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Enhanced spatial, spectral, thematic, and temporal resolution is imperative to optimize
the monitoring of mangrove forests, ensuring their effective conservation and management
as crucial global resources [1]. These forests play a vital role in providing invaluable
ecosystem goods and services to both human society and nature. A prime example of their
significance lies in their exceptional ability to sequester carbon, surpassing that of other
tropical forests, thus making a substantial contribution towards mitigating the climate
change crisis. Furthermore, these forests act as natural protective barriers, safeguarding
coastal communities from the destructive forces of hurricanes and tsunamis.

Unfortunately, mangrove forests are under threat due to both natural and anthro-
pogenic forces. Currently, the conversion of mangroves to alternative land uses stands as
the dominant factor driving these changes. However, the increasing prominence of sea
level rise, global warming, and the intensification of natural disasters, such as hurricanes,
is likely to play a more significant role in the future. Thus, observation and monitoring of
mangrove distribution and their dynamics are crucial for understanding and addressing the
impacts of these changes along with their broader ecological implications for both society
and nature. Such information is also needed to manage these forests on a sustainable basis.

The utilization of remote sensing technology is of utmost importance in accurately
mapping and monitoring mangrove forests across various scales, ranging from local to
global scales. The advancement of this invaluable tool enables us to achieve an enhanced
spatial, spectral, thematic, and temporal resolution, thereby significantly improving our
scientific comprehension of these expansive ecosystems. Over the past two decades, the
availability of new and higher resolution satellite data has played a pivotal role in ad-
vancing our knowledge in this field. Moreover, there have been notable advancements in
methodologies, computing technologies, and data interpretation expertise, further enhanc-
ing our capabilities. As a result, the acceptance and recognition of remote sensing-derived
findings by a broader community have also witnessed a substantial improvement.

Remote Sensing is pleased to publish the second volume of a Special Issue dedicated
to the observation and monitoring of mangroves using remote sensing techniques. This
Special Issue covers a wide range of applications, including the utilization of optical and
radar data. Researchers have employed state-of-the-art techniques for data acquisition,
management, exploitation, processing, and analysis of remote sensing data in the context
of mangrove forest applications. Contributions in the form of eleven research papers and
one review paper have been included in this volume.

In the first paper of this Special Issue, Purwanto et al. utilized decision trees and
random forest classification algorithms to map and monitor one of the most extensive
mangrove forests in Indonesia. The mangrove forests in the Sembilang National Park
were facing threats from human activities, necessitating rapid mapping and monitoring
as a result. These authors conducted a change analysis from 2002 to 2019 using the
decision tree and random forest algorithms. They employed secondary data sources,
such as the multi-error-removed improved-terrain digital elevation model (MERIT DEM)
accompanied with existing mangrove maps, along with various indices, like the normalized
difference moisture index (NDMI) and the normalized difference soil index (NDSI). This
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study compared the performance of the classification algorithms for the interpretation of
the Landsat 7 ETM+ and Landsat-8 OLI data. Their results indicated that the decision tree
algorithm with the parameter combination of NDMI, NDSI, and DEM effective for the
classification of Landsat-7 ETM+. The random forest classification algorithm outperformed
the decision tree algorithm in mapping mangrove forests, as all the parameters of the
random forest model exhibited a higher producer accuracy.

Vul et al. conducted a change analysis in three provinces on the northern coast of
Vietnam, namely Thai Binh, Nam Dinh, and Hai Phong, using multi-temporal Landsat
imagery. This study aimed to monitor the dynamic nature of mangrove forests in this
region, focusing on the time period between 1990 and 2022. These researchers employed
the Google Earth Engine (GEE) cloud computing platform. The overall accuracy obtained
in the year 2022 was 91.98%, while the Kappa coefficient was 0.84. Their results also
revealed fluctuations in the mangrove area over time, with periods of decline and elevation.
However, since 2005, mangrove forests have exhibited a continuous increase, mainly due
to the implementation of restoration programs and policies by the Vietnamese government
and local authorities. Notably, this study demonstrated the potential of Landsat time series
imagery, pixel-based algorithms, and the GEE platform for the long-term monitoring of
mangrove forests.

Ghosh et al. conducted a multiscale diagnosis of mangrove status in a data-poor
context using very high spatial resolution (VHSR) satellite images in the Pichavaram
mangrove forest, located in Tamil Nadu, India. Pichavaram mangrove forests face threats
from cyclones as well as reduced freshwater flow from upstream sources. This study
analyzed the changes in the mangrove area spanning from the years 2003 to 2019 at a
spatial resolution of 4 m. Specifically, they employed Quickbird (QBD) images in the
years of 2003 and 2005 (that were captured shortly after the Indian Ocean tsunami which
significantly impacted the region on 26 December 2004), along with GeoEye-1 (GEO) images
that were obtained in 2011 and 2016, and a Worldview-3 (WV3) image from 2019. They
classified the mangrove and non-mangrove areas using supervised classification available
in ERDAS Imagine processing software. Accuracy assessment was performed for each
year, achieving an overall accuracy of 85% or higher. Post-classification change analysis
was conducted for both natural and planted mangroves between 2003 and 2019, with their
results revealing that the mangrove forest area experienced a 28.0% increase (201.2 hectares)
from 2003 to 2019. The expansion of these mangrove areas predominantly resulted from the
conversion of non-mangrove areas into mangrove habitats. These researchers concluded
that despite the limited availability of ground-truth data, VHSR data proved to be valuable
in providing a multiscale diagnosis of this ecosystem’s condition.

Bunting et al. emphasized the work performed by the Global Mangrove Watch
(GMW) in updating the extent of mangrove forests from the year 2010. These researchers
highlighted that the latest version of the GMW, namely GMW v2.5, represents a significant
improvement over the previous version. They identified 204 regions that were either
inaccurately mapped or completely missing from the previous maps, and these areas were
updated accordingly. The primary objective of this endeavor was to enhance the existing
map through the incorporation of new information. To achieve this, they employed the
XGBoost binary classification algorithm for their classification process. As a result of this
revision, an additional 2660 square kilometers of mangroves were added, leading to a
revised global mangrove extent equivalating to approximately 140,260 square kilometers
for the year 2010. However, it is important to note that this study did not examine for
any potential forest loss in other areas, which thereby presents a significant limitation of
this research.

Rahmandhana et al. conducted mangrove species mapping based on spectral re-
flectance using extremely high-resolution satellite data from WorldView 2. This study was
carried out in the Karimunjawa and Kemujan Islands, located in the central Java province
of Indonesia. To create a detailed inventory of mangrove forest biodiversity, particularly in
Java, where the diversity of mangrove species is exceptionally high, the utilization of very
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high-resolution imagery for species mapping in this context was not only possible, but also
essential. The study area was found to house approximately 44 species, including 25 true
mangroves and 19 mangrove associates. To perform species mapping, these researchers
employed the spectral angle mapper (SAM), spectral information divergence (SID), and
spectral feature fitting (SFF) algorithms. Field data, such as mangrove species identification,
coordinate locations of targeted mangrove species, and spectral reflectance measurements
of mangrove species using a field spectrometer, were all collected. Dendrogram analysis
utilizing the Ward linkage method was conducted to classify mangrove species based on
their distances between clusters of spectral reflectance patterns. This classification process
resulted in two, four, and five species groups for Levels 1 to 3, respectively, while individual
species were identified under Level 4. The SID algorithm achieved the highest overall
accuracy, while the SFF algorithm yielded the most accurate results for mapping individual
species. As they expected, these findings indicated that as the number of classes to be
mapped increased, the mapping accuracy consequently decreased.

Zhu et al. conducted a spatiotemporal simulation of mangrove forests under different
scenarios in Hainan Island, China. Their study utilized a total of 12 drivers, including
the elevation, slope, enhanced vegetation index (EVI), EVI change trends, distance to
major roads, distance to minor roads, distance to the sea, distance to rivers, distance to
aquaculture ponds, distance to building land, distance to suitable land for mangroves,
and a spatial autocorrelation factor, for the simulation. Various models, such as logistic
regression, support vector regression, and the random forest model, were compared with
one another in terms of their ability to capture the spatial characteristics of mangrove
forests. Three development scenarios were established: a natural growth scenario (NGS),
an economic development scenario (EDS), and a mangrove protection scenario (MPS).
The CLUE-S model was employed to predict the spatiotemporal distribution of mangrove
forests from the years 2022 to 2037 under these different scenarios. Subsequently, based
on the prediction results, the future change trends of mangrove forests from 2017 to 2037
were analyzed. The simulation results of these different models demonstrated that AutoRF
(random forest with spatial autocorrelation) performed the best in simulating the spatial
characteristics. Importantly, specific factors, such as the enhanced vegetation index (EVI),
various location indices, and the spatial autocorrelation factor were all found to significantly
improve the accuracy of the mangrove simulations. The prediction results for Hainan Island
indicated that under the NGS, the mangrove area would experience slow growth, while
under the EDS, it would decrease significantly. Conversely, the mangrove area would
increase significantly under the MPS. Based on these findings, the MPS was identified as
the most suitable development direction for the future, as it offers a balanced approach that
promotes economic development while ensuring mangrove preservation.

Chambarlain et al. utilized Landsat dense time series data to monitor the mangrove
forest cover and its phenology in Central Queensland, Australia. Although the exploitation
of mangroves by coastal communities is strictly regulated in Australia, these forests are still
being threatened with landscape modifications and hydrological alterations upstream. This
study employed Landsat reflectance data from the years 2009 to 2019 to track mangrove
forest cover changes. To address the persistent cloud cover issues impacting certain areas,
mosaics of three-year windows were used to generate cloud-free mosaics. Analysis was
conducted using the Google Earth Engine and a random forest classifier. Additionally,
secondary information, such as the shuttle radar topography mission (SRTM) and previ-
ously established mangrove land cover maps, were incorporated. The overall classification
accuracies and Kappa coefficient for the land cover maps in the years 2008–2010 and
2018–2020 were both determined to be 95%. Furthermore, a decrease of 1480 hectares
(−2.31%) in mangrove coverage was also observed from 2009 to 2019. Extending from this,
an examination of intra- and inter-annual seasonality in mangrove growth phenology was
conducted using an NDVI-based time series. Linear and harmonic regression models, as
well as TIMESAT metrics, were employed to analyze mangrove forests in three sections
of the study region. Together, these findings indicated a correlation between the growth
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phenology of mangrove forests, precipitation anomalies, and the occurrence of severe
tropical cyclones over the time series.

Niu et al. conducted a global sensitivity analysis for the canopy reflectance and vege-
tation indices of mangroves. This study focused on a one-dimensional canopy reflectance
model to systematically analyze the sensitivity of mangroves to various biophysical and en-
vironmental factors. Different scenarios were created, including sparse and dense canopies,
to assess the impact of these factors on simulated canopy reflectance spectra and selected
Sentinel-2A vegetation indices. This study employed a variance-based method and a
density-based method to compare the computed sensitivity indices. The results revealed
that the fractional cover and leaf-to-total area ratio of mangrove crowns were among
the most influential factors across all examined scenarios. These findings highlight the
significant role of these factors in shaping the canopy reflectance and vegetation indices
of mangroves.

Ghorbanian et al. utilized Sentinel-1 and Sentinel-2 satellite data to map the mangrove
ecosystem in the Hara protected area in Qeshm, Iran. The analysis was conducted on the
Google Earth Engine at a spatial resolution of 10 m. The data acquired using these Sentinel
satellites in 2019 were utilized to generate a composite of optical and synthetic aperture
radar (SAR) data. To classify the different components, a pixel-based random forest (RF)
classifier was employed. This study successfully generated six distinct classes: mangrove,
mudflat, deep water, tidal zone, shallow water, and aerial roots. The resulting mangrove
ecosystem map exhibited a high accuracy, with an average overall accuracy of 93.23% and
a Kappa coefficient of 0.92. These findings demonstrate the reliability and effectiveness for
mapping mangrove ecosystems using Sentinel-1 and Sentinel-2 satellite data.

Kanniah et al. utilized the MODIS-derived leaf area index (LAI) and gross primary
productivity (GPP) to investigate the fragmentation of mangrove forests in the southern
region of Peninsular Malaysia, specifically in Iskandar Malaysia. This study aimed to
assess the impact of land cover changes, including urbanization, plantations, and aqua-
culture activities, on the mangrove forest ecosystem. The results revealed a decline in
the mangrove forest area due to land cover changes. However, the areas that remained
undisturbed revealed an increase in both the mean LAI and GPP, signifying the mangrove
forest’s capacity to absorb CO2 when left undisturbed. Furthermore, areas that experienced
mangrove loss but were replaced with oil palm plantations exhibited a decrease in the
mean LAI. The fragmented mangrove patches also showed an increase in GPP, potentially
due to the smaller patch sizes (<9 ha) and the edge effects, which promote higher levels of
productivity in areas exposed to abundant solar radiation along the patch edges. The im-
pact of fragmentation on the GPP was found to depend on the type of land transformation
along with patch characteristics, such as size, edge, and shape complexity.

Muang and Sasaki conducted a study to evaluate the natural recovery of mangroves
in the Wunbaik mangrove forests of Myanmar following human disturbance, specifically
focusing on the abandoned shrimp ponds. These researchers utilized cloud-free Sentinel-2
images that were captured on 21 January 2020 and 23 December 2015, both during the
dry seasons. They employed an artificial neural network (ANN) classification approach
with a transfer learning method to classify these two dates’ images. Additionally, a post-
classification change analysis approach was employed to assess the changes that occurred.
To identify the naturally recovering mangroves, three abandoned shrimp ponds were se-
lected based on field investigations and their change detection results were then extracted.
The proposed methodology achieved a high level of accuracy, with an overall accuracy of
95.98% and a Kappa coefficient of 0.92 for the 2020 classification. For the 2015 prediction,
the transfer learning approach improved the model’s performance, resulting in an overall
accuracy of 97.20% along with a Kappa coefficient of 0.94. The analysis of the change
detection results revealed a slight decrease of mangrove forests within the Wunbaik man-
grove forests between the years 2015 and 2020. However, naturally recovering mangroves
were identified in approximately 50% of each abandoned site within a relatively short
abandonment period. These findings contribute to our understanding of the natural re-
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generation process of mangroves following human disturbance, specifically in abandoned
shrimp ponds.

In the final paper of this Special Issue, Tran et al. presented a comprehensive review
paper on spectral indices for mangrove remote sensing. This study covered the period
between 1996 and 2021, examining the range of spectral indices that have been developed
and utilized in the context of mangrove remote sensing. This review revealed that spectral
indices have been predominantly used for various aspects of mangrove analysis, excluding
the identification of mangrove species. The aspects that were covered included the man-
grove extent, their distribution, and above-ground parameters (such as the carbon density,
biomass, canopy height, and leaf area index estimation), as well as changes in these aspects
over time. Among the spectral indices, the NDVI emerged as the most widely applied,
appearing in 82% of the reviewed studies, followed by the EVI, which was noted as being
used in 28% of the studies examined. While the development and application of potential
indices for characterizing mangrove cover have shown growth (with six indices having
been published so far), the NDVI remains the most popular index for mangrove remote
sensing. However, this review also highlights the limitations and gaps that are present
within current studies. Considering the digital era, the authors suggested future directions
for research, emphasizing the need to explore spectral index applications in connection
with time series imagery and the fusion of optical sensors for more comprehensive and
accurate mangrove studies.

In summary, the utilization of cloud computing platforms for data analysis in man-
grove research is growing. Researchers benefit from the flexibility, cost savings, enhanced
security, scalability, and improved collaboration offered by cloud computing. There is a
rising demand for mapping mangroves at higher resolutions, specifically at levels higher
than 5 m. Compared to the past, supervised classification approaches are now more com-
monly used instead of unsupervised classification. The most popular application used in
the remote sensing of mangroves is the mapping of mangrove and non-mangrove areas
and conducting time series change analysis. Both optical and synthetic aperture radar data
are currently being employed for mangrove mapping. Overall, researchers are generating
higher resolution mangrove data and producing improved results for change analysis,
ranging from local to global scales. This progress has been made possible with the in-
creased availability of free and higher resolution remote sensing data, advancements in
computing technology (both hardware and software), growing collaborative efforts among
researchers, increased availability of expertise, better understandings of mangrove forests,
and the development of improved methodologies.

Funding: This research was funded by the U.S. Environmental Protection Agency through its Office
of Research and Development (ORD) as a contribution to ORD’s Safe and Sustainable Water Resources
National Research Program. The APC was funded by the ORD.

Conflicts of Interest: The author declares no conflict of interest. The views expressed in this article are
those of the author and do not necessarily represent the views or the policies of the U.S. Environmental
Protection Agency.

Reference

1. Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove
forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

5





remote sensing 

Article

Assessing the Natural Recovery of Mangroves after Human
Disturbance Using Neural Network Classification and
Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar

Win Sithu Maung 1,2,* and Jun Sasaki 1

Citation: Maung, W.S.; Sasaki, J.

Assessing the Natural Recovery of

Mangroves after Human Disturbance

Using Neural Network Classification

and Sentinel-2 Imagery in Wunbaik

Mangrove Forest, Myanmar. Remote

Sens. 2021, 13, 52.

https://dx.doi.org/10.3390/

rs13010052

Received: 10 November 2020

Accepted: 22 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Socio-Cultural Environmental Studies, Graduate School of Frontier Sciences,
The University of Tokyo, Kashiwa 277-8561, Japan; jsasaki@k.u-tokyo.ac.jp

2 Forest Department, Ministry of Natural Resources and Environmental Conservation,
Naypyitaw 15015, Myanmar

* Correspondence: sithumg1989@gmail.com

Abstract: In this study, we examined the natural recovery of mangroves in abandoned shrimp
ponds located in the Wunbaik Mangrove Forest (WMF) in Myanmar using artificial neural network
(ANN) classification and a change detection approach with Sentinel-2 satellite images. In 2020,
we conducted various experiments related to mangrove classification by tuning input features and
hyper-parameters. The selected ANN model was used with a transfer learning approach to predict
the mangrove distribution in 2015. Changes were detected using classification results from 2015 and
2020. Naturally recovering mangroves were identified by extracting the change detection results of
three abandoned shrimp ponds selected during field investigation. The proposed method yielded
an overall accuracy of 95.98%, a kappa coefficient of 0.92, mangrove and non-mangrove precisions
of 0.95 and 0.98, respectively, recalls of 0.96, and F1 scores of 0.96 for the 2020 classification. For the
2015 prediction, transfer learning improved model performance, resulting in an overall accuracy
of 97.20%, a kappa coefficient of 0.94, mangrove and non-mangrove precisions of 0.98 and 0.96,
respectively, recalls of 0.98 and 0.97, and F1 scores of 0.96. The change detection results showed
that mangrove forests in the WMF slightly decreased between 2015 and 2020. Naturally recovering
mangroves were detected at approximately 50% of each abandoned site within a short abandonment
period. This study demonstrates that the ANN method using Sentinel-2 imagery and topographic
and canopy height data can produce reliable results for mangrove classification. The natural recovery
of mangroves presents a valuable opportunity for mangrove rehabilitation at human-disturbed sites
in the WMF.

Keywords: mangrove; natural recovery; artificial neural network; Sentinel-2; transfer learning;
change detection

1. Introduction

Mangrove forests provide highly valuable ecosystem services consisting of tangible
goods, such as wood and non-wood products, and intangible services, such as the protec-
tion of coastal regions from storms and wave attacks and the sequestration of substantial
volumes of carbon dioxide [1,2]. Despite these invaluable services, mangrove forests
worldwide are being depleted at an alarming rate every year because of anthropogenic
pressures, such as the development of aquaculture, agricultural expansion, oil plantations,
and urbanization [3–5]. Mangroves possess a high capacity for self-recovery; this facilitates
mangrove rehabilitation. Mangrove self-recovery involves the natural restoration of man-
grove species in a deforested area if environmental parameters, such as natural hydrology,
salinity, and site elevation, satisfy the preferences of seeds or propagules dispersed with
tidal flow [6,7]. However, limited research has been conducted to address the natural re-
covery of mangroves in rehabilitation programs. This study highlights the natural recovery
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of mangroves after human disturbance using remote sensing classification and a change
detection approach.

The Wunbaik Mangrove Forest (WMF) in Myanmar is one of the largest remaining
mangrove forests in the world and provides ecological, environmental, and socio-economic
goods and services to the local community. Due to the expansion of aquaculture and agri-
culture, WMF has experienced severe degradation since the 1990s. According to the 2011
Food and Agricultural Organization (FAO) inventory [8], WMF possesses abundant seed
productivity and a high mangrove species germination rate and is suitable for examining
the natural recovery of mangroves depleted by human disturbances. Despite the presence
of such a large remnant mangrove forest with a diverse range of species, there has been
a prominent information gap regarding mangrove distribution and changes since 2014.
Current and accurate information is necessary before implementing any restoration efforts
for sustainable mangrove management.

Mangroves are under threat from natural and anthropogenic disturbances; however,
accessing reliable and accurate information for many mangrove forests worldwide is diffi-
cult [9]. Remote sensing classification contributes to the provision of reliable information
for different research topics, such as mangrove extent mapping, species identification,
and estimation of above-ground biomass, contributing to the sustainable management of
mangrove forests [10,11]. However, classification accuracy is highly variable depending on
the performance of the selected classifier because each classification method has benefits
and drawbacks [12]. Machine learning is an emerging advanced classification method-
ology in which supervised classifiers, such as maximum likelihood, random forest (RF),
support vector machine (SVM), and artificial neural networks (ANNs), can outperform
traditional unsupervised classification [13]. In mangrove remote sensing, many studies
have reported that supervised classification is superior to unsupervised approaches [14–16].
Supervised machine learning classifiers, such as RF, SVM, classification and regression tree,
and regularization in two discriminant analysis (RDA), have been compared and evaluated
for mangrove cover changes [17–19]. However, ANNs require extensive training data
and are rarely applied in mangrove classification. However, they have been widely used
in many fields of remote sensing classification because of promising results and model
robustness [20–23].

In terms of the role of remotely sensed data, the effect of input features is a key com-
ponent in image classification. Many mangrove studies have been conducted using optical
images with different resolutions (e.g., IKONOS, QuickBird, WorldView-3, Landsat series,
and SPOT), synthetic aperture radar (SAR) data, and airborne hyperspectral data [11,24–28].
The launch of the Sentinel-2 satellite by the European Space Agency in 2015 provided a valu-
able opportunity for the remote sensing community to develop classification approaches
in a wide variety of fields [29]. Owing to the advantage of spectral, temporal, and spatial
resolutions of freely accessible multi-spectral bands, Sentinel-2 imagery outperforms that
of Landsat 8 by yielding more precise results in remote sensing classification [30–32]. Wang
et al. [33] described that the Sentinel-2 sensor bested that of Landsat 8 by offering more
accurate information in mapping mangrove extent and species.

Studies have improved results in their targeted fields through the application of vari-
ous machine learning classifiers, including the ANN method and Sentinel-2 imagery [34–39].
The combination of other machine learning classifiers and Sentinel-2 imagery has been
evaluated for mangrove mapping [40,41]. There is a limited number of mangrove studies
using the ANN classification with various satellite imagery [42–44], and the potential
performance of the ANN classification in conjunction with Sentinel-2 imagery has not been
previously investigated for mangrove classification.

The integration of additional features, such as digital elevation models (DEMs),
into natural resource assessment using remote sensing approaches, can improve clas-
sification accuracy [45]. DEM generally implies two different meanings: A digital surface
model (DSM), providing elevation data for the earth’s surface and objects on it, and a digi-
tal terrain model (DTM), representing true topography [46]. Current widely-used DEMs,
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such as the Shuttle Radar Topography Mission (SRTM), Advanced Land Observation Satel-
lite (ALOS), and Advanced Spaceborne Thermal Emission and Reflection, provide DSM
data; however, these data are associated with high error margins for true topographic
information [46]. Mangrove canopy estimation has been performed using SAR datasets,
such as TerraSAR X, Tan DEM X, and Sentinel-1 [47–49]. There is a good opportunity for
geographic studies to use the new Multi-Error-Removed-Improved-Terrain (MERIT DEM),
which was developed to reduce the vertical errors of SRTM3 (90 m resolution) and ALOS
World three-dimension (3D)—30 m in 2017 [50]. The MERIT DEM offers a true DTM with
a spatial resolution of 90 m in the geoid datum for a global area between 90◦ N–60◦ S and
provides a significant accuracy improvement in swamp forests. This new methodology
was applied in this study to investigate potential improvements in classification accuracy.
A canopy height model (CHM) was created from the SRTM and MERIT DEMs in the
remote sensing of large spatial mangrove areas, particularly with a mix of mangroves and
other types of vegetation. Distinguishing between mangroves and other vegetation types
remains challenging in remote sensing classification. A few studies have attempted man-
grove species classification using the CHM with hyperspectral data taken by an unmanned
aerial vehicle (UAV) as a small-scale approach [28]. However, there is a lack of information
regarding the application of the CHM in large-scale mangrove classification.

The aims of this study were to: (1) Explore the ANN classification using Sentinel-2
satellite imagery for mangrove distribution by integrating field information, (2) investigate
the effectiveness of the CHM in distinguishing between mangroves and other vegeta-
tion types, (3) address information gaps regarding changes in mangroves in the WMF
between 2015 and 2020, and (4) assess the natural recovery process of mangroves in dif-
ferent abandoned shrimp ponds. We conducted various experiments on input features
and hyper-parameter tuning to propose a promising classification approach for mangrove
distribution. Furthermore, transfer learning was introduced to improve the proposed
method by applying a different seasonal dataset. It is assumed that the use of this proposed
approach can achieve more reliable results for mangrove classification to provide informa-
tion on the change in mangrove extent in the WMF and to assess the natural recovery of
mangroves following human disturbance.

2. Materials and Methods

2.1. Study Site

The study area was located between 19◦07′02” N–19◦23′30” N and 93◦51′0” E–94◦02′30” E
in Yambye Township, Kyauk Phyu District, Rakhine State, Myanmar (Figure 1). Man-
grove forests in the study area were locally known as the WMF, of which the main portion
of mangroves was part of a reserved forest known as the Wunbaik Reserved Mangrove
Forest (WRMF), formally protected by the Forest Department since 1931. The WRMF
is one of the largest remaining mangrove communities, with an area of 22,919 ha [8,51].
Despite the high altitude of the terrestrial region in the southern part, the topography of
the WMF is almost flat. Three types of climate, namely, summer, monsoon, and winter, are
experienced here [8]. Annual rainfall recorded for 2019 was 4860 mm, and the maximum
and minimum temperatures were 33 ◦C and 27 ◦C, respectively (http://themimu.info/).
The FAO has identified 34 mangrove species, such as Rhizophora, Avicennia and Sonneratia,
in the WRMF since 2011 [52].

2.2. Field Survey

Field surveys were conducted from 15 September to 10 October 2019 to acquire accu-
rate and current information on the study area. The supervised classification required a reli-
able ground truth image to train the neural network model for mangrove classification. The
study area contained abundant natural mangroves and various land-use types (Table 1).
Therefore, the latitudes and longitudes of the ground truth points for each land-use type
were collected using a handheld global positioning system (GPS) (GARMIN etrex 10),
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providing a horizontal accuracy of approximately 3 m. Figure 2 shows the locations of the
ground truth points with matching photos taken in the field.

Figure 1. Location of the study area, (a) Wunbaik Mangrove Forest (Sentinel-2 true color
image), (b) Rakhine coastal region in Myanmar.

Table 1. Ground location points of different land uses in the study area.

Sr Land-Use Types Number of Points

1 Water 20
2 Paddy field 6
3 Shrimp pond 13
4 Natural mangrove 30
5 Mangrove plantation 5
6 Other vegetation 6

Total 80

2.3. Preparation of a Ground Truth Image

Preparing accurate ground truth data was necessary in supervised classification and
was a major challenge for training and evaluating a neural network model. To obtain
a reliable ground truth image, location points collected in the field were imported into
ArcGIS. Polygons were manually drawn by referring to the same land cover of the ground
truth points, using high-resolution Google Earth imagery and different combinations of
Sentinel-2 satellite bands. For accurate mangrove recovery analysis, two major classes were
assigned as mangrove and non-mangrove (rather than multi-classification, which may lead
to massive time consumption for creating ground truth images). Assigned polygons were
converted into a raster image with a resolution of 10 m. A ground truth image, which has
assigned values of 0 and 255 for every pixel, was obtained. All 53,939,393 pixels, of which
the ground truth image had a width and height of 1914 × 2814 pixels with a resolution of
10 m, were counted as the dataset for the ANN prediction.

To assess natural recovering mangroves in abandoned shrimp ponds and to ensure
the identification of natural recovery sites, we set 3 criteria: (1) No planted mangroves,
(2) same abandonment year, and (3) site accessibility. Three disused ponds, which met
these criteria, were selected after discussions with the local staff of the Forest Department

10



Remote Sens. 2021, 13, 52

and the pond owners (Figure 3). The locations of these abandoned ponds were collected
to create polygons of the recovered ponds. Recovering mangrove species at the selected
abandoned sites were observed by conducting a field inventory in 50 sample plots with the
assistance of knowledgeable local laborers and Forest Department staff (Figure 3).

Figure 2. Ground location points of different land covers of mangrove plantation, natural mangrove,
other vegetation, shrimp pond, paddy field, and water body (Photos were taken by Win Sithu Maung
during the field survey of this study).

Site 3 

Site 1 

Site 2 

Figure 3. Locations of three selected abandoned sites and sample plots.
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2.4. Earth Observation Data
2.4.1. Satellite Band Information

To create the required datasets for the ANN classification, sets of multi-spectral bands
of Sentinel-2 satellite imagery were collected from the Copernicus Open Access Hub using
the semi-automatic classification plugin (SCP) in QGIS [53]. To detect changes in the
mangroves and identify recovering mangrove areas within the selected abandoned sites,
cloud-free Sentinel-2 images from 21 January 2020, and 23 December 2015 (during the
dry seasons) were utilized. Detailed information regarding Sentinel-2 data acquisition is
provided in Table 2.

Table 2. Specification of Sentinel-2 products used in this study.

Date of
Acquisition

Tile Number
Cloud

Coverage
Processing

Level
Bands Used

Central
Wavelength

(nm)

Spatial
Resolution

(m)

21 January 2020 T46QEG 0 Level-2 A Band 2 490 10

23 December 2015 T46QEG 0 Level-1 C

Band 3 560 10
Band 4 665 10
Band 5 705 20
Band 6 740 20
Band 7 783 20
Band 8 842 10

Band 8A 865 20
Band 11 1910 20
Band 12 2190 20

Currently, 2 major products of Sentinel-2 imagery (Level-1 C and Level-2 A) are dissem-
inated to the public by the European Space Agency [54]. Level-1 C provides orthorectified
Top-Of-Atmosphere reflectance, whereas Level-2 C, which was extended globally in Decem-
ber 2018, offers orthorectified Bottom-Of-Atmosphere reflectance. The spatial resolutions
of multi-spectral bands provided by Sentinel-2 were 10, 20, and 60 m [55]. We used 10
Sentinel-2 spectral bands, excluding bands 1, 9, and 10, which had a poor spatial resolution
of 60 m and were unrelated to the aim of mangrove classification. Sentinel-2 bands with
various resolutions were resampled to a resolution of 10 m using the nearest neighbor
algorithm for 2015 and 2020. As the multi-spectral bands acquired in 2015 were Level-1
C products, an atmospheric correction was conducted using the dark object subtraction 1
method provided in the SCP QGIS tool [53].

2.4.2. Spectral Indices

In addition to the multi-spectral bands of satellite images, spectral indices were
one of the most effective features that offered information on land use and land cover.
The normalized difference vegetation index (NDVI), normalized difference water index
(NDWI), and combined mangrove recognition index (CMRI) were used as input features to
train the neural network model. The NDVI was calculated using band 4 (RED) and band 8
(near infrared (NIR)) (Equation (1)) [56], whereas the NDWI was derived from Equation (2)
using band 3 (GREEN) and band 8 (NIR) (Equation (2)) [57]. The CMRI was determined
based on the difference between the NDVI and NDWI (Equation (3)) [58].

NDVI =
NIR − RED
NIR + RED

(1)

NDWI =
NIR − GREEN

NIR + GREEN
(2)

CMRI = NDVI − NDWI (3)
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2.4.3. Digital Elevation Model

Collecting topographic data over the entire study area during the field survey was
problematic because of difficulties in accessing the mangrove area. To overcome this challenge,
we applied the SRTM for DSM and the MERIT DEM for DTM. During the SRTM mission in
February 2000, the SRTM 1 arc second DEM was created from the C-band radar data acquired
by the cooperation of the National Aeronautics and Space Administration and the National
Geospatial-Intelligence Agency. The SRTM1 DEM provided user elevation values with a
resolution of 30 m, referring to the WGS84 ellipsoid as a horizontal datum and the geoid
as a vertical datum. It may be freely downloaded from the USGS EarthExplorer website
(https://earthexplorer.usgs.gov/) [59]. The MERIT DEM was downloaded free of charge
from the MERIT_DEM website (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/).

2.4.4. Canopy Height Model

This study used canopy height information for the large-scale classification of man-
grove extent. Applying the SRTM DEM as a DSM data source was reasonably acceptable in
estimating forest height [60], and the MERIT DEM provided true topographic information.
We ensured the reliability of the two DEMs by comparing field data collected during the
post-processed kinematic (PPK) survey (Figure 4). The resulting CHM applied was derived
from the difference between the SRTM DEM and MERIT DEM.

Figure 4. Comparison of Shuttle Radar Topography Mission (SRTM) and Multi-Error-Removed-
Improved-Terrains (MERIT DEMs) with post-processed kinematic (PPK) ground truth elevation data.

2.5. Artificial Neural Network Classification

An ANN model is based on the structure of the biological neural network of the
human nervous system and primarily consists of a multi-layer perceptron with an input
layer, a hidden layer, an output layer, and interconnected operating nodes similar to brain
nerve cells in each layer [61]. The nodes in the input layer transfer feature values (xj),
weight information (wj), and bias (bi)) from a dataset to the hidden layer. In the hidden
layer, data obtained from the input layer are analyzed through an activation function in
each node, and the generated data (yi) are conveyed to the output layer (Equation (4)).

Based on the basic model architecture, the ANN model for this study was first created
with 1 hidden layer and 12 neurons as a basic model using a sequential model of the
Keras Application Programming Interface (https://keras.io/api/models/) and TensorFlow
2.3.0 (https://www.tensorflow.org/api_docs/python/tf/keras/sequential). We explored
input features and hyper-parameter tunings, where multiple experiments were conducted
to obtain the most suitable combination of input features for mangrove classification.
An optimum ANN model design was established by tuning the number of hidden layers
and neurons. In terms of the activation functions that analyze input data within the neural
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network process, a rectified linear unit (ReLU) was applied to the hidden layers, and the
Softmax function for the output layer. The ReLU function produced linear values for
input data values larger than 0 and negative values for 0 (Equation (5)). The Softmax
function [62,63] normalized the output value ranging from 0–1 and yielded the input value
probability belonging to a particular class by dividing the summation (Equation (6)).

yi = ∑
(
wjxj

)
+ bi (4)

f (yi) =

{
yi , yi > 0
0, yi ≤ 0

(5)

f (yi) =
exp(yi)

∑j exp
(
yj
) (6)

2.6. Workflow of Assessment of Natural Recovering Mangrove

Figure 5 illustrates the workflow of this research, which contained 3 primary ap-
proaches: (1) Input feature selection and hyper-parameter tuning for ANN classification;
(2) application of a trained model to a new dataset and improvement of model performance
through the transfer learning method; and (3) post-classification change detection. To delin-
eate information on naturally recovering mangroves, the 3 abandoned sites were extracted
from the mangrove change detection results. A detailed explanation of each process is
provided in the following sections.

Figure 5. Workflow of assessment of natural recovering mangrove at different aban-
doned sites.

2.6.1. Experimental Analysis through Input Feature and Hyper-Parameter Tuning

To select the most appropriate input feature combination for mangrove classification,
different experimental classifications were first conducted using the basic ANN model.
The raster images of the input features, multi-spectral satellite images of 10 bands, NDVI,
NDWI, MERIT DEM, SRTM DEM, CHM, and ground truth images were converted into
numerical datasets. Fifteen datasets were created and divided into 3 parts: Training data
(60%), testing data (20%), and validation data (20%). This division was performed using
the pre-processing modules of the scikit-learn data processing library (https://scikit-learn.
org/stable/). The training dataset was applied to teach the ANN model by referring
to the labeled data of the ground truth image, and the validation dataset was used to
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observe the behavior of the model to check for overfitting problems in every epoch of the
training session simultaneously. The model was trained using the training dataset with
30 epochs for all experiments, and the trained model was applied to predict the testing
dataset. Model performance was evaluated through overall accuracy and the kappa index.

After classification was completed using the trained model, the output datasets were
exported in a raster format containing geographic information. The output raster images
were visually assessed using true color Sentinel-2 and high-resolution Google Earth imagery
in ArcGIS. Using the same approach, all datasets were analyzed to select a combination of
input features, allowing the highest accuracy and a high-quality output map for mangrove
classification.

Following the acquisition of the most suitable combination input features, the basic
model was tuned in terms of the number of hidden layers and neurons. By adding one
hidden layer to the basic model, the performance of each model was evaluated through ac-
curacy and loss reduction, and a suitable number of hidden layers were selected. The num-
ber of neurons was then doubled in the hidden layers of the selected model to optimize the
design of the ANN model.

2.6.2. Model Application to a New Dataset Using Transfer Learning

One of the advantages of neural network classification is that once the model is
established with the desired accuracy, related new datasets can be predicted without
re-training the model. After classifying the 2020 dataset through input features and hyper-
parameter tuning, the trained ANN model was applied to a new dataset of the same input
features for 2015.

Transfer learning is an emerging technique of machine learning in which a model
trained for a given problem can theoretically be applied to a different yet related prob-
lem [64]. The performance of the pre-trained model may vary depending on the variation
of input features of a new dataset, such as the spectral signatures of remotely sensed data
acquired in different seasons. Retraining a model whenever a new problem is confronted
in future predictions is a very time-consuming practice. To overcome such problems,
transfer learning has become a practical and effective method for neural network classifica-
tion. In this study, different layers of the original model were experimentally frozen and
retrained to predict the new dataset.

During transfer learning, a new ground truth image was created by manually digitiz-
ing based on Google Earth images in 2015. 80% of the new dataset with the corresponding
reference image randomly selected as training data and 20% of the dataset was the valida-
tion data. After conducting transfer learning through different experiments, the entire new
dataset in 2015 was also predicted by all models.

2.6.3. Accuracy Assessment

Accuracy assessment is one of the major phases in image classification used to evaluate
model performance. In this study, 20% of the ground truth image was used for validation
after training the model. Model performance was evaluated using the overall accuracy and
kappa coefficient, the most widely used measure to assess the accuracy of satellite image
classification [65]. For the new prediction in 2015 using the ANN model trained with the
2020 dataset, 1000 reference points with geographic locations and land cover information
were randomly generated to represent the entire study area. The predicted points were
then extracted from the classified images from 2015, and model performance was assessed
by comparing them with the reference points.

A confusion or error matrix representing the ground truth pixels in the column and
classified pixels in the row for each class was created to assess the classification accuracy.
The overall accuracy was then calculated by dividing the sum of truly classified pixels of
each class by the total number of pixels in the diagonal elements of the confusion matrix.
The kappa coefficient, precision, recall, and F1 score were also used, as they considered the
true positive pixels, the false-negative pixels, and the non-diagonal elements in a confusion
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matrix [66,67]. These parameters ranged from 0 to 1; values closer to 1 denoted higher
classification accuracy.

2.6.4. Post-Classification Change Detection

Acquiring accurate information on changes to the mangroves is critical for mangrove
conservation, to determine past occurrences, implement future restoration programs,
and develop the necessary regulations [68]. Among the various available change detection
methods, pixel-to-pixel-based post-classification change detection was used in this study
to provide promising classification accuracy results [69]. The 2 classified images in 2015
and 2020 were differentiated in the post-classification change detection analysis. Areas
that underwent extensive changes were highlighted to identify the primary drivers of
mangrove dynamics. Using Sentinel-2 and high-resolution Google Earth imagery, the
findings were visually clarified to understand the causes of these changes.

2.6.5. Assessment of Natural Recovering Mangroves at Different Abandoned Sites

Based on the post-classification change detection results, 3 selected sites were extracted
from the mangrove gain areas to identify naturally recovering mangroves for different
abandoned shrimp ponds. Naturally recovering areas at t3 selected sites were quantified in
ArcGIS, and the capacity of natural recovery was compared with the extent of the ponds.

3. Results

3.1. Artificial Neural Network Classification
3.1.1. Experimental Results of Input Feature Selection

Using the basic ANN model, 15 experiments using various combinations of input
features were conducted to identify the 2020 mangrove distribution of the WMF. Different
levels of accuracy were obtained depending on the input feature combination in each exper-
iment (Table 3). Experiment 1 using 10 bands of the Sentinel-2 satellite image produced an
unsatisfactory accuracy of 56.39%, revealing that the use of only spectral information from
satellite bands was insufficient to classify mangrove distribution using the ANN model.
As such, Experiment 1 was not adopted to produce an output image of the classification
result because of its poor accuracy.

Table 3. Experimental results of input feature adjustment.

Experiment Combination of Input Features Overall Accuracy

1 10 bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12) of Sentinel-2
image 56.39%

2 10 bands, NDVI, NDWI 93.43%
3 10 bands, NDVI, NDWI, CMRI 94.02%
4 10 bands, NDVI, NDWI, MERIT 95.49%
5 10 bands, MERIT 71.05%
6 10 bands, NDVI, NDWI, MERIT, CHM 95.85%
7 10 bands, NDVI, NDWI, MERIT, SRTM 95.79%
8 10 bands, NDVI, NDWI, SRTM, CHM 93.71%
9 10 bands, NDVI, NDWI, MERIT, SRTM, CHM 93.73%
10 10 bands, NDVI, NDWI, CHM 95.33%
11 10 bands, MERIT, CMRI 72.00%
12 10 bands, NDVI, NDWI, CMRI, MERIT 95.70%
13 10 bands, NDVI, NDWI, CMRI, MERIT, CHM 95.81%
14 NDVI, NDWI, MERIT, CHM 95.76%
15 4 selected bands (B2, B3, B4, B8), NDVI, NDWI, MERIT, CHM 95.65%

Based on the outcomes of Experiment 1, more informative input features were required
in the classification; two spectral indices of NDVI and NDWI were included in Experiment
2. After implementing the same procedures, a relatively higher accuracy of 93.43% was
achieved in Experiment 2. Despite the satisfactory accuracy in Experiment 2, the output
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image showed that this combination of input features was still incapable of distinguishing
mangroves from other types of vegetation (Figure 6c). To undertake this differentiation,
a newly developed index, CMRI, was applied in Experiment 3. The resultant accuracy was
improved to 94.02%; however, there were no effective changes in terms of the determination
of other vegetation types (Figure 6d).

Figure 6. (a)The study area (Sentinel-2 true color image) and mixed vegetation area in
(b) ground truth image, classified images of (c) Experiment 2, (d) Experiment 3, and (e)
Experiment 6.

In Experiment 4, topographic information was utilized (instead of CMRI), as most of
the other vegetation in the study area thrives in the upper land area. Therefore, the MERIT
DEM was applied to Experiment 4 in an effort to remove the misclassified pixels of
other vegetation types. Following Experiment 4, the other forested areas misclassified as
mangrove vegetation in the previous experiments could be converted into non-mangrove
areas with an overall accuracy of 95.49% (Figure 6e). However, noisy and coarse pixels
were still present in the mixed vegetation areas of the output image, potentially impacting
classification accuracy due to the 90 m spatial resolution of the MERIT DEM.

We attempted to delineate the classification of mangrove distribution by applying
the CHM derived from the SRTM DSM and MERIT DTM. After implementing different
combinations of the DTM, DSM, and CHM in Experiments 6–9, the resultant accuracy was
95.85% in Experiment 6. Here, the DTM and CHM were integrated with the Sentinel-2
bands, NDVI, and NDWI. Furthermore, Experiment 6 eliminated noisy pixels from the
output image in Experiment 4, producing a smooth map of the mangrove distribution.
After implementing different classifications by adjusting input features, Experiment 6—
containing 10 bands of the Sentinel-2 image, NDVI, NDWI, MERIT DEM, and CHM—
produced the highest accuracy and the best delineation for mangrove distribution of the
15 experiments (Figure 7c). Other than experiments 1, 2, 3, 4, and 6, the results of the
remaining experiments were excluded from this study because these experiments were
tested with minor changes in input features and demonstrated no outperformance in
mangrove classification. The accuracies of all the experiments are provided in Table 3.
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Figure 7. (a) Sentinel-2 true color image, (b) ground truthed image, and (c) classified
image of Experiment 6 of the whole study area.

3.1.2. Experimental Results of Hyper-Parameter Tuning

Using the dataset in Experiment 6 described in the input parameter tuning section,
hyper-parameter tuning was evaluated by adjusting the number of hidden layers and
neurons. First, one hidden layer with 10 neurons was added to the basic model used in the
input feature adjustment. The model trained and evaluated the accuracy while visually
checking the behavior of the model in the accuracy learning curves and loss using the
validation dataset. Following the addition of up to four hidden layers, the model with
two hidden layers (12:10) produced the highest accuracy of 95.89%. The accuracy of the
model with three hidden layers (12:10:8) and four hidden layers (12:10:10:8) was the same
at 95.76% (Figure 8).

Figure 8. Evaluation results of artificial neural network (ANN) models with different hidden layers.

To evaluate model behavior, the accuracy and loss of training were compared to
those of the validation prediction. Figure 9a shows that the loss reduction of the training
prediction of the model with two hidden layers was less divergent and had a direction
similar to the validation at the end of the learning curve. In contrast, the models with
three and four hidden layers showed greater differences between training and validation
measures and were overfitted; validation losses significantly increased at the end of learning
despite the stable declining trend in training (Figure 9b,c). Thus, the model with two hidden
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layers was selected based on evaluating the classification accuracy and model behavior
during the learning time.

   
(a) (b) (c) 

Figure 9. Learning curves of loss reduction of model with (a) two hidden layers, (b) three hidden layers, and (c) four hidden
layers during the training phase.

The neurons in the hidden layers played a key role as processing units in analyzing
input data and producing output; hence, the number of neurons influences the performance
of the ANN model. The number of neurons in the two selected hidden layers was adjusted
by halving and doubling the neurons in each layer to test the performance. Comparing
the accuracy and loss of training prediction to that of validation in each model, the model
with greater neurons (544:320) performed with the highest accuracy (95.98%), least error,
and the smallest difference between the training and validation predictions (see Figure 10).
After performing input features and hyperparameter tuning, the ANN model with two
hidden layers (544:320 neurons) was selected as the model for mangrove classification
using the input features of Experiment 6 (Figure 11).

Figure 10. Model accuracy depending on the number of neurons in hidden layers.
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Figure 11. Proposed ANN model and input dataset for classification of mangrove distribution.

3.2. Classification Results of New Prediction Using Transfer Learning

The ANN model with two hidden layers (544:320), obtained through hyper-parameter
tuning, was applied to a new dataset from 2015, with the same input features. The model
produced an overall accuracy of 94.50% and a kappa coefficient of 0.92. Despite the high
classification accuracy, the model falsely classified green paddy fields as mangroves in
the new prediction due to the spectral variation in different seasons. To overcome this
problem, certain parameters of the original model were fixed with existing knowledge,
whereas others were retrained with a new dataset that contained information on the green
paddy fields (Figure 12).

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 12. Six different types of models in transfer learning process: (a) T0 model fixed layer 0, (b) T1 model fixed layer 1,
(c) T2 model fixed layer 2, (d) T01 model fixed layer 0 and 1, (e) T02 model fixed layer 0 and 2, and (f) T12 model fixed layer
1 and 2.

The classification results of the experiments are listed in Table 4. The original model
produced a low accuracy of 72.59% for the transfer learning dataset owing to the spectral
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variation problem in the paddy fields. The original model was tested with different layer
fixing and re-training settings. Of the six different models re-trained in transfer learning,
the T12 model, which fixed the second hidden layer (layer 1) and output layer (layer 2),
could be trained within the shortest training time of 32 s per epoch (using one node on the
supercomputer ITO-B at Kyushu University). The T12 model also outperformed the other
models, obtaining the highest accuracy of 97.2% and a kappa coefficient of 0.94 for the
whole dataset, and a high accuracy of 95.77% for the transfer learning dataset. As a result,
the T12 model could eliminate misclassified paddy field pixels predicted by the original
model (see Figure 13c). After conducting mangrove classifications using the ANN model
in 2020 and 2015, the validation parameters obtained in this study are described in Table 5;
the final mangrove distribution maps of the two periods are shown in Figure 14.

Table 4. Classification results of different models in transfer learning.

Models
Transfer Learning Dataset Accuracy for

Whole Dataset (%)Accuracy (%) Training Time per Epoch

Original model 72.59 - 94.5
T0 (Model fixed layer 0) 96.09 42 s 93.8
T1 (Model fixed layer 1) 95.83 33 s 95.10
T2 (Model fixed layer 2) 96.07 40 s 93.00

T01 (Model fixed layer 0 and 1) 95.57 38 s 94.00
T02 (Model fixed layer 0 and 2) 96.04 38 s 96.20
T12 (Model fixed layer 1 and 2) 95.77 32 s 97.20

Figure 13. (a) Reference image of green paddy field area in 2015 dataset, (b) classified image of the original model and (c)
classified image of T12 model.

Table 5. Accuracy, kappa, precision, recall, and F1 scores and statistical significance (Z-test) assessment of ANN model for mangrove
classification.

Year Accuracy Kappa
Precision

(1 M)
Precision
(1 NM)

Recall
(M)

Recall
(NM)

F1 Score
(M)

F1 Score
(NM)

2020 95.98 0.92 0.95 0.97 0.96 0.96 0.96 0.96
2015 97.20 0.94 0.98 0.96 0.98 0.97 0.97 0.97

Z-value = 0.4753; p-value = 0.63122 (no significant difference in overall accuracies).
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Figure 14. Mangrove distribution maps of Wunbaik Mangrove Forest in (a) 2020 and (b)
2015 predicted by the proposed ANN method.

Moreover, the statistical significance of the overall accuracies of the two classifications
in 2020 and 2015 was assessed using Z-test [70], and the resultant Z-value and p-value were
0.4753 and 0.63122, respectively (Table 5). The difference in classification accuracies of the
two periods was not statistically significant because the proposed method could achieve
high accuracies in both classifications of 2020 and 2015 despite the slight improvement in
the 2015 classification.

3.3. Mangrove Changes and Drivers

To provide updated information on the mangrove distribution in the WMF, we ex-
amined spatial changes in mangroves between 2015 and 2020. By differentiating between
classified images in 2015 and 2020, the change detection results showed significant changes
in mangrove extent in the WMF (Figure 15a). To focus on the major causes of mangrove
loss and gain, only extensive change areas were examined and validated with Sentinel-2
true color imagery (10 m resolution) and very high resolution (1 m) Google Earth imagery.

Interpreting change detection results based on field information and mangrove losses
in the study area between 2015 and 2020 was warranted because of the expansion of
shrimp ponds (Figure 15b), whereas mangrove gain patches were detected at plantation
sites (Figure 15c) and naturally regenerated areas (Figure 15d). The locations of artifi-
cial mangrove plantations established by the Forest Department were identified using
high-resolution Google Earth imagery and GPS points collected during the field survey.
Naturally recovered mangroves were found in active shrimp ponds, abandoned sites, and
tidal flats. Between 2015 and 2020, the total mangrove area declined from 254.30–249.83
km2 slightly, whereas the non-mangrove area increased from 284.30–288.77 km2.
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Figure 15. (a) Change detection result of Wunbaik Mangrove Forest (WMF), (b) Mangrove
loss area due to shrimp pond expansion, (c) Mangrove gain area in artificial plantation,
and (d) Mangrove gain area through natural regeneration.

3.4. Natural Recovery of Mangroves at Abandoned Sites

To delineate the naturally recovering mangroves in the study area, three abandoned
shrimp ponds selected during the field survey were extracted from the results of change
detection. The recovering mangrove area in each abandoned pond was then evaluated
and compared to the extent of the abandoned sites in ArcGIS. During the abandonment
period from 2015 to 2020, mangrove cover increased by 49.02% at Site 1, 55.93% at Site 2,
and 50.00% at Site 3 (Table 6). The results showed that mangroves could naturally recover
in approximately half of the abandoned sites without any artificial effort (Figure 16).

Table 6. Naturally recovering percentage of mangrove at different abandoned shrimp ponds.

Abandoned Sites
Site_Area

(km2)

Recovering
Mangrove Area

(km2)
Recovering (%)

Site 1 1.02 0.5 49.02
Site 2 0.59 0.33 55.93
Site 3 0.14 0.07 50.00

The field survey and collaboration with Forest Department staff and shrimp pond
owners confirmed that there was no artificial planting following the abandonment of these
shrimp ponds. The recovering mangrove areas were validated using ground truth GPS
points of 50 sample plots collected from the 3 recovery sites, and 12 different mangrove
species were identified through the field inventory. Avicennia officinalis (Figure 17a) was the
dominant species at Site 1, whereas A. marina (Figure 17b,c) dominated at sites 2 and 3.
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Figure 16. Naturally recovering mangrove at different abandoned sites between 2015 and
2020.

Figure 17. Ground checked photos of naturally recovering mangrove species at (a) Site 1 dominating
Avicennia officinalis, (b) Site 2, and (c) Site 3 dominating Avicennia marina.
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4. Discussion

The nature of mangrove intertidal ecosystems characterized by mixing with other
vegetation in adjacent parts creates many challenges for the classification of mangrove
distribution to produce accurate maps [14,41]. Selecting the most appropriate method
in remote sensing analysis and an effective combination of input features is critical to
overcoming such complex issues. Apart from the complex features of mangrove forests, dif-
ferent classification methods also have various drawbacks. In another analysis, Chun et al.
compared the ANN method with the maximum likelihood classifier using Thailand Earth
Observation System (THEOS) satellite data for mangrove mapping [44]. The study con-
ducted by Toosi et al. on mangrove forest cover changes produced high overall accuracy
(ranging 81–93%) by comparing machine learning algorithms (RF, RDA, and SVM) [17].
This study explored the ANN approach using Sentinel-2 satellite imagery for mangrove
classification through various experiments with input features and hyper-parameter tuning.

The incorporation of topographic features in remote sensing classification generated a
favorable outcome for mangrove mapping in other studies [71,72]. However, obtaining true
topographic information remains challenging. This study integrated topographic informa-
tion derived from the MERIT DEM to achieve high accuracy classification and to eliminate
misclassified pixels from previous experiments. Despite these merits, the poor resolution
of the MERIT DEM affected the quality of the output map with many noisy pixels.

The resulting accuracy of tree species classification was improved by applying the
CHM derived from the differentiation of the DTM and DSM. The CHM obtained from
multi-spectral and hyperspectral images and Light Detection and Ranging (LiDAR) data
have been applied for mangrove species classification [73,74]. Cao et al. [28] showed
that the CHM generated from a hyperspectral sensor mounted on a UAV was useful
for mangrove species discrimination. However, owing to limited accessibility and the
high investment involved with LiDAR, SAR data, and hyperspectral sensors, such as
canopy height collection methods, are rarely deployed in remote sensing classification [75].
This study attempted to employ the CHM obtained from the freely and globally accessible
SRTM DSM and MERIT DEM for mangrove classification. We found that mangrove
distribution may be more accurately identified by integrating the DTM and CHM in remote
sensing classification. Classification accuracy and image quality could improve future
mangrove distribution mapping if the CHM was derived from higher resolution and more
accurate DTM and DSM.

For the ANN model, a universal method to select the number of hidden layers and
neurons for optimal model design is lacking [76,77]. Thus, a systematic experimental
analysis presents a reliable path for solving a specific problem [78]. After conducting hyper-
parameter tuning, the selected model with two hidden layers (544:322) outperformed
the other models, obtaining the highest accuracy of 95.98%, whereas the basic model
obtained an accuracy of 95.85% with the same dataset. The results of the analyses show
that the setting of the deployed method is one of the pivotal factors in remote sensing
classification, as it influences the selection of efficient input features. Although there were
no dramatic improvements in accuracy, the behavior of the models was considered through
the validation dataset to avoid overfitting problems for future predictions.

By developing advanced technologies in computer science, the remote sensing com-
munity has improved many classification methods by applying a state-of-the-art approach
for time and cost-effective computation. Transfer learning is a cutting edge approach
in neural networks and effective for future predictions through the use of a relatively
small training dataset with reduced computational costs [79–81]. Guo [82] introduced
and applied transfer learning to identify buildings in rural environments. This study
confronted issues with the misclassification of green paddy fields by the trained model.
Transfer learning was employed by delineating different layers of frozen data to overcome
this issue. The original model was leveraged by re-training one hidden layer with a very
small dataset. The resulting accuracy for the entire study area significantly improved from
94.50–97.20%. Through transfer learning, we built the model to be more applicable for
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mangrove classification in different seasons and regions. Despite satisfactory classification
accuracy results, preparing a ground truth image to create a large amount of training data
and a long-running time for ANN prediction limit the proposed approach. Moreover, our
study has some uncertainties, as we could not apply a ground truth image to validate
the performance of the pretrained ANN model in the 2015 classification. To address this
necessity, we applied a reference image digitized using Google Earth imagery. Considering
this limitation, future studies should explore the variable importance of highlighting the
contributions of each variable in ANN classification for mangrove distribution.

Mangrove forests in Myanmar have declined, with an annual net reduction rate
of 3.60–3.87% between 1996 and 2016, because of competition with and expansion of
agricultural fields, aquaculture, palm oil, and rubber [83,84]. FAO [8] and Aye Saw [85]
studied mangrove forest changes in WRMF and described shrimp ponds and paddy
fields as the primary drivers of mangrove loss between 1990 and 2011, and 1990 to 2014,
respectively. Similarly, this study observed that the mangrove area of WMF in 2015 declined
slightly in 2020. The reason for mangrove loss was largely due to the expansion of shrimp
ponds by local communities, whereas mangrove forests were able to expand by artificial
plantation and natural recovery processes. Interestingly, the change detection results
showed that more mangrove loss areas were discovered near local villages due to the
expansion of shrimp farming than within the reserved forest (Figure 18).

 
Figure 18. Shrimp pond expansion by local villages near the WRMF between 2015 and 2020.

One of the uncertainties is that the study could not distinguish shrub, planted, and nat-
ural recovering mangrove due to the medium resolution of the Sentinel-2 satellite images.
A 10 m pixel range might include real shrub and weeds other than mangrove species,
and high-resolution satellite or UAV images should be applied to validate mangrove classi-
fication and to change detection results. However, the only mangrove restoration projects
in WMF are artificial plantations established by the Forest Department; other mangrove
gain areas were assumed to appear as a result of natural recovery processes. Although
recovering mangroves were also found in the active shrimp ponds of the WMF, the long-
term survival of these mangroves is questionable, as they would likely be cleared if the
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owners wanted to repair their shrimp ponds or if the ponds were converted to paddy
fields. However, these results highlight the natural recovery process in abandoned areas.
The results show that mangroves are able to naturally recover in approximately 50% of
the abandoned sites with a diverse range of species within a short period of abandonment
from 2015 to 2020.

5. Conclusions

This study was the first attempt to employ the ANN classification using Sentinel-2 im-
agery for mangrove classification. We conducted two primary experiments relating to input
features and hyper-parameter tuning. Based on these experiments, we proposed a promis-
ing ANN model applying Sentinel-2 satellite imagery and topographic and canopy height
information for constraining mangrove distribution. Through optimization, we achieved
the highest overall accuracy of 95.98%, a kappa coefficient of 0.92, mangrove and non-
mangrove precisions of 0.95 and 0.98, respectively, recalls of 0.96, and F1 scores of 0.96.
Moreover, we used the transfer learning approach to improve the ANN model performance
and obtained a high overall accuracy of 97.20%, a kappa coefficient of 0.94, mangrove and
non-mangrove precisions of 0.98 and 0.96, respectively, recalls of 0.98 and 0.97, and F1
scores of 0.96. The created model can be deployed for mangrove classification in different
seasons and regions.

The outcomes of this study contribute to the production of up-to-date and reliable
information regarding mangrove change in the WMF through post-classification change
detection. The results highlight that the mangrove extent decreased in the WMF between
2015 and 2020, owing to the expansion of shrimp ponds. By integrating field observations
with the change detection results, we highlight that the mangroves were able to naturally
recover in approximately 50% of the abandoned sites within a short abandonment period.
Further research on the natural recovery process of mangroves should be conducted, as it
presents a valuable opportunity for mangrove rehabilitation after human disturbance.
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Abstract: Mangrove is classified as an important ecosystem along the shorelines of tropical and
subtropical landmasses, which are being degraded at an alarming rate despite numerous international
treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern
Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century
(2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high
resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than
the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion
to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into
many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean
patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge,
and shape complexity, where smaller and isolated mangrove patches were found to be related to the
rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS)
Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the
impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove
areas that had not undergone any land cover changes over the years showed an increase from 3.03
to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove
forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas
(from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with
oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase
in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects
where abundance of solar radiation along the edges of the patches may increase productivity. The
impact on GPP due to fragmentation is found to rely on the type of land transformation and patch
characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly
developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity
conservation, in addition to providing economical revenue and supporting human activities.

Keywords: mangrove; coastal region; remote sensing; fragmentation; productivity; land cover change

1. Introduction

Changes in the extent of mangrove cover has resulted in fragmentation that can greatly
affect its functions and services to the environment and human kind [1]. Fragmentation
of mangrove areas refers to the sub-division of a continuous landscape into smaller units,
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which can be characterized based on patch size, edge, and shape modification. Frag-
mentation analysis and monitoring are important indicators of how mangrove patches
influence ecosystem habitats, species diversity, carbon storage capacity, etc. [2]. Bryan–
Brown, Connolly, Richards, Adame, Friess, and Brown [1] showed that Southeast Asia
(SEA), which has the highest mangrove tree species diversity, is a hotspot for mangrove
fragmentation. Among the SEA countries, Malaysia in particular has the highest reduc-
tion of mangrove mean patch size, ranked at first place in the nations of the world [1].
Fragmentation could impact habitat health and could cause species extinction, and the
report of Ponnampalam et al. [3] showed that Sungai Pulai and Johor Straits in the southern
part of Peninsular Malaysia have lost many of their dugong species as a consequence of
mangrove loss and fragmentation. Mangroves that provide important economic, social,
and ecosystem functions and services [4,5] warrant effective monitoring for appropriate
management to avert further loss. The mangrove ecosystem is an essential component
of nature-based solutions for climate change mitigation and adaptation [6–8]. While the
prevention of deforestation and degradation of mangroves is the most effective strategy for
climate change mitigation and adaptation, restoration can reverse the impacts of climate
change after 25–30 years [9–11]. Mangroves can protect shorelines against storm surges,
cyclones, and tsunami waves. [12,13]. Although recent studies revealed that mangrove
loss has been reduced in last decade [14], further and continuous monitoring can help to
accelerate the restoration and conservation of mangroves [15].

A review of the literature shows that, in the past decade, although studies on habitat
loss is well reported, research on habitat fragmentation has been poorly documented [16].
The limited studies catalogued on habitat fragmentation have focused on nutrient cycling,
dung removal, pollination, and seed dispersal [17]. Studies emphasizing the impacts of
forest fragmentation on biomass, productivity, predation, parasitism, infection rate, and
aquatic functioning account for only 3% of forest fragmentation studies [18]. This gap of
information on the impact of fragmentation on mangrove productivity must be addressed
and is one of the objectives of the current study. Gross primary production (GPP) of any
ecosystem is often used as an indicator of the total amount of CO2 assimilated by the
ecosystem, particularly by the vegetation [19]. Thus, analysis of GPP and its relation to
mangrove cover loss and fragmentation can provide useful information pertaining to the
dynamics of the mangrove’s function to assimilate CO2. GPP is affected by forest vegetation
structure and stand parameters such as the diameter, tree height, canopy area, basal area,
leaf area index, and mean tree weight and density [20]. Leaf Area Index (LAI) refers to the
total leaf area per unit surface, and this index has been used for assessing the rate of carbon
assimilation, primary productivity, and respiration and growth of vegetation, including
that of mangroves since the 1990s [21–25] because it is relatively easy to measure in the
field and also to derive using remotely sensed data [26]. It can be hypothesized that, due
to mangrove forest changes, the LAI of mangroves will be significantly affected, and this
will be reflected in the amount of GPP accumulated by mangrove trees. LAI and GPP can
therefore be considered as simplified indices to monitor the carbon storage of mangroves.
Previous studies have mapped the carbon stock and biomass of mangroves using various
remote sensing technology and unmanned aerial vehicle systems [25]. Mangrove biomass
assessment and mapping can be done using LAI as an index [27,28].

There have been numerous studies mapping the spatial extent of mangroves and
their spatio-temporal changes, and several studies on mangrove ecosystem functions and
processes in the past decade [29–33]. However, research focusing on fragmentation and
its impact on mangrove biodiversity, biophysical characteristics, and ecosystem processes
and functions within the fragmented landscape are scarce. Mangrove fragmentation is
assumed to distress ecological processes and ecosystem functioning; thus, establishing a
relationship between mangrove cover change, fragmentation, and ecosystem processes
will ultimately provide important baseline data for the formation of a stronger policy to
protect the remaining mangroves and achieve Malaysia’s Sustainable Development Goals,
particularly goals 13, on climate action; 14, on life below water; and 15, on life on land.
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Remote sensing and Geographic Information System (GIS) are cost- and time-effective
technologies that can be used to support large scale mangrove mapping, monitoring its
changes [34] and analyzing the landscape’s fragmentation [1,2,29]. The launch of the
Landsat mission promoted the creation of global and regional mangrove maps at 30 m
spatial resolution. These maps can be further improved using freely available satellite
images with better spatial resolution, such as that of Sentinel-2. Digital image classification
algorithms have been widely developed for obtaining land use and land cover using re-
motely sensed images. Pixel-based classification involving the unsupervised or supervised
method are very common and useful. In the last decade, object-oriented, neural network,
decision tree, and machine learning based classification algorithms, with advantages of
improved accuracy and reduced computational time, have become more popular. Reviews
by Kuenzer et al. [35] and Pham, Xia, Ha, Bui, Le, and Takeuchi [25] concluded that most
of the classification algorithms can give overall accuracy above 80%, while, with improve-
ments such as training samples selection, satellite data quality etc., a higher classification
accuracy (~90%) can be achieved. Better classification results can improve the mangrove
extent mapping and the change detection analysis to accurately detect the gain and loss
of mangroves.

This study aims to describe the mangrove loss and fragmentation in the Iskandar
Malaysia region over the 2000–2019 period and analyze the loss and fragmentation effects
on mangrove LAI and GPP values. More specifically, we intend to (1) document the loss
and gain of mangroves over a period of two decades (2000–2019), (2) analyze mangrove
fragmentation, and (3) relate and analyze the loss/fragmentation impacts on the LAI and
GPP values in order to define the function of mangroves to assimilate CO2 in relation to
mangrove cover changes and fragmentation in the study area. It is hypothesized that a
higher loss of mangrove canopy cover and fragmented areas will decrease the LAI and
GPP of the ecosystem.

2. Materials and Methods

2.1. Study Area

Malaysia constitutes only 4% of global mangrove cover, but at least 70 true and as-
sociated species from 28 families have been identified in the country, and the majority of
the mangrove trees are from the Rhizophoraceae family [36]. More than half of Malaysian
mangroves are distributed in the state of Sabah (60%), 22% in Sarawak, and the remaining
18% are found in Peninsular Malaysia [36]. In Peninsular Malaysia, the majority of man-
groves are located along the west coast, and the state of Johor alone holds 30% of the total
mangroves (Figure 1). Three of the seven Ramsar Sites in Malaysia, namely Pulau Kukup
(647 ha), Tanjung Piai (526 ha), and Sungai Pulai (9126 ha) are located in the Iskandar
Malaysia region in Johor (Johor National Parks, https://www.johornationalparks.gov.my/
v3/RAMSAR-site/, assessed on 12 December 2020).

Iskandar Malaysia (IM) is a fast-growing national special economic region with a
total area of 221,700 ha, located in the southern part of Johor state, Peninsular Malaysia
(Figure 1). Specific zones where rapid development has taken place in IM are the Port
of Tanjung Pelepas, Tanjung Bin Power Plant, the Port of Pasir Gudang, and the rapid
reclamation zone of Forest City, as shown in Figure 1. These activities are mainly caused
by population growth that requires more land to be developed for housing establishments,
transition to agricultural lands (particularly oil palm), and the building of infrastructure
such as ports, dams, and waterfront cities may also lead to fragmentation and impact the
carbon sink potential and primary productivity of the mangrove forests in IM. Thus, it
is timely to investigate the impact of fragmentation on the primary productivity of the
mangrove ecosystem. Although sustainable development policies are employed in the
region, the decrease of mangrove forests was found to be at an alarming rate (33%) between
2005 and 2014 [32]. Nevertheless, the replantation and conservation efforts since 2014 may
have also increased mangrove coverage; thus, it is important to monitor the changes and
analyze their impact on mangrove services.
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Figure 1. Map of Peninsular Malaysia (a) and the region of Iskandar Malaysia (b), with four rapidly developing zones (A, B,
C, and D) in the region.

2.2. Data and Methodology

The methodology flow-chart (Figure 2) for this study and details on the data pro-
cessing and the methods to achieve the aim of the study are described in the following
sections. This study utilized medium-resolution remote sensing satellite imageries to
monitor changes in mangrove cover and fragmentation, covering the years 2000 to 2019.
Support Vector Machine (SVM) was selected as the classifier for the image classification
process. A patch analysis plugin was implemented for fragmentation analysis based on
ArcGIS software. The land cover, LAI, and GPP Products of Moderate Resolution Imaging
Spectroradiometer (MODIS) Collection 006 were used to define the impact of loss and
fragmentation on mangrove forests in IM. The MODIS Land Cover Product is based on
a supervised decision-tree classification method using inputs from other MODIS prod-
ucts, including the land/water mask, nadir bidirectional reflectance distribution function
(BRDF)-adjusted reflectance, Enhanced Vegetation Index (EVI), snow cover, land surface
temperature, terrain elevation information, etc. [37]. The MODIS LAI product incorporated
the MODIS Land Cover Product and MODIS Surface Reflectance Product into the radiative
transfer model to derive LAI [38]. The MODIS GPP product is derived by relating the
absorbed photosynthetically active radiation (APAR) calculated from LAI with the energy
conversion efficiency (ε) [26]. More information of the MODIS products and the method to
access these products are described below.

2.2.1. Remote Sensing Data and Pre-Processing

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Terrain Corrected (L1T), data
dated 28 April 2000, was downloaded from the GloVis website (https://glovis.usgs.gov/
(accessed on 15 March 2021)). This data is registered on the Worldwide Reference System-2
(WRS-2), and one tile (Path 125, Row 59) is required to cover the whole Iskandar Malaysia
zone. A sentinel-2 Level-1C multispectral image dated June 28, 2019, was chosen to present
the latest conditions of the study area because no Landsat image with acceptable cloud
cover was available. The image was downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/ (accessed on 15 March 2021)). For both Landsat 7 and
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Sentinel-2, only images with less than 20% cloud cover were used. The Semi-Automatic
Classification plug-in (SCP) provided in the QGIS software [39] was used to perform the
preprocessing of Landsat 7 and the Sentinel-2 images.

 

Figure 2. The work-flow chart for image processing, classification and assessment, fragmentation, LAI and GPP analysis.

Preprocessing, including radiometric correction and atmospheric correction based on
the Dark Object Subtraction 1 (DOS 1) model and pan-sharpening model, was applied to
the Landsat 7 image. The radiometric and atmospheric correction transferred the digital
numbers (DN) to radiance then to reflectance. The pan-sharpening function, based on
intensity computation, fused the 30 m Landsat multispectral bands (6 bands covering the
visible (blue, green, red), near infrared, and shortwave infrared) with the panchromatic
band to produce a 15 m spatial resolution reflectance image. The Sentinel-2 image under-
went similar preprocessing steps (radiometric and atmospheric correction using DOS 1)
based on the SCP. The visible bands (band 2—blue, 3—green, 4—red) and near infrared
(band 8) of 10 m spatial resolution were stacked in this case. The output was a 4-band
multispectral reflectance image at 10 m spatial resolution. A thresholding method based on
the reflectance of the blue band (>0.25 for Landsat 7 and >0.21 for Sentinel-2) was applied
to detect and mask out any cloud on the image. Note that, for both Landsat and Sentinel
images, only a very low cloud cover was detected over the mangrove areas, which is the
main focus of this study.

Three latest MODIS products (Collection 006) at 500 m spatial resolution were down-
loaded, namely the MOD15A2H (Leaf Area Index, LAI) [38], the MOD17A2H (Gross
Primary Production, GPP) [26], and the MCD12Q1 (Land cover type, LC) [37]. Only one
tile (H28.V08) is required to cover the whole IM region. Both LAI and GPP are 8-day com-
posite products. Full year products of 2000 and 2019 were downloaded for LAI and GPP,
which consisted of 39 tiles for year 2000 (MODIS started to provide data from 18 February
2000) and 46 tiles for year 2019. Meanwhile, the yearly composite (one product per year) LC
product for years 2000 and 2019 were downloaded. All the MODIS products are available
from the NASA Earthdata website (https://earthdata.nasa.gov/ (accessed on 15 March
2021)). The MODIS Conversion Toolkit (MCTK) was used to process the MODIS products,
including re-projection and quality check (QC) assessment. In order to maintain the quality
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of the LAI and GPP products, pixels with a QC bit-converted value below 48 were kept
and extracted, referring to the MODIS product user guides [26,38,40]. The products were
re-projected into WGS 84 projection, and the QC considered the sensor, detectors, and
cloud condition issues of the product. For the LC product, we selected the International
Geosphere-Biosphere Program (IGBP) layer for this study. According to the IGBP layer, the
permanent wetlands (PW) pixels (LC code 11) were identified. The corresponding LAI and
GPP values located in the identified PW pixels were extracted with the strict consideration
of the QC. The mean and standard deviation of the LAI and GPP at 8-day intervals were
computed for further analysis.

2.2.2. Image Classification and Assessment

Support Vector Machine (SVM) classification has been one of the most applied clas-
sifiers in recent years. SVM uses the machine learning technique for multispectral and
hyperspectral remotely sensed data classification. SVM relies on n-dimensional spectral
space to create a hyperplane and identify and separate the classes based on user opti-
mized parameters, including the selection of kernel type and function and the penalty
parameter [41]. A total of 7 land use/land cover classes were detected and discriminated
from the Landsat and Sentinel images based on the SVM, as follows: terrestrial forest,
mangrove forest, oil palm plantation, rubber plantation, urban, water, and others (orchard,
shrub, bush, aquaculture farms, etc.). The details of the parameters needed to run the SVM
classifier are listed in Table 1. The classification was run based on a total of 140 training data
(20 polygons per class with 50–60 pixels per polygon), where different sets of training data
were selected during Landsat 7 and Sentinel 2 classification. Figure A1 in the Appendix
A shows the training polygons for the Landsat and Sentinel classification. The accuracy
assessment of the classified land covers/uses was based on the sample points selected
from the Google Earth images as the “ground truth” samples. Google Earth is notably one
of the most complete and useful datasets with acknowledged accuracy, and is also freely
available for various types of research, including classification and its validation [42–44].
Classification assessment based on the error matrix was performed. The overall accuracy
(OA) is the ratio between the correctly classified pixels to the total number of reference
pixels. The producer accuracy (PA) is the accuracy of the map from the perspective of
the map maker, computed by dividing the correctly classified samples of the class to the
sum of the reference samples for the class. The user accuracy (UA) is the accuracy from
the point of view of a map user, calculated by dividing the correct classification pixels
to the total number of pixels mapped as the class. The kappa coefficient (KC) is a value
computed based on the KHAT statistic to measure the agreement and accuracy of the
classification. In addition, the Z-statistic has been computed to describe the significance of
the classification results. The function of the Z-statistic is to determine if the agreement
between the classification map significantly agrees with the reference data [45].

Table 1. Parameters for Support Vector Machine (SVM) classification.

Parameter Type/Value

Kernel type Radial Basis Function (RBF)
Gamma in kernel function 1.00

Penalty 100
Pyramid levels 0

Region of Interests (ROI) 140 (20 polygons for each class)

2.2.3. Mangrove Cover Change and Fragmentation

After the accuracy assessment of the 2000 and 2019 classification results, the classified
mangrove areas were extracted from the classified map. Because the classification maps
are in raster form, we converted the maps into vector polygons using the Raster to Polygon
function in the ArcGIS software. Change detection was performed based on the polygons
using ArcGIS software to detect the unchanged, gained, and lost mangrove areas in IM
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between 2000 and 2019 by superimposing the mangrove cover from 2000 onto the results
of 2019.

The Patch Analyst extension in ArcGIS 10.5 was used as the tool for fragmentation
analysis. Patch Analyst is based on the FRAGSTATS [46], which can be used for analysis
and to provide attributes of the fragmented patches. Several indices were selected in this
study to represent the fragmentation of the mangrove area in IM, including Class Area
(CA), Total Landscape Area (TLA), Number of Patches (NP), Mean Patch Size (MPS), Total
Edge (TE), Edge Density (ED), Mean Shape Index (MSI), Average Weighted MSI (AWMSI),
Mean Perimeter Area Ratio (MPAR), and Mean Patch Fractal Dimension (MPFD). The
group and details of each index is listed in Table 2. Because mangrove is the focus of the
study, the fragmentation analysis was performed for mangrove areas only.

Table 2. List of metrics in the Patch Analyst extension used for fragmentation analysis [46].

Group Fragmentation Index Definition

Area
Class Area (CA) Sum of areas of all patches of a given class

Total Landscape Area (TLA) Sum of areas of all patches in the landscape

Patch size
Number of Patches (NP) Total number of patches in the class/landscape
Mean Patch Size (MPS) Average patch size

Edge Total Edge (TE) Total perimeter of patches
Edge Density (ED) Amount of edge relative to the landscape area

Shape

Mean Shape Index (MSI) Average perimeter-to-area ratio
Average Weighted MSI (AWMSI) MSI divided by weighted patches area

Mean Perimeter Area Ratio (MPAR) Average of patch perimeter to patch area ratio

Mean Patch Fractal Dimension (MPFD) Average of log-transformed patch perimeter to
log-transformed patch area ratio

2.2.4. Mangrove LAI and GPP

LAI and GPP are both useful for studying the coverage, health, and potential of carbon
assimilation and storage [47]. Mangrove forests have been proven as the highest carbon
stock medium; nevertheless, the role of mangrove forest in carbon assimilation and its
processes from local to global scale is less understood. This is due to the difficulties of data
collection in the mangrove forests. Plant leaves through the photosynthesis process convert
the atmospheric CO2 into nutrients and biomass to support plant growth. The use of LAI
to estimate the ecosystem carbon uptake by linking it with GPP is common [48,49]. Remote
sensing products were applied in this study to infer the leaf density and productivity of
mangrove areas, aimed at detecting the impact of mangrove changes to the products (LAI
and GPP) relevant to carbon stock.

To identify the impact of mangrove loss and fragmentation over years, the MODIS LAI
and GPP of the permanent wetlands (PW) (based on MODIS IGBP land cover classification)
were extracted. LAI can be used to describe the leaf density and therefore the vegetation
condition/health/ photosynthesis rate and light use efficiency of the mangrove trees [33,34].
We chose LAI as the vegetation index because it is often widely applied to high leaf and
tree density zones, including mangrove forests [50], and LAI has been proven to have
a strong relationship with Normalized Difference Vegetation Index (NDVI) at different
spatial resolutions [51,52]. Meanwhile, MODIS GPP is an indication of the amount of CO2
assimilated by the ecosystem; thus, it can be used to identify carbon gain/loss due to
any changes occurring in the ecosystem. Here, we used GPP rather than NPP because
(1) GPP has more direct relations to the photosynthesis rate, leaves, and biomass growth,
(2) NPP requires the input of respiration (data is very hard to acquire and not available
in the study site), and (3) MODIS only distribute the NPP product at an annual timespan,
while we aim to compare GPP and LAI at finer temporal scales (8-days). The values of LAI
and GPP were extracted and their statistical values were computed to identify if any loss
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or gain had occurred in LAI or carbon intake by mangroves (to the selected permanent
wetlands pixels).

3. Results

3.1. Classification Accuracy and Mangrove Cover Changes

Using the SVM classifier, seven land use/land cover classes, including forest, oil
palm, mangrove, rubber, urban, water, and “others”, were classified. The class “others”
includes orchard, shrub, bush, farm, and aquaculture. Table 3 reports the accuracy of the
classification from the two satellite images, including the producer accuracy (PA), user
accuracy (UA), overall accuracy (OA) and the kappa coefficient (KC). The overall accuracy
of both images is ~90%, with a KC of 0.85 and 0.88 for the 2000 and 2019 classifications,
respectively. Both the Landsat 7 and Sentinel-2A classification results showed a high
accuracy of around 90%, which may be because of their finer spatial resolution and multi
spectral bands, and is also due to the machine learning technique of SVM. On the other
hand, the pan-sharpened Landsat image also maintained high classification accuracy when
more bands (more information) were considered during the classification process. Z-
statistics were computed for both classification results, where both values were higher than
1.96, indicating that the classification is meaningful and significant and the classification
results are better than random classification.

Table 3. Distribution of land use area and the producer accuracy (PA), user accuracy (UA), overall
accuracy (OA), and kappa coefficient (KC) for respective class *.

Class
Landsat 7 (2000) Sentinel-2A (2019)

PA (%) UA (%) PA (%) UA (%)

Forest 89.25 92.45 78.22 87.93
Mangrove 97.52 90.64 87.85 99.70
Oil Palm 88.66 78.35 73.02 84.47
Rubber 43.17 78.15 96.40 53.49
Urban 64.56 93.12 95.44 93.88

Water Bodies 98.56 99.57 92.55 98.17
Others 46.32 19.19 91.42 62.67

OA 89.96% 90.51%
KC 0.85 0.88

Z-statistic 271.37 109.35

* The definition of land cover types is given in Table A1.

Because the general land use land cover changes are similar to the previous findings in
Kanniah, Sheikhi, Cracknell, Goh, Tan, Ho, and Rasli [32], we omitted the land use maps in
this study and focused only on the mangrove cover in the following results and discussions.
In this study, we further found an expansion of the urban area, especially at the eastern
part of Sungai Pulai, where the new Nusajaya township is located, and in the central part
of IM, where the Kulai–Senai township has expanded due to increased population. Rubber
conversion to oil palm plantation and urban area is still found (in 2019 image) surrounding
the Sultan Iskandar Reservoir in the eastern part of IM, showing similar results to [32] in
their 2014 satellite data.

The use of the SVM classifier showed great capability by clearly distinguishing man-
groves from forests and water bodies, which often can be easily misclassified. Both the
user and producer accuracies are high for mangrove classification in the 2000 and 2019
images (Table 3). From the classification results, the loss of mangrove area is noticeable,
particularly where it has been converted to urban area and oil palm plantations. Inter-
estingly, the conversion of mangrove to aquaculture land use (classified as “others”) was
found at multiple locations, which showed the recent development and expansion of the
economically valuable aquaculture activities in the IM region (Table 4 and Figure 4b). The
performance of SVM classification in this study supports the accuracy of mangrove loss and
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gain detection (Table 4 and Figure 4), as well as clearly identifying fragmented mangrove
patches (Table 6).

Table 4. The loss and gain of mangrove areas and their transition to other land use/cover types in
IM between 2000 and 2019.

Gain ID. Places/Location Transition Type

1 Pulau Kukup Eroded mangrove
2 Serkat Berkat Village Oil palm
3 Tanjung Piai Eroded mangrove
4 Perpat Pasir Village Oil palm
5 Sungai Boh Village Urban

6 Pulai River—Custom
Administration Building Urban

7 Forest City Golf Hotel/ Resort Urban—resort
8 Sri Tulang Residential Project Urban—residential
9 Bayu Senibong Residential zone Bare land
10 Changkat Village Aquaculture
11 Sri Aman Village Aquaculture
12 Sri Aman Village Aquaculture
13 Sri Aman Village Aquaculture
14 Tanjung Langsat Urban—port expansion
15 Tanjung Langsat Urban—port expansion
16 Kampung Kong Kong Aquaculture
17 Kampung Kong Kong Aquaculture
18 Layang River Eroded mangrove
19 Tiram River Fishing Village Aquaculture
20 Tiram River Fishing Village Aquaculture
21 Tiram River Fishing Village Aquaculture

Gain ID. Places/Location Transition Type

1 Kong Kong River Eroded mangrove
2 Kong Kong River Eroded mangrove
3 Tanjung Langsat Village Aquaculture
4 Melayu Village Aquaculture

Based on the classification results, the total mangrove areas in 2000 and 2019 were
13,612.25 ha and 10,704.96 ha, respectively. Figure 3 shows the mangrove areas, their
gain, and their loss, and unchanged mangrove areas between 2000 and 2019. The total
unchanged mangrove areas over the 19-year period was 8483.44 ha, and the total loss was
5128.80 ha. Despite the loss, some new (2171.38 ha) mangrove areas were detected. This
means that a net loss of 2907.29 ha (21.35%) has occurred in IM over the last 19 years. This
is equal to a 1.12% annual mangrove loss in the IM region, which is higher than Malaysia’s
mean depletion rate of 0.41%, based on the estimation of Hamilton and Casey [53]. The
southwestern part of the IM, where the Pulau Kukup, Tanjung Piai, and Sungai Pulai
mangrove forests (Ramsar sites) are located (Figure 3c), faced significant loss over the
study period. On the other hand, at the eastern side of IM, new patches of mangroves
were noticed. Figure 4a shows the pinned locations of gain and loss of mangroves over
the IM region. Table 4 lists the locations and types of transition from (loss) and to (gain)
mangrove area, with Table 5 showing the conditions of some selected loss and gain areas,
including when these transitions occurred. During the identification of the gain and loss
locations, we also identified around 40 sites in IM that were used for aquaculture activities
(Figure 4b).
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Figure 3. Mangrove area of (a) year 2000; (b) year 2019; and (c) the unchanged, gains, and losses of mangroves between
2000 and 2019.

3.2. Fragmentation Analysis

Fragmentation results in Table 6 show that the IM region underwent significant
fragmentation over the two decades of the study period. Since we considered only one
class (mangrove) in the fragmentation analysis, the area indices, including class area (CA)
and total landscape area (TLA), are the same, which is 13,612 ha and 10,705 ha for years
2000 and 2019, respectively. There was a significant loss of mangrove area (21%) during
the study period; thus, the analysis of the remaining fragmentation metrics will also be
focused on the influence of the area loss on each metric.
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Figure 4. Identification of areas of (a) gain and loss and (b) aquaculture over Iskandar Malaysia (IM).
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Table 6. Fragmentation values for the year 2000 and the year 2019.

Index Unit Year 2000 Year 2019

Class Area (CA) ha 13,612 10,705
Total Landscape Area (TLA) ha 13,612 10,705

Number of Patches (NP) - 130 402
Mean Patch Size (MPS) ha 104.71 26.63

Total Edge (TE) m 1,200,480 1,364,970
Edge Density (ED) m/ha 88.20 127.509

Mean Shape Index (MSI) - 2.796 1.962
Average Weighted MSI (AWMSI) - 8.802 8.761

Mean Perimeter Area Ratio (MPAR) m/ha 245.95 1685.40
Mean Patch Fractal Dimension (MPFD) - 1.366 1.444

The patch size index provides information about the Number of Patches (NP) and the
Mean Patch Size (MPS). The patch size is one of the fragmentation parameters that has
been studied most [17]. Increased NP from 130 to 402 and decreased MPS from 104.71 to
26.63 (reduction of −78.08 ha) between 2000 and 2019 indicates that the mangrove areas
in the IM region had been broken down into smaller patches. The changes of minimum
patch size (3.08 ha to 0.001 ha) and maximum patch size (6883.01 ha to 4067.96 ha) from
years 2000 to 2019 showed a similar trend to the MPS values, indicating that the mangrove
areas had been fragmented into smaller patches throughout the entire study area. In a
previous study, Bryan–Brown, Connolly, Richards, Adame, Friess, and Brown [1] reported
a smaller reduction of mean patch size of −7.2 ha for Malaysia between 2000 and 2012,
which infers that the fragmentation in the IM region is significantly more serious than the
country’s average. The higher MPS could also be due to the more rapid development in
IM compared to other cities located near to mangrove forests in other parts of Malaysia.
Coincidentally, the largest mangrove patch in the year 2019 (4067.96 ha) was found located
in the largest mangrove patch of the year 2000 (6883.01 ha). Analysis of this large mangrove
patch showed that it had fragmented into 60 smaller patches (0.001 ha to 4067.96 ha, with a
mean of 94.29 ha), with a loss of 1131.63 ha over the study period. This specific patch has
been selected for detailed fragmentation analysis on its effect of LAI and GPP in the later
part of this manuscript.

Similarly, the Edge indices (TE and ED) also increased from 2000 to 2019, primarily
because of the separation of large patches into small patches. Figure A2 in the m shows the
fragmentation of mangrove over a selected area within the study area. The increases in TE
(from 1200.5 km to 1365 km) and ED (from 88.2 m/ha to 127.5 m/ha) demonstrate that the
fragmentation is a result of man-made disturbances rather than natural effects. This can be
explained by natural shaped patches normally having fewer edges than man-made urban
areas and agriculture boundaries. The values of patch size and edge indices obtained in
this study show typical mangrove forest fragmentation over a rapidly developing region,
where the disturbance of a large mangrove area into smaller patches occurred due to the
transformation of mangroves into urban, agriculture, and aquaculture lands. Generally, the
decrease in any forest habitat area or MPS has been shown to create fragments of different
sizes (large and small) and isolation among the fragmented patches. Hence, this can result
in species extinction and biodiversity loss due to decreased colonization and population
size [17,54].

The Shape metrics (MSI, AWMSI, and MPAR) explain the changes of the mangrove
areas shape from regular to more complex patches. An MSI of 1 refers to a circular shape,
and higher values indicate more irregular shape patterns. The MSI calculated in this study
changed from 2.79 in 2000 to 1.96 in 2019, meaning that the complexity of the shape of the
patches was reduced. This phenomenon indicates that the mangrove patches change from
natural shaped patches (complex in shape) to man-made shape (regular in shape), due
to anthropogenic activities [46,55]. The AWMSI refers to the area weighted MSI, which
highly depends on the area of patches and the NP. Slightly lower AWMSI was found in
2019 compared to 2000 due to a decrease in the sum of patch area and a large increase of NP.
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This indicates that the MSI was divided by a relatively larger value in 2019 than in 2000,
meaning that there were more fragmented patches in the region in 2019. MPAR, which
considers the mean perimeter-to-area ratio shows an increased value for 2019 compared
to 2000. Smaller patches with decreasing areas and relatively longer perimeters are the
main reason for the large increase in MPAR. Finally, the MPFD, which has values between
1 (simple shaped) to 2 (complex shaped) have increased between 2019 and 2000, showing
that the fragmented patches of mangrove in 2019 were more irregular compared to larger
mangrove patches in 2000.

3.3. LAI and GPP Analysis

LAI and GPP values for the MODIS IGBP Permanent Wetlands (PW) pixels were
extracted. The classified mangrove and MODIS PW pixels of 2000 and 2019 are shown
in Figure 5. There were 559 and 388 MODIS PW pixels (500 m) for years 2000 and 2019,
respectively, and most of the MODIS PW pixels are located within the classified mangrove
area (68% for the year 2000 and 65% for the year 2019). This means that MODIS PW pixels
can be used to extract the LAI and GPP values and to analyze their changes over time due
to mangrove area changes. The converted total area of MODIS PW is 13,975 ha for the year
2000 and 9700 ha for the year 2019, which was found to be close to the area based on the
classification in this study (13,612.25 ha and 10,704.96 ha, in Section 3.1). Similar to the
classification result (Figure 3a,b), most of the disappearance of PW pixels were noticed
over the Sungai Pulai and Tanjung Piai area (Figure 5).

The mean and standard deviation of MODIS LAI and GPP at 8-day intervals for
2000 and 2019 are plotted and shown in Figures 6 and 7. Five cases are plotted and
discussed namely: (1) mean LAI and mean GPP extracted over all mangrove areas—
Figures 6a and 7a, (2) mean LAI and mean GPP extracted over areas where mangrove is
unchanged—Figures 6b and 7b, (3) mean LAI and mean GPP extracted over areas where a
mangrove gain is detected—Figures 6c and 7c, (4) mean LAI and mean GPP extracted over
areas where a mangrove loss is detected—Figures 6d and 7d, and (5) mean LAI and mean
GPP extracted over selected fragmented areas—Figures 6e and 7e. Table 7 summarizes the
mean and standard deviation values of LAI and GPP for these cases. Note that there are
some missing data in these graphs due to unsuccessful retrieval of the MODIS products on
certain dates that could be due to cloud cover, failure of detectors, or failure of the main
radiative transfer algorithm used to retrieve the LAI/GPP values. The analysis starts from
day of year (DOY) 57 because the MODIS LAI and GPP products are only available after
February 2000.

Table 7. Mean and standard deviation of LAI and GPP from MODIS products. Values in parentheses
refer to the number of pixels involved in each extraction.

LAI GPP (g C m−2)

2000 2019 2000 2019

All PW 3.18 ± 1.56 (145) 3.46 ± 2.09 (84) 6.82 ± 15.26 (141) 5.49 ± 15.10 (77)
Unchanged 3.03 ± 1.94 (89) 3.55 ± 1.97 (67) 5.81 ± 14.05 (87) 6.73 ± 16.65 (65)
Gain 2.81 ± 1.79 (24) 3.51 ± 2.20 (16) 1.88 ± 6.75 (25) 2.78 ± 8.88 (16)
Loss 2.99 ± 2.02 (52) 2.62 ± 2.15 (37) 6.38 ± 14.34 (50) 6.88 ± 15.60 (37)
Fragmented 3.11 ± 1.71 (74) 3.41 ± 1.79 (42) 4.65 ± 12.76 (71) 6.37 ± 16.46 (42)
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Figure 5. Mangrove area overlaid with the MODIS Permanent Wetlands pixels for year (a) 2000 and (b) year 2019.
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Figure 6. MODIS LAI values extracted based on (a) all mangrove area, (b) mangrove no change area, (c) mangrove gain
area, (d) mangrove loss area, and (e) fragmented mangrove area.
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Figure 7. MODIS GPP values extracted based on (a) all mangrove area, (b) mangrove no change area, (c) mangrove gain
area, (d) mangrove loss area, and (e) fragmented mangrove area.
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Figure 6a shows the mean LAI extracted from the MODIS 8-day product overlaid
with all of the PW pixels found in the classified mangrove area. The yearly mean LAI was
3.18 ± 1.56 (mean ± standard deviation) with minimum and maximum values of 0.10 and
6.90, respectively, for the year 2000; while it was 3.46 ± 2.09 (mean ± standard deviation)
with minimum of 0.10 and maximum of 6.60 for the year 2019. Figure 6b shows that the
values extracted from the PW pixels on the unchanged mangrove area also showed an
increasing trend, increasing from 3.03 to 3.55 for the years 2000 and 2019, respectively. The
increases of mean LAI for all PW and unchanged areas indicate that the mangrove leaf
area has grown over the years. Previous analysis (Section 3.1 and Figure 3c) show that
relatively less mangrove gain was noticed when compared to area of mangrove loss. Based
on the values in Figure 6c,d, the mean LAI extracted from the mangrove gain increased
from 2.81 to 3.51, while the mangrove loss area recorded mean LAI decrease from 2.99 to
2.62, respectively. The loss of native mangrove trees, which have dense leaves, to oil palm,
which have a less dense canopy, may be the main reason for the reduced LAI values. The
mean LAI values were found to correspond to the growth or loss of the mangrove in the
study area. Note that the standard deviation values of the LAI are relatively high, which
might be due to the changes in LAI values but are also dependent on species composition,
forest structure, and vegetative phenology, which are all intrinsically related to temperature
and rainfall, and this may need to be examined further.

GPP serves as one of the most important parameters in global carbon analysis, ecosys-
tem assessment, and monitoring of environmental changes [56,57]. To date, studies relating
to mangrove ecosystem processes (including Net Primary Production) have been few,
and the majority of them depend on ground-based flux data (i.e., FLUXNET), which are
restricted to certain locations [21,58,59]. Introducing remote sensing products such as
MODIS GPP could be a solution that will help in improving and extending the study of
mangrove carbon processes at a larger scale. Figure 7 shows the GPP values extracted in
this study based on the five cases. For all PW pixels (Figure 7a), a reduction in mean GPP
from 6.82 g C m−2 to 5.49 g C m−2 is noticed. This reduction could be due to the lower GPP
contributions by the newly gained mangroves in the PW pixels, which may have lowered
the productivity of the whole area. Figure 7b shows the GPP values of the area with no
change. The mean GPP of these pixels increased from 5.81 g C m−2 to 6.73 g C m−2. The
increase of mean GPP over the no change area shows the great ability of mangrove forests
to assimilate CO2. Over the mangrove gain areas, the mean GPP shows an increasing trend
from 1.88 g C m−2 to 2.78 g C m−2. Most of the mangrove gained areas were found to be
mangroves regrown from abandoned aquaculture ponds. Recent studies [60,61] confirmed
that the regrowth of the Rhizophoraceae family on the abandoned ponds is feasible, thus
supporting the increase of GPP over the gained areas. For the mangrove loss area, mean
GPP increased only slightly from 6.38 g C m−2 to 6.68 g C m−2. Based on the classification
results, most of the mangrove losses are due to transformation of the mangrove areas to oil
palm cultivation. The fast-growing oil palm cultivation surrounding the mangrove areas,
which are mixed in the larger MODIS pixels (500m), could be the reason for increasing GPP
despite the loss of mangrove.

The effect of fragmentation on CO2 assimilation and biomass accumulation by ecosys-
tems is dependent on the size and location of the fragmented patches [62]. To analyze the
impact of mangrove fragmentation on the LAI and GPP, we selected the patch of mangrove
area with the largest loss (6883.06 ha in 2000), with a loss 1131.68 ha (16.54%) of mangroves
and which had fragmented into 60 smaller patches between 2019 and 2000. The mean LAI
and GPP values extracted from the MODIS products (Figures 6e and 7e) show a slight
increase from 3.11 to 3.41 and a large change from 4.65 g C m−2 to 6.37 g C m−2, respec-
tively. Of the fragmented patches, six are of a very large size—total of 5704.50 ha (82.88%
of the total area) compared to the MPS (26.63—Table 6), one patch is 17.27 ha, and the
remaining 53 patches are smaller than 9 ha. According to Laurance et al. [63], the interior of
relatively large fragments tends to change less following fragmentation than it does at the
forest margins. This may be due to the edge effects, such as altered microclimate, which

52



Remote Sens. 2021, 13, 1427

do not penetrate into the core habitat of the forest interior. Peh, Lin, Luke, Foster, and
Turner [18] concluded that productivity is stable in fragments of more than 9 ha. Therefore,
despite serious fragmentation over this selected patch, the increases of LAI and GPP may
be supported by the impact of fragmentation on productivity, and the survival rate of
trees/plants may be higher in relatively smaller patches because the abundance of solar
radiation along the edges of the patches may increase the productivity [63]. In smaller
patches (<9 ha), the microclimate (temperature and rainfall) may also be changed, which
may affect the productivity.

4. Discussion

4.1. Mangrove Classification and Loss

SVM classification has been widely explored on different types of remote sensing data
and at global, regional, and local scales with high accuracy [64]. Mountrakis et al. [65] re-
viewed land cover classification using different techniques and concluded that SVM is supe-
rior compared to other classification techniques. Classification works related to mangrove
area identification and mapping using SVM classifiers showed high accuracy [41,66,67].
SVM proved to be one of the best classifiers where high accuracy (~90%) was achieved
based on the Landsat 7 ETM+ pan-sharpened image and the Sentinel-2A image. While
several global mangrove maps are available at 30 m [34,53,68,69], the use of higher spatial
resolution satellite images (15 m and 10 m) in this study aimed to increase the accuracy of
mangrove extent mapping. The classification result showed clear delineation between man-
grove, water bodies, and other land use and land cover, providing high quality mangrove
cover in 2000 and 2019 for mangrove change identification. In a previous study, Kanniah,
Sheikhi, Cracknell, Goh, Tan, Ho, and Rasli [32] performed land use classification of the IM
region from 1989 to 2014 using multiple Landsat images. They showed that, during the 21st
century, urban area significantly increased, converting from oil palm, rubber, mangrove,
and forest.

The spatial pattern of mangrove changes in IM shows a significant loss in the south-
western part, where the three Ramsar sites are located (Figure 3c). The Ramsar sites have
been protected since 2003; thus, the loss may be due to a high input of sediments generated
via construction and land reclamation activities around the Sungai Pulai estuary [70], where
the development of the Tanjung Bin Power Plant, the Forest City, and the expansion area of
the Tanjung Pelepas Port (Figure 1) are located. Reports including the Marine Environment
Protection Committee (MEPC) [71] stated that the increasing traffic of ships and vessels in
this region generates wave currents that can destroy mangroves in coastal areas [72].

Within the mangrove region of IM, 40 sites with aquaculture activities were detected
from the satellite images. Aquaculture conversion from mangrove forests is very popular,
as can be seen in Indonesia, where there has been a 40% mangrove loss over the past
three decades [73]. Figure 4b shows the locations of these aquaculture sites. Most of the
aquaculture sites are located on the “others” land use, at the boundary of the mangrove
area. Thus, we can conclude that aquaculture activities contributed greatly to the loss
of mangrove areas during the study period. At the eastern side of IM (Figure 4b), more
aquaculture sites were found compared to the western site (where the Ramsar sites are
located). One of the reasons for this could be that the Ramsar sites are protected from
these conversion activities while, on the eastern side, where the Johor River flows, the
accessibility to water from the Johor River and the richness of nutrients at the site have
encouraged the conversion of mangrove areas to aquaculture use.

4.2. Fragmentation

Based on all the fragmentation indices, the fragmentation of mangrove in the IM
region indicates a serious impact on the ecosystem as the fragmented mangrove forests
become ecologically and hydrologically isolated. A reduction of Class Area (CA) and Total
Landscape Area (TLA) can decrease the movement zone of animals and discourage flora
and fauna succession within or between fragments. An increased Number of Patches (NP)
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and decreased mean patch size (MPS) mean that increasingly isolated mangrove patches
lead to a loss of connectivity between patches, thus prolonging the migration of animals to
surrounding habitats (due to the decreased existing habitat size or increased species diver-
sity), which is one of the factors that stimulates species extinction [74]. The fragmentation
analysis of the edge and shape indices reveal that human-induced disturbance is signifi-
cantly influencing the mangrove forests. The decreased MSI value showed a reduction of
shape complexity, which could be due to the transformation of mangrove areas (irregular
shaped) into regularly shaped/spaced patches of urban, agricultural, and aquaculture
uses. The changes of edge and shape complexity could ease human access to the frag-
mented patches and exploit the remaining mangrove forests. This could accelerate the loss
and fragmentation of mangrove areas in the future. Fragmentation analysis can support
decision-making on the conservation of mangrove area. The impact of fragmentation to the
mangrove ecosystem should be the focus of future study. Identification of the vulnerable
mangrove patches and/or areas for immediate actions and further regrowth/preservation
plans must be implemented to ensure the longevity of mangrove forests in the IM, as well
as in Malaysia as a whole.

4.3. Mangrove LAI and GPP

The measurement of leaf area and biomass of mangrove at different scales (local,
regional, and global) is very scarce. Traditional destructive methods require a high demand
of manpower, cost, and time, and the allometric equations generated for biomass calculation
are usually site specific [75]. The majority of the scientific data collection based on flux
tower has only built on inland forests, and this kind of data is less available for wetland
forests [76]. Therefore, we propose the initiative to relate MODIS LAI and GPP to show
their capability of detecting leaf area depletion and GPP rate changes of a selected area
with active mangrove loss and fragmentation.

The LAI and GPP values extracted from MODIS products showed reliable values
when compared to previous studies. Clough et al. [77] reported the LAI of the main
mangrove species (Rhizophora apiculata) in Malaysia to be in the range of 3.10–5.10, which is
within the range reported in IM (mean LAI from All PW pixels, 3.18–3.46, respectively in
2000 and 2019). In another study, Shrestha et al. [78] showed MODIS GPP to have a good
match with the modelled GPP of a mangrove area in India, which can be useful for carbon
assimilation estimation. The mean GPP of mangroves in the IM region is 5.49 g C m−2

(based on 2019 data), and this value is close to the GPP value of the tropical forests in Asia
and the Americas, which are in the range of 8.22 and 10.96 g C m−2. Nevertheless, it should
be noted that the sparse resolution of MODIS products (500 m) could have a mixing pixel
issue, where the contribution of oil palm plantation can affect the accuracy of the LAI and
GPP. Thus, data with higher spatial resolution can improve future analysis.

Mangrove forests serve multiple functions that are significant in terms of ecology
and economy, and these functions will be lost or reduced due to mangrove fragmentation.
The unique forms and rich biodiversity of mangrove forests can provide tourism and
recreational activities, including wildlife-watching and fishing [79]. Mangrove forests can
be transformed as habitats and nursery grounds for a variety of flora and fauna [57,80],
while mangrove trees are also functional as a source of food, fuel, and building materi-
als [81]. Mangrove forests are also effective at protecting shorelines, thus preventing soil
erosion, shoreline depletion, and floods [82]. Recent studies have revealed the potential
of mangrove ecosystems in sequestrating CO2 from the atmosphere, thereby reducing the
impact of global warming and climate change [21,83]. The complex structure of mangroves
with trunk, branches, leaves, various types of roots, and soil enable the ecosystem to
store a high volume of carbon (450 Mg ha−1) [83]. Mangrove forests have an equal global
averaged biomass (247 t ha−1) to humid evergreen tropical forests [57,84]. Significant
deforestation and degradation of mangrove forests also leads to the loss of a relatively
large carbon pool [9,85].
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5. Conclusions

Mangrove forest loss has become a significant environmental issue over the past
few decades, mainly due to the disruption of their ecosystem functions and services.
Although various mangrove conservation and preservation actions have been initiated
worldwide, mangrove losses and fragmentation are still ongoing in order to fulfil the
insatiable needs of human beings. In Iskandar Malaysia, mass development has been
ongoing and has destroyed the mangrove cover and fragmented the landscape. Such
changes have been shown in this study to affect the areal extent of mangroves, their leaf
area, and thereby the potential of the ecosystem to assimilate and accumulate carbon
dioxide from the atmosphere. In the last two decades, a net loss of 2907 ha of mangrove
has been estimated in this study using freely available medium-high resolution remote
sensing data. It is noteworthy that the annual loss rate of 1.12%, is higher than the
world’s mangrove loss rate, and the study identified urbanization, oil palm plantations,
and aquaculture activities as the main reasons for the land conversions in this region.
Land cover changes of mangroves involved a reduction in the mean patch size from
105 ha to 27 ha and an increase in the number of mangrove patches from 130 to 402.
Other fragmentation indices, such as edge and shape complexity, also showed increased
values. The impact of fragmentation on mangroves’ primary productivity showed an
increase of 37%, which could be related to the smaller patches (< 9 ha) that can allow more
sunlight to penetrate the edges of the patches and hence increase the productivity. Thus,
it can be concluded that the impact of fragmentation on mangrove productivity is also
dependent on the fragmented patch characteristics. Despite most of the mangrove forests
in IM being declared as Ramsar Sites, the land use change near these protected forests
could aggravate other natural forms of destruction such as soil erosion and tidal changes,
which could further affect small patches of mangroves. Nevertheless, the regrowth of
mangrove trees has also been seen scattered over the IM region, which could be promoted
in the immediate future. Accuracy in the monitoring of the LAI and GPP can assist in
precision planting or rehabilitation of species and habitat. It can also be used as a powerful
response tool for resource managers. This study introduced a novel approach, combining
the mangrove classification results with fragmentation analysis and mangrove LAI and
GPP data to reveal the impact of fragmentation on mangrove productivity in a region that
hosts important mangrove (Ramsar) sites in Malaysia. Such results are expected to provide
standard guidelines for a stronger policy formulation to protect the remaining mangroves
in the region and in other mangrove areas. Further studies on how to prevent mangrove
loss, how to reconnect the fragmented mangrove forests, and how to improve the carbon
stock estimation to prove the value of mangrove to the ecosystem processes are equally
important, now and in the future.
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Appendix A

Table A1. Characteristics of land cover types classified in the study area.

Land Cover Type Characteristics

Forest Primary and secondary forests area with high density of natural trees
Mangrove Mangrove forests
Oil Palm Oil palm trees at different ages
Rubber Rubber trees
Urban Urban area including residential, road networks, industrial and buildings

Water Bodies Water surfaces including rivers and lakes
Others Orchards, shrubs, bush, abandoned lands, aquaculture farms, etc.

 

Figure A1. Training samples used for the SVM classification: (a) year 2000 and (b) year 2019.
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Figure A2. Selected area to show the fragmentation of the study area.
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Abstract: Mangroves are among the most productive ecosystems in existence, with many ecological
benefits. Therefore, generating accurate thematic maps from mangrove ecosystems is crucial for
protecting, conserving, and reforestation planning for these valuable natural resources. In this paper,
Sentinel-1 and Sentinel-2 satellite images were used in synergy to produce a detailed mangrove
ecosystem map of the Hara protected area, Qeshm, Iran, at 10 m spatial resolution within the Google
Earth Engine (GEE) cloud computing platform. In this regard, 86 Sentinel-1 and 41 Sentinel-2 data,
acquired in 2019, were employed to generate seasonal optical and synthetic aperture radar (SAR)
features. Afterward, seasonal features were inserted into a pixel-based random forest (RF) classifier,
resulting in an accurate mangrove ecosystem map with average overall accuracy (OA) and Kappa
coefficient (KC) of 93.23% and 0.92, respectively, wherein all classes (except aerial roots) achieved high
producer and user accuracies of over 90%. Furthermore, comprehensive quantitative and qualitative
assessments were performed to investigate the robustness of the proposed approach, and the accurate
and stable results achieved through cross-validation and consistency checks confirmed its robustness
and applicability. It was revealed that seasonal features and the integration of multi-source remote
sensing data contributed towards obtaining a more reliable mangrove ecosystem map. The proposed
approach relies on a straightforward yet effective workflow for mangrove ecosystem mapping, with
a high rate of automation that can be easily implemented for frequent and precise mapping in
other parts of the world. Overall, the proposed workflow can further improve the conservation and
sustainable management of these valuable natural resources.

Keywords: mangrove ecosystem; random forest (RF); Google Earth Engine (GEE); Sentinel; synthetic
aperture radar (SAR); optical; aerial roots

1. Introduction

Mangroves are unique ecosystems that grow along tropical and sub-tropical coastlines.
They provide many ecological benefits, including coastal protection, carbon sequestra-
tion, and waste and pollution assimilation [1–5]. Despite their significant environmental
services, mangroves continue to disappear due to anthropogenic activities and climate
change [6,7]. For instance, over the last five decades, approximately 20–30% of global man-
groves have disappeared due to various phenomena, such as urban expansion, conversion
to aquaculture, sea-level rise, and sediment alterations [8–13]. Therefore, accurate spatial
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and temporal mapping and monitoring of mangrove ecosystems are crucial for natural
resource conservation and sustainable development goals [14].

In situ observations provide the most accurate information about mangroves. How-
ever, collecting in situ observations through field surveys is challenging, due to the limited
accessibility of mangrove communities, as they are located in harsh and tidally inundated
environments [15]. Therefore, remote sensing has been recognized as an efficient and
cost-effective approach for mapping mangroves [16].

In this regard, multi-spectral [17–19], hyperspectral [20], light detection and ranging
(LIDAR) [21], and synthetic aperture radar (SAR) [22] datasets have been utilized for
mangrove studies. For instance, Manna and Raychaudhuri [23] examined the potential of
Sentinel-2 images for mangrove mapping in Sunderban, India. Moreover, Zhu et al. [21]
employed unmanned aerial vehicle (UAV) optical and LIDAR data to map mangrove-
inundation patterns in Fujian, China. Furthermore, Kabiri [24] utilized RGB images,
acquired by UAV, to classify the coastal ecosystem of Nayband Bay, Iran, into five classes
of mangrove, shallow water, deep water, vegetation, and sand. The ortho-images and
reference samples were fed to a maximum likelihood classifier to fulfill this task, producing
a land cover map with an OA of 87.6%. Likewise, Toosi et al. [25] investigated the suitability
of combining Sentinel-2 and WordView-2 images to produce a mangrove ecosystem map
with eight classes. An upscaling approach in three stages was applied to produce a wall-to-
wall land cover map based on a single-date Sentinel-2 image, resulting in the OA and Kappa
coefficient (KC) of 65.5% and 0.63, respectively. The incorporation of single-date satellite
imagery along with few reference samples were two limiting factors of their research,
leading to moderate accuracy.

Most conducted studies on mangroves using remote sensing data have implemented
traditional approaches on local computers, requiring manual acquiring, correcting, and
processing of satellite images. Therefore, Cárdenas et al. [26] encouraged scholars to
employ cloud-computing platforms, such as Google Earth Engine (GEE), making mangrove
mapping more efficient [27,28]. This platform enables the automation of repetitive tasks
(e.g., image acquisition, calibrating, and processing) and, thus, decreasing the dedicated
time up to 60% [26].

GEE is a cloud platform enabling high-performance computing capabilities for geospa-
tial data processing [29,30]. GEE hosts petabytes of satellite images, which have been
efficiently employed in a variety of Earth science-related studies, such as land cover
mapping [31–33], monitoring of volcanic thermal anomalies [34], monitoring of forest
health [35,36], and wildfire damage assessment [37]. This cloud platform was also used
in several mangrove studies, especially mangrove extent mapping [8,15,38–40]. For exam-
ple, Mondal et al. [39] combined annual downscaled Sentinel-2 images and two machine
learning algorithms of random forest (RF) and classification and regression trees (CART)
within GEE for mangrove extent mapping along the coasts of Senegal and Gambia. The
final mangrove extent maps of RF and CART had average OAs of about 93.44% and 92.18%,
respectively. Furthermore, Sentinel-1 and Sentinel-2 data were employed in conjunction
to produce a 10 m-resolution mangrove extent map of China [15]. In this regard, quantile
synthesis features derived from both datasets were applied to an RF classifier using both
pixel-based and object-based approaches. Finally, the classification results were improved
by the constraint of tidal flats and visual manipulations. It was reported that the pixel-based
approach obtained a higher OA, of approximately 95%, based on two-class (i.e., mangroves
and non-mangroves) mapping.

Almost all of the mangrove-related studies within GEE, to the best of our knowl-
edge, were dedicated to mangrove extent mapping [8,15,39–41] and, thus, the potential
of this cloud platform for detailed mangrove ecosystem mapping was not fully explored.
Additionally, other studies that were carried out to map a detailed mangrove ecosystem
implemented traditional approaches on local computers using a few satellite observa-
tions [23,25]. Therefore, in this study, the GEE cloud computing platform was integrated
with open-access satellite images to produce a detailed mangrove ecosystem map, ad-

62



Remote Sens. 2021, 13, 2565

vancing conservation and sustainable management of these valuable ecosystems through
a higher automation level. The proposed approach uses an uncomplicated yet effective
framework, allowing a consistent mangrove ecosystem mapping workflow for monitoring
and assessment purposes. In this regard, the objectives of the present study are summarized
as (1) incorporating multi-source images of Sentinel-1 and Sentinel-2 for accurate mangrove
ecosystem mapping within GEE through an efficient and reproducible workflow, and (2)
employing dense seasonal time-series observations to alleviate the tidal effect for more
accurate mapping without any further tidal refinements. The robustness of the proposed
method was then examined through cross-validation and consistency analyses. Further-
more, the contribution of multi-source remote sensing data and seasonal observations were
also investigated.

2. Materials and Methods

2.1. Study Area

The study area covers the mangrove ecosystem in the Hara protected area of Qeshm
Island, southern Iran (see Figure 1), which is under protection by different international
conventions [42]. It is approximately centered at latitude and longitude of 26◦ 50′ N and
55◦ 44′ E, respectively, between the northwest estuaries of Qeshm Island and Hormozgan
province. This area is the largest mangrove ecosystem in the Persian Gulf and Oman Sea
coasts [43]. The study area includes grooved tidal channels, wherein tides are semi-diurnal.
Furthermore, this region is affected by considerable tidal fluctuations, which necessitate
taking the tidal effect into account for accurate mangrove mapping. There are generally
two mangrove species, Avicennia marina and Rhizophora mucronata, in the Persian Gulf, the
dominant of which is Avicennia marina, which grows in oxygen-poor sediments [44,45].
The local community uses this mangrove ecosystem for fishing, leaf-cutting, and regular
boat journeys (i.e., tourism), which have negatively impacted the ecosystem, suggesting
the necessity of frequent monitoring for conservation and natural resource management.
Additionally, due to its proximity to the Strait of Hormuz, through which a large number
of oil tankers pass, this area is also adversely impacted by oil leakage [46].

Figure 1. The geographical extent of the Hara protected area of Qeshm Island in southern Iran, along with the spatial
distribution of reference samples over the study area (reference samples information is provided in Table 1).
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Table 1. The number and area of training and test polygons for nine classes that were considered in
this study.

ID Class
Training Samples Test Samples Total

Polygon Area (ha) Polygon Area (ha) Polygon Area (ha)

1 Mangrove 24 14.59 27 15.30 51 39.89
2 Tidal zone 30 17.04 22 13.38 52 30.42
3 Deep water 29 17.67 36 23.12 65 40.79
4 Shallow water 44 16.31 35 15.67 79 31.98
5 Mudflat 43 19.23 43 20.81 86 40.04
6 Aerial roots 20 10.01 20 9.05 40 19.06
7 Urban 18 7.65 24 9.82 42 17.47
8 Bare ground 40 17.61 41 18.41 81 36.20
9 Vegetation 17 5.11 16 4.82 33 9.93

Total 265 125.22 264 130.38 529 529

2.2. Datasets

In this section, the datasets employed for mangrove ecosystem mapping are explained.
First, a description of the collection and preparation of reference samples is provided, and
then the Sentinel-1 and Sentinel-2 satellite datasets are described.

2.2.1. Reference Samples

In this study, precise visual interpretation depended on collecting reference samples
from high-resolution satellite images available in ArcMap and Google Earth. Additionally,
false-color composite satellite imagery and previous mangrove ecosystem maps were
used. Homogenous sites were considered for reference sample collection to mitigate
the challenge of mixed pixels by avoiding fragmented areas. In total, nine classes with
adequate (i.e., in terms of land cover portion in the study area and possible complexity)
reference samples and appropriate spatial distribution (i.e., distributed over the study
area) were generated (see Figure 1). Reference samples were then randomly split into two
groups of training (50%) and test (50%) samples. Random splitting leads to low bias in
the performance of the final classification results [47]. However, the primary challenge
of random sampling is the information leak between training and test samples [48]. In
other words, random sampling at pixel unit causes the training and test datasets to include
reference samples from the same polygons. This issue increases the spatial autocorrelation
between training and test datasets, which affects the accuracy assessment results and
decreases the generality of the classifier [49]. Therefore, to avoid this, the random splitting
step was conducted at the polygon unit, which also spatially disjointed the training and
test samples. It should be mentioned that the random splitting step was implemented ten
times to enable applying a cross-validation procedure for performance evaluation, which
can also prove the applicability and robustness of the proposed method for accurate and
detailed mangrove ecosystem mapping [39]. Table 1 provides the number of training and
test polygons (i.e., the average value in ten iterations) and their corresponding area. In
total, 265 and 264 training and test polygons with an area of about 125.22 ha and 130.38 ha
were generated, respectively.

2.2.2. Satellite Images

The time-series Sentinel-1 and Sentinel-2 satellite images were integrated to produce an
accurate mangrove ecosystem map. Combining SAR and optical data allows the detection
of different physical and spectral characteristics of land covers and, thus, their integration
may achieve precise classification results [50–52]. Additionally, time-series data enables
consideration of the water level fluctuations and tidal effects in the mangrove ecosystem,
which can also increase the reliability of the classification results [53].

Sentinel-1 is a European SAR satellite, which acquires C-band data in dual-polarization
in all-weather conditions with a 6-day temporal resolution. Level-1C ground range detected
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(GRD) images with 10 m spatial resolution in both ascending and descending modes were
employed [54,55]. In total, 86 Sentinel-1 scenes in the VV (vertical transmittance and
receiving) and VH (vertical transmittance and horizontal receiving) polarizations, acquired
in 2019 (i.e., from 1 January 2019 to 1 January 2020), were employed (see Table 2).

Sentinel-2 is also a European platform launched by the European Space Agency (ESA)
and carries the MultiSpectral Instrument (MSI) sensor [54]. This sensor records the Earth’s
surface information in 13 spectral bands from visible to shortwave infrared (SWIR) regions,
with different spatial resolutions ranging between 10 m and 60 m. In this study, only four
bands of blue, green, red, and near infrared (NIR), which are captured with 10 m spatial
resolution, were used. As it is acknowledged that satellite imagery with higher spatial
resolutions improves mangrove ecosystem mapping, [25], here, only bands with 10 m
spatial resolution were employed. This is mainly rooted in the fact that higher spatial
resolution imagery improves the delineation of mangrove ecosystem classes, especially
identifying mangrove patches with a small area or narrow shapes [56]. In total, 41 Sentinel-
2 images, acquired in 2019 (i.e., from 1 January 2019 to 1 January 2020), were considered
for mangrove ecosystem mapping (see Table 2).

Table 2. The number of Sentinel-1 and Sentinel-2 satellite images in each season.

Data
Season

Total Date
Spring Summer Autumn Winter

Sentinel-1 22 22 22 20 86 From 1 January 2019
to 1 January 2020Sentinel-2 11 11 12 7 41

3. Methodology

The schematic framework, providing an overview of the proposed approach, is pre-
sented in Figure 2. This section comprises three sub-sections, in which the satellite data
preprocessing, classification workflow, and accuracy assessment procedure are explained
in detail.

 

Figure 2. Framework of the proposed method for mangrove ecosystem mapping using the random forest (RF) algorithm
and a combination of the Sentinel-1 and Sentinel-2 satellite images within the Google Earth Engine (GEE) platform.
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3.1. Satellite Data Preprocessing

Sentinel-1 GRD data are available within GEE with the snippet of (Image Collec-
tion ID: COPERNUCUS/S1_GRD). They are generally ready-to-use data because several
preprocessing steps are initially applied to them by the GEE developers. These data are
already converted to the backscattering coefficient (σ◦, dB) and are ortho-rectified. In
particular, five preprocessing steps (1) applying orbit file correction, (2) GRD border noise
removal, (3) thermal noise removal, (4) radiometric calibration, and (5) terrain correction
were applied to each Sentinel-1 scene, while their detailed information is provided by the
GEE developers (https://developers.google.com/earth-engine/guides/sentinel1 accessed
on 29 June 2021). Afterward, all available Sentinel-1 scenes in 2019 were categorized based
on the seasons of acquisition, followed by applying a mean reducer to generate seasonal
time-series data. Downscaling time-series Sentinel-1 data by the mean reducer function
produced seasonal datasets, which are less susceptible to image acquisition conditions, and
reduced speckle noise [31].

Sentinel-2 top of atmosphere (TOA) reflectance data, which are available within GEE
by the snippet (Image Collection ID: COPERNICUS/S2), were also used in this study. The
TOA reflectance values were derived through radiometric calibration of raw data. Because
of the importance of applying cloud masking, a filtering step was first implemented to
remove Sentinel-2 scenes with a cloud cover percentage of higher than 5%. Subsequently,
similar to Sentinel-1 data, a seasonal median reducer was applied to all remaining Sentinel-2
scenes, generating seasonal optical features for classification tasks. The median reducer
function allows the production of cloud-free seasonal datasets, in which the noisy, very
dark, and very bright pixels are also removed [31,57].

Ultimately, eight SAR features (4 VV + 4 VH) and 16 optical features (4 blue + 4 green
+ 4 red + 4 NIR bands) were used in synergy to produce mangrove ecosystem maps. It
is well acknowledged that the quality of the classification results directly depends on
the input features [58,59]. As such, the integration of multi-source (i.e., SAR + optical)
data can increase the discriminative capability of the classifier [53]. Moreover, time-series
satellite data can manifest the water level fluctuations in estuaries, such as mangrove
ecosystems [53]. Consequently, seasonal datasets can mitigate the tidal effects in the study
area and allow producing cloud-free mosaics.

3.2. Classification

Different classification algorithms have been employed for mangrove mapping using
satellite images [23,39,60]. In this regard, choosing the most appropriate classifier, in addi-
tion to selecting discriminative features, is important, and directly affects the classification
results. Among classifiers, random forest (RF) proved to be an efficient algorithm in man-
grove mapping studies [15,44,61]. For instance, Toosi et al. [44] compared four frequently
used non-parametric classifiers (i.e., RF, support vector machine (SVM) with linear and ra-
dial basis function kernels, and regularized discriminant analysis) for mangrove ecosystem
mapping, and concluded that the RF classifier was superior.

RF is an authoritative non-parametric classifier, which employs the bootstrap aggrega-
tion technique to combine the classification results of various independent random decision
trees and to predict the class label [62]. Each of these random decision trees is trained by a
subset of training samples, called in-bag samples, and uses the remnant, called out-of-bag
samples, for internal cross-validation. Later, their results are integrated to produce the
final classification results. This enables the RF classifier to have a higher tolerance for noise,
and also avoids overfitting possibilities [63,64]. Moreover, RF has proven its capability of
handling high-dimensional data by resulting in promising maps [31].
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In this study, a pixel-based RF classifier was implemented within GEE because of
the high potential of the RF classifier for mangrove ecosystem mapping [15,44,61]. In this
regard, the final image mosaics, comprising seasonal Sentinel-1 and Sentinel-2 data, were
inserted into an RF classifier. Meanwhile, half of the reference samples were employed to
train the RF classifier. The RF classifier has several tuning parameters that affect the training
phase of the classification step and, thus, directly influence the classification results. Among
these parameters, the number of trees and variables at each node are the most influential
parameters [63], which were set at 100 and equal to the square root of the number of
input features, respectively. It should be noted that these values were determined through
several trial and error attempts based on computational efficacy, visual inspection of the
classification results, and the average out-of-bag sampling error of the RF classifier in the
training phase.

3.3. Accuracy Assessment

Any thematic map derived from remote sensing data should be subjected to a trust-
worthy accuracy assessment to ensure its quality and reliability [65]. Therefore, both visual
interpretation and statistical approaches were conducted to evaluate the accuracy of the
final mangrove ecosystem map. High-resolution satellite images available within Google
Earth and ArcMap were employed for visual assessment of the classification results. In
terms of statistical accuracy assessment, independent test samples were incorporated to
generate the confusion matrix, and then other metrics, such as OA, KC, producer accuracy
(PA), and user accuracy (UA), were derived. The PA represents how well a specific area can
be mapped, whereas the UA is an indicator of how well the produced map represents what
really exists in the study area [66]. Furthermore, the F-score, the harmonic average of recall
and precision, was computed for each class, and then its macro-averaging was reported for
the classification results [67]. As already mentioned in Section 2.2.1, the classification proce-
dure was repeated ten times with different training and test sets to comprehensively assess
the classification performance for mangrove ecosystem mapping through a cross-validation
step.

4. Results

Figure 3 presents the resulting mangrove ecosystem map (i.e., only classes within the
mangrove ecosystem) with 10 m spatial resolution using RF classifier and the integration
of seasonal SAR and optical satellite data within GEE. It should be noted that this map
was produced based on a majority voting step of ten classification results. The majority
voting step allows the production of a more reliable and accurate mangrove ecosystem
map [68]. This is rooted in the fact that combining decisions of several classification results
can lead to better recognition results [69]. Visually, the thematic map had an acceptable
accuracy, indicating the high potential of the proposed method for delineating different
classes. Generally, mangrove areas were depicted precisely, and their surroundings were
also classified as aerial roots, as these roots grow around mangroves. Furthermore, the
middle parts of the tidal channels were correctly classified as deep water, while other parts
located near the coastline areas (i.e., tidal zone) were successfully distinguished as shallow
water. Additionally, along with their corresponding high-resolution satellite images, two
zoomed-in areas are also provided in Figure 3 for better visual interpretation. For instance,
Figure 3b,c illustrates a zoomed-in area of the mangrove ecosystem, in which the mangrove
areas are successfully identified. Moreover, based on Figure 3d,e, the proposed workflow
was highly capable of discriminating between different classes with acceptable precision.
In particular, mangrove areas and their surroundings (i.e., aerial roots) were properly
discriminated, and also shallow water, deep water, and tidal zone classes were delineated
appropriately. Furthermore, other areas without specific covers, which are wet (due to the
existence of narrow water channels), were also accurately classified as mudflat.
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The consistency images of six classes within the mangrove ecosystem were also
computed based on the classification results of ten iterations to determine the robustness of
the proposed classification procedure and the consistency of each pixel. It should be noted
that the consistency images were produced based on the number of label assignments of
each pixel to different classes. In other words, the consistency images present how many
times a pixel was assigned to a specific class. The consistency values ranged between one
and ten, in which one means very low consistency, while ten means highly consistent.
Figure 4 shows the consistency images of six classes within the mangrove ecosystem. It was
observed that in almost all cases, the classifier was able to assign consistent labels to each
pixel in ten iterations. In particular, mangrove pixels were consistently labeled as mangrove
with a high consistency rate of over 85% (i.e., considering pixels with values of eight to
ten). Additionally, the tidal zone, deep water, and mudflat classes achieved reasonable
rates of stability of over 70%. In contrast, the classes of shallow water and aerial roots
obtained lower stability rates. In general, most inconsistencies occurred at boundaries and
fragmented locations, where mixed pixels exist, suggesting the necessity of satellite images
with a higher spatial resolution for more accurate mapping. For instance, the aerial roots
had the highest rate of inconsistency of about 13% (i.e., considering pixels with values of
one). This is probably rooted in the fact that these roots grow around mangrove areas and
in mudflat conditions, and thus, the classifier may encounter difficulties in distinguishing
them. This was more serious in distinguishing aerial roots from mudflat. Furthermore,
another source of inconsistency was found between the shallow water and deep water
classes, which is in fact associated with their greater similarity. The inconsistency revealed
the effect of different training sets and also implied that incorporating the majority voting
step could increase the reliability of the final thematic map.

 

Figure 3. Mangrove ecosystem map of the study area produced using the random forest (RF) algorithm and a combination
of the Sentinel-1 and Sentinel-2 satellite images within the Google Earth Engine (GEE) platform (a), two zoomed areas of the
produced map (b,d), and their corresponding high-resolution satellite images for better visualization (c,e).

Figure 5 presents the average values of PA and UA along with their standard devia-
tion computed for ten iterations of producing mangrove ecosystem maps. The proposed
classification framework obtained high average OA, KC, and F-scores of 93.23% (±1.1),
0.92 (±0.012), and 0.92 (±0.011), respectively. Furthermore, almost all classes achieved
high PAs and UAs of over 90%, demonstrating the high potential and applicability of the
proposed method for detailed mangrove ecosystem mapping. It is evident that the man-
grove classes obtained significant average PA and UA of about 94.4% and 94.5%, indicating
the applicability of the implemented approach for accurate mangrove delineation. In fact,
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the results proved that the proposed approach can not only be used for detailed mangrove
ecosystem mapping but also can be effectively employed for accurate mangrove extent
mapping. The highest and lowest accuracies were related to deep water and aerial roots,
respectively. The aerial roots acquired moderate average PA and UA of approximately
77.6% and 78.2%, respectively, illustrating the challenging task of delineating aerial roots
with high accuracy, which is also in accordance with [25]. Furthermore, Figure 5 demon-
strates that the proposed approach obtained stable PAs and UAs in all ten iterations, since
their standard deviation values ranged between 1.6% and 3.8% for all classes, except for
the aerial roots, for which the standard deviation of PAs and UAs were 7.4% and 5.9%,
respectively.

 

Figure 4. Consistency images of six classes (a) mangrove, (b) tidal zone, (c) deep water, (d) shallow
water, (e) mudflat, and (f) aerial roots in the mangrove ecosystem. The consistency values ranged
between one and ten, indicating very low and very high consistency, respectively.

 

Figure 5. Average producer accuracy (PA) and user accuracy (UA) of different classes along with
their standard deviation (black error bars) computed from ten iterations.
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The confusion matrices of the classifications were also investigated, to provide an
in-depth statistical assessment in each iteration (see Figure 6). Generally, the proposed
approach obtained acceptable accuracy since less confusion happened between classes,
and confusion matrices were almost diagonal. However, there are several spots where
some confusions are observable in Figure 6, such as the confusion between deep water and
shallow water, which occurred in all iterations. Additionally, relatively high confusions
were also found between aerial roots and other classes of mangrove and mudflat, which
were the reasons for the moderate accuracy of aerial roots.

 

Figure 6. Confusion matrices of mangrove ecosystem maps for ten iterations.
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An average confusion matrix (i.e., by averaging and rounding of the corresponding
elements in 10 confusion matrices) is also provided in Table 3 to provide a comprehensive
overview of all ten confusion matrices at a glance. Table 3 shows that the proposed approach
obtained high average OA and KC values of 93.23% and 0.92, respectively, indicating the
high potential of this approach for detailed mangrove ecosystem mapping. Moreover, the
average omission error (OE) and commission error (CE) values were respectively 7.56%
and 7.18%. The dominant confusion was associated with the aerial roots class, causing the
highest OE and CE values of 23.06% and 21.92%, respectively, which are also in accordance
with [25]. In particular, the two highest confusions occurred interchangeably between
aerial roots/mudflat and aerial roots/mangrove. This was because these roots are grown
in mudflat areas, exactly around mangroves. Therefore, it was challenging to separate
aerial roots from two other classes due to the spectral/backscattering similarities and also
the existence of mixed pixels at 10 m spatial resolution. Additionally, the second highest
confusion was also observed between deep water and shallow water, which was actually
because of their spectral/backscattering similarity.

Table 3. Average confusion matrix of mangrove ecosystem mapping using the random forest (RF) algorithm and a
combination of the Sentinel-1 and Sentinel-2 satellite images processed within the Google Earth Engine (GEE) platform.

Mangrove
Tidal
Zone

Deep
Water

Shallow
Water

Mudflat
Aerial
Roots

Urban
Bare

Ground
Vegetation

Mangrove 1582 0 0 0 0 75 0 0 0
Tidal Zone 0 1613 0 72 31 0 0 0 0
Deep Water 0 0 2235 60 0 0 0 0 0

Shallow Water 0 46 108 1645 0 0 0 0 0
Mudflat 0 0 0 0 2091 140 22 0 0

Aerial Roots 94 0 0 0 152 823 0 0 2
Urban 0 0 0 0 9 0 923 48 6

Bare Ground 0 0 0 0 7 0 60 1964 3
Vegetation 2 0 0 0 4 16 14 4 518

PA (%) 95.47 93.99 97.38 91.44 92.81 76.94 94.47 96.56 92.83
UA (%) 94.27 97.22 95.39 92.57 91.51 78.08 90.57 97.42 98.29
OE (%) 4.53 6.01 2.62 8.56 7.19 23.06 5.53 3.44 7.17
CE (%) 5.73 2.78 4.61 7.43 8.49 21.92 9.43 2.58 1.71

Overall Accuracy (OA) = 93.23% Kappa Coefficient (KC) = 0.92

5. Discussion

5.1. General Findings

Mangrove ecosystems are routinely inundated and are located in inter-tidal zones [21].
Therefore, it is difficult to carry out field surveys to collect reference samples with global
positioning system (GPS) devices [15]. The availability of highly accurate reference samples
through field surveys is critical for reliable mapping; however, precise visual interpretation
of high-resolution satellite images can compensate for this limitation. The proposed
method was able to achieve high average OA and KC values, suggesting the suitability
of applying this method when conducting fieldwork is difficult. It should be noted that
generating reference samples even from high-resolution satellite imagery through precise
visual interpretations can cause uncertainties and does not obviate the importance of in
situ reference sample collection for more reliable mapping.

Despite the importance of mapping the mangrove extents, which have been conducted
more frequently using either traditional or cloud computing-based approaches, fewer stud-
ies were devoted to producing detailed mangrove ecosystem maps. However, mapping
relevant classes within a mangrove ecosystem (i.e., aerial roots and mudflat) is required
to enhance condition assessment and also to suggest appropriate solutions for protection
and conservation [25]. In particular, mapping the distribution and condition of aerial roots

71



Remote Sens. 2021, 13, 2565

are highly required for mangrove status monitoring since these roots provide different
morphological and physiological adaptions to adverse environmental conditions [70]. For
instance, these roots facilitate gas exchange to adapt mangroves to live in oxygen-poor
locations [71], protect mangroves from flood effects and hurricanes [70], and mitigate shore-
line erosion to prevent mangrove loss [72]. Furthermore, these roots support mangrove
growth and accretion by stabilizing mudflat conditions [71,73]. Therefore, obtaining precise
information about aerial roots helps to conduct more profound monitoring of mangroves
and also to determine the locations for efficient reforestation programs.

In this study, the GEE cloud computing platform was employed for mangrove ecosys-
tem mapping. GEE provides an unprecedented opportunity to employ dense time-series
data from free-of-charge satellite images, and also it contains many built-in machine learn-
ing and image processing algorithms for satellite data manipulations [29,30]. Furthermore,
the existence of ready-to-use data, along with other characteristics, contributes towards
developing efficient methods with higher rates of automation and, thus, decreases the
dedicated time for data acquisition, calibrating, and preprocessing [26]. Despite these
advantages, GEE also has several limitations, such as restrictions on using numerous
features and training samples (i.e., encountering limit exceed), which were also addressed
in previous studies [32].

5.2. Comparison with the Latest Global Mangrove Maps

The obtained results indicated the high applicability of the proposed method for
mangrove ecosystem mapping and also mangrove extent delineation. Therefore, the man-
grove extent derived from the proposed method was compared with the recent available
global mangrove extent map [74]. This global mangrove map was produced at 25 m (0.8
arc-second) spatial resolution using multi-source remote sensing data of the Advanced
Land Observation Satellite (ALOS) Phased-Array L-band SAR (PALSAR) and optical data
of Landsat-5 and Landsat-7 through an Extremely Randomized Trees (ERT) classifier [74].
Figure 7 presents the mangrove extent resultants of two products, along with the cor-
responding high-resolution satellite images for better visualization. Based on Figure 7,
it is obvious that the proposed approach outperformed the global mangrove product.
Clearly, based on Figure 7a–c, the proposed method was resistant to misclassification,
probably of mudflat and aerial roots (i.e., generally unvegetated areas between mangrove
patches). Likewise, Figure 7d–f also illustrates that the proposed method was successful at
delineating narrow mangrove patches which occurred along the tidal zone areas. Despite
the subtle differences in the classification algorithms and the considered classes in each
workflow, the main discrepancies between the two maps were almost associated with the
spatial resolution of remote sensing satellite data, which suggests the use of Sentinel-1 and
Sentinel-2 data. Therefore, the synergistic use of Sentinel-1 and Sentinel-2 can definitely
enhance the recent global mangrove extent mapping [53]. Although the utility of 10 m
spatial resolution indeed enhanced the mangrove extent mapping, as the results suggest,
it is still necessary to use satellite images with a higher spatial resolution to permit the
production of more precise detailed mangrove ecosystem maps. This is rooted in the fact
that higher spatial resolutions are necessary to discriminate between different classes that
are located near each other, and to reduce the mixed pixel effect, such as separating aerial
roots from two other classes of mangrove and mudflat. However, the current high cost of
acquiring commercial high-resolution images is the main limiting factor.
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Figure 7. High-resolution satellite images of two mangrove areas (a,d), mangrove extents from the recent global mangrove
map (b,e) [74], and mangrove extents derived from the proposed method (c,f).

5.3. Contribution of Multi-Source Remote Sensing Data

As mentioned earlier, the Sentinel-1 SAR and Sentinel-2 optical data were combined
to produce an accurate mangrove ecosystem map. It has been well acknowledged that
a combination of optical and SAR remote sensing data could enhance the classification
results of land cover mapping [75]. However, few studies have combined optical and SAR
data for detailed mangrove ecosystem mapping, and they were mainly conducted based
on optical data [25,76]. Therefore, here, the contribution of multi-source remote sensing
data for detailed mangrove ecosystem mapping was evaluated based on two metrics of
OA and KC. In this regard, the explained workflow (Section 3) was repeated with two
other scenarios of using only optical or SAR data. The obtained results for the multi-source
data processing were comprehensively discussed in the previous section, and the average
OA and KC were 93.23% and 0.92, respectively. The average OA and KC achieved for the
scenario, in which only optical data were incorporated, were 90.67% and 0.89, respectively.
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Although the accuracies based on the optical data were still satisfactory, the decline in
the accuracies indicates the contribution of multi-source remote sensing data for more
accurate mangrove ecosystem mapping. In particular, the use of only optical data resulted
in over 1.5% (i.e., averaged over ten iterations) loss of class accuracies of each tidal zone,
deep water, shallow water, and mudflat classes. Additionally, the results using only SAR
data revealed a weak performance (i.e., OA = 62.98% and KC = 0.58); however, the SAR
data was successful at delineating mangrove areas with a high accuracy of over 90% in
almost all iterations. When using only SAR data, the lower accuracy was mainly associated
with the low capability of separating different classes (i.e., except mangrove) within the
mangrove ecosystem, with an average loss of 31.94% in class accuracies. The obtained
results suggest that the inclusion of SAR data in the classification task, along with optical
data, leads to producing a precise and accurate mangrove ecosystem map. This is mainly
due to the fact that these two data sources can provide complementary information about
the spectral and physical properties of different classes [77,78].

5.4. Comparison with Annual Downscaling

The seasonal downscaling approach was implemented for mangrove ecosystem map-
ping. In fact, the dense time-series SAR and optical data, acquired in 2019, were downscaled
to seasonal features for further analysis. This approach takes the benefits of multi-temporal
image analysis, as well as reducing the computational complexity of considering all avail-
able images without downscaling. Furthermore, since the mangrove ecosystems are rou-
tinely located in the inter-tidal zone and are inundated [21], the classifier may be influenced
by the inundation intensity [79], biasing the mangrove extent and area. One solution is to
use a single date image, in which the lowest tidal condition occurred; however, finding
an image with such criteria may be challenging for several reasons, such as the presence
of cloud and low temporal resolution of satellites. Therefore, it is recommended to apply
time-series data to acquire more reliable classification results. In this study, seasonal fea-
tures were used; however, other researchers applied annual downscaling for mangrove
mapping [39]. Consequently, the usefulness of seasonal downscaling is compared with the
annual downscaling approach. In this regard, the mentioned workflow was also applied to
annual downscaled SAR and optical data, and the obtained results were compared with the
seasonal approach. As is clear from Figure 8, incorporating seasonal downscaling achieved
higher OAs and KCs in all iterations and, thus, it suggests that the seasonal downscaling
can provide more discriminative information compared to annual downscaling [80]. This
may be rooted in the fact that annual downscaling would override the tidal fluctuations,
while the seasonal downscaling includes seasonal variations of water level (i.e., dry and
wet seasons), reflecting tidal fluctuations [78].

 

Figure 8. Overall accuracy (OA; (a)) and Kappa coefficient (KC; (b)) of annual and seasonal downscaling of SAR and optical
data for mangrove ecosystem mapping.
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6. Conclusions

Producing detailed mangrove ecosystem maps is essential for natural resource moni-
toring and sustainable development goals tracking. In this paper, a straightforward yet
robust workflow was proposed to produce mangrove ecosystem maps with high accuracies.
For this purpose, Sentinel-1 and Sentinel-2 data were inserted into an RF classifier within
the GEE cloud computing platform. The final classification results were comprehensively
evaluated through different analyses, and further discussions were provided. The classifi-
cation results obtained high average OA and KC of 93.23% and 0.92, respectively. Moreover,
all the classes obtained high accuracies, except the aerial roots, which achieved moderate
accuracies in all cases, suggesting the consideration of other possible solutions (i.e., higher
resolution images) for more accurate delineation of this class. Altogether, taking both
qualitative (i.e., visual interpretation) and quantitative (i.e., statistical accuracy assessment)
evaluation criteria into account, the proposed method confirmed its applicability in pro-
ducing a detailed mangrove ecosystem map. Furthermore, the comparison results proved
the contribution of multi-source remote sensing data (i.e., SAR + optical), as well as the
effectiveness of seasonal downscaling. The proposed workflow was implemented based
on an open-source platform and free-of-charge satellite data, making it appealing and
applicable in almost all countries.
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Abstract: Remote sensing has been applied to map the extent and biophysical properties of man-
groves. However, the impact of several critical factors, such as the fractional cover and leaf-to-total
area ratio of mangroves, on their canopy reflectance have rarely been reported. In this study, a sys-
tematic global sensitivity analysis was performed for mangroves based on a one-dimensional canopy
reflectance model. Different scenarios such as sparse or dense canopies were set up to evaluate the
impact of various biophysical and environmental factors, together with their ranges and probability
distributions, on simulated canopy reflectance spectra and selected Sentinel-2A vegetation indices of
mangroves. A variance-based method and a density-based method were adopted to compare the
computed sensitivity indices. Our results showed that the fractional cover and leaf-to-total area ratio
of mangrove crowns were among the most influential factors for all examined scenarios. As for other
factors, plant area index and water depth were influential for sparse canopies while leaf biochemical
properties and inclination angles were more influential for dense canopies. Therefore, these influ-
ential factors may need attention when mapping the biophysical properties of mangroves such as
leaf area index. Moreover, a tailored sensitivity analysis is recommended for a specific mapping
application as the computed sensitivity indices may be different if a specific input configuration and
sensitivity analysis method are adopted.

Keywords: global sensitivity analysis; PAWN; canopy reflectance model; vegetation index (VI); mangroves

1. Introduction

The extent and biophysical properties of mangroves have been mapped from multi-
spectral remote sensing (RS) images [1–4]. However, several factors such as the woody
material and tidal height could affect the canopy reflectance [5,6], which was often ignored.
The scientific community has been aware of these, but quantitative assessments are still
needed to identify essential factors that have a major impact on the spectral responses
of mangroves.

Sensitivity analysis (SA) is the study of how to attribute the variation or uncertainty
in the output of a model to variations in the model inputs [7,8]. It can be employed to
rank the input factors based on their contributions to the variations of the model output,
to identify factors that have an insignificant impact on output variations and to find out
regions in the input space that produce particular output values [7,8]. SA can be divided
into global SA (GSA) or local SA according to whether input values are allowed to vary
across the entire input space or around a reference point in the input space [8].

SA has been broadly employed in RS to recognise the input factors that had a major
impact on vegetation canopy reflectance using various canopy reflectance models (CRMs).
The PROSPECT model [9], the SAIL family including SAILH, 4SAIL2 and soil–leaf–canopy
(SLC) [10–12] and the PROSAIL (PROSPECT + SAIL) model [13] were among the CRMs
that had been extensively explored. Variance-based SA (VBSA) methods have attracted a
great deal of attention. Its fundamental concept is to decompose the direct contribution
of a factor to output variance and its overall contribution when interaction effects with
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other factors are considered [8,14,15]. Corresponding metrics are usually termed as first-
and total-order sensitivity indices. Liu et al. [16] applied the extended Fourier amplitude
sensitivity test (EFAST) [17] to calculate the first order indices and interaction effects for
analysing the sensitivities of vegetation indices (VIs) to the leaf area index (LAI) and other
interference factors, such as leaf chlorophyll content (Cab) and average leaf inclination
angle (θl), and evaluating the uncertainties caused by these factors. This study found that
leaf parameters such as Cab and leaf dry matter content (Cm) had an increasing impact
on the uncertainty of estimated LAI towards higher LAI and θl was the most critical
factor for LAI estimation if an ellipsoidal distribution [18] was used. Xiao et al. [19] also
adopted EFAST and model simulations to investigate the sensitivities of reflectance and
VIs to biophysical and biochemical parameters at the leaf, canopy and regional levels.
The importance of leaf parameters reduced at the canopy level, especially for a LAI value
of 0–3, where LAI dominated except for the absorption bands of Cab and leaf water
content (Cw). Although the contributions of LAI and soil were still evident for a sparse
canopy, the fractional cover of vegetation (fCv) dominated at the regional level. The
importance of LAI and soil dropped significantly for LAI > 3 at both the canopy and
regional levels. Mousivand et al. [20] proposed an improved design and sampling for SA
to identify influential and non-influential factors on canopy reflectance based on the SLC
model [12], in which soil moisture (SM) and fCv were explicitly considered. fCv, LAI, θl
and SM were recognised as the most influential factors for a LAI range of 0–6.

The studies mentioned above mainly focused on terrestrial vegetation, while only
limited SA studies were carried out for aquatic vegetation. Villa et al. [21] introduced two
new VIs specifically for aquatic vegetation: the normalised difference aquatic vegetation
index (NDAVI) and the water adjusted vegetation index (WASI) and performed VBSA
to evaluate their sensitivities to LAI, Cab and θl. Both radiative transfer simulations and
linear spectral mixture simulations based on real endmembers were applied. The new VIs
were found to have a higher sensitivity to LAI and θl and better capacity in separating
aquatic and terrestrial vegetation compared with previous VIs for terrestrial vegetation
such as NDVI. Unfortunately, the fCv in 4SAIL2 was fixed to 1, and thus its impact was not
discussed. Zhou et al. [22] conducted EFAST for emergent and submerged vegetation based
on a CRM model for aquatic vegetation [23]. Four scenarios were adopted according to the
combinations of shallow or deep water and sparse or dense canopies. Canopy reflectance
spectra and four VIs, including NDAVI and WAVI for Sentinel-2A (S2A) images, were
simulated. The most influential factors were found to be different for two vegetation types,
with leaf and canopy parameters being dominant for emergent vegetation while water
components accounted for most variability in canopy reflectance of submerged vegetation.
For emergent vegetation, the total order sensitivity indices of all four VIs to LAI were high
for a sparse canopy but dropped notably for a dense canopy. NDAVI outperformed the
other three VIs for a dense emergent canopy in terms of their sensitivities to LAI.

Although extensively applied, VBSA was based on an implicit assumption that vari-
ance was sufficient to represent output variability [24]. This assumption was not appropri-
ate if the output was highly skewed or had multiple modals [25]. Moreover, the probability
distribution of an input factor also mattered, and the total order indices could not be
computed if there were correlated inputs [24]. However, input probability distributions
were usually assumed to be uniform, e.g., [20,22]; the potential correlations between input
factors and the output distributions were rarely examined in many VBSA studies.

These limitations of VBSA could be avoided by adopting moment-independent sen-
sitivity indices that relied on the entire output distribution rather than a particular mo-
ment [26]. These were also referred to as density-based SA (DBSA) as they employed the
probability density function (PDF) or cumulative distribution function (CDF) of the output
to characterise its uncertainty [8,27]. The basic idea was to evaluate the sensitivity by
calculating the divergence between unconditional output PDF and conditional output PDF,
where “unconditional” represented varying all input factors while “conditional” meant
that the corresponding input factor was fixed [8]. Despite its advantages, DBSA was not
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widely applied, partly due to the challenges in obtaining conditional PDFs. Thus, using
CDF instead of PDF could reduce the computational costs and make it relatively easy to
implement [25].

In summary, current studies on SA of canopy reflectance of terrestrial vegetation
and their conclusions might not be applied to mangroves directly, partly because the
adopted CRMs ignored essential factors for mangroves such as fCv, water body and woody
material. Additionally, a few recently proposed VIs for aquatic vegetation, e.g., [21], would
possibly be effective for the RS of mangroves, but quantitative assessments were required.
In addition, the impact of potential correlations between input factors, e.g., plant area
index (PAI) and fCv [28], input probability distributions and the adopted SA methods on
the produced sensitivity indices also needed more evaluations. Therefore, the objective
of this study is to perform a systematic GSA for mangroves to quantitatively assess the
impact of various biophysical and environmental factors on their canopy reflectance and
selected VIs, and to identify the most influential factors under different scenarios, e.g.,
sparse or dense canopies. The findings may help to improve our understanding of the
spectral characteristics of mangroves and recognise the factors that may be mapped from
multispectral satellite images.

2. Methodology

2.1. Overview

In this study, 16 factors were selected based on a priori knowledge, similar studies
such as [19,20,22] and trial tests. As only images captured by nadir or near-nadir viewing
satellites, e.g., Sentinel-2, would be applied at this stage, the observation zenith angle
was set as 0◦, and the solar zenith angle was fixed as 30◦ to avoid distraction. Then
various mangrove scenarios such as sparse or dense canopies were set up according to
one or more properties such as the crown PAI and fCv. This corresponded to different
mangrove formations such as open or closed forests. Samples of the 16 input factors were
generated using VBSA or DBSA and following uniform or normal probability distributions.
The canopy reflectance spectra from 400 to 2500 nm with a 1 nm interval were then
simulated using a CRM of mangrove [28]. Additionally, values of corresponding S2A
bands (Bands 2–8, 8a, 11 and 12) were simulated by convolving the simulated reflectance
spectra with the spectral response functions of S2A. Then twelve VIs were calculated.
Finally, both VBSA and DBSA were performed and the computed sensitivity indices were
examined and compared. The GSA flowchart is shown in Figure 1.

2.2. Canopy Reflectance Model of Mangroves

The adopted CRM of mangroves was a one-dimensional multiple-layer radiative
transfer model [28]. It considered essential biophysical and biochemical properties of
mangroves such as Cab, PAI, fCv, L2T ratio, inclination distributions of leaves and woody
material and environmental factors such as the water body. It could be regarded as an
extension of a previous CRM for aquatic vegetation [23], which was a revision of the
PROSAIL model. Mangroves were divided into three layers as in [28]: the understory (L1),
the stem (L2) and the crown (L3) layers (Figure 2). The layer index would be added to the
variable names in the following to distinguish them from each other, e.g., PAI(3) for the
PAI of the crown layer. The height of the understory was assumed to be the same as water
depth (Hw), and water was not allowed to immerse the crown as that could change canopy
reflectance significantly [29]. Stems were assumed to be covered by the crowns and hence
only had a minor contribution to canopy reflectance. Thus, the stem layer was assigned a
low PAI value of 0.5 and a low fCv value of 0.15, according to [28]. Similarly, most factors
with regard to the optically active components in the water body and other environmental
factors such as bottom reflectance were also fixed as their impact on canopy reflectance was
minor when covered by the canopy. For example, the contribution of suspended particles
in the background water on canopy reflectance was around 10% or lower and mainly in
the visible region [22,28]. Therefore, more attention was paid to the crown, the understory
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and Hw, and other factors were beyond the scope of this study. Hw corresponded to the
changing tidal height. PAI(1) and fCv(1) were employed to explore if there were any
potential contributions from the understory to the observed canopy reflectance, especially
for a sparse canopy.

 

Figure 1. The flowchart of global sensitivity analyses for mangroves.

 
Figure 2. Illustrations of the understory (L1), stem (L2) and crown (L3) layers for mangroves. Hw is
the water depth and is assumed to be the same as the height of the understory for simplicity (The
symbols are courtesy of the Integration and Application Network, University of Maryland Center for
Environmental Science (ian.umces.edu/symbols/, accessed on 14 June 2018)).

2.3. Mangrove Scenarios

If not specified, the input factors were independent, as they were treated in other SA
studies [19,20,22]. All samples discussed in Section 2.3.1 were generated using the Latin
hypercube sampling (LHS) [30] following a uniform or normal probability distribution.
Although independent input samples were widely adopted in SA studies, there might be
an issue with some biophysical properties. For example, it was possible to obtain a high
PAI(3) value together with a low fCv(3) value or vice versa if they were assumed to be
independent (Figure 3a). However, this was not reasonable in nature and the field data
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in [28] revealed a positive correlation with a coefficient of determination of 0.73 between
the PAI and fCv of mangroves. Therefore, another input dataset with correlated PAI(3) and
fCv(3) was also designed in Section 2.3.2.

Figure 3. Illustrations of generated samples (N = 1000) if the crown plant area index (PAI(3)) and
fractional cover (fCv(3)) are assumed to be independent (using Latin hypercube sampling) (a) or
linearly correlated (b).

2.3.1. Factors, Their Ranges and Distributions

GSA was performed for three different mangrove scenarios defined by the ranges of
PAI(3) and fCv(3): general canopy (GEN), sparse canopy (SPS) and dense canopy (DEN)
(Table 1), as previous studies demonstrated that different ranges of inputs could result
in different sensitivity values [19,22]. PAI(3) ranges were set as 0–6 for GEN, 0–3 for SPS
and 3–6 for DEN according to the literature [19,31]. Correspondingly, fCv(3) ranges were
0–1, 0–0.7 and 0.5–1. The overlap between the fCv(3) ranges for SPS and DEN was to
reflect the variability in mangrove forests. The SPS and DEN scenarios corresponded to
open and closed mangrove forests, while the GEN scenario included both situations and
implied a significant variation of mangrove formations. Ranges of other factors such as
leaf parameters were not changed across these scenarios.

Table 1. Considered input factors and configurations for mangrove scenarios.

Factors Unit Definitions
General Uniform Sparse Uniform Sparse Normal Dense Uniform Dense Normal

Min Max Min Max Mean STD Min Max Mean STD

Leaf

N - Leaf structural properties 1 4 1 4 3 0.3 1 4 3 0.3
Cab μg·cm−2 Leaf chlorophyll content 0 100 0 100 35 3.5 0 100 35 3.5
Cw μg·cm−2 Leaf water content 0 0.2 0 0.2 0.07 0.007 0 0.2 0.07 0.007
Cm g·cm−2 Leaf dry matter content 0 0.05 0 0.05 0.01 0.001 0 0.05 0.01 0.001

Canopy

PAI(1) - Plant area index (PAI) of
Layer 1 (L1, understory) 0 3 0 3 1 0.1 0 3 1 0.1

PAI(3) - PAI of Layer 3 (L3, crown) 0 6 0 3 2 0.2 3 6 4.5 0.45
L2T(1) - Leaf-to-total area ratio of L1 0 1 0 1 0.5 0.05 0 1 0.5 0.05
L2T(3) - Leaf-to-total area ratio of L3 0 1 0 1 0.75 0.075 0 1 0.75 0.075
fCv(1) - Fractional cover of L1 0 1 0 1 0.5 0.05 0 1 0.5 0.05
fCv(3) - Fractional cover of L3 0 1 0 0.7 0.3 0.03 0.5 1 0.8 0.08

LIDFa(3) - Leaf inclination distribution
function parameter a of L3 a −1 1 −1 1 −0.2 0.1 −1 1 −0.2 0.1

WIDFa(3) - Wood inclination distribution
function parameter a of L3 −1 1 −1 1 −0.2 0.1 −1 1 −0.2 0.1

HSl(3) - Hot spot size parameter of L3 0 0.1 0 0.1 0.05 0.005 0 0.1 0.05 0.005
zeta(3) - Tree shape factor of L3 0 2 0 2 1 0.1 0 2 1 0.1

Other

Hw m Water depth 0 2 0 2 0.4 0.04 0 2 0.4 0.04

Raw_so - Bidirectional reflectance of
water surface 0 0.03 0 0.03 0.02 0.002 0 0.03 0.02 0.002

Note: Uniform or normal is the probability distribution of input factors, with Min and Max for minimum and maximum values and Mean
and STD for mean value and standard deviation. a Equivalent to average inclination angle (AIA) by a = (45 − AIA)∗π2/360 [11].
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In addition to the GSA methods and ranges of inputs, the probability distributions of
inputs might also impact the sensitivity values [32]. The uniform (UNI) and normal (NRM)
probability distributions were both adopted for the input factors under SPS and DEN.
The mean values for NRM were selected according to [28], and corresponding standard
deviation values were set as 10% of the mean values, except for LIDFa(3) and WIDFa(3).
NRM indicated that a priori information on the mangrove forest was available and the
variability in canopy structure was small, while UNI indicated a larger variation in canopy
structure. Under GEN, only a uniform distribution was applied as it might not be suitable
to use a nominal value to represent such a wide range of PAI(3).

2.3.2. Correlated PAI(3) and fCv(3)

In this case, the linear relationship between PAI and fCv of mangroves from [28] was
applied to generate samples for correlated PAI(3) and fCv(3). First, the ranges of PAI(3)
and fCv(3) were set as 1–5 and 0.1–0.9. Hence, their values were within 0–6 and 0–1 after
adding random variations. Then random samples of all 16 factors were generated as in
the GEN case. Second, PAI(3) or fCv(3) was modified to make them correlated. For VBSA,
fCv(3) values were recalculated according to PAI(3) values and the linear relationship, and
subsequently, random variations within ±0.1 were added (Figure 3b). In the case of PAWN,
the same methodology was used to compute unconditional CDF and conditional CDFs
for most factors except fCv(3). When fCv(3) was fixed for computing the corresponding
conditional CDFs, PAI(3) was recalculated based on fCv(3), and then a random variation
within ±0.8 was given. Finally, sensitivity indices for these two sample datasets were
computed using VBSA and PAWN, respectively. Correlated inputs were only applied to
GEN as a demonstration because the relationship between PAI and fCv could be different
for various sites and species.

2.4. Vegetation Indices

VIs have been broadly applied for mapping the biophysical properties of man-
groves such as LAI [2,3,31], but the impact of woody material, fCv and background
water was rarely reported. Although a large number of VIs were available [33]
(https://www.indexdatabase.de/, accessed on 9 December 2019), this study did
not intend to investigate all possible choices. Instead, the VIs in Table 2 were simulated
based on the spectral response function of the S2A multispectral instrument to assess
their sensitivities to the input factors such as PAI, fCv, L2T ratio and Hw. These indices
were either widely applied for terrestrial vegetation such as NDVI [34] and EVI [35] or
in particular, proposed for aquatic vegetation such as NDAVI [36]. Some of the VIs for
aquatic vegetation included shortwave infrared (SWIR) bands to address the existence of
background water, e.g., RGVI [37] and WFI [38].

Table 2. Definitions and sources of the adopted vegetation indices in this study.

Indices Descriptions References

NDVI = ρNIR−ρR
ρNIR+ρR

Normalised Difference Vegetation Index [34]

SAVI = (1 + L) ρNIR−ρR
ρNIR+ρR+L Soil Adjusted Vegetation Index (L: 0–1) [39]

EVI = G ρNIR−ρR
ρNIR+C1ρR−C2ρB+L Enhanced Vegetation Index (G = 2.5, L = 1, C1 = 6, C2 = 7.5) [35]

NDWI = ρG−ρNIR
ρG+ρNIR

Normalised Difference Water Index [40]

MNDWI = ρG−ρSWIR1
ρG+ρSWIR1

Modified Normalised Difference Water Index [41]

NDAVI = ρNIR−ρB
ρNIR+ρB

Normalised Difference Aquatic Vegetation Index [36]

WAVI = (1 + L) ρNIR−ρB
ρNIR+ρB+L Water Adjusted Vegetation Index (L: 0–1) [21]

WFI = ρNIR−ρR
ρSWIR2

Wetland Forest Index [38]

MDI1 = ρNIR−ρSWIR1
ρSWIR1

MDI2 = ρNIR−ρSWIR2
ρSWIR2

Mangrove Discrimination Index using SWIR 1 or SWIR2 [38]

LSWI = ρNIR−ρSWIR1
ρNIR+ρSWIR1

Land Surface Water Index [42]

RGVI = 1 − ρB+ρR
ρNIR+ρSWIR1+ρSWIR2

Rice Growth Vegetation Index [37]
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2.5. Sensitivity Analysis Methods
2.5.1. Variance-Based Sensitivity Analysis

VBSA employed variance to represent sensitivity and attributed the variance of the
model output to the variances of input factors. For a model with k independent input factors
and a scalar output Y: Y = f (X1, X2, . . . , Xk), the variance (V(·)) of Y can be decomposed
as [14,15]:

V(Y) = ∑i Vi + ∑i ∑j>i Vij + . . . + V12...k (1)

The first order indices Si could be represented by the expected reduction in output
variance if Xi could be fixed [15]:

Si =
Vi

V(Y)
=

VXi (EX∼i (Y
∣∣Xi))

V(Y)
(2)

where E(·) was the expectation operator and subscripts Xi or X~i indicated that the operation
(E(·) or V(·)) was taken over Xi or all factors but Xi. The total order indices ST

i could be
written as [15]:

ST
i =

EX∼i (VXi (Y
∣∣X∼i))

V(Y)
= 1 − VX∼i (EXi (Y

∣∣X∼i))

V(Y)
(3)

Likewise, VX∼i (EXi (Y
∣∣X∼i)) was the expected reduction in output variance if all input

factors but Xi could be fixed. Other partial variances in Equation (1) corresponded to the
interactions among input factors, and more details could be found in [15]. Both first and
total order indices were broadly used, but this study only focused on total order indices.
Due to numerical errors, this approach might produce negative sensitivity indices, usually
corresponding to noninfluential factors [7]. Hence, negative values were reset to zero.

Open-source software was available for VBSA, such as SimLab [43] and the SAFE
toolbox [44] (https://www.safetoolbox.info/info-and-documentation/, accessed on 7 May
2019). The SAFE toolbox for MATLAB® was employed in this study as it also provided
a DBSA method. Trial tests showed that the computed sensitivity indices in VBSA could
be affected by the number of samples, especially for NRM. Multiple sample sizes from
16,000 (1000 × 16) to 128,000 (8000 × 16) with an increment of 16,000 were tested for
SPS_NRM and DEN_NRM. Finally, 112,000 samples were generated for each VBSA case as
the computed sensitivity indices of reflectance spectra were consistent and stable.

2.5.2. Density-Based Sensitivity Analysis

The PAWN method [25] in the SAFE toolbox was adopted for DBSA in this study.
It employed output CDFs instead of PDFs to reduce computational costs and to avoid
tuning parameters, e.g., the bin width for calculating PDF [25]. The distance between
unconditional and conditional output CDFs was taken as a measure of sensitivity. First,
Nu samples were randomly generated for a model of k input factors Y = f (X1, X2, . . . Xk),
to evaluate the empirical unconditional CDF of output FY(Y). Second, n samples were
generated for each input factor Xi and acted as conditional points. At each conditional
point, Nc random samples were generated over X~i to obtain the empirical conditional
CDF of output FY|Xi

(Y). The Kolmogorov–Smirnov (KS) statistic was applied as a measure
of the distance between unconditional and conditional CDFs (as cited in [25]):

KS(Xi) = max
Y

∣∣∣FY(Y)− FY|Xi
(Y)

∣∣∣ (4)

In other words, it was the maximum divergence between conditional and uncondi-
tional CDFs for a conditional point of Xi. Considering all the conditional points of an
input factor Xi, another statistic, e.g., the maximum or the median, was computed over all
conditional points of Xi to obtain the PAWN sensitivity index PT

i [25]:

PT
i = statistic

Xi
[KS(Xi)] (5)
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By its definition, PT
i would be between 0 and 1, and higher values suggested a greater

influence on the output [25]. Taking a result for S2A NDVI as an example, the unconditional
and conditional CDFs and the KS statistics for all conditioning points of fCv(3) are in
Figure 4. As the KS curves had various patterns, derived PT

i values using the maximum
or the median statistic could be different and thus lead to divergent conclusions. The
maximum statistic was adopted because it could detect factors that had influences on
the output for at least one conditioning point [32]. The number of samples in a PAWN
case was 66,000 in this study, with 2000 samples used to calculate the unconditional CDF,
and 20 conditioning points for each of the 16 input factors and 200 samples used per
conditioning point. More conditioning points or samples did not change the computed
sensitivity indices remarkably.

Figure 4. Unconditional (red) and conditional (grey) cumulative distribution functions (a) and corresponding Kolmogorov–
Smirnov (KS) statistics (b) of the normalised difference vegetation index with regard to the fractional cover of the mangrove
crown (fCv(3)). The PAWN index can be different if the maximum (blue) or the median (green) metric is adopted (b).

3. Results

The normalised sensitivity indices (NSIs) for reflectance spectra and sensitivity indices
(SIs) for S2A bands and VIs from VBSA and PAWN were presented as stacked bar plots
(Figures 5 and 6). As VIs had various scales, they were not normalised to avoid confusion,
especially for VBSA indices that sometimes only one or two factors achieved positive
sensitivity values, e.g., MDI2 in Figure 6c.

 

Figure 5. Stacked bar plots for normalised sensitivity indices (NSIs) of reflectance spectra in VBSA (a–e) and PAWN (f–j)
for a general (GEN) canopy with uniformly sampled inputs (UNI) (a,f), a sparse (SPS) canopy with UNI (b,g), SPS with
normally sampled inputs (NRM) (c,h), a dense (DEN) canopy with UNI (d,i) and DEN with NRM (e,j). Each x value
corresponds to a wavelength. The NSI value is represented by the height of a bar and marked in the y-axis. Each colour
corresponds to a factor defined in Table 1.

86



Remote Sens. 2021, 13, 2617

 

Figure 6. Stacked bar plots for sensitivity indices (SIs) of Sentinel-2A (S2A) band reflectance and vegetation indices (VIs) in
VBSA (a–e) and PAWN (f–j) for a general (GEN) canopy with uniformly sampled inputs (UNI) (a,f), a sparse (SPS) canopy
with UNI (b,g), SPS with normally sampled inputs (NRM) (c,h), a dense (DEN) canopy with UNI (d,i) and DEN with NRM
(e,j). Each x value corresponds to a S2A band reflectance or a VI. The SI value is represented by the height of a bar and
marked in the y-axis. The scale of the y-axis is restricted from 0 to 3.8 to show sufficient details. Each colour corresponds to
a factor defined in Table 1.

3.1. General Scenario

For GEN, two large areas in blue and yellow in Figure 5a could be easily recognised,
indicating that L2T(3) and fCv(3) had significant influences on canopy reflectance across
nearly the whole visible to SWIR regions in VBSA. Exceptions were the boundaries of
chlorophyll absorption bands around 600 nm and 710 nm where the impact of Cab rose
and fell abruptly and the NIR bands where the influence of L2T(3) dropped. WIDFa(3)
was the next most influential factor, especially in the SWIR, followed by PAI(3) across NIR
and SWIR bands. Comparatively, PAWN NSIs were slightly different from VBSA NSIs in
that PAI(3) had higher NSI values while the NSI values of L2T(3) and fCv(3) were lower,
especially in SWIR (Figure 5f). It is worth noting that Hw had higher NSI values in visible
bands compared with its NSI values in other regions.

Since PAWN SIs were always between 0 and 1 while VBSA SIs could have various
scales and negative values were reset to zero, the NSI patterns of VIs in the two methods
could appear distinct. The stacked PAWN SIs were around 3.5 while stacked VBSA SIs
varied from lower than 1 to higher than 6. The scale of the y-axis in Figure 6 was limited to
0–3.8 to maintain sufficient details. Once they were normalised, the length of each bar could
be stretched or compressed. Thus, the relative length of the bar for a specific factor might
look different in stacked bar plots of SIs and NSIs. In PAWN, multiple VIs had similarly
high SI values of fCv(3) such as S2A-B11, MNDWI and RGVI (Figure 6f). A challenge with
the PAWN indices was that all factors obtained a SI value between 0 and 1. Hence, the
influential factors might look less outstanding than they did in VBSA, even if its SI value
was high, e.g., the NSI of fCv(3) for MNDWI was 0.21, but its SI value was 0.68.

The output PDFs in VBSA were shown in Figure 7. Those outputs that had high NSI
or SI values to fCv(3) in VBSA, such as S2A-B8a, MNDWI, NDAVI and RGVI, exhibited
various PDFs. Their SIs with confidence intervals were obtained via bootstrapping and
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further examined. Although the PDF of RGVI was remarkably skewed, all factors had
narrow confidence intervals (around 0.1 or lower) and the most influential factor fCv(3)
was outstanding (not shown). The confidence intervals were also narrow for MNDWI and
NDAVI but were relatively large for S2A-B8a (around 0.25 or higher, Figure 8a). In the
case of PAWN, the KS plots for MNDWI with regard to input factors in Figure 8b could
provide more insights. KS values of fCv(3) would increase if fCv(3) was approaching 0
or 1 from 0.4 and for the latter case, KS values would become stable after fCv(3) reached
about 0.9. When L2T(3) moved towards the two ends 0 or 1, its KS values slightly increased
but were not obvious. As for PAI(3) and Hw, their KS values only grew noticeably if their
values decreased to zero, e.g., lower than 1 for PAI(3). This implied that PAI(3) was more
influential when its value was low.

 
Figure 7. Probability density function (PDF) of Sentinel-2A (S2A) band reflectance and vegetation indices for a general
(GEN) canopy with uniformly sampled inputs (UNI) (blue curves), a sparse (SPS) canopy with UNI (red curves) and SPS
with normally sampled inputs (NRM) (yellow curves). The bin size for SPS_NRM is one-third of that for GEN_UNI and
SPS_UNI to show details of the latter two.

Figure 8. Mean sensitivity indices and confidence intervals estimated via bootstrapping for S2A-B8a in
VBSA (a). Kolmogorov–Smirnov (KS) statistics for MNDWI with regard to input factors in PAWN (b).

3.2. Sparse Mangroves—Uniform Input Probability Distributions

The NSIs of reflectance spectra for SPS_UNI had many similarities with those for
GEN_UNI, but there was an increased impact of Hw in visible bands (Figure 5b,g). In
the NIR region, the NSI values of PAI(1) and fCv(1) slightly increased in PAWN, but only
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the NSI values of fCv(1) increased in VBSA. This implied that the understory and water
background had a larger impact on SPS, which was intuitive. Therefore, more attention
was paid to Hw in this section.

S2A-B3 achieved the highest SI value of 0.87 to Hw, but all factors had large confidence
intervals (around 0.4 or higher, Figure 9a). Although Hw could still be distinguished,
its bounds were already overlapped with those of other factors. This was somewhat
unexpected as the S2A-B3 values were quite normally distributed and far from skewed
(Figure 7c). Moreover, a larger sample size of up to 128,000 did not significantly reduce
the confidence intervals. For RGVI and NDAVI, Hw, fCv(3) and PAI(3) were all identified
as influential, but their SI values slightly varied and their confidence intervals might
overlap. For NDWI, the SI of fCv(3) was slightly higher than that of Hw, i.e., 0.360 vs. 0.348.
Their confidence intervals were narrow (lower than 0.1) but still overlapping. Ranking
them further might not be reliable because of the overlapping confidence intervals [8,45].
Therefore, a high SI itself in VBSA might not guarantee a solid link between the output and
an input factor. It was better to check the output distributions and confidence intervals as
well, as suggested by [32].

Figure 9. Mean sensitivity indices and confidence intervals estimated via bootstrapping for S2A-B3 in
VBSA (a). Kolmogorov–Smirnov (KS) statistics for NDWI with regard to input factors in PAWN (b).

By comparison, S2A-B3 had similar SI patterns in PAWN, with the SI of Hw higher
than 0.6 and those of other factors lower than 0.3, but the confidence intervals of all factors
were much narrower (around 0.1 or lower). For NDWI, Hw, fCv(3) and PAI(3) had SI values
of 0.685, 0.414 and 0.404, separately. All factors had narrow confidence intervals (lower than
0.1) in PAWN, and there was no overlapping between them and other factors. As for the KS
plot Figure 9b, PAI(3) and fCv(3) presented similar patterns with those in Figure 8b, except
that the KS values of fCv(3) continued rising with increasing fCv(3) since its maximum
value was 0.7 rather than 1 in GEN. Hw had a two-way impact on NDWI and S2A-B3. This
might be attributed to the different contributions of absorption and scattering by the water
body and its components, both of which could vary with water depth. In contrast, only
low Hw values could make a difference for VIs based on SWIR bands, e.g., MNDWI in
Figure 8b, as the absorption of water in SWIR was strong.

3.3. Sparse Mangroves—Normal Input Probability Distributions

This case corresponded to small variations in the biophysical and biochemical prop-
erties of mangrove plots and the environmental factors. As shown in Figure 5b,c, there
was a dramatic change in the NSI patterns of reflectance spectra in VBSA. fCv(3) and
LIDFa(3) became dominant in NIR, while the most influential factor was L2T(3) in SWIR.
Additionally, the impact of other factors was minor in these regions. Consequently, only
a limited number of factors obtained positive SIs for multiple VIs such as the EVI and
NDVI (Figure 6c). In contrast, the NSI patterns in PAWN also changed but more smoothly
(Figure 5h). fCv(3) and L2T(3) were also the most influential factors in NIR and SWIR,
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separately. In addition, the influences of fCv(1) and LIDFa(3) increased in NIR and the
impact of tree shape factor zeta(3) also increased.

As shown in Figure 7, the output PDFs in VBSA for SPS_NRM were remarkably
different from those for GEN_UNI and SPS_UNI. This indicated that input distributions
could affect the output distributions. However, the normal-like output PDFs did not
guarantee that the confidence intervals of SIs were narrow. Taking MNDWI as an example,
the confidence intervals were around 0.3, and there was overlapping between influential
factors fCv(3) and L2T(3) and other factors (Figure 10a). Comparatively, the confidence
intervals for MNDWI (Figure 10b), MDI1 and LSWI in PAWN were basically within 0.1.

Figure 10. Mean sensitivity indices and confidence intervals estimated via bootstrapping for MNDWI
in VBSA (a) and PAWN (b).

3.4. Dense Mangroves—Uniform Input Probability Distributions

When the canopy became dense, the impact of PAI(3) dropped quickly, and the impact
of fCv(3) also declined noticeably, as shown by their shrunken areas in Figure 5d,i. Hw
barely made a difference in this case. In the meanwhile, the influences of LIDFa(3) increased
in NIR and Cw in SWIR. Moreover, the impact of L2T(3) and WIDFa(3) grew significantly,
especially in SWIR. L2T(3) had the highest SI values over other factors for multiple VIs
such as MDI2, LSWI, NDAVI and WFI (Figure 6d,i). This might be attributed to the distinct
spectral responses of leaves and woody material, and the adopted reflectance values of
woody material were higher than the reflectance of leaves in SWIR.

It was interesting to find that Cab also had outstanding PAWN SI values for multiple
VIs such as NDVI, EVI and S2A-B4 (Figure 6i). Comparatively, this was less significant for
NDVI and EVI in VBSA (Figure 6d). The KS plots for NDVI in PAWN were presented in
Figure 11b. L2T(3) had a two-way impact while the KS values of Cab increased dramatically
only when its values were lower than 20 μg·cm−2. This was because low Cab values close to
zero could remarkably increase the canopy reflectance in chlorophyll absorption bands [46].
The SI values of Cab and L2T(3) for NDVI in PAWN were 0.879 and 0.771, respectively, with
SI values of other factors lower than 0.4. The confidence intervals of all factors were within
0.1 in PAWN. In contrast, L2T(3) was the most influential factor (SI = 0.544) for NDVI in
VBSA, followed by Cab (SI = 0.207, Figure 11a). However, the confidence intervals were
wide (around 0.3 or higher) and overlapping.
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Figure 11. Mean sensitivity indices and confidence intervals estimated via bootstrapping for NDVI in
VBSA (a). Kolmogorov–Smirnov (KS) statistics for NDVI with regard to input factors in PAWN (b).

3.5. Dense Mangroves—Normal Input Probability Distributions

Compared with the DEN_UNI case (Figure 5d,i), L2T(3) together with fCv(3) still had
a dominant impact in NIR and SWIR for DEN_NRM, but L2T(3) was less influential in
some NIR bands in VBSA (Figure 5e,j). In addition, LIDFa(3) also had noticeable influences
in NIR. WIDFa(3) became less influential compared with that for DEN_UNI. Similar to
SPS_NRM, only a limited number of factors had positive SI values in VBSA for multiple
VIs such as EVI, MNDWI and WFI (Figure 6e) and the confidence intervals were generally
wide (0.25 or higher) in VBSA.

LIDFa(3) was investigated in this section as other influential factors such as fCv(3) and
PAI(3) had been covered in previous sections. As shown in Figure 6e,j, NIR bands were the
most sensitive to LIDFa(3). Therefore, the KS statistics and confidence intervals for S2A-B8
in PAWN were presented in Figure 12. fCv(3), L2T(3) and LIDFa(3) had high SI values
and were distinct from other factors. The KS plots of fCv(3) and L2T(3) in Figure 12b were
similar to those in Figures 8b and 9b, indicating that the output CDF diverged from the
unconditional CDF when the fCv(3) and L2T(3) values increased or decreased. The KS
plot of LIDFa(3) presented a similar pattern to that of fCv(3). Moreover, the KS values
were higher when LIDFa(3) moved towards −0.6 (θl = 67◦) than they were when LIDFa(3)
was close to 0 (θl = 45◦), which implied that canopy reflectance in NIR changed more
significantly if leaves were vertically distributed.

Figure 12. Mean sensitivity indices and confidence intervals estimated via bootstrapping for S2A-B8
(a) and Kolmogorov–Smirnov (KS) statistics for S2A-B8 with regard to input factors (b) in PAWN.

3.6. General Scenario with Correlated PAI(3) and fCv(3)

If PAI(3) and fCv(3) were correlated for a general scenario, both were recognised as
influential factors in PAWN. Besides, similar NSIs of canopy reflectance could be obtained
with the GEN_UNI with random PAI(3) and fCv(3) values (Figures 5f and 13b). In contrast,
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VBSA only identified PAI(3) as being influential in NIR and SWIR while fCv(3) had virtually
no impact (Figures 5a and 13a). The computed NSIs in VBSA in Figure 13a might be
meaningless because there were correlated inputs. Thus, no further interpretation was
given. This plot demonstrated that the correlated biophysical properties of mangroves
changed the calculated sensitivity indices in VBSA.

Figure 13. Stacked bar plots for normalised sensitivity indices of reflectance spectra in VBSA (a) and
PAWN (b) for a general canopy with correlated PAI(3) and fCv(3). Each x value corresponds to an
output, e.g., reflectance or VI, and each colour represents an input factor. The SI value is represented
by the height of a bar and marked in the y-axis.

3.7. A Brief Summary

The results demonstrated the influences of SA methods and input configurations
on the calculated SIs for reflectance of mangroves and the importance of examining the
confidence intervals of calculated SIs, which might be ignored in previous SA studies on
the RS of vegetation. The calculated NSI and SI values highlighted that canopy reflectance
of mangroves was sensitive to fCv(3) and L2T(3) and PAI(3). The influences of Hw for a
sparse mangrove canopy and inclination distributions of plant material and Cab for a dense
canopy might also be noteworthy. VIs with SWIR bands such as MNDWI and RGVI also
had potential for mapping the fCv(3) and PAI(3) of mangroves and traditional VIs like EVI.
Several VIs such as LSWI, MDI and WFI were sensitive to the L2T(3) of mangroves and
might be helpful for estimating the LAI of mangroves from multispectral satellite images.

4. Discussion

4.1. Global Sensitivity Analysis Methods and Interpretations of the Results

The NSIs for canopy reflectance spectra of vegetation, as shown in Figure 5a–e, were
frequently adopted in VBSA [19,20,22,47]. In addition, NSIs for VIs were also applied to
evaluate the sensitivities of selected VIs to specific biophysical and biochemical properties
of vegetation [22,47]. Stacked NSI plots for reflectance spectra were intuitive and straight-
forward for identifying the most influential factors and corresponding wavelength regions.
However, SI values of various VIs could have distinct scales and only a limited number
of factors might have non-negative SI values in VBSA, such as EVI and SAVI in Figure 6c.
Therefore, a factor could obtain a high and dominant NSI value for a VI, e.g., the NSI of
fCv(3) was 0.641 for EVI, while its absolute SI value was only 0.181 and not the highest
compared with other VIs. Hence, the NSI values might mislead us to conclude that EVI was
the most sensitive to fCv(3) in this case. Moreover, if a VI was only sensitive to a limited
number of factors, the confidence intervals of these factors might be large and overlapping,
and, thus, the results were not robust.

With regards to the output PDFs in VBSA, the results only showed that input distri-
butions could affect output distributions but did not reveal any promising links between
output PDFs and the confidence intervals of calculated SIs. A highly skewed output PDF
such as RGVI in Figure 7y for SPS_UNI did not necessarily mean the SIs in VBSA had wide
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or overlapping confidence intervals. On the other hand, a normal-like output PDF such
as S2A-B3 in Figure 7c for SPS_UNI did not guarantee robust SIs in VBSA (Figure 9a). In
addition, different numbers of input samples in VBSA did not significantly change the out-
put PDFs as long as they were large enough but could result in divergent SI values in this
study, especially for normally distributed input samples. Comparatively, the confidence
intervals of calculated SIs for S2A band reflectance and VIs were usually narrow in PAWN
with 2000 samples for the unconditional CDF and 200 samples per conditional point by
20 conditional points for conditional CDFs. The KS plots could be used to identify the
value ranges of inputs where conditional output CDFs diverged from the unconditional
CDF, which implied that there were noticeable changes in the output values.

4.2. Differences between Sparse and Dense Mangrove Canopies

The results also demonstrated that input ranges and distributions could affect the
computed SIs, particularly in VBSA. For the GEN_UNI case that PAI varied from 0 to 6,
fCv(3), L2T(3) and PAI(3) were recognised as the most influential factors (Figure 5a,f). This
partly coincided with the results of [20] that fCv and PAI were among the most influential
factors. For the SPS_UNI case, the impact of fCv(3) became slightly less dominant in VBSA
while the impact of PAI(3) increased (Figure 5a,b). The changes in the impact of PAI(3) and
fCv(3) in PAWN were not significant (Figure 5f,g). Additionally, increased influences of Hw
and fCv(1) in visible and NIR bands were identified by both methods. If the inputs were
turned into normal distributions (SPS_NRM), the computed NSIs of reflectance spectra
also changed remarkably. As shown in Figure 5c,h, PAI(3) became less influential while the
impact of fCv(3) and L2T(3) increased in NIR and SWIR, respectively.

If the canopy was dense with uniformly distributed inputs (DEN_UNI), the NSI values
of fCv(3) and PAI(3) decreased, particularly for PAI(3) (Figure 5d,i). Factors regarding the
understory and background such as PAI(1) and Hw had negligible influence now. In the
meanwhile, biophysical properties related to woody material, such as L2T(3) and WIDFa(3),
had a dominant impact in SWIR. The impact of LIDFa(3) also grew remarkably in NIR.
In addition, the influences of leaf parameters, including Cab, Cw and Cm, increased by
various degrees in different spectral regions. For the DEN_NRM case, the NSI patterns
in PAWN (Figure 5j) were similar but slightly different from Figure 5i for DEN_UNI. The
impact of fCv(3), L2T(3) and LIDFa(3) increased while that of WIDFa(3) decreased. In
VBSA, fCv(3) and L2T(3) became the most influential factors, and the influences of LIDFa(3)
and WIDFa(3) both decreased (Figure 5e).

In summary, PAI(3) had a larger impact under the sparse canopy while the influences
of leaf parameters and inclination angles increased under a dense canopy. This agreed with
the results in [19,22]. The new factors fCv(3) and L2T(3) were among the most influential
factors under all examined scenarios except for the correlated case where fCv(3) was not
identified as influential in VBSA. Hw mainly affected the reflectance of sparse canopies,
but it was worth noting that the water body was not allowed to immerse the crown in
this study. Otherwise, the infrared reflectance of submerged mangroves would reduce
dramatically, which had been used to identify them from satellite images [4,48].

4.3. Potential Limitations and Suggestions

The structure of real mangrove forests was more complicated than the model could
simulate. Simplifications in the model might result in overestimated contributions from
fCv(3) because it was applied to weight the reflected radiation from mangroves directly.
Additionally, the woody material was assumed to be randomly distributed and to share the
same fractional cover with leaves in the adopted model [28]. Its reflectance spectra were av-
eraged from field measurements over the lower parts (lower than 2 m) of stems [28], which
might be different from the reflectance of branches and shoots in the crowns. Consequently,
the contributions of L2T(3) and its SIs could also be overestimated.

Although there were potential divergences in the computed SI values of L2T(3), the
impact of woody material on canopy reflectance were demonstrated [5,49]. In addition, cau-
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tion for the inclination distributions of leaves and wood was still needed because they could
be an obstacle when mapping the LAI of mangroves from satellite images. The leaf area
ratio could be measured by classifying the point clouds acquired by laser scanning [50,51].
Average inclination angles could also be calculated from point clouds [52,53] or digital pho-
tos [54]. However, convenient and operational methods were still lacking [55], particularly
when they needed to be measured together with PAI and fCv at many of the plots to be
used as calibration or validation data.

For future studies, it might be a good start to map the fCv of mangroves together with
PAI because field data of fCv were relatively easy to collect, e.g., by taking hemispherical
photos or upward photos [56]. Moreover, the data could be used to assess the potential
correlation between PAI and fCv, and further the impact of fCv and background water on
PAI mapping. According to the GSA results in this study, multiple VIs may be suitable
for mapping PAI and fCv of mangroves from S2A images. Besides traditional VIs such as
EVI and NDVI, other VIs such as MNDWI and RGVI were also sensitive to fCv and PAI.
The new VIs for mangroves or aquatic plants such as MDI, WFI and RGVI had a common
characteristic that SWIR bands were incorporated. This study showed that the SWIR bands
and these VIs could be helpful for mapping mangroves, but the optimal VI for mapping a
biophysical property from a specific dataset might vary.

5. Conclusions

Based on a canopy reflectance model of mangroves, this study demonstrated that GSA
methods (variance-based or density-based), input ranges and probability distributions
(uniform or normal) could affect the computed sensitivity indices under the examined
mangrove scenarios. Briefly, fCv(3) and L2T(3) were among the influential factors for the
infrared reflectance of mangroves under the examined scenarios. PAI(3) was also influential
for a sparse canopy but became less influential for a dense canopy. In contrast, inclination
distributions of plant material and leaf parameters, e.g., leaf water content, could become
more influential in infrared bands for a dense canopy. Moreover, the influence of water
depth was noteworthy for a sparse canopy and maybe other scenarios if the water body
could immerse the crown.

Since the results and conclusions can be different if a specific model, GSA method
and input configuration are adopted, it may be essential to perform a tailored GSA ac-
cording to the study area and available data. Based on the results, it is recommended that
attention should be paid to the L2T and fCv as they may affect estimating the LAI or PAI
of mangroves. A complete field dataset that includes the factor to be mapped such as
LAI and if possible, other influential factors such as fCv, L2T ratio and inclination angles
would be beneficial to further analyses and evaluations of their impact. This, in turn, could
contribute to the development of a protocol on field data collection for mapping mangrove
from remote sensing images. Considering the challenges in field data collection, it may be
a good start to collect and map PAI and fCv of mangroves. For VI based mapping methods,
more choices such as MNDWI and RGVI deserve an attempt if SWIR bands are available,
but tests are still needed to determine the optimal VI for mapping a specific property based
on the available field data and RS images.
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Abstract: Wetlands are one of the most biologically productive ecosystems. Wetland ecosystem
services, ranging from provision of food security to climate change mitigation, are enormous, far out-
weighing those of dryland ecosystems per hectare. However, land use change and water regulation
infrastructure have reduced connectivity in many river systems and with floodplain and estuarine
wetlands. Mangrove forests are critical communities for carbon uptake and storage, pollution con-
trol and detoxification, and regulation of natural hazards. Although the clearing of mangroves in
Australia is strictly regulated, Great Barrier Reef catchments have suffered landscape modifications
and hydrological alterations that can kill mangroves. We used remote sensing datasets to investi-
gate land cover change and both intra- and inter-annual seasonality in mangrove forests in a large
estuarine region of Central Queensland, Australia, which encompasses a national park and Ramsar
Wetland, and is adjacent to the Great Barrier Reef World Heritage site. We built a time series using
spectral, auxiliary, and phenology variables with Landsat surface reflectance products, accessed in
Google Earth Engine. Two land cover classes were generated (mangrove versus non-mangrove) in a
Random Forest classification. Mangroves decreased by 1480 hectares (−2.31%) from 2009 to 2019.
The overall classification accuracies and Kappa coefficient for 2008–2010 and 2018–2020 land cover
maps were 95% and 95%, respectively. Using an NDVI-based time series we examined intra- and
inter-annual seasonality with linear and harmonic regression models, and second with TIMESAT
metrics of mangrove forests in three sections of our study region. Our findings suggest a relationship
between mangrove growth phenology along with precipitation anomalies and severe tropical cyclone
occurrence over the time series. The detection of responses to extreme events is important to improve
understanding of the connections between climate, extreme weather events, and biodiversity in
estuarine and mangrove ecosystems.

Keywords: Landsat; mangrove forests; time series; Google Earth Engine; random forests; phenology;
TIMESAT; climate; monitoring; Great Barrier Reef

1. Introduction

Coastal and estuarine ecosystems are valued for their ecosystem services, particularly
coastal protection, as a nursery for fish, and carbon sequestration [1,2]. Mangrove forests
are an important part of tropical estuarine ecosystems and considered integral to the
emerging blue carbon economy. Blue carbon consists of carbon that is stored, sequestered,
or released from coastal vegetation ecosystems [3]. Despite this, human interference
leading to widespread degradation and deforestation has caused a decline in mangrove
cover and biomass. Carbon emissions from global mangrove loss is estimated to be
2391 Tg CO2 eq by the end of the century [4]. For reference, emissions from the global
transportation sector are projected to rise to 11,900 Tg CO2 eq by 2100 [5]. Although the
rate of mangrove loss has decreased substantially since the 1990s, from ~2% to <0.4% per
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year [6] increasing human pressure along the coast has synergistic effects with climate
change and threatens the distribution and abundance of mangroves. As coastal forests
with unique adaptations to saline conditions, mangroves form a characteristic vegetation
zone along sheltered bays, tidal inlets and estuaries in the tropics and subtropics [7].
The major threats to mangroves are climate change, clearing (through urban areas, ports,
aquaculture, and industry development), timber harvesting, dieback, changes in hydrology
(e.g., the restriction or alteration of flows), and pollution [8–10]. Understanding mangrove
ecosystems and mapping their extent is critical to meeting the UN sustainable development
indicator 6.6.1: “change in the extent of water-related ecosystems over time”. Indicator 6.6.1
is used in determining progress toward meeting Sustainable Development Goal 6 (SDG 6),
which is to “ensure availability and sustainable management of water and sanitation for
all” [11]. Forest degradation mapping at the canopy scale supports SDG 6, and is primarily
based on time series of vegetation indices obtained from optical sensors on satellites,
e.g., medium spatial resolution Landsat satellites [12].

A key requirement for understanding the impact of human activities on climate,
ecosystem function, and biodiversity is assessing the rate of change in tropical forest
cover [13,14]. Many studies have analysed change dynamics in forest and wetland ecosys-
tems through remote sensing data over time [15,16]; however, image sequences are often
incomplete and of limited temporal range [17,18]. In tropical regions, many observations
each year are required to obtain a complete cloud-free set of images for a region of in-
terest [13,19]. Landsat-based classification with supervised machine learning techniques
for land cover, along with spectral transformations using Vegetation Indices (VIs), are
an efficient method for accurate mapping and monitoring of tropical forests and man-
groves [20–22]. Random Forests (RF) are an ensemble learning technique for land cover
classification, robust to outliers and noise, and computationally undemanding than other
classification methods (e.g., boosting, support vector machines) for practical applications
with a lot of data [23–25]. Given the reported high accuracy of RF in land cover classifi-
cation of forests and wetlands, RF have been employed to map the extent of mangrove
forests in both the sub-tropics and tropics [26–28].

The most commonly used VI is the normalized difference vegetation index (NDVI) [29],
a broadband green-sensitive (photosynthetically active) index for detecting seasonal and
inter-annual variations in canopy vigour and growth in relation to climate parameters and
relating these variations to the capacity of the canopy to photosynthesize [30]. In accor-
dance, phenological variations are changes in the rate of growth as indicated by changes
in photosynthesis that can be detected by satellites through spectral transformations of
VIs. Indeed, the variation from season to season in the satellite spectral data as measured
by remote sensing and vegetation phenology, is an essential approach for understanding
the role of vegetation in climate change [31]. Xiao et al. [32] challenged the idea that
habitats in tropical environments do not show variation from season to season and they
identified changes in growth rate driven by variation in rainfall. With dense time series,
the suitability of phenology-based smoothing techniques such as harmonic regression and
Savitsky-Golay have recently been demonstrated to map tropical forest disturbance and
degradation [33,34]. Furthermore, to capture the temporal variation of vegetation growth
cycles the localised climate at each time series location should be extracted. Localised pre-
cipitation patterns will influence the phenophases, and if the spatial distribution of weather
stations is insufficient, these subtle variations in climate will not be recorded [35]. Finally,
it has been shown that under a comparable climatic environment, genotypes of species
distributed across a study region may vary enough to express a different phenophase [36].

Few studies have used VIs as phenological variables in classification approaches to
maximise spectral contrast among vegetative communities and discriminate wetlands
and mangroves from other vegetation types (e.g., grasses, crops) [16,37]. Li et al. [38]
investigated wetland dynamics with greenness trends under intense land cover change on
the coast of China. Lamb et al. [39] mapped estuarine emergent wetlands based on seasonal
structural change, and [40] identified salt marsh seasonal trend decomposition in the
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Chesapeake and Delaware Bays, USA. Wu et al. [16] extracted phenological differences in
the wetland vegetation of Chongming Island, China with time series harmonic regression.
As these analyses were computationally demanding, the researchers used time series of
the Landsat archive linked with wetland vegetation phenology features as a Google Earth
Engine (GEE)-managed pipeline. The GEE platform enables processing and classification
applications for large-scale geospatial mapping and monitoring of land cover and land
use change [22]. Nonetheless, change dynamics and degradation in mangrove forests
integrating phenology-based dense time series has rarely been investigated with remote
sensing approaches [15]. In this paper, we use the term ‘phenology’ in a general context to
describe the cyclic vegetation activity of mangroves over time. Here, we apply machine
learning classification procedures to a time series of mangrove cover and examine climate
drivers of mangrove growth dynamics across Central Queensland, Australia. To our
knowledge, this is the first study to examine mangrove phenology across different sites
on the east coast of Australia. Harmonic regression captures cyclic behaviour on an intra-
and inter-annual basis, and the Savitzky-Golay filter captures subtle dynamics during
the vegetative growing season. We used both approaches to fully examine the seasonal
variability in mangrove forests in our study region. The study region is a large estuarine
area adjacent to the Great Barrier Reef, Australia. Although management of Great Barrier
Reef catchments is important to maintain the ecological integrity of the reef, monitoring
of estuarine areas receives little attention. Moreover, monitoring of Ramsar Wetland sites
on the east coast is absent. The objectives of the study are: (1) to quantify how coastal
mangrove forests have spatially and temporally changed in a decadal period (2009–2019)
within estuarine catchments of the Great Barrier Reef; (2) to investigate the seasonality in
tropical mangrove forests through a dense time series of satellite images, exploring the
inter-annual and seasonal responses and variations of mangrove phenology to 21 years
of rainfall variability; (3) to inform regional coastal planning, conservation efforts, and
policy-makers.

2. Materials and Methods

2.1. Study Area

Our study area is located within the northeast coast drainage division of the Central
Queensland coast encompassing the Mackay Whitsunday Natural Resource Region and
part of the Isaac Region, Central Queensland, Australia (Figure 1). Cape Palmerston Na-
tional Park is positioned in the Ince Bay Receiving Waters adjacent to the World Heritage
listed Great Barrier Reef. The Shoalwater and Corio Bays Area Ramsar site is located
south of Cape Palmerston National Park. A large proportion of the marine waters in the
Ramsar site are included in marine parks (Commonwealth and Queensland), including
the Great Barrier Reef Marine Park (Commonwealth) and Great Barrier Reef Coast Marine
Park (State) [41]. The Ramsar wetland supports a broad range of natural values including
nationally/internationally threatened wetland species, significant species diversity and
large populations of waterbirds, green turtles, dugong, and fish that use the site for vital
life history functions such as roosting, nesting, feeding, and breeding. Cape Palmerston
National Park is listed as a category II protected area on the International Union for Conser-
vation of Nature (IUCN) World Database on Protected Areas and covers 7200 hectares [42].
The Shoalwater and Corio Bays Area Ramsar site covers 239,100 hectares [43].

The primary intensive land use in the region is the cultivation of sugar cane, making
up 18% of the catchment area, with Mackay being the largest sugar-producing region
in Australia [44]. Grazing is also an important land use, accounting for 42% [45]. The
region’s estuaries directly support several commercial fisheries, e.g., East Coast Inshore
Fin Fish Fishery, East Coast Otter Trawl Fishery, and Line Fishery (Reef) [46]. Additionally,
recreational fishing is a considerable activity in the region, with 25% of the population
participating in fishing for recreation, far greater than the state average of 15% [47]. Man-
groves and associated communities cover 87,994 hectares of tidal land in the region, with
nine wetland areas recognized as nationally important [48], and one Ramsar wetland
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recognized as internationally important. The Ramsar wetland site is subtropical with
species from both temperate and tropical regions. Within the high rainfall areas of the
Central Queensland coast bioregion, estuarine wetlands are about equally dominated by
saltpan and samphire flats along the high intertidal area; yellow and orange mangroves
(Ceriops tagal and Bruguiera spp.) dominate along the mid-intertidal area; and the stilted
mangrove (Rhizophora stylosa) dominates in the lower intertidal area [48]. The river man-
grove Aegicera corniculatum occupies an intermediate-upstream estuarine position while
the ubiquitous grey mangrove Avicennia marina inhabits a wide range of tidal inundation
levels [49]. Twenty-three tree and shrub species of mangroves are present [50]. Mean
maximum temperature is between 22.7 ◦C in July and 30.4 ◦C in January, while the mean
minimum temperature is between 11.4 ◦C in July and 23.2 ◦C in January. The dry season is
May-November, the wet season occurs December-April. Mean annual rainfall is 1528.4 mm,
while the wettest month (344.8 mm) is recorded in February. The study area is located
between latitude 20◦22′–22◦58′S and longitude 147◦19′–150◦46′E (Figure 1).

Figure 1. Study site with weather stations at Lethebrook, Koumala, and St. Lawrence-Bowen to Shoalwater and Corio Bays
Area Ramsar Wetland, Central Queensland-Landsat fractional cover image visualised by using the Band 1-red (bare ground
and rock), Band 2-green (vegetation), Band 3-blue (non-green vegetation indicative of drier habitats with less vegetative
cover), provided by [51].

2.2. Image Classification

Medium-resolution satellite imagery is suitable for mapping mangrove and wetland
areas on a regional scale [52]. There are two reasons for selecting Landsat imagery: (1) it
is acquired at regular intervals, and (2) it is freely available from USGS. Data processing
and analysis was performed in Google Earth Engine (GEE). We used a Landsat time series
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to understand how mangroves have changed over time, identify areas of loss/gain and
understand patterns of change in our study region. Landsat data were derived from the
United States Geological Survey (USGS) Landsat 7 and 8 Collections, atmospherically
corrected surface reflectance products [53]. In regions that are severely cloud-affected,
such as the tropical coastal zone, it is necessary to accumulate enough Landsat data to
create a cloud-free composite, therefore we chose three-year decadal windows, 2008–2010
and 2018–2020. We created a composite on a per pixel per band basis using the median
reducer in GEE [27]. Topographic variables were included in the GEE image stack as a
1 arc-second (approximately 30 m) digital elevation model, the Shuttle Radar Topography
Mission (SRTM), sourced from the National Aeronautics and Space Administration Agency
(NASA) Jet Propulsion Lab [54]. The SRTM provides elevation and slope data subset to
include only low elevation coastal areas where mangroves may be present. We masked to
elevations in our study region that are less than 65 m. above mean sea level. Two distinct
data sources served as reference datasets: Global Mangrove Watch (GMW) Project [55]
providing the 2009 reference data; and Geoscience Australia’s Digital Earth Australia
platform [56] providing the 2019 reference data. For cloud/shadow removal we filtered
the Landsat composite using the quality assessment (QA) band [57] and the GEE median
reducer. We calculated four VIs [58,59]: the Simple Ratio (SR) indicates healthy vegetation;
the Normalized Difference Vegetation Index (NDVI), the most widely used VI and useful
in understanding vegetation density and assessing changes in plant health; the Modified
Normalized Difference Moisture Index (MNDWI) assesses vegetation water content; Green
Chlorophyll Vegetation Index (GCVI) estimates green leaf biomass. In GEE, we applied
masks to areas of low elevation and high NDVI and MNDWI. Additional masking allows
us to focus on areas that are more likely to have mangroves. The auxiliary variables in
the analysis were the topographic variables derived from the digital elevation model. The
phenology variable was the median NDVI calculated from the time series in the three-year
decadal windows, 2008–2010 and 2018–2020. The phenology variable was included to
separate mangrove trees from other vegetation types (e.g., grass and crops) based on
differences in seasonality [60].

Since this study seeks to evaluate predictor variables that tell us the extent of man-
grove forest, only two land cover classes were generated (mangrove versus non-mangrove
that includes bare soil, sand beach, water, crops, pasture, and native vegetation). We sought
a supervised classification approach that is robust to normal distribution departures, can
overcome limitations such as overfitting, and uses different subsets of the same training
dataset [61]. Machine learning allows us to use samples of areas with and without man-
groves to detect mangrove forests across a region. RF is a supervised, nonparametric, and
ensemble tree-based machine learning algorithm, which has increasing use in mangrove
mapping with Landsat images [62]. RF has been found to outperform comparative classifi-
cation models in projection accuracy and computation cost [63,64]. Based on the predictors
(Landsat bands), the trees will vote for each pixel to detect mangrove vs. non-mangrove
with the most supported value assigned to each pixel. We used 100 decision trees with
five predictors including the vegetation indices NDVI, MNDWI, SR, and GCVI. In GEE,
the RF classifier chooses five predictors based on a random selection from seven bands
in Landsat 8: ‘B5’, ‘B6’, ‘B4’, and the VIs. In the same way, the RF classifier chooses five
predictors based on a random selection from seven bands in Landsat 7: ‘B4’, ‘B5’, ‘B3’,
and the VIs. The training samples were collected by creating geometries of the location of
mangroves using the VIs and elevation masks with Landsat false-colour composites in GEE.
The total number of sample points (pixels) was 19,500. In our analysis, 80% of the sample
points were randomly split and used to train the classifier. The decision trees were fully
grown without pruning using a sample (with replacements) of 20% of the training data,
also randomly split, to test the accuracy and validate the RF classifier [65,66]. For accuracy
assessment a confusion matrix was calculated based on the sample data and classification
result giving the evaluation metrics, user’s and producer’s accuracy, overall accuracy, and
Kappa coefficient. Moreover, the mangrove forest maps were visually inspected and com-
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pared with high-resolution mangrove canopy cover maps from Digital Earth Australia to
evaluate the performance of our method [56]. Considering that the Digital Earth Australia
maps quantify the change in the extent of mangrove forest over the period 1987 to 2016 at
an annual, national scale, there is concurrence with the classification maps in our study
that demonstrate a regional and local approach.

2.3. Mangrove Phenology

All available images (i.e., 2012 to 2020) for our study region (Bowen to Shoalwater and
Corio Bays Area Ramsar Wetland) were acquired from the Landsat 8 surface reflectance
data with a spatial resolution of 30 m and temporal resolution of 16 days and pre-processed
in GEE using functions including masking clouds/cloud shadows. Images were stacked
together to build a time series to be used in the models.

We used linear and harmonic regression models to analyse the seasonal parameter
trends in our time series. First, we fitted an ordinary least squares model to the time series
of all Landsat 8 statistical coefficients with the linear regression reducer in GEE. Second,
we detrended the data to reveal underlying fluctuations in the time series. Third, we
fitted Fourier-style harmonic regression equations including a trend term to each pixel and
spectral component to identify phenological behaviours [37]. Harmonic regression is a
mathematical technique largely focused on NDVI that is used to decompose a complex,
static signal into a series of individual cosine waves (terms) and an additive term [31]. The
time series is approximated as a trigonometric polynomial, with coefficients added to the
harmonic model to get the amplitude (A) and phase (ϕ):

pt = β0 + β1t +A cos(2πωt − ϕ) + et = β0 + β1t + β2 cos(2πωt) + β3 sin(2πωt) + et (1)

where pt is the value of the harmonised NDVI within a pixel obtained from the satellite data
at time t, β0 is a constant component of the regression that designates the start of greenness
at each pixel, β1 is a linear coefficient (slope/linear trend), β2 is the cosine term coefficient,
β3 is the sine term coefficient, et is a random error, and ω is the angular frequency. We set
ω = 1 (one cycle per unit time for an annual cycle) to fit the model to the time series.

TIMESAT Analysis

The program TIMESAT is an approach for extracting phenological parameters from
remote sensing data and was partly developed from the premise that changes in vegetation
phenology may be an indication of climate change [67]. The method is based on nonlinear
least squares fits to the upper envelope of the NDVI data [68]. First, we applied a median
filter and interpolated the missing values. Second, we used the Savitzky-Golay model and
seasonal trend decomposition for a yearly growing season in tropical mangrove forests.
The Savitzky-Golay filter follows within-season variations and therefore captures subtle
dynamics during the growing season [69]. The result is a smoothed curve adapted to the
upper envelope of the NDVI values [68]. To analyse the dense time series (1999–2020), we
first created a harmonise function between L5, L7, and L8 sensors. There are small, but
potentially significant differences between the spectral characteristics of Landsat ETM+
and OLI, depending on the application. It is advisable to harmonise for a long time series
that spans Landsat TM, ETM+, and OLI sensors [31]. Following the harmonise function,
we added the NDVI band to the collection. We extracted 13 phenological metrics for
each season (21 years) from the TIMESAT program with Landsat dense time series at our
study region. TIMESAT provides phenology parameters such as: start of season (SOS)
depicted as initiation of a consistent upward trend in the NDVI time series, or the beginning
of measurable photosynthesis in the mangrove canopy; end of season (EOS) identified
as the end of consistent downward trend in the time series, or the end of measurable
photosynthesis in the mangrove canopy; season length (LOS) or duration of photosynthetic
activity (time of SOS to EOS); peak NDVI value (the maximum recorded NDVI value);
base value (the average of the minimum values left and right of the season); amplitude
(the range between the maximum NDVI and the base level or the maximum increase in
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canopy photosynthetic activity above the baseline); peak time (POS: time of the middle
of the season, or time of maximum photosynthesis in the canopy); left derivative (rate of
increase at the beginning of season or growth rate); right derivative (rate of decrease at the
end of season or rate of senescence [70–72]. Mangrove productivity over the region was
estimated using the amplitude, peak NDVI, left and right derivates, large integral, and
small integral. The large integral is the function describing the season from the start to the
end (an estimate of the total vegetation productivity in the annual cycle). The small integral
is the difference between the function describing the season and the base level from season
start to end. It is a measure of the productivity within the growing season [70,73]. Further,
we used the Seasonal-Trend Decomposition by LOESS (STL) method to remove spikes and
outliers in the time series and produce a smoother trendline [74].

Relationships between TIMESAT seasonality parameters were examined with linear
regression models by the increasing/decreasing patterns (regression slope) and goodness-
of-fit (adjusted coefficient of determination, Adjusted R2). To characterise the geographic
distribution of environmental drivers of mangrove phenology, we applied climate data
for 1999–2020 to the time series. Monthly rain gauge precipitation data interpolated from
ground station measurements were obtained from the Australian Bureau of Meteorology
online climate database (www.bom.gov.au, accessed on 1 March 2021). For the northern
section of our study region, rainfall data were primarily gathered from adjacent Lethebrook
Station (station number: 33041) with missing data supplemented from Bowen Station (sta-
tion number: 33264). For the mid-section of our study region rainfall data were primarily
gathered from the adjacent Koumala Station (station number: 33038) with missing data
supplemented from Plane Creek Station (station number: 33059). For the southern section
of our study region rainfall data were collected from two adjacent stations at St. Lawrence
(station numbers: 33065 and 33210). As rainfall amount differs across the region, trendlines
of the precipitation data were superimposed on the interpolated and filtered NDVI from
the three locations across our study site: northern at Repulse Bay, mid-section at Rocky
Dam Creek/Cape Palmerston National Park, and southern at Herbert Creek bordering
Shoalwater and Corio Bays Area Ramsar Wetland. The peak of the season (POS) in relation
to precipitation trends were compared between sites.

RF classification, linear and harmonic regression modelling and dense time series
data processing was done with Google Earth Engine. The TIMESAT program was used
for phenometric extraction (Figure 2). Statistical analysis was done with the R statistical
environment [75] (r-project.org/).
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Figure 2. Workflow used for land cover classification and phenological analysis.
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3. Results

The aim of this research is to quantify how coastal mangrove forests have spatially
and temporally changed in a decadal period (2009–2019) within estuarine catchments of
the Great Barrier Reef and to explore the seasonality, climate responses, and variability of
mangroves through a dense time series of satellite images in Central Queensland, Australia.
Both biotic and abiotic factors constrain the phenological trajectory of a mangrove forest,
e.g., regional climate, seawater and soil salinity, latitude, and local vegetation interactions,
and these can vary across different locations and years. Sea surface temperatures in the
Australian region have warmed by around 1 ◦C since 1910, with the Great Barrier Reef
warming by 0.8 ◦C in the same period. Moreover, observations show that there has been
an increase in the intensity of heavy rainfall events in Australia. (Figures S1 and S2 in the
Supplementary Materials). Against the background of climate change, our study examines
the phenodynamics of mangrove forests across different sites on the east coast of Australia.

3.1. Image Classification

The mangrove forest extent derived from the RF classification shows a decrease of
1480 hectares (−2.31%) over the decadal window, 2009–2019 (Table 1). In ArcGIS, we
generated a Landsat 8 Operational Land Imager (OLI) true-colour mosaic of our study
region, overlaying the mosaic with the mangrove change map from GEE (Figure 3). The
overall classification accuracy and Kappa coefficient for the 2009 and 2019 land cover maps
were 95% and 95%, respectively (Table 2). The high accuracies suggest that the RF classifier
is an efficient model for projecting mangrove forest cover dynamics on both training and
test datasets. The mangrove forest maps satisfactorily aligned with the high-resolution
mangrove canopy cover continental-scale maps from Digital Earth Australia [56].

Table 1. Mangrove forest extent derived from Random Forest classification with Landsat NDVI images
2009 and 2019 (Bowen to Shoalwater and Corio Bays Area Ramsar Wetland, Central Queensland).

Mangrove Extent
2009 (Ha)

Mangrove Extent
2019 (Ha)

Decrease from
2009 to 2019 (Ha)

Percent Area Decrease
from 2009 to 2019 (%)

63,990 62,510 −1480 −2.31

Table 2. Accuracy assessment from Random Forest classification 2009 and 2019 Landsat decadal time
series analysis (Bowen to Shoalwater and Corio Bays Area Ramsar Wetland, Central Queensland).

Land Class Name
Producer’s Accuracy (%) User’s Accuracy (%)

2009 2019 2009 2019

Mangrove forest 0.99 0.96 0.98 0.95
Non-Mangrove Forest 0.95 0.99 0.96 0.99

Overall accuracy 0.98 0.98
Kappa coefficient 0.95 0.95
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Figure 3. Landsat Operational Land Imager (OLI) true-colour mosaic (images captured 16 July 2020 and 9 August 2020)
overlaid with the change map of mangrove forest extent (decline) in red from the Random Forest classification and showing
the three sites input to GEE for time series construction and subsequent phenology analysis: northern site, Repulse Bay;
mid-section, Rocky Dam Creek/Cape Palmerston National Park; and southern site, Herbert Creek, study region is Bowen to
Shoalwater and Corio Bays Area Ramsar Wetland.

108



Remote Sens. 2021, 13, 3032

3.2. Mangrove Phenology

The detrended time series (2012–2020) shows peaks and troughs in the time series but
has missing data caused by cloud masking of pixels in GEE (Figure S3 in the Supplementary
Materials). Nevertheless, there is a decrease in mean NDVI across the time series with strong
seasonality. Values of the peak growth and photosynthetic activity range from 0.72 to 0.9 and
values of the minimum photosynthetic activity range from 0.62 to 0.82. The predicted values
of the mangrove harmonic regression model were compared with the actual mean NDVI
values and show a general trend in the time series (Figure 4). The seasonal trend indicates
that high values were attained towards the end of the growing season (generally in winter)
and low values were realized in late spring (October to November with the exception of 2018
where the lowest value was in summer, i.e., December, and 2019 where the lowest value
was in early spring, i.e., September, Figure 5). We suggest that under tropical conditions,
frequent cloud cover and high temperatures in spring and summer may limit the ability of
mangroves to photosynthesize hence greater NDVI values occur in winter. This outcome
agrees with field studies conducted by [49] with Avicennia marina in tropical Australia. We
identified that tropical mangroves on the east coast of Australia display a disproportional
bimodal seasonality with two periods of high mean NDVI and two periods of low NDVI
values annually through the Landsat time series (1999–2020) (Figures 6 and 7).

Figure 4. Harmonic regression model original and fitted values of all available (2012–2020) Landsat 8 imagery with
mangrove NDVI. The red line is the fitted NDVI values and the blue dotted line is the original NDVI values for mangrove
forest in the mid-section of our study region. The site is located directly adjacent to Koumala Station, Figure 1, Bowen to
Shoalwater and Corio Bays Area Ramsar Wetland, Central Queensland.

Figure 5. Mean NDVI temporal pattern across the dense Landsat time series (1999–2020) for mangrove forest in the
mid-section of our study region. The site is located directly adjacent to Koumala Station, Figure 1, Bowen to Shoalwater and
Corio Bays Area Ramsar Wetland, Central Queensland.
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Figure 6. Mangrove forest intra-annual smoothing phenology with the Savitzky-Golay filter in TIMESAT using Landsat
NDVI dense time-series data 1999–2020, blue line indicates the decadal NDVI data, brown line indicates the smoothed time
series fitted data, brown dots display the start and end of the growing season for mangrove forest in the mid-section of our
study region, Figure 1, Bowen to Shoalwater and Corio Bays Area Ramsar Wetland, Central Queensland.

Figure 7. Mangrove forest seasonal trend decomposition in TIMESAT with Landsat NDVI data and dense time-series
1999–2020, black line indicates the seasonal trend, grey dots display the start and end of the growing season for man-
grove forest in the mid-section our study region, Figure 1, Bowen to Shoalwater and Corio Bays Area Ramsar Wetland,
Central Queensland.
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TIMESAT Analysis

In the TIMESAT program we used the Savitzky-Golay algorithm and extracted 13 at-
tributes describing the spectro-temporal profile of mangroves for each season (Table 3). The
filtering process preserved the trend of the original NDVI data and the fitted curve depicted
the seasonal variation in forest characteristics; it, therefore, provides reliable data for the
extraction of phenological information. For the mid-section of our study region (Rocky
Dam Creek/Cape Palmerston National Park, Figure 3) we found the SOS to be December,
EOS to be September/October, and the LOS to be 10 months. POS varied through the
timeseries (February to July): 1999–2003 in June/July; 2004 in February; 2005–2006 in
May; 2007–2008 in June/July; 2009–2010 in May/June; 2011–2012 in May; 2013 in April;
2014–2020 in June/July (Figure 6). There is a marked upward movement in the seasonal
trend decomposition of NDVI data from the summer of 2009 to 2020 (Figure 6). Notwith-
standing the length of the season gradually becoming shorter, the long integral (total
productivity in the annual cycle) increased (Figure S4 in the Supplementary Materials).
The trend in the peak NDVI value (maximum recorded NDVI value in the time series)
increased from the summer of 2009 (Figure 7 and Figure S5 in the Supplementary Materials).
In evergreen areas the small integral (productivity within the growing season) may be
small even if the total vegetation production is large. The small integral and amplitude
(difference between the maximal value and the base level) both declined from 2009 in our
study region due to a positive change in the base value increasing the amount of green
vegetation for this period (Figures S6 and S7 in the Supplementary Materials). We found a
significantly high correlation (p < 0.001) between the phenology metrics from TIMESAT
through the time series particularly season length and duration of the peak value (Pearson
correlation coefficient r value = −0.91, Adjusted R2 = 0.8182), and season (year) and season
length (Pearson correlation coefficient r value = −0.91, Adjusted R2 = 0.8179) indicating a
dynamic trend in the cyclical behaviour of tropical mangrove forests (Table 4).

Except for the northern region, Central Queensland is largely decoupled from southern
monsoonal influences and exhibits highly variable phenology that is rainfall pulse driven.
Monthly rainfall was 0–800 mm at our study site, Rocky Dam Creek/Cape Palmerston
National Park (Figure 3). Australia’s millennium drought of 2001–2007 is reflected in the
rainfall pattern and the reduced mean NDVI trendline (Figure 8). Considerable decreases in
NDVI occurred in 2001, 2002, 2004, and 2008 that are consistent with the trend of monthly
rainfall. In addition to the general trend, phenological characteristics and rainfall patterns
correspond with major climate events such as the EL Niño-Southern Oscillation (ENSO).
The increase in precipitation from the summer of 2009 in the mid-section of our study
region produced a concomitant increase in photosynthetically active growth and biomass
production in mangrove forests at this site. The extreme and extended rainfall event from
La Niño that occurred over Queensland in the summer of 2010/2011 was reflected in
the net seasonal photosynthetic rates for this period. Further, a strong La Niño event is
apparent in the Southern Oscillation Index (SOI, the difference in surface air pressure
measured between Tahiti and Darwin, northern Australia) that spikes in the 2010/11
summer (Figure S8 in Supplementary Materials). In addition, a severe tropical cyclone
(Tropical Cyclone Yasi, Category 5) brought an intense rainfall event in February 2011 to
the entire region [76]. A relatively high rainfall pattern continued until mid-Autumn of
2017 when a severe tropical cyclone (Tropical Cyclone Debbie, Category 4) impacted the
coast and destroyed coastal vegetation [77]. Recovery from the cyclone is evident in 2018
when the mean NDVI reached 0.9 at Rocky Dam Creek/Cape Palmerston National Park
(Figure 8).
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Table 4. Response and explanatory variables used in the linear regression models with Pearson
correlation coefficient r values and adjusted R2 at significantly high values (p < 0.001).

Response Variable
Explanatory Variable Pearson Correlation

Coefficient r
Adjusted R2

Season (year)
Length of season

−0.91 0.818

Season (year)
Seasonal amplitude

−0.78 0.597

Season (year)
Rate of senescence

−0.9 0.793

Season (year)
Peak photosynthetic activity

0.7 0.462

Season (year)
Seasonal productivity

−0.88 0.775

Length of season
Period of peak

−0.91
photosynthetic activity

0.812

Length of season
Rate of senescence

−0.9 0.721

Growth rate
Seasonal amplitude

0.87 0.755

Seasonal productivity
Rate of senescence

0.89 0.771

 

Figure 8. Interpolated, filtered NDVI and rainfall trendlines for the mid-section of our study region, Rocky Dam Creek/Cape
Palmerston National Park, rainfall data gathered from Koumala Station (station number: 33038).

In comparison to the mid-section, the northern section of our study region, Repulse
Bay, displays a generally higher level of mean NDVI and less temporal variability (Figure 3
and Figure S9 in the Supplementary Materials). Monthly rainfall was 0–900 mm across the
time series. The POS occurred in diverse months (May to August), exemplifying a different
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climate pattern at this site. The northern site exhibited a NDVI decrease in 2002 similar to
our mid-section site; however, the decrease occurred in the winter of 2002 (at the northern
site it was early summer) and was less pronounced (Figure 9). From 2003–2020 a steady
increase in NDVI activity was apparent. High rainfall peaks occurred from 2007–2012,
followed by 6 years of moderate rainfall, escalating to a monsoonal trough event in January
2019, then falling to moderate rainfall conditions in 2020. A tropical cyclone (Tropical
Cyclone Jasmine, Category 2) affected the northern section in February 2012. A substantial
decrease in NDVI was apparent in the winter of 2017 that was not reflected in the rainfall
regime but possibly occurred from the influence of cloud cover.

 

Figure 9. Interpolated, filtered NDVI and rainfall trendlines for the northern section of our study region, Repulse Bay,
rainfall data gathered from Lethebrook Station (station number: 33041).

The southern section of our study region (Herbert Creek bordering Shoalwater and
Corio Bays Area Ramsar Wetland) exhibited drier conditions than the other sections
(Figure 3 and Figure S10 in the Supplementary Materials). A shorter season is apparent
with POS occurring in May to July. The NDVI trendline occurred at a lower level than
the other sites, but with less temporal variability. Monthly rainfall was 0–390 mm across
the time series. Substantial rainfall years in 2010–2011 corresponded with the La Niño
pattern of precipitation throughout Queensland but with less intensity (Figure 10). A large
decrease in NDVI occurred in 2007 after prolonged low rainfall conditions. The NDVI
trendline at this site reflects the El Niño year of 2006/2007 with a low rainfall level and the
La Niña year of 2007/2008 with a high rainfall level. POS consistent NDVI years over the
3 sections of our study region were in 2010 with POS in May/June, 2015 with POS in June,
and 2019 with POS in June/July.
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Figure 10. Interpolated, filtered NDVI and rainfall trendlines for the southern section of our study region, Herbert Creek
bordering Shoalwater and Corio Bays Area Ramsar Wetland, rainfall data gathered from St. Lawrence Station (station
number: 33065).

4. Discussion

4.1. Change Dynamics in Mangrove Forests

With one of the richest flora in the world comprising thirty-nine species, old-world
tropical mangroves found in the Indo-Pacific including Australia are notable for their
attributes of species diversity, abundance, and succession and they are therefore considered
to be the most dominant and important mangroves globally [78,79]. We examined decadal
changes in mangrove forest cover in Great Barrier Reef catchments using a machine learning
approach with the online cloud-computing platform, GEE. With GEE, we compiled a dense
time series of NDVI-based Landsat imagery, inputted the time series to the TIMESAT
program and investigated the phenodynamics of mangroves at different locations in our
study region. This work has relevance to the maintenance of biodiversity, conservation of
estuarine wetlands and mangroves, and the role of coastal forests in climate change. To
our knowledge, this is the first study to examine and compare the phenology of tropical
mangroves with remote sensing time series across different sites adjacent to the Great
Barrier Reef, on the east coast of Australia.

We demonstrated that the mangrove extent derived from the RF classification in
our study area decreased by 1480 hectares (−2.31%) over the three-year decadal window,
2009–2019. Our findings corroborate a previous study of mangrove deforestation and degra-
dation that described a total of 11,285 hectares lost worldwide from episodic disturbance
(climatic events such as dieback, disturbance mortality, climatic extremes, sea level variabil-
ity) between 2000–2016 with 8004 hectares from Australia [80]. Global annual mangrove
loss rates through deforestation, determined from remote sensing datasets, are estimated
to be between 0.26% and 0.66% [81]. Decoupling human-induced mangrove mortality such
as degradation, from declines due to episodic disturbance events is inherently difficult to
achieve [82]. Moreover, spatial inconsistencies can be present as tropical coastal zones are
affected by clouds and atmospheric contamination due to their proximity to oceans and
the climate regime [83]. Remote sensing-based time series approaches for change detection
require a series of images captured continuously throughout a time period. Thus, there is a
need for substantially extra and regular image acquisitions over the area of interest [84].
As with previous studies on mangrove change dynamics [26,85,86], we found that the GEE
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platform provided efficient data preparation and processing capability for classification
and land cover mapping with spectral, auxiliary, and phenology variables.

VIs, particularly NDVI are often used as variables in research related to regional remote
sensing forest assessments and shown to be linked not only to canopy structure and leaf area
index (the area of single sides leaves per area of soil) but also to canopy photosynthesis [29].
The contrast between strong near-infrared reflectance and low red reflectance of green
vegetation is the basis for most VIs. NDVI, and related VIs are functional variants of the
simple SR index [87]. We considered four VIs as predictor variables in our classification,
SR, NDVI, MNDWI, and GCVI. VIs are commonly used in land cover classification as they
increase the classification accuracy, for example: [15] selected NDVI and [88] chose SR to
quantify mangrove changes over the Western Arabian Gulf and United Arab Emirates,
respectively; [26] generated MNDWI for mapping mangrove extent in China. A major
limitation of NDVI however, is that it saturates when mapping high amounts of biomass
and cannot distinguish dense vegetation [87]. Another essential point is that NDVI is
sensitive to soil, atmospheric effects, and aerosols [29,59]. Furthermore, in open mangrove
canopies tidal stage can produce NDVI variations when there is no change in the vegetation
amount or condition. Whereas GCVI has been developed as a proxy for chlorophyll content
with Landsat surface reflectance data in crops [89], to our knowledge no previous authors
have incorporated GCVI for mapping tropical forests or wetlands.

4.2. Mangrove Phenology

Our multitemporal analysis based on mean-NDVI Landsat time series (from a repre-
sentative region in the study area, that is, the mid-section for approximately each month in
the study period 1999–2019) revealed a strong seasonality in mangrove forests. Specifically,
we found a high growth in winter and a trough of growth in late spring to summer. Such
cyclical effect in seasonality has been proposed for mangroves in other tropical regions [31]
and can be explained by the fact that local climate properties affect the resource avail-
ability of water through seasonal influences of tides, rainfall, and river flows and with
variation in the strength of ENSO cycles [90]. Considering all available Landsat 8 imagery
we demonstrated that the Fourier-style harmonic regression method provides an explicit
depiction of temporal shifts in a region with substantial climate variability. Although
rarely met in practice, a stringent requirement of investigating continuous intra-annual
dynamics of vegetation phenology, is to acquire error-free remotely sensed data at regular
time instants [91], and we successfully achieved this goal. The start, length, peak, and
end of season are phenological markers that indicate the photosynthetic activity over the
growing season. Specifically, we found SOS (start of the season) to be December, EOS (end
of the season) to be September/October, and the LOS (length of the season) to be 10 months,
regulated by the precipitation pattern in the study region. We suggest that synchronization
of new leaf growth with dry season (winter) shedding, shifts canopy composition toward
younger, higher radiometric green-efficient leaves, explaining obvious seasonal increases
in ecosystem photosynthesis in our study region [92,93]. For instance, studies conducted
on Xylocarpus spp. phenology-related litter fall in Australia demonstrate that leaf shedding
occurred in the mid to late dry season on the tropical east coast [94] and Avicennia marina
displayed low leafing and shedding rates throughout the year with a seasonal increase in
winter [49]. The phenology of Rhizophora stylosa in both Northern and Eastern Australia
was documented by [95] who detected lower photosynthetic values during the wet season
and higher values during the dry season with Landsat imagery, in accordance with our
study. Tropical regions experience variable climate conditions with frequent cloud cover
and high temperatures during spring and summer months that may limit the capacity of
mangroves to photosynthesize. Consequently, greater NDVI values occur in the winter
months under cooler temperatures and more radiance. Conversely, a few studies have
reported lower spectral index values during the dry season and higher values during the
wet season [96,97].
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The mismatch that we uncovered between the gradual contraction in the season length,
and the increase in seasonal productivity can be explained by mangrove response to the
resource availability of water and perhaps nutrients in tropical, coastal soils. Higher rainfall
conditions as occurred from the summer of 2009 following six years of drought, produced
an associated increase in photosynthetically active growth and biomass production in
mangrove forests. High rainfall increases mangrove growth rates by helping to supply
sediments and nutrients thereby stimulating productivity [97]. According to [98] water
availability influences several ecological processes including vegetative cover, species com-
position, and community biomass of tidal wetlands. Freshwater is essential for mangroves
to maintain the turgidity of cells and tissues, mechanisms of cell augmentation, and stomata
regulation [99]. Consequently, in drought years resource-use strategies become geared
towards maximum survival as opposed to rapid biomass gain.

TIMESAT Analysis

Our TIMESAT-based approach with the adaptive Savitzky-Golay filter generated
smoothed data for each time step, and seasonality parameters for each identified growing
season over the time series. To provide a clear and interpretable vegetation signal we chose
to implement the Savitzky-Golay filter as it iteratively tightens the search window in order
to capture very rapid increase or decrease in the data and follows local variations in the
seasonal curve more closely [100]. Our findings that a disproportionately bimodal pattern is
evident in the time series e g., late summer and winter peaks, confirm studies in phenology-
based litterfall conducted on the east coast of Australia with Avicennia marina [101], which
postulated that bimodality in leaf production is interrelated with position in the inter-tidal
zone and frequent tidal inundation. More importantly, abiotic factors such as hydrology
and photoperiod and biotic factors such as the timing of the reproductive cycle, appear to
be linked to mangrove vegetative phenology [102].

The seasonal dynamics derived using TIMESAT, with mangrove NDVI time series as
input, showed differences in the spatio-temporal patterns of growth dynamics. While this is
the case, the three different sections of our study region are analogous in that all sections are
tropical estuarine ecosystems with the same mangrove species such as the stilted mangrove
Rhizophora stylosa, the grey mangrove Avicennia marina, the yellow mangrove Ceriops tagal,
and the river mangrove Aegiceras corniculatum. Macroclimatic drivers such as rainfall and
temperature regimes are recognized for their ability to limit and influence processes within
coastal-estuarine wetlands [103]. The premise that rainfall has the greater importance in
affecting biodiversity, biomass, and phenology of tropical mangrove vegetation [49] is
supported by our study. For example, our observation that peaks and troughs in the NDVI
trendline correspond with the trend of monthly rainfall and are magnified by climate events
occurred at all three study sections, albeit with differential affects. Accordingly, we found
the northern site that was also the wettest had the highest NDVI values and the southern
site that was the driest had the lowest NDVI values. The site with the greatest variability
in the trendline was the mid-section (Rocky Dam Creek/Cape Palmerston National Park).
The mid-section was also the site with moderate monthly rainfall indicating that mangrove
growth variability responds to localised patterns.

We also found that the La Niña event of 2010–2011 and its associated rainfall changes
impacted vegetation growth, increasing NDVI values at all section sites. Another essential
point is that the Southern Oscillation Index spikes in La Niño years, particularly 2010–2011.
Indeed, a study conducted at Corio Bay in the Ramsar wetland (a generally euhaline site)
in the El Niño year of 2006–2007 reported salinity reached exceedingly high values (up to
40 parts per thousand) towards the mouth. Conversely, at Corio Bay in the La Niña year of
2007–2008 salinities down to inordinately low values (23 parts per thousand) were recorded,
which were associated with flooding of the adjacent Fitzoy River and local catchment run
off [43]. Notably, our analysis shows that extreme climate-related salinity values such as
these, are reflected in the mangrove NDVI trendline where a trough occurs in 2006–2007
followed by rise in 2007–2008 at our southern section (Herbert Creek bordering Shoalwater
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and Corio Bays Area Ramsar Wetland). Our results are particularly concerning for tropical
mangrove forests as they highlight contemporary research on the intensification of ENSO
in the coming decades with climate change [10,82].

Episodic disturbance events such as tropical cyclones and climatic extremes are pur-
ported to be responsible for approximately 80% of global mangrove loss from natural
causes since 1990 [82]. In addition to coastal damage from strong winds [104], impacts
from tropical cyclones include high rainfall that exacerbates the hydrological and hydrody-
namic conditions [105]. Moreover, the anomalies in rainfall induce lower salinity, greater
turbidity, as well as higher dissolved nutrients and phytoplankton biomass in the coastal
waters when compared with typical conditions [106]. The frequency and intensity of
cyclones and storms has increased as a consequence of greater sea-surface temperature,
with further escalation predicted under most climate change scenarios [107,108]. Greater
cyclone frequency has compounding effects on mangrove forests and may extend or halt
mangrove recovery [107]. Our findings show decreases in the NDVI values associated with
the occurrence of tropical cyclones in each section of our study region. Tropical Cyclone
Yasi impacted all three sites in 2011, Tropical Cyclone Jasmine destroyed the northern
section site in 2012, and Tropical Cyclone Debbie devastated the mid-section and southern
section sites in 2017, which was the highest precipitation event over the time series.

4.3. Limitations of the Study

Remote sensing data and tools are fundamental methods for measuring land cover,
but there are key drawbacks in the change detection of wetlands such as mangrove forests.
The need for assessing accuracy of a map generated from any remotely sensed product has
become a universal requirement and an integral part of any classification project. The user
community needs to know the accuracy of the classified image data being presented [109]
otherwise the classification lacks robust validation which could have serious implications
for some users and may lessen their confidence in remote sensing as a source of land
cover data. Accuracy assessment (1) allows self-evaluation and to learn from mistakes
in the classification process; (2) provides quantitative comparison of the classified maps;
(3) ensures greater reliability of the resulting maps/spatial information. Therefore, we
presented robust validation methods that detail the user’s and producer’s accuracies of
change with Kappa coefficient. Furthermore, we compared the mangrove forest classified
maps with Digital Earth Australia high-resolution imagery (at the continental-scale) for
visual refinement and to evaluate the performance of our method [56]. The second key
drawback is that there can be a similarity of spectral reflectance in the NIR and SWIR
regions between mangrove forest and the mixture of other natural vegetation and water
at high tide compared to that obtained at low tide [26,86,110]. The third drawback is
that quantification is difficult in long-term studies because inconsistencies and gaps in
data collection due to observation error are common [111]. The fourth drawback is that
temperate climates use simple spring indicators and measures related to 1 January that
are not appropriate for tropical phenology because of the circularity of the data. Thus,
tropical phenological approaches necessitate taking account of data circularity, be flexible,
quantitative, and attribute confidence to conclusions [112]. Finally, a key drawback is that
in similar climate conditions, genotypes of mangrove species spread across a study region
may vary enough to exemplify different phenophases. In addition, although mangroves
are highly specialized and occupy unique and heterogeneous suites of habitats within
Australia, they are not a genetic entity but an ecological one [98,112,113]. Consequently,
our study has accessed nearby weather stations to our section sites such that localised and
subtle climate variations (known to influence phenophases) in location are recorded, and
this has reflected in the timeline signals.

4.4. Implications for the Conservation of Mangrove Forests

Growing evidence of mangrove’s ability to sequester and store carbon has brought
attention to their conservation value from international climate change policy and decision
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makers [114]. Although estuarine monitoring is almost completely absent at Shoalwater
and Corio Bay Areas Ramsar Wetland, it is critical to establish a monitoring program to
provide baseline assessments of vegetation seasonality in relation to weather patterns
and detect responses to extreme events. The Ramsar Convention on Wetlands is an in-
tergovernmental treaty with Parties to the Convention from 171 countries. The purpose
of the Ramsar Convention is to promote wetland conservation and wise use to ensure
that the benefits of wetlands contribute towards meeting the UN Sustainable Develop-
ment goals, Aichi Biodiversity Targets, Paris Agreement on Climate Change, and other
related international commitments [115]. The United Nations’ 2030 Agenda for Sustainable
Development together with SDGs require the monitoring and mapping of mangroves
through the sustainable development indicator 6.6.1: “change in the extent of water-related
ecosystems over time” [11]. Monitoring of mangrove forests is critical to preserve the
ecosystem services they provide such as pollution control, detoxification, and regulation
of natural hazards. Hydrologic conditions, land use, and management are important
drivers of coastal vegetation communities with many land use changes developing over
decades. So far, studies on tropical forests and mangrove cover with phenodynamics have
been limited by the unavailability of suitable remote sensing imagery. Dense time series
of satellite images has allowed a comprehensive understanding of mangrove phenology
and its relation to climate factors across different sites. Our results are of relevance for
conservation strategies of tropical coastal wetlands in Australia that account for foundation
species and their seasonal responses to climate drivers.

5. Conclusions

In this paper, we demonstrated an operational method to (1) map mangrove forests
in Central Queensland, Australia using an NDVI time series, which was built in GEE
from Landsat imagery, and (2) examine seasonal and inter-annual changes in mangrove
phenology extracted with the TIMESAT program, and linked to natural and extreme climate
variability. Surprisingly, estuarine monitoring has been absent in the coastal ecosystems of
Shoalwater and Corio Bay Ramsar Wetland. Mangrove forests in this southern section of
our study region are bounded by an internationally recognized Ramsar Wetland Treaty and
therefore changes in their ecology are important for Australia’s reporting commitments to
the Ramsar Convention. Policy guidelines of the Convention underline that urgent action
is needed to raise awareness of the benefits of wetlands, with greater safeguards for their
survival. We propose that a regulated monitoring program be instigated so that information
can be gathered on the change dynamics and seasonality of estuarine communities and
mangroves under threat from episodic disturbances.

Monitoring is essential, ideally before and particularly after an extreme event, to
improve our knowledge of the connections among climate, weather, and biodiversity. Our
objective to acquire long-term and spatially extensive data was due to the highly variable
nature of biological data, and the need to examine periodical events at different locations.
The detection of responses to extreme events is important to improve understanding of the
connections between climate, extreme weather events, and biodiversity. Such knowledge is
essential to inform conservation management attempts to mitigate the impacts of extreme
events with ongoing climate change.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13153032/s1, Figure S1: Annual sea surface temperature anomaly for the Great Barrier Reef
(1999–2020) from Australian Bureau of Meteorology using NOAA ERSST V5 gridded data, Figure
S2: Annual rainfall anomaly for Queensland (1900–2020) from Australian Bureau of Meteorology,
Figure S3: Linear regression detrended time series of all available Landsat 8 imagery with NDVI for
the study region, Bowen to Shoalwater and Corio Bays Area Ramsar Wetland, Central Queensland,
Figure S4: Length of season and long integral (total productivity in the annual cycle) in the time
series for our study region, Figure S5: The peak NDVI value (maximum recorded NDVI value in the
time series) and short integral (the difference between the function describing the season and the
base level from season start to end) in our study region, Figure S6: Amplitude (the range between the
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maximum NDVI and the base level or the maximum increase in canopy photosynthetic activity above
the baseline) and the short integral (the difference between the function describing the season and
the base level from season start to end) in our study region, Figure S7: Season year (1999–2020) with
seasonal metrics from the Savitzky-Golay filter in TIMESAT, Ampl. (amplitude), L.deriv. (growth
rate). R.deriv. (rate of senescence), Figure S8: Southern Oscillation Index and rainfall trendline for the
mid-section of our study region, rainfall data gathered from Koumala Station (station number: 33038),
Figure S9: Mangrove forest seasonal trend decomposition in TIMESAT with Landsat NDVI data and
dense time-series 1999–2020, northern section of our study region, Repulse Bay, black line indicates
the seasonal trend, grey dots display the start and end of the growing season, Central Queensland,
Figure S10: Mangrove forest seasonal trend decomposition in TIMESAT with Landsat NDVI data
and dense time-series 1999–2020, southern section of our study region, Herbert Creek bordering
Shoalwater and Corio Bays Area Ramsar Wetland, black line indicates the seasonal trend, grey dots
display the start and end of the growing season, Central Queensland.
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Abstract: Mangrove forests are important woody plant communities that grow in the intertidal
zone between land and sea. They provide important social, ecological and economic services to
coastal areas. In recent years, the growth environment of mangrove forests has been threatened.
Mangrove forests have become one of the most endangered ecosystems in the world. To better
protect mangrove forests, effective monitoring methods are essential. In this study, a spatio-temporal
simulation method for mangrove forests was proposed in the mangrove protected areas of Hainan
Island, China. This method compared the simulation accuracy of different models in terms of
spatial characteristics, evaluated the applicability of driving factors in mangrove simulation and
predicted the future spatio-temporal distribution and change trends of mangrove forests under
different scenarios. The simulation results of different models showed that AutoRF (random forest
with spatial autocorrelation) performs best in spatial characteristic simulation. Driving factors such as
the Enhanced Vegetation Index (EVI), various location indices and the spatial autocorrelation factor
can significantly improve the accuracy of mangrove simulations. The prediction results for Hainan
Island showed that the mangrove area increased slowly under a natural growth scenario (NGS),
decreased significantly under an economic development scenario (EDS) and increased significantly
under a mangrove protection scenario (MPS) with 4460, 2704 and 5456 ha respectively by 2037. The
contraction of mangrove forests is closely related to the expansion of aquaculture ponds, building
land and cultivated land. Mangrove contraction is more severe in marginal or fragmented areas. The
expansion of mangrove forests is due to the contraction of aquaculture ponds, cultivated land and
other forests. The areas around existing mangrove forests and on both sides of the riverbank are typi-
cal areas prone to mangrove expansion. The MPS should be the most suitable development direction
for the future, as it can reasonably balance economic development with mangrove protection.

Keywords: mangrove forests; Hainan Island; CLUE-S; spatio-temporal simulation; future change trends

1. Introduction

Mangrove forests are important woody plant communities that grow in the intertidal
zone between land and sea. They are widely distributed in tropical and subtropical regions
of the world between 30◦ N and 30◦ S latitude [1]. Mangrove forests can sequestrate
carbon, mitigate climate change, maintain marine and land biodiversity, purify water,
protect coastlines and coastal infrastructure and export economic products, thus providing
important social, ecological and economic services for surrounding areas [2–10]. Mangrove
forests are constantly threatened due to natural and anthropogenic factors such as extreme
weather events, sea-level rise, aquaculture and urban development, making them one of the
most endangered ecosystems in the world [11–14]. Currently, the world’s mangrove forests
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have declined by about 40% compared to the middle of the last century [15]. Throughout
the 1990s, the annual loss rate of mangrove forests was 1%, which was about twice that
of terrestrial forests during the same period [16]. In recent years, with the continuous
advancement of protection measures around the world, the loss rate of mangrove forests
has slowed, but still remains at 0.26–0.66% per year [17]. If the loss rate of mangrove
forests continues, about 40% of the world’s mangrove forests will completely disappear
by the end of this century. The services and products provided by mangrove forests will
be significantly reduced or lost, which will have a negative impact on human survival
and development [1]. Therefore, the protection of mangrove forests is urgent and has
reached a broad international consensus. Effective mangrove monitoring methods are
very important, which can provide a theoretical basis and decision support for mangrove
protection, restoration and utilization.

Mangrove forests grow in the mudflats between land and sea. Traditional field survey
methods have difficulty in obtaining accurate, comprehensive and timely mangrove data.
In recent years, the rapid development of remote sensing technology has provided a
new means for better extraction, analysis and prediction of mangrove forests. At present,
mangrove monitoring mainly focuses on mangrove change analysis and time series analysis.
Mangrove change analysis is a statistical analysis of the area, extent, conversion and
landscape pattern of mangrove forests [8,13,18–29]. Although this method can reflect
spatial distribution, area change and the causes of changes in mangrove forests, it only
statistically analyzes the overall changes, and cannot accurately reveal the spatial trends of
each section. Mangrove time series analysis is based on vegetation indices, with short time
intervals and long time series. This method explores mangrove trends by linear regression
analysis, Theil-Sen median trend analysis, the Mann-Kendall test, the Hurst exponent and
so forth. It can reflect the change trends and future trends of mangrove forests, and further
reveal the causes and effects of these trends [30–33]. Although this method accurately
reflects the spatial trends of each section, it only analyzes the changes of historical data and
cannot predict how long the sustainable trends will continue [34], which poses a challenge
for the future continuous monitoring of mangrove forests.

Therefore, it is crucial to conduct spatio-temporal simulation of mangrove forests
to predict the future spatio-temporal distribution of mangrove forests under different
scenarios. Land-use change models are the key to spatio-temporal simulation, which can
be divided into two categories, non-spatial models and spatial models. Non-spatial models
were developed earlier, such as the SAhelian Land-Use model (SALU) [35], linear program-
ming model [36,37], system dynamics model [38,39] and Markov chain model [40]. These
models consider only quantity changes and do not measure location changes. Spatial mod-
els consist of micromodels (bottom-up) and macromodels (top-down), which consider both
quantity and location changes. Micromodels first configure land-use changes according to
demands at the microscale and then aggregate the results to the macroscale, with examples
including cellular automation (CA) [41,42], SAMBA [43], the Future Land Use Simulation
(FLUS) [44] and so forth. Macromodels first configure land-use changes at the macroscale,
and then allocate demands to the microscale layer by layer; applications include the Land
Use Planning and Analysis System (LUPAS) [45], the Conversion of Land Use and its
Effects at Small region extent (CLUE-S) [46] and so forth. At present, few studies address
the spatio-temporal simulation of mangrove forests, and these are mainly based on CA-
Markov models. This model uses a Markov chain model to calculate the quantity changes,
and then brings it into a CA model to simulate location changes. Mukhopadhyay et al. [47]
utilized this model to predict the mangrove species of Bangladesh Sundarbans in 2025,
2055 and 2105. Bozkaya et al. [48] compared the CA-Markov and St. Markov models and
predicted the distribution of mangrove forests along the northwest coast of Turkey in 2030.
DasGupta et al. [49] used Multi-Layer Perceptron-Markov Chain Analysis (MLP-MCA)
to predict the distribution of mangrove forests in Sundarbans, India in 2030, under four
development scenarios. Tajbakhsh et al. [50] developed a hybrid model (CA-Markov-ANN)
to predict the distribution of mangrove forests in Qeshm Island, Southern Iran in 2025.
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However, the above studies for mangrove forests still have some shortcomings. First,
previous studies are mainly based on the CA-Markov model. The CLUE-S model has
been widely used in spatio-temporal simulation in different regions [51–53]. For long-term
simulation with non-stationary change patterns, the CLUE-S model has better stability
compared to the CA-Markov model. The statistical significance of the probability values
in the CA-Markov model is affected when the number of area changes is small [54]. The
CLUE-S model is more accurate in the simulation of the land-use spatial patterns compared
to the CA-Markov model [55]. Second, the simulation accuracy of spatial characteristics
needs to be improved. Spatial characteristics are key to the CLUE-S model to assess the po-
tential for land-use changes, which was calculated from land-use data and driving factors
by logistic regression [51,56], autologistic regression [52,57,58], NE-Logistic regression [56],
artificial neural networks [51] and random forest (RF) [53,59], and so forth. Some studies
have shown that machine learning methods such as RF have higher simulation accuracy
compared to traditional logistic regression [53], but no systematic comparisons have been
made. Third, driving factors need to be further refined and selected. Most driving factors
in the previous studies are commonly used indices such as elevation, slope and location
indices. Vegetation indices such as NDVI and its change trend can well reflect the change
trends of vegetation [60], which can provide a reference for simulation and prediction. The
spatial autocorrelation factor was proposed to address the spatial autocorrelation effect
inherent to spatial statistical analysis [61]. Traditional logistic regression methods can
significantly improve the simulation accuracy along with it [57], but machine learning
methods have not yet considered it.

Mangrove protected areas in Hainan Island were selected as the study area to ex-
plore the spatio-temporal simulation of mangrove forests under different scenarios. The
objectives of this study were as follows: (1) compare the simulation accuracy of different
models in terms of spatial characteristics and evaluate the applicability of driving factors
in mangrove simulation; (2) set different development scenarios and predict the future
spatio-temporal distribution of mangrove forests; and (3) analyze the future change trends
of mangrove forests.

2. Materials

2.1. Study Area

Hainan Island is rich in mangrove species, with 26 species of true mangrove, 12 species
of semi-mangrove and more than 40 species of mangrove associates [62], containing almost
all of the mangrove species found in China. For more than half a century, the mangrove area
in Hainan Island has experienced a developmental process from a sharp decline to a slow
increase. In the 1950s, the mangrove area of Hainan Island accounted for about a quarter
of China’s mangrove area, reaching 9992 ha [63]. Then, these mangrove forests suffered
serious damage due to excessive economic development, such as marine aquaculture, land
reclamation and mangrove deforestation. In the 1980s, the mangrove area was reduced by
half, to reach 4836 ha [64]. By 2010, the mangrove area in Hainan Island had decreased to
3576 ha [21]. In recent years, as the government began to vigorously implement restrictive
measures such as converting cultivated land to wetlands and converting fishponds to
wetlands, the public awareness of protecting mangroves has increased significantly. The
mangrove area of Hainan Island has responded with a slow increase, recovering to 4278 ha
in 2017 [65]. At present, Hainan Island has established 10 mangrove reserves, including one
national reserve, two provincial reserves and seven local reserves. Seven of these mangrove
reserves were selected for this study (Figure 1 and Table S1). Dongzhaigang National
Mangrove Reserve is the best preserved and most abundant mangrove reserve in China.
Qinglangang Nature Mangrove Reserve consists of three regions: Huiwen, Puqian and
Guannan (a1, a2 and a3 in Figure 1), containing the largest number of mangrove species
in China. Dongfang Nature Reserve was established in 2006. Mangrove forests within
it provide a good habitat for the international endangered species Platalea minor. The
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remaining four local protected reserves are located in the northern part of Hainan Island.
The study area was selected within the 2 km buffer zone of the reserve boundary [27].

Figure 1. Location of selected reserves (a1–g) in this study (red lines are the boundary of reserves;
green areas indicate the appearance of mangrove forests in 2017).

2.2. Data Sources

The data sources used in this study are land cover data and driving factor data. The
land cover data used in the study was based on the classification results of Landsat images
in 1987, 1993, 1998, 2003, 2007, 2013 and 2017, with a spatial resolution of 30 m [65]. The
2017 dataset was classified according to the support vector machine method with a high-
precision manual correction; the overall accuracy was 98.8%. The classified 2017 image
was then used as a reference for the visual interpretation of the remaining images [27]. The
land cover types were categorized into 10 classes: mangrove forests (MF), tidal sandflats
(TS), aquaculture ponds (AP), water (WT), cultivated land (CL), wetlands (WL), bare land
(BL), other forests (OF), suitable land for mangrove (SLM) and building land (BDL).

The driving factor data were mainly selected from 12 indices related to mangrove
distribution, including two terrain indices, two vegetation indices, seven location indices
and one correlation index (Table 1).
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Table 1. The driving factor data used in this study.

Type Factors Unit

Terrain
Elevation m

Slope degree

Vegetation EVI -
EVI change trends -

Location

Distance to major road m
Distance to minor road m

Distance to sea m
Distance to river m

Distance to aquaculture ponds m
Distance to building land m

Distance to suitable land for mangrove m

Correlation Spatial autocorrelation factor m

For the terrain indices, the elevation was derived from the 30 m resolution SRTM
1 Arc-Second Global (SRTMGL1) dataset. The slope was then calculated from the eleva-
tion gradient.

For the vegetation indices, the EVI was calculated from Landsat images. This index
solves the saturation problem under high vegetation coverage [66], and is more suitable
for mangrove change studies [33]. In this study, the Landsat TM/ETM+/OLI images
with a spatial resolution of 30 m were acquired each year for Huiwen from 1999 to 2003
(for simulation) and for all the study areas from 2013 to 2017 (for prediction). Due to the
insignificant phenology effect of mangrove forests, the impacts of cloud cover and tide level
were the main parameters considered when screening the images. In this study, the image
with the lowest tide level among images, with cloud cover less than 10%, was selected as a
representative image for that year. The EVI change trends were calculated by the Theil-Sen
median trend analysis using the EVI images of the last five years (Equation 1). It has been
proven that this method can well reflect the trends of long time series data, and has been
widely used in vegetation studies [33,34,67,68].

S = median
(

EVIj − EVIi

j − i

)
(1)

where EVIi and EVIj are the EVI values of years i and j. S > 0 indicates an increasing trend
of the series; all other values indicate a decreasing trend.

The location indices were calculated by the inverse distance weighting method accord-
ing to the different information. The road information was obtained from OpenStreetMap
(OSM). In this study, motorway, trunk, primary, secondary, tertiary and highway links
were merged as major roads, while minor roads constituted the remaining residential,
pedestrian, cycleways and so forth. The information of sea, river, aquaculture ponds,
building land and suitable land for mangrove were obtained from land cover data.

For the correlation index, the spatial autocorrelation factor was selected as follows

autocov(i, k) = ∑
j �=i

wijyj/∑
j �=i

wij (2)

where k is the land cover type of pixel i. yj is the state in which land cover type k exists in
pixel j (1 means exists, 0 means does not exist). wij is the inverse distance weight between
pixel i and j, which can be expressed as:

wij =

{
1/Dij , Dij < d

0 , Dij ≥ d
(3)
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where Dij is the Euclidean distance between pixels i and j. d is the threshold distance. In
this study, d = 500 m is taken according to the pixel size (30 m) of this study.

3. Methods

A spatio-temporal simulation method for mangrove forests was proposed (Figure 2).
According to the characteristics of mangrove forests, the simulation accuracy of different
models such as logistic regression, support vector regression (SVR) and random forest,
in terms of spatial characteristics, was compared, and the applicability of driving factors
such as vegetation and correlation indices in mangrove simulation were explored. Then,
according to the characteristics of the different protected areas, three development scenarios
of NGS, EDS and MPS were set. The CLUE-S model was used to predict the spatio-temporal
distribution of mangrove forests from 2022 to 2037 under different scenarios. Finally, based
on the prediction results of spatio-temporal distribution of mangrove forests, the future
change trends of mangrove forests from 2017 to 2037 were analyzed.

 
Figure 2. Flowchart of the spatio-temporal simulation of mangrove forests.

3.1. CLUE-S Model

The CLUE-S model was chosen to simulate mangrove forests in protected areas.
It was developed by researchers at Wageningen University based on the CLUE model.
Considering the competing mechanisms of land-use changes, this model can effectively
link the land-use change processes and environmental driving factors, and is suitable for
mesoscale and small-scale land-use simulation studies. The CLUE-S model consists of four
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input modules (spatial policies and restrictions, land-use type conversion rules, land-use
requirements and spatial characteristics) and a spatial allocation module [46].

The spatial policies and restrictions module is used to restrict land-use layout. It
refers to areas where land-use changes are not allowed to occur, usually including policy
restrictions (nature reserves, national parks and so forth) and spatial restrictions (rivers,
oceans and so forth). In this study, rivers and estuaries are usually not encroached upon
by other land-use types. Therefore, these areas were set as restricted areas to ensure the
connectivity of water bodies.

The land-use type conversion rules module is used to quantify the possibility and
intensity of the land-use type conversion, mainly containing conversion sequence and
conversion elasticity. Conversion sequence is a parameter that indicates whether conversion
can occur between various land-use types. It is represented by a matrix in the CLUE-S
model, and the value is 0 (not transferable) or 1 (transferable). The conversion sequence
of this study was adjusted according to different scenarios, as described in Section 3.3.
Table S2 shows the conversion sequence under different scenarios. Conversion elasticity is
a parameter that quantifies the reversibility of land-use changes, with a value range of 0
(easy to transfer) to 1 (not easy to transfer). According to different scenarios, the conversion
elasticity of this study was adjusted for different land-use types separately, as described in
Section 3.3. Table S3 shows the conversion elasticity under different scenarios.

The land-use requirements module is used to calculate future area demands, which is a
key parameter affecting the iterations of the CLUE-S model. It can be estimated by a statistical
model [52,53,69–72], a system dynamics model [73,74], a professional model [75,76] and so
forth. In this study, linear regression and scenario analysis were used to predict the future
area demands for 2022–2037, as described in Section 3.3.

The spatial characteristics module is used to calculate the spatial suitability probability
of various land-use types at specific locations. It is key for the CLUE-S model to assess
the potential for land-use changes. Spatial suitability probability is generally calculated
from land-use data and driving factors by different models. In this study, in addition to the
traditional logistic regression, two commonly used machine learning models that support
vector regression and random forest methods were added to compare the simulation
accuracy in terms of spatial characteristics. Support vector regression uses different kernel
functions to nonlinearly map the original low-dimensional feature to the high-dimensional
feature space, and then it constructs a linear decision function to solve the nonlinear
problem [77]. This method is well suited for solving high-dimensional and nonlinear
regression problems. Random forest is based on multiple decision trees. Parts of the
features on the tree node are randomly selected for training, and then the optimal feature is
selected to divide the node. The final regression result is the average of all the results of the
decision tree [78]. This method reduces the generalization error of a single decision tree,
and greatly improves the regression accuracy. To reduce the problem of uneven sample
selection, both training and validation samples in this study were generated by a stratified
random sampling method, where the number of training samples constituted 2% of the
total pixels.

The space allocation module is used to calculate the final allocation result. It is
based on the results of the four input modules and the land-use map of the starting year.
According to the total occurrence probability of various land-use types in each pixel, the
space is allocated by several iterations until the land-use requirements are satisfied [46].
The CLUE-S model was implemented through the lulcc-package in R software [79].

3.2. Model Validation Indices

The area under curve (AUC) was chosen to evaluate the simulation accuracy of the
different models in terms of spatial characteristics. It represents the area under the receiver
operating characteristic (ROC) curve, and is commonly used as a performance evaluation
index for the classification or fitting algorithms [80]. The value of AUC ranges from 0.5 to
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1.0; the closer to 1 the value is, the better performance of the model. An AUC above 0.7 is
generally considered as good, and above 0.9 is excellent [51].

Four types of indices were selected to assess the accuracy of the simulation results:
the overall accuracy (OA), the Kappa coefficient, the three-dimensional approach and the
Figure of Merit (FoM). The OA is the ratio of the number of correctly classified pixels to
the total number of pixels, and is often used in the accuracy assessment of classification
algorithms. It is also widely used for consistency checking between simulation and obser-
vation maps of land-use change models [52,53,72]. The Kappa coefficient represents the
proportion of error reduction in the evaluated classification, compared with a completely
random classification. It is an index designed for evaluating the accuracy of classification
results [81], and is further developed into four different forms that can quantify either
quantity error or location error [82]; KQuantity believes that the results have the ability
to consider location precision and is applicable to area change evaluation; KLocation be-
lieves that the results have the ability to consider quantity precision and is applicable
to location change evaluation; and KStandard and KNo consider location and quantity
precision together. KNo believes that the results do not have the ability to consider quantity
and location precision, which is more objective. KStandard, KNo and KLocation were
selected in this study to evaluate the simulation results in terms of location changes. The
three-dimensional approach is based on the three-map comparison method, which divides
the simulation results into two agreement and three disagreement components [83]. The
agreement components are Correct rejections (persistence simulated correctly) and Hits
(change simulated correctly). The disagreement components are Misses (change simulated
as persistence), Wrong hits (change simulated as change to wrong category) and False
alarms (persistence simulated as change). This approach uses a three-dimensional, spatio-
temporal comparison method to evaluate results, which is a good supplement to the Kappa
coefficient [84]. The FoM is the intersection of the observed change and simulated change
divided by the union of the observed change and simulated change [85]. It is often used
to compare the consistency of the simulation and observation maps, which is expressed
as follows

FoM =
b

a + b + c + d
(4)

where a is Misses, b is Hits, c is Wrong hits and d is False alarms.
To explore the contribution of different driving factors to spatial characteristic sim-

ulation, the applicability of different driving factors was analyzed using IncNodePurity
(Increase in node purity) in random forest. The principle of this index is to calculate the
sum of the squares of the residuals. It represents the heterogeneous impact of each feature
on the observations of decision tree nodes, reflecting the feature importance in the context
of decreasing accuracy. The larger the IncNodePurity, the greater the importance of the
driving factor in spatial characteristic simulation.

3.3. Scenario Setting

Three development scenarios, NGS, EDS and MPS, were set up to analyze the im-
pact of different development directions on the future spatio-temporal distribution of
mangrove forests.

The NGS is designed to maintain current development trends. Based on the land cover
changes from 2003 to 2017, the conversion sequence (Table S2) and the conversion elasticity
(Table S3) were determined. The area demands for 2022–2037 were predicted based on
the area of 2003, 2007, 2013 and 2017 by linear regression. The results were appropriately
adjusted to ensure the rationality of the changes (Table S4).

The EDS is designed to prioritize economic development. Under this scenario, the
area of building land and aquaculture ponds will increase and the area of mangrove forests
will decrease. The conversion sequence of aquaculture ponds and building land was
restricted. The two types were only allowed to be transferred into economic construction
land (aquaculture ponds, cultivated land and building land) (Table S2). The conversion
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elasticity was adjusted to 0.9 (the highest value) for aquaculture ponds and to 0.35 (the
lowest value) for mangrove forests (Table S3). The area demands for 2022–2037 were
predicted based on the area changes during the economic development phase (rapid
growth of building land and aquaculture ponds) from 1987 to 2017. The results were
appropriately adjusted to ensure that the growth rate of building land and aquaculture
ponds under this scenario was higher than the NGS (Table S4).

The MPS is designed to prioritize the protection of mangrove forests. Under this
scenario, the area of mangrove forests will increase and the area of building land and aqua-
culture ponds will decrease. The conversion sequence of mangrove forests was restricted.
Mangrove forests were not allowed to be transferred into aquaculture ponds, cultivated land
and building land (Table S2). The conversion elasticity was adjusted to 0.9 (the highest value)
for mangrove forests and to 0.35 (the lowest value) for aquaculture ponds and building
land (Table S3). The area demands for 2022–2037 were predicted based on the area changes
during the mangrove protection phase (rapid growth of mangrove forests) from 1987 to
2017. The results were appropriately adjusted to ensure that the growth rate of mangrove
forests under this scenario was higher than the NGS (Table S4).

4. Results

4.1. Simulation Accuracy of Spatial Characteristic

Based on the observation map and driving factors of Huiwen in 2003, the AUC values
of various land cover types in different models were calculated (Table 2). Autologistic,
AutoSVR and AutoRF are improved models of Logistic, SVR and RF with the spatial
autocorrelation factor. AutoRF had the highest AUC values, with all types of land cover
types exceeding 0.95. AutoSVR also achieved excellent accuracy, with all AUC values
above 0.9. Autologistic was slightly worse, with AUC values below 0.9 for suitable land
for mangrove and cultivated land, but greater than 0.7, indicating that the model also
maintained good accuracy. The AUC values of Autologistic, AutoSVR and AutoRF were
all higher than those of the unimproved model, indicating that the spatial autocorrelation
factor can indeed improve the simulation accuracy. The AUC values of the above six
models were greater than 0.7 for all types of land cover types, especially for mangrove
forests (above 0.95), showing that the 12 driving factors selected in this study could well
simulate the changes in mangrove forests. It is of interest that the AUC values of RF were
higher than those of the improved Autologistic and AutoSVR, proving that the random
forest had significant advantages in spatial characteristic simulation.

Table 2. AUC values of various land cover types in different models.

Model AP WT CL WL BL MF OF SLM BDL

Logistic 1.000 0.981 0.808 0.910 0.779 0.948 0.931 0.708 1.000
SVR 0.978 0.986 0.932 0.889 0.913 0.959 0.932 0.965 0.946
RF 1.000 0.996 0.968 0.905 0.919 0.993 0.969 1.000 1.000

Autologistic 1.000 0.986 0.808 0.973 0.903 0.956 0.936 0.703 1.000
AutoSVR 0.981 0.991 0.930 0.967 0.952 0.960 0.950 0.994 0.981
AutoRF 1.000 0.999 0.976 0.979 0.958 0.995 0.978 1.000 1.000

4.2. Simulation Results and Accuracy Assessment

Based on the observation map and spatial characteristics in 2003, the spatial distri-
bution in 2007, 2013 and 2017 were simulated using the CLUE-S model. To assess the
accuracy of the simulation results, the OA and Kappa coefficients were calculated for the
simulation results of different models based on the observation map of 2007, 2013 and 2017
(Table 3). The simulation accuracy decreased with the increase of simulation time. The
highest accuracy was in 2007, the second highest was in 2013 and the lowest was in 2017,
all maintaining good levels (OA above 75%). For different models, similar to the results of
AUC values, RF is more advantageous than SVR and Logistic and the model with spatial
autocorrelation is more ideal than the model without it. AutoRF had the highest simulation
accuracy, with an OA of 77.94% in 2017, indicating that the simulation results of this model
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are in high agreement with the observation. KStandard, Kno and Klocation were 0.7638,
0.7835 and 0.8293, respectively, indicating that the model had high simulation accuracy for
location changes.

Table 3. OA and Kappa coefficients of different models in 2007, 2013 and 2017.

Year Model OA KStandard Kno Klocation

2007

Logistic 91.28% 0.8919 0.9019 0.8925
SVR 90.63% 0.8839 0.8946 0.8848
RF 91.30% 0.8922 0.9021 0.8928

Autologistic 91.38% 0.8931 0.9030 0.8936
AutoSVR 91.48% 0.8944 0.9041 0.8951
AutoRF 92.00% 0.9008 0.9100 0.9014

2013

Logistic 82.14% 0.7808 0.7991 0.7814
SVR 82.07% 0.7799 0.7983 0.7809
RF 83.33% 0.7954 0.8124 0.7958

Autologistic 82.46% 0.7847 0.8027 0.7854
AutoSVR 83.75% 0.7882 0.8059 0.7886
AutoRF 83.76% 0.8007 0.8173 0.8012

2017

Logistic 76.38% 0.7118 0.7343 0.7123
SVR 76.57% 0.7140 0.7364 0.7147
RF 77.61% 0.7268 0.7481 0.7274

Autologistic 76.69% 0.7155 0.7378 0.7160
AutoSVR 77.31% 0.7231 0.7447 0.7236
AutoRF 77.94% 0.7638 0.7835 0.8293

The three-dimensional approach and FoM were also used to further analyze the
simulation results of different models in 2017 (Table 4). The results of FoM differed from
the previous results. The SVR is more advantageous than RF and Logistic, and the model
without spatial autocorrelation is more ideal than a model with it. This is because AutoRF
is more conservative in change strategy compared to other models. It ignored some pixels
that should have been changed (Misses and Hits) but reduced some false pixels (False
alarms + Wrong hits). This led to a lower FoM for AutoRF, but the correct predicted pixels
(Correct rejections + Hits) were higher than other models, indicating that AutoRF has some
advantages in balancing the overall simulation accuracy.

Table 4. Three-dimensional approach and FoM of different models in 2017.

Model Misses Hits
Wrong

Hits
False

Alarms
Correct

Rejections
FoM

Logistic 0.1515 0.0103 0.0247 0.0600 0.7536 0.0417
SVR 0.1393 0.0207 0.0264 0.0686 0.7449 0.0813
RF 0.1430 0.0139 0.0295 0.0514 0.7622 0.0586

Autologistic 0.1475 0.0115 0.0274 0.0582 0.7554 0.0469
AutoSVR 0.1408 0.0190 0.0266 0.0595 0.7541 0.0772
AutoRF 0.1459 0.0123 0.0283 0.0464 0.7672 0.0526

Figure 3 compares the simulation maps and observation maps for AutoRF in 2007,
2013 and 2017. The similarity between the simulation maps and the observation maps was
high and both reflected the real spatial distribution of various land cover types. Mangrove
forests in simulation maps were all distributed near the sea, which was consistent with
the actual growth of mangrove forests. There were also some deviations in simulation
maps. The simulation maps were more fragmented compared to the observation maps,
which may be related to the high simulation resolution (30 m). The new bridges (Zone A1),
new roads (Zone A2) and aquaculture ponds governance (Zone A3), which were greatly
affected by policy, were not well simulated. In general, however, the spatial agreement
between the simulation maps and observation maps was good.
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Figure 3. Comparison between simulation maps (a–c) and observation maps (d–f) for AutoRF.

4.3. Applicability of Driving Factors

The IncNodePurity was used to evaluate the applicability of driving factors in the
mangrove simulation (Figure 4). The results of AutoRF and RF were basically the same. EVI
had the greatest importance, indicating that vegetation indices will significantly improve
the accuracy of the mangrove simulation. The distance to suitable land for mangrove was
the second greatest, suggesting that the changes of mangrove forests are closely related to
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the distribution of suitable land for mangrove. The importance of the two location indices,
distance to river and distance to sea, were also greater, as mangrove forests mostly grow
on mudflats between land and sea. The greater importance of the distance to aquaculture
ponds and building land indicated that the presence of those two land cover types exerts
a strong influence on mangrove growth, which is consistent with the results of previous
studies [27]. The spatial autocorrelation factor was equally important, showing that this
factor is also essential in machine learning models. The distance to major road was also
an important influencing factor, indicating that mangrove growth is closely related to
the frequency of human activities. The four indices of EVI change trends, distance to
minor road, slope and elevation were weakly related. EVI change trends may better reflect
mangrove trends within time spans, and have limited ability to predict future trends. The
distance to minor road reflects the impact of residential, pedestrian, cycleway and other
trails. The frequency of human activity on these roads is weaker than on major roads, so
the impact on mangrove forests was weaker. Since the study area is small and belongs to
the coastal area, the two terrain indices, slope and elevation, had little variation, so they
were the least important.

Figure 4. Applicability of driving factors in mangrove simulation. (a) RF; (b) AutoRF.

4.4. Spatio-Temporal Distribution and Change Trends of Mangrove Forests under
Different Scenarios

Based on the observation map and the spatial characteristics of AutoRF in 2017, the
spatial distribution of mangrove forests was predicted in all protected areas in 2022, 2027,
2032 and 2037 under different scenarios using the CLUE-S model, and the change trends of
mangrove forests were then analyzed.

4.4.1. Spatio-Temporal Distribution of Mangrove Forests

Figure S1 shows the observation maps for 2017 and the prediction maps for 2037
under different scenarios. The results of Huiwen were shown in Figure 5. Mangrove
forests in Huiwen were mainly distributed in the junction areas between land and sea
along the coast, interlacing with aquaculture ponds. It can be seen that the CLUE-S model
used in this study can predict the future spatio-temporal distribution well. The simulation
maps in 2037 varied under different scenarios, but the spatial distribution of various land
cover types was similar to the observation map in 2017. Under NGS, mangrove forests
had few changes as a whole, showing a slow expansion trend. The expansion areas were
mainly concentrated in the southern (Zone A1) and central (Zone A2) coastal areas, which
were transferred from aquaculture ponds and other forests. Aquaculture ponds showed a
contraction trend, especially in the eastern coastal region (Zone A3), which provided a more
suitable growth environment for surrounding mangrove forests. Under EDS, mangrove
forests showed a significant contraction trend. This is because EDS was designed to ensure
economic development. The economic construction land will be aggressively expanded,
and the growth areas of mangrove forests will inevitably be occupied. Only three patches
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of mangrove forests remained in the region, in the west (Zone B1), northeast (Zone B2)
and south (Zone B3), noting that the area has been significantly reduced compared to 2017.
Mangrove forests in all other areas were severely contracted, and most of them have been
developed for building land and aquaculture ponds (Zones B4, B5 and B6). The remaining
scattered mangrove forests were surrounded by other land cover types. The quality of the
mangrove habitats was worrisome. Under MPS, mangrove forests showed a significant
expansion trend. This is because MPS focuses on the protection of mangrove forests. The
economic construction land that destroys mangrove habitats will drastically contract, and
mangrove forests will inevitably expand. Similar to NGS, the southern (Zone C1) and
central (Zone C2) coastal areas were the priority areas for mangrove growth. The two
patches of mangrove forests in the west (Zone C3) and northeast (Zone C4) also expanded
further outward, which was associated with the contraction of surrounding aquaculture
ponds. Aquaculture ponds showed a significant contraction trend, and mangrove forests
have begun to dominate the eastern coastal areas (Zone C5).

Figure 5. Comparison between the observation maps for 2017 and the simulation maps for 2037 in Huiwen under
different scenarios.

4.4.2. Temporal Change Trends of Mangrove Forests

To explore the temporal change trends of mangrove forests under different scenarios,
the area changes of mangrove forests and three related land cover types (aquaculture
ponds, building land and other forests) were calculated in all protected areas from 2017
to 2037 (Figure 6). By 2037, the mangrove area increased slowly under NGS, decreased
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significantly under EDS and increased significantly under MPS with 4460, 2704 and 5456 ha
respectively. The reasons for different changes of mangrove forests under different scenarios
were as follows. Under EDS, the area of aquaculture ponds and building land increased
significantly. The decreased area of other forests cannot provide enough space for economic
construction land; mangrove forests will be seriously encroached upon. Thus, the mangrove
area will decrease significantly. Under NGS, aquaculture ponds and building land still
maintained their growth trends, but slowed down significantly compared to EDS. Thus,
the impact of economic development on mangrove habitats was greatly reduced and the
mangrove area will increase slowly. Under MPS, although the area of building land still
increased slightly, the area of aquaculture ponds was reduced significantly, providing
enough space for mangrove growth. Thus, the mangrove area will increase significantly.

Figure 6. Area changes of mangrove forests and three related land cover types (aquaculture ponds,
building land and other forests) from 2017 to 2037.

4.4.3. Spatial Change Trends of Mangrove Forests

To further analyze the causes of mangrove changes, the conversion between mangrove
forests and other land cover types was analyzed from 2017 to 2037 under different scenarios
(Figure 7). Under EGS, the two largest land cover types transformed from mangrove forests
were aquaculture ponds (916 ha) and building land (557 ha), much higher than other land
cover types, indicating that mangrove contraction is indeed closely related to the expansion
of economic construction land. Cultivated land also had a larger area (100 ha) transformed
from mangrove forests, showing that some mangrove forests were encroached upon for
crop production. Under MPS, aquaculture ponds, cultivated land and other forests were the
three largest types transformed into mangrove forests with 422, 326 and 322 ha, respectively.
The reason for the larger area transformed from aquaculture ponds and cultivated land
is due to the strict implementation of the policy of converting fishponds to wetlands and
converting cultivated land to wetlands. Other forests can transform into mangrove forests
because there is a transformation route: other forests—aquaculture ponds/suitable land for
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mangrove—mangrove forests. Under NGS, the changes of mangrove forests were between
EGS and MPS. Other forests had the largest area (139 ha) transformed into mangrove
forests. Water, wetlands, aquaculture ponds and cultivated land also had a larger area
(about 50 ha per type). Building land (102 ha) and aquaculture ponds (85 ha) were the two
largest land cover types transformed from mangrove forests.

Figure 7. Conversion between mangrove forests and other land cover types from 2017 to 2037 under different scenarios.

Figure 8 shows the land cover changes of mangrove forests from 2017 to 2037 under
NGS. The mangrove area of all protected areas generally increased. Only the coastal of
Puqian (Zones B1 and B2), the central of Guanan (Zones C1 and C2) and the western of
Dongzhaigang (Zone E1) decreased significantly. Most of the mangrove growth areas were
around existing mangrove forests (Zones A1, D1, D2, F1, F2, G1, H1 and I1) or along the
riverbank (Zone I2).
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Figure 8. Land cover changes of mangrove forests (a–i) from 2017 to 2037 under NGS.

Figure 9 shows the land cover changes of mangrove forests from 2017 to 2037 under
EDS. The mangrove area of all protected areas showed a significant decrease. The main
types transformed from mangrove forests are aquaculture ponds (Zones A1, A2, A3, B1, B2,
C1, D1, F1 and G1), building land (Zones A4, B2, C2, D1, E1, H1 and H2) and cultivated
land (Zones F2, F3 and I1). Most of the contraction areas are comprised of marginal
mangrove forests, as mangrove forests here are vulnerable to external disturbances. Their
health conditions were worse compared to the interior mangrove forests. Therefore, these
areas are more easily transformed into economic construction land, and will be the priority
encroachment area during the economic development phase. The fragmented and scattered
mangrove forests (Zones A1, B1, B2 and C2) contracted more than the intact and contiguous
mangrove forests. Since these mangrove forests are mostly surrounded by other land cover
types, their ability to resist stress is weak. With the decline of the habitat quality, the growth
areas of fragmented and scattered mangrove forests will be rapidly encroached upon.
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Figure 9. Land cover changes of mangrove forests (a–i) from 2017 to 2037 under EDS.

Figure 10 shows the land cover changes of mangrove forests under MPS from 2017 to
2037. The mangrove area of the most protected areas showed a significant increase. The
main types transformed into mangrove forests were aquaculture ponds (Zones B1, D1, D2,
F1, G1, G2 and H2), cultivated land (Zones B1, D2, E2, F1 and H1) and other forests (Zones
A1, D3, E1, F2, I1 and I2). Most of these expansion areas were located around existing
mangrove forests, as the habitat quality there is better. Therefore, after the governance of
economic construction land, these areas are more easily transformed into mangrove forests,
and will be the priority restoration area during the mangrove protection phase. Other
expansion areas were along the riverbank (Zones E1 and I2). This is because these areas are
close to water and away from other land cover types, which are conducive to mangrove
growth, especially for mangrove seedlings [33]. Only the mangrove area in Guannan did
not increase significantly under this scenario, as the ecological management of this region
has always been poor. Aquaculture ponds have been threatening surrounding mangrove
forests [65].
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Figure 10. Land cover changes of mangrove forests (a–i) from 2017 to 2037 under MPS.

5. Discussion

5.1. Comparison of the Spatio-Temporal Simulation Methods of Mangrove Forests

In this study, the simulation accuracy of logistic regression, support vector regression
and random forest were first compared in terms of spatial characteristics, and the simulation
potential of different models was evaluated. The results showed that: (1) RF is more
advantageous than SVR and Logistic; (2) the model with spatial autocorrelation is more
ideal than the model without it; and (3) AutoRF performs the best in spatial characteristic
simulation. AutoRF was then combined with the CLUE-S model to simulate the spatio-
temporal distribution of mangrove forests. The results showed that the simulation maps of
the model are in good spatial agreement with the observation maps, and the OA (77.94%)
is better compared to the other models. This indicated that AutoRF proposed in this
study has significant advantages for mangrove simulation. Driving factors reflecting the
characteristics of mangrove forests were also explored in this study, and the applicability
of mangrove simulation was assessed. The results showed that the vegetation index EVI
can significantly improve the accuracy of mangrove simulation; location indices such as
distance to suitable land for mangrove, river, sea, aquaculture ponds, major road and
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building land are also very important constraints; and the spatial autocorrelation factor
is also indispensable in machine learning models. This indicated that the driving factors
selected in this study play an important role in mangrove simulation. Overall, the spatio-
temporal simulation method proposed in this study can effectively simulate the relationship
between mangrove change processes and environmental driving factors, accurately predict
the future spatio-temporal distribution of mangrove forests, and provide a theoretical basis
and decision support for mangrove protection, restoration and utilization.

5.2. Future Changes of Mangrove Forests in Hainan Island

The future changes of mangrove forests in Hainan Island from 2022 to 2037 vary under
different scenarios. By 2037, the mangrove area increased slowly under NGS, decreased
significantly under EDS and increased significantly under MPS occupying 4460, 2704 and
5456 ha, respectively. The changes in area are associated with changes in aquaculture ponds,
building land, cultivated land and other forests. The contraction of mangrove forests is
closely related to the expansion of aquaculture ponds, building land and cultivated land.
The marginal mangrove forests are more prone to contraction than the interior mangrove
forests and the fragmented mangrove forests contracted more than the intact mangrove
forests. Mangrove forests in these areas should be protected as a priority in the future.
The expansion of mangrove forests is attributed to the contraction of aquaculture ponds,
cultivated land and other forests. The areas around existing mangrove forests and on
both sides of the riverbank are typical areas for mangrove expansion; these areas are
preferable for artificial planting. Comparing different development scenarios, the MPS
should be the most suitable development direction in the future. The reason is that
this scenario maintains a steady growth of economic construction land and significant
growth of mangrove forests, which reasonably balances the relationship between economic
development and mangrove protection.

5.3. Limitations and Future Perspective of the Study

The potential of land cover changes was assessed in this study through spatial suitability
probability, considering only the relationship between land cover types and driving factors
from a mono-temporal perspective. Although this model may be more stable for long-term
simulation with non-stationary change patterns, it is difficult to capture and distinguish
different change processes, as the spatial configuration of past changes is not considered [54].
Therefore, other forests can directly transform into mangrove forests in this study. This
is because the transformation route of other forests-aquaculture ponds/suitable land for
mangrove-mangrove forests was simplified to other forests-mangrove forests. Another simi-
lar phenomenon was that only a small area of suitable land for mangrove was transformed
into mangrove forests. This is because the transformation route of aquaculture ponds-suitable
land for mangrove-mangrove forests was simplified to aquaculture ponds-mangrove forests.
Another limitation of this method is the difficulty in predicting changes affected by policy
such as new bridges, new roads and aquaculture ponds governance (Zones A1, A2 and A3 in
Figure 3). Meanwhile, the future area demands under different scenarios were predicted by
linear regression and scenario analysis. Although these methods are simple and effective [53],
they cannot reflect the complex processes in land-use changes. This study also found that
the simulated maps were more fragmented compared to the observation maps, which may
be related to the high simulation resolution (30 m).

Therefore, models that consider the relationship between past changes and driving
factors, such as DINAMICA and the Land Change Modeler (LCM), should be combined
in future studies to better capture the actual process of land cover changes [54]. Future
planning data should be added to the model to reduce the uncertainty of simulation results
caused by policy. At the same time, system dynamics models or artificial neural networks
should also be used to estimate area demands. Finally, it is also the goal of future efforts to
explore the simulation accuracy of models and the applicability of driving factors under
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different resolutions, especially for high resolutions (integrated with Sentinel-1/2), and
select the optimal resolution applicable to mangrove spatio-temporal simulation.

6. Conclusions

Mangrove forests are important wetland ecosystems that grow in the intertidal zone
between land and sea. They provide important social, ecological and economic services
to coastal areas. In recent years, mangrove protection has reached a broad international
consensus and effective mangrove monitoring methods are essential. A spatio-temporal
simulation method for mangrove forests was proposed in this study. This method compared
the simulation accuracy of different models in terms of spatial characteristics, evaluated
the applicability of driving factors in mangrove simulation and predicted the future spatio-
temporal distribution and change trends of mangrove forests under different scenarios.

The simulation results of different models reveal that for spatial characteristic sim-
ulation: (1) RF is more advantageous than SVR and Logistic; (2) the model with spatial
autocorrelation is more ideal than the model without it; and (3) AutoRF performs the
best. For different driving factors, knowledge of vegetation index EVI, various location
indices and the spatial autocorrelation factor can significantly improve the accuracy of
mangrove simulation. The prediction results of Hainan Island showed that the future
spatio-temporal distribution of mangrove forests varies under different scenarios. The man-
grove area increased slowly under NGS, decreased significantly under EDS and increased
significantly under MPS. The contraction of mangrove forests is closely related to the
expansion of aquaculture ponds, building land and cultivated land. Mangrove contraction
is more severe in marginal or fragmented areas. The expansion of mangrove forests is
due to the contraction of aquaculture ponds, cultivated land and other forests. The areas
around existing mangrove forests and on both sides of the riverbank are typical areas of
mangrove expansion. The MPS should be the most suitable development direction for the
future, as it can reasonably balance economic development with mangrove protection. This
will provide a theoretical basis and decision support for mangrove protection, restoration
and utilization.
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Abstract: Mangrove mapping at the species level enables the creation of a detailed inventory of
mangrove forest biodiversity and supports coastal ecosystem management. The Karimunjawa
National Park in Central Java Province is one of Indonesia’s mangrove habitats with high biodiversity,
namely, 44 species representing 25 true mangroves and 19 mangrove associates. This study aims to
(1) classify and group mangrove species by their spectral reflectance characteristics, (2) map mangrove
species by applying their spectral reflectance to WorldView-2 satellite imagery with the spectral angle
mapper (SAM), spectral information divergence (SID), and spectral feature fitting (SFF) algorithms,
and (3) assess the accuracy of the produced mangrove species mapping of the Karimunjawa and
Kemujan Islands. The collected field data included (1) mangrove species identification, (2) coordinate
locations of targeted mangrove species, and (3) the spectral reflectance of mangrove species measured
with a field spectrometer. Dendrogram analysis was conducted with the Ward linkage method to
classify mangrove species based on the distance between the closest clusters of spectral reflectance
patterns. The dendrogram showed that the 24 mangrove species found in the field could be grouped
into four levels. They consisted of two, four, and five species groups for Levels 1 to 3, respectively,
and individual species for Level 4. The mapping results indicated that the SID algorithm had the
highest overall accuracy (OA) at 49.72%, 22.60%, and 15.20% for Levels 1 to 3, respectively, while SFF
produced the most accurate results for individual species mapping (Level 4) with an OA of 5.08%. The
results suggest that the greater the number of classes to be mapped, the lower the mapping accuracy.
The results can be used to model the spatial distribution of mangrove species or the composition of
mangrove forests and update databases related to coastal management.

Keywords: mangrove species; spectrometer; spectral reflectance; WorldView-2; dendrogram

1. Introduction

Indonesia is a global ecological hotspot, judging from the extent and rich biodiversity
of its mangrove ecosystem. Bunting et al. [1] mapped and reported the latest data on the
world’s mangrove area based on a combined analysis of ALOS PALSAR radar images
and optical Landsat 5 TM and Landsat 7 ETM+ images taken between 2009 and 2011.
The estimated global mangrove area is approximately 137,600 km2, and Indonesia has
the largest mangrove forest, with a total area of 26,890 km2. It accounts for 19.5% of the
mangroves worldwide and 50.4% of those in Asia. Indonesia is also estimated to contain
43 of around 75 true mangrove species in the world [2,3] or about 57% of all mangrove
species worldwide. The characteristics of mangrove forests generally differ from those of
mainland forests. For instance, their habitats are not climate-dependent but are shaped
by tides, the extent of seawater-inundated soils, elevation, and the presence of canopy
structures. They especially thrive on low-lying land without canopy structures [4]. Illegal
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logging and the creation of ponds are currently degrading mangrove forests. For example,
Ilman et al. [5] reported that the estimated decline in mangrove area in Indonesia due to
land clearing for ponds and logging between 1800 and 2012 was 913,000 hectares. Put
another way, the average rate of decrease in mangrove area is 4300 hectares per year. The
conversion of mangrove forests for aquaculture, tourism, and agricultural purposes has
disrupted ecosystem stability and reduced physical and biological mangrove functions,
affecting the existence of vulnerable mangrove species that are rare or limited.

The Karimunjawa Islands in Jepara Regency, Central Java, Indonesia, are a man-
grove ecosystem with high species diversity. This ecosystem is relatively undisturbed
and well-preserved because most of its area lies within the Karimunjawa National Park.
Karimunjawa and Kemujan Island (two members of the Karimunjawa archipelago) have
3.964 km2 of mangrove forests under the management and protection of the national
park. A total of 25 true mangroves species have been recorded in this archipelago [4].
The inventory of mangrove distribution in the Karimunjawa National Park in 2002 found
44 mangrove species, including both true mangroves and their associates. Due to the
widespread land conversion and logging in the mangrove area and its surroundings,
mangrove species must be regularly mapped to maintain reliable information about the
biodiversity of coastal ecosystems.

Cruising, a necessity for mapping activities, can be more challenging in mangrove
areas than terrestrial forests. An alternative to cruising is needed to map and monitor the
distribution of mangrove species efficiently and thoroughly. Remote sensing technology
is an effective substitute in this context because it can minimize fieldwork and reduce
the requisite time, cost, and effort of mapping. It is particularly cost- and time-efficient
compared with field sampling, plant identification, and vegetation classification [6]. Fur-
thermore, using remote sensing products, mainly satellite imagery, allows past conditions
of the observed area to be recorded, enabling multi-temporal analyses. Satellite imagery
also provides a synoptic overview of a large expanse, which is efficient for large-extent
studies of the Earth’s surface.

Mangroves differ from non-mangrove vegetation. They can be identified from specific
tones and colors in remote sensing images and their association with coastal areas [7,8].
Healthy mangroves with green chlorophyll have low spectral reflectance in the blue and
red bands, high in the green band, and significantly high in the near-infrared band; the
reflectance increases with decreased water content in leaves [7]. Visually, true-color com-
posite images for mangroves show a darker green color than vegetation in general because
of the absorption of mangrove substrates in the near-infrared band. In satellite imagery,
spectral reflectance allows tropical mangroves to be distinguished at the species level on
a laboratory scale [9]. The accurate mapping of mangrove species requires images with
high spatial and spectral resolution and the spectral reflectance pattern of each mangrove
species to be measured in the field.

The spectral reflectance values are measured in the field using a hand-held spectrom-
eter with high spectral detail that accommodates mangrove species mapping. They are
used as the basis for a spectral library of mangrove species that comprises endmembers
for mapping with a pixel-based classification algorithm. Classification is necessary to
create visual results. Furthermore, the grouping of mangrove species based on spectral
characteristics entails a cluster analysis to determine the optimal number of classes to be
mapped. This study explores the use of three classification algorithms, spectral angle map-
per (SAM), spectral information divergence (SID), and spectral feature fitting (SFF), to map
the mangrove distribution on Karimunjawa and Kemujan Island. Specifically, the objectives
of this study were to (1) classify and group mangrove species by their spectral reflectance
characteristics, (2) map their spatial distribution with field-measured spectral reflectance
and by applying the SAM, SFF, and SID classification algorithms to WorldView-2 images,
and (3) assess the classification accuracy of each algorithm.
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2. Materials and Methods

2.1. Study Site

The research area included Karimunjawa and Kemujan Island of Indonesia (5◦49′33′′–
5◦48′23′′ S, 110◦24′34′′–110◦28′37′′ E). Their mangrove ecosystems comprise highly diverse
mangrove species and are conservation areas in the Karimunjawa National Park, making
them pristine and well-preserved. These two islands are located in the Karimunjawa District
of Jepara Regency, Central Jawa Province, about 85 km north of Java Island (Figure 1).
Several environmental factors that influence the growth of mangroves at the research site
are the coastal physiography (topography), tides (length, duration, and range), waves and
currents, climate (light, rainfall, temperature, and wind), salinity, dissolved oxygen, soil,
and nutrients [10]. Based on the Schmidt and Ferguson climate classification, Karimunjawa
and Kemujan Island have a C climate type with average rainfall of 3000 mm/year and air
temperatures of 30–31 ◦C. Topographically, the Karimunjawa National Park area is located
0–506 m above sea level, spanning from flat coastal areas to undulating lowlands [11]. Hilly
regions stretch from the east (highest peak) to the west and from the middle to the south.
Karimunjawa experiences mixed tides with a prevailing diurnal pattern, i.e., one high and
low tide but sometimes two high and low tides each day. The lowest low water level (LLWL)
of the island waters is 20 cm, and the highest high-water level (HHWL) is 138 cm, making
the maximum tidal range—the difference between the HHWL and LLWL—118 cm; this is
classified as micro-tidal [12]. Karimunjawa and Kemujan Island have dark gray grumusol
developed from quartz sandstone, micaceous sandstone, and quartz siltstone, and a few
coral fragments included in mixed substrates (sand substrates and mixed gravels), with
clay deposits along the coast. The soil physical properties on the two islands are fairly
similar [11].

 

Figure 1. Study area map—The Karimunjawa and Kemujan Islands displayed on a Landsat 8 OLI
color composite image with RGB 546 band combination.

The Karimunjawa archipelago has five types of ecosystems: coral reefs, mangroves,
seagrass beds, lowland tropical rainforests, and coastal forests. Mangrove ecosystems can
be found on the coasts of Karimunjawa, Kemujan, Cemara Kecil, Cemara Besar, Krakal
Kecil, Krakal Besar, Merican, Menyawakan, and Sintok Island, over a total area of 3.964 km2.
There are 25 species (13 families) of true mangroves and nine species (seven families) of
mangrove associates within the national park area, and five species (five families) of
mangrove associates outside the national park [4]. Most of the mangroves on Karimunjawa
and Kemujan Island are under the Karimunjawa National Park’s jurisdiction, and the
community manages the rest. In general, the park consists of eight zones: core, wilderness,
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marine protection, marine tourism use, historical-cultural-religious use, rehabilitation,
marine use, and traditional fisheries. The research sites are located in the wilderness and
marine use zones. The mangrove area on Kemujan Island is used for trekking tours through
the forest and bird watching towers.

2.2. Image Data and Processing

The primary data source in this study was the WorldView-2 (WV-2) image covering
parts of Karimunjawa and Kemujan Island. It was acquired on 27 June 2020, with a 2 m
spatial resolution (multispectral sensor) and eight multispectral bands as described in
Table 1 [13]. The image was selected to match the acquisition time to the fieldwork that
was conducted at the end of the rainy season and ensure a cloud-free image. In this study,
image pre-processing was required to extract the spectral signatures of the targeted objects.
The first part of image pre-processing was a radiometric correction to convert the image
pixel value from digital numbers into at-sensor reflectance with Updike and Comp’s [14]
procedure. The second part involved producing pixel values from the at-surface reflectance
with fast line-of-sight atmospheric analysis of hypercubes (FLAASH) [15], an atmospheric
correction model for the WV-2 image. The atmospheric visibility parameter was estimated
from the moderate-resolution imaging spectroradiometer (MODIS) aerosol product [16].

Table 1. Band characteristics of WorldView-2 imagery [13].

Spectral Band Wavelength Spatial Resolution

Panchromatic 450–800 nm 0.46 m
Multispectral–Coastal 400–450 nm 1.84 m

Multispectral–Blue 450–510 nm 1.84 m
Multispectral–Green 510–580 nm 1.84 m
Multispectral–Yellow 585–625 nm 1.84 m

Multispectral–Red 630–690 nm 1.84 m
Multispectral–Red Edge 705–745 nm 1.84 m
Multispectral–Near-IR1 770–895 nm 1.84 m
Multispectral–Near-IR2 860–1040 nm 1.84 m

Differences in the radiometric correction results at each level are visible in the object’s
spectral reflectance curve (Z profile), presented in Figure 2. The spectral reflectance values
in bands 1 (coastal) and 2 (blue) at the DN level (Figure 2a) decreased after correction at the
surface reflectance level (Figure 2c), meaning that the atmospheric effects in the image had
been corrected. The highest spectral reflectance values were in the red edge, near-IR1, and
near-IR2 bands; in other words, the vegetation objects (mangroves) showed high reflectance
values in these three bands. The spectral reflectance of mangroves forms a pattern similar
to vegetation in general: low in the visible bands and high in the infrared bands (near-IR1
and near-IR2). This means that the radiometric and atmospheric corrections had been
successfully applied to the WV-2 image.

The WV-2 image was visually interpreted to distinguish between mangrove and non-
mangrove objects. True-color (RGB; 532) and false-color (near-IR1, red, blue; 752) composite
images were used in this process, and mangrove and non-mangrove objects were identified
based on their colors, tones, textures, and associations. The false-color composite image
(752) depicts any vegetation features in red. However, it does not distinguish between
mangroves and non-mangroves in areas formerly used as fish ponds. The true-color image
composition was added to assist in this discrimination process. Mangrove objects can also
be identified from their associations with surrounding objects, i.e., mangroves are located in
coastal areas or border the sea. This mangrove object delineation output was then inputted
for image masking to separate mangrove objects from others.

152



Remote Sens. 2022, 14, 183

Figure 2. Spectral reflectance curves of mangrove objects at three correction levels: (a) digital number,
(b) at-sensor radiance, and (c) at-surface reflectance.

2.3. Field Data Collection

The spectral reflectance values of the targeted mangrove species were collected directly
from the sampling points during 5–10 March 2021. The number and locations of field
samples were selected purposively based on the Pixel Purity Index (PPI) values [17] and
the sites’ accessibility. The PPI, in this case, was used to locate the purest mangrove pixels
in the WV-2 image for spectral reflectance collection. The PPI image was produced from
the minimum noise fraction (MNF) algorithm to remove the noise in the data and reduce
the computational requirements for further processing. This research used 10,000 iterations
because, according to Plaza and Chang [18], PPI produces pure pixels after 10,000 to
100,000 repetitions. These samples were then plotted onto a map that was later used to
read the spectral reflectance of mangrove species in the field.

The field data collection resulted in 201 point samples covering 24 targeted mangrove
species (Table 2). The distribution of the field samples is presented in Figure 1. The field
samples were divided into two major groups: modeling samples for developing the spectral
library (24 samples, Figure 3a) and validation models for the accuracy assessment of the
resulting map (177 samples, Figure 3b). The modeling samples were spectral reflectance
mangrove species collected in the areas with high species diversity. This research only
focused on the true mangrove species, and researchers were assisted by park managers or
rangers familiar with the targeted species’ location to collect these samples. The validation
samples were mangrove species identified in the field. The validation sample locations
were selected from “white pixels” (i.e., pure pixels) derived from the PPI calculation. In
addition to PPI, the validation samples were also determined with aerial photos to identify
a mix of two species (Avicennia marina and Ceriops tagal) found in the field.

Table 2. Mangrove species identified in the field survey.

No Mangrove Species No Mangrove Species No Mangrove Species

1 Acanthus ebracteatus 9 Ceriops tagal 17 Rhizophora mucronata
2 Acanthus ilicifolius 10 Excoecaria agallocha 18 Rhizophora stylosa
3 Acrostichum aureum 11 Heritiera littoralis 19 Scyphiphora hydrophyllacea
4 Aegiceras corniculatum 12 Lumnitzera littorea 20 Sonneratia alba
5 Avicennia marina 13 Lumnitzera racemosa 21 Sonneratia caseolaris
6 Bruguiera cylindrica 14 Pemphis acidula 22 Sonneratia ovata
7 Bruguiera gymnorrhiza 15 Rhizophora apiculata 23 Xylocarpus granatum
8 Bruguiera sexangula 16 Rhizophora lamarckii 24 Xylocarpus moluccensis

The field spectral reflectance values of mangrove species were measured with a JAZ
EL-350 portable spectrometer from Ocean Optics (https://oceanoptics.com/, accessed
on 14 November 2021). First, the white and dark references were measured. A white
reference produces a standard “white object” spectral reflectance reading to calculate the
object’s spectral sample, while a dark reference produces a reading of an object with perfect
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absorption to create a “black body” reference [19]. Second, the spectral reflectance values
of mangrove species were measured at the leaf level (Figure 3a), based on the criterion that
healthy leaves appeared entirely green or contained chlorophyll.

 

Figure 3. Field data collection: (a) spectral reflectance measurement of the targeted mangrove species
and (b) field validation sample collection.

Some important aspects to consider in collecting spectral reflectance data for mangrove
species in the field are (1) the field of view (FOV) of the spectrometer sensor, (2) the
distance between the spectrometer and the targeted object, (3) the angle and direction of
measurement, and (4) the light conditions at the time of observation [19]. Kamal et al. [20]
collected the spectral reflectance of Rhizophora stylosa on Karimunjawa Island at 2 cm,
50 cm, 1 m, 2 m, and 5 m distances with ten readings at each distance. According to this
study, the spectral reflectance curves recorded at close range to the leaf (i.e., 2 cm) and
from the furthest distance (i.e., 5 m) showed the lowest curve variation between readings.
Therefore, this study used a distance of 2 cm for leaf spectral measurements to ensure that
only the mangrove leaf was read (Figure 3a) and ensure highly consistent spectrometer
results across readings [20,21]. The spectrometer’s measurement angle was set at 45◦ to the
nadir and facing the sun to avoid shadows on the target object. In addition, the number
of spectrometer reading repetitions affects the degree of confidence in the reading results.
The leaf measurements were repeated six times to ensure the consistency of the readings in
similar natural lighting conditions in the field.

The field-measured spectral reflectance profiles were stored in a file in .jaz format.
A .jaz file contains reference spectrum data (white reflectance), dark reflectance, and the
targeted object spectral reflectance data, which are used to construct the object’s spectral
reflectance curve. The six replicates used to measure each mangrove species object avoided
errors such as saturation in the spectral reflectance measurement, which increased the
spectrometer readings’ precision. The field measurements produced data on objects’ light
intensity at a particular wavelength; thus, the reflectance values needed to be calculated.
These values were normalized and calculated with the formula described in Kamal et al. [19]
and Wicaksono et al. [22]. The normalized and mean values were then used as input to
build a spectral library.
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2.4. Mangrove Species Clustering Analysis

White and dark reference readings were collected for each measurement of man-
grove species samples using the spectrometer to normalize the spectral reflectance of each
mangrove species and create a standard range of spectral reflectance values. This allows
the derived spectral reflectance curves of different mangrove species to be compared di-
rectly. Mangrove species’ spectral reflectance can be analyzed effectively at wavelengths
of 350–900 nm with a JAZ EL-350 spectrometer [20]. This wavelength range was selected
because, based on the specifications of the spectrometer used, noise is likely to occur below
350 nm and above 900 nm. The mangrove species spectra compiled in the spectral library
were then resampled according to the center wavelength of the WV-2 image bands and
used to develop an optical dendrogram. An optical dendrogram determines how compo-
nents (i.e., mangrove species) are grouped spectrally. It is also used to identify similarities
and cluster distances between species or groups. The optical dendrogram for this study
was created in the IBM SPSS Statistics 24 program based on Wicaksono et al.’s [22] work,
which used seagrass as the research object and the Ward linkage method. The derived
dendrogram was then used as the basis for the mangrove species classification scheme in
remote sensing-based mapping.

The dendrogram was built using the Ward linkage method as described by Wicaksono
et al. [22]. It analyzes clusters hierarchically by determining the distance between two clus-
ters expressed as an increase in the “error sum of squares” (ESS). The Ward linkage method
selects grouping steps sequentially to minimize the ESS at each step. The dendrogram
was not developed from the field-measured spectral reflectance but rather the resampled
data; therefore, eight wavelengths were selected to represent the eight WV-2 image bands.
The resampled spectral reflectance values were inputted in the dendrogram for further
use in pixel-based mapping. This dendrogram identifies similarities and cluster distances
between mangrove species, producing several large groups according to the combination
of cluster distances.

2.5. Pixel-Based Classification and Accuracy Assessment

The field-collected spectral samples were extracted and divided into three types: white
reference, dark reference, and the object’s spectral reference. This extraction was performed
to produce the spectral reflectance curves of mangrove species for a spectral library, i.e., a
collection of references containing the spectral reflectance values of various objects [19,20].
A normalization process was conducted to obtain the appropriate spectral reflectance
curves allowing for easy understanding and high representativeness. The extracted spectral
reflectance samples of mangrove species were then collected in one container to be inputted
into a spectral library in the ENVI 5.3 program. The compiled spectral library of mangrove
species from field measurements was spectrally resampled to align with the spectral
resolution of the WV-2 image as the basis of mangrove species mapping.

The mangrove species were mapped in ENVI 5.3 using the spectral library from
the resampled spectra as the classification input or endmember. For this purpose, three
pixel-based classification algorithms were applied and evaluated for mapping mangrove
species, namely the spectral angle mapper (SAM), spectral information divergence (SID),
and spectral feature fitting (SFF). The SAM algorithm can classify objects based on their
spectral reflectance values by considering the illumination angle reflected by the object.
SAM determines the similarity between two spectral reflectance objects by calculating
the “spectral angle” created between them and treating them as vectors in a space with
dimensionality equal to the number (n) of image bands used [23,24]. Because it only factors
in the direction of the spectrum, the spectrum length and other factors are considered equal.
It determines the similarity of the unknown spectrum t to the reference spectrum r using
Equation (1), below:

α = cos−1(t · r||t|| ||r||) (1)

The SID algorithm can determine the target pixel based on differences in the object’s
spectral reflectance information. It calculates the information difference between the target
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pixel (r1) and the target reference (r2) from the sum of the relative difference between r1
and r2 (D(r1‖r2)), and the relative difference between r2 and r1 (D(r2‖r1)). This algorithm is
presented in Equation (2) below [25]:

SID(r1, r2) = (D( r1||r2)) + (D(r2||r1)) (2)

Finally, the SFF algorithm compares the spectral image with the endmember reference.
The reference spectra were scaled to match those of the image after the continuum was
removed from both datasets (reference and object spectra) [26].

The spectral reflectance of each mangrove species was measured in the field simulta-
neously with the validation samples. The validation samples are different datasets from
those used to map the mangrove species. They contain mangrove species data and their
coordinate locations in the field. However, both modeling and validation samples were
determined with the same purposive sampling technique because of high object hetero-
geneity in the field and low accessibility. Both sets of samples were also selected with the
same criteria, i.e., the PPI calculation results.

The accuracy assessment was conducted with a confusion matrix to measure the
extent to which the mangrove species classification results from field-collected and post-
field-processed data were similar. In addition to percent accuracy, it also evaluated each
algorithm’s misclassification by observing the presence or absence of a logical error in
the species classification. This accuracy assessment resulted in user’s accuracy (UA),
producer’s accuracy (PA), and overall accuracy (OA) values, following Congalton and
Green’s procedures [27].

3. Results

3.1. Spectral Reflectance of Mangrove Species

The spectral library for each species was developed by displaying the spectral re-
flectance curve of the replicated samples with their averages and observing the correspond-
ing curves of all species. The normalized spectral reflectance of 24 mangrove species (10 of
primary data and 14 of secondary data) were combined into one spectral reflectance curve,
as shown in Figure 4a. The field-measured spectral reflectance has a very high spectral
resolution (1586 bands) while that from the WV-2 image has a low resolution (eight bands).
Therefore, spectral resampling was conducted to match the spectral resolution derived
from the spectrometer to the WV-2 image bands. The center wavelengths of the WV-2
image obtained from the “Radiometric Use of WorldView-2 Imagery” guidelines by Digital-
Globe [13] were used as the targeted spectra in the spectral resampling process. The center
wavelength for each WV-2 band is as follows: 427 nm (coastal), 478.3 nm (blue), 545.8 nm
(green, 607.7 nm (yellow), 658.8 nm (red), 724.1 nm (red-edge), 832.9 nm (NIR1), and
949.3 nm (NIR2). Besides degrading spectral resolution, spectral resampling also simplified
the spectral reflectance of objects measured in the field. In general, both field-collected and
resampled data had the same pattern: low in the coastal, blue, and red bands, slightly high
in the green band, high in the red-edge band, and very high in the near-IR1 and near-IR2
bands (Figure 4a,b).
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Figure 4. Spectral reflectance curves of the field-measured data (a) and the resampling results based
on WorldView-2 bands (b) for the 24 mangrove species found in the study site.

3.2. Clustering Analysis of Mangrove Species

The clustering of mangrove species was conducted based on the resampled mangrove
spectra. Indirectly, this clustering also grouped several morphological features of plants,
especially their leaves. Klančnik and Gaberščik [28] explained that every leaf shape has
structural characteristics with distinctive optical properties. The redundancy analysis
showed that the leaves’ morphological and biochemical characteristics had particular
relationships with leaf spectral reflectance. In general, the most dominant plant part
that can be identified by satellite imagery is the leaf canopy. In this study, the spectral
reflectance approach used as input in the clustering analysis indirectly captured some of
the morphological characteristics of the mangroves, especially the leaves.

Based on the resulting dendrogram (Figure 5), there were four possible classification
schemes. The cluster distance for the most distinguishable class was 25, while the cluster
distance for the least distinguishable class was 0. The dendrogram showed four levels
with different numbers of species groups. Level 1 (two groups), Level 2 (four groups), and
Level 3 (five groups) can be used as references in pixel-based mangrove species mapping
because they have a relatively large distance between clusters (Table 3). Meanwhile, the
Level-4 classification scheme cannot be used for this purpose because the distances between
clusters are too small. The results of this species clustering are used to design scenarios for
mangrove species mapping using the WV-2 image.

Table 3. Mangrove species grouping of Levels 1–4 resulting from the cluster analysis.

Level Group Mangrove Species

Level 1
A A. ebracteatus, A. ilicifolius, A. aureum, A. corniculatum, A. marina, B. cylindrica, B. sexangular, C. tagal,

H. littoralis, L. racemosa, P. acidula, R. mucronata, R. stylosa, S. hydrophyllacea, S. alba, X. moluccensis
B B. gymnorrhiza, E. agallocha, L. littorea, R. apiculata, R. lamarckii, S. caseolaris, S. ovata, X. granatum

Level 2

A A. ebracteatus, A. aureum, A. corniculatum, B. cylindrica, B. sexangular, C. tagal, H. littoralis, R. mucronata,
R. stylosa, S. hydrophyllacea

B A. ilicifolius, A. marina, L. racemosa, P. acidula, S. alba, X. moluccensis
C R. lamarckii, S. ovata
D B. gymnorrhiza, E. agallocha, L. littorea, R. apiculata, S. caseolaris, X. granatum

Level 3

A A. corniculatum, B. cylindrica, R. mucronata, R. stylosa
B A. ebracteatus, A. aureum, B. sexangula, C. tagal, H. littoralis, S. hydrophyllacea
C A. ilicifolius, A. marina, L. racemosa, P. acidula, S. alba, X. moluccensis
D R. lamarckii, S. ovata
E B. gymnorrhiza, E. agallocha, L. littorea, R. apiculata, S. caseolaris, X. granatum

Level 4 Individual mangrove species
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Figure 5. Dendrogram of mangrove species obtained with the Ward linkage method showing four
levels of species grouping.

3.3. Pixel-Based Classification

The classification mapping was based on the dendrogram analysis results, which
produced four levels of mangrove species groups. First, the spectral reflectance curves for
each group of mangrove species at each level of the dendrogram were averaged. Then,
these results were inputted into the three algorithms of mangrove species mapping. The
SAM- and SID-based classifications used default thresholds of 0.1 and 0.05, respectively.
Because there was no default threshold for the SFF, the threshold value was set at 10. For
each dendrogram level, the threshold values of the classification algorithms were made
equal to reduce user intervention and maximize software performance. The mapping
results of using these three classification algorithms are presented in Figure 6. Overall, the
SAM-based mangrove species classification results at Levels 1, 2, and 3 could not classify all
mangrove areas, as was evident from the extensive gray areas in the mangrove delineation
results. Some of the mangrove areas were unclassified; this could be due to an inappropriate
threshold value for the classification. The front/distal formation bordering the seawater
was generally dominated by Rhizophora groups and some Bruguiera individuals. The SAM
algorithm found Pemphis acidula in the distal formation, but this species was not entirely
classified in the Level-3 mapping. Meanwhile, the Level-1 mapping with the SID and SFF
algorithms classified the distal formation as Group B with eight species, three of which
were Bruguiera gymnorrhiza, Rhizophora lamarckii, and Rhizophora apiculata. According to
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field reports, Rhizophora groups and some Bruguiera individuals generally dominated the
distal formation bordering the sea, meaning that Rhizophora apiculata is highly likely to
have been among the species classified.

 

Figure 6. Mangrove species mapping results using the SAM, SID, and SFF algorithms at group
Levels 1–4.

The Level-2 SID-based mapping showed Group A as the dominant species constituent.
Group A consisted of several understory genera, such as Achantus, Acrosticum, Aegiceras,
and Scyphiphora and some trees, such as Bruguiera sexangula, Bruguiera cylindrica, Ceriops
tagal, Rhizophora mucronata, and Rhizophora stylosa, located in the medial and proximal
formations. Meanwhile, the distal formation was dominated by Groups B and D, creating
a mixed pattern. In contrast, the Level-2 SFF-based classification showed that the distal
formation was dominated by Group C, consisting of Rhizophora lamarckii and Sporomusa
ovata. However, these results were inaccurate as these two species cannot grow large
and are rarely present in tidal areas but instead reside in the medial and the proximal
areas. Meanwhile, the SID- and SFF-based classifications at Level 3 also showed significant
differences in species composition; the former showed Group B predominating and the
latter, codominant Groups A, C, and D.
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The individual species mapping results (Level 4) differed from the other three classifi-
cations. The SAM and SID algorithms classified Pemphis acidula as the dominant species in
the distal formation, although it is rarely found in tidal areas such as this distal formation,
typically growing under the canopy of the proximal formation. This causes a visual classifi-
cation error and subsequently affects the accuracy of the classification mapping using both
algorithms. Meanwhile, SFF classified Bruguiera sexangula as the dominant species in the
distal formation. It is commonly found in tidal areas and is associated with Rhizophora but
not as a major species with broad distribution. The SFF-based classification suggested the
presence of Bruguiera sexangular along the tidal area, another imprecise result that affects
the mapping accuracy value.

4. Discussion

4.1. Mangrove Species Clusters

Mangrove species clustering can adopt plant morphological approaches commonly
used in compiling taxonomies. For example, leaf shape, canopy shape, stem characteristics,
and plant habitat characteristics such as salinity level, type of substrate, and length of tidal
inundation can be used. However, the spectral reflectance curve of the mangrove species
object on the WV-2 image was integrated with the field-measured curve for this study.
The result of the spectral reflectance resampling was then inputted into the clustering in
dendrograms for pixel-based mapping classification.

The results of the dendrogram analysis showed four levels with varying numbers of
species groups (Figure 5 and Table 3). Level 1 (2 groups), Level 2 (4 groups), and Level 3
(5 groups) could be used as references for the pixel-based mapping of mangrove species
because the clusters were quite far apart. In contrast, Level 4 could not be used for the same
purpose because the clusters were too close together. The Level 1 scheme had a cluster
distance of 25, resulting in two large clusters in which Bruguiera, Lumnitzera, Rhizophora,
Sonneratia, and Xylocarpus were divided into two groups. In the Level 2 scheme with a
cluster distance of 5, the mangrove species were divided into four groups. The species
Rhizophora lamarckii and Sonneratia ovata were clustered into one group for the similarity
of their spectral reflectance; physiologically, the two species also have more wax coating on
the leaf surfaces compared with other species. The Level 3 scheme had a cluster distance of
two, which divided the mangrove species into five groups where group A, at a rescaled
distance of 5, was split into two new groups while the other three groups remained. Unlike
in Levels 1–3, the Level 4 scheme grouped mangroves by single species, without forming
new groups.

4.2. Accuracy Assessment of the Resulting Maps

The mapping accuracy was assessed with a confusion matrix to calculate the overall
accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA). The validation samples
were point data obtained directly from the field survey in 2021 (primary data) and secondary
data with the attributes of mangrove species. The primary data were acquired using the
average point method at 2 m × 2 m pure pixel points that had been created. Additionally,
the samples were incidentally collected when encountering certain minor species that
had gone unidentified during the interpretation of the aerial photographs. To assess the
accuracy of the mapping results, a total of 177 sample points were analyzed using the
“extract values to point” tool in ArcGIS on the model developed previously to compile
the matrix.

In this step, the mangrove species maps generated using the three classification al-
gorithms were evaluated for their OA, as presented in Tables 4 and 5. In general, the
accuracy of the three classification algorithms at all four levels was low. The SID-based
classifications at Levels 1 (with two species groups), 2 (four), and 3 (five) had the highest
OA at 49.72%, 22.60%, and 15.25%, respectively. Meanwhile, the SFF-based classification for
the Level-4 mapping of 24 species had the highest OA at 5.08%. The results demonstrated
that the greater the number of classes to be mapped, the smaller the accuracy value. This
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finding corresponds to Andréfouët et al. [29] and Kamal et al. [30], who explained that the
percentage of classification accuracy expressed in OA decreased with the increase in the
number of classes. In addition, the high heterogeneity of objects with natural properties,
such as mangroves and mixed species in one pixel, affected the OA. The characteristics of
mapped objects also affect the accuracy because if more pixels are mixed, the objects will
be more difficult to classify.

Table 4. Accuracy of mangrove species mapping with SAM, SID, and SFF-based classifications at
Levels 1, 2, and 3.

Classification
Algorithms

Level 1 (%) Level 2 (%) Level 3 (%)
Group PA UA OA Group PA UA OA Group PA UA OA

SAM

A 8.40 47.62 7.34 A 5.88 50.00 5.08 A 3.33 25.00 5.65
B 5.17 37.50 B 5.88 15.00 B 13.16 33.33

C 0.00 0.00 C 5.88 21.43
D 3.85 16.67 D 0.00 0.00

E 1.92 8.33

SID

A 58.82 66.67 49.72 A 36.76 31.25 22.60 A 13.33 5.97 15.25
B 31.03 39.13 B 3.92 7.14 B 42.11 27.59

C 0.00 0.00 C 1.96 5.26
D 25.00 30.23 D 0.00 0.00

E 11.54 35.29

SFF

A 21.85 70.27 38.42 A 10.29 31.82 10.73 A 6.67 4.65 7.91
B 72.41 43.30 B 5.88 7.50 B 5.26 50.00

C 50.00 0.00 C 5.88 7.89
D 11.54 20.69 D 50.00 6.25

E 7.69 23.53

Table 5. Accuracy of mangrove species mapping with SAM, SID, and SFF-based classifications at
Level 4.

Class
SAM SID SFF

PA (%) UA (%) OA (%) PA (%) UA (%) OA (%) PA (%) UA (%) OA (%)

A 0 0

0.56

0 0

0

0 0

5.08

B 0 0 0 0 0 0
C 0 0 0 0 0 0
D 0 0 0 0 0 0
E 0 0 0 0 0 0
F 0 0 0 0 0 0
G 0 0 0 0 0 0
H 0 0 0 0 33.33 2.27
I 0 0 0 0 0 0
J 0 0 0 0 6.25 9.09
K 0 0 0 0 0 0
L 0 0 0 0 46.15 37.50
M 0 0 0 0 0 0
N 0 0 0 0 0 0
O 0 0 0 0 0 0
P 0 0 0 0 0 0
Q 0 0 0 0 0 0
R 0 0 0 0 0 0
S 0 0 0 0 0 0
T 0 0 0 0 0 0
U 33.33 2.44 0 0 33.33 16.67
V 0 0 0 0 0 0
W 0 0 0 0 0 0
X 0 0 0 0 0 0
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The mapping accuracy assessment also calculated UA and PA for each classification
algorithm and each dendrogram level to determine which errors reduced the accuracy.
In general, the UA of all classification algorithms at each level was higher than the PA,
as not all of the validation samples matched the classification model; many fell into a
different class (unclassified or class “0”). With many samples considered unclassified, the
PA decreased because, in contrast to UA, the number of correctly classified samples as the
divisor increased. At Level 1 classifications with the SAM, SID, and SFF algorithms, there
were, respectively, 148, 26, and 43 unclassified points among 177 samples. Furthermore,
the SAM, SID, and SFF-based classifications led to 137, 24, and 38 unclassified points at
Level 2; 132, 15, and 27 unclassified points at Level 3; and 63, 5, and 13 unclassified points
at Level 4. The SAM-based classification had the highest number of unclassified points at
all levels, resulting in low PA, UA, and OA.

The SAM algorithm demonstrated the lowest accuracy at all levels because the default
threshold of 0.1 was used, leaving the mangrove area partially unclassified. The accuracy
points extracted from the SAM model did not overlap because the mangrove area was
not classified. The number of unclassified points significantly affected the accuracy of the
SAM-based mapping results. Not all accuracy points that overlap with the model show
accurate or desirable results. At Levels 1, 2, and 3, the points that did not overlap in the
class that should have been the majority were placed in the last class, namely classes B,
D, and E, respectively. At Level 4, the inaccurate points were mostly classified as Pemphis
acidula and Sonneratia caseolaris. These issues significantly decreased the OA of SAM-based
classification.

Mapping single species with the SID- and SFF-based classifications resulted in over-
lapping classes with more accuracy points than using SAM. The accuracy points in the
SID-based classification overlapped more with Acrostichum aureum, Aegiceras cornicula-
tum, Pemphis acidula, and Sonneratia caseolaris than with other species. Meanwhile, in the
SFF-based classification, the accuracy points overlapped more with Aegiceras corniculatum,
Bruguiera sexangula, and Pemphis acidula. However, according to the classification results,
there were only nine overlapped accuracy points with the correct values when using the
SFF and none when using the SID. In pixel-based mapping, increasing the classes to be
mapped will reduce the accuracy value. In contrast, Kamal et al. [30] mapped Rhizophora
stylosa and produced an OA of 52%. Hirano et al. [31] conducted a similar study mapping
Rhizophora mangle that resulted in an OA of 40%. Mixed pixels are one of the problems
that arise in remote sensing images because one pixel in the image can consist of two or
more types of objects. Likewise, mixed pixels were common in the WV-2 satellite imagery
used in this study because of the high heterogeneity and species diversity of the area.
Hyperspectral field data used as the input in multispectral images also affects the mapping
accuracy. Ideally, this type of study should be based on hyperspectral image data so the
spectral resolution would be similar.

4.3. Classification Performance Evaluation

The three classification algorithms have different characteristics, each with particular
advantages and disadvantages. They have dissimilar capacities in recognizing objects even
from the same type of data source, i.e., the field-measured spectral reflectance of mangrove
species. In the SAM algorithm, the similarity between the two spectra is determined by
calculating the “spectral angle” between the image spectrum and the object spectrum and
then assuming a vector in the same dimensional space with the same number of bands [32].
Its disadvantages include insensitivity to other known factors (besides angle) and using
the same treatment for all illumination because SAM only uses spectrum “direction” and
not spectrum “length.” SAM only considers the spectral reflectance pattern of the object,
not the difference in the intensity of the object’s spectral reflectance [33]. The SAM-based
classification uses vector directions to distinguish between features’ spectral reflectance
properties. Features with smaller spectral angles are categorized into the same class. SAM
classifies pure classes and leaves the rest unclassified, thus failing to classify entire plant
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species with pure pixels in the mangrove area [32,34]. In addition, the factors considered in
determining the threshold value affect the classification results, especially at Levels 1, 2,
and 3.

In contrast to SAM, the SID algorithm considers each pixel a random variable, using a
spectral histogram to obtain a mapped probability. Muhammad and Mirza [34] suggest
that problems arising from the SAM classification algorithm can be minimized by using
SID. SID was applied to the same endmember to classify unclassified species and impure
pixels in SAM-based classification results. The SID algorithm uses the size of the divergence
to match pixels to spectral references. A smaller divergence means that the pixel is more
likely to be similar to the spectral reference. According to Nidamanuri and Zbell [35],
SID-based classification can measure the spectral variability of a single mixed pixel and
determine similar spectra. However, according to Shanmugam and Srinivasaperumal [36],
SID’s weakness is that it is more effective on mixed pixel targets.

The SFF classification algorithm produces a separate scale image and root mean square
(RMS) image or a combination of both. SFF is an absorption feature-based algorithm that
matches the image spectrum (pixels) with the object spectrum (reference) [37]. In this study,
SFF classified areas of high species diversity better than SAM and SID in single species
mapping (Level 4). However, according to Muhammad and Mirza [34], this algorithm is
the most time-consuming to use and the resulting classification still needs improvements.
For the input, SFF requires a reference spectrum of the image or spectral library. The second
requirement is removing the continuum from the image and spectral reference (object)
before analysis [37], for instance, by resampling that degrades the spectral resolution of the
data to that of the image.

5. Conclusions

This study identified 24 mangrove species on Karimunjawa and Kemujan Island.
Based on their spectral reflectance characteristics, there were four dendrogram levels: Level
1 (consisting of two groups), 2 (four groups), 3 (five groups), and 4 (single species). The
SAM-based classifications at Levels 1, 2, and 3 did not entirely classify the mangroves.
The SAM and SID algorithms successfully mapped Pemphis acidula massively in the distal
formation at Level 4. Using SID, Group B was found to prevail at Level 1 while Group
A was dominant at Level 2. At the same level, the SFF algorithm classified Group C as
dominant in the distal formation (Rhizophora lamarckii and Sonneratia ovata). Meanwhile, the
SID- and SFF-based classifications at Level 3 showed Group B prevailing in the former and
codominant Groups A, C, and D in the latter. The SFF algorithm classified Bruguiera sexan-
gula in the distal formation. The best accuracy for mapping mangrove species distribution
was obtained by applying the SID-based classification at Levels 1, 2, and 3, with overall
accuracies of 49.72%, 22.60%, and 15.20%, respectively. Meanwhile, the best single-species
mapping accuracy (Level 4) was obtained with SFF-based classification, with an overall
accuracy of 5.08%. In conclusion, the three classification algorithms offered low mapping
accuracy due to the high heterogeneity of species in the field, which resulted in many
mixed pixels and limited access to obtain evenly distributed accuracy points. The greater
the number of classes to be mapped, the smaller the accuracy. A predefined threshold
value that is less than optimal is also a source of low accuracy. Future research can focus on
assessing whether the number of mangrove species affects the accuracy of mapping results.
This can be achieved by replicating the mapping method in a mangrove environment with
low species variation.
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Abstract: This study presents an updated global mangrove forest baseline for 2010: Global Mangrove
Watch (GMW) v2.5. The previous GMW maps (v2.0) of the mangrove extent are currently considered
the most comprehensive available global products, however areas were identified as missing or
poorly mapped. Therefore, this study has updated the 2010 baseline map to increase the mapping
quality and completeness of the mangrove extent. This revision resulted in an additional 2660 km2 of
mangroves being mapped yielding a revised global mangrove extent for 2010 of some 140,260 km2.
The overall map accuracy was estimated to be 95.1% with a 95th confidence interval of 93.8–96.5%,
as assessed using 50,750 reference points located across 60 globally distributed sites. Of these
60 validation sites, 26 were located in areas that were remapped to produce the v2.5 map and
the overall accuracy for these was found to have increased from 82.6% (95th confidence interval:
80.1–84.9) for the v2.0 map to 95.0% (95th confidence interval: 93.7–96.4) for the v2.5 map. Overall,
the improved GMW v2.5 map provides a more robust product to support the conservation and
sustainable use of mangroves globally.

Keywords: mangroves; extent; mapping; sentinel-2; global mangrove watch

1. Introduction

At the United Nations Framework Convention on Climate Change (UNFCCC) Con-
ference of the Parties 26 (COP26) in 2021, an international agreement was made to end
deforestation by 2030. To ensure adherence to this, accurate global scale maps of forested
ecosystems will be critical. One such ecosystem is mangrove forests, which have witnessed
an elevated rate of loss compared to terrestrial forests over the past decades [1] with re-
gional losses exceeding 3%, driven by anthropogenic disturbances [1–3] such as conversion
to aquaculture [4] or agriculture [5], urban expansion [6], oil palm plantations [7], and
climate change [8]. Mangrove forests support a large number of ecosystem services [9], such
as carbon storage and sequestration [10], coastal protection [11], food production [9], and
tourism [12]. The ecosystem services of tidal mangroves and marshes were estimated to be
worth 193,843 USD per hectare per year for 2007, equating to 25 trillion USD annually [13].
Accurate baseline maps of extent are therefore essential for a local and global ecosystem
service accounting as well as verifying COP26 goals. Indeed, the ambitious goals set by
the Global Mangrove Alliance (GMA), to restore 20% of mangrove forests by 2030, require
accurate baselines upon which their efforts can be built. Furthermore, baseline maps are
the keystone for mapping environmental descriptors that characterise this ecosystem, such
as biomass [14], understanding the drivers of land cover change [2], and locating primary
regions for potential restoration.
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The Bunting et al. [15] Global Mangrove Watch (GMW) version 2.0 extent maps
have emerged as the primary global dataset for characterising mangrove extent. There
are a number of initiatives (e.g., GMA, GMW Portal; https://globalmangrovewatch.org;
accessed 8 January 2022) that are aiming to preserve and restore mangroves and wider
international objectives such as the UN Sustainable Development Goals (SDGs), for which
the existing Global Mangrove Watch (GMW) version 2.0 layers [15,16] are a key dataset and
are already used for reporting against. Currently, the GMW v2.0 [16] is the most up-to-date
mangrove extent at the highest spatial resolution available. However, all mangrove datasets
(i.e., [15–18]) published to date have areas that are missing (i.e., not mapped) or where
mapping quality is poor. These limitations are evident globally and are caused by, for
example, sensor specific characteristics (e.g., Landsat 7 Enhanced Thematic Mapper (ETM+)
scan-line error), limited data availability, excessive cloud cover, or a combination of the
above. These limitations degrade the performance of the map to meet the needs of the
COP26 and GMA global initiatives by the year 2030.

For the GMW version 2.0, Bunting et al. [15] used two random forest classifiers to
classify mangrove extent for the year 2010 from a combination of ALOS PALSAR and
Landsat sensor data. As demonstrated by [15,19,20], the L-band radar data used in GMW
v2.0 are sensitive to mapping mangrove change, while providing limited capability to
classify the mangrove extent. However, optical remotely sensed data, particularly those
with a Shortwave Infrared (SWIR) waveband, are well suited to the mapping of mangrove
forest extent [21]. More recently, a number of studies (e.g., [21–25]) have made use of
Sentinel-2 imagery and have demonstrated typical classification accuracies >90% for
mangrove extent using ensemble machine learning classification approaches (e.g., random
forests) through the Google Earth Engine platform. However, these studies have typically
been undertaken over small spatial extents or for a few countries (e.g., [25]), single countries
(e.g., [24]), or particular areas of interest at sub-national scales (e.g., [23]). Alternative
approaches to mangrove mapping that have focused on mapping through time have also
been proposed, such as [26,27], which have used the COntinuous monitoring of Land
Disturbance (COLD) [28] method to provide individual site level time-series maps of
mangrove extent. However, these time-series approaches are computationally intensive
and therefore difficult to apply at a global scale. Nevertheless, they have demonstrated the
ability of advanced machine learning and intensive computational processing for delivering
maps at the quality required for international reporting.

The aim of this work was to produce an update to the 2010 Global Mangrove Watch
version 2.0 [15] suitable for fully supporting the needs of ambitious global level targets
relating to mangrove forest preservation and restoration. Specific regions were identified as
missing or of poor quality within the GMW v2.0 product and a new method was, therefore,
proposed for achieving vastly improved mapping, combining higher-resolution data at
higher imaging cadence with advanced machine learning models. These results were
combined with the GMW v2.0 map to create the most complete map of mangrove extent
currently available and will form the basis of a subsequent study, updating the estimates of
mangrove change.

2. Materials and Methods

The analysis was undertaken on the SuperComputing Wales (SCW) High Performance
Computing (HPC) infrastructure using the Remote Sensing and GIS Library (RSGISLib) of
tools [29], the KEA image format [30] and the pbprocesstools [31] workload management
library to manage the workflow of tasks on the HPC.

2.1. Areas to Be Mapped

Through user feedback on the GMW v2.0 maps, 204 regions were identified to be either
missing or poorly mapped. As detailed by Bunting et al. [15], the choice of 2010 for the
baseline map was driven by the use of ALOS PALSAR data, coverage of which was most
complete for the year 2010 [15]. However, this resulted in Landsat-5 TM and Landsat-7
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ETM+ temporal composites affected by ETM+ scan-line error artefacts, particularly in areas
of high cloud cover (e.g., Niger Delta). These artefacts were, in some cases, present with
the GMW v2.0 maps. Areas identified that required (re-)mapping as part of this study are
shown in Figure 1.

Figure 1. Map of regions identified as in need of updating as part of the Global Mangrove Watch
(GMW) v2.5 analysis.

2.2. Mangrove Habitat Mask

Bunting et al. [15] developed a mangrove habitat mask which was used to limit the
classification of mangroves to those where mangroves can be expected to be present. For
example, mangroves must generally be close to water and at or close to mean sea level.
However, this mask was found to have been too tight in a number of regions (e.g., Florida,
USA) and therefore caused under-classification of mangroves. Ahead of the mapping, the
habitat mask was therefore revised, primarily through manually digitising regions to be
added, but also intersecting the maps of [17,18] to ensure that all regions mapped in those
products were fully located within the GMW habitat mask.

2.3. Mangrove Mapping

Bunting et al. [15] used the most appropriate and available data (i.e., Landsat TM
and ETM+ and ALOS PALSAR) for 2010 in the original mapping (v2.0). Therefore, to
improve the mapping, an approach that used alternative datasets was required. In this
case, Sentinel-2 imagery was used to map the areas outlined in Figure 1. For the analysis,
100 global mangrove/non-mangrove XGBoost classifiers [32] were trained and applied
to each Sentinel-2 acquisition. To produce a single unified classification, results from
all acquisitions and classifiers were merged to create a probability for each pixel to be
mangroves. This probability surface was then thresholded to produce the binary map,
which was subject to a manual Quality Assurance (QA) process to produce the Sentinel-
2-derived maps. These were then combined with the v2.0 2010 baseline and a change
detection using the 2010 ALOS PALSAR data was applied to create a revised GMW v2.5
2010 baseline. The processing stages are outlined in Figure 2.

2.3.1. Sentinel-2 Processing

The Sentinel-2 imagery was downloaded from the Google Cloud public dataset [33]
and, for the purpose of this work, processed to a 20-m pixel resolution (i.e., the 10-m
resolution Sentinel-2 image bands were resampled to 20 m using averaging) orthorectified
standardised surface reflectance product. For the 383 Sentinel-2 granules identified as
intersecting with the regions of interest (Figure 1), individual acquisitions were selected
for download based on cloud cover. Initially, the 10 acquisitions with the lowest cloud
cover (maximum cloud cover of 20%) were identified from the entire Sentinel-2 archive
(2015–2020). An iterative process was then followed where, for each granule, the scenes
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were downloaded and processed to produce a cloud mask. The combined cloud masks
were checked to estimate whether data were available for all mangrove regions within the
scene, as defined by the mangrove habitat mask. If more acquisitions were required, the
thresholds for the number of acquisitions and maximum cloud cover were increased. These
were increased to a maximum of 100 scenes and a maximum cloud threshold of 75%. In
total, 11,262 Sentinel-2 acquisitions were downloaded and used for this analysis.

Figure 2. Flowchart of the methods used to generate the GMW v2.5 map for 2010.

To generate a standardised reflectance product for the classifications, the ARCSI
software [34] was employed, as successfully demonstrated in past studies [15,26,27,35]. The
ARCSI software uses the 6S model [36] through the Py6S module [37] parameterised using
the image header information and an aerosol optical depth estimated from a dark object
subtraction [15]. Using the method of Shepherd and Dymond [38], the resulting images
were normalised for a sensor view angle and local topography producing a standardised
reflectance product. A tropical atmosphere and maritime aerosol profile was used for
all scenes.

Cloud masking was undertaken using the product of two approaches. The FMask [39,40]
algorithm was applied using the Python-FMask implementation [41]. The s2cloudless [42]
LightGBM classifier [43] was also applied to each scene. The resulting s2cloudless classifi-
cation was further refined using a morphological closing (with a 5 × 5 circular operator)
followed by a morphological dilation (with a 7 × 7 circular operator). Finally, any cloud
objects were removed if they were less than 10 pixels in size. The final cloud mask was
defined as the intersection of the two masks. The cloud shadow mask was derived using
the approach implemented within FMask, as described in Zhu et al. [39].

Finally, a ‘clear sky’ mask was derived for each acquisition, defining the areas of
the scene to be used for further analysis. The ‘clear-sky’ mask aims to identify the larger
continuous parts of the image, removing small areas between clouds. The first step buffered
the cloud and cloud shadows by 30 km, clumping the remaining non-cloud regions. The
non-cloud clumps with an area greater than 3000 pixels were then selected and grown to
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the 10-km contour of the cloud and cloud shadow pixels. An example of the ‘clear sky’
mask is shown in Figure 3c.

Figure 3. An example of the clear sky mask for part of a Sentinel-2 scene, where (a) is the original
scene (false colour: near infrared (NIR), shortwave infrared band 1 (SWIR-1), and red bands) and
(b) is the resulting cloud and cloud shadow mask, which can been seen to have missed some clouds,
and (c) is the clear sky mask which has masked the regions around the cloud and cloud shadows.

2.3.2. Building the Classification Models

Classification of mangrove extent was undertaken on a scene-by-scene basis rather
than through the creation of image composites (i.e., merging multiple scenes using a metric
such as the greenest pixel). Image composites, whilst relevant for visualisation, often
have artefacts due to prevailing environmental conditions (e.g., wet or dry season or, in
the case of mangroves, tidal regimes) at the time of the acquisitions or processing errors
(e.g., missed cloud or cloud shadows). These artefacts can then impact the classification
result. An alternative is to classify each of the scenes independently and then merge those
results to create a single map.

To derive training data for the classification, 10,284 samples were created from the
existing GMW v2.0 map. These were manually checked against the Sentinel-2 imagery. For
regions not already within the GMW v2.0 product training regions, these were manually
defined. Non-mangrove regions were defined as regions outside of the GMW habitat
product, with points sampled randomly within this region and through manual selection
of regions giving a total of 52,555 sample points for training.

The resulting samples were then intersected with all 11,262 Sentinel-2 acquisitions, with
each scene masked to the relevant valid clear sky area. This resulted in 4,421,644 mangrove
and 9,830,388 non-mangrove pixel values to train the classifier. Given the volume of
sample data available, it was decided to split the training data into 100 sets, each with
400,000 samples (200,000 for mangroves and 200,000 for non-mangroves). Those samples
were then split into 3 sets for training (100,000 for each class), testing (50,000 for each class),
and validating (50,000 for each class) the model.

The XGBoost [32] binary classification algorithm was used for the analysis given its
ability to use large training datasets and allow transfer learning (i.e., further training of an
existing model). This method has been shown by John et al. [35] to provide good results
for the classification of land cover from Earth observation data. To optimise the hyper-
parameters of the XGBoost model, a subset of 20% was selected from the training (20,000 per
class) and validation (10,000 per class) samples. Bayesian optimisation was used to identify
the optimal hyper-parameters for each of the 100 classifiers. The range of values for the
parameters optimised is given in Table 1. Following identification of the hyper-parameters,
each of the 100 models was trained using the full dataset (i.e., 400,000 samples). The testing
accuracies of the models (using the 50,000 samples per class) were between 97–99%.
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2.3.3. Applying the Classification Models

To apply the 100 global XGBoost classifiers to the individual Sentinel-2 acquisitions,
the models were first further trained using the local training data from the Sentinel-2
acquisition, which was limited to 25,000 samples. This allowed the global classifier to be
locally optimised for the individual acquisitions. The classifiers were then applied to all
the acquisitions, with this creating 112,620 classifications. To avoid incorrect classification
of mangroves in areas where they would not be located (e.g., in mountainous areas), the
classification was only applied within an updated version of the mangrove habitat layer of
Bunting et al. [15].

Table 1. The range of hyper-parameter values from the 100 models.

Parameter Min. Low. Quartile Median Up. Quartile Max. Mode

eta 0.0835 0.236 0.299 0.299 0.489 0.299
gamma 0 0 0 4 4 0

max_delta_step 0 6 7 7 10 7
max_depth 8 13 13 16 20 13

min_child_weight 1 10 10 10 10 10
num_boost_round 68 100 100 100 100 100

subsample 0.752 0.818 0.839 1.0 1.0 0.818

The individual classifications were then merged in two steps to create a mangrove
probability for each pixel. The first step merged the 100 classifications applied to a scene to
create a single probability output image for the scene. The probability was calculated as
the number of times each pixel had been classified as mangroves (i.e., a value of 1 meant
that all 100 classifiers classified the pixel as mangroves, while a value of 0.1 meant that
only 10 classifiers classified the pixel as mangroves). The second step calculated the mean
probability from all the acquisitions for each pixel, providing a single probability surface
for all the areas mapped.

To derive the final binary mask of mangrove extent, a global threshold was applied
to the probability surface. The threshold was identified through a sensitivity analysis
using the mangrove samples based on the 0.1 increments (from 0.2 to 0.8). A mangrove
mask was generated for each threshold where the mask with the best agreement with the
mangrove samples used to train and test the XGBoost classifiers selected. A threshold
of 0.5 provided the greatest correspondence and was therefore applied to all the regions
updated using the Sentinel-2 imagery. For studies focused on specific regions, a further
local optimisation could be undertaken by selecting a local threshold. However, for this
study, a global threshold was applied as defining local regions would be difficult and could
result in boundary artefacts within the resulting maps.

Finally, a visual assessment of the mangrove extent was undertaken where polygons
identifying regions as incorrectly classified as mangroves were digitised with reference to
the Sentinel-2 imagery and high-resolution Google Earth, Mapbox Satellite, and Bing maps
imagery. The areas were then removed from the mangrove extent mask.

2.4. Merging Mangrove Maps and Identify Change to 2010

In addition to the new map produced from the Sentinel-2 analysis, two other man-
grove maps were used to resolve issues for particular areas. For the Sundarbans, in India
and Bangladesh, the mapping of Awty-Carroll et al. [26] for the year 2010 was added to the
Sentinel-2 maps to be merged with the GMW v2.0 products. The Sundarbans were signifi-
cantly affected by stripping from the Landsat ETM+ data within GMW v2.0. Additionally,
mangrove maps for the French overseas territories, where there was found to be a high
prevalence of cloud cover that reduces the availability of useable Sentinel-2 data, generated
by the French National Mangrove Observation Network [44], were used to improve the
new maps.

Following generation of the revised maps, these were merged with the existing GMW
v2.0 baseline for 2010 to create the updated 2010 GMW v2.5 baseline. However, the updated
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areas had been mapped with data acquired over the period from 2015 to 2020 and a change
detection was therefore required to backcast the map for 2010. 2010 ALOS PALSAR data
were used for this and therefore the new mapping was resampled (nearest neighbour)
onto the same 0.000222 degrees (∼25 m) pixel grid of the GMW v2.0 and ALOS PALSAR
data layers.

As demonstrated by Thomas et al. [3,19,20], mangroves produce a high backscatter
response in the L-band SAR data while the majority of non-mangrove surfaces (e.g., water
bodies and mudflats) have a low L-band backscatter. As a result, there is a change trajectory
between mangroves and non-mangroves, which was used by Thomas et al. [20] as the basis
for a methodology for mapping mangrove change. This was applied globally to produce
the GMW v2.0 change layers [16].

For implementation, a low backscatter mask was created for 2010 and used to remove
mangroves that were within the new map but not present in 2010. The mask was defined
using a combination of the ALOS PALSAR 2010 layer and the Landsat-based Pekel et al. [45]
water occurrence layer generated for the period 1984–2020. The analysis was undertaken
on a 1 × 1 degree grid, where the water occurrence layer was used to define areas that
could be considered as ‘permanent’ waterbodies, defined as a water occurrence between
>90 and <100. However, if no pixels were identified, then the threshold was lowered to
>70. For the pixels associated with ‘permanent’ waterbodies, the 99th percentile of the SAR
backscatter was calculated for both the Horizontal-Horizontal (HH) and Horizontal-Vertical
(HV) polarisations. The thresholds for classifying the water extent were then calculated for
both polarisations as:

SAR threshold = 99th percentile − (0.15 × 99th percentile). (1)

If no ‘permanent’ waterbody pixels were identified, then the SAR thresholds where
defined as −14 dB in the HH and −17 dB in the HV polarisations. To produce the low
backscatter mask, the SAR backscatter was thresholded with values below those calculated
above were used and the water occurrence layer had a value > 5.

The low backscatter mask was then used to mask all the tiles, including areas which
have not been remapped, updating the mangrove mask and aligning it with the ALOS
PALSAR data for 2010. Finally, a Quality Assurance (QA) process was undertaken where
the product was visually assessed against a variety of image sources, including high-
resolution Google Earth, Mapbox Satellite and Bing Maps imagery, the Sentinel-2 data,
2010 ALOS PALSAR, and 2010 Landsat imagery data. Polygons were manually drawn
for regions which should be removed from the map (i.e., not mangroves but areas that
had been mapped as mangroves) or added to the map (i.e., mangroves but areas that had
not been mapped as such). These QA edits were then rasterised and applied to the map
producing the final GMW v2.5 layer.

2.5. Accuracy Assessment

To assess the accuracy of the new v2.5 layer, 26 sites (Figure 4) where new mapping
had occurred were selected, representing a range of different mangrove settings, types, and
extents. Additionally, a further 34 sites (Figure 4) were distributed globally for assessing
the overall product accuracy. For each site, an area of 0.2 × 0.2 degrees was defined and
1000 random stratified points were defined for each class (mangroves and non-mangroves).
If there were less than 1000 mangrove pixels within the 0.2 × 0.2 degree area then all
mangrove pixels were defined as points and the number of mangrove reference points
was reduced. The 2000 points were then split into 200 point sets (i.e., 100 mangrove and
100 non-mangrove) where the sets were assessed in turn until the 95% confidence interval
for the macro F1-score was <5%. A minimum of 3 sets (i.e., 600 points) were assessed for
each site, where typically 5 sets were required (1000 points) although 10 sets were used for
one site. Points were manually annotated with a reference class through a combination of
high-resolution Google Earth, Mapbox Satellite and Bing Maps imagery, the Sentinel-2 and
2010 ALOS PALSAR, and Landsat imagery data. In total, 50,750 points were assessed and
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used for the accuracy assessment. For sites where the mapping was updated, the points
were also used to assess the improvement in map accuracy achieved through this study.

Figure 4. A map of the 60 sites used for the accuracy assessment. The 26 red points are over areas
which have been mapped with Sentinel-2 as part of the GMW v2.5 analysis while the 34 blue points
are further set of sites used to capture the global accuracy of the GMW v2.5 baseline rather than just
the areas updated.

3. Results

3.1. Remapped Regions Comparison

To compare the accuracy of the updated v2.5 and v2.0 GMW 2010 baselines, the
reference points for the 26 sites where the baseline has been updated were intersected with
both layers. Summary statistics calculated were an overall accuracy, cohen kappa, and F1
score (per-class and overall), with summaries are provided in Tables 2 and 3. In addition,
upper and lower confidence intervals for all metrics were calculated using bootstrapping.
It was not possible to calculate metrics, such as the allocation and quantity disagreement as
those metrics require a closed map where all pixels are allocated to a class such that the
area of the whole region can be used to normalise. However, for this study we only have a
single class of interest (i.e., mangroves).

As shown in Tables 2 and 3, the estimated accuracy of mapping in regions where the
quality was identified previously as poor or missed increased from 82.6% (80.1–84.9) to
95.0% (93.7–96.4). The range for the individual site accuracies also decreased from 44.7% to
12.4%, demonstrating that the quality of mapping for these areas remapped resulted in a
similar quality of mapping for all regions.

Table 2. For the region mapped to create v2.5, this table contains an overview of the accuracy statistics
from the GMW v2.0 baseline, which can be compared to the statistics in Table 3.

Stats (GMW V2.0) Overall 95th Confidence Site Median Site Min Site Max

Overall (%) 82.6 80.1–84.9 84.8 51.6 96.3
Kappa 0.655 0.607–0.698 0.734 0.393 0.927

Macro F1-Score 0.824 0.799–0.847 0.866 0.334 0.963
Mangrove F1-Score 0.807 0.777–0.834 0.848 0.603 0.964

Mangrove Recall 0.706 0.665–0.746 0.774 0.437 0.976
Mangrove Precision 0.942 0.916–0.964 0.952 0.747 0.994

Other F1-Score 0.841 0.817–0.860 0.885 0.668 0.964
Other Recall 0.953 0.934–0.971 0.976 0.628 1.0

Other Precision 0.752 0.717–0.787 0.818 0.502 0.974

This improvement in mapping accuracy can be seen visually and is illustrated in
Figures 5–7. Figure 5a provides a typical example of a region that was affected by the
Landsat ETM+ striping but was remapped to improve the output Figure 5b. Figure 6a
illustrates an area in Colombia where some areas of mangroves were missed but have
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now been mapped in GMW v2.5 (Figure 6b). Figure 7 illustrates an example where the
habitat mask was too restricted in GMW v2.0 but has been improved within GMW v2.5
by expanding the habitat mask. In terms of the accuracy statistics (Table 3), the example
shown in Figures 6 and 7 represents a region where the accuracy will have significantly
improved, while Figure 5 resulted in only a modest statistical improvement but is visually
much improved.

Table 3. For the region mapped to create v2.5, this table contains an overview of the accuracy statistics
from the GMW v2.5 baseline, which can be compared to the statistics in Table 2.

Stats (GMW V2.5) Overall 95th Confidence Site Median Site Min Site Max

Overall (%) 95.0 93.7–96.4 96.3 87.4 99.8
Kappa 0.901 0.874–0.928 0.926 0.748 0.995

Macro F1-Score 0.951 0.937–0.964 0.963 0.872 0.997
Mangrove F1-Score 0.951 0.938–0.965 0.963 0.887 0.998

Mangrove Recall 0.936 0.901–0.915 0.982 0.803 1.0
Mangrove Precision 0.951 0.951–0.982 0.973 0.83 1.0

Other F1-Score 0.950 0.935–0.963 0.962 0.857 0.997
Other Recall 0.966 0.949–0.982 0.974 0.854 1.0

Other Precision 0.934 0.911–0.956 0.948 0.756 1.0

Figure 5. Comparison of GMW v2.0 (a) and v2.5 (b) products illustrated with an example from
West Papua, Indonesia, where remapping with Sentinel-2 removed artefacts from Landsat ETM+ in
GMW v2.0.

3.2. Overall Accuracy Assessment

Using all 60 sites, the overall accuracy statistics for the v2.5 map was calculated and
presented in Table 4. The global assessment estimated an overall accuracy of 95.1% with
a 95th confidence interval (i.e., 95% likelihood that the true value is within the range) of
93.8 and 96.5%. This was similar to those published by Bunting et al. [15] for v2.0, which
estimated an overall accuracy of 94.0% with a 99th confidence interval of 93.6 and 94.5%.
This is to be expected with only approximately 33% of the map having been remapped
(i.e., replaced) and with only minor changes masking low backscatter pixels applied to
all regions alongside the overall high estimated accuracy of the v2.0 map. However, as
demonstrated in Table 2, the local accuracy of the v2.0 map could be as low as 51% where
areas were missed.
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Figure 6. Comparison of GMW v2.0 (a) and v2.5 (b) products, illustrated with an example from
Colombia, where regions had been omitted in GMW v2.0 but included in GMW v2.5.

Figure 7. Comparison of GMW v2.0 (a) and v2.5 (b) products, illustrated with an example from
Florida, USA, where the habitat mask was too restricted when used in the production of GMW v2.0
which has been improved for the GMW v2.5 product.

3.3. Area Statistics

The global mangrove extent mapped in v2.5 was 140,260 km2, an increase of 2660 km2

(2.5%) over the v2.0 GMW map, which had a global total of 137,600 km2. Table 5 provides a
range of example countries, some with significant changes in mangrove extent between
v2.5 and 2.0. A full country table of mangrove extents for v2.5 and v2.0 has been provided
in Appendix A Table A1.
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Table 4. The overall GMW v2.5 accuracy assessment summary.

Stats (GMW V2.5) Overall 95th Confidence Site Median Site Min Site Max

Overall (%) 95.1 93.8–96.5 96.5 77.8 99.8
Kappa 0.902 0.876–0.930 0.930 0.556 0.995

Macro F1-Score 0.951 0.938–0.965 0.964 0.768 0.997
Mangrove F1-Score 0.951 0.937–0.964 0.964 0.720 0.998

Mangrove Recall 0.956 0.937–0.973 0.984 0.803 1.0
Mangrove Precision 0.947 0.926–0.964 0.969 0.570 1.0

Other F1-Score 0.952 0.938–0.965 0.966 0.817 0.997
Other Recall 0.947 0.923–0.966 0.968 0.696 1.0

Other Precision 0.956 0.938–0.973 0.986 0.756 1.0

Table 5. Example country statistics illustrating the changes between GMW v2.5 and v2.0. A full table
has been provided in Appendix A (Table A1).

Country GMW v2.5 (ha) 2010 GMW v2.0 (ha) 2010 Diff (ha) Diff (%)

Angola 28,969 37,346 −8377 −22.4
Australia 988,842 1,006,021 −17,179 −1.7
Bahrain 59 82 −23 −28.4
Bangladesh 444,159 416,283 27,876 6.7
Benin 3390 84 3307 3957.0
Bermuda 8 0 8 −
Colombia 262,212 231,187 31,025 13.4
Fiji 49,984 51,166 −1182 −2.3
French Guiana 59,466 50,187 9279 18.5
Indonesia 2,801,795 2,688,955 112,840 4.2
Mauritius 345 703 −357 −50.9
Mozambique 298,841 301,125 −2284 −0.8
Nigeria 847,894 695,775 152,119 21.9
Papua New
Guinea 445,785 476,167 −30,382 −6.4

United States 209,544 193,609 15,935 8.2

Global 14,025,986 13,760,074 265,912 1.9

Within the GMW v2.5 data, there are 121 countries with mangroves. Twelve countries,
including Bermuda, were missing from the GMW v2.0, however they (and their areas)
have now been added to the GMW v2.5 dataset. These were mostly small island nations
where persistent cloud cover limits the acquisition of useable remote sensing data. The
observed changes at a national level are variable, with 15 countries (e.g., Mozambique)
having mangrove area differences of less than 1% between GMW v2.5 and v2.0, while
50 countries (e.g., Australia) had between 1–5% of change. The small changes between the
two maps were attributed to the low backscatter pixel mask that was applied to all tiles.
However, for countries with a small area of mangroves, these changes can be significant in
percentage terms. For example, the area of mangroves mapped in Bahrain was 28% greater
in the GMW v2.0.

Of the remaining 44 countries, 18 had a net change between the GMW v2.5 and v2.0
between 5–10% of their mangrove area, with 11 between 10–20% and 10 between 20–50%
and 5 with a net change greater than 50% of the GMW v2.0 area. Many of the countries
with the largest change area were those with small mangrove extents (e.g., Bahrain or
Mauritius). However, in some regions remapped with Sentinel-2, substantial areas were
either removed from the GMW v2.5 map (e.g., Angola had 8377 ha of fewer mangroves;
Figure 8) or were added (e.g., Benin had 3307 ha more mangroves; Figure 9), with this
improving the mangrove mask accuracy for these regions. In the GMW v2.0 map, a number
of areas (e.g., Florida; Figure 7) were omitted because of the restricted GMW habitat mask,
which was used to limit areas where mangroves could be classified. Improvements in this
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mask along with the remapping effort has allowed new areas to be included within the
GMW v2.5 map.

However, some regions were found to have a mixture of substantial omissions and
commissions within the v2.0 dataset. For example, Fiji, which was remapped with Sentinel-
2, had an overall net change of −2.3% between v2.0 and v2.5. However, there were also
significant regions of additional mangrove within Fiji in v2.5 as a processing error in the
v2.0 product caused the mangroves in the west of the island nation (i.e., −180–−178) to
be missed.

The improvement in mapping through the use of the Sentinel-2 data was significant in
areas of high cloud cover and particularly in regions such as French Guiana (18.5%), Papua
New Guinea (−6.4%), Nigeria (21.9%), and Colombia (13.4%; Figure 6). These areas had
often significant striping artefacts present from the use of Landsat ETM+ data in the GMW
v2.0 map (e.g., Figure 5).

These changes in the mapped mangrove area are not due to changes on the ground
but rather to better input data (i.e., Sentinel-2) or new knowledge (e.g., improvements to
the habitat mask) that have allowed us to generate a more accurate mangrove map for 2010.

Figure 8. Comparison of GMW v2.0 (a) and v2.5 (b) products, illustrated with an example from
Angola, where there were errors of commission within the GMW v2.0 product which were improved
for the GMW v2.5 product.

Figure 9. Comparison of GMW v2.0 (a) and v2.5 (b) products, illustrated with an example from
Benin, where regions had been omitted in GMW v2.0 but included in GMW v2.5.
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4. Discussion

To meet the requirements of global initiatives to achieve ambitious targets on the
preservation and restoration of forested ecosystems, accurate and timely maps of the extent
are critical. To date, the GMW has produced the most contemporary and comprehensive
maps of global mangrove ecosystems. However, poorly mapped and omitted regions were
present in the v2.0 dataset. We successfully identified 204 regions in need of updating or
inclusion and proposed a new method to refine the maps in the selected locations. Our
approach was able to increase the low accuracy of the map in these regions from 82.6%
to 95.0%, bringing them in line with the level of overall accuracy of the global map. This
updated map is better suited to meet the needs of the COP26 goal of ending deforestation
by 2030 and the GMA goal of restoring 20% of mangroves by 2030. Accurate baselines are
critical to measuring the success of such ambitious targets and ensuring accountability in re-
porting. With the accuracy of the updated regions mapped here increased by approximately
10%, GMW v2.5 is situated as the primary global scale mangrove extent product.

4.1. Data and Methods

As outlined by Thomas et al. [20], radar data used for the GMW v2.0 are limited in its
ability to discern mangrove extent. Here, Sentinel-2 was relied upon for high-resolution
high-cadence imagery, with spectral bands suited to wetland vegetation mapping. Sentinel-
2 data are acquired as often as once every 5 days and do not suffer from the instrument
degradations that impacted the Landsat 7 ETM+ imagery used for generating the GMW
v2.0 2010 baseline. This provides a dense stack of imagery from which to derive a baseline
map for afflicted regions. As an improvement over GMW v2.0, image composites were not
used as these can result in image artefacts and inconsistent imaging conditions between
images which can lead to classification confusion. Instead, each image was classified
separately and a probabilistic approach was used to determine the mangrove extent. This is
a more robust approach as it can provide additional minimum and maximum bounds and
thus allows flexibility on definitions of extent and transparency on uncertainties. Despite
this, errors do persist in specific locations. While the overall accuracy of the map was 95.1%,
the ranges on a site-by-site basis was from 87.4% to 99.8%. In some locations, this was
caused by the limitations of using moderate spatial resolution (i.e., 20–30-m resolution
Sentinel-2, Landsat, and ALOS PALSAR) imagery to map very fine fringes and fragmented
stands (e.g., Figure 10), that often are associated with human disturbance. These areas are
challenging to identify and interpret and reliably differentiate from other vegetation types,
even using very high spatial resolution imagery (i.e., <3 m). Access to local knowledge
and field data is increasingly important for achieving high quality results in these locations.

Figure 10. Example of fragmented mangroves from Sulawesi, Indonesia. (a) 30-m Landsat 8 imagery
from 2016 (false colour: NIR, SWIR-1, and Red bands) and (b) 30-m Landsat 8 imagery from 2016
overlain with the GMW v2.5 baseline (green), illustrating the resulting v2.5 map for these fragmented
areas of mangroves, which only maps the larger regions for mangroves and not the finer detail.
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The use of the XGBoost classifier [32] provided the use of a gradient boosted decision
tree, which can take advantage of larger training datasets than alternative methods such as
random forests. This has advantages over the random forest algorithm used in GMW v2.0,
by improving upon the single model through use of an iterative approach and training
ensemble models in succession, with each new model correcting errors in the previous one.
This is considered a more robust approach to ensemble learning. Our updated method also
used a unique approach to classifier training, by using combinations of both local and global
training data in order to derive results that are locally tuned but are also representative of
the global mangrove extent.

4.2. Future Baseline Mapping

Going forward, we advocate that a new global baseline at a 10-m spatial resolution
using Sentinel-2 be produced. Such a baseline would align well with other global datasets
produced using Sentinel-2 and Landsat imagery. JAXA are also reprocessing the ALOS
PALSAR and ALOS-2 PALSAR-2 products such that they align with this spatial baseline.
Additionally, using Sentinel-2 data, this study and others (e.g., [21–25]) have demonstrated
that optical remotely sensed data with a shortwave infrared channel (e.g., Landsat and
Sentinel-2) can provide a reliable classification of mangroves and differentiation from
other vegetation types in most regions. Regions where other wet tropic forests share a
boundary with mangroves (e.g., Papua New Guinea and French Guiana) are however still
challenging for classification. The additional spatial resolution (i.e., 10 m) should further
help discriminate small mangrove patches, such as river edges and where disturbance and
loss/gain patterns are complex. The spatial registration of the radar data used in GMW
v2.0 has been found to have 1 or 2 pixels (i.e., 25–50 m) of mis-alignment with the latest
Landsat (Collection 1 and 2) and Sentinel-2 datasets. The creation of a low backscatter mask
is thought to align the remapped areas with the GMW v2.0 datasets. However, by using
the ALOS PALSAR data alone, discrimination of mangroves from other vegetation types
is poor, so the uncertainty in mapping the landward extent of mangroves is greater, with
this also being the case for the GMW v2.0 dataset. JAXA are set to reprocess their L-band
SAR data in order to alleviate this registration issue. Thus, future mapping efforts should
maximise the use of these datasets when available.

5. Conclusions

The paper presented an updated version of the GMW mangrove extent baseline for
2010, producing version 2.5 of this dataset. The update focused on particular areas that were
identified as being poor in quality (e.g., due to Landsat ETM+ stripping) or were missed
in the GMW v2.0 product. The analysis demonstrated an increase in overall accuracy for
updated regions from 82.61% (95th confidence interval 80.1–84.9%) for the GMW v2.0
product to 95.0% (95th confidence interval 93.7–96.4%) for the GMW v2.5 product. To our
knowledge, this renders the GMW v2.5 baseline for 2010 as being the most complete global
map of mangrove extent. This baseline will be used as the basis for an update to the GMW
v3.0 change product, also extending the period from 1996–2016 to 1996–2020, which will be
the subject of a forth-coming publication.
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Appendix A. National Mangrove Extent

Table A1. Country level 2010 mangrove extents for both GMW v2.5 and v2.0.

Country GMW v2.5 (ha) 2010 GMW 2.0 (ha) 2010 Difference (ha) Difference (%)

American Samoa 33 19 14 74.8
Angola 28,969 37,346 −8377 −22.4
Anguilla 1 1 0 −0.9
Antigua and Barbuda 863 889 −25 −2.9
Aruba 26 34 −7 −22.1
Australia 988,842 1,006,021 −17,179 −1.7
Bahamas 93,139 99,318 −6179 −6.2
Bahrain 59 82 −23 −28.4
Bangladesh 444,159 416,283 27,876 6.7
Barbados 14 14 0 −1.8
Belize 44,507 44,784 −277 −0.6
Benin 3390 84 3307 3957.0
Bermuda 8 0 8 −
Bonaire, Sint Eustatius and Saba 165 166 −2 −1.0
Brazil 1,081,106 1,107,207 −26,101 −2.4
British Virgin Islands 83 90 −7 −7.7
Brunei 11,491 11,163 328 2.9
Cambodia 58,517 59,230 −714 −1.2
Cameroon 199,109 191,326 7783 4.1
Cayman Islands 4148 4199 −50 −1.2
China 14,221 15,084 −863 −5.7
Colombia 262,212 231,187 31,025 13.4
Comoros 99 103 −3 −3.2
Cook Islands 3 0 3 −
Costa Rica 36,475 36,872 −397 −1.1
Côte d’Ivoire 5890 6131 −241 −3.9
Cuba 332,816 337,113 −4297 −1.3
Curaçao 7 7 0 −1.2
Democratic Republic of the Congo 24,017 25,810 −1793 −6.9
Djibouti 545 498 47 9.4
Dominica 2 2 0 −9.9
Dominican Republic 18,741 18,942 −201 −1.1
Ecuador 146,544 139,416 7128 5.1
Egypt 147 180 −33 −18.2
El Salvador 37,589 37,665 −76 −0.2
Equatorial Guinea 25,904 25,984 −80 −0.3
Eritrea 6918 7006 −88 −1.3
Fiji 49,984 51,166 −1182 −2.3
French Guiana 59,466 50,187 9279 18.5
French Polynesia 122 0 122 −
French Southern Territories 672 0 672 −
Gabon 176,632 177,091 −458 −0.3
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Table A1. Cont.

Country GMW v2.5 (ha) 2010 GMW 2.0 (ha) 2010 Difference (ha) Difference (%)

Gambia 60,673 61,294 −621 −1.0
Ghana 20,021 20,557 −536 −2.6
Grenada 190 195 −5 −2.7
Guadeloupe 3713 3735 −22 −0.6
Guam 57 0 57 −
Guatemala 23,523 23,709 −187 −0.8
Guinea 222,286 223,849 −1562 −0.7
Guinea−Bissau 262,631 262,616 15 0.0
Guyana 28,640 27,472 1168 4.3
Haiti 14,432 14,635 −203 −1.4
Honduras 59,732 60,372 −640 −1.1
India 370,984 352,052 18,933 5.4
Indonesia 2,801,795 2,688,955 112,840 4.2
Iran 7587 7912 −325 −4.1
Jamaica 9411 9520 −109 −1.1
Japan 918 987 −69 −7.0
Kenya 52,888 53,788 −900 −1.7
Kiribati 135 0 135 −
Liberia 18,938 19,153 −215 −1.1
Madagascar 260,271 260,986 −715 −0.3
Malaysia 515,743 520,071 −4329 −0.8
Maldives 97 0 97 −
Marshall Islands 6 0 6 −
Martinique 2052 1700 352 20.7
Mauritania 177 104 73 70.4
Mauritius 345 703 −357 −50.9
Mayotte 702 589 113 19.2
Mexico 939,502 953,651 −14,150 −1.5
Micronesia 9084 8399 685 8.2
Mozambique 298,841 301,125 −2284 −0.8
Myanmar 496,686 501,116 −4430 −0.9
New Caledonia 33,593 29,625 3967 13.4
New Zealand 30,216 30,627 −411 −1.3
Nicaragua 73,988 74,988 −1000 −1.3
Nigeria 847,894 695,775 152,119 21.9
Oman 111 116 −5 −4.3
Pakistan 63,600 65,240 −1641 −2.5
Palau 6014 6183 −169 −2.7
Panama 153,337 154,477 −1140 −0.7
Papua New Guinea 445,785 476,167 −30,382 −6.4
Peru 4569 4083 486 11.9
Philippines 260,993 265,108 −4115 −1.6
Puerto Rico 8685 8869 −184 −2.1
Qatar 428 444 −16 −3.6
Republic of Congo 2063 0 2063 −
Saint Kitts and Nevis 28 29 −1 −3.0
Saint Lucia 164 166 −2 −1.1
Saint Vincent and the Grenadines 31 33 −2 −5.5
Saint−Martin 14 15 0 −3.0
Samoa 264 305 −40 −13.3
São Tomé and Príncipe 0 0 0 12.0
Saudi Arabia 5367 6824 −1457 −21.4
Senegal 128,077 128,934 −856 −0.7
Seychelles 385 107 277 258.2
Sierra Leone 160,038 127,759 32,279 25.3
Singapore 534 540 −6 −1.2
Solomon Islands 55,519 51,424 4094 8.0
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Table A1. Cont.

Country GMW v2.5 (ha) 2010 GMW 2.0 (ha) 2010 Difference (ha) Difference (%)

Somalia 2253 2098 154 7.4
South Africa 2573 2637 −64 −2.4
Sri Lanka 18,941 20,164 −1223 −6.1
Sudan 433 366 67 18.2
Suriname 77,108 78,154 −1046 −1.3
Taiwan 159 171 −12 −7.0
Tanzania 107,775 113,101 −5326 −4.7
Thailand 223,137 225,770 −2634 −1.2
Timor−Leste 957 983 −26 −2.7
Togo 21 0 21 −
Tonga 1193 872 321 36.8
Trinidad and Tobago 7696 5523 2173 39.3
Turks and Caicos Islands 10,420 12,260 −1840 −15.0
Tuvalu 9 0 9 −
United Arab Emirates 6759 7766 −1008 −13.0
United States 209,544 193,609 15,935 8.2
Vanuatu 1724 1782 −58 −3.2
Venezuela 275,325 287,130 −11,805 −4.1
Vietnam 157,028 159,952 −2924 −1.8
Virgin Islands, U.S. 197 206 −8 −4.1
Wallis and Futuna 29 0 29 −
Yemen 1314 1753 −439 −25.0

Global 14,025,986 13,760,074 265,912 1.9
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Abstract: Highlighting spatiotemporal changes occurring within mangrove habitats at the finest
possible scale could contribute fundamental knowledge and data for local sustainable management.
This study presents the current situation of the Pichavaram mangrove area, a coastal region of
Southeast India prone to both cyclones and reduced freshwater inflow. Based on the supervised
classification and visual inspection of very high spatial resolution (VHSR) satellite images provided
with a pixel size of <4 m, we generated time-series maps to analyze the changes that occurred in
both the natural and planted mangroves between 2003 and 2019. We achieved a high mapping
accuracy (>85%), which confirmed the potential of classification techniques applied to VHSR images
in capturing changes in mangroves on a very fine scale. Our diagnosis reveals variable expansion
rates in plantations made by the local authorities. We also report an ongoing mangrove dieback
and confirm progressive shoreline erosion along the coastline. Despite a lack of field data, VHSR
images allowed for the multiscale diagnosis of the ecosystem situation, thus constituting the first
fine-scale assessment of the fragile Pichavaram mangrove area upon which the coastal community
is dependent.

Keywords: remote sensing-based monitoring; plantation; restoration; change detection; dieback; Bay
of Bengal

1. Introduction

Each mangrove region has its own history, which reflects how species diver-
sity and structural patterns adapt to local and evolving geomorphic and climatic
settings [1,2]. The status of mangroves, however, remains insufficiently documented
in many places of the world despite a consensus on their rates of global decline over
decadal timescales [3–9]. Even if annual rates of mangrove loss tended to decrease
between 2000 and 2012 (0.16–0.39%) compared to the 1980–2000 period (0.99%) [10–14],
the present situation in South Asia and Southeast Asia remains illustrative of the major
drivers of global mangrove loss, which include land-use conversion to aquaculture,
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timber harvesting, pollution, freshwater deficits, low silt deposition, shoreline ero-
sion, and other environmental events, such as dieback, floods, and tropical storm
landfalls [8,12,13]. Beyond the awareness of the importance to protect and restore
mangroves raised among the public at large including policy makers [13] after the
Indian Ocean tsunami in 2004, local and regional administrations must be continu-
ously and at the earliest stage cautioned on the mangrove status for better ecosystem
management [15–17].

Mangrove environments are complex forest landscapes where spatiotemporal changes
continuously occur at fine spatial scales as a consequence of bio-geomorphological pro-
cesses operating at different timescales, and the ecosystem transformation remains highly
situational. More than anything, progressive small-scale changes occurring within forest
landscape area, such as stand structure degradation, dieback, or loss due to sediment
erosion, must be monitored to detect stress factors as early as possible [17–19].

As evident from Figure 1, mangrove species distribution, forest structural attributes,
or landscape fragmentation characterized by forest patches interspersed with water bodies
and channels may hinder moderate spatial resolution (MSR) images, provided with a pixel
size of >4 m (such as Landsat or Sentinel-2 images) when mapping mangrove areas with
accuracy and robustness. Small-scale changes might not get captured using MSR images
until the fine-scale changes accumulate and result in major changes; at this point, it might
be too late to mitigate.

Figure 1. Importance of spatial resolution for mapping changes in mangrove cover. Mangrove
subsets from MSR images from Landsat-8 (15 March 2019) and Sentinel-2 (31 May 2019), along with
very high spatial resolution image Worldview-3 (28 January 2019).

For the better analysis of fine-scale changes and the implementation of rehabilitation
or mitigation measures, the periodic monitoring of mangrove ecosystems using very
high spatial resolution images (VHSR) satellite images delivered with a pixel size of finer
than 4 m is necessary. Efforts to map mangrove habitats and analyze spatiotemporal
changes using VHSR (Quickbird, GeoEye, Worldview) images are rare, but, when achieved,
valuable information about mangrove status has been obtained [18,20–25]. First, VHSR
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remote sensing supports the setting up of field experiments. Second, when combined with
field surveys, VHSR remote sensing images are able to provide the fine-scale mapping of
species distribution or biomass dynamics through the development of quantitative and
robust remote sensing methods based on spectral and textural image characteristics [26,27].
Third, time series of high resolution images facilitate the accurate diagnoses of changes
in mangrove habitats and allow for the questioning of the reasons for local demise or the
establishment of mangroves [18,28,29].

In India, efforts to monitor spatiotemporal changes in mangrove habitats using VHSR
images have been even less frequent [30,31]; mangrove rehabilitation measures have been
generally assessed as successful solely from the monitoring of the surface, which have
been estimated using moderate resolution images such as Landsat or IRS LISS-III [32,33].
The relevance of the plantation techniques, hastily referred to restoration practices, remains
insufficiently questioned though multiple studies drawing attention towards the limitations
of this approach [18,34], especially when the post-planting in situ monitoring of planted
mangrove attributes is not carried out. This is the case of the fishbone plantation, a typical
approach that has been in practice since the 1980s in India to (re)introduce mangrove
on degraded lands [32]. This plantation method diverts water from existing creeks and
channels through the construction of new channels, thus converting the barren land into an
area that tides are expected to reach more easily and frequently, with expected impacts on
the growth and survival of planted mangrove seedlings.

Here, we demonstrate the potential of VHSR remote sensing to study the Pichavaram
mangrove region located in Southeast India based on the use of a time series of five VHSR
satellite images acquired over a period of 16 years (2003–2019). This mangrove region is
part of a major restoration program of wetlands of the east coast of India initiated in the
1990s by national and local authorities [32]. So far, changes in Pichavaram mangroves have
been analyzed with moderate resolution images such as Landsat and IRS LISS-III [32,33].
As few ancillary data are available for scientific analysis, the current status of this mangrove
area must be questioned. We therefore attempted to map mangrove habitats through an
analysis of changes in the mangrove extent with the aim to identify and understand the
environmental and anthropogenic driving forces, a number of them being exogenous to the
mangrove area itself. A second objective was to assess the performance of the mangrove
rehabilitation efforts that have been undertaken by the state forest department. In addition,
as we identified a mangrove dieback event in Pichavaram that has resulted in massive
tree mortality, we discuss the current status of the Pichavaram mangroves and provide
recommendations to improve knowledge and monitoring of this fragile area.

2. Materials and Methods

2.1. Study Area

The Pichavaram mangrove is located almost 15 km northeast of Chidambaram in the
Cuddalore District of Tamil Nadu. Based on the Köppen–Geiger system [35], climate in
Pichavaram is tropical wet and dry (tropical savannah sub-type), characterized by hot
and humid summers, with maximum temperatures reaching almost 42–45 degrees Celsius
followed by mild and pleasant winters (average high temperatures of 25 degrees Celsius).

The mangrove region is bordered by the Vellar estuary in the north and the Kollidam
estuary in the south (Figure 2). The total estuarine area is about 23 km2, of which mangroves
cover about 1100 ha [33,36]. The area is characterized by fertile alluvium deposits in the
west that gradually change to fluviomarine deposits and beach sands towards the eastern
area close to the Bay of Bengal. The mangroves receive most of their freshwater from the
Kollidam River (rather than the Vellar River) due to the south–north elevation gradient.
The region receives a majority of rainfall from the northeast monsoon (October–December),
and to a much lesser extent from the southwest monsoon. From October to December, the
freshwater input can generally increase considerably while the region remains dry [37],
with salinity levels being very high (35–45 ppt) during the rest of the year [36].
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Figure 2. Location of the Pichavaram mangroves in Tamil Nadu, Southeast India (a,b). The mangrove
area, along with the adjacent land-use and land-cover such as agriculture, aquaculture, check-dams
on freshwater streams, and settlements, is illustrated (c). Locations of water quality samples are also
shown along with the observed salinity levels (d).

The Pichavaram mangrove ecosystem is surrounded inland by fishermen hamlets, agri-
culture, and aquaculture ponds that have shown significant increases in numbers, especially
in the last decade. The mangroves serve as lifeline for the surrounding coastal fishermen
community. The fishery production harvested from the mangrove wetland has been reported
to be almost 245 tons (prawns constituting almost 85% of the reported harvest) [36,38,39].
Almost 1000 fishermen seasonally fish in the mangrove; in addition, 800–900 cattle graze the
mangrove wetland area, although the rates of cattle grazing have been reported to decline over
the years [36]. The Pichavaram mangroves played a critical role in mitigating the devastating
effects of the inundation resulting from the Indian Ocean Tsunami of 2004 on the hamlets that
were guarded by the mangroves on the seaward side [31].

Today, the habitat is mainly dominated by Avicennia marina in the interior parts, while
Rhizophora apiculata and Rhizhophora mucronata form the periphery of mangrove patches. Apart
from Avicennia and Rhizophora, a few other mangrove plants have been intermittently observed
in the ecosystem, such as Bruguiera cylindrica, Excoecaria agallocha, Ceriops decandra, Avicennia
officinalis, Aegiceras corniculatum, Rhizophora annamalayana, Acanthus ilicifolius, and Lumnitzera
racemosa, with some rare observations of Xylocarpus granatum and Sonneratia apetala [39]. No
detailed data on mangrove forest structure are available. Based on personal visual inspection,
Rhizophora formations along the river banks can reach heights of up to 6–7 m, while old and
probably non-planted Avicennia marina (>20 years) may reach heights of 10–12 m. Tree height in
plantations, where mangroves are mostly shrubby in nature, seems to be lower (<3 m). The state
forest department has been implementing fishbone plots in Pichavaram since the 1990s in an
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attempt to (re)introduce mangroves in the area, even on barren land (Figure 3). It is worth
noting that, to our knowledge, the biogeochemistry, topography, and elevation of barren land
are not documented prior or even after planting.

Table 1. Specifications and dates of acquisition of the VHSR images used in this study. The angles
θs and θv denote the sun zenith and viewing zenith angles, respectively, while φs–v is the relative
sun-viewing azimuth angle. The tide levels during the time of acquisition, obtained from NOAA
Tides and Currents (http://tidesandcurrents.noaa.gov, accessed on 12 November 2021) are also
indicated. P = panchromatic; MS = multi-spectral.

Satellite and Format Acquisition Date Pixel Size (m) θs (◦) θv (◦) φs–v (◦) Tide Level (cm)

QBD [P, 4 MS]
4 May 2003

[0.6, 2.4]
22.8 6.5 292.6 7

5 January 2005 38.7 32.9 230.3 46

GEO [P, 4 MS]
22 March 2011

[0.4, 1.6]
26.1 19.6 262.3 0

30 January 2016 38.8 26.3 86.1 20

WV3 [P, 8 MS] 28 January 2019 [0.4, 1.6] 34.5 19.2 169.2 44

Figure 3. Pichavaram mangroves in Tamil Nadu along with the locations of the fishbone plots (left).
Changes in the mangrove cover inside a 400 × 400 m fishbone plot (yellow square) implemented
before 2003 are illustrated on the right using the VHSR image dataset described in Table 1.
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2.2. Data
2.2.1. VHSR Satellite Imagery

We searched for cloud-free VHSR satellite images covering the Pichavaram mangroves
on the Maxar® web-catalog. We shortlisted five images and purchased them; these com-
prised Quickbird (QBD) images from the years 2003 and 2005 (acquired a few days after
the Indian Ocean Tsunami that had heavily impacted the region on 26 December 2004),
GeoEye-1 (GEO) images from 2011 and 2016, and a Worldview-3 (WV3) image from 2019
(Table 1). All the images were captured at low tides. Each image was delivered in the
GeoTIFF format as a set of two files, one comprising the panchromatic band (P) and the
second one containing a multichannel stack generated by combining either four or eight
multispectral (MS) bands, depending on the sensor. Panchromatic and multispectral bands
were provided with pixel sizes ranging from 0.4 to 0.6 m and from 1.2 to 2.4 m, respec-
tively. We selected the GeoEye image of 30 January 2016 as a reference image for the
geo-registration of all the other images to Universal Transverse Mercator (Zone 44N). We
estimated the spatial registration accuracy as 1–2 m for the satellite images.

The pixel intensity (or digital number) of satellite images was transformed into a TOA
reflectance value, without correction for atmospheric effects, as follows:

ρ =
π·Lλ·D2

Esun· cosθs
(1)

where ρ is the pixel reflectance, Lλ is the radiance obtained using sensor-specific equations
provided in the image metadata files, D is the Sun–Earth distance (expressed in astro-
nomical units), Esun is the corresponding mean solar exo-atmospheric spectral irradiance
(mW.cm–2.μm–1), and θs is the solar zenith angle [40]. In addition to the five raw VHSR
multispectral images, we used RGB composites provided by the Google Earth platform at
different dates between 2003 and 2019.

2.2.2. In Situ Water Quality

We conducted two field visits in the study area during the pre-monsoon season of
2019–2020 to measure in situ surface water salinity levels across a number of locations in
the mangrove area (Figure 2) using the HI-98192 professional waterproof salinity meter.
The instrument was calibrated prior to the field visits using an EC calibration solution.
No field visits were possible during the post-monsoon season and the monsoon season of
2020–2021 due to travel restrictions imposed in response to the COVID-19 pandemic.

2.2.3. Meteorological Observations

We obtained monthly rainfall (0.25-degree grid) and air temperature (1-degree grid)
data for the 1901–2019 and 1951–2019 periods, respectively, using meteorological obser-
vations from the Indian Meteorological Department (IMD) (https://mausam.imd.gov.in/
accessed on 12 November 2021) for the Cuddalore district in Tamil Nadu. From these
long-term records, we investigated possible anomalies in precipitation and temperature
regimes during our study period of 2001–2019 through a comparison of short-term and
long-term linear trends.

2.3. Methods

Our main objective was to distinguish mangrove areas from non-mangrove areas to
capture changes in the mangrove habitat. For this, we developed our analysis through
a supervised classification process based on all panchromatic and multispectral bands
available for each image, as described below. We did not use any vegetation indices.

2.3.1. Supervised Classification

Supervised classification was performed on each of the VHSR image using the nearest
neighbor algorithm (see [41] for a review of image classification methods) in ERDAS Imag-
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ine 2016 (Hexagon Geospatial; https://www.hexagongeospatial.com/products/power-
portfolio/erdas-imagine accessed on 31 March 2022).

Due to lack of geo-registered in situ data on vegetation for the whole study period,
species-level classification was avoided, while a generic land-cover level classification
was conducted. From a visual inspection of VHSR images consolidated by our ground
experience, training and validation polygons of an area ranging from 0.1 to 4 ha were delin-
eated for three predominant land-covers, i.e., mangrove, water, and other non-mangrove
areas (e.g., barren sandy and dry areas, sandy vegetation, aquaculture ponds, areas, roads,
and buildings) in each image, mostly independently of each other. User’s and producer’s
accuracy values were generated along with the kappa statistic, as well as overall accuracy.
New training and validation polygons for each of the three land-covers were created and
added to the classification process for each image until the maximum variability of spectral
responses for each class was captured and the accuracy levels reached stable values. This
was achieved through a few iterations for each image.

2.3.2. Land-Cover Change Detection

Comparisons were performed to detect changes in the whole Pichavaram region with
respect to the initial land-cover of 2003 (such as comparisons between 2003 and 2005, 2003
and 2011, 2003 and 2016, and 2003 and 2019), as well progressive changes in land-cover
since 2003 (comparisons between 2003 and 2005, 2005 and 2011, 2011 and 2016, and 2016
and 2019). The change classes generated through these comparisons comprised unchanged
mangrove, water, and non-mangrove classes and the following changes (initial land-cover
to subsequent land-cover): ‘mangrove to non-mangrove’, ‘mangrove to water’, ‘water to
mangrove’, ‘water to non-mangrove’, ‘non-mangrove to mangrove’, and ‘non-mangrove
to water’. Progressive and cumulative mangrove gains and losses were derived since
the beginning of the study period (2003). The analysis of the ‘mangrove to water’ or
‘water to mangrove’ classified areas along the 15 km of Pichavaram shoreline was expected
to provide a fine-scale diagnosis of the eventual impact of coastal erosion or seaward
mangrove progradation.

It was also crucial to document the changes within the non-mangrove areas in proxim-
ity to Pichavaram in order to highlight any natural or anthropogenic features or phenomena
that might threaten the mangrove ecosystem health and resilience. For that, we visually
inspected the changes within the Pichavaram adjoining areas using the raw VHSR scenes,
along with images available through Google Earth at different dates.

2.3.3. Mangrove Cover Change in Fishbone Plantations

We wanted to analyze the success and/or failure rates in the fishbone plots imple-
mented just prior to the Quickbird image acquisition of 2003 (Figure 3). For this, we visually
delineated fishbone units on all VHSR images; plots were segregated based on the time of
their implementation (i.e., plots laid prior to 2003, between 2005 and 2011, between 2011
and 2016, and between 2016 and 2019). Some fishbone plantation units were implemented
close/adjacent to one another: if it was during the same timeframe, we gathered them into
a singular unit assuming that the geographical and environmental conditions were likely
to be identical.

For further analysis, we only retained the fishbone plots that were laid prior to 2003
and between 2005 and 2011, as only two areas with fishbone plots were observed between
2011 and 2016 (see “after 2016” in Figure 3) and the plots implemented after 2016 were
captured only in the VHSR acquired in 2019. Based on the observed rates of growth,
we classified the performance of fishbone units into three categories, i.e., ‘high growth’,
‘moderate growth’, and ‘low growth’ plots.

2.3.4. Delineation of Dieback Areas

In 2019, during a field experiment, we noticed tree mortality in fringing Rhizophora
trees across a certain mangrove area of Pichavaram. We visually inspected all VHSR images
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available from 2016 to 2019, including satellite images provided in Google Earth to estimate
when dieback came up and how many hectares of mangroves were affected. This objective
could not be achieved using MSR satellite images.

3. Results

3.1. Supervised Classification

The supervised classification of the VHSR images yielded a very high level of accuracy
(Table 2). For most of the images, an overall mapping accuracy of >90% was achieved with
kappa values of >0.85. For 2005, though the mapping accuracy levels were observed to
be relatively lower (85% and kappa = 0.77). Within the overall accuracy, the mangrove
mapping accuracy was observed to be mostly >90% (both producer’s and user’s accuracy),
apart from 2005 and 2019 when the user’s accuracy reached 84.8% and 86.8%, respectively,
which could still be considered reasonably high.

Table 2. Classification accuracies of individual land-cover classes for Pichavaram, as obtained
from the supervised classification of the VHSR images (QBD = Quickbird; GEO = GeoEye-1;
WV3 = Worldview-3).

Year Class Names Producer’s Accuracy User’s Accuracy Kappa

2003
(QBD)

Mangrove 96.2% 93.8% 0.91

Water 90.8% 98.8% 0.98

Non-Mangrove 97.3% 91.2% 0.87

Total Accuracy = 95% Kappa = 0.92

2005
(QBD)

Mangrove 84.8% 97.5% 0.96

Water 88.9% 70.0% 0.59

Non-Mangrove 82.4% 87.5% 0.81

Total Accuracy = 85% Kappa = 0.77

2011
(GEO)

Mangrove 94.1% 100.0% 1

Water 100.00% 97.5% 0.96

Non-Mangrove 97.4% 93.8% 0.91

Total Accuracy = 97% Kappa = 0.96

2016
(GEO)

Mangrove 93.0% 100.0% 1

Water 100.0% 98.8% 0.98

Non-Mangrove 98.6% 92.5% 0.89

Total Accuracy = 97% Kappa = 0.96

2019
(WV3)

Mangrove 86.8% 98.8% 0.98

Water 97.1% 82.5% 0.76

Non-Mangrove 90.1% 91.3% 0.87

Total Accuracy = 91% Kappa = 0.86

The confidence attached to the temporal analysis of VHSR images was judged suffi-
cient to map (Figure 4) and document spatiotemporal changes at fine scales of the main
land-covers within the mangrove area itself and its surroundings.
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Figure 4. Land-cover maps produced from VHSR images (Quickbird for 2003 and 2005, GeoEye-1
for 2011 and 2016, and Worldview-3 for 2019) after supervised classification and visual adjustment;
mangrove cover (in hectares) for individual years are mentioned.

Between 2003 and 2019, the overall mangrove cover of Pichavaram expanded by about
2 km2, from 718.5 ha to 919.7 ha, (Figure 5a). The area of natural mangroves increased by
62 ha from 600 to 662 ha while the area of mangroves planted in fishbone plots expanded
by about 139 ha from 118.5 to 257.7 ha.

Figure 5. Change in cover among total, natural, and artificial mangrove area (a). Cumulative gross
gain, gross loss, and net gain of mangrove cover at different time intervals since 2003 (b).

3.2. Change Detection and Analysis

The gain and loss in mangrove habitat have been gradual, with mangrove gross gains
of 17.4% (124.8 ha), 30.0% (215.6 ha), 49.3% (354.1 ha), and 65.9% (473.6 ha) and mangrove
gross losses of 11.7% (84.0 ha), 27.1% (195.0 ha), 30.4% (218.4 ha), and 37.9% (272.4 ha) at 2,
8, 13, and 16 year intervals, respectively (Figure 5b). The mangrove gross loss was always
lower than the mangrove gross gain, and a net gain of mangrove areas of 28.0% (201.2 ha)
relative to the mangrove cover of 2003 was assessed.
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Looking more closely at the different change classes, it appears that the gain in man-
grove areas mostly resulted from the conversion of non-mangrove areas to mangrove areas
(Figure 6).

Figure 6. Progressive change in land-cover (in hectares) at image acquisition intervals.

Non-mangrove areas overall contributed to 396.4 ha of the mangrove growth between
2003 and 2019 with progressive increments of 118.5 ha (2003–2005), 60.3 ha (2005–2007),
103.4 ha (2011–2016), and 114.2 ha (2016–2019). Conversion from water to mangrove areas
was also observed, albeit negligible, with an overall conversion between 2003 and 2019
of 2%. Conversely, we observed an overall combined loss of mangrove areas to non–
mangrove or water areas with progressive losses of 84.1 ha (2003–2005), 81.9 ha (2003–2011),
61.8 ha (2003–2016), and 59.1 ha (2003–2019), this latter value corresponding to 8.2% of the
mangrove area in 2003.

Looking at the change classes ‘mangrove to water’ and ‘non-mangrove to water’, we
could detect changes in the shoreline (Figure 7).

Notably, the Quickbird image of early January 2005, 10 days after the Indian Ocean
tsunami, revealed the disappearance of sandbars close to the mouth of the Uppanaru
River (Figure 7a,b) and along the coastline near central Pichavaram (Figure 7f,g). However,
in the subsequent images, no lingering effects of the apparent flood event were visible
(Figure 7c–e,h–j) New sandbars visible in 2011–2019 images appeared near the mouth of
the Kollidam River in the south (Figure 7k–o). Furthermore, a substantial extent of non–
mangrove inland areas were apparently flooded, thus creating temporary water bodies in
the 2005 image (waterlogging as an aftereffect of irrigation; discussed later) (Figure 7p–t)
that were converted back to non-mangrove areas between 2005 and 2011 (waterlogging
was not observed in 2011).

In addition, we observed a constant and progressive conversion of non-mangrove
areas to water areas along the coast, indicating shoreline erosion, while new non-mangrove
areas were being formed in the southern part of Pichavaram (particularly near the mouth
of the Kollidam River) as a probable response of sediment deposition. These latter areas
were not colonized by mangroves in 2019.

The construction of artificial channels within the mangrove area itself, as well as the
construction of artificial pond-like structures (Figure 8a–e) or artificial barriers (Figure 8f–j)
across upstream channels, could be observed along the periphery of the Pichavaram
mangrove forests and further inland.
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Figure 7. Changes, with a focus on the land (mangrove or non-mangrove) to water changes, in the
land-cover of Pichavaram area and surrounding areas such as (a–e) the mouth of the Uppanaru
River, (f–j) coastline near the central Pichavaram forest, (k–o) the mouth of the Kollidam River, and
(p–t) inland area.

Figure 8. Changes observed in the land-cover of Pichavaram mangroves and the surrounding areas
from the visual inspection of the VHRS images (image excerpts on the right) in combination with a
2016 color-composite image provided by Google Earth (left). Aquaculture expansion in the vicinity
of the mangrove forest (a–e), check-dam construction in freshwater channel to Pichavaram (f–j), and
progressive shoreline erosion (k–o) can be easily identified and monitored.
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3.2.1. Change in Mangrove Cover within Fishbone Plantations

Overall, we observed a gradual increase in the mangrove cover within the fishbone
areas (Figure 9a). The annual expansion rate of the mangroves within the fishbone plots
implemented prior to or in 2003 was about 1.7% but could reach 4% for a number of plots
where mangrove cover was between 20 and 40% in 2003. However, a number of plots
showed minor loss in mangrove cover, and a single fishbone plot, located close to the
mouth of the Uppanaru River, did not show an expansion of its mangrove cover during the
entire study period (Figure 9a, bottom evolution profile).

Figure 9. Changes in the mangrove cover (% relative to fishbone area) within individual fishbone
plots implemented prior to or in (a) 2003 and (b) between 2005 and 2011.

A similar trend (Figure 9b) was observed for the fishbone plots implemented between
2005 and 2011, with most of the plots reaching between 20 and 60% of mangrove cover by
2019. The annual mangrove expansion rates observed within plots ranged from 0.4% to
3.5%, with an average growth rate of 1.7%—values very similar to those observed for the
plots implemented prior to or in 2003.

3.2.2. Dieback in Natural Mangroves

Mangrove dieback in the central west Pichavaram area (Figure 10a), first reported
by the forest department in late 2008, was confirmed by our in situ observations in 2019
(Figure 10d).

We observed that the phenomenon was affecting only a number of river-fringing
Rhizophora apiculata trees along about 1.5 km of river banks. From a closer visual inspection
of the GeoEye image of January 2016 with support from the Google Earth VHSR satellite
images of April and November 2017, we estimated that tree defoliation started in 2017
(between April and November) along the river banks of a 2.5 ha water basin located 700 m
eastward of active aquaculture ponds, impacting a mangrove area of 0.8 ha. The majority of
the dieback was noticed along three interior channels, two southward and one northward
from a branch of the Uppanaru river, and mortality was observed along both sides of the
channels. In total, the phenomenon was observed along 2 km of fringe mangrove area
along several channels (Figure 11a).
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Figure 10. Rhizophora dieback spots in Pichavaram highlighted from the 2019 Worldview-3 image (a).
Inset images show areas with presence of Rhizophora in 2016 (b) and subsequently dieback in 2019 (c),
as confirmed by in situ observations (d).
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Figure 11. Air temperature for Cuddalore, near Pichavaram. Monthly maximum and minimum
temperatures are provided for the time period of 2000−2019. Linear trends for both the 1951−2019
and 2000−2019 time periods are also indicated (a). Median rainfall anomalies for Pichavaram from
2000 to 2019 (encompassing the study period) are presented. Abnormal dry periods from 2001 to
2005 and from 2016 to 2017 are highlighted (b).

3.2.3. Additional Diagnostics Based on Meteorological Observations and Water Salinity

Overall, maximum air temperature ranged between 27.3 and 38.3 degrees Celsius for
the time period of 1951–2019 and between 29.7 and 38.2 degrees Celsius for the time period
of 2000–2019 (Figure 11a). Monthly minimum and maximum temperatures increased
by an average of 1.37 and 1.77 degrees Celsius, respectively, over the 1951–2019 period
in the Pichavaram region. Both the minimum and maximum air temperature trends
showed gradual increases over the two time periods (with a steeper increase in minimum
temperatures over the last 20 years than over the long-term period), as measured by the
upward slopes of the trend lines that were 0.0356 and 0.02573, respectively.
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Regarding median monthly rainfall data (Figure 11b), the analysis showed two excep-
tionally dry periods between 2001 and 2005 and between 2016 and 2017. A rainfall surplus
was observed throughout 2011.

Salinity levels (data not shown) recorded from the water samples collected during our
field visits (see location of samples in Figure 2) ranged from 30 parts per thousand (ppt) to
38 ppt, which is comparable to sea-level salinity. Low salinity levels (<1 ppt; comparable
to freshwater salinity level) were observed only in two locations, close to each other, in
the vicinity of a check-dam that was recently constructed upstream of the mangrove area
(Figure 2d).

4. Discussion

4.1. Mangrove Cover Estimates Using Very High Spatial versus Moderate Spatial
Resolution Images

The VHSR-based mangrove cover estimates (from 718 ha in 2003 to 919 ha in 2019)
were consistently lower than the Landsat-derived mangrove cover estimates (from 800 ha
to 1078 ha) for the same study area (Figure 12).

Figure 12. Comparison of mangrove cover as estimated by VHSR images (Quickbird, GeoEye, and
Worldview) and Landsat.

The Landsat-image-based mangrove cover was in much greater agreement with the
estimates of mangrove cover provided in earlier studies [30,36] that used moderate reso-
lution sensors for mapping mangrove vegetation in Pichavaram. This difference may be
attributed to the more accurate level of detail captured by VHSR images compared to that
of moderate resolution images. The geomorphology of mangroves is often characterized
by fragmentation, with patches of vegetation interlaced by water channels and small open
water bodies. Unlike VHSR images, moderate resolution sensors often classify otherwise
mixed pixels as vegetation, resulting in overestimates of mangrove vegetation (Figure 1).
This study emphasizes the need to map complex and fragmented habitats such as man-
groves using VHSR images, especially while studying very localized mangrove habitats
such as Pichavaram. The methodology used in this study may not be novel and the results
demonstrating the robustness of VHSR may not be unexpected. However, in the case of
the Pichavaram mangrove forest, an analysis of time series of VHSR images acquired over
16 years proved to be particularly interesting to highlight the range of fine-scale positive or
negative evolution trends of the mangrove habitats through an up-to-date diagnosis of the
mangrove situation, where a lack of in situ data has been an impediment.

199



Remote Sens. 2022, 14, 2317

4.2. Monitoring Spatio-Temporal Changes in Mangroves Using Time Series of VHSR Images

The majority of the VHSR images were classified with a >90% accuracy. From the
confusion matrix, it is clear that the mapping accuracies of the individual land-covers were
affected by the presence of water (particularly in the Quickbird image from 2005), which
may have been either residual moisture or actual sea-water logged in both open-mangrove
and non-mangrove areas. This is not entirely unexpected due to the contrasting spectral
responses of aquatic and non-aquatic surfaces, which hinders the performance of both
supervised and unsupervised methods of classification. Satellite images of coastal regions
and ecosystems in particular are often influenced by tidal water fluctuations. Therefore,
image acquisitions at low tide may guarantee desired levels of accuracy. As suggested
by the high-level accuracy reached for the classification of the GeoEye image of 2011, a
year with rainfall surplus, steeper viewing zenith angles along with adequate sun-viewing
azimuth angles may help mangrove areas to be discriminated from water areas. Sun-
frontward angle configurations must be particularly avoided to limit sun backscattering
from water areas, as observed and explained in [18].

Further, this analysis highlights the robustness of the VHSR images in capturing
details of the changes that have occurred in the mangrove ecosystem including progressive
gain and loss of mangrove habitat since 2003. The ecosystem itself is very dynamic, with
constant changes taking place at a very fine spatial scale. As evident from Figure 13,
changes that were captured by the VHSR images in this study would otherwise be difficult
to observe and analyze using moderate or coarse resolution images.

Figure 13. Mangrove gains and losses as captured by VHSR images at different time intervals
in Pichavaram.
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The visual inspection of VHSR satellite images provided by Google Earth is often
helpful and complementary to the analysis of any multispectral images. The performance
of the supervised classification of mangroves areas based on Google Earth VHSR false-color
composites deserves further analysis.

Despite the robustness of the VHSR images in capturing spatial details, the lack
of in situ observations has been a great impediment towards mapping the Pichavaram
mangroves at the species level. Although the existing literature provides some basic
information about the existing mangrove vegetation community [42,43], it is very difficult to
match this information with the VHSR image data without any accurate spatial and ground
reference of species identification and distribution. From our in situ observations and
literature records, we can safely assert the domination of Rhizophora sp. along the river edges
and Avicennia marina in the interior mangroves. However, mapping and identifying the co-
existing species from multispectral VHSR satellite images remains difficult without accurate
in situ observations. Even from the structural point of view, mapping species distribution
in Pichavaram remains complicated. The forest canopy in the interior mangroves is formed
by tree crowns of few square meters, either densely distributed with uniform tree height
or sparsely located in the case of fishbone plantations. In such a scenario, even the use of
sophisticated textural or combined spectral–textural approaches [26,29] applied on VHSR
images for mapping and monitoring species has its limitations [44]. This aspect could
be addressed in the future using a combination of active sensors, such as LiDAR, along
with extensive in situ field observations of species location and canopy structure and
size. Utilizing LiDAR may also facilitate understanding coastal geomorphology, more
specifically erosion and the accumulation of sediments, shoreline retreat, and sea-level
rise, factors which will determine the current and future sustainability management of the
Pichavaram mangroves.

4.3. Preliminary Diagnosis for the Pichavaram Mangroves
4.3.1. Land-Cover Conversion to Mangrove Area

We observed a considerable extent of non-mangrove areas being converted to man-
grove from our change analysis over a period of seventeen years. This conversion was
mostly the result of the efforts undertaken by the state forest department to (re)introduce
mangroves in Pichavaram through the implementation of fishbone plantations.

4.3.2. Mangrove Cover Fluctuations

However, in addition to the increment in mangrove cover, losses in mangrove areas
were also observed, albeit to a lesser extent. Most of the losses in mangrove areas were
observed from 2003 to 2005 and then from 2016 to 2019. The loss in mangroves from 2003
to 2005 may be attributed to the effects of the Indian Ocean Tsunami in December 2004.
The mangroves also witnessed the landfall of Cyclone Thane in late 2011. However, they
may have recovered in the subsequent five-year gap, as no mangrove decline was observed
between the 2011 and 2016 images. Since no VHSR images were captured immediately
after the landfall of the cyclone, the estimation of any mangrove damages whatsoever due
to the landfall has not been possible. The loss in mangrove between 2016 and 2019 may be
partly attributed to the mangrove dieback that was reported in the later part of 2017, which
resulted almost 1 ha of Rhizophora being lost by 2019.

We did observe mangrove losses in years between 2005 and 2016 in our analysis;
however, we did not have any in situ observations or studies on mangrove losses in
Pichavaram at such a fine spatial scale that allowed us ascertain the causal factors behind
the observed losses. Therefore, we can probably attribute the losses to possible localized
environmental disturbances.

4.3.3. Effects of Tsunami and Shoreline Erosion

The destruction of the sandbars at the mouth of the Uppanaru River and the coastline
in central Pichavaram can be clearly attributed to the devastating effect of the Indian Ocean
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Tsunami of 2004 that was captured by the Quickbird image acquired just 10 days after the
incident. The visual inspection of the 2005 image showed the effect of the tsunami, mostly
along the coastal areas and to a lesser extent on the inland areas (Figures 4 and 7a–e). These
sandbars were reformed in time, most likely as a result of the deposition of both riverine
and marine sediments. In addition, we also observed progressive shoreline erosion along
the eastern boundary of the Pichavaram mangroves and sediment accumulation leading
to shoreline creation along the mouth of the Kollidam River, which borders the mangrove
ecosystem in the south (Figure 7f–o) The progressive shoreline retreat might be disastrous
to the mangroves of Pichavaram, as it might lead to sandy bars encroaching on mangrove
habitat or the creation of a perennial hypersaline environment due to seawater inflow that
may lead to salinity-induced stress, particularly among the emergent mangroves, both
natural and artificially planted in fishbone plots. The Pichavaram mangroves are already
facing significant long-term threats from climate-change-induced sea-level rises in the
northern Indian Ocean coastline [45].

4.3.4. Agriculture, Aquaculture and Other Developmental Activities

We also observe inland non-mangrove areas being converted to water from 2003 to
2005; this temporary conversion could be attributed to effects of irrigation practices. In
addition, a lot of inland non-mangrove areas were converted to water bodies from 2016 to
2019. On a closer visual inspection of the raw image, these areas were found to be mostly
agriculture and dry aquaculture ponds that were water-logged, probably due to rainfall
accumulation or irrigation practices, just before the acquisition of the Worldview image of
2019. In addition, we observed the progressive expansion of aquaculture ponds close to the
mangrove boundary throughout the 16-year study period.

While some of the aquaculture ponds may have been abandoned over time (hence,
we observed these ponds to be colonized with natural vegetation), the majority of them
remained apparently active. These anthropogenic practices should be regularly monitored,
and any possible evidences of effluent discharge from these systems into the mangrove
ecosystem should be investigated. The legal prohibition of such activities should also
be considered if such activities are found to affect the mangrove ecosystem. In terms of
any possible effect of the aquaculture practices on the Pichavaram mangrove ecosystem,
opinions have been ambiguous [46,47] (discussed in Section 4.3.6).

In addition, we observed the construction of recent check-dams across freshwater
streams flowing into the Pichavaram mangrove forest. These dams were constructed with
the intention of restricting saltwater intrusion into upstream agriculture, though, in the
process, these structures have also impeded the flow of freshwater into the mangrove
ecosystem, which otherwise is critical for mangrove ecosystem functioning. Therefore,
a mechanism for regulating the flow of freshwater into the mangrove ecosystem should
be implemented.

4.3.5. On the Mangrove Rehabilitation Efficiency

Most of the fishbone plots implemented in 2003 showed gradual improvements in
mangrove cover, with a gain of about 1.3 km2 between 2003 and 2019. The mangrove cover
in the fishbone plots implemented between 2005 and 2011 had also improved and will
hopefully achieve complete mangrove cover in due course if environmental conditions
remain favorable.

The particular fishbone plot that showed negligible mangrove growth during the
sixteen-year time period was very close to the mouth of the Uppanaru River, an area
most likely directly impacted from the Indian Ocean Tsunami in 2004 that may have
destroyed any mangrove saplings planted there. Any chance of a quicker recovery may
have been hampered by the landfall of Cyclone Thane in late 2011. The fishbone plots that
had not shown any significant improvement in mangrove cover need to be revisited and
periodically monitored, and any possible reason for the reduced mangrove growth rate
should be investigated.
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This improvement in overall mangrove cover highlights the apparent success of the
rehabilitation and conservation measures that have been implemented so far by the state
Forest Department of Tamil Nadu. However, there has been no attempt to assess the
efficiency of the restoration measures implemented in Pichavaram so far. This is the first
study to provide a quantitative assessment of the efficiency of the restoration efforts at the
finest possible scale, and it further emphasizes the importance of the periodic monitoring
of the Pichavaram mangroves for the future assessment of the success/failure of the
current/ongoing restoration efforts and their possible effects on the mangrove ecosystem.
Whether the monoculture plantations by the Forest Department contribute to the long-
term sustainability management of the Pichavaram mangroves or to reducing biodiversity
leading to ecological complications in the future remains to be ascertained.

Therefore, we argue that the increase in mangrove cover cannot be the sole objective of
future coastal management plans by the state forest department. The Pichavaram mangrove
environment is already hypersaline, possibly owing to erratic rainfall-induced freshwa-
ter fluctuation and deficits along with rising minimum temperatures, resulting in more
frequent hot and dry periods [45]. Further, the construction of check-dams upstream for pre-
venting salt-water intrusion has also reduced the inflow of freshwater into the mangroves.
Unless a policy for regulating freshwater inflow into the mangroves is implemented, such
persistent hypersaline conditions may prove to be detrimental to newly planted mangrove
saplings, resulting in reduced mangrove growth or even sapling mortality. Historically, hy-
persaline conditions have severely affected the existing plant diversity in Pichavaram, with
extreme halophytic plants becoming dominant in the mangrove landscape, thus reducing
the distribution of the less halophytic plant species [42,43,48]. Low plant diversity may
be a precursor for ecosystem collapse, especially in an event of a widespread dieback or
disease, from which mangroves may not recover from.

Furthermore, the sites for implementing restoration measures need to be carefully
chosen, considering all the environmental factors that may affect mangrove growth and
recovery and, ultimately, the success of the restoration effort. Care should also be taken in
terms of choosing the right species for plantation [49] and restoring plant diversity along
with vegetation cover to ensure proper ecosystem structure and functioning. Alternatively,
just restoring the environmental conditions suitable for mangrove regrowth and survival
may foster natural mangrove recovery [50].

4.3.6. Mangrove Dieback

Possible causes of mangrove dieback are plenty; studies have linked mangrove dieback
to a multitude of factors, such as local herbivory [51], hurricane landfall [52], gale storm
and wind gusts [53], iron toxicity [54], sea-level rise [55], drought [56], and even localized
herbicide usage [57]. Therefore, it is difficult to ascertain the exact cause of the dieback
observed in Pichavaram. A persistent hypersaline environment may be a reason; we
have observed water salinity levels in Pichavaram comparable to sea level salinity in the
dry season. However, salinity levels are usually lower in the wet season in this region,
when the mangroves receive substantial freshwater from precipitation and river discharge.
Earlier water quality studies in Pichavaram [37], along with careful observations of the
site-specific meteorological data (i.e., temperature and rainfall) indicated severe fluctuations
and progressive reductions in the level of freshwater coming into the mangrove ecosystem
owing to erratic rainfall patterns and increasing temperatures, something that can be traced
back to the first decade of the 21st century.

Again, we do not have any in situ observations of salinity from the wet season, as
fieldwork was not possible due to the restriction of activities as a result of COVID-19-
induced restriction measures. Additional in situ observations and estimations of water and
soil bio-geochemistry are required to analyze whether there are any possible connections
between salinity levels and/or freshwater discharge and mangrove mortality/dieback.

Further, as observed during the change analysis, human activities, especially aqua-
culture, have gradually increased in the vicinity of the Pichavaram mangrove ecosystem.
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Although early observations had ruled out any negative effects of aquaculture practices
on the mangrove ecosystem [46], current observations indicate the presence of shrimp
farms and subsequent farming practices (sometimes illegal) responsible for the discharge
of effluents and chemicals leading to fish and bird population declines, along with the
introduction of invasive species in the ecosystem, all of which have caused damage to the
ecosystem itself and the economy of the fishermen [47]. Therefore, a possibility of these
chemical discharges into the adjacent mangrove ecosystem causing tree mortality cannot
be ruled out. However, we need more evidence in the form of in situ bio-geochemical
observations to substantiate this possibility.

4.4. Preliminary Recommendations for the Pichavaram Mangroves

We insist on the necessity of the continuous monitoring of the Pichavaram mangrove
ecosystem to highlight the hotspots of mangrove degradation, as well as the subsequent
prioritization of appropriate fine-scale restoration and conservation measures. For this
purpose, the present analysis confirms the robustness of VHSR images in capturing de-
tails of the changes that have occurred in the mangrove ecosystem compared to previous
studies conducted using coarser spatial resolution imagery [36]. Implementing a super-
vised classification of VHSR images remains quite intuitive because image interpretation
matches the scale of human perception of mangrove attributes and environment features
in the field. For the large-scale analysis of change in mangroves, the use of MSR images
remains complementary.

However, as the tremendous potential of VHSR images in studying mangroves cannot
compensate for the lack of in situ observations, initiatives to carry out regular in situ
scientific forest inventories for describing forest structures and species distribution, along
with abiotic parameters such as soil and water quality parameters (salinity and other
biochemical properties), should be supported and encouraged by the local authorities to
provide early warning in case of stress events [17], as experienced in Pichavaram [32,37].

The implementation of socio-ecological regulations for the integrated management
and exploitation of mangrove resources is of prime urgency for the sustainability of both
the mangrove forest and the livelihood of the fishermen community [38]. Indeed, pro-
gressive shoreline erosion, freshwater deficits, rising temperatures, and massive dieback
are factors that are already threatening the mangroves of Pichavaram. Furthermore, any
major environmental disturbance in the future such as a cyclone landfall or a tsunami could
make the recovery of the mangroves very difficult, resulting in the unfortunate collapse
of the mangrove ecosystem. This would, in turn, severely affect the livelihood of the
surrounding coastal community (mostly fishermen), which is dependent on the sustenance
and well-being of the mangrove ecosystem for their survival.

Finally, conservation decisions need to consider not only the environmental dynamics
within the mangrove ecosystem but also the developments taking place outside of it [58].
The threat of developmental projects such as hydrocarbon exploration has already been
perceived as a significant threat to the Pichavaram mangrove ecosystem [59]. Therefore,
a holistic approach towards the conservation of coastal wetlands such as the Pichavaram
mangroves is critical to the resilience of both the mangrove ecosystem and the livelihood of
the local coastal community [60].

5. Conclusions

This study is the first known attempt of utilizing VHSR images for mapping and
analyzing spatiotemporal changes in the Pichavaram mangroves. Our work also provides
the first fine-scale in-depth assessment of the success of the fishbone plantations imple-
mented by the forest department for restoring mangroves in Pichavaram. We also report
widespread dieback and tree mortality among the fringe mangroves of Pichavaram, more
specifically in Rhizophora apiculata. Our approach can be replicated to study and analyze
similar mangrove ecosystems within coastal India and beyond, where the lack of ancillary
data might be an impediment. Through the study of the Pichavaram mangrove region,
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we illustrated how VHSR images can provide robust and crucial information on fragile
mangrove regions in a simple manner, especially where there are an apparent lack of forest
data and infrequent monitoring. This remains a prerequisite to diagnose ecosystem status,
identify stressful conditions, and warn against rapid degradation.
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Abstract: A pixel-based algorithm for multi-temporal Landsat (TM/ETM+/OLI/OLI-2) imagery
between 1990 and 2022 monitored mangrove dynamics and detected their changes in the three
provinces (i.e., Thai Binh, Nam Dinh and Hai Phong), which are located on the Northern coast of
Vietnam, through the Google Earth Engine (GEE) cloud computing platform. Results showed that
the mangrove area in the study area decreased from 2960 ha in 1990 to 2408 ha in 1995 and then
significantly increased to 4435 ha in 2000 but later declined to 3502 ha in 2005. The mangrove areas
experienced an increase from 4706 ha in 2010 to 10,125 ha in 2020 and reached a highest peak of
10,630 ha in 2022. In 2022, Hai Phong province had the largest area of mangrove (3934 ha), followed
by Nam Dinh (3501 ha) and Thai Binh (3195 ha) provinces. The overall accuracies for 2020 and 2022
were 94.94% and 91.98%, while the Kappa coefficients were 0.90 and 0.84, respectively. The mangrove
restoration programs and policies by the Vietnamese government and local governments are the
key drivers of this increase in mangroves in the three provinces from 1990 to 2022. The results also
demonstrated that the combination of Landsat time series images, a pixel-based algorithm, and the
GEE platform has a high potential for monitoring long-term change of mangrove forests during
32 years in the tropics. Moreover, the obtained mangrove forest maps at a 30-m spatial resolution
can serve as a useful and up-to-date dataset for sustainable management and conservation of these
mangrove forests in the Red River Delta, Vietnam.

Keywords: mangrove; remote sensing; Landsat; Google Earth Engine; Red River Delta; Vietnam

1. Introduction

Mangrove forests are trees and shrubs found in tidal wetlands and located in the
tropical and sub-tropical region between 30◦N and 30◦S latitude [1]. They cover only 0.1%
of Earth’s continental surface, yet they provide a wide range of ecosystem services, includ-
ing water purification, natural hazards reduction, soil and water conservation, shoreline
protection and enhanced local livelihood and are considered as natural-based solutions in

Remote Sens. 2022, 14, 4664. https://doi.org/10.3390/rs14184664 https://www.mdpi.com/journal/remotesensing
209



Remote Sens. 2022, 14, 4664

dealing with climate change impact [2]. The areas of mangrove forests have been changed
significantly on a global scale due to anthropogenic disturbance (i.e., urbanization and
increased agricultural production) and climate change [2]. However, recent studies pointed
out that the rate of deforestation has been decreasing [3], and mangroves have expanded in
some Southeast Asian nations and in Australia [4,5].

Among approximately 3260 km of the total coastal length of Vietnam, 2365 km are
covered by mangroves representing 29 coastal provinces. Mangrove ecosystems, therefore,
play an important role in protecting the Vietnamese coastline against flooding and erosion,
providing biodiversity and livelihood for coastal communities as well as sequestering
carbon, known as ‘blue carbon’ [6,7]. The Vietnamese mangroves are mainly distributed
in the two deltas, the Red River Delta (RRD) in the north and the Mekong River Delta in
the south [8,9]. However, the mangrove forest area in Vietnam has decreased dramatically
over the past 70 years, falling from 408,500 ha in 1943 to 178,000 ha in 2000, and then
continuously shrinking to 138,318 ha in 2016 [10–14]. Therefore, it is essential to obtain
accurate information about mangrove forests in the past and current state that is useful
to manage and effectively protect mangrove ecosystems across the Vietnamese coastline.
However, there is no up-to-date map of mangroves in Vietnam; thus, mapping mangrove
forests and detecting their dynamics are vital for sustainable conservation and management
of mangrove resources.

Mapping mangroves at a large scale remains challenging due to the costs and labour
intensiveness in field measurements for large areas. In recent years, remote-sensing-
based techniques have become widely used for monitoring the Earth’s surface including
mangrove forests and has proven to be a key tool to effectively map mangrove dynamics
in large areas in Southeast Asia [12,15–18]. Pixel-based and object-based approaches are
the most common techniques for mapping mangroves and detecting their changes. These
approaches can provide the most frequently updated data at a low cost [19,20]. For instance,
the distribution of mangroves at a global scale using a multi-temporal Landsat dataset and
a supervised Maximum Livelihood Classification (MLC) was reported by Giri et al. [17]
with an overall accuracy ranging from 79% to 86%. In Vietnam, Nguyen-Thanh et al. [12]
used the Landsat time series data and an object-based image analysis to monitor mangrove
extent in the Ca Mau Peninsula, Vietnam, whereas Pham and Brabyn [13] used the SPOT
imagery and a support vector machine (SVM) classifier to map mangrove dynamics in the
Can Gio biosphere reserve region with overall accuracies of 77 and 83%. However, to date
there is no spatial distribution map of mangroves along the RRD, and there is a complete
lack of reliable updated statistical data of mangroves in the three coastal provinces of
the RRD.

More recently, with the development of open-source software and cloud computing
platforms such as the Google Earth Engine (GEE), the applications of remote sensing
techniques in monitoring mangrove changes have become more popular. Previous studies
have widely applied the GEE platform to map mangrove changes using multispectral
sensors such as the Thematic Mapper (TM), the Enhanced Thematic Mapper Plus (ETM+),
the Operational Land Imager (OLI), and the Operational Land Imager-2 (OLI-2) in Landsat
and the Multi-Spectral Instrument (MSI) in Sentinel-2 [21–25]. However, to the best of
our knowledge, the up-to-date mangrove forests maps and their change detection using
time series Landsat (TM/ETM+/OLI/OLI-2) imagery between 1990 and 2022 have not
been reported in Vietnam. Thus, this study aims to fill the gap in the current literature
by investigating a pixel-based algorithm: (1) to map multi-decadal mangrove dynamics
using Landsat time series data between 1990 and 2022 through the GEE platform, (2) to
provide up-to-date statistical analysis of areas of mangrove forests in the Northern coast of
Vietnam for the first time in 2022 using Landat-9 OLI-2 as an important national mangrove
database, and (3) to provide a useful tool for decision makers in supporting the mangrove
conservation and management in Vietnam.
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2. Materials and Methods

2.1. Study Area

In the current study, three coastal provinces in the RRD were selected to test the
performance of the pixel-based algorithm. They are Hai Phong province (20◦51′54.5004′′N,
106◦41′1.7880′′E), Thai Binh province (20◦27′0′′N, 106◦20′24.07′′E) and Nam Dinh province
(20◦16′45.048′′N, 106◦12′18.533′′E), which are shown in Figure 1.

 

(a) (b) 

Figure 1. Study area in the northern coast of Vietnam: (a) map of Vietnam; (b) three coastal provinces
in the RRD.

The RRD, consisting of nine provinces (i.e., Hai Duong, Bac Ninh, Vinh Phuc, Hung
Yen, Thai Binh, Nam Dinh, Ha Nam, Ninh Binh and Quang Ninh) is the second-largest
delta and is located in the northern region of Vietnam with a total area of 15,000 km2. With
a population of 22 million, the RRD is the most densely populated region in Vietnam [26].
In 2019, the population density of the RRD had reached 1064 inhabitants per km2 [27]. The
total area of the three provinces is approximately 473,700 ha, of which Nam Dinh province
is the largest with 166,800 ha, followed by Thai Binh province and Hai Phong province
with an area of 153,400 ha and 152,300 ha, respectively [8].

The mangrove ecosystems in the RRD play a key role in protecting coastal habitats,
supporting biodiversity, and providing coastal resources for local people. In the RRD, the
Xuan Thuy National Park was listed as the first Ramsar site in Southeast Asia in 1989 to
promote the sustainable conservation of wetlands [28]. The Ramsar site was defined as
“the sustainable utilization of wetlands for the benefit of mankind in a way compatible
with the maintenance of the natural properties of the ecosystem” [29]. There are five
dominant mangrove species observed in this park being Sonneratia caseolaris, Kandelia
obovata, Aegiceras corniculatum, Rhizophora stylosa and Avicennia marina [30]. Furthermore,
this park is the habitat to 116 flora species and 106 fish and has significantly contributed
to wetland biodiversity protection on the northern coastline of Vietnam [30]. A nature
reserve, which is located in Thai Binh Province, is well-known as the Bird Conservation
area, and there are several rare species listed in the Vietnamese Red Book [27]. There are
four seasons in the RRD with a mean annual temperature of approximately 28 ◦C. The
annual precipitation recorded in the last ten years is around 1800–2000 mm. In recent years,
the RRD has been seriously affected by climate variability including higher temperatures,
storms and flooding [28]. In particular, 2020 was recorded as the hottest year over the last
45 years and likely resulted in a dieback of mangroves [31,32].

2.2. Materials
Satellite Data

Multi-decadal Landsat surface reflectance (SR) data obtained through the GEE plat-
form was used to map mangrove dynamics in the study area (Table 1). We used Collection 2,
which were atmospherically corrected SR data with a single-channel algorithm developed
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by the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory
(JPL). All Landsat time series Collection 2 SR data used in the current study (Table 1) were
acquired using the Java scripts on the GEE.

Table 1. Time-series Landsat imagery used for 32 years in the study area.

Sensor Spatial
Resolution (m)

Path/Row Year Band Used

Landsat-5 TM 30 126/46 1990, 1995, 2005, 2010
Blue, Green, Red,

NIR, SWIR
Landsat-7 ETM+ 30 126/46 2000
Landsat-8 OLI 30 126/46 2015, 2020
Landsat-9 OLI-2 30 126/26 2022

Considering the seasonality changes of mangrove forests and their species, a total of
82 cloud-free Landsat scenes between 1990 and 2022 were used to map mangrove dynamics
in the RRD. We applied an image normalisation technique to make all images consistent
during the pre-processing process. To minimize the effects of tidal and water levels, we
selected the datasets acquired in early morning when the tidal level was the lowest.

2.3. Methods
2.3.1. Generation of Training and Validation Datasets for the Study Area

In this study, the training and the validation data were obtained from very high spatial
resolution images in Google Earth Pro imagery (2020). A total of 2370 points were randomly
selected, of which 1896 points (80%) were used for the training set and 474 points (20%)
were used for the validation set (Figure 2).

As shown in Figure 2, a polygon including mangrove forest and non-mangrove was
created from the spatial data and consisted of a sea dyke and river layers with a total area
of 35,566 ha. A 3 km buffer generated from the high-resolution images of Google Earth
Pro imagery in 2020 was used to capture the entire mangrove forests area as suggested by
Thomas et al. [33] and Bunting et al. [34].

2.3.2. Computation of Spectral Indices

Four indices were calculated from the SR data of Landsat (5/7/8/9) images to iden-
tify vegetation and open surface water bodies as suggested by Wang et al. [22] and
Pham et al. [35]. They are the Normalized Difference Vegetation Index (NDVI) [36], the En-
hanced Vegetation Index (EVI) [37], the Land Surface Water Index (LSWI) [38] and the mod-
ified Normalized Difference Water Index (mNDWI) [39]. The equations are shown below:

NDVI =
ρnir − ρred
ρnir + ρred

(1)

EVI = 2.5 × ρnir − ρred
ρnir + 6 × ρred − 7.5 × ρblue + 1

(2)

LSWI =
ρnir − ρswir
ρnir + ρswir

(3)

mNDWI =
ρgreen − ρswir

ρgreen + ρswir
(4)

where ρred, ρgreen, ρblue and ρswir are the surface reflectance at red (band 3 for TM/ETM+
or band 4 for OLI and OLI-2), green (TM/ETM+ band 2 or OLI/OLI-2 band 3), blue
(TM/ETM+ band 1 or OLI/OLI-2 band 2) and short-wave infrared (SWIR: TM/ETM+ band
5 or OLI/OLI-2 band 6) bands, respectively.

We proposed a framework using a pixel-based mapping algorithm to map mangrove
forests and automatically detect their changes using time series Landsat images from 1990
to 2022 through the GEE platform as shown in Figure 3. We developed the Python scripts
using the geemap package (https://github.com/giswqs/geemap, accessed on 16 July 2021)
to map mangrove extent in the RRD.
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2.3.3. Mangrove Mapping Algorithm

In this study, we used a pixel-based algorithm, which was developed by Wang et al. [22]
for mapping coastal wetlands using time series Landsat datasets in 2018 to generate annual
maps of mangrove forests between 1990 and 2022. The algorithm includes three steps
for processing each pixel: (1) identifying open surface water body and green vegetation,
(2) calculating annual frequency for surface water body and vegetation, and (3) generating
annual maps of mangrove forest. The present study used data in 2020 and in 2022 to check
and modify the thresholds provided by the original study and then used these modified
thresholds to estimate the mangrove area for other years.

We used a frequency-based approach from Landsat time series to mitigate the effect of
periodical tidal dynamics and bad-quality observations as suggested by Wang et al. [22].
The open surface water body and vegetation frequencies in a year were calculated using
the following equations:

WF =
Nwater
Ngood

(5)

VF =
Nvegetation

Ngood
(6)

where
WF and VF are the frequencies of surface water body and vegetation, respectively

(−1 to 1).
Nwater and Nvegetation are the numbers observations identified as water and vegetation

in a year, respectively, while
Ngood is the number of observations with good quality, which was characterised as

cloud and shadow-free during the observed year.
We defined the thresholds based on the training data collected from the high spatial

resolution Google Earth images in 2020 to identify evergreen wetlands as follows:

Evergreen = VF ≥ 0.9 and WF ≤ 0.2 and DEM ≤ 5 m and Slope ≤ 5◦ (7)

where WF and VF are the frequencies of surface water body and vegetation, respectively.
These indices values are ranked between −1 and 1, while the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) data were used to generate a slope layer in
the current study [22].

To identify open surface water bodies and green vegetation, a combination of mNDWI
and two vegetation indices (EVI and NDVI) was employed to reduce the errors in mixed
pixels of the water body and vegetation [22]. In this study, almost all pixels identified as
water body in 2020 have an EVI ≤ 0.137 and mNDWI > EVI or mNDWI > NDVI.

The NDVI and the EVI are two popular indices to detect vegetation as suggested in
prior studies [19,27]. Their values are defined between −1 to 1 in which the negative values
indicate no vegetation, while greater positive values indicate available green vegetation
cover. However, a given pixel is often mixed on vegetation, water and soil. The LSWI
is an alternative useful index to identify water content in vegetation and soil, and its
values are also between −1 to 1. The current study found that most vegetation pixels have
EVI ≥ 0.174, NDVI ≥ 0.377 and LSWI ≥ 0. The final formulations to identify surface water
body and green vegetation in 2020 are shown as below:

- Pixels of surface water body: EVI ≤ 0.137 and (mNDWI > EVI or mNDWI > NDVI);
- Pixels of green vegetation: EVI ≥ 0.174, NDVI ≥ 0.377 and LSWI > 0.

2.3.4. Annual Maps of Mangrove Forest

As shown in Figure 3, almost all vegetation pixels have values of VF ≥ 0.5, while
water pixels have WF values ranging from 0.05 to 0.85. In addition, both mangrove and

215



Remote Sens. 2022, 14, 4664

non-mangrove pixels have DEM ≤ 5 m and Slope ≤ 5◦. Therefore, the criteria for mangrove
mapping in 2020 and in 2022 was described as follows:

Mangrove forest = VF ≥ 0.5 and WF ≤ 0.2 and DEM ≤ 5 m and Slope ≤ 5◦ (8)

Non-mangrove forest = VF ≤ 0.15 and 0.05 ≤ WF ≤ 0.2 and DEM ≤ 5 m and Slope ≤ 5◦ (9)

2.3.5. Accuracy Assessment

The mangrove maps of the three provinces in 2020 and in 2022 were generated from
Landsat-8 OLI and Landsat-9 OLI-2 data using the modified algorithm through the GEE
cloud computing platform. In this study, the stratified random sampling approach was
employed to generate the verification samples, and very high-resolution images were
used to evaluate the accuracy of the classification maps in 2020 and in 2022. The size of
verification points for each class (mangrove or non-mangrove) was identified by Cochran’s
formula (the confidence level was set to 0.95 in this study):

n0 =
Z2 pq

e2 (10)

where
n0 is the sample size,
Z is derived from the standard normal distribution,
e is the desired level of precision,
p is the required accuracy, and
q = 1 − p.
In this study, a total of 474 validation points (20% of the total points) were selected

for evaluating the accuracy of mangrove forest mapping in 2020 and in 2022. The random
sampling points include 243 mangrove samples and 231 non-mangrove samples. Then,
each sample was checked with its location, which was identified from very high spatial
resolution Google Earth images by visual interpretation. With the validation samples, the
user’s accuracy, the producer’s accuracy, the overall accuracy, and the Kappa coefficient
were calculated in this study [35,40].

2.3.6. Analysis and Statistical Method

The mangrove distribution maps and the mangrove statistical areas in the study sites
were automatically computed. In addition, the present study used QGIS 3.10.2 software to
produce the spatial distribution of mangroves in the RRD of Vietnam.

3. Results

3.1. Mangrove Classification and Accuracy Assessment

As shown in Figure 4, the total area of mangrove forest was estimated as 10,125 ha and
10,630 ha in 2020 and in 2022, respectively. The largest mangrove forest area was observed
in Hai Phong province (3790 ha), followed by Nam Dinh province (3325 ha) and Thai Binh
province (3010 ha) in 2020.

The results in Tables 2 and 3 show that the overall accuracies obtained from the
stratified random sampling points were 94.94% in 2020 and 91.98% in 2022, while the
Kappa coefficients of classification maps for 2020 and 2022 were 0.90 and 0.84, respectively,
indicating a good-of-fit agreement between the classification result and reference data.
The Landsat-8 OLI sensor produced relatively higher accuracy for 2020 than that of the
Landsat-9 OLI-2 sensors for 2022.
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Figure 4. The estimated mangrove area in the RRD from 1990 to 2022.

Table 2. The confusion matrix for accuracy assessment of mangrove forest using Landsat 8-OLI
in 2020.

Reference Pixels

Predicted
pixels

Class Mangrove Non-mangrove Total User’s accuracy

Mangrove 221 22 243 90.95%
Non-mangrove 2 229 231 99.13%

Total 223 251 474
Producer’s Accuracy 99.10% 88.18%

Overall accuracy 94.94%
Kappa coefficient 0.90

Table 3. The confusion matrix for accuracy assessment of mangrove forest using Landsat-9 OLI-2
in 2022.

Reference Pixels

Predicted
pixels

Class Mangrove Non-mangrove Total User’s accuracy

Mangrove 210 33 243 86.42%
Non-mangrove 5 226 231 97.84%

Total 215 259 474
Producer’s Accuracy 97.70% 87.26%

Overall accuracy 91.98%
Kappa coefficient 0.84

3.2. Mangrove Dynamics from 1990 to 2022

By using our defined thresholds in 2020 and the proposed framework in Figure 3, we
generated mangrove maps in the three provinces (Hai Phong, Nam Dinh and Thai Binh) in
the RRD between 1990 and 2015 together with mangrove maps in 2022 (See Figures A1–A3).
We also estimated the areas of mangrove forests in the three provinces for other years (1990,
1995, 2000, 2005, 2010, 2015 and 2022). The mangrove distribution maps and the statistical
areas in the study sites were automatically computed using the Java scrips on the GEE
cloud computing platform. As shown in Figure 4, the mangrove forest area increased in
the three provinces across the RRD over the 32 years (1990–2022). The change of mangrove
area in each province and each period can be found in Table 4. Figure 5 shows the spatial
distribution of mangrove in the RRD of Vietnam in 1990 (Figure 5a) and in 2022 (Figure 5b).
Figures 6 and 7 represent the mangrove maps of each province in the RRD in 1990 (Figure 6)
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and in 2022 (Figure 7). Mangrove forests are mainly distributed in the river mouth of the
three provinces in the RRD, and they are found in front of the sea dykes (Figures 5–7).

As shown in Figure 4, the area of mangrove forests in the RRD significantly increased
from 1990 to 2022. The mangrove area decreased from 2960 ha in 1990 to 2408 ha in 1995
and then significantly increased to 4435 ha in 2000. Notably, the area of mangrove forests
decreased to 3502 ha in 2005. In contrast, the mangrove area experienced an increase from
4706 ha in 2010 to 8179 ha in 2015 and continued its upward trend to 10,125 ha in 2020 and
reached the highest peak value of 10,630 ha in 2022.

Table 4 shows the change detection of the mangrove area in Hai Phong, Thai Binh and
Nam Dinh provinces over 32 years. Overall, the mangrove area across the three provinces
increased considerably since 2010. Hai Phong province had the largest area of mangrove in
2022 with 3934 ha, followed by Nam Dinh province (3591 ha). In contrast, the mangrove
area in Thai Binh province was the lowest with 3195 ha.

Table 4. The change detection of the mangrove area in the three provinces over 32 years.

Year/Province
Hai Phong

(ha)
Nam Dinh

(ha)
Thai Binh

(ha)
Total
(ha)

1990 1433 459 1068 2960
1995 1190 776 442 2408

1990–1995 −243 317 −626 −552

2000 1495 1335 1605 4435
1995–2000 305 559 1163 2027

2005 1061 1287 1154 3502
2000–2005 −434 −48 −451 −933

2010 1628 1564 1514 4706
2005–2010 567 277 360 1204

2015 3065 2781 2333 8179
2010–2015 1437 1217 819 3473

2020 3790 3325 3010 10,125
2015–2020 725 544 677 1946

2022 3934 3591 3195 10,630
2020–2022 144 176 185 505

  
(a) (b) 

Figure 5. The spatial distribution map of mangrove in the RRD of Vietnam: (a) mangrove map in
1990; (b) mangrove map in 2022.
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(a) (b) 

 
(c) 

Figure 6. Mangrove maps in the three provinces in 1990 across the RRD, northern Vietnam: (a) Thai
Binh; (b) Hai Phong; (c) Nam Dinh.
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(a) (b) 

  
(c) 

Figure 7. Mangrove maps in the three provinces in 2022 across the RRD, northern Vietnam: (a) Thai
Binh; (b) Hai Phong; (c) Nam Dinh.
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4. Discussion

4.1. Uncertainty of Mangrove Mapping and Change Detection

The overall accuracies (OA) of the mangrove maps in 2020 and in 2022 were 94.94%
and 91.98% with Kappa coefficients of 0.90 and 0.84, respectively. These values indicate the
successful use of the pixel-based algorithm for mapping mangrove forests and detecting
change using multi-temporal Landsat datasets on the GEE cloud computing platform. The
Landsat-8 OLI sensor produced better results than those obtained from Landsat-9 OLI-2
(Tables 2 and 3). It is likely due to more available multi-temporal Landat-8 datasets in
2020 with 14 time series scenes compared to only 3 cloud-free scenes available during 2022.
The number of available cloud-free time series Landsat data would influence the overall
accuracy and produce better results when mapping mangrove forests using the pixel-based
algorithm. Future studies applying our framework and thresholds should be further tested
in other mangrove regions with more available Landsat-9 OLI-2. Our results suggested
satisfactory accuracies for mapping mangrove forests during 2020 and 2022. These results
are relatively higher than those reported by the previous studies in Vietnam using SPOT-7
imagery with a higher spatial resolution of 6 m (OA = 92.9%) [41] and using time series
Landsat data (OA ranged from 85% to 92%) [42]. Our results are similar to Hauser et al. [43]
with an attempt to detect mangrove dynamics on the southern coast of Vietnam using
GGE with an overall accuracy ranging from 94 to 96%. However, there is an uncertainty
involved in the mangrove classification and change detection. There are several factors that
could affect the accuracy of mangrove mapping in the study area during 2020. As shown in
Figure A4, this study only obtained about 83% of the pixels in 2020 with seven good-quality
observations. Therefore, it can be considered that the acceptable uncertainty [40,41] in
mangrove area estimation probably resulted from the lower quality of available Landsat
time series (TM/ETM+/OLI/OLI-2) data obtained in the current study area between 1990
and 2022. In addition, the mixed pixels of mangrove and other vegetation in the study area
may also affect the accuracy of the generated mangrove maps. For example, Casuarina spp.
sites were misclassified as mangrove forests because several Casuarina spp. species have a
quite similar reflectance spectrum with other mangrove species observed in the RRD [30]
such as Sonneratia caseolaris, Kandelia obovata, Aegiceras corniculatum, Rhizophora stylosa and
Avicennia marina. Importantly, in the RRD, many mixed small and shrub species are often
observed and reported in the previous studies [30,35].

In this study, the defined thresholds were created based on the calibration data col-
lected from the high spatial resolution Google Earth images in 2020 to automatically map
and detect mangrove canopy changes across the RRD. As shown in Figure 4, the estimated
mangrove area in 2015 was about 8179 ha. This number is close to the estimate as reported
in the National Forest Inventory (NFI) in Vietnam during 2015 (8225 ha), fitting well with
the model developed in the current study using Landsat data on the GEE.

We observed an increase in the extent of mangroves across the three provinces in the
RRD located on the northern coast of Vietnam from 1990 to 2022. The trend is consistent
with the forest coverage change in Vietnam, which was reported in recent studies [44,45]
and is similar to those observed in other Southeast Asian countries by Goldberg et al. [3] in
the southeast and northern Australia by Saintilan et al. [4]. The increase in forest coverage
benefited from the efforts of the Vietnamese government in mangrove planting, restoration,
and protection. The total forest area in Vietnam was slightly increased between 1990 and
2020 and includes both inland forest and mangrove forest in Vietnam [44]. Overall, the
mangrove forest area increase over 32 years (1990–2022) can be automatically detected and
mapped by using Landsat 5/7/8/9 time series images through the GEE platform as a result
of a number of mangrove restoration projects and programs by the Vietnamese government
and policy recommendations based on policy measures from many research studies [11,46].
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4.2. Driving Factors for Mangrove Dynamic in Three Provinces from 1990 to 2022

As exhibited in Table 4 and Figure 4, the mangrove area changed during the period
of 1990–2022. Key drivers that caused changes of mangrove forests in each period are
considered and discussed as follows:

Between 1990 and 1995: The total mangrove area of three provinces decreased from
2960 ha in 1990 to 2408 ha in 1995. This decline was caused by the mangrove deforestation
in the Hai Phong province and the Thai Binh province during the period. Specifically, the
mangrove area in Hai Phong province declined from 1433 ha to 1190 ha, and in Thai Binh
province it reduced from 1068 ha to 442 ha. This period witnessed the smallest mangrove
area during the 32-year period. The reasons behind the decrease were the consequence of a
new policy, the Reform Policy, initiated in 1986 and officially launched in 1991 [47]. During
the period, natural resources, including forest resources, were exhaustively exploited for
economic development.

During this period, many regions were converted to aquaculture farms, significantly
destroying mangrove forests in Thai Binh and Hai Phong provinces [10]. In contrast, Nam
Dinh province had a mangrove area increase of 317 ha from 1990 to 1995 thanks to strict
protection and constant expansion of Xuan Thuy National Park [48].

Period of 1995–2000: This period witnessed an increase in the mangrove area in
three provinces (Table 4). The mangrove areas of Hai Phong, Nam Dinh and Thai Binh
provinces in 2000 reached 1495 ha, 1335 ha and 1605 ha, respectively. This increase was
due mainly to the efforts of planting and protecting mangrove forests through various
programs and projects implemented in such provinces. During this period, the Five Million
Hectare Reforestation Program (661 program) was carried out between 1998 and 2010 at the
national level to increase forest coverage. The percentage of forest coverage was up to 43%
of the total land cover in the final year of the program. In addition, other programs and
projects were also implemented. Several projects such as Red Cross of Japan, PAM5325,
ACTMANG, the 661 programs (Mangrove Plantation and Disaster Risk Reduction project)
were undertaken in such provinces. These projects significantly contributed to the increase
of mangrove cover in the RRD [49,50].

Period of 2000–2005: In this period, the mangrove areas decreased from 4435 ha
in 2000 to 3502 ha in 2005 (Figure 4). The main cause for mangrove loss in 2005 may
probably be explained by the negative impacts of natural disasters. In 2005, an extreme
typhoon event, typhoon “Damrey”, hit the northern region of Vietnam [46] and damaged
the mangrove forest in these areas, especially young mangrove forests. This typhoon was
also reported by Hong, Avtar and Fujii [9] as the amongst the strongest tropical cyclones
impacting the coastal zones of Vietnam during the last 30 years.

Period 2005–2020: This period witnessed a continuous increase in the area of man-
groves in such provinces sustained for 15 years. As shown in Table 4, the total area of
mangrove reached 10,125 ha in 2020. This number was three-times higher than that in 2005.
The mangrove restoration received priority attention and investment by the Vietnamese
government in this period and enhancement of community-based mangrove manage-
ment [51,52]. In addition to the 661 Program implemented from 1998 to 2010, many other
projects and programs funded by the Vietnamese government and other organizations were
implemented in the whole country [52], especially in the Red River Delta [53]. Further sus-
tainable mangrove conservation and management across the Vietnamese coastline should
be carefully considered in protecting existed mangrove forests and restoring degraded
mangroves as well as planting new ones to enhance not only the mangrove area but also
quality and biodiversity in the context of climate change issues.

Period 2020–2022: This short period was characterised by an increased upward trend
in mangrove area in the RRD. The Vietnamese government continued to support mangrove
conservation and management schemes in dealing with climate change impact.
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5. Conclusions

Mangrove forests play an important role in mitigating climate change impacts and
are able to sequester blue carbon for their protection and restoration. Mapping mangrove
extent at a large scale remains challenging due to cloud coverage and spatial limitations of
single satellite sensors. This study developed a framework using the pixel-based algorithm
applied to Landsat TM/ETM+/OLI/OLI-2 time series data on the Google Earth Engine
cloud computing platform to automatically map and quantify mangrove forest changes in
the three provinces of Hai Phong, Nam Dinh and Thai Binh across the RRD over 32 years.

The results showed that the mangrove area has increased considerably in the RRD over
32 years in response to the mangrove restoration programs and policies by the Vietnamese
government and local governments. The mangrove areas were 2960 ha, 2408 ha, 4435 ha,
3502 ha, 4706 ha, 8179 ha, 10,125 ha and 10,630 ha in 1990, 1995, 2000, 2005, 2010, 2015, 2020
and 2022, respectively.

The overall accuracies of the Landsat-8 OLI and the Landsat-9 OLI-2 image processing
for 2020 and 2022 were 94.94% and 91.98%, respectively, while the Kappa coefficients were
0.90 and 0.84, indicating promising results for mapping mangrove forest cover in the tropics
using the GEE platform associated with free open-source code. It could be said that the
pixel-based algorithm and Landsat time series images on the GEE cloud computing are
suitable for long-term monitoring of mangrove change in tropical regions. The Landsat
family has shown the potential use in mapping mangrove dynamics in the tropics and
should be further used worldwide.
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Appendix A

   

   

Figure A1. Mangrove distribution maps in Hai Phong between 1995 and 2020.
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Figure A2. Mangrove distribution maps in Thai Binh between 1995 and 2020.

225



Remote Sens. 2022, 14, 4664

  

  

Figure A3. Mangrove distribution maps in Nam Dinh between 1995 and 2020.

Figure A4. The number of pixels with good-quality observations in 2020.
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Abstract: Mangrove ecosystems provide critical goods and ecosystem services to coastal communities
and contribute to climate change mitigation. Over four decades, remote sensing has proved its
usefulness in monitoring mangrove ecosystems on a broad scale, over time, and at a lower cost than
field observation. The increasing use of spectral indices has led to an expansion of the geographical
context of mangrove studies from local-scale studies to intercontinental and global analyses over the
past 20 years. In remote sensing, numerous spectral indices derived from multiple spectral bands of
remotely sensed data have been developed and used for multiple studies on mangroves. In this paper,
we review the range of spectral indices produced and utilised in mangrove remote sensing between
1996 and 2021. Our findings reveal that spectral indices have been used for a variety of mangrove
aspects but excluded identification of mangrove species. The included aspects are mangrove extent,
distribution, mangrove above ground parameters (e.g., carbon density, biomass, canopy height, and
estimations of LAI), and changes to the aforementioned aspects over time. Normalised Difference
Vegetation Index (NDVI) was found to be the most widely applied index in mangroves, used in 82%
of the studies reviewed, followed by the Enhanced Vegetation Index (EVI) used in 28% of the studies.
Development and application of potential indices for mangrove cover characterisation has increased
(currently 6 indices are published), but NDVI remains the most popular index for mangrove remote
sensing. Ultimately, we identify the limitations and gaps of current studies and suggest some future
directions under the topic of spectral index application in connection to time series imagery and the
fusion of optical sensors for mangrove studies in the digital era.

Keywords: vegetation index; mangrove index; mangrove forest; mangrove above ground; biomass;
carbon sink; bibliometric analysis

1. Introduction

Mangrove is a term which corresponds to intertidal ecosystems or lignified plant
communities that grow in coastal environments between 40◦S and 30◦N throughout the
world (Figure 1). The mangrove boundary is extended to the south of Japan (30.4◦N) and
Bermuda (32.4◦N); to the south of New Zealand (38.05◦S), Australia (38.85◦S), and the east
coast of South Africa (32.98◦S) [1,2]. Mangrove distribution is restricted generally to areas
where the mean temperature ranges 20–35◦C, annual rainfall is between 1500–2500 mm,
and there is a substantial riverine input of freshwater discharge [2]. Actually, the number of
frozen days in the year may play on mangrove presence at high latitudes [3]. Decreases in
the frequency of extreme cold occurrences could lead to considerable increases in mangrove
cover near the current poleward limits of mangrove forests. The global mangrove distribu-
tion is classified into two groups, including the Indo-West Pacific (IWP) and the Atlantic
East Pacific (AEP). Mangroves initially developed on the Tethys Sea’s coastlines in the late
Cretaceous-early Tertiary period [1,2,4]. Three million years ago, modern mangrove taxa
emerged on the eastern borders of Tethys, diversified into present-day IWP regions, and
subsequently spread into AEP regions [5,6]. The richness in the distribution of mangrove
species reduces from the IWP to AEP. Globally, there are approximately 77 mangrove
species, but about 54 species in 20 genera from 16 families constitute the group of “true
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mangroves” occurring only in mangrove habitats. Among these 77 species, 65 species in
32 genera and 24 families are recorded from IWP, while only 15 species in 10 genera and
8 families are in AEP [1,2]. The most commonly found genera in both IWP and AEP are
Rhizophora and Avicennia [2].

The biophysical variables of mangroves (i.e., leaf area, basal area, tree height, percent
canopy closure, diameter at breast height, carbon stock, and biomass) mostly depend
on climatic conditions, while sea level rise has an influence on the structure and spatial
distribution of mangroves [7,8]. Temperature, precipitation, and storminess explain 74% of
the global trends in the maximum values of canopy height and above-ground biomass [7].
Globally, 75% of mangroves are distributed in tropical regions. The largest cover and
highest mangrove diversity are found in Asia (39%), followed by Africa (21%, but mostly
on the eastern side), North and Central America (15%), South America (12.6%) and Oceania
(Australia, Papua New Guinea, New Zealand, south Pacific islands) (12.4%) [9,10]. The
mangroves in the equatorial regions have the maximum biomass and tree canopies can
reach an average height of 30–40 m. The highest mangrove forests are found in Gabon, an
equatorial African nation, where heights reach 62.8 m. A quarter of the estimated 11.7 Pg C
global mangrove carbon stock, which includes soil, above- and below-ground biomass, is
stored in Indonesia [7,8]. These biophysical parameters gradually decrease with increasing
latitude due to varied temperature and environmental conditions.

Figure 1. (a) The distribution of mangroves (in pale green) in the world, (b) in the Caribbean, and
(c) in South and Southeast Asia (Source: adapted from Global Mangrove Watch, [11,12]).

Mangrove ecosystems produce valuable goods and services, including regulation
(e.g., coastal protection, water filtration), supply (e.g., fisheries, aquaculture, timber, fuel,
honey, construction materials, medicine), culture (e.g., tourism), and support (e.g., nursery
habitats, climate mitigation) [13,14]. In some areas, mangroves have been proposed to
provide a natural barrier to coastal erosion process, defending inland areas home to 120 mil-
lion people from natural hazards (e.g., typhoon, cyclones, tsunamis) [7,15]. Mangrove
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restoration for coastal defence is expected to be up to five times more cost-effective than
“grey infrastructure” such as breakwaters [16]. Mangroves also regulate water quality, and
it is estimated that 2–5 ha of mangroves can treat the effluent from 1 ha of some aquaculture
practices [17]. The carbon storage potential of mangroves is 3–5 times higher than that of
tropical upland forests due to strong carbon storage in the soil [18,19]. Mangroves are also a
valued source of timber, fuel, and tourism. There are over 2000 mangrove related attractions
globally, such as boat tours, boardwalks, kayaking, and fishing [20]. Together, the economic
value from mangrove ecosystem services has been estimated to exceed 800 billion per
year [15,21]. However, approximately 35% of the global mangrove forests has been lost
over the past 50 years due to both anthropogenic activities and physical stressors [22,23].
While restoration of mangrove forests has been increasing over the past 40 years, the net
reduction in mangrove cover area and species richness is still a high 1–2% per year [22,24].

Traditionally, monitoring mangrove ecosystems used field observation and survey
methods [25–27]. However, these approaches are difficult to monitor and measure man-
groves in situ due to their dense understory and geographical location in intertidal
zones [21,25]. Additionally, field observation and survey methods are labour-intensive,
costly, and frequently limited in extent. Many surveys are qualitative and difficult to repro-
duce or revisit over time. Remote sensing (RS) has overcome the drawbacks of traditional
field surveys and is has been continuously improving in terms of spatial resolution, revisit
time and user costs over the past four decades [25,28]. RS is acknowledged in this context
as the science and technology of acquisition of information about Earth’s surface materials
from a distance, typically from aircrafts or satellites [29]. The two types of remote sensing
we refer to are (i) optical and (ii) radar sensors, which are classified according to the energy
source of the signal used to identify the object. The remotely sensed data, acquired from
these sensors, allows us to gather accurate information about the geographical distribution
of mangrove ecosystems and biophysical properties at the pixel level [13,27].

In remote sensing, mangroves can be identified based on the textural and spectral
properties of the canopy and leaves [13,30]. Their structural appearance, which can be
either homogenous across the forest or heterogeneous, is affected by factors including
species composition, growth form, density, and stand height. Almost all mangrove species
can be discriminated within the visible and near infrared (NIR) region because of scattering
in the spongy mesophyll cells in plants [31,32]. Using structural information extracted from
several remotely sensed products regional and global estimation can be made of mangrove
height, canopy, species succession, biomass, and carbon stocks [26]. The highest spectral
reflectance of mangroves was observed in the NIR region for both Landsat 8 and Sentinel-
2A surface reflectance sources (Figure 2). With the Sentinel-2A in particular, mangrove
reflectance was observed to rise rapidly at the red-edge. Therefore, mangrove ecosystems
can be observed using indices computed from spectral bands in the visible and NIR regions
of optical remote sensing.

Figure 2. Spectral signatures of mangroves (Rhizophora) in Can Gio Mangrove Biosphere Reserve,
Vietnam, derived from median values of (a) Landsat 8 and (b) Sentinel-2A surface reflectance in
February 2021 (Source: obtained from Google Earth Engine).
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The importance of remote sensing in mangrove studies has been recognised in many
review studies [25,26,28,30,33–35]. These publications serve as a good starting point for
researchers who are interested in mangrove remote sensing. However, the application
of different spectral indices in mangroves has not been reviewed extensively in most of
these studies. For instance, Green et al. (1998) [33] considered the significance of remote
sensing for mangrove mapping from 1972 to 1996. While the study is the first paper
that mentioned applying NDVI to mangrove classification, it only focused on NDVI even
though at the time there were over 40 vegetation indices that could have been relevant
to mangrove ecosystems. During the 1998–2018 period, most review papers highlighted
remote sensing as a technique or approach for mangrove studies, while remote sensing
has been defined as the science of acquiring information from distance [29,36,37]. Recently,
Wang et al. (2019) [25] revealed common gaps in previous publications (i.e., research topics,
key milestones, and mangrove driving forces) in mangrove remote sensing and investigated
the importance of remote sensing for mangrove studies from 1956 to 2018. However, Wang
et al. (2019) did not clearly state what kinds of spectral indices are specifically applied to
mangrove remote sensing.

The present study intends to address the aforementioned knowledge gaps, by answer-
ing the following research question: what spectral indices have been applied and have
been proven effective for mangrove remote sensing? Our objectives are to (i) examine
and categorise spectral indices used in publications related to mangrove remote sensing;
(ii) assess their applications in the study of mangrove ecosystems; and (iii) propose future
directions for the application of additional spectral indices in mangrove remote sensing.

2. Search Strategy and Data Analysis

Mangrove scholars used various qualitative and quantitative approaches to under-
stand and organise earlier findings of mangrove studies. Among these, a quantitative
analysis of academic literature, defined as bibliometrics, was investigated as a potential tool
to introduce a systematic, transparent, and reproducible review process [38–41]. Compared
to other literature review techniques, bibliometric analysis of the published literature is ef-
fective to identify research gaps and direct future avenues of research [41]. For bibliographic
citations, Web of Science (WoS) and the Scopus platforms are the most extensive databases
which are widely used to obtain metadata for bibliometric analysis [42,43]. Scopus was
launched in 2004, but WoS launched in 1997 and is considered the earliest international
bibliographic database [42,44]. WoS comprises four citation databases with more than
10,000 journals [45]. Journals indexed in the WoS must meet 28 criteria (i.e., 24 quality
criteria and 4 impact criteria) [44,46]. The fulfilment of 28 criteria contributes to enhancing
academic quality and minimising the influence of multiple predatory journals. The journal
listed in the WoS database primarily provides impact factor (a ratio between citations
and citable items published the previous year) and h-index (an index based on a list of
publications ranked in descending order by Times Cited count) [46]. Therefore, journals
with high impact factor or h-index are cited more often than journals with lower impact
factor or h-index.

Various keywords were entered in the searching process associated with global man-
grove ecosystems based on spectral indices application (Table 1). We used Thomson Data
Analyzer (TDA) integrated in the Web of Science (WoS) Core Collection to retrieve annual
publications and their citations [47]. The keyword search resulted in 293 papers published
between 1992 and 2021. We then reviewed the abstract and content of the 293 papers and
removed from our study the papers that did not relate to the application of spectral indices
in mangroves. This left 195 publications (including 90 journal papers, 14 conference papers
and one book chapter) for our review.
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Table 1. The predefined keywords of the searching process.

No. Keywords

1 vegetation index and mangrove
2 comprehensive mangrove quality index
3 a mangrove recognition index
4 mangrove and an index analysis approach
5 leaf area index and mangrove
6 spectral mangrove index

Full records (i.e., author, title, source, abstract) and cited references of the search results
were downloaded in the BibTex format in several batches, each comprising no more than
500 data entries. For further processing, all of the obtained result files were zipped together
and imported into the R-statistical and VOSviewer software packages. The bibliometric
analysis was carried out with the help of Bibliometrix package in R [38]. The annual cited
times of the gathered articles were calculated using TDA’s citation report tool, while the top
journal sources for publication and citation were determined using Bibliometrix package.
Finally, using VOSViewer software [48], we performed co-word analysis to visualise density
networks of author keywords for trend analysis in mangrove remote sensing. The co-word
method is a technique to analyse the co-occurrences of key words and identify relationships
and interactions between the topics researched and emerging research trends [48]. Details
regarding the theory and practical function of the co-word approach utilising VOSViewer
software may be found at [45,48]. However, the record of the online bibliographic database
prior to 1990 may be incomplete [42,44,49] because the internet-based Web of Science was
firstly launched in 1997. Therefore, several publications from print only sources may be
missing. We thus supplemented our database with metadata from outcomes of Green et al.
(1998) [33] and Bannari et al. (1995) [50] to increase the number of studies applying spectral
indices in mangrove studies prior to 1996.

Publications and annual citations in this field of research, retrieved from citation
report analytics of the Web of Science Core Collection, significantly increased between
1996 and 2021 (Figure 3). The number of publications dropped in 2021, which may be
related to COVID-19 pandemic because most field trips were delayed or cancelled and
this impacted field data collection for validation and other known impacts on academic
workloads [51]. Most of the publications (21) were published in the journal of Remote Sens-
ing (IF: 4.848, Open access), others were mainly from the International Journal of Applied
Earth Observation and Geoinformation (8, IF: 5.993, Open access), International Journal of
Remote Sensing (8, IF: 3.362), Estuarine, Coastal and Shelf Science (7, IF: 2.904), Modeling
Earth Systems and Environment (6, IF: N/A) and ISPRS Journal of Photogrammetry and
Remote Sensing (5, IF: 10.565). The journals Ecological Indicators, Regional Studies in
Marine Science, and Wetlands had four papers each. The remaining journals had published
less than three papers involving mangrove remote sensing since 1996. In-text citations
of work that applied mangrove remote sensing indices were found in Remote Sensing of
Environment (881, h-index: 281), Remote sensing (445, h-index: 124), International Journal
of Remote Sensing (437, h-index: 174), Estuarine, Coastal and Shelf Science (249, h-index:
134), Aquatic Botany (170, h-index: 94). The publications most cited were those in higher
ranked (higher IF) journals, regardless of the open access status of the journal.
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Figure 3. Change in 195 peer-reviewed publications and their citations per year between 1996 and
2021 (based on the citation report tool in TDA using mentioned keywords).

3. Overview of Spectral Indices Used in Mangrove Remote Sensing

A spectral index is an equation that combines pixel values from two or more spectral
bands in a multispectral image using various algorithms, mainly focused on band ratio or
feature scaling (e.g., normalised or standardised algorithms) [52,53]. Spectral indices are
calculated to highlight pixels in an image that not only show the relative abundance of a
land cover of interest, but also emphasise an ecosystem function [52–54]. They show better
sensitivity than individual spectral bands for spectral signature detection. Throughout the
mission of Earth surface observation, spectral indices have significantly contributed a more
thorough understanding of environments and ecosystems across space and time [28]. The
geographical extent of mangrove studies using spectral indices has also seen a significant
change over time (Table 2). Most studies (92%) were carried out at the national level,
while a few publications implemented research on intercontinental/global scale during the
2000–2015 period and this trend is increasing (16% in 2021 vs. 8% in 2016). The study areas
were mainly in India (12.8%), Mainland China (12.3%), Indonesia (9.7%), the US (9.7%),
and Mexico (8.2%).

Table 2. The mangrove study area of spectral indices application, obtained from our searched
publications.

Country/Region Before 2000s 2001–2015 2016–2021 %

US 2 (33%) 6 (15%) 11 (7%) 9.7
Mexico 1 (17%) 6 (15%) 9 (6%) 8.2
India 0 6 (15%) 19 (13%) 12.8
China 0 3 (8%) 21(14%) 12.3

Australia 0 1 (3%) 6 (4%) 3.5
Malaysia 0 5 (13%) 7 (5%) 6.2
Indonesia 0 1 (3%) 18 (12%) 9.7
Vietnam 0 1 (3%) 7 (5%) 4.1
Others 3 (50%) 7 (18%) 29 (19%) 20

Intercontinental regions and globe 0 3 (8%) 25 (16%) 13.5

Spectral indices can be categorised as either satellite or airborne system indices based
on the platforms used for data acquisition. Depending on the spectral bands of passive
satellite remote sensing, spectral indices may be further grouped into indices with (i)
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simple ratio, (ii) visible and near-infrared (VNIR) bands, (iii) visible and red edge bands,
(iv) visible and mid-infrared bands, and (v) visible and shortwave infrared (SWIR) bands.
In addition, following the applications of spectral indices in mangrove remote sensing,
we separate spectral vegetation indices and spectral mangrove-specific indices. The key
differences between the two types of indices are their applications and the spectral bands
used in the indices. Vegetation indices are spectral indices computed using spectral bands
in the visible, red edge, and near-infrared regions [55]. They have been widely applied to
mangrove ecosystems previously [13,30]. However, as mangroves have common spectral
characteristics as other vegetation, separating mangroves from other types of vegetation
using a single vegetation index is challenging [56]. To address this issue, some mangrove-
specific spectral indices have been proposed for separating mangroves from terrestrial
vegetation [56–60]. These spectral mangrove indices include spectral bands from VNIR to
SWIR regions. In this review, based on publications that used spectral indices for mangrove
ecosystems and the approaches they applied, we classified indices into four categories:
(i) visible and near-infrared bands; (ii) visible and red edge bands; (iii) visible bands of
airborne systems; and (iv) spectral mangrove specific- indices.

3.1. Spectral Indices with Visible and Near-Infrared Bands (VNIR)

Indices measured from spectral bands in the VNIR regions are acknowledged as vege-
tation indices [50], except Normalized Difference Water Index (NDWI) [61]. The history of
spectral vegetation indices development is associated with the Landsat mission in 1972.
Particularly, Pearson and Miller (1972) developed the first vegetation indices, i.e., Ratio
Vegetation Index (RVI) and Vegetation Index Number (VIN), to estimate and monitor vege-
tative cover [50,62]. Following Pearson and Miller (1972), Rouse et al. (1973) introduced the
Normalized Difference Vegetation Index (NDVI) that is now widely applied for land cover
and environmental studies [63,64]. Over the last four decades, more than 40 vegetation in-
dices have been developed, but 28 of these were used in mangrove investigations (Table 3).
Two categories of vegetation indices can be separated: ones that include only spectral bands
and others that include spectral bands that are adjusted by non-spectral factors [e.g., soil
adjustment factor (L), soil line factors (a, b), and coefficients of atmosphere resistance (c1
and c2)]. The first category (e.g., RVI, VIN, NDVI–Table 3) is based on linear combinations
(difference or sum) of spectral bands or raw band ratios without considering environmental
interactions. The second group (e.g., SAVI, TSAVI, EVI–Table 3) is based on the knowledge
of physical phenomena which explains interactions between electromagnetic radiation, the
atmosphere, the vegetative cover, and the soil background.

In the first group without adjustment factors, NDVI is the first index to show the
highest correlation with field measured mangrove canopy cover (r = 0.91), higher than
PVI, GVI, and RVI [65]. NDVI (No.3–Table 3) is a simple indicator that is acquired in
red (visible) and near-infrared (NIR) regions, based on a normalised algorithm. The NIR
band in the NDVI equation is useful for vegetation detection because healthy vegetation
(which contains chlorophyll) reflects more NIR compared to other wavelengths [63]. The
normalised algorithm mitigates the atmospheric effects and the impacts of sensor calibration
degradation in the red and NIR bands [64,66]. Mathematically, NDVI also forms the
basis for other indices. For example, a bijective relationship between NDVI and VIN is
demonstrated by Equation (1). However, the NDVI values are affected by soil background
when the green leaf area is small or the majority of the scene is soil [67,68]. Therefore, a
number of vegetation indices in the second category have been developed for taking into
account environmental conditions. For example, to adjust soil background, soil factors (e.g.,
L, a, and b) were included in SAVI and TSAVI (No.8–9, Table 3). Both indices SAVI and
TSAVI are equal to NDVI, if the value of the soil adjustment factor in SAVI (No. 8, Table 3)
is zero (L = 0) or the slope (a) and ordinate (b) at the origin of bare soil line parameters in
TSAVI (No.9, Table 3) are one and zero (a = 1 and b = 0), respectively.

NDVI =
NIR − R
NIR + R

=
NIR/R − 1
NIR/R + 1

=
VIN − 1
VIN + 1

(1)
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Some studies show that the indices that include adjustment factors are less sensitive to
atmospheric and soil background effects than the first-generation spectral indices [50,64,65].
Enhanced Vegetation Index (EVI, No.4–Table 3) [69], for example, which corrects for some
atmospheric conditions and canopy background noise, and provides a better estimation of
mangrove biophysical properties in high density forests than does NDVI [70]. However,
the blue band requirement may be a disadvantage of EVI, which cannot be generated from
optical sensors that do not have a blue band, such as the Advanced Very High-Resolution
Radiometer (AVHRR) and the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER). Alternatively, the EVI-2 (No.28–Table 3) with two spectral bands in
the red and NIR regions was proposed, achieving similar performance to EVI, which can be
produced by almost all optical sensors [71]. However, the EVI-2 is sensitive to the impact
of the bidirectional reflectance distribution function (BRDF). Therefore, each index has
advantages and disadvantages in relation to vegetation characteristics with overlapping
spectral features due to background signals from soil and confounding factors (e.g., sensor
and calibration effects, quality assurance and quality control, BRDF, and atmospheric
and topographic effects). Hence, there are no perfect vegetation indices for all aspects of
mangrove studies under all conditions.

Table 3. The 28 indices in the spectral wavelength 400–1000 nm used in mangrove research (R: Red;
G: Green; B: Blue; and NIR: Near Infrared). For whole algorithms, L is a soil adjustment factor that
addresses nonlinear model, differential NIR and red radiant transfer through a canopy [72]; a and b
are soil line factors [73]; c1 and c2 are coefficients of atmosphere resistance term which use blue band
to correct for aerosol influences in red band [69].

No. Spectral Index Formula Reference

1 Vegetation Index Number [62] VIN = R
NIR [74,75]

2 Ratio Vegetation Index [62] RVI = NIR
R [58,59,65,76–91]

3 Normalized Difference Vegetation
Index [63] NDVI = NIR−R

NIR+R

From 1991 to 2011: [65,76–78,92–105]
Since

2012: [58–60,74,75,80–87,89–91,106–209]

4 Enhanced Vegetation Index [69] EVI = 2.5(NIR−R)
NIR+c1R−c2B+L

[3,59,74,75,80,82,84,90,123,144,146,149,
153,160,169,172,176,186,191,196,197,201,

206,207,210–225]
5 Perpendicular Vegetation Index [73] PVI = NIR−aR−b√

a2+1
[76,138]

6 Normalized Green-red Difference
Index [226] NGRDI = G−R

G+R + 0.08 [227]

7 Difference Vegetation Index [228] DVI = NIR − R [74–76,84,97]

8 Soil Adjusted Vegetation Index [67] SAVI = (1 + L) NIR−R
NIR+R+L

[58,76,83–85,89–91,108,110,120,123,132,
138,139,145,146,150,169,170,201,207,225]

9 Transformed soil adjusted vegetation
index [68] TSAVI = a(NIR−aR−b)

R+aNIR−ab
[76,196]

10 Soil adjusted ratio vegetation index
2 [229] SAVI2 = NIR

R+a÷b [76]

11 Global environment monitoring
index [230]

GEMI = n(1 − 0.25n)− R−0.125
1−R

at n = 2(NIR2−R2)+1.5NIR+0.5R
NIR+R+0.5

[74,75,84,109,139,196]

12 Atmospherically Resistant Vegetation
Index [231] ARVI = NIR−2R+B

NIR+2R−B [74,84,196,232]

13 Non-linear vegetation index [233] NLI = NIR2−R
NIR2+R

[83]

14 Modified soil-adjusted vegetation
index [234]

MSAVI =
2NIR+1−

√
(2NIR+1)2−8(NIR−R)

2

[81,85,86,108,132,145,169,191,207]

15 Renormalized difference vegetation
index [235] RDVI = NIR−R√

NIR+R
[81,85,108]

16 Modified Simple Ratio [236] MSR = NIR/R−1√
NIR/R+1

[85,145]

17 Green Normalized Difference
Vegetation Index [237] GARI = NIR−[G−1.7∗(B−R)]

NIR+[G−1.7∗(B−R)]
[130,196]
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Table 3. Cont.

No. Spectral Index Formula Reference

18 Optimized Soil Adjusted Vegetation
Index [238] OSAVI = NIR−R

NIR+R+0.16 [82,89,109,110,115,130,177,199]

19 Green Normalized Difference
Vegetation Index [239] GNDVI = NIR−G

NIR+G [81,85,87,89,119,139,145,193,207]

20 Green Leaf Index [240] GLI = (G−R)+(G−B)
(G+R)+(G+B) + 0.07 [227]

21 Triangular Vegetation Index [241] TVI =
0.5 × [120(NIR − G)− 200(R − G)]

[74,82,84,85,108,207]

22 Transformed Difference Vegetation
Index [242] TDVI = 1.5

[
NIR−R√

NIR2+R+0.5

]
[109,115]

23 Modified Non-Linear Vegetation
Index [243] MNLI = 1.5(NIR2−R)

NIR2+R+0.5
[83]

24 Modified Chlorophyll Absorption
Ratio Index 1 [244]

MCARI1 = 1.2 × [2.5(NIR − R)−
1.3(NIR − G)]

[85,89,199,232]
25 Modified Chlorophyll Absorption

Ratio Index 2 [244]
MCARI2 = MTVI2 =
1.5[1.2(NIR−G)−2.5(R−G)]√
(2NIR+1)2−(6NIR−5

√
R)−0.526 Modified Triangular Vegetation

Index [244]
27 Chlorophyll Vegetation Index [245] CVI = NIR∗R

G2 [119,145,196]
28 Enhanced Vegetation Index 2 [71] EVI2 = 2.5

(
NIR−R

NIR+2.4R+L

)
[59,74,75,84,89,132,193,196,207,246]

3.2. Spectral Indices in Visible and Red-Edge Bands

The red edge is a band in the red-NIR transition zone that indicates the transition
between red visible absorption by chlorophyll and NIR scattering due to leaf internal
structure [25]. This transition zone is used in various vegetation indices, the most important
of which is the normalised difference between red visible (0.6 nm) and NIR (0.8 nm)
reflectance. Spectral indices obtained from the red edge region (Table 4) were used in several
investigations for mangrove chlorophyll and biophysical parameters [81,119], mangrove
density and carbon analyses [85,247], and mangrove biomass [207]. These investigations
found strong correlation (r > 0.95) between ground truth data and red edge vegetation
indices. Normally, red edge bands are available from hyperspectral datasets that are
difficult for large-scale collection. Alternatively, since 2015, three red-edge bands have
been incorporated in the Sentinel-2A sensor, which could be combined with other visible
bands to provide essential information about mangrove ecosystems at a spatial resolution
of 10 m. Therefore, the use of red-edge bands promises the potential to benefit mangrove
ecosystems associated with mangrove health monitoring in the future.

Table 4. The used indices with VNIR and red-edge bands (R: Red; B: Blue; and NIR: Near Infrared).
With three Red-edge bands of Sentinel-2A, each formula can compute three sub-equations.

No. Spectral Index Formula Reference

1 Normalised Difference Index [248] NDI = Redge−R
Redge+R

[81,85,119,207,247]
2 Red edge NDVI [249] NDVIRed−edge =

NIR−Redge
NIR+Redge

3 Plant Senescence Reflectance Index [250] PSRI = R−B
Redge

4 Normalized Difference Red edge Index [251] NDRE =
NIR−Redge
NIR+Redge

5 Red-edge Chlorophyll Index [252] CIRed−edge =
NIR
Redge

− 1

6 MERIS Terrestrial Chlorophyll Index [253] MTCI = NIR−Redge
Redge−R
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3.3. Spectral Indices with Visible Bands of Airborne Systems

Traditionally, aerial photographs (AP) were widely used for mangrove mapping and
assessment [94]. Nowadays, with the support of Unmanned Aerial Vehicles (UAVs) or
drones, the application of aerial photographs has become more convenient. Some spec-
tral indices for mangrove classification have been proposed using visible bands of aerial
photographs that can achieve an overall accuracy of over 95% in mangrove cover map-
ping [157,254] (Table 5). Notably, integration of Red-edge, NIR, and shortwave infrared
(SWIR) bands in the optical sensors of UAVs promises an advantage for monitoring man-
grove ecosystems at a spatial resolution of centimetres. This drone-based multispectral
remote sensing can be as the future for mangrove remote sensing. However, these applica-
tions are only suitable for a small area and can be employed in a short time due to cost and
energy limitation. More importantly, the use of UAVs for field data collection is regulated
by the government in most countries throughout the world.

Table 5. The used UAV spectral indices for mangrove ecosystems.

No. Spectral Index Formula Reference

1 Excess Green Vegetation Index [248] ExG = 2 × G − R − B + 50

[196,227,254]
2 Normalized Difference Index [248] NDI = G−R

G+R
3 Negative Excess Red Vegetation Index [255] NegExR = G − 1.4 × R
4 Visible Atmospheric Resistant Index [256] VARI = G−R

G+R−B

5 Colour Index of Vegetation Extraction [257] CIVE = 0.441R − 0.881G +
0.385B + 18.78745

6 Vegetative Index [258] VEG = G
R0.667 × B0.333

7 Excess Green minus Excess Red [259] ExG − ExR
8 Triangular Greenness Index [260] TGI = G − 0.39R − 0.61B

9 Combined Index [261] CI = 0.25ExG + 0.3ExGR +
0.33CIVE + 0.12VEG

10 Visible-band Difference Vegetation Index [262] VDVI = 2G−B−R
2G+B+R

3.4. Mangrove-Specific Spectral Indices

Mangroves are found in coastal wetlands where they are regularly submerged by
tides [55,60,263]. As a result, fluctuations in tide levels, and thus the presence of water,
results in tide-dependent variation in spectral signatures for mangrove forests, leading to in-
accurate mapping results, particularly in locations with large tidal ranges [57,135]. Recently,
several studies have developed specific spectral indices that can adapt to changes in tide
conditions and applied them in order to separate mangroves from non-mangroves [57,58,60]
and from other land cover types [55]. These are the mangrove-specific indices. During the
2013–2021 period, six mangrove-specific indices were proposed to improve the accuracy of
single image remotely sensed data during high tide (Table 6).

Zhang and Tian (2013) [57] proposed a mangrove recognition index (MRI–Equation
(2)) for mangrove detection using multi-temporal Landsat TM images that is insensitive
to the stage of the tide. Winarso et al. (2014) [56] further developed this method to
create a mangrove discrimination index (MDI–Equation (3)) for estimate mangrove density
from Landsat 8 images. Kumar et al. (2017) [59] proposed two new vegetation indices
(Normalised Difference Wetland Vegetation Index and Shortwave Infrared Absorption
Index) and combined them with two previously published indices (Normalised Difference
Infrared Index and Atmospherically Corrected Vegetation Index) to integrate the Mangrove
Probability Vegetation Index (MPVI–Equation (4)) for mangrove classification. Gupta et al.
(2018) [58] published a Combined Mangrove Recognition Index (CMRI–Equation (5)) to
distinguish mangrove from non-mangrove with an accuracy of more than 60%. Jia et al.
(2019) [60] generated the Mangrove Forest Index (MFI–Equation (6)) using spectral bands
from Sentinel-2 data to detect submerged mangrove forests at high tide.
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Table 6. The proposed mangrove indices for mangrove classification (EQN: equation number). In
the Equation (2), GVI and WI are green vegetation index and wetness index at low (L) tide and
high (H) tide, respectively. In Equation (4), n is the total number of bands in the image, Ri is the
reflectance value at band i for a pixel of the reflectance image, and ri is the reflectance value at band
i for candidate spectrum of mangrove forest. In Equation (6), the ρλ is the reflectance of the band
centre of λ, and i ranged from 1 to 4; λ1, λ2, λ3, λ4 represent the centre wavelengths at 705, 740, 783
and 865 nm, respectively. λi is the baseline reflectance in λi. ρ665 and ρ2190 are the reflectance of
band 4 (centred at 665 nm) and 12 (centred at 2190 nm), respectively. In Equations (3), (5), and (7), G,
R, NIR, and SWIR are green, red, near-infrared, and shortwave infrared bands, respectively.

Index Formula EQN Reference

Mangrove Recognition Index MRI = |GVIL − GVIH | × GVIL × (WIL + WIH) (2) [57]
Mangrove Damage Index MDI = NIR−SWIR

NIR×SWIR × 10, 000 (3) [56]
Mangrove Probability

Vegetation Index MPVI =
n

n
∑

i=1
Riri−

n
∑

i=1
Ri

n
∑

i=1
ri√

n
n
∑

i=1
R2

i −
(

n
∑

i=1
Ri

)2
√

n
n
∑

i=1
r2

i −
(

n
∑

i=1
ri

)2

(4) [59]

Combined Mangrove
Recognition Index CMRI = NIR−R

NIR+R − G−NIR
G+NIR (5) [58]

Mangrove Forest Index MFI = [(ρλ1 − ρBλ1) + (ρλ2 − ρBλ2) + (ρλ3 − ρBλ3) + (ρλ4 − ρBλ4)]/4
ρBλi = ρ2190 + (ρ665 − ρ2190)× (2190 − λi)/(2190 − 665)

(6) [60]

Mangrove Vegetation Index MVI = NIR−G
SWIR1−G (7) [55]

These proposed mangrove indices involve the signature of mangroves in the context
of tidal fluctuation, which is sensitive to greenness and wetness patterns. Thus, MRI and
MPVI are sensitive to tidal extent and period, and cannot be used in site comparisons
where sites differ in hydrology. Additionally, the number of spectral bands required for
the MFI calculation is only available using Sentinel-2 or hyperspectral sensors. Baloloy
et al. (2020) [55] recently analysed the shortcomings of earlier integrated mangrove forest
indices (i.e., MRI, CMRI, MPVI, NDI, and MFI) and developed a new index: the mangrove
vegetation index (MVI–Equation (7)), for enhancing the accuracy of mangrove forest extent
mapping. MVI is a single index that classifies mangroves, terrestrial vegetation (forest and
non-forest), bare soil, built-up areas, water, and clouds using reflectance data from Sentinel-
2A and Landsat-8 in the NIR, Green, and SWIR bands. MVI validation was initially used at
an intercontinental scale and demonstrated an accuracy of more than 80% for the entire set
of geographical research locations. The high index accuracy of MVI can provide a possibility
for global mangrove studies, although MVI is limited by biophysical and environmental
parameters due to its reliance on SWIR. Using the SWIR spectrum, in particular, has
been a problem for sensor systems constructed with solely visible and NIR wavelengths
(e.g., Landsat-1,4 and Planetscope). Additionally, SWIR reflectance value is frequently
mixed with built-up land noise, water bodies, and vegetation surrounding [61,264,265].
Neri et al. (2021) [266] investigated misclassification of mangroves from other land cover
types in aquaculture zones, irrigated croplands, and palm tree sites when applying MVI
due to spectral similarity between mangroves and vegetation in these areas. Notably,
the significant drawback of MVI is that it does not have a specific optimal threshold for
mangroves, which differs from ranges of vegetation and other mangrove-specific indices
for mangrove separation.

In summary, there are several newly improved spectral indices for mangrove classifi-
cation, but none of these can completely reduce the impact of environmental factors (e.g.,
tidal influences, land cover mixture).

4. Evaluation of Spectral Indices Applications in Mangrove Remote Sensing

As mentioned in Section 3, a variety of spectral indices have been used for (i) mapping
mangrove extents and distributions; (ii) measuring above-ground properties of mangroves;
and (iii) detecting mangrove changes. The co-word map of keywords that resulted from the
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co-word analysis of the literature on spectral indices application for mangroves is presented
in Figure 4. The mangrove and forest were core words of the network, and NDVI and
remote sensing were prominent terms in a field study. This showed that NDVI has a strong
relationship with aspects of mangrove remote sensing in terms of spectral index application.
Also, the result predicted that NDVI was the most common index applied to mangrove
ecosystems. In total, 82% of our reviewed publications used NDVI and 28% used EVI.

 

Figure 4. Co-word keywords map of spectral indices’ application in mangrove research. Colours
indicated the density of keywords or terms, ranging from blue (lowest density) to red (highest
density). The larger the number of items in the vicinity of a point and the higher the weights of the
neighbouring items, the closer the point is to being red.

4.1. Mangrove Extent and Distribution

Mapping mangroves is important for recording the present mangrove area and species
distribution, provides information to support management decisions around potential
threats of degradation due to uncontrolled development, and enables modelling change in
relation to driving factors. Mangrove mapping can be binary, which classifies an image
into two classes: mangroves and non-mangroves, or into a number of land covers based
on a particular land over classification scheme with mangrove as one of the land cover
types. Binary mapping normally uses single spectral indices (e.g., NDVI, EVI, SAVI, or
mangrove indices) to highlight the pixels of mangrove vegetation and separate them from
non-mangrove pixels [58]. Mapping can also include continuous classifiers such as height
and canopy area.

Image classification for mangrove mapping can be supervised or unsupervised, pixel-
based or object-based. Almost all previous research applied composited bands of satellite
images based on classification approaches such as unsupervised algorithms (e.g., ISODATA
or K-means) and parametric supervised algorithms (e.g., maximum likelihood) to detect
mangrove extents without spectral indices application [25,26,267]. The overall accuracy
of post-classification from these approaches ranges from 42% to 68% for most optical
sensors and methodologies to measure accuracy [26]. Since spectral indices were used
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for mangrove ecosystems under pixel-based or object-based categories based on machine
learning algorithms (e.g., artificial neural network, support vector machine, and random
forest), an improvement of post-classification overall accuracy has been achieved to more
than 80% [26]. More recent studies have used mangrove classification using spectral indices
based on random forest, one of the machine learning algorithms, and offer the highest
post-classification overall accuracy (>92%) [27,196,268].

From using single spectral indices for mangrove separation, some studies found that in
dense mangrove areas, the NDVI or EVI value threshold for discriminating mangroves was
0.3 and above [104,269]. Le et al. (2020) applied NDVI, derived from Sentinel-2, to detect
mangrove cover in the Can Gio Mangrove Biosphere Reserve, Vietnam [183]. This study
considered that the NDVI mangrove value as NDVI > 0.3 with an overall classification
accuracy of 83%. In addition to NDVI/EVI, six mangrove spectral indices (Table 6) have
been developed and applied for mangrove separation with an overall classification accuracy
of 80% above [55].

Vegetation, soil, and water are the three principal factors that contribute to the pixel
composition of remotely sensed data in mangroves (Figure 5). In addition, seasonal and
diurnal intertidal interactions influence the surface appearance [13,263]. These factors have
a significant impact on the spectral characterisation of picture components. Therefore,
depending on the effects of natural surroundings and mangrove density, the NDVI/EVI
thresholds can be adjusted. In addition to physical influences, mangroves and other types
of vegetation may generate similar signals from the vegetation index [56]. As a result,
utilising a single NDVI or EVI threshold to distinguish mangroves from other types of
vegetation may lead to an inaccurate outcome. Therefore, several soil and water spectral
indices (Table 7) have been used concurrent with vegetation indices to improve mangrove
detection [150,198].

 
Figure 5. Mangroves in Victoria State, Australia (Source: photo taken by author).
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Table 7. The indices in the Visible, Near Infrared (NIR), and Shortwave Infrared (SWIR) bands.

No. Spectral Index Formula Reference

1 Normalized Difference Moisture Index or Land
Surface Water Index [264,270,271] NDMI = LSWI = NIR−SWIR

NIR+SWIR
[59,60,91,123,134,135,152,191,

198,201]
2 Normalised Difference Water Index [264] NDWI = R−SWIR

R+SWIR [97,105,138,150,195,206]

3 Modified Normalized Difference Water
Index [272] MNDWI = G−SWIR

G+SWIR [60,134,201]

4 Normalised Difference Soil Index [105] NDSI = SWIR−NIR
SWIR+NIR [105]

Normalized Difference Water Index [61] NDWI = G−NIR
G+NIR [58,130,195,196,198,201]

The reflected signals from the SWIR regions capture information on radiation absorp-
tion by water, cellulose and lignin, and a variety of other biological elements. Nevertheless,
collecting satellite imagery at SWIR wavelengths has distinct advantages, such as better
atmospheric penetration and better contrasts among different vegetation types. The util-
isation of the SWIR band in conjunction with the visible and NIR bands, in particular,
aids in enhancing the presence of water in plant leaves [264] or urban characteristics [265].
For example, NDWI and NDBI threshold values more than 0 visualise water bodies and
impervious surface, respectively [61,264,265]. Besides, several studies used elevation data
and tasselled cap transformation to further improve the classification accuracy [55,57,134].
Consequently, an improved performance (≥90% of overall accuracy) was investigated
when apply multiple spectral indices for detecting the mangrove cover [27,267].

Our search did not reveal a spectral index that has been applied for mangrove species
separation. Previous studies applied spectral bands to separate mangrove species based on
maximum likelihood classification or machine learning algorithms (e.g., random forest and
support vector machine) because each mangrove specie reflects a particular wavelength of
the spectrum [25–27,164,273]. These studies revealed that spectral reflectance properties
of some mangrove species are similar, making a challenge for identification. Hirata et al.
(2014) [273] proved that the spectral reflectance properties for A. alba and S. alba were
clearly distinct in three of four VNIR bands (i.e., Green, Red, and NIR), whereas those
for the Rhizophora and Bruguiera species were similar in most spectral bands. A similarity
of spectral bands among mangrove species leads to a uniformity/resemblance as using
spectral indices because spectral index is computed from spectral bands ratio. It shows that
almost all of mangrove species also have the same threshold value in spectral index. For
instance, red mangroves (Rhizophora), black mangroves (Avicennia), and white mangroves
(Laguncularia racemosa) may have particular spectral reflectance in a single spectral band,
but the signals of three species in NDVI/EVI are normally more than 0.3.

4.2. Above-Ground Properties of Mangroves Estimation

The term “above-ground mangroves properties” in our study refers to the estimation
in aspects of mangrove ecosystems above ground such as leaf area index (LAI), biomass,
carbon, vertical structure, and mangrove health. Understanding these variables is beneficial
in detecting the interaction of vegetation, the stability of that interaction, and the change in
mangrove population [7,263,274]. Historically, the majority of research on these parameters’
estimation employed ground-based approaches that were time-consuming, costly, and
distribute sparsely across space, making regional mangrove monitoring challenging [25].
Alternatively, a number of papers predicted mangrove above-ground properties using
vegetation indicators [177,209,220]. These research applied regression analyses to establish
empirical relationships between remotely sensed vegetation indices and measured-above
ground mangrove (AGM) data (e.g., leaf area index, height canopy, carbon sink, and
biomass) [207,209,275,276]. These studies considered that indices derived from satellite
data successfully modelled and estimated the mangrove above ground features. However,
above ground mangrove ecosystems today have not been compared with the patterns of
30–50 years ago.
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In these studies, NDVI and EVI demonstrate the most explanatory curvilinear re-
lationships with AGM [25,65,93]. In fact, there is a saturation issue with NDVI that is
mainly due to the red band, the energy in which is strongly absorbed by pigments. When
a leaf contains a certain number of pigments, the reflectance remains low and practically
constant with more pigment (e.g., increased leaf area) [70,214]. As a result, where forests
are high in biomass, NDVI struggles to differentiate moderately high plant cover from very
high plant cover [153,214]. Since 2012, most studies confirmed that EVI indicated a higher
correlation coefficient with mangrove in field measurements than NDVI to significant
extents [59,153,169]. Meanwhile, a few publications found NDVI to be the best mangrove
predictor, relative to the performance of EVI and other vegetation indices [80,144,160].
The scale of the analysis also affects the suitability of the index used, with a few studies
finding that at a higher resolution (smaller scale) NDVI is the preferred index [84]. In fact,
each ecosystem has its unique characteristics, and each index is a separate indication for
green vegetation. The best vegetation index to use for AGM estimation varies and thus its
selection requires substantial field measurements to validate the results.

4.3. Mangrove Changes

Understanding of variations in mangrove patterns is critical in providing fundamental
source for proposing appropriate strategies in mangrove ecosystem management and
serving as a reference for broader worldwide applications. The changes in mangrove
ecosystems are acknowledged as a result of natural influences and human activities. To
investigate mangrove changes, two methodologies are usually applied (i) bi-temporal
analysis and (ii) long-term monitoring. Bi-temporal analysis uses two images per 5 or
10 years to assess the changes in mangrove cover. A bi-temporal technique is common
and easy to apply, and it calculates the differences of mangrove cover at two times in
the context of land use and land cover change. However, there are some limitations in
regard to environmental factors (e.g., tide variations, terrain, and atmospheric conditions)
if images are only obtained on a single day of the year. This is because we can utilise the
method outlined in Section 4.1 to retrieve information about land cover for each year before
employing an intersection of two scenes. Besides, the significance of physical factors (e.g.,
erosion, typhon) as a source of mangrove loss and the trend in mangrove cover may be
underestimated.

In contrast, long-term monitoring normally applies time series of spectral indices to
understand mangrove dynamics through space and time. Most of studies applied NDVI
or EVI and linear regression algorithms to analyse spatiotemporal change and anticipate
trends in mangrove distribution at a local scale [172,183,214,277]. These analyses concluded
that the loss of mangrove ecosystems is mainly caused by conversion in land use and
land cover, compared to natural factors. The aquaculture ponds and impervious surface
expansion in the coastal area are a threat to mangrove ecosystems [28]. Globally, Hansen
et al. (2013) [277] first used NDVI and ordinary least squares slope of the regression to
examine forest loss and gain from 2000 to 2012. The study revealed that a decreased trend in
mangrove cover occurred in Asian and Caribbean countries. However, the global analysis
overlooked driving factors (e.g., land use and land cover transformation and physical
hazards) because policies for land use and land cover changes are different among nations
in the world.

Overall, the application of spectral indices for mangrove remote sensing provides
several advantages in relation to mapping spatial distribution, above-ground mangrove
properties, and mangrove changes. However, examples of knowledge gaps from previous
studies should be included (i) visualising mangrove changes from the past to the present;
(ii) identifying the driving elements impacting mangroves; and (iii) evaluating effects of
environmental factors on satellite images.
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5. Discussion and Future Directions

5.1. The Potential Indices for Mangrove Remote Sensing

Over the past 50 years, the importance of spectral indices in mangrove remote sensing
has been recognised, but several knowledge gaps still exist in relation to the best index
selection for mangrove characterisation. A perfect spectral index for an ensemble of
mangrove biophysical parameters is yet to be developed. Our study explored that NDVI
accounted for the highest proportion (82%) of the applied spectral indices for mangrove
ecosystems, followed by EVI (28%). These normalised algorithms mitigate the atmospheric
effects and the impacts of sensor calibration degradation in the red and NIR bands [64,66].
The widespread adoption of remote sensing has resulted in the creation of low-cost image
data that may be used to broaden NDVI applications. Hence, NDVI will continue to be
a dominant vegetation index used for mangrove remote sensing. However, this does not
mean that NDVI is always effective because of its limitations in relation to soil background
and vegetation density.

Each index has its own advantages and disadvantages and can be affected by the
impacts of the soil background and confounding factors such as sensor and calibration
effects, bidirectional reflectance distribution function, atmospheric and topographic effects,
or other local environmental conditions (e.g., tide). Hence, for future applications, instead
of constructing or discovering a prospective mangrove index, we should examine local
conditions and the factors influencing the effectiveness of spectral indices before deciding
on the use of them for analysis. Additionally, the number of spectral bands available on
optical sensors influenced the indices chosen for mangrove remote sensing. For instance,
the four-band version of the Planetscope instrument with no SWIR band is only able
to produce spectral indices in the visible and NIR regions. In the case that one index
cannot meet the needs of mangrove assessment or other purposes, another index should be
applied.

5.2. Long-Term Mangrove Monitoring with Time Series-Based Approaches in Relation to Driving
Factors

Monitoring mangrove dynamics normally includes seasonal and annual changes that
require a series of historical and regular imagery. In fact, there are many factors, including
tide conditions, atmospheric factors, or missing or mis-registered data, that can cause
errors in image acquisitions. Therefore, using single-date images to calculate spectral
index has shown significant limitations on a large scale because environmental conditions
vary from day to day and across sites. Alternatively, generating optical images using
averaging is less susceptible to high resolution noise and are thus capable of characterising
both long-term and abrupt mangrove changes. For example, using annual mean/median
spectral indices that are derived from daily/5-days/8-days/16-days timeseries data enables
us to reduce the environmental factors’ influence on the image of interest. The study of
multiple remotely sensed data has been widely employed in phenological investigations of
mangrove ecosystems [121,134,153].

In addition to data, time series analysis provides pieces of information on the timing
of mangrove change, as well as improving the quality and accuracy of information being
derived using remotely sensed data [167,172,174,217,219]. Also, the time series analysis
of spectral indices data evaluates trends and predicts the persistence of mangrove trends
under spatial regression application. A variety of time series analysis techniques have been
produced [(e.g., National Forest Trend [278], Recurrent Neural Network [279] to analyse
and monitor spatiotemporal changes in mangrove ecosystems [191,221,280]. The digital
number (DN) value of each pixel from time series images gives more sensitivity than single
composited spectral band so that it can easily compare with natural factors (e.g., rainfall,
temperature, and ocean dynamics) to certain significance of physical influences. This
method holds significant promise for studying the long-term dynamics of environmental
variations, and it can monitor future mangrove regeneration.
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5.3. Fusion of Images from Multiple Sensors

In the process of the Earth’s surface observation and particularly in mangrove remote
sensing, selecting a potential optical sensor to calculate spectral index is crucial for assess-
ment with high accuracy. However, there are several factors that can influence the choice of
optical remote sensing platforms, such as the purpose of the research, the data availability,
the national context, the budget constraints, the scale of the study, and the location of the
study area. For instance, to explore spatiotemporal changes in annual mangrove patterns, a
long-term time series analysis from Landsat imagery should be preferred because the data
is available from 1972 to date. Additionally, to understand mangrove quality or seasonal
changes, a variety of MODerate Resolution Imaging Spectroradiometer (MODIS) products
with a high temporal resolution (1 day) may be the best choice. Recently, several studies
fused multi-sensor images to have more information about mangrove ecosystems. For
example, Kanniah et al. (2021) [281] used three optical sensors (i.e., Landsat, MODIS,
and Sentinel-2A) to study mangrove fragmentation and health conditions. Guo et al.
(2021) [209] used UAV and WorldView-2 datasets to validate the Sentinel-2 imagery for
LAI estimation. Besides, several publications fused passive and active sensor images to
understand mangrove structure or biomass. Pham et al. (2020) [89] combined optical bands
(Sentinel-2A) with active sensors (i.e., Sentinel-1 and ALOS-2 PALSAR-2) to calculate some
vegetation indices for mangrove above-ground biomass. These studies concluded that
fusing multiple remote sensing sources helps to provide a large amount of information
about mangrove ecosystems, compared to single sensor applications.

Fusion of multiple sensors can enhance the accuracy of the data. Integration of NDVI
from Advanced Very High-Resolution Radiometer (AVHRR–launched in 1979) and MODIS
(launched in the 2000s) enabled a long-term dataset from 1979 to date. AVHRR NDVI
composites at 1 km spatial resolution [92,93] was used for mangrove monitoring prior
to the 2000s. However, the AVHRR satellite system has degraded in orbit to the point
that it is advised that NDVI MODIS products should be used for longer periods in the
future [282]. Additionally, combination of ASTER (launched 1999) and Landsat 4,5, 8, and 9
is an alternative approach for line correction of Landsat 7, allowing us to obtain a set of data
at 30 m spatial resolution from 1988 to the present. Notably, using multiple sensors enables
improving the re-visit days of satellite data, which is better for smoothing data [25,27].
For example, when Landsat 8 and Landsat 9 are combined, the re-visit days are reduced
from 16 to 8 days. Hence, fusion of multiple sensors (i.e., passive, and active sensors) is a
recommendable approach to compute the spectral index for mangrove studies in the future.

6. Conclusions

Land use and land cover transformation in relation to natural hazards are the primary
factors threatening mangroves in the future. Spectral indices have been applied to man-
groves and demonstrated their effectiveness in various studies over 50 years. Each spectral
index has its own strength and limitation in mapping mangrove distributions and measur-
ing their above-ground biophysical properties in various environments. Therefore, to select
a potential index, we should understand the interaction between the local conditions and
mangrove ecosystems. NDVI is the most popular index that can be applied for mangrove
ecosystems, followed by EVI, although both are sensitive to environmental conditions.

Long-term mangrove monitoring is crucial for identifying the trend in mangrove
pattern changes in connection to driving variables. Using time series analysis of spectral
indexes helps to reduce the effect of external influences. Using multiple sensors enables
obtaining a set of databases for long-term monitoring associated with natural hazards
and human activities. Nowadays, accessing big data has become easier with the help of
technology and digital cloud platforms (e.g., Google Earth Engine). These technological
advancements will shift mangrove studies from a local to a global scale and imply the
necessity to learn programming skills.

In the context of the digital era, mangrove scholars should apply the advantages of
cloud computing platforms for spectral index computation. These approaches assist image
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processing quickly and enable analysis of mangrove ecosystems at global scale. However,
approaching these techniques requests users to have some knowledge about information
technology and quite understand about coding. Therefore, developing a tool or application
on cloud storage for mangrove monitoring based on vegetation index should be taken into
account for new users or scholars who do not have good information technology skills. In
addition to tools, a guideline for algorithm selection (e.g., machine learning, deep learning)
should be developed to save time for spectral index computation.
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EVI Enhanced Vegetation Index
LAI Leaf Area Index
NDVI Normalised Difference Vegetation Index
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VIN Vegetation Index Number
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