information and the location information of user terminals, as shown in Figure 3.

f leo
d(k,l) = −

f
c
× ωleorer sin(φt − φt0)µ(θmax)√

r2
e + r2 − 2rer cos(φt − φt0)µ(θmax)

, (9)

where µ(θmax) = cos
[
cos−1( re

r cos θmax
)
− θmax

]
, re denotes the earth radius, r represents

the distance between the LEO satellite track point and the earth center, (φt − φt0) represents
the angular distance of the earth’s surface along the LEO satellite trajectory from instant
t to instant t0, ω represents the angular velocity of the LEO satellite and c represents the
speed of light.
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Figure 3. Geometric diagram of LEO satellite’s orbital motion relative to the user terminal.

The value of f ut
d(k,l,p) in different transmission paths is different, which is mainly caused

by the movement of user terminals and surrounding scatterers. The power spectrum of
f ut
d(k,l,p) follows the Jakes power spectrum model, and the normalized power spectrum can

be expressed as:

S( f ut
d(k,l,p)) =

1

2π f ut
d(k,l,p),max

√
1− (

f ut
d(k,l,p)

f ut
d(k,l,p),max

)
2

(10)

The large Doppler shift in LEO satellite communication systems can make it difficult
to receive correctly and result in the degradation of communication performance. In appli-
cation, to mitigate the impact of Doppler shift, the solution of estimation and compensation
is usually adopted [23]. The Doppler shift estimation mainly includes two steps: coarse
estimation and fine estimation, which can refer to the literature [24]. When we obtain the
estimated value of Doppler shift, f e

d , the Doppler shift compensation of size f cps
d = f e

d can
be implemented at the receivers. It should be noted that due to that the Doppler shift
changes rapidly, in addition to the low SINR at the receivers and the limited pilot length in
the DVB-S2X frame, the Doppler shift estimation is usually inaccurate, which can result
in the incomplete compensation. Then, there would be the residual Doppler shift f rsd

d ,
which can cause the sliding of channel phase. According to the Doppler shift estimation
theory based the Cramer–Rao bound, the variance in the Doppler shift estimation can be
expressed as the Cramer–Rao lower bound (CRLB) [25], i.e.,

σ2
f e
d
= CRLB( f ) =

1
SNR

3
2π2T2N(N2 − 1)

, (11)

where N is the pilot length, T is the sampling time and SNR is the signal-to-noise ratio.
According to the properties of variance, after Doppler shift compensation of size f cps

d , the
variance of residual Doppler shift f rsd

d is equal to the variance of f e
d , i.e.,

σ2
f rsd
d

= σ2
f e
d
=

1
SNR

3
2π2T2N(N2 − 1)

, (12)

The influence of residual Doppler shift on channel phase errors can be expressed as
φ f rsd

d
= 2π f rsd

d ∆T, where ∆T represents the sum of the downlink propagation delay and
the duration of the DVB-S2X frame. Therefore, the variance of φ f rsd

d
can be expressed as

σ2
φ

f rsd
d

= 4π2σ2
f rsd
d

∆T2 = 1
SNR

6∆T2

T2 N(N2−1) , and φ f rsd
d

follows a real-valued Gaussian distribu-

185



Sensors 2022, 22, 6858

tion with mean zero and variance σ2
φ

f rsd
d

, i.e., φ f rsd
d
∼ N

(
0, σ2

φ
f rsd
d

)
. The channel error vector

caused by φ f rsd
d

can be expressed as vφ
f rsd
d

= [e
jφ

f rsd
d ,1 , e

jφ
f rsd
d ,2 , . . . , e

jφ
f rsd
d ,N ]

T
.

Propagation Delay: The orbital height of LEO satellites is about 300 km to 2000 km,
and the long transmission distance can cause the larger propagation delay. Note that the
influence of atmosphere on propagation delay mainly includes ionospheric delay and
tropospheric delay [26]. When the signal passes through the ionosphere, due to the re-
fraction effect of the electromagnetic wave, the propagation path and speed of the signal
will change. Meanwhile, the ionospheric delay is irregular, which is difficult to describe
with a physical model. When the signal passes through the troposphere, the propagation
speed, direction and path of the signal will change, which can result in propagation delay.
The tropospheric delay is related to air pressure, air humidity and satellite elevation. The
commonly used tropospheric delay correction model is given in the literature [27,28]. The
round-trip delay of the LEO satellite with an orbit altitude of 1200 km is about 20 ms.
The long propagation delay will lead to the expiration of CSI, which can result in CSI
errors, phase disturbance and other problems. To handle this problem, the delay com-
pensation of size τcps = βτmin + (1− β)τmax, (0 ≤ β ≤ 1) is usually implemented at the

receivers, and τmin
k,l = min

{
τk,l,p

}Pk,l

1
and τmax

k,l = max
{

τk,l,p

}Pk,l

1
represent the minimum

propagation delay and the maximum propagation delay of the kth user in the lth multicast
group, respectively.

However, due to that the atmospheric propagation delay is irregular, the transmis-
sion delay cannot be fully compensated. Therefore, the incomplete delay compensation,
expired CSI and distortion of high-frequency devices would cause the channel phase dis-
turbance [29]. Let the phase disturbance be φτ , which follows a real-valued Gaussian
distribution with mean zero and variance σ2

φτ
, i.e., φτ ∼ N

(
0, σ2

φτ

)
. The channel error

vector caused by φτ can be expressed as vφτ = [ejφτ,1 , ejφτ2 , . . . , ejφτ,N ]
T .

In conclusion, considering the influence of the residual Doppler shift and the phase
disturbance, the relationship between the real channel vector hk,l and the estimated channel
vector ĥk,l can be expressed as:

hk,l = ĥk,l � vφ
f rsd
d,k,l
� vφτ,k,l = diag

(
diag

(
ĥk,l
)
vφ

f rsd
d,k,l

)
vφτk,l

, (13)

where � represents the Hadamard product. Let the channel phase of the kth user in the lth
multicast group be θk,l = [θk,l,1, θk,l,2, . . . , θk,l,N ]

T , which satisfies the uniform distribution
between 0 ∼ 2π. Then, the real channel phase with phase errors at instant t1 is as follows:

θk,l(t1) = θk,l(t0) + φ f rsd
d,k,l

+ φτk,l (14)

3.2. Problem Formulation
3.2.1. User Clustering

Before the joint user scheduling and hybrid beamforming design, it is necessary to
group the active users within the coverage of the LEO satellite. Based on the CSI, the hierar-
chical clustering algorithm is adopted to group users [30]. As shown in Figures 4 and 5, the
hierarchical clustering algorithm adopts the bottom-up method, where each user initially
forms a group, and then according to the similarity measurement function, the user groups
which meet the similarity threshold constraint are combined until the desired number of
groups is formed.
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We adopt the similarity measurement function among multicast groups based on the
Ward connection method, i.e.,

d(i, j) =

√
2ninj

ni + nj
dist(heq

i , heq
j ), (15)

where ni, nj represent the number of users of the group i and the group j, respectively,
heq

i , heq
j represent the equivalent CSI of the group i and the group j, respectively, and

dist(heq
i , heq

j ) represents the Euclidean distance between the vector heq
i and the vector heq

i , i.e.,

dist(heq
i , heq

j ) =

∥∥∥∥∥∥
heq

i∥∥∥heq
i

∥∥∥
−

heq
j∥∥∥heq
j

∥∥∥

∥∥∥∥∥∥
(16)

3.2.2. System Rate

Affected by CSI errors, both the ergodic communication rate and the ergodic SINR
do not admit explicit expressions. To handle this challenge, the statistical average method
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is adopted to model the SINR and the communication rate. Therefore, the SINR and the
communication rate of the kth user in the lth multicast group can be expressed as:

E
{

SINRk,l
}
≈

E
{∣∣∣hH

k,lfl

∣∣∣
2
}

E

{
L
∑

j=1,j 6=l

∣∣∣hH
k,lfj

∣∣∣
2
}
+ σ2

, (17)

Rk,l ≈ B log2




1 +
E
{∣∣∣hH

k,lfl

∣∣∣
2
}

E

{
L
∑

j=1,j 6=l

∣∣∣hH
k,lfj

∣∣∣
2
}
+ σ2




, (18)

where B denotes system bandwidth. Equations (17) and (18) are approximations with
closed form, the feasibility of which have been discussed in detail in Refs. [31,32].

3.2.3. Problem Description

We take the system EE as the optimization objective, and the EE is defined as the
ratio of the system communication rate to the total power consumption, which can be
modeled as:

EE =

L
∑

l=1
min

({
Rk,l
}|Ul |

k=1

)

Ptotal
=

B
L
∑

l=1
log2


1 + min





|hH
k,lfl |2

L
∑

j=1,j 6=l

∣∣∣hH
k,lfj

∣∣∣
2
+σ2





Us

k=1




Pt + P0
, (19)

where Ptotal represents the total power consumption, Pt =
L
∑
l

∣∣ fl f H
l

∣∣ denotes the transmis-

sion power of the LEO satellite, and P0 denotes the inherent power consumption of the
communication system.

Let the Boolean variable ηk,l ∈ {0, 1} indicate whether the kth user in the lth multicast
group is served, ηk,l = 1 and ηk,l = 0 indicate that the user can be served and not served,

respectively, and η = [η1, η2, . . . , ηL], ηl =
[
η1,l , η2,l , . . . , η|Ul |,L

]T
. In conclusion, under the

constraints of the transmission power and QoS, the problem of maximizing system EE can
be modeled as:

Q1 : max
η,fl ,SINRmin

l

EE =

B
L
∑

l=1
log2

(
1 + SINRmin

l

)

L
∑
l

∣∣∣flf
H
l

∣∣∣
2
+ P0

, (20)

s.t. C1 : ηk,l ∈ {0, 1}, ∀k, l, (21)

C2 : SINRk,l ≥ ηk,lSINRmin
l , ∀k, l, (22)

C3 : SINRmin
l ≥ SINR0, ∀l, (23)

C4 :
(Ul)

∑
k=1

ηk,l = Us, ∀l, (24)

C5 :
L

∑
l=1

∣∣∣flf
H
l

∣∣∣
2
≤ PT , (25)

where SINRmin
l represents the minimum SINR of the lth multicast group and constraint

C3 represents that SINRmin
l should be greater than the minimum SINR constraint SINR0.

Constraint C4 limits the number of scheduled users in each multicast group to Us.
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4. Joint User Scheduling and Hybrid Beamforming Design for Maximizing EE

In this section, we focus on the robust joint user scheduling and hybrid beamforming
design strategy to maximize system EE. To handle the QCQP form problem and noncon-
vexity in optimization problem Q1, the SDP method is applied to make the optimization
problem more tractable. Then, we transform the optimization problem Q1 into a DC
programming problem. To address the DC programming problem, we adopt the CCCP
algorithm. Finally, a penalty iterative algorithm is adopted to handle the rank-one ma-
trix constraint.

4.1. SDP Algorithm

It is worth noting that the objective function and constraints C2 and C5 in the problem
Q1 involve the quadratic form of the variable fl , therefore, Q1 is the QCQP form problem.
To handle this problem, we invoke the SDP algorithm, a new variable Wl , flf

H
l is intro-

duced, and the positive semidefinite matrix Wl needs to meet the constraints of Wl�0 and
rank(Wl) = 1. Then, the problem Q1 can be equivalent to:

Q2 : max
η,Wl ,SINRmin

l

EE =

B
L
∑

l=1
log2

(
1 + SINRmin

l

)

L
∑
l

Tr(Wl) + P0

, (26)

s.t. C1, C2, C3, C4 in Q1, (27)

C5 :
L

∑
l

Tr(Wl) ≤ PT , (28)

C6 : Wl�0, ∀l, (29)

C7 : rank(Wl) = 1, ∀l, (30)

Similarly, the SINR and the communication rate of the kth user in the lth multicast
group can be equivalently converted to:

SINRk,l ≈
E
{

Tr(Hk,lWl)
}

E

{
L
∑

j=1,j 6=l
Tr
(
Hk,lWj

)
}
+ σ2

, (31)

Rk,l = B log2


1 +

E{Tr(Hk,lWl)}
E

{
L
∑

j=1,j 6=l
Tr(Hk,lWj)

}
+σ2


 = B log2


1 +

Tr(E{Hk,lWl})
L
∑

j=1,j 6=l
Tr(E{Hk,lWj})+σ2




= B log2


1 +

Tr(Hk,lWl)
L
∑

j=1,j 6=l
Tr(Hk,lWj)+σ2




(32)

where Hk,l ∈ CM×M is the instantaneous channel autocorrelation matrix of the kth user in
the lth multicast group and Hk,l ∈ CM×M is the long-term channel autocorrelation matrix.
The relationship between the two can be expressed as:

Hk,l = E
{

Hk,l
}
, E

{
ĥk,lĥ

H
k,l

}
= diag

(
ĥk,l
)
P f rsd

d,k,l
Qτk,l

diag
(

ĥH
k,l

)
, (33)

where P f rsd
d,k,l

and Qτk,l
can be expressed as follows:
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Pf rsd
d,k,l

= E

{
vφ

f rsd
d,k,l

vH
φ

f rsd
d,k,l

}

= E

{[
e

jφ
f rsd
d,k,l ,1 , e

jφ
f rsd
d,k,l ,2 , . . . , e

jφ
f rsd
d,k.l ,M

]T[
e
−jφ

f rsd
d,k,l ,1 , e

−jφ
f rsd
d,k,l ,2 , . . . , e

−jφ
f rsd
d,k.l ,M

]}

= E





1 · · · e
jφ

f rsd
d,k,l ,1 e

−jφ
f rsd
d,k.l ,M

...
. . .

...

e
jφ

f rsd
d,k.l ,M e

−jφ
f rsd
d,k,l ,1 · · · 1





=





1 · · · E
{

e
jφ

f rsd
d,k,l ,1 e

−jφ
f rsd
d,k.l ,M

}

...
. . .

...

E
{

e
jφ

f rsd
d,k.l ,M e

−jφ
f rsd
d,k,l ,1

}
· · · 1





(34)

In (34), the diagonal elements of P f rsd
d,k,l

are all 1, and the elements in row i and column

j on the non-diagonal are E
{

e
jφ

f rsd
d,k.l ,i e

−jφ
f rsd
d,k,l ,j

}
= E

{
e

jφ
f rsd
d,k.l ,i

}
E
{

e
−jφ

f rsd
d,k,l ,j

}
, according to

φ f rsd
d
∼ N

(
0, σ2

φ
f rsd
d

)
,

E
{

e
jφ

f rsd
d,k.l ,i

}
=
∫ ∞
−∞ e

jφ
f rsd
d,k.l ,i 1√

2πσφ
f rsd
d,k,l

e

−
φ2

f rsd
d,k,l

2σ2
φ

f rsd
d dφ f rsd

d,k.l ,i

=e−
σ2

f rsd
d,k,l
2
∫ ∞
−∞

1√
2πσφ

f rsd
d,k,l

e

−
(φ

f rsd
d,k.l ,i

−jσφ
f rsd
d,k,l

)2

2σ2
φ

f rsd
d dφ f rsd

d,k.l ,i

(35)

Similarly, E
{

e
−jφ

f rsd
d,k,l ,j

}
= e−

σ2
φ

f rsd
d
2 . Therefore, E

{
e

jφ
f rsd
d,k.l ,i e

−jφ
f rsd
d,k,l ,j

}
= E

{
e

jφ
f rsd
d,k.l ,i

}

E
{

e
−jφ

f rsd
d,k,l ,j

}
= e
−σ2

φ
f rsd
d .

Qτk,l
= E

{
vφτk,l

vH
φtk,l

}

= E
{[

ejφτk,l ,1 , ejφτk,l 2 , . . . , ejφτk,l ,M
]T[

e−jφτk,l ,1 , e−jφτk,l 2 , . . . , e−jφτk,l ,M
]}

= E





1 · · · ejφτk,l ,1 e−jφτk,l ,M

...
. . .

...
ejφτk,l ,M e−jφτk,l ,1 · · · 1





=





1 · · · E
{

ejφτk,l ,1 e−jφτk,l ,M
}

...
. . .

...
E
{

ejφτk,l ,M e−jφτk,l ,1
}
· · · 1





(36)
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In (36), the diagonal elements of Qτk,l
are all 1, and the elements in row i and col-

umn j on the non-diagonal are E
{

ejφτk,l ,i e−jφτk,l ,j
}

= E
{

ejφτk,l ,i
}

E
{

e−jφτk,l ,j
}

, according to

φτ ∼ N
(

0, σ2
φτ

)
,

E
{

ejφτk,l ,i
}

=
∞∫
−∞

ejφτk,l ,i 1√
2πσφτk,l

e
−

φ2
τk,l ,i

2σ2
φτk,l dφτk,l ,i

= e−
σ2

φτk,l
2

∞∫
−∞

1√
2πσφτk,l

e

−
(φτk,l ,i−jσφτk,l

)2

2σ2
φτk,l dφτk,l ,i

= e−
σ2

φτk,l
2

(37)

Similarly, E
{

ejφτk,l ,i
}
= e−

σ2
φτk,l

2 . Therefore, E
{

ejφτk,l ,i e−jφτk,l ,i
}
= E

{
ejφτk,l ,i

}
E
{

e−jφτk,l ,i
}

= e
−σ2

φτk,l .

4.2. DC Programming

Since the constraint C1 is a Boolean constraint and the constraint C2 is a nonconvex con-
straint, the problem Q2 is a nonconvex and nonsmooth combinatorial optimization problem.
To handle this challenge, we can transform the problem Q2 into a DC programming prob-
lem [33]. Therefore, the relaxation variable ζk,l is introduced as the lower bound of the SINR
of the kth user in the lth multicast group, ζ = [ζ1, ζ2, . . . , ζL], ζl = [ζl,1, ζl,2, . . . , ζl,|Ul |]

T .
The problem Q2 can be equivalently converted to:

Q3 : max
η,W,SINRmin

l ,ζ
EE =

B
L
∑

l=1
log2

(
1 + SINRmin

l
)

L
∑

l=1
Tr(Wl) + P0

, (38)

s.t. C1, C3, C4, C5 ,C6 , C7 in Q1, (39)

C2 : SINRk,l ≥ ζk,l , ∀k, l, (40)

C8 : ζk,l ≥ ηk,lSINRmin
l , ∀k, l, (41)

where the constraint C2 can be equivalently converted to:

C2 ⇒ 1 + SINRk,l ≥ 1 + ζk,l , (42)

To further express (42) in the form of DC programming, we introduce new function
variables Γk,l(W) and Ik,l(W, ζk,l):

Γk,l(W) = σ2 +
L

∑
j=1.j 6=l

Tr
(
Hk,lWj

)
, (43)

Ik,l(W, ζk,l) =

σ2 +
L
∑

j=1
Tr
(
Hk,lWj

)

1 + ζk,l
, (44)

Therefore, the constraint C2 can be rewritten as:

C2 ⇒ Γ(W)− I(W, ζk,l) ≤ 0, (45)
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In (45), Γk,l(Wl) is the affine function of W, Ik,l(W, ζk,l) is the concave function of W
and ζk,l . The transformed constraint C2 is a typical DC constraint.

Similarly, the constraint C8 can be equivalently converted into the following DC form:

C8 ⇒ 4ζk,l +
(

ηk,l − SINRmin
l

)2
≥
(

ηk,l + SINRmin
l

)2
, (46)

In (38), the objective function in the problem Q3 is a fractional programming problem
with the sum-of-ratios form. To handle this problem, we invoke the quadratic transforma-
tion algorithm [34] and convert the problem Q3 into the following form:

Q4 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L

∑
l=1

Υl(SINRmin
l )

) 1
2

− q2

(
L

∑
l=1

Tr(Wl) + P0

)
, (47)

s.t. C1, C2, C3, C4, C5 ,C6 , C7, C8 in Q3, (48)

where q is the introduced auxiliary variable, and Υl(SINRmin
l ) is the introduced auxiliary

function, which can be expressed as:

Υl(SINRmin
l ) = log2

(
1 + SINRmin

l

)
, (49)

q =

√
L
∑

l=1
Υl(SINRmin

l )

L
∑

l=1
Tr(Wl) + P0

, (50)

In addition, for the nonsmooth combinatorial optimization problem caused by con-
straint C1, we invoke a relaxation and penalty algorithm. Firstly, we relax constraint C1
into C1 ⇒ 0 ≤ ηk,l ≤ 1, ∀k, l . Meanwhile, to avoid the non-duality of the solution of ηk,l
caused by the relaxation, the penalty term P(ηk,l) = ηk,l log ηk,l + (1− ηk,l) log(1− ηk,l) is
introduced into the objective function: let λ1 > 0 be the penalty factor, and the problem Q4
can be equivalently converted to:

Q5 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L

∑
l=1

Υl(SINRmin
l )

) 1
2

− q2

(
L

∑
l=1

Tr(Wl) + P0

)
+ λ1

L

∑
l=1

P(ηk,l), (51)

s.t. C2 : Γk,l(W)− Ik,l(W, ζk,l) ≤ 0, ∀k, l, (52)

C3, C4, C5 ,C6 , C7 in Q4, (53)

C8 : 4ζk,l +
(

ηk,l − SINRmin
l

)2
≥
(

ηk,l + SINRmin
l

)2
∀k, l, (54)

4.3. CCCP Algorithm

From (51), (52) and (54), it can be seen that the problem Q5 is a DC programming
problem. To handle this challenge, the CCCP framework algorithm is a common method
to solve the DC programming problem [35], which is an iterative framework including
two operations: convexification and optimization. In the convexification step, by adopting
the first-order Taylor expansion, the convex part of the objective function and the concave
part of the constraint function can be linearized; then, the DC programming problem is
transformed into a convex problem. It should be noted that the convex problem obtained
from the convexification step provides a global lower bound for the original problem, and
the optimization step is mainly to maximize the lower bound. Meanwhile, the performance
of the CCCP algorithm is closely related to the initial point of the variables, but the equality
constraint C4 of the problem Q5 limits the selection of the initial point. To find a feasible
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initial point, we substitute the constraint C4 into the objective function and set the penalty
factor λ2 > 0. Then, the problem Q5 can be equivalently converted to:

Q6 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L
∑

l=1
Υl(SINRmin

l )

) 1
2

− q2
(

L
∑

l=1
Tr(Wl) + P0

)

+λ1
L
∑

l=1
P(ηk,l)−

L
∑
l

λ2

(
|Ul |
∑
k

ηk,l −Us

)2 (55)

s.t. C2, C3, C5 ,C6 , C7, C8 in Q5, (56)

Convexification: Let
(

ηk,l , SINRmin
l , W, ζ

)(t−1)
be the estimated value of variables

(
ηk,l , SINRmin

l , W, ζ
)

in iteration t− 1 of the problem Q6. In iteration t, for the convex part

λ1
L
∑

l=1
P(ηk,l), we adopt the first-order Taylor expansion to replace it, which is reflected in

line three of Algorithm 1. The first-order Taylor expansion of P(ηk,l) can be expressed as:

P(ηk,l)
te = P

(
η
(t−1)
k,l

)
+
(

ηk,l − η
(t−1)
k,l

)
∇P
(

η
(t−1)
k,l

)
, (57)

∇P
(

η
(t−1)
k,l

)
= log

(
η
(t−1)
k,l

)
− log

(
1− η

(t−1)
k,l

)
, (58)

Similarly, in the constraint C2 : Γk,l(W) − Ik,l(W, ζk,l) ≤ 0, we replace the concave
function Ik,l(W, ζk,l) with its first-order Taylor expansion, which is reflected in line three of
Algorithm 1. The first-order Taylor expansion of Ik,l(W, ζk,l) can be expressed as:

Ik,l(W, ζk,l)
te = Ik,l

(
W(t−1), ζ

(t−1)
k,l

)
+∇TIk,l

(
W(t−1), ζ

(t−1)
k,l

)


{

Wl −W(t−1)
l

}L

l=1
ζk,l − ζ

(t−1)
k,l


, (59)

∇Ik,l

(
W(t−1), ζ

(t−1)
k,l

)
=








(
Hk,l

)T

1 + ζ
(t−1)
k,l





L

l=1

,−
σ2 +

L
∑

l=1
Tr
(

Hk,lW
(t−1)
l

)

(
1 + ζ

(t−1)
k,l

)2




T

, (60)

In the constraint C8 : 4ζk,l +
(

ηk,l − SINRmin
l

)2
≥
(

ηk,l + SINRmin
l

)2
∀k, l, we replace

the concave function
(

ηk,l − SINRmin
l

)2
with its first-order Taylor expansion, which is

reflected in line 3 of Algorithm 1. The first-order Taylor expansion of
(

ηk,l − SINRmin
l

)2

can be expressed as:

(
ηk,l − SINRmin

l

)2,te
=
(

η
(t−1)
k,l − SINRmin,(t−1)

l

)2
+




2
(

η
(t−1)
k,l − SINRmin,(t−1)

l

)

−2
(

η
(t−1)
k,l − SINRmin,(t−1)

l

)



T[
ηk,l − η

(t−1)
k,l

SINRmin
l − SINRmin,(t−1)

l

]
, (61)

Optimization: The optimization step is reflected in line nine of Algorithm 1. Accord-
ing to (57), (59) and (61), the problem Q6 can be equivalently converted to

Q7 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L
∑

l=1
Υl(SINRmin

l )

) 1
2

− q2
(

L
∑

l=1
Tr(Wl) + P0

)

+λ1
L
∑

l=1
P(ηk,l)

te −
L
∑
l

λ2

(
|Ul |
∑
k

ηk,l −Us

)2 (62)
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s.t. C3, C5 ,C6 , C7 in Q6, (63)

C2 : Γk,l(W)− Ik,l(W, ζk,l)
te ≤ 0, ∀k, l, (64)

C8 : 4ζk,l +
(

ηk,l − SINRmin
l

)2,te
≥
(

ηk,l + SINRmin
l

)2
∀k, l, (65)

For the problem Q7, the variables
(

ηk,l , SINRmin
l , W, ζ

)(t+1)
can be updated by the

iterative optimization.
Feasible Initial Point: It should be noted that the CCCP algorithm needs a feasible

initial point to ensure that the algorithm converges to a stationary point, as the selection of
the initial point can affect the performance of the CCCP algorithm. To find a better initial
point, we adopt the following method, which is reflected in line one of Algorithm 1.

• Initialize η
(0)
k,l ≈ 0, SINR0 = 1;

• Find W(0), the following optimization problem are modeled:

PFES :
{

W(0)
}

: min
W

L

∑
l=1

Tr(Wl), (66)

s.t. C1 :
∥∥∥σ2 . . . Tr(Hk,lWj)j 6=l . . .

∥∥∥ ≤ Tr(Hk,lWl)

ηk,lSINR0
, ∀k, l, (67)

C2 :
L

∑
l=1

Tr(Wl) ≤ PT , (68)

• If PFES is feasible, proceed to the next step, otherwise, update η
(0)
k,l = δη

(0)
k,l , 0 < δ < 1

and repeat step 2;
• Based on the W(0) obtained in step 2, calculate the SINR of each user, i.e., SINR(0)

k,l , ∀k, l,

and update η
(0)
k,l according to η

(0)
k,l = min

{
1,

SINR(0)
k,l

SINR0

}
;

• Based on η
(0)
k,l and W(0), calculate ζ(0) and

{
SINRmin,

l
(0)
}L

l=1
.

4.4. Penalty Iteration Algorithm

It should be noted that the SDP algorithm brings the nonconvex and nonsmooth
constraint, i.e., C7 : rank(Wl) = 1. To solve the rank-one constraint, many existing re-
search directly relaxes the rank-one constraint in the optimization step [36], and then
judges whether the optimization solution {Wl}L

l=1 meets the rank-one constraint. If so,
the eigenvalue decomposition (EVD) algorithm is directly adopted to obtain the hybrid
beamforming vectors {fl}L

l=1 according to Wl = fl f H
l , and if the optimization solution

{Wl}L
l=1 does not meet the rank-one constraint, the Gaussian randomization algorithm

(GRA) is usually adopted. The basic idea of the GRA is as follows: Firstly, a set of candi-

date Gaussian vectors
{{

wg,l

}G

g=1

}L

l=1
are generated based on the optimization solution

{Wl}L
l=1, where G represents the number of the Gaussian randomization. Secondly, from

the generated G-group candidate Gaussian vector pool, combined with the power redistri-
bution among the multicast groups, a group of Gaussian vectors is selected as the optimal
hybrid beamforming matrix to maximize the objective function in the problem Q7. It
should be noted that in the case of the high-dimensional matrix, GRA has high complexity
and large performance loss, resulting in poor availability. To this end, we adopt a feasible
algorithm with the better performance: the penalty iteration algorithm.
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According to the properties of the matrix, rank(Wl) = 1 is equivalent to Tr(Wl)−
λmax(Wl) = 0. Therefore, the nonsmooth method is adopted to transform the constraint
rank(Wl) = 1 in the problem Q7 into the following form:

C7 : Tr(Wl)− λmax(Wl) ≤ 0, (69)

where λmax(Wl) is the function of solving the maximum eigenvalue. It should be noted
that for any positive semidefinite matrix Wl�0, the inequality Tr(Wl)− λmax(Wl) ≥ 0 is
always true, which means that the transformed constraint C7 and Tr(Wl)− λmax(Wl) = 0
are equivalent. Then, we can obtain that the matrix Wl has only one non-zero eigenvalue
and can be given by

Wl = λmax(Wl)wl,maxwH
l,max, (70)

where wl,max is the corresponding unit eigenvector. Therefore, the problem Q7 can be
converted into

Q8 : max
η,W,SINRmin

l ,ζ
EE = 2q

(
B

L
∑

l=1
Υl(SINRmin

l )

) 1
2

− q2
(

L
∑

l=1
Tr(Wl) + P0

)

+λ1
L
∑

l=1
P(ηk,l)

te −
L
∑
l

λ2

(
|Ul |
∑
k

ηk,l −Us

)2 (71)

s.t. C2, C3, C5 ,C6 , C8 in Q7, (72)

C7 : Tr(Wl)− λmax(Wl) ≤ 0, (73)

In the iterative calculation of the problem Q8, based on the obtained Wl , if the value of
Tr(Wl)− λmax(Wl) is small enough, the matrix Wl can be considered to meet the rank-one
constraint, which is reflected in line seven of Algorithm 1. Therefore, to make the value
of Tr(Wl)− λmax(Wl) as small as possible, we adopt the penalty iteration algorithm and
substitute the constraint C7 into the objective function in the problem Q8. Therefore, the
problem Q8 can be converted into

Q9 : max
η,W,SINRmin

l ,ζ
EE = F

(
η, W, SINRmin

l , ζ
)
− λ3

L

∑
l
(Tr(Wl)− λmax(Wl)), (74)

s.t. C2, C3, C5 ,C6 , C8 in Q8 (75)

where F
(

η, W, SINRmin
l , ζ

)
= 2q

(
B

L
∑

l=1
Υl(SINRmin

l )

) 1
2

− q2
(

L
∑

l=1
Tr(Wl) + P0

)

+ λ1
L
∑

l=1
P(ηk,l)

te −
L
∑
l

λ2

(
|Ul |
∑
k

ηk,l −Us

)2

and λ3 > 0 is the penalty factor, which is gen-

erally larger enough to ensure that a smaller value of Tr(Wl)− λmax(Wl) can be obtained.
According to (74), the iterative calculation of the problem Q9 can maximize function

F
(

η, W, SINRmin
l , ζ

)
and minimize function Tr(Wl)− λmax(Wl). It should be noted that

Tr(Wl) is an affine function and λmax(Wl) is nonsmooth, which can result in the non-
smoothness of the objective function in the problem Q9. To handle the challenge, we
replace λmax(Wl) with its first-order Taylor expansion. The subgradient of λmax(Wl) is
∂λmax(Wl)

∂Wl
= wl,maxwH

l,max and its first-order Taylor expansion can be expressed as follows,
which is reflected in line eight of Algorithm 1.

λmax

(
W(t)

l

)
≥ λmax

(
W(t−1)

l

)
+
〈

wl,maxwH
l,max, W(t)

l −W(t−1)
l

〉
, (76)

where
〈

wl,maxwH
l,max, W(t)

l −W(t−1)
l

〉
= Tr

((
wl,maxwH

l,max

)H(
W(t)

l −W(t−1)
l

))
.
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We substitute (76) into the objective function in the problem Q9 to replace λmax(Wl),
and the problem Q9 can be expressed as:

Q10 : max
η,W,SINRmin

l ,ζ
EE = F

(
η, W, SINRmin

l , ζ
)
− λ3

L

∑
l

(
Tr(Wl)− λmax

(
W(t−1)

l

)
+
〈

wl,maxwH
l,max, W(t)

l −W(t−1)
l

〉)
, (77)

s.t. C2, C3, C5 ,C6 , C8 in Q9, (78)

In conclusion, the robust joint user scheduling and hybrid beamforming design algo-
rithm for the massive MIMO LEO satellite multigroup multicast communication system is
shown in Algorithm 1.

Algorithm 1: Joint user scheduling and hybrid beamforming design algorithm.

Input: CCCP algorithm iteration index k, thresholds ε1, penalty iteration algorithm iteration index
m, thresholds ε2, penalty factor λ1, λ2, λ3.

1. Initial:
(

η, W, SINRmin
l , ζ

)(k=0)
, q(k=0).

2. while
∣∣∣EE(k) − EE(k−1)

∣∣∣ ≥ ε1

3. Convexification step by (57), (59), (61).
4. Calculation q(k), substitute q(k) into (77).
5. Optimization step.

6. Let
(

η, W, SINRmin
l , ζ

)(m=0)
=
(

η, W, SINRmin
l , ζ

)(k=0)
.

7. while
∣∣∣∣
{

Tr
(

W(m)
l

)
− λmax

(
W(m)

l

)}L

l=1

∣∣∣∣ ≥ ε2

8. Calculate the maximum eigenvalue λmax(Wl) of W(m)
l and the corresponding eigenvector

w(m)
l,max.

9. Using CVX toolbox, calculate the variables
(

η, W, SINRmin
l , ζ

)(m)

opt
at the mth iteration

according to (77).

10. If
{

W(m+1)
l

}L

l
≈
{

W(m)
l

}L

l
, then

11. Update λ3 = 2λ3.
12. else
13. Update m = m + 1.
14. end
15. end

16. Update
(

η, W, SINRmin
l , ζ

)(k+1)
=
(

η, W, SINRmin
l , ζ

)(m)
, k = k + 1, λ1 = λ1 + 1,

λ2 = λ2 + 1.
17. end
Output:

(
η, W, SINRmin

l , ζ
)

opt.

5. Convergence and Complexity Analysis
5.1. Convergence

The effectiveness of the algorithm depends on its convergence. For the convergence of
the CCCP algorithm, the convergence has been proven by [37]. To prove the convergence of
the penalty iteration algorithm, let the variable solution and objective function value of the

optimization problem Q10 be
(

η, W, SINRmin
l , ζ

)(k+1)
and FEE

((
η, W, SINRmin

l , ζ
)(k+1)

)

at the kth iteration. Therefore, the convergence can be proved as follows:
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FEE

((
η, W, SINRmin

l , ζ
)(k+1)

)
= F

((
η, W, SINRmin

l , ζ
)(k+1)

)
− λ3

L
∑
l

(
Tr
(

W(k+1)
l

)
− λmax

(
W(k+1)

l

))

≥ F
((

η, W, SINRmin
l , ζ

)(k+1)
)
− λ3

L
∑
l

(
Tr
(

W(k+1)
l

)
− λmax

(
W(k)

l

)
−
〈

wl,maxwH
l,max, W(k+1)

l −W(k)
l

〉)

by(75)
≥ F

((
η, W, SINRmin

l , ζ
)(k))

− λ3
L
∑
l

(
Tr
(

W(k)
l

)
− λmax

(
W(k)

l

))

= FEE

((
η, W, SINRmin

l , ζ
)(k))

(79)

The convergence can be proved according to (79). Therefore, after initializing the

values of
(

η, W, SINRmin
l , ζ

)(k=0)
, λ

(k=0)
1 , λ

(k=0)
2 and λ

(k=0)
3 , the proposed algorithm can

iteratively converge to an optimal solution by setting a reasonable convergence threshold.

5.2. Complexity

The complexity of the algorithm directly affects its performance. In the algorithms
adopted, the complexity of the hierarchical clustering algorithm can be calculated according
to the connection algorithm, similarity measurement criteria and hierarchical grouping
process, and the algorithm complexity can be expressed as O

(
LK2N

)
. The complexity of

the joint user scheduling and hybrid beamforming design algorithm is closely related to the
number of multicast groups and scheduling users. In addition, the number of optimization
variables and constraints in the CCCP algorithm and the penalty iteration algorithm can
also affect the complexity [38]. In the problem Q10, the number of optimization variables

is 2
L
∑

l=1
|Ul | + 2L, the number of convex constraints is

L
∑

l=1
|Ul | and the number of linear

constraints is
L
∑

l=1
|Ul |+ 3L. Let the number of iterations in the penalty iteration algorithm

and the CCCP algorithm be Ip and Ic, respectively. In conclusion, the overall complexity of

the proposed algorithm is O
(

LK2N + Ip Ic

(
2

L
∑

l=1
|Ul |+ 2L

)(
2

L
∑

l=1
|Ul |+ 3L

))
.

According to the algorithm complexity, the proposed joint user scheduling and hybrid
beamforming design algorithm has a strong timeliness in small dimensional communication
systems. However, for large dimensional communication systems, such as the satellite
communication system, the number of active users is usually large. According to the
complexity analysis, with the increase in the total number of active users, the convergence
speed of the algorithm would gradually slow down, and the complexity would gradually
increase. Considering the characteristics of the LEO satellite communication system, the
delay caused by the high complexity is unacceptable, which would affect the overall
performance of the communication system. To handle this problem, considering the
balance of the algorithm performance and complexity, before the joint user scheduling and
hybrid beamforming design, we can appropriately reduce the system dimension by adding
the user preselection step in the algorithm process. The user preselection step can reduce
the total number of active users in each transmission, and then we carry out the joint user
scheduling and hybrid beamforming design for preselected users.

6. User Preselection Algorithm

In the user preselection step, Ul,p users in the lth multicast group are preselected as
the user representatives, where Us < Ul,p ≤ |Ul |. The user preselection process is shown in
Figure 6. The symbols (circles, squares and triangles) represent the users in different the
multicast group. The red circles represent preselected users and scheduling users.
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The selection of preselected users can affect the performance of the joint user schedul-
ing and hybrid beamforming design algorithm, which depends on the preselected algo-
rithm. In the beamforming design of the multigroup multicast communication system,
the beamforming vector is oriented to multiple users in the multicast group. Therefore, in
the process of user preselection, to maximize the receive gain of each user, i.e.,

∣∣∣hH
k,lfl

∣∣∣, the
beamforming vector fl of the lth multicast group should be collinear with the users’ channel
vectors in the multicast group as far as possible. Therefore, the channel vectors of the
preselected users in the same multicast group should also be strongly linearly correlated.
Meanwhile, the interference among multicast groups should also be taken into account in
the user preselection stage. To reduce the interference among multicast groups, the channel
vectors of preselected users among different multicast groups should be orthogonal. Sim-
ilarly, the beamforming vector of the multicast group should be orthogonal to the users’
channel vectors in other multicast groups.

In conclusion, we adopt a low complexity user preselection algorithm, which can
preselect orthogonal users among the different multicast groups and linearly correlated
users in the same multicast group. The proposed algorithm is divided into two steps,
as follows:

• The first step: according to the orthogonal criterion [11], a user is preselected for each
multicast group in turn, which is reflected in line three and line four of Step 1 in
Algorithm 2;

• The second step: based on the users of each multicast group selected in the first step,
linearly correlated users are selected for each multicast group, which is reflected in
line two and line three of Step 2 in Algorithm 2.

The specific preselection process of the two steps is as follows:
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Algorithm 2: User preselection algorithm.

Step 1: Orthogonal user preselection algorithm among the different multicast groups.
Input: CSI.
1. Let Id(1) = Index

{
max

(∥∥hk,l
∥∥), ∀k, l

}
, select the user with the largest channel gain, Id(1) is the

index of the user.
2. while l ≤ L, l 6= Id(1)

3. For all users in the lth multicast group, calculate Zk,l = hk,l

(
IN −∑

Id(l)

j=Id(1)

hH
(j)h(j)

‖h(j)‖2
2

)
in turn.

4. Id(l) = Index
{

max
(∥∥Zk,l

∥∥), ∀k ∈ l
}

, the user with index Id(l) is the preselected orthogonal
user of the lth multicast group.
5. end
Output: Orthogonal users among the different multicast groups.
Step 2: User preselection algorithm in each multicast group.
Input: Orthogonal users among the different multicast groups, CSI.
1. For l = 1 : L
2. For other users in the lth multicast group except the orthogonal user preselected in step 1,
calculate the linear correlation value between each user and the preselected orthogonal user of the

multicast group in turn, i.e., Ck,l = hH
k,l

hId(l)
hH

Id(l)∥∥∥hH
Id(l)

∥∥∥
2

2

.

3. Based on the Ck,l of users in each multicast group, select top
(

Ul,p − 1
)

largest users, plus the
orthogonal users in step 1 as the preselected users of each multicast group.
4. end
5. end
Output: Preselected users for each multicast group.

After the user preselection, the joint user scheduling and hybrid beamforming design
is for the preselected users. Therefore, the dimension of the LEO satellite communication
system will be reduced, and the algorithm complexity will be reduced. Although the
algorithm performance has a slight loss, compared with the decoupling design of user
scheduling and beamforming, the performance is greatly improved. In conclusion, the joint
user scheduling and hybrid beamforming design with the user preselection step is a better
choice after balancing performance and complexity.

7. Solution of The Digital Beamforming Matrix and The Analog Beamforming Matrix

In this section, we aim to investigate the design of digital beamforming matrix FBB
and analog beamforming matrix FRF in a hybrid beamformer. After obtaining W, we need
to further solve FBB and FRF. The solution method of FBB and FRF can be divided into
two steps:

• The first step: we adopt the EVD algorithm to solve the hybrid beamforming matrix F
from W.

• The second step: we propose the MM-AltOpt algorithm to obtain FBB and FRF.

7.1. Solution of The Hybrid Beamforming Matrix

Before calculating FBB and FRF, it is necessary to obtain the hybrid beamforming
matrix F. For the solution of F, we can adopt the EVD algorithm based on the previously
obtained optimization variable W. According to the relationship between W and F, i.e.,
Wl , flf

H
l , the solution of F can be modeled as follows:

min
fl

∥∥∥Wl − flf
H
l

∥∥∥
2

F
, (80)

where the hybrid beamforming vector fl can be given by

fl =
√

vlul , ∀l, (81)
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where vl is the maximum eigenvalue of the matrix Wl and ul is the maximum eigenvector
of the matrix Wl .

7.2. MM-AltOpt Algorithm: Solution of FBB and FRF

According to F = FRFFBB and
∣∣∣(FRF)i,j

∣∣∣ = 1, the solution of FBB and FBB can be
modeled as a joint optimization problem with the power and constant modulus constraints,
as follows:

P1 : min
FBB ,FRF

∥∥Fopt − FRFFBB
∥∥2

F, (82)

s.t. C1 : FRF ∈ F, (83)

C2 : ‖FRFFBB‖2
F = PT , (84)

where F =

{
FRF ∈ CN×L

∣∣∣∣
∣∣∣FRF(i,j)

∣∣∣
2
= 1, 1 ≤ i ≤ N, 1 ≤ j ≤ L

}
represents the unit mod-

ulus constraint, which is determined by the phase shifter in UPA, and the constraint C2
represents the power constraint.

It is worth noting that the problem P1 is a matrix decomposition problem with the
constant modulus constraint and the equality constraint. The objective function is a noncon-
vex function of variables FBB and FRF, and the constraints C1 and C2 are also nonconvex.
Meanwhile, it can be seen that when one of the two variables is given, the objective func-
tion is the convex function of the other variable. To solve the problem P1, we invoke the
alternating optimization algorithm. The alternating optimization algorithm can decompose
the multivariable joint optimization problem into multiple subproblems according to the
partial convexity of the problem P1, and one of the variables can be iteratively solved by
fixing the residual variables.

It should be noted that the nonconvexity of constraints is still a challenge. To this
end, we first relax the constraint C2, and then use the scale factor to adjust the digital
beamforming matrix FBB to meet the power constraint. Then, for the solution of the
analog beamforming matrix FRF with the unit modulus constraint, the MM algorithm is
adopted [33].

7.3. Solution of The Analog Beamforming Matrix Based on The MM Algorithm

According to the solution process of the alternating optimization algorithm, we first
solve the analog beamforming matrix FRF based on the digital beamforming matrix FBB.
Thus, the problem P1 can be expressed as:

P2 : min
FRF

∥∥∥F− FRFF(n)
BB

∥∥∥
2

F
, (85)

s.t. C1 : FRF ∈ F, (86)

where F(n)
BB represents the estimated value of the digital beamforming matrix FBB at the

nth iteration. Due to the unit module constraint of elements in FRF, the problem P2 is a
nonconvex optimization problem.

According to the MM framework theory, the key step is constructing a surrogate
function of the objective function in the optimization problem [39]. To construct the
surrogate function, we decompose the matrix F by rows. According to the equivalence of
the F-norm and L2-norm of the vector, the problem P2 can be rewritten as:

P3 : min
FRF

N

∑
i=1

FH
i Fi − 2<

(
FH

i F(n)
BB FRF,i

)
+ FH

RF,iF
(n)
BB F(n)

BB
HFRF,i, (87)

s.t. C1 : FRF ∈ F, (88)

where FH
i represents the ith row vector of the matrix F, and FH

RF,i represents the ith row
vector of the matrix FRF.
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It should be noted that the third term FH
RF,iF

(n)
BB F(n)

BB
HFRF,i in (86) is a convex function

term, which needs further conversion. According to the first-order Taylor expansion,
FH

RF,iF
(n)
BB F(n)

BB
HFRF,i can be converted into:

FH
RF,iF

(n)
BB F(n)

BB
HFRF,i = F(q)H

RF,i F(n)
BB F(n)

BB
HF(q)

RF,i + 2<
(

F(q)H
RF,i F(n)

BB F(n)
BB

H
(

FRF,i − F(q)
RF,i

))

+
(

FRF,i − F(q)
RF,i

)H
F(n)

BB F(n)
BB

H
(

FRF,i − F(q)
RF,i

) (89)

where F(q)
RF,i represents the estimated value of FRF,i at the qth iteration. According to the

MM algorithm, the surrogate of FH
RF,iF

(n)
BB F(n)

BB
HFRF,i can be expressed as follows:

FH
RF,iF

(n)
BB F(n)

BB
HFRF,i ≤ F(q)H

RF,i F(n)
BB F(n)

BB
HF(q)

RF,i + 2<
(

F(q)H
RF,i F(n)

BB F(n)
BB

H
(

FRF,i − F(q)
RF,i

))

+
(

FRF,i − F(q)
RF,i

)H
X(n)

(
FRF,i − F(q)

RF,i

) (90)

where X(n) is a positive semidefinite matrix and satisfies the constraint X(n)�F(n)
BB F(n)

BB
H ;

here, we let X(n) = λmax

(
F(n)

BB F(n)
BB

H
)

I and λmax

(
F(n)

BB F(n)
BB

H
)

represents the maximum

eigenvalue of the matrix F(n)
BB F(n)

BB
H . In conclusion, (89) can be further expressed as:

FH
RF,iF

(n)
BB F(n)

BB
HFRF,i ≤ λmax

(
F(n)

BB F(n)
BB

H
)

FH
RF,iFRF,i + 2<

(
FH

RF,i

(
F(n)

BB F(n)
BB

H − λmax

(
F(n)

BB F(n)
BB

H
)

I
)

FRF,i

)

+F(q)H
RF,i

(
λmax

(
F(n)

BB F(n)
BB

H
)

I− F(n)
BB F(n)

BB
H
)

FRF,i

(91)

According to (90), the surrogate function of the objective function in the problem P3
can be expressed as:

P3 : min
FRF

N
∑

i=1
FH

i Fi − 2<
(

FH
i F(n)

BB FRF,i

)
+ FH

RF,iF
(n)
BB F(n)

BB
H FRF,i ⇒

P4 : min
FRF

N
∑

i=1
FH

i Fi − 2<
(

FH
i F(n)

BB FRF,i

)
+ λ

(
F(n)

BB F(n)
BB

H
)H

RF,i
RF,imax

+2<(FH
RF,i(F(n)

BB F(n)
BB

H−

λ(F(n)
BB F(n)

BB
H)max()RF,i)()

(q)H
RF,i (λ(F(n)

BB F(n)
BB

H)
(n)
BB

(n)
BB

H
max()RF,i)),

(92)

It is worth noting that the first and third terms of the objective function in the problem
P4 are constant terms, and the last term is independent of the variable FH

RF,i. After ignoring
the above three items, the problem P4 can be converted to the following projection problem:

P5 : min
FRF

N

∑
i=1

∥∥∥FRF,i − c(q)i

∥∥∥
2

2
, (93)

s.t. C1 : FRF ∈ F, (94)

where c(q)i = F(n)
BB Fi −

(
F(n)

BB F(n)
BB

H − λmax

(
F(n)

BB F(n)
BB

H
)

I
)

F(q)H
RF,i .

Therefore, the following closed form solution can be obtained for the problem P5,
which is reflected in line three of the inner algorithm in Algorithm 3:

FRF,i = ejarg(c(q)i ), ∀i, (95)

FRF = e−jarg(C(q)T), (96)

where C(q) = F(n)
BB FH −

(
F(n)

BB F(n)
BB

H − λmax

(
F(n)

BB F(n)
BB

H
)

I
)

F(q)H
RF , which is reflected in line

two of the inner algorithm in Algorithm 3.
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7.4. Solution of The Digital Beamforming Matrix

Based on the analog beamforming matrix FRF obtained in the previous section, the
solution problem of the digital beamforming matrix FBB can be modeled as follows:

P6 : min
FBB

∥∥∥F− F(n)
RF FBB

∥∥∥
2

F
, (97)

s.t.
∥∥∥F(n)

RF FBB

∥∥∥
2

F
= PT , (98)

where F(n)
RF represents the estimated value of the analog beamforming matrix FRF at the nth

iteration. Due to the quadratic form and the convex equality constraint in the problem P6,
the problem P6 is a nonconvex QCQP form problem.

One of the ways to solve the problem P6 is to relax the equality constraint into the
inequality constraint, and then convert the problem P6 into a convex minimization problem,
which can be solved with the CVX toolbox, but the complexity of this method is high.
To this end, based on the fact that the hybrid beamforming matrix F satisfies the power
constraint, i.e., ‖F‖2

F = PT , the following closed form solution can be obtained for the
problem P6, which is reflected in line two of the main algorithm in Algorithm 3:

FBB =
(

F(n)H
RF F(n)

RF

)−1
F(n)H

RF F, (99)

In conclusion, the MM-AltOpt algorithm for solving FBB and FRF can be described as
the main algorithm and the inner algorithm, as follows:

Algorithm 3: Design algorithm of the digital beamforming matrix and the analog
beamforming matrix.

Main algorithm: MM-AltOpt algorithm.
Input: Hybrid beamforming matrix F, initial: F(n=0)

RF ∈ F, iteration index n = 0, threshold
ε3 = 10−3, the solution of the objective function of the problem P1 in the nth iteration is δ(n).

1. while
∣∣∣δ(n) − δ(n−1)

∣∣∣ ≥ ε3

2. Based on F(n)RF , calculate F(n+1)
BB according to FBB =

(
F(n)H

RF F((n))RF

)−1
F(n)H

RF F.

3. Based on F(n+1)
BB , calculate F(n+1)

RF according to the inner algorithm.
4. Set n = n + 1.
5. end
Output: FRF,FBB, normalize FBB =

√
PT

‖FRF FBB‖F

FBB.

Inner algorithm: Algorithm for solving the analog beamforming matrix.
Input: Hybrid beamforming matrix F, F(n)BB , F(q=0)

RF ∈ F, iteration index q = 0, threshold ε4 = 10−3,

the solution of the objective function of the problem P5 in the qth iteration is δ
(q)
1 .

1. while
∣∣∣δ(n) − δ(n−1)

∣∣∣ ≥ ε4

2. Calculate C(q) = F(n)BB FH −
(

F(n)BB F(n)BB
H − λmax

(
F(n)BB F(n)BB

H
)

I
)

F(q)H
RF .

3. Calculate FRF = e−jarg(C(q)T).
4. Set q = q + 1.
5. end
Output: F(n)RF .

8. Results and Discussion

In this section, we evaluate the performance of the proposed joint user scheduling
and hybrid beamforming design algorithm by numerical simulations. In the numerical
simulations, we set the number of multicast groups to L = 7, which cover 150 active users,
and set the SINR constraint threshold of each multicast group to SINR0 = 1. To facilitate
analysis, we assume that the CSI errors of different multicast groups are the same, which
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are expressed as σ2
f rsd
d,k,l

= σ2
f rsd
d

and σ2
φτk,l

= σ2
φτ

. The value of P0 can be calculated by [31]. In

addition, the system parameters used in the numerical simulations are shown in Table 1.

Table 1. Simulation parameters.

Parameters Values Parameters Values

N 8× 8 = 64 κ 1.38× 10−23 J·K−1

L 7 P0 21.5 W
κk,l 10 T 300 K

Bandwidth 50 MHz Gleo 3 dB
Orbit altitude 1000 km Gut 3 dB
Beam radius 250 km f 20 GHz

LPat 0.017 dB K 150

Figure 7 shows the convergence trajectory of the EE of the massive MIMO LEO satellite
multigroup multicast communication system, versus the number of iterations for different
CSI errors, different numbers of preselected users and different scheduling algorithms.
In this simulation, two groups of channel errors are set according to Refs. [23,29], i.e.,
σ2

f rsd
d

= 25, σ2
φτ

= 10 and σ2
f rsd
d

= 20, σ2
φτ

= 5. In addition, we set Us = 2 and PT = 50 W.

Meanwhile, we set two different numbers of the preselected users, i.e., Ul,p/Us = 2, Ul,p = 4
and Ul,p/Us = 3, Ul,p = 6. It can be seen that the proposed robust algorithm has higher
performance gain than the traditional nonrobust algorithm, which shows the effectiveness
of the robust algorithm. Meanwhile, it can be seen that when σ2

f rsd
d

= 25, σ2
φτ

= 10 and

σ2
f rsd
d

= 20, and σ2
φτ

= 5, the EE performance gain of the proposed robust algorithm

is improved by 9.8% and 6.7%, respectively, compared with the traditional nonrobust
algorithm. The system EE of the proposed joint user scheduling and hybrid beamforming
design algorithm is higher than that of the decoupling design algorithm, and the more
preselected users, the higher performance improvement.
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Figure 7. Convergence trajectory of system EE relative to different CSI errors, different number of
preselected users and different scheduling algorithms.

Figure 8 compares the EE performance of the proposed algorithm and the traditional
algorithm under different system parameters, versus different transmission power thresh-
olds PT . It can be seen that with the increase in transmission power, the EE performance
shows a trend of first rising and then falling. The reason is that the growth rate of the
system rate is lower than that of the power consumption. Meanwhile, we can see that the
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EE of the joint user scheduling and hybrid beamforming design algorithm is higher than
that of the decoupling design algorithm versus different transmission power thresholds PT .
Under the conditions of σ2

f rsd
d

= 25, σ2
φτ

= 10 and PT = 15 W, when Ul,p/Us = 2, Ul,p = 4

and Ul,p/Us = 3, Ul,p = 6, the EE performance gain of the proposed joint design algorithm
is 28.41% and 45.19% higher than that of the traditional decoupling design algorithm.
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Figure 8. Comparison of system EE of different algorithms with different transmission power
thresholds PT .

Figure 9 indicates the change trend of the SE of the massive MIMO LEO satellite
multigroup multicast communication system versus different transmission power thresh-
olds PT . It can be seen that the SE increases with the increase in the transmission power.
Meanwhile, we can see that the SE of the joint user scheduling and hybrid beamforming
design algorithm is higher than that of the decoupling design algorithm. In addition, the
more preselected users, the higher the system SE. Compared with the traditional algorithm,
the proposed robust joint design algorithm can obtain higher system SE at the same trans-
mission power, and thus can improve the system EE. Under the conditions of σ2

f rsd
d

= 25,

σ2
φτ

= 10 and PT = 30 W, when Ul,p/Us = 2, Ul,p = 4 and Ul,p/Us = 3, Ul,p = 6, with
the improvement of system SE performance, the EE performance gain of the proposed
joint design algorithm is 26.16% and 37.85% higher than that of the traditional decoupling
design algorithm.

Figure 10 shows the SE comparison of different multicast groups. It can be seen that
the SE of each multicast group of the proposed robust algorithm is higher than that of the
nonrobust algorithm. Meanwhile, with the increase in the number of preselected users, the
diversity of users increases, and the performance of the proposed joint user scheduling and
hybrid beamforming design algorithm also improves. This is because with the increase
in the number of preselected users, the range of users that can be scheduled and selected
increases. By scheduling different users in each multicast group, the SE can be further
improved. Meanwhile, with the improvement of the system SE, the system EE performance
gain also increases, which verifies the effectiveness of the joint user scheduling and hybrid
beamforming design algorithm.
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Figure 10. Comparison of SE of different multicast groups.

Figure 11 shows the change trajectory of the system EE and SE versus the different Us.
It can be seen that with the increase in Us, the system EE and SE show a downward trend.
This is because the communication rate of each multicast group is constrained by the user
with the worst SINR in the multicast group. With the increase in Us, if the users’ channel
vectors in the multicast group remain collinear, the EE and SE would remain unchanged.
However, according to the rules of the user preselection and scheduling, with the increase
in Us, the collinearity among users in the multicast group would decrease, which can result
in the increase in interference and the decrease in the worst SINR in each multicast group.
In other words, with the decrease in Us, the users’ SINR will be improved. Therefore, with
the improvement of SINR, the system EE performance gain also increases, as shown in
Figure 11a. Under the condition of Ul,p/Us = 2, Ul,p = 4, when Us = 2, the EE performance
gain is 21.05% higher than when Us = 4.
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Figure 11. Change trajectory of system performance versus different Us. (a) Change trajectory of
system EE versus different Us; (b) change trajectory of system SE versus different Us.

Figure 12 shows the performance comparison of different algorithms for solving
FBB and FRF. In this simulation, we set three comparison algorithms, i.e., the optimal
design algorithm, the alternating minimization algorithm based on the phase extraction
(PE-Altmin) algorithm and the orthogonal matching pursuit (OMP) algorithm. The opti-
mal design algorithm refers to the numerical simulation result of the hybrid beamform-
ing matrix F. It can be seen that the system performance of the MM-AltOpt algorithm
is slightly lower than that of the optimal design algorithm. Meanwhile, in Figure 12a,
when PT = 10 W, we can see that the system EE performance gain of the proposed
MM-AltOpt algorithm is improved by about 2% and 5%, respectively, compared with
the PE-Altmin algorithm and the OMP algorithm. In addition, from the perspective of
algorithm complexity, the complexities of the MM-AltOpt algorithm, PE-Altmin algo-
rithm and OMP algorithm are O

(
IMM

(
N3 + IInner2NL2 + NL

))
, O
(

IPE
(

N3 + L3 + NL
))

and O
(

IOMP
(

L4N + L2 + N2L2 + 2L3)), respectively, where IMM, IInner, IPE and IOMP are
the number of iterations of the corresponding algorithm. In conclusion, we can see that the
complexity of the proposed MM-AltOpt algorithm is close to that of the other two algo-
rithms, however, the system EE performance is higher, which can verify the effectiveness
of the proposed algorithm.
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9. Conclusions

In this paper, we investigated the robust joint user scheduling and hybrid beamforming
design scheme for the massive MIMO LEO satellite multigroup multicast communication
system. The scheme design considered the limited transmission power of the LEO satellite
and the requirement of QoS and analyzed the influence of residual Doppler shift and
phase disturbance on CSI errors. On this basis, taking the system EE as the optimization
objective, we focused on the robust joint user scheduling and hybrid beamforming design.
To reduce the complexity of the algorithm, we proposed the user preselection step, which
can significantly reduce the system complexity while ensuring the system performance.
For the nonconvex problem of the objective function, we adopted the CCCP framework
after transforming the optimization problem into the DC programming problem. For the
rank-one constraint, we proposed the penalty iterative algorithm. Finally, to obtain the
digital and analog beamforming matrices, we adopted the MM-AltOpt algorithm.

Numerical results indicated that the proposed algorithm can effectively improve the
system EE. The EE performance gain of the proposed robust algorithm was improved
by nearly 10% compared with the traditional nonrobust algorithm. Meanwhile, the EE
performance gain of the proposed joint user scheduling and hybrid beamforming design
algorithm was improved by nearly 40% compared with the traditional decoupling design
algorithm. In conclusion, the robust joint user scheduling and hybrid beamforming design
algorithm proposed in this paper can significantly improve the system EE performance.
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MIMO multi-input multi-output
LEO low earth orbit
UPA uniform planar array
EE energy efficiency
SDP semidefinite programming
CCCP concave convex process
MM majorization-minimization
AltOpt alternative optimization
SE spectrum efficiency
CSI channel state information
GEO geosynchronous earth orbit
QoS quality of service
BFP Boolean fractional programming
QCQP quadratic constraint quadratic programming
DC difference of convex
FEC forward error correction
SINR signal to interference plus noise ratio
SNR signal-to-noise ratio
CRLB Cramer–Rao lower bound
EVD eigenvalue decomposition
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GRA Gaussian randomization algorithm
PE-Altmin alternating minimization algorithm based on the phase extraction
OMP orthogonal matching pursuit
OFDMA orthogonal frequency division multiple access
WMMSE weighted minimum mean-square error
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Abstract: The dense deployment of small cells (SCs) in the 5G heterogeneous networks (HetNets)
fulfills the demand for vast connectivity and larger data rates. Unfortunately, the power efficiency
(PE) of the network is reduced because of the elevated power consumption of the densely deployed
SCs and the interference that arise between them. An approach to ameliorate the PE is proposed
by switching off the redundant SCs using machine learning (ML) techniques while sustaining the
quality of service (QoS) for each user. In this paper, a linearly increasing inertia weight–binary particle
swarm optimization (IW-BPSO) algorithm for SC on/off switching is proposed to minimize the power
consumption of the network. Moreover, a soft frequency reuse (SFR) algorithm is proposed using
classification trees (CTs) to alleviate the interference and elevate the system throughput. The results
show that the proposed algorithms outperform the other conventional algorithms, as they reduce
the power consumption of the network and the interference among the SCs, ameliorating the total
throughput and the PE of the system.

Keywords: 5G HetNets; BPSO; classification trees (CTs); soft frequency reuse (SFR); small cells (SCs)

1. Introduction

Recently, the exponential growth of the numerous wireless devices and the data-
hungry applications have earned huge significance. This required imperious expansion
of the 5G network to support the forthcoming 5G use cases, such as video live-streaming,
conferencing, online gaming, etc. [1,2]. Moreover, the 5G cellular network is planned to
elevate the capacity 1000 times and the spectrum efficiency by 5–15 times with respect to
4G [3,4]. This can be achieved by utilizing heterogeneous networks (HetNets), which can
enhance the system data rates and the quality of service (QoS) of the users as the small cells
(SCs) are deployed within the macro cells (MCs) coverage area. Furthermore, SCs offer the
benefit of providing service to previously uncovered regions and in the network regions
demanding larger capacity [2,3,5–7]. Figure 1 shows a general representation of the HetNet
scenario with the MCs underlaid by the densely deployed SCs.

It is foreseen that the massive growth in the SC deployment will be continued in
the coming years [8,9], leading to various challenges such as the interference among the
SCs [10], their elevated power consumption [11,12], and the elevated operating expenses [9].
Thus, it is crucial to face these challenges to ameliorate the performance of 5G HetNets.
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The main objective of our paper is to propose a new approach for the irregular nature
of the 5G HetNets that merge the usage of both binary particle swarm optimization (BPSO)
algorithm with linear increasing inertia weight (IW) and soft frequency reuse (SFR) to
maximize the power efficiency (PE) of the SCs and minimize the number of active SCs
while guaranteeing the QoS for the UEs. In SFR, every SC is split into center and edge
regions where one of the unutilized sub-bands by the edge regions of the adjoining SCs is
allocated to the edge region of the SC, while the remaining sub-bands are utilized in the
center region of the SC with reduced transmission power to diminish the interference to the
adjoining SCs. Unlike the prior works [9,13,14] that will be discussed later in Section 2, the
proposed algorithm utilizes the linear increasing IW-BPSO algorithm for selecting the SCs
to be switched on/off, and we propose the SFR utilizes classification trees (CTs) to enhance
the network PE, taking into consideration the irregular nature of the 5G HetNets. The
on/off switching of SCs using BPSO algorithm is carried out first; then the SFR is applied
for sub-band allocation to minimize the number of operations required for allocating the
sub-bands to the SCs.

The main contributions of this paper can be summarized as follow:

1. Propose an algorithm for irregular 5G HetNets based on BPSO algorithm for SC
on/off switching to ameliorate PE of the system, and, using a linearly increasing
IW approach where the IW is linearly increasing in each iteration, to enhance the
convergence of the BPSO algorithm.

2. Propose a novel frequency allocation algorithm for SFR based on the CTs as it is simple
and accurate machine learning (ML) technique to mitigate the interference among the
irregularly shaped SCs.

Results demonstrate that the proposed algorithms have superior performance over the
conventional algorithms (always on, random 10%, and BPSO only), as it has higher total
system throughput and PE, and lower system power consumption and outage probability.

The remainder of the paper is organized as follows: the literature review is presented
in Section 2. Section 3 demonstrates the system model, and Section 4 explains the proposed
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algorithms. Then, Section 5 shows the simulation results. Eventually, Section 6 concludes
the paper.

2. Literature Review

Recently, immense research has been carried out to ameliorate the PE of the mod-ern
communication networks, such as satellite and terrestrial networks [15,16], massive MIMO
systems [17] and SCs networks [18–23].

SC on/off switching is an auspicious approach to minimize the power consumption
and enhance the PE of the system [18–23]. The authors in [18,19] studied the elevated the
energy consumption of WLAN. They proposed solving the problem by on/off switching
and power adjustment of the access stations. The authors in [20] proposed a load-aware
strategy, where SCs in HetNets are switched to sleep mode according to their load level.
In [21], every SC independently switches off upon the decrease in the number of user
equipments (UEs) and activates using one of three approaches. The first approach is the
sleeping SC keeps sensing the interference plus noise levels and switches on when a new
UE is sensed in its coverage area. The second approach is that the MC sends a wake-up
request to all SCs upon increasing the number of UEs associated with the MC, then switches
off the SCs with no UEs later. In the third approach, a time advance indicator is sent to the
MC by the UEs and the SCs and is utilized by the MC to determine the nearest SC to the UE
to switch on. In [22], pre-sleeping SCs at the same zone create a sleeping cluster. Then, the
SCs in the sleeping cluster are randomly selected to be switched off leaving only one active
SC to guarantee the coverage. On the other hand, the authors in [23] proposed switching
off the SCs and handing over the UEs to the MC. However, the unplanned SC off switching
may increase the unnecessary handovers and underutilize the SCs. Thus, novel SC on/off
switching techniques are required to enhance the performance of the 5G HetNets and to
reduce the power consumption of the system.

PSO is a prevalent meta-heuristic algorithm used in solving optimization problems [9];
thus, the authors in [9,24,25] utilized the PSO algorithm for SC switching to enhance the
performance of the system. The authors in [9] proposed an efficient cell modeling (ECM)
algorithm to set up the connection initially between the UEs and the SCs by selecting the
strongest received signals. Then, the BPSO algorithm is utilized to turn off the excessive
SCs. The authors in [24] proposed first utilization of BPSO algorithm to choose the MCs’
optimum locations not only to achieve minimum overlap but also to guarantee a reasonable
coverage for the UEs. Then, a multi-stage PSO (MS-PSO) algorithm consisting of two
interactive loops are utilized. The outer loop is utilized to switch the SCs (on or off), while
the inner loop is utilized to optimize the active power of the SC and to elevate the power of
the SC if the data rate rises. On the other hand, a combined optimal frequency and power
allocation (COFPA) scheme is proposed in [25]. First, using the BPSO algorithm, the MCs
are switched on and off until the lead interferer is abolished with minimum cost function
and with a reasonable coverage to the UEs. Then, the MS-PSO algorithm is utilized to
control the SC switching to mitigate the interference and minimize the power consumption.
However, the convergence of the PSO can be enhanced by adjusting its IW, leading to
improve the system performance.

IW has a significant role in the process of offering a trade-off among diversification
and intensification skills of PSO algorithm. Reducing the IW facilitates exploring the
search space (global search), although raising the IW aids exploiting the search space (local
search) [26] to find the solution (particle). Numerous approaches are presented to adjust
the IW such as the constant IW [9,27] and the random IW [28]. However, the constant IW
approach can fail to balance exploration and exploitation because of the lack of adjustment
of IW [29,30]. On the other hand, the authors in [31] propose a linearly decreasing IW
technique where the IW is initialized at a larger value; then it is linearly reduced to a smaller
value. However, in this technique, the tendency of the particles to local search is constantly
increasing. The authors in [32,33] demonstrated that the increase in IW surpasses the
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decrease in IW for PSO on all their tested benchmarks. Thus, the linearly increasing IW is
adopted in our paper.

Various interference mitigation techniques for the modern networks are presented
in the literature such as advanced multiple access techniques [34,35] and frequency reuse
(FR) [13,36–39]. FR is an auspicious approach aiming to mitigate the interference in the
modern HetNets [37]. SFR is presented to minimize the interference in HetNets [13,36,38,39].
The authors in [36] present SFR in HetNets, where the MC organizes the assignment of the
resource plans to the SCs, and the SCs choose the resource plan. However, this algorithm
cannot be implemented in the absence of the MC. A multi-level SFR (MSFR) for HetNets is
demonstrated in [38], where every cell is split into three zones (central, intermediate, and
edge), utilizing various frequency segments and transmission power levels. The authors
in [13] proposed a novel SFR algorithm to mitigate the interference by splitting the SC to
the center and edge regions. Moreover, the on/off switching of the SCs depends on their
interference contribution rate (ICR) values. The authors in [39] presented an MSFR scheme
where every MC is split into various circular areas, and different spectrum and power are
allocated to every area. Unfortunately, in this scheme, SFR is not applied to the SCs but
only the MCs. New SFR approaches are essential to alleviate the interference and improve
the network throughput in 5G HetNets.

Moreover, the performance of 5G HetNets can be enhanced using ML techniques [40].
Decision trees (DTs) is one of the propitious supervised learning (SL) techniques, where
every training example must be fed with its label to train a learning model, then utilize
this model to predict the output for any new data. The authors in [41] proposed using
supervised ML to enhance both the classification of services and the distribution of network
resources in 5G networks. Moreover, the results reveal that DTs and random forests are
the best approaches. DTs are split to classification trees (CTs) and regression trees [40]. The
authors in [42] studied several anomaly detection techniques in 5G traffic. The performance
of these techniques is analyzed based on multiple factors such as the probability of identi-
fying anomalies and the probability of detecting a false positive. The results demonstrated
that the CTs technique outperforms the other techniques. The problem of monitoring and
predicting the quality of experience of cellular networks is studied in [43]. The authors
compared various SL techniques and trained them utilizing training data based on traffic
measurements of the UEs from a field trial study. The CTs are the ultimately chosen model
because of their superb prediction accuracy and their prediction speed. In our paper, CT is
utilized for the first time to allocate the frequencies in the SFR 5G network.

Finally, to match real-life scenarios, the irregular nature of the 5G HetNets was mod-
eled utilizing Voronoi cells [44–47]. Because of the immense deployment of SCs, Voronoi
cells are considered more practical than traditional hexagonal grids [48].

3. System Model

Consider 5G HetNet with densely deployed Voronoi SCs, where the SCs are deployed
within the MCs coverage area. In this scenario, the MCs and the SCs utilize different
frequency bands, mitigating the cross-tier interference between them. The MCs stay active
to maintain the coverage of the network when the SCs are turned off. On the other hand,
the SCs are either active (on) or asleep (off). When the SC is turned off, regular discovery
signals are sent by the SC to be detected by any potential user. Each UE reports its channel
state information and its reference signal received power (RSRP) to its SC. The SC sub-band
allocation and the SC switching is organized by a main controller, or the MC if the main
controller is absent, to collect the data from the SCs, allocate the sub-bands to the SCs, and
determine the on/off switching decisions of the SCs. Furthermore, it is assumed that all
UEs in every SC are located inside the coverage area of the SC. In case of the existence
of any coverage holes in the SCs, relay nodes can be utilized to cover these holes [49].
However, this is not considered in our paper. Nomenclature lists the described symbols
utilized in this paper.
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An SC on/off indicator γ is defined, where γm = 1 when the SC m is active; otherwise,
γm = 0. The number of SCs is denoted by “M” and the number of UEs in SC m is denoted
by “Um”. The UE association indicator ϕm,k = 1 if UE k is associated with SC m; otherwise,
ϕm,k = 0. The signal to interference and noise ratio (SINR) of UE k in SC m can be calculated
as [14]:

SINRk,m =
γmPmGm,k

∑n 6= m, n ε M γnPnGn,k + N
(1)

where Pm and Pn are the transmission powers of the serving SC m and the interfering SC
n, respectively. The channel gain between UE k and serving SC m is Gm,k = dm,k

−α, where
dm,k is the distance between SC m and UE k and α is the path loss exponent [50]; the channel
gain between UE k and interfering SC n is Gn,k and N is the noise power. The data rate Rk,m
of UE k in SC m is also calculated by Shannon’s formula as [13]:

Rk,m = Bk log2(1 + SINRk,m) (2)

where Bk = BRBLk,m is the bandwidth allocated to UE k, while the resource block (RB)
bandwidth is BRB and Lk,m is the number of requisite RBs for UE k in SC m to achieve the
minimum data rate [14].

While the total throughput of the system is given by [9]:

Csys = ∑M
m=1 γm ∑Um

k=1 Rk,m (3)

Due to the dense deployment of the SCs, some SCs can be turned off without affecting
the QoS of the UEs. Thus, the total power consumption of SC m can be calculated as [13]:

Pmtot = βPmon + (1− β)Pmon γm + θmPmtx γm (4)

where Pmon and Pmtx are the baseline and the transmission power consumption, respectively,
while β is the inactive level of the SC, such that Pmo f f = βPmon , and θm is the portion of
power consumption that is due to the feeder losses and power amplifier of SC m [51]. The
total power consumption of the system (Psys) is the sum of the power consumption of all
SCs. The PE of the system is given by [9]:

PEsys =
Csys

Psys
(5)

To improve the PE, the SCs on/off switching decisions using BPSO is proposed in this
paper. The PSO is an iterative population-based search algorithm inspired by the hunting
behavior of a flock of flying birds [52–54]. In PSO, every particle is considered a bird of
the flock and represents a possible solution to the problem [30,55–57]. The search begins
with an initial set of particles and attempts to find the best solution by searching around
the solution space. The motion of the particle is based on its local best position, and the
best-known position of all the other particles [9,52]. The fitness value of every particle is
calculated using a fitness function that is optimized in every iteration [9,52].

The set of particles X = {x1, x2, . . . , xNpar } is defined, where xNpar represents one
possible status for the SCs, while Npar is the swarm size. In BPSO algorithm, the population
is randomly initialized as binary values. For every particle, the population binary value of
1 signifies the active SC, while 0 signifies the sleeping SC. The velocity of the particle j is
initialized as [9,58]:

vj = vmin + (vmax − vmin) a1 (6)

where vmin and vmax denote the minimum and the maximum velocity of the particle,
respectively, while a1 is a random number uniformly distributed between 0 and 1 [9]. The
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velocity and the position of the particles are updated in each iteration. The velocity of the
particle j in iteration (z + 1) is updated as [9,26]:

v z+1
j = ωz v z

j + c1 a2

(
Pbestj

− x z
j

)
+ c2 a3

(
Gbest − x z

j

)
(7)

where ωz is the IW in the zth iteration, while v z
j and x z

j are the velocity and position of

the particle j in the zth iteration, respectively. The best position of the particle j is denoted
as Pbestj

, while the global best position of all the particles is denoted as Gbest. Additionally,
c1 and c2 denote the acceleration parameters [9]. Moreover, a2 and a3 are two random
numbers uniformly distributed between 0 and 1. It is noted that the particle xj is a binary
vector and the velocity vj is also a vector. The sigmoid function (Sig

(
vj(m)z)) is given

as [52,55]:

Sig
(
vj(m)z) = 1

1 + e−vj(m)z (8)

Thus, the on/off state of the SC m in particle j in the z-th iteration is calculated
as [52,55]:

xj(m)z =

{
1, a4 < Sig

(
vj(m)z)

0, otherwise
(9)

where a4 is a random number uniformly distributed between 0 and 1.
Since the IW is the pivotal factor in the convergence of the PSO, it should be carefully

adjusted. Thus, linearly increasing IW is utilized in this paper, where the IW linearly
increases every iteration from ωmin to ωmax . The IW in the zth iteration is given as [33]:

ωz = (ωmax −ωmin)

(
z− 1

Zmax − 1

)
+ ωmin (10)

where ωmax and ωmin denote the maximum and minimum IW, respectively [33], and Zmax
is the maximum number of iterations [59].

4. Proposed Algorithms

To alleviate the number of active SCs and enhance the PE of the system, a linearly
increasing IW-BPSO algorithm for SC on/off switching is proposed in this paper. Moreover,
a novel SFR technique using CTs is proposed for SC sub-band allocation. The BPSO
algorithm is applied first while the linearly increasing IW enhances the convergence of
the algorithm. Then, the sub-bands are allocated to the active SCs using the novel SFR
technique. It is worth noting that the new SFR technique is applied after the SC switching
to allocate the sub-bands to the active SCs, only aiming to reduce the number of operations
needed in the sub-band allocation to the SCs

4.1. SC on/off Switching Using Linearly Increasing IW-BPSO Algorithm

In this paper, SC switching utilizing a linearly increasing IW-BPSO algorithm is
proposed. The UE can associate with an SC m if SINRk,m exceeds a certain threshold
(SINRthr). At the beginning of our proposed algorithm, each UE k calculates the SINR
from all SCs to determine all SCs that it can possibly associate with, then sorts the received
SINR from these SCs in a descending order. The UE associates with the SC with the highest
received SINR. If the number of UEs in this SC is larger than the maximum number of UEs
in the SC (Umax), the UE connects with the SC having the next highest SINR. This continues
until every UE is associated with one SC.

To minimize the number of active SCs and to elevate the PE, it is required to switch off
the excessive SCs, taking into consideration the QoS of the UEs, since the SINR of every
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UE exceeds SINRthr. Thus, a multi-objective optimization problem had to be solved; this
problem can be written as:

Objective1 : min
(
∑M

m=1 γm

)
Objective2 : max

(
PEsys

)
(11)

subject to:
γm, ∈ {0, 1}, ∀ m ∈ M (11a)

ϕm,k ∈ {0, 1}, ∀ m ∈ M, k ∈ Um (11b)

∑M
m=1 ϕm,k γm = 1, ∀ m ∈ M, k ∈ Um (11c)

Um ≤Umax, ∀ m ∈ M (11d)

where constraint (11a) is the on/off state indicator of the SC. Constraint (11b) is the UE
association indicator. Constraint (11c) states that the UE is associated with only one active
SC. Constraint (11d) indicates that the number of UEs in an SC cannot exceed the maximum
number of UEs in an SC (Umax).

Algorithm 1 summarizes the proposed BPSO-based on/off SC switching algorithm. In
line 1, after the random binary initialization of the population of every particle, the velocity
of the particles is initialized as Equation (6). Then, for each iteration till the maximum
number of iterations (Zmax) is reached, the IW (ωz) is computed (line 3) and the position
(xj) and velocity (vj) of every particle j are updated using Equations (7) and (9), respectively
(lines 5–6). Next, the fitness value of every particle j (F (xj)) is computed using Equation

(11) (line 7). If F
(
xj
)
< F

(
Pbestj

)
, then Pbestj

= xj, and if F
(
xj
)
< F(Gbest) , then Gbest = xj

(lines 8–13).

Algorithm 1: Proposed linearly increasing IW-BPSO-based on/off SC switching.

Inputs: Locations of UEs, locations of SCs, swarm size (Npar), maximum number of iterations
(Zmax )
Output: SC on/off indicator
1: Initialize the position (xj) randomly and velocity (vj) of every particle j as Equation (6).
2: For z = 1 to Zmax
3: Calculate ωz using Equation (10)
4: For each particle j
5: Update vj using Equation (7)
6: Update xj using Equation (9)
7: Calculate new fitness value F (xj) as Equation (5)

8: if F
(

xj

)
< F

(
Pbestj

)

9: Pbestj
← xj

10: end if
11: if F

(
xj

)
< F(Gbest)

12: Gbest ← xj
13: end if
14: end For
15: end For

4.2. SC Sub-Band Allotment Using Classification Trees (CTs)

After the on/off switching decisions for all SCs are taken, the second phase is ini-
tialized, which is the sub-band allocation for the active SCs based on the SFR, which is
illustrated in Figure 2, over three cells without loss of generality. In the shown example, if
we have three hexagonal-shaped cells, each split into center and edge regions, the frequency
band is divided to three (Nsub = 3) sub-bands: X, Y, and Z. The edge region of cells 1, 2,
and 3 are allocated sub-bands X, Y, and Z, respectively. Consequently, cell 1 is allocated
sub-bands Y and Z in the center region. Similarly, cell 2 is allocated X and Z, and cell 3 is
allocated X and Y.
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Figure 2. SFR example for hexagonal shaped cells with Nsub = 3.

In this technique, every SC is divided into center and edge regions. One of the Nsub
sub-bands can be used in the edge region of every SC, on condition that it is not used by
the edge regions of the adjoin SCs. The center region of every SC can use the remaining
sub-bands with reduced transmission power. This alleviates not only the interference to
the adjoin SCs but also the power consumption of the whole network. To determine the
vertices of the center region, the distance between the center of the SC and every vertex
of the SC is computed. Then the distance between the center of the SC and the nearest SC
vertex (the smallest distance) is determined and is regarded as the SC radius. The radius of
the center zone is chosen as 50% of the SC radius as it maximizes the throughput of the
system [13]. A real example is demonstrated in Figure 3a, displaying an SC (the purple SC)
and its adjoining SCs. Figure 3b displays the seven sub-bands. Every SC uses one of the
seven sub-bands in its edge region. While the center region of this SC (the grey region) can
use the remaining six sub-bands.

First, the SC senses the signals of the edge region of the adjoin SCs upon switching
to obviate utilizing them. A binary indicator, τm = 1, indicates the presence of unused
sub-bands by the edge region of the adjoin SCs; otherwise, τm = 0. If there are unused
sub-bands by the edge region of the adjoined SCs (τm = 1), then for every unused sub-band
f, the distance between the SC and the closest nonadjacent SC using sub-band f in its edge
region (DNon−ad f ) is measured, and this is repeated for the rest of the remaining unused
sub-bands. If all the sub-bands are used (τm = 0), then for every sub-band q, the distance
between the SC and the adjoin SC using sub-band q in its edge region (DAdq) is measured.
Then, the edge region of the SC is allocated the sub-band used in the farthest adjoined SC.
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region); (b) the seven used sub-bands.

According to τm and DNon−ad f or DAdq, the CT takes the decision to assign which
sub-band to the edge region of the SC. A CT example of 3 sub-bands is shown in Figure 4. In
case of the presence of unused sub-bands in the edge region of the adjoin SCs (τm = 1), then
if the distance between the SC and the closest SC using the sub-band 1 in its edge region
(DNon−ad f = DNon−ad1) is larger than DNon−ad2; DNon−ad1 and DNon−ad3 are checked. If
DNon−ad1 is larger than DNon−ad3, then sub-band 1 is selected. In case all the sub-bands are
utilized (τm = 0), then if the distance between the SC and the adjacent SC using sub-band 2
(DAdq = DAd2) is larger than DAd1, then DAd2 and DAd3 are checked. If DAd3 is larger than
DAd2, then sub-band 3 is selected. Afterward, the center region can utilize the remaining
sub-bands with lower transmission power.

Unlike the computational complexity of the conventional SFR algorithm O(S2. Nsub
2),

which depends on the network size (S) and the number of sub-bands (Nsub) [60], the
computational complexity of the proposed CTs algorithm is much lower. Since the compu-
tational complexity of the DTs is O(1) [61], as no multiplication process is done and only a
sequence of branching operations are performed, then computational complexity of the
CTs is also O(1) for every SC. Thus, the computational complexity of the system is S x
O(1), since only a sequence of branching operations are performed on moving along the
CT according to the binary indicator (τm) and the distance between the SC and the closest
nonadjacent SC (DNon−ad f )/farthest adjoining SC (DAdq ) using the sub-band in its edge
region. Hence, applying SFR after the SC switching greatly reduces the computational
complexity as SFR will be applied to the active SCs only (smaller S), while the complexity
of the BPSO algorithm O(Zmax . P) depends on the maximum number of iterations and
the population size (P) [62,63]. On the other hand, the average computational time of the
proposed algorithm is less than one minute (54.857 s). In modern HetNets, the traffic load
of the network is monitored for longer time periods in the order of 5–15 min [6,64–66],
while the on-off switching decisions of the SCs are usually taken every 15–60 min [64,66].
Thus, the proposed algorithm is suitable for practical implementation in real time.
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5. Numerical Results

The simulation parameters are presented in Table 1. Various Voronoi SCs are allocated
in the coverage area of the MCs. The UEs are randomly deployed within the entire network.
The simulations are performed utilizing MATLAB R2018. The swarm size is chosen in
the range of 20–50 particles [9,67–71]. It is shown in [71] that 25 is the optimum size over
16 different sizes on 3 different cases. The IW is linearly increased from 0.4 to 0.9, which is
the range recommended in [33,72,73]. The velocity of the particles is chosen in the range
of [−0.6, 0.6] [9,74,75]. Adjusting these parameters is essential for the convergence of the
BPSO algorithm.

The performance of several algorithms is assessed, they are as follow:

• Always on: SFR is not utilized and all SCs are active.
• BPSO only: SFR is not utilized, but SC on/off switching is done via BPSO algorithm.
• Random 10%: SFR is not utilized, but 10% of the SCs are randomly chosen to be

switched off. The remaining SCs are kept active.
• Proposed: the SC on/off switching is decided first using the BPSO algorithm, then the

SFR is carried out using CTs.

The number of active SCs for various number of UEs is demonstrated in Figure 5.
The number of active SCs increases with increasing the number of UEs, as more SCs are
being activated to guarantee the minimum required SINR of the UEs allowing the UEs to
associate with the SC having the better SINR, enhancing their data rates and improving
the system performance. The “ω = 0.4” has better convergence than the “ω = 0.9” for
the 200, 500, and 900 UEs, respectively, since reducing the IW facilitates in exploring the
search space (global search), while raising the IW aids in exploiting (local search) the search
space. The “linearly increasing ω” shows better convergence than the fixed “ω = 0.9” and
“ω = 0.4”, as in the “linearly increasing ω” case, the IW is lower at the beginning, allowing
better exploration of the search space, and then it linearly increases, enhancing the local
search. The fixed IW can get trapped during the search and is unable to find the global
minimum number of active SCs. Therefore, the linearly increasing IW is chosen to be
utilized in the proposed algorithm for the rest of the simulations in this paper.
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Table 1. Simulation Parameters [9,13,14,33,59].

Parameters Value

SC transmission power [13]
SFR: 20 dBm(center),
22 dBm(edge)
No SFR: 22 dBm

SC baseline power (Pmon ) [14] 6.8 W
Maximum number of UEs in the SC (Umax) [9] 30
Swarm size

(
Npar ) [9] 25

Maximum IW (ωmax) [33] 0.9
Minimum IW (ωmin) [33] 0.4
Maximum velocity of the particle (vmax) [9] 0.6
Minimum velocity of the particle (vmin) [9] −0.6
Maximum number of iterations (Zmax) [59] 500
Total bandwidth [13] 20 MHz
RB bandwidth [13] 180 KHz
Maximum number of RBs [13] 106
Number of sub-bands (Nsub) [13] 7
Noise power spectral density [14] −174 dBm/Hz
SINR threshold (SINRthr) [9] −5 dB
SC inactive level (β) [14] 0.63
Portion of power consumption due to the
feeder losses and power amplifier (θ) [14] 4
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The number of active SCs for various numbers of UEs is presented in Figure 6. The
“always on” algorithm has the highest number of active SCs, since all the SCs are kept
active. The “random 10%” algorithm has a lower number of active SCs than the “always
on” algorithm, since in the “random 10%” algorithm, 10% of the SCs are randomly turned
off. However, the number of active SCs is constant with regard to the number of UEs. The
proposed and “BPSO only” algorithms have the least number of active SCs, as the SCs are
turned off utilizing the BPSO algorithm. In both algorithms (BPSO only and proposed),
BPSO is used for SC switching. That is why the number of active SCs of the two algorithms
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is very close. Moreover, the number of active SCs increases on increasing the number of
UEs, since more SCs are switched on to sustain the minimum SINR of the UEs.
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The total system throughput for various numbers of UEs is shown in Figure 7. The
proposed algorithm has the largest system throughput, since the proposed algorithm
alleviates the interference levels, as it utilizes the SFR and switches the SCs on/off using
the BPSO algorithm. The “BPSO only” algorithm has lower system throughput than the
proposed algorithm because of its larger interference levels for not using SFR. The “random
10%” algorithm has lower system throughput than the “BPSO only” algorithm because of
the random selection of the switched-off SCs, which is not the optimum one. The “always
on” algorithm has the minimum system throughput because it has the largest interference
levels as all the SCs are continuously active and it does not utilize the SFR.

The total power consumption of the system for various numbers of UEs is presented in
Figure 8. The “always on” algorithm has the largest power consumption since no switching-
off techniques are used. The “random 10%” algorithm has less power consumption than the
“always on” algorithm because of the power savings from the switched-off SCs and higher
power consumption than the “BPSO only” algorithm. The proposed algorithm consumes
the least power because of the turning-off of the SCs utilizing BPSO, then applying the
SFR minimizing the power consumption furthermore, because of the reduced transmission
power for the UEs in the center region. In the proposed algorithm, the power consumption
increases with the increment of the number of UEs, as more SCs are kept active to ensure
the QoS of the UEs.

222



Sensors 2022, 22, 8570
Sensors 2022, 22, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 7. Total system throughput for various numbers of UEs. 

The total power consumption of the system for various numbers of UEs is presented 

in Figure 8. The “always on” algorithm has the largest power consumption since no switch-

ing-off techniques are used. The “random 10%” algorithm has less power consumption 

than the “always on” algorithm because of the power savings from the switched-off SCs 

and higher power consumption than the “BPSO only” algorithm.  The proposed algo-

rithm consumes the least power because of the turning-off of the SCs utilizing BPSO, then 

applying the SFR minimizing the power consumption furthermore, because of the reduced 

transmission power for the UEs in the center region. In the proposed algorithm, the power 

consumption increases with the increment of the number of UEs, as more SCs are kept 

active to ensure the QoS of the UEs. 

 

Figure 7. Total system throughput for various numbers of UEs.
Sensors 2022, 22, x FOR PEER REVIEW 14 of 21 
 

 

 

Figure 8. Total system power consumption for various numbers of UEs. 

The PE of the system for various numbers of UEs is demonstrated in Figure 9. The 

proposed algorithm has the highest PE because of the reduced power consumption and 

the elevated system throughput. The “BPSO only” algorithm has lower PE because of its 

alleviated throughput and higher system power consumption compared to the proposed 

algorithm. The “random 10%” has lower PE than the “BPSO only” algorithm because of 

its alleviated system throughput caused by the random choice of the switched-off SCs. The 

“always on” algorithm has the least PE, since it has the largest power consumption and 

the least data rates because all the SCs are continuously active. 

The outage probability for various SINR thresholds in the case of 900 UEs is depicted 

in Figure 10. The outage probability is defined as the percentage of UEs that are unable to 

attain a certain SINR threshold. The proposed algorithm has the minimum outage proba-

bility because of the enhanced SINR of the users, which resulted from minimizing the in-

terference. The “BPSO only” algorithm has larger outage probability than the proposed 

algorithm, since it has larger interference levels. Both algorithms consider the QoS of the 

users, as all the users have SINR larger than 𝑆𝐼𝑁𝑅𝑡ℎ𝑟  in both algorithms. The “random 

10%” algorithm has larger outage probability than the “BPSO only” because of the deteri-

orated system performance. The “always on” algorithm has the largest outage probability 

because of the huge interference levels, as the SFR principle is not utilized and no on/off 

switching techniques are used, diminishing the total performance of the system. 

Figure 8. Total system power consumption for various numbers of UEs.

223



Sensors 2022, 22, 8570

The PE of the system for various numbers of UEs is demonstrated in Figure 9. The
proposed algorithm has the highest PE because of the reduced power consumption and
the elevated system throughput. The “BPSO only” algorithm has lower PE because of its
alleviated throughput and higher system power consumption compared to the proposed
algorithm. The “random 10%” has lower PE than the “BPSO only” algorithm because of its
alleviated system throughput caused by the random choice of the switched-off SCs. The
“always on” algorithm has the least PE, since it has the largest power consumption and the
least data rates because all the SCs are continuously active.

The outage probability for various SINR thresholds in the case of 900 UEs is depicted
in Figure 10. The outage probability is defined as the percentage of UEs that are unable
to attain a certain SINR threshold. The proposed algorithm has the minimum outage
probability because of the enhanced SINR of the users, which resulted from minimizing the
interference. The “BPSO only” algorithm has larger outage probability than the proposed
algorithm, since it has larger interference levels. Both algorithms consider the QoS of the
users, as all the users have SINR larger than SINRthr in both algorithms. The “random 10%”
algorithm has larger outage probability than the “BPSO only” because of the deteriorated
system performance. The “always on” algorithm has the largest outage probability because
of the huge interference levels, as the SFR principle is not utilized and no on/off switching
techniques are used, diminishing the total performance of the system.
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6. Conclusions

Minimizing the power consumption of the SCs and elevating the PE of the network
are huge challenges facing the 5G HetNets. In this paper, to tackle these challenges, novel
algorithms are proposed based on linear increasing IW-BPSO and SFR. The BPSO algorithm
is used for SC on/off switching reducing the power consumption of the system without
deteriorating the QoS of the UEs. Moreover, the linearly increasing IW is exploited to
enhance the convergence of the BPSO algorithm to find the minimum number of active SCs.
Furthermore, the CT-based SFR is proposed, where the SCs are divided into center and
edge regions and different sub-bands are allocated to the edge regions of the adjoining SCs,
minimizing the interference among the SCs. The results demonstrate that the proposed
algorithms surpass the other conventional algorithms with regard to the total system power
consumption, the total system throughput, the PE, and the outage probability. Additional
work can be done in the future to address the coverage hole problem in Voronoi cells and
to enhance the accuracy of the PSO algorithm using dynamic inertia weight.
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Nomenclature

Symbol Description
a1, a2, a3 and a4 Random numbers uniformly distributed between 0 and 1
Bk Bandwidth allocated to UE k
BRB Resource block (RB) bandwidth

c1 and c2 Acceleration parameters
Csys Total throughput of the system
D f Distance between the SC and the closest SC using sub-band f in its edge region
dm,k Distance between SC m and UE k
Gm,k Channel gain between UE k and SC m
Gbest Global best position of all the particles
Lk,m Number of requisite RBs for UE k in SC m to achieve the minimum data rate
M Number of SCs
N Noise power
Pbestj

Best position of the particle j
Pm Transmission power of SC m
Pmtot Total power consumption of SC m
Pmtx Transmission power consumption of SC m
Psys Total power consumption of the system
PEsys PE (power efficency) of the system
Rk,m Data rate of UE k in SC m
SINRk,m Signal to interference noise ratio of UE k in SC m
Um Number of UEs in SC m
v z

j Velocity of the particle j in the zth iteration
ωz Inertia Weight (IW) in the zth iteration
x z

j Position of the particle j in the zth iteration
α Path loss exponent
γm SC m on/off indicator
ϕm,k UE k association indicator with SC m
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Abstract: Recently, with the development of autonomous driving technology, vehicle-to-everything
(V2X) communication technology that provides a wireless connection between vehicles, pedestrians,
and roadside base stations has gained significant attention. Vehicle-to-vehicle (V2V) communication
should provide low-latency and highly reliable services through direct communication between
vehicles, improving safety. In particular, as the number of vehicles increases, efficient radio resource
management becomes more important. In this paper, we propose a deep reinforcement learning
(DRL)-based decentralized resource allocation scheme in the V2X communication network in which
the radio resources are shared between the V2V and vehicle-to-infrastructure (V2I) networks. Here,
a deep Q-network (DQN) is utilized to find the resource blocks and transmit power of vehicles in
the V2V network to maximize the sum rate of the V2I and V2V links while reducing the power
consumption and latency of V2V links. The DQN also uses the channel state information, the signal-
to-interference-plus-noise ratio (SINR) of V2I and V2V links, and the latency constraints of vehicles
to find the optimal resource allocation scheme. The proposed DQN-based resource allocation scheme
ensures energy-efficient transmissions that satisfy the latency constraints for V2V links while reducing
the interference of the V2V network to the V2I network. We evaluate the performance of the proposed
scheme in terms of the sum rate of the V2X network, the average power consumption of V2V links,
and the average outage probability of V2V links using a case study in Manhattan with nine blocks of
3GPP TR 36.885. The simulation results show that the proposed scheme greatly reduces the transmit
power of V2V links when compared to the conventional reinforcement learning-based resource
allocation scheme without sacrificing the sum rate of the V2X network or the outage probability of
V2V links.

Keywords: vehicular communications; deep reinforcement learning; deep Q-network; resource
allocation; energy efficiency

1. Introduction

Today, with the development of autonomous driving technologies, vehicular com-
munication technologies are receiving significant attention from both the industry and
academia [1,2]. The 3GPP has recently designed a new radio (NR) sidelink to support
direct vehicle-to-vehicle (V2V) communication without the help of a base station (BS) in a
low-latency, high-throughput, and high-connection-density network [1,3,4]. V2V networks
require ultra-reliable and low-latency communication (URLLC) services for use cases that
demand certain safety features, such as autonomous driving systems that send and receive
warning messages to and from nearby vehicles, even as the number of vehicles increases [5].
Therefore, it is important to manage radio resources efficiently to satisfy the quality of
service (QoS) of vehicles in the V2V network.

Radio resource management is often formulated as a set of combined optimizations
used to find the optimal solution of an objective problem, which is generally an NP-hard
problem. In recent years, machine learning has been successfully applied in a wide range
of areas, resulting in significant performance improvements. In particular, reinforcement
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learning (RL) has shown its superiority in solving the resource allocation problems in
communications [6,7]. Resource allocation can be dived into three categories according
to which layer of the OSI 7-layer model performs [8–10]. The first category is bandwidth
allocation at the network layer, which aims to provide call-level QoS guarantees. The
second category is the allocation of resource blocks (RBs) at the link layer. The link layer
determines which RB the transmitter will use, on the basis of the channel state measured in
the physical layer. The third category is the joint RB and power allocation at the cross-layer
between the link layer and the physical layer [9,10]. In this paper, we focus on the resource
allocation of the RB and the transmit power of V2V links at both the link layer and the
physical layer. Resource allocation is based on the channel state information (CSI), i.e., the
signal-to-interference-plus-noise ratio (SINR). We propose a deep Q-network (DQN)-based
spectrum and power allocation scheme for energy-efficient V2V communications while
maximizing the sum rate of the V2I and V2V links. The proposed Q-network uses the CSI of
V2I and V2V links and the latency constraints of vehicles to find the optimal RB and transmit
power of the V2V links. The contributions of this paper are as follows: First, we developed
a decentralized resource allocation problem that incorporates the power consumption as
well as the latency of V2V links while increasing the sum rate of the V2I and V2V links.
Second, we developed a DQN model to solve the resource allocation problem, where the
reward function includes the power consumption and latency conditions represented as
penalties. Third, the simulation results show that the DQN-based energy-efficient resource
allocation scheme greatly reduces overall power consumption in comparison with the
conventional RL-based scheme without sacrificing the sum rate and latency requirements
of V2V links.

The rest of the paper is organized as follows. Section 2 describes the system model.
Section 3 presents a DQN-based resource allocation scheme, where the state, action, and
reward functions of reinforcement learning (RL) are described in detail. Section 4 shows
the simulation results in a case study of Manhattan. Finally, Section 5 concludes the paper.

2. Related Work

The resource allocation mechanism in vehicle-to-everything (V2X) communications
has been studied in various ways. The authors of [11] introduced the deep reinforcement
learning (DRL)-based resource allocation scheme and showed experimental results for both
unicast and broadcast scenarios. They designed a reward function to ensure the latency
constraints of the V2V links were satisfied. The authors of [12] proposed a QoS-aware
resource allocation scheme based on the DRL framework in V2X communications, where
they took QoS parameters such as the priority of V2V messages into consideration. The
proposed scheme of [12] aims to maximize the sum rate of vehicle-to-infrastructure (V2I)
links while satisfying the latency constraints of V2V links. The authors of [13] developed a
power allocation problem in the cellular device-to-device (D2D)-based V2X communication
network and mathematically solved the problem. They showed that the proposed power
allocation scheme outperforms the existing algorithms in terms of power consumption. The
authors of [14] developed a multi-agent RL (MARL)-based resource allocation for V2V links
in the spectrum-sharing V2X network. They aimed to maximize the capacity of V2I links
while also improving the reliability of the payload delivery in V2V links. They showed the
MADRL-based resource allocation is efficient for the V2I and V2V network collaboration
although decisions are made locally and distributed at each V2V transmitter. The authors
of [15] proposed a MARL-based resource allocation scheme in order to maximize the sum
rate of V2I links while satisfying the latency and reliability requirements of V2V links. In
this work, they developed individual double-dueling deep recurrent Q-networks (D3RQN),
where they used interference power measurements instead of the conventional CSI under
the assumption that it is difficult to acquire the perfect CSI in the vehicular network.
They showed that the proposed MARL-based resource allocation jointly adjusts the sub-
channel and transmit power using only local interference measurements without inter-agent
communication. Some studies have focused on the energy consumption in V2X networks.
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The authors of [16] developed an energy efficiency problem in an NR V2X network, where
energy efficiency is defined as the ratio of the sum rate to power consumption. They
proposed a heuristic algorithm of traffic-density-based random selection to solve the
developed mixed-integer problem. The authors of [17] also developed an energy efficiency
problem of vehicle users while considering the QoS requirement of cellular users in the
cellular network underlying V2V communications. They transformed the latency constraint
into the constraint of the queue length and solved the virtual queue problem based on the
Lyapunov optimization. In V2X networks, the energy consumption of V2I links as well as
V2V links is important. Some studies have focused on optimizing energy consumption
across the entire wireless access network [18–20]. The authors of [18] proposed an energy-
efficient resource management scheme based on the transmit power scaling and on/off
switching of base stations. The authors of [19] formulated an optimization problem for the
energy consumption of a wireless location area network (WLAN) by adjusting the transmit
power and turning access stations on and off based on realistic traffic patterns. They
proposed integer linear programming (ILP) optimization models and heuristic algorithms
to minimize the energy consumption of the network. The authors of [20] developed an
ILP model for energy saving of wireless access networks, and also developed a heuristic
algorithm based on a greedy method to cope with the computational complexity of the
ILP model.

Recently, graph-based deep learning solutions have been proposed for resource al-
location in communication networks [7,21–24]. Graph neural networks (GNNs) have
achieved some success in solving resource allocation problems in various communication
networks, e.g., wireless networks, wired networks, and software-defined networks, because
of their abilities to learn to capture the dependencies of graphs and to learn non-Euclidean
structure data [21]. The authors of [22] presented a comprehensive review and analysis
of graph-based resource allocation methods in cellular, device-to-device, and cognitive
radio networks. Here, they classified the graph-based resource allocation methods in terms
of graph models, tasks solved via graphs, graph formulation, and optimization methods.
The authors of [23] proposed a heterogeneous bipartite GNN (HBGNN) to solve the joint
user association and power allocation problem in heterogeneous ultra-dense networks
(HUDNs). They modeled the downlink of the HUDN as a heterogeneous bipartite graph
and compared the performance of the proposed HBGNN with the fully connected neural
network and the convolutional neural network (CNN). However, the HBGNN requires su-
pervised learning, unlike RL. The authors of [24] developed a graph convolutional network
(GCN)-based DRL framework to perform joint channel selection and power adaptation in
the underlying cognitive radio networks, maximizing the data rate of secondary users while
maintaining the level of interference to primary users. They modeled the environment
of the cognitive radio network as a dynamic graph and adopted a DRL to explore the
optimal resource allocation strategy. However, the work of [24] did not take the energy
efficiency and the latency constraints of the secondary users into account. The authors of [7]
presented a GNN-augmented RL method to perform spectrum allocation for vehicular net-
works. They expressed the V2V network as a graph and exploited RL to perform resource
allocation. The deep Q-network was developed to select the spectrum for each V2V pair.

Deep learning technologies for Internet of vehicle (IoV) networks have been studied
previously [25–29]. The authors of [25] discussed deep learning applications for security
and collision prediction in the internet of vehicle (IoV) networks, and they proposed a
DRL-based resource allocation method to enhance multiple QoS requirements, such as
latency and suitable data rate requirements. They introduced an actor–critic framework
to achieve an intelligent resource allocation in the IoV network. The authors of [26]
discussed deep learning techniques to enhance the performance of the overall IoV system.
They addressed various learning networks, e.g., CNN, recurrent neural networks, DRL,
classification, clustering, and regression. The authors of [27] presented a comprehensive
review and analysis of machine learning technologies for IoV applications, e.g., energy-
and buffer-aware optimization, edge caching, intelligent decisions for network scheduling
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and adaptation, intelligent autonomous driving, etc. The authors of [28] presented a
comprehensive review of resource allocation and management for the IoV over 5G radio
access networks. They described learning-based resource allocation approaches to improve
the QoS and quality of experience in distributed and cloud-computing resource allocation
schemes, along with big data resource allocation. The authors of [29] conducted a critical
review and analysis of machine learning models used to resolve the challenge in IoV
applications. Moreover, they proposed a Markov decision-process-based, edge-computing
offloading model and evaluated its performance in terms of its power consumption and
task latency.

Moreover, vehicular edge computing (VEC) technologies have been studied to dy-
namically manage computing resources, caching, and networking [30]. The authors of [31]
proposed a generic approach to improve the performance of application outsourcing in the
caching-assisted VEC. They mathematically showed that application caching can optimize
the average response time while satisfying the long-term energy consumption constraint.
The authors of [32] addressed route planning in a navigation system that finds an opti-
mal route from the source to the target location. They proposed a real-time cache-aided
route planning system based on mobile edge computing with the aim of reducing the
communication delay between the access network and the remote central server and the
computational time of route planning queries. The authors of [33] proposed a caching-
enabled VEC scheme for jointly optimizing task caching and computation offloading in
a VEC system; task caching was shown to reduce response latency but increase energy
consumption. They then formulated an optimization problem that minimizes the weighted
sum of the service time and energy consumption in the caching-assisted VEC system and
used a genetic algorithm to solve the problem. The authors of [34] presented a compre-
hensive review and analysis of the vehicle routing problem (VRP). They mainly reviewed
machine learning-assisted VRP modeling and optimization approaches.

3. System Model

We consider a V2X network consisting of a V2I network and a V2V network as
shown in Figure 1. We focus on the uplink in the V2I network, where there are L V2I
links denoted by L = {1, 2, . . . , L}. In the V2V network, there are K V2V links denoted
by K = {1, 2, . . . , K}. In the V2I network, the spectrum is orthogonally allocated to the
vehicles, where the number of orthogonal RBs is NRB. However, the V2V links share the
resources, NRB, of the V2I network.

Figure 1. A system model.
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In the V2I network, the received SINR and capacity of the lth V2I link are represented
as follows:

SINRl =
PV2I

l hl

σ2 + ∑k∈K µk,l pkhk
(1)

Cl = W log (1 + SINRl) [bits/second], (2)

where PV2I
l is the transmit power of the vehicle and hl is the channel power gain in the lth

V2I link. Additionally, pk is the transmit power of the kth V2V link, hk is the channel power
gain from the transmitter of the k V2V link to the base station, σ2 is the noise power, and
W is the bandwidth. The indicator function, µk,l , denotes whether the resource is shared
between the kth V2V link and the lth V2I link. That is, if the kth V2V link shares the RB of
the lth V2I link, µk,l = 1; otherwise, µk,l = 0.

In the V2V network, the received SINR and capacity of the kth V2V link are represented
as follows:

SINRk =
pkgk

σ2 + IV2V
k + IV2I

k
(3)

IV2I
k = ∑

l∈L
µk,l PV2I

l gl,k (4)

IV2V
k = ∑

l∈L
∑

j∈K,j 6=k
µk,lµj,l pjgj,k (5)

Ck = W log (1 + SINRk) [bits/second], (6)

where pk is the transmit power of the vehicle and gk is the channel power gain in the kth
V2V link. Additionally, IV2I

k is the interference from the V2I link sharing the RB of the kth
V2V link, IV2V

k is the interference from the V2V link sharing the RB of the kth V2V link, and
gl,k is the channel power gain from the transmitter of the lth V2I link to the receiver of the
kth V2V link. The indicator function, µj,l , denotes whether the resource is shared between
the jth V2V link and the lth V2I link. That is, if the jth V2V link shares the RB of the lth V2I
link, µj,l = 1; otherwise, µj,l = 0.

In order for the BS to know the channel state of the V2V links, each receiver of the
V2V link reports its CSI to the BS, which results in a large signaling overhead. Hence, we
assume that the BS does not know the CSI of the V2V links. The BS independently controls
the resource allocation of the V2I links without considering the channel state of the V2V
links. Consequently, vehicles on the V2V link individually select the RB and determine
the transmit power based on the locally observed channel information. Here, the locally
observed channel information in the V2V link consists of the following: the CSI of the V2I
link, the interference power observed in the previous time slot, the instantaneous CSI of
the V2V link, and the information on the RB selected by nearby vehicles.

Our objective is to maximize the sum rate of the V2I links while increasing the proba-
bility of meeting the latency constraint of the V2V links by controlling the selection of RB
and the transmit power of each V2V link. However, finding the optimal allocations of the
RB and transmit power is an NP-hard problem. Hence, we propose a DQN-based approach
to solve the resource allocation problem.

4. Deep Q-Network for Energy-Efficient Resource Allocation
4.1. Reinforcement Learning

In RL, an agent observes a state in an environment that satisfies the Markov decision
process (MDP). Then, the optimal action is selected according to the given policy. Depend-
ing on the selected action, the agent interacts with the environment, receives a reward from
the environment, and transitions to the next state.

235



Sensors 2023, 23, 1295

The goal of RL is to maximize the expected return value after the episode ends. The
return formula is given as follows:

Rt:T = rt + γrt+1 + γ2rt+2 + . . . + γTrt+T−1, (7)

where rt denotes the reward obtained immediately at time t, T is the time step, and γ
denotes the discount factor. The structure of our RL is shown in Figure 2. The agent
observes the state of the environment at the time (t) and selects the best action according to
the given policy. When the agent selects an action for all V2V links, the actions are stored
in the joint action group and interact with the environment at the same time, and the agent
receives a reward. In our system model, we develop the RL with the following parameters:

1. State space: We use the following state, similar to the unicast scenario of [11].

st = {Ht, It−1, Gt, Nt−1, Ut, Lt}, (8)

where Ht is the CSI of V2I links at time t; It−1 is the interference power to the link at
time t− 1; Gt is the instantaneous CSI of the corresponding V2V link at time t; Nt−1
is the information of RBs selected by surrounding vehicles at time t− 1; Ut is the time
remaining to satisfy the latency constraints at time t; and Lt is the remaining data to
be received from the transmitter of the V2V link at time t. Ht, It−1, Gt, and Nt−1 are
vectors containing the state information of the corresponding RBs, and Ut and Lt are
scalar values that are the time remaining to satisfy the latency constraints and the
remaining data, respectively. Therefore, the dimension of the state space is given by
Dstate = (4× NRB) + 2.

2. Action space: The action determines the transmit power and the allocation of RBs.
Hence, the dimensions of the action space are given by Daction = Npwr × NRB, where
Npwr is the number of transmit power levels in the V2V link and NRB is the number
of RBs.

3. Reward: We formulate the following reward function taking two penalties into account,
the transmission time and the power consumption:

rt = λV2I ∑
l∈ L

Cl + λV2V ∑
k∈K

Ck − λlatency(T0 −Ut)− λpwr
1
K ∑

k∈K

pk
pmax

, (9)

where T0 is the maximum tolerable latency, and therefore, (T0 −Ut) means the trans-
mission time. Moreover, pmax is the maximum transmit power in the V2V link. λV2I
and λV2V represent the weight for the sum rate of the V2I links and the sum rate
of the V2V links, respectively. λlatency and λpwr represent the weight of the penalty
according to an increase in the transmission time and the penalty according to an
increase in the transmit power, respectively. As the sum rate of the V2I or V2V links
increases, a positive factor is added. However, as the transmission time or power
consumption increases, a negative factor is added.
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Figure 2. The structure of the RL for the vehicular network.

4.2. Deep Q-Network

A frequently used framework in the RL is a DQN [35–38]. The DQN framework is
a structure that includes a Q-network consisting of a deep neural network (DNN) in the
Q-learning structure. In order to train the Q-network in the DQN framework, several
learning methods need to be applied [39].

In Q-learning, the Q-value means the expected return when reaching the terminal
state from the state observed in time t, as follows:

Q(s, a) = E[Rt:T |st = s, At = a]. (10)

The Q-value is updated as follows:

Q(st, at) = Q(st, at) + α[rt + γ max
a

Q(st+1, a)−Q(st, at)], (11)

where α denotes the learning rate. The agent’s behavior is determined based on the ε-greedy
policy. The ε-greedy policy is a method of randomly selecting an action if the randomly
sampled value is lower than the value of ε and selecting the action with the highest Q-value
is greedy if it is high. However, because Q-learning uses a lookup table called a Q-table
that stores Q-values in order to find the state and action pairs, it has several disadvantages:
First, the probability of visiting the same state is very low. Second, a very large storage
device is required to store an exponentially increasing number of state and action pairs. A
DQN framework has been developed to overcome these disadvantages.

As shown in Figure 3, the DQN framework calculates Q-values using a Q-network
in which weights and biases are stored. Therefore, when an agent needs a Q-value that
matches a state, the agent puts the state as input to the Q-network and obtains the appro-
priate Q-value as output. The loss function for training the Q-network is as follows:

Loss(θ, β) = ∑
st ,at∈E

(y−Q(st, at, θ, β))2 (12)

y = rt + γ max
a

Q(st+1, a, θ, β), (13)
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where θ and β mean the weights and biases in the Q-network, respectively. Q(st, at, θ, β)
means the Q-value. E is a mini-batch sampled from the experience replay memory that
stores the state, action, and reward of the next-state tuples collected while the agent interacts
with the environment. However, in order for the Q-network to perform an approximation
function in the DQN framework, a training process that adjusts the weights and biases
stored in the Q-network is required.

Figure 3. A Q-network of the DQN framework.

4.3. Training and Testing Algorithm

We train the DQN with the following methods: First, we use a data sampling method
with experience replay memory. Data sampling is used to remove the temporal relationships
between the used data to learn the Q-network. Here, the experience replay memory is a data
storage technique in which the agent collects data while interacting with the environment.
The data consist of tuples of the state, action, reward, and next state. The Q-network is
trained by randomly sampling data tuples from experience replay memory. In this paper,
the experience replay memory is denoted by D. Second, we use a fixed target network
method that includes two Q-networks, the target network and the online network, in the
training process. Q(st+1, a, θ, β) of (13) is calculated as the target network, and Q(st, at, θ, β)
of (12) is calculated as the online network. Additionally, the weights of the online network
are periodically copied to those of the target network.

The training process is described in Algorithm 1. Parameters of the online and target
networks are initialized (lines 1–3). The agent observes the state in the environment and
selects the action according to the ε-greedy policy (lines 10–11). That is, the agent performs
a random selection with the probability of ε, inputs the current state to the online network
with the probability of ε− 1, and selects the largest value among the observed Q-values as
output. The selected action is saved in the joint action group (line 12). If the agent selects
the actions for all V2V links, the joint action group interacts with the environment and
acquires a reward (line 14). The data tuples collected through the above process are stored
in the experience replay memory (lines 15–16). The sampled data tuples are used to update
the online network. When the online network repeatedly updates the weights and biases,
the weights and biases of the online network are copied to those of the target network (lines
17–25).

The testing process is described in Algorithm 2. Unlike the training process, the testing
process greedily selects an action based on the Q-network learned by the training process
(lines 8–9). After that, the action is stored in the joint action group in the same way as the
training process (line 10). If the agent selects the action for all V2V links, the joint action
group interacts with the environment (line 12). When the time step t reaches the simulation
end time, the performances are evaluated in terms of the sum rate of the V2I and V2V links,
the outage probability of V2V links, and the average power consumption of V2V links
(lines 14–17).
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Algorithm 1 Training algorithm

1: Initialize the online Q-network with random weights θ and random biases β;
2: Initialize the target Q-network with random weights θtarget and random biases βtarget;
3: Generate Experience replay memory D;
4: for each episode e do
5: Initialize environment;
6: Generate V2V and V2I networks;
7: for each time step t do
8: Generate a joint action group A;
9: for each V2V links do

10: Get state st from the environment
11: Choose an action at based on the ε-greedy policy;
12: Append the at to A;
13: end for
14: Interact with the environment based on A and Calculate reward rt;
15: Get all V2V links state st+1 from the environment;
16: Append the st, at, rt, st+1 to D;
17: for each update step i do
18: Sample a mini-batch of experience set E from the D;
19: Calculate the loss:
20: y=rt+γ maxa(Q(st+1, a, θtarget, βtarget));
21: Loss(θ,β)=∑st ,at∈E(y−Q(st, at, θ, β))2;
22: Update the online Q-network with θ, β;
23: end for
24: Update weights, θtarget ← θ

25: Update biases with βtarget ← β
26: end for
27: end for

Algorithm 2 Testing algorithm

1: Load the Q-network with trained weights θ and biases β;
2: for each episode e do
3: Initialize environment;
4: Generate V2V and V2I networks;
5: for each time step t do
6: Generate a joint action group A;
7: for each V2V link do
8: Get state st from the environment
9: Choose the at with the maximum value among the estimated Q-values by

inputting the st into the Q-network;
10: Append the at to A;
11: end for
12: Interact with the environment based on A;
13: end for
14: Calculate the sum rate of V2I links;
15: Calculate the sum rate of V2V links;
16: Calculate the outage probability of V2V links;
17: Calculate the average transmit power of V2V links;
18: end for

5. Simulation Results

We consider a single-cell system with one base station and 20 V2I links. We follow
the simulation setup for the urban case study of Manhattan with 9 blocks of 3GPP TR
36.885 [11,40]. The models of vehicle drops, mobility, and channels all follow the evaluation
scenario of 3GPP TR 36.885. Vehicles are dropped on the road according to a spatial Poisson

239



Sensors 2023, 23, 1295

process, and the vehicle locations are updated every one time slot in the simulation. A
vehicle moves at a constant speed defined in Table 1. The vehicle changes its direction at the
intersection to go straight with a probability of 0.5, to turn left with a probability of 0.25, and
to turn right with a probability of 0.25. Figure 4 shows the movement of vehicles for 20 s,
where there are eight vehicles and one BS. The V2V channel model and V2I channel model
are both described in Table 1, according to 3GPP TR 36.885. Each vehicle communicates
with a vehicle nearby. We perform a time-driven simulation, where the simulation clock
is advanced in increments of time slot units and the state variables are updated for every
time slot. For each slot in the simulation, we calculate the CSI of the V2I and V2V links and
the interference power, which results in the state of the DQN. The simulation parameters
are summarized in Table 1.

Figure 4. Vehicle movements.

Table 1. Simulation parameters.

Parameter Value

Road intersection size 430 m× 250 m
Simulation area size 1300 m× 750 m

Absolute vehicle speed 36 km/h
Vehicle drop and mobility model Urban case of A.12 in 3GPP TR 36.885 [40]

V2V path loss model WINNER + B1 Manhattan [41]
V2V shadowing Log-normal with σ2 = 3 dB

V2I path loss model 128.1 + 37.6 log(R), where R in kilometers
V2I shadowing Log-normal with σ2 = 8 dB

V2V and V2I fast fading Rayleigh fading
Noise power −114 dBm

Carrier frequency, fc 2 GHz
Sub-carrier frequency 1.5 MHz

Number of V2I links, L 20
Number of V2V links, K, [60, 120, 180, 240, 300]

Antenna height of eNode B type RSU 25 m
Antenna gain of RSU 8 dBi

Noise figure of RSU’s antenna 5 dB
Antenna height of vehicles 1.5 m
Antenna gain of vehicles 3 dBi

Noise figure of vehicle’s antenna 9 dB
Latency constraints for V2V link 100 ms

V2V payload size 30 Mbits
Update time slot duration 2 ms

Simulation time 400 ms
transmit power level of V2V links [5, 10, 23] dBm

In the proposed Q-network, the number of neurons in the input layer is set to 82,
the number of neurons in the hidden layers is set to [500, 250 120], and the number of
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neurons in the output layer is set to 60. The activation function of the hidden layers uses
the ReLU function. The optimizer for training the Q-network uses RMSProp. The detailed
parameters of the DQN framework are summarized in Table 2. The DQN is trained for
20,000 episodes, where an episode means 1 simulation time and new vehicles are dropped
each time an episode starts. After training the DQN, the simulation is run 1000 times, and
the 1000 results are averaged.

Table 2. DQN framework parameters.

Parameter Value

Number of neurons in the input layer 82
Number of neurons in each hidden layer 500, 250, 120
Number of neurons in the output layer 60

Reward discount factor 0.99
Hidden layer activation function ReLU

Optimizer RMSProp
Learning rate α 0.001

Values of λV2I, λV2V, λLatency, and λpwr 0.1, 0.9, 1, and 0.2, respectively

The proposed resource allocation is compared with the random resource allocation
and the conventional RL-based resource allocation of [11] in terms of the average transmit
power of the V2V links, the average outage probability of the V2V links, and the average
sum rates of the V2V and V2I networks. In the random resource allocation, the transmitter
of the V2V link transmits data with randomly selected transmit power through a randomly
selected RB.

Figure 5 shows the average transmit power of V2V links according to the number
of V2V links. As the number of V2V links increases, the average transmit power of
vehicles increases in the proposed scheme and the conventional RL-based scheme, but the
average transmit power in the random allocation scheme is fixed. Because the interference
increases according to the increase in the number of V2V links, the transmit power of
vehicles increases in order to overcome the interference, in the proposed scheme and the
conventional RL-based scheme. The proposed scheme significantly reduces the power
consumption of V2V links in comparison with the conventional RL-based scheme because
of the penalty function of the transmit power in the reward. In the random allocation
scheme, because the transmitter randomly selects the transmit power, the transmit power
of the V2V link is fixed on average, regardless of the amount of interference caused by
other V2V links. In the simulation environment of this paper, the random allocation scheme
shows a low power consumption due to the low transmit power but shows an outage
probability that is too high.

Figure 5. Average transmit power of V2V links.
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Figure 6 shows the sum rate of V2V links as the number of V2V links increases.
As the number of V2V links increases, the sum rate of V2V links increases in all the
resource allocation schemes. The sum rate of the conventional RL-based scheme is slightly
higher than that of the proposed scheme because the proposed scheme suppresses the
transmit power of vehicles for the purpose of energy efficiency. The sum rate of the
random allocation scheme is the worst because it randomly selects the RBs regardless of
the interference to others.

Figure 6. Average sum rate of V2V links.

Figure 7 shows the sum rate of V2I links as the number of V2V links increases. Because
the number of V2I links is fixed at 20, the interference from the V2V links increases according
to the number of V2V links, and thus the sum rate of V2I links decreases with the increase
in the V2V links. In particular, the performance of the proposed scheme is slightly better
than that of the conventional RL-based scheme. Moreover, because the interference from
the V2V links to the V2I link increases according to the number of V2V links, the sum rate
of the random allocation greatly decreases with the number of V2V links.

Figure 7. Average sum rate of V2I links.
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Figure 8 shows the outage probability as the number of V2V links increases. Here,
the outage probability is defined as the probability that a transmitter on the V2V link fails
to transmit data within the maximum allowable latency, T0. The outage probability is
inversely proportional to the sum rate. Hence, the outage probability increases according
to the number of V2V links. Moreover, the outage probability of the random allocation
scheme is much higher than that of other schemes. That is, in order to efficiently allocate
resources, RL-based resource allocation is required.

Figure 8. Average outage probability of V2V links.

The major concerns with deep-learning-based approaches are the computational
complexity and the memory space, which depend on the number of parameters to be
stored and to be computed. In the proposed RL, from (8), the dimension of the state space
is Dstate = (4× NRB) + 2 (=82 in our simulation) and the dimension of the action space
is Daction = Npwr × NRB (=60 in our simulation), where NRB is the number of RBs and
Npwr is the number of the transmit power levels. Consider a feed-forward network with l
layers, where layer 0 is the input layer and layer l − 1 is the output layer. Let the number
of neurons of each layer be n0, n1, . . . , nl−1. Then, the number of parameters (weights)
of the network, including biases, is given by NDNN = ∑l−2

i=0 nini+1 + ∑l−1
i=1 ni (=204,130

in our simulation). Because the DQN framework calculates Q-values using a DNN, the
total number of parameters becomes Dstate + Daction + NDNN. Moreover, because of the
use of two Q-networks, the online network and the target network, the total number of
parameters to be processed doubles, and the replay memory is required to store a collection
of experience tuples, i.e., the parameters of the online network. In our simulation, we
set the replay buffer size to 100 tuples. The computational complexity is similar to [11].
In our implementation, each selection takes less than 10−4 s using GPU 2080 Ti. The
computational speed is acceptable for vehicles thanks to the power of the GPU. The
computational complexity of the DNN can be reduced by using lightweight DNNs [42,43].

6. Conclusions

Vehicular communications or V2X are key to the development of autonomous vehicles.
In the V2X network, it is important to manage radio resources efficiently to provide low-
latency and energy-efficient services. In this paper, we developed a DQN-based energy-
efficient resource allocation scheme in a V2X communication network in which V2I and
V2V networks share resource blocks. We formulated the reward of the DQN model by using
two penalties and two positives. Here, the two penalties are the transmission time and
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the transmit power, and the two positives are the sum rate of the V2I and V2V networks.
The proposed scheme significantly reduces the power consumption of vehicles in the V2V
network without sacrificing the sum rate and outage probability. The results show that
an energy-efficient resource allocation scheme is crucial in order to meet the latency and
power consumption requirements of mission critical V2V applications.
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Abstract: This paper presents a systematic approach for solving complex prediction problems with
a focus on energy efficiency. The approach involves using neural networks, specifically recurrent
and sequential networks, as the main tool for prediction. In order to test the methodology, a case
study was conducted in the telecommunications industry to address the problem of energy efficiency
in data centers. The case study involved comparing four recurrent and sequential neural networks,
including recurrent neural networks (RNNs), long short-term memory (LSTM), gated recurrent units
(GRUs), and online sequential extreme learning machine (OS-ELM), to determine the best network in
terms of prediction accuracy and computational time. The results show that OS-ELM outperformed
the other networks in both accuracy and computational efficiency. The simulation was applied to
real traffic data and showed potential energy savings of up to 12.2% in a single day. This highlights
the importance of energy efficiency and the potential for the methodology to be applied to other
industries. The methodology can be further developed as technology and data continue to advance,
making it a promising solution for a wide range of prediction problems.

Keywords: energy efficiency; machine learning; telecom services operator; traffic prediction

1. Introduction

The increasing demand for energy in contemporary industry, global warming, and the
development of new communication technologies such as the Internet of Things (IOT), 5G,
and B5G have necessitated research into energy-saving strategies in the telecommunications
sector, especially among telecommunications service operators (TSOs). From 2010 to 2018,
the global energy demand for data centers increased from 194 TWh to 205 TWh, according
to research [1]. According to [2], by the year 2030, telecommunications networks will
consume up to 51% of the world’s electricity if their energy efficiency is not significantly
improved. Consequently, energy efficiency is becoming essential for existing and future 5G
and beyond networks.

Some TSOs have designed networks with redundant links to avoid congestion in
high-availability schemes (active/passive configuration) and load balancing (active/active
configuration) [3]. From the perspective of energy efficiency, these designs can be consid-
ered as inefficient energy expenditure, because these links are always active [4]. The studies
in [5,6] show that links are underutilized by only 40% in the central network, commonly
called core network (CN), and that during off-peak hours, it is much lower. Moreover, there
is not much difference in energy consumption between equipment at full load and standby
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mode [5]. To increase bandwidth capacity, TSOs connect the routers through multiple
physical cables that form a single grouped logical link. The grouped logical links are also
called link aggregation groups (LAG) or bundle Ethernet (BE). Link aggregation in the
Ethernet was standardized in the IEEE 802.3ad standard and later renamed as IEEE 802.1ax
to maintain consistency with other 802.3 standards [7].

The current CN of a TSO is composed of multiple networks, and trunk lines are
often formed by many grouped optical fibers to increase capacity and add resilience.
Connections with the number of sublinks within a BE or LAG range from 2 to approximately
20 in a typical TSO [6]. Additionally, there is the problem of the energy consumption of
these links, which is even more when they are grouped. In recent years, several works
have been published and proposed to reduce the energy consumption of simple links
(unaggregated) [8]. One of the standards that helps solve this problem is IEEE 802.3az,
which specifies Ethernet energy efficiency (EEE), which is a method for reducing the energy
used by an Ethernet device during low link utilization periods [9]. The premise of EEE
is that Ethernet links have idle time and therefore the opportunity to save energy during
that period of time. The method is called low power idle (LPI), but it is only for copper
interfaces [10]. Regarding LAGs, several energy efficiency studies have been carried out
using different optimization methods [6]. Additionally, there are works that propose
threshold point algorithms, as in [11], and others [12] that work with software-defined
network (SDN) controllers. Moreover, [13] has used predictive techniques to reduce LAG
energy, using a simple moving average (SMA).

On the other hand, neural networks have begun to be used to predict time series,
because time series are the optimal method to describe network traffic behavior, in particular
regarding recurrent neural networks (RNNs) and their variants, long short-term memory
(LSTM) and gated recurrent unit (GRU) [14–17]. There is also a neural network that
stands out for its speed called online sequential extreme learning machine (OS-ELM),
which has been shown to be efficient and especially fast compared with gradient-based
networks [18–20]. This paper’s primary objective is to predict traffic in a short period of time
to activate and deactivate the ports of the link aggregation (LAG or BE) between two nodes
within a TSO network in order to save energy on fiber optic links while maintaining a high
quality of service (QoS) for clients; the main contributions of this work are presented below:

1. A novel method is proposed and developed to compare different types of neural
networks in terms of their ability to process time series data, specifically in real-time
traffic analysis. This methodology aimed to evaluate the performance of various
neural network models and identify the most suitable option for the task.

2. A novel bundle Ethernet energy efficiency methodology was designed. This algorithm
was based on the expected traffic and used the best-performing neural network,
selected by the methodology outlined in point 1.

3. The proposed traffic prediction method and energy-saving Ethernet bundle method-
ology were evaluated. The performance of the traffic prediction methodology was
compared between neural networks. The energy-saving Ethernet bundle was evalu-
ated in terms of energy savings by comparing the performance algorithms proposed
in point 2. The results were analyzed to determine the feasibility and effectiveness of
the proposed solution.

The remainder of this paper is structured as follows: Section 2 presents related works
in LAG or BE energy efficiency, as well as the most popular machine learning models and
neural networks for traffic prediction. Section 3 details the methodology involved in the
selection of a neural network. Section 4 outlines the stages used in the methodology for the
development of two energy-efficient algorithms. Section 5 describes the use case, including
network topology, traffic description, and network equipment specifications. In Section 6,
the results of training a neural network using training and testing data, along with various
evaluation metrics, are presented for the use case. In Section 7, the performance of the
proposed energy efficiency optimization algorithms is compared with the base case, and
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the results are presented for the use case. Finally, relevant conclusions and future works
are presented in Section 8.

2. Related Works

In this Section, we review the related works on traffic prediction based on neural
networks and energy efficiency in grouped links (LAG or BE).

2.1. Works Related to Methods of Traffic Prediction Based on Machine Learning and
Neural Networks

Analyzing historical traffic is a critical challenge for generating an accurate model
that reflects the structure of the series in order to allow for prediction and classification
of future events [21]. Time series consist of a succession of ordered numerical data points.
The problem of time series prediction is the forecast of future activity from past values and
the related patterns [21,22].

For traffic prediction, several time series forecasting techniques can be used, grouped
into two types of linear and nonlinear methods. Nonlinear methods are more suitable for
predicting traffic due to the existing noise and the complex nature that traffic presents [23].
Neural networks are being widely used to predict time series [24].

According to the study in [25], convolutional neural networks (CNNs) and RNNs are
the most widely used deep learning models for short-term traffic prediction. CNNs are
good at capturing spatial characteristics, and RNNs are good at capturing the temporal
characteristics of traffic data. Within deep learning and recurrent networks, there are varia-
tions such as the LSTM and GRU neural networks. Currently, predicting traffic with neural
networks has made the analysis of time series an essential part of data modeling in a wide
range of industries, including finance, health, transportation, and the environment [26–31].

In [22], the authors used a GRU neural network, a variant of LSTM, to predict the
traffic flow of ships within an area of wind parks. The results of GRU were compared with
the autoregressive integrated moving average (ARIMA) model, as well as support vector
machine (SVM) and LSTM deep learning models, with GRU being the winner.

In the logistics sector, the prediction of passenger flow in metro stations has been
carried out by [32], as well as the use of parking modeling in [33] and urbanization planning
based on vehicle traffic prediction [34]. In the health field, the prediction of driver stress
and drowsiness for accident prevention [35] and the prediction of the monthly progression
of Alzheimer’s disease [36] have also been demonstrated. With regard to the telecommuni-
cations sector, the prediction of TSO network traffic load has been used to avoid overloads,
minimize response time, and optimize resource use [15,19,37,38].

With the arrival of the 5G standard, traffic prediction will be more difficult due to its
heterogeneous nature. The coexistence of different networks and significantly different
characteristics make traffic prediction, management, and optimization a difficult task.
Therefore, the use and adaptation of neural networks will increasingly be used to analyze
and manage network traffic based on data [39]. The diverse use of machine learning models
in telecommunications operators and neural network research have led to more and more
comparisons between them.

In [40], the use of cellular network traffic prediction for dynamic resource optimization
in wireless backhaul networks is discussed. In [14], the authors state that the LSTM neural
network is a type of recurrent neural network architecture, which is trained with a gradient-
based learning algorithm. The framework proposed by the authors utilizes real traces
from a TIER-1 TSO. With these traces, predictions were made at different time spans and
compared with a combination of the classic method, such as ARIMA, and RNN. The
results obtained in comparison with the ARIMA and RNN models show that the LSTM
model performs well with a low normalized RMSE for the entire dataset and also generates
predictions at very short time scales (less than thirty seconds). In the work in [41], the RNN,
LSTM, GRU, deep neural network (DNN), and bidirectional LSTM (BLSTM) networks
were compared, and the result was that LSTM was one of the networks that performed the
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best in terms of traffic prediction, due to having lower error metrics. In [42], the authors
show the prediction of internet traffic in Telecom Italia, comparing deep learning models
to conventional machine learning models. The performance of LSTM, GRU, and two
conventional machine learning architectures, random forest (RF) and decision tree (DT),
was compared for the prediction of mobile Internet traffic. The predictive quality of the
models was evaluated using the root mean squared error (RMSE) and mean absolute error
(MAE). Both deep learning algorithms were effective in modeling Internet activity and
seasonality, both within days and over 2 months. The deep learning models outperformed
the conventional machine learning models, placing the LSTM network as the winner over
the GRU network in the experiments.

In the study in [15], it is shown that 5G networks can face network traffic peaks due
to their numerous connections, so they focus on predicting these traffic peaks through
deep learning techniques such as RNN, LSTM, and GRU from a real network. In terms
of prediction, LSTM and GRU outperform RNN by 4.98% and 4.56%, respectively, and in
terms of computational complexity, GRU is the worst compared with RNN and LSTM by
12.16% and 0.13%, respectively. Finally, since the times between GRU and LSTM are similar,
when seeking greater precision for traffic peaks, the LSTM model performed the best.
In [43], the prediction performance of the recurrent models RNN, LSTM, and GRU was
compared with nonrecurrent models, such as XGBoost and RF, LASSO linear regression,
and prediction models based on moving averages. The results indicate that RNN and its
variants outperformed the other methods. The best nonrecurrent model was XGBoost. In
comparison with XGBoost, GRU and RNN reduced 15% in the RMSE metric and 8% in
MAPE. In another study, by [44], recurrent neural networks and their variants are compared
with traditional statistical methods, such as ARIMA, seasonal ARIMA (SARIMA), and
CNN. Three different congestion scenarios are tested: full day, morning peak hour, and
afternoon peak hour. The results indicate that for the RMSE metric, the LSTM neural
network had performances of 5.8, 7.9, and 10.2 and LSTM of 6.7, 8.6, and 10.9, depending
on the scenario tested.

As previously mentioned, RNN, LSTM, and GRU have gained ground in traffic predic-
tion compared with machine learning models (XGBoost, RF, SVM, and DT), conventional
methods such as LASSO linear regression, ARIMA, and SARIMA, and other CNNs. One of
the factors that hinders the RNN, LSTM, and GRU deep learning networks from being faster
in prediction is the factor of seeking their optimization based on minimizing the gradient;
thus, alternatives to this, without losing predictive performance, have been sought.

One of the neural networks that has attracted interest in recent times is the extreme
learning machine (ELM) network, due to its good results in prediction and extremely fast
training algorithm [45]. ELM is a particular type of feed-forward neural network. The
learning mechanism allows for significantly faster training speed compared with classic
neural networks in a variety of scenarios. A variation of this neural network is called
online sequential extreme learning machine (OS-ELM). The advantage of OS-ELM over
ELM is that it allows the algorithm to learn sequential data online, part by part, using the
recursive least squares method [46]. In the study by [19], the authors compare the LSTM
recurrent neural network with the OS-ELM neural network. The results show that OS-ELM
outperforms LSTM in terms of computational cost by a factor of 2300, which is extremely
high, and in terms of network prediction, OS-ELM was similar to LSTM. The OS-ELM
neural network is simpler in architecture than LSTM, which makes it faster in terms of
complexity than recurrent RNNs and their variants. The latter neural networks may have
better accuracy in certain cases, but it depends on the input data, the architecture of the
time series, and the hyperparameters that are configured.

For prediction models, the goal of evaluation metrics is to minimize error. For regres-
sion and prediction models, MAE and RMSE metrics are most commonly used to evaluate
the performance of the model. For example, in studies such as [15,19,37,47–50], the RMSE
metric has been used, and in others such as [36,37,47,51], the MAE metric has been used.
The mean absolute percentage error (MAPE) is also used in some cases to evaluate regres-
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sion and prediction [52,53]. RMSE and MAE are metrics that are dependent on the scale.
MAPE is a percentage error metric. The RMSE metric is very sensitive to outliers, while the
impact of these is reduced with MAE. On the other hand, MAE cannot indicate the bias of
predictions in terms of overfitting or underfitting. MAPE can differentiate this type of bias
and imposes a penalty on predicted values above the real ones.

In this study, the highest possible accuracy in prediction is required, with the process-
ing time being relaxed to the maximum extent possible to the time of obtaining system data.
As this depends on the data of the time series, this work makes a comparison between
OS-ELM and recurrent neural networks and their variants (RNN, LSTM, and GRU) to
determine which of these networks is better in terms of accuracy (RMSE, MAE, and MAPE)
and computational time.

2.2. Works Related to Energy Efficiency in Link Aggregation Groups or Bundle Ethernet

In the field of energy-efficient link aggregation, several methods and techniques have
been proposed to reduce the energy consumption of LAGs or BEs in telecommunications
networks, which can be divided into four categories: optimization methods, threshold
points, SDN controllers, and predictive techniques.

In [6], an integer linear programming (ILP) formulation was proposed to optimize the
energy of LAGs. The energy savings were significant, reducing energy consumption by 79%
compared with a normal network. Another study, in [54], investigated energy reduction
in clustered links using a mixed-integer linear programming (MILP) model, showing a
50% reduction compared with shortest-path routing. In [55], the use of link aggregation
activation and deactivation was studied using linear programming (LP) optimization, and
it was shown how to find the most energy-efficient link configuration for all links of a
BE. Energy savings ranged between 10% and 30% depending on the chosen configuration.
In [56], convex optimization was used with the water-filling algorithm, reducing energy
consumption by up to 50% in EEE links, an IEEE 802.3az standard that reduces the energy
consumption of physical layer (PHY) devices during periods of low link utilization. EEE
saves energy by switching part of the transmission circuit to low-power mode when the
link is inactive.

An Ethernet link consumes energy even when the link is inactive. EEE provides a
method for using energy so that Ethernet links only use it during data transmission. EEE
uses a signaling LPI protocol to achieve energy savings when an Ethernet link is inactive.
EEE allows PHYs to exchange LPI indications to signal the transition to low-power mode
when there is no traffic. LPI indicates when a link can be inactive and when it should resume
after a predefined delay, without affecting data transmission. The following copper PHYs
are standardized by IEEE 802.3az: 100BASE-T, 1000BASE-T, and 10GBASE-T. However, the
optical fiber standards are not.

In other works by [11], algorithms such as the fixed local heuristic threshold (FLHT)
and the dynamic local heuristic threshold (DLHT), which are two locally optimized dis-
tributed algorithms, can dynamically adjust the number of active sublinks to save energy
consumption by approximately 80% in the CN, for both bin packing and load balancing
cases. In telecommunications networks with a higher intelligence using SDN controllers,
the sleep port algorithm (SPA) and the two-queue algorithm (TQA) are applied, achieving
an energy efficiency of up to 50% for grouped links [12,57]. In [13], the algorithm proposed
by the author was able to reduce the average number of active links to 25.4%, using a
mechanism based on the SMA prediction technique.

Although researchers have proposed many schemes to improve the energy efficiency
of the BEs or LAGs, there are still issues with the scalability of the solution, because
they are primarily based on a snapshot of the network, without taking into account the
scalability and dynamic nature of a TSO network, and most of them are associated with
copper standards.
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3. Traffic Prediction Methodology

The methodology for traffic prediction involves several steps to obtain the best predic-
tion based on the configuration and the model used. The process is illustrated in Figure 1.
The diagram starts with raw data input, obtained from an online monitoring platform. The
data are then processed for cleaning and adjustments to be used in simulations. Next, the
data are divided for validation processes. Then, simulations are run using different neural
networks, and their performance is evaluated using metrics such as prediction performance
in terms of RMSE, MAE, MAPE, and computational time. Finally, the best prediction model
is chosen.

The following section provides more detail on each of these steps.

Figure 1. Traffic prediction methodology. * This output will be the input for Bundle Ethernet energy
efficiency methodology shown in Section 4.

3.1. Data Collection

The utilization of a network monitoring platform is necessary in order to continuously
monitor the traffic on routers and provide real-time statistics on various time scales, includ-
ing but not limited to minutes, hours, days, and months. This results in the accumulation
of a significant amount of data, which can be categorized as big data and is structured in
the form of a time series. The platform stores this information for a minimum duration of
1 year, and the monitoring system updates the data every 5 min, with the precise time span
being contingent on the system in use. The collected data serve as inputs for prediction
models. It is imperative to note that for this particular use case, the effective monitoring of
the traffic on TSO network routers can only be achieved through the utilization of the net-
work performance monitor platform in conjunction with the simple network management
protocol (SNMP).

3.2. Structure of RNN, LSTM, GRU, and OS-ELM

The basic architectures used by neural networks have been extensively studied and
discussed in the literature; for example, ref. [58] discusses RNNs, ref. [23] discusses LSTM,
ref. [59] discusses GRU, and refs. [60,61] discuss OS-ELM.

3.3. Data Processing for RNN, LSTM, GRU, and OS-ELM

In this stage, the network performance monitor has provided a database that will
serve as the data source for training. However, it is crucial to ensure that this database is
suitable for the purpose it is intended for, which is searching. To achieve this, the data will
be preprocessed and transformed to align with the specifications of the neural network
that will be utilized. The neural network model will play a crucial role in determining
the final form of the data and shaping it to meet the necessary criteria for successful
searching. In essence, the database will be tailored to the requirements of the neural
network, ensuring that it can effectively extract meaningful information from the data and
deliver accurate results.

3.3.1. Data Processing for RNN, LSTM, and GRU

The transformation of these three steps will be necessary to better process the data in
the implementation of RNN, LSTM, and GRU.

1. Transform the data into a supervised learning problem. In the time series problem,
the data are modified as follows: The observation at the last time step (t− 1) as the

252



Sensors 2023, 23, 4997

input and the observation at the current time step (t) as the output. This represents
the single-step sliding window. It is mainly the only variable to compare, so it is a
univariate problem [41].

2. Time-dependent time series data. The trend can be removed from the observations
and then returned to the original prediction scale. A standard way to remove a trend
is to differentiate the data.

3. Normalize the observations. The default activation function of the RNN, LSTM, and
GRU models is the hyperbolic tangent (tanh), which has values between −1 and 1.
The observations will be normalized in the same way, that is, between −1 and 1. This
regularization helps to avoid corrupting the experimental set with information from
the test dataset.

3.3.2. Data Processing for OS-ELM

The transformation of these three steps is necessary to better process the data in the
implementation of OS-ELM.

1. Transform the data into a supervised learning problem. In preparing the data, the
model is instructed in the same way as recurrent neural networks, that is, the sliding
window or prediction step will be one step.

2. Activation function. The activation function of the OS-ELM neural network is the
sigmoid function [62]. The rectified linear unit (RELU) activation function, also
known as ramp function, is tested in [19], with poor results compared with the
sigmoid function.

3. Normalize the observations. In the OS-ELM model, the recommended scale is to
normalize the data by subtracting the mean and dividing by the standard deviation.

3.4. Training and Testing Data

Training and testing datasets make up the two sections of the data collection. The
model is constructed and validated using the training and testing datasets, respectively. The
forward-chaining method is generally used to compare and validate the models. Forward
chaining is a technique used in machine learning to evaluate the performance of a predictive
model. In this method, the training data are divided into two parts: a training set and a
validation set. The model is trained on the training set and then tested on the validation set.
The testing is performed in a forward direction, meaning that the model is tested on data
that comes after the training data. Forward chaining is particularly useful when working
with time series data, where the goal is to predict future values based on past observations.
It is a form of cross-validation that ensures the model is not overfitted on the training data
and can generalize well to new data [63,64]. Traditional cross-validation is not suitable for
time series data due to temporal dependencies and the arbitrary nature of test set selection,
among other factors. It is essential to prevent data leakage when partitioning time series
data [65]. In conventional cross-validation, the test set selection is often arbitrary, which
may result in the test set error being an unreliable estimator of the error in an independent
test set. This problem can be addressed using a technique called stacked cross-validation,
as described by [66].

For this case, we applied the same testing set for all simulations, so it will be possible
to draw conclusions based on variations of the four neural networks and different hyperpa-
rameters. In the case of the training set, data will be added to verify if adding more training
data improves the error metrics. As the time series data are seasonal, previous days will
be added (t-xdays), as shown in Figure 2. The amount of data to be added depends on the
time interval of the monitoring system.
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Figure 2. Training and testing dataset.

Thus, three sets of data in different portions for the simulations are obtained, which
are Training : Testing. Therefore, the first set = 50.0%:50.0%, the second set = 66.7%:33.3%,
and the third set = 75.0%:25.0%.

3.5. Hyperparameters of RNN, LSTM, GRU, and OS-ELM

Hyperparameters in neural networks are the parameters that are set before training
a model, unlike the model parameters, which are learned during the training process.
These hyperparameters control various aspects of the model’s training, such as the number
of neurons in each layer, the learning rate, the type of activation function, the type of
optimization algorithm, epochs, and time steps. The optimal values of hyperparameters
greatly affect the performance of the neural network, such as its ability to learn from the
data and generalize well to new examples. Finding the best hyperparameters for a specific
problem is usually done through a process called hyperparameter tuning, where different
values are tried and the performance of each set of hyperparameters is evaluated.

3.5.1. RNN, LSTM, and GRU Hyperparameters

These steps explain the fundamental hyperparameters of the RNN, LSTM, and GRU
model that will be implemented.

1. Number of neurons: It is the number of hidden layers added to the RNN, LSTM, and
GRU cell.

2. Epochs: It is the number of times each training dataset will pass through the neural
network.

3. Time steps: The number of time steps specified determines the number of input
variables x used to predict the next time step h, as shown in Figure 3. In recurrent
neural networks, time steps (also known as lags) refer to the number of previous time
steps that are used as input to predict the next time step. For example, if the time
steps are set to 3, the network will use the previous 3 time steps of the data as input to
predict the next time step. The number of time steps can have a significant impact
on the performance of the network, as it determines the amount of context that the
network has access to when making predictions.

4. Adam optimizer: The Adam algorithm [67] is one that combines RMSProp with
momentum. To date, there is no algorithm that has superior performance over others
in different scenarios [68], so it is recommended to use the optimization algorithm with
which the user feels the most comfortable when adjusting the hyperparameters. For
running the simulations, the Adam-based optimization algorithm will be configured
for RNN, LSTM, and GRU. Ref. [69] indicates that the Adam optimization algorithm
has been a very popular optimizer in deep learning networks in recent years.
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Figure 3. Time steps (lags) in recurrent neural networks.

3.5.2. OS-ELM Hyperparameters

These steps explain the fundamental hyperparameters of the OS-ELM model that will
be implemented.

1. Number of neurons: It is the number of hidden layers added to the OS-ELM cell.
2. Forgetting factor: The forgetting factor allows the OS-ELM neural network to con-

tinuously forget obsolete input data in the training process, in order to reduce its
negative effect on subsequent learning. If the forgetting factor equals 1, it means that
the OS-ELM neural network does not forget anything. If the forgetting factor is less
than 1, it starts to forget data.

3.6. Metrics

The root mean square error (RSME), the mean absolute error (MAE), and the mean
absolute percentage error (MAPE) metrics are used to evaluate the performance of predic-
tion models. These metrics provide a systematic approach for evaluating the accuracy of a
model’s predictions and facilitate the comparison of the performance of different models.
Furthermore, it is important to consider computational time, namely how long it will take
to process the prediction.

3.6.1. Root Mean Squared Error (RMSE)

RMSE is a commonly used measure of the difference between the predicted and actual
values of a model. It is calculated by taking the square root of the mean of the squared
differences between the predicted and actual values and is given by Equation (1):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (1)

where yi is the actual value, ŷi is the predicted value produced by the model, and n is the
total number of samples.

3.6.2. Mean Absolute Error (MAE)

MAE is a measure of the difference between the predicted and actual values of a model.
It is calculated as the average of the absolute differences between the predicted and actual
values. Similar to RMSE, the lower the MAE, the better the fit of the model to the data.
MAE is commonly used in time series forecasting; it is less sensitive to outliers than RMSE,
and it is defined by Equation (2):

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (2)

where yi is the actual value, ŷi is the predicted value produced by the model, and n is the
total number of samples.

3.6.3. Mean Absolute Percentage Error (MAPE)

MAPE is a measure of the difference between the predicted and actual values of a
model. It is calculated as the average of the absolute percentage differences between the
predicted and actual values. It expresses the error as a percentage of the actual value, which
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can be useful for comparing the error of models that make predictions for different scales
of values, and it is defined by Equation (3):

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
max(ε, |yi|)

, (3)

where yi is the actual value, ŷi is the predicted value produced by the model, n is the
total number of samples, and ε is an arbitrary small but strictly positive number to avoid
undefined results when y is zero. It is important to note that when the actual value is zero,
MAPE is not defined, which could be a limitation of this measure.

For all neural networks, 100 runs are performed and the mean for each metric is
obtained, as in the study by [70], which indicated that in optimization problems, which
are heuristic, more than 100 tests should be carried out to find a true or optimal value of
the solution.

3.6.4. Computational Time

Computational time or lapsed time refers to the amount of time required to perform a
specific computation or task on a computer. It can include the time required to input data,
process it, and output the results. It is measured in seconds (s). In the context of neural
networks, computational time includes the time required to train and test the network, as
well as any other computations that are necessary as part of the model’s implementation.

The hardware and software that will be used in the simulations regarding the neural
networks are specified in Table 1.

Table 1. System specifications.

Hardware

CPU Intel(R) Core(TM) 8600 K at 5.1 Ghz

RAM 32 Gb

Graphics card NVIDIA GeForce(R) RTX 2080.

Software

Python 3.7.10

Tensorflow 2.2.0

Keras 2.3.0

Pandas 1.2.4

Scikit-Learn 0.24.1

4. Bundle Ethernet Energy Efficiency Methodology

To understand the methodology for energy efficiency in bundle Ethernet, Figure 4
shows how the three cases will be compared. The first case corresponds to the base (without
energy efficiency), which will be when the system is in current conditions, that is, how
the system is currently functioning. The second and third case will be the development of
algorithms that will be responsible for turning on or turning off the corresponding ports on
the side that provides services to the router, in order to reduce the energy consumption of
the network while meeting traffic demand.

The first algorithm will be based on the past time of the raw values (rv at t− 1) of
the network performance monitor, in which a threshold or safety factor of 100% will be
added, that is, if the traffic at time t− 1 was 100 Gbps, a capacity of at least 200 Gbps will
be applied to time t, and based on that capacity, the required BE will be arranged. This
algorithm is called the “threshold-based algorithm”.

The second algorithm will have as input the prediction model that will be selected
in the traffic prediction methodology, seen in Figure 1. With this prediction model, the
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predicted values (pv at t) will be obtained for each point in time t, with this, the capacity in
the BE will be activated. This algorithm is called the prediction-based algorithm.

Figure 4. Bundle Ethernet energy efficiency methodology. * This input for Bundle Ethernet energy
efficiency methodology is the neural network selected in traffic prediction methodology, according to
Figure 1.

4.1. Threshold-Based and Prediction-Based Algorithms

The logic of both algorithms written in pseudocode are presented below.

4.1.1. Threshold-Based Algorithm

The threshold-based algorithm, which is shown in Algorithm 1, requires the following
inputs in order to be executed:

• rvt−1: Raw value of the link speed in Gbps at a previous timestamp, i.e., (rv at t− 1).
This value is obtained from the Network Performance Monitor platform and is a
continuous variable.

• nl: Number of links initially possessed by the LAG or BE; it is a discrete integer
variable and dimensionless.

• pb: Port bandwidth measured in Gbps, and it is a continuous variable.

Algorithm 1 Threshold-based Algorithm with raw value in t− 1

Require: raw value in t-1: rvt−1; numbers of links in LAG: nl; port bandwidth: pb
x ← rvt−1/pb . x is defined as a ratio variable
pa← 0 . pa is defined as ports active
pd← nl − pa . pd is defined as ports deactivate
if x > 0 then

pau = (integer(x) + 1) ∗ 2 . pau is defined as ports active update
if pau > nl then

pa = nl
pd = nl − pa
activate pa ports . set in router activate ports
deactivate pd ports . set in router deactivate ports

else
pd = nl − pau
pa = pau
activate pa ports . set in router activate ports
deactivate pd ports . set in router deactivate ports

end if
end if

As variables that initialize the algorithm, x is defined as a ratio between the variables
rvt−1 and pb. In addition, pa represents the active ports of the link, which is initialized at
0, and it is a discrete-integer variable. pd is defined as the difference between nl and pa.
This last variable is obtained from the ports that are deactivated at the time of executing
the algorithm.
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During the execution of the algorithm, while the variable x is greater than 0, meaning
the router is present with traffic, the variable pau is executed, which corresponds to giving
a threshold of 100% more than the value obtained from the previous traffic, because the
past values are being used for this action. In other words, pau corresponds to the ports that
should be active, according to the previous traffic plus the safety factor defined as double,
due to the uncertainty of the future traffic.

After this, if the number of active ports exceeds the number of links of the LAG or BE,
defined as nl, it must be limited to the maximum defined by this port channel. Otherwise, it
calculates the difference between ports to be activated and deactivated. In both conditions,
the number of ports to be activated and deactivated on the router for the next timestamp
is executed.

4.1.2. Prediction-Based Algorithm

For this algorithm, the same logic as the previous one (threshold-based) is used; the
only and important difference is that it has as input the future traffic value obtained in the
prediction. As shown in Algorithm 2, the required inputs are the prediction value pv, the
number of links in the LAG nl, and the port bandwidth pb.

Algorithm 2 Prediction-based algorithm

Require: prediction value: pv; numbers of links in LAG: nl; port bandwidth: pb
x ← pv/pb . x is defined as a ratio variable
pa← 0 . pa is defined as ports active
pd← nl − pa . pd is defined as ports deactivate
if x > 0 then

pau = integer(x) + 1 . pau is defined as ports active update
if pau > nl then

pa = nl
pd = nl − pa
activate pa ports . set in router activate ports
deactivate pd ports . set in router deactivate ports

else
pd = nl − pau
pa = pau
activate pa ports . set in router activate ports
deactivate pd ports . set in router deactivate ports

end if
end if

For both algorithms to work correctly, the units of measure of the variables pv and pb
must be the same.

4.2. Metrics

In order to compare both algorithms in addition to the base case, the unit of measure
of energy watt-hour (Wh) will be utilized. Watt-hour serves as a means of measuring the
amount of generated or performed work. The savings will be reflected in the difference in
consumption from the base case per day in relation to each algorithm. It stands to reason
that the chosen algorithm will be the one that produces the most savings in comparison
with the base case.

The methodology being referred to is a general solution for prediction problems and
can be adapted for use in various industries and fields. It involves the use of statistical
and machine learning techniques to make accurate predictions about future events. For
example, in the energy sector, this methodology can be used to forecast energy demand,
anticipate disconnections in power generation centers, and make other predictions that are
relevant to the energy industry. Having this information helps energy providers to better
manage the supply and demand of energy, which is essential for the efficient operation
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of their businesses. The use of this methodology in the energy sector can improve the
overall reliability of energy services and help to reduce the likelihood of blackouts or
other disruptions.

5. Case Study

This section describes the network topology to be used in this case study, the traffic
description to choose the best neural network in terms of prediction and computational
time, and the characteristics of the equipment to be used in order to model the required
energy savings as a target.

5.1. Network Topology

As previously mentioned, the LAG or BE allow for the logical grouping of multiple
Ethernet physical links; this aggregation is treated as a single link and allows for the sum
of the nominal speed of each Ethernet physical port used to obtain a high-speed trunk link.
In a TSO, different routers can be found connecting to each other. As shown in Figure 5,
it can be seen that the LAG connects to n optical fiber interfaces generating a LAG of n
links. Over time, the interfaces of the optical transport network (OTN) and the interfaces of
the routers have been growing in the optical IP Core networks of a TSO, reaching up to
400 GE interfaces in other operators [71], thus increasing as traffic demand grows and in
accordance with the development of this technology.

Figure 5. Link aggregation in a TSO.

In addition, many of the implementations in TSOs are geographically redundant as
part of design of reliable communication networks (DRCN) [72], which in this case, as
shown in Figure 5, means that Site A is equal to Site B; this means that if the router of Site
A goes down (fails), the network traffic will switch to Site B via the interplane link (which
connects both sites). The same applies vice versa.

In Figure 6, the architecture of a content distribution network (CDN) is shown. The
CDN router aggregates different content providers, such as Google, Netflix, Facebook,
Microsoft, and Akamai, among others. The CDN is a group of servers that are distributed
geographically and interconnected. They provide cached Internet content from the closest
network location to the user to accelerate information delivery.

The Internet output is provided by the router, commonly called the Internet gateway
router (IGR). The IGR is the node that aggregates all the traffic of a TSO network and
communicates with the Internet. Both the IGR and the CDN router are connected to 8
optical fiber with 100GE interfaces that generate a LAG or BE of 8 links, which is 800 Gbps
of capacity. The actual traffic between both routers is approximately 400 Gbps, leaving the
same capacity for backup to switch to another site (mirror) in case of failure.
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Figure 6. CDN architecture in a TSO.

As for the protocol that regulates the hardware providers and provides guidance on
the practice of link aggregation for data connections, the IEEE defined the link aggregation
control protocol (LACP) within IEEE 802.3ad [73], which is a standard-based method for
controlling the aggregation of physical network links. Active LACP mode is the protocol
generally configured on equipment to manage aggregated links. This means that the
interface is in a permanently active negotiation state. LACP runs on any link that is
configured to be in active state. The active port also automatically initiates negotiations
with other ports by initiating LACP packets. Static LACP is configured, which increases the
interface’s bandwidth and provides reliability. When an Eth-Trunk or BE member link fails
or is not active, traffic is automatically distributed to other available links, thereby avoiding
traffic interruption. In addition, Eth-Trunk interfaces operating in LACP static mode can
implement load balancing. When a BE or LAG is present, all links are active. As a result,
energy consumption occurs on all optical links, as the LAG mechanism constantly sends
test packets to check if the link or member is active or inactive. On an energy level, it is a
waste of energy, because the link capacity should be projected to the network’s peak traffic
demand and in other cases to geographically established redundancy.

To model the energy consumption of a router, one must first know the power. In
Figure 7, the service side considered in the present study is shown.

Figure 7. Router side to be considered.

According to the study in [5], calculating the equipment consumption mainly consists
of a chassis, a number of line cards, and a number of ports. The energy consumption of the
chassis and line cards is fixed, regardless of the traffic load, because they will always be
active, so the power of a router Pr can be expressed by Equation (4):

Pr = Pch + NcPc +
n

∑
i=0

Npi Ppi ∗ f ui, (4)
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where Pch is the power of the chassis, which is the base power of the equipment. Nc is the
number of line cards, and Pc is the power of the line card. Np is the number of ports, Pp is
the power of the ports, and f u is the port utilization factor. The port utilization factor is the
percentage between the used traffic and the port capacity.

When talking about 100GE interfaces, there are standards that establish different
technical norms for different purposes. When referring to connections within the CN,
the 100GBASE-LR4 standard is the most commonly used [74], as it corresponds to the
IEEE 802.3 physical layer specification for 100 Gb/s with 100GBASE-R encoding over four
wavelength division multiplexing (WDM) lanes on single-mode fiber, with a reach of at
least 10 km [75]. In the 100GBASE-LR4, 100GBASE-SR10, 100GBASE-SR4, and 100GBASE-
ER4 standards, energy efficiency is not available [76]. In all of these standards, the common
medium through which data are transmitted is optical fiber. In the IEEE 802.3 bm standard,
it is indicated that EEE in 100GBASE-LR4 is optional. Additionally, many providers have
not yet integrated this norm into their manufacturing. When EEE is not active, Ethernet
standards operate at full power all the time, consuming 100% of the energy, regardless of
the traffic load [77]. Therefore, for our case, we can assume that the utilization factor will
always be equal to 1.

5.2. Traffic Description

For the purpose of the study, real traffic of the architecture shown in Figure 6 is
used. The dataset represents the activity from 13 November 2021 to 16 November 2021
(4 days), consisting of traffic from the CDN router located in Santiago, Metropolitan Region,
Chile (−33.444285499124504, −70.65611679943314). Historical data were captured from
the monitoring system, with raw data that contained the time, average incoming traffic,
average outgoing traffic, maximum incoming traffic, maximum outgoing traffic, etc. In the
dataset, the output traffic peak is the variable used, as it is the maximum traffic that the
network can have. In the monitoring system, the minimum data collection time is every
5 min. As a result, the dataset will consist of a traffic variable measured in Gbps every
five minutes.

For the purpose of training, and as shown in the methodology, three groups will
be divided according to the number of days to train the neural network. As shown in
Figure 8, each day corresponds to 288 observations, and each point represents five minutes,
with its respective value in Gbps, because this dataset works as a univariate time series.
Therefore, the division of training groups is as follows, maintaining the proportion indicated
in Figure 2.

Figure 8. CDN traffic—final dataset.
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• First set: 576 observations:

– Training observations: 288;
– Testing observations: 288.

• Second set: 864 observations:

– Training observations: 576;
– Testing observations: 288.

• Third set: 1152 observations:

– Training observations: 864;
– Testing observations: 288.

As the CN architecture adds traffic and delivers it to various clients through the CDN
router, the traffic type is seasonal due to the nighttime usage feature of major CDNs such
as Netflix, Facebook, and Google. Seasonal fluctuations in telecommunications traffic are
due to changes in consumer behavior, such as increased usage during holidays and winter
months. The adoption of 5G and B5G technologies may lead to increased usage and traffic,
but it is still unclear how much impact they will have, as they are in their early stages of
development and other factors such as infrastructure, regulations, and competition may
also influence their adoption and usage. Ultimately, the impact of these technologies on
seasonal traffic will depend on consumer behavior and market demand. Other factors such
as the availability of infrastructure, government regulations, and competition from other
technologies may also play a role.

5.3. Equipment Characteristics

In the network architecture shown in Figure 6, there is a configured BE or LAG of
8 links with 100GE interface, typically indicated as 8 × 100GE. According to the LACP
protocol, these are configured with the same weight. This means that the load distribution
is equal for all links when traffic is assigned, and therefore, in terms of energy consumption,
all links are active. The studied equipment is a Huawei brand NE40E-X8A model, with a
base configuration that consumes 784 W (typical power at 25 °C), without adding service
cards or uplink links. If only the consumption of the BE on one side of the NE40E-x8A
equipment is analyzed, as shown in Figure 7, the following configuration and consumption
are shown in Table 2.

Table 2. Line card power of CDN router.

Slot Board Info Typical Power at 25 °C (W)

Slot1 LPUF-480-E 290

Slot1-PIC0 PIC-2*100GBase-QSFP28 73

Slot1-PIC1 PIC-2*100GBase-QSFP28 73

Slot2 LPUF-480-E 290

Slot2-PIC0 PIC-2*100GBase-QSFP28 73

Slot2-PIC1 PIC-2*100GBase-QSFP28 73

The base configuration data, as well as the details of each of the cards that make up
the equipment, were obtained by the current configuration of the router in the network.
Therefore, as all ports being active, the utilization factor ( f ui) will be equal to 1. The base
power is calculated with Equation (4), as follows:

Pr = 784 + 2290 +
8

∑
i=1

36.51 = 1656W, (5)

Therefore, the total base power is 1656 W when all ports are active.
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6. Traffic Forecasting Results in Case Study

The results of both simulations are presented for RNN, LSTM, GRU, and OS-ELM.

6.1. Simulation Results of RNN, LSTM, and GRU

Simulations are performed by varying three hyper-parameters: Time-steps (number
of inputs) or more commonly known as lags, number of neurons in the hidden layer and
epochs. The variations of each hyper-parameter will be as follows:

- Time steps (lags): 1, 4, 8, 16, and 32.
- Number of neurons: 1, 10, and 50.
- Epochs: 1, 10, and 100.

Once each hyperparameter is varied, the results of the RMSE, MAE, MAPE, and
computational time metrics will be obtained. Note that the RMSE, MAE, and MAPE
metrics are errors, so they should be close to zero. For a better understanding of these
results, graphs are made for each metric, showing each neural network in the different
training sets or days. Remember that the training days are 1, 2, and 3 days, with 1 day of
testing, which is already explained in the previous point.

The tabulation of the results is presented in Appendix A. The best performance values
are shown in bold. The criterion was to have at least two metrics with a lower value in the
configuration of the hyperparameters lags, number of neurons, and epochs for each group
and deep learning neural network. To better interpret the graphs, Table 3 shows the number
of hyperparameter configuration indicated on the x-axis. Each hyperparameter has the
following description: lags, number of neurons, and epochs). That is, the hyperparameter
number 1 has the configuration of lags: 1, number of neurons: 1, epochs: 1, and so on.

Table 3. Hyperparameters configuration.

Number Hyperparameters
Setting Number Hyperparameters

Setting Number Hyperparameters
Setting

1 1,1,1 16 1,1,10 31 1,1,100

2 4,1,1 17 4,1,10 32 4,1,100

3 8,1,1 18 8,1,10 33 8,1,100

4 16,1,1 19 16,1,10 34 16,1,100

5 32,1,1 20 32,1,10 35 32,1,100

6 1,10,1 21 1,10,10 36 1,10,100

7 4,10,1 22 4,10,10 37 4,10,100

8 8,10,1 23 8,10,10 38 8,10,100

9 16,10,1 24 16,10,10 39 16,10,100

10 32,10,1 25 32,10,10 40 32,10,100

11 1,50,1 26 1,50,10 41 1,50,100

12 4,50,1 27 4,50,10 42 4,50,100

13 8,50,1 28 8,50,10 43 8,50,100

14 16,50,1 29 16,50,10 44 16,50,100

15 32,50,1 30 32,50,10 45 32,50,100

The results of the RMSE metric are shown in Figure 9. The x-axis represents the number
of hyperparameter configurations, indicated in Table 3. From number 16, the number of
epochs changes to 10, and at number 31, to 100. On the y-axis, RMSE is represented. The
data are in Mbps, so the range of these errors is from 5.5 to 9.0 Gbps.
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Figure 9. RMSE metrics for RNN, LSTM, and GRU.

It can be observed that in general, the RNN for the epochs at 1 and 10 behaves with
a high degree of error compared with the LSTM and GRU neural networks for 1, 2, and
3 days of training. This is because they have a lower number of epochs. That is why, at
100 epochs, the RNN improves, and it is even better than other networks in some cases.
Remember that each cycle of backpropagation and forward correction to reduce loss is
called an epoch. Backpropagation consists of determining the best input weights and biases
to obtain a more accurate result or minimize losses.

Another conclusion from this Figure 9 is that because the RNN neural network does
not have a memory effect, and that in 1 day of training it has a lower amount of data,
it has worse performance than in 2 and 3 days of training. This is minimized in other
neural networks such as LSTM and GRU by having a greater effect on memory than RNN.
Furthermore, we can observe that from hyperparameter 40 to 45, in which the number of
neurons is set to 50 and the epochs to 100, varying the number of lags makes the LSTM and
GRU networks worse compared with the RNN. It can be inferred that many epochs and
inputs may be influencing in some way the memory effect of these two networks, which
would lead to the impoverishment of these two neural networks due to an excess of data.

Finally, in the RMSE metric, as can be seen, the lowest point is the hyperparameter
33 of the LSTM neural network for 1, 2, and 3 days of training. Within this network, the
configuration of the hyperparameter number 33 is 8,1,100, whose value of RMSE closest to
zero is on 1 day of training (first group), which can be found in Appendix A.

The MAE error metric is calculated as an average of absolute differences between the
target values and the predictions. MAE is a linear score, which means that all individual
differences are weighted equally in the average. From the point of view of interpretation,
the MAE metric is preferable, since RMSE has the advantage of penalizing larger errors
(outlier values) more, so focusing on the upper limit, which means that the RMSE number
tends to be increasingly larger than that of MAE as the test sample size increases. In other
words, since the data being analyzed represent a time series, it usually does not show
outlier values, so it is preferred to plot this metric.

Figure 10 shows the results of the MAE metric for the RNN, LSTM, and GRU neural
networks in their 1, 2, and 3 days of training. On the x-axis, the number of hyperparameter
configurations is represented, which is already known from the previous graph, and on the
y-axis, MAE is represented.
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Figure 10. MAE metrics for RNN, LSTM, and GRU.

Note that the curves in Figure 10 are similar to the result of the RMSE metric with
some small differences. It is emphasized that the RNN after 3 days of training does not
have good performance, as evidenced by the RMSE metric. Finally, the closest RMSE error
to zero is achieved by the LSTM neural network after 2 days of training (second group)
with a hyperparameter configuration (8,1,100) that can be found in Appendix A.

Since MAPE is a further development of the MAE calculation, there is similarity be-
tween both metrics. Both are not sensitive to outliers since they use the absolute difference.
MAPE is more understandable than MAE for the final user, because the error value is in
terms of percentage.

In Figure 11, the results of the MAPE metric for RNN, LSTM, and GRU in their 1, 2, and
3 days of training are shown. On the x-axis, the number of hyperparameter configurations
is represented, and on the y-axis, MAPE is represented.

Here, the error is represented in percentage terms, which leads us to believe that we
are working with minimal errors close to 1.9%, which translates to the prediction of the
three neural networks having good performances. Now, in Figure 11, it can be seen that at
100 epochs is where the three networks make predictions with the least error and that the
neural network with the best results continues to be LSTM.

In Figure 12, the results of the computational metric or lapsed time for RNN, LSTM,
and GRU in their 1, 2, and 3 days of training are shown. The x-axis represents the configu-
ration number of the hyperparameters, and the y-axis represents the elapsed time.

One of the predominant factors is the amount of time it takes for the neural network to
predict the next value. This time must be less than the input time of the monitoring system,
which was established at 5 min (300 s). In Figure 12, it can be clearly seen that as the number
of epochs increases, they are determinant in terms of computational calculation. Note that
these values vary depending on the computer system. Table 1 shows the equipment used.
In this case, a GPU is used to accelerate the vectorial calculations of the gradient of each of
the neural networks.

In addition to the number of epochs, the number of days of training increases the
elapsed time. This is clearly visible where the results of the RMSE, MAE, and MAPE metrics
are closer to zero, that is, centered on the value of 100 epochs.
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Another point to note is the stability in terms of computational time possessed by the
LSTM and GRU neural networks, which does not vary significantly if the number of lags is
increased as the RNN does, which increases the time exponentially.

Figure 11. MAPE metrics for RNN, LSTM, and GRU.

Finally, in the computational time metric, it would be incorrect to choose the value
closest to zero, as it must be accompanied by the metrics seen earlier. Now, it is known that
computational times greater than 300 s cannot be selected.

Figure 12. Computational time or lapsed time metric for RNN, LSTM, and GRU.

Table 4 shows a summary of the results containing the best metrics of the selected
neural networks.
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Table 4. Summary of results for RNN, LSTM, and GRU.

Type Group Training Time Step
(Lags)

Number
Neurons Epochs RMSE MAE MAPE Lapsed

Time [s]

RNN First 1 day 4 10 10 5711.161 4054.292 0.02137 7.177

RNN Second 2 days 16 1 100 5728.889 4126.839 0.02184 172.208

RNN Third 3 days 16 1 100 5679.286 4070.981 0.02126 257.146

LSTM First 1 day 8 1 100 5573.399 3961.516 0.01959 35.745

LSTM Second 2 days 8 1 100 5581.399 3947.681 0.01998 66.765

LSTM Third 3 days 8 1 100 5585.884 3950.845 0.01958 103.195

GRU First 1 day 4 1 100 5612.749 3953.799 0.01970 34.093

GRU Second 2 days 8 1 100 5600.504 3972.234 0.01962 66.179

GRU Third 3 days 8 1 100 5600.595 3971.039 0.01962 89.822

The results indicate that the predictions of the LSTM neural network are considerably
more accurate than RNN and GRU. If the number of training days that is being given to
each neural network is visualized, in RNN, when these days are increased, the computation
time increases considerably. In the case of LSTM, there is a deterioration of the RMSE, MAE,
and MAPE metrics, and at the same time, an increase in computational time. For GRU, it
behaves similarly to LSTM.

On the other hand, it can be observed that the results of the RMSE, MAE, and
MAPE metrics in LSTM are more consistent than in the RNN and GRU networks, be-
cause they present the same configuration of hyperparameters (8 inputs, 1 hidden layer,
and 100 epochs) in different training days. The LSTM and GRU neural networks are surpris-
ing, because even with a complex structure on the RNN, they present low computational
times when adjusting the hyperparameters to high values. The best combination of the
neural network and training days to choose is the LSTM network with 1 day of training
with a configuration of 8 lags, 1 neuron, and 100 epochs, as shown in Table 4.

6.2. Simulation Results of the OS-ELM Neural Network

For the OS-ELM network, the same method as for RNN, LSTM, and GRU is used,
which consists of varying the value of the hyperparameters. Simulations are carried out by
varying two parameters: the number of neurons in the hidden layer and forgetting factor.
The value that each hyperparameter will take is as follows:

- Number of neurons: 10, 110, 210, 310, 410, 510, 610, 710, 810, 910, 1010, 1110, 1210,
1310, 1410, 1510, 1610, 1710, 1810, and 1910.

- Forgetting factor: 0.9, 0.95, 0.99, and 1.00.

Once each hyperparameter is varied, the results of the RMSE, MAE, and MAPE metrics
and computational time will be obtained. In Figure 13, the results of four graphs of the
RMSE metric are shown, varying the forgetting factor. On the x-axis, the number of neurons
is represented. On the y-axis, RMSE is represented.

It can be seen that for different training days of the OS-ELM neural network, the
RMSE metric can vary between values of 50,000 to 2700, indicating that the behavior of
this network is more sensitive to the variation of its hyperparameters compared with RNN,
LSTM, and GRU. The tabulation of the results is presented in Appendix A. Remember that
if the forgetting factor is 1.00, it means that the OS-ELM network does not forget anything.
The forgetting factor allows for continuously forgetting obsolete input data during the
training process in order to reduce its negative effect on future learning.

When the forgetting factor is 0.90, the RMSE is highest when 110 neurons are config-
ured. If the forgetting factor is 0.95, the error decreases as the number of hidden nodes
increases and converges after 410 neurons. When the forgetting factors are 0.99 and 1.00,
the neural network presents a huge error with 10 neurons, which rapidly decreases as the
number of neurons increases. Additionally, it can be seen that as the forgetting factor and
number of neurons increase, the OS-ELM network does not show much difference for the
different days (1, 2, and 3) that are used as input for training data.
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Figure 13. RMSE metric for the OS-ELM network with forgetting factors at (a) 0.90, (b) 0.95, (c) 0.99,
and (d) 1.00.

In Figure 14, the results of the MAE metric with varying the forgetting factor are
shown. The x-axis represents the number of neurons and the y-axis represents MAE.

Figure 14. MAE metric for the OS-ELM network with forgetting factors at (a) 0.90, (b) 0.95, (c) 0.99,
and (d) 1.00

These results show the same behavior already indicated in the RMSE metric. Remem-
ber that MAE is more robust to outliers and does not penalize errors as severely as RMSE.
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This is why the OS-ELM network trained for 3 days (green bar) is visualized in Figure 14
with a lower error than in Figure 13. This behavior is due to the presence of extreme values.

Figure 15 shows the MAPE metric by varying the forgetting factor. The x-axis repre-
sents the number of neurons and the y-axis represents MAPE.

Figure 15 shows the influence of the data input to the OS-ELM network in percentage
terms, with the training of 1 day standing out compared with the other days, as it presents
the lowest error. Moreover, the convergence of this network is highlighted after 410 neurons
with a forgetting factor of 0.95. However, in the OS-ELM network, overfitting can be
observed when the number of neurons is increased and the forgetting factor is greater than
0.95. Overfitting is an undesired behavior of neural networks that occurs when the machine
learning model provides accurate predictions for the training data but not for new data. If
the forgetting factor is close to 1.00, the network may not forget the previous data, and this
can cause the network to provide inaccurate predictions when there is a new behavior.

In Figure 16, the results of the computational time metric for the OS-ELM neural
network in its 1, 2, and 3 days of training are shown. The x-axis represents the number of
neurons and the y-axis represents the lapsed time or computational time.

It is very clear that the computational times at the forgetting factors of 0.90, 0.95,
0.99, and 1.00 increase considerably with a greater number of neurons. This is why the
criterion for choosing the best hyperparameter configuration and training days for the
OS-ELM network will be based on time and take into account a forgetting factor of 0.95
that allows for possible traffic variations in the network, in order to avoid overfitting, as
seen in Figure 15.

Figure 15. MAPE metric for the OS-ELM network with forgetting factors at (a) 0.90, (b) 0.95, (c) 0.99,
and (d) 1.00.

Table 5 presents a summary of the best results for each day of OS-ELM network
training with a forgetting factor of 0.95 and 410 as the number of neurons in terms of
computational time and convergence for that number of neurons.
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Figure 16. Computational time metric for the OS-ELM network with forgetting factors at (a) 0.90,
(b) 0.95, (c) 0.99, and (d) 1.00.

Table 5. Summary of results for OS-ELM.

Type Group Training Forgetting
Factor

Number
Neurons RMSE MAE MAPE

Lapsed
Time [s]

OS-ELM First 1 day 0.95 410 4336.068 3273.084 0.01761 1.128

OS-ELM Second 2 days 0.95 410 4221.912 3037.816 0.01642 1.182

OS-ELM Third 3 days 0.95 410 4384.103 3276.136 0.01778 1.113

When comparing the RMSE, MAE, and MAPE metrics, it can be seen that the network
with 2 days of training performs the best. With regard to computational times, they are all
around 1.2 s, so the final choice is the OS-ELM neural network with 2 days of input.

6.3. Final Neural Network Selection

Table 6 shows a comparison of the four best-rated neural networks according to the
RMSE, MAE, and MAPE metrics in each of the training groups. For comparative purposes,
the worst of the corresponding RNNs is used as a reference. The results are decisive in
terms of prediction. Starting with the RMSE metric, the OS-ELM, LSTM, and GRU neural
networks surpass the RNN by 26%, 2%, and 1%, respectively. For the MAE metric, the
OS-ELM, LSTM, and GRU networks surpass the RNN by 25%, 3%, and 2%, respectively,
and for the MAPE measure, the OS-ELM, LSTM, and GRU networks surpass the RNN by
23%, 6%, and 8%, respectively.

Finally, in terms of computational time, the OS-ELM, LSTM, and GRU networks
surpass the RNN by factors of 217.6, 7.2, and 3.9 times, respectively.

For the purpose of reviewing the comparison of the two best networks and differentiat-
ing their optimization technique, Table 7 shows LSTM, which is based on the best gradient
descent optimization network, and OS-ELM, which uses the Moore–Penrose pseudoinverse.
It shows the percentages of the RMSE, MAE, and MAPE metrics, using the worst of them
as a reference. In terms of prediction, OS-ELM outperforms LSTM by 24% in RMSE, 23%
in MAE, and 16% in MAPE. In terms of computational time, OS-ELM is 30.2 times faster
than LSTM.
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Table 6. Traffic comparison of prediction of neural networks.

Type Training RMSE %
RMSE MAE % MAE MAPE %

MAPE
Lapsed
Time [s] Times

OS-ELM 2 days 4221.912 26% 3037.816 25% 0.01642 23% 1.182 217.6x

LSTM 1 day 5573.399 2% 3961.516 3% 0.01999 6% 35.745 7.2x

GRU 2 days 5600.504 1% 3972.234 2% 0.01962 8% 66.179 3.9x

RNN 3 days 5679.286 - 4070.981 - 0.02126 - 257.146 -

Table 7. Traffic prediction metrics for the best LSTM and OS-ELM networks.

Type Training RMSE %
RMSE MAE % MAE MAPE %

MAPE
Lapsed
Time [s] Times

OS-ELM 2 days 4221.912 24% 3037.816 23% 0.01642 18% 1.182 30.2x

LSTM 1 day 5573.399 - 3961.516 - 0.01999 - 35.745 -

In Figure 17, the two neural networks (OS-ELM and LSTM) indicated in Table 7 are
shown. These present the prediction of the traffic load of the CDN router every five minutes
in one day. On the x-axis, the bit rate is represented in Gbps, and on the y-axis, the time is
indicated in hours, with each point representing 5 min (300 s).

Figure 17. Traffic prediction comparison of the best networks: LSTM and OS-ELM.

The final choice of the sequential neural network OS-ELM is clear given the results
obtained.

7. Results of Energy Efficiency Algorithms in the Case Study

The performance of the proposed energy efficiency optimization algorithms are shown
below and indicated in Figure 4. These algorithms are compared with the base case, that
is, the system operating under current conditions. Remember that the algorithms are
responsible for turning on or off the corresponding ports on one side of the CDN router
and the link connection to reduce the energy consumption of the network, while satisfying
the traffic demand. The first algorithm is based on past traffic with a threshold value
of 100%, called the threshold-based algorithm. The second algorithm is based on traffic
prediction performed by the neural network selected in the previous chapter, called the
prediction-based algorithm.

The results of the simulations are presented in Figures 18–21, which were carried out
for the test day presented in Figure 8.
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In Figure 18, the results of the accumulated savings on the test day are shown for the
base case, threshold-based, and prediction-based algorithms. On the x-axis, the time is
represented in hours. On the y-axis, the accumulated savings are represented, measured
in W/h.

As can be observed in Figure 18, the savings achieved by the prediction-based algo-
rithm is 4829.58 W/h per day, or 4.83 kW/h per day. On the other hand, when considering
the threshold-based algorithm, the savings amount to 2.68 kW/h per day. Clearly, there
are no energy savings in the base case. The power of the router is 1656 W, as calculated
by Equation (5); thus, the energy consumed is 39.6 kW/h per day. Consequently, the daily
savings are 12.2%, only taking into account one side of the equipment (that pertaining to
services), the consumption of the chassis, and that of the cards.

Furthermore, the maximum savings that can be achieved by not utilizing any port of
the router is 7 kW/h per day, considering 36.5 W of power per port, multiplied by the 8
ports present in the BE. If we compare the savings of prediction (4.83 kW/h per day) to the
total consumption of the ports (7 kW/h per day), the savings are almost 70%.

In Figure 19, the number of active ports based on turning on or off during the testing
day is shown for the base case, threshold-based algorithm, and prediction-based algorithm.
The x-axis represents time in hours, while the y-axis represents the number of active ports.

Figure 18. Cumulative one-day savings for base, threshold, and forecast cases.

Regarding the available capacity of the BE, Figure 20 shows that in the base case, there
is a high availability of capacity or, in other words, a low utilization; this is due to the
network being configured in such a way that it can absorb a site with similar characteristics
in case of failure for backup purposes. In the case of the threshold-based algorithm, there
is still available capacity in any situation or event. However, in the prediction-based
algorithm, this backup capacity is lost to some extent in exchange for the benefit of the
energy savings presented in this study.

In this simulation, the prediction-based algorithm exhibits points where traffic is lost
due to less accurate predictions, specifically −0.3 Gbps at 12:05 a.m. and −0.79 Gbps at
10:10 PM, as shown in Figure 21.

It can be seen in Figure 19 that for the base case, all ports are active at all times, and
for both algorithms, the use of ports begins to decrease in a stepped manner starting at
2:00 a.m., until reaching the lowest point within the range of 3:00 a.m. to 7:00 a.m.; this
is due to low traffic usage during nighttime hours. We should note that in the case of the
threshold-based algorithm, there is a high variation at one point in the morning not present
in the prediction algorithm, which is observed to be more stable.
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Figure 19. Active number of ports in a day for the base case, threshold, and prediction.

Figure 20. Capacity available in the BE or LAG in a day for base case, threshold, and prediction.

Figure 21. Capacity loss in BE or LAG in one day for base case, threshold, and prediction.

For the purposes of proportionality, it is considered low, given that it represents
approximately 0.2% of total traffic (400 Gbps); however, for a TSO this is critical, as it would
result in packet loss at a specific moment on the network, with subsequent attempts at
reconnection. A solution to this would be to consider a safety factor in the prediction.
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8. Conclusions and Future Works

This paper outlines a systematic method for resolving complex problems requiring
precise predictions. Utilizing a neural network as the primary tool for prediction enables
high accuracy and adaptability to different data types. In addition, the emphasis on energy
efficiency emphasizes the significance of reducing energy consumption and discovering
ways to optimize resource utilization.

In the case study, a solution was implemented to address the issue of energy efficiency
in the data centers of telecommunications service providers. In order to accomplish this,
four recurrent and sequential neural networks were compared, allowing predictions to be
made every 5 min using sliding windows and hyperparameters of varying values. OS-ELM
is the best high-precision network. In terms of prediction, the OS-ELM, LSTM, and GRU
networks outperform the RNN by 26%, 2%, and 1% on the RMSE metric; 25%, 3%, and
2% on the MAE metric; and 23%, 6%, and 8% on the MAPE metric, respectively OS-ELM,
LSTM, and GRU outperform RNN in terms of computational time by factors of 217.5, 7.2,
and 3.9, respectively. For each one, prediction execution times are shorter than the time
required for the system to collect data (less than 300 s). The OS execution of ELM’s time
for this effect is approximately 1.2 s due to its simple structure and absence of gradient
minimization in its search for the optimal solution.

The simulations were applied to real traffic from a telecommunications service provider,
which offers a real solution for energy efficiency and energy savings that can be applied not
only to the core part but also to the aggregation networks, where there are a large number
of BEs or LAGs and significant energy savings can be achieved. Regarding the base case
(current conditions), the threshold-based algorithm yielded 6.8% and the prediction-based
algorithm yielded 12.2% energy savings per day. It should be noted that only one side of the
equipment was considered for energy savings in this simulation (customer or service side).
If extrapolated to a large quantity of equipment, it would represent substantial cost savings.

As mentioned previously, the methodology presented in this paper can be expanded
and applied to other industries in future research. The approach’s versatility and adaptabil-
ity make it a promising solution for a wide variety of prediction issues. As technology and
data continue to advance, this methodology can be further developed and improved to
provide even more accurate predictions and drive innovation across numerous industries.
The potential for future applications and its impact in a variety of fields highlight the
significance of this methodology and the need for additional research in this field.

The proposed online sequential extreme learning machine (OS-ELM) scheme holds
great potential for addressing energy efficiency in telecoms networks as a whole system
challenge. For instance, the deterministic, causal, and universality dimensions of the
OS-ELM consider the impact of creating inefficiencies elsewhere in the telecoms and/or
other systems while driving networks more efficiently. The prediction scheme can provide
near-real-time trade-offs to enhance the flexibility of telecoms networks and demands that
are susceptible to efficiency measures. This capability of the proposed scheme serves to
augment the energy efficiency networks (EENs) enhancements occasioned with architec-
ture and technologies. Consequently, the current OS-ELM approach will be advanced
to enable integrated system-level energy efficiency prediction and optimization across
communications and energy systems.

The future direction of research will also explore telecoms equivalents of energy ideas
around self-generation, storage, flexibility, and demand reduction. For the considered data
centers’ case study, our proposed scheme can enable the segmentation of use/users to
predict uses that are wasteful, normal, important, and critical. This four-level classifica-
tion of data centers will consider the temporally and the spatially complex system-level
constraints of the EEN of the telecoms system. Holistic, system-level OS-ELM prediction
can provide a ubiquitous, seamless, and deeper understanding of the embedded carbon
footprints of telecoms network equipment in data centers. This has the potential to predict
and utilize feasible EEN solutions via edge computing and Open-RAN equipment. The
proposed scheme will be extended by incorporating the EEN trade-offs to encompass end-
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to-end costs of energy, centralized cloud, end-to-end shared infrastructure, and radio access
technologies (5G/6G). This will enable consumer behavior, end-to-end power consumption
budget, and user equipment energy use challenges to be predicted for near-real-time EEN
optimization for cost-effective data center operation.
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DNN Deep Neural Network
DRCN Design of Reliable Communication Networks
DT Decision Tree
EEE Energy Efficient Ethernet
ELM Extreme Learning Machine
EPC Evolved Packet Core
FLHT Fixed Local Heuristic Threshold
GPU Graphics Processing Unit
GRU Gated Recurrent Units
IEEE Institute of Electrical and Electronics Engineers
IGR Internet Gateway Router
ILP Integer Linear Programming
IOT Internet of Things
IP Internet Protocol
LACP Link Aggregation Control Protocol
LAG Link Aggregation Groups
LP Linear Programming
LPI Low Power Idle
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPD Mean Absolute Percentage Deviation
MAPE Mean Absolute Percentage Error
MILP Mixed-Integer Linear Problem
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OS-ELM Online Sequential Extreme Learning Machine
OTN Optical Transport Network
PHY Physical Layer
RF Random Forest
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SARIMA Seasonal Autoregressive Integrated Moving Average
SDN Software-Defined Network
SMA Simple Moving Average
SNMP Simple Network Management Protocol
SPA Standby Port Algorithm
SVM Support Vector Machine
TQA Two-Queuing Algorithm
TSO Telecom Service Operator
WDM Wavelength Division Multiplexing

Appendix A

The link mentions a table that displays the results obtained from for RNN, LSTM,
GRU, and OS-ELM in the applied use case. The table shows different performance met-
rics, such as RMSE, MAE, MAPE, and computational time. Link: simulation results of
neural networks RNN, LSTM, GRU, and OS-ELM. https://github.com/frzrau/database_
energyefficiencypaper/blob/5a7b8859c5c6275924da31320fd646019f11fd1a/Simulation%20
Results.pdf (accessed on 17 May 2023).
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1 Octasic Inc., 2901 Rachel, Montréal, QC H1W 4A4, Canada; garrett.kinman@mail.mcgill.ca
2 Department of Electrical and Computer Engineering, McGill University, 3480 University,

Montréal, QC H3A 0E9, Canada; david.purnell.1@ulaval.ca
3 Department of Civil and Water Engineering, Laval University, pavillon Adrien-Pouliot 1065,

av. de la Médecine, Québec, QC G1V 0A6, Canada
* Correspondence: zeljko.zilic@mcgill.ca

Abstract: This paper explores the use of low earth orbit (LEO) satellite links in long-term monitoring
of water levels across remote areas. Emerging sparse LEO satellite constellations maintain sporadic
connection to the ground station, and transmissions need to be scheduled for satellite overfly periods.
For remote sensing, the energy consumption optimization is critical, and we develop a learning
approach for scheduling the transmission times from the sensors. Our online learning-based approach
combines Monte Carlo and modified k-armed bandit approaches, to produce an inexpensive scheme
that is applicable to scheduling any LEO satellite transmissions. We demonstrate its ability to adapt
in three common scenarios, to save the transmission energy 20-fold, and provide the means to explore
the parameters. The presented study is applicable to wide range of IoT applications in areas with no
existing wireless coverages.

Keywords: Internet of Remote Things; sparse LEO satellite transmission; water-level monitoring

1. Introduction

The Internet of Things (IoT) has made huge advances in smart homes, industrial and
other settings with numerous networking options already present. To achieve progress in
the Internet of Remote Things (IoRT) for environmental monitoring in wilderness, connec-
tivity solutions are needed that are widespread, energy-efficient and cost-efficient. This
paper presents the exploration of satellite-based connectivity in the context of environmen-
tal water-level monitoring.

1.1. Water-Level Monitoring and Its Role in Climate

Global water-level monitoring is critical in hydrology and climate change tracking.
The polar regions are arguably at the center of the climate crisis, because these regions
are experiencing the most rapid changes and the largest current and future contribution
to sea level rise is predicted to be from ice sheets losing mass to the ocean [1]. Predicting
how the polar regions will change in the future requires field measurements, for example,
from sensors that monitor changes in the atmosphere (weather stations), coastal water-level
sensors, ocean buoys, or from Global Navigation Satellite System (GNSS) stations (for
monitoring solid earth deformation) [1]. Despite the ever-expanding capabilities of remote
sensing satellites, such measurements cannot yet be obtained from space with the same
accuracy or temporal resolution as from ground-based sensors.

Climate model predictions become more reliable with an increased density of sensors,
hence low-cost environmental sensor networks are emerging as a powerful tool for climate
monitoring [2]. One recent innovation repurposes mass-market GNSS technology for water-
level monitoring, using a technique called GNSS Interferometric Reflectometry (GNSS-IR),
and has the potential to be used to increase the density of coastal water-level stations [3,4].
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In remote regions such as Greenland or Antarctica, where sea level information is critical
for climate monitoring [5,6], field campaigns are expensive and it may be prohibitively
expensive to maintain a dense network of sensors. Wireless connectivity should reduce the
maintenance cost of remote sensor networks by reducing the frequency of expensive site
visits to collect data or check the status of instruments. This paper focuses on a low-cost and
energy-efficient wireless communication technique using low earth orbit (LEO) satellites
that is suitable for remote water-level sensor networks, notably GNSS-IR ones, Figure 1.

Figure 1. Schematic showing a GNSS-IR water-level sensor with integrated LEO satellite connectivity.

1.2. Connectivity for Internet of Remote Things

This paper addresses the problem of providing inexpensive and energy-efficient
satellite IoT links in the context of GNSS-IR monitoring. Such a water-level sensor must be
affordable and widely deployable. Wide geographic reach imposes the challenge of data
uplink from remote locations to where that data is needed [3]. This limitation of IoT has
spawned a subdomain dedicated to solving the issues of bringing IoT to the remote corners
of the globe, the IoRT [7].

There is an abundance of connectivity options for IoT around populated areas. Several
standard IoT connectivity options range from cellular technologies to LoRa. Connectivity
options for IoRT range from low-power wide area networks (LPWANs) to low-power
cellular network standards to geostationary and LEO satellites [8]. Additionally, there have
been efforts into unmanned aerial vehicles supporting IoRT [8,9]. Satellite options are the
only proven connectivity options for truly global coverage [8,10,11], but only if the cost and
energy consumption are kept low enough. Traditional geostationary satellites are always
overhead for a fixed earth location, but they are costly, require higher transmission power,
and incur around 70 times longer latency than LEO satellites [7,12].

1.3. LEO Satellite Communications for Internet of Remote Things

For IoT applications, LEO satellites are practical for the most remote regions where
terrestrial infrastructure is out of reach [7,12]. LEO communications are categorized by:

• Communication directness;
• LEO orbit configuration;
• By satellite service type.

Regarding communication directness, individual sensor nodes can communicate
directly to a satellite (known fittingly as “direct-to-satellite”) or indirectly via a local
network (often an LPWAN such as Bluetooth) centered around a satellite gateway [8,10].
The latter case is impractical in our case, as a gateway adds another independent hardware
part not under the IoRT node control, which needs to be designed and dimensioned for
multiple unknown nodes, and requires a critical mass of nodes to be useful.
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Among satellite services, there are those provided by companies from the pre-IoT era
(who often offer satellite internet and phone coverage as well), and the emerging sparse
constellation [13] networks, such as Swarm, Lacuna, Enxaneta, Kepler or Astrocast pro-
vided by independent LEO satellite companies [8,10], which are more suited for IoT. The
independent LEO satellite services use CubeSats, which are small and modular picosatel-
lites [8]. Since IoT can tolerate intermittent connectivity better than satellite phones, their
satellites can use polar orbits to provide global, but intermittent, coverage [10] by sparse
constellations. In contrast, traditional LEO providers deliver continuous or near-continuous
coverage using a combination of polar and non-polar orbits [10].

Using emerging sparse LEO constellations for IoRT has the primary benefit of requiring
fewer satellites and less cost [10], but requires waiting until a satellite passes overhead [10].
To achieve low-energy LEO networking, a suitable algorithm must be devised to sched-
ule sensing and transmissions at appropriate times such that the data is transmitted at
(near-)minimal cost in energy [10].

1.4. Relation to Previous Work

To the best our knowledge, one previous paper [11] has examined this problem and
proposed an online learning algorithm, which can learn sample-by-sample in the field, as
opposed to offline in batched datasets. That work on indirect-to-satellite communications
is not applicable here, as it assumes perfect knowledge of uplink availability, unpredictable
multiple streams of data that can easily overflow the buffers, and is thus posed as a
queue scheduling problem [11]. They then propose an online learning algorithm based
on Lyupanov optimization, which is a common approach for similar queue optimization
problems [11,14].

In contrast, our paper deals with direct-to-satellite communications with a known
data production rate. The algorithm presented in this paper is derived from reinforcement
learning, specifically Monte Carlo learning and the k-armed bandit problem. Because of the
relative youth of the LEO satellite service (provided commercially by Swarm Technologies),
an integrative approach is taken to the design from requirements, to communications
technology selection, to hardware, and finally to software and algorithm design. In doing
this, this paper aims to highlight key design considerations for creating a low-cost, low-
power communications scheme for an IoRT device. The key contribution of this paper is
the online learning-based direct-to-satellite scheduling, and associated energy model.

2. Materials and Methods

We implemented GNSS-IR water-level detection system on a printed circuit board
(PCB), Figure 2 and deployed on Swarm network by help of our software. The PCB includes
from right to left: a Swarm M138 LEO Modem, a Raspberry Pi Pico, and pads for four
GNSS modules for GNSS-IR water-level measuring (together with GNSS antennas). The
proposed scheduling algorithm was implemented on a dual-core ARM Cortex M processor
of the Raspberry Pi Pico, where each processor core executes one process of the code. The
board is sending one 128-bit message per hour, to fit within a single Swarm data plan for
USD 60/year.

Figure 3 presents the schematic for the final prototype PCB design produced in this
project. The left-hand side displays spaces for four GPS receivers and four GPS antenna
connectors, which are the project-specific sensing components for GNSS-R water level
sensing. The remaining two-thirds of the schematic are generalizeable to other projects
that use the Swarm M138 LEO modem, including an mPCI-e connector, decoupling and
feed-through capacitors, and headers for the microcontroller.
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Figure 2. Board design: PCB layers and board populated with Raspberry and Swarm modules.

Figure 3. Board schematic with GNSS receivers, Raspberry Pico microcontroller and Swarm modem.

2.1. Satellite Modem Operating Specifications

For remote GNSS-IR sensors, we use the independent LEO satellite provider Swarm
Technologies. The energy consumption and, consequently, transmission scheduling will
depend on Swarm’s service specification and operation of the Swarm M138 modem built
into our board. The Swarm modem has four operating states: (1) Sleep Mode, (2) GPS
Acquisition Mode, (3) Receive Mode, and (4) Transmit Mode, Figure 4.

When the modem powers on, it enters GPS acquisition mode to determine the time
and location. The modem will also re-enter GPS Acquisition Mode every 4 h or when
awoken. Once a GPS fix has been acquired (30 s typical duration), the modem enters
the Receive Mode, wherein it listens for a packet from any satellites passing overhead.
This mode lasts until either a packet is received from a satellite (at which point it enters
Transmit Mode), the modem is instructed to enter Sleep Mode, or enough time elapses
that the modem automatically re-enters GPS Acquisition Mode. Robust operation and
enhanced availability [15] is built into the M138 modem, as well as ensured by handling
the exceptions, such as those caused by lost signals (Swarm or GNSS) or power.
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Figure 4. State machine of the Swarm M138 operating modes.

If a packet is received from a satellite, the modem enters Transmit Mode, attempting
to transmit queued packets and receive an acknowledgement. If successful, it will return to
Receive Mode, unless put into Sleep Mode. Table 1 shows that transmission is 1–2 orders of
magnitude more costly, while Sleep Mode uses 2 to 3 orders of magnitude less energy. Com-
munication incurs a dominant part of energy consumption in IoT nodes [16]—even more so
for satellite access. For instance, Swarm reports that sending a maximum-length 192-byte
packet at P = 2.8 W takes ∆T = 3.7 s and Etotal = 12.24 J, while in comparison Raspberry
Pico benchmark for embedded code, hello_sleep runs at 1.5 mW, as per the datasheet.

Table 1. DC power characteristics of 4 modes of operation for 5V/3.3V power supply.

Mode Typical Current at 5 V/3.3 V Typical Power at 5 V/3.3 V

Transmit 550 mA/850 mA 2.8 W/2.8 W
GPS Acquisition 45 mA/45 mA 230 mW/150 mW
Receive 26 mA/26 mA 130 mW/86 mW
Sleep <110 µA/80 µA <550 µW/260 µW

For Swarm modem’s operating modes, the energy-saving strategy includes:

1. Keep the modem in Sleep Mode as much as possible. When not in Sleep Mode, its
default state is Receive Mode, which uses much more power.

2. Being awake dominates energy usage, either from the actual transmission energy or
the GPS Acquisition and Receive Modes.

3. Failure to transmit will waste considerable energy. Thus, one should schedule trans-
mission to when there is a high probability of successful communication.

2.2. Swarm Satellite Transmission

To minimize transmission power consumption requires understanding how the satel-
lites, transmission, and data plans work. There is not always a satellite overhead, nor
are the elevation angle and environmental conditions (e.g., background RF noise) always
suitable. Data rate is limited, and frequent transmissions consume energy. These factors
critically impact how we orchestrate transmissions.

The nature of Swarm satellite passages is disclosed by their Web-based tool that lists
upcoming satellite passes, their times, durations and max elevation angles for a given
location. Elevation angles observed in Montreal, Quebec, Canada range between 15 and
85 degrees, and pass durations typically range between 10 min and an hour. In reality,
even with a satellite pass, the modem might not always be able to transmit. There are
many factors impacting this: satellite pass “quality”, RF background noise, environmental
conditions, antenna setup, and many others.
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The first factor, satellite pass quality, is due to the pass duration and maximum
elevation angle. Swarm gives no guidance on what factors impair successful transmission,
and one objective of this paper is for each sensor to construct an empirical model for
quantifying the likelihood of a pass leading to successful transmission. The second factor,
RF background noise, does have guidance provided by Swarm, Table 2, by which noise
intensity of -93 dBm or lower is expected for successful transmission.

Table 2. Background noise intensity required for likelihood of transmission.

Background Noise RSSI (dBm) Quality (for Transmission)

−90 and higher Bad (unlikely to work)
−93 and lower Marginal
−97 and lower OK
−100 and lower Good
−105 and lower Great

There are also the constraints imposed by Swarm data plans, priced at USD 60 per
year per data plan, with up to four data plans stackable onto a single modem. Each data
plan permits up to 750 packets per month, or about 25 packets per day, or about one per
hour. These constraints imply that for finer temporal resolution (e.g., every 15 min), one
must either bundle measurements, or pay to stack multiple data plans. The later, costly
option also reduces the battery life, while bundling reduces the number of packets and
possibly the cost.

The high-level view of the two main processes is shown in Figure 5. The process on
the left produces and inserts the data into a circular queue. Since the Swarm modem’s
internal queue can drop packets after 48 h, the circular queue needs to contain 48 h of data.
Each cycle of waking from sleep, acquiring GPS, listening for a satellite, and transmitting
uses a lot of extra energy. In addition, due to environmental variables, there is inherent
uncertainty as to how long one can expect the modem to be awake before transmitting
successfully. This precise question is examined in the rest of the paper.

2.3. Efficient Packet Data Bundling

Note that there are a few important functions in Figure 5, such as the data bundling,
as the transmission duration directly causes energy consumption. Table 3 shows the format
of data. Each datum includes a timestamp, expressed in minutes since 1 January 1970. Due
to the nature of the GNSS-IR, we omit seconds, which allows the re-purposing of 4 bits for
16 status codes. For completeness, using 28 bits allows timekeeping for 510 years. This
format allows the whole datum to fit in 16 bytes, which divides evenly into 192 bytes per
packet, such that each packet will be maximally utilized with 12 data points per packet.

Table 3. Format for each datum within the software.

Name Type Bits

Water level Floating-point 32 bits (4 bytes)
Error Floating-point 32 bits (4 bytes)
Roughness Floating-point 32 bits (4 bytes)
Minutes since 1 January 1970 Positive integer 28 bits (<4 bytes)
Status Positive integer 4 bits (<1 byte)

Total 128 bits (16 bytes)
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Figure 5. Activity diagram for the host device with two processes

Second implicit function within the high-level processes shown in Figure 5 is that of
good satellite pass selection, while the algorithm for actually predicting satellite passes—at
least from the user perspective—is made fairly simple with the help of an open-source
SGP4 satellite pass prediction Arduino library, quantifying what satellite passes are “good”
depends much on environmental conditions, setup details, and empirical observations, as
described next.

2.4. Online Learning Direct-to-Satellite Packet Scheduling

Transmitting to the LEO satellites can be unreliable due to minute changes in equip-
ment setup or environmental factors. For example, severely cloudy days lead to too high
RF background noise (i.e., higher than −93 dBm). Further, unshielded microcontroller
within 10 to 20 cm of the antenna could increase measured RF background noise by as
much as 5 to 10 dB. Further, slightly angling the antenna towards or away from a cell tower
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a few kilometers away could vary the RF background noise by several dB. With all these
factors, creating a generalizable pass model is intractable.

Previous work with indirect-to-satellite scheduling shows that online learning is a
successful strategy [11]. Thus, each individual sensor should learn for itself and for its
exact site conditions and hardware setup via online learning. Previous work in indirect-
to-satellite scheduling uses a Lyupanov optimization problem for network queuing to
avoid making assumptions about when new data would become available [11] while the
perfect knowledge of satellite overpasses is assumed. However, the data production rate is
constant in our case, so rather than treating it as a network queuing problem, we ought to
predict the uplink availability. Thus, a novel approach will be used.

2.4.1. Algorithmic Problem Statement

For a sensor placed in a remote location, a simple and interpretable model is needed
to be trusted to perform as expected [17]. To achieve this, a relatively simple algorithm
inspired from reinforcement learning has been devised. The goal is to learn the probability
of successful transmission, given three input variables: (1) the satellite pass duration (in
minutes), (2) the maximum elevation angle of the satellite pass (in degrees), and (3) the RF
background noise (in dBm).

Borrowing the notation from reinforcement learning, the state space S is the set of
all possible input variable combinations, and the action space A is the set of all possible
actions [18]. In this case, A consists of the actions to transmit or not to transmit for each
satellite pass with pass characteristics s ∈ S. Let the function v be the mapping of S to a
probability of successful transmission, v : S 7→ [0, 1], and let the policy π represent the
conditional probability of choosing a particular action a ∈ A given a state s ∈ S. Hence, the
policy is the mechanism for choosing which satellite pass to select, given a set of passes
and their characteristics.

π(a|s) = P(At = a|St = s) (1)

In Equation (1), At represents the action at time step t, and St represents the state at
time step t. Regarding the probability success mapping V, a natural objective is thus to
approximate it with collected experience: as the system runs and has successes and failures
transmitting with different states s ∈ S, it will converge to true probabilities of successful
transmission for a given state, i.e., the value function v [18,19].

2.4.2. Modified Monte Carlo Learning

Monte Carlo learning methods approximate a value function in a simple and inter-
pretable way by taking the value of a state to be the average return at the end of a training
episode [18,19]. In the direct-to-satellite packet scheduling, the episodes are of length one,
i.e., there is no sequential decision-making, simplifying the problem. If the reward is taken
to be 1 for a successful transmission and 0 for an unsuccessful transmission, then the value
function can be taken to be the average rate of successful transmission from a given state.
If for a given state of satellite pass characteristics and RF noise, transmission is successful
50% of the time, then the value function is 0.5.

However, Monte Carlo learning requires a discrete state space, whereas the state space
for this problem is continuous, so we discretize the state space. Using the Swarm pass
checker, it is known that all satellite passes shown are between 15 and 90 degrees and
almost all between 10 and 60 min. Additionally, while RF noise is technically continuous,
the modems only report whole numbers, e.g., −95 dBm. If only integers within the range
−93 dBm (the highest noise Swarm reports success transmitting with) to −106 dBm (the
lowest noise measured in this project) are considered, this is naturally discretized. Table 4
shows how the state space has been chosen to be discretized. With 5 buckets for each state
variable, some simple combinatorics gives 125 unique combinations, where the total set of
125 combinations represents the discretized state space.
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Table 4. State space bucketing for each state variable.

Bucket Number Max Elevation Angle (°) Pass Duration (minutes) RF Background Noise (dBm)

1 15 to 30 10 to 20 −93 to −95
2 31 to 45 21 to 30 −96 to −98
3 46 to 60 31 to 40 −99 to −101
4 61 to 75 41 to 50 −102 to −104
5 76 to 90 51 and higher −105 and lower

The remaining question is that of the policy π. Clearly, once a good approximation of
the true value function is made, the policy π should exploit that knowledge to select the
most promising satellite passes. At the beginning, the system will not know about a good
satellite pass, and it will thus have to explore with passes of different characteristics. This
is an example of the exploration–exploitation problem in reinforcement learning [18,19]. A
common approach is to explore early on and gradually exploit more with time.

2.4.3. Modified k-Armed Bandit

Regarding the policy for packet scheduling, there is a similarity to the k-armed bandit
problem, whereby an agent repeatedly plays the same one-step episode. In each game,
the agent has a selection of options, which may give varying stochastic rewards. The goal
is to learn over time which actions give the greatest expected reward [18,19]. A common
approach to this problem involves softmax (Boltzmann) exploration, which derives a set
of probabilities corresponding to each possible action [20]. The action with the highest
expected reward has the highest probability of selection, plus all the choices are guaranteed
to sum to 1 by the design.

Our problem is slightly different from the k-armed bandit problem in two impor-
tant ways: (1) the set of actions available to the agent in each episode is different, and
(2) expected reward is not only the probability of successful transmission, but its utility
in the given application, most notably the timeliness. Regarding the first point, the agent
is faced with a different selection of satellite passes each episode, each with their own
set of pass characteristics and times at which they occur. This problem is solvable, as the
modified Monte Carlo learning methods will allow keeping track of the estimated reward
of each action.

2.4.4. Temporal Bounds for Packet Scheduling

Addressing the reward modeling, we apply the following reasoning. A good pass
in an hour is not the same as an equally good pass occurring after 24 h because: (1) data
needs to be transmitted regularly, (2) the circular queue holding data has a finite capacity,
and (3) the Swarm modem will drop packets from its transmission queue after a timeout.
Thus, to model he preference for more prompt transmissions, a discount factor λ is applied
to reduce the value of later passes.

Under the data plan, each modem can transmit at most one packet per hour to remain
within the budget. Since there are many satellite passes to consider, the rules are needed for
the interval of packet scheduling. Such rules are shown in Figure 6, in which tmin and tmax
are the minimum and maximum amount of time (in hours) for a satellite pass, respectively,
a is a vector of satellite passes between tmin and tmax (ai is the i-th element of a). Further, s
is a vector of states (i.e., pass characteristics and RF background noise) of satellite passes of
a. Let t be a vector of midpoint times of satellite passes of a.
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Figure 6. Routine for selecting the next satellite pass to attempt transmission.

2.4.5. Algorithmic Formulation

Since we are developing a learning approach to the LEO transmission scheduling, we
will rely on the activation function for classification/learning, softmax. For the set of values
xj, {j, 1, N}, it is for each value xi from as:

so f tmax(xi) =
exp(xi)

∑ j exp(xj)
. (2)

Since softmax adds up to 1 across all inputs, it effectively creates a probability distri-
bution function that disproportionally favors larger values of xi.

Let rdata be the data point generation rate (in data points per hour), and bundlesize
be the number of data points that comprise a full bundle. Then, the rate of full packet
bundling rpkt is: rpkt =

rdata
bundlesize . Let softmax(z) be the vectorized softmax function where

softmax(z)i is the softmax of the i-th element of z, and let v(s) the vectorized value function.
We express the policy π as:

π(ai|si) = softmax(λt	tmin � v(s))i (3)

where the 	 and � symbols operating on vectors t and s are the element-wise subtraction
and multiplication, respectively. Equation (3) expresses the probability of selecting a
satellite pass ai from interval [tmin, tmax] as the softmax of the estimated transmission
success probability for the pass, multiplied by a discount factor for future passes. Pass
quality and promptness will be prioritized, while still giving a chance for exploration of
passes currently predicted to be worse. This preference allows Monte Carlo learning to
improve the value function estimates with time.

2.5. Uplink Transmission Energy Model

Energy consumption modeling of communication interfaces is a complex issue, and
we have relied on the existing Iridium satellite communication model [21], as well as a
model for long-range terrestrial network Sigfox [22], as the closest detailed model that
similarly to us relies on the published energy consumption values from the datasheets. To
determine the average power consumption, we introduce the unified uplink transmission
energy model. Since the stochastic nature of transmission success prohibits the derivation of
a deterministic model, a probabilistic model is created to give an estimate of average power
consumption. There are two key causes of transmission non-determinism: (1) whether a
transmission will succeed for a given pass, and (2) if it does succeed, how long the modem
will be in Receive Mode before it is able to transmit.
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To build the model, let tSL be the mean time that the modem is in Sleep Mode, tGPS
be the mean time the modem is in GPS Acquisition Mode, and tRX be the mean time the
modem is in Receive Mode before transmission is successful. With typical modem power
consumption values PSL, PGPS, and PRX , the total energy usage in these modes over a single
transmit attempt cycle, Eattempt is:

Eattempt = PSLtSL + PGPStGPS + PRXtRX + ETX Npkt (4)

where Npkt is the number of packets transmitted in a given pass. Depending on satellite
pass selection and/or previous transmission attempt successes, Npkt may be 1 or larger. In
the case of an unsuccessful attempt, Npkt is 0. An expression for non-zero Npkt is:

Npkt =
rpkt

psuccessrattempt
(5)

where psuccess is the transmission success probability, rattempt is the mean transmission
attempt rate, and rpkt is the rate at which fully bundled packets are generated. Since
rattempt is smaller or equal to rpkt, Npkt is guaranteed to be 1 or greater because successful
transmission of one packet entails successful transmission of all queued packets.

In Equation (4), also note that, while PSL, PGPS, tGPS, PRX, and ETX (at least for full
packets) are constant, tSL and tRX are variable. Here, tSL represents the mean time in the
Sleep Mode before making a transmission attempt, approximated as: tSL = 1

rattempt
.

The value of tRX depends on how long the modem waits until it receives a packet and
begins the transmission, or the pass is over. For a successful transmission, the quickest case
is to transmit immediately after exiting GPS Acquisition Mode. The slowest success case is
to transmit at the very end of the satellite pass. The worst failure case is the modem reaching
the end of a given satellite pass in Receive Mode, with no transmission. In terms of tRX,
this case and successful transmission at the very end of the pass would be approximately
equal. All three cases depend on the mean pass duration, denoted as tpass.

Eattempt can take two forms, depending on the transmission attempt success. A success
is expressed in Equation (6), where εpass represents the proportion of a satellite pass spent
in Receive Mode before receiving a packet from the satellite and is able to transmit. For
pessimistic and optimistic models, εpass can be treated as either 1 or 0, as these serve as the
upper and lower bounds of the time in Receive Mode for a given satellite pass.

Esuccess = PSL
1

rattempt
+ PGPStGPS + εpassPRXtpass + ETX

rpkt

psuccessrattempt
(6)

If the attempt is a failure, the model is represented by Equation (7). Note that there is
no εpass value and no Npkt, as the system will wait out a full pass without transmissions.

E f ail = PSL
1

rattempt
+ PGPStGPS + PRXtpass (7)

The above two cases can be combined into a complete model: Eattempt = psuccessEsuccess +
(1− psuccess)E f ail , which expands into the following expression:

Eattempt =
PSL

rattempt
+ PGPStGPS + psuccess(εpassPRXtpass +

ETXrpkt

psuccessrattempt
)

+(1− psuccess)PRXtpass

(8)

where PSL, PGPS, and PRX are all constants and given by Swarm. Similarly, location fix time
tGPS is rather constant, reported to be about 30 s by Swarm. Furthermore, note that rattempt
depends on site conditions, project requirements, and packet scheduling. Similarly, psuccess
and tpass depend heavily on site conditions and packet scheduling.
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2.6. Simulation Model for Online Learning Evaluation

Setting up a number of sensors in the representative environment is expensive in
time and money. Instead, the algorithm is tested with a simulated environment, simi-
lar to the methodology chosen in previous work on indirect-to-satellite scheduling [11].
Using simulations first can demonstrate the ability of the algorithm to learn underlying
unknown patterns about satellite pass qualityand tune the discount factor λ parameter. To
simulate the algorithm, two key components are needed: (1) virtual transmitters with an
underlying probability model for which pass qualities are likely to result in transmission,
and (2) randomly generated satellite pass characteristics and RF noise data. For virtual
transmitters, three conceptual preference models were created, Table 5, to see how different
transmitting obstacles would affect the algorithm. Note that the preferences in Table 5 refer
to the conditions required for a high likelihood of success. For example, the first preference
model requires high angles, long durations, and low noise for a high likelihood of success.

Table 5. Conceptual preference models for the virtual transmitters.

Model Elevation Angle Pass Duration RF Background Noise

1 High angles Long time Low noise
2 Mid to high angles Mid to long time Low to mid noise
3 Low to high angles Short to long time Low to high noise

To create the virtual transmitter models, a function is constructed that outputs a trans-
mission success probability by multiplying three stretched-and-shifted sigmoid (theshold
activation) curves, one for each of three preference variables from Table 5. For example, the
sigmoid to represent a preference for high angles would produce a value close to 1 for high
angles (e.g., 70 degrees and higher) but a value close to 0 for low angles (e.g., 30 degrees
and lower). The general form of the preference models is shown in Equation (9).

P(success) = σ(kθ(θ − θ0))× σ(kd(d− d0))× σ(kγ(γ− γ0)) (9)

where σ(x) represents the sigmoid function, θ represents the max elevation angle, d repre-
sents the pass duration, and γ represents the RF background noise. Note that kθ , kd, kγ, θ0,
d0, and γ0 represent configurable stretching and threshold shifting constants to represent
the different conceptual preference models. The values of these constants used to create the
three preference models by Equation 9 are shown in Table 6.

Table 6. Constants for the three preference models.

Preference Model kθ θ0 kd d0 kγ γ0

1 0.5 70 0.5 35 −1 −102
2 0.5 50 0.5 20 −1 −99
3 0.5 30 0.5 10 −1 −96

Simulated satellite passes are presented to virtual transmitters by agents imbued with
a preference model and a value function approximator. The generated pass characteristics
are randomly generated: each agent is exposed to random RF background noise, a vector a
of satellite passes with corresponding random midpoint times t, and random pass charac-
teristics s (except each si ∈ s also includes the RF noise value). The randomly generated
pass characteristics are drawn from a uniform distribution, and the RF background noise
values are drawn from two differing distributions:

1. Uniform across all buckets (−107 to −93 dBm).
2. Uniform within one bucket (−107 to −105 dBm).

to express that a given sensor may experience either a full range of RF noise, or (as expected
in a remote location) a narrow sub-range of RF noise.
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Each agent calculates the probabilities of selecting satellite passes from the discretized
states, agents’ value function approximators, and the pass midpoints. These probabilities
are calculated from the policy π and satellite passes are chosen by these probabilities.
Satellite pass and the RF noise characteristics are used by the agents’ preference models
for transmission success probabilities. Finally, transmission successes are determined
according to the agent preference model outputs, and the process repeats.

3. Findings

This section summarizes the findings on the suitability of the proposed on-line learning
to adapt in different scenarios, on tuning of the parameters, as well as the overall energy
savings and the parameters tradeoffs. For evaluation of the transmission scheduling, the
goal is to (1) demonstrate the ability of the algorithm to learn patterns behind transmission
success probabilities, and (2) to make apparent how the performance gets affected by the
main variables, such as the overpass duration, angle and the RF noise.

Simulations were conducted for the proposed algorithm under all three preference
models in Table 5. The power data published by Swarm, as per Table 1 forms the basis of the
transmitter energy consumption. The effects of random noise were expressed in two ways:
noise contained in a single bucket, or across all buckets from Table 4, to model the remote
and populated locations, respectively. Figures 7–12 show the transmission success and and
average time to transmit for three preference models, as training epochs(i.e., the number
of times that the learning steps are applied) progress, all parameterized by the discount
factor λ. For their evaluation, notable is the response to overall RF noise distribution and
transmission difficulty. We observe that wider RF noise distributions negatively impact the
success, as well as when it is relatively hard (or easy) to transmit, there is less room for the
algorithm to make huge improvements in success rate. For example, when there are few
good passes, the algorithm often has to make a choice between a mediocre and a bad pass.
This is seen in the lower (but still significant) improvement for the first preference model,
and lower TX success rates, as there is simply no room for much improvement.

Figure 7. Simulated results for preference model 1 and random noise within 1 bucket.
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Figure 8. Simulated results for preference model 1 and random noise across all buckets.

Figure 9. Simulated results for preference model 2 and random noise within 1 bucket.
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Figure 10. Simulated results for preference model 2 and random noise across all buckets.

Figure 11. Simulated results for preference model 3 and random noise within 1 bucket.
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Figure 12. Simulated results for preference model 3 and random noise across all buckets.

Second to note is the difference in response to discount factors λ. In the first preference
model, less likely to succeed, differing discount factors made little difference to rattempt,
as the penalty for long wait for a decent pass outweigh the cost of other poorer options.
For the other two preference models, however, the discount factors closer to 1 did see
significantly higher average times to attempt transmission. For certain applications, an
average time to transmit of 24 h may be unacceptable. If it is necessary to keep rattempt
higher, using a lower value of tmax or a value of λ closer to 0 would lower the average
time to transmit. A lower value of tmax in particular forces the algorithm to only consider
satellite passes within a more constrained time frame.

Regarding noise distribution, Figures 7–12 also compare two noise models, where the
RF noise values were drawn uniformly from all noise buckets or from one bucket only. This
second model was explored as remote sites have largely consistent RF background noise
levels. The primary impact is that the algorithm consistently learns faster and converges
to higher success rates when exposed to RF noise associated with remote locations. For
example, the algorithm learned in 1000 epochs for preference model 2 and fully random
noise what it learned in under 300 epochs for same-bucket noise.

The most permissive conceptual preference model 3, Figures 11 and 12 shows that a
high baseline success rate is rapidly improved through fewer epochs of training, especially
as RF noise is constrained in a single bucket, as the expectation for remote, wilderness areas
noise is not to occupy all buckets. Not only that the learning will be successfull, but the
results are interpretable based on the understanding that the wireless channels with less
contention perform better than those found in populated areas.

Power and Energy Consumption

We now evaluate expected transmission energy savings. Energy spent for each trans-
mission attempt Eattempt, (Equation (8)) employs parameter values listed in Table 7. They
are derived from Table 1 obtained from the datasheet values. While these values may
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depend on exact hardware setup (e.g., voltage supply), they are all constant, as opposed to
variable terms, as detailed next.

Table 7. Constants used for transmission attempt energy model.

Constant Meaning Value

PSL Sleep Power 550 µ W
PGPS GPS Power 230 mW
tGPS Time to GPS Fix 30 s
PRX Receive Power 130 mW
ETX Transmit Energy 12.24 J
rpkt Packet Rate 1

3 h−1

The ranges of the variables in Equation (8) are shown in Table 8. Note that “pessimistic”
refers to the boundary of the interval that results in higher average consumption Eattempt,
while “optimistic” refers to the boundary of the interval with lower average consumption.
A value denoted as optimistic or pessimistic does not necessarily mean a value judgement
for system operation. For example, a lower rattempt means less frequent transmission
attempts, which is good for energy consumption, but causes high average time to transmit
and lost data. Furthermore, note the difference between average energy consumption
and the value for Eattempt given by Equation (8); while a low rattempt will result in a higher
Eattempt, it will result in lower average power, as shown by Equation (10) below. The term
in the denominator is the average time elapsed during a complete cycle.

Pavg =
Eattempt

1
rattempt

+ tGPS + psuccessεpasstpass + (1− psuccess)tpass
(10)

The results of these four variables on average modem power consumption are shown
in Figure 13. The two dominant factors in determining average power consumption are the
success rate and average time between attempts, while the smaller proportion of time εpass
idled in Receive mode helps to keep the power low irrespective of other variables.

Table 8. Sample variable ranges for transmission attempt energy model.

Parameter Variable Pessimistic Value Optimistic Value

Attempt rate rattempt 1 h−1 1
48 h−1

Success probability psuccess 0.0 1.0
Portion of time in
read mode εpass 1.0 0.0

Overpass duration tpass 60 min 10 min

The impact of the success rates on power and battery requirements is shown in Table 9
for the three preference models. Note that the psuccess and rattempt values are taken from
the simulations, and εpass and tpass are taken as 0.5 and 25 min, respectively. For each
preference model, three results are shown: (1) a baseline based on taking the earliest
available passes and no scheduling, (2) another baseline based on the same average rattempt
as the simulated results but no scheduling, and (3) the test case with scheduling and
simulated average rattempt.
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Figure 13. Average power of the Swarm modem under different pass variable values.

Table 9. Sample energy savings from simulated packet scheduling for a year of operation

Preference Model Success Prob. psuccess Attempt Rate rattempt Average Power Required Battery Capacity

1
0.13 2.564 h−1 67.54 mW 592.1 Wh
0.13 1

24 h−1 3.810 mW 33.40 Wh
0.20 1

24 h−1 3.735 mW 32.74 Wh

2
0.42 0.7937 h−1 29.31 mW 256.9 Wh
0.42 1

23 h−1 3.575 mW 31.34 Wh
0.57 1

23 h−1 3.405 mW 29.85 Wh

3
0.78 0.4274 h−1 14.95 mW 131.1 Wh
0.78 1

22 h−1 3.234 mW 28.35 Wh
0.85 1

22 h−1 3.151 mW 27.62 Wh
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For simulated baseline values, the average time to attempt is represented as the first
available satellite pass, expressed by

tSL,baseline =
psuccess

rpkt
⇒ rattempt,baseline =

rpkt

psuccess
,

which represents the algorithm for determining tmin, where successful transmission lead to
waiting a minimum of 1

rpkt
hours, while unsuccessful attempts lead to no minimum wait.

The results demonstrate that online learning direct-to-satellite packet scheduling is
capable of reducing average power and battery requirements around 20 times. Note that
the dominant energy saving comes from reducing average attempt frequency, although
the improved success rate of the scheduling algorithm introduce significant power saving.
Additionally, our direct-to-satellite packet scheduling scheme enabled us to lower the
attempt frequency, as it provides a built-in mechanism for selecting future passes.

Tradeoff between Low Power and Learning Rate

The proposed algorithm in its current state exhibits low average attempt rate values
rattempt (still sufficiently high for the intended application). The discount factor parameter
λ is investigated in Figures 14–16, as it impacts the transmission attempt rate and thus the
time a node takes to learn, as well as the time to transmit and the modem power.

Figure 14. Average success rate versus discount factor λ for bucketed noise and moderate preference
model 2.

Figures 14 and 15 show that with low values of λ, future candidate passes are all
discounted to such a degree that the resultant probabilities from the softmax function show
little to no preference for earlier passes. Furthermore, with high values of λ (very close
to 1), we observe that future candidate passes are all so little discounted that the resultant
probabilities from the softmax function show little to no preference for earlier passes. It is
only for λ values from around 0.9 to 0.95 (“sweet spot”) that the values of future candidate
passes are discounted such that there is an apparent preference for earlier passes, such that
the transmission success and time to transmit are more favorable.
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Figure 15. Average time to attempt transmission versus discount factor λ for bucketed noise and
moderate preference model 2.

Earlier passes means more frequent transmission attempts. A downside to this is in
smaller expected power savings, as more frequent transmissions require significantly more
average power. There is thus a tradeoff between having a high learning rate and achieving
low average power consumption, Figures 14–16, with the “sweet spot” area of λ selected
for all earlier experiments, e.g., Table 9.

Figure 16. Average modem power versus discount factor λ for bucketed noise and moderate prefer-
ence model 2, using εpass = 0.5, rattempt =

1
24 hr−1, and tpass = 25 min.

4. Conclusions and Future Work

We have presented and evaluated the transmission scheduling for emerging sparse
LEO satellite services suitable for IoT. This is the first published study that addresses the
critical uplink availability issue with sparse LEO constellation. A detailed probabilistic
energy consumption model was developed used to evaluate our on-line learning scheme
for predicting transmission periods. Our learning proposal is inexpensive computationally,
learns in small increments and in a modest number of training epochs, and is interpretable,
unlike most modern machine learning approaches. For three common scenarios, we have
observed up to 20-fold reduction in power and battery requirements of the transmissions
attributable to this learning approach. Since the whole scheme is suitable for the smallest
embedded microcontrollers, we have demonstrated its implementation on Raspberry Pi
Pico that manages to pack all sensed data within the least expensive dataplan.

While the intended application is the water-level monitoring in remote locations, the
proposed scheme is practical for other IoRT applications, as it incurs modest computing
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costs. The results demonstrate the ability of the proposal to facilitate energy-efficient data
collection over prolonged periods of time.

The whole analysis was done by simulations to reduce the burden in cost, time and also
to combat location-dependence, since RF noise in the city differs from the intended remote
locations; while we demonstrate the ability of our proposed scheme to adapt appropriately,
obtain interpretable learning and explore the impact of variables on the performance of the
algorithm, they are nonetheless simulated results.

Complete code and data for modeling, learning and energy consumption evaluation is
made available by GitHub (as reported below in “Data Availability” statement). The code
and data can be readily used for further exploration of sparse LEO connectivity for IoT
in general.

4.1. Future Work

Related to the learning approach, further research could examine the possibility
of adaptive learning rates. One possibility for polar regions would be increasing the
transmission attempt frequency (e.g., by decreasing the discount factor λ) during the
summer when solar power is abundant, and lowering the transmission attempt frequency
during the polar winters.

There are two natural steps that could be taken to improve the simulation setup
in future: (1) the simulations could be based on extracted real-world data for a given
application, or (2) multiple sensors could be placed in the field for weeks or months. The
first option is natural, as the risk of needing to adjust the algorithm is high, making tuning in
simulations and testing on hardware only when confident in good results is the best route.

4.1.1. Potential Simulation Model Improvements

The most apparent way to improve the simulations is to generate a more representative
RF noise distribution and to use the Swarm satellite pass information, something which
is not available in the remote locations. For the latter, there are the versions of the online
satellite pass library, as used in the open source SGP4 Arduino library or in Python [23,24].

4.1.2. RF Noise Impact on Prototype System

One factor discovered in verification testing of a prototype is the sensitivity of the
antenna to noise. For example, minor changes in the exact positioning of the PCB and
microcontroller under the ground plane could vary the measured noise by as much as 3 dB.
Clearly, the antenna receives RF interference from an unshielded device in the immediate
vicinity (e.g., 10 to 20 cm). In fact, it was precisely this interference that played a role in the
design of a online learning direct-to-satellite packet scheduling algorithm; since no method
could possibly account for the range of possible housing, ground plane, and even power
supply designs, as well as varied site conditions and lines of sight, there could be no single
ultimate “good” pass model, so a learning-based approach is used.
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Abbreviations

GNSS Global Navigational Satellite System
GNSS-IR GNSS Interferometric Reflectometry
LEO Low Earth Orbit
IoRT Internet of Remote Things
PCB Printed Circuit Board
MC Monte Carlo
RSSI Received Signal Strength Intensity
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Abstract: Several areas of wireless networking, such as wireless sensor networks or the Internet
of Things, require application data to be distributed to multiple receivers in an area beyond the
transmission range of a single node. This can be achieved by using the wireless medium’s broadcast
property when retransmitting data. Due to the energy constraints of typical wireless devices, a
broadcasting scheme that consumes as little energy as possible is highly desirable. In this article, we
present a novel multi-hop data dissemination protocol called BTP. It uses a game-theoretical model
to construct a spanning tree in a decentralized manner to minimize the total energy consumption
of a network by minimizing the transmission power of each node. Although BTP is based on a
game-theoretical model, it neither requires information exchange between distant nodes nor time
synchronization during its operation, and it inhibits graph cycles effectively. The protocol is evaluated
in Matlab and NS-3 simulations and through real-world implementation on a testbed of 75 Raspberry
Pis. The evaluation conducted shows that our proposed protocol can achieve a total energy reduction
of up to 90% compared to a simple broadcast protocol in real-world experiments.

Keywords: wireless networks; data dissemination; broadcast tree

1. Introduction

In several areas of wireless networking, such as wireless sensor networks (WSN) or
the Internet of Things (IoT), application data need to be disseminated across multiple
devices to reach their destination. In particular, there are applications in which one device
needs to disseminate data to all other nodes in the network, e.g., in tasks such as network
configuration [1], update dissemination [2], or network diagnosis. Other typical examples
are announcements, notifications, and event distribution [3].

To enable these applications, the wireless medium’s broadcast property can be utilized.
This means that multiple devices in the vicinity of the sender can receive a transmitted
packet. Since the possible transmission range of a wireless device is limited by its maximum
transmission power, a multi-hop data dissemination scheme is required, i.e., nodes in dif-
ferent locations retransmit the received packets to distribute the data over an extended area.
Furthermore, since wireless network devices usually have a limited energy budget, only
selected nodes should actively participate in data dissemination through retransmission,
while the other nodes should be passive consumers of the received packets. Thus, the active
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nodes form a spanning tree that connects all nodes of the network to the root node. There
are several combinations of nodes that can form a spanning tree, but the construction of an
energy-minimal spanning tree is NP-hard [4]. Furthermore, to minimize the total energy
consumption of a network in a real setting, the practical applicability of a spanning tree
construction algorithm is important. However, although there are several spanning tree
approaches in the literature, virtually none of them can be implemented in a real-world
environment due to different shortcomings. Many approaches assume global knowledge of
parameters or states of nodes, but such knowledge is not available without additional effort
in practice. Most works do not consider the potential occurrence of graph cycles. Some
studies assume a pre-existing spanning tree and omit the initial spanning tree construction
phase. Others do not optimize the transmission power levels of the individual nodes,
resulting in missed potential. Centralized approaches are generally not suitable for wireless
ad hoc and multi-hop networks.

In this article, we present the Broadcast Tree Protocol (BTP), a novel multi-hop data
dissemination protocol that constructs a spanning tree in a decentralized manner such
that the total energy consumption in a network is minimized. This is achieved by letting
each node connect to the broadcast tree in a way that minimizes its own contribution to
the total energy consumption. To realize this approach, we first model the broadcast
tree using a game-theoretical model (based on the work conducted by Mousavi et al. [5])
that has been proven to converge to a Nash Equilibrium, yielding better results than other
approaches from the literature. However, the original model makes assumptions that
render a practical implementation impossible. First, it assumes that every node is aware of
the transmission power of its neighbors at all times. However, this assumption translates
to complicated and expensive status updates between neighboring nodes. Second, the
original model assumes that all nodes make their decisions at the same time. Achieving this
in practice would require the precise time synchronization of all nodes, which, in itself, is a
challenging task. Third, the potential game proposed by Mousavi et al. [5] uses a weakly
dominant strategy where a node can switch between different parent nodes even if the
energy costs that it incurs stay the same. This strategy can result in a ping-pong effect,
i.e., a node may permanently switch between multiple parent nodes, while the overall
transmission power of the network is not reduced further. Fourth, the original model
assumes that the constructed broadcast tree does not have cycles. However, due to the lack
of time synchronization of all nodes and the lack of global knowledge at each node, graph
cycles cannot be easily avoided in practice. Therefore, we present an approximation of the
original model that retains the convergence properties of the original model and can be
implemented in real-world settings.

In particular, we make the following contributions:

1. We present BTP, a practical protocol that approximates a game-theoretical model for
constructing an energy-minimal broadcast tree while preserving both its convergence
and Nash Equilibrium properties. To the best of our knowledge, BTP is the first
protocol for energy-efficient data dissemination in wireless multi-hop networks based
on a provably optimal game-theoretical model that is implemented on real hardware.

2. We design and implement a discovery mechanism that allows the nodes in a wireless
multi-hop network to construct a broadcast tree in a decentralized fashion using
locally available information from their direct neighbors.

3. We change the decision strategy of the algorithm from a weakly dominant strategy to a
strictly dominant strategy to avoid ping-pong effects, in which a node may potentially
continue changing its decision without further reducing the transmission power.

4. We implement and evaluate three different algorithms for inhibiting graph cycles.
Specifically, (1) the Path-to-Source algorithm avoids cycles by letting each node keep
track of the path from the root to itself so that each node can check the consistency
of the spanning tree when making decisions. (2) The Mutex algorithm avoids cycles
by letting each node lock its sub-tree when connecting to a different parent node,
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ensuring consistency at all times. (3) The Ping-to-Source algorithm allows for cycles
temporarily, but it detects and resolves such cycles immediately.

5. We evaluate BTP using different tools to assess its feasibility under various condi-
tions. First, we use Matlab simulations to compare BTP against approaches from the
literature. Second, we perform NS-3 simulations to investigate the scalability of BTP.
Third, we present a real-world implementation of BTP, that is evaluated on a testbed
of 75 Raspberry Pis deployed in one of our university buildings to explore its practical
feasibility. The evaluations show that BTP can achieve an energy reduction of up to
90% in real-world experiments compared to a simple broadcast protocol.

6. The code of the NS-3 implementation and the real-world implementation has been
released under a permissive open-source license. Furthermore, all code required
to reproduce the experiments as well as the experimental artifacts are also been
made available.

This article is organized as follows. Section 2 discusses related work. Section 3
introduces our system model. Section 4 presents the game-theoretical model, followed
by design of the formal protocol. Section 5 presents comparisons of BTP against other
algorithms in Matlab simulations, while Section 6 explores the scalability of BTP in NS-3
simulations. Section 7 presents the implementation of BTP on Raspberry Pis and an
evaluation through practical experiments. Section 8 concludes this article and outlines
areas for future work.

2. Related Work

Several approaches have been proposed for designing energy-efficient broadcast trees.
In one approach, the nodes broadcasted beacon packets with increasing transmission power
to iteratively build a set of all their neighbors [6]. In another work, each node was connected
to the node for which the minimal additional energy usage was required [7]. In yet another
work, each node computed its optimal parent under a certain optimization objective, while
the parent was on the path to the source node [8]. Energy accumulation to minimize the
nodes’ transmission power was also used [9], while others attempted to find a spanning
tree that minimizes the number of transmissions and the transmission delay at the same
time [10]. Also, clusters of trees have been built using different methodologies [11–13].
Several approaches use game theory to construct a spanning tree that requires minimal
transmission power [14,15]. Finally, some authors have attempted to minimize the path
lengths from the source to all other nodes to minimize energy consumption [16,17].

Furthermore, several centralized approaches have been proposed. For example, there
are approaches in which sensor nodes send a beacon packet to a central controller that
constructs the tree [18] or minimizes the path lengths of the tree [19].

Several approaches do not rely on a tree structure to disseminate data in wireless ad hoc
networks but still attempt to minimize total energy consumption by, for example, proposing
an energy-efficient sensor placement algorithm [20] or by letting a controller decide which
nodes should transmit the data [21,22]. Other approaches involve the formulation of a
linear programming problem that finds the most energy-efficient unicast path to reach
all nodes [23], the proposal of a data-forwarding scheme that utilizes nodes’ contextual
information [24], or the use of a k-coverage algorithm to distribute data energy-efficiently
in wireless underwater sensor networks [25].

Additionally, some approaches do not minimize energy consumption but optimize
throughput [26], delivery probability [27], end-to-end latency [28–30], or fairness [31].

Furthermore, practical approaches with an implementation were either aiming not to
minimize energy consumption but other metrics such as path length or latency [32,33] or
were not based on a proven theoretical model [34–36].

Finally, apart from approaches that rely on topology control or spatial placement, energy
efficiency can also be optimized through techniques like satellite communication [37,38],
beamforming [39–41], or MU-MIMO [41]. However, these approaches are beyond the scope
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of our work since devices used in multi-hop wireless sensor networks are typically not
equipped with hardware capable of using such techniques.

Compared to BTP, the aforementioned decentralized approaches suffer from various
problems. Many approaches require global knowledge of parameters or the states of
neighboring nodes and do not explicitly address the inhibition of graph cycles. Some works
do not consider the initial tree construction phase but assume that an already-constructed
tree exists, where, afterwards, only the transmission power is adjusted. Other approaches
also squander their potential by not leveraging the possibility of adjusting the transmission
power of each node. Furthermore, centralized approaches are usually not suitable in the
area of wireless ad hoc and multi-hop networks. Spanning trees offer the possibility to
reach all nodes in a network with a minimum amount of energy, making approaches that
do not rely on a tree structure questionable in terms of minimizing the energy consumption.
Finally, the presented approaches either do not provide an implementation or a real-world
evaluation using off-the-shelf Wi-Fi devices or are not based on a proven theoretical model.
In fact, most of the presented works only propose a theoretical model without considering
its applicability. Some of these models cannot be implemented under real-world constraints.

3. System Model

Our system model is based on the assumption that a given source node contains data
to send to all other nodes in a network. The nodes are spatially distributed, and each
node has a single antenna and a maximum transmission power of pmax. Due to the path
loss properties of wireless transmissions, the source node may not be able to reach all
other nodes, even if transmitting with pmax. Therefore, a multi-hop transmission scheme is
required. Table 1 lists the mathematical notations of our system model described below.

Table 1. Mathematical notations.

Notation Description Notation Description

T Broadcast tree consisting of
nodes V and edges E v ∈ V A node of the broadcast tree T

S ∈ V Source node of the broadcast tree e ∈ E An edge of the broadcast tree T
pmax Maximum possible Tx power pi Tx power of node i ∈ V
|hi,j|2 Channel gain of (i, j) ∈ E σ2 Noise power
γj SNR at node j γmin Minimum required SNR
Ci All children of node i ∈ V Nk All neighbours of node k ∈ V

pi,j
Tx power that node i ∈ V must
use to reach node j ∈ V pi(Ci)

Tx power that node i ∈ V must
use to reach all its children Ci

p Sum of Tx powers of all nodes in V

G Potential game P Set of rational players V \ {S}
a(t)j

Selected parent of destination
node j at iteration t a(t) Action profile at iteration t

ϕj

(
a(t)j

) Cost function of destination node j
for action a(t)j at iteration t

A(t)
j

Set of possible actions (parents) for
node j at iteration t

3.1. Graph Representation

A rooted spanning tree is an appropriate graph for a multi-hop broadcast scheme.
In the remainder of this article, we call such a tree a broadcast tree. A broadcast tree is
defined as a graph T = (V, E), where the vertices V correspond to all nodes of the network,
the source node S ∈ V is the root of the broadcast tree, and the edges E are the connections
between the nodes. Each edge e ∈ E has a weight pi,j corresponding to the transmission
power required to successfully establish a wireless communication link between the two
nodes {i, j} ∈ Ve connected via e. Furthermore, a broadcast tree must not contain any
cycles, i.e., for a given broadcast tree T = (V, E), there is no path of edges (e1, e2, . . . , en)
with a vertex sequence (v1, v2, . . . , vn, v1).
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In a broadcast tree, each node j ∈ V \ {S} has exactly one parent i, whereas each
parent may have multiple children. The set of children of a parent i is denoted as Ci, as
indicated by the blue box in Figure 1. Further, we assume that all communication links are
bi-directional. Due to the broadcast property of wireless communications, a parent node i
has to send data only once, while all its children Ci should be able to receive it.

S

i

j

k
p S,i

pS(CS)

Ci

Nk

Figure 1. Broadcast tree overview.

3.2. Transmission Power Model

To establish a connection between a parent i and all its children Ci, node i has to
transmit data with enough transmission power to ensure that the received signal strength
exceeds a certain level at all of its children Ci. The signal-to-noise-ratio (SNR) γj at receiver
j ∈ Ci is:

γj =
pi|hi,j|2

σ2 (1)

Here, pi is the transmission power that parent i uses to send the data, |hi,j|2 is the channel
gain, and σ2 is the noise power. Furthermore, based on the minimally required SNR γmin,
the minimum transmission power that i must use to reach j is as follows:

pi,j =
γminσ2

|hi,j|2
(2)

In Figure 1, this is visualized as pS,i on the connection between S and i. Furthermore, a
node j that receives a signal from node i can calculate the required transmission power
as follows:

pi,j =
piγ

min

γj
(3)

The transmission power that a parent node i must use to reach all its children Ci
depends on its most distant child and is generally bound by pmax:

pi(Ci) = max
j∈Ci

(pi,j) ≤ pmax (4)

Note that both connections of S are marked with pS(CS) in Figure 1 due to the broadcast
property. The neighborhood of a parent k is defined in the following manner:

Nk = {l|l ∈ V, pk,l ≤ pmax}, (5)

i.e., it contains all nodes that can be reached by parent k with the transmission power pmax

or less, as represented by the green box in Figure 1.
Our goal is to minimize the total transmission power in the network.

p = ∑
i∈V

pi(Ci) (6)

The total transmission power is defined as the sum of the transmission powers pi(Ci) of all
nodes i ∈ V for transmitting to their respective child nodes Ci.
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4. Broadcast Tree Protocol

This section presents the design of our Broadcast Tree Protocol (BTP) that is based on
a game-theoretical model.

4.1. Potential Game

Our approach is based on a potential game [42], i.e., all nodes cooperate to minimize
the total transmission power (Equation (6)) required to disseminate data over an entire
broadcast tree T. The use of potential games to calculate energy-efficient broadcast trees in
a decentralized manner has been proposed by Mousavi et al. [5].

4.1.1. Design of the Potential Game

Our potential game is designed as a child-driven game, meaning that the receiving
nodes (children) decide which transmitting node they select (parents). The construction of
the broadcast tree T is executed in iterations, and the current iteration number is denoted
by the index t. The potential game G is described by a set of rational players P containing
all destination nodes j ∈ V \ {S}, a set Aj of possible actions for each player j, and a
player-specific local cost function ϕj for each player j.

Each node j individually decides from which parent node it should receive data.
Therefore, the set A(t)

j of possible actions for each player j is the set A(t)
j = V \ {j} with

its potential parents. In each iteration t, each node j ∈ P selects a parent node, which is
denoted by the action a(t)j ∈ A

(t)
j . The action profile of the game a(t) = (a(t)1 , . . . , a(t)n ) is

a vector containing the actions of all nodes in iteration t, and a(t)−j represents the actions
of all nodes except the j-th node. Each node j has a player-specific local cost function
ϕj(a(t)j , a(t)−j), which depends on the node’s action a(t)j and the actions a(t)−j of all other nodes
in the network.

This cost function, ϕj, is designed to be the marginal contribution of the transmission
power required by its parent i to reach the considered node j:

ϕj

(
i, a∗−j

)
= pi(Ci)− pi(Ci \ j) (7)

To describe the solutions of G, we introduce the concept of a Nash Equilibrium (NE).
An action profile a∗ is an NE of G if

ϕj

(
a∗j , a∗−j

)
≤ ϕj

(
aj, a∗−j

)
, ∀j ∈ P , aj ∈ A(t)

j (8)

holds, i.e., no node in P can reduce its local cost ϕj any further by changing its action aj.
We consider the best response of node j in iteration t to the other nodes’ actions as follows:

a(t)j = argmin
a(t)j ∈A

(t)
j

ϕj

(
a(t)j , a(t)−j

)
. (9)

Mousavi et al. [5] proved that if all players select their actions according to their best
response (Equation (9)), the strategy profile will converge to an NE, which minimizes the
transmission power over all nodes (Equation (6)).

Although the presented potential game contributes to the decentralized construction
of energy-efficient broadcast trees, its practical implementation poses several challenges.
First, in the potential game, it is assumed that every node j knows all potential parents in
V at any given iteration t as well as the actions of all other players k ∈ P . However, this
information is not easily available in a real-world system; therefore, it must be exchanged
and maintained. Second, the potential game assumes iterations with discrete time steps,
while every node makes a decision at each time step. This is not feasible for a distributed
algorithm in the real world since there is no mechanism to precisely synchronize all nodes.
Therefore, each node must make a decision whenever it obtains information asynchronously
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from its neighborhood. Third, the potential game follows a weakly dominant strategy,
where a child node j changes parents if the total transmission power p remains, at most,
the same. An alternative is a strictly dominant strategy, where a child node j only switches
to another parent node if the total transmission power p is strictly reduced. In a real-world
implementation, a problem may arise wherein no stable broadcast tree T is found when
a child node can reach two potential parent nodes with the same transmission power,
causing the child node to repeatedly switch between the two parent nodes. Fourth, while
the potential game assumes that there are no graph cycles, a real-world implementation
needs a mechanism to ensure this property. Thus, we modify the potential game as follows.

4.1.2. Approximation of the Potential Game

In contrast to the original approach, (t) now denotes the iteration of a node j that is
not synchronized with other nodes. Therefore, in any given iteration (t), a node j possesses
the information about the transmission power pQj ,j that j’s current parent Qj needs to reach
node j. Furthermore, for a given potential parent i at iteration (t), j knows the transmission
power required by i to reach all of its children Ci, i.e., pi(Ci), since node i shares this
information through broadcast messages. Therefore, in iteration (t), j has two possible
actions A′(t)j = {Qj, i}: either stay with the current parent Qj or switch to i. Furthermore, j
can also derive the transmission power pi,j that i needs to reach j, as shown in Equation (3).
With the information received from Qj and i, j can also derive how much Qj can potentially
reduce its transmission power if j is no longer a child of Qj as well as how much i would
need to increase its transmission power to reach all its children if j was a child of i. With
this information in hand, j has two cost functions that express its marginal contribution to i
and Qj, respectively:

ϕ
(t)
j (i) = pi(Ci ∪ j)− pi(Ci) (10)

ϕ
(t)
j (Qj) = pQj(CQj)− pQj(CQj \ j) (11)

Using this information, and changing the weakly dominant strategy to a strictly
dominant strategy, a node j switches to the potential parent i if the marginal contribution
to i is lower than the marginal contribution to the current parent Qj:

a(t)j = argmin
a(t)j ∈A′

(t)
j

ϕj

(
a(t)j

)
(12)

This modification enables the child node to make decisions whenever a new potential
parent node is discovered instead of having to exchange information with all other nodes.
To solve the problem with our approximation in which a child node j does not know all the
potential parents in V, each node needs more than one turn in the game to find the optimal
parent. Therefore, our last modification is the introduction of a counter that tracks how
often a potential parent has been discovered without j switching parents. Once a threshold
is reached, we consider all parents of a node to be discovered and the node to be finished.
With this last change, child j might not find the optimal parent in the first iteration, but,
over time, it will switch parents until the best parent is found.

In the following, we show that the modified game still converges to an NE in finite time.
We make the following assumptions: (1) nodes use discovery packets to identify potential
parents, no discovery packets are lost, and all nodes receive discovery packets from their
entire neighborhood Nk; (2) the obtained values pi(Ci ∪ j), pi(Ci), pQj(CQj), and pQj(CQj \ j)
are undisturbed. The first assumption requires the counter mentioned above to be set to
a reasonably high value, which is carried out empirically in the evaluation in Section 7.3.
The second assumption might seem impractical, but our evaluation shows that noise only
affects the obtained values marginally and does not cause frequent decision changes.
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Mousavi et al. [5] have shown that an NE exists for the original game. We show that
BTP converges to an NE of the modified game. For this purpose, we use the concept of an
improvement path [43], which is defined as a sequence of action profiles {a(0), a(1), . . . },
where in a(t+1), every node j that changes its action a(t+1)

j 6= a(t)j has a lower cost function

ϕj

(
a(t+1)

j

)
< ϕj

(
a(t)j

)
. Furthermore, at least one node needs to choose the same action

in a(t) and a(t+1). Using BTP, the action profile a(t)j of the nodes follows an improvement
path. This can be directly seen by referring to the best response strategy (12), in which
nodes only change their actions if their cost function decreases. For potential games, the
finite improvement path property holds, leading to an NE in a finite amount of time [43].
Therefore, BTP converges to an NE in a finite number of steps.

4.2. BTP

BTP is based on the game-theoretical model presented in Section 4.1. BTP consists
of two phases: (1) the broadcast tree construction phase, where the source node S, i.e.,
the node intending to disseminate data to all other nodes, initiates the construction of
the broadcast tree T (this phase ends with a tree topology, where the source node S is the
root), and (2) the data dissemination phase, where the actual data are sent from S to all
other nodes.

The broadcast tree T consists of the source node S, which is the root of the broadcast
tree, and parent and child nodes. Here, all parents except S are also children, and all
children except the leaves are also parents. Since this approach is child-driven, parents only
broadcast their own state information periodically, and children use this information to
decide which node they will choose to be their parent. Furthermore, a child may choose
a node as its parent, but a chosen parent node may or may not accept parenthood for the
given child. In the latter case, the child must find another parent.

4.2.1. Broadcast Tree Construction Phase

To initialize the decentralized broadcast tree construction phase, the source node S
sends a Neighbor Discovery packet using the maximum transmission power pmax. Every
node i ∈ V that is already part of the broadcast tree T also periodically broadcasts Neighbor
Discovery packets with maximum transmission power pmax. Every receiver j ∈ Ni of a
Neighbor Discovery packet checks whether the sender i of the received packet is a suitable
parent Q. Two cases may occur. In the first case, j is not connected to any parent, e.g.,
during the initial construction of the broadcast tree. In this case, j requests i to become i’s
child by sending it a Child Request packet, which it, in turn, may or may not accept, as
described later. Second, j is already a child and is connected to parent Qj, which is different
from i. In this case, j checks if switching from Qj to i would decrease p (see Equation (6)), as
shown in Section 4.1.2. To this end, j must check whether switching to having node i as its
parent would reduce the transmission power of Qj to a greater extent than i would have to
increase its transmission power to reach all its children. To do so, j needs four transmission
power values (see Section 4.1.2):

1. pQj(CQj), i.e., the transmission power of Qj needed to reach all its children;
2. pQj(CQj \ {j}), i.e., the transmission power of Qj if j is no longer Qj’s child;
3. pi(Ci), i.e., the transmission power of i needed to reach all its current children;
4. pi(Ci ∪ j), i.e., the transmission power of i if j becomes i’s child.

To provide these values to all potential children of a node i, every BTP packet includes
the transmission power pi(Ci), as well as the transmission power that would be required to
reach the second-farthest child of i, along with its respective address. When node j receives
a BTP packet from node i, it can additionally calculate the transmission power pi,j that i
would need to reach j by means of Equation (3). Thus, j can also calculate pi(Ci ∪ j). When
j knows the four values, it switches to i if the following condition holds:

312



Sensors 2023, 23, 7419

pi(Ci ∪ j)− pi(Ci) < pQj(CQj)− pQj(CQj \ {j}) (13)

i.e., if the current parent Qj can reduce its transmission power to a greater extent than the
new parent i must increase its own transmission power.

When node j decides to choose node i as its new parent, it sends a Child Request
packet to i in order to become its child. Node i verifies that j is not i’s parent, j is not already
a child of i, and j is reachable from i, i.e., pi,j ≤ pmax. If all these checks are successful,
i accepts j as a child using a Child Confirmation packet or rejects it otherwise using a Child
Rejection packet. When i accepts j, it adjusts its transmission power to pi(Ci ∪ j), resulting
in an increase if pi,j is greater than pi(Ci); otherwise, the value stays the same as before.
Even if i must increase its transmission power, the total transmission power p is still lower
because j only connects to i if the condition of Equation (13) holds. When i accepts j as its
child, j disconnects from its old parent Qj using a Child Revocation packet. Qj, in turn,
removes j from its child list CQj and adjusts its transmission power accordingly to reach
the farthest child k ∈ CQj \ {j}. However, when i rejects j, j places i on a blocklist to avoid
repetitive connection attempts and repeats the above processes to find a new parent.

Finally, since S does not know the global state of the network, it cannot know when
the broadcast tree has reached its optimal state. Therefore, each node maintains a counter
that tracks the iterations without any changes, i.e., without connecting to or disconnecting
from parents or adding or removing children. As soon as this counter reaches a threshold,
j considers itself finished and notifies its parent Qj using an End of Construction packet.
When Qj has received such a packet from all its children k ∈ CQj and when it is itself
finished, it notifies its own parent that it has finished its game. This procedure continues
until S has received End of Construction packets from all its children l ∈ CS. The broadcast
tree construction phase is then finished, and the data dissemination phase starts. Once the
broadcast tree is constructed, each node i sets its transmission power to pi(Ci) so that i just
barely reaches all its children Ci. Thus, the total transmission power is minimized.

During the broadcast tree construction phase, graph cycles may potentially occur,
which must either be avoided or detected and broken up. Graph cycles can occur in
three cases. In the first case, the source node S may try to connect to another node as
its parent. Since S is defined as the root of the broadcast tree, this eventuality must be
avoided, which can easily be accomplished. In the second case, a parent node i may try
to connect to one of its children j ∈ Ci. To circumvent this eventuality, i must check if
j ∈ Ci and refrain from connecting to children. In the third case, a parent node i may try
to connect to a node k that is not its direct child but that includes i on the path from k to S
(S, . . . , i, . . . , Qk, k). To handle this case, we propose two cycle avoidance algorithms and
one cycle detection algorithm.

Path-to-Source

In the Path-to-Source cycle avoidance algorithm, every node j that successfully con-
nects to a parent Qj adds its own address to a list of addresses (S, . . . , Qj, j) that represents
the entire path from source S to node j. This list is included in each Neighbour Discovery
packet. When a node k tries to connect to j, it first has to check if k ∈ (S, . . . , Qj, j). If it is
part of the path, the node must not try to connect to j in order to avoid a cycle.

Mutex

The Mutex cycle avoidance algorithm essentially ensures that the entire broadcast tree
is in a consistent state at any point in time. To this end, a node j that decides to connect
to a node i first locks its own sub-tree by notifying all its children Cj. In this process, all
nodes in Cj also lock their respective sub-trees until all nodes below j are locked. The nodes
that are included in a locked sub-tree are not allowed to change their parents or to accept
new children until j unlocks them again. When j tries to connect to i and i is locked by j,
j detects this situation and refrains from connecting to i to avoid giving rise to a cycle.
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Ping-to-Source

The Ping-to-Source algorithm is a cycle detection algorithm. After connecting to parent
i, node j sends a unicast Ping-to-Source packet to i, which, in turn, forwards the packet
to its own parent Qi. This process, in which nodes forward the Ping-to-Source packet to
their parents, continues until one of three cases occurs. In the first case, the source node S
receives the message. This occurs when there is no cycle, so S can drop the Ping-to-Source
packet. In the second case, the Ping-to-Source packet arrives at an intermediate node that
has no parent, in which case the packet is also dropped. In the third case, the Ping-to-Source
packet eventually arrives at node j, which occurs if the broadcast tree has a cycle. In this
case, j disconnects from i. Furthermore, if j was connected to a parent Qj before trying
to connect to i, it would attempt to reconnect to Qj, which triggers the entire connection
process discussed above.

4.2.2. Data Dissemination Phase

During the data dissemination phase, the source node S starts sending the data to its
children l ∈ CS with a transmission power of pS(CS) (see Equation (4)) using Application
Data packets. All nodes l, in turn, relay the data to their respective children with a
transmission power of pl(Cl). The Application Data packets contain a sequence number.
Since the data size may exceed the size of a frame, e.g., 2304 bytes for Wi-Fi, the source node
splits the data into chunks and increases the sequence number for every frame accordingly.
Since node i transmits with a power of pi(Ci), other nodes j 6∈ Ci may still receive the data
because they may be reached by i when pi,j ≤ pi(Ci). In this case, j can still process and
utilize such receptions as the packets are unambiguous due to their sequence number.

4.3. Protocol Packets

BTP uses several packet types for different purposes. Each BTP packet is sent with a
transmission power of pmax during the broadcast tree construction phase, while Application
Data packets are sent with a transmission power of pi(Ci) by each node i ∈ V during the
data dissemination phase. The following packet types exist in BTP:

Neighbor Discovery

Each node periodically broadcasts Neighbor Discovery packets to inform its neighbors
of its presence. When a node receives a Neighbor Discovery packet, it checks whether
the sender is a possible new parent node, as presented in Section 4.2.1. In particular, each
Neighbor Discovery packet contains information about the transmission power levels
required by its sender, as described in Section 4.2.1, allowing each receiver to decide
whether to switch parents according to Equation (13).

Child Request

Once a node has identified a possible parent node, it requests a connection by sending
a Child Request packet as a unicast message to that parent node.

Child Confirmation

A potential parent node that is able to accept a child request from another node sends
a Child Confirmation packet in response as a unicast packet. When the child node receives
the Child Confirmation packet, the child node and the parent node are considered to
be connected.

Child Rejection

A potential parent that cannot accept a child request from another node sends a Child
Rejection packet. A requesting child node that receives such a packet blocks this potential
parent and tries to connect to another potential parent.
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Child Revocation

Child nodes must inform their parent nodes when they want to disconnect, which is
executed by sending a Child Revocation packet as a unicast message to the parent node.
This packet type is used after successfully switching to a new parent or when detecting
a cycle.

End of Construction

When a node ends the broadcast tree construction phase, it notifies its parent node
by sending an End of Construction packet. This information is important for the parent
node because the parent must wait for all its child nodes before it is allowed to finish
the broadcast tree construction phase itself. As soon as a node finishes the broadcast tree
construction phase, it sets a corresponding flag F in all its sent packets.

Application Data

In the data dissemination phase, application data are transmitted using the Application
Data packet type. A node i ∈ V sends all data packets with pi(Ci), i.e., with the transmission
power that is required to reach its most distant child.

5. Matlab Simulation

This section presents Matlab simulations of BTP and other algorithms from the litera-
ture, allowing us to compare BTP with other algorithms. However, while simulations allow
for control over various parameters, e.g., distances between nodes, transmission power,
and channel gain, they do not always reflect the real world accurately.

5.1. Experimental Setup for the Matlab Simulation

Table 2 shows the parameters of our Matlab simulation. The nodes are randomly
placed in a 500 m × 500 m square area, which allows us to assess BTP under various
conditions while not taking advantage of an optimized node placement strategy in order
to reflect practical constraints. Still, we require each node to have at least one neighbor
according to Equation (5), while the maximum transmission power of a node is set to
pmax = 20 dBm. Further, the number of nodes varies between 10 and 90. The source node
is chosen randomly for each simulation run. The channel is based on a path-loss model for
which |hi,j|2 = 1

dα , where d is the distance between the nodes i and j and α is the attenuation
exponent, which is set to α = 3. The SNR must exceed γmin = 10 dB for correct reception,
while the noise power σ2 is set to −90 dBm. The finishing threshold is set to 10 unchanged
iterations (see Section 4.2.1) since the broadcast tree did not improve further with a larger
threshold in trial experiments. For each parameter combination, 1000 simulation runs were
executed, i.e., a total of 63,000 simulations runs. We implemented the following algorithms
for comparison with BTP:

Dijkstra

Dijkstra’s algorithm [44] maintains a set of nodes whose shortest distance from the
source is known and gradually expands this set until all nodes are included. It iteratively
selects the node with the shortest distance, updates the distances to its neighbors, and
continues this process until the shortest paths to all nodes have been established. It
is important to note that Dijkstra’s algorithm is used in our comparison to construct a
spanning tree rather than to route packets to individual nodes.

BIP

Broadcast Incremental Power (BIP) [7] is an iterative algorithm that exploits the
broadcast characteristics of wireless channels through centralized control. Starting from the
source node, each iteration establishes a connection between the source and another node
in the network either by using a direct single-hop connection or a multi-hop connection,
thereby extending the sub-tree.

315



Sensors 2023, 23, 7419

BIPSW

Broadcast Incremental Power with Sweep (BIPSW) [7] is a variation of the BIP algo-
rithm. The efficiency of BIP is enhanced using a so-called sweep operation, which eliminates
redundant transmissions in cases where a node can be served by multiple transmitters.
This operation transforms the tree constructed using BIP into a spanning tree.

PCP

The Power Control Protocol (PCP) [14] employs an energy rank for each node in the
network, which is defined as the energy that a node adds to a given path to the source.
Nodes connect to a parent whose path to the source requires the least energy.

BPG

Broadcast trees with Potential Game (BGP) [5] is the original game-theoretical protocol
from which BTP is derived. Section 4.1 provides a detailed description of BPG.

SBP

The Simple Broadcast Protocol (SBP) is a variant of BTP that always uses pmax to dis-
seminate data. SBP is also employed for comparisons in the testbed experiments presented
in Section 7 and provides an upper bound of the required transmission power.

Table 2. Parameters used for the Matlab simulation.

Parameter Values

Protocols BTP, BPG, BIP, BIPSW, PCP, SBP, Dijkstra
Nodes 10, 20, 30, 40, 50, 60, 70, 80, 90
Simulation Area 500 m × 500 m
pmax 20 dBm
|hi,j|2 1

dα

α 3
γmin 10
σ2 −90 dBm
Finishing Threshold 10

5.2. Results of the Matlab Simulation

Figures 2 and 3 show the total transmission power as a function of the number of
nodes in the network as introduced in Equation (6): p = ∑

|V|
i=1 pi(Ci).

The x-axes show the number of nodes, while the y-axes show the total required
transmission power (given in Watts on a logarithmic scale) for all nodes to disseminate
data. The different colors denote different algorithms. Both Figures 2 and 3 show the
same results, but Figure 3 does not include SBP to better distinguish between the other
algorithms. The key indication of the results is that there are four performance categories.
First, SBP shows the worst performance, and the more nodes that are added, the worse this
performance becomes. While SBP constructs a spanning tree, it always uses the maximum
transmission power pmax, resulting in this poor performance. Second, Dijkstra clearly uses
less power than SBP but still more than the other algorithms since it does not consider the
broadcast nature of the wireless channel. Instead, Dijkstra builds a spanning tree for unicast
connections, resulting in suboptimal node connections in our broadcast scenario. Third,
BIP and PCP are better than Dijkstra, but they still perform worse than BTP. On the one
hand, BIP still has unnecessary and redundant connections between nodes. On the other
hand, PCP builds a fixed action set at startup, which is not further optimized. In contrast,
BTP allows each node to update its action in multiple iterations to respond to the actions of
other nodes. Fourth, BTP, BPG, and BIPSW show the best performance. The performance
of BIPSW is slightly better with fewer nodes, while that of BTP and BPG is slightly better
with more nodes. BIPSW essentially outperforms BIP since it removes the redundant
connections from BIP’s solution. Furthermore, BIPSW is a centralized algorithm with
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global knowledge about the links and connections of a network, allowing it to potentially
provide better decisions than BTP, which only uses local information. Besides BIPSW, all
the algorithms except BTP and SBP also require global knowledge about the entire network.
This is not realistic in a real-world scenario.

10 20 30 40 50 60 70 80 90
Number of Nodes

0

0.2

0.4

0.6

0.8

1
To

ta
l T

ra
ns

m
it 

Po
w

er
 (W

at
t)

Dijkstra
BIP
BIPSW
PCP
BPG
BTP
SBP

Algorithm

Figure 2. Total required transmission power for various algorithms.
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Figure 3. Total required transmission power for various algorithms (without SBP).

In summary, the results of the Matlab simulation show that BTP is on par with or better
than the other algorithms. BTP is the only algorithm operating under realistic assumptions,
using only local information from direct neighbors.

6. NS-3 Simulation

In this section, our NS-3 simulation of BTP and the corresponding results are pre-
sented. We investigate three aspects. First, while the original potential game has already
been compared to alternative approaches in Section 5, in this section, we show that our
approximation can minimize the total energy consumption. Second, using the NS-3 simula-
tion, we can evaluate all three cycle avoidance and detection algorithms. Finally, the NS-3
simulation allows us to validate the scalability of BTP.

Although BTP is agnostic with respect to the underlying physical and link layer
implementations, we selected Wi-Fi as the underlying wireless technology to allow for
the comparison of the results of the NS-3 simulation with a real-world implementation
evaluated using real hardware, namely, a Wi-Fi-based testbed (see Section 7). We assume
that a data link layer ensures the reliable delivery of packets directly to other nodes. Access
to the wireless transmission medium is coordinated through a Carrier Sense Multiple
Access (CSMA) mechanism.

NS-3 is an open-source and event-driven simulator with several protocols ready to
use, e.g., IP, TCP, or UDP. The individual components of the NS-3 simulator are divided
into modules that can be used or extended to set up a self-defined environment.

By exploiting NS-3’s energy framework, it is possible to simulate different energy
sources. Based on the datasheets of the MAX28282 (https://datasheets.maximintegrated.
com/en/ds/MAX2828-MAX2829.pdf (accessed on 4 July 2023)) and MAX28313 (https:
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//datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf (accessed on 4 July
2023)) Wi-Fi chips, we approximate the power consumption of a Wi-Fi chip as a function of
the transmission power through a polynomial regression:

pmA(pdBm) =− 0.000009708995023p5 − 0.00089877372p4 − 0.03112035853p3

− 0.4798606017p2 − 2.427503769p + 124.4196777

This function is essentially used to calculate the energy consumed over a period of time.
The energy model of NS-3 tracks state-changes of the Wi-Fi module. If the state changes,
for example, from receiving to transmitting, the energy consumed over the duration of the
transmitting state is calculated and subtracted from the energy source. Switching losses,
additional electronic components, or fluctuations due to heat are not simulated.

In our implementation, we used properties that model IEEE 802.11 characteristics,
as follows. In wireless networks, preambles are used to announce the arrival of a packet
and allow the receiver to synchronize with a received frame. During preamble detection,
the signal-to-noise ratio (SNR) is determined. If the SNR is too low, the packet can be
discarded because it may not be possible to decode it without an error. To reproduce the
characteristics of Wi-Fi, the noise power of the channel can be modeled as follows:

σ2 = kB ∗ 290 ∗ w + σ2
int. (14)

where kB is the Boltzmann constant, w is the channel width in Hz, and σ2
int. is the noise of

interfering transmissions [45]. Furthermore, γmin, i.e., the minimal SNR that still allows
for the decoding of a packet, was set to 4 dB. For path loss |hi,j|2, we used the YANS
model (https://www.nsnam.org/docs/release/3.24/doxygen/classns3_1_1_yans_wifi_
channel.html#details (accessed on 4 July 2023)). Further, we set the maximum possible
transmission power to pmax = 23 dBm.

6.1. Experimental Setup for the NS-3 Simulation

Table 3 summarizes the parameters used for the evaluation of the NS-3 simulation.
We simulated six different node numbers from 50 to 300 in steps of 50 in five areas

of different sizes, ranging from 100 m × 100 m to 500 m × 500 m, which we refer to
as area configurations (1) to (5) in the remainder of this article. All nodes were placed
randomly within the plane, while a pseudo-random number generator was initialized
with a fixed seed and increased with every iteration of an experimental configuration.
This allowed us to evaluate the protocols under various conditions, without relying on an
optimized node placement strategy. Furthermore, we evaluated all three cycle-handling
algorithms presented in Section 4.2.1. The finishing threshold for unchanged game rounds
(see Section 4.2.1) was set to 10. Besides BTP, we also evaluated the SBP protocol. A data
size of 1 KiB was used, i.e., the payload occupying a single Wi-Fi frame. Finally, each
experimental run was executed until the payload was transmitted to all nodes or aborted
after 20 s, and each configuration was repeated 30 times. In total, 5400 experimental runs
were executed.

Table 3. Parameters used for the NS-3 simulation’s evaluation.

Parameter Values

Protocols BTP, SBP
Cycle Handling Ping-to-Source, Path-to-Source, Mutex
Nodes 50, 100, 150, 200, 250, 300

Simulation Area (1) 100 m × 100 m, (2) 200 m × 200 m, (3) 300 m × 300 m,
(4) 400 m × 400 m, (5) 500 m × 500 m

Data Size 1 KiB
Finishing Threshold 10
Runs 30
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6.2. Results of the NS-3 Simulation
6.2.1. Total Energy Consumption

We first compare the total energy consumption values of BTP and SBP throughout the
entirety of their experiments, i.e., incorporating both the broadcast tree construction phase
and the data dissemination phase. The results are shown in Figure 4.
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Figure 4. Total energy consumption values of BTP and SBP.

The x-axes denote the simulation area, and the y-axes show the total energy in Joules.
The colors denote the different quantities of nodes, while the left and right sub-plots show
the results regarding BTP and SBP, respectively. It is evident that BTP requires significantly
less energy than SBP. In fact, depending on the experimental configuration, an energy
reduction of between 83% and 92% can be achieved when using BTP. Moreover, in the
worst case (i.e., 300 nodes, area configuration (1)), BTP requires only about 150 J, and even
in the best case (50 nodes, area configuration (1)), with 203 J, it requires less energy, than
SBP. This energy reduction primarily results from two effects. First, using a broadcast tree
based approach reduced the total number of packets sent in the network. In fact, BTP
required about 70% fewer data packets than SBP, resulting in 70% less energy consumption.
Second, the remaining 13% to 22% reduction in energy consumption is a result of the
optimal broadcast tree. It is also noticeable that the number of nodes is positively correlated
with energy consumption, which is reasonable since more nodes need more energy, even if
they send with minimal transmission power. The simulation area, however, is negatively
correlated with energy consumption, i.e., the larger the area, the lower the total amount
of energy consumed. This is due to the fact that an increasing area leads to the greater
distances between nodes, thus not becoming part of the broadcast tree, which leads to their
inability to disseminate data, thereby reducing overall energy consumption. This means it
is likely that not all nodes are part of the network in these larger area configurations. This
is further analyzed in Section 6.2.5.

6.2.2. Protocol Overhead

Figure 5 depicts the average energy overhead per node required to construct the
broadcast tree in comparison to disseminating data.
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Figure 5. Energy usage of broadcast tree construction phase and data dissemination phase.
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On the x-axes, the number of nodes is shown, while the y-axes denote the used average
energy per node in Joules. The sub-plots depict the three cycle-handling algorithms,
the colors denote different simulation areas, and the line style denotes the energy for
broadcast tree construction (dotted) and data dissemination (solid). This plot shows that
the energy used is only dependent on the number of nodes and the simulation area, while
the energy per node is not significantly influenced by the cycle-handling algorithms. The
key takeaway, however, is that disseminating data requires about three times more energy
than constructing the broadcast tree in the configuration with many nodes. The fewer nodes
that are involved, the greater the energy requirement for disseminating data compared to
constructing the broadcast tree. For example, configurations with 50 nodes require up to
17 times more energy for data dissemination. The energy required for disseminating data
grows linearly with the number of nodes, whereas the energy required for constructing the
broadcast tree grows faster since the coordination and the resulting number of packets do
not increase linearly. In summary, the experiments show the feasibility of BTP since the
construction of the broadcast tree is only performed once, while the dissemination of data
via the ready-to-use broadcast tree can be performed repeatedly afterwards.

6.2.3. Time for Broadcast Tree Construction Phase

Another important metric for the practical use of broadcast trees is the time required
to construct a broadcast tree, i.e., the amount of time required until the data can be sent to
the nodes. This is shown in Figure 6.
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Figure 6. Time taken to construct the broadcast tree.

The x-axes show the number of nodes, while the y-axes denote the time taken to
construct the broadcast tree in seconds. The simulation area is denoted in the sub-figures,
and the cycle-handling algorithms are represented with different colors. The three main
properties that significantly influence the time required to construct a broadcast tree are
the number of nodes, the simulation area, and the cycle-handling algorithm employed.
The more nodes that are in the network and the larger the area, the longer it takes to
construct the broadcast tree. Regarding the cycle-handling algorithms, it is noticeable
that Ping-to-Source and Path-to-Source show no significant differences. Mutex, however,
can take up to 65% longer to construct a broadcast tree. This is because locking an entire
sub-tree, switching the parent, and unlocking it again takes time that is not required using
the other two algorithms. Due to this behavior exhibited by Mutex, we did not consider it
in our real-world implementation.

6.2.4. Cycle Handling

Under certain circumstances, cycles may be either not avoided or detected or are not
broken up before the experiment is finished. Figure 7 depicts how many cycles were still
present when ending the experiment.
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Figure 7. Number of cycles lasting until the end of an experiment.

The y-axes show the number of runs in which at least one cycle lasted until the end,
while the x-axes show the different numbers of nodes. The sub-plots illustrate the results in
the different areas, and the colors denote the three cycle-handling algorithms. It is evident
that the number of nodes in the network does not significantly influence the number of
cycles lasting until the end of the experiment. Area size, on the other hand, does have
a significant influence, especially for the Mutex cycle avoidance algorithm, but also for
Path-to-Source. Ping-to-Source is also affected by the area size but significantly less so
since cycles could not be detected or broken up in only three out of 1800 Ping-to-Source
experimental runs.The Mutex’s behavior can be explained by the problem wherein locking
an entire sub-tree leads to an almost complete halt in construction. Suppose the broadcast
tree is in a somewhat advanced stage. When one node in the middle of the broadcast
tree decides to change its parent, the entire sub-tree will be locked and stops any further
optimization until the lock is eventually released. Finally, both cycle avoidance algorithms
do not seem to avoid all cycles. This is because they both rely on transmitting information
required for the respective algorithm. For Mutex, this transmission entails broadcasting the
packet that locks and unlocks sub-trees. When the area is large, it may simply occur that
lock or unlock packets are lost or not received by the children, leaving the entire broadcast
tree in an unfinished state. The same applies to the Path-to-Source algorithm. This makes
Mutex and Path-to-Source effectively unusable in any scenario; therefore, both were not
considered in our real-world implementation.

6.2.5. Unconnected Nodes

Figure 8 shows the number of nodes that are not part of the broadcast tree at the end
of the experiment.
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Figure 8. Percentage of nodes not part of the broadcast tree.

On the x-axes, the number of nodes is shown, while the three sub-plots depict the three
different cycle-handling algorithms. The colors denote different area configurations. The
overall ratio of unconnected nodes across all experiments is relatively small, amounting
to about 6% in the worst case. However, the cycle-handling algorithms show quite large
differences. Ping-to-Source shows good results when only a few nodes are spread out in the
area, about 1%, i.e., one node not connected to the broadcast tree (on average). With more
nodes in the network, the rate of unconnected nodes decreases to 0.1%. Mutex encounters
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difficulty when used in large areas, presenting 5% unconnected nodes in area configuration
(5) and few nodes. However, while Ping-to-Source and Mutex show reasonable results,
Path-to-Source behaves quite erratically. When using the Path-to-Source algorithm, while
a node j connects to a parent i, another node k might attempt to connect to j, which is
the parent of i. Since j and i are not connected yet, the Path-to-Source algorithm fails to
detect and avoid this cycle. Therefore, Path-to-Source was not considered in our real-world
implementation.

7. Real-World Implementation

Since the Matlab and NS-3 simulations in Sections 5 and 6 provided encouraging
results, we also assessed the performance of BTP using real hardware to evaluate its
practicability under real-world conditions.

We implemented BTP in userland C for Linux using standard libraries. Thus, we
relied on Wi-Fi as the wireless technology since it is widely available on Linux systems.
However, as shown in Section 4.1, BTP is not limited to Wi-Fi; it can be used with any
radio technology. The SNR calculation of Equation (1) requires information about the
wireless transmission characteristics of a received frame. This information, contained in
the RadioTap header, is not available to userland C programs or even the Linux kernel
since it becomes stripped off by the Wi-Fi chip’s firmware. To bypass this limitation, we
used the Nexmon framework [46] (https://nexmon.org (accessed on 4 July 2023)). We
created a Nexmon patch that preserves the RadioTap header for MAC frames with our BTP
EtherType. All other frames were handled normally to avoid interference with any other
programs. Furthermore, we utilized Linux raw sockets for two reasons. First, their use
further increases performance since the kernel’s TCP/IP stack is bypassed and a packet is
more or less directly passed to the Wi-Fi chip. Second, since BTP is located on the network
layer of the ISO/OSI stack, we were able to define a custom EtherType (0x88DF) and enable
the reception of BTP packets in userland. Addressing was handled on the Link Layer, with
each node identified according to its Wi-Fi MAC address. Neighbour Discovery packets and
Application Data packets were sent as MAC-broadcasts; all other packets were unicasts.

In Section 4.2, we discussed the tree construction phase in detail but left the data dis-
semination phase open to a specific implementation. To reduce the likelihood of collisions,
we used an MTU of 1200 bytes, where 37 bytes were used for Ethernet and BTP headers and
the remaining 1163 bytes were available for the payload. Furthermore, we added a delay
between individual data frames to avoid sending all data frames at once, and the relaying
nodes were given a rate limit per sequence number to further reduce the likelihood of
collisions and increase the chance of successful data delivery. Additionally, the protocol did
not specify what action to take if a node received the entire dataset. In our implementation,
leaf nodes do not relay data frames. As soon as a leaf node has received the entire dataset,
it disconnects from the parent. This leads to intermediate nodes eventually becoming leaf
nodes that also do not relay data frames anymore and disconnect from their parent after
receiving the entire data. In this way, the tree is eventually deconstructed.

7.1. Testbed

To evaluate BTP, we utilized a testbed deployed at our university. It consists of
75 Raspberry Pis spread over a university building across four floors. Besides Wi-Fi, all
nodes also have an Ethernet uplink to a central management server and are configured for
network booting to support easy, large-scale deployment. We created a network-bootable
image for our experiments using the Pimod framework [47] (https://github.com/Nature4
0/pimod (accessed on 4 July 2023)). Although we used RAW sockets with a custom
EtherType, the Wi-Fi chip did not receive any frames if it was not part of a Basic Service Set
(BSS), i.e., associated with an access point or part of the same ad hoc network. Therefore,
the Raspberry Pis were set to ad hoc mode with the same BSS ID. Furthermore, the Linux
kernel will refuse to send frames to the Wi-Fi interface if an IP address has not been set.
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Thus, we assigned a random IP address to all Raspberry Pis. We used channel 1 of the
802.11n mode and employed the RTS/CTS method of the 802.11 CSMA/CA mechanism.

7.2. Experimental Setup for the Real-World Implementation

Table 4 summarizes the parameters used in our evaluation.

Table 4. Parameters used in our evaluation.

Parameter Values

Source Nodes 3
Data Sizes 1 KiB, 4 KiB, 16 KiB
Finishing Threshold 5, 15, 25
Protocols BTP, SBP
Runs 5

Since we could not alter the position of the nodes (in contrast to our Matlab and NS-3
simulations), we used three source nodes located in the northern part of the building, in its
center, and in the southern part. Furthermore, we used three data sizes, representing simple
sensor values (1 KiB), network diagnosis (4 KiB), and device updates (16 KiB). Although
both simulations showed that 10 iterations constitute a sweet spot between overhead and
finding the optimal tree, we sought to evaluate BTP in greater depth for practical imple-
mentation. Therefore, we used three finishing thresholds for the counter of the number
of iterations without topology changes. Finally, we again compared BTP to SBP. Each
experimental configuration was repeated five times, resulting in 270 experimental runs.

7.3. Results of the Real-World Implementation
7.3.1. Total Energy Consumption

Due to the testbed’s setup, we could not measure the power draw of all the nodes.
Hence, we decided to employ a model to compute the energy consumption in mJ based on
the used parameters of the physical and data link layers to estimate the energy used in each
run. Figure 9 shows the total energy consumption for different parameter sets. The y-axis
shows energy in mJ, while the x-axis denotes different data sizes, where different colors
represent different finishing thresholds and SBP, respectively. The values include frames
for tree construction as well as the data themselves. BTP requires between 68% (1 KiB and
a finishing threshold of 5) and 90% (16 KiB and a finishing threshold of 25) less energy
compared to SBP, depending on the data size and the values of the finishing thresholds.
This is due to the fact that the broadcast tree resulting from BTP is optimal with respect to
the energy requirements. Among the BTP parameters, energy use does not show significant
differences with increasing finishing threshold values. While SBP requires about 70% more
energy for 16 KiB compared to 1 KiB data, BTP only requires about 20% more energy. This
is counter-intuitive since one would expect about the same increase in energy consumption.
We discovered that this result was due to RF interference. Neither BTP nor SBP include any
advanced MAC mechanism, which leads to congestion in the RF spectrum for larger data
sizes. However, because BTP uses less power to transmit data, there is less interference
causing retransmission, resulting in a moderate increase in overall energy consumption.
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Figure 9. Total required energy.

7.3.2. Energy Consumption for Tree Construction and Data Dissemination

Figure 10 presents the energy required for broadcast tree construction and for data
dissemination. The x-axis shows different data sizes, while the y-axis shows the energy
used for Application Data packets (blue) and for the tree construction packets (red) for
BTP and all the finishing thresholds. The energy required for tree construction does not
depend on the size of the data but only on the number of nodes; thus, the red plots do
not show significant differences. The energy required for data dissemination increases
with the size of the data. For the 1 KiB data, about 30% of the energy is used for data
dissemination, and about 70% is used for tree construction. However, even in this scenario,
BTP performs significantly better than SBP in terms of total energy consumption, as shown
in Figure 9. BTP requires about 1.5 MiB of data to construct a tree, regardless of the finishing
threshold or data size, whereas data dissemination requires about 150 MiB of total data
transfer for 1 KiB experiments, 300 MiB for 4 KiB experiments, and about 400 MiB for
16 KiB experiments. Note that there are outliers in experiments, since the environment
can vary under real conditions. For example, in the 4 KiB experiments, three runs required
between 740 mJ and 800 mJ of energy, which is outside the 1.5-fold interquartile range.
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Figure 10. Energy required for both broadcast tree phases.

7.3.3. Successful Receptions

Figure 11 shows the results in terms of successful deliveries. The x-axis shows ex-
periments with different data sizes, while the y-axis shows the percentage of nodes that
received the entire dataset. The colors denote different finishing thresholds and SBP, re-
spectively. BTP produces results that are at least on par with SBP; with larger data, SBP’s
performance becomes even worse. For 1 KiB and 4 KiB data sizes, BTP achieves a nearly
100% delivery ratio, with a few runs producing outliers. SBP only achieves this success
ratio for 1 KiB, while for 4 KiB and 16 KiB data sizes, the average delivery rate falls below
85%. For a data size of 16 KiB, BTP still achieves an average delivery ratio of about 98%.
This result (and the failed runs for 1 KiB and 4 KiB data sizes) is mainly due to the varying
conditions of the network and the wireless medium. Even though the tests were conducted
in a testbed, there were no lab conditions. The testbed was deployed in a building in the
university, where there are offices and lecture rooms with employees and students and
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a number of other Wi-Fi networks; thus, some of the experiments were not completed.
The poor performance of SBP, however, is due to the fact that BTP makes better use of the
wireless medium by refraining from flooding the network with maximum transmission
power, thus producing less interference between stations. Note that there are outliers
in experiments, since the environment can vary under real conditions. For example, in
the 1 KiB and 16 KiB experiments, there are runs that have no successful receptions at all,
which is outside of the 1.5-fold interquartile range.
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Figure 11. Ratio of nodes successfully receiving data.

7.3.4. Time for Broadcast Tree Construction Phase

Figure 12 shows the time taken to construct the broadcast tree. The x-axis shows the
different data sizes, while the y-axis shows the construction time in seconds. The different
colors represent different finishing thresholds. This figure has three key takeaways. First,
the size of the data does not influence the time it takes to construct the broadcast tree.
Second, the higher the finishing threshold, the longer it takes to construct the tree, which is
the expected result. Third, the average time of seven seconds for the initial construction
of the broadcast tree, which is only performed once, is reasonable since the constructed
broadcast tree can subsequently be used for an arbitrarily long time period. Note that
there are outliers in experiments, since the environment can vary under real conditions.
For example, in the 1 KiB SBP experiments, there are runs that take up to 40 s to construct
the tree, which is outside of the 1.5-fold interquartile range.
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Figure 12. Time taken to construct the broadcast tree.

7.3.5. Contributions of Individual Nodes

Our last evaluation shows how much energy is contributed by individual nodes in
the network. Figure 13 is a scatter plot where every dot represents the proportional energy
used by a node in a particular experimental run.
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Figure 13. Scatter plot of the load distribution per node over different experimental runs.

The x-axis arranges nodes according to their loads (not their topological relationships)
in relation to the total energy consumed over the entire experiment. This means that, for
example, node 1 is not next to node 2, but node 1 contributes more to the total amount of
energy required than node 2. The y-axis shows how much an individual node contributes
to the amount of energy required, e.g., a dot at 50% at 0 means that node 0 contributes
50% of the required energy. The sub-plots and colors represent the two protocols with all
experimental configurations. Using BTP, only a few nodes had a relatively high level of
energy usage, while the nodes beyond node 20 barely contributed to the overall level of
energy consumption. In SBP, on the other hand, all nodes contributed to overall energy
utilization. This shows that although there are nodes in BTP that have a high load, the
energy for most nodes is preserved, giving them a higher lifetime when battery-powered.
Note that Figure 13 is a scatter plot covering all experimental runs; thus, it is not easy to see
which values sum to 100%. There were experiments where, taking SBP as an example, a
single node was responsible for 100% of the energy consumed. In this specific experiment,
no other node sent any data, indicating that one node in the neighborhood of the source
node received the data. This was the case for the unfinished experiments with a 1 KiB data
size and a finishing threshold of 5, as indicated in Figure 11.

8. Conclusions

In this study, we presented BTP, a novel broadcasting protocol for wireless multi-
hop networks based on a game-theoretical model and designed to function in practical
implementations. BTP constructs a spanning tree in a decentralized manner to minimize
the total energy consumption of an entire network by minimizing the transmission power
at each node. In this section, we highlight our contributions as well as directions for
future work.

8.1. Contributions

We made the following contributions. First, we adopted a game-theoretical model
for the design of BTP while preserving the relevant convergence characteristics of the
game-theoretical model. Second, we addressed the practical constraints in the implemen-
tation of BTP, i.e., (a) each node operates only on information that is locally available in
its neighborhood, (b) all nodes operate asynchronously without requiring any form of
time synchronization, and (c) ping-pong effects possibly occurring in the original game-
theoretical model are avoided. Third, we integrated three algorithms capable of inhibiting
the creation of graph cycles into the design of BTP. Finally, we evaluated BTP with respect
to various aspects. We performed simulations to compare BTP to other algorithms from the
literature and investigate the scalability of BTP. A practical implementation of BTP on a
testbed with 75 Raspberry Pis allowed us to evaluate BTP under realistic conditions. BTP
was able to achieve a total energy reduction of up to 90% compared to a simple broadcast
protocol in our testbed.
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8.2. Future Work

There are several areas for future work. For example, the current BTP implementation
does not consider node mobility, which would require the spanning tree to be maintained
continuously, including during the data dissemination phase. Furthermore, BTP can be
enhanced with mechanisms that increase the reliability of data transfers, such as acknowl-
edgments or checksums. In its current form, BTP also only allows data dissemination from
the source node to the other nodes. However, as soon as a broadcast tree is constructed,
bi-directional data transfer should be supported, e.g., to allow the source node to function
as a data sink for sensor nodes. Moreover, once the broadcast tree has been built, routing
protocols such as AODV [48] or DSR [49] may be used to transmit data to a particular node.
Finally, BTP is based on a conventional medium access control mechanism with random
back-off times, which works well in many scenarios. Future work might also incorpo-
rate coordinated medium access control mechanisms to provide real-time guarantees and
further enhance the reliability of BTP [50].
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Abstract: Nowadays, sensors with built-in sigma–delta modulators (Σ∆Ms) are widely used in
consumer, industrial, automotive, and medical applications, as they have become a cost-effective and
convenient way to deliver data to digital processors. This is the case for micro-electro-mechanical
system (MEMS), digital microphones that convert analog audio to a pulse-density modulated (PDM)
bitstream. However, as the Σ∆Ms output a PDM signal, sensors require either built-in or external
high-order decimation filters to demodulate the PDM signal to a baseband multi-bit pulse-code
modulated (PCM) signal. Because of this extra circuit requirement, the implementation of sensor
array algorithms, such as beamforming in embedded systems (where the processing resources are
critical) or in very large-scale integration (VLSI) circuits (where the power and area are crucial)
becomes especially expensive as a large number of parallel decimation filters are required. This
article proposes a novel architecture for beamforming algorithm implementation that fuses delay
and decimation operations based on maximally flat (MAXFLAT) filters to make array processing
more affordable. As proof of concept, we present an implementation example of a delay-and-sum
(DAS) beamformer at given spatial and frequency requirements using this novel approach. Under
these specifications, the proposed architecture requires 52% lower storage resources and 19% lower
computational resources than the most efficient state-of-the-art architecture.

Keywords: MAXFLAT; PDM; sigma–delta; microphone; sensor array; decimation; beamforming

1. Introduction

In the last decades, sensor array processing has emerged as an active area of research
in estimating space-time parameters. Array-processing applications are applied to solve
many real-world problems. In telecommunications, for example, antenna arrays are steered
in one user direction to reduce user interference. Radar and sonar use arrays of antennas
and hydrophones, respectively, to calculate parameters like direction of arrival (DoA),
velocity, and range. In medicine, sensor arrays are used for medical imaging, and planar
biomagnetic sensor arrays are used in electrocardiograms to localize brain activity. In
industry, sensor arrays are used in automatic monitoring and fault detection [1].

More recently, microphone array processing has emerged to increase the audio quality
in consumer devices like mobile phones, speakerphones, and smart speakers, which are
broadly used in conference rooms, desktop devices, and intelligent virtual assistants (IVA),
in both consumer and industrial devices. Most frequently, the signals from several micro-
phones are combined via a beamforming algorithm to enhance the sound coming from a
desired direction while attenuating ambient noise and interference [1].

However, microphone array implementations are still expensive due to the complex
characteristics of speech signals (non-static source, intermittent, and broadband) and the
usual environmental conditions (reverberation and non-stationary additive noise). Adding
an extra microphone in the design requires new routing, new placement conditions, and
more processing resources, increasing the system cost and power consumption, a critical
factor for internet of things (IoT) and mobile applications.
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Digital MEMS microphones (introduced in 2006 [2]) have emerged as an alternative to
overcome the size and cost limitations. As these microphones have an analog-to-digital
converter (ADC) incorporated as a pre-amplifier [3], they have a single line PDM output;
because of that, they are also known as PDM microphones (PDM-mics). A decimation filter
(also known as a PDM-to-PCM converter) demodulates this PDM bitstream output to a
PCM signal. Unfortunately, implementing this decimation filter is still not cheap, as its cost
(measured in die area and power) increases with the quality of the desired audio signal.
Take, for example, the case of a microphone array using these PDM-mics. This architecture
requires a decimation filter for each microphone input so that the implementation cost and
power consumption will increase proportionally with the number of microphones, being
even more expensive for practical applications.

This paper proposes a novel and economical method to implement beamforming algo-
rithms with arrays of MEMS digital microphones. We apply the new architecture to a DAS
beamformer as a proof of concept, but it can also be used with other beamforming strategies.
This method merges a conventional beamformer’s filtering and delays operations into a
single structure dubbed as delayed decimation filter. We propose a J-stage decimation filter
whose penultimate stage (J − 1) is a Samadi filter, and its last stage (J) is an equiripple filter.
The Samadi filter controls the overall filter delay by adjusting a single parameter, and the
last equiripple stage compensates for the magnitude and phase distortion caused by the
Samadi filter under a specific limit.

In the end, the proposed delayed decimation filter is an “all-in-one” filter that per-
forms the same filtering and downsampling operations as any state-of-the-art decimation
filter, has the capability of altering its group delay without any change in its structure
or additional delay chain, and provides storage and computational resources savings in
comparison to state-of-the-art architectures.

To explain the working principle of the proposal, we first recapitulate the implemen-
tation of a DAS beamformer in Section 2. We then present a novel beamformer based on
delayed decimation filters in Section 3, where we introduce multirate and decimation filters,
as well as how a Samadi filter can be used with these structures. To conclude, as a proof
of concept, we present in Section 4 an implementation of this novel architecture, and in
Section 5, we compare it to state-of-the-art DAS beamformer architectures.

2. DAS Beamformer

The DAS beamformer is the oldest and simplest array signal processing algorithm [1].
The underlying idea is to delay each microphone input by an appropriate time delay and
then add all delayed microphone signals together. In this sense, the audio signal arriving
from a particular direction at the array is reinforced in relation to signals coming from
different directions and incoherent noise.

The traditional or discrete-time DAS beamformer (In the literature, the traditional
DAS does not have the weights wm in its temporal representation because these weights
only show up if you use a “weighted DAS” or a frequency representation; however, in this
work the “weighted DAS” is referred to as the traditional DAS, as wm can implement the
averaging process.) is the result of

z[k] =
M−1

∑
m=0

wmym[k− km] , (1)

where ym is the mth microphone’s output in PCM representation and km is the integer delay
associated with the mth microphone, such that

km = [∆m/T] = [∆m fo] , (2)

where ∆m is the required delay in the mth microphone, [x] means the nearest integer to x,
and fo and T are the sampling rate and period in ym, respectively.
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In case of PDM-mics, Equation (1) can be represented as shown in Figure 1, such
that ym is the decimation filter’s output and xm is the PDM bitstream incoming from the
respective mth PDM-mic.

x0[n]
H(z)

yR
y0[k]

z−∆0· fo

w0

x1[n]
H(z)

yR
y1[k]

z−∆1· fo

w1

x2[n]
H(z)

yR
y2[k]

z−∆2· fo

w2

xm[n]
H(z)

yR
ym[k]

z−∆m · fo

wm

xM−1[n]
H(z)

yR
yM−1[k]

z−∆M−1· fo

wM−1

z[k]

MIC 0

MIC 1

MIC 2

MIC m

MIC M-1

DECIMATION FILTER

DAS BEAMFORMER

...

...

...

...

Figure 1. PDM microphones’ DAS beamformers. Each PDM-mic requires a decimation filter with
H(z) frequency response and R downsampling. Then, each filter output ym[k] is delayed by a ∆m

factor. Finally, all delayed signals are weighted (factor wm) and summed together.

Due to the integer nature of k, the DAS beamformer does not allow one to form sums
that involve noninteger multiples of T. Consequently, beams cannot be steered in arbitrary
directions, resulting in a directivity pattern with a stepped response due to the integer
nature of the delay elements, which limits the beamformer resolution (as exemplified in
Figure 2).

Also, if one assumes uncorrelated noise at the locations of the sensors and that the
beamformer’s delays are appropriately matched to the wave’s DoA, it can be proven [4] that
the beamformer gain (G) depends only on the weights wm and the number of microphones:

G =

(
∑M−1

m=0 wm

)2

∑M−1
m=0 w2

m
, (3)

so that, for the beamformer in Figure 2, with M = 40 and wm = 1, the white noise gain
will be G = 40 or 32 dB. Furthermore, the dynamic range depends only on the number of
elements in the array. The array used for the current example provides a dynamic range of
13 dB.

333



Sensors 2023, 23, 7577

0°

45°

90°

135°

180°

225°

270°

315°

0.0
0.2

0.4
0.6

0.8
1.0

Figure 2. Normalized power (polar) of a uniform linear array of an M = 40 microphones DAS
beamformer. Three audio sources of 1 kHz, 3 kHz, and 5 kHz are located at 20, 60, and 110 degrees,
respectively, i.e., the three with equal strength. The beamformer is placed on the X-axis. Therefore, its
directivity pattern is symmetric about this axis.

3. Beamformer Based on Delayed Decimation Filter

Figure 1 describes a typical architecture for implementing DAS beamformers with
PDM-mics. For each PDM-mic, there is an associated decimation filter to convert the PDM
bitstream into a PCM bitstream and a delay line to steer the beamformer. To devise a
more economical implementation of this architecture, we propose to merge the decimation
filtering and the delaying operations into a single structure. To explain how a Samadi
filter can be used for this purpose, we first review the concept of multirate and decimation
filters, present the Samadi filter structure, show how it can be used as a multirate filter,
and finally propose a new beamforming architecture based on this multirate filter (delayed
decimation filter).

3.1. Multirate and Decimation Filters

Multirate filters are digital filters whose different parts operate at different rates. The
most obvious application of such a filter is when the input and output sample rates must
differ (decimation or interpolation). A decimation filter is a class of multirate filters [5] that
decreases a signal sampling rate by an integer or fractional factor. Figure 3 shows a generic
decimation filter structure, where the input signal at fi sampling rate passes through a
low-pass filter (LPF) with impulse response H(z), and then it is downsampled by a factor R
to an output sampling rate fo = fi/R. In the case of a PDM-mic, usually, x[n] has a one-bit
width only while y[k] is a multi-bit output.

x[n]
H(z)

yR
y[k]

fofi

Figure 3. Generic decimation filter structure. In order to avoid aliasing, the input data x[n] at fi

sampling rate is low-pass filtered and then downsampled by R. If correctly filtered, the output data
y[n] at fo sampling rate contain the same information as x[n] decimated by R.
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For a given application, there are many design parameters to be taken into account
for the LPF design, such as filter passband frequency Fp, stopband frequency Fs, passband
ripple δp, and stopband ripple δs, as exemplified in Figure 4. Those LPF design parameters
are related as follows:

Up = { f : f ∈ [0, Fp]} (4a)

Us = { f : f ∈ [Fs, fi]} (4b)

δp = max(
∣∣|H(e2πi f / fi )| − 1

∣∣) ∀ f ∈ Up, (4c)

δs = max(|H(e2πi f / fi )|) ∀ f ∈ Us, (4d)

where Up and Us are the passband and stopband frequency ranges, respectively. Also, the
angular passband and stopband frequencies can be expressed as

ωp =
2πFp

fi
, (5a)

ωs =
2πFs

fi
, (5b)

and Up and Us intervals can be scaled to angular frequency domain as

Vp =
2πUp

fi
, (6a)

Vs =
2πUs

fi
. (6b)

f (Hz)0 Fp Fs fi

|H( f )|

1 + δp

1− δp

δs

Figure 4. Low-pass filter design parameters. The passband and stopband regions are defined by Fp

and Fs, respectively, and their respectives ripples are defined by δp and δs. The whole filter frequency
response is constrained to the input sampling rate ( fi).

In the case of audio sensors such as MEMS microphones, a decimation filter is required
to convert the oversampled output from the internal ADC to a standard audio PCM output.
Baseband signal quality parameters such as linearity, signal-to-noise ratio (SNR), total
harmonic distortion (THD), and total harmonic distortion plus noise (THD+N) can be
worsened at the filter output if the LPF is not properly designed [6]. Also, the LPF structure
should be carefully chosen to obtain a proper phase response. A Finite Impulse Response
(FIR) structure, for example, can be used if a linear phase is required; otherwise, Infinite
Impulse Response (IIR) filters are preferred, as, usually, IIR filters are smaller than their
equivalent FIR implementations. Moreover, some applications tolerate some degree of
non-linearity in phase; in this case, quasi-linear filters, a mixture of FIR and IIR filters, can
be used.
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3.2. Universal Maximally Flat Samadi Filter

As derived in [7], the transfer function in Samadi filters is defined by

HN,K,d(z) =
N−K

∑
j=0

cj

(
1− z−1

2

)j(1 + z−1

2

)N−j

, (7)

where

cj =
j

∑
i=0

(−1)j−i
(N

2 − d
i

)(N
2 + d
j− i

)
, (8)

K is the number of zeros at z = −1, N is the filter order, and the delay parameter d is a real
number defined as

d = α− N
2

. (9)

For a given group delay α, such that 0 ≤ α ≤ N, from (9), one can verify that

−N
2
≤ d ≤ N

2
(10)

or
|d| ≤ dmax , (11)

where dmax = N/2 is the maximum allowed delay parameter and the binomial coefficients
in (8) are defined as

(
r
s

)
=





s−1

∏
q=0

r− q
q + 1

, s ≥ 1

1, s = 0

0. s < 0

(12)

This filter becomes a maximally flat (MAXFLAT) linear phase FIR when d = 0. As
shown in [8,9], the angular passband frequency (ωp) of these linear phase filters is related
with N as

L '
⌈

Nωp/π + 0.5
⌉

(13)

where L is defined for convenience as

L = N − K. (14)

The cutoff frequency of these linear phase filters increases almost linearly with L, as shown
in Figure 5 for different values of N. Also, as demonstrated in [7] and shown in Figure 5a,
for linear phase filters (d = 0), the coefficient of (7) is

cj|d=0 = 0, j odd. (15)

Then, the magnitude frequency spectra of L = 2j and L = 2j + 1 are the same for
j ∈ {0, . . . , bN/2− 1c}. Figure 5 also shows that the filter has a linear phase and that
the group delay for d = 0 is α = N/2, as expected by (9).
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Figure 5. Normalized frequency spectra of linear-phase Samadi filters (d = 0) with N = 9 and
N = 12: (a) magnitude, (b) phase, and (c) group delay. It is observed that, in d = 0 case, ωp changes
linearly with L, that the phase is linear for both N values and that the group delay is proportional
to N.

On the other hand, when d 6= 0, the Samadi filter becomes a MAXFLAT nonlinear
phase filter. The most interesting characteristic of this filter class is the ability to modify
its group delay with the filter delay parameter (d), as given by (9). Figure 6 shows how
the flatness of the magnitude and phase of the filter’s frequency response is affected when
d increases—we see that passband δp’s ripples worsen as d increases. However, it is also
shown that the phase is still linear inside the passband region for ω < 0.15π and that the
decimation filter continues under the same specification for all values |d| ≤ 5. This suggests
that this filter can be used as an intermediary stage in a multirate filter chain to adjust the
overall filter delay (∆) and perform low-pass filtering at the same time, as discussed in the
following sections.
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Figure 6. Normalized frequency spectra of Samadi filters with N = 10 and d ∈ {−5, . . . , 5}: (a) mag-
nitude, (b) phase, and (c) group delay. It is observed that, approximately until ω/π < 0.15, the
magnitude is flat, the phase is linear, and the group delay is proportional to d. For ω/π ≥ 0.15, the
frequency response is nonlinear in magnitude, phase, and group delay.

Finally, we propose Algorithm 1 to calculate the minimum K and N Samadi filter
values for a given d, matching a given filter specification with the following parameters: Vp,
Vs, δp, and δs. In lines 2–4, the algorithm initializes ωp, L, and N values to the minimum
possible ones. Then, in line 5, it starts to iterate to calculate the minimum K and N values.
In line 6, K is updated. In lines 7–8, δp and δs are calculated from the filter frequency
response for Vp and Vs ranges, respectively, and for the current K and N values. If δp and
δs meet the specification, it returns the parameter values in line 10. Else, in lines 12–26, it
increases the N or L value, depending on the d weight or if the filter parameters are inside
ranges defined in (13)–(15).
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Algorithm 1 Samadi Filter minimum N and K calculation algorithm

1: procedure SAMADIMINN(d, δp, δs, Vp, Vs)
2: L← 0
3: N ← 2dde
4: ωp ← max(Vp)
5: loop
6: K = N − L
7: δ′p ← max(|HN,K,d(eiω)− 1|) ∀ω ∈ Vp

8: δ′s ← max(|HN,K,d(eiω)|) ∀ω ∈ Vs
9: if δ′p ≤ δp and δ′s ≤ δs then

10: return N, K
11: else
12: if d = 0 then . Linear-phase filter
13: if L > dNωp/π + 0.5e then
14: L← 0
15: N ← N + 1
16: else
17: L← L + 2
18: end if
19: else . Nonlinear-phase filter
20: if δ′s ≥ 1 or L ≥ N then
21: L← 0
22: N ← N + 1
23: else
24: L← L + 1
25: end if
26: end if
27: end if
28: end loop
29: end procedure

Figure 7 shows minimum N and K values, calculated using Algorithm 1 for d ∈ {0, . . . , 26}
and different values of ωp. It is shown that the minimum N, required for any d, decreases
with ωp increments, and it is almost three times d when ωp/π = 0.28.

Also, it is essential to remark that, if the Samadi filter is designed for dmax, the decima-
tion filter continues under the same specification for values |d| ≤ dmax. This effect can be
observed in Figure 6a, where δp decreases for lower values of d, and, in Figure 7, where, for
d ≥ 3, if N is kept constant and d is decreased, ωp tends to increase so that the flatness is
improved.
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Figure 7. Cont.
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Figure 7. Minimum (a) N and (b) K values calculated using Algorithm 1 for δs = −80 dB and
different values of d and ωp. It is observed that ωp and d have a negative correlation for a given N
value i.e., when ωp increases, d decreases.

3.3. Delayed Decimation Filter

Because of its configurable group delay property, a single Samadi filter could be used
as the LPF of a multirate filter with adjustable overall filter delay, as shown in Figure 8a—
this structure is dubbed in this paper as delayed decimation filter. However, as a Samadi
filter does not have the flexibility to be designed for specific Fp and Fs values without
changing other filtering parameters, its frequency response needs to be compensated to
keep the overall decimation filter’s parameters under specification for different delay values
(d). For this reason, we propose a J-stages decimation filter architecture whose penultimate
stage (J − 1) is a Samadi filter and its last stage (J) is an equiripple filter, as shown in
Figure 8b. The Samadi filter can then be decomposed iton its binomial components, as
shown in Figure 8c.

The Samadi filter controls the overall filter delay (∆) by setting its respective d param-
eter, and the last equiripple stage compensates for the magnitude and phase distortion
caused by the Samadi filter under a specified limit. Also, as this is a multi-stage filter, other
filtering stages (1 to J − 2) can be optionally added to help with decimation and filtering.

The overall filter delay ∆ depends on the d, RJ−1, and RJ parameters in such a way:

∆ =
d

RJ RJ−1 fo
. (16)

If we replace (16) in (11), it is observed that the maximum required delay (∆max) is limited
by the dmax parameter as follows:

|∆| ≤ dmax

RJ RJ−1 fo
. (17)

Therefore, since dmax = ∆maxRJ RJ−1 fo, the minimum K and N parameters can be calculated

using Algorithm 1 for d = dmax and the desired filter specification parameters: δp = δ
j
p,

δs = δ
j
s, Vp = V j

p, and Vs = V j
s for j = J − 1.
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Figure 8. (a) Delayed decimation filter, (b) its version as a multi-stage decimation filter with the
J − 1 stage being a Samadi filter, and (c) its version with Samadi filter decomposed into its binomial
components. Samadi filter stage is meant to control the overall filter delay (∆) and the equiripple
filter to compensate the non-linear response of the Samadi filter in its non-flat band. The optional
Stages 1 to J − 2 are meant to compensate and downsample the overall frequency response.

3.4. Optimized Beamformer Structure

Since the Samadi filter is a binomial filter sequence (as first proposed by Haddad
in [10]), (7) can be rearranged to allow the filter to be expressed as

HN,K,d(z) =
(

1 + z−1

2

)N N−K

∑
j=0

cj

(
1− z−1

1 + z−1

)j

. (18)

The binomial filter in Equation (18) can be realized as a cascade of two filters:

HN,K,d(z) = AN(z)BN,K,d(z), (19)

where

AN(z) =
(

1 + z−1

2

)N

, BN,K,d(z) =
N−K

∑
j=0

cj

(
1− z−1

1 + z−1

)j

. (20)

The Samadi filter stage in a delayed decimation filter in Figure 8c can be expressed
in its binomial representation in such a way that the latter part of the filter chain does not
depend on ∆, as d is used only for the calculation of cj. Therefore, if M delayed decimation
filters are placed in parallel, the weightings by wm are placed just before the AN(z) filter
and their outputs are added to form a beamformer. Note that the latter part after BN,K,d(z)
can be shared between all microphone channels, as shown in Figure 9.
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Figure 9. PDM-mic array DAS beamformer using delayed decimation filters.

4. Proof of Concept

We now evaluate the proposed architecture. We determine the delayed decimation
filter parameters for a given specification and compare the proposed architecture to state-
of-the-art DAS beamformer architectures.

4.1. Decimation Filter Specifications

Filter specifications and array geometries change depending on the beamformer
application. Therefore, to compare the efficiency between the proposed method and the
straightforward DAS beamformer implementation, we use the specification shown in
Table 1 as the basis of all our decimation filter designs, as it is considered enough for most
PDM-mic types and speech-processing applications.

Table 1. Decimation filter specifications.

Parameter Value

input sampling rate ( fi) 3072.0 kHz
output sampling rate ( fo) 16.0 kHz
passband frequency (Fp) 7.5 kHz
stopband frequency (Fs) 8.0 kHz
passband ripple (δp) ≤0.0116 (≤0.1 dB)
stopband ripple (δs) ≤0.0001 (≤−80.0 dB)
decimation factor (R) 192
filter input length (Lin) 1
filter output length (Lout) 24
phase response linear or almost linear

4.2. Beamformer Specification

The delay from the array center to the mth microphone (∆m) in an array is constrained to

|∆m| ≤ ∆max for m = 0, 1, . . . , M− 1 (21)
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such that

∆max =
|x̄max − x̄c|

c
, (22)

where x̄max is the furthest sensor location in relation to x̄c (which is the array’s center
reference), M is the number of microphones, and c is the sound speed (typically 343.0 m/s).

Assume that we require a microphone array for hands-free applications that, when
placed 80 cm from the voice source, would attain the same SNR as the SNR obtained by
a single microphone placed 2 cm from the same source [11]. Then, by (3), the desired
microphone array requires M = 40 microphones.

Also, as the minimum distance between microphones should be Dmin ≤ c/2Fp to
avoid spatial aliasing, if the frequency range is limited to Fp = 7.5 kHz, then the desired
microphone array will require Dmin ≤ 2 cm. Finally, as M = 40, if a 5× 8 microphone array
is assumed, then the ∆max can be calculated using (22), with the resulting value shown in
Table 2.

Table 2. Microphone array specifications.

Parameter Value

number of microphones (M) 40 (5× 8)
minimum distance between microphones (Dmin) 22.0 mm
array dimensions 110.0 mm× 176.0 mm
maximum required delay (∆max) 314.47 µs
mth-filter channel gain (wm) 1
frame length (for frequency domain implementations) (Lframe) 4.0 ms

4.3. Filter Design

A delayed decimation filter was designed according to specifications listed in Table 1.
The filter has a three-stage architecture ([lthband, maxflat, equir]) with respective decimation
rates [48, 2, 2]. The lthband stage is an LPF whose cutoff frequency is π/L, and the impulse
response is zero for every L-th sample [5]. The second stage is a maxflat Samadi filter, and
the last is an equiripple filter [12]. As RJ = RJ−1 = 2, by (17), dmax = 20.13; the parameters
N and K of the maxflat stage are calculated using Algorithm 1 so that the overall filter
specification is kept for all |d| ≤ 20.13.

Figure 10a shows the individual frequency spectrum of each internal stage for dmax = 20.13,
and Figure 10b zooms in the passband frequency region. Note that even though the maxflat
stage has a bumpy frequency spectrum above the passband frequency (Fp), this is compen-
sated by the last stage equiripple filter (equir). Figure 11a also shows that the magnitude
in the overall frequency spectrum of the delayed decimation filter is inside the required
passband and stopband filter specifications, while Figure 11b,c show that the filter phase
and magnitude response is almost linear in the passband range.

The advantage of using a Samadi filter is that it allows one to change its group delay
by changing some coefficients, i.e., without changing the whole filter structure. Figure 12
shows the group delay of this multi-stage filter for many values of its d parameter. It is easy
to see how the group delay is directly proportional to the d parameter.
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Figure 10. (a) Magnitude frequency spectrum of internal stages of the delayed decimation filter in
the whole input range, and (b) the same frequency spectrum in the 0 kHz to 50 kHz range.
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Figure 11. Cont.
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Figure 11. (a) Magnitude and (b) phase frequency spectrum of the delayed decimation filter. (c) Pass-
band ripple frequency spectrum.
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Figure 12. Delayed decimation filter group delay.

Table 3 shows the resources required to implement a DAS beamformer based on this
three-stage delayed decimation filter designed for array specifications listed in Table 2, and
Table 4 shows the breakdown of resources required per filter stage.

Table 3. Required resources to implement a beamformer using 40 shared delayed decimation filters.

Value Unit

beamformer’s storage requirement (Sz
bf) 39,478 bit

beamformer’s number of multiplications per second (S∗bf) 6.9624 × 108 MPS
beamformer’s number of additions per second (S+

bf) 8.81696 × 108 APS
beamformer’s total number of additions per second (So

bf) 2.45858 × 109 APS
estimated minimum frequency in a single-core/single-adder processor ( fcpu) 2458.58 MHz
estimated number of adders in an FPGA running at 64 MHz (T+

FPGA) 39 -
estimated number of adders in a VLSI circuit running at 10 MHz (T+

lp ) 246 -
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Table 4. Delayed decimation filter resource requirements breakdown. The first row corresponds to
the Lth-band filter stage, the second and third ones are to the BN,K,d(z) and An(z) parts of the Samadi
filter, respectively, and the last one to the equiripple filter.

Stage Sz
bf (bit) S∗

bf (MPS) S+
bf (APS) So

bf (APS) fcpu (MHz) T+
FPGA T+

lp

lthband 138 15,680,000 15,616,000 15,616,000 15.62 1 2
maxflat — BN,K,d(z) 552 1,536,000 6,144,000 39,936,000 39.94 1 4
maxflat — An(z) 2714 0 3,776,000 3,776,000 3.78 1 1
equir 9164 5,040,000 5,024,000 171,344,000 171.34 3 18

5. Results

Results from Table 3 are compared to other state-of-the-art DAS beamformer architec-
tures (more details in [13]) in Table 5.

The pcm_multi architecture is the same as shown in Figure 1 but uses a multi-stage
decimator filter structure for each channel. It has more beamformer’s storage requirement
and additions per second because of the parallel architecture for delaying and filtering.

The pcm_single_memsav architecture is also the same as shown in Figure 1 but uses a
single-stage decimation filter with a memory-saving polyphase implementation [14] for
each channel. This architecture has the lowest beamformer’s storage requirement because
of the polyphase implementation. Still, conversely, it also has the most additions per second
because more operations are performed at higher sampling rates before downsampling.

The pdm_multi architecture is the same as shown in Figure 13. Still, using a multi-stage
decimator filter structure in the output is the most efficient state-of-the-art architecture
because only a single decimation filter is required, and the delaying operations require only
a few bits per channel.

The pdm_single_memsav architecture is also the same as shown in Figure 13 but using
a single-stage decimation filter with a memory-saving polyphase implementation [14]
in the output. It has lower beamformer’s storage requirement because of the polyphase
implementation, but, conversely, it also requires more additions per second because more
operations are performed at higher sampling rates before downsampling.

Table 5 shows that, for the given specification and because of the shared resources
for delaying and filtering, the proposed architecture (delayed_bf ) requires about 19% lower
computational resources (additions per second) and 52% lower storage (beamformer’s
storage requirement) than the most efficient state-of-the-art architecture (pdm_multi).

It is also observed that the proposed architecture’s storage efficiency is ranked just
after the pcm_single_memsav architecture. However, as the pcm_single_memsav architecture
also requires a prohibitive quantity of computational resources (about 697% more), it can
be concluded that the proposed beamformer based on delayed decimation filters is the
most resource-efficient beamformer architecture for the given specification.

Finally, we see that, because of the lowest computational resources requirement, in
practical cases such as implementing the beamformer either in a single-core/single-adder
CPU, in a Field-Programmable Gate Array (FPGA) running at 64 MHz, or in an integrated
circuit (VLSI) running at 10 MHz, the proposed architecture will be, in all cases, about 19%
more efficient.
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Figure 13. PDM microphones’ DAS beamformer at PDM domain. Each PDM-mic output xm[n] is
delayed by a ∆m factor, then all delayed signals are weighted (factor wm) and summed together.
Finally, the resulting sum is filtered and downsampled.
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6. Conclusions

In this study, we proposed combining the decimation filters found in PDM-mics with
the delay line required in the traditional DAS beamformer. This was achieved by designing
a decimation filter that includes a stage realized with the Samadi filter structure, which
easily allows its group delay to be altered by the varying a single parameter.

We evaluated the proposed architecture by comparing it to other state-of-the-art
DAS beamformer architectures. To facilitate the comparison, we established a set of filter
specifications as a baseline for all decimation filter designs. These specifications were
sufficient for various PDM-mics and speech-processing applications.

The designed filter demonstrated satisfactory performance, as exemplified in the
frequency response and group delay plots. Furthermore, using a Samadi filter provided
flexibility in adjusting the group delay without altering the overall filter structure.

Overall, the proposed architecture showed promising filter design and resource re-
quirements results, providing the best trade-off between storage and computational re-
sources. The presented specification requires 52% lower storage resources and 19% lower
computational resources than the most efficient state-of-the-art architecture. The find-
ings support the feasibility and effectiveness of the proposed approach for beamforming
applications applied, but not limited, to DAS beamformers.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbols

BN,K,d(z) Samadi filter binomial component.
c sound speed.
Dmin minimum distance between microphones.
δ

j
p jth-stage passband ripple.

∆m delay from the array center to the mth microphone.
dmax maximum allowed delay parameter.
∆max maximum required delay.
∆ overall filter delay.
δp passband ripple.
δs stopband ripple.
d Samadi filter delay parameter.
δ

j
s jth-stage stopband ripple.

fcpu estimated minimum frequency in a single-core/single-adder
processor.

fi input sampling rate.
fo output sampling rate.
Fp passband frequency.
Fs stopband frequency.
G beamformer gain.
α group delay.
H(e2πi f / fi ) overall low-pass filter impulse response.
HN,K,d(z) Samadi filter impulse response.
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H(z) low-pass filter impulse response.
Sz

bf beamformer’s storage requirement.
K number of zeros at z = −1 in a Samadi filter.
Lframe frame length (for frequency domain implementations).
Lin filter input length.
Lout filter output length.
M number of microphones.
N Samadi filter order.
R decimation factor.
T+

FPGA estimated number of adders in an FPGA running at 64 MHz.
T+

lp estimated number of adders in a VLSI circuit running at
10 MHz.

S+
bf beamformer’s number of additions per second.

S∗bf beamformer’s number of multiplications per second.
So

bf beamformer’s total number of additions per second.
Up passband frequency range.
Us stopband frequency range.
Vp passband angular frequency range.
V j

p jth-stage passband angular frequency range.
Vs stopband angular frequency range.
V j

s jth-stage stopband angular frequency range.
wm mth-filter channel gain.
ωp angular passband frequency.
ωs angular stopband frequency.

Abbreviations

Σ∆M sigma–delta modulator.
ADC analog-to-digital converter.
APS additions per second.
DAS delay-and-sum.
DoA direction of arrival.
FIR Finite Impulse Response.
FPGA Field-Programmable Gate Array.
IIR Infinite Impulse Response.
IoT internet of things.
IVA intelligent virtual assistants.
LPF low-pass filter.
MAXFLAT maximally flat.
MEMS micro-electro-mechanical system.
PCM pulse-code modulated.
PDM pulse-density modulated.
PDM-mic PDM microphone.
SNR signal-to-noise ratio.
THD total harmonic distortion.
THD+N total harmonic distortion plus noise.
VLSI very large-scale integration.
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