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Preface

The global population has been increasing dramatically since the 1950s. High population

pressure is not only linked with an unprecedented scale of resource consumption, but also aggravates

the exploitation of the ecological environment by humans. As an important link between human

activities and ecosystems, land use mode and intensity are not only an important driving factor

of global ecological environmental changes but also a result of these environmental changes, and

there is a close interdependent relationship between land use and global environmental changes. At

global and regional scales, humans are increasingly realizing that a functional ecological environment

is an important basis for the sustainable development of a social economy and for improving

human wellbeing. In recent years, numerous studies have focused on land use changes and the

corresponding ecological responses, including the identification of regional land use change processes

based on remote sensing technology, the discussion of landscape effects on land use changes, and the

construction of a series of ecosystem service evaluation models.

However, before the concept of ecological management can be integrated into studies of land

use resources, it is necessary to systematically (1) reveal typical land use change processes, such as

the reclamation and abandonment of marginal arable land, in ecologically fragile areas; (2) assess

ecosystem vulnerability; (3) identify important ecological sources and key ecological corridors; (4)

clarify the concept and connotation of land use ecological risks; (5) reveal the quantitative relationship

between land use change and ecological risks; and (6) evaluate the ecological responses and potential

risks of regional land use changes. Such results can provide a scientific basis for the establishment of

adequate policies.

We appreciate the academic editors and reviewers for their valuable time and insightful

comments on the published 30 research papers and 3 review papers in the Special Issue book “Land

Use Changes and the Corresponding Ecological Risks”. We also thank all the authors of this book for

their contributions. The findings of the book will support scientific bases and policy implications for

sustainable land management and ecological protection construction.

This book was supported by the Strategic Priority Research Program of Chinese Academy of

Sciences (Grant No. XDA20040201).

Wei Song and Hualin Xie

Editors
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The Spatio-Temporal Patterns and Driving Forces of Land Use
in the Context of Urbanization in China: Evidence from
Nanchang City

Yuxi Liu 1, Cheng Huang 1,2,*and Lvshui Zhang 1,*

1 School of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
2 Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and

Environmental Sciences, East China Normal University, Shanghai 200241, China
* Correspondence: chuang@jxau.edu.cn (C.H.); zhanglvshui@jxau.edu.cn (L.Z.)

Abstract: Land use change has been one of the common problems in the context of urbanization
in China. Social economy and land use interact with each other, and it is especially important for
human society to adhere to sustainable development, and to deal with the contradictory relationship
between the social–economic needs and land use change. The objectives of this study are: (1) Obtain
time-series land-use classification data and its spatial distribution in Nanchang City; (2) Identify the
characteristics and driving force of spatial–temporal land use changes in Nanchang City from 2000 to
2020; (3) Discuss the relationship between the urban expansion and social economy in Nanchang City.
The results show that the spatial distribution of land use in Nanchang City has changed significantly
from 2000 to 2020, and the largest area of land-use type in Nanchang City has been cropland. The
cropland has continuously declined, and the urban area has increased significantly. A lot of cropland
has been transformed into urban areas, and land use degree in Nanchang City has significantly
increased. The spatial pattern of land use has greatly changed, and the city spatial pattern has become
more aggregated, while the spatial distribution of cropland, forest and grassland has become more
fragmented. Moreover, there has been an obvious correlation between social-economic development
and the level of land use, and GDP has been the main driver of land use change. The central urban
area of Nanchang city has been the main hotspot of land use change.

Keywords: land use change; drivers; urban expansion; landscape

1. Introduction

Land use is a complex system containing natural elements such as geology, hydrol-
ogy, soil, vegetation and human activities [1]. It is closely related to social–economic
development [2]. Land use change is a reflection of human activities and a key factor influ-
encing climate change [3,4]. Land-use change mechanisms, monitoring and modeling have
become the focus of the scientific community [5,6]. Land use surveys, land resource assess-
ment and utilization planning are the application fields of traditional land-use research [7].
Socio-economic, cultural and spatial land management make land use show significant
regional and periodic differences [8,9].

Since China officially became a member of the World Trade Organization (WTO) in
2001, China’s economy and urbanization processes have entered a stage of rapid develop-
ment. Urbanization is considered to have a significant impact on land use patterns and the
environment [10]. So far, more than 54% of the world’s total population (about 8 billion)
lives in urban areas and this figure is expected to exceed 67% in 2050. Urbanization is
placing an increasing demand on urban land, yet the demand for land resources for ur-
banization cannot be met indefinitely as land resources are scarce resources [11]. How to
use land resources efficiently and intensively has become one of the issues of sustainable
development in human society [12]. Clarifying the mechanisms of interaction between

Int. J. Environ. Res. Public Health 2023, 20, 2330. https://doi.org/10.3390/ijerph20032330 https://www.mdpi.com/journal/ijerph
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land use change and social economy is important for the formulation of urban sustainable
development strategies and the sustainable use of land resources.

Urbanization is one of the most important factors of LULC change, and it also brings
up a series of ecological problems [13], such as the heat island effect [14], environmental
pollution [15], habitat destruction [16] and loss of cropland [17]. Urban expansion is one of
the essential parts of land use research. Since the 1820s, researchers have focused mainly
on urban morphology and spatial structure in land use [18]. Suggested theories for urban
expansion include the concentric model, sector theory and multi-core model [19]. With
the continuous development of remote sensing and geographic information science (GIS)
technology, the research on urban expansion based on the perspective of land use has
developed into quantitative analysis, dynamic monitoring, spatiotemporal characteristic
analysis and driving mechanism research of urban expansion [18].

Due to the difficulty of obtaining time-series spatial data, the early land use research
mainly discussed the area change of land use from a statistical perspective, so the spatial
pattern change of land use was not fully studied. The development of remote sensing
technology and computer technology has provided rich monitoring methods and efficient
data-processing methods for land use research. Additionally, the application of remote
sensing technology not only provides rich and diverse spatial monitoring data but also
greatly saves human and financial costs. Liu [20] showed 13 cities in China that urban
expansion is influenced by a combination of population, monetary and land policies.
Danilo [21] used an object-oriented classification to analyze aerial photographs and obtain
land use situations in the Langhe region of Italy from 1954 to 2000. He also further analyzed
changes in the spatial–temporal pattern of land use. Although land use data have good
spatial resolution and effectively promote the study of urban space, it is mainly based on
Landsat data interpretation, which relies on traditional methods that are time-consuming
and labor-intensive. With the progress of Big Data technology and the abundance of remote
sensing data, the rapid and low-cost land use data acquisition of time series is possible,
and the joint research of remote sensing data and socio-economic time series is gradually
enriched [22].

To solve the problem of discontinuous land-use data and obtain urban spatial distri-
bution data quickly, researchers have turned their attention to night-time lighting data
from meteorological satellites [23–25]. However, the inherent disadvantages of night-time
light data, such as low resolution (1 km), determining that the data are suitable for the
extraction of urban boundary information and lack more detail, make the data unsuitable
for comprehensive land-use analysis and monitoring.

Advances in remote sensing and artificial intelligence technologies have dramatically
changed the way we look at the Earth [12]. The Remote Sensing Big Data Platform (RSBDP)
provides a powerful and data-rich platform for remote sensing analysis for researchers
and provides remote sensing analysis functions, such as GEE [26]. Currently, RSBDP has
been widely used in a variety of fields such as land cover mapping, and Hanberry [27]
noted that RSBDP and machine learning methods performed well in wildfire identification
and classification. Some researchers found that Landsat images and GEE were suitable for
mapping flood areas, with an overall accuracy of over 90% [28]. The researchers found that
by using machine learning methods and Landsat data, artificial targets in heterogeneous
environments could be accurately detected [29]. The researchers found that GEE and
random forest classifier can effectively extract vegetation distribution information [30].
RSBDP-based land-use classification methods and statistical characterization are hot issues
in land use research [31].

In this study, we propose to use spatiotemporal Big Data and time-series analysis
methods to explore the driving force of land-use pattern change in Nanchang from the
perspective of spatiotemporal change, so as to provide decision-making support for sus-
tainable use of land resources and ecological environmental protection. A large number of
existing studies of land use cannot quantify the correlation between land use change and
social economy using statistical methods due to the lack of continuous time-series data
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on land use. The innovations of this study are to quantify the correlation between land
use change and social economy using continuous time-series land use data and statistical
methods. In addition, the correlation among comprehensive land use index, per capita
GDP, population and fixed asset investment was analyzed in this study.

2. Materials and Methods

2.1. Research Areas

Nanchang is the capital city of Jiangxi Province and an important city in the urban
agglomeration in the middle reaches of the Yangtze River in China. It is also the central
city of the Poyang Lake Ecological Economic Zone. Located in the north-central of Jiangxi
Province (Figure 1), it covers an area of 7194.98 km2. As of 2020, Nanchang has a resident
population of 6,437,500 and a GDP of 574,551 million CNY. In addition, Nanchang is one of
the first low-carbon pilot cities in China, a national innovative city and an international
garden city. In recent years, the economy of central China was growing rapidly at a rate
of about 8%, leading to increased urbanization and rapid land use changes, which have
had an impact on urban spatial form and the ecological environment. Therefore, this study
analyzes the relationship between land use patterns and social–economic development
in Nanchang City over the past 20 years and provides decision support for urban green
development and sustainable development.

Figure 1. Nanchang City.

2.2. Materials

This study mainly uses statistical data and spatial data. Among them, the statisti-
cal data were obtained from the Nanchang Statistical Yearbook (2001–2021), including
population, GDP and fixed investment. Spatial data include land use and administrative
division data. Among them, land use data were obtained by using remote sensing Big
Data platform, selecting Landsat impact data and using a supervised classification method
and machine learning algorithm to classify remote sensing images. Benefiting from the
application of the RSBDP and machine learning algorithm, this study can quickly obtain
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continuous time-series land-use data and carry out innovative research. The administrative
division data were obtained from the China Geographic Information Bureau and were
produced in 2015. This study classifies land use in Nanchang into seven types: cropland,
forest, shrub, grassland, water, barren and urban.

2.3. Methods

The research framework is shown in Figure 2. Previous studies on urban land use and
drivers were limited by the lack of spatial data on land use and mainly used discontinuous
land use data every 5 years for analysis. Therefore, previous studies could not fully utilize
the statistical data of continuous time series to mine the relationship between land use
and the social economy, nor could they construct statistical models of social economy and
land use. They could only analyze the social-economic impact on land use in the datum
year and the target year through LMDI or other methods. In recent years, thanks to the
maturity of remote sensing Big Data and remote sensing cloud-computing platforms, the
acquisition and analysis of spatial–temporal data based on the remote sensing Big Data
platform becomes a reality, and the spatial–temporal data of continuous time series can be
quickly acquired and applied to practice research. As a result, integrated research of spatial–
temporal change and social economy based on time series can be carried out smoothly.

Figure 2. Research framework diagram.

2.3.1. Land Use Classification

This study uses remote sensing Big Data analysis platform to obtain time series Landsat
satellite images, and then supervised and classified them by combining random forest and
transfer learning methods to obtain the land use data of Nanchang City from 2000 to 2020.
The land use classification process is shown in Figure 2. Firstly, we used the 4 periods of
land use data (2000, 2005, 2010, 2015) released by the Institute of Geographical Sciences and
Resources, Chinese Academy of Sciences (https://www.resdc.cn/Default.aspx, accessed
on 27 March 2021) to randomly collect unchanged stable regions form the 4 periods of
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land use data as training samples for supervised classification, and made them into sample
data labels. Then, we chose seven types of land use samples: cropland, forest, grassland,
water, barren and urban. Secondly, we screened the Landsat dataset of 2000–2020 using
RSBDP, calculated NDVI, MNDWI and NDBI and used the results as the three bands. We
then exported them as a new dataset. After that, the sample data labels were imported
into the RSBDP platform and were extracted for the sample dataset to train the Random
Forest classifier. We used the trained Random Forest classifier to supervise and classify
the Landsat dataset from 2000 to 2020. Finally, we implemented spatial–temporal filtering
and accuracy assessment on the classification results, and if the classification results did
not meet the accuracy requirements, the sample labels were modified. The classification
operation was repeated until the classification accuracy was more than 80%, and then the
classification was finished. In this study, the classification method was the same as the
existing literature, and more detail can be found in the literature [32].

2.3.2. Land Use Comprehensive Index

The quantitative study of land use degree is based on its limit, that is, when land
resource utilization reaches the limit, human beings will not able to continue developing
land resources. The lower limit of land resource use is the starting point for human
exploitation of land resources [33]. The magnitude of the composite index reflects the level
of land use. In order to quantitatively evaluate the degree of land use, the existing research
classifies the ideal state of land use into four levels, and gives corresponding weights to the
four levels of land use, so as to achieve a quantitative evaluation of the land use degree.
This study uses weight assignment of land use degree from the existing studies to calculate
the comprehensive index of land use in Nanchang (Table 1).

Table 1. The classification values of land use degree.

Type of Land Use Barren Forest, Grassland, Water Cropland Urban

Classification index 1 2 3 4

The comprehensive index of land use is a Weaver index, and its calculation model is
shown below [33]:

Li = 100 × ∑n
j=1 Aj × Pj (1)

where Li is the comprehensive index of land use with values in the range (100, 400); Aj is
the graded index of high land use at level j and Pj is the percentage of the graded area of
land use degree at level j.

2.3.3. Relative Change Rate of Land Use

In order to quantitatively analyze the different characteristics of land use change in
each district and county of Nanchang City, we introduced the index of land-use relative
change rate. The relative change rate of land-use type change is built on the basis of the
change rate index. It is the ratio of the change rate of land use type in target areas to the
change rate of land use type change in the study area, which is a hot spot area for analyzing
differences in specific land use type change and specific land use type change within the
study area [34]. The calculation model of the relative change rate of land use is as follows:

K =
|Kt+1 − Kt| × Ct

Kt×|Ct+1 − Ct| (2)

where Kt+1, Kt are the area of a particular land use type in the target areas at moment t+1
and t, respectively; Ct+1, Ct are the area of the land use type in the study area at moment
t+1 and t, respectively. The significance of the absolute values is to avoid confusion caused
by the direction of land use change and to facilitate comparison between target areas. The
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significance of the relative change rate is to reveal differences in the land use change of
study areas [35].

2.3.4. Landscape Index Analysis

In order to deeply understand the spatial variation characteristics of land use, we
selected four landscape-scale indicators, Shannon’s Evenness Index (SHEI), Patch Density
(PD), Contagion Index (CONTAG) and Number of Patches (PD) for the study. We also chose
Total Landscape Area (CA), Largest Patch Index (LPI), Patch Cohesion Index (COHESION)
and Splitting Index (SPLIT) to quantitatively evaluate the spatial pattern of land use in
Nanchang City. The above indicators were calculated using Fragstats version 4.2 (Gen.
Tech. Rep. PNW-GTR-351. Portland), a landscape pattern analysis software.

3. Results and Discussion

3.1. Land Use Change

The results showed the overall accuracy of land use was 88.36%, and the Kappa index
was 42.49%. From 2000 to 2020, the spatial distribution of land use in Nanchang City
has changed significantly (Figure 3). Among them, urban expansion has been significant,
especially in the central city of Nanchang and Honggutan. Cropland has always been the
largest land use type in Nanchang.

Figure 3. Nanchang City Land Use Map 2000–2020.

In the last 21 years, the area of cropland in Nanchang has decreased by 2.94%, from
66.74% to 63.80% (Figure 4a). The loss of cropland area has mainly devolved into urban
(51.49%), forest (28.86%) and water (19.15%) areas (Figure 4b). In order to protect the
ecological environment, the Chinese government has implemented the project of “returning
farmland to lakes” in the middle and lower reaches of the Yangtze River. Therefore, part
of the cultivated land around Poyang Lake has become wetland. Urban expansion was
the main factor leading to the loss of cropland, which was consistent with the conclusions
of existing studies that the urbanization process is the main factor leading to the massive
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loss of cropland. From 2000 to 2020, the urban area has increased from 379.15 km2 to
722.66 km2, an increase of 90.60% (Figure 4a; Table 2). Of this increase, 87.25% of the urban
area from cropland to urban, 8.09% from water areas and 3.10% from forest (Figure 4b).
It is worth noting that the forest area of Nanchang City has increased from 802.25 km2 in
2000 to 842.67 km2 in 2020, an increase of 5.04%. In addition, Grassland, Water and Barren
areas have decreased by 4.58 km2 (48.82%), 160.52 km2 (12.75%) and 1.22 km2 (10.40%),
respectively (Table 2). Urban expansion has been the main reason for the decrease in
grassland area, with 2.81 km2 of grassland converted to urban. On the other hand, Barren
areas have decreased by 1.22 km2 from 2000 to 2020, of which 0.91 km2 has been converted
to Grassland. Most of it has transformed into grassland in urban parks. A total of 2.90 km2

of Barren areas have been converted into urban. Therefore, urban expansion has made
dramatic changes in Barren areas.

Figure 4. Land use statistics and change map for Nanchang City 2000–2020. (a) Summary of the area
of six types of land use; (b) The 2000–2020 land use transfer map.

Table 2. Land use transfer matrix (unit: square kilometers).

2000

2020
Cropland Forest Grassland Water Barren Urban

Cropland 4320.89 122.25 1.96 266.18 0.96 9.90
Forest 178.63 654.66 0.13 8.87 0.00 0.37
Grassland 1.10 1.27 0.65 0.80 0.91 0.07
Water 118.48 8.10 3.50 952.10 4.93 11.26
Barren 2.02 4.63 0.33 1.39 2.06 0.09
Urban 318.62 11.33 2.81 29.54 2.90 357.46

Figure 5 shows the variation trend of urban, cropland and forest areas in the nine
administrative districts of Nanchang. The urban expansion in Honggutan was the most
significant, increasing from 13.48 km2 to 63.19 km2, an increase of 368.75% (Figure 5a),
followed by Qingshanhu and Xinjian County, with an increased urban area of 92.76%
and 74.02%, respectively. Honggutan has been under construction since 2000 and has
experienced a high growth period from 2013 to 2016, with an average annual expansion
of 5.18 km2. The district with the smallest urban area expansion was Donghu (15.06%),
followed by Qingyunpu (44.39%), Jinxian (51.68%) and Xihu (54.68%). Donghu, Qingyunpu
and Xihu were the central urban areas of Nanchang City with a high degree of land
development, and therefore the urban area has increased less in the past 21 years. Jinxian

7



Int. J. Environ. Res. Public Health 2023, 20, 2330

was a suburban administrative district of Nanchang City and was located at the periphery of
the central urban area, with slower social and economic development, hence its urban area
was expanding slowly. The largest urban area of Nanchang in 2020 was Nanchang county
(208.47 km2), followed by Xinjian county (133.34 km2) and Qingshanhu (111.87 km2). The
smallest urban area was Donghu (21.82 km2), Xihu (24.79 km2) and Qingyunpu (27.50 km2).
In the last 21 years, the highest rate of cropland loss has been found in Xihu (51.37%),
followed by Qingyunpu (49.68%) and Qingshanhu (34.04%) (Figure 5b). Among the nine
districts and counties in Nanchang, only Xinjian County has increased its cropland by
4.58%, while the other eight districts and counties all have lost cropland. In addition, the
water and grassland areas of Xinjian have decreased by 20.02% and 70.78%, respectively.
Urban expansion was the main factor in cropland and ecological land loss. From 2000 to
2020, the forest area of Qingyunpu decreased by 97.33%, followed by Donghu (95.00%) and
Xihu (54.72%) (Figure 5c). At the end of 2020, the total forest area of Qingyunpu, Donghu
and Xihu was less than 0.01 km2, except for Jinxian county and Anyi county, whose forest
area increased by 34.04% and 9.29%, respectively; the forest areas of the other seven districts
and counties all decreased to different degrees (Figure 5c).

Figure 5. Area of urban, cropland, forest changing patterns (unit: km2). (a) changing patterns of
urban area from nine counties; (b) changing patterns of cropland area from nine counties; (c) changing
patterns of forest area from nine counties.

In the last 21 years, cropland, forest and urban land have occupied the largest areas
in Nanchang city. Among them, urban land has an average annual growth rate of 3.21%,
which was significantly higher than cropland (−0.22%) and forest (0.27%) (Figure 6a,b).
Among them, the largest annual change rate of Nanchang was in 2004 (6.48%), followed
by 2013 (5.95%) and the smallest annual change rate was in 2020 (0.16%) (Figure 6a). The
annual growth rate of urban land has been generally higher than forest and cropland from
2000 to 2020. It has a small fluctuation, and the city showed a stable increasing trend
(Figure 6b). The abnormal value is the urban increase rate from 2003 to 2004, during which
Nanchang City had the largest growth rate of fixed assets’ investment (67.9%). Thus, the
rapid growth of fixed assets investment may be one of the important factors for the rapid
urban expansion (Figure 6b). It is worth noting that the distribution of the annual change
rate of the forest area has large dispersion and high fluctuation. This may be due to the
uncertainty of the land use classification method and classification accuracy. The median
line of the annual change rate in cropland is negative and less volatile, indicating that
cropland change is dominated by loss and has a stable trend.

From 2000 to 2020, the comprehensive index of land use in Nanchang City has in-
creased from 276.86 to 283.19, indicating a significant increase in land use degree in Nan-
chang City (Figure 7a). Compared with the non-time series, time series land use shows
more details of land use change. For example, the comprehensive index of land use in
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Nanchang City decreased from 2013 to 2017, and land use was in a period of decline. The
comprehensive index of land use increased slowly from 2005 to 2007, indicating that the
land use of Nanchang was in the adjustment period. The Pearson Correlation Analysis was
employed in this study, and the results show that the correlation coefficients of the com-
prehensive index of land use and GDP per capita, population and fixed assets investment
were 0.92, 0.90 and 0.85, respectively, at 0.01 significance level (Figure 7b). This indicates
that the change in the degree of land use is influenced by GDP per capita, population and
fixed assets investment. GDP per capita is an important indicator of social affluence, and
GDP per capita is an important influencing factor for the increase in land use degree.

Figure 6. Cropland, forest, urban annual rate of change of land use (%). (a) Cropland, forest, urban
annual change rate (%); (b) Box plot of the annual change rate.

Figure 7. Comprehensive index of land use and its social economic-correlation. (a) Comprehensive
index of land use from 2000 to 2020; (b) Correlation coefficient between the comprehensive index of
land use and social-economic indicators, all the p < 0.01.

After normalizing the data, this study established a multiple regression model of land
use composite index and GDP, and the results showed that the increase in per capita GDP
and population was an important factor to promote land intensive use (Table 3). At the
same time, the rapid increase in GDP and fixed asset investment will lead to extensive
development of land use. In addition, the R squared of the regression model is 0.94.

Cropland was the largest land-use type and urban land was the land use type with
the largest change rate in Nanchang. Then, cropland and urban land were employed
to discover the regional differences in the changes. The results show that there were
significant regional differences between the change in cropland and urban areas in the
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nine districts and counties of Nanchang (Figure 8). The relative change rate of cropland in
Qingyunpu was the largest in 2008 (28.07), and the relative change rate fluctuated widely
around the average, followed by Xihu (Figure 8a). The relative change rates of cropland
in Qingyunpu and Xihu districts were significantly higher than that in the other seven
districts and counties, indicating that the relative change of cropland in Qingyunpu and
Xihu districts was drastic, which reflected the drastic loss of cropland and the acuity of land
resource development. Moreover, cropland loss in Xihu and Qingyunpu was 51.37% and
49.68, respectively. The urban relative-change rate in Honggutan was largest in 2004 (3.81),
followed by 2013 (3.67) and 2015 (3.66), and the urban relative-change rate in Honggutan
was much greater than the other eight districts and counties (Figure 8b). From 2000 to
2005, the urban relative-change rate of Qingshanhu has been greater than two, second
only to Honggutan and since then the urban relative-change rate of Qingshanhu has been
regionally stable and less than 1.5 (Figure 8b). The urban relative-change rate indicated that
Honggutan had experienced continuous and high-intensity development of land resources
from 2000 to 2016, and its development intensity had been significantly higher than that
of other districts and counties. Meanwhile, Qingshanhu has experienced high-intensity
development of land resources and urban expansion from 2000 to 2005. The relative change
rates of urban land in Anyi County and Xinjian County have increased gradually in the
past 20 years, and the intensity of urban expansion has been strengthened. Xinjian County,
on the other hand, began experiencing high-intensity development of land resources in
2017, but its development intensity was still lower than that of the earlier development
intensity in Honggutan. Therefore, Honggutan was the key area of Nanchang’s urban
expansion in the past 20 years.

Table 3. Regression coefficient.

Regression
Coefficient

Standard Error Significance

GDP −2.06 2.06 0.00
GDP per capita 3.26 1.19 0.00

POP 0.39 0.54 0.00
Fixed investment −0.77 0.98 0.00

Intercept 0.08 0.05 0.01
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Figure 8. Kite diagram of relative change rates in cropland and urban land use areas. (a) the relative
change rates in cropland; (b) relative change rates in urban.

3.2. Characteristics of Land Use Pattern Change

The Shannon’s Evenness Index (SHEI) at the landscape scale of land use in Nanchang
increased by 7.56%, showing a fluctuating increasing trend (Figure 9a). It indicates that
the diversity of land use in Nanchang City has increased and the patches’ distribution
uniformity of each land use type has also increased. The Patch Density (PD) index has
gone through two stages of increasing from 2000 to 2008 and decreasing from 2009 to
2020, and the PD in 2020 is 9.20% higher than that in 2000 (Figure 9b). It indicates that the
process of land use change in Nanchang City has gone through two stages of increasing
and then decreasing in landscape heterogeneity, which also shows the increasing and
decreasing process of human activities. Contagion Index (CONTAG) has decreased by
4.66% from 2000 to 2020, with an average annual growth rate of −0.24%, this means that
urban expansion leads to an increase in landscape fragmentation and the deterioration
of landscape continuity (Figures 8a and 9c). The number of patches (NP) has increased
by 9.20% from 2000 to 2020, indicating an increase in the number of patches of land use
in Nanchang City and an increase in landscape fragmentation. In summary, land use in
Nanchang City has gone through dramatic changes in the past 21 years. Urbanization
and intensified human activities have accelerated the landscape fragmentation of land use
spatial distribution and the spatial heterogeneity has significantly increased.
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Figure 9. Landscape index change of land use in Nanchang, 2000–2020. (a) the Shannon’s Evenness
Index (SHEI) of Nanchang from 2000 to 2020; (b) the Patch Density (PD) index of Nanchang from
2000 to 2020; (c) the Contagion Index (CONTAG) of Nanchang from 2000 to 2020; (d) the number of
patches (NP) of Nanchang from 2000 to 2020.

With the social economy developing, urbanization and increased human activities
have become the main factors of dramatic land-use changes. Urban land was the only
type of land use that has increased substantially among the six land-use types. Therefore,
in order to deeply understand the variation of urban land-use types, this study analyzed
the change characteristics of urban land in Nanchang. Existing studies are limited by the
difficulty of obtaining land use data and untimely updates and are only able to analyze land
use at discontinuous times. Unlike existing studies, this study used spatial–temporal Big
Data technology of remote sensing to obtain continuous time data of land use rapidly and
reliably, and combined it with time series statistics for comprehensive analysis to explore
the change characteristics and driving mechanisms of land use.

The land use with continuous time series of Nanchang City indicated that the urban
area has expanded by 87.81% with an average annual growth rate of 3.21% (Figure 10a).
The Largest Path Index (LPI) of urban patches increased by 186.49% with an average annual
growth rate of 5.48% (Figure 10b), and the largest patch was the central city of Nanchang,
indicating a significant trend of urban expansion in the central city. It is noteworthy
that the largest LPI growth rate was in 2002 and 2008 at 15.49% and 15.89%, respectively,
which implied significant urban expansion. The fixed assets’ investment in Nanchang City
increased significantly in 2002 and 2008, 41.40% and 34.00% higher than in 2003 and 2009,
respectively, and continued to grow at a high rate for four and three years from then on.
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Thus, we have reason to believe that the increase in fixed assets investment contributed
to the rapid increase in LPI of the urban patches and urban expansion (Table 4). Existing
studies also show that economic development is directly related to the urban landscape
pattern [36,37]. The regression coefficient of LPI with GDP, GDP per capita and fixed
investment was calculated, and the total R square is 0.99 (Table 4). This shows that POP
and fixed investments are the key factors influencing the change of LPI.

Table 4. Regression coefficient of LPI with GDP, GDP per capita and fixed investment (R
square is 0.99).

Regression
Coefficient

Standard Error Significance

Intercept 0.01 0.02 0.43
GDP −3.79 0.67 0.00

GDP per capita 3.50 0.39 0.00
POP 0.66 0.18 0.00

Fixed investment 0.61 0.32 0.01

The Patch Cohesion Index (COHESION) reflects the degree of connection between
urban patches, and the larger the value, the stronger the spatial connection between
patches. The COHESION of Nanchang City has increased by 3.30% from 2000 to 2020,
with an average annual growth rate of 0.16%. Among them, the average annual growth
rate from 2000 to 2008 was 0.33% and from 2009 to 2020 was 0.05% (Figure 10c). This
indicates that urban areas have expanded rapidly from 2000 to 2008, and there was a
strong spatial connection of urban expansion. This implies that the direction of urban
expansion is closely related to spatial factors such as the distance of existing urban land
space. The spatial relationship between urban expansion and the existing urban area has
weakened in 2009–2020, implying that urban expansion was mainly punctiform and there
was no strong spatial linkage between patches. Moreover, the Splitting Index (SPLIT) is
one of the important indicators to measure the degree of landscape separation, and the
larger the value, the higher the separation degree between landscape patches and the
more fragmented the spatial distribution. The SPLIT of urban land-use types in Nanchang
City has decreased by 90.48% from 2000 to 2020, indicating that the separation degree of
urban land in Nanchang City has decreased and the fragmentation degree of urban spatial
distribution has also decreased, which means that the aggregation degree of urban spatial
distribution has increased (Figure 10d).
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Figure 10. Changes in urban landscape pattern index. (a) urban landscape area; (b) the Largest Path
Index (LPI) of urban patches; (c) the Patch Cohesion Index (COHESION) of urban; (d) Splitting Index
(SPLIT) of urban.

There were four hot spots of land use change (HSLUC) in Nanchang, which were
located in the northeast, northwest, central and southeast of Nanchang (Figure 11). Only
the HSLUC in northeast China was formed because the project of converting cropland
to lakes transformed cropland into wetland. Urban expansion is the main reason for the
formation of the other three HSLUC. Among them, the central urban area of Nanchang city
was the main HSLUC, its urban area expansion was the largest, and the land use change
was the most drastic.
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Figure 11. Hot spot of land use change from 2000 to 2020.

3.3. Uncertainty

This study used remote sensing spatial–temporal Big Data and machine learning meth-
ods to obtain continuous time-series data of land use and analyzed the spatial–temporal
pattern change of land use in Nanchang City with time series statistical data. We bridged
the gap of time series land-use research based on a statistical perspective. However, there
are still uncertainties in the results of this study, mainly concerning the uncertainty of the
method and the uncertainty of the data accuracy.

One of the main uncertainties of the method is the limitations in the selection of
training datasets, which cannot extract all features and use them for model training. As
a result, there is uncertainty in the accuracy of the model. Furthermore, the land use
data have their uncertainties of accuracy as the third party of sample data, and we cannot
guarantee that the precision of the sample data is completely accurate. Data errors may be
passed on to the classification data of land use in this study, leading to uncertainty in the
results of this study. In the subsequent study, we can improve the classification method
of land use and select land use data with higher accuracy and credibility as the training
sample data to reduce the uncertainty of the study results.

4. Conclusions

Land use in Nanchang City has changed dramatically from 2000 to 2020. Among
them, the urban area has increased enormously, and the area of cropland, on the other
hand, has decreased significantly. Meanwhile, most of the reduced cropland area has been
transformed into urban land. This study provides more evidence for the loss of cropland
caused by urban expansion. In addition, there were significant differences in land use
changes among the nine administrative units in Nanchang. Among them, Honggutan
showed dominance in urban expansion, while the old city showed a significant loss of
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forest areas which were converted into urban use. Over the past 21 years, land use changes
in Nanchang have been dominated by urban expansion, which led to the loss of cropland
and forest. The spatial pattern of land use has changed significantly, and the urban spatial
pattern has become more aggregated, while the spatial distribution of cropland, forest and
grassland has become more fragmented. The landscape pattern of land use has been more
fragmented, and the city has expanded rapidly. Moreover, there was a significant correlation
between social–economic development and land use level, and the social economy was
obviously correlated with the landscape patterns of land use. Population, GDP and fixed
assets investment were the three main drivers of land use change. They affected the area
change of land use types, as well as the form and pattern of land use spatial patterns, and
further affected the development of the city. Therefore, understanding the characteristics of
land use change can help to clarify the driving mechanisms of land use change and provide
support for government decisions and the rational and efficient use of land resources.
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Abstract: Monitoring the dynamics of wetland resources has practical value for wetland protection,
restoration and sustainable utilization. Dongting Lake wetland reserves are well known for both
their intra-annual and inter-annual dynamic changes due to the effects of natural or human factors.
However, most wetland monitoring research has failed to consider the seasonal wetlands, which is
the most fragile wetland type, requiring more attention. In this study, we used multi-source time
series remote sensing data to monitor three Dongting Lake wetland reserves between 2000 and 2020,
and the seasonal wetlands were separated from permanent wetlands. Multispectral and indices
time series were generated at 30 m resolution using a two-month composition strategy; the optimal
features were then selected using the extension of the Jeffries–Matusita distance (JBh) and random
forest (RF) importance score; yearly wetland maps were identified using the optimal features and
the RF classifier. Results showed that (1) the yearly wetland maps had good accuracy, and the
overall accuracy and kappa coefficients of all wetland maps from 2000 to 2020 were above 89.6% and
0.86, respectively. Optimal features selected by JBh can improve both computational efficiency and
classification accuracy. (2) The acreage of seasonal wetlands varies greatly among multiple years due
to inter-annual differences in precipitation and evaporation. (3) Although the total wetland area of the
three Dongting Lake wetland reserves remained relatively stable between 2000 and 2020, the acreage
of the natural wetland types still decreased by 197.0 km2, and the change from natural wetland to
human-made wetland (paddy field) contributed the most to this decrease. From the perspective
of the ecological community, the human-made wetland has lower ecological function value than
natural wetlands, so the balance between economic development and ecological protection in the
three Dongting Lake wetland reserves requires further evaluation. The outcomes of this study could
improve the understanding of the trends and driving mechanisms of wetland dynamics, which has
important scientific significance and application value for the protection and restoration of Dongting
Lake wetland reserves.

Keywords: wetland; remote sensing; dynamic; random forest; JBh extension

1. Introduction

Land cover and land use dynamics are some of the most important international
research topics in Earth systems, with profound implications for natural ecosystems and
human society [1,2]. Wetlands are vulnerable and sensitive to climate change, rapid
population increase and fast economic development, and have been the major hotspots
of monitoring in terms of land cover and land use change [3,4]. Studying the spatial
distribution characteristics of wetland types and the complexity of their spatial–temporal
dynamics can help us to understand the mutual influence between wetland ecosystems and
natural or human factors, including global warming, environmental pollution and urban
sprawl, which is conducive to the better protection and management of wetlands [5,6].
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Monitoring long-term wetland dynamics by field investigations may be challenging
due to poor site access and their labor-intensive and time-consuming nature [7–9]. Remote
sensing images have been widely used to monitor large-scale wetland changes, with the
advantage of obtaining ground information promptly and efficiently [10–12]. A series of
global land cover products have mapped wetland distributions using remote sensing data,
such as GlobalLand30 [13], FROM-GLC BUMODIS [14], GLCNMO2013 [15], DISCover [16]
and GLC2000 [17]. However, these products do not include seasonal wetlands and cannot
describe the inner-annual wetland changes.

Time series remote sensing data have shown an advantage in monitoring seasonal
changes in vegetation and water [18–20]. The Advanced Very High-Resolution Radiometer
(AVHRR) and Moderate-resolution Imaging Spectroradiometer (MODIS), with high tem-
poral resolution, are always used to monitor the inner-annual dynamics of water [21–24],
but the coarse spatial resolution causes misclassification and they cannot identify smaller
wetlands precisely. Meanwhile, Landsat and Sentinel-2 data have a better temporal reso-
lution, and previous research has demonstrated the potential of Landsat or Sentinel data
for distinguishing wetland types [25–28]. However, there are only a few studies in which
Landsat data are merged with Sentinel data to obtain an equal interval time series at 30 m
spatial resolution for wetland monitoring.

Dongting Lake, a typical river-connecting lake, interacts with the Yangtze River [29].
In recent years, Dongting Lake wetlands have been changed and destroyed due to human
activities and the dynamics of the hydrological regime, especially the operation of the
Three Gorges Dam (TGD) [30]. There are a large number of studies monitoring wetland
changes in Dongting Lake with remote sensing data [29,31]. However, most of the research
is focused on flood area and water body changes, and any long-term dynamic study
involving Dongting Lake wetland monitoring is usually based on a single date to identify
wetlands and ignores the seasonal changes in wetlands [10,32], which leads to a lack of
comparison among wetland classification results over multiple years. Dongting Lake,
with smooth relief, tends to be influenced by seasonal precipitation, and may undergo
significant variation among different seasons [33]. There is an urgent requirement to
monitor the wetlands’ intra-annual and inter-annual dynamics in Dongting Lake using
satellite series time at a high spatial resolution. Therefore, the main objectives of this
study are (1) to generate yearly wetland maps in the three Dongting Lake wetland reserves
at 30 m spatial resolution, and (2) to analyze the seasonal and inter-annual dynamics of
wetlands in Dongting Lake wetland reserves from 2000 to 2020 and reveal the motivation
and regulation of these dynamics.

2. Study Area and Materials

2.1. Study Area

Dongting Lake is located in the north of Hunan Province (28◦30′~30◦20′ N, 110◦40′~113◦10′ E),
and is the second-largest freshwater lake in China [29]. The lake has a subtropical monsoon
climate that is characterized by a rainy season between April and September and a dry
season between October and March. Dongting Lake, with smooth relief, tends to be
influenced by seasonal precipitation, and may undergo significant changes over several
days [34]. During the rainy season, the lake provides storage for river flood waters.
During the dry season, it provides water to the river to allow river transportation to
continue without significant interruption. Seasonal mudflats provide rare habitats and
spawning grounds for migratory birds and fish [35]. High-frequency measurements are,
therefore, needed to study short- and long-term fluctuations in the inundation areas of
lakes. Dongting Lake includes three national wetland nature reserves (Figure 1), the East
Dongting Lake wetland reserve, the South Dongting Lake wetland reserve and the West
Dongting Lake wetland reserve, which were included in the list of Ramsar Sites in 1992
and 2002 [7]. Dongting Lake wetland reserves include various types of land cover. In this
study, the classification system uses a two-tier hierarchical structure. Level 1 comprises two
categories: wetlands and uplands. Level 2 comprises 7 categories: four types of natural
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wetlands (permanent water, permanent marsh, flooded wetland and seasonal marsh), an
artificial wetland (paddy field), one type of natural upland (forest) and one type of artificial
upland (construction land).

Figure 1. Location of study area.

2.2. Materials
2.2.1. Remote Sensing Data

Remote sensing data with higher temporal resolution are of key importance for map-
ping seasonal wetlands. A series of medium-resolution satellites at 20–30 m spatial res-
olution enable us to map and monitor seasonal wetlands. In this study, all Landsat-5,
Landsat-7, Landsat-8 and Sentinel-2 data between 2000 and 2020 (Table 1) were prepared
and preprocessed on Google Earth Engine [36,37]. In addition, the top of atmosphere (TOA)
reflectance of both Landsat 5/7/8 and Sentinel-2 was utilized because surface reflectance
(SR) data were not available on GEE before 2019; this is appropriate as existing studies
have shown that the correlations of Landsat and Sentinel-2 for TOA reflectance data are
higher than those for SR data [38,39]. Finally, 3235 images were used in total, including
551 Landsat-5 TM images, 987 Landsat-7 ETM+ images, 425 Landsat-8 OLI images and
1272 Sentinel-2 MSI images (Table 1). All data were re-sampled to 30 m, and quality as-
surance (QA) bands were used to mask cloud pixels. Afterwards, two-month image time
series were generated using the two-month median composition for the multi-spectral
bands. We used a two-month composition strategy in this study because it is the best choice
to compensate for the missing data and retain the seasonal variation in the land surface.
Finally, we acquired the normalized difference water index (NDWI) [40], normalized dif-
ference moisture index (NDMI) [41] and normal difference vegetation index (NDVI) [42]
time series from the two-month composited images. These indices were selected because
NDWI time series have been successfully used for detecting permanent and seasonal water
(Equation (1)); NDMI time series have been proven to increase the separability among
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wetland plant varieties (Equation (2)), and they can determine the phenological parameters
of wetland plants (Equation (3)).

NDWI =
ρ(Green)− ρ(NIR)
ρ(Green) + ρ(NIR)

(1)

NDMI =
ρ(NIR)− ρ(SWIR1)
ρ(NIR) + ρ(SWIR1)

(2)

NDVI =
ρ(NIR)− ρ(Red)
ρ(NIR) + ρ(Red)

(3)

where ρ(Green), ρ(Red), ρ(NIR) and ρ(SWIR1) denote the TOA reflectance of the Green,
Red, NIR and SWIR1 bands, respectively, which are Band2, Band3, Band4 and Band5 for
Landsat-5 and Landsat-7 data; Band3, Band4, Band5 and Band6 for Landsat-8; and Band3,
Band4, Band8 and Band11 for Sentinel-2 (Table 2).

Table 1. The number of images used in our study.

Number Landsat-5 Landsat-7 Landsat-8 Sentinel-2 SUM

2000 37 44 0 0 81
2001 52 54 0 0 106
2002 38 52 0 0 90
2003 42 37 0 0 79
2004 58 47 0 0 105
2005 49 51 0 0 100
2006 50 50 0 0 100
2007 33 48 0 0 81
2008 55 55 0 0 110
2009 58 54 0 0 112
2010 38 45 0 0 83
2011 41 49 0 0 90
2012 0 38 0 0 38
2013 0 52 58 0 110
2014 0 40 47 0 87
2015 0 45 60 0 105
2016 0 48 53 0 101
2017 0 42 51 0 93
2018 0 45 58 30 133
2019 0 43 52 623 718
2020 0 48 46 619 713
SUM 551 987 425 1272

Table 2. Introduction to bands.

Generic Name Landsat-5 Landsat-7 Landsat-8 Sentinel-2

Blue 1 (450–520) 1 (450–520) 2 (450–510) 2 (458–522)
Green 2 (520–600) 2 (520–600) 3 (530–590) 3 (543–578)
Red 3 (630–690) 3 (630–690) 4 (640–670) 4 (650–680)

Near-Infra-Red (NIR) 4 (760–900) 4 (770–900) 5 (850–880) 8 (785–900)
Short-Wave Infra-Red 1 (SWIR1) 5 (1550–1750) 5 (1550–1750) 6 (1570–1650) 11 (1565–1655)
Short-Wave Infra-Red 2 (SWIR2) 7 (2080–2350) 7 (2090–2350) 7 (2110–2290) 12 (2100–2280)

2.2.2. Training and Validation Samples

In this study, training and validation samples were used to train the classifier and
evaluate the accuracy of the classification results, respectively. Initially, 2000 geolocation
sampling points were randomly generated in the study region using ArcGIS (ESRI, Red-
lands, SC, USA) for each year. Subsequently, the samples were visually interpreted as
permanent water, permanent marsh, flooded wetland, seasonal marsh, paddy field, forest
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and construction land based on remote sensing images with high spatial resolution from
Google Earth (http://earth.google.com, accessed on 5 January 2022) and the characteristics
of the reconstructed two-month composition time series data set (NDVI, NDWI and NDMI)
for each land cover in the same year. Only the samples with 120 m × 120 m pure pixels
were retained (Figure 2). Finally, these samples in each year were divided into two parts
for training and validation; two thirds of these samples were randomly selected and used
as training samples to classify, and the remaining one third of the samples were used as
validation samples to verify the accuracy of the classification results.

Figure 2. Distribution of samples for each land cover type in 2020.

3. Methodology

3.1. Flowchart

The framework for mapping seasonal wetlands developed in this paper is shown in
Figure 3. We generated two-month time series with 54 features, including multi-spectral
bands and indices (NDWI, NDMI and NDVI) for all time phases. To select the optimal
features and improve the classification efficiency, importance scores for all these features
were calculated based on the random forest algorithm using the training samples, and the
ranking of importance scores for all 54 features were acquired. Afterwards, we calculated
the separability among all wetland types using the extension of the Jeffries–Matusita (JM)
distance (JBh); the number of features used increased from 1 to 54, and the sequence of
adding features was based on the descending order of the importance score. In other
words, the features with a higher importance score were added to the feature set, which
was used for separability calculation, in higher priority. The separability among all wetland
types increased with the increase in the number of features, and it was saturated when
the features reached a certain amount; the features before the saturation points were then
used as optimal features. Next, the RF algorithm was used to classify the wetland types
based on the optimal features, and the classification accuracy was calculated to measure
the classification performance. Finally, we analyzed the dynamics of wetland areas in the
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three Dongting Lake wetland reserves from 2000 to 2020 based on the wetland maps that
we generated.

Figure 3. Flowchart of the methodology followed in this study.

3.2. Random Forest

The most commonly used classification algorithms for wetlands are maximum like-
lihood (ML, [43]), decision tree (DT, [44]), random forest (RF, [44]), and support vector
machine (SVM, [45]). In our study, the RF algorithm was chosen for wetland mapping. It
has high efficiency and flexibility and is suitable for large datasets. RF is an ensemble-based
machine learning algorithm that combines a set of Classification and Regression Trees
(CARTs). Two thirds of the samples were used to train each tree. The remaining one third
of samples was then used to validate the classification result, with an error called the
“out-of-bag (OOB) error”. Next, the final output was determined by majority voting on
all classification results obtained by each tree. Two parameters needed to be set in the RF
algorithm: the number of decision trees to be generated (Ntree) and the number of features
to best split each node (Mtry). Another function of RF is to derive the importance of each
feature. In this study, the RF package for R was used to calculate the importance scores of
features and classify wetland types. The Ntree was set to 1000 to ensure that the OOB errors
stabilized and reached convergence. The Mtry was set to the square root of the number of
input features.

3.3. JBh Extention Method

The Jeffries–Matusita (JM) distance was selected to estimate the separability of wetland
types, as many studies showed that the JM distance can measure the separability more
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accurately than other distance measures [46]. The JM distance between two classes was
given by Equation (4):

JM
(
ci, cj

)
=

∫
x

[√
p(X/ci)−

√
p
(
X/cj

)]2
dX (4)

where ci and cj represented the two wetland classes. Under normality assumptions,
Equation (4) was reduced to JM = 2·(1 − e−B), where

B =
1
8
(
ui − uj

)(Ci + Cj

2

)T(
ui − uj

)
+

1
2

ln

⎛
⎝
∣∣∣∣∣∣

∣∣Ci + Cj
∣∣

2
√
|Ci| ∗

∣∣Cj
∣∣
∣∣∣∣∣∣
⎞
⎠ (5)

and Ci and Cj represented the covariance matrices of classes i and j, respectively. |Ci| and∣∣Cj
∣∣ denoted the determinants of Ci and Cj, respectively. The range of JM distance was

from 0 to 2. A high value indicated high separability between the two classes [47].
When considering the separability of multiple classes, the extension of the JM dis-

tance (JBh) was used in this study. The JBh can be calculated as in Equation (6) based on
Bhattacharyya bounds [48].

JBh = ∑N
i=1 ∑N

j>i

√
p(wi) ∗ p

(
wj
) ∗ JM2(i, j) (6)

where N was the number of classes, and p(wi) and p(wj) were the prior probability of class i
and class j calculated using training samples.

3.4. Accuracy Evaluation

In this study, the accuracy of the wetland classification results was evaluated as the
overall accuracy (OA) (Equation (7)), user’s accuracy (UA) (Equation (8)), producer’s
accuracy (PA) (Equation (9)) and kappa coefficient (Equation (10)). These parameters can
be calculated based on the confusion matrix [49].

po = ∑r
i=1 pii/N (7)

pui = pii/pi+ (8)

pAi = pii/p+i (9)

Kappa =
N ∗ ∑r

i=1 pii − ∑r
i=1(pi+ ∗ P+i)

N2 − ∑r
i=1(pi+ ∗ p+i)

(10)

where po is the overall accuracy; pui is the user’s accuracy; pAi is the producer’s accuracy;
pii is the number of correctly classified samples of class i; r is the number of classes; N is
the number of training samples; pi+ is the number of classified samples of class i; and p+i
is the number of training samples of class i.

4. Results and Discussion

4.1. Classification Accuracy

Validation samples were used to verify the wetland classification results generated
in this study. OA, PA, UA and the kappa coefficient calculated from the confusion matrix
were used to evaluate the wetland classification accuracy. The results showed that the
wetland maps in the study had high accuracy. The OA ranged from 89.6% to 95.6%, with
an average value of 93.1%. The kappa coefficient ranged from 0.86 to 0.94, with an average
value of 0.91 (Figure 4). The producer’s and user’s accuracies for each land cover type
were above 72.9% and 73.9%, respectively (Table 3). Both PA and UA for permanent water,
permanent marsh, paddy field and seasonal marsh were high and stable for each year, with
averages of 96.7%, 95.8%, 95.3%, 91.7% and 95.3%, 95.8%, 93.9%, 94.4%, respectively. The
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PA and UA only for flooded wetland were below 90%, with averages of 88.3% and 89.7%,
respectively. The main omissions or commissions of flooded wetland were attributed to
its smaller area, with the problem of mixed pixels. In general, the classification results in
our study are reliable and acceptable for monitoring wetland changes in Dongting Lake
wetland reserves.

 

Figure 4. Overall accuracy (OA) and kappa coefficient for each year.

Table 3. Classification accuracy for each year.

Year

Permanent
Water

Permanent
Marsh

Flooded
Wetland

Seasonal
Marsh

Paddy Field Forest
Construction

Land

PA/UA PA/UA PA/UA PA/UA PA/UA PA/UA PA/UA

2000 97.44%/95% 95.02%/94.17% 89.13%/93.18% 96.77%/96.77% 92.4%/91.07% 79.07%/81.93% 72.86%/73.91%
2001 94.85%/97.87% 93.67%/92.83% 82.14%/82.14% 94.44%/91.89% 93.57%/93.02% 88.95%/88.44% 78.57%/82.09%
2002 96.67%/95.6% 96.24%/95.88% 81.25%/83.87% 82.35%/93.33% 95.32%/87.87% 77.91%/85.9% 81.43%/95%
2003 97.06%/97.06% 92.48%/96.09% 84.62%/81.48% 83.33%/94.59% 95.61%/95.61% 95.35%/82.41% 80%/98.25%
2004 96.34%/95.18% 98.12%/96.67% 81.25%/86.67% 81.08%/93.75% 94.74%/92.84% 91.86%/90.8% 78.57%/87.3%
2005 90.91%/88.24% 95.49%/96.58% 85.96%/89.09% 93.33%/90.32% 94.15%/95.55% 93.02%/86.49% 88.57%/96.88%
2006 98.63%/97.3% 92.48%/90.44% 94.29%/97.06% 96.97%/94.12% 93.86%/92.51% 80.23%/84.66% 88.57%/92.54%
2007 97.3%/96% 99.25%/96.7% 86.84%/94.29% 90.63%/93.55% 93.57%/88.89% 79.65%/88.39% 85.71%/92.31%
2008 97.14%/93.15% 95.11%/93.7% 80.56%/93.55% 93.94%/91.18% 93.57%/92.22% 94.77%/95.88% 88.57%/96.88%
2009 95.83%/98.57% 95.49%/95.49% 96.97%/88.89% 97.06%/94.29% 95.03%/93.12% 87.79%/92.07% 85.71%/86.96%
2010 93.55%/87.88% 99.25%/94.29% 82.69%/91.49% 90.63%/93.55% 93.57%/96.1% 88.37%/89.41% 80%/81.16%
2011 97.22%/97.22% 94.36%/94.36% 91.43%/94.12% 92.59%/96.15% 93.86%/91.98% 87.21%/89.29% 82.86%/84.06%
2012 97.22%/89.74% 96.99%/95.56% 82.05%/88.89% 87.5%/96.55% 95.32%/91.57% 81.4%/88.05% 81.43%/87.69%
2013 97.5%/95.12% 95.49%/97.69% 88.24%/88.24% 94.87%/97.37% 97.37%/95.42% 90.7%/91.23% 82.86%/84.06%
2014 97.33%/97.33% 96.62%/99.23% 93.33%/87.5% 95.35%/95.35% 97.95%/95.71% 89.53%/91.67% 81.43%/80.28%
2015 98.67%/96.1% 95.49%/94.42% 85.29%/85.29% 88.24%/93.75% 95.32%/94.49% 88.95%/93.29% 82.86%/80.56%
2016 98.67%/97.37% 98.5%/98.5% 94.12%/91.43% 94.12%/96.97% 96.78%/96.78% 90.12%/91.18% 82.86%/81.69%
2017 96%/96% 96.62%/98.47% 92.86%/88.64% 94.44%/94.44% 97.95%/97.1% 91.28%/91.81% 84.29%/94.12%
2018 97.22%/97.22% 93.61%/96.14% 97.14%/91.89% 97.67%/97.67% 95.91%/96.19% 94.77%/90.56% 91.43%/94.12%
2019 97.18%/95.83% 96.99%/98.85% 94.12%/91.43% 94.74%/97.3% 98.25%/97.67% 91.81%/91.28% 85.71%/84.51%
2020 98.84%/97.7% 95.13%/96.58% 91.3%/95.45% 86.54%/90% 97.95%/96.82% 93.02%/92.49% 88.57%/87.32%

Note: UA, user accuracy; PA, producer accuracy.
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4.2. Wetland Types and Their Distributions

The inter-annual Dongting Lake wetland classification results were obtained using
optimal features and the RF algorithm. The results showed that the total area of wetlands
in Dongting Lake was 3619.67 km2 in 2020 (Figure 5), accounting for more than 93% of
the total area of the three wetland reserves. Natural wetlands, including permanent water
(624.05 km2), permanent marsh (1013.56 km2), seasonal marsh (535.57 km2) and flooded
wetlands (218.42 km2), accounted for 61.99% of the total area of the three wetland reserves.
The paddy field area in 2020 was 1228.08 km2, accounting for 31.83% of the total area of the
three wetland reserves (Figure 6).

Figure 5. The classification result of the study area in 2020.

Figure 7 shows the spatial distribution of wetland types in these three reserves. Almost
all natural wetlands (Figure 7A–D) and human-made wetlands (Figure 7E) were located
in the East Dongting Lake wetland reserve and South Dongting Lake wetland reserve,
accounting for 99% and 86% of their respective total areas. More than 50% of permanent
water (Figure 7A), with an area of 318.13 km2, was located in the East Dongting Lake
wetland reserve, and 82% of flooded wetland (Figure 7C) was also located in the East
Dongting Lake wetland reserve, as the central district of Dongting Lake is located in the East
Dongting Lake wetland reserve and the flooded wetland was generally distributed around
permanent water. Permanent marsh (Figure 7B) was mainly located in the South Dongting
Lake wetland reserve, accounting for 49% of the total area of permanent marsh, while
seasonal marsh (Figure 7D) was mainly located in the East Dongting Lake wetland reserve.
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Figure 6. Area ratio of each land cover type in 2020.

Figure 7. Spatial characteristics of different wetlands in the three Dongting Lake wetland reserves.
Note: E represents the East Dongting Lake wetland reserve; S represents the South Dongting Lake
wetland reserve; W represents the West Dongting Lake wetland reserve.
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Seasonal wetlands, with high heterogeneity of temporal and spatial changes, have more
abundant ecological functions and higher biodiversity than permanent wetlands [50,51].
Figure 8 shows the spatiotemporal dynamic changes in the seasonal wetlands at the
three Dongting Lake wetland reserves, by overlaying the mapping results of the seasonal
wetlands from 2000 to 2020. The seasonal wetlands were always distributed between
permanent water and permanent marsh. The overall inter-annual change characteristics
are that seasonal wetlands occur less frequently near permanent water and permanent
marsh. However, the occurrence frequency of seasonal wetlands increases with the increase
in distance, and decreases after a certain distance. In the East Dongting Lake wetland
reserve, the spatial distribution of seasonal wetlands remained stable during 2000 and 2020
(frequency = 21); in the South Dongting Lake wetland and West Dongting Lake wetland
reserves, most pixels that were identified as seasonal wetlands were classified as other land
cover types in other years. The total area of land that was covered by seasonal wetlands
(0 < frequency ≤ 21) during the 21 years was 2079.3 km2, accounting for more than 53.9%
of the total area of the three Dongting Lake wetland reserves, while the acreage of the land
dominated by seasonal wetlands in all 21 years (frequency = 21) was 252.9 km2, accounting
for only 6.6% of the total area of the three Dongting Lake wetland reserves. Therefore,
seasonal wetlands are seriously affected by inter-annual fluctuations, such as rainfall, tem-
perature, and human activities, and more attention should be paid to this specific wetland
type considering its ecological value and vulnerability [33].

Figure 8. Spatiotemporal dynamic changes in seasonal wetlands. Note: The numbering 0–21 reflects
the number of seasonal wetland occurrences in the same location from 2000 to 2020.

As a whole, the acreage of seasonal wetlands (0 < frequency ≤ 21) in the East
Dongting Lake wetland reserve, the South Dongting Lake wetland reserve and the West
Dongting Lake wetland reserve was 1190.3 km2, 668.7 km2 and 220.2 km2, accounting
for 62.8%, 41.7% and 61.8% of each wetland reserve, respectively. Meanwhile, there
were still some differences in the spatial characteristics of these three wetland reserves
(Figure 9). In the East Dongting wetland reserve, the high-frequency seasonal wetland
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region (19 ≤ frequency ≤ 21) accounted for the largest proportion of the seasonal wetlands
(0 < frequency ≤ 21) area (34%). However, the low-frequency seasonal wetland region
(1 ≤ frequency ≤ 3) accounted for the largest proportion in both the South Dongting Lake
wetland reserve (33%) and the West Dongting Lake wetland reserve (37%) (Figure 10).
Thus, the inter-annual variation in seasonal wetlands is small in the East Dongting Lake
wetland reserve, but large in the South/West Dongting Lake wetland reserve.

Figure 9. The spatial characteristics of seven levels’ frequencies.

 

Figure 10. The proportion of the seven levels’ frequencies in the three wetland reserves.
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4.3. Wetland Changes

Figure 11 shows the yearly classification results of the three Dongting Lake wetland
reserves between 2000 and 2020. The total wetland area of the three Dongting Lake wetland
reserves slightly increased by 63.1 km2 from 2000 to 2020, accounting for 1.6% of the
total area of the three reserves. This means that the wetland area of these three reserves
remained stable. However, the acreage of natural wetland (permanent water, permanent
marsh, flooded wetland and seasonal marsh) decreased year by year, due to the area decline
of permanent marsh, flooded wetland and seasonal marsh. The area of natural wetlands
decreased by 197.0 km2 from 2000 to 2020 (Figure 12). The natural wetland area in 2000
was 2588.6 km2, and it decreased to 2480.8 km2 in 2010. From 2010 to 2020, the natural
wetland area decreased to 2391.6 km2. Human-made wetlands (paddy fields) increased by
260.0 km2 during the two decades, but the main function of human-made wetlands is to
create economic value. Some researchers have found that the ecological functions of natural
wetlands are far greater than the economic benefits [52], and the expansion of paddy fields
also places pressure on water resources. Therefore, it is crucial to balance the agriculture
development and ecology functions and implement some management measures to protect
the natural wetlands in the three Dongting Lake wetland reserves.

Figure 11. Spatiotemporal distribution of classification results of the three Dongting Lake wetland
reserves from 2000 to 2020.

4.4. Influencing Factor Analysis

There were a number of factors affecting the surface water acreage of Dongting Lake,
such as precipitation, evaporation, runoff, and infiltration. Monthly precipitation and
evaporation data from 2000 to 2020 were acquired from the GLDAS Noah Land Surface
Model L4 monthly 0.25 × 0.25 degree V2.1 [53], which were downloaded from the NASA
Earth Data platform (https://www.earthdata.nasa.gov/, accessed on 6 April 2022). In our
study, effective monthly precipitation equals the monthly precipitation minus the monthly
evaporation. Then, the annual effective precipitation is obtained by summing the monthly
effective precipitation. We used the annual effective precipitation to analyze the potential
factors involved in the annual maximum surface water acreage variation. The annual
maximum surface water area was the total acreage of seasonal marsh, flooded wetlands
and permanent water bodies. Results showed a high positive correlation between the
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annual maximum surface water and annual effective precipitation (correlation coefficient
r = 0.7, p < 0.001), which indicates that the annual maximum surface water area of Dongting
Lake increased as the annual effective precipitation increased, and it deceased as the annual
effective precipitation decreased (Figure 13). Therefore, the effective precipitation was one
of the most important factors that influenced the dynamic changes in the surface water
area of Dongting Lake.

 

Figure 12. Dynamic changes in the three Dongting Lake wetland reserves from 2000 to 2020.

 

Figure 13. Linear regression analysis of the annual total effective precipitation and annual maximum
water area of the three Dongting Lake wetland reserves from 2000 to 2020.
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5. Conclusions

In this study, we used all available satellite images at 10~30 m spatial resolution
to generate yearly wetland maps of the three Dongting Lake wetland reserves between
2000 and 2020, and monitored the wetland dynamics throughout the two decades; the
classification categories included seasonal wetlands, which have high ecological value but
are often omitted in existing studies. The main conclusions are as follows:

(1) Using a two-month composition to construct time series data, we effectively elimi-
nated the influence of clouds and strips. The reconstructed two-month composition
time series data set (NDVI, NDWI and NDMI) could effectively reflect the information
on wetland phenology and water inundation. The results showed that the two-month
composition strategy had good potential to be used as basic data for yearly wet-
land distribution mapping, and this strategy effectively improves the utilization of
multi-source remote sensing data.

(2) The use of optimal features and the random forest classifier achieved good wetland
identification accuracies, as the OA and kappa coefficients of our classification results
were above 89.6% and 0.86, respectively. The PA and UA for all land cover types
were above 72.9% and 73.9%, respectively. Feature optimization not only reduces data
redundancy and improves operation efficiency, but also achieves wetland identifica-
tion. However, due to the different characteristics of wetland vegetation in different
regions, the optimal features are different.

(3) The total area of wetlands (including natural and human-made wetlands) in these
three Dongting Lake wetland reserves essentially remained stable between 2000 and
2020. Although human-made wetlands (paddy fields) increased by 260.0 km2, the
area of natural wetlands decreased by 197.0 km2. The acreage of seasonal wetlands de-
creased by 176.8 km2, which was affected by both human factors (farmland expansion)
and natural factors (precipitation and evaporation).

Therefore, more attention should be focused on the fragile seasonal wetlands, which
play a vital role in promoting species diversity and supporting their survival. In our study,
we only analyzed the correlation between the annual maximum surface water acreage and
the annual effective precipitation. As more meteorological, human and economic data
are obtained, the detailed reasons for the annual dynamics of these three Dongting Lake
reserves will be further explored in the future.
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Abstract: In recent years, a changing global climate and the continuous expansion of the intensity
and scope of human activities have led to regional differentiation in the surface landscape. This
has caused numerous ecological risks under multiple pressure sources, gradually becoming an
important factor restricting the sustainable development of economic and social health. With the
continuous development of the social economy, land use and associated ecological risks will inevitably
change. According to the forest transformation theory and the environmental Kuznets curve, we put
forward the theoretical framework of ecological risk transformation of land-use change and took
Zhangjiachuan County (China) as an example to verify it. Therefore, on the basis of Landsat satellite
data, this paper used landscape structures to calculate an ecological risk index, and evaluated the
ecological risk of land-use changes through pattern index analyses. The results show that, from 2000
to 2020, the ecological risk index of land-use change in Zhangjiachuan County exhibited an increasing
and then decreasing trend, showing an overall “inverted U-shaped” trend of change consistent with
the transformation theoretical framework of ecological risks of land use change. Secondly, in terms
of patterns, the ecological risk of land-use change in Zhangjiachuan County showed a distribution
feature of high in the west and low in the east. In 2000, high-risk areas were mainly concentrated in
the central and northern areas, while low-risk areas were mainly concentrated in the eastern areas.
From 2000 to 2015, the medium-risk areas expanded to the west and midwest, and the geographic
centers of the risk areas were slightly offset. From 2015 to 2020, the overall pattern of ecological risk
areas was basically the same as that of the previous stage, but the medium-risk areas were slightly
reduced. In terms of quantity, from 2000 to 2015, the areas of the lowest risk level and low risk level
decreased, while the areas of medium risk level, high risk level, and the highest risk level increased;
from 2015 to 2020, the areas of the lowest risk level and low risk level increased, and the areas of
medium risk level, high risk level, and highest risk level decreased. Lastly, the spatial aggregation of
ecological risks in Zhangjiachuan County weakened slightly from 2000 to 2005, gradually increased
from 2005 to 2015, and then slightly weakened from 2015 to 2020.

Keywords: land-use change; landscape pattern; ecological risk; theoretical framework of ecological
risk transformation of land-use change; ecological fragile area; Zhangjiachuan county; China

1. Introduction

Over the centuries, the multiple effects of human activities and natural succession
have led to dramatic changes in land use and global ecology, inevitably triggering various
conflicts between economic growth and sustainable development [1,2]. The ecological risks
caused by land-use changes are currently among the hottest issues of concern in developed
and developing countries worldwide [3]. The extensive influence of land-use changes
and ecological changes has led to changes in ecosystem structures and landscape patterns,
leading to a large number of ecological problems, such as ecological function degradation,
soil erosion, land desertification, environmental pollution, and biodiversity reduction [4,5].
The ecological environment is constantly affected by these problems, greatly increasing the
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risk posed to ecosystems [6] and seriously threatening human well-being [5,7,8]. Assessing
the ecological risks of land-use changes is critical for establishing early warning systems of
ecological risks, with an accurate and effective control of ecological risks, and it is of great
significance to the formulation of regional ecological protection policies and for adopting
ecological protection measures.

Risk assessment began in 1980 and initially consisted of toxicology research on chem-
ical pollutants and risk research on human health. It then became used as a kind of
management tool to assess multiple chemical pollutants and various events that may cause
environmental pollution and was finally extended to consider the assessment of ecological
risks caused by human activities. The term “ecological risk assessment” was first intro-
duced by the US Environmental Protection Agency (EPA), which defined ecological risk as
the possibility of exposure to adverse ecological effects caused by or likely to result from
one or more stressors [9], and the framework was subsequently expanded and revised
to form the basic guide for the current risk assessment [10]. Since 1990, in the context of
increasingly prominent ecological problems, the focus of risk assessments has gradually
shifted from human health assessments to ecological risk assessments [11], and risk re-
ceptors have expanded to populations, communities, and whole ecosystems. From the
late 1990s to the beginning of the 21st century, with the continuous improvement and
maturation of ecological risk assessment systems, the field of ecological risk assessment
gradually expanded and entered the stage of regional ecological risk assessments, and the
risk receptors extended to the watershed and regional landscape scales.

Landscape ecological risk assessment is an important branch of ecological risk assess-
ment [12], which tends to quantitatively identify and directly assess ecological risks from
the perspective of spatial landscape patterns caused by land-use changes. Since land use
is regarded as a comprehensive reflection of the direct impact of human economic and
social activities on surface resources and natural environment [13], the spatiotemporal
heterogeneity of land use is affected by regional terrains and geomorphic features closely
related to landscape patterns and landscape ecological risks [14]. At present, the research
on the ecological risks of land-use changes has mainly focused on analyzing long-term
historical evolution characteristics [15,16], revealing the driving mechanisms of ecological
risks caused by land-use changes [17], and simulating future evolution trends [18,19]. On
the one hand, through the analysis of the long-term historical evolution characteristics of
the ecological risks of land-use changes in a region, we can obtain reliable evidence for the
long-term changes of ecosystems in the region, reveal its evolution trajectory and mech-
anisms, and provide key scientific information for the formulation of regional ecological
restoration paths and objectives. For example, Recanatesi et al. [20] analyzed the changing
characteristics of soil vulnerability and landscape degradation and their spatial distribution
during the period from 1960 to 2010 in Italian agricultural and forestry areas using four
thematic indicators of environmentally sensitive areas and the comprehensive index of
desertification risk. Krajewski et al. [21] used the landscape change index to analyze the
driving mechanisms of forest resource changes and forest transformation in landscape
parks on the basis of 140 years (1863–2013) of map data. On the other hand, ecological
risk simulations of regional land-use changes allow us to predict the possible impact or
harm caused by human activities on the ecosystem and formulate ecological protection and
risk prevention policies, which are of great significance for promoting regional sustainable
development. For example, Li et al. [22] used the conversion of land use and its effects at a
small region extent (CLUE-S) model to simulate and analyze the future land-use changes
of the Luanhe River basin from 2010 to 2030 under three scenarios of trend, rapid economic
growth, and ecological security, and then assessed the spatial distribution characteristics of
the landscape ecological risks caused by it.

With the rapid development of geographical information system (GIS) and remote
sensing (RS) technologies and the wide application of landscape ecology theories and meth-
ods [23], landscape ecological risk assessment based on land-use changes has become one
of the most effective methods in ecological risk assessment [24]. At present, the ecological
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risk assessments have mainly focused on cities, river basins, coastal areas, administra-
tive regions, and nature reserves. The urban populations of cities are excessively dense,
and their spatial structure expands rapidly, with various land-use types being frequently
transformed into each other, and ecological problems being increasingly prominent [25,26].
The watershed area ecology is fragile, and the natural endowment conditions such as
water resources are poor. The ecological improvement and deterioration of landscapes
coexist, with the overall deterioration trend being greater than the improvement one, and
the degree of ecological deterioration of a landscape is constantly increasing [27,28]. In
the process of development in coastal areas, the unrestricted urban expansion during the
early stages of economic development has led to landscape fragmentation, and the overall
ecological risk has increased, becoming more spatially clustered. With the suppression
of disorderly expansion, the overall ecological risk decreases [29,30]. During the early
stages of the development planning of administrative regions, the purpose of regional
economic development is usually achieved by sacrificing agricultural lands. During this
period, land use changes drastically, resulting in increased ecological risks. Subsequently,
due to the gradual enhancement of residents’ awareness of environmental protection and
the implementation of targeted ecological prevention and control and protection policies,
ecological problems caused by human activities have been alleviated and ecological risks
have been reduced [31–33]. Nature reserves can be divided into core areas, buffer zones,
and experimental zones according to their functions. Human activities are common in
the experimental areas, the ecological risk of land-use changes is the most serious, and
the land-use changes in the buffer zone and the core area are relatively stable. Therefore,
the ecological risk of nature reserves is greatest in the experimental areas, followed by the
buffer areas, and finally the core areas [34,35].

Compared with traditional ecological risks, the landscape ecological risk assessment
pays more attention to spatial heterogeneity, and its key lies in establishing an evaluation
system and selecting appropriate indicators. At present, there are two widely used methods:
one is the ecological risk assessment system based on the “pressure–receptor–response”
model and failure mechanism [25]. The ecological risk assessment system consists of
identifying the risk source intensity, receptor exposure, and risk effect. The evaluation
method is a comprehensive relative risk model (RRM) [36]. The evaluation system fo-
cused on stressors and habitats of concern in the study area. For example, Muditha and
Heenkenda et al. [37,38] used this evaluation system to rank and classify the stressors and
habitats within a region and modeled the interaction between the two through exposure
and effect filters, revealing the spatial and temporal distribution of ecological risk in ports.
However, this model is only suitable for large-scale areas that need to focus on multiple
stressors and is often used to assess the ecological risks of a specific stressor or disturbance
source, which has certain limitations. The second approach uses the deviation from the op-
timal mode as a risk source, evaluating the ecological risk, and regarding the whole system
as a receptor. The landscape pattern index is commonly used to assess the ecological risks of
the study subjects as a function of the ecological changes throughout a region, and the most
representative method is the landscape loss model. Shi et al. [39] used the Markov model
and landscape index analysis to construct an ecological risk assessment model, which
revealed that the ecological risks in Huaibei, a typical resource-based city in China, were
affected by land-use changes. In addition to assessing the landscape ecological risks alone,
some scholars have also studied the ecosystem services associated with landscape ecologi-
cal risks. For example, Gong et al. [40] revealed the spatiotemporal changes in the grain
yield of cultivated land, carbon storage, water yield, biodiversity index, and ecological risks
in the Bailongjiang River basin of China by introducing ecosystem services and landscape
ecological risks into the formulation of ecological policies and governance of ecological
problems. It is difficult to obtain RRM assessment data and completely uniform assessment
criteria during the comparative analysis of different time series in the same study region.
Therefore, with the support of a landscape ecology theory, a landscape loss model based
on land-use changes can both quantitatively describe the landscape structure [41,42] and
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explain the evolutionary mechanisms of landscape ecological risks from the perspective of
spatial landscape pattern changes. This model becomes an important tool to analyze and
reveal the spatial and temporal characteristics of landscape ecological risks.

The ecological risk of land-use change has obvious stages. Analyzing and studying
the evolution characteristics of the ecological risks of land-use changes on medium and
long timescales can provide a scientific and reasonable basis for the planning of regional
ecological protection schemes. Earlier research on this topic mainly focused on the con-
struction of ecological risk models and spatial analysis [29], and relatively little theoretical
analysis has been conducted on the ecological risks of land-use changes on medium to long
timescales. We previously studied the ecological risk changes of land-use changes in other
countries and found that there is indeed a close relationship between the pattern evolution
of ecological risks and land-use changes. Therefore, according to the theories of forest
transformation and an environmental Kuznets curve, this paper reconstructed a theoretical
framework for the ecological risk transformation of land-use changes and put forward a
theoretical hypothesis. Considering Zhangjiachuan County, Gansu Province, China as the
verification case area, this paper constructs an ecological risk assessment model through
landscape disturbance and landscape vulnerability indices by taking into account land-use
changes in order to comprehensively reveal the evolution characteristics of the overall
spatial and temporal patterns of ecological risks in Zhangjiachuan County. Specifically, the
research objectives of this paper were to (1) analyze the spatiotemporal land-use change
characteristics in Zhangjiachuan County from 2000 to 2020, (2) reveal the spatiotemporal
evolution patterns of the ecological risks of land-use changes, and (3) study the dynamic
characteristics of ecological risks at the landscape level through spatial autocorrelation
analyses. The remainder of this paper is arranged as follows: in Sections 2 and 3, brief
descriptions of the study area, datasets, and methods are provided; Section 4 introduces
the results of land use and landscape ecological risk changes in Zhangjiachuan County; the
discussion and conclusions are then provided in Sections 5 and 6, respectively.

2. Overview of the Study Area and Data Sources

2.1. Overview of the Study Area

Zhangjiachuan County (105◦54′–106◦35′, 34◦44′–35◦11′) is located in the southeast of
the Gansu Province, the northeast of Tianshui City, at the foot of the west side of Longshan
Mountain. Its northern part is linked with Zhuanglang County and Huaxiang County
in Pingliang City. To the south is Tianshui City, Qingshui County, and it is adjacent to
Qin’an County, Tianshui City to the west, and Long County, Shaanxi Province to the east.
Zhangjiachuan County is located in the transition zone of Liupanshan trough and Longxi
Loess Plateau, belonging to the loess hilly and gully region in the middle reaches of the
Yellow River. The terrain is uneven in most areas, with alternating ridges and ravines,
small plots, steep slopes, and the terrain slopes from northeast to southwest. The county
is 62 km long from east to west and 48 km wide from north to south, with a total area of
1311.8 km2 (Figure 1).

Zhangjiachuan County is a traditional dry farming county, with deep mountains and
fragmented terrains. The average elevation is 2011.4 m, with the highest point at 2659 m
and the lowest at 1486 m. The climate is warm temperate semi-humid, with an average
temperature of 7.6 ◦C, highs of 31.7 ◦C, and lows of 20.6 ◦C. The annual average rainfall is
599.8 mm, and the appropriate amount of precipitation varies greatly in time and space,
with the months of July, August, and September accounting for 59.3% of the annual rainfall.
The rainfall in Zhangjiachuan County falls mostly through heavy rainstorms which last for
a long time and are of high intensity, which can easily cause soil erosion. In recent years,
with the enhancement of human activities, the natural vegetation has declined sharply with
soil erosion becoming serious, and the land has been seriously degraded. In addition, the
geographical environment in the study area is complex, and the climate is volatile, leading
to frequent natural disasters such as droughts, hails, rainstorms, and floods. Overall, the
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ecosystem in the study area is relatively fragile and the sustainable development of the
ecosystem has become threatened [43].

Figure 1. Geographical location of Zhangjiachuan County.

2.2. Data Source

This paper used two types of data to conduct a land-use classification and landscape
ecological risk assessment:

(1) Landsat image data. The primary data source used in this study was Landsat satellite
images. The satellite images included Landsat TM (2000–2011), Landsat ETM + (2012),
and Landsat OLI (2013–2020). The images were filtered using a series of functions in
the Google Earth engine (GEE) filter, with a time standard of April–September per
year and a cloud coverage standard of less than 10%. The available remote sensing
images were generated following cloud removal, image mosaicking, and cropping
processing. The specific data sources are shown in Table 1.

(2) Other data. Using the administrative boundary data of the National Catalog Service
for Geographic Information [44], we combined the 30 m resolution digital elevation
model (DEM) data of the geospatial data cloud platform to serve as the classifica-
tion basis [45]. The analyses were performed using Google historical image data
(2000–2020) from 91 Bitmap Assistant [46] with a resolution of 0.52 m.

Table 1. Landsat image information.

Data Source Landsat Image Set ID Year

Landsat 5 LANDSAT/LT05/C01/T1_TOA 2000–2011
Landsat 7 LANDSAT/LE07/C01/T1_TOA 2012
Landsat 8 LANDSAT/LC08/C01/T1_TOA 2013–2020

3. Research Method

The main technical steps to assess the landscape ecological risk in Zhangjiachuan
County are shown in Figure 2. First, the images were preprocessed through the GEE
online editor, and the image data from 2000 to 2020 were classified using the random
forest classifier. Then, the landscape ecological risks were evaluated, and the spatial
and temporal change characteristics were explored. Finally, the spatial autocorrelation
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of the ecological risk index was analyzed using the Moran’s I index and local spatial
autocorrelation analysis methods.

 

Figure 2. Ecological risk assessment process of land-use change.

3.1. Theoretical Framework of the Ecological Risk Transformation of Land-Use Changes

The main basic theories of the ecological risk transformation theory framework of
land-use changes include the forest transformation theory and environmental Kuznets
curve. Among them, Mather [47] divided the forest area into two stages of a “U-shaped”
change process, from a reduction to an increase. According to the Kuznets curve proposed
by Simon, Panayotou [48] divided the change relationship between environmental quality
and per capita income into two stages, namely, the “inverted U-shaped” change process, in
which environmental quality first increases and then decreases with the per capita income.
In the process of forest transformation, the process of abandoned logging land being
reclaimed and developed into agricultural lands by farmers can reflect the change in land
use, while the economic, social, and ecological issues, among others, which are brought
about by social and economic development, can also be fed back to land use. Therefore,
Mather’s forest transformation theory and the Panayotou environmental Kuznets curve
are also applicable for the ecological risk change process of land-use changes and show the
characteristics of stages.

42



Int. J. Environ. Res. Public Health 2022, 19, 13945

The root of ecological risk change lies in the change in land use, and its essence depends
on the mutual feedback of land-use changes and ecological risks under transmission
mechanisms. It not only reflects the consistent change characteristics of the similarity
attribute and the transformation theory in different social development stages, but also
exhibits a trend of inconsistent change rates in different development stages under the
combined effect of natural factors and human interferences. Lastly, the ecological risk,
accompanied by the land-use changes, presents an “inverted U-shaped” phase change
difference, forming a “land-use change ecological risk” relationship curve (Figure 3).

Figure 3. Relationship curve showing the ecological risk of land-use change.

Ecological risks present an “inverted U-shaped” change trend with land-use changes.
Land-use changes are dynamic and characterized by large interannual changes and incon-
sistent change rates. Therefore, the change rate of the ecological risks of land-use changes
fluctuates at different stages. At the initial stage of social development when the economy
is in its infancy, the process of urbanization is slow. Driven by the national macro policies,
the construction of large-scale development zones has led to an increase in the area of urban
and rural land and industrial and mining construction land. At the same time, the incentive
policies issued in urban construction, land management, and other major infrastructure
construction have led to an increase in construction land. In order to meet the demands for
the expansion of construction land, the occupation of cultivated and ecologically significant
lands has gradually increased, resulting in the fragmentation of ecological landscapes,
the destruction of vegetation and biological natural habitats to a certain extent, and the
continuous reduction in the ecological carrying capacity and environmental capacity, whilst
affecting the ecological quality.

In the process of land use, human beings pursue a highly efficient economic soci-
ety, accelerate the demand for land resources, and ignore the nonrenewable nature of
land resources. In the middle period of social development, with accelerated economic
development, industrialization and urbanization promote each other; the proportion of
nonagricultural industries and nonagricultural populations increases sharply, urban spaces
begin to spread to the surrounding areas, and cultivated and ecological lands are largely
occupied, resulting in a sharp deterioration of surface natural conditions, a sharp decline in
green space areas, and a large consumption of natural resources, thereby compromising
the productivity and production functions of certain ecosystems. On the other hand, the
remote coupling theory, involving the relaxation of population mobility controls and popu-
lation migration, typically represented by migrant workers, promotes land-use changes
in different ways. Population losses and village abandonment have become a common
phenomenon, accompanied by the marginalization and even abandonment of agricultural
lands, causing further damage to the landscape connectivity. During this period, land use
changed dramatically, causing a sharp increase in ecological risks.
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Following economic maturation, the ecological risk reaches its peak, and the increas-
ingly serious ecological problems have gradually aroused great attention of the country.
According to the “win–win sustainable development strategy” demonstrated by Gao [49],
the ecological risks caused by land-use changes can be mitigated through the combined
effects of economic and ecological benefits. The intensification of land use should be
strengthened by fully considering the bearing capacity of environment, resources, and
ecology. It is necessary to divide the area according to the nature of the city, environmental
conditions, and functions, reasonably adjust the industrial structure and construction lay-
out, make the evolution pattern of construction land more compact, and continuously
reduce its fragmentation and the separation of individual patches. The intensification of
construction lands triggered during this social development stage is beneficial to the im-
provement of the regional ecological stability. At the same time, the land ecological project,
the project of returning cultivated land to forest and grass, land reclamation construction,
and regional environmental management, such as water and soil loss management, can be
carried out to classify and use scarce land resources, so that forest coverage and species
richness can gradually increase. Furthermore, the quantity and quality of grass, wetland,
and other ecological land spaces can be improved and abandoned lands can be reused,
thereby increasing the connectivity of the landscape. At this stage of development, land
use intensity tends to slow down, ecological damage is improved, and ecological risks are
gradually reduced.

3.2. Land-Use Classification

The image interpretation was mainly carried out in GEE. Following the spatiotemporal
filtering and cloud removal processing of the Landsat images, functional methods were
used to stitch the images, and the classification accuracy of vegetation and buildings was
improved by adding the normalized difference vegetation index (NDVI) and normalized
difference building index (NDBI) together. The NDVI values were calculated from the crop
growth period (screening time from April to September). The NDVI and NDBI indices
were calculated using the following formulas [50]:

NDVI = (NIR − R)/(NIR + R), (1)

NDBI = (SWIR − NIR)/(SWIR + NIR), (2)

where NIR, R, and SWIR are the surface reflectivity of the near-infrared, red-band, and
short-wave infrared, respectively.

The B2, B3, B4, B5, B6, and B7 bands of Landsat OLI images (six bands corresponding to
Landsat TM/ETM+ images) were combined, cut, and spliced, and six auxiliary classification
spectral indices (Table 2) were combined to improve the classification accuracy. The
quality of the training samples directly affected the final classification results. This paper
combined digital elevation model (DEM) data and Google historical images to provide
a visual interpretation for drawing training samples [51–53]. According to the land-use
classification standard and the actual situation of the research area, the land-use types
in Zhangjiachuan County were divided into five categories: cultivated land (623 sample
rectangles), forest (503 sample rectangles), grass (516 sample rectangles), construction land
(218 sample rectangles), and water areas (183 sample rectangles). In order to ensure the
accuracy of the land use classification results, the Landsat image set and Google historical
imagery were superimposed and compared to extract the land parcels that have remained
unchanged for several years. Combined with the random points generated by Arc GIS,
these random points were used as a reference for the selection of the samples, so as to
ensure that the selected year-by-year classified samples were evenly distributed in the entire
study area. The time iteration and cyclic classification were performed in the GEE program
using a combination of a supervised classification and manual visual interpretation to
obtain land-use data for 2000, 2005, 2010, 2015, and 2020, and the classification accuracy
was verified using Google historical imagery.
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Table 2. Auxiliary classification spectral index.

Spectral Index Calculation Formula

MNDWI [54] MNDWI = (G−MIR)
(G+MIR)

RVI [55] RVI = NIR
R

DVI [56] DVI = NIR − R
SAVI [57] SAVI = 1.5∗(NIR−R)

(NIR+R+0.5)
NDMI [58] NDMI = (G−SWIR)

(G+SWIR)
EVI [59] EVI = 2.5∗(NIR−R)

(NIR+6∗R−7.5∗B+1)

Note: (MNDWI: modified normalized difference water index; RVI: ratio vegetation index; DVI: difference
vegetable index; SAVI: soil-adjusted vegetation index; NDMI: normalized dry matter index; EVI: enhanced
vegetation index).

A random forest classifier was selected to plot the land-use situation. The random for-
est method is a comprehensive multi-decision tree-based comprehensive classifier trained
and predicted by Breman which consists of a decision-tree classification using the bagging
strategy and in-house algorithms on a GEE platform [51]. Due to its high classification
accuracy, relatively robust performance, the ability to include more variables, fast predic-
tion speed, good multisource remote sensing data processing capabilities, etc., it has been
widely used in land-use classification [60]. The images in the study area were classified
by running a random forest in the GEE, using 70% of the data as training samples and
30% as validation samples. To improve the accuracy of the classification results, two pa-
rameters were set for the random forest classifier; the number of decision trees was set to
100, and the number of feature variables was the square root of the total number of feature
variables [61,62].

The selected validation samples were used as true values to analyze the accuracy of
land-use classification from 2000 to 2020. The overall accuracy and Kappa coefficient could
be calculated using the confusion matrix tool in the GEE platform. The total classification
accuracy is equal to the total number of correctly classified pixels divided by the total
number of pixels. The Kappa coefficient and overall accuracy can be measured according
to the following equations [63]:

Pe =
∑m

i=1 ai ∗ bi

n2 , (3)

k =
po − pe

1 − pe
, (4)

where po is the overall classification accuracy, ai is the true number of samples for each
land-use type, bi is the number of predicted samples for each land-use type, m is the total
number of land-use types, n is the total number of samples, and k is the Kappa coefficient.
The precision assessment showed that the overall accuracies of land-use classification
in 2000, 2005, 2010, 2015, and 2020, were 87.18%, 85.50%, 88.58%, 91.29%, and 89.05%,
respectively, meeting the overall requirements of landscape research [64].

3.3. Construction of an Ecological Risk Cell

To fully demonstrate the spatial differentiation of landscape indicators and ecological
risks in Zhangjiachuan County, this study combined the actual situation and divided it
into 1378 ecological risk assessment units consisting of squares with a side length of 0.1
km (Figure 4). The ecological risk index was calculated in each cell, and the results were
assigned to the central point of the assessment unit [34].
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Figure 4. Ecological risk assessment unit of Zhangjiachuan County.

3.4. Construction of Landscape Ecological Risk Indices

The extent of an ecological risk depends on the strength of the regional ecosystem
subjected to external interferences and the size of the internal resistance. Different land-
scape types have different roles in protecting species, maintaining biodiversity, improving
the overall structure and function, and promoting the natural succession of landscape
structures; moreover, different landscape types have different resistances to external in-
terferences [65]. In this paper, the ecological risk index was calculated to estimate the
ecological risks of Zhangjiachuan County in 2000, 2005, 2010, 2015, and 2020, and to reflect
on the relationship between the landscape patterns of land-use changes and the ecological
risks associated with those. The calculation formula was as follows [66]:

ERIi =
N

∑
i=1

Aki
Ak

Ri, (5)

where ERIi is the ecological risk index of the i-th risk cell, Aki is the area of class-i landscape
of the k-th risk cell, Ak is the area of the k-th risk cell, and Ri is the landscape loss index [67]
of class-i landscape.

Ri = Ei ∗ Fi, (6)

where Fi is the ecological fragility index, which refers to the fragility of the ecosystem
under a strong external disturbance of human beings. A smaller fragility denotes a greater
resistance and less risk to the ecosystem. However, the variability of different landscape
types in response to external interference is related to the stage of natural succession
applied [66,68]. The ecological risk orders of different land-use types from low to high were
construction lands, forests, grasses, cultivated lands, and water areas. After normalization,
the Fi values for the five land-use types were 0, 0.25, 0.5, 0.75, and 1, respectively [69–72].
Si is the index of landscape disturbance degree for the category i land-use type. The
calculation formula is as follows [73]:

Ei = aCi + bNi + cDi, (7)

where Ci is the landscape fragmentation degree, Ni is the landscape separation degree, Di is
the landscape dominance degree, and a, b, and c reflect the influence of human interference
on the ecosystem, representing the weights of Ci, Ni, and Di, respectively; a + b + c = 1.
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Ci reflects the changes in the landscape structure, function, and ecological processes;
its calculation method is as follows [32]:

Ci =
ni
Ai

, (8)

where ni is the number of patches of landscape type i, and Ai is the total area of land-
scape type i.

Ni is the degree of separation of individual patches in a given landscape, expressed as
follows [74]:

Ni =
A

2Ai

√
ni
A

, (9)

where A is the total landscape area, ni is the number of patches of landscape type i, and Ai
is the total area of landscape type i.

Di describes the advantages of patches in a given land-use type, calculated as
follows [75]:

Di =
Qi + Mi

4
+

Li
2

, (10)

where Qi is the number of sample squares/total number of squares in plaque i, Mi is
the number of plaque i/total number of plaques, and Li is the area of plaque i/total
area of quadrat.

According to relevant references and previous studies, the importance from high
to low included landscape fragmentation (Ci), landscape separation (Ni), and landscape
dominance (Di), with weights of 0.5, 0.3, and 0.2 assigned to the three indicators a, b, and c,
respectively. [28,65,66].

The spatial distribution of the ecological risk index was analyzed through the natural
breakpoint classification. The ecological risk index was divided into five categories: lowest
risk (ERI ≤ 0.1), low risk (0.1 ≤ ERI ≤ 0.15), medium risk (0.15 ≤ ERI ≤ 0.35), high risk
(0.35 ≤ ERI ≤ 0.45), and highest risk (ERI > 0.45).

3.5. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is used to present the spatial correlation features
of the spatial reference unit and adjacent unit as a function of the attribute values (ERI
in the study). Global spatial and local spatial autocorrelation analyses were performed
by using the GeoDa software to describe the spatial distribution of landscape ecological
risks in Zhangjiachuan County. The Moran index (Moran’s I) was applied to measure the
global spatial autocorrelation of the ecological risk, and the numerical values represent
the clustered distribution, discrete distribution, and random distribution of landscape
ecological risk in space [76]. Moran’s I can be calculated according to the following
formula [77]:

I =
∑n

i=1 ∑m
i=1 wij(xi − x)(xj − x)
S2∑n

i=1 ∑m
i=1 Wij

, (11)

S2 =
1
n∑n

i=1 (xi − x)2, (12)

x =
1
n∑n

i=1 xi, (13)

where xi and xj represent the ERI of the reference cell i and the adjacent cell j, respectively,
n and m represent the number of cells i and j, respectively, and Wij is a binary matrix of
adjacent spaces. When region i is adjacent to region j, Wij is equal to the value 1; otherwise,
Wij is equal to the value 0. S2 denotes the mean variance (i = 1, 2, . . . , n; j = 1, 2, . . . , m).

The local indicators of spatial autocorrelation (LISA) index reflects the degree to which
a geographical phenomenon (or attribute values of a local unit in the entire region) is
related to the same phenomenon or attribute values of adjacent local units. In general,
Moran’s I terms are usually decomposed and represented on different area units to form
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a LISA cluster diagram. The LISA cluster maps are then analyzed to generate high–high
aggregation “hotspots” and low–low aggregation “cold spots” in the local space to evaluate
any abnormal local spatial feature [78,79]. The formula for calculating the LISA index
is as follows:

LISA = zi∑n
j=1 wijzij(i �= j), (14)

where zi and zj represent the standardization of ERI in cells i and j, respectively, and wi is
a spatial weight matrix. If Ii > 0, the spatial difference between cell i and its neighboring
cell j is very small, with a high–high cluster (HH, highest value in a high value neigh-
borhoods) or low–low cluster (LL, lowest value in a low value neighborhood); if Ii < 0,
there is a significant spatial difference in ecological risk, with high–low outliers (HL, high
values in low value neighborhoods) and low–high outliers (LH, low values in high-value
neighborhoods) [80,81].

4. Results

4.1. Spatiotemporal Characteristics of Land-Use Changes

The land types used in Zhangjiachuan County include cultivated land, forest, grass,
water body, and construction land (Figure 5). In 2000, cultivated land was the most widely
distributed land-use type in Zhangjiachuan County, with an area accounting for 48.76% of
the total area, followed by grass and forest, accounting for 33.45% and 16.58%, respectively.
The construction land and water bodies accounted for 1.15% and 0.06%, respectively.
Cultivated land, construction land, and grass are widely distributed throughout the central
and western parts of Zhangjiachuan County, while forests are mainly distributed in the east.

 
Figure 5. Spatial distribution of land use in Zhangjiachuan County from 2000 to 2020.

From 2000 to 2020, the land-use changes in Zhangjiachuan County were mainly char-
acterized by a decrease in cultivated land areas and an increase in grass and construction
land areas. The proportions of areas with water or forest changed less. From 2000 to
2020, the cultivated land areas in Zhangjiachuan County decreased by 35.22% (164.66 km2),
areas with construction land increased by 35.23% (10.86 km2), and grass areas increased
by 14.66% (74.50 km2). In turn, areas with forest or water body changed relatively little,
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increasing only 6.52% (14.99 km2) and 10.96% (0.25 km2), respectively (Table 3). Among
the different time periods, the cultivated land areas decreased the most from 2000 to 2005,
decreasing by 13.76% (76.48 km2). Areas with grass saw the largest increase rate from 2015
to 2020, up by 8.26% (42 km2), while those with construction land increased the most from
2010 to 2015, increasing by 18.07% (5.20 km2).

Table 3. Land-use transfer matrix from 2000 to 2020.

km2 (Year) 2020

2000

Cultivated Land Forest Grass Water Body Construction Land

Cultivated land 345.79 8.78 209.33 1.01 18.05

Forest 4.76 180.17 29.34 0.01 0.23

Grass 109.18 47.48 267.11 0.77 8.74

Water body 0.13 0.03 0.06 0.4 0.1

Construction land 7.21 0.05 1.9 0.11 5.7

From 2000 to 2020, the areas with cultivated land constantly decreased in Zhangji-
achuan County, prompting the expansion of construction land and grass areas. From 2000
to 2005, around 173.62 km2 of cultivated land was converted for different land uses, of
which 94.14% was converted into grass and 4.17% was converted into construction land.
The transferred area of grass was 193.19 km2, 84.61% of which came from cultivated land,
and the transferred area of construction land was 10.61 km2, 68.22% of which came from
cultivated land. From 2005 to 2010, the transferred area of cultivated land was 168.37 km2,
of which 89.09% was converted into grass and 8.16% was converted into construction land.
The transferred area of grass was 191.67 km2, 78.61% of which was formerly cultivated land,
while the transferred area of construction lands amounted to 18.72 km2, 73.38% of which
was previously cultivated land. From 2010 to 2015, the area of cultivated land transferred
out was 180.18 km2, of which 85.78% was converted into grass and 6.93% was converted
into construction land. The transferred area of grass amounted to 194.53 km2, 79.45%
of which came from cultivated land, and the transferred area of construction land was
19.43 km2, 64.29% of which previously consisted of cultivated land. From 2015 to 2020, the
area of cultivated land transferred out was 181.94 km2, of which 87.70% was converted into
grass and 9.04% was converted into construction land. The transferred area of grass was
189.41 km2, 84.24% of which formerly consisted of cultivated land, and the transferred area
of construction land was 20.55 km2, with 80.04% having previously consisted of cultivated
land (Figure 6).

Figure 6. Area of various land use types in Zhangjiachuan County from 2000 to 2020 (km2).
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4.2. Spatiotemporal Changes of Landscape Ecological Risks

In 2000, the landscape ecological risk area of Zhangjiachuan County was mainly
concentrated near the Shixiakou Reservoir in the north and the Dongxiakou Reservoir
in the middle; the low-risk area was mainly concentrated in the Longshan mountainous
area in the east. On the whole, the ecological risk of land-use changes in Zhangjiachuan
County presented a trend of being high in the west to low in the east but being mainly low
(Figure 7). From 2000 to 2020, the ecological risks of land-use changes in Zhangjiachuan
County were mainly the transformation between low risk and medium risk, with the
lowest-risk area changing very little. From 2000 to 2005, the moderate-risk-level regions
gradually emerged in the central and western regions of Zhangjiachuan County, and the
low-risk areas basically remained unchanged. From 2005 to 2010, the change pattern of
medium-risk regions was similar to that of the previous stage, further expanding in the
central and western regions. From 2010 to 2015, the medium-risk areas further increased,
the geographic center was shifted back to the midwest from the west of the previous
stage, and the risk area distribution was relatively concentrated. Lastly, from 2015 to
2020, the ecological risk in Zhangjiachuan County improved, and the overall pattern was
basically the same as that of the previous stage, with the areas prone to medium-level
risks decreasing.

  

 

Figure 7. Cont.
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Figure 7. Spatial distribution of ecological risk index (left) and grade (right) in Zhangjiachuan County
from 2000 to 2020.

From 2000 to 2020, the ecological risk value of each ecological risk cell increased and
decreased, and the overall ecological risk value showed a trend of increasing first and
decreasing later (Figure 8). However, the lowest-risk areas and low-risk areas showed a
trend of decreasing and then increasing, while the areas of medium, high, and highest risk
first increased and then decreased. From 2000 to 2015, the areas of the lowest risk and
low risk levels decreased by 17.14% (38.76 km2) and 17.22% (140.40 km2), respectively;
the areas of medium risk, high risk, and highest risk increased by 89.53% (181.2 km2),
21.50% (0.92 km2), and 11.27% (0.64 km2), respectively. The ecological risks associated with
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land-use changes increased during this period. From 2015 to 2020, the areas associated
with the lowest risk and low risk levels were expanded by 26.42% (81.24 km2) and 2.27%
(18.92 km2), and the areas of medium risk, high risk, and highest risk decreased by 67.49%
(81.56 km2), 59.70% (1.6 km2), and 32.63% (1.24 km2), respectively. The ecological risks of
land-use changes decreased during this period.

Figure 8. Ecological risk transfer in Zhangjiachuan County from 2000 to 2020 (km2).

4.3. Spatial Autocorrelation Analysis

The spatial autocorrelation of the ecological risks of land-use changes is closely related
to spatial gain. Figure 9 shows the calculated results of Moran’s I at different spatial
distances varying from 0.1 to 0.5 km. All Moran’s I values were greater than 0, indicating
that the ecological risk values of adjacent cells were similar in space, and the ecological
risk index of Zhangjiachuan County had a significant positive spatial correlation within
20 years (p < 0.05). Moran’s I with a space distance of 0.1 km was the largest and decreased
with increasing distance. When the distance ranged from 0.1 to 0.15 km, Moran’s I showed
consistent change trends in 2000, 2005, 2010, 2015, and 2020. When equal distance Moran’s
I values were considered, the value was the lowest in 2005 and the highest in 2015, showing
a general change trend of decline from 2000 to 2005, increase from 2005 to 2015, and decline
from 2015 to 2020. This suggests that the spatial concentration of ecological over the studied
time period decreased slightly from 2000 to 2005, increased gradually from 2005 to 2015,
and decreased slightly from 2015 to 2020.

Figure 9. Moran’s I values for the ecological risk index (ERI) using different distances.
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The Moran index can often be used to study the overall distribution and spatial
aggregation of a region, but it cannot show the spatial correlations within it; therefore, local
autocorrelation LISA analysis was used to research the correlation degree of ecological
risks in the study area and to study whether it exhibits some spatial aggregation (Figure 10).
Four kinds of significant autocorrelations—high–high (HH), low–low (LL), low–high (LH),
and high–low (HL)—appeared in the study area. The HH areas were mainly found in the
center and northwest of Zhangjiachuan County, the LL areas were mainly distributed in
the east and southeast, and the HL areas mainly occurred in the northwest and southwest.
The ecological risks in the midwestern regions were relatively high, while those in the east
and southeast regions were relatively low.

 

 

Figure 10. Local indicators of spatial autocorrelation (LISA) map of the local spatial auto-orrelation
of ecological risks in Zhangjiachuan County from 2000 to 2020.
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4.4. Verification of the Theoretical Framework of Ecological Risk Transformation of
Land-Use Change

In general, the ecological risk index of land-use changes in Zhangjiachuan County
showed a trend of increasing first and then decreasing (Figure 11). Over 2000–2010, the
change was relatively slow. The risk index increased from 146.8 in 2000 to 153.3 in 2010 by
a total increase of 4.2% (6.5). Over 2010–2015, the ecological risk value increased sharply to
172.6 in 2015, a total increase of 11.2% (19.3). From 2015 to 2020, the ecological risk value
decreased to 157.5 in 2020, with a reduction rate of 8.7% (15.1). The value of the ecological
risk index showed an “inverted U-shaped” change trend in the area over the 20 studied
years. Therefore, the temporal and spatial change characteristics of ecological risks of
land-use changes in Zhangjiachuan County are consistent with the ecological risk change
trend of the transformation theoretical framework of ecological risks of land-use changes.

Figure 11. Overall landscape ecological risk values of Zhangjiachuan County from 2000 to 2020.

5. Discussion

5.1. Formation Mechanism of the Spatial Differentiation of Ecological Risks

Land is the carrier of the main social and economic activities, and it is one of the
most intuitive forms of human development and utilization of the natural geographical
environment [82]. Changes in the structures and patterns of lands are strongly related to the
spatial and temporal distribution and dynamics of landscape ecological risks. According to
the landscape ecological risk assessment of spatial patterns and analyses of the influence of
the number, functions, and combinations of landscape elements on ecological risk, land-use
changes can affect the structure and function of landscapes to varying degrees [11]. The
ecological risks of land-use changes in Zhangjiachuan County are high in the west and
low in the east, and the overall risk is low. Longshan Mountain is located In the east of
the study area, with high terrains, as well as a cold and humid climate, consisting mostly
of forested lands with a low human impact; the ecological risk in the east is, therefore,
low. The midwestern regions are characterized by frequent droughts, large surface water
runoff, rare vegetation, and serious water and soil loss; most areas consists of cultivated
and construction lands with intense human influences, thereby making the ecological risk
in this region high. The areas associated with the most serious risks were located close
to the Shixiakou Reservoir in the north and Dongxiakou Reservoir in the middle. The
construction of the reservoir has changed the original flood plain of the river, damaged the
habitat of organisms, flooded the land vegetation, and reduced the extent of the wetland
areas, greatly changing the type of land use and triggering ecological risks.
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The ecological risks of land-use changes in Zhangjiachuan County generally showed
a trend of increasing first and then decreasing. The risk increased from 2000 to 2015 and
decreased slightly from 2015 to 2020. The west of Zhangjiachuan County is located in
the hilly and gully area of the Loess Plateau, with a low terrain, poor vegetation, and
the abandonment of cultivated lands; increased landscape fragmentation was observed
from 2000 to 2005. At the same time, the expansion of Longshan Town in the west also
introduced certain risks to the ecology of the studied area. Over 2005–2010, the main reason
for the expansion of medium-risk areas in the midwestern regions was that the expansion
of construction land occupied cultivated land, destroyed the landscape connectivity of
the original cultivated lands, and deteriorated the landscape ecology. From 2010 to 2015,
the implementation of the transformation project of medium- and low-yield fields in the
comprehensive agricultural development of the Dayang Township in the west improved the
ecological problems in the west of Zhangjiachuan County. However, due to the influence
of national policies, some farmers in Zhangjiachuan County migrated to Xinjiang and other
places, which aggravated the loss of cultivated land areas in the east. At the same time, the
town of Zhangjiachuan expanded rapidly, which made the landscape more fragmented and
dramatically increased the ecological risks in the area. In general, from 2000 to 2015, on the
one hand, Zhangjiachuan County had a complex geographical environment, undulating
terrain, changeable climate, and frequent natural disasters, resulting in certain ecological
risks. On the other hand, the remoteness of the area and difficulties associated with
transportation both hindered the improvement of agricultural mechanization; therefore,
the area could not meet the requirements of high-intensity farming processes [83]. At the
same time, the economic benefits of agricultural planting were not obvious, which led to
the low enthusiasm of some farmers for planting, along with the growing phenomenon
of large areas of idle cultivated land, turning cultivated land into wasteland [84,85]. At
the same time, with the expansion of the population and the improvement of the per
capita consumption level, the continuous development and expansion of construction
lands led to a more severe loss and fragmentation of cultivated lands, and frequent human
activities and urbanization fragmented and complicated the landscape, thereby increasing
the ecological risk.

With the rapid development of modern society and the economy from 2015 to 2020,
increasingly serious ecological problems have attracted great attention from the state,
and a series of deployments have been made; for example, the land greening action was
launched to promote the comprehensive control of desertification, rocky desertification,
and soil erosion. During the 13th Five-Year Plan period, Zhangjiachuan County planned
and implemented four small watershed comprehensive treatment projects, including the
2016 National Comprehensive Agricultural Development Project, Zhangjiachuan Maguan
Project, and Area Comprehensive Control Project, which further promoted the compre-
hensive control level of soil erosion and ecological quality of Zhangjiachuan County [86].
Therefore, from 2015 to 2020, the ecological risk decreased as a result of the abovemen-
tioned measures.

According to the theoretical framework of ecological risk transformation of land-use
changes and a field verification of Zhangjiachuan County, the construction land areas in
Zhangjiachuan County began to expand on a small scale during the early stages of the study,
occupying part of the cultivated lands and grasslands; at the same time, a phenomenon
of abandoned cultivated lands also prevailed, which damaged the landscape connectivity,
resulting in a relatively slow increase of ecological risks from 2000 to 2010. From 2010
to 2015, Zhangjiachuan Town continued to expand outward, construction land started to
emerge in a disorderly manner, and the loss of cultivated land intensified, leading to a
sharp increase in ecological risks during this period. The implementation of the ecological
environment governance project improved the ecological quality of the area and reduced
the ecological risks over 2015–2020. Therefore, the overall ecological risk of land-use
changes in Zhangjiachuan County from 2000 to 2020 presented an “inverted U-shaped”
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change trend consistent with the theoretical framework of the ecological risk transformation
of land-use changes.

5.2. Comparison of the Ecological Risk Results and Other Studies

This study put forward a theoretical framework for the transformation of the ecological
risks of land-use changes. It is believed that there was a transformation of the ecological risk
of land-use changes in Zhangjiachuan County, showing an “inverted U-shaped” change.
The relationship between land-use changes and ecological risks is complex. According to
the forest transformation theory and an environmental Kuznets curve, this paper further
improved the research process and content of the ecological risk of land-use changes. It
provides an important theoretical reference for ascertaining the ecological risks associated
with the processes of regional land-use transformation, expanding the research vision of
regional ecological risks and forming a new perspective. At the same time, it upholds the
concept of theory guiding practice, fills the shortcomings of the relative lack of previous
research theories in this field, and provides theoretical support for the ecological risk
research of land-use changes in other regions worldwide.

The reasons of the ecological risk of land-use change in this study area are described
below. On the one hand, Zhangjiachuan County is experiencing ecological problems due to
changes in its geographical environment and climate. On the other hand, strong human
activities have caused the loss of cultivated lands and expansion of construction lands,
leading to a more fragmented landscape and increasing the intensity of the ecological
risks in the area. The relationship between land-use changes and landscape ecological risk
is complex, and different modes of action can cause different degrees of ecological risk.
Song et al. [87] studied the impact of land-use changes in mining areas on the ecological
environment and showed that the land use/coverage of the mining area often underwent
great changes with changes in mining activities, while the vegetation, soil, and water would
also suffer different degrees of damage. Kayumba [88] studied the wetlands in Bayanbulk
and found that human activities such as urbanization, overgrazing, and tourism seriously
changed the ecosystem of the region, causing ecological deterioration and ecological risks.

According to the analysis of the landscape ecological risks of land-use changes in
Zhangjiachuan County, intense human activities have sharply reduced the natural vegeta-
tion in the area, and the landscape has become more fragmented, resulting in a series of
ecological problems and increasing the associated ecological risks. However, these risks are
reversible. The ecological problems could be remedied through certain countermeasures,
thereby reducing the ecological risks. This is consistent with the research conclusions of
Liang [67] on the dynamic changes of land use and ecological risks in the Three Gorges
Reservoir Area of China and those of Liu [13] on the Shaanxi Province of China. However,
the observations made in this work differ from the research conclusions of Peng [11] on
the ecological risks of the Yongjiang River basin in Zhejiang Province, those of Yan [27] on
typical areas of the Yellow River basin in China, and those of Hassan Omar [3] who studied
land0use changes in Zanzibar (Tanzania). The main reason for this difference is the certain
blindness in carrying out ecological protection and restoration in some areas, with a lack of
systematic and comprehensive arrangements, resulting in few ecological restoration effects.
Therefore, different land-use control strategies should be developed to handle ecological
problems in different regions, and ecological restoration interventions should be conducted
to further realize the sustainable utilization of land resources.

5.3. Policy Enlightenment

Although the problem of cultivated land fragmentation still existed in the study area
from 2015 to 2020, and the areas of construction lands continued to expand, and Zhangji-
achuan County effectively improved the landscape ecology of the area by conducting a
series of comprehensive management projects. This paper showed that the implementation
of governance projects can improve the regional ecology of a region and plays a positive
role in reducing ecological risks. For example, following the completion of a dam in 2009,
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the Three Gorges Reservoir Area implemented a number of measures such as a project of
returning cultivated lands to forests and developing orchards to promote the management
of the Three Gorges Reservoir area and reduce ecological risks. Moreover, the ecological
water transmission project in the Tarim River basin has increased the natural vegetation
area and the riverbank vegetation coverage area, and the overall natural ecology of the
whole region has been improved [89]. At present, the ecological governance projects have
achieved some results, but the factors that cause ecological risks still exist and have not
been effectively addressed. Therefore, Zhangjiachuan County still faces a certain degree of
ecological risks in the future. According to our results, future policy formulations should
focus on the aspects described below.

First, the ecological restoration of the reservoir should be strengthened. On the
one hand, the protection of the ecological environment around the reservoir should be
enhanced. We should promote the cultivation of water conservation forests, protect the
existing forests and grasslands in the reservoir area, follow appropriate measures to return
cultivated lands to forests, effectively prevent water and soil loss, ensure water supplies,
and purify and reduce water pollution. On the other hand, the water environment in the
reservoir area should be comprehensively improved. By improving the county government
infrastructure, we should increase the construction of sewage treatment systems, adjust
agricultural production structures, improve planting methods, advocate for ecological
agriculture, effectively control agricultural non-point-source pollution, and minimize the
ecological risk of the reservoir.

Secondly, the agricultural operation mode should be innovated. On the one hand,
rural land reforms should be promoted. To some extent, owning fragmentated cultivated
lands is a key factor limiting the enthusiasm of farmers for production and leading to
a low efficiency of cultivated land utilization. Under the background of the transfer of
the rural labor force in Zhangjiachuan County, the rural land transfer system should be
improved, the transfer behavior should be standardized, and cultivated lands should be
centrally managed. At the same time, the land management department should strengthen
the supervision and management of the transfer of land management rights to protect the
interests of farmers. On the other hand, the mode of agricultural development should be
changed. The development of the “party building + enterprises + cooperatives + production
bases + farmers” should be explored and established, an industrial chain of “farmers
planting + cooperative purchasing + enterprise production” should be formed, and a stable
increase in the income of farmers should be ensured. At the same time, according to the
climate, terrain, environment, land resources, and other characteristics of all townships
(towns) and villages in the county, timely and reasonably adjustments should be made
by planting different types of crops according to local conditions, selecting good varieties,
vigorously promoting good varieties and advanced applicable technologies, increasing the
economic benefits of agricultural planting, and improving the enthusiasm of farmers.

6. Conclusions

Using the forest transformation theory and an environmental Kuznets curve, this
paper analyzed the close relationship between land-use changes and the ecological risks
associated with these; the theoretical framework of the ecological risk transformation of
land-use changes was considered for Zhangjiachuan County, Tianshui City, Gansu Province
as an example. The spatial and temporal pattern changes of land use in Zhangjiachuan
County from 2000 to 2020 were analyzed, and the spatial and temporal characteristics of
landscape ecological risks in the study area were evaluated. Our results show that the
land-use changes in Zhangjiachuan County from 2000 to 2020 mainly included a decrease
in the area of cultivated lands and the expansion of grasslands and construction lands.
The ecological risks increased slowly from 2000 to 2010, increased sharply from 2010 to
2015, and decreased from 2015 to 2020. The overall “inverted U-shaped” trend is consistent
with the transformation theoretical framework of the ecological risks of land-use changes.
In terms of patterns, the ecological risk of land-use changes in Zhangjiachuan County
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was basically reflected in the distribution trend of high in the west and low in the east.
In terms of areas, those with the lowest risk and low risk levels decreased from 2000 to
2015, and areas with medium risk, high risk, and highest risk levels increased, thereby
aggravating the ecological risks of the area. From 2015 to 2020, the areas with the lowest risk
and low risk levels increased, while the areas with medium, high, and highest risk levels
decreased, reducing the ecological risks during this period. By comparing the ecological
risk change of land-use change with that of some countries, systematic and comprehensive
arrangements should be made when carrying out regional ecological restoration projects,
and differentiated land-use control strategies should be formulated according to local
conditions to achieve the sustainable use of land resources.

There were some limitations to this study. The spatiotemporal evolution of ecological
risks is a comprehensive and complex process, which is affected by the population, economy,
and production, thus necessitating further research and analysis. At the same time, longer
time series should be studied to clarify the impact of land-use changes on ecological risks,
and the direct relationship between landscape patterns and ecological risks also requires
further research. In summary, future ecological risk research on land-use changes should
consider highly variable social, economic, and environmental factors. The relationship
between land-use changes and ecological risks would also need to be confirmed through
more empirical research. While ecological protection is not a linear decision-making process,
it requires a dynamic adaptive response to changing land-use types. Land-use changes
in areas with high ecological risks should be paid attention to, land remediation efforts
should be multiplied, and the resilience to ecological risks should be improved.
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Abstract: Land use change in urban agglomerations is gradually becoming a major cause and a key
factor of global environmental change. As a consequence of the interaction between land use and
ecological processes, the transformation in natural ecosystem structure and function with human
activity disturbances demands a systematic assessment of ecosystem health. Taking the Central
Yunnan urban agglomeration, undergoing transition and development, as an example, the current
study reveals the typical land use change processes and then emphasizes the importance of spatial
heterogeneity of ecosystem services in health assessment. The InVEST model-based ecosystem service
assessment is incorporated into the ecosystem health evaluation, and hotspot analysis is performed to
quantitatively measure the ecosystem health response degree to land use according to spatial latitude.
The study had three major findings: First, the urban land expansion in the urban agglomeration of
central Yunnan between 1990 and 2020 is the most significant. Further, the rate of the dynamic change
of urban land is 16.86%, which is the highest among all land types. Second, the ecosystem health of
the central Yunnan urban agglomeration is improving but with obvious spatial differences, showing
a trend of increasing from urban areas to surrounding areas, with the lowest ecosystem health level
and significant clustering in the areas where the towns are located. The ecosystem health level is
mainly dominated by the two classes of ordinary and well grades, and the sum of the two accounts
for 63.35% of the total area. Third, the process of land transfer, mutual transfer between forest and
grassland, and conversion from cropland to forest land contributed the most to the improvement of
ecosystem health across the study area. Furthermore, the conversion from cropland and grassland to
urban land is an important cause of the sustained exacerbation of ecosystem health. Significantly, the
study provides a scientific reference for maintaining ecosystem health and formulating policies for
macro-control of land in the urban agglomerations of the mountain plateau.

Keywords: land use change; ecosystem health; ecosystem services; InVEST model; urban
agglomerations

1. Introduction

With the process of globalization and integration of the world economy, international
competition and cooperation relations have expanded from single urban cities to urban
agglomerations [1]. The spatial structure of China’s economic development has also pro-
foundly changed, and urban agglomerations have become the main spatial form for bearing
development factors and gradually become an important spatial unit for urbanization con-
struction in China [2]. In recent years, China’s major urban agglomerations, such as the
Yangtze River Delta, the Pearl River Delta, and the Beijing–Tianjin–Hebei urban agglomera-
tions, have been developing rapidly. The 19 national urban agglomerations that have been
formed carry more than 75% of the urban population and contribute more than 80% of the
country’s GDP, but they have also been sensitive areas where ecological and environmental
problems are highly concentrated and exacerbated. Urban agglomerations in China face
serious problems caused by the imbalance between urbanization and ecosystem interaction
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processes [3,4], which is directly manifested by the dramatic changes in land use patterns,
resulting in the degradation of ecosystems and their service functions, significantly altering
the health and integrity of natural ecosystems. In the face of the current situation, countries
around the world are paying more and more attention to the far-reaching effects of land use
changes caused by rapid urbanization on global ecosystems [5,6], it is important to assess
the ecological effects of land use changes from the perspective of ecosystem health [7–9] to
coordinate the relationship between economic development and ecological conservation in
urban agglomerations areas.

Ecosystem health refers to maintaining the integrity, stability, and sustainability of ecosys-
tem structure and function with disturbances due to human activity and is considered the
ultimate goal of environmental management [10–12]. A healthy ecosystem should be ac-
tive, maintainable in its organizational structure, and able to recover itself under stress, and
it is the core guarantee of sustainable human development [13,14]. Most existing studies
assessing ecosystem health used either the indicator system approach [15–17], the pressure-
state-response (PSR) framework [18–20], or the vigor-organization-resilience (VOR) frame-
work [21,22]. However, to evaluate ecosystem health from the landscape viewpoint, exploring
the interaction between ecosystem service change and different land use types is important,
besides considering the changes in landscape structure due to human activities [23]. Based on
this, Xiao et al., Ge et al., Xu et al. and Wang et al. [24–27] all explored the effects of land use
change from an ecosystem health perspective and explained the ecological effects of regional
land use change from different aspects.

Unlike economically developed urban agglomerations in China, the Central Yunnan
urban agglomerations, as one of the important urban agglomerations in Southwest China, is
at the stage of transition from early development to maturity. Although the urban agglomera-
tions in central Yunnan have rich biological resources and innate advantages for development,
their ecosystem is more sensitive. In recent decades, with constant frictions between natural
ecosystems and urban construction, makes it an ideal research area for studying land use
change and ecosystem health responses. In addition to incorporating the InVEST (Integrated
Valuation of Ecosystem Services and Tradeoffs) model-based assessment of ecosystem service
into the ecosystem health framework, this study further explores spatially the response of
two trends of ecosystem health-deterioration and improvement of the study area to land
use change. The key objectives of the study include: (1) To study the features of land use
change of the Central Yunnan Urban Agglomeration between 1990 and 2020. (2) To assess
the ecosystem health in the central Yunnan urban agglomerations and analyze its spatial
and temporal evolutionary characteristics. (3) To quantitatively measure land use change
responses in the deteriorating and improving ecosystem health areas. The study significantly
contributes to government policies and decision-making in formulating land management
plans, balanced development, and meeting conservation needs. Meanwhile, it also provides
a reference for the enrichment of the ecosystem health evaluation system for mountainous
urban agglomerations.

2. Materials and Methods

2.1. Study Area

The central Yunnan urban agglomeration is situated in the central Yunnan Province
in southwest China (24◦58′ N–25◦09′ N, 100◦43′ E–104◦49′ E) (Figure 1). It is the most
economically developed region in Yunnan Province, including 49 counties, cities, and
districts, with a land area of 111,356.04 km2, accounting for 28.26% of the province’s land
area, of which only 11.84% is plains. The study area belongs to the lake basin landscape of
the Zhongshan plateau, with karst landforms developed in the east. The overall mountain
and inter-mountain basin topography are dominant, with a large vertical height difference
(between 116~4282 m above sea level), which is a typical plateau mountainous urban
agglomeration. Due to the complex topographic fragmentation and fragile ecological
environment in the region, it is among the urban agglomerations of western China that are
more seriously constrained by topographic structures, resources, and environment. The
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main climate type is low latitude plateau mountain monsoon climate with a small annual
temperature difference but significant vertical differences in climate, rainfall increases with
altitude, good lighting conditions, and rich biological resources.

Figure 1. Location of central Yunnan urban agglomeration in China.

As a major growth pole of China’s Yangtze River Economic Belt, the central Yunnan
urban agglomeration is in a transitional stage from the nurturing phase of development
to the mature phase. With a population of over 21 million, accounting for 46.5% of the
province’s population, and a total GDP exceeding 1500 billion yuan, accounting for 61.47%
of the province’s GDP. The dense transportation facilities, rapid population, and economic
and social development of the cluster area have caused the large-scale transformation of
ecological land into construction land. Additionally, due to the high-intensity economic
development, the ecological and environmental problems brought about by the continuous
expansion of the urban scale have become more and more prominent.

2.2. Data Sources

The research adopts 30 m resolution land use data of 1990, 2000, 2010, and 2020
as the basis for the study. The dataset comes from the Resource and Environmental
Science Database of the Chinese Academy of Sciences (http://www.resdc.cn) (accessed
on 6 October 2021), with Landsat5/7/8, GF2 and other satellite remote sensing images
as the main information sources. And according to the research objectives and the actual
situation of the surface, the land use types are divided into seven categories, which included
cultivated land, forest land, grassland, water area, urban land, rural land, and unutilized
land. Other physical, geographic, and economic data include elevation, precipitation, soil
depth, potential evapotranspiration, normalized vegetation index, net primary productivity,
grain yield, and sown area. Table 1 shows the specific sources for each of these data types
used in the research.

2.3. Methodological Steps

Firstly, the spatial and temporal characteristics of land use types in the central Yunnan
urban agglomeration area from 1900 to 2100 were analyzed by land use change measure-
ment. Second, the InVEST model was used to assess changes in grain production, water
conservation, carbon storage, soil conservation, habitat quality, and provide aesthetic land-
scape. This was applied to the physical health level assessment of ecosystems quantified
by the vigor–organization–resilience (VOR) model, which together form a framework for
ecosystem health assessment. Finally, the exploratory spatial data analysis (ESDA) method
was used to explore the “cold spots” and “hot spots” of ecosystem health changes in the
whole central Yunnan urban agglomeration. The response of ecosystem health to land use
change was further revealed. The specific flowchart is as follows (Figure 2):
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Figure 2. Flowchart of methodological steps. ESI (ecosystem service index), PH (physical health
index), EHI (ecosystem health index).

Table 1. Study data sources.

Data Type Data Sources

Land use data Resource and Environmental Science Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/) (accessed on 6 October 2021).

Elevation data Geospatial Data Cloud Platform (http://www.gscloud.cn) (accessed on 6 October 2021).

Precipitation data National Earth System Science Data Center (http://www.geodata.cn)
(accessed on 25 January 2022).

Potential evapotranspiration National Earth System Science Data Center (http://www.geodata.cn)
(accessed on 25 January 2022).

Soil depth World Soil Database (HWSD) China Soil Dataset (v1.1)
(http://www.cryosphere.csdb.cn) (accessed on 25 January 2022).

Normalized vegetation index
(NDVI)

The NDVI data in 2000, 2010 and 2020 were generated based on the MODIS vegetation
index products with a spatial resolution of 250 × 250 m and a 16-day temporal
resolution obtained by the NASA Earth Observation System, using the annual

maximum synthesis method. The NDVI data in 1990 was obtained from the national
Earth System Science Data Center.

Net Primary Productivity
(NPP)

The spatial resolution of the MODIS data product is 500 m, the band is cut and stitched,
and the pixel value is multiplied by a scale factor of 0.0001 to calculate. The 1990 NPP
data was gathered from Chen Pengfei, “Monthly net primary productivity 1 km raster

dataset of Chinese terrestrial ecosystems north of 18◦ N (1985–2015)” [J/DB/OL].
Electronic Journal of Global Change Data Warehousing, 2019 [28].

(http://www.geodoi.ac.cn/) (accessed on 23 December 2021).

Grain production and sown area According to“Yunnan Provincial Statistical Yearbook” to obtain the grain production
and sown area of 49 (district) counties in each year.

Grain prices National compilation of agricultural cost-benefit information.

2.3.1. Land Use Change Measurement

(1) The land use dynamics degree. It can quantitatively describe the quantity change in a
certain land use type at a certain time. The land use change process across the study
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area can be observed by calculating the dynamic degree of every land use type, using
the following calculation formula:

Di =

(
St2

i − St1
i

St1
i

)
× 1

Δt
× 100%

where D represents the dynamic attitude in land type ith, St2
i suggests the area in land

type i at the latter moment, St1
i means the area in land type i at the initial moment,

Δt refers to the time interval, and if the time interval is measured in years then D
denotes the average annual change rate in land type i.

(2) Land use type transfer. The land use data across the study area was calculated by
two-by-two superposition through the raster calculation in ArcGIS 10.8 to conclude
the land use type transfer and spatial distribution across the study area in two phases
with the following formula:

Ci∗ j = Ai∗ j × 10 + Bi∗ j (Applicable when land use type < 10)

where Ci∗ j refers to the land use change from period A to period B, and Ai∗ j and Bi∗ j
are the land use types of any two periods.

2.3.2. Ecosystem Health Assessment Framework

Costanza proposed that understanding ecosystem health requires the recognition
of humans as an important component of ecosystems [11]. Traditional ecosystem health
assessments explore the sustainability of spatial unit patterns and ecological processes only
in terms of the ecosystem itself, ignoring the benefits that humans derive from a prop-
erly functioning ecosystem [29], whereas ecosystem services can precisely link ecosystem
processes, functions, and human well-being.

Therefore, this study follows the ecosystem health assessment framework proposed
by Costanza and draws from the “ecosystem vigor-ecosystem organization-ecosystem
resilience-ecosystem services” integrated ecosystem health assessment framework con-
structed by Peng et al., Pan et al. and Chen et al. [30–32]. To further emphasize the
importance of spatial heterogeneity of ecosystem services in health assessment, we incorpo-
rated ecosystem service indicators quantified using the InVEST model into the assessment
framework in an attempt to enhance the richness of ecosystem health assessment indica-
tors and further improve the scope and precision of the assessment perspective [14]. The
evaluation of the ecosystem health in the central Yunnan urban agglomeration comprises
two components: the physical health level in the ecosystem and the integrated ecosystem
service index. The specific formula is as follows:

EHI =
√

PH × ESI

where EHI means the ecosystem health in the assessed area; PH denotes the physical health
index in the assessed area; ESI is the integrated ecosystem service index of the assessed
area.

2.3.3. Selection and Assessment of Integrated Ecosystem Service Indicators

The UN Millennium Ecosystem Assessment categorized the ecosystem service function
classification system into four major functions: product supply service, regulating service,
supporting service, and cultural service. Among them, product supply service function is
the function of the ecosystem to produce or provide products; regulating service function
is the function of the ecosystem to regulate human ecological environment including
water production capacity and carbon storage capacity; supporting service function is the
basic function necessary to ensure the provision of all other ecosystem service functions,
including soil conservation, habitat quality, and cultural service function is the aesthetic
landscape experience, non-material benefits from the ecosystem [33].
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For assessment, six typical ecosystem service functions, namely, habitat quality, carbon
storage, soil conservation, water conservation, grain production, and provide aesthetic
landscape, were selected from the four major services, including ecosystem supply services,
regulation services, support services, and cultural services. These ecosystem service func-
tions are consistent with the typical features of the central Yunnan urban agglomeration
and reflect the integrated water, food, soil, atmospheric, and overall ecological information
of the habitat. The details of the specific process are shown in Table 2.

Table 2. Principles and methods for assessing the ecosystem service functions of each ecosystem in
the central Yunnan urban agglomeration.

Ecosystem
Services

Ecosystem
Functions

Fundamentals Measurement Formula

Supply
Services

Grain
Production

Based on the linear correlation between grain
yield and NDVI, grain yield was assigned

according to the ratio of raster NDVI values to
total NDVI values of cultivated land based on

land use type [34].

Gi = Gsum × NDVIi
NDVIsum

where Gi is the grain yield of arable raster i, Gsum
suggests the total grain yield in the study unit,

NDVIi means the NDVI value for arable raster i,
and NDVIsum indicates the sum of NDVI values

in the study unit.

Regulation
Services

Water Con-
servation

According to the water cycle principle, the water
yield is obtained by calculating parameters,
including precipitation, plant transpiration,

surface evaporation, root depth as well as soil
depth [35]. Afterward the runoff path

topography index is measured using the DEM
and the runoff residence time on the grate is
measured with soil permeability and surface

runoff flow coefficient. The water yield is
corrected to obtain the water content [36].

Retention = min
(

1, 249
Velocity

)
×

min
(

1, 0.9×TI
3

)
× min

(
1, Ksat

300

)
× Yield (1)

where Retention means the water content (mm);
Velocity refers to the flow rate coefficient; TI

denotes the topographic index measured using
Equation (2); Ksat indicates the soil saturation

hydraulic conductivity (cm/d), measured with
Equation (3); Yield denotes the water yield,

measured using Equation (4).

TI = lg
(

Drainage_Area
Soil_Depth × Percent_Slope

)
(2)

where Drainage_Area represents the number of
grids of the catchment area (dimensionless);

Soil_Depth suggests the soil depth (mm);
Percent_Slope indicates the percentage slope.
In(Ksat) = 20.62 − 0.96 × In( Clay )− 0.66
×In( Sand )− 0.46 × In(OC)− 8.43 × BD (3)
where Ksat denotes soil saturated hydraulic
conductivity (cm/d), Clay indicates soil clay

content (%), Sand represents soil sand content
(%), OC refers to soil organic carbon content (%),

BD means soil bulk weight (g/cm3).

Yjx =
(

1 − AETxj
Px

)
× Px (4)

where Yjx represents the annual water yield; Px
means the average annual rainfall in raster cell x;

AETxj refers to the average annual
evapotranspiration in raster cell x

in land use type j.
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Table 2. Cont.

Ecosystem
Services

Ecosystem
Functions

Fundamentals Measurement Formula

Carbon
Storage

The average carbon density for above-ground
carbon pool, below-ground carbon pool, soil

carbon pool and dead organic carbon pool were
calculated separately for different land types and
were summed by multiplying the area in every
land type by the corresponding carbon density.

Ci = Ci, above + Ci, below + Ci, soil + Ci, dead

Ctotal =
n
∑

i=1
Ci × Si

where Ci is the ith land use type; Ci,above signifies
the above-ground carbon density in land use

type i (t/hm2); Ci,below suggests the
below-ground biological carbon density in land
use type i (t/hm2); Ci,soil signifies the soil carbon
density in land use type i (t/hm2); Ci,dead denotes
the carbon density of dead organic matter in land
use type i (t/hm2), Ctotal means the total carbon
stock in the ecosystem (t); Si indicates the area in
land use type i (hm2); n denotes the number of

land use types, and n is 7 in this paper.

Support
Services

Soil Conser-
vation

Soil retention is obtained by measuring the
difference between potential erosion and real

erosion and adding it to the sediment
holding capacity.

SMx = RKLSx − USLEx + SDRx
RKLSx = Rx × Kx × LSx

ULSEx = RKLS × Cx × Px

SRx = SEx
x−1
∑

y=1
USLEy

x−1
∏

z=y+1
(1 − SEx)

where SMx means the soil retention of raster x,
SDRx means the sediment retention for raster x,

and SEx represents the sediment retention
efficiency for raster x. PKLSx suggests the

potential soil loss for raster x, and USLEx and
USLEy stand for the real erosion of raster x and

its upslope raster y, i.e., soil erosion under
vegetation cover and soil and water conservation

measures, respectively. Rx, Kx, LSx, Cx, and Px
denote the rainfall erosion force factor, soil

erodibility factor, topography factor, vegetation
cover factor, and soil and water conservation

measure factor for raster x, respectively.

Habitat
Quality

Generate habitat quality maps by the Habitat
Quality module under the InVEST model,
combining information on land cover and

biodiversity threat factors.

Qxj = Hj

[
1 −

(
Dz

xj
Dz

xj+kz

)]
where Qxj means the habitat quality index for

raster x in land use type j; Hj suggests the habitat
suitability in land use type j, with the value set to
[0, 1]; Dxj indicates the degradation of habitat for

raster x in land use type j; k signifies the
half-saturation constant, which takes half of the

maximum degradation 0.056 (system default 0.5).

Cultural
Services

Provide
Aesthetic

Landscape

The sown area, yield, and average price for three
main crops (rice, wheat, and corn) in 49 (district)
counties were used as the base data to calculate

the economic value of crops per unit area.
Combined with the base equivalence table of

ecosystem services per unit area in the research
by Xie et al. [37], the ecosystem service values of

aesthetic landscapes were calculated and
expressed spatially based on grid division.

E = 1
7

m
∑

i= 1

Oi Pi Qi
M

where E is the economic value of crop production
per unit area of the study area; i means the crop
type; Oi, Pi and Qi represent the sown area, yield

per unit area and average price of i crops,
respectively; M is the total area of three crops

(rice, wheat, and corn) of the study area.
ESV = ∑(Ai·VCi)

where ESV refers to the ecosystem service value
of aesthetic landscape; Ai means the area in land
type ith; VCi represents the ESV coefficient of the

aesthetic landscape in land type ith.
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To comprehensively measure the ecosystem services in the central Yunnan urban
agglomeration, the evaluation results for the above six ecosystem service functions were
normalized in ArcGIS. After eliminating the effects by different magnitudes, they were
superimposed and calculated according to the mean weights. The integrated Ecosystem
Service Index (ESI) in the central Yunnan urban agglomeration in 1990, 2000, 2010, and
2020 were each calculated as follows.

ESI =
n

∑
i=1

W × ES′

where ESI is the integrated ecosystem service index for the study area; W means the weight
coefficient for various ecosystem service types; ES’ is the standardized function of different
types of ecosystems, and n is the type of ecosystem services in this study (n = 6).

2.3.4. Ecosystem Physical Health Indicator Selection and Assessment

The physical health of the ecosystem can be assessed on the basis of three criteria:
the activity of the ecosystem to provide energy, the structure of the ecosystem to maintain
health under stress, and the ability of the ecosystem to self-regulate and recover. This
study is based on the results of Das, Manob et al. [38] and Pan et al. [32] to characterize the
ecosystem’s physical health with three indicators of health level: vigor (V), organization (O),
and recovery (R).

(1) Ecosystem vigor (V): The NPP bands of 2000, 2010, and 2020 were cut and spliced
by obtaining MODIS data products to calculate the annual true values of NPP for the four
periods of the central Yunnan urban agglomeration. As the NPP reflects more vegetation
vigor in terrestrial ecosystems, and the highland lakes in the study area play a key role in
ecosystem vigor, the watershed was set to 1 in the normalization process according to the
actual situation in the study area [39,40].

(2) Ecosystem organization power (O): The Weighted Mean Fractional Dimension
(AWMPFD), Shannon Diversity Index (SDI), and Simpson Diversity Index (MSDI) were
selected to measure the landscape heterogeneity (LH). Sprawl (CONTAG), separation
(SPLIT), and connectivity (CONNECT) were then used to characterize landscape connectiv-
ity. In addition, woodlands and watersheds bear vital ecological functions of the central
Yunnan urban agglomeration and should be protected as priority landscape types. Thus,
the separation (SPLIT) and connectivity (CONNECT) of important patches were included
as important landscape connectivity (ILC) separately in the calculation of ecosystem orga-
nization power. For the weight setting, landscape heterogeneity, and important landscape
connectivity, weights were determined with reference to the previous studies. After each
index was obtained through Fragstates software, the ecosystem organization power was
calculated and normalized [23].

EO = 0.35 × LC + 0.35 × LH + 0.3 × ILC
= 0.1 × AWMPED + 0.15 × SDI + 0.1 × MSDI + 0.1 × CONTAG + 0.25 × SPLIT

+0.1 × (SPLIT1 + SPLIT2) + 0.05 × (CONNECT1 + CONNECT2)

where EO means the ecosystem organization force coefficient, LH represents landscape
heterogeneity, LC denotes landscape connectivity, ILC is important to landscape connec-
tivity, SPLIT1 and SPLIT2 are the separation degree of watershed and woodland, respec-
tively, and CONNECT1 and CONNECT2 are the connectivity degree of watershed and
woodland, respectively.

Ecosystem resilience (R): Referring to the study by Liu et al. and Peng et al. [7,15],
the resilience and resistance in various land use types were assigned. The resilience
coefficients in various types of sites were corrected by combining NDVI data of the study
area (Formula (1)). In the correction process, the study considered that water bodies do
not have obvious vegetation reflection characteristics; therefore, water bodies were not
included in the correction process to guarantee the accuracy of the results. The central
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Yunnan urban agglomeration is an area of intensive human activities, and the high-intensity
human activities and rapid economic development have caused damage to the ecosystem
caused by disturbances from outside, which have exceeded the ecosystem’s regulation
capacity. Therefore, the resilience weighting should be higher than the resistance, which
is set at 0.6 and 0.4, respectively (Formula (2)). The regional ecosystem resilience was
calculated as follows.

RCi =
NDVIi

NDVI−meanj
× RCj (1)

where RCi denotes the resilience coefficient of raster i, NDVIi denotes the NDVI value of
raster i, NDVI_meanj denotes the average NDVI value of class j at raster i, and RCj means
the resilience assignment in land use class j (Table 3).

ER = 0.6 × RCi + 0.4 × RTj (2)

where ER is the ecosystem resilience index for the central Yunnan urban agglomeration,
RCi represents the resilience coefficient for raster i, and RTj is the resistance assignment of
raster j of the land use type.

Table 3. Principles and methods for assessing the ecosystem service functions of each ecosystem in
the central Yunnan urban agglomeration.

Type of
Land Use

Cultivated
Land

Forest Land Grassland Water Area Urban Land Rural Land
Unutilized

Land

Ecosystem
resilience 0.4 0.6 0.8 0.7 0.2 0.5 1

Ecosystem
resistance 0.6 1 0.7 0.5 0.3 0.4 0.2

Assessment of the level of physical health of ecosystems: According to the definition
of ecosystem health by Costanza, the level of physical health was calculated as follows [22]:

PH = 3
√

V × O × R

where PH represents the ecosystem health index; V, O, and R mean ecosystem vigor,
organization, and resilience, respectively.

2.3.5. Hot Spots Analysis

Hot spots analysis (Getis-ord Gi*) is performed to recognize the distribution of hot
spots and cold spots in the local space of the study area [41,42]. In order to analyze the
ecosystem health response to land use change of the central Yunnan urban agglomeration
from spatial latitude, the research explored the spatial clustering of ecosystem health
changes and identified the hot spot areas and cold spot areas. With each stage of change,
the hot spot areas are referred to as ecosystem health improvement areas and cold spot
areas as ecosystem health deterioration areas.

2.3.6. Measuring the Impact of Land Use Change on Ecosystem Health Hot Spots Analysis

The study overlays land use change mapping and ecosystem health change hotspot
analysis mapping to analyze land use change of cold hotspot areas for ecosystem health
change from 1990 to 2020. The specific method is as follows: the improvement and
degradation areas for each stage of ecosystem health change are calculated and determined
separately by ArcGIS 10.8. The resulting area was used as the extent of land use data
extraction [43] to generate the land use transfer matrix, and the impact of each transfer type

71



Int. J. Environ. Res. Public Health 2022, 19, 12399

on ecosystem health is calculated. The degree of effect of land use transfer on the ecosystem
was calculated using the contribution indicator [44,45] with the following equation:

LEI =
(LEt − LE0)LA

TA

where LEI is the contribution of ecosystem health caused by a specific type of land use shift
in the study area; LE0 and LEt represent the ecosystem health indices for land use type at
the beginning and the end of the change, respectively; LA means the total area of the land
use type; TA denotes the total area of all land types in the study area.

3. Results

3.1. Characteristics of Land Use Change in the Central Yunnan Urban Agglomeration

Forest land was the predominant land use type during the study period, occupying
over 49% of the total study area (Table 4). This is followed by grassland, with over 26%
of the total area, and cultivated land, with over 20% of the total area. Finally, urban land
makes up the least land use type, with less than 2% of the total area. During our course of
study, we observed some general features of land use change across the area. These include,
firstly, a continuous increase in the urban land and water area, secondly, a continuous
decrease in the cultivated land area, and lastly, first an increase and then a decrease in the
forest land and rural land area, while a decrease followed by an increase in the grassland
area, whereas the area of unutilized land remained basically the same for a long time.

Table 4. Area and proportion of land use types in central Yunnan urban agglomeration, 1990–2020.

Type of Land Use

1900 2000 2010 2020

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

cultivated land 23,442.81 21.05 23,041.63 20.69 22,963.36 20.62 22,528.40 20.23
forest land 54,721.12 49.14 54,945.99 49.34 54,857.48 49.26 54,649.97 49.08
grassland 30,625.01 27.50 30,633.62 27.51 30,331.00 27.24 29,893.95 26.85
water area 1282.37 1.15 1294.87 1.16 1326.63 1.19 1461.55 1.31
urban land 284.97 0.26 411.78 0.37 739.61 0.66 1726.02 1.55
rural land 844.17 0.76 872.45 0.78 976.49 0.88 935.60 0.84

unutilized land 155.59 0.14 155.58 0.14 161.47 0.15 160.54 0.14

The urban land area shows a strikingly significant increase from 284.97 km2 in 1990 to
1726.02 km2 in 2020, with the proportion increasing from 0.26% to 1.55%. According to the
dynamic attitude analysis, urban land in the central Yunnan urban agglomeration has the
maximum dynamic rate of change in comparison to other land types. The rate of change
was 4.45%, 7.96%, and 13.34% during 1990–2000, 2000–2010, and 2010–2020, respectively,
and the highest dynamic rate of change was 16.86% during 1990–2020. Although, the
cultivated land and grassland area changed with higher intensity, the dynamic rate of
change was significantly lower than that of urban land.

According to the land use transfer matrix (Figure 3), the largest area converted to ur-
ban land among all land types during 1990–2020 is cultivated land and grassland, with
818.20 km2 and 357.49 km2, respectively, accounting for 23.28% and 9.50% of the total con-
verted area. As shown by the urban land sources at different stages, a large part of cultivated
land converted, with 119.98 km2, 258.71 km2, and 476.41 km2 of cultivated land occupied by
urban land in the three stages of 1990–2000, 2000–2010, and 2010–2020, respectively.
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Figure 3. Land use change chord map of central Yunnan urban agglomeration, 1990–2020.

3.2. Spatial and Temporal Evolutionary Features of Ecosystem Service Functions of the Central
Yunnan Urban Agglomeration

For our research, we observed six ecosystem service functions: grain production,
water content, carbon storage, soil conservation, habitat quality, and aesthetic landscape
of the central Yunnan urban agglomeration. These functions were overlaid to determine
the spatial distribution of the ecosystem service index (ESI) of the central Yunnan urban
agglomeration in 1990, 2000, 2010, and 2020 (Figure 4). It can be seen from the figure that
the ecosystem service functions of the central Yunnan urban agglomeration in 1990–2020
first decreased, then increased, and finally decreased. In 1990, the ESI values of the central
Yunnan urban agglomeration were 0–0.711, with a mean value of 0.327 and an extensive
distribution of low and medium values. This indicates that the ecosystem service function
of the central Yunnan urban agglomeration should be promoted. The areas with high
values of ESI are small and scattered, mostly in Honghe Prefecture, Yuxi and Chuxiong.
For example, Jianshui County (0.362), Eshan County (0.378), and Dayao County (0.379)
in these regions. The range of ESI values for the central Yunnan urban agglomeration
in 2020 was 0~0.682, with a mean value of 0.3253. Although the range of high-value
areas was higher compared to 1990, the frequent transformation of land use structures
affected the stability of the overall ecosystem function and showed the spatial charac-
teristics of the interactive distribution of high-value areas and low-value areas. Further,
the low-value areas are primarily distributed in central Qujing City, central and southern
Kunming City, central and eastern Honghe Prefecture and eastern Yuxi City. For example,
Qilin District (0.269), Chenggong District (0.198), Lusi County (0.290) and Jiangchuan
District (0.287) in these regions.
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Figure 4. Spatial distribution pattern of ESI of central Yunnan urban agglomeration, 1990–2020.

3.3. Spatial and Temporal Evolutionary Characteristics of Ecosystem Health in the Central Yunnan
Urban Agglomeration

To effectively characterize the spatial differentiation of the ecosystem health index
(EHI) of the study area, the natural breakpoint method was applied. Within this, the EHI of
the central Yunnan urban agglomeration was divided into five classes from low to high,
and the spatial distribution maps of EHI classes were obtained (Figure 5). Evidently, in
the central study area, there has been a low EHI value area for a long time, i.e., the central
urban area of Kunming city. Among the five levels of ecosystem health, the relatively
weak and ordinary levels are mostly located in areas covered by arable land and grassland.
Due to the constraints of the mountainous terrain of the study area, the arable land and
grassland patches are fragmented. The land use is relatively homogeneous in these areas,
making the ecosystem health of the region relatively low. The areas with high ecosystem
health levels are mainly located in areas with high cover of forestland with an intensive
natural ecological background.

3.4. Effects of Land Use Change on the Ecosystem Health of the Central Yunnan Urban Agglomeration

We observed two trends of ecosystem health changes in the central Yunnan urban
agglomeration: improvement (hot spot clustering) and deterioration (cold spot clustering).
After overlaying the land use change mapping with the EHI change hot spot map, the land
use shifts in the colder hot spot areas in the study site between 1990 and 2020 were studied.
The types of land use changes with the most significant impact on ecosystem health were
obtained using the contribution ratio.
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Figure 5. Spatial distribution of EHI by class in central Yunnan urban agglomeration, 1990–2020.

In terms of the area ratio of ecosystem health at different levels (Table 5), in 1990, the
ordinary health level accounted for 29.7% of the total area of the study area, while the
relatively well health level accounted for 33.65%. The areas with well ecosystem health
started to expand in 2000, wherein they accounted for 38.15% in 2020, which is an increase
of 19.39% compared to 1990. Simultaneously, the areas with weak ecosystem health also
expanded by 3.91%. In the future, attention needs to be paid to the possible impact on
ecosystem health of a certain increase in the area of low health level.

Table 5. Percentage area and amount of change of each class of EHI in central Yunnan urban group,
1990–2020.

Ecosystem Health Rating 1990 2000 2010 2020 1990–2000 2000–2010 2010–2020 1990–2020

Weak 0.68% 4.83% 4.25% 4.59% 4.15% −0.59% 0.34% 3.91%
Relative weak 17.01% 11.42% 11.26% 9.85% −5.59% −0.16% −1.14% −7.16%

Ordinary 29.70% 27.38% 26.31% 24.09% −2.32% −1.07% −2.23% −5.61%
Relatively well 33.65% 23.13% 24.93% 23.12% −10.52% 1.81% −1.81% −10.53%

Well 18.96% 33.24% 33.25% 38.35% 14.27% 0.01% 5.11% 19.39%

The spatial agglomeration state of EHI changes during 1990–2020 was identified by
Getis-Ord G* statistics. Red areas (Gi z-score ≥ 1.65) are hot spots (ecosystem health
improvement agglomerations); blue areas (Gi z-score ≤ −1.65) are cold spots (ecosys-
tem health deterioration agglomerations); gray areas (1.65 > Gi z-score > −1.65) are non-
significant zones of change (Figure 6).
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Figure 6. (a) Hot and cold spots areas of change in ecosystem health levels from 1990−2020.
(b) Ecosystem health improvement areas. (c) Ecosystem health deterioration areas.

As seen in Figures 7 and 8, the types of land use changes that caused the improve-
ment of ecosystem health from 1990 to 2020 were smaller in scale and relatively scattered.
Additionally, the exchanges between forest land and grassland and the conversion from
cultivated land to forest land was found to be the dominant type of land conversion across
this area (a–e). The improvement in ecosystem health was driven primarily by the conver-
sion from grassland to forest land, the conversion from cultivated land to forest land, and
the conversion of grassland to the water area, with contribution indices of 0.020, 0.018, and
0.017, respectively. The shift from grassland and cultivated land to forest land provides the
impetus for the continued improvement of ecosystem health.

Figure 7. Ecosystem health improvement areas and their land use transfer matrix for 1990–2020.

Figure 8. Contribution of various types of land use changes in ecosystem health improvement areas.
C (cultivated land), F (forest land), G (grassland), W (water area), UR (urban land), R (rural land),
UN (unutilized land).
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As seen in Figures 9 and 10, the types of land use changes that caused deterioration of
ecosystem health from 1990 to 2020 are relatively spatially clustered. The land use changes
in the deterioration area were primarily found from the main urban area of Kunming, and
the conversion from arable land and grassland to urban land was the dominant type of land
use change across this area (f–j). Deterioration of ecosystem health occurred mainly due to
the conversion from cultivated land to urban land, the conversion from cultivated land to
rural land, and the conversion from cultivated land to unutilized land, with contribution
indices of –1.04, –0.43, and –0.22, respectively. Our study determined that the deterioration
of ecosystem health in the central Yunnan urban agglomeration is significantly related to
land use changes due to human activities. It has caused an increasing amount of ecological
land to be converted into cultivated land and urban land. It, thus, becomes a major cause
of the deterioration of ecosystem health in the region.

Figure 9. Ecosystem health deterioration areas and their land use transfer matrix for 1990−2020.

Figure 10. Contribution of various types of land use changes in ecosystem health deterioration areas.
C (cultivated land), F (forest land), G (grassland), W (water area), UR (urban land), R (rural land),
UN (unutilized land).

4. Discussion

Our research explores the impact of land use change on ecosystem health and estab-
lished that it is a key factor affecting the spatial variability of ecosystem health. We showed
through our analysis that combining land use change mapping with ecosystem health
hotspot analysis can effectively reveal the spatial variability of ecosystem health responses
while revealing the transition patterns among various types of land uses.

4.1. Interpretation of Land Use Changes in Central Yunnan Urban Agglomeration

Land resources form the basic conditions and key components in the sustainable
development of urban agglomerations [46]. Our study site, the urban land in the central
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Yunnan urban agglomeration, has seen rapid expansion since 1990. The rates of change
in urban land reached 16.86% in the last 30 years, which became the most important
factor perturbing the overall land structure. The central Yunnan urban agglomeration
developed rapidly between 2010–2020. Further, because of the accelerated economic
globalization and regional integration, four cities of Central Yunnan (Kunming, Qujing,
Yuxi, and Chuxiong) signed a cooperation framework for integrated development. It
resulted in the rapid economic growth, enhanced functions of the central cities, and rapid
population concentration. The growth in the urbanization level, i.e., from 32.05% in 2010
to 58.94% in 2019. The conversion of forest land, grassland, and rural land into urban
land has increased significantly. All four predominant cities of the central Yunnan urban
agglomeration are located in the mountainous basin, and urban development is mostly
concentrated in the dam area. This limits the land resources accessible to the central
urban area.

Predictably, the contradictions between high concentration of population, industry,
and limited land resources of the central Yunnan urban agglomeration will become the
weakest link in future development. For future work on land development and manage-
ment of the urban agglomeration, we should focus on characteristics like the unique natural
conditions and landscape patterns of the mountainous areas, strengthening the macro
control of land, improving land conservation and intensive use, and promoting land use
efficiency. With guided demands and regulated supply, it will be possible to reasonably
determine the new urban land scale, control the disorderly expansion of urban industrial
and mining land, and guide the adjustment of the internal structure of urban land. Simulta-
neously, this will lead to strict control over all kinds of non-agricultural construction land
occupying cultivated land, the protection of the functioning in production, ecological, and
landscape isolation zones of cultivated land of the study area.

4.2. Ecosystem Health Level Analysis

Our study shows an improvement in the ecosystem health in the central Yunnan urban
agglomeration, but the ecological health level is spatially unevenly distributed. The central
and eastern regions show poorer characteristics of ecosystem health while the western
region is relatively better. Among them, the areas with high values of ecosystem vigor
are distributed in the areas where the lakes and waters are located, as well as the forest
areas within Chuxiong, Yuxi, and Honghe (Figure S7). Driven by rapid urbanization,
the spatial pattern of ecosystem health shows an increasing trend from the urban areas
to the surrounding areas. This characteristic is also reflected in the sub-indices, where
ecosystem organizational power shows a decreasing distribution from the central high-
value area to the peripheral areas, reaching the lowest value at the edge of the study
area (Figure S8). Spatial variation in ecosystem resilience coefficients is closely related to
anthropogenic interventions. The lowest level of ecosystem resilience is found in areas
with urban development, and the state of low-value clustering is apparent (Figure S9). This
indicates that the environmental problems and landscape fragmentation, brought about
by the concentration of urban population and high-intensity development, are key factors
influencing ecosystem health [47].

Although the ecosystem health of the Central Yunnan urban agglomeration is relatively
well, the degree of aggregation becomes more pronounced in areas of weak health. The major
factors causing this include the integrated development within urban agglomerations, the
amplified gravitational and spatial radiation capacity between cities, the deepening degree of
interaction, and the frequent transitions between land use intensity and land use types [48].
Therefore, in the process of ecosystem health maintenance, attention should be paid to
monitoring the ecological health of low-value agglomeration areas, reducing the interference
of large-scale human activities on the ecosystem, overcoming the negative effects caused by
the agglomeration effect, and enhancing the self-regulatory ability of the area.
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4.3. Relationship between Land Use Change and Ecosystem Health

The ecosystem health improvements and deteriorations are majorly driven by inter-
conversions among land use types of the central Yunnan urban agglomeration. Among
them, the land change types with the most significant impact on ecosystem health improve-
ment were the conversions from grassland to forest land, the conversions from cultivated
land to forest land, and the conversions from grassland to water areas. Thus, the most
effective means to maintain the ecological health and stability of the central Yunnan urban
agglomeration would include accelerating the protection and restoration of the ecological
backgrounds of the improvement area, enhancing vegetation cover and biodiversity in the
area, and maintaining the ecosystem vigor of forest land and water areas. On the contrary,
the types of land changes that had the most significant impact on the deterioration of
ecosystem health were the conversions from cultivated land to urban land, with a contri-
bution index of −1.04, and the area of occupied cultivated land is 818.20 km2. However,
food security is the basis of national security, and in the face of the large-scale occupation
of arable land by urban land, efforts must be made to restrict land development intensity.
In the future, government decisions should encourage the development of a gradient devel-
opment model for the gradient development mode of mountain towns, make rational use
of land resources, strengthen intensive land use, determine the optimal land use structure,
and guarantee the development of urban construction while achieving effective protection
of the ecological function of arable land.

It has also been found in previous studies that urban sprawl can, directly and indirectly,
lead to the degradation of ecological services and contributes to the decline in the value of
global ecosystem services [49–51]. Rural–urban migration, economic growth, all intensified
urban expansion and land depletion. During this period, the degraded areas of urban ecosys-
tem service function in central Yunnan were also mainly concentrated in the urban expansion
areas (Figures S1–S6). Therefore, in order to promote ecosystem health, policy makers should
pay more attention to the contradiction between the scarcity of urban land in the study area
and ecological conservation in mountainous areas. On the one hand, it implements the con-
struction of major ecological projects such as “natural forest protection”, “return of cultivated
land to forest and grass”, soil and water conservation, and rock desertification control [42],
which actively carries out the restoration of degraded terrestrial ecosystems. In addition,
according to the “Yunnan Province Ecological Function Zoning Plan” [52], the focus is on
strengthening the ecological function protection and restoration of the middle reaches of the
Jinsha River Basin Soil and Water Conservation Zone, the Red River Basin Soil and Water
Conservation Zone, and the Pearl River Headwaters Water Conservation Zone. For areas
with weaker ecosystem health, local governments must increase investment in environmental
protection to improve water connotation and soil conservation capacity. This will improve the
purification and self-regulation capacity of the ecosystem and reduce the vulnerability of the
ecological environment in mountainous areas.

4.4. Limitations and Future Research

In the current research, the ecosystem services assessed, based on the InVEST model,
were incorporated into the ecosystem health evaluation, which better reflects the ecological
processes compared to the value-accounted ecosystem services. This methodology, to some
extent, compensates for the study of land use change in the ecosystem material-energy
cycle. However, it is still unclear how ecological processes triggered by land use change,
and their cascading effects can simultaneously contribute to changes in ecosystem health
levels [53]. Moreover, the study only focused on the unidirectional processes between
land use change and ecosystem health effects, while the quantitative integration between
natural feedback mechanisms and the land use change model needs further attention in
the future [54].

As the urban agglomeration of central Yunnan gradually moves from development
to maturity, the intensity of anthropogenic disturbances further increases. Based on the
limited land resources in mountainous areas, the perspective of ecosystem health research
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on land use changes should pay more attention to the rational allocation of land resources.
In addition, we should continue to explore the factors driving and influencing mecha-
nisms of ecological health. These would provide the scientific basis for policymakers and
implementers to establish suitable conservation measures.

5. Conclusions

The research was conducted on mountainous urban agglomerations in the southwest
plateau of China. It aims at exploring the inherent correlation of regional ecosystem
health with land use patterns and incorporates the InVEST model-based ecosystem service
assessment into the ecosystem health evaluation. This methodology further emphasizes
the interaction process between land use and natural ecosystems. Additionally, the study
explored the responses of two trends of ecosystem health deterioration and improvement
of the study area to land use change by combining land use change mapping and hotspot
analysis. The findings of the study are shown below:

(1) Forest land was the predominant land use type during the study period. The transfor-
mation of cultivated and grassland to urban land is the most significant in the process
of land type transformation. The rapid expansion of urban land became the most
important factor in disrupting the overall land use structure change in the study area.

(2) The spatial variability of ecosystem health level is significant, with the central and
eastern regions being worse and the western regions being relatively good. The areas
with the lowest levels of ecosystem health are urban development areas.

(3) Ecosystem health is influenced by land use shifts. The improvement of health levels
is closely related to the mutual transfer between forest land and grassland, and the
conversion from cultivated land to forest land. The fast expansion of urban land
caused by urbanization and the conversion from cultivated land and grassland to
urban land are important reasons for the deterioration of ecosystem health.
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Abstract: Topographic position indices (TPIs) measure essential impacts on ecosystem service supply
capacity. The identification of changes in ecosystem services and value metrics under varying TPIs
has become a topical subject of global change research. Multidimensional changes in spatiotemporal
and geographical aspects of ecosystem service values (ESVs) are assessed in this article using land
cover/use data from 2000–2015. Effects of land-use/cover changes and topographic indices on
ESVs are explored using the Chinese terrestrial unit area ecosystem service value equivalence table
combined with topographic factors. A sensitivity index is introduced to quantify the robustness of
total ESV to land-use/cover and topographic indices. The results show that: (1) The total ESV in
the Qihe watershed declined with a change in land-use/cover during the period 2000–2015. The
maximum ESV was CNY 1.984 billion in 2005 and the minimum was CNY 1.940 billion in 2010;
(2) The response of ESV to land/use cover varied greatly across TPIs, with the most significant
change in ESV occurring in the 0.6–0.8 TPI range and the greatest change in a single ecosystem service
occurred in water areas; (3) The sensitivity indices of ESVs are all less than 1. The sensitivity indices
of unused land and water tended to zero. Woodland sensitivity indices were the highest at 0.53,
followed by those of arable land and grassland, owing to the large proportion of arable land and
grassland areas in the overall area of land-use categories.

Keywords: ecosystem service value; land-use/cover change; topographic position index; sensitivity
index; Qihe watershed

1. Introduction

Complex topography typically offers a variety of ecosystem services and significant
spatial heterogeneity across watersheds. These services often include biodiversity conserva-
tion, water supply, food production, and soil conservation [1–5]. Nonetheless, the integrated
measurement of ecosystem service capacity and regional differences between watersheds
has presented a research challenge for geographers, ecologists, and economists [6–10].

Ecosystem Service Value (ESV) research was pioneered by Constanza in 1997 [11–14].
Ouyang et al. [15,16] and Xie et al. [17,18], among other prominent Chinese scholars, quickly
followed up with an assessment of the capacity and value of ecosystem services in China.
Using the global ecosystem services assessment by Constanza, Xie et al. [19] established
a Chinese terrestrial ecosystem services assessment system. The value of five ecosys-
tem service functions (1. Preserving the equilibrium of O2 and CO2 in the atmosphere;
2. Aiding water conservation; 3. Conserving total organic matter; 4. Providing nutrient
storage and cycling; 5. Providing a purifying effect on the environment) in China was esti-
mated by Ouyang et al. [20] using alternative engineering, shadow pricing, and profit and
loss analysis.

The Millennium Ecosystem Assessment (MEA) demonstrated that the capacity and
the value of global ecosystem services are largely underestimated, and that an accurate
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estimate of the capacity and value of ecosystem services can improve land-use science [21].
Simultaneously, the MEA proposed that ecosystem services research should evolve from
the current single static value assessment to the assessment of the ecosystem services’
impact on human well-being, including concepts such as regional variability, multi-scale
ecosystem services, and the dynamic evolution of ecosystem services [22,23].

Owing to these developments, the valuation of ecosystem services has become a
high priority topic in ecosystem services research, especially research focusing on the
impact of changes in ecosystem services in the context of global change and including
the consideration of human activities on regional sustainable development [24,25]. In
this context, many ecosystem service payment projects have been implemented in wa-
tersheds around China and are providing a basis for government policies on ecological
protection [26,27]. Quantitative investigations of anthropogenic influences on the ESV,
focusing on land-use/cover change, are becoming popular [28–31]. Nonetheless, there
remains a lack of scientific standards for applying scientific rigor to ecosystem services in
regional development and ecological conservation, making it difficult to operationalize in
regional development planning.

Yang et al. analyzed the trade-offs between ecological health and socioeconomic
development in 2040 under different land-use scenarios, by using multi-temporal, high-
resolution (0.5 m) remote sensing satellite imagery and biophysical models, setting a
precedent for the practical application of ecosystem service analysis [32]. Regional vari-
ability and dynamic changes in ecosystem services are defined by human activities with
land-use at their center, dramatically influencing the structure, processes, and function of
the ecosystem. Understanding the multidimensional patterns of ecosystem service changes
and influencing variables at the local watershed scale bear practical implications for land
resource management and human well-being enhancement [33–36].

At present, most research has focused on the quantitative analysis of a single time
node and a single type of service capacity in a region, whereas the trade-off synergies
and geographical and temporal differences of numerous service capabilities have received
insufficient attention [37]. The equivalent factor method has the advantage of visualiz-
ing changes in ecosystem services and requires fewer parameters, so it is often used to
estimate the value of ecosystem services [18]. Studies have been conducted to assess the
ESV at different scales such as for provincial scales [38], mountainous regions [39], and
watersheds [40], and to estimate the ESV from different land-use types such as glaciers [41],
forests [42], grasslands [43], and wetlands [44]. However, little research has been conducted
on multidimensional variations in ESV at the small watershed scale in combination with
topographic features [9,45].

Small watersheds are basic and complete natural geographical units, and their complex
geomorphological types render them capable of a variety of ecosystem service functions
(biodiversity conservation, water supply, production, regulation, etc.). It is vital to research
the spatial–temporal variability of ESV in small watersheds for human well-being. However,
there are few studies that incorporate the multidimensional analysis of spatial–temporal
variability of ecosystem service in small watersheds with topographic gradient effects.
Consequently, determining ways to evaluate the spatial–temporal variability of ESV in
connection with topographic features has emerged as a critical issue in this study. Given
that ecosystem services are characterized by regional heterogeneity and dynamic changes,
especially resulting from human activities centered on land use, the structure, processes,
and function of an ecosystem can change significantly. Thus, it is of practical significance to
understand the multidimensional change patterns and influencing factors of ecosystem
services at small watershed scales to facilitate the rational use of land resources and the
improvement of human well-being.

The Qihe watershed is located in the transition area between the second and third steps
in China, between the Taihang Mountains and the North China plain. This watershed serves
an important water-conservation role, and the terrace transition zone is distinguished by its
peculiar geographic relief. From 2000 to 2015, the ESV in this region was evaluated using
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land-use/cover data and a coefficient-corrected terrestrial ecosystem unit area scale was
developed. Within the watershed, the total ESV, individual ESVs, and sensitivity indices
were calculated. The topographic position of individual ESVs was also evaluated to further
investigate the impacts of land-use/cover and identify spatial differentiation patterns on
ESV in a small watershed.

The main objective of this study is to reveal how topography affects the spatial and
temporal distribution of ESV in a mountain-plain transition zone. We have two specific
questions: (1) What are the spatial–temporal characteristics of ecosystem service values in
the Qihe watershed? (2) How do topographic features affect the ESVs? To answer these
questions, we first corrected China’s terrestrial value ecosystem service equivalence table
using grain prices and production in Henan Province. Secondly, we analyzed the differences
in spatial–temporal ecosystem services. Finally, we used the topographic position index
(TPI) and a sensitivity index to investigate the characteristics of the regional ESVs.

2. Data Sources and Research Methods

2.1. Study Area

The Qihe watershed (35◦32′–36◦15′ N, 113◦15′–114◦23′ E) is located between the
southwestern part of the North China Plain and the southern part of the Taihang Mountains.
The Qihe River originates from the Fangnaoling mountains in Lingchuan county, Shanxi
Province. It then flows through the Henan Province into the Weihe River, a tributary of
the Haihe River. The watershed area is 2227 km2, and the elevation trend is from high
in the west to low in the east (Figure 1). The main climate type is a warm temperate
semi-humid continental monsoon climate, with an average annual precipitation of 574 mm
and an average annual temperature of 11.9 ◦C. Complex topography renders the ecological
environment of the Qihe watershed fragile, and diverse landform types present complex
variations in ecosystem services within the basin.

Figure 1. Location and elevation of the study area.

2.2. Data Sources and Initial Data Processing

Land cover/use data from the Qihe watershed (2000–2010) were obtained from the
China Earth System Data Sharing Platform-Middle and Lower Yellow River Scientific
Data Center (http://www.geodata.cn/). Based on LANDSAT multi-band remote sensing
images (from Geospatial Data Cloud, http://www.gscloud.cn/), 2015 land-use data were
interpreted visually using human–machine interaction and surveyed in the field employing
historical land-use maps of the study area, with a kappa coefficient of 86%. Digital elevation
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model (DEM) data were obtained from the Geospatial Data Cloud (http://www.gscloud.
cn/). The land-use data were all in the form of 1:100,000 vector data and the raster
data were in a uniform grid format with a spatial resolution of 30 m. The geographic
coordinate system used was WGS_1984_Albers. The socio-economic data used in the study
were obtained from the Henan Provincial Statistical Yearbook (2000–2015) and the China
Statistical Yearbook (2000–2015).

We referred to the research methods of Xie et al. [17–19] who excluded construction
land in this study area from their estimation of ESV. A coefficient correction of the Chinese
terrestrial ESV per unit area scale was performed using food production and arable prices
in Henan province. This model was used to estimate the value and change trend of five
major ecosystem services categories (arable land, woodland, grassland, water area, and
unused land) from 2000 to 2015.

A TPI was used to evaluate the shift in total and individual ESV. A 5 km × 5 km grid
was constructed in ArcGIS 10.3 and the different land-use types on the grid were multiplied
by ESV coefficients, and then divided by the grid-cell area to obtain ESV densities. Changes
in total ESV and individual ESV in relation to the TPI were calculated separately using
land-use type area changes. The ESVs in relation to TPIs were calculated and spatially
differentiated by utilizing a fishing-net function [46].

2.3. Methodology

The ESV of the Qihe watershed was investigated using the research framework for
the study of ESV multidimensional changes (spatial, temporal and TPI) summarized in
Figure 2. The framework consisted of three main components:

(1) Data preparation: In 2015, land-use data from the Qihe watershed were obtained
using human–computer interactive visual interpretation and field survey of remote
sensing images, based on reference to land-use maps of previous years. Additionally,
land-use data for 2000, 2005, and 2010 were downloaded from the China Earth System
Data Sharing Platform—Middle and Lower Yellow River Scientific Data Center. Socio-
economic data and other relevant data were extracted from the China Statistical
Yearbook (2000–2015) and Henan Provincial Statistical Yearbook (2000–2015). DEM
data were obtained from the Geospatial Data Cloud Platform.

(2) Ecosystem service value accounting: The existing China terrestrial ecosystem services
table could not be directly applied to the calculation of regional ESV. Consequently, its
parameters were corrected using grain production and prices from Henan Province.
Further integration of historical land-use data was then performed to estimate the
value of ecosystem services in the years 2000, 2005, 2010, and 2015.

(3) Multi-dimensional change analysis of ESV: A comprehensive analysis of the changes
in the total ESV and individual ESVs in three dimensions (i.e., spatial, temporal, and
TPI) was performed.

2.3.1. Estimating the Value of Ecosystem Services

As noted above, the value coefficients per unit area of the terrestrial ecosystem in
China were modified in this study. Grassland, forest, cropland, desert, and watershed in
the new system correspond to grassland, woodland, arable land, unused, and water in
the original system, respectively [7–9]. The Qihe watershed area in Henan Province spans
1424 km2, accounting for 64% of the total area. The average grain yield of 5305.24 kg/hm2

and the grain price of 1.36 CNY/kg in Henan Province from 2000 to 2015 were used to
correct the table of the terrestrial ESVs [46].

The value of food production per unit area is given by the formula:

Va =
1
7

n

∑
m=1

am pmqm

A
(1)
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where m refers to the type of crop, with m = (1, 2, 3,···, n); Va denotes the economic value
of food production function per unit area of the arable ecosystem; pm is the average price
of the m food crop; qm is the yield per unit area of the m crop; am is the area of the m crop
cultivation; A is the area of food cultivation. Vij is defined as follows:

Vij = eijva (2)

where Vij is the service value of ecosystem service i in ecosystem j per unit area; eij is the
equivalent factor of the service value of ecosystem service i in ecosystem j in the study area;
i is the ecosystem service type, with i = (1, 2, 3,···, n), and j is the type of ecosystem.

According to Equation (1), at constant prices in 2015, the ecosystem service value of
food production per unit area of arable land was calculated as 1030.73 CNY/ha. We refer
to Xie et al. [18,47] and Ouyang et al. [15,16] for other land-use types (Table 1).

 

Figure 2. The research framework used for studying multi-dimensional (spatial, temporal, and TPI)
changes in the ESV of the Qihe watershed.
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Table 1. Table of ecological service value equivalents per unit area of terrestrial ecosystems in the
Qihe watershed (CNY/ha) as used in this study area.

Type I Type II Arable Land Woodland Grassland Water Area Unused Land

Adjustment
Services Gas Regulation (GR) 515.37 2196.22 88.60 0.00 0.00

Climate Regulation (CR) 917.35 1770.13 219.42 407.00 0.00
Water Conservation (WC) 618.44 2078.02 220.25 18,033.2 26.50

Support
Services

Soil formation and
conservation (SFC) 1504.87 2575.16 353.56 8.80 17.70

Waste Disposal (WD) 1690.40 1419.60 1227.92 16,086.60 8.80
Biodiversity

Conservation (BC) 731.82 2195.01 580.43 2203.30 300.80

Supply Services Food Production (FP) 1030.73 462.67 802.33 88.50 8.80
Raw Materials (RM) 103.07 1601.40 4.97 8.50 0.00

Cultural
Services Entertainment Culture (EC) 10.31 833.94 93.56 3840.20 8.80

Total 7122.36 15,132.15 3591.04 40,676.10 371.40

2.3.2. Single Land-Use Dynamic Approach

The single land-use dynamic approach was introduced to measure the quantitative
change characteristics of a land-use type over a set time horizon in the watershed [48]. The
calculation formula used is as follows:

K =
Ub − Ua

Ua
× 1

F
× 100% (3)

where Ua is the area of land-use type a at the beginning of the period; Ub is the area of
the same land-use type at the end of the period; F denotes the study period; and K is the
annual rate of change during the study period.

2.3.3. Topographic Position Index (TPI)

The TPI was introduced to reflect the multidimensional changes in the ESV within the
watershed along topographic gradients, and to characterize the spatial pattern distribution
of ESV [49]. The calculation formula is as follows:

T = log10

(∣∣∣∣ E
Emean

+ 1
∣∣∣∣×

∣∣∣∣ D
Dmean

+ 1
∣∣∣∣
)

(4)

where E is the elevation value of the raster; Emean is the average elevation value of the raster;
D is the slope value of the raster; Dmean is the average slope value in the raster; T is the
topographic position index. The magnitude of T is affected by both the elevation value and
the slope of the study area. If the elevation is larger and the slope is steeper, T is larger, and
vice versa.

2.3.4. Sensitivity Analysis of Ecosystem Service Values

In this paper, a Coefficient of Sensitivity (CS) was introduced to test the effects of
land-use change on ESV, and to discern the dependence of ESV on the value coefficients
derived from 2000 to 2015 [9]. If CS > 1, this reveals that the change in the ESV coefficient
of one land-use type has a significant impact on the total ESV. If CS < 1, this can indicate
that the change in the ESV in one land-use type does not have a significant impact on the
ESV in the entire study area per unit area. The CS was defined as follows:

CS =

∣∣∣∣∣∣
(
ESVj − ESVi

)
/ESVi(

VCjk − VCik

)
/VCik

∣∣∣∣∣∣ (5)
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where ESV is the total ESV of the study area (CNY); VC is the ESV coefficient of each
land-use type (CNY/hm2); subscript k refers to the land-use type; subscripts i and j refer to
before and after the adjustment of the ESV coefficient, respectively.

3. Results

3.1. Land-Use/Cover Changes in the Qihe Watershed

The land-use/cover types in the Qihe watershed are mainly grassland, arable land, and
woodland, with a smaller area of watershed and unused land. Land-use/cover changed
significantly during the study period (Table 2). The area of construction land, watershed,
and unused land increased. Forest land area first increased and then decreased, grassland
area decreased and then increased, while arable land area continued to decrease. The land-
use single dynamic approach demonstrated that unused land was the highest, followed by
watershed, and woodland was the smallest.

Table 2. Land-use/cover change (ha) and percentage (%) in Qihe watershed from 2000 to 2005.

Time Category Arable Land Woodland Grassland Waters Area
Construction

Land
Unused

Land

2000

Area (ha)

73,417 68,287.3 69,438.7 3596.49 7893.35 10.9705
2005 68,306.28 72,657.67 69,415.12 3603.19 8737.88 10.971
2010 66,183.28 67,930.32 73,540.46 4063.92 10,932.70 79.67
2015 60,445.36 66,183.25 78,293.08 5595.32 12,128.45 80.32

2000–2005
Area change

(ha)

−5110.72 4370.37 −23.58 6.70 844.53 0.00
2005–2010 −2123 −4727.35 4125.34 460.73 2194.82 67.61
2010–2015 −5737.92 −1747.06 4752.61 1531.4 1195.75 0.69

2000

Percentage (%)

32.97 30.67 31.21 1.62 3.52 0.01
2005 32.62 30.67 31.16 1.62 3.92 0.01
2010 29.71 30.5 33.02 1.82 4.91 0.04
2015 27.14 29.72 35.15 2.51 5.44 0.04

2000–2005
Single-motion
Attitude (%)

−1.39 1.28 −0.01 0.01 2.14 0.01
2005–2010 −0.62 −1.30 1.19 2.56 5.02 123.2
2010–2015 −1.73 −0.51 1.29 7.54 2.19 0.17

3.2. Changes in the Value of Ecosystem Services in the Qihe Watershed
3.2.1. Temporal Change

Each land-use type ESV was obtained by multiplying various land-use type areas at
different periods with the corresponding ESV coefficients. The highest share of woodland
ESV in total (53%) from 2000–2015 is shown in Figure 3. It is clear that the grassland areas
account for 36% of the total (Figure 3a), but the ESV percentage is less than 14% (Figure 3b).
The reason for this is that the ESV coefficients of both water and woodland land-use are
greater than the ESV coefficient of other land-use types [18].

Figure 3. The percentage of land-use/cover by area (a) and by ecosystem services value (b) in the
Qihe watershed.
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The total ESV in 2000 was CNY 1.954 billion (Table 3), and mainly composed of
arable land, woodland, and grassland ESVs. The total ESV of the study area increased by
CNY 1.981 billion in 2005. The CNY 0.66 million increase in woodland ESV accounted for
the major part of the gain and compensated for the CNY 0.36 million decrease in arable
land ESV.

Table 3. Change amount (CNY) and change rate (%) of ecological service value in the Qihe watershed
from 2000 to 2015.

Land-Use ESV/1 × 108 CNY 2000–2005 2005–2010 2010–2015

/Cover Type 2000 2005 2010 2015
Change

Amount/
1 × 108 CNY

Change
Rate/%

Change
Amount/

1 × 108 CNY

Change
Rate/%

Change
Amount/

1 × 108 CNY

Change
Rate/%

Cultivated land 5.23 4.87 4.71 4.31 −0.36 −7 −0.15 −3.12 −0.41 −8.67
Forest land 10.33 10.99 10.28 10.01 0.66 6 −0.71 −6.51 −0.26 −2.57
Grassland 2.49 2.5 2.64 2.81 −0.01 −0.4 0.14 5.6 0.17 6.43

Waters 1.46 1.47 1.65 2.28 0.0027 0.2 0.19 12.79 0.62 37.68
Unused land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Construction

Land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 19.54 19.81 19.29 19.4 0.27 1.38 −0.52 −2.62 0.11 0.57

Between 2000 and 2005, the land-use type with the most significant decrease in ESV
was arable land (5110.72 ha), with the largest increase in woodland (4370.37 ha). The total
ESV decreased by CNY 25 million between 2000 and 2010, because woodland and arable
land were converted to other land-use types. The increase in water and grassland areas
compensated for the decrease in total value. The largest increase in land-use type was in
water area. Compared to the period 2000–2005, the total ESV of the water land-use type
decreased at a high rate of change (1.9%), and the ESV showed an increasing and then
decreasing trend.

During the 2000–2015 period, the total ESV decreased to CNY 1.942 billion, with
the decrease in area of arable land and woodland being the main reason for the de-
crease in the total ESV. The total ESV underwent an increase of CNY 27 million from
2000 to 2005, a decrease of CNY 52 million yuan from 2005 to 2010, and an increase of
CNY 11 million from 2010 to 2015. The decrease in the Qihe watershed total ESV is mainly
attributed to the decrease in areas of arable land and woodland, and increase in the area of
construction land-use.

Each ESV and its contribution rate from 2000 to 2015 were summarized using the
secondary type value coefficients multiplied by the corresponding land-use type for each
calendar year (Table 4). The different ecosystem function ESVs exhibited small variations,
with the highest contribution of 18.83% from WD and the smallest contribution from EC
(3.99%). The ranking of the individual ESVs is as follows: WD > SFC > WC > BC > CR >
GR > FP > RM > EC.

3.2.2. Spatial Variation

Based on land-use/cover data from 2000, 2005, 2010, and 2015, different ESV land-use
types in the four years were calculated for each grid cell, as well as the region’s total ESV [37].
The value density was classified into five classes (0–1000 CNY/km2, 1000–2000 CNY/km2,
2000–4000 CNY/km2, 4000–7000 CNY/km2 and >7000 CNY/km2) by referring to the
study of Xu et al. [48]. The amount of ESV density change was divided into six categories
(<−4000 CNY/km2, −4000 to −1000 CNY/km2, −1000–0 CNY/km2, 0–2000 CNY/km2),
displaying a clear reflection of the difference in spatial distribution and ESV change trend [50].
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Table 4. Ecosystem service value (1 × 108 CNY) and the contribution rate (%) of the Qihe watershed.

Type I Type II

2000 2005 2010 2015

Grade
ESV

Contribution
Rate

ESV
Contribution

Rate
ESV

Contribution
Rate

ESV
Contribution

Rate

Adjustment
Services

Gas
Regulation (GR) 1.94 9.92 2.01 10.15 1.9 9.85 1.83 9.43 6

Climate
Regulation (CR) 2.05 10.49 2.08 10.5 1.99 10.32 1.92 9.9 5

Water
Conservation

(WC)
2.67 13.66 2.73 13.78 2.72 14.11 2.93 15.1 3

Support
Services

Soil formation
And

conservation
(SFC)

3.11 15.91 3.14 15.85 3.01 15.6 2.89 14.9 2

Waste Disposal
(WD) 3.64 18.62 3.61 18.22 3.63 18.82 3.82 19.69 1

Biodiversity
Conservation

(BC)
2.52 12.89 2.58 13.02 2.49 12.91 2.47 12.73 4

Supply
Services

Food
Production (FP) 1.66 8.49 1.6 8.07 1.59 8.24 1.56 8.04 7

Raw
Materials (RM) 1.17 5.98 1.24 6.26 1.16 6.01 1.12 5.77 8

Cultural
Services

Entertainment
Culture (EC) 0.78 3.99 0.82 4.14 0.8 4.14 0.85 4.38 9

Total 19.54 100 19.81 100 19.29 100 19.4 100 -

The overall ESV in the Qihe watershed was high in the southwest and low in the
northeast (Figure 4). ESV densities > 7000 CNY/km2 were mainly distributed in areas
covered by woodlands and grasslands in the upper reaches of the watershed. Densities of
4000–7000 CNY/km2 were mainly distributed in the central part of the watershed covered
by cropland and grassland. The regional ESV density of grassland cover was between
2000–4000 CNY/km2 and was the most widely distributed, while the ESV density in the
middle and lower reaches of the watershed was <2000 CNY/km2, displaying a fragmented
distribution. During the period spanning 2000–2005, the spatial ESV distribution density
was diminished in the upper reaches of the watershed and increased in the middle and
lower reaches. The most significant decrease in ESV in the upper reaches was caused by the
rapid expansion of woodland reclamation into arable land and construction land. At the
same time, the expansion of the water area caused an increase in ESV density in the middle
and lower reaches, leading to a gradual improvement in habitat quality in the middle and
lower reaches of the basin [51]. The most obvious change in ESV density between 2005 and
2010 was in the lower reaches due to the growth in construction land area and reduction
in grassland and arable land area. As different land-use types correspond to various ESV
coefficients, a land-use type shift in the watershed will cause a corresponding change in
its ESV. It is clear that during the study period, the ESV in the Qihe watershed was in a
dynamic process of change. The decrease in woodland and grassland areas, and the rapid
expansion of construction land explained the most obvious changes. Overall, the total ESV
showed a decreasing trend.

3.3. Analysis of the TPI of ESVs

Referring to research by Chen et al. [44], the TPI was classified into six levels (0–0.2,
0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–0.1 and >1). The TPI is high in the east and low in the west
(Figure 5a). TPI values from 0–0.2 are mainly distributed in the lower reaches of the
watershed; 0.4–0.6 TPI are distributed in the middle reaches, and 0.8–1 TPI are found in the
upper reaches of the basin. Figure 5b demonstrates that land-use area is mainly distributed
on 0.2–0.4 and 0.6–0.8 TPI, which account for 27% and 25%, respectively. Values of TPI > 1
have the least distributed area (0.22 km2) and the smallest ratio (0.01%). Overall, the
TPI < 1 is distributed most widely in the Qihe watershed, accounting for 99.9% of the area.
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Figure 4. Spatial distribution and change in ecosystem service value density in the Qihe watershed
from 2000 to 2015.

Figure 5. Topographic position index distribution map (a) and land-use type area by different
topographic position index (b).

3.3.1. Topographic Factor Analysis of ESV Change

The land-use/cover in 2000 and 2015 were used to analyze the change in ESV and
individual ESVs in relation to TPI (Figure 6a). The most significant decrease in arable
land ESV (CNY 39.52 million) occurred within the 0–0.2 TPI range, while grassland and
woodland ESV increased by CNY 12.57 million and CNY 2.34 million, respectively, mainly
caused by low-value TPI areas being highly influenced by human activities [29].

A significant increase in watershed ESV (CNY 25.22 million) and an increase in wood-
land ESV of CNY 6.85 million occurred within TPIs of 0.2–0.4. The high ESV coefficient of
water areas was the major factor behind the significant increase in water ESV, while arable
land and grassland ESV decreased by CNY 12.5 million CNY and CNY 3.2 million CNY.
Small overall changes in the ESV of areas with TPI from 0.4 to 0.6 were due to increases in
water, grassland, and woodland ESVs and decreases in arable land ESV. Woodland ESV
decreased in areas with high TPI (i.e., TPI > 0.6), with the largest reduction being within
the 0.6–0.8 TPI range (CNY 25.89 million).

As shown in Figure 6b, the individual ESVs vary across TPI values. For example,
the CR ESV decreased by CNY 21.14 million, FP ESV decreased by CNY 19.25 million,
BC ESV decreased by CNY 16.14 million, GS ESV decreased by CNY 14.13 million, and
WC decreased by CNY 9.01 million, which were mainly due to the largest reduction in a
woodland area during this interval. The WC ESV increased by CNY 10.98 million and CNY
9.07 million within the 0.2–0.4 TPI and 0.4–0.6 TPI intervals, respectively. Tables 1 and 2
indicate that the large water area and high WC ESV coefficient are the main reasons for the
watershed ESV increase.
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Figure 6. Changes in total ESV (a) and individual ESVs (b) in the Qihe watershed by topographic
position index from 2000 to 2015.

3.3.2. Spatial Characteristics of TPI of Ecosystem Service Value Change

Here, we use the land-use/cover data from the two years 2000 and 2015 and combine
them with the TPI analysis to investigate the dynamic change process of ESV. By referring
to the work of Li et al. [22], the ESV was divided into <6000 CNY, 6000–10,000 CNY,
10,000–30,000 CNY, and >30,000 CNY in total, with topographic position indices of 0–0.2,
0.2–0.4, 0.4–0.6, 0.4–0.8, 0.8–1 and >1 (Figure 7). The results suggest that ESV greater than
CNY 30,000 in 2000–2015 was distributed over a large area and concentrated within TPIs
of 0.2–0.4, 0.6–0.8, and 0.8–1. ESV < 6000 CNY was mainly distributed within 0–0.2 and
0.4–0.6 TPI grading, suggesting that ESV is higher and widely distributed in 0.2–0.4, 0.6–8,
and 0.8–1 TPI, primarily due to the wide distribution area of grassland and woodland and
the higher ESV coefficients of these two types. The TPI > 1 accounts for a small proportion
of the area, and the distribution of grassland and woodland in this zone was small, thus
the ESV distribution is not significant and located within two intervals of CNY 6000–10,000
and CNY 10,000–30,000. There was a small change in land-use types resulting in the change
in ESV from 2000 to 2015. The construction land area increase had no direct effect on the
total ESV, while the increase in water area and grassland by 1998.83 ha and 8854.38 ha,
respectively, compensated to some extent for the total ESV loss caused by the arable land
area decrease.

3.4. Sensitivity Analysis of the ESVs in the Qihe Watershed

The modified ESV coefficients of the Qihe watershed were adjusted up and down by
50%, respectively, to calculate the total ESV for all years, and to estimate the sensitivity
of the results to this value (Table 5) [9]. The calculated results of the adjusted ESV coeffi-
cients for each land-use type indicate a sensitivity index of less than 1. The CS of unused
land and water tends to zero, reflecting the inelasticity of the total ESV concerning the
service value coefficient, demonstrating the reliability of the results in this paper. The
large ESV coefficient of woodland land led to the highest sensitivity index (about 0.53),
followed by arable land and grassland, owing chiefly to the large proportion of arable land
and grassland area in the total. Both the small area of unused land and low ESV coeffi-
cient resulted in the lowest sensitivity index for unused land (0.0005). During the period
2000–2015, the CS of grassland, water, and unused land showed a stable and then increasing
trend. The CS of arable land displayed a gradual decrease, the woodland CS displayed an
increase and then a decrease, and their CS changes were consistent with the changes in
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their respective adjusted areas. Overall, the ESV sensitivity index indicates that the ESV
coefficients of various land-use types still bear many uncertainties, but the total ESV in the
Qihe watershed remains in a stable state.

Figure 7. Characteristics of change in ecosystem service values of different topographic position
indices (Note: a, b, c, d, e and f indicate 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–1, TPI > 1) in the Qihe
watershed from 2000–2015.
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Table 5. Changes in the total value (CNY Billion), amount of change (CNY Billion) and sensitivity
index of ecosystem services in Qihe watershed after adjustment.

ESV/(CNY Billion) Amount of Change/(CNY Billion) Sensitivity Index (CS)

Value Factor 2000 2005 2010 2015 2000–2005 2005–2010 2010–2015 2000–2015 2000 2005 2010 2015

Cultivated land
VC + 50% 22.13 22.25 21.64 21.56 0.12 −0.61 −0.08 −0.57 0.27 0.25 0.24 0.22

Cultivated
land VC-50% 16.90 17.39 16.93 17.26 0.49 −0.46 0.32 0.36

Forestland
VC + 50% 24.69 25.32 24.43 24.42 0.63 −0.89 −0.01 −0.27 0.53 0.55 0.53 0.52

Forestland
VC-50% 14.35 14.32 14.15 14.40 −0.03 −0.17 0.25 0.05

Grassland
VC + 50% 20.77 21.06 20.61 20.81 0.29 −0.45 0.21 0.04 0.13 0.13 0.14 0.14

Grassland
VC + 50% 18.27 18.57 17.97 18.00 0.30 −0.60 0.04 −0.27

Water VC + 50% 20.25 20.55 20.11 20.55 0.30 −0.44 0.43 0.30 0.07 0.07 0.09 0.12
Water VC-50% 18.79 19.09 18.46 18.27 0.30 −0.63 −0.19 −0.52
Unused land

VC + 50% 19.52 19.82 19.29 19.41 0.30 −0.53 0.12 −0.11 0.0005 0.0005 0.001 0.001

Unused land
VC-50% 19.52 19.82 19.29 19.41 0.30 −0.53 0.12 −0.11

4. Discussion

The equivalent factor method used here to estimate the ESV in the Qihe watershed
can visually reflect the change in ESV. The advantage of the equivalent factor method
is its lower data demand compared with the price per unit area of the service function
method, which is suitable for the study of ESV at regional and global scales [20]. The
changes in land-use during the research period had a profound impact on the ESV, with the
changes acting as a guide for adjusting the land-use structure and optimizing the land-use
pattern. Topographic elements have a significant impact on regional land-use patterns
and spatial structure. Therefore, investigating the dual response of ESV to land-use/cover
and topographic factors can be a useful method for assessing the quality of the ecological
environment in a watershed. Analyzing the interaction between individual ESV and
topographic factors plays an important role in enhancing human well-being and building
harmonious habitat relationships. The purpose of this paper is to provide a reference for
small watershed-scale ecosystem service research and ecological environment construction.

5. Conclusions

The study conclusions are as follows:

(1) The land-use types in the Qihe watershed from 2000 to 2015 were mainly arable land,
forest land, and grassland, the sum of which accounts for more than 90% of the total
area. The land-use/cover changes were obvious as the areas of cultivated land and
forest land decreased by 12,971.61 ha and 2104.05 ha, respectively, and the areas of
grassland and water increased by 8854.38 ha and 43,234.8 ha, respectively.

(2) The ESV in the Qihe watershed decreased by CNY 0.14 billion from 2000 to 2015.
During the study period, the total ESV increased, then decreased, and then in-
creased again. The highest ESV occurred in 2015, with a value of CNY 1.981 billion.
The contribution level of each individual ESV remained stable, with waste treat-
ment exhibiting the highest contribution level of 18.84%, followed by soil formation
and protection.

(3) There was a significant influence of topography on the ESV. The largest decrease of
CNY 39.52 million in cropland ESV and the largest increase of CNY 12.56 million
in grassland ESV occurred within the 0–0.2 TPI range. The largest increase in the
0.2–0.4 TPI range was that of water ESV (CNY 25.19 million) and the largest decrease
in the 0.6–0.8 TPI range was that of grass ESV (CNY 25.89 million). The largest
reductions in individual ESVs were observed in the 0.6–0.8 TPI range. The ESV of
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water supply increased by CNY 10.98 million and 9.07 million within the areas of TPI
in the 0.2–0.4 and 0.4–0.6 intervals, respectively.

(4) The sensitivity index of the ESV in the Qihe watershed is less than 1. This implies a
certain lack of elasticity for the value coefficient and characterizes the robustness of
the research results in this paper.

The ESV of the Qihe watershed was estimated using the Chinese terrestrial unit
area ecosystem service value scale. Additionally, the spatial and temporal evolution
characteristics from the period 2000–2015 were analyzed. Quantitative studies of the ESV
in this watershed bear insufficient explanatory power for the trade-offs and synergistic
relationships between ecosystem service functions. In future research, the trade-offs and
synergistic relationships of ecosystem service functions within the Qihe watershed will be
refined based on this paper.
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Abstract: At present, nearly half of the population of China live in water-deficient areas where water
needs to be transferred from surrounding or remote water sources to meet local water demands.
Although the water transfer project has alleviated the demands for water in the water-deficient areas,
and brought water-supply income to water source regions, it has also posed some cross-regional
negative impacts, including the changes in the original ecology within the water source, the impacts
on the downstream water demands, and the risk of biological invasion in the distant water receiving
areas. Therefore, it can be seen that the impact of water transfer is complicated and will be manifested
in various aspects. The Middle Route of China’s South–North Water Transfer Project (SNWTP-MR),
as the world’s largest cross-watershed water transfer project, exerts particularly important effects
on regional sustainable development; however, it also produces complex interactions within the
ecological environment itself, downstream and in the distant water receiving cities. Thus, this work
attempts to apply a metacoupling analysis framework of water transfer to explore the ecological
interaction of water transfer in SNWTP-MR on each system. The metacoupling framework can be
divided into intracoupling, pericoupling and telecoupling. This study focuses on the analysis of
the causes and effects of the intracoupling, pericoupling and telecoupling of SNWTP-MR from the
perspective of ecological values and ecological risks. We found that the coupling of water transfer
brings about 23 billion yuan of ecological service value to the water source annually, but also increases
the internal ecological risk index by 9.31%, through the calculation of changes in land use; secondly,
the power generation benefit significantly increases, and the flood control standards have shifted
from once-in-20 years to once-in-a-century. However, the ecological risks are also significant, such
as poor water quality, eutrophication of water resources, competition for water between industry
and agriculture, deterioration of waterway shipping, and threats to biodiversity, etc. Considering
only water supply, the population carrying capacity of the water resource in distant water receiving
cities is increased by 16.42 million people, which enhances the value of water resources and creates
a cross-regional green ecological landscape belt. Nevertheless, the biological invasion and water
pollution have greatly affected the safety of water supply. It can be seen that the cross-regional water
transfer does not always damage the interests of the sending system and the spillover system while
benefiting the receiving system; its impacts are complex and variable. Through this paper, it is hoped
to provide a reference for the analysis of the ecological compensation, resource development and
allocation in SNWTP-MR by revealing the metacoupling relationship of SNWTP-MR. This paper will
provide new ideas for researching the metacoupling relationship, thereby offering valuable reference
for the study of the interaction generated by large-scale water transfer.

Keywords: water transfer; metacoupling; ecological environment; Middle Route of China’s South–
North Water Transfer Project (SNWTP-MR); sustainable development
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1. Introduction

As sustainable development is a major challenge around the world, how to achieve
the sustainability of urban water supply systems is one of the global concerns [1,2]. The
world population reached 7.7 billion in May 2019 and is estimated to increase to 11.2 billion
in 2100 [3]. However, the rapid urbanization and population growth will lead to a series of
severe challenges, especially in terms of urban water security. The water sources in large
cities only account for 1% of the world’s total water sources, but the urban population
consumes 41% of the world’s water resources [4,5]. Therefore, large cities or places where
the population gathers need a large amount of water transferred from surrounding areas or
remote distant areas to meet the local water demands. China’s water resources are estimated
to total 2800 billion m3, ranking fourth in the world. However, affected by natural factors
and human activities, the water resources are unevenly distributed in different regions.
For example, the water resources in the northern areas are unable to support the sustained
and sound development of the economy, resulting in increasingly significant predicaments.
To solve this problem, the Chinese government has implemented regional water transfer
projects through dam construction, water diversion, etc., among which the most influential
is China’s South-North Water Transfer Project (SNWTP). However, there is no systematic
answer as to whether other impacts will be caused if the water is transferred; considering
the large scale of the project, it is necessary to have a comprehensive analytical framework
to evaluate the impact of the water transfer project on river ecology and urban ecology [6,7].

China’s South-North Water Transfer Project (SNWTP) is by far the world’s largest
cross-watershed water transfer project, and the Middle Route of China’s South–North
Water Transfer (SNWTP-MR) can alleviate the problem of insufficient water in the north
to a large extent, especially in Beijing, Tianjin, Hebei, and Henan where high water risks
exist [8]. However, under multiple influences such as the unique natural regional unit of the
water source (at the junction of three provinces and the north-south boundary of China), the
human activities (regional cultivation and reservoir expansion) and policy implementation
(water withdrawal and immigration in the middle route), SNWTP-MR has led to complex
environmental changes and variations in hydrological processes. Moreover, the resulting
evolution and migration of the ecological environment system directly affects the security of
the ecological environment and socio-economic sustainable development. At the same time,
stakeholders often lack cross-sectoral coordination [9]. Therefore, it is necessary to study
the interaction caused by SNWTP-MR on water source areas, downstream and in distant
water receiving cities to reveal the systematic coupling and sustainable development of the
ecological environment.

Many scholars have explored these issues from different aspects. There are studies
focusing on the interactions within the coupling system, or concentrating on the social
and economic interactions between coupling systems [10,11]. Su et al. (2021) divided the
metacoupling of the water transfer project into intracoupling, pericoupling and telecou-
pling, opened the internal structure of the traditional data envelopment analysis (DEA)
system, and analyzed the efficiency of water transfer [12]. Chang et. al. (2021) used inter-
regional land exchange as the basis for fair distribution, and analyzed the cross-regional
impact of stormwater flow through local coupling and telecoupling [13]. In general, the
conceptual framework of telecoupling provides a much-needed comprehensive method
for systematic research which clearly examines the interaction of the coupling of human
and natural systems on time and space scales; it is an effective framework to solve the
sustainability of urban water resources, and is also an important reference framework for
this paper [6,14].The framework consists of five interrelated components: the coupling of
human and natural system (system); the material, information and energy flow within the
system (flow); agent promoting the flow (agent); driving causes of flow (cause); and the
effects of the flow (effects). The direction of the flow determines that the system can be
considered as a sending system (for example, the sending system in this study mainly refers
to the watershed range of the Danjiangkou Reservoir), the receiving system (for example,
the distant cities that receive water from the sending system and the downstream of the
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Danjiangkou Reservoir), and the spillover system (for example, the counties and cities along
the SNWTP-MR) [15]. This study abandons the “single dimension” mode in the traditional
research on coupling, and combines with the conceptual framework of telecoupling to build
the metacoupling framework of water transfer in SNWTP-MR, including the intracoupling
within the system, and the pericoupling and telecoupling between two systems.

This study attempts to answer the following questions under the framework of ex-
ploring the metacoupling of water transfer from SNWTP-MR: How can we systematically
analyze the interaction among the water source area, downstream areas, and the distant
water receiving cities in SNWTP-MR? How can the ecological value and uncertain risks be
studied based on technologies such as GIS? How should we further quantitatively reveal
the coupling relationship among various systems? In this study, these problems and related
issues are investigated under the new metacoupling framework to attempt to illustrate the
ecological coupling of SNWTP-MR with limited information.

2. Materials and Analytical Framework

2.1. Study Area

China’s SNWTP-MR is 1430 km long and provides domestic water to 155 billion m2 of
land, including Beijing, Tianjin, Hebei and Henan (Figure 1A). Since the route was officially
put into use in December 2014, as of 12 December 2018, the total amount of water transfer
was 22.2 billion m3 [16]. The water source is the Danjiangkou Reservoir on the Han River
(the tributary of the Yangtze River) and its upstream area, including 95,200 km2 of the
drainage divides in 43 counties in Henan, Hubei and Shaanxi Province (Figure 1B). The
downstream watershed of the Han River covers an area of 43,800 m2 (Figure 1C), including
30 counties in Henan and Hubei provinces.

Figure 1. Range of influence of SNWTP-MR. ((A) is the whole process of water transfer in the
SNWTP-MR; (B) is the scope of the water source area for water transfer; (C) is the downstream of the
water source area).
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2.2. Data Sources

First, remote sensing map data were obtained from the United States Geological
Survey (https://earthexplorer.usgs.gov/, accessed on 1 October 2019), and 10 image data
of 30 m × 30 m of Landsat in 2013 and 2019 were downloaded, respectively; they were
used for evaluating the vulnerability of the ecological environment of the SNWTP-MR
water source area. SNWTP-MR was officially put into use in December 2014. Secondly, the
information collected from the SNWTP-MR website, Beijing Statistical Yearbook, Hebei
Statistical Yearbook, Henan Statistical Yearbook, Danjiangkou Reservoir data, etc., was
used as the main source of data in this study.

2.3. Analytical Framework

The metacoupling system is a set of two or more coupled systems that interact inter-
nally as well as nearby and far away, facilitated by agents affected by various causes with
various effects [17]. The entire metacoupling system consists of a sending system, receiv-
ing system, and spillover system (Figure 2), among which the sending system provides
materials and information for the entire coupling; the receiving system obtains materials
and information from the sending system and provides energy and capital for the sending
system; while the spillover system is the area affected by the transfer of materials and
information, and is the medium for the transfer between the receiving system and the
sending system. Further, the metacoupling framework can be divided into three parts:
intracoupling, pericoupling and telecoupling [17] (Figure 2).

Figure 2. Metacoupling relationship.

Intracoupling refers to the internal mutual influence of the sending system. For
example, the sending system of SNWTP-MR is Danjiangkou Reservoir, and intracoupling
studies the relationship of ecological changes in the water source area’s own system.

Pericoupling refers to the mutual influence between the sending system and the
receiving system, emphasizing the influence of the sending system on the surroundings,
and there is no need for conduction between them through other media. For example, the
pericoupling of SNWTP-MR refers to ecological coupling in the same watershed.

Telecoupling is similar to pericoupling, but it emphasizes the cross-regional relation-
ships. The sending system and the receiving system need to pass through the spillover
system to have a relationship. For example, the Danjiangkou Reservoir of SNWTP-MR
needs to be connected to the northern water-receiving city through the construction of
a canal.

Due to the complex impact of the SNWTP-MR project, this article uses a system per-
spective to decompose the impact, which will help to present the problem and simplify the
internal complexity of SNWTP-MR. We segmented metacoupling to facilitate the under-
standing of the interactions among them, so as to assess the sustainable development of the
ecological environment of SNWTP as a whole. However, the metacoupling framework can
integrate the impacts that may not be quantifiable or measurable, and expand the existing
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methods. For quantifiable impacts, the framework can provide the quantitative results
of the coupling process, and for non-quantifiable impacts, it can improve the qualitative
understanding of the relationship between agent and flow [18].

The metacoupling framework (Figure 3) begins with the analysis of the ecological
environment in intracoupling, pericoupling, and telecoupling, including the main influ-
ences, the causes and ways of coupling, to clarify the ecological values and ecological
risks brought by these potential factors. Intracoupling evaluates the vulnerability of the
ecological environment in the water source area of SNWTP-MR according to the data in
typical years selected, analyzes the temporal and spatial pattern and evolution trend of
the ecological environment, and pre-processes the data on Plowland, Vegetation, Water,
Artificial surface, and Bare Soil of the water source area with the help of remote sensing and
geographic information system (GIS), so as to reveal the spatial coupling of Danjiangkou
waters and the ecological effects of the construction of SNWTP-MR. These effects include
impact on the ecological value (the economic value of land type) and ecological risk (im-
provement of ecological risk index), which are then measured by economic evaluation of
ecosystem services and intensity coefficients of ecological risk theory. The Danjiangkou
Reservoir is the boundary to divide the sending system (upstream water source area) and
the receiving system (downstream area). Pericoupling reveals that the ecological value and
ecological risk of the two systems are not always mutually matching and benignly comple-
mentary under the coupling of environmental ecological effects. For example, a situation
may occur where migration may mitigate the carrying capacity of ecological environment
in upstream, but poses a burden to the environmental carrying capacity downstream. We
explored the ecological values from the aspects of power generation benefits, seasonal
water transfer, water quality, flood control benefits, and the amount of water abandonment
of floods. We also investigated the ecological risks from issues such as eutrophication of
water, the deterioration of shipping capacity, the competition for water between industry
and agriculture, and biological threats. A clear understanding of the interaction between
the upstream and downstream aspects of the Danjiangkou Reservoir is beneficial to dealing
with the contradictory relationship between them; telecoupling divides the sending system,
the spillover system and the receiving system. The remote water transfer will affect the
safety of water supply, population carrying capacity, water quality and groundwater level
in water receiving areas, and produce ecological risks such as water source pollution and
biological intrusion. The spillover system is directly and indirectly affected by water pollu-
tion and agricultural irrigation, and it also exerts pressure on the water quality protection
and water development of the sending system. By analyzing the telecoupling relationship,
we can understand the interaction among them in terms of ecological value and ecological
risk. The framework encompasses with the environmental interaction of metacoupling,
and based on the interaction of ecological environments in the coupling relationship, we
can reveal how to promote the sustainable development under this interaction of coupling.
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Figure 3. Research framework of SNWTP-MR metacoupling.

3. Application of the Metacoupling Framework in SNWTP-MR

3.1. Metacoupling Framework Analysis

Under the framework of metacoupling, we redefine the multi-system coupling rela-
tionship of SNWTP-MR as follows, focusing mainly on system, agent, flow, cause and effect.

3.1.1. System

Intracoupling is mainly the interaction among different types of land use in Dan-
jiangkou water source, emphasizing the mutual transformation among Plowland, Vegeta-
tion, Water, Artificial Surface and Bare Soil. Since pericoupling is in the cross-boundary
watershed, the different demands of upstream and downstream will affect the impact of
water transfer in the watershed. Therefore, we use the sending system and the receiv-
ing system to analyze the pericoupling relationship between upstream and downstream
caused by SNWTP-MR. In telecoupling, the watershed range of Danjiangkou Reservoir
is the sending system, the distant water receiving city (Province) (Henan, Hebei, Tianjin,
Beijing) is the receiving system, and the counties and cities along the route constitute the
spillover system.

3.1.2. Agent

The metacoupling of SNWTP-MR mainly involves the participation of local and central
government, enterprises and farmers in the construction of the reservoir, the transfer of
water, the protection of the environment and the coordination among the various systems.
To help overcome the project’s technological and engineering challenges, thousands of
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experts—representing government agencies, corporations, banks, and non-governmental
organizations—have been recruited both domestically and internationally, in addition to
millions of laborers. At the central government level, there is the SNWTP Construction
Committee Office under the State Council. At the local and regional levels, there are
construction committees in each affected city and province [15].

3.1.3. Flow

The flow of metacoupling involved in water transfer is mainly the volume of water
transfer, for example, the multi-year average volume of water transfer is 9.7 billion m3

per year, of which the volume of water transfer to Henan, Hebei, Beijing, and Tianjin is
3.71, 3.47, 1.24, and 1.02 billion m3, respectively, and the necessary volume of runoff in
downstream areas [19]. Secondly, there is a spatial flow of industrial and agricultural
pollutants with the water transfer. In addition, the water delivery at the pump station
also leads to the flow of energy. Thirdly, there is a spatial transfer of population in the
areas affected by the project construction. Finally, the construction and operation of the
SNWTP-MR also results in the flow of funds. The main flows of intracoupling include
water, money, and population; the main flows of pericoupling are water, money, and energy;
and the main flows of telecoupling are water, money, pollution, and energy.

3.1.4. Cause

The reason for the intracoupling of the whole SNWTP-MR is mainly attributed to the
change in the nature of the land which was caused by the construction of Danjiangkou
Reservoir, and the development and utilization of land due to the spatial transfer of
population and local economic development. In addition, land development will also
be restricted due to the strengthened government focuson ecological protection. From
the perspective of the dam itself, the reason for pericoupling is that because the dam
body of the Danjiangkou Reservoir is raised, a large part of the water storage is used
for the downstream water supply, so that the water for use in the downstream area is
reduced. From the perspective of the water receiving area and downstream area, the
reason for pericoupling is that the receiving water area and the downstream area have
different purposes for the use of water resources, and there is a competitive relationship
between the two. From the perspective of upstream and downstream, the interests of
upstream and downstream users are different, resulting in conflicts and contradictions
in water allocation. Under these multiple influences, the services and the willingness
for development in the watershed will be inevitably affected. The potential reasons for
telecoupling include four aspects: ecology, economy, politics and technology. From the
perspective of ecology, there are excessive exploitation of groundwater and serious water
pollution in the north, so the spatial water transfer is conducive to improving the carrying
capacity of ecological environmental resources. From the point of view of the economy,
there is a large distribution of agriculture and industry in the north, accompanied by a lack
of water resources, so in order to achieve the sustainable development of the economy, it
is a feasible option to seek alternative water resources. From a political perspective, the
distribution of water resources and population in the north and the south is uneven; the
remote water transfer in SNWTP-MR can increase taxes for local government and provide
employment opportunities. From a technical point of view, the terrain along the route is
high in the south and low in the north, which means that natural runoff can be achieved
through the influence of gravity in most parts of the route, and there are not many places
where a pumping station is needed for water delivery [20]; thus, water transfer is feasible
from the aspects of geographical elevation and energy.

3.1.5. Effects

Intracoupling affects the hydrogeomorphic characteristics, causing the pressure of
population transfer, and limiting the development of industry and agriculture to a certain
extent. Obviously, the result of coupling will also promote ecological conservation (see
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Table 1 below for details). The impact of pericoupling is that the expansion of the Dan-
jiangkou Reservoir brings both opportunities and challenges to the ecological and economic
use of water resources, and also influences the transformation of regional industry and
society (see Table 2 below for details). The impact of telecoupling is manifested in multiple
aspects, including economy, society, ecology, etc. Water transfer can put pressure on the
finances of different systems or increase their income, and also will threaten or promote the
environmental carrying capacity of each system. At the same time, water transfer causes a
threat to biological survival and the pressure on migration (see Table 3 below for details). In
this paper, we focus on the ecological value and ecological risk generated by SNWTP-MR.
Therefore, a description of detailed quantitative and qualitative effects is conducted below
from the perspective of ecological value and ecological risk, in order to better present the
impact of metacoupling.

Table 1. Analysis of the intracoupling framework of SNWTP.

Sending System

System description The watershed range of Danjiangkou Reservoir

Causes Construction of Danjiangkou Reservoir, spatial transfer of population, local economic development,
government’s interest in ecological protection

Agents Central and local government, enterprises, farmers

Flows Water, money and population

Effects (−)
The reservoir region immigration and resettlement cause ecological damage (relocation of 300,000 people).
The hydrogeomorphic features have been changed, which increases the ecological risk.
Industrial, agricultural and fishery development is restricted, thus farmers’ incomes are reduced.

Effects (+)
The water storage in the reservoir is increased, which improves the utilization of water resources.
Local awareness of ecological protection has been aroused, and the ecological destruction rate in the water
source is effectively contained.

Table 2. Pericoupling of SNWTP.

Sending System Receiving System

System description The watershed range of Danjiangkou Reservoir Counties and cities in the downstream of Han River

Causes

For the SNWTP-MR, the dam body of the Danjiangkou Reservoir is raised, which reduces downstream water
for use.
The water receiving areas have different purposes for water consumption from the downstream areas, and
there is a competitive relationship between the two.
The interests of upstream and downstream users are different.

Agents Central and local government, enterprises, farmers

Flows Water, money and energy

Effects (−)

The pressure on flood control is increased; the
transfer and resettlement of the population from the
reservoir-inundated region brings huge burden; the
hydrological and geomorphological characteristics
have been changed.

Water flow is reduced; water quality is decreased;
flow rate is slowed, shipping capacity is reduced;
biobalance is destroyed, and biodiversity is
threatened; water consumption in industry and
agriculture is affected.

Effects (+)

The water storage in reservoir is increased; total
power generation is improved; the value of tourism
development is increased; the utilization efficiency
of water resource is increased.

The regional electricity guarantee is increased; the
flood control pressure is reduced; the seasonal water
allocation can reduce the threat to water supply
caused by extreme weather; industries with high
demands of water can carry out industrial
transformation and upgrading.
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Table 3. Telecoupling of SNWTP.

Sending System Receiving System Spillover System

System description The watershed range of
Danjiangkou Reservoir Henan, Hebei, Tianjin, Beijing Counties and cities along

the route

Causes

Geographical elevation allows water transfer, the terrain along the
route is high in the south and low in the north, and naturalrunoff can
be realized in most parts of the route;
There is an uneven distribution of water resources and population in
the north and south.
There is a large distribution of agriculture and industry in the north,
accompanied by the lack of water resources;
There is excessive groundwater exploitation and serious water
pollution in the north.

Spatial transfer of water

Agents Central and local government, enterprises, farmers

Flows Water, money, pollution, energy

Effects (−)

Migration out of the reservoir
region causes environmental
burden and brain drain; threats to
species’ survival.

Biological invasion; elevated
water, nitrogen and phosphorus
nutrients; water use risk; human
and financial input; payment for
water resources.

Water quality decline; the need
for water resources protection
along the route increases
financial pressure.

Effects (+)

Income from water transfer; dam
power generation; ecological
conservation; tourism
development. A large amount of
water can be transferred out
during the flood season to reduce
the threat of floods.

Agricultural irrigation water;
domestic water; reduced
groundwater exploitation;
increased population capacity and
economic growth; water quality
improvement;

Ecological corridor; tourism
development; use of corridor to
achieve water transfer balance in
small range.

3.2. From the Perspective of Ecological Value

The intracoupling of SNWTP-MR refers to the interactions between different types of
land use in Danjiangkou water source areas, so it is necessary to analyze their patterns of
spatial and temporal change pattern. Based on the satellite remote sensing images of the
Danjiangkou water source in 2013 and 2019, we classified the land use type by the Threshold
method of eCognition 8.7 software (Developed by Trmible, Sunnyvale, CA, USA) and the
Pretreatment method of ENVI 5.1 software (Developed by Exelis Visual Information Solutio,
Boulder, CO, USA) (including radiation calibration, atmospheric correction, image mosaic,
image cropping). According to the theories of Costanza et al. and Yang Guoqing [21,22],
when calculating the ecological service value and ecological risk, land use is mainly divided
into five categories, and this study also continues this classification. The categories include:
Plowland (paddy field, dry land), Vegetation (woodland, bush, open woodland, other
woodland, high coverage grass, medium coverage grass, low coverage grass), Water
(canals, lake, reservoir pond), Artificial Surface (urban land, rural settlement), and Bare
Soil (sandy ground, Gobi saline-alkali land, bare earth, bare rock texture) (Figures 4 and 5).
The “accuracy assessment” analysis index was used for accuracy verification. The specific
method is to compare and test the drawings analyzed in this study using the vector files
of the identified land types on the software. The verification result is: the accuracy of the
classification in 2013 is about 87%, about 85% in 2019, so the accuracy is high. This can be
seen from the changes in land use (Figure 6). From the red circles A and B in Figure 6, it
is also found that there is obvious land development; at the same time, the expansion of
the reservoir increases the water area significantly (the red circle C in Figure 6), which will
provide a solid foundation for remote water transfer.
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Figure 4. Land use of Danjiangkou water source in 2013.

Figure 5. Land use of Danjiangkou water source in 2019.
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Figure 6. Total changes in land use from 2013 to 2019. (The circle (C) represents the increased area of
the reservoir. Circle (A) and circle (B) indicate artificial surfaces added in 2019 over 2013).

Tables 3 and 4 show the changes in land use. We use the spatial dynamic degree of
change in land use to reflect the speed of land use change under coupling. The spatial
dynamic degree refers to the ratio of the product of the translation of this type into the sum
of other types and the translation of other types into the sum of this type to the number of
certain land types at the end of the period, which is used to reflect the rate of change [23].
It can be seen from Table 5 that the water transport by SNWTP-MR leads to an increase
in the water level of the Danjiangkou Reservoir, forcing the population migrated due to
the Reservoir to develop more of the highland. This can also be indirectly reflected by the
increase in the area of the Plowland and the Artificial Surfaces. At the same time, the area
of Vegetation has not changed much in the past six years, which also demonstrates that the
protection of the water source of Danjiangkou Reservoir has exerted certain effects. The
changes in intracoupling will also affect the ecological value and ecological risk in the area.

Table 4. Matrix of the land change and transfer in the water source of Danjiangkou Reservoir in
2013–2019.

2013–2019
Plowland
(km2)

Vegetation
(km2)

Water
(km2)

Artificial
Surface (km2)

Bare Soil
(km2)

Total
Reduction
(km2) (ΔUre)

Plowland (km2) 2305.81 142.07 84.96 886.73 183.38 3602.95 1297.14
Vegetation (km2) 1161.04 88,234.62 253.31 2565.63 7672.90 99,887.50 11,652.89
Water (km2) 40.66 186.96 640.01 109.25 96.69 1073.58 433.57
Building (km2) 562.75 286.15 125.23 1063.31 237.32 2274.75 1211.44
Bare Soil (km2) 308.12 1773.17 91.38 953.67 1362.08 4488.42 3126.34

109



Int. J. Environ. Res. Public Health 2022, 19, 10555

Table 4. Cont.

2013–2019
Plowland
(km2)

Vegetation
(km2)

Water
(km2)

Artificial
Surface (km2)

Bare Soil
(km2)

Total
Reduction
(km2) (ΔUre)

Total 4378.38 90,622.96 1194.89 5578.60 9552.37
Increments(

km2
)
(ΔUin)

2072.57 2388.34 554.88 4515.29 8190.29

Change (km2) 775.43 −9264.54 121.31 3303.85 5063.95

Table 5. Spatial dynamic degree of land change in the water source of Danjiangkou Reservoir in
2013–2019.

Name Formula Plowland Vegetation Water Buildings Bare Soil

spatial dynamic
degree

C = ΔUin×ΔUre
U

C : Rate of change over a period of time;
ΔUin: Other types translate to the sum of
this type;
ΔUre: This type translates to the sum of
other types;
U: The number of certain land types at the
end of the period

0.77 0.15 0.83 1.03 1.18

Based on the above-mentioned changes in land use, the ecological service value of
the water source of SNWTP-MR can be measured. In terms of the measurement of the
ecological value of intracoupling, Costanza proposed the theoretical framework of economic
evaluation of ecosystem services, which provides a perspective for the measurement of
the relative ecological value of land use types [21,24]. Costanza et al. classified land
use into 17 types, and the ecological services of each type include four major categories,
namely, supply service, regulation service, support service and cultural service, and nine
sub-services. Specifically, the relative value of each unit of arable land is linked to the
market price of its output value, and the value of other types of land depends on its
relative importance to arable land (equivalence coefficient) [25]. Built-up land is considered
incapable of providing ecosystem services [26,27]. For example, the output value per
hectare in 2013 was 25,837 yuan, while in 1995 it was 13,350 yuan, so the relative increase
was 1.94 times. We can calculate the ecological service value of the year according to the
corresponding ratio. According to the theory proposed by Costanza et al. and the average
grain price per hectare for the current year, Plowland, Vegetation, Water, and Bare Soil
of 1 hm2 can provide the ecological value of 4.7279, 1.8774, 10.7772, and 3.303 million
yuan, respectively. Therefore, the increase in the water area due to the expansion of the
Danjiangkou Reservoir can create an ecological service value of 1.307 billion yuan; on the
whole (Table 6), the coupling of the internal land use types has increased the value of
206.86 billion yuan provided in 2013 to the ecological services value of 229.937 billion yuan,
an increase of 23 billion yuan. Therefore, although the construction of SNWTP-MR has
changed various land types to some extent, as a whole, it is still conducive to providing
ecological value in water sources. (The ecological value emphasized in this article generally
refers to the services that ecology can provide, including quantifiable and non-quantifiable
values, such as the value of ecological services. Ecological service value refers to the
ecological value that can be measured by money. Benefits refer to effects and incomes,
which can be economic, social and environmental benefits, and include the expansion of
ecological value, such as flood control benefits.)
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Table 6. Ecological service value of intracoupling.

Name Formula
Plowland
(km2)

Vegetation
(km2)

Water
(km2)

Artificial
Surface
(km2)

Bare Soil
(km2)

Total Sources

Value of
ecological
services

VS =
m
∑

i=1
Ti×Pi

Ti : Area of type i land type;
Pi: Ecological value of each
land type

207.01 1701.36 128.78 0.00 31.55 2068.69
2013 year
(100 million
yuan) [22]

382.83 1610.93 224.99 0.00 80.62 2299.37
2019 year
(100 million
yuan)

Note: The units of money used in this study are expressed in Renminbi (RMB).

In terms of pericoupling, first it is found that the power generation benefit of water
resources and seasonal water transfer have been improved. For example, the total length
of the Danjiangkou dam is 2.5 km, the maximum dam height of the project is 97 m, the
installed capacity is 900,000 kilowatts, and the multi-year average annual power generation
is 4 billion kilowatt hours, which can bring an income of 2.292 billion yuan to the water
source of Danjiangkou Reservoir every year if calculated at the lowest electricity price of
0.573 yuan in the downstream Wuhan city. During the main flood season from July to
September each year, the water level can be regulated to below the flood control level, and
seasonal water transfer can be realized. At the end of the flood season in October each
year, the required electricity can be generated and water can be stored; at the same time,
the stored water can also be used to maintain seasonal normal runoff [28,29]. Second, the
amount of water loss (abandonment) due to the flood is reduced. Suppose we subtract
the downstream water consumption from the water output of the reservoir and divide
the result by the downstream water consumption as the water abandonment rate. The
maximum water consumption of the downstream cities of 8.17 billion m3 is selected as
the water consumption in the lower reaches of the Han River [30]; the water output of
Danjiangkou Reservoir in 2013 before the water transfer was 26.71 billion m3. After the
water transfer in 2014, the water output was 15.45 billion m3, so the water abandonment
rate was reduced by 137.8%, and the utilization of water resources has been significantly
promoted. Third, flood control benefits: After the Danjiangkou Reservoir was raised in
height, the reserved flood control capacity of the Reservoir was increased by 3.28 billion
m3 (in summer flood season) and 2.51 billion m3 (in autumn flood season). Meanwhile,
by combining the total flood diversion capacity of the downstream flood diversion areas,
the flood control standard in the lower reaches of the Han River can be changed from
once-in-20-years to once-in-a-century (controlling the once-in-a-century flood as in 1935) to
eliminate the flood threats to more than 700,000 people downstream [31].

In terms of telecoupling: First, in this study, it is found that water supply can create
more economic value. The water transfer increases the income of the sending system,
and at the same time guarantees the water use of the receiving system and alleviates the
shortage of water. From Table 7, we can see that SNWTP-MR can bring the water supply
value of 9.85 billion yuan to the water source every year, which will make up for the
cost on engineering development and the loss of economic value caused by water source
protection. Second, the system creates an ecological corridor. The water in Danjiang River
passes through sluice gates, canals and ecological forests on both sides, building a green
corridor with a length of more than 1430 km and a width of several tens of meters to
form a cross-regional green ecological landscape belt. The spillover system can use the
corridor to bring excess water into the corridor for use in water-deficient areas, so as to
achieve the balance of water transfer in a small area. The creation of the ecological corridor
will enhance the greening level and ecological benefits in various systems. Third, (3) the
water transfer improves the population carrying capacity of water resources. According to
the research results of the Sustainable Development Strategy Research Group of China’s
21st-century Agenda Management Center, with the coefficient of water supply capacity
adopted as 0.39 (technical parameter), the calculation results (Table 7) show that the water
transfer from SNWTP-MR will increase the population carrying capacity of Henan, Hebei,
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Beijing and Tianjin by 5.99, 5.57, 2.67 and 2.18 million people, respectively, in 2019. Fourth,
the telecoupling promotes the benefits of flood control, humidity increase, temperature
reduction and environmental purification. According to the relevant research, the value
of the absorption of sulfur dioxide and nitrogen oxides and of dust retention by forest is
determined to be 215.6, 6.0, 21.7 kg/hm2, respectively. The sewage charges are 1.2, 0.6,
0.2 yuan/kg, respectively, and the width of the SNWTP-MR greenway is 50 m [32,33]. It
can be seen from Table 7 that the benefit of environmental purification in Henan, Hebei,
Beijing, and Tianjin is increased to 97, 79, 10, and 3 million yuan, respectively. Fifth,
the water quality of urban living water and rivers and lakes is improved. The water
inflow from SNWTP-MR is blended with the water in northern counties and cities, which
reduces the hardness of the water. The hardness of the tap water in Beijing is reduced
from 380 mg·L−1 to 120–130 mg·L−1 [34]. At the same time, excess water can be used
to supplement the water volume of rivers and lakes. For example, Hebei Province uses
the water from SNWTP-MR to replenish 0.07 billion m3 of water to the Hutuo River
and Qili River. Sixth, there is an increase the agricultural water and the area of waters.
When providing both domestic and industrial water, SNWTP-MR also takes into account
the water for ecological environment and agriculture along the route; at the same time,
SNWTP-MR can replenish water in rivers and lakes and water sources in areas along
the route, which is conducive to increasing the area of waters. For example, SNWTP-
MR has supplemented an accumulation of 171 million m3 of water to Beijing Miyun
Reservoir, effectively inhibiting the decline of water in Miyun Reservoir [35]. Finally, the
system alleviates the problem of over-exploitation of groundwater. The distant water
receiving cities (receiving system) effectively alleviate the deterioration of groundwater
ecology by replacing the local groundwater source with water brought by SNWTP-MR.
The groundwater level in the water-supplement areas has increased by different degrees.
For example, in 2017, the average buried depth of groundwater in Beijing increased by
0.53 m year-on-year, and the groundwater level in Tianjin increased by 0.17 m [34].

Table 7. Benefits created by SNWTP-MR for water receiving provinces and cities.

Index
Province (City)

Henan Hebei Beijing Tianjin Total Sources

Data

Multi-year average (billion m3) 37.7 34.7 12.4 10.2 95 [19]
Water price (yuan/m3) 0.37 0.97 2.33 2.16 [36]
Per capita water consumption (m3/person) 245 243 181 182 [37]
Pipe length (km) 731 596 80 25 1432

Benefit Formula

Benefits of water supply VQ = P × Q (billion m3)
Q: Total water transfer

13.95 33.66 28.89 22.03 98.53 [38]

Benefits of population
carrying capacity of
water resources

W = α×Q
C (Ten thousand people)

α: Coefficient of water supply capacity
C:The amount of water used per capita

599 557 267 218 1642 [39]

Benefit environmental
purification

Ve = L × W × n=3
∑

i=1
(Qi × Pi) (Billion yuan)

Qi: Respectively indicate sulfur dioxide,
nitrogen oxides and dust retention
Pi: Sewage charge price
W: Width of SNWTP-MR greenway

0.97 0.79 0.1 0.03 1.89 [32,33]

Summary. The benefits brought by water transfer in SNWTP-MR are reflected in
multiple aspects (Figure 7). The expansion of the Danjiangkou Reservoir in the water
source changed the original land type, and the relative ecological value of the land use
type has improved. At the same time, the expansion and water transfer of the Danjiangkou
Reservoir broke the original spatial and temporal configuration pattern of water resources,
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which brings some additional ecological values to the upstream and downstream areas,
including the increase in total power generation caused by the increase in reservoir water
storage, the enhanced ability of seasonal water transfer, and the effective coordination of
flood control in the region. These, in turn, promote the reduction of the water abandonment
rate of floods in the sending system (water source), so that the power generation benefit
can be improved. SNWTP-MR focuses on solving the problem of water shortage in the
north.The transfer through the spillover system can provide economic value of water
supply, improve the water quality of urban domestic water and rivers and lakes, alleviate
the problem of over-exploitation of groundwater, improve the population carrying capacity
of water resources and promote the benefits of flood control, carbon fixation and oxygen
release, and air purification. These further bring economic value of water supply to the
water source, raise the awareness of ecological conservation, and also create ecological
corridor for the spillover system and alleviate the shortage of agricultural irrigation water.
The analysis of the ecological value brought by SNWTP-MR through the metacoupling
framework is helpful for us to understand the coordinated development among various
systems.

Figure 7. Schematic diagram of SNWTP-MR metacoupling ecological value.

3.3. From the Perspective of Ecological Risk

Based on the above-mentioned changes in land use type, the changes in the ecological
risk of the SNWTP-MR water source can be measured. In terms of intracoupling, the
ecological risk caused by the intensity of the changes in different land types is cumulative.
Therefore, it is necessary to judge the accumulated risks from the perspective of the overall
system and establish an empirical connection between land use structure and ecological
risk. The researches in this aspect are mainly conducted through establishing the intensity
coefficient of ecological risk to transform the land use types into ecological risk variables [22].
As can be seen from Table 8, the ecological risk index of the Danjiangkou Reservoir water
source was 0.165 in 2013, and 0.18 in 2019, an increase of 9.31%. Therefore, the construction
of SNWTP-MR has increased the level of ecological risk in the water source, and the
ecological vulnerability has been destroyed to some extent. At the same time, the population
transfer and resettlement from the submerged area of the reservoir (300,000 people) has
caused a large amount of ecological land upstream of the water source to be used for
the construction of new towns, which will lead to further ecological damage, and the
disturbance of human activities will exacerbate ecological fragility.
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Table 8. The ecological risk index of intracoupling.

Name Formula
Plowland
(km2)

Vegetation
(km2)

Water
(km2)

Artificial
Surface (km2)

Bare Soil
(km2)

Total Year

ecological
risk index

E =
m
∑

i=1

Ti×δi
T

δi : Intensity coefficient of ecological risk of the
i-th land type;
T: area of Total land;
Ti: Area of type i land type

0.010 0.135 0.002 0.014 0.004 0.165 2013

0.012 0.122 0.002 0.035 0.009 0.180 2019

In terms of pericoupling:First, the reduction of the downstream water flow causes
ecological problems. From 2012 to 2016, the outflow water of Danjiangkou Reservoir was
36.27, 26.71, 15.45, 28.19, and 15.01 billion m3, respectively, showing a decreasing trend,
which caused the water level in the lower reaches of the Han River to drop by between
0.3 m and 1 m [40]. The reduction of water volume also resulted in the eutrophication of
water resources and the gradual deterioration of water quality in the downstream of the
Han River. The reduction of downstream water flow has given rise to the worse overall
shipping capacity. After the water transfer, the average annual navigable time is only
121 days, and the navigation guarantee rate is significantly reduced to 33% [41]. At the
same time, the decreased water level will result in the deterioration of downstream water
quality. As the amount of inflow is reduced, the flow rate will slow down, which makes
the self-purification capacity of the water body in the lower reaches of the Han River drop
drastically. At the same time, industry and agriculture pump a large amount of water, and a
large part of this water directly enters the river, further polluting the river, while the urgent
need for the improvement of water quality in the downstream will also put more pressure
on the water quality protection in the upstream water source. In addition, the shortage of
water intensifies the competition for water between industry and agriculture, and the rate
of average water supply guarantee of each water plant has dropped by 34.7% [40]. For the
downstream watershed, the reduction of water volume and the increase of the dam body
have led to the destruction of the ecological balance of aquatic organisms in the Han River,
and threat to biodiversity. Second, biodiversity and fish stocks are threatened. After the
water transfer, the number of fish spawning grounds has been reduced by 25, the spawning
time is delayed, and the total amount of fish is reduced by 1/4 or more, among which the
production of wild fish is reduced by 50%, greatly destroying fish diversity and output
value. Besides, the variety of hygrophyte in the lower reaches of the Han River will be
affected to a certain extent, and the area of swamp vegetation, such as Aceh Weed Swamp,
Valerian Swamp, Reed Marsh, and Calamus Marsh will decrease [42,43].

In terms of telecoupling: First, the primary impact is the biological invasion, which
threatens species survival. The construction of water transfer canals has created channels
for biological exchanges. Some fish in the Danjiangkou Reservoir may enter other reservoirs
and watershed areas along the SNWTP-MR, which will cause changes in the number of
fish species in other reservoirs and watersheds. Secondly, the water resources along the
route are polluted, threatening the safety of water supply. For distant water receiving cities,
SNWTP-MR adopts open channels for water delivery under direct sunlight, with long
routes, shallow water and low water flow rate. The water temperature changes with air
temperature (from 20 ◦C in September to May to above 30 ◦C in July and August), which
will be conducive to algae reproduction and lead to a further increase in algal density and
the risk of algae odor [35]. There are clams in the Danjiangkou Reservoir, with a short
reproductive cycle, and the larvae belong to plankton, while the adults grow on the hard
substrate, attached by the foot. They often block the water pipeline and the water plant filter,
threatening the safety of water use. Meanwhile, clams are tolerant to the temperature in
the north, so there is a risk that they will migrate northward along the SNWTP-MR [44,45].

Summary From the perspective of ecological risk (Figure 8), the expansion of the
Danjiangkou Reservoir in the water source has changed the original land type, which
increases the ecological risk index and further enhances the ecological vulnerability. At the
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same time, the water transfer to the north will inevitably lead to a significant reduction in
downstream water flow, which will then result in poorer water quality, eutrophication of
water resources, competition between industry and agriculture for water, deterioration of
conditions for waterway shipping, threats to the diversity of aquatic organisms and fish
survival, further intensifying the ecological conflicts between upstream and downstream.
Moreover, the most direct ecological impact of remote water transfer on the distant water
receiving city is the problem of biological invasion and water pollution, which in turn forces
the water source to strengthen the monitoring of biological invasion. The conflict in water
use between the downstream area and the distant water receiving city also aggravates
the conflicts in the coordination of water resources in the water source. By clarifying the
ecological risk of the water transfer in SNWTP-MR via a metacoupling framework, we can
take necessary measures to prevent and mitigate its negative effects.

Figure 8. Ecological risk of the metacoupling of SNWTP-MR.

4. Discussion—The Impact of the Metacoupling on the Sustainability of SNWTP-MR

SNWTP-MR brings risks to the ecological environment while creating benefits for the
ecological environment. It is difficult to say who should take the responsibility and who can
get the benefits. The metacoupling framework can help us to better understand and manage
the sustainability of regional water transfer, identify gaps between systems and hidden
problems based on the direct and indirect positive and negative feedback, as illustrated in
Figure 9. The coupling of water transfer does not always damage the benefits of the sending
system and the spillover system while benefitting the receiving system, but presents a more
complex and varied situation. It is known from the previous sections that the intracoupling
can bring about 23 billion yuan of ecological service value. The pericoupling significantly
reduces the flood control pressure in the downstream, and the telecoupling can compensate
the water volume for the spillover system, create a green corridor and bring growth of
domestic water, population carrying capacity and economy to the receiving system. The
metacoupling of SNWTP-MR can fully present the interrelationship between systems.
When we clarify the value and risks it brings and try to overcome the risks, a water transfer
project such as SNWTP-MR can bring win-win benefits to each system.

The systematic illustration of the metacoupling of the SNWTP-MR provides a frame-
work for the reasonable allocation of water resources and promotes the sustainability of
water transfer. Long-distance water transfer, which reduces downstream water inflow, cou-
pled with different interests of upstream, downstream and the distant water receiving city,
affects the willingness of all parties to protect rivers and pay for the ecological services, and
intensifies the conflicts among all the parties in the competition for water [6]. For example,
the distant water receiving cities consumed 9.7 billion m3 of water in the Danjiangkou
Reservoir, almost one-third of the water volume in the Danjiangkou water source, which
causes the changes in the land use type of the water source to produce a chain effect, and
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imposes tremendous pressure on the ecosystem services [46,47]. The annual decline in
the downstream water volume has threatened the agricultural land and food production,
and resulted in the deterioration of river channels to some extent.The role of the feedback
and negative feedback of the metacoupling relationship provides useful information for
long-distance water transfer, and offers a good opportunity to correct water allocation in
annual water supply, so that the water allocation can achieve a positive balance to support
social and economic development while protecting and improving the future environment.
Applying the metacoupling framework to understand the sustainability issues can yield
valuable insights to identify both beneficiaries and losers; thus, the overexploitation and
unreasonable allocation of resources can be avoided [16].

Figure 9. The ecological benefit feedback of the metacoupling of SNWTP-MR.

The analysis of the benefits and disadvantages to various systems in SNWTP-MR,
brought by the metacoupling framework, provides a theoretical reference for who should
take greater responsibility for ecological compensation. We know that SNWTP involves
not only resettlement but also ecological and economic costs. Migration resettlement and
food demand may lead to reclamation of agricultural land, degradation of forests and
surrounding grasslands, which has been verified in our intracoupling framework. The
reduction in downstream water volume also causes real pressure; although the water crisis
can be alleviated in water receiving city, the increase in water use will also reduce the
efficiency of water consumption. In this aspect, the metacoupling framework can help us
to estimate and determine who will compensate, what to pay and how much to pay [25].
From the perspective of fairness and justice, ecological compensation can offset the social
and economic benefits given up by water delivering areas. The analysis of the causes and
impacts of coupling can help us to further understand the social and equity issues related to
water use and coordinate the conflict between future land use and ecological protection, so
as to promote the sustainability of water transfer [18]. This study is helpful for diagnosing
which links have gone wrong in the sustainability of water transfer, which needs to be
adjusted, and what linkage effects will be produced after the adjustment. Therefore, this
study is conducive to the sustainability of long-term water transfer.

The analysis results of the metacoupling of SNWTP-MR helps to clarify the problems
and challenges faced by different organizations, systems and agents, and can help them
to take separate or joint actions. We know that SNWTP-MR has changed the economic
structure and the method for ecological treatment in water sources, and also promoted
the transformation of regional industry and society. The complexity of water transfer has
transcended the water trading and investment itself. Therefore, the metacoupling frame-
work is conducive to uncovering the complex interactions between water resources and
environmental sustainability. In advancing the sustainable development of SNWTP-MR,
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joint actions can be taken to reduce costs, improve water quality, reduce pressure on water
use and environment, promote social technological innovation and the implementation
of the payments for watershed service plans, and enhance the complementarity of water
resources [48].

Previous studies have mainly discussed SNWTP-MR ecological payment, water trans-
fer policies, water environment governance, and water market incentive coordination
studies. Few studies have been carried out on the metacoupling impact of the entire water
transfer from a global perspective [49–51]. Therefore, the innovation of this research lies
in solving the problem of the interaction of ecological environment of the pericoupling
and telecoupling of water transfer and sustainable development under the new integrated
framework (metacoupling), providing a new research idea for coupling relationships. At
the same time, it reveals the metacoupling relationship of SNWTP-MR and the mutual
influence of the ecological environment, which can provide a reference for SNWTP-MR,
and also provide a valuable reference for other large-scale water transfer interactions. For
example, Australia is considering sending large amounts of water over long distances
from the north to the south of the country [52]. The cross-regional coupling relationship
is more complex than the local coupling and requires a lot of resource integration. Meta-
coupling can find many research gaps and can conduct a comprehensive and in-depth
analysis [17,53]. Therefore, the metacoupling framework can also be used for transnational
and trans-regional research on ecosystem services, food trade, information dissemination,
energy and species invasion.

This research still faces some research limitations. First, we are aware of the fact
that it is challenging to study the interaction among multiple systems at the same time.
Although some conclusions have been drawn by systematically analyzing the metacupling
of SNWTP-MR with limited data, there is still more work to do to clarify the intricate
relationship in reality. The biggest challenge is that the data are not easy to be established
and acquired, which means that many environmental and socioeconomic impacts are not
yet quantitatively measured. In the future, more efforts need to be put into predicting
the value and risk brought by the metacoupling relationship of SNWTP-MR. Second, the
Metacoupling framework is still a conceptual framework. The unified evaluation of the
integration of intracoupling, pericoupling and telecoupling is still a problem. Subsequent
research can introduce some quantitative methods to conduct a unified evaluation of the
metacoupling systems, such as data envelopment analysis or multi-region input and output
models. Third, Differences in the time period taken by the remote sensing map will lead
to a certain deviation between the changes in water volume and other data and the real
measurement data. Therefore, this study has a certain error range, to which readers should
pay attention.

5. Conclusions

This paper uses the metacoupling analysis framework of water transfer to reveal the
influence of the interaction of ecological environment of SNWTP-MR. Thus, the following
conclusions can be drawn:

(1) By analyzing intracoupling, it can be shnown that water transfer has caused spatial
and temporal changes in the land use of the Danjiangkou Reservoir, which affects the
ecological value that it provides and exacerbates the internal ecological risk. Consid-
ering only land changes, the construction of SNWTP-MR has created an ecological
service value of 23 billion yuan for the water source of Danjiangkou Reservoir, but also
increased the original ecological risk index by 9.31%, and the ecological vulnerability
has been changed to some extent.

(2) By analyzing pericoupling, it can be found that the upstream and downstream have
different purposes for water use, mainly because the expansion of the reservoir pro-
duces different ecological value and ecological risk for the upstream and downstream.
The expansion of Danjiangkou Reservoir has increased the total power generation of
the Reservoir, increasing the revenue of generation by 2.292 billion yuan; at the same
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time, the ability for seasonal water transfer has also been greatly enhanced, so that
the downstream flood control standards have been improved to once-in-100-years,
and the threat of flooding has been greatly reduced. However, the ecological risks
are also present in many aspects, such as poor water quality, eutrophication of wa-
ter resources, water competition between industry and agriculture, deterioration of
waterway shipping conditions, and threats to biodiversity.

(3) By analyzing telecoupling, the interaction among the sending system, the receiving
system and the spillover system can be seen. From the perspective of ecological
value, the sending system obtains a large amount of income from water transfer; the
receiving system has greatly improved the urban domestic water consumption. For
example, the water volume for consumption has been increased by 9.5 billion m3, and
the hardness of tap water has also dropped from 380 mg·L−1 to 120–130 mg·L−1, and
the problem of over-exploitation of groundwater has been alleviated. The population
carrying capacity of the water resources has increased by 16.42 million people, and
the spillover system has created a cross-regional green ecological landscape belt that
can create a value of 189 million yuan of environmental purification benefits. From
the perspective of ecological risk, both biological invasion and water pollution have
become problems that all systems need to face together.

The metacoupling framework systematically discusses the values and risks brought
by various systems of the SNWTP-MR, and provides a theoretical reference for who should
take more responsibility for the ecological compensation. This may help avoid excessive
development and unreasonable allocation of resources for this purpose.
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Abstract: Although coal is difficult to replace in the short term, the large-scale production and
consumption of coal have significant impacts on the ecological environment. The severe disturbances,
such as land excavation and occupation, that accompany the mining of mineral resources have caused
dramatic changes in land cover and a significant pressure on the sensitive and fragile ecological
environment. To analyze the temporal and spatial evolution trends and the differences in land use
in different typical mining areas in Inner Mongolia, as well as the evaluation system and driving
mechanisms of land use evolution, this study takes the typical open-pit coal mines in Inner Mongolia
as the research objects and, based on the Google Earth Engine (GEE) platform, analyzes the dynamic
evolution characteristics and driving factors of land use in typical open-pit coal mines in Inner
Mongolia from 2001 to 2020. The change trend of land use in typical open-pit mining areas in Inner
Mongolia for the past 20 years is obvious, with the highest fluctuations for grassland, mining land,
cropland, and residential/industrial land. Land use in the open-pit coal mining area is greatly affected
by mining factors. From the perspective of spatial variation, the most important driving factor is
the distance from national roads and railways, followed by the annual average temperature and
annual average precipitation and topographical conditions, such as elevation. In terms of policy, land
reclamation and ecological restoration in mining areas have a positive impact on land use change.
Improving the mechanism for environmental compensation in mining areas can promote the efficient
and rational use of mining areas and the protection of ecosystems.

Keywords: open-pit coal mines; GEE; land use; dynamic degree; driving factors; Inner Mongolia

1. Introduction

Coal is the world’s largest and most widely distributed non-renewable energy, and
plays an irreplaceable role in the development of the national economy [1]. Against the
background of climate change, since the 21st century, greenhouse gas emission reduction,
carbon neutrality, and the adjustment of energy structure have received significant attention,
and numerous developed countries have progressively adopted clean energy to replace coal
energy consumption [2,3]. However, in developing countries, especially China, India, South
Africa, and Indonesia, among others, coal resources are still the most important energy
sources [4–6]. China’s coal production far exceeds that of other countries, accounting for
about 51% of the global coal production [7], and the mining industry has brought improved
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infrastructure, economic development, and elevated living standards for locals [8,9]. In
most countries, coal resources are still the most important energy source for power and
heat generation [1], and the principal raw material for various daily necessities, such as
dyes, fertilizers, and pesticides [10].

However, the large-scale production and consumption of coal have seriously nega-
tively impacted the ecological environment, with an emphasis on land resources, by directly
destroying the surface soil layer and original vegetation [11–13]. Wastewater from mining
is generally discharged into rivers, resulting in the death of aquatic animals and plants
and the destruction of river ecosystems [14]. The infiltration of acidic wastewater into the
ground also leads to the deterioration of groundwater quality and the destruction of the
vegetation. In addition, excessive mining activities produce large amounts of carcinogenic
heavy metals that are difficult to degrade in the natural state, such as chromium, nickel,
cadmium, with negative impacts on human and animal health [15,16].

Open-pit mining is the most commonly used method of coal mining because of its
low cost and convenience; two thirds of the world’s mineral resources are extracted via
open-pit mining [17,18]. More than 50% of coal resources in the United States, Australia,
Spain and other countries are mined in open-pit mines [19,20]. However, because of the
“stripping-mining-transportation-disposal-land making” in the mining area, the original
ecosystem is predominantly degraded, with deteriorated surface water and groundwater
and a diminished carbon storage capacity [21–23]. According to the data released by the
National Research Council (NRC) of the United States, open-pit mining of 124 billion
tons of coal in the United States will destroy about 4 million hm2 of land. Under the
same mining volume, China will destroy 2.728 million hm2 of land [24–26]. The severe
disturbances, such as land excavation, compaction and occupation during the mining
of mineral resources, have caused dramatic changes in the land cover in this area [27],
resulting in altered ecosystem types, patterns and processes and, ultimately, in changes in
ecosystem services [28]. In this sense, studies on land use change in open-pit coal mining
areas are valuable to assess the evolution of the ecosystems in such areas [29].

In China, more than 90% of large open-pit coal mines are located in arid and semi-
arid areas with a fragile ecological environment [30–32]. For example, in Inner Mongolia
and Xinjiang [33], land use changes caused by resource over-exploitation have largely
changed ecological processes [34]. In this context, investigating land use changes in open-
pit coal mining areas can help optimize reclamation planning in such areas, adjust land
use structure [35,36], and provide an important basis for the development of adequate
management strategies and a sustainable coal mining policy.

As early as in the 1960s, studies on land use monitoring in mining areas have been
carried out. In 1969, the land protection department in the United States monitored local
mine environments and disasters, using remote sensing technology to monitor the land
reclamation in coal mining areas, thereby providing a basis for the development of land
reclamation strategies [37]. Brink et al. [38] took sub-Saharan Africa as the study area and,
based on the high-scoring earth observation data, monitored and analyzed the changes in
regional land use types during the period from 1975 to 2000. However, China’s remote
sensing and geographic information system technology started late and is in a relatively
undeveloped stage. The use of remote sensing satellites to monitor land use in mining areas
was gradually developed after the 1980s. Since then, the remote sensing technology has
gradually been developed, providing a certain amount of data for research and analysis.

Because of the late start of the monitoring technology, immature monitoring methods
and low-accuracy monitoring results are frequent [39,40]. However, this phenomenon
gradually decreases with the improvement of the research methods.

Globally, the application of remote sensing and GIS technology has gradually matured;
various high-precision satellites, such as QuickBird, Landsat, Spot, and Sentinel, were born.
The monitoring of land use in mining areas is performed with accurate data and technical
support, which has resulted in a large number of studies. For instance, Raval et al. [41]
used traditional remote sensing technology to monitor and quantitatively analyze land
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use change in kaolin mining areas in India from 2000 to 2009, providing technical support
for the rapid mapping of land use changes in these areas. Sonter et al. [42] considered the
mining area as a separate land use type for the classification of remote sensing images,
described the land use change process in the Brazilian mining area over a period of time,
and compared it with that of the surrounding non-mining areas, with the aim to analyze
the differences and the underlying reasons. Using all archived Landsat imagery between
2000 and 2015, Wohlfart et al. [43] calculated the temporal and textual measures of spatially
continuous spectra based on dense Landsat time series for each year to obtain values related
to mining, agriculture, forestry and urbanization in the Yellow River Basin Zoning land
cover change map. Using Landsat image data from 2013 to 2016, Padmanaban et al. [44]
studied the land use change in a reclaimed mining area in Kirchheller Heide, Germany,
using the vegetation cover index (NDVI) to analyze the changes in vegetation productivity
and to determine the geological and surface environment changes that may occur in the
mining area. Several methods of land use monitoring in mining areas have been developed,
among which remote sensing and GIS technology are the most important ones and can be
applied in high-precision and long-term land use monitoring in mining areas. However,
the image processing flow of mining areas needs to be optimized, and the efficiency needs
to be improved.

The application of remote sensing technology in the monitoring and management
of land use change has gradually intensified. For most researchers interested in land-
use change monitoring, the acquisition and processing of long-term remote sensing data
are time-consuming and labor-intensive. When traditional image-processing software
(ENVI, ERDAS) is used for land use change monitoring, original image data from specific
channels need to be downloaded, and complex steps are required, such as image data
correction, registration, splicing, and cropping. Processing power and storage space require
researchers to have good theoretical knowledge and adequate image-processing skills. In
this context, Google Earth Engine (GEE) [45] has become an important tool for geography
and space-related research, providing powerful computing resources and massive online
data. By invoking a large number of published geographic data products collected by the
GEE platform and combining the algorithms provided by the researchers, online computing
can be performed, which greatly reduces the workload of data acquisition and processing.
More and more scholars use the GEE platform for land use monitoring research. For
example, Hamud et al. [46] used the GEE platform to monitor land use cover changes
in Somalia. Lin et al. [47] monitored land cover change on a rapidly urbanizing island
using the GEE. This approach can greatly expand the time and space scale of their original
research and provide national and even global research results [48–50]. The GEE platform
makes up for the deficiency of traditional image-processing software and enriches the
technical methods of land use monitoring research in mining areas.

Judging from the current global research progress, most of the current technologies
are applied in small mining areas and are dominated by algorithm models. There are few
studies on long-term, rapid, accurate and continuous land use classification in open-pit
mining areas. In addition, most of the research is concentrated in a single mining area,
and investigations on multiple mining areas of a specific mining area type are scarce, and
the explanation of the driving factors behind land use evolution is insufficient. In this
study, seven types of land use are investigated, namely cropland, forest, grassland, water
body, mining land, residential/industrial land, and unused land, according to the present
situation of land use in the open-pit mining areas in Inner Mongolia. Based on the emerging
GEE platform, it solves the problems of difficult data collection, large data volumes, and
low interpretation efficiency in long-term large-scale analyses. This study regards typical
open-pit coal mines in Inner Mongolia as the research unit, and analyzes the dynamic
evolution characteristics and driving factors of land use from 2001 to 2020. The main
objectives are as follows: (i) to gain an in-depth understanding of the dynamic change
in land use in open-pit coal mining areas in Inner Mongolia; (ii) to identify the causes of
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spatial changes in land use in typical open-pit coal mining areas in Inner Mongolia; (iii) to
put forward policy suggestions on land exploitation and remediation in mining areas.

2. Study Area

The Inner Mongolia Autonomous Region is located in northern China, at 37◦24′–53◦23′
north latitude and 97◦12′–126◦04′ east longitude (Figure 1), with a large plateau area, a
large distance from the ocean, and mountains along the edge. The region has the richest
mineral resources in China, with 17 kinds of mineral reserves in the forefront. However,
high-intensity resource exploitation has a great impact on fragile ecosystems in the arid
and semi-arid areas of the Inner Mongolia Autonomous Region. Open-pit mining has
a more significant impact on the environment, such as ecosystem destruction and land
resource degradation. Mining areas located in arid and semi-arid areas are particularly
sensitive to this impact. Therefore, the land use change and ecological processes in the
mining area are more complex and diverse, and its pattern change characteristics and laws
are more representative.

Figure 1. Locations and outlines of open-pit coal mines investigated in this study.
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The precise mining area is defined according to the mining rights, so we can only
consider selecting open-pit coal mines according to the mining license information issued
by the Ministry of Natural Resources. Moreover, to ensure a wider representation of mining
areas, we need to ensure that open-pit coal mines that cover large, medium and small areas
are covered. Therefore, we selected 13 open-pit coal mines as typical study areas in mining
areas with relatively complete information (Figure 1). By connecting the original registered
nodes of each mining area in sequence, the boundary mining area can be delineated. The
open-pit coal mines are mainly distributed in Erdos, Xilin Gol League, Hulun beier and
Chifeng, covering a total area of 391 km2 (the largest open-pit coal mine, Changtan, is
66.99 km2, whereas the smallest one, Shengli West No. 3, only covers 1.55 km2).

3. Data Sources and Methods

3.1. Data Sources

Generally speaking, 2001–2020 is an important period for the rapid development of
China’s ecological protection and restoration and the innovation and transformation of
its system and mechanism. This study used the 2001–2020 image data of Landsat on the
GEE platform. Among them, mainly from April to September, GEE synthesized the image
data and used them as a remote sensing data source combined with DEM data, the Chinese
Academy of Sciences Resources and Environment Data Center [51] vegetation type data,
vegetation zoning data, and meteorological data and the random forest model was used
for land use classification.

According to the characteristics of the mining area, the land use types were divided
into six categories, namely cropland, forest, grassland, water body, residential/industrial
square land, mining land, unused land. Residential/industrial square land refers to resi-
dential and living ancillary facilities, industrial plants, and large industrial construction.
Mining land refers to the mining, quarrying, sand mining (sand) fields, brick kilns and
other ground production land and tailings dumps that are independent of residential areas.
Unused land refers to tailing stacking land, bare land, bare rocks, and sand areas. The
social and economic statistics of raw coal output used in this study were derived from the
Inner Mongolia Statistical Yearbook [52], the Regulations of Inner Mongolia Autonomous Region
on Mineral Resources Management [53], and the Statistical Bulletin of National Economic and
Social Development of Inner Mongolia Autonomous Region [54].

3.2. Methods
3.2.1. Dynamic Degree of Land Use

The dynamic degree of land use is based on the magnitude of land use change and
represents the results of various types of area changes during the study period. It can
directly reflect the change speed of different land use types and can be used to compare
and analyze the change differences among various types [55]. In this paper, the dynamic
degree model that reflects the absolute amount of land use change was used to monitor the
speed change in each land use type in the study area, using the following equation:

kj =
ub − ua

ua
× 1

T
× 100% (1)

where kj represents the dynamic degree of a certain land use type during the research
period; ua represents the quantity of a certain land use type at the early stage of the research;
ub represents the quantity of a certain land use type at the end of the research period; T
represents the length of the research time.

The study of land use dynamic changes is an important approach to arrive at a
deep understanding of the process of urban land use change, and is the main method to
comprehend the evolution process and pattern of land use [56,57]. To deeply explore the
land use change dynamic of typical open-pit mining areas in Inner Mongolia, the single
land use dynamic degree method was used.
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3.2.2. Geographical Detector Model (GDM)

The GDM (geographical detector model) is an important method to detect the spatial
pattern and genesis of geographic elements and is widely used in studies on land use
driving mechanisms and climate change [58]. When importing the input data of GDM,
discrete classification processing of driving factors is required in ArcGIS, and through
sampling, discrete data of the dependent variables and result variables are obtained, and
are finally imported into the GDM for factor analysis. The specific calculation method is
as follows:

q = 1 − 1
nσ2 ∑m

i=1 ni × σ2 (2)

where q is the explanatory power of the driving factor for the expansion of construction
land; n is the total amount of driving factors, and σ2 is the sample variance. The value
range of q is (0, 1) and the larger the value, the stronger the explanatory power of the factor
to land use change will be.

4. Results

4.1. Dynamic Evolution of Land Use in the Typical Open-Pit Coal Mine Area
4.1.1. Land Use Pattern

By establishing polygon training samples of land use classification in GEE, a sample
set of each corresponding land class was formed. Then, all the samples were fused into a
sample set. Part of them were selected as training samples to participate in classification,
and part of them were used as verification samples for precision verification. We used the
random forest classifier in GEE, took training samples and images as input, and carried
out supervised classification to obtain the raster data of land cover. After classification,
the overall accuracy, kappa coefficient, and transfer matrix were calculated by using the
verification data set and the classification results, and the accuracy was evaluated. When
all the land use classification results meet the accuracy requirements (Table 1), the results
were retained.

Table 1. Overall accuracy and kappa coefficient values of land use classification.

Year Kappa Overall Accuracy Year Kappa Overall Accuracy

2001 0.863 0.921 2011 0.861 0.921
2002 0.849 0.914 2012 0.852 0.915
2003 0.857 0.917 2013 0.845 0.912
2004 0.839 0.909 2014 0.868 0.924
2005 0.841 0.910 2015 0.866 0.923
2006 0.837 0.908 2016 0.903 0.944
2007 0.847 0.913 2017 0.884 0.933
2008 0.833 0.906 2018 0.849 0.914
2009 0.852 0.916 2019 0.859 0.919
2010 0.828 0.903 2020 0.854 0.916

From 2001 to 2020, the change trend of land use in open-pit coal mines was obvious
(Figure 2), with large grassland and cropland areas and a considerable change range. The
forest, water body, and unused land areas were small, and the fluctuation was relatively
stable. The areas of mining land and residential/industrial square showed a fluctuating
increase throughout the research period, whereas the grassland area showed a fluctuating
decrease. The cropland area showed a downward trend from 2001 to 2015, followed by an
increase after 2016. The mining land increased rapidly from 2006 to 2012, with a slower
growth thereafter.
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Figure 2. Land use types and areas in open-pit coal mines from 2001–2020.

4.1.2. Dynamic Degree of Land Use

According to the dynamic degree of land use in the study area (Table 2), from 2001
to 2020, the dynamic degree of unused land and mining land changed most significantly,
accounting for 93.16% and 27.11%, respectively. Among them, from 2001 to 2005, the land
with the largest change was residential/industrial square land, with a total transfer area of
1.68 km2 and a dynamic degree of 5.85%, followed by mining land with a transfer area of
−1.42 km2 and a dynamic degree of −2.54%. From 2005 to 2010, the mining land showed
the largest dynamic change, which was 16.97 km2, and the dynamic change degree was
26.53%, followed by cropland, whose change amount was −13.16 km2, with a dynamic
degree of −3.98%. Compared with 2001–2005 and 2005–2010, in 2010–2015, the water
body significantly changed the most, and the dynamic degree was 39.13%. From 2015 to
2020, the transfer of cropland kept increasing, with a change of 9.63 km2, and the dynamic
degree increased to 5.17%; in contrast, the residential/industrial square land decreased by
−1.72 km2, with a dynamic degree of −1.98%.

Table 2. Dynamic degree of land use in open-pit coal mines (2001–2020).

Land Use Type Cropland Forest Grassland
Water
Body

Residential/
Industrial

Square Land

Mining
Land

Unused
Land

2001–2005

Variation
(km2) 1.12 0.00 −1.38 0.00 1.68 −1.42 0.00

Dynamic Degree
k(%) 0.34 0.00 −0.09 −0.34 5.85 −2.54 0.07
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Table 2. Cont.

Land Use Type Cropland Forest Grassland
Water
Body

Residential/
Industrial

Square Land

Mining
Land

Unused
Land

2005–2010

Variation
(km2) −13.16 0.00 −5.20 0.11 2.09 16.97 −0.82

Dynamic Degree
k(%) −3.98 −2.50 −0.35 14.73 5.04 26.53 −8.33

2010–2015

Variation
(km2) −9.39 0.02 −2.90 0.65 1.64 10.45 −0.47

Dynamic Degree
k(%) −3.91 30.77 −0.21 39.13 2.42 4.79 −5.56

2015–2020

Variation
(km2) 9.63 0.02 −17.44 −0.11 −1.72 8.03 1.59

Dynamic Degree
k(%) 5.17 13.79 −1.31 −2.28 −1.98 2.53 8.70

2001–2020

Variation
(km2) −19.48 0.02 −56.51 0.72 9.88 60.42 4.98

Dynamic Degree
k(%) −1.47 5.21 −0.93 22.60 8.58 27.11 93.16

Annual Change
(km2) −0.97 0.00 −2.83 0.04 0.49 3.02 0.25

Note: The data in the table were calculated according to the interpreted land use data and Formula (1).

4.2. Spatial Driving Factor Analysis of Land Use Change in Typical Open-Pit Coal Mining Areas
in Inner Mongolia

Identifying the causes of spatial changes in land use in typical open-pit coal mining
areas in Inner Mongolia is of great significance for exploring the landscape ecological trends
of land use changes, adjusting the industrial structure of mining areas, and arriving at
sustainable land development [59,60]. From the perspective of spatial heterogeneity, this
study uses the ArcGIS spatial analysis function to sample the spatial location and driving
factors of land use change in the open-pit mining areas from 2001 to 2020 and used the
GDM for q-value detection. From the perspective of time, this paper analyzes the impact
of mining and land reclamation on land use change, as well as the impact of large-scale
mining, reclamation and other activities on this change.

4.2.1. Analysis of the Factors Influencing Mining and Reclamation in Mining Activities

In the past 20 years, Inner Mongolia has witnessed large-scale mining activities.
According to the Statistical Yearbook of Inner Mongolia and the Statistical Bulletin of
National Economic and Social Development of Inner Mongolia Autonomous Region, from
2001 to 2020, the output of raw coal in the Inner Mongolia Autonomous Region showed a
rapid growth, from 81.63 to 1025.51 million tons (Figure 3).

Regarding the entire study period, the area of mining land showed a growth trend,
which is closely related to the development of mining activities. From 2005 to 2012, the
area of open field/unused land increased significantly, whereas that of cropland decreased
greatly. After 2013, the area of mining land showed a fluctuating decrease, and some crop-
land recovered rapidly. This is due to the implementation of a number of land reclamation
policies and measures in the study area from 2008 to 2020, which significantly improved
the local land use structure. For example, in 2008 and 2013, the measures of the Inner
Mongolia Autonomous Region for the management of mining and mineral deposits were
issued and revised successively, and in 2009, the implementation plan for the management
of mining the geological environment was issued. From 2009 to 2015, the Inner Mongolia
Autonomous Region vigorously carried out the geological and ecological environment
treatment in mining areas. In addition, according to the regulations on land reclamation
issued by the State Council in 2011, the basic national policy of promoting mining enter-

128



Int. J. Environ. Res. Public Health 2022, 19, 9723

prises to make rational use of land and implement cropland protection is one of the reasons
for the overall increase in cropland after 2011. According to the Xinhua news agency,
since 2007, the Inner Mongolia Autonomous Region has received a total of 53 national
land consolidation projects, with a capital of CNY 350 million, for the transformation of
wasteland, sandy land, and low-yield fields, resulting in 7713.3 hectares of new cropland.
A total of 78 economic development zones were abolished in Inner Mongolia, and nearly
1333.3 hectares of land were restored. According to the Inner Mongolia Bureau of Statistics,
from 2012 to 2018, the cultivated area increased by 163,000 hectares, with an average annual
growth of about 0.3%. At the same time, in the grassland mining area, the land damage
caused by mining has been effectively controlled (Figure 4). Therefore, mining activities and
land reclamation can be regarded as the main reasons for land use changes in mining areas.

 

Figure 3. 2001–2020 Raw coal production in Inner Mongolia Autonomous Region.

Figure 4. Changes in cropland area from 2001 to 2018 in the Inner Mongolia Autonomous Region.

4.2.2. Geographical Detector Model-Based Analysis of Natural and Geographic Drivers

To deeply explore the driving mechanisms of land use change in the open-pit coal
mining area, the GDM was used to analyze the q-value and p-value of the open-pit coal
mine, thereby determining the strength of the driving force. The results are shown in
Table 3. The p-value of the eight spatial driving factors are all below 0.001, and the p-values
of the distance from the urban road and the distance from the rural road are 0.06 and
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0.81, respectively; the correlation between land use change in the open-pit coal mining
area and the distance from urban roads and rural roads was weak. The distance from the
national highway most significantly explained the land use change in the open-pit coal
mining area, with a q-value of 0.19. The second most important factors were distance from
the railway, the average annual temperature, average annual precipitation, distance from
the county road and the elevation, and the q-values are 0.18, 0.16, 0.138, 0.12, and 0.12,
respectively (Table 2).

Table 3. q-values of land use changes in open-pit coal mines.

Detection Type x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

q value 0.02 0.12 0.19 0.12 0.14 0.08 0.18 0.16 0.138 0.01
p value 0.06 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 0.81

Note: x1 represents the distance from the city road; x2 represents the elevation; x3 represents the distance
from the national highway; x4 represents the average annual precipitation; x5 represents the distance from the
provincial road; x6 represents the slope; x7 represents the distance from the railway; x8 represents the annual
average temperature; x9 represents the distance from the county road, and x10 represents the distance from the
township road.

By analyzing the driving factors of land use change in open-pit coal mines, we found
that the most important factor for the spatial change in land use in open-pit coal mines
is traffic location conditions, followed by climatic conditions and topographical condi-
tions. Human activities have an important impact on land use changes and landscape
patterns in mining areas. However, in recent years, the government has attached great
importance to the monitoring and evaluation of the environmental impacts of mining,
with the development of new technologies and optimized mining planning and design.
Such efforts have resulted in the alleviation of the environmental destruction via open-pit
coal mining, also showing that human factors can play a role in environmental protection
through policy formulation and publicity [61]. In view of the land problem of open-pit coal
mines, open-pit combined mining can be carried out in conditional mining areas, or the
coordinated land-saving technology can be advocated, and the production management in
the pre-mining planning stage, mining disturbance stage and layout recovery stage of the
mining area should be strictly controlled to reduce the damage to the original landscape.

5. Discussion

5.1. Uncertainties

Land use classification based on remote sensing data is afflicted with certain errors
due to various reasons, such as differences in evaluation accuracy. Therefore, in future
research, the combination of remote sensing, RTK, UAV, and 3D laser scanning technology
should be strengthened to improve the accuracy and quality of data extraction. This study
conducted multi-party comparisons and on-the-spot investigations and tests to repeatedly
demonstrate the compatibility of classification and calculation results with local conditions,
with the aim to minimize the degree of error. This can ensure that the calculation results are
credible and in line with natural, economic and social trends. At the same time, a variety of
sampling methods (stratified sampling, probability statistics) can be explored to provide a
test paradigm for the future research accuracy of remote sensing estimation of ecological
assets in open-pit coal mining areas and to offer a technical basis for the formulation of
ecological restoration goals in mining areas [62].

5.2. Comparison of the Mining Activities

Coal mining has led to major changes in land use in mining areas, and the ecological
environment of mining areas has been affected and destroyed. Scholars from China and
around the world have conducted numerous studies on land use identification, land
space planning and reclamation, and ecosystem services in mining areas. For example,
He et al. [16] proposed an improved model for identifying coal mine areas, which can
monitor coal mining conditions in the mining area at any time. Gao et al. [15] studied
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the conflict of land use in the production-living ecological space of large-scale open-pit
coal mines and proposed spatial planning optimization and land reclamation measures.
Bian et al. [63] analyzed the change in ecosystem service value and characteristics on the
basis of analyzing land use change in the mining area. With the rapid economic and
social development, the irreplaceability of resource extraction will continue for a certain
period [64]. These authors determined the impact of the mining and reclamation of metal
mines, oil and gas fields, and coal bed methane and other mineral resources on land use and
ecological effects and compared the evolution of different types of mineral mining on land
use and landscape patterns. This paper also explores how the mining of different minerals
affects the ecosystem, providing a scientific reference for the formulation of ecological
restoration policies in mining areas. Future studies on metal mines (especially related to
pollution), oil and gas fields, and coal bed methane (occupying large amounts of land) can
provide a powerful reference for the coordinated development of the regional economy
and the transformation of resource-exhausted cities.

5.3. Policy Significance

This paper studies the dynamic evolution of land use in open-pit coal mines from
2001 to 2020. The time span is large, reflecting the impact of open-pit coal mining on
the structure and function of land use. However, some mining areas have not been fully
exploited, especially some open-pit coal mines that were issued licenses and put into
operation after 2017 and 2018. Due to the progress of the corresponding procedures
in the mining areas, coal price adjustments in recent years, and even the impact of the
epidemic, the mining progress has not been carried out as scheduled. Therefore, the life
cycle scale research based on open-pit coal mining has certain limitations. Mineral resource
development policies have a significant impact on land use changes in mining areas, and
unified planning and management should be carried out in the following three stages:
pre-mining planning, mining disturbance, and post-mining recovery. In future research, the
entire life cycle of open-pit coal mines from the infrastructure construction period, mining
period, reclamation period, stabilization (underground mining) period to the management
and protection period can be explored. Carrying out comparative research at different
scales, such as regional and mining site scales, can provide technical support for the
development and use of mining areas and the formulation of ecological restoration policies
in the later stage. Even after the cessation of mining activities, land resource degradation
will still occur. In this sense, carrying out a comprehensive renovation of the whole life cycle
of the mining area and improving the mechanism of mining environment compensation can
be applied to achieve efficient and rational use of mining area land and to protect ecological
integrity. We suggest that the coal mining subsidence areas and abandoned sand pits
should be subjected to slope cutting and platform building, land leveling, and vegetation
restoration, and measures such as the establishment of comprehensive enclosures and
the sowing of grass seeds should be taken to restore the ecological environment of the
mining area. At the same time, strengthening the management and protection work in the
later stage and promoting the follow-up survival guarantee measures for shrubs, grass,
shelter forests, and seedlings are important steps. In this context, it is crucial to investigate
the environmental and geographical characteristics of the mining area and analyze the
specific issues.

6. Conclusions

Based on remote sensing images, this study used the land use dynamics analysis and
geographic detector model to explore the temporal evolution trend and driving factors of
land use dynamics in typical open-pit coal mining areas in Inner Mongolia. In particular,
we analyzed the dynamic change process of land use in typical open-pit coal mines from
2001 to 2020, identified the reasons for the spatial changes in land use, and put forward
policy recommendations for the optimization of land mining and reclamation in mining
areas. From 2001 to 2020, grassland, mining land, cropland, and residential/industrial

131



Int. J. Environ. Res. Public Health 2022, 19, 9723

square land dynamics significantly fluctuated the most, whereas the areas of forest, water
body and unused land remained relatively stable. Mining activities and land reclamation
were the main reasons for land use changes in the study area. The land use in the open-pit
coal mining area is greatly affected by mining factors. From the perspective of spatial
variation, the most important driving factor is the traffic location condition, followed by
the climatic and topographical conditions. Land reclamation and ecological restoration in
mining areas have a positive impact on land use change.

Multi-mineral, multi-scale, and long-term comprehensive studies on mining areas
need to be performed in the future. Strengthening the comprehensive analysis of various
methods, performing real dynamic simulation, and revealing the characteristics and inter-
nal mechanisms of the land use changes in the past can provide the theoretical foundation
for future land use changes. At the same time, emphasis should be placed on strengthening
the research on soil, vegetation restoration, and reconstruction methods in mining areas.
Land reclamation and ecological reconstruction in mining areas should be guided by new
technologies to promote the development of social, economic, and environmental benefits.
By focusing on the improvement of ecological quality and ecological economic construction,
measures such as land consolidation, forest restoration on abandoned mining land, and
conservation forest planting in water resource areas can promote the comprehensive man-
agement of water and mining land ecosystems and improve regional ecosystem functions.
Appropriate vegetation allocation modes should be selected for the configuration, planting,
management, and protection of plants at different site types.
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Abstract: High-intensity urban development and economic exploitation have led to the fragmen-
tation and isolation of regional habitat patches, and biodiversity is under serious threat. Scientific
identification and effective optimization of ecological networks are essential for maintaining and
restoring regional ecosystem connectivity and guiding sustainable socio-economic development.
Taking the mountainous areas of southwest Hubei Province (MASHP) in central China as an ex-
ample, this study first developed a new integrated approach to identify ecological sources based
on a quantitative assessment of ecosystem services and the morphological spatial pattern analysis
(MSPA) method; it then used the Linkage Mapper tool to extract ecological corridors, applied the
principle of hydrological analysis to identify ecological nodes, evaluated each ecological element
to quantify its importance, and finally constructed the ecological network and further proposed
some optimization countermeasures. The results show that the ecological network in the MASHP
is dominated by ecological resources composed of forestland. Connectivity in the central region is
significantly better than in other regions, including 49 ecological sources with an area of 3837.92 km2,
125 ecological corridors with a total length of 2014.61 km, and 46 ecological nodes. According to the
spatial distribution of crucial ecological landscape elements, a complete and systematic ecological
framework of “two verticals, three belts, three groups, and multiple nodes” was proposed. The
internal optimization of the ecological network in mountainous areas should focus on improving
ecological flow, and strategies such as enhancing the internal connectivity of ecosystems, unblocking
ecological corridors, and dividing ecological functional zones can be adopted. Based on the above
analyses, this study also made recommendations for ecological protection and development and
construction planning in mountainous areas. This study can provide realistic paths and scientific
guidelines for ecological security and high-quality development in the MASHP, and it can also have
implications for the construction of ecological networks and comprehensive ecological management
in other mountainous areas.

Keywords: ecological network; ecosystem services; morphological spatial pattern analysis; landscape
connectivity; ecological function zones

1. Introduction

The continuous socio-economic development and the increasing demand for urban
construction land have resulted in the encroachment of a large amount of ecological land
by construction land and the constant compression of ecological space, which has divided
the originally continuous natural habitat into a mosaic of mixed patches with a high de-
gree of fragmentation and has seriously affected the functioning of the ecosystem [1–3].
This has led to the destruction of ecological processes and serious degradation of the
ecological environment, which to a certain extent has intensified the fragmentation of the
regional landscape; meanwhile, the connectivity between habitat patches is decreasing,
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the habitat quality of species continues to decline, and the circulation between different
ecological streams is hindered, all of which have posed serious challenges to the sustainable
development of the region [4–6]. As a result, the concept of ecological security, which
is based on maintaining the integrity, health, and sustainability of ecological processes,
has gradually received widespread attention from governments and academics, and the
theory has provided strong support for governments to seek a balance between regional
ecological conservation and sustainable economic development [7,8]. After decades of
development, ecological security has become one of the essential concepts to alleviate the
contradiction between natural ecological conservation and human social evolution [9,10].
More and more scholars consider constructing an ecological network as a suitable method
to solve the above thorny problems [11–14]. Ecological networks are derived from the
theories and methods of landscape ecology and further enriched and developed on this
basis. They specifically refer to a potential spatial pattern of the ecosystem to maintain
the normal biodiversity, ecosystem health, and sustainable supply of ecosystem services
in a specific region [15,16], which can characterize the integrity and health of the current
natural ecosystem [17] and enhance the connectivity between different habitats through
“point-line-surface”, to effectively resist the lasting adverse effects of habitat fragmentation
on biodiversity [18,19].

At present, ecological network research is becoming more and more mature, and the
mainstream paradigm of “sources identification-resistance surface construction-corridors
extraction and nodes discrimination” has been formed [20–22]. As critical ecological
patches, ecological sources can promote ecological processes and maintain the integrity and
stability of the ecosystem [23], and they are identified mainly by the direct identification
method, minimum area threshold method, and ecosystem service overlay analysis method.
The first one is the direct identification method, which refers to the method of identifying
specific areas of the research object, such as the green areas, forest parks, scenic spots and
nature reserves with large concentrated and continuous areas and important recreational
functions as ecological sources [24,25]. This method is simple and straightforward, but
the screening criteria are relatively single and subjective. The second is the minimum area
threshold method. For the ecological sources that have been roughly selected, data reduc-
tion is directly carried out according to previous experience, and the operation process is
simplified. The choice of some thresholds remains controversial [26,27]. The third method
is the ecosystem service overlay analysis, which evaluates the sensitivity and importance of
ecosystems based on several important or typical ecosystem service capabilities, and uses
them as the basis for identifying ecological sources. The method is widely used because
of the comprehensive and relatively scientific nature of its quantitative indicators, but
these ecosystem service functions are mainly related to human well-being and are not
closely related to species migration and dispersal processes. Integrated approaches to
identifying ecological sources have become a new research trend. The Integrated Valuation
of Ecosystem Services and Tradeoffs (InVEST) model is a powerful tool that can be used to
reduce subjectivity to quantitatively assess ecosystem services [28]. Morphological spatial
pattern analysis (MSPA) is based on graphical principles and combines a raster algorithm
to identify ecological sources at the pixel level scale [29,30], emphasizing structural connec-
tivity and thereby increasing the scientific validity of ecological source selection [31]. Based
on the goal of comprehensively enhancing ecosystem services and landscape connectivity,
the combined use of the above two methods will allow for a more scientific and objective
identification of ecological sources, better reflecting biological conservation needs and the
suitability of species habitats. The creation of ecological resistance surfaces is another core
element of ecological network establishment. The evaluation framework has developed
from simply assigning values to land use types to considering human interference activities,
and has become multi-faceted and more objective. Ecological corridors, as bridges between
ecological patches, are linear or banded landscape elements different from the substrate
on both sides and channels for exchanging materials, energy, and information between
ecological patches. The minimum cumulative resistance (MCR) model proposed by a Dutch
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ecologist [32] has been optimized by Yu [33] and has been widely used in the extraction of
ecological corridors. The model reflects the ease of “source” dispersal by the magnitude
of cumulative resistance, which can effectively reflect the potential possibility and trend
of species and energy flow and dispersal in the region. Circuit theory, which applies the
random travel of electrons in a circuit to simulate the diffusion of species or ecosystem
services within a region [34], can reflect the relative importance of ecosystem services
in patches and corridors and identify key nodes in the flow process, and is also widely
used in related studies [35–37]. Others have used the Linkage Mapper tool integrating the
least-cost path (LCP) method and Circuit theory to extract ecological corridors [38,39]. The
Linkage Mapper tool first identifies adjacent ecological sources, then constructs a network
between ecological sources by adjacency and distance from each other, then calculates the
cost-weighted distances and least-cost paths between different source locations, and finally
combines the least-cost corridor links that need to be connected into a map [40]. However,
any resulting corridors should not only be a conceptual connecting path, but should also
have width. Effective corridors are those that can effectively link ecological space of wildlife
with land use policies [41]. The corridor width setting level should be combined with the
movement characteristics of the research object in order to achieve a balance between
the purpose of protecting the ecological environment and avoiding a large conflict with
economic development [17,42,43]. Ecological nodes are critical and strategic nodes that
occupy important locations on ecological corridors, generally located at the weakest part
of the corridor [44], and they play an important role in improving the connectivity of the
existing ecological network and promoting healthy ecosystem operation [45,46].

In general, the current studies on ecological network mainly focus on different scales
such as provincial areas, urban clusters, cities, and counties [47,48] and typical objects such
as mining areas, plateaus, plains, and watersheds [49–51], while mountainous areas are less
studied. Nearly 65% of China’s land area is mountainous [52]. Mountainous areas have
complex topography, which affects the transfer of materials and energy and constitutes
a unique ecological environment with important ecological security maintenance func-
tions but a fragile ecological substrate, and is thus a representative area for spatial control
studies. The mountainous areas of Southwestern Hubei Province (MASHP) are located
in the hinterland of Hubei Province. It is a superimposed zone of Hubei Province and
even China’s key ecological function zone, ecological water conservation zone, biological
resource enrichment zone, key link zone between poverty alleviation and rural revitaliza-
tion, and key ecological tourism development zone. The Three Gorges project is located
in Sandouping Town, Yichang City, in the MASHP. The MASHP is a typical mountainous
area with important ecological location, fragile ecological environment, and intertwined
ecological problems and poverty problems, and the contradiction between economic and
social development and ecological environmental protection is increasingly prominent [53].
The Nineteenth National Congress of China Report (2017) clearly states that the quality
and stability of ecosystems can be effectively improved by building ecological corridors
and biodiversity conservation networks. However, with the comprehensive promotion of
ecological civilization in China, under the constraint of laws and regulations such as the
Yangtze River Protection Law of the People’s Republic of China and the implementation of
strategies such as “to step up conservation of the Yangtze River and stop its over devel-
opment” and “Green Enshi” [54], the governments in the MASHP have made substantial
efforts to rectify the ecological problems and promote the implementation of joint preven-
tion and control mechanisms and co-management and co-construction models between
various regions, and the ecological environmental protection has achieved phased results.
However, the contradiction between ecological environment and economic development is
still prominent, and the situation of ecological and environmental security is still serious.
Therefore, it is typical and urgent to study the construction and optimization of ecological
networks and their protection and restoration in the MASHP.

The MASHP in central China was selected as the study area in this study. The specific
research objectives are as follows: (i) based on the integration of ecosystem service hotspots
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and the MSPA method, the minimum area threshold is set scientifically and combined with
landscape connectivity analysis to propose a new comprehensive method for identifying
ecological sources; (ii) the ecological corridors are extracted based on the least-cost paths,
and the intersection of the maximum paths and the minimum paths are identified as
the ecological nodes; (iii) ecological sources, ecological corridors and ecological nodes of
different importance levels together constitute the final ecological network; (iv) the internal
optimization measures of the ecological network are proposed. The research results can
provide the scientific basis for ecosystem restoration, ecological security, territorial spatial
planning and high-quality economic development in the MASHP and provide reference
for the construction of ecological network and comprehensive ecological restoration and
management in other mountainous areas in China.

2. Materials and Methods

2.1. Study Area

The MASHP is located in the southwest hinterland of Hubei Province, China, east
of the Yunnan–Guizhou Plateau and west of the Jianghan Plain, at 108◦22′ E–112◦05′ E,
29◦08′ N–31◦35′ N, including Yichang City (with 5 districts, 3 cities and 5 counties) and
Enshi Tujia and Miao Autonomous Prefecture (Enshi Prefecture, with 2 cities and 6 counties)
(Figure 1). The MASHP covers a total area of about 45,113 km2 and a population of 7,921,200
(in 2020). The mountainous area is undulating and dominated by high and mid-alpine
mountains, with an average elevation of over 900 m and a maximum of over 2900 m. The
MASHP has a humid subtropical monsoon climate with abundant rainfall. The mountains
are crisscrossed by rivers and deep river valleys, with the Yangtze River and Qingjiang as
the main water systems. The area is rich in forest resources; vegetation types are coniferous
forest, evergreen broad-leaved forest and shrub; rare plant and animal resources are very
rich. The MASHP is a very important ecological refuge and gene pool for plants and
animals in Hubei Province and even the whole central region of China. In recent years,
with the rapid socio-economic development, the expansion of construction, green land
crowding, tourism development and large-scale rural deforestation, dominant agricultural
development, as well as the construction of dams and other water conservancy facilities in
the MASHP, have caused more serious soil erosion, environmental pollution and ecological
degradation, and ecological and environmental problems are increasingly prominent.

2.2. Data Sources and Processing

The data information used in this study is shown in Table 1, which mainly includes
land use data, digital elevation model (DEM), traffic and river data, meteorological data,
soil data and normalized difference vegetation index (NDVI), and the above data were
processed to obtain the indirect data needed to be used in this study. ArcGIS 10.2 software
(ESRI,2013,10.2) (Environmental Systems Research Institute, Redlands, CA, USA) was used
to project, pre-process, map and analyze the data in this study. All data were unified in
the Albers coordinate system, and the grid of the raster data was unified at 30 m × 30 m.
Among them, the land use data were classified into 6 primary types and 25 secondary types
according to the land use/land cover changes classification standard, which are defined in
Table S1 in Supplementary Materials.

2.3. Method

Certain flow paths (corridors), critical junctions (nodes) and localities (sources) or their
spatial combinations together constitute the ecological network structure, which is divided
into four steps: (1) identifying the ecological sources; (2) constructing the resistance surface;
(3) extracting the ecological corridors and ecological nodes; (4) establishing the ecological
network and optimization. The research framework is shown in Figure 2.
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Figure 1. Location of the study area: (a) location in Hubei Province, China; (b) digital elevation map
(DEM); (c) land cover.

Table 1. Data information table.

Data Types Format Data Sources

Land use data Grids at 30 m resolution in 2020 Resource and Environment Science and Data Center
(https://www.resdc.c, (accessed on 28 December 2021))

Digital elevation model (DEM) Grids at 30 m resolution Geospatial Data Cloud site (http://www.gscloud.cn
(accessed on 30 March 2021))

Traffic road and river data Lines in 2020

National Catalogue Service for Geographic Information
(https://www.webmap.cn);

OpenStreetMap (https://www.openstreetmap.org
(accessed on 30 March 2022))

Meteorological data Grids at 1 km resolution in 2020 National Meteorological Information Center
(https://data.cma.cn/ (accessed on 30 March 2022))

Soil attributes Grids at 1 km resolution

Harmonized World Soil Database v 1.2 from Food and
Agriculture Organization of the United Nations

(https://www.fao.org/soils-portal/soil-survey/soil-
maps-and-databases/harmonized-world-soil-
database-v12/en (accessed on 30 March 2022))

Normalized difference vegetation
index (NDVI) Grids at 1 km resolution in 2019 Resource and Environment Science and Data Center

(https://www.resdc.cn (accessed on 30 March 2022))
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Figure 2. Framework of this study.

2.3.1. Identification of Ecological Sources

In this study, the final ecological sources were identified by integrating the assessment
of two ecosystem service hotspots, namely habitat quality and soil conservation, with
the MSPA method, setting the minimum area threshold scientifically and analyzing the
landscape connectivity. The specific steps are:

(1) Assessment of ecosystem services

For the development positioning of the MASHP as an important ecological barrier in
the middle and upper reaches of Yangtze River, as well as its ecological background situa-
tion and related regional management objectives (mainly for soil erosion), two ecosystem
services, habitat quality and soil conservation, were selected for quantitative evaluation,
and the top 20% patches of each ecosystem service were selected and taken as the first part
of alternative ecological sources after merging.

Habitat quality indicates the potential of the ecosystem to provide an environment
for species to survive and thrive, and it is positively correlated with biodiversity, thus
characterizing the richness of biodiversity to some extent. In the Habitat Quality module of
the InVEST model (https://naturalcapitalproject.stanford.edu/software/invest, (accessed
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on 31 March 2022)), the habitat quality in the MASHP is quantitatively assessed in terms of
external threat factors and habitat sensitivity [55–57]. This study was based on reference
studies of similar areas [58,59], determined the threat factors of habitats, the impact range
and weight of each threat factor, the suitability of different types of habitats and their
relative sensitivity to different threat factors (Tables S2 and S3). The closer the habitat
quality is to 1, the higher the level of habitat quality is indicated, and the calculation
formula is as follows:

Qxj = Hj

[
−
(

Dz
xj

Dz
xj + Kz

)]
(1)

where Qxj is habitat quality of raster x in land use type j, Hj is the habitat suitability of
land use type j, Dxj is the habitat degradation of raster x in land use type j, K is the half-
saturation constant, which is generally taken as half of the maximum value of Dxj, and Z is
the normalization constant, which is the default parameter of the system and usually takes
the value of 2.5.

The modified universal soil loss equation (RUSLE) [60] was used to estimate the poten-
tial soil loss without considering vegetation cover factors and soil and water conservation
measures and the actual soil loss considering the factors mentioned above. The difference
between the two was taken as the soil conservation amount of the ecosystem [61,62]. The
calculation formula is as follows:

SC = R × K × L × S × (1 − C × P) (2)

where SC is the amount of soil conservation (t·hm−2·a−1), R is the rainfall erosion force
factor (MJ·mm·hm−2·h−1·a−1), K is the soil erodibility factor (t·h·MJ−1·mm−1), L and S are
the topography factors (L is the factor of slope length, S is the slope factor), C is the surface
vegetation cover factor, and P is the soil conservation measure factor.

(2) Application of hotspots analysis

The spatial distribution of cold and hot areas for ecosystem services reflects the
strength of ecosystem services. The hotspot analysis method is based on the Getis-Ord
Gi* statistical method [63], which analyzes the spatial clustering of high or low values of
ecosystem services. Patches that are fragmented and do not have concentrated contiguity
are continuously eliminated as the distance threshold increases, and close and connected
patches are clustered to form larger patches. Based on the evaluation results of habitat
quality and soil conservation, the top 20% patches of each ecosystem service were selected
to select ecological service hot areas according to extreme confidence hot areas, and the first
round of selection of the first part of alternative ecological sources was completed.

(3) MSPA

This study identified and extracted the core area in the MASHP based on the MSPA
method as the second part of alternative ecological sources [30]. Considering the geograph-
ical conditions of the MASHP, forestland was set as foreground and other land use types
were set as background. There is an obvious scale effect in the MSPA method, and the iden-
tification results are not consistent with different threshold values [64]. For example, if the
threshold is too large, elements with smaller areas will disappear or be classified under other
elements, and small core areas will be classified as isolated islands, etc. Therefore, the thresh-
old value was set to 100 m × 100 m by considering the effects of the area, data, and scale
effects of the study area. Finally, the data were binarized, rasterized, and analyzed in Gui-
dos Toolbox 3.0 analysis software (https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/,
(accessed on 31 March 2022)). The data were analyzed using the eight-neighborhood
analysis method to obtain seven types of non-overlapping landscapes, namely, Core, Islet,
Perforation, Edge, Loop, Bridge, Branch and Background (see Guidos Toolbox user guider
for detailed meanings of landscape types and color symbols) [65]. Finally, core areas that
were important for maintaining connectivity were extracted as landscape elements for sub-
sequent analysis. In order to avoid fragmented patches from degrading the main function
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of the core area and generating redundant ecological corridors, the patches with an area of
not less than 10 km2 were selected for the subsequent patch connectivity calculation with
reference to the studies on the threshold setting of relevant core area by MSPA [28,66]. The
first round of selection of the second part of alternative ecological sources was completed
at this time.

(4) Evaluation of landscape connectivity

Landscape connectivity reflects the degree to which the landscape facilitates or im-
pedes ecological flows, has a positive impact on species richness and is key to maintaining
ecosystem stability and integrity [67,68]. Based on the Conefor Sensinode 2.6 software
(Jenness Enterprises, Flagstaff, AZ, USA) (http://www.conefor.org/coneforsensinode.html
(accessed on 31 March 2022)), starting from the probability of connectivity (PC) and the
integral index of connectivity (IIC) reflecting the connectivity of each patch to the landscape,
the delta values for the PC index (dPC) and the Delta Values for the IIC index (dIIC) of
alternative ecological source patches were calculated. The average value (dI) of the two was
taken to obtain a more accurate degree of ecological patch importance [69]. A higher index
means a higher degree of patch connection. The node files and distance files required for
connectivity analysis in Conefor Sensinode 2.6 were generated by the plug-in for Conefor
in ArcGIS 10.2 software and were calculated as follows:

PC =

(
n

∑
i=1

n

∑
j=1

ai × aj × P∗
ij

)
/A2

L (3)

I IC =
n

∑
i=1

n

∑
j=1

[(
aiaj/

(
1 + nlij

))]
/A2

L (4)

dPC = (PC − PCremove)/PC × 100% (5)

dI IC = (I IC − I ICremove)/I IC × 100% (6)

dI = 0.5 × dPC + 0.5 × dI IC (7)

where n is the total number of patches in the study area, ai and aj are the areas of patch i and
patch j, respectively, Pij is the maximum probability of species dispersal between patches I
and j, AL is the total landscape area in the study area, lij is the shortest path from patch I to
patch j, PCremove is the PC after removing an element in the landscape, and IICremove is the
IIC after removing an element in the landscape.

(5) Final confirmation and optimization of ecological sources

The first part of alternative ecological sources should be of a specific size to ensure
the stability of ecosystem service provision and the positive aggregation effect [70]. This
study quantitatively determined the minimum area threshold of ecological sources by
exploring the variation of the number of patches and the total area of patches with the
selected minimum area threshold, and completed the second round of selection of the first
part of alternative ecological sources. The two previously obtained parts of alternative
ecological sources were combined after removing the small overlapping parts, and the
dI values of the patches were calculated. Finally, the patches with dI greater than 2 were
identified as the final ecological sources, and the final round of selection of the first and
second parts of alternative ecological sources was completed at this time.

The intermediary centrality index (0< Qi ≤ 1, the closer Qi is to 1, the greater the
importance) was calculated to define the role of ecological sources, and the results were
classified qualitatively: Qi ≥ 0.5 is classified as vital ecological source; 0.2 < Qi < 0.5 is
classified as important ecological source; 0 ≤ Qi ≤ 0.2 is classified as general ecological
source; the formula is as follows:

Qi =
dPCconnector

dPC
(8)
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In the equation, dPCconnector quantifies the importance of patch i in maintaining the
overall effective connection in the ecological network, and dPC quantifies the maximum
flux through patch i in the complete landscape diffusion process.

Considering the increased urban expansion and demand for ecosystem services in the
future, the current ecological resources may not be sufficient to meet the needs of future
development, so the ecological sources need to have a wider radiative power for maintain-
ing the ecological processes and natural succession within the sources and reducing the
impact of anthropogenic disturbances in the external landscape [71]. Since the MASHP is
rich in forestland resources, forestland with the strongest ecosystem services was selected
as the main factor influencing the spread of ecological sources [72]. In this study, multiple
ring buffer zones (100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 m) were established
for ecological sources with poor landscape connectivity (2 ≤ dI < 3), and the change in
forestland growth rate in each buffer zone with the increase in buffer distance was analyzed.
Finally, the optimal diffusion distance of these sources was obtained by integrating the
distribution of other land use types.

2.3.2. Determination of Resistance Surface

When determining ecological resistance, referring to the experience of previous stud-
ies [46,58,73], a five-level system was used to define the resistance magnitude of a single
factor, with higher scores implying greater species dispersal resistance. The AHP method
was used to determine the resistance factor weights. The weights and coefficients of the
resistance factors are shown in Table 2.

Table 2. Weights and coefficients of resistance factors.

Resistance Factor
Resistance Coefficient

Weight
10 30 50 70 90

Land use type Forestland/
Grassland Water bodies Cultivated land Unused land Construction

land 0.5299

Slope (◦) <8 [8–20) [20–30) [30–40) ≥40 0.0636
Elevation (m) <374 [374–755) [755–1085) [1085–1441) ≥1441 0.0636

Distance from river
(km) <2 [2–5) [5–8) [8–10) ≥10 0.1034

Distance from
settlements (km) ≥25 [15–25) [9–15) [4–9) <4 0.1273

Distance from main
roads (km) ≥75 [55–75) [35–55) [15–35) <15 0.1122

2.3.3. Extraction of Ecological Corridors and Ecological Nodes

In this study, the Linkage Mapper tool (https://linkagemapper.org/, (accessed on
5 April 2022).) in ArcGIS 10.2 software was used to extract ecological corridors. First,
the cost-weighted distances (CWDs) from each pixel on the ecological resistance surface
to the ecological sources were calculated; second, the least-cost paths (LCPs) between
all ecological sources were determined; finally, the cut-off distances were set to generate
ecological corridors, so that each source was connected and formed a network loop. In
view of the identified corridors, an evaluation index system was established to evaluate the
importance of corridors by comprehensively considering their functional importance and
their own conditions [74]. The functional importance of the corridors included the area
of the source patch connected by the corridor and the landscape connectivity of the main
source connected by the corridor; the corridor conditions mainly considered the corridor
length and corridor quality. Using the AHP method to determine the weights of indicators
at all levels, all indicators were divided into three levels using the natural breaks method in
ArcGIS 10.2, and the importance was assigned to 5, 3 and 1 from the largest to the smallest,
respectively (Table 3). Finally, the ecological corridors were classified into key ecological
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corridor, important ecological corridor and ordinary ecological corridor according to the
calculation results, from the largest to the smallest.

Table 3. Evaluation index system of ecological corridor importance.

Target Layer Criteria Layer Solution Layer
Grading

Evaluation
Description

Ecological corridor
importance

Corridor function
importance (0.62)

Total area of patches
connected by

corridors (0.22)

5 The sum of the area of connected ecological
sources by the corridor, the larger the area, the

more important the corridor.
3
1

Landscape
connectivity of main

connected
ecological sources

(0.40)

5

The higher the dI of main connected ecological
source, the more important the corridor.

3

1

Corridor condition (0.38)

Corridor length
(0.10)

5 The longer the corridor, the greater the risk of
breakage.3

1

Corridor quality I
(0.10)

5
The ratio of CWD to the Euclidean distance

represents the ease of animal migration
between sources. When the value is larger, the

corridor quality is poorer

3

1

Corridor quality II
(0.18)

5 The ratio of CWD to the least-cost path length
(LCPL) can study the quality of corridors.

When the CWD/LCPL value is larger, species
suffer greater resistance to migration or
dispersal through this corridor, and the

corridor quality is poorer.

3

1

Strengthening the ecological environment of ecological nodes is conducive to reducing
the consumption cost of ecological corridors and enhancing the ecological service function
of the regional ecological network. In this study, the ecological corridors were the minimum
cost distance channels between adjacent sources, namely, the minimum paths. The “ridge
lines” of the minimum cumulative resistance surface were obtained in ArcGIS 10.2 using
hydrology analysis module, namely, the maximum paths. In the hydrological analysis
module of the spatial analysis tool of ArcGIS 10.2 software, the maximum threshold value
that blocked ecological flow and species dispersal was extracted based on the minimum
cumulative resistance surface, and then vectorized and smoothed the vectorized lines
to obtain the “ridge lines” of the resistance surface [75,76]. This study identified the
intersection of the maximum and minimum paths as ecological nodes. According to
their intersection, the ecological nodes were divided into three levels according to their
intersection with corridors of different importance (Table 4).

Table 4. Classification criteria of ecological nodes.

Levels of Ecological Nodes Classification Criteria

1 Located at the intersection of key ecological corridors and the
“ridge lines”.

2 Located at the intersection of important ecological corridors
and the “ridge lines”.

3 Located at the intersection of ordinary ecological corridors
and the “ridge lines”.

3. Results

3.1. Spatial Patterns of Ecological Sources
3.1.1. Assessment of Ecosystem Services and Analysis of Hotspots

The spatial patterns of the two ecosystem services in the MASHP were obtained by
quantitatively evaluating habitat quality and soil conservation ecosystem services. As can
be seen from Figure 3, the average habitat quality index in the MASHP is 0.75, which is
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at a moderate to a high level. Because of the serious fragmentation of the study area, the
areas with various levels of habitat quality show a staggered distribution throughout the
study area. The areas with higher habitat quality are spread, mostly covered with forest
vegetation, and have a good natural environment. They are less disturbed by human
activities such as urban land expansion and construction, so the habitat quality indices are
high. In terms of soil conservation, the values in the southwest are generally higher than
those in the northeast, and the low value areas are mainly located in low elevation areas
with less topographic relief, mainly including Zhijiang City and Dangyang City, where the
land use types are mainly cultivated land and construction land, with sparse vegetation
and high intensity of human activities. In general, the natural background state of the
MASHP is good, and the high-value areas of the two ecosystem services mostly overlap
with forestland and grassland.

Figure 3. Spatial pattern of ecosystem services and identification of cold and hot areas of ecosystem.

The spatial distribution of cold and hot areas of ecosystem services reflected the
strength of ecosystem services. The evaluation results of habitat quality and soil con-
servation are integrated, the top 20% ecological patches of each ecosystem service are
selected, and the hot areas of ecosystem services in the MASHP are obtained based on
ArcGIS 10.2 software after taking the merged set and using the hotspots analysis tool in
the spatial statistics module, with extreme confidence hot areas as the selection criteria
(Figure 3c). The hot areas are mainly located in the northern, central, and southwestern
regions, while the cold areas are concentrated in the eastern region. For the ecological
sources selected by hotspots analysis, there are problems with the excessive number of
ecological source patches and high fragmentation, so it is necessary to set the minimum
area threshold manually to correct them further to avoid the fragmented patches from
reducing the ecosystem service function of the sources [48,71,77]. As the minimum patch
area threshold of ecological source patches increases from 1 to 15 km2 in steps of 1 km2,
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the number and area of patches first show a sharp decline, and then there is a steady and
apparent decrease at the threshold of 10 km2. At the inflection point, the downward trend
of the curve is flat, and there is no longer a vast fluctuation (Figure 4). The fluctuation of the
above data indicates that it is better to use the threshold value of 10 km2 to eliminate small
and finely fragmented patches. Although there are a large number of removed patches,
they are small in individual area, finely fragmented and scattered, and have little impact on
the regional ecological environment. Therefore, patches with areas larger than 10 km2 were
selected. 68 patches become alternative ecological sources, and most of these alternative
ecological sources are concentrated in the northern and central parts of the study area, and
scattered in the southwestern part (Figure S1).

 
Figure 4. Effect of the minimum area threshold on the number of patches and area of patches from 1
to 15 km2.

3.1.2. Identification of Core Ecological Patches by MSPA

The MSPA patterns distribution of the study area is shown in Figure 5. Among the
seven landscape types in the foreground, the core area has the largest area of 16,750.84 km2,
accounting for 49.98% of the foreground area. Meanwhile, due to the serious fragmentation
of patches in the core area, the selection of too many ecological sources will lead to exces-
sive overlapping and redundancy of subsequent ecological corridors, which will increase
management costs. Combining with the actual situation of the study area, 103 patches with
an area of more than 10 km2 in the core area were selected as the alternative ecological
sources (Figure S2).

In order to avoid the phenomenon of patch overlap, the two previously obtained
alternative ecological source patches were combined after removing the small overlapping
parts. Finally, 171 alternative ecological source patches were obtained. Based on the results
of previous studies and Equations (3)–(7), the landscape connectivity of 171 patches was
assessed using Conefor Sensinode 2.6 software, setting the patch connectivity distance
threshold to 1500 m and the probability of connectivity to 0.5, with 68 patches based on
ecosystem service evaluation, hotspots analysis and area screening and 103 patches based
on MSPA and area screening. The evaluation results show that the patches with dI values
less than 2 are isolated and small compared to other patches, and the landscape connectivity
is poor, so they should not be identified as ecological sources. Therefore, 49 patches with
dI values greater than 2 were identified as the final ecological sources. The total area of
ecological sources is 3837.92 km2, accounting for 8.51% of the total area of the MASHP,
and the land use types are mainly forestland. Overall, most of the ecological sources are
concentrated in the central region, the county boundary areas in the north and south, and
scattered in the southwest, with the number of sources gradually decreasing from the center
to the two ends, and the landscape connectivity in the southwest is poor (see Figure 6 and
Figure S3). Some of the larger ecological sources (e.g., number 22, 38) are close to the study

146



Int. J. Environ. Res. Public Health 2022, 19, 9582

area boundary, while other relatively small ecological sources (e.g., number 9, 42) are mainly
in the central part. From the spatial distribution of ecological sources by county, Changyang
Tujia Autonomous County has the largest proportion of ecological sources in the total
county area (19.95%), followed by Wufeng Tujia Autonomous County (10.43%). In contrast,
Xiling District, Wujiagang District, Xiaoting District and Zhijiang City have no ecological
source distribution. As shown by the overlay analysis with various national nature reserves
of the MASHP (http://www.papc.cn/html/folder/1-1.htm (accessed on 1 May 2022)),
most of the ecological sources obtained involve the core areas of existing nature reserves and
forest parks, such as Xingdoushan National Nature Reserve (in Lichuan), Mulinzi National
Nature Reserve (in Hefeng), Houhe National Nature Reserve and Chaibuxi National Forest
Park (in Wufeng), indicating that the selected sources are scientific.

Figure 5. MSPA-based landscape feature type map.

Figure 6. Ecological sources in the study area.
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Based on Equation (8), Qi was calculated to evaluate the importance of each ecological
source patches, so as to determine the connotation of ecological source patches in regional
potential ecological network. Finally, there are 14 vital ecological sources, 12 important
ecological sources and 23 general ecological sources.

3.2. Analysis of Comprehensive Resistance Surface

According to the resistance factors and weights in Table 2, ArcGIS 10.2 was used to
establish the comprehensive resistance surface of ecological factors. The minimum cumu-
lative resistance surface was generated based on ecological sources and comprehensive
resistance surface to lay the foundation for the subsequent delineation of function zones.
The average resistance value is 34.52, and the comprehensive ecological resistance surface
shows an overall staggered distribution of high and low resistance values, with a certain
aggregation in some areas (Figure 7a). The high-value ecological resistance areas show the
characteristics concentrated in the northeast and scattered in the rest of the area, basically
located in the areas with the high level of urban development, high traffic density and
frequent human activities. Although cropland has vegetation with good growth, its resis-
tance value rises due to the influence of human agricultural activities and artificial control
around it. Topographic obstruction factors also influence the high value of resistance areas
distributed in Enshi Prefecture, and the high terrain makes the spread of ecological species
narrow. The low-value ecological resistance areas are located in the north, south and
southwest, where the surface vegetation coverage is high, there are rivers and lakes, and
the anthropogenic interference is less than that in the urban concentration. From Figure 7b,
it can be seen that some areas in the eastern, southern and western parts of the study area
can have a more significant obstructive effect on the migration dispersal and material flow
of species.

Figure 7. Spatial distribution of comprehensive resistance surface and minimum cumulative resistance.

3.3. Analysis of Ecological Corridors and Nodes

The Linkage Mapper tool was used in ArcGIS 10.2 to extract the LCPs to complete
the ecological corridor identification based on the ecological sources and comprehensive
resistance surface. In this study, 125 ecological corridors were identified, with a total length
of about 2014.61 km. The ecological corridors are connected along the northeast–southwest
direction to form a network and run through the whole area, with a dense distribution in
the central part, indicating that the central source areas are better connected. Most of the
corridors spreading from the east and west ends to the middle are long-distance corridors.
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Affected by the barrier of urban built-up areas, there is a potential connection trend between
some sources separated by distance, but no connected corridor has been formed (Figure 8).
After analyzing the statistics, it is found that the corridor length distribution in three
regions, Changyang Tujia Autonomous County, Xuan’en County and Enshi City, shows
obvious advantages, with a total of 640.11 km, accounting for about 31.77% of the total
length of ecological corridors. The corridors show an extensive spanning range in these
areas. There are no ecological corridors distributed in Xiaoting District, Zhijiang City
and Laifeng County, mainly for three reasons: firstly, most of the construction land in the
above counties is centrally distributed, with high ecological resistance values and large
barriers to communication between ecological sources; secondly, regional construction
land is distributed sporadically among ecological patches, and ecological patch fracture
cannot form a good ecological concentration surface; lastly, there are regions with large
areas of contiguous cultivated land, without ecological source land coverage. According to
Table 3, the importance of each ecological corridor was calculated. Finally, there are 26 key
ecological corridors, 29 important ecological corridors, and 70 ordinary ecological corridors
with total lengths of 543.80 km, 536.56 km, and 934 km, specifically. Key and important
ecological corridors are important paths for the diffusion of ecosystem services from the
sources to the outside, ensuring the fundamental ecological processes. Additionally, some
corridors are also the only corridors for circulation between some ecological sources, with
a wide range of radiation. However, because of the long length of some corridors, they
are susceptible to anthropogenic impacts such as urban expansion, excessive agricultural
settlement and vegetation destruction, so there is an urgent need to optimize the corridors
in terms of adjusting the spatial layout of functions and increasing the density of regional
vegetation cover. Ordinary ecological corridors are supplementary to other level corridors,
forming a north–south coherent ecological network.

 
Figure 8. Ecological network in the study area.

The number, quality, and distribution of ecological nodes affect species’ migration
timing and success probability. A total of 46 potential ecological nodes were identified
in the study area, including 11 level 1 ecological nodes, 11 level 2 ecological nodes, and
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24 level 3 ecological nodes (Figure 8). These nodes mainly play the role of connections and
hubs, located at the weak point of ecological material and capacity exchange, which are
crucial for the mobility efficiency of the ecological corridor and greatly influenced by human
activities [17]. The ecological nodes identified are relatively evenly distributed spatially, in
total, on 42 ecological corridors. Still, no ecological nodes are distributed in Zhijiang City,
Dangyang City, and Yuan’an County in the east and Laifeng County at the southern end.
The landscape type of most ecological nodes is forestland, but any two points are far apart
and poorly connected between nodes, which also indicates the need to increase ecological
nodes in areas with dense source distribution to promote connectivity and strengthen the
construction and protection of ecological nodes. Level 1 ecological nodes are scattered and
relatively few in number, and there is no distribution in the north. They play an important
role in connecting ecological sources and assume the responsibility for smooth operation
of ecological flow and maintenance of ecological stability. Therefore, the preservation and
optimization of the original green belt and water patch with high ecological function in the
area where the nodes are located should be strengthened. Level 2 ecological nodes are more
distributed in the southwest, and some of them are also in the transition zone between
urban construction land and cultivated land. Landscape transformation of such nodes has
high cost and difficulty, so local governments should focus on improving the ecological
efficiency of green land and enhancing the ability to prevent pollution. Level 3 ecological
nodes are the most numerous, mostly covering the central and northern parts of the study
area. Three of them are cultivated land, vulnerable to human development activities.
Moreover, the spread of agricultural non-point source pollution can greatly interfere with
the circulation of ecological flow. In the future, the regional government can consider
constructing “stepping stones” at ecological nodes by building small ecological parks or
planting forestland to improve ecological network connectivity and provide landing points
for biological migration.

3.4. Construction of Ecological Network

Ecological corridors are interwoven with ecological nodes together with ecological
sources to form ecological network. The ecological network in the MASHP includes
49 ecological sources, 125 ecological corridors, and 46 ecological nodes, all of which have
different levels of importance. Ultimately, these elements form a sustainable, composite,
multi-level and interconnected ecological network (Figure 8). In this ecological network,
the coverage of ecological sources is ideal, ecological corridors can effectively link the
sources, and ecological nodes play an important role in promoting the flow of energy and
material in the region.

Combining the spatial distribution characteristics of elements, the ecological spatial
framework of the MASHP can be summarized as “two verticals, three belts, three groups,
and multiple nodes” (Figure 9). The “two verticals, three belts” represent the general
direction of ecological corridors of a certain scale connecting all ecological sources and
nodes, mainly the vertical ecological corridors starting from Badong County and Xingshan
County and the longer horizontal ecological corridors in the northeast–southwest direction.
The ecological corridors expressed as vertical axes maintain the connectivity between the
north and the central and southern parts. In contrast, the ecological corridors expressed as
horizontal axes link the ecological sources at the northeast and southwest ends with the
central sources, ensuring the integrity and continuity of ecological processes from north to
south and from east to west, which are the best paths for species migration and ecological
information flow. The “three groups” represent the northeastern, central, and southwestern
ecological groups, respectively. The northeastern ecological source group mainly includes
ecological sources distributed in the northern end of Badong County, Xingshan County
and Yuan’an County, mainly at the edge of the county boundary. This group is responsible
for important ecological functions such as soil conservation and biodiversity maintenance
northeast of MASHP. The central ecological group includes ecological sources mainly in
Changyang Tujia Autonomous County and Wufeng Tujia Autonomous County, which is

150



Int. J. Environ. Res. Public Health 2022, 19, 9582

the core group. The ecological sources in this group are concentrated, crossed by several
ecological corridors, rich in species and with good natural substrates. The southwest
mainly includes ecological sources in Lichuan City, Xianfeng County and Laifeng County,
which is the main ecological source group in Enshi Prefecture. The source patches are
large in area but small in number, which guarantee the ecosystem security and stability
in the southwestern part of MASHP. The “multiple nodes” represent the ecological nodes
of different levels in the network, which are located at the weakest part of the corridor
function. The connectivity degree and cross-structure features of the ecological network
in the MASHP have noticeable spatial differences, so further details can be improved
and optimized from the perspective of improving the stability and liquidity of the overall
ecosystem.

 
Figure 9. Ecological framework in the study area.

4. Discussion

4.1. Optimization of Ecological Network

The current problems of ecological network in the MASHP created in this study are
reflected in three aspects. Firstly, the fragmentation of the landscape in the study area
is serious, causing fragmentation of ecological resources, resulting in the uneven spatial
distribution of ecological sources and insufficient diversity of ecological elements, for
example, some small patches in the central ecological source group are isolated and not
well connected. Therefore, according to the spatial structure and distribution characteristics
of the existing ecological sources, the related management departments should focus on
maintaining and effectively improving the ecological quality and ecological benefits of the
ecological sources, enhancing the connectivity between the sources, and dividing ecological
protection buffer zones to avoid damage to the ecological sources. Secondly, the existing
ecological corridors need to be further widened, and only corridors with a certain width
can assume the function of ecological element connectivity and communication. The width
of ecological corridors in ecological network optimization can enhance the ecological effect
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of corridors and the connectivity between small ecological corridors. Therefore, a certain
width of ecological corridors should be given to activate the ecological service function
of the corridor [68]. Finally, the existing ecological network elements are in conflict with
other production and living service elements, and the planned new infrastructure is also
prone to damage the ecological network; for example, the completion of new national
highways will affect several ecological corridors. Therefore, different ecological functional
zones can be divided to set up targeted management and protection measures to effectively
coordinate the value balance of agricultural production, development and construction
and ecological services.

To further enhance the integrity and connectivity among ecological sources, buffer
zones were set for ecological sources with poor landscape connectivity (2 ≤ dI < 3), and
the growth rate of forestland within each buffer would be observed to change as the buffer
distance becomes larger, and finally, the optimal dispersal distance of these sources were
obtained after integrating the distribution of other land use types (Table S4 and Figure S4).
The analysis of the evolution of the buffer zones of ecological sources in the MASHP shows
the following: when the buffer zones of some sources reach a certain distance, they overlap
with the surrounding construction land, so this phenomenon should be avoided as much as
possible; when the buffer zones of some sources are too large, the buffer zones of ecological
source patches overlap each other and start to crowd the space of other lands, which is not
consistent with the reality of intensive land use; when the buffer zones of some sources
are increased to the corresponding distance, the connectivity with the surrounding sources
enhance, but the optimal diffusion distance need to be determined after comprehensive
consideration. In summary, the buffer zones are set up for ecological source patches with
poor landscape connectivity. As the ecological sources spread outward, some ecological
sources will form effective connections, thus enhancing the connectivity between ecological
sources and the stability within the patches [71,72]. For instance, patches numbered 14 and
12 and patches numbered 9 and 16 in the central eco-logical source group have connected
after installing buffer zones to realize the expansion of outward radiation (Figure S5).

The connectivity of ecological network is ensured by dredging ecological corridors.
The animal species in the MASHP are mainly medium-sized mammals. According to
Zhu et al. [78], buffer zones of 30, 60, 100, 400, 600, 800, and 1000 m were set for existing
ecological corridors, and the area of each land use type in different corridor widths was
statistically analyzed. As shown in Table 5 and Figure 10, it can be seen that the distribution
area of each land use type in different corridor widths varies greatly. Forestland is the
primary type in the corridor. As the corridor width increased from 30 m to 1000 m, the
area of all land use types shows a continuously increasing trend. Although the proportion
of forestland area to the total area of corridor area decreases continuously, the proportion
is always more than 80%. The proportion of cultivated land area increases less, and after
400 m corridor width, the proportion of cultivated land area to the total area of corridor
area is second only to forestland area. The proportion of grassland area increases, then
decreases and then increases again but remains stable at 7% or less, with the inflection
points occurring at 60 m and 600 m corridor widths, respectively. The proportion of water
bodies area increases and then decreases, with the inflection point and the highest point
occurring at the 600 m corridor width. The proportion of construction land area keeps
rising, but it is always below 1%, and the increase rate increases significantly to 400 m.
It is worth noting that the large construction land area is not conducive to the migration
and diffusion of organisms between ecological sources. It also increases the difficulty of
constructing ecological corridors. Taking all factors into consideration, the corridor width of
100–400 m has the least encroachment on cultivated land, weak impact on construction land,
and the area share of three major ecological land use types, namely, forestland, grassland
and water bodies, is at a high level, which is also the width required for migration and
conservation of small- and medium-sized mammals [79]. Therefore, the optimal width
range of the MASHP corridor is determined to be 100–400 m. In the future construction
of the corridors, based on the natural advantages of forestland and grassland in the study

152



Int. J. Environ. Res. Public Health 2022, 19, 9582

area, the stability of the corridors should be enhanced by forming a vegetation community
with a composite structure of trees, shrubs, and grasses according to the actual situation
and by strengthening the configuration of ecologically strong and stable vegetation. In
particular, when building long and important ecological corridors, the distance between
core patches can be shortened by adding “stepping stones” and buffer zones to prevent
the rupture of corridors. For corridors that may cross water bodies (for example, some
vertical ecological corridors starting from the northern part of the study area will span the
Yangtze River and its tributaries), attention should be paid to the construction of coastal
vegetation buffer zones of water bodies where the corridors are located. A reasonable
vegetation buffer zone can effectively filter surface pollutants to improve water quality and
create conditions for the migration of inland organisms in the corridors. For corridors with
cultivated land distributed inside, the focus should be on protecting semi-natural habitats
such as pond wetlands, ecological ditches, farmland ridges and scrubs, and moderate
conversion of farmland back to forests to maintain the ecological stability of the small
regional environment. For corridors with a large distribution of internal construction land,
a buffer zone of a certain width can be set outside the corridor to minimize the interference
of large human construction activities in the areas around the corridor. A portion of
ordinary ecological corridors exist between compact ecological sources with short lengths,
and such corridors can facilitate further species circulation by enhancing the closeness
between ecological sources [74]. Of course, the ecological network is a resilient ecological
conservation space in which the width of the corridors can be appropriately contracted and
expanded according to the practical problems faced during construction [17].

Table 5. Area of different land use types in corridors with different widths (km2).

Land Use Type
Corridor Width (m)

30 60 100 400 600 800 1000

Cultivated land 2.49 6.15 15.55 126.66 213.37 295.95 383.74
Forestland 96.85 175.34 311.20 1161.49 1734.31 2305.15 2900.60
Grassland 7.89 14.44 25.42 97.13 145.43 194.68 247.85

Water bodies 1.38 2.76 5.37 25.46 38.69 51.49 64.21
Construction land 0.17 0.39 0.96 6.44 10.97 15.75 21.04

Figure 10. Area proportion of different land use types in corridors with different widths.

By dividing the ecological function zones, the precision and efficiency of ecological
security construction can be ensured. The minimum cumulative resistance surface con-
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structed based on ecological sources is the basis of ecological function zoning [76]. The
standard deviation classification method was used to classify the resistance values. The
mutations in the number of grids corresponding to different cumulative resistance numbers
were selected as the basis for determining the resistance thresholds. When species pass
through these mutation points, the minimum cumulative resistance value will increase
sharply, indicating that when the ecological land area increases to a certain extent, the
conservation significance of increasing the area again will decrease suddenly. According
to the standard deviation of the minimum cumulative resistance, the resistance values of
ecological land protection were initially divided into 17 categories, named C1–C17, and
each category was separated by one-quarter variance. The number of grids in each category
and the correspondence of the image element value (minimum cumulative resistance value)
were counted (Table S5). As shown in Figure 11, from C1–C2, there is a significant decrease
in the number of grids, and the difference in the number of grids accounts for 8.02% of the
total number of grids in the MASHP; from C3–C7, the number of grids again undergoes a
relatively large abrupt change, and the change is second only to that from C1 to C2, account-
ing for 3.18% of the total number of grids; starting from C8 onward, the number of grids
tends to stabilize, remaining at a level below 6%. Therefore, according to the above thresh-
old determination method, the minimum cumulative resistance values of 38,183, 131,896
and 600,462 were selected as the critical threshold functional zoning in the MASHP. At the
same time, the spatial distribution patterns of ecological sources, ecological corridors and
ecological nodes in the study area were comprehensively considered. The corresponding
division results were ecological conservation zones (C1, ECZs), ecological buffer zones (C2,
EBZs), ecological transition zones (C3–C7, ETZs), and ecological available zones (C8–C17,
EAZs), with the objectives of protection and conservation, stability maintenance, conflict
mitigation and production development, respectively. In addition, ecological function
zoning also needed to consider the spatial distribution pattern of ecological corridors. The
primary function of ecological corridors was to provide species migration and dispersal
channels. Therefore, based on the composition of land use types in ecological corridors,
the corridor restoration zones (CRZs) with the greatest resistance to species migration
and dispersal in the corridor with a maximum width of 400 m were extracted from the
results of the previous analysis and superimposed on the divided functional zones. The
final ecological function zones were obtained by superimposing them on the functional
zones already delineated (Figure 12). Different measures should be developed to enhance
ecological maintenance and management according to the characteristics and objectives of
each ecological function zone.

According to the zoning results, the ETZs occupy the largest proportion, accounting
for 4204% of the total area of the study area. In contrast, the EBZs account for the most
minor proportion of the whole area, 13.25%. The ECZs occupy 21.28% of the total area of
the study area, and all ecological sources are included. The zones slightly increase in area
and connectivity compared to the ecological sources and serve as a protective barrier for
ecological sources, a potential area for the expansion and succession of ecological sources.
The zones are the core area of ecological protection, development and occupation should be
strictly restricted, conservation should be the focus, a reasonable ecological layout should
be adopted, natural grassland, ecological woods and other ecological resources restoration
projects should be actively implemented (e.g., the “greener mountains” strategic decision
implemented by Enshi Prefecture, the various projects around the ecology of the Yangtze
River implemented by Yichang City), and ecological protection of various types of cultured
forests should be established. For the ECZs with urban construction land areas, the existing
parks and cultural scenic spots can be combined to construct and protect urban green
corridors and strengthen green space planning to improve the public green space and
ecological functions of the urban ECZs. The EBZs are distributed close to ecological sources
and are an extension of ecological sources. In the process of the ECZs playing its ecological
service function, the EBZs provide enough buffer area to ensure the normal operation of
the ECZs and reduce the interference and impact of external human activities on the ECZs.
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The zones should maintain the dominant landscape stability and focus on optimizing the
existing layout to mitigate various land use conflicts. The ETZs are located between the
EBZs and EAZs with the largest scale, and the area distribution of cultivated land and
construction land in the region is evident. It is a region with prominent contradiction
between agricultural production, urban construction and ecological protection. The devel-
opment and utilization of various kinds of land need to consider the balance between the
three and carry out urban construction, tourism development and infrastructure expansion
activities appropriately and selectively. Agricultural production should be carried out
within reasonable limits, cultivated land should be improved, and the use of chemical
fertilizers and pesticides and the discharge of wastewater and waste should be controlled
to ensure soil ecological safety. The EAZs account for 23.07% of the total area of the study
area and are located outside the ETZs, far away from the ecological sources, and are the
zones where urbanization construction and agricultural development are prioritized. The
zones should actively expand modernized specialty agriculture based on not affecting
or destroying the ecological environment, such as the characteristic citrus, navel orange
and tea in Yiling District and Zhijiang City, and white grapefruit in Xuan’en County, etc.
These counties can focus on particular products to carry out industrial transformation
and upgrading and continuously expand agricultural development. Countries with an
excellent rustic foundation can comprehensively promote the large-scale agricultural op-
eration, mechanized production and smart agriculture. When overlaying the ETZs and
EAZs layers and layers of cultivated land and construction land, it is found that 74.49% of
cultivated land and 84.30% of construction land are within these two zones, indicating that
zoning results are more realistic and reliable with the real situation, and they have certain
guidance. Within the CRZs, the corridors will be subject to frequent human interference
during construction and maintenance, which can be maintained by setting up isolation
zones and other measures to strictly control the uncontrolled growth of construction land
within the corridors.

Figure 11. Relationship of grid number and minimal accumulated resistance.
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Figure 12. Ecological function zoning based on ecological network.

4.2. Methodological Advantages and Limitations

Currently, the construction and maintenance of ecological networks are essential to
ensure the structural integrity of ecosystems in the region and to promote the cyclic flow
of ecological streams. The basis of constructing an ecological network is to select suitable
ecological sources [72,80]. There are various methods for identifying ecological sources for
different conservation objectives and development priorities. Most previous studies have
focused only on assessing the supply capacity of ecosystem services or only using the MSPA
method alone, with integrated approaches still to be discovered [81]. Compared with other
studies that also used an integrated approach to identify ecological sources [28,43,46,49],
this study not only proposed a new method to integrate the identification of ecological
sources, but also innovated in the subsequent quantification of the importance of each
component of ecological network. Firstly, this study demonstrated that the ecosystem
service hotspot analysis and MSPA method can effectively help to screen ecological sources
in the first stage, and the minimum area threshold and landscape connectivity indices in
the later stage can further make the ecological source identification results more accurate.
The identified ecological sources provide a good supply of ecosystem services and are
critical patches with internal homogeneity and the ability to spread to the surrounding
area. Secondly, compared to the traditional method of distinguishing the importance of
corridors, this study did not rely on the attractiveness between sources (e.g., only using
gravity model) in grading, but considered the functional importance of ecological corridors
and the conditions of the corridors themselves, which can provide a certain scientific basis
for the priority of corridor protection and restoration. Finally, in this study, the spatial
boundaries of the ecological functional zones delineated in the subsequent optimization
are clear and in good agreement with the actual situation, providing an important basis for
the implementation of ecological spatial protection in mountainous areas.

The study has two limitations. Firstly, this study only identified the ecosystem service
capacity of the study area in terms of habitat quality and soil conservation, which was an
empirical judgment based on the actual situation of the study area. The combined effects of
other ecosystem service functions (e.g., carbon storage, water production) still need to be
tested and improved. Secondly, this study did not construct an ecological network based
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on the living characteristics of specific species in the region, and subsequent studies could
be improved to deepen the scientific validity of the results.

5. Conclusions

The construction of an ecological network is conducive to realizing the goal of co-
development of regional ecological protection and regional development. In this study,
taking the MASHP, a typical mountainous area in central China, as the study area, an
integrated approach was developed to identify ecological sources based on a quantitative
assessment of ecosystem services and MSPA method; an ecological resistance surface that
met the characteristics of the regional environment was constructed by considering natural
environmental and socioeconomic factors; ecological corridors were extracted according to
the least-cost path using the Linkage Mapper tool, and ecological nodes were identified
by applying the principle of hydrological analysis; finally, ecological sources, ecologi-
cal corridors and ecological nodes with different levels of importance together formed
the final ecological network in the MASHP, and corresponding optimization measures
were proposed.

The main conclusions of this study can be drawn as follows:

(1) This study proposed a new integrated method for identifying ecological sources,
considering ecosystem and landscape patch functions and innovates in quantifying
the importance of ecological corridors and ecological nodes. The results show that the
methods used are feasible and practical.

(2) A total of 49 ecological sources were identified, with an area of 3837.92 km2, ac-
counting for 8.51% of the total area in the MASHP. Most of the ecological sources are
concentrated in the central region, the county boundary zones in the north and south,
and scattered in the southwest, with forestland as the main land use type. A total of
125 ecological corridors were constructed, with a total length of about 2014.61 km.
The overall network is connected along the northeast–southwest direction and ran
through the whole area, with a dense distribution in the central part. A total of 46
ecological nodes were identified. These nodes are more evenly distributed spatially,
only on 42 ecological corridors in total. Ecological sources, ecological corridors and
ecological nodes were graded with different levels of importance, ultimately forming
a sustainable, composite, multi-level and interconnected ecological network.

(3) Combining the spatial distribution characteristics of each element of the ecological net-
work, the overall layout of ecological network spatial structure is “two verticals, three
belts, three groups, and multiple nodes”. To further improve and optimize ecological
network in the MASHP, the direction of optimization can be focused on enhancing the
connectivity of existing ecological sources with low connectivity, clarifying the width
range of ecological corridors and delineating ecological functional zones. The multiple
ring buffer analysis was used to optimize the connectivity of ecological sources and
improve the effective connection between sources; the optimal range for corridor
construction width is 100–400 m, based on local species and landscape structure; the
study area was divided into the ecological conservation zones, ecological buffer zones,
ecological transition zones, ecological available zones based on ecological sources and
minimum cumulative resistance surface. Finally, the corridor restoration zones were
added to form the ultimate division result.

(4) Based on the study results, according to the level, spatial structure, distribution char-
acteristics of the components of the ecological network in mountainous areas and
the different development positioning of the divided ecological functional zones, this
study put forward the recommendations for ecological protection and development
and construction planning in mountainous areas. In brief, each ecological source
group should focus on forestland protection and water conservation and actively
implement ecological resources restoration projects such as natural grassland and
ecological forests (e.g., the “greener mountains” strategic decision implemented by
Enshi Prefecture, the various projects around the ecology of the Yangtze River im-
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plemented by Yichang City), and control anthropogenic activities and construction
land boundaries so that each ecological group can better perform its ecological service
functions. Ecological corridors are mainly to maintain the ecological stability of the re-
gional microenvironment. Managers may consider setting up isolation zones around
ecological corridors of longer lengths (e.g., multiple horizontal axis corridors in the
southwest) and setting up buffers by building and protecting artificial green spaces
to safeguard the integrity of the ecological network. Meanwhile, different protection
measures should be implemented for corridors passing through water and traffic land
according to local conditions. It is necessary to strengthen the ecological function of
the zone where the ecological nodes are located so that the nodes are less disturbed.
On the one hand, it is important to strengthen the nodes within the area of the high
original ecological function of green space and water patches and optimization of the
plaque. On the other hand, “stepping stone” construction can be carried out through
afforestation and ecological park building to improve the connectivity of the overall
ecological corridor.
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Abstract: The Yellow River Basin in Shaanxi (YRBS) has a relatively fragile ecological environment,
with severe soil erosion and a high incidence of natural and geological disasters. In this study, a
river basin landscape ecological risk assessment model was constructed using landscape ecology
principles to investigate the temporal and spatial evolution, as well as the spatial autocorrelation
characteristics of landscape ecological risks in the YRBS over a 20-year period. The main findings
from the YRBS were that the land use types changed significantly over the span of 20 years, there
was spatial heterogeneity of the landscape pattern, and the ecological risk value was positively
correlated. The threat of landscape ecological risks in YRBS is easing, but the pressure on the
ecological environment is considerable. This study provides theoretical support administrative
policies for future ecological risk assessment and protection, restoration measures, and control in the
Yellow River Basin of Shaanxi Province.

Keywords: Yellow River Basin; ecological risk assessment; Shaanxi Province; land use

1. Introduction

The Yellow River is the second largest river in China and the sixth largest river in the
world; it is considered the mother river of China. Thus, the protection and development
of the Yellow River Basin is important for the peace and prosperity of the people [1–3].
Presently, with the rapid development of urbanization, the interference of human activities
on the natural landscape has increased, and the considerable changes in land cover have
led to significant changes in the landscape pattern of the basin [4–6]. Therefore, studying
the temporal and spatial evolution characteristics of land use types and controlling the
overall ecological risk in the watershed is beneficial for prescribing the best methods to
counteract landscape degradation based on the different risk levels, and give appropriate
management and control suggestions. Sustainable development in the Yellow River Basin
has important practical and theoretical significance [7–10].

A watershed is a comprehensive ecological regional system that connects natural
ecosystems (land cover types and water cycles) with socio-economic systems (society and
population) [11–13]. Owing to more complex, holistic, and special location characteristics,
the excessive disturbance of a certain element in the basin ecosystem will inevitably threaten
the overall stability. The excessive land use changes by humans leads to fragile regional
ecosystems [14–17]. In this study, we performed landscape ecological risk assessments
for landscape changes in land use and analyzed the threat of human activities to regional
ecosystems. This new ecological management tool provides us with the theoretical support
for policy-making, sustainable development, and ecological environment management
in river basin risk management and control [18–20]. Therefore, this type of assessment
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has become the main method that is used by scholars to carry out regional ecosystem
assessments and is currently a trending topic in landscape ecology [21–24].

The history of the development of ecological risk assessments has gone through
four stages [25–30]: (1) the infancy stage (before the 1980s), based on qualitative analysis,
mainly focusing on toxicological research on the impact of pollutants on the environment
and humans [31–33]; (2) human health risk assessment stage (1980s), where the evaluation
method was changed to quantitative and the evaluation process and framework were
gradually systematic, focusing mainly on human health and their exposure to chemical
pollution [34,35]; (3) ecological risk assessment stage (1990s), where the focus changed
from environmental and human health risk assessments to ecological risk assessments,
and the relevant standard documents of ecological risk assessment were promulgated by
many countries and organizations, trying to transform the human health risk assessment
framework to the ecological risk assessment framework. Thus, in 1998, the “Guidelines
for Ecological Risk Assessment” were released, pioneering progress in the theory and
technology of ecological risk assessments [36–39]. Finally, (4) the regional, landscape, and
watershed ecological risk assessment stage (late 1990s to the present), where ecological
risk assessment is combined with the theory of landscape ecology, and the research scale
extends from population and ecosystem assessments to regional, landscape, and watershed
assessments [40–42]. Sources and risk receptors both present a period of comprehensive
risk assessment from a single development to a variety of risks, such as urbanization,
human activities, meteorological changes, and land use changes and are all considered in
ecological risk assessments, which uses spatial analysis tools to build models that are based
on multi-scale and multi-factor analyses [43–46].

Shaanxi Province is in the middle reaches of the Yellow River and approximately 70%
of the land area and 80% of the population belong to the Yellow River Basin [47]. It is an
education, technology, energy, and equipment manufacturing base and the core area of
economic development in China. Shaanxi is in an important regional location and has
exceptional ecological functions; however, there are still practical problems such as a fragile
ecological environment, shortage of water resources, insufficient carrying capacity, and
uncoordinated regional social and economic development in the Yellow River Basin. The
hilly and gully area of the Loess Plateau in northern Shaanxi is the main source of silt
entering into the Yellow River [48–50]. A cumulative total of 2.69 × 104 km2 of farmland
has been restored to forest and grassland, and 15.7 million mu of desertified land has been
treated. The Shaanxi section of the basin accounts for more than 83% of the industrial water
and more than 78% of the domestic water in the province. The water resource of YRBS
provides only 447 m3 of water per capita [51], less than one-fifth of the national average.
Therefore, in-depth development of the temporal and spatial evolution of land use and
landscape patterns, and landscape ecological risk assessments that are based on the theory
of landscape ecology in the YRBS is of great strategic significance to scientifically promote
the ecological protection and sustainable development of the Yellow River Basin. This
will help rationally allocate and utilize land resources and maintain a balanced state of
economic and agricultural development [52–55].

This study was conducted in the Yellow River Basin in Shaanxi. We aim to provide a
scientific basis for the ecological protection of the Yellow River Basin in Shaanxi. First, any
law changes regarding the different land use types in the basin from 2000 to 2020 were
determined; second, the spatial scale of the landscape pattern was studied, and the changes
in the landscape pattern were analyzed from both the landscape and patch-type level. Based
on the ecological risk assessment of the regional land use landscape pattern of the area,
the temporal and spatial evolution and spatial correlation characteristics of the landscape
ecological risk were revealed. Finally, considering the results of landscape ecological risk
assessment, corresponding ecological risk management countermeasures are proposed.
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2. Materials and Methods

2.1. Study Area

The Shaanxi section of the Yellow River Basin is in the center of the middle reaches of
the Yellow River and passes through the north-central part of Shaanxi Province (Figure 1).
It spans approximately 400 km and is connected to Gansu in the west, the Yellow River
and Shanxi in the east, Inner Mongolia in the north, and the main beam of the Qinling
Mountains in the south, 17.49% of the total area. This section has complex topography,
such as undulating mountain ranges, vertical and horizontal rivers, high-lying areas in the
north and south and low-lying in the middle, and slopes from west to east. The Shaanxi
section of the Yellow River Basin is composed of 79 counties (districts and cities) in 8 cities,
namely Yulin, Yan’an, Tongchuan, Baoji, Xianyang, Xi’an, Weinan, and Shangluo, with
a population of about 29.15 million, accounting for 75.41% of the total population of the
province [56]. It spans two climatic zones, roughly bounded by the Great Wall of China, the
north is located in the middle temperate zone and the south is in the warm temperate zone.
The natural vegetation is considerably varied, with grasslands and shrubs in the north and
forests in the south.

Figure 1. The location of the Yellow River Basin in Shaanxi Province, China.

2.2. Data Collection and Processing

There were three periods of land use data from Shaanxi Province (shp. Format), namely,
2000, 2010, and 2020, that were used in this study, derived from the GlobeLand 30 surface
cover dataset (raster data, with a resolution of 30 m) (http://www.Globallandcover.com/
(accessed on 1 July 2022). The maps of the administrative division of the study area and the
water system of the Yellow River Basin were obtained from the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn (accessed
on 1 July 2022)). The vector boundary of the YRBS used the hydrological model in ArcGIS
software v10.2 (Esri, Redlands, CA, USA) The watershed delineation tool in ArcSWAT used
the automatic watershed delineation command to generate watershed divisions. Based on
the national land use classification system and according to the land use characteristics and
research purposes of YRBS, the land use types in the study area were divided into eight
categories: cultivated land, forest, grassland, shrubland, wetland, water body, artificial
surface, and bare land.

2.3. Methods

In order to study the temporal and spatial variation characteristics of landscape
ecological risk in the YRBS, the workflow is as follows (Figure 2). First, based on land
use data in 2000, 2010, and 2020, Land use dynamics and the Land Use Transfer Matrix
were used to explore the process of land use change in the YRBS. Then, we evaluated the
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landscape ecological risk and discuss its temporal and spatial variation characteristics.
Finally, the spatial autocorrelation of ecological risk index was analyzed by Moran’s I index
and local spatial autocorrelation analysis method.

 

Figure 2. The workflow of the research.

2.3.1. Land Use Dynamics

The dynamic degree of land use quantitatively expresses the speed of land use change
in certain periods, measures the difference in land use change between different regions,
and predicts the future trend of land use change in the region. The two land-use dynamic
degrees that were used in this study were the single land use K and the comprehensive land
use S. The larger the absolute value of the single land use dynamic degree is, the faster the
transformation speed of the land use type. The comprehensive land use dynamic degree
indicates the degree of land use change in the study area from a macro perspective, and the
larger the dynamic degree is the more severe the degree of change. The specific equations
are as follows:

K =
Um − Un

Un
× 1

T
× 100%

S =
n

∑
ij

ΔSi−j

Si
× 1

T
× 100%

where K is the dynamic degree of a certain land use type in the research period; Un and
Um are the area (km2) of the land use types in the study area at the beginning and end
of a certain period, respectively; and T is the research time (years). S represents the
comprehensive land dynamic degree, S . . . is the total area (km2) of the i-type land use that
is converted to other land use types in the T period
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2.3.2. Land Use Transfer Matrix

For the land use transition matrix, we used the Markon transition probability matrix.
The Markon model can not only directly and specifically quantify the structural characteris-
tics between the changes of land use types, but also show the number of transfers between
different land types; thus, quantitatively showing the degree of system analysis on the
system state and state transfer. The following equation was used:

Sij =

⎡
⎢⎢⎢⎣

S11 S12 · · ·
S21 S22 · · ·

...
...

...
Sn1 Sn2 · · ·

S1n
S2n

...
Snn

⎤
⎥⎥⎥⎦

where S represents the transition matrix of land use change; n is the total number of different
land types (n = 8); i and j represent the initial and final land types, respectively, in the study
area (i, j = 1, 2, . . . , n); and S is the area of the ith land type that is converted to the area of
the jth land type, the larger the value, the more severe the change, and vice versa.

2.3.3. Landscape Ecological Risk Assessment

According to the characteristics of the area of the YRBS, the moderateness of the data
sampling workload and the accuracy of the evaluation unit, the study area is divided
into a 10 × 10 km grid size by using the equal-spaced systematic sampling method and
the Create Fishnet tool of ArcGIS 10.2 software (Esri, Redlands, CA, USA). A total of
1500 risk cells (as shown in Figure 3). Then, ArcGIS 10.2 software was used to calculate the
landscape ecological risk value of each risk area, and the ecological risk index was assigned
to the center of each risk area, and then the ordinary Kring interpolation method of spatial
interpolation was used to obtain the spatial distribution map of landscape ecological risks
in the YRBS. In this way, the landscape ecological risk assessment of the entire watershed
can be carried out.

Figure 3. The ecological risk evaluation cells.
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The landscape disturbance index (Ei) and landscape vulnerability index (Fi) were
selected in this study for constructing a comprehensive Ecological Risk Index (ERI) model
for the YRBS. The landscape ecological risk index was calculated as follows:

ERIi =
n

∑
i=1

Aki
Ak

× Ri

where ERIi is the landscape ecological risk index of the ith risk unit, n is the number of
landscape types, Aki is the area of the ith of landscape type in the kth risk unit, and Ak is
the total area of the kth risk unit. Ri is the landscape loss index of the ith landscape type,
which is calculated from the landscape disturbance degree and vulnerability index. The
equations for each landscape pattern index in the model are shown in Table 1.

Table 1. Calculation formula of landscape index and ecological significance.

Index Calculation Formula Ecological Significance

Landscape loss degree index (Ri) Ri = Ei × Fi

Ri indicates the degree of loss of natural properties of
ecosystems represented by different landscape types

when they are subjected to natural and anthropogenic
disturbances [54].

Landscape disturbance index (Ei) Ei = aCi + bNi + cDi

Ei describes the extent to which ecosystems located in
different landscape types are disturbed by human
activities and characterizes differences related to
maintenance of ecological stability of different

landscape types [57]; a, b, and c represent weights of
the corresponding landscape indices; according to

results of previous studies, values of a = 0.5, b = 0.3,
and c = 0.2 are assigned.

Landscape fragmentation index (Ci) Ci =
ni
Ai

Describes the degree of fragmentation of a landscape
type in the region at a given time; such that, the higher
its value, the lower the stability within the landscape

unit and the greater the heterogeneity and
discontinuity among patches [58]; ni denotes the

number of patches of landscape type i and Ai denotes
the total area of landscape type i.

Landscape dominance index (Di) Di =
Qi+Mi

4 + Li
2

The higher the value, the greater the influence of the
landscape type on the overall landscape pattern [59].

Qi = number of samples in which patch i occurs/total
number of samples; Mi = number of patch i/total
number of patches; and Li = area of patch i/total

area of samples.

landscape separateness index (Ni) Ni =
A

2Ai

√
ni
A

The greater the degree of separation between different
patches in a landscape type, the more discrete the

distribution of the landscape type in the region for a
correspondingly higher degree of fragmentation [60];
A is the total area of the landscape; Ni is the distance

index of landscape type i.

Landscape vulnerability index (Fi) Based on the previous studies

The higher the value, the more vulnerable and
unstable the landscape type is and the more likely it

will suffer ecological losses and physical changes due
to external disturbances [61]. Based on the previous

studies, in this study [62], vulnerability indices of
six landscape types were assigned as follows: unused

land 6, water 5, cultivated land 4, grassland 3,
woodland 2, and residential land 1, with the landscape

vulnerability index Fi obtained after normalization.
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Finally, the natural breakpoint method is used to divide the ecological risk into five
grades, as shown in Table 2.

Table 2. Landscape ecological risk classification in the Yellow River Basin, Shaanxi Province, China.

Ecological Risk
Risk Level

Low Low-Medium Medium Medium-High High

rank I II III IV V
value 0.0135 < ERI 0.0135 ≤ ERI < 0.030 0.030 ≤ ERI < 0.060 0.060 ≤ ERI < 0.099 ERI ≥ 0.099

2.3.4. Spatial Autocorrelation Analysis

(1) Global spatial autocorrelation

Global spatial autocorrelation analysis was used to measure the agglomeration charac-
teristics of the attribute values in the entire study area, reflecting the approximation of the
attribute values of adjacent units. Generally, Moran’s I index was used to characterize the
degree and significance of spatial autocorrelation of ecological risks in the study area. The
equation is as follows:

Moran’s I =
n ∑i ∑j Wij(xi − x)

(
xj − x

)
(

∑i ∑j wij

)
∑i
(
xj − x

)2

where xi and xj are the attribute values of the variables in the adjacent units of the region,
Wij is the spatial weight matrix, and x is the average attribute value. The value range
of Moran’s I index is (1, 1) which means that the positive correlation of similar spatial
proximity transitions to the negative correlation of spatial proximity dissimilarity. When
Moran’s I > 0, the spatial correlation is positive and the unit attribute value presents
spatial clustering characteristics, and the closer the value is to 1, the higher the degree
of agglomeration. When Moran’s I < 0, the space is negatively correlated, and the unit
attribute values show spatially discrete characteristics. When Moran’s I = 0, there is
no spatial correlation, and the unit attribute values are random with an independent
distribution status.

(2) Local spatial autocorrelation

The global spatial autocorrelation represents the overall spatial state of the attribute
value and cannot reflect the specific location of the agglomeration or abnormal attribute
value in the spatial distribution. In this case, the local autocorrelation method needs to
be used for further explanation. Local spatial autocorrelation mainly reveals the hetero-
geneity of the spatial distribution of local unit attribute values, including all spatial unit
attribute values in the study area. Local Moran’s I (Ii) is used to express the local spatial
autocorrelation and it is calculated as follows:

Ii =
(xi − x)

[
(n − 1)− x2]

∑n
j=1 x2

ij ∑n
i=1 ∑n

j=1 Wij
(
xj − x

)
where xi and xj are the attribute values of the variable in the adjacent units of the region,
Wij is the spatial weight matrix, and x is the average attribute value. When Ii ≥ 0, the
attribute value of the ith unit is similar to the attribute value of the adjacent unit, and the
attribute value of the unit presents spatial discrete characteristics, which is a positive spatial
correlation. When Ii < 0, the attribute value of the ith unit is related to the adjacent unit, the
attribute values of the units are quite different, and the unit attribute values show spatial
discrete characteristics, which is a negative spatial correlation.
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3. Results

3.1. Land Use Change Processes from 2000 to 2020
3.1.1. Analysis of Land Use Dynamics Change

Using the dynamic degree formula to calculate the three-phase land use data in the Shaanxi
Yellow River Basin from 2000 to 2020, we obtained the dynamic degree of each land use type in
the study area from 2000 to 2010, 2010 to 2020, and 2000 to 2020 as shown in Table 3.

Table 3. Change in the area and single dynamic degree of land types in the Yellow River Basin,
Shaanxi Province, China.

Land Type

2000–2010 2010–2020 2000–2020

Area Change
(km2)

Single Dynamics
(%)

Area Change
(km2)

Single Dynamics
(%)

Area Change
(km2)

Single Dynamics
(%)

Cultivated Land −1000.56 −0.17 −197.86 −0.03 −1198.41 −0.11
Forest Land 351.25 0.09 −118.57 −0.03 232.68 0.03
Grassland −502.24 −0.11 −1232.16 −0.28 −1734.4 −0.2
Shrubland 159.93 3.14 −28.45 −0.41 131.48 1.36
Wetland −54.8 −2.03 −10.77 −0.51 −65.56 −1.28

Water Body −40.31 −0.69 30.08 0.56 −10.23 −0.09
Artificial Surface 1072.16 3.11 1665.78 3.59 2737.94 4.21

Bare Ground 14.47 0.09 −103.61 −0.64 −89.13 −0.29
Comprehensive Dynamics (%) 0.108 0.114 0.111

As shown in Table 3, there are discernable differences in the single dynamic degree of
each land use type during the study period, and the overall performance adheres to the fol-
lowing order: artificial surface > shrubland > wetland > bare land > grassland > cultivated
land > water body > forest. The type of land cover with the greatest variation in single
dynamics is always artificial surfaces. Between 2000 and 2010, the greatest change in the
single dynamic degree was that of shrubland and artificial surfaces, which changed by 3.14
and 3.11%, respectively, and the area increased by 159.93 km2 and 1072.16 km2, respectively.
Between 2010 and 2020, except for artificial surfaces and water bodies, the single dynamic
degree of the utilization type is in a decreasing state, and the artificial surface is still the
land use type with the largest change in single dynamic degree. The area has increased
by 1665.78 km2 in 10 years, and the dynamic degree is 3.59%. The single dynamic degree
of the water bodies initially had a negative change but turned positive. The arable land,
grassland, and wetland continued to decrease, and the change rate of grassland accelerated
significantly compared to that in 2000–2010, the area decreased by 1232.16 km2, and the
change rate of arable land and wetland slowed down compared to the previous 10 years.
Shrubland showed a significant slowdown with a single dynamic degree of 0.41% and
went from a positive change at the beginning to a negative change. In general, artificial
surfaces have grown positively throughout the research period from 2000 to 2020. The
area increased by 2737.94 km2 over 20 years, and the single dynamic degree is at most
4.21%. In 2010, there was rapid economic and social development in China, the pace of
urbanization accelerated, anthropogenic interference increased, the change rate of land use
types accelerated, and the change rate of man-made surfaces increased faster than that of
other land types. In addition, all the remaining land use types showed fluctuating changes
except for cultivated land, grassland, and wetlands, which showed a constant decreasing
trend over the span of 20 years.

3.1.2. Analysis of Land Use Transfer Change

To further visualize the spatial evolution characteristics and mutual transformation
rules of various land cover types in the Yellow River Basin of Shaanxi Province, we used
GIS spatial analysis technology and the land use transfer matrix model to analyze the
direction and quantity of changes between various land use types.

Figure 4A shows that during the conversion process of land use types in the Yellow
River Basin of Shaanxi Province from 2000 to 2010, the conversion of cultivated land was
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the most severe, with a total transfer area of 3194.05 km2. For artificial, grass, and forest
land, the transfer area was 1559.61, 989.53, and 450.16 km2, respectively; the conversion
of grassland to other land types was more severe, with a transfer area of 1690.09 km2.
The top three areas with the largest conversion from grassland to other land types are,
cultivated land, forest, and shrubland with transfer areas of 1060.96, 307.76, and 150.49 km2,
respectively. The transfer area of artificial surfaces is 615.90 km2, the main transfer type is
cultivated land with an area of 589.48 km2, and the transfer area of forest is 433.85 km2. The
transfer areas were sorted as follows: Cultivated land > grassland and the transfer-out areas
were 324.51 km2 and 90.4 km2, respectively. Wetlands and water bodies were relatively
small with transfer areas of 168.92 km2 and 252.12 km2, respectively. The total area of
shrubland and bare land was small, and the conversion was not significant. Figure 4B
shows the conversion of land use types from 2010 to 2020, the conversion of grassland
was most severe, with a total area of 5858.58 km2, followed by cultivated land, forest, and
artificial surfaces with transfer areas of 3155.60, 1405.16, and 565.91 km2 respectively. The
conversion of cultivated land is frequent, and the total transferred-out area is 4922.38 km2.
The top three areas with the largest area of cultivated land that were converted to other
land types were grassland, artificial surfaces, and forest with transfer areas of 2450.65,
1583.78, and 688.29 km2, respectively. The total forest transfer area is 2291.98 km2, and the
transferred land types are mainly grassland and cultivated land, with an area of 1465.67
and 719.80 km2, respectively. Shrubland, artificial surfaces, and bare land have relatively
small transfer-out areas of 422.106, 576.124, and 524.71 km2, respectively. The total transfer
area of wetlands was small, and the transformation was not significant.

Figure 4. Land use type transfer area (km2) matrix of the YRBS from 2000 to 2010 (A) and 2010 to 2020 (B).
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3.2. Analysis of Spatial and Temporal Changes in Ecological Risks

According to the average values and change trend of landscape ecological risk from
2000 to 2020 (Figure 5), the overall landscape ecological risk of the Shaanxi Yellow River
Basin is at a lower risk level, and the temporal change showed an increasing trend at first
and then a decreasing trend. From 2000 to 2010, the increase rate was relatively clear,
increasing from 0.0198 to 0.0203, and the decrease rate was significant from 2010 to 2020,
decreasing from 0.203 to 0.0197. The landscape ecological risk value was in a state of decline
over the span of 20 years (2000–2020). Since the 18th National Congress of the Communist
Party of China proposed the concept of an ecological civilization to build a beautiful China,
Shaanxi Province has actively responded by implementing a series of important ecological
protection and restoration projects directly impacting the Yellow River Basin ecosystem.
The landscape ecological risk showed a benign development trend; thus, it is necessary to
coordinate the relationship between economic construction and environmental protection
in the future.

Figure 5. Spatial distribution changes in landscape ecological risk areas in the Yellow River Basin,
Shaanxi Province from 2000 to 2020.

The proportion of different ecological risk areas in the Yellow River Basin from 2000
to 2020 and the temporal change characteristics of ecological risk levels in the basin over
20 years is shown in Figure 6. These data show the area distribution of each ecological risk
area and indicate that the low-risk areas are always the largest and the high-risk areas are
the smallest (low-risk > medium-risk > high-risk area). For example, in 2020, the low-risk
areas accounted for 54.07% of the total basin area, the low-medium-risk areas accounted for
35.35%, and the medium-risk, medium-high-risk, and high-risk areas accounted for only
5.92%, 2.77%, and 1.89%, respectively.

Considering the temporal change characteristics of the ecological risk areas over the
span of 20 years, the low-risk and low-medium-risk areas have always been dominant in
terms of proportion, but there are still significant changes in the ecological risk areas. The
size of the low-risk areas first decreased and then increased, decreasing from 74,208.75 km2

in 2000 to 71,238.50 km2 in 2010, and increasing to 72,031.50 km2 in 2020. The low-risk
areas showed first an increase and then a decrease. However, the increase was evident
in the first 10 years, and only a slight decrease was observed from 2010 to 2020. The size
of medium-risk areas increased continuously, but the increase in the first 10 years was
substantially higher than that of the next 10 years. The area increased by 579.25 km2 in 2010
and 175.5 km2 in 2020. The size of the high-risk areas showed relatively clear growth from
2000 to 2010, increasing by 357.25 km2, and then declined from 2010 to 2020, decreasing
by 398.75 km2. The size of the high-risk areas continued to decrease throughout the study
period with a total decrease of 401.5 km2 over the span of 20 years.
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Figure 6. Area (km2) change of landscape ecological risk area of the Yellow River Basin, Shaanxi
Province from 2000 to 2020.

3.3. Analysis of the Spatial Pattern of Ecological Risks
3.3.1. Global Spatial Autocorrelation Analysis

According to Figure 7, the global Moran’ I index of the landscape ecological risk
values from 2000, 2010, and 2020 all exceeded 0.5, and were 0.698, 0.645, and 0.620, re-
spectively, indicating that the landscape ecological risk values in the study area were
positively correlated.

Figure 7. Moran’s I index scatter distribution of the landscape ecological risk values in the Shaanxi
Yellow River Basin from 2000 to 2020.

In addition, the distribution of the scattered points in Figure 4 is close to the re-
gression line, indicating that the ecological risk values of the watershed landscape have
characteristics of agglomeration in the spatial distribution. Meanwhile, the z-scores of the
landscape ecological risk values from 2000, 2010, and 2020 were 36.281, 33.774, and 32.515,
respectively, all exceeding 1.65, indicating that the elements in the spatial distribution are
non-random processes, and the possibility of a random generation of clustering patterns
is unlikely. Additionally, the calculated p-values are all equal to 0.001, indicating that the
spatial autocorrelation is significant at the 99.9% confidence level.

3.3.2. Local Spatial Autocorrelation Analysis

According to Figure 8, the correlation changes of the landscape ecological risk index are
consistent with the risk distribution map of ordinary kriging interpolation of the landscape
ecological risk values. The ecological risk values of the watershed landscape are mainly
distributed in high-high (H-H) and low-low(L-L) agglomeration. This area belongs to the
ecological protection barrier area of the Mu Us Sandy Land, which has a high degree of
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land loss and a fragile natural ecosystem, reducing its ability to resist risks; thus, forming a
high-risk area cluster that is consistent with the distribution of low-risk areas. This area is
mainly dominated by cultivated land, forest, and artificial surface land types. It is relatively
flat, landscape loss is low, landscape internal structure is stable, and anti-interference ability
is strong, forming a cluster of low-risk areas.

Figure 8. Local spatial autocorrelation distribution map of landscape ecological risks in the Yellow
River Basin in Shaanxi Province from 2000 to 2020.

4. Discussion

4.1. Tempo-Spatial Changes of the Land Use and Landscape Ecological Risk in YRBS

Land use in YRBS experienced dramatic changes from 2000 to 2020. On the whole, the
land use change was affected by human activities and natural factors. This is consistent
with other research findings [63,64]. We found that cultivated land, forest land, and
grassland had the largest changes and were the main land use types in the YRBS. It is
closely related to the continuous promotion of ecological protection policies in Shaanxi
Province. Shaanxi Province is one of the first provinces in China to pilot the policy project
of returning farmland to forests and grasslands [65,66]. A series of policies of returning
farmland to forests and grasslands have enabled the restoration of forest land and grassland
areas, which relieved the pressure that was brought by the ecological footprint to a certain
extent. In order to further improve the ecological carrying capacity of the YRBS and build
a good ecological environment, it is necessary to continue to implement strict ecological
environmental protection policies, and promoting the construction of ecological civilization
is the key to promoting the sustainable development of the basin [67].

Our study found that high-risk areas in the YRBS are located in northern Shaanxi.
This is related to the Loess Plateau region in the north, which has been studied by a large
number of scholars [68–70]. However, the overall ecological risk management and control
in northern Shaanxi has achieved preliminary results in the past 20 years. Ecological
restoration projects such as forest (grass) and slope farmland improvement are closely
related. A series of ecological restoration projects have adjusted the land use structure to a
certain extent [71,72]. The area of cultivated land, forest land, and water area in northern
Shaanxi has increased, which has improved the ecological conditions for agricultural
production. However, there are still some problems of ecological degradation in the
region. With the acceleration of urbanization, the demand for construction land has
expanded rapidly, and human activities have exacerbated the division and occupation of
cultivated land.

It is worth mentioning that we have studied the temporal and spatial evolution
characteristics of ecological risks in the YRBS in the past 20 years, which can reflect the long-
term trend of ecological quality in the basin to a certain extent. Overall, the distribution of
risk areas is relatively stable. It can be judged that the vegetation of the YRBS has recovered
significantly, and the ecological environment construction has achieved remarkable results,
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but the region is still a relatively fragile ecological environment [73,74]. In fragile areas,
when the ecological service value is insufficient to maintain the self-circulation of the system,
the ecological environment will deteriorate. In the context of global warming, extreme
weather phenomena such as droughts, rainstorms, and floods have intensified, and it is
difficult to maintain stable regional vegetation coverage. With economic development,
the water demand for agriculture, industry, and urban domestic water increases, and the
disparity between regional water supply and demand will become more prominent [75,76].
Therefore, it is necessary to strengthen the assessment of the impact of climate change on
regional water resources and to improve the climate change response capabilities of key
ecological function areas and ecological restoration and management areas, so as to better
meet the needs of regional high-quality development.

4.2. Ecological Protection and High-Quality Development of the YRBS

Located in the middle reaches of the Yellow River, Shaanxi is an important national
advanced manufacturing base, national defense science and technology industrial base,
agricultural high-tech industrial base, energy and chemical base, and scientific, educa-
tional, and cultural base. It is the core area of ecological protection and economic and
social development in Shaanxi Province [77]. The task of ecological protection is heavier.
Compared with the goal of beautiful scenery in ecological space, the quality of forests
in the Yellow River Basin is relatively low, the stock volume per unit area and the value
of ecological service functions are lower than the national average level, the structure of
forest and grass is unreasonable, the water conservation capacity is not high, the pressure
of water ecological protection is high, and the area of some wetlands has shrunk [78,79].
Governance tasks remain daunting. Soil erosion control has a long way to go. The Baiyu
Mountains, Weibei Dry Belt, and other key areas have a lot of historical debts, and the cost
of control is high. The relationship between water and sediment is still inconsistent, and
the water and sediment control system still needs to be improved. The construction of
garbage and sewage treatment facilities in individual cities and towns is relatively lagging
behind, and the water quality of some river sections such as the Yanhe River, Qingjian River,
and Beiluo River cannot reach the standard stably. The progress of governance in coal
mining subsidence areas is relatively slow. The problem of water shortage is prominent.
The precipitation in the basin is low, the total water resources only account for one third of
the province, and the per capita water resources are less than one fifth of the country.
Xi’an, Xianyang, and other cities have serious over-exploitation of groundwater, and the
ecological water volume of Yanhe, Wudinghe, Hongjiannao, and other rivers and lakes
is insufficient, and some counties and districts are still seriously short of water resources,
engineering, and water quality [80]. Development has caused certain constraints, and the
way of water for production and living is relatively extensive. The quality of development
needs to be improved urgently. The effect of implementing the new development concept
is not obvious enough, the industrial structure adjustment and transformation and up-
grading are relatively heavy tasks, the transformation of advantages in science, education,
military industry, etc., is not sufficient, and the shortcomings of insufficient openness are
still obvious. The central city’s radiating and driving role is not strong, the regional urban
and rural development is unbalanced, there are still shortcomings in the field of people’s
livelihood, and the modernization level of the governance system and governance capacity
is not high [81,82].

According to the different regional characteristics and development orientations of the
YRBS, we will coordinate the implementation of ecological governance measures that are
differentiated, complete in governance elements, and reasonably and scientifically config-
ured. Promoting the construction of check dams, changing slopes to ladders, and making
land for ditch management according to local conditions. On the basis of following the
laws of nature and resource endowments, implement suitable forests for forests, irrigation
for irrigation, grasses for grasses, and famines for famines, and scientifically carry out land
consolidation, high-standard farmland construction, and forest vegetation conservation and
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restoration. Coordinate the high-quality governance of mountains, rivers, forests, fields,
lakes, grass, and sand and the construction of ecological projects, promote the restoration
of ecosystem functions, comprehensively optimize the ecological environment of the Loess
Plateau in northern Shaanxi, and consolidate the foundation for the healthy operation of
the agricultural ecosystem [83]. To coordinate the relationship between ecological risk
management and high-quality agricultural development, it is necessary to build a modern
agricultural industrial cluster on the Loess Plateau that is based on regional ecological
risks and resource endowments. Build an intensive, high-value green agricultural industry
cluster that is focusing on grains (millet, barley, etc.), forest fruits (apples, red dates, etc.),
edible fungi, and characteristic plants (medlar, sea buckthorn, hops, etc.), feed, meat (Beef
cattle, sheep, etc.), dairy industry, cashmere-based agriculture, and animal husbandry
combined with conservation agriculture and conservation grassland agriculture industry
clusters. Strengthen the integration and matching of natural endowments and production
factors; promote the development of regional agricultural industries to complement soil
erosion control, farmland water conservancy construction, and circular agricultural projects;
and support the development of eco-friendly new technologies, new formats, and new
models [84].

4.3. Limitation

There are a few limitations and improvements that need further in-depth research
and discussion: (1) Due to the difficulty of data collection, this study only started from
the level of landscape structure changes that were caused by human activities as the
source of risk. However, the basin is affected by natural factors such as soil erosion,
meteorological changes, and geological disasters. Therefore, in the future, it is necessary to
comprehensively evaluate the ecological risk from the perspective of multiple risk sources.
(2) In this study, we only analyzed the temporal and spatial evolution of the existing land
use data, therefore, there is no information on the future possibilities of land use in the river
basin. Thus, the next step is to conduct prediction research. (3) Due to data availability
and research time factors, this study only provides management suggestions that are based
on the research results from the perspective of different risk levels. We did not build an
indicator system for ecological risk influencing factors in detail but conducted a driving
factor analysis. Generally, multi-dimensional analyses of the impact mechanism of the
ecological risk in the basin are carried out.

5. Conclusions

The land use types in the YRBS have changed significantly over the span of 20 years.
From 2000 to 2020, the overall landscape ecological risk value of the Yellow River Basin
first increased then decreased, but the overall ecological risk level of the basin was lower,
indicating that the ecological status of YRBS improved. The spatiotemporal evolution
characteristics of five different levels of ecological risk areas in the YRBS that were discov-
ered through this study provide scientific insights into the laws of ecological evolution
in different regions in the river basin, which can further provide insights into regional
ecological environment management, ecological security protection, risk early warning,
and provide theoretical support for policy formulation in sustainable development and
other aspects. The research conclusion can promote the sustainable development of land
use and high-quality ecological protection in Changsha River beach.

In the future, further research can improve the evaluation index system of ecological
risk, and not only carry out ecological risk evaluation on the basis of land use change, but
also a more complex and richer index system and evaluation system should be considered.
At the same time, it is also possible to analyze the driving mechanism of the evolution of
ecological risks, especially considering the impact of socioeconomic factors and human
activities on ecological risks.
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Abstract: Although it has been widely recognized that land fragmentation has increased chemical
fertilizer application, little is known about the role of technology adoption in mitigating these adverse
effects. To empirically examine the relationship between land fragmentation, technology adoption
and chemical fertilizer application, we developed a mediation model. We applied our analysis to
a survey data set encompassing 1388 farm-level samples collected in 14 Chinese provinces in 2019.
Our study demonstrated that land fragmentation can not only directly increase chemical fertilizer
application but also indirectly increase it by hindering the adoption of agricultural mechanization
technologies (AMT’s) and soil testing fertilization technologies (STFT’s). Both are recognized as potent
drivers of fertilizer use reductions. Moreover, the adoption of information and communications
technologies (ICT’s) can help mitigate the negative effects of land fragmentation on technology
adoption, thus reducing chemical fertilizer application intensity (CFAI). However, the direct effects
of land fragmentation on CAFI was unaffected by ICT’s. Our findings suggest that ICT’s have
revolutionized farmer recognition, promotion and adoption of agricultural technologies by increasing
awareness and diffusion of agricultural technology information.

Keywords: land fragmentation; agricultural mechanization; ICT’s; soil testing fertilization;
sustainable agricultural practices

1. Introduction

Chemical fertilizers are widely adopted in agricultural production and play a sig-
nificant role in increasing yields of agricultural products and ensuring food security [1].
However, the excessive use of chemical fertilizer has resulted in various problems such as
food insecurity, soil degradation and greenhouse gas emissions in developing countries,
especially in China [2]. More importantly, the overuse of chemical fertilizer in agricultural
production has become a public concern, for social well-being and ecological balance are
seriously threatened by massive chemical fertilizer use [3,4].

China’s agricultural production features small-scale farming and severe land fragmen-
tation. About 210 million rural households in China operate on cultivated land less than
10 mu (0.667 hectares) and the average farm size is only 7.46 mu (0.497 hectares) [5]. Com-
pared with other Asian countries, the farm size in China is about one-third of that in South
Korea and one-quarter of that in Japan [6]. Farm households have been the driving force of
agricultural production since the implementation of the Household Contract Responsibility
System in 1979.

Meanwhile, China is also the country with the largest amount of chemical fertilizer
application in the world in terms of overall tonnage [7]. The agricultural growth in China
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depends heavily on the use of chemical fertilizer. The total agricultural output increased
by 42.23% from 1978 to 1984, among which 45.79 percent of this output growth came from
increases in inputs, including cultivated land, labor, fertilizer and capital, and fertilizer
alone contributed 32.2% of the growth [8]. Some studies suggest that the extensive use
of chemical fertilizers and other inputs is the fundamental reason for the rapid growth of
Chinese agriculture [9]. Consequently, the development of sustainable agriculture in China
is faced with severe challenges.

The unfavorable natural resource conditions have made it essential for China to
develop intensive agriculture. However, the excessive and inefficient use of agricultural
inputs were quite commonly seen at the early stages of agricultural production so as to
ensure food security [10–14]. As a result, the extensive use of agricultural inputs has greatly
damaged the environment [15–19].

In order to reduce the use of chemical fertilizers, the Chinese government has imple-
mented a series of policies, such as the removal of subsidies for chemical fertilizers and the
promotion of soil testing technologies [20,21]. Although early studies assume that these
policies may not significantly decrease chemical fertilizer application [7], we believe that
these policies have helped reduce the amount of chemical fertilizer application. According
to the data from National Bureau of Statistics of China [22], the consumption of fertilizers
in China has seen a steady increase since 1978, reached its peak at 60.33 million tons in
2015, and started to decrease thereafter, as is shown in Figure 1.
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Figure 1. The consumption of chemical fertilizers in China from 1978 to 2020. Source of data: National
Bureau of Statistics of China, 2021.

Although there has been a slight decrease in recent years due to the policies imple-
mented, the consumption of chemical fertilizers remains large. In 2020, there were still
52.5 million tons of chemical fertilizers consumed. Moreover, the household-level survey
data from the Research Center of Rural Economy (RCRE) of the Ministry of Agriculture and
Rural Affairs of China shows a similar trend. The survey dataset with 17,000 farm-level
observations in 31 provinces of China shows that the amount of chemical fertilizers applied
by Chinese farmers basically remained at 464.18 kg/ha from 1995 to 2015 [6]. A question
arises: what are the root causes of small farmers applying such an enormous amount of
chemical fertilizer?

To answer this question, a growing body of literature has explored the drivers of
chemical fertilizer application. The results, however, are unclear and even conflicting.
While several studies suggested that farm household and farmer characteristics, including,
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farm size, cropping structure and resource endowment, have significant effects on the
amount of chemical fertilizer application [23–27], others show that the effects of individual
characteristics on fertilizer application tend to be weakened over time since smallholder
farmers are likely to imitate each other and apply the same amount of fertilizers [28–30].
Therefore, land resource conditions are still regarded as one of the key drivers for chemical
fertilizer application. In particular, China is faced with unfavorable land resource endow-
ment, such as extremely small farm size and serious land fragmentation and whether it
restricts the reduction of fertilizer application has raised a lot of concern.

Most of the existing studies investigating the impact of natural resource endowment
on fertilizer use are mainly focused on farm size [31,32], and little is known about whether
the characteristics of farmland affect chemical fertilizer use, and the influence mechanism
remains unclear. Some studies in the literature have argued that land consolidation through
land use rights circulation contributes to the reduction of chemical fertilizer use [33].
However, land use rights trading may increase the degree of land fragmentation, which
increases the difficulty in agricultural production and farm management. It is unreasonable
to discuss farm size only and ignore the role of land fragmentation. Furthermore, the results
of the studies on the relationship between farm size and fertilizer use are unclear and even
conflicting. While some studies show that increasing farm size can reduce chemical fertilizer
application without decreasing or even increasing crop yield [7,31], others find that smaller
farm size can lead to higher fertilizer use efficiency [32]. Moreover, precious few studies
have explored the negative impact of land fragmentation on farmers’ fertilizer use efficiency
and discussed the heterogeneous effects of different contributing factors, such as farm size,
crop structure and land quality [34]. However, the influence mechanism has not yet been
fully understood.

More importantly, the existing literature has shown that land fragmentation may
hinder the adoption of modern agricultural machinery [35], increase production costs [36]
and cause the loss of technical efficiency [37] and land use efficiency [38]. Hence, land
fragmentation may also have a direct impact on farmers’ behavior regarding chemical
fertilizer application. On one hand, instead of using machinery, smallholder farmers are
likely to increase other inputs such as applying more chemical fertilizers and using more
labor since land fragmentation increases the difficulty of mechanical operation, resulting in
higher mechanical costs [39,40]. In particular, the low ratio of fixed inputs to total inputs is
the key factor leading to over-fertilization on smallholder farms because smallholders lack
fixed inputs and then compensate by over-applying fertilizer to attempt to achieve their
yield goals [41]. On the other hand, land fragmentation also makes it possible for farmers
to flexibly distribute labor and other inputs and thus improve efficiency [42,43].

Based on the above observations and previous studies, we hypothesize that land
fragmentation has a significantly positive effect on chemical fertilizer application, and
the adoption of agricultural technologies plays an important role in it. In other words,
land fragmentation exerts a significant influence on farmers’ chemical fertilizer application
via its influence on the adoption of agricultural mechanization technologies (AMTs) and
soil testing fertilization technologies (STFTs), and the information and communications
technologies (ICTs) can help mitigate these negative effects. To fill in the literature gap, in
this study, we provide a robust estimation of the effects of land fragmentation on farmers’
chemical fertilizer application as well as the role of the adoption of three technologies in
China’s maize production.

The objectives of this study are two-fold. The first is to explore how land fragmentation
and the adoption of two agricultural technologies, i.e., AMT and STFT, affect chemical
fertilizer application intensity (CFAI) in maize production through a mediation model.
The second is to investigate how ICT adoption mitigates the negative effects of land frag-
mentation on the adoption of two agricultural technologies and the reduction of chemical
fertilizer application. Our analysis reveals the mechanism by which land fragmentation
affects farmer’s chemical fertilizer application via agricultural technology adoption. Specif-
ically, land fragmentation changes the adoption of AMTs and STFTs, resulting in increasing
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farmers’ chemical fertilizer application. Moreover, the adoption of ICTs can mitigate the
process where land fragmentation negatively affects AMT and STFT adoption. To our
knowledge, this study is among the first to investigate the effects of land fragmentation on
chemical fertilizer application through the adoption of three technologies in rural China
and therefore help shed light on the issue. Our study also has important implications for
developing countries with agricultural characteristics similar to China.

The remainder of this paper is organized as follows. In Section 2 we provide the data
and estimation strategy, followed by the estimation results in Section 3. Section 4 presents
the discussion, and Section 5 concludes.

2. Methodology and Data

2.1. Empirical Model
2.1.1. Chemical Fertilizer Application Intensity

Chemical fertilizer application intensity (CFAI) is measured as the consumption of
chemical fertilizers per hectare sown area. It is a general index to reflect chemical fertilizer
use and corresponding ecological risks [44]. The CFAI can be calculated as:

CFAI =
CCF
SAC

(1)

where CCF denotes the consumption of chemical fertilizers, which refers to the total amount
of chemical fertilizers applied in maize production, including nitrogenous fertilizers, phos-
phate fertilizers, potash fertilizers and complex fertilizers. SAC denotes the total sown area
of crops, which includes the land owned by the farmers themselves and that transferred
from others.

2.1.2. Simpson’s Index of Diversity

Before the assessment, we needed an indicator containing all important factors to
measure the degree of land fragmentation. Three indicators are widely used in the existing
literature to measure the degree of land fragmentation, i.e., number of plots, average plot
size, average plot distance [31]. The Simpson Index of Diversity (SI), a general indicator to
represent land fragmentation [45,46], is defined as:

SI = 1 − ∑n
i=1 a2

i

(∑n
i=1 ai)

2 (2)

where 0 ≤ SI ≤ 1, when SI = 0, which means that the household has only one piece of
land, with a higher value of SI indicating a higher degree of land fragmentation. n is the
number of plots that the household has. ai is size of plot i.

2.1.3. Plot Distance Index

However, the Simpson index does not capture the distance of each plot [46]. Hence,
we constructed a plot distance index (PDI) which captures the spatial distribution of plots
of the farm household. The PDI is defined as:

PDI =
d1

dmax
× d2

dmax
× d3

dmax
× · · · × dn

dmax
(3)

where di denotes the distance between the farmer’s house and the plot i. dmax is the distance
of the farthest plot to farmer’s house, with a larger value of PDI indicating a higher degree
of land fragmentation.

2.1.4. Mediation Model

In order to examine the mechanism of how land fragmentation affects CFAI, we em-
ployed a mediation model to explore if agricultural technology adoption mediates the effect
of land fragmentation on CFAI. Here, we categorize agricultural technology adoption into
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two types, AMT and STFT. The mediating effect mainly tests the role of agricultural tech-
nology adoption in facilitating the process through which land fragmentation affects CFAI.
The three-model system is widely used to examine the mediating effects of mediators [47],
and we set up the three-model system as follows:

CFAIi = γ0 + γ1SIi + γ2Xki + ε1i (4)

Mi = a0 + a1SIi + a2Xki + ε2i (5)

CFAIi = ρ0 + ρ1SIi + ρ2Mli + ρ3Xki + ε3i (6)

Here SIi indicates the Simpson index of farm i; Mi is the mediator, namely, AMT
adoption and STFT adoption of farm i; Xki is a vector of other variables affecting agricultural
technology adoption and CFAI, including factors such as farm household and farmer
characteristics, farmland characteristics, region characteristics, policies, etc., following the
existing studies [11,37,48]. εi is a random error term.

Specifically, we first test the direct effects of land fragmentation on CFAI without
considering technology adoption in Equation (4). Then we explore the effects of land
fragmentation on agricultural technology adoption in Equation (5). The last step is to inves-
tigate the effects of land fragmentation and technology adoption on CFAI in Equation (6).
If we find a1 equal to 0, ρ2 equal to 0, or ρ1 equal to γ1, then we cannot reject the null
hypothesis that there is not a mediating effect.

To better understand the role of ICT adoption in the relationship among land frag-
mentation, agricultural technology adoption and CFAI, we introduce a dummy variable
(whether the farm household uses smart phone or personal computer (PC) to access infor-
mation about agricultural production and selling via internet) to investigate whether ICT
adoption mitigates the negative impacts of land fragmentation on agricultural technology
adoption and CFAI. Both this dummy variable and its interaction with land fragmentation
are incorporated into the regression so that:

CFAIi = γ0 + γ1SIi + γ2Xki + γ3 ICTi + γ4SIi × ICTi + ε1i (7)

Mi = a1 + a2SIi + a3Xki + a4 ICTi + a5SIi × ICTi + ε2i (8)

CFAIi = ρ0 + ρ1SIi + ρ2Mli + ρ3Xki + ρ4 ICTi + ρ5SIi × ICTi + ε3i (9)

where the dummy variable ICTi takes a value of “1” if the farm uses smart phone or PC,
and “0” otherwise. The internet use can help reduce chemical fertilizer use [49]. Hence,
we hypothesize that ICT adoption has significant and negative coefficients, γ3, and ρ4, in
Equations (7) and (9), respectively. Additionally, ICT adoption enables farmers to access
more information about newly developed agricultural technologies and thus mitigate
the negative effects of land fragmentation on both agricultural technology adoption and
reduction of chemical fertilizer use. We therefore expect that γ4 < 0 in Equation (7); a4 > 0,
a5 > 0 in Equation (8); and ρ5 <0 in Equation (9).

2.2. Data

This study utilizes a dataset which was obtained by a face-to-face questionnaire survey
administered by the National Agricultural and Rural Development Research Institute
(NARI) of China Agricultural University (CAU) in 2019. The survey mainly focuses on
grain production. Multistage sampling was employed for data collection. First, 14 provinces
were chosen. Second, the towns were selected in each province based on the cultivated
area of grains; that is, the sample towns should produce grains. Then 1–2 villages were
randomly selected from each town. Next, 15–20 farm households were chosen from each
village. As there might be farm households that are reluctant to participate in the survey,
such a household would be replaced by another household.

From November to December of 2018, the NARI recruited students from CAU and
trained them to guarantee that these students can collect appropriate data during the
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survey. The survey was conducted from January to February in 2019 when the university
was on winter vacation. In the end, 2866 farm-level questionnaires from grain growers
were obtained, covering a total of 14 provinces. The heads of the farm households were
asked to answer the questionnaire based on their farm management in 2018. The survey
data provide information on the inputs and outputs of crop production, land, income,
expenditure and farm household characteristics.

Since our study is focused on smallholder farmers, we excluded the observations from
farm sizes more than 2 hectares, according to classification by the World Bank. Additionally,
inconsistent and incomplete questionnaires were dropped. The final dataset consists of
1388 farm households engaging in maize production, covering 144 villages from 119 coun-
ties across 14 provinces, namely Inner Mongolia, Jilin, Sichuan, Anhui, Shandong, Jiangsu,
Jiangxi, Hebei, Henan, Hubei, Hunan, Gansu, Liaoning and Heilongjiang provinces, as
shown in Figure 2.

Figure 2. Profile of study areas.

The distribution of the 1388 observations from the 14 provinces is shown in Table 1.
As one might want to know why there are only a few observations in Heilongjiang and
Liaoning provinces, two major grain-producing provinces in China, the main reason is
that most of the farms in these regions are larger than 2 hectares and were excluded from
our analysis.

Table 1. Distribution of observations by province/autonomous region.

Province N Percentage (%)

Inner Mongolia 82 5.91%
Jilin 69 4.97%

Sichuan 166 11.96%
Anhui 38 2.74%

Shandong 257 18.52%
Jiangsu 110 7.93%
Jiangxi 74 5.33%
Hebei 139 10.01%
Henan 200 14.41%
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Table 1. Cont.

Province N Percentage (%)

Hubei 111 8.00%
Hunan 58 4.18%
Gansu 15 1.08%

Liaoning 39 2.81%
Heilongjiang 30 2.16%

Total 1388 100.00%

2.3. Variables and Descriptive Statistics

The dependent variable is CFAI measured as kilograms per hectare. We calculated
the CFAI using the consumption of chemical fertilizers per hectare sown area. Our core
independent variable is land fragmentation, measured as Simpson’s index. To provide
robustness check, we used plot distance index (PDI), in the estimation.

Covariates in each equation are listed and explained in Table 2. For the two types of
agricultural technology adoption, AMT is measured by a dummy variable, whether the
household used agricultural machinery, and STFT is also measured by a dummy variable,
whether the household adopted soil testing fertilization technologies. As one of our aims
is to evaluate the moderating effects of ICT adoption on the relationship among land
fragmentation, agricultural technology adoption and CFAI, we used a dummy variable,
whether the household adopted ICTs, to measure ICT in our analysis.

Table 2. List of variables and definitions.

Variable Definition and Descriptions Mean Std. Err.

Dependent Variable

CFAI Continuous variable, chemical fertilizer application intensity in maize production (kg/ha),
measured using the CCF divided by SAC, expressed as a natural log (ln) 9.82 4.81

Variables of Interest

SI Continuous variable, land fragmentation, measured as Simpson’s Index of Diversity 0.68 0.22
PDI Continuous variable, plot distance index, proxy of land fragmentation, used for robustness test 0.18 0.36

AMT
Dummy variable, agricultural mechanization technology, “1” if the farm household used
agricultural machinery during production, i.e., tillage, sowing, pest control, irrigation or

harvesting, “0” otherwise
0.71 0.35

STFT Dummy variable, soil testing fertilization technology, “1” if the farm household adopted the soil
testing fertilization technology before the application of chemical fertilizer, “0” otherwise 0.23 0.38

ICT Dummy variable, information and communication technology, “1” if the farmer used smart phone
or personal computer, “0” otherwise 0.59 0.86

Control Variables

Chemical fertilizer
price

Continuous variable, the average price of chemical fertilizer purchased by farmers in 2018
(CNY/kg), expressed as a natural log (ln) 1.66 0.27

Herbicide Continuous variable, the quantity of herbicide input in maize production per hectare in 2018
(kg/ha), expressed as a natural log (ln) 0.58 0.13

Farm size Continuous variable, measured as the operated area of maize cropland (hectare), expressed as a
natural log (ln) 2.01 1.36

Labor migration Continuous variable, measured as the percentage of farm household members employed in
non-agricultural sector 0.43 0.49

Agricultural
investment

Continuous variable, measured as the depreciation expense of fixed assets used in maize
production in 2018 (CNY), expressed as a natural log (ln) 10.65 15.38

Crop structure Continuous variable, measured as the share of sales revenue of grains in agricultural income 0.75 0.51
Sell mode Dummy variable, “1” if the sell mode is instant sale, “0” if the sale mode is contract sale 0.23 0.42

Village leader Dummy variable, “1” if the farmer is village leader, “0” otherwise 0.16 0.37
Flat land ratio Continuous variable, the percentage of flat land in the total operated land area (%) 0.64 0.33

Sloped land ratio Continuous variable, the percentage of sloped land in the total operated land area (%) 0.21 0.12
Hilly land ratio Continuous variable, the percentage of hilly land in the total operated land area (%) 0.15 0.11

Paddy land ratio Continuous variable, the percentage of paddy fields in the total operated land area (%) 0.09 0.06
Dry land ratio Continuous variable, the percentage of dry fields in the total operated land area (%) 0.91 0.77

Self-rated land quality Ordered variable, indicating the self-rated quality of the operated land, “1” if the land is barren,
“2” if low quality, “3” if medium, “4” if medium to high, and “5” if extremely fertile 3.03 0.88
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Table 2. Cont.

Variable Definition and Descriptions Mean Std. Err.

Land use rights Dummy variable, “1” if the land use rights were registered and certificated, “0” otherwise 0.92 0.98
Age Continuous variable, age of the household’s head, expressed as a natural log (ln) 3.94 0.23

Education
Ordered variable, education level of the household’s head (1–6), “1” illiterate, “2” elementary

school, “3” middle school, “4” high school or vocational high school, “5” three-year college, and
“6” college or post-graduate

2.76 0.95

Male Dummy variable, “1” male, “0” female 0.77 0.42

Social capital
Continuous variable, measured as the frequency of the farms reach out to their friends, i.e., the

number of friends or relatives the household says hi to via WeChat, phone calls or meetings during
spring festival, expressed as a natural log (ln)

4.00 4.35

Technical guidance Dummy variable, “1” if the farm household received technical guidance, “0” otherwise 0.16 0.27
Cooperative Dummy variable, “1” if the farm household is member of cooperatives, “0” otherwise 0.25 0.41
Fixed assets
investment

Continuous variable, measured as the depreciation expense of total fixed assets in 2018 (CNY),
expressed as a natural log (ln) 9.27 11.32

Hired labor ratio Continuous variable, measured as the number of work days of hired labor divided by the total
number of work days devoted to maize production in 2018 0.12 0.54

Inward land transfer Dummy variable, “1” if the farm household leased farmland from others, “0” otherwise 0.14 0.28
Outward land transfer Dummy variable, “1” if the farm household transferred land use rights to others, “0” otherwise 0.02 0.12

Producer subsidy Dummy variable, “1” if the farm household received a subsidy on maize production, “0” otherwise 0.15 0.36

Machinery subsidy Dummy variable, “1” if the farm household received a subsidy on the purchase of agricultural
machinery, “0” otherwise 0.05 0.22

East Dummy variable, “1” if farm household is located in eastern region, “0” otherwise 0.34 0.47
Central Dummy variable, “1” if farm household is located in central region, “0” otherwise 0.53 0.50

West Dummy variable, “1” if farm household is located in western region, “0” otherwise 0.13 0.33
Notes: 1. The sum of flat land ratio, sloped land ratio and hilly land ratio equals 1. 2. Land use rights refers to
the registration and certification of farmland. In particular, the rural land registration and certification program
started since the No. 1 central document in 2013 was issued. It is the confirmation of land ownership, land tenure
(land use rights) and other rights. The rights of each parcel must be subject to land registration procedures such as
land registration application, cadastral investigation, verification of affiliation, registration and issuance of land
certificates. 3. We categorize the 14 provinces into three regions according to the geographic location. Eastern
region includes Hebei, Liaoning, Jiangsu, Shandong. Central region includes Inner Mongolia, Jilin, Heilongjiang,
Anhui, Henan, Hubei, Hunan, Jiangxi. Western region includes Sichuan and Gansu.

In the mediation model, we control for farm household and farmer characteristics,
such as age, gender, education, social capital, technical guidance, fixed assets investment
and region characteristics, following the existing literature [6,32,50]. Characteristics of
farmland, such as the terrain and structure of cropland (evaluated by flat land ratio, sloped
land ratio, hilly land ratio, paddy land ratio, and dry land ratio), are also included as
they are considered as crucial factors affecting household decisions regarding farming
techniques [48,51–53]. Self-rated quality of cropland may also affect farmers’ production
decisions due to the endowment effects. Therefore, a variable for self-rated quality of
cropland is included in the model. Moreover, since tenure security contributes to the
reduction of chemical fertilizer use [54,55], a variable for land use rights certification
is included in the CFAI equation. In addition, the rural–urban migration experience is
conducive to reducing fertilizer use [56], so we control for the labor migration variable.
Agricultural subsidies also reduced fertilizer use by promoting the adoption of agricultural
techniques, a variable that indicates whether the farm received maize producer subsidy is
included in the mediation model [57].

A statistical description of variables is presented in Table 2. The average CFAI is
335.89 kg/ha, which is very large compared with some developed countries such as the
United States and Japan. Moreover, the average SI is 0.68 and the average PDI is 0.18, which
means that land fragmentation is severe in China. In addition, more than half of the farms
have adopted AMTs and ICTs, accounting for 71% and 58.8% of the total farms, respectively.
However, only 23% of the farms have adopted STFTs, implying that the advantages of
sustainable agricultural technologies have not yet been fully recognized.

3. Estimation Results

3.1. Baseline Regression

Based on our observation and previous studies, we establish a conceptual framework,
considering the role of AMT, STFT and ICT adoption on the effects of land fragmentation
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on CFAI. A possible mechanism is shown in Figure 3, and we examine it using the survey
data.

Figure 3. Influence mechanism of technology adoption on land fragmentation and CFAI.

Table 3 reports the mediating effect of STFT and AMT adoption on the relationship be-
tween land fragmentation and CFAI. It shows that the coefficient of SI on CFAI is significant
and positive in columns (1), (3) and (5), implying that land fragmentation has a significantly
positive effect on CFAI. Additionally, the coefficient of land fragmentation on STFT and
AMT adoption is significant and negative, in columns (2) and (4), respectively, which means
that land fragmentation has a negative impact on the adoption of these two agricultural
technologies. Moreover, the coefficient of STFT and AMT adoption on CFAI is significantly
negative in columns (3) and (5), respectively, meaning that the adoption of agricultural
technologies has significantly decreased the CFAI. The results suggest the existence of the
mediating effect of adopting two agricultural technologies, and the total effect mediated
by the adoption of STFTs and AMTs are 11% and 29% respectively. As expected, land
fragmentation can not only directly increase the CFAI, but it also indirectly increases the
CFAI by decreasing the probability of farmers adopting agricultural technologies.

Table 3. Mediating effects of STFT and AMT adoption on the impact of SI on CFAI.

Variable
(1) (2) (3) (4) (5)

CFAI STFT CFAI AMT CFAI

STFT
−0.121 **

(0.052)
AMT −0.238 ***

(0.067)
SI 0.289 *** −0.268 * 0.254 *** −0.352 *** 0.205 ***

(0.051) (0.162) (0.056) (0.039) (0.047)

Control Yes Yes Yes Yes Yes

_cons 3.565 *** 0.233 *** 3.112 *** 0.558 *** 3.223 ***
(1.100) (0.089) (0.655) (0.110) (0.724)

Obs. 1388 1388 1388 1388 1388
R-sqr 0.238 0.117 0.236 0.121 0.241

Sobel tests
0.0019 * 0.0022 ***
(0.0010) (0.0006)

Total effect mediated 11% 29%
Notes: Robust errors are in parenthesis, *** p < 0.01, ** p < 0.05, * p < 0.1. CFAI refers to chemical fertilizer appli-
cation intensity, SI refers to Simpson’s Index of Diversity, AMT refers to agricultural mechanization technology
adoption, STFT refers to soil testing fertilization technology adoption.

To examine the impact of ICT adoption on the relationship between land fragmentation
and agricultural technology adoption, we apply OLS regression to Equations (5) and (7).
The results are shown in Table 4.
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Table 4. Effect of ICTs on the relationship between land fragmentation and STFT adoption.

Variable (1) (2)

ICT
0.644 ***
(0.163)

SI × ICT
0.141 ***
(0.043)

SI
−0.268 *** −0.286 ***

(0.162) (0.096)
Control Yes Yes

_cons 0.233 *** 0.226 ***
(0.089) (0.077)

Obs. 1388 1388
R-sqr 0.117 0.285

Notes: Robust errors are in parenthesis, *** p < 0.01. The dependent variable is soil testing fertilization technology
(STFT) adoption. SI refers to Simpson’s Index of Diversity. ICT refers to information and communications
technology adoption.

As previously analyzed, without considering the role of ICT adoption, land fragmen-
tation has a significantly negative effect on STFT adoption, as shown in column (1). After
ICT and the interaction term of ICT adoption and land fragmentation were introduced into
the regression, we can see from column (2) that both ICT and the interaction term have
significant and positive coefficients, implying that ICT adoption can significantly increase
the probability of STFT adoption and mitigate the negative effects of land fragmentation on
STFT adoption.

To sum up, the adoption of ICTs significantly affects the effect of land fragmentation
on STFT adoption, which can be explained by the typical characteristics of farmers using
the internet in rural areas. Based on our field research experience, for the vast majority of
farmers who obtain agricultural service information through the internet, they use instant
messaging software called WeChat (Shenzhen, China). WeChat has revolutionized farmers’
technology adoption behaviors. On one hand, it pushes agricultural service information
in real time. A large number of surveyed farmers subscribe to information services to
receive the latest agricultural extension information and technical guidance. Internet use
has significantly improved the availability of agricultural information. On the other hand,
WeChat has significantly improved the intensity of farmers’ social networks. For farmers,
the impact of internet use on social network intensity is mutual. Farmers with strong social
networks are more inclined to use the internet, and internet use further increases the social
network intensity of farmers.

This interaction has a specific impact on the adoption of STFTs by farmers. They
can share the obtained agricultural technology information through instant messaging
tools such as WeChat and further exchange information, which significantly enhances the
dissemination of technology adoption experience. Farmers who have adopted the STFTs
can share the relevant experience and effectiveness of technology adoption with other
farmers who use WeChat, which significantly affects other farmers’ decisions regarding
agricultural technology adoption. On the contrary, farmers who do not use WeChat have
lower frequency and efficiency in agricultural technology information exchange. A field
survey based on 1710 farmers in Hubei Province also confirmed that land fragmentation
has a significant negative impact on the adoption of STFT by farmers with weak social
networks [58].

Table 5 reports the effects of ICT adoption on the relationship between land fragmenta-
tion and AMT adoption. Without considering the role of ICT adoption, land fragmentation
has a significantly negative effect on AMT adoption, as shown in column (1), which is
consistent with the existing studies. After ICT and the interaction term of ICT adoption
and land fragmentation were introduced into the regression, we can see from column (2)
that both ICT and the interaction term have significant and positive coefficient, implying
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that ICT adoption can significantly increase the probability of AMT adoption and mitigate
the negative effects of land fragmentation on AMT adoption.

Table 5. Effect of ICTs on the relationship between land fragmentation and AMT adoption.

Variable (1) (2)

ICT
0.552 ***

(0.201)

SI × ICT
0.123 ***
(0.031)

SI
−0.315 *** −0.321 ***

(0.072) (0.058)
Control Yes Yes

_cons 0.245 *** 0.211 ***
(0.051) (0.063)

Obs. 1388 1388
R-squared 0.298 0.208

Notes: Robust errors are in parenthesis, *** p < 0.01. The dependent variable is agricultural mechanization technol-
ogy (AMT) adoption. SI refers to Simpson’s Index of Diversity. ICT refers to information and communications
technology adoption.

3.2. Robustness Check

To provide a robustness check, we use the plot distance index (PDI) as an alternative
variable of land fragmentation, following the existing studies [45,59]. As shown in Table 6,
when PDI was used to replace SI as the independent variable, the results are completely
consistent with the benchmark regression results, and land fragmentation significantly
increases CFAI. In terms of the influence mechanism, land fragmentation has a significantly
negative effect on the adoption of agricultural technologies and thus increases the CFAI.

Table 6. Effects of PDI on CFAI mediated by STFT and AMT adoption.

Variable
(1) (2) (3) (4) (5)

CFAI STFT CFAI AMT CFAI

STFT −0.163 ***
(0.031)

AMT −0.240 ***
(0.076)

PDI 0.339 *** −0.342 ** 0.283 *** −0.440 ** 0.233 ***
(0.128) (0.144) (0.050) (0.191) (0.068)

Control Yes Yes Yes Yes Yes

_cons 3.441 *** 0.258 *** 3.625 *** 0.571 *** 3.145 ***
(0.586) (0.044) (0.829) (0.010) (0.603)

Obs. 1388 1388 1388 1388 1388
R-sqr 0.366 0.185 0.268 0.167 0.308

Sobel Mediation Tests
0.0008 *** 0.0015 ***
(0.0002) (0.0000)

Total effect mediated 16% 32%
Notes: Robust errors are in parenthesis, *** p < 0.01, ** p < 0.05. CFAI refers to chemical fertilizer application
intensity, PDI refers to plot distance index, AMT refers to agricultural mechanization technology adoption, STFT
refers to soil testing fertilization technology adoption.

3.3. Further Comparison

To further examine the role of technology adoption on the relationship between land
fragmentation and CFAI, as shown in Figure 4, we introduced the interaction term of SI
and the adoption of the three technologies into the regression. The estimation results are
shown in Table 7.
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Figure 4. Heterogeneity in the moderating effects of the adoption of the three technologies.

Table 7. Effects of technology adoption.

Variable (1) (2) (3) (4)

SI
0.289 *** 0.278 *** 0.285 *** 0.281 ***
(0.096) (0.086) (0.070) (0.091)

SI × ICT
−0.215
(0.187)

SI × AMT
−0.176 ***

(0.049)

SI × STFT
−0.121 **

(0.056)

Control Yes Yes Yes Yes

cons 3.565 *** 3.178 *** 3.456 *** 3.923 ***
(1.100) (0.739) (1.197) (0.713)

Obs. 1388 1388 1388 1388
R-sqr 0.238 0.222 0.233 0.235

Notes: Robust errors are in parenthesis, *** p < 0.01, ** p < 0.05. The dependent variable is chemical fertilizer
application intensity (CFAI). SI refers to Simpson’s Index of Diversity, AMT refers to agricultural mechanization
technology adoption, STFT refers to soil testing fertilization technology adoption, STFT refers to soil testing
fertilization technology adoption, ICT refers to information and communications technology adoption.

The results show that SI has significant and positive coefficients in column (1)–(4),
implying that land fragmentation has increased CFAI. The coefficient of the interaction
term of SI and AMT is significant and negative in column (3), which means that AMT
adoption can mitigate the positive impact of land fragmentation on CFAI. Additionally, the
results of column (4) suggest that STFT adoption can mitigate the positive impact of land
fragmentation on CFAI. More importantly, the coefficient of the interaction term of SI and
ICT is not statistically significant, and ICT has no significant effect on the direct effect of
land fragmentation on CFAI, as shown in column (2).

Obviously, the use of agricultural machinery and the progress of agricultural tech-
nology are effective measures to reduce the intensity of chemical fertilizer use. When we
examine the moderating effects of ICT on the direct effects of land fragmentation on CFAI
alone, the role of information publicity and promotion brought with ICTs is limited. The
unfavorable land resource endowment has restricted the adoption of advanced agricultural
technologies and machinery. Therefore, even if farmers recognized the negative effects
of excessive application of chemical fertilizer, they would increase the input of chemical
fertilizer to ensure income and output. More importantly, the influence mechanism shown
in Figure 3 confirmed that the rapid development of information technology has signifi-
cantly increased the probability of farmers adopting AMTs and STFTs and thus leads to the
reduction of CFAI.

4. Discussion

4.1. Role of AMT Adoption

According to the baseline regression results, the impact of agricultural mechanization
exceeded our research expectations, which may be related to the stage of agricultural
development in China. The issue of land fragmentation in China can be traced back to
the implementation of the household contract responsibility system in the late 1980s. The
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arrangement of land property right system has led to the problem of land fragmentation to
a certain extent [36]. However, there was no better choice for China back then. Moreover,
land fragmentation did not have a negative impact on China’s agricultural production
and even dispersed agricultural risks and improved the utilization efficiency of the labor
force [60–62]. However, with the rise of labor costs and popularization of agricultural
machinery, land fragmentation has increased the commuting time between plots, which
limits the application of large-scale agricultural machinery. It is rather difficult for small
farms to adapt to the development of modern agriculture in China. Furthermore, compared
with the adoption of STFTs, whether farmers use formula fertilizer and the proportion of
formula fertilizer also have significant effects on CFAI. However, due to data availability,
we cannot further verify the effect of actual use of formula fertilizer on CFAI in this study.

In fact, the application of chemical fertilizer by small farmers usually remains stable in
the long run [6] since it is greatly affected by previous experience. It seems like another
reasonable explanation for the effects of the adoption of agricultural technology. Before
the promotion and popularization of chemical fertilizer, based on the fact that the soil
nutrients of cultivated land were low, China carried out chemical fertilizer efficiency tests
at the national level for several years and formulated the standards for the application
amounts of chemical fertilizer to grain crops according to the test results. However, farmers’
fertilization behavior is inertial and has a cumulative effect on fertilizer application. When
there is no external change, such as the application of advanced technology, farmers are
likely to overuse chemical fertilizer according to their experience and fertilization habits.

From the perspective of costs and benefits, from 1978 to 2014, the average annual
growth rate of China’s agricultural means of production prices was 5.4%, while it was 6.4%
for agricultural producer prices. It is thus profitable for farmers to increase inputs [63].
However, China’s unique urban and rural dual system and land system has diminished the
advantages of China in competition with other countries with similar resource endowment
conditions. The most predominant impact is the rise of agricultural labor costs and land
rents. Moreover, with the continuous rise of the price of agricultural production inputs
such as chemical fertilizer, the growth of marginal output and marginal income brought by
increasing inputs has decreased significantly. Therefore, under the given cost constraints,
it is feasible to reduce the input of other factors by increasing the use of agricultural
machinery, which is reflected not only in the substitution of labor but also in the reduction
of the input of means of production such as chemical fertilizer.

Based on the above analysis, taking into account the land management rights and other
issues, land circulation and scale management aiming to improve the degree of mechanized
operation are effective ways to reduce the intensity of chemical fertilizer application.

4.2. Role of STFT Adoption

The Chinese government began to implement policies to promote STFT adoption
in 2005. After the implementation of the policy, the utilization rate of nitrogen fertilizer,
phosphorus fertilizer and fertilizer addition in rice, wheat and corn was 33%, 24% and 42%,
respectively, which increased by 5%, 12% and 10%, respectively. The effect of STFT adoption
on improving the utilization rate of chemical fertilizer is obvious. However, our study
shows that compared with AMT adoption, STFT adoption has a weaker influence on the
effect of land fragmentation on CFAI. On one hand, the price of formula fertilizer is higher
than that of chemical fertilizer. Although many farmers adopted STFTs because of policy
incentives and financial subsidies, they did not use formula fertilizer. On the other hand,
the effect of land fragmentation on AMT adoption is larger than that on STFT adoption.

Therefore, the popularization of STFTs can effectively promote the reduction of chem-
ical fertilizer. Firstly, improve the market competitiveness of chemical fertilizers and
pesticides use to produce agricultural products in accordance with scientific and reasonable
methods. Secondly, increase the availability of professional production services for farmers,
strengthen the promotion of soil testing fertilization and other technologies and increase
the corresponding financial subsidies. Thirdly, reduce or even gradually abolish the prefer-
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ential tax policies for chemical fertilizer production, strengthen the market supervision of
excessive use of chemical fertilizer production products and improve the regulations on
illegal production.

4.3. Role of ICT Adoption

In this study, we focus on internet use since smart phones and computers are quite
powerful and play an increasingly important role in agricultural production. Based on
our observation during field surveys, farmers can easily connect with the researchers
from local agricultural research institutions by WeChat. For example, the National Green
Manure Industry Technology System in China regularly records videos on the application of
chemical fertilizer and green manure and provides corresponding information and technical
services for farmers in rural areas through influential WeChat video subscription services.

Moreover, in recent years, Tik Tok is getting more and more popular and gaining
wider influence. Considering that the education level of most of the farmers in rural China
is relatively low, video is an efficient way to for them to access information. Tik Tok is
quite significant because it has a large number of users in China. When we use agricultural
planting technology as a keyword to search in Tik Tok, we can immediately get massive
intuitive video information. It is noteworthy that these video providers do not rely on
government support, and they are independent media practitioners. To our knowledge,
there are millions of similar video providers who have created Tik Tok accounts China. At
the same time, farmers can also communicate with these technical information providers
through the comment function.

Our analysis shows that ICTs play the role of catalyst; that is, ICT adoption can slow
down the positive effects of land fragmentation on CFAI by mitigating the negative impact
of land fragmentation on the adoption of AMT and STFT. Apparently, ICT can also directly
affect the fertilizer application intensity of farmers. According to our theoretical analysis
and interviews with typical farmers, farmers are unlikely to change their decisions when
they are faced with the pressure of crop yield and agricultural income, even if they fully
understand the negative impact of excessive application of chemical fertilizer through
ICT. Our results show the significant difference between ICT and typical agricultural
technologies such as AMT and STFT. Most importantly, our study provides theoretical
support for the Chinese government to formulate industrial policies to reduce the use of
chemical fertilizer.

Based on the above analysis, we understand the mechanism of how ICTs affect the
impact of land fragmentation on CFAI. It is noteworthy that it is not enough to rely
merely on ICTs for policy encouragement and publicity without satisfying the demands
of farmers through the application of agricultural technologies. The policies should be
focused on supporting the development of agricultural technologies, give full consideration
to the advantages of ICTs, and propagandize the important role of agricultural technology
adoption in increasing productivity and efficiency so as to reduce the intensity of chemical
fertilizer application.

5. Conclusions

In this study, we examined the relationship between land fragmentation and CFAI,
and further explored the mediating effect of AMT and STFT adoption in China’s maize
production. We developed a mediation model to explore the influence mechanism of land
fragmentation on CFAI through AMT and STFT adoption. Considering the important role
of ICTs played in agricultural production, we explored the impact of the ICT adoption on
the relationship between land fragmentation, agricultural technology adoption and CFAI
and conducted an empirical analysis on a farm level survey data with 1388 observations.

Our results clearly indicate that land fragmentation has a positive impact on CFAI,
and the adoption of both AMTs and STFTs has a significant negative effect on CFAI; land
fragmentation reduced the probability of farmers adopting these technologies. Moreover,
the adoption of ICTs can significantly reduce the negative effect of land fragmentation
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on the adoption of AMTs and STFTs, but it did not directly affect the process of land
fragmentation decreasing the CFAI.

This study contributes to a better understanding of the relationship between land
fragmentation and chemical fertilizer use in China’s maize production. Moreover, the
mediating effects of the adoption of AMTs and STFTs on the relationship between land frag-
mentation and chemical fertilizer use can provide insights on the influencing mechanism of
land fragmentation, which is especially crucial to provinces suffering high chemical fertil-
izer application intensity. More importantly the adoption of ICTs can mitigate the negative
impact of land fragmentation on technology adoption, which helps shed light on the issue
of the low adoption rate of agricultural technologies in rural China. Therefore, policies
should be carried out to continue to strengthen the extension, promotion and adoption
of agricultural technologies such as AMTs and STFTs. In addition, it is of significance to
give full consideration to the role of information technologies and to promote technology
adoption in rural China.

The generalization of the findings of this study is subject to certain limitations. For
example, the study was limited to maize production in 14 provinces in China. The results
may not be able to be applied to other areas of grain production in the whole nation. China
is a diverse country in terms of varying crop varieties and economic development across
regions. Studies on other crops and other regions can be conducted to enrich the study in
this field.
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Abstract: Global climate change results in an increased risk of high urban temperatures, making it crucial
to conduct a comprehensive assessment of the high-temperature risk of urban areas. Based on the data of
194 meteorological stations in China from 1986 to 2015 and statistical yearbooks and statistical bulletins
from 2015, we used GIS technology and mathematical statistics to evaluate high-temperature spatial
and temporal characteristics, high-temperature risk, and high-temperature vulnerability of 31 cities
across China. Over the past 30 years, most Chinese cities experienced 5–8 significant oscillation cycles
of high-temperature days. A 15-year interval analysis of high-temperature characteristics found that
87% of the cities had an average of 5.44 more high-temperature days in the 15-year period from 2001
to 2015 compared to the period from 1986 to 2000. We developed five high-temperature risk levels
and six vulnerability levels. Against the background of a warming climate, we discuss risk mitigation
strategies and the importance of early warning systems.

Keywords: GIS; high-temperature disaster risk; high-temperature disaster vulnerability; risk assessment

1. Introduction

High-temperature disaster refers to a meteorological disaster that causes discomfort
to living and non-living things such as people, animals, plants, and inorganic environment
due to extreme high-temperature weather and has adverse effects. Global climate change
has resulted in more frequent extreme weather events, which have significant adverse
effects on human health and the social economy [1]. One type of extreme climate event,
extreme summer heat, is a global phenomenon: In 1993, the Southeastern United States
was hit by heat waves, with most areas reaching their highest temperatures in history [2].
In 1994, continuous high summer temperatures in Northeast China, Japan, and other
countries resulted in large-scale droughts [3]. In 1995, the heat wave across Europe seriously
impacted ecological, socio-economic, and other aspects of society [4]. In the summer
of 2003, temperatures in Europe hit a record high [5], with more than 10,000 people in
France dying as a consequence of the heat [6]. In 2013, Southeast China suffered from
abnormally high temperatures, and 167 excess deaths occurred in the Pudong New Area in
Shanghai [7]; at the same time, 679 additional heat-related illnesses occurred in Ningbo [8].
Heat waves, which are occurring more frequently, affect not only human health [9,10]
but also human wellbeing and productivity, resulting in urban water and power supply
shortages [11] and, consequently, threatening food security [12]. Over the last few years,
high-temperature events have become more frequent, and their frequency, range, and
duration will continue to increase [13]. Analyzing the spatial and temporal characteristics
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of high-temperature events can facilitate our understanding of the intensity, frequency, and
duration of such events and their causes. In this sense, high-temperature risk assessment is
of great importance for avoiding the risks associated with high-temperature events.

Studies on high-temperature events mainly focused on the impacts and causes of
these events, as well as early warning systems. For example, Rosenzweig et al. [13,14]
pointed out that urban heat waves can have serious impacts on human health. Accord-
ing to Park et al. [15] and Guan et al. [3], the occurrence of high-temperature events is
related to abnormal sea temperatures. While the US Hot-Weather Health Warning System
(HHWS) can already assess the possible number of deaths caused by hot weather [16],
Kalkstein et al. [17] evaluated the ability of HHWS to reduce the number of heat-related
deaths based on the number of heat deaths and heat waves in major cities in the United
States from 1975 to 2004. Yang et al. [18] pointed out that the urban heat island effect
aggravated the scope and intensity of extremely high temperatures in cities, increased
high-temperature health risks for urban residents, and also made an important contribution
to the long-term upward trend of extremely high temperatures in cities.

High-temperature vulnerability research refers to the establishment of a vulnerability
evaluation index system in terms of the sensitivity; exposure; and adaptability of natural
resources, the environment, the population, and the social economy, with the aim of quanti-
tatively expressing the regional high-temperature vulnerability and identifying its spatial
distribution [19,20]. Against the background of global climate change, compared to vulner-
ability assessments of meteorological disasters such as floods, droughts, and typhoons, as
well as geological disasters such as earthquakes and landslides, studies assessing the vul-
nerability of cities to high-temperature events are scarce [21–28]. Urban high-temperature
vulnerability evaluation studies mainly used official statistics, obtained via remote sensing
and GIS. Generally, indicators such as high-temperature stress, sensitivity, adaptability,
and exposure were evaluated [29,30], and factors such as the number of high-temperature
days, socioeconomic level, and education level were involved [19,20]. The determination of
relevant evaluation indicators is highly subjective, requiring rigorous index demonstration,
mostly using statistical data; remote sensing data and GIS data alone are insufficient [31].

Disaster risk assessment is a process of judging the nature and scope of risk by studying
the disaster-causing factors and the vulnerability of disaster-bearing bodies that have potential
impacts on life, property and environment [32]. Considering the combined effects of risk
and vulnerability, the comprehensive risk of high temperature disaster pays more attention
to the possible losses under high temperature stress; that is, it emphasizes the exposure
of population, property, and ecosystem at high temperatures [20]. In the 1970s, several
countries started to conduct risk assessments of meteorological disasters [33–38]. For example,
Blaikei et al. [39] took each state as the research object and used natural disasters between
1957 and 1994 to conduct a natural disaster risk analysis, using disaster loss, population,
and area data. The relationship between resource development and natural disasters was
illustrated from the perspective of the comprehensive role of the disaster-prone environment,
disaster-causing factors, and disaster-bearing factors, allowing the authors to obtain the
disaster risk zoning of the United States. In 1982, Willam et al. [40] completed the book
Natural Disaster Risk Assessment and Disaster Reduction Policy, in which the authors described
natural disaster risk assessment. China’s high-temperature risk assessment has mainly been
carried out by considering hazards, exposure, vulnerability, disaster prevention, mitigation
ability, etc., and high-temperature risk assessment is performed by considering disaster-
causing factors, disaster-prone environments, disaster-bearing bodies, disaster resistance
ability, etc. To date, although several studies have investigated the influences and causes of
high-temperature events, including potential early warning signs [13–17], systematic studies
on the risk assessment of high-temperature events are scarce.

The above-mentioned studies mainly focused on spatial-temporal characteristics,
causes, impacts on human health, and a comprehensive assessment of high-temperature
events. However, such research was largely carried out on the regional scale. On the
national scale, based on different high-temperature risk assessment models and different

200



Int. J. Environ. Res. Public Health 2022, 19, 4292

evaluation index systems, this paper constructs a high-temperature risk assessment model
from the comprehensive perspective of high-temperature spatiotemporal characteristics,
risks, and vulnerability. We used statistical methods to analyze high-temperature spa-
tiotemporal characteristics and risk assessment data from various cities within China based
on provincial units. The identification of areas vulnerable to high temperatures and the
assess of this vulnerability provide a scientific basis for the control of high-temperature
risks in various cities with a high practical significance.

2. Data and Methods

2.1. Data

For this paper, we used meteorological and socioeconomic data. Meteorological
data were obtained from the National Meteorological Science Data Sharing Center (http:
//data.cma.cn/site/index.html, accessed on 10 April 2020); we downloaded the daily
maximum temperature data for 194 weather stations from the “China Ground International
Exchange Station Climate Data Day Dataset” from 1986 to 2015 (Figure 1). Social and
economic data were obtained from the statistical yearbooks of various provinces and cities,
supplemented by departmental statistical yearbooks and statistical bulletins (Table 1).

Figure 1. Map showing the spatial distribution of weather stations across China.
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Table 1. Description of the data used for this paper.

Data Types Data Description Data Sources Time Period

Meteorological data Daily maximum temperatures from
194 meteorological stations

National Meteorological Science Data Sharing
Center (http://data.cma.cn/site/index.html,

accessed on 15 Apirl 2020)
1986–2015

Socio-economic data

Statistical data, including
population, employment, income,

finance, industry, education,
healthcare, and other data from

various administrative areas

Provincial statistical yearbooks from Anhui,
Gansu, Guangdong, Guangxi, Hebei, Henan,

Heilongjiang, Hubei, Hunan, Jilin, Jiangxi,
Liaoning, Inner Mongolia, Shandong, Shanxi,

Sichuan, Tianjin, Tibet, Xinjiang, Yunnan,
Chongqing, Shanghai, Hainan, Beijing,

Zhejiang, Guizhou, Qinghai, and Ningxia.
Municipal statistical yearbooks from Nanjing,

Nanping, Wuhan, Chaoyang, Shijiazhuang,
Xi’an, Yuncheng, Kunming, and Zunyi.

Statistical yearbooks are all from provincial
and municipal statistical bureaus.

2016

Statistics (As
supplementary materials)

Heilongjiang Financial Yearbook and the
national, economic, and social development

statistical bulletins from the cities of Ganzhou
and Pu ’er and other provinces and cities,
provided by the Provincial and Municipal

Statistics Bureau

2015

2.2. Methods

The fifth research report of the IPCC (2014) emphasizes the importance of risk assess-
ment in global climate change research, describing a framework of natural disaster risk
assessment based on “disaster stress-social vulnerability-exposure.” Extremely high tem-
peratures in summer can lead to high-temperature disasters, which pose serious threats to
human health, the social economy, and ecosystems. Based on the natural disaster risk eval-
uation framework and “high-temperature risk-social vulnerability-population exposure,”
a high-temperature disaster risk assessment framework is constructed to comprehensively
assess high-temperature risks. According to the above evaluation framework, the quantita-
tive analysis of high-temperature characteristics, risks, and vulnerability is conducted to
provide an assessment of urban high-temperature risks.

2.2.1. Analysis of High-Temperature Characteristics

Based on the daily maximum temperature data of 194 weather stations from the “China
Ground International Exchange Station Climate Data Dataset” from 1986 to 2015, 31 cities
were selected as typical cities with high temperatures, and the frequency characteristics
of high-temperature events in these cities were determined. We used the SPSS software
platform for statistical analysis and counted the days with high-temperature events from
1986 to 2015. In order to observe and compare these events, we used the equidistant
grouping method that is frequently adopted [41]. The obtained dataset was divided into
two groups, namely data from 1986 to 2000 and data from 2001 to 2015. For each group,
which represents a 15-year period, we calculated the mean of the annual number of high-
temperature days. Subsequently, we calculated the difference between the average number
of high-temperature days from 2001 to 2015 and the average number of high-temperature
days from 1986 to 2000 and compared the two 15-year periods.

2.2.2. Risk Analysis of High-Temperature Disasters

Using the temperature data of 31 typical stations, a high-temperature risk assess-
ment model for 31 typical provinces and cities was constructed based on the following
three aspects: the duration of high temperatures, high-temperature severity, and extreme
high-temperature risk. The duration of high-temperature events was expressed by the
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number of high-temperature days (≥35 ◦C). The severity of a high-temperature event is
expressed by the average difference between the daily maximum temperature (when it is
≥35 ◦C) and the temperature of 35 ◦C. The extreme high-temperature risk was expressed
by the extreme high temperature ratio, which refers to the ratio of the number of days
with a maximum daily temperature of ≥38 ◦C (China’s Meteorological Administration
defines weather with a daily maximum temperature ≥38 ◦C as hot summer weather) to the
number of high-temperature days within a certain period of time. The model is constructed
as follows:

R = d × wd + t × wt + p × wp (1)

where R indicates the risk of urban high-temperature disasters; and d, t, and p represent
the cumulative number of high-temperature days, the high-temperature severity, and the
extreme high-temperature ratio of the standardized cities, respectively. wd, wt, and wp
are the standardized weights of the cumulative number of high-temperature days, high-
temperature severity, and extreme high-temperature ratio for each city, respectively. The
cumulative number of high-temperature days is the number of days with high-temperature
weather; the high-temperature severity is the average of the difference between the daily
maximum temperature (when it is ≥35 ◦C) and 35 ◦C; and the extreme high-temperature
ratio refers to the ratio of the number of days with a daily maximum temperature ≥38 ◦C
to the number of high-temperature days in a certain period of time.

In a previous study [19], wd, wt, and wp were set to 0.6, 0.3, and 0.1, respectively. Based
on the calculated risk index values of each typical city, the natural breakpoint method in
ArcGIS was used to grade cities, and the spatial distribution maps of five high-temperature
risk grades were obtained.

2.2.3. Vulnerability Analysis of High-Temperature Disaster and High-Temperature
Risk Assessment

According to the high-temperature risk assessment framework, the risk can be deter-
mined using the following three indicators: high-temperature stress, social vulnerability,
and population exposure. Social vulnerability refers to how vulnerable a specific group
of people is to high temperatures and their ability to resist high-temperature hazards; it
includes the sensitivity and adaptability of the population [42]. Based on previous studies,
the multiplication and division of these indicators can reflect the synergistic relationships
among the indicators more effectively than addition and subtraction [43–46]. Accordingly,
the high-temperature vulnerability and the high-temperature risk models were obtained
as follows:

DI = R × F, and (2)

RI = R × F × E, (3)

where DI is the high-temperature vulnerability index; RI is the high-temperature risk
index; and R, F, and E are the high-temperature disaster risk, social vulnerability, and
population exposure values, respectively. Parameter R is calculated using Equation (1);
population exposure value E refers to the total population of each city in 2015. Social
vulnerability, F, is determined via principal component analysis, which is used to analyze
and calculate the selected social vulnerability indicators of sensitivity and adaptability; the
specific indicators are shown in Appendix A. Principal component analysis (PCA) [47] is
a multivariate dimensionality reduction technique for clustering and index reduction that
uses the relationships between data points; it simplifies and organizes the relationships
among a set of metrics and, thus, enables objective index confirmation. To calculate social
vulnerability, the principal component score function of each typical site was first calculated
based on the resulting component score coefficient matrix:

Fi = ∑ Zij × X (4)
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where X indicates the value of each index after standardization and Zij is the corresponding
component score of the index.

Subsequently, we used the contribution rates of each principal component and calcu-
lated the social vulnerability value F of each city by applying the following equation:

F =
ei
e

Fi (5)

where ei is the contribution rate of each principal component; e represents the total principal
component contribution rate; and Fi represents each principal component score.

Based on the constructed high-temperature risk assessment framework, the high-
temperature vulnerability and high-temperature risk values of the cities with the highest
temperatures in various provinces were obtained. The natural breakpoint method in ArcGIS
was used to generate the maps of high-temperature vulnerability and high-temperature
risk zoning for each city (Table 2).

Table 2. Indicators used for the social vulnerability index calculation.

Primary Indicator Sub-Indicator

Sensitivity

Proportion of the population that is female (%)
Proportion of the population that works in the primary industry (%)
Registered unemployment rate (%)
Number of students in primary school (people)

Adaptability

Per capita disposable income of urban residents (CNY)
Per capita disposable income of rural residents (CNY)
Basic endowment insurance for urban workers (CNY)
GDP per capita (CNY)
Proportion of industrial output value in GDP (%)
Local fiscal revenue (CNY 10,000)
Number of health technicians (people)
Local financial education expenditure (CNY 10,000)
Social security and employment expenditure (CNY 10,000)

2.2.4. Jenks Natural Breaks

The natural breakpoint method is a standard method used to divide datasets into
a certain number of classes; it is widely used in data analysis and map making [48]. By
identifying the classification interval and dividing the elements into multiple classes, similar
values can be appropriately grouped so that the difference between similar groups are small
and the differences between less similar groups are large. Statistically, the variance can be
used to perform the classification. The magnitude of the sum of the variance of various
classifications can be used to classify the elements, and the lowest magnitude indicates
the best classification result. The natural breaks method is the “best” method for finding
an appropriate segmentation range. Most high-temperature risk studies divide the risk
into five levels [47,49], which are not arbitrary decisions. Therefore, in this paper, five high-
temperature risk levels are determined, and the thresholds of all levels are obtained using
the natural breaks method.

3. Results

3.1. Analysis of the Spatial and Temporal Characteristics of Urban High-Temperature Events

Generally, 28 of the 31 typical cities showed cyclical fluctuations in the number of high-
temperature days per year (Figures 2 and 3), and most cities experienced 5–8 significant
oscillation cycles. Turpan, Xinjiang, had the largest number of high-temperature days
per year, with a mean of 105.30 days. The number of high-temperature days per year in
Baise, Guangxi; Nanping, Fujian; Ganzhou, Jiangxi; Chongqing; and Hangzhou, Zhejiang,
showed obvious cyclical fluctuations, with a mean of greater than 30 days. Turpan had
an average of 30.03 to 46.73 high-temperature days. Shaoguan, Guangdong; Haikou,
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Hainan; Changsha, Hunan; Yuncheng, Shanxi; Wuhan, Hubei; Lu’an, Anhui; and Xi’an,
Shaanxi, had 22 to 28.8 high-temperature days per year on average. Alxa League in
Inner Mongolia; Nanchong, Sichuan; Jiuquan, Gansu; Zhengzhou, Henan; Shijiazhuang,
Hebei; Nanjing, Jiangsu; Shanghai, Shandong; and Jinan, Shandong, averaged between 10
and 20 high-temperature days per year. Beijing; Tianjin; Chaoyang, Liaoning; Yinchuan,
Ningxia; Zunyi, Guizhou; Pu ’er, Yunnan; Qiqihar, Heilongjiang; and Songyuan, Jilin,
averaged between 1 and 10 high-temperature days per year. In every year, the number of
high-temperature days was below 40 for these cities.

According to the number of high-temperature days, natural breakpoints were used in
ArcGIS to create five intensity levels: very low, low, medium, high, and very high. From
a spatial perspective, Turpan in Northwest China is a very high-intensity area. Most cities
in South China, East China, and the Yangtze River basin are high-intensity areas, whereas
cities in North China and Northeast China are medium- and low-intensity areas.

Figure 2. Number of high-temperature days (≥35 ◦C) in 31 typical Chinese cities from 1986 to 2015.
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Figure 3. Spatial characteristics of high-temperature days in 31 typical cities in China from 1986 to 2015.

The results of the time series analysis of high-temperature events in the 31 typical
cities are shown in Table 3. For Tianjin, Shanghai, Ganzhou, Zhengzhou, Changsha,
Nanchong, Chongqing, Yinchuan, and Turpan, the number of high-temperature days
gradually increased between 1986 and 2015. However, for 87.10% of the cities, we found
an increase in the average number of high-temperature days from 2001 to 2015 compared
to 1986–2000 (Figure 4); in two cities, the number of high-temperature days per year
decreased. In Changsha, Ganzhou, Chongqing, Hangzhou, and Turpan, the number of
high-temperature days increased significantly by more than 10 days; in Shanghai, Wuhan,
Nanchong, Nanping, Lu’an, Haikou, Zhengzhou, Alxa League, and Nanjing, this number
increased by 5.13–9.67 days. In contrast, in Beijing, Tianjin, Shijiazhuang, Yuncheng,
Chaoyang, Songyuan, Qiqihar, Jinan, Shaoxing, Zunyi, Lhasa, Xi’an, Jiuquan, and Yinchuan,
a significant increase of 0–5 days was found. The average number of high-temperature
days in Lhasa and Xining was the same for the two 15-year periods. In Baise and Pu’er, the
number of high-temperature days decreased by 2.80 and 0.33 days, respectively. The cities
with a large increase in the number of high-temperature days were mainly located in East
China, South China, and the Yangtze River basin.

Table 3. Time series analysis of high-temperature days from 1986 to 2015.

Statistical Metric Tianjin Shanghai Ganzhou Zhengzhou Changsha Nanchong Chongqing Yinchuan Turpan

Pearson correlation 0.368 * 0.460 * 0.488 ** 0.443 * 0.526 ** 0.424 * 0.465 ** 0.679 ** 0.614 **
Sig. (2-tailed) 0.045 0.011 0.006 0.014 0.003 0.020 0.010 0.000 0.000

N 30 30 30 30 29 30 30 30 30

* Significant correlation at the 0.05 level (bilateral). ** Significant correlation at the 0.01 level (bilateral).
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Figure 4. Map of China showing the 15-year interval variation of high-temperature weather in typical
cities.

3.2. Risk and Vulnerability Analysis

Using ArcGIS combined with the obtained risk index value R, the natural breakpoint
method was applied to divide the risk into five levels from high to low (Figure 5) as follows:
Turpan—Level V (very high); Yuncheng, Hangzhou, Nanping, Ganzhou, Chongqing, and
Baise—Level IV (high); Shijiazhuang, Alxa League, Lu’an, Zhengzhou, Wuhan, Changsha,
Shaoguan, Haikou, Nanchong, Xi’an, and Jiuquan—Level III (medium); Beijing, Tianjin,
Chaoyang, Qiqihar, Shanghai, Nanjing, and Jinan—Level II (low); Songyuan, Zunyi, Pu’er,
Lhasa, Xining, and Yinchuan—Level I (very low).

Spatially, the high-risk areas were mainly located in East and Southwest China,
whereas the areas with a medium-risk level were scattered throughout China (exclud-
ing Northeast China). In Central China, mostly medium-risk areas were found. The seven
low-risk areas were mainly located in North, East, and Northeast China, and the six very-
low-risk areas were distributed throughout high-elevation regions in the west, with a small
number in the northeast.

The highest vulnerability level was found for Turpan, which is consistent with the
high-temperature risk for this city (Figure 6). However, there were significantly fewer
very-high risk-level (Level 5) areas than high-temperature risk areas, and they were located
in Southeast China (Nanping, Ganzhou) and western South China (Baise). Yuncheng,
Chongqing, Hangzhou, and other cities with high-level risk values did not show high
vulnerability levels. Areas with vulnerability levels of 3 and 5 were scattered across various
regions, including Shijiazhuang and Alxa League in North China; Chaoyang and Qiqihar in
Northeast China; Jinan, Nanjing, Hangzhou, and Lu’an in East China; Zhengzhou, Wuhan,
and Changsha in Central China; Shaoguan and Haikou in South China; Nanchong and
Chongqing in Southwest China; and Xi’an and Jiuquan in Northwest China. The Level 2
cities were Tianjin, Shanghai, Yinchuan, and Songyuan, and the Level 1 cities were Beijing,
Zunyi, Lhasa, Xining, and Pu’er.
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Figure 5. High-temperature risk levels for 31 typical cities across China based on data from 1986 to 2015.

Figure 6. High-temperature vulnerability levels of 31 typical cities across China based on data from
1986 to 2015.
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3.3. Comprehensive Assessment of High-Temperature Risk

According to the high-temperature risk assessment model, the high-temperature risk
values for the 31 cities were calculated and rated using the natural breakpoint method to
obtain the spatial distribution map of high-temperature risk areas (Figure 7).

Figure 7. High-temperature risk distribution in 31 typical cities across China based on data from
1986 to 2015.

3.4. High-Temperature Risk Prevention Zoning

Risk prevention zoning is based on risk evaluation, which provides guidance for
targeted risk prevention strategies [43]. In this paper, risk prevention and zoning were
carried out for cities with higher high-temperature risk levels (Levels 4–6). First, the natural
breakpoint method was used to divide the high-temperature risk and vulnerability factors
into high and low levels. Subsequently, the cities with high risk and low vulnerability were
called “high-temperature risk areas.” Cities with low risk and high vulnerability were called
“high-temperature vulnerability areas.” Cities with both high risk and high vulnerability
were called “high-temperature risk-vulnerability areas,” and cities with both low risk and
low vulnerability were called “population exposure areas.” Among the 12 hotspot cities,
there were 3, 0, 5, and 4 cities, respectively, in each of these four categories of risk factors
(Figure 8); the highest risk values were found for Hangzhou, Xi’an, and Changsha. The cities
with high risk and vulnerability values are Shijiazhuang, Yuncheng, Nanchong, Chongqing,
and Guangzhou. In the densely populated cities of Tianjin, Zhengzhou, Shanghai, and
Wuhan, there are no areas with high-temperature vulnerability. Based on risk prevention
zoning, the areas subject to high-temperature risks are mainly located in plains, valleys,
and river basins, whereas the areas with high vulnerability in terms of social aspects are
mainly economically underdeveloped areas in densely populated regions.
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Figure 8. High-temperature risk dominant factor partition for 31 typical cities in China.

The zoning of high-temperature cities based on the leading factors can be helpful in
determining the mechanisms underlying high-temperature risks. Areas with significantly high
summer temperatures can be identified by examining the natural environment, whereas areas
with high vulnerability can be determined based on the distribution of vulnerable groups
and physiological or socioeconomic conditions. Regarding population exposure, vulnerable
groups can be spatially separated. Risk prevention strategies can be formulated according
to different high-temperature risk factors. For areas with a high-temperature risk, increasing
the amount of vegetation and green space can reduce temperatures; potential actions could
be to increase vegetation density along the streets or to create green roofs. Urban planning
departments should also consider methods to reduce high-temperature risks, such as the
ventilation of new buildings, and residents should be made more aware of high-temperature
risks. Regarding vulnerability, risk mitigation can be achieved by relocating vulnerable groups
or by installing air-conditioning equipment. As a reduction in population density is not
realistic, early warning systems should be considered.

4. Discussion

4.1. Analysis of High-Temperature Spatiotemporal Characteristics and Comprehensive
Risk Assessment

This paper used meteorological and socioeconomic data to analyze high-temperature
spatiotemporal characteristics and constructed a high-temperature risk assessment model. We
comprehensively evaluated urban high-temperature risks by considering high-temperature
characteristics, high-temperature risk, high-temperature vulnerability, population exposure,
and risk-prevention zoning, expanding urban high-temperature risk assessment research.
The spatiotemporal distribution characteristics and comprehensive risk assessment results
were obtained for 31 typical Chinese cities, yielding different results when compared
to Xie et al. [47] and Dong et al. [49], mainly for the following two reasons: (1) There
are differences in the models; for example, Dong et al. [49] constructed their assessment

210



Int. J. Environ. Res. Public Health 2022, 19, 4292

model based on the aspects of disaster-causing risk and the vulnerability (exposure) of the
supporting body, without considering social vulnerability. (2) There are also differences in
the evaluation index systems; according to the different models, the selected evaluation
index factors were different, but all models included factors such as the number of high-
temperature days, population exposure, and economic development status.

The selection of relevant evaluation indicators is highly subjective. In the analysis of
high urban temperatures, due to the limited amount of data, only the hottest cities in each
province were selected for analysis, instead of evaluating all cities in China. The lack of data
concerning the proportion of the population working in the primary industries of Lhasa,
Jiuquan, and Turpan, as well as data concerning the local financial education expenditure,
social security, and the employment expenditure in Pu’er, may have had a certain impact
on evaluation results.

4.2. Spatial and Temporal Distribution Characteristics of High Temperatures in Typical
Chinese Cities

The analysis of the high-temperature characteristics of Chinese cities based on in-
terprovincial units is one of the key contributions of this paper. The spatial distribution
characteristics of 31 typical cities in China were explained according to data from between
1986 and 2015. Over the past 30 years, the number of days with high temperatures gradually
increased in nine cities, and the average number of high-temperature days in most cities
increased by 5.44 days within 15 years. The increasing number of high-temperature days is
the most obvious manifestation of climate warming.

4.3. High-Temperature Risk Assessment and Risk-Prevention Zoning in Typical Chinese Cities

A comprehensive risk assessment of high temperatures in Chinese cities, based on
interprovincial units, is another key part of this paper. On the basis of the natural disaster
risk evaluation framework, a high-temperature risk assessment framework based on “high
temperature risk–social vulnerability–population exposure” was constructed. Quantitative
analysis was carried out based on the spatiotemporal characteristics of high temperatures,
high-temperature risk, and high-temperature vulnerability. Finally, comprehensive evalua-
tions and risk-prevention zoning were carried out for urban areas with high temperatures
according to the following three aspects: the duration of high-temperature events, the
severity of high-temperature events, and the extreme high-temperature risk based on
weather characteristics. Vulnerability was estimated using the high-temperature risk and
social vulnerability. Finally, by combining the high-temperature risk, high-temperature
vulnerability, and population exposure, the high-temperature risk levels of the 31 typical
cities were obtained. Generally, cities with high risk levels also showed high vulnerability
levels; this was true for cities such as Turpan, Nanping, Ganzhou, and Baise.

Generally, areas with high risk levels, social vulnerability, and large populations being
exposed to high temperatures are located in plains, valleys, and river basins; they are largely
economically underdeveloped and densely populated areas. For high-temperature areas,
increasing the vegetation density and creating green rooftops can be effective measures.
Risk mitigation can be achieved by resettling vulnerable people. Regarding population
exposure, early warning systems and evacuation strategies should be taken into consid-
eration. These results can provide a realistic basis for decision making for meteorological
departments and disaster prevention and mitigation departments; they have a certain
guiding significance for understanding the regional high-temperature disaster risk and the
vulnerability of disaster-bearing bodies, and they contribute to regional high-temperature
risk management, high-temperature risk avoidance, and risk control.

5. Conclusions

Due to global climate change, extremely hot weather conditions are becoming frequent.
Based on the provincial unit, the characteristics of high temperature in Chinese cities are
analyzed. The results show that over the past 30 years, most cities have experienced
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5–8 significant oscillation periods in terms of the number of high-temperature days, and
the number of high-temperature days in nine cities, including Tianjin, Shanghai, and
Chongqing, shows a significant positive time correlation. A comparative analysis of
two 15-year intervals shows that in 87% of cities, from 2001 to 2015, the average number of
high-temperature days per year increased by 5.44 days compared with 1986–2000.

By conducting a comprehensive assessment of the high-temperature risks, it was
observed that the areas with the greatest high-temperature disaster risk in China are mainly
concentrated in the central urban areas of plains, basins, and river basins. These areas
have low social vulnerability due to the development of cities, but, similarly, the urban
high-temperature risk and the exposure of the population to high temperatures are much
higher than they are for cities in the western regions; thus, these cities have a significant
high-temperature disaster risk.

The results of risk-factor zoning show that the areas with the greatest high-temperature
risk are mainly plains, basins, and river basins, and the areas with the highest social
vulnerability mainly include economically underdeveloped areas and areas where socially
vulnerable people gather. The areas where a large proportion of the population is exposed
to high temperatures consist mainly of densely populated areas.
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Appendix A PCA Analysis and SVI Calculation

We used the SPSS software platform to perform a principal component analysis of the
standardized indicators and to calculate the social vulnerability of each city. The original
index must pass the KMO test, which is a prerequisite of using the principal component
analysis method. According to the standard provided by the statistician Kaiser, a KMO
value of less than 0.6 means that the data are not suitable for factor analysis. KMO = 0.706
in this paper, so the data meet the requirements of principal component analysis. The
orthogonal rotation method with maximum variance was used to make the coefficients in
the factor load matrix more significant, and the initial factor load matrix can be rotated so
that the relationships between the factors and the original variables can be redistributed
and the correlation coefficient can be restricted to a range from 0 to 1.

The principal component analysis of the standardized data was carried out using the
SPSS software platform, and four principal components—the characteristic values of each
principal component, the contribution rate of each principal component, and the score
coefficient matrix of each component—were obtained (Tables A1 and A2). Four principal
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components were obtained from the 13 variables in the social vulnerability index system,
and the cumulative contribution rate was 83.66%.

Table A1. Time series analysis of high-temperature days.

Eigenvalue Contribution Rate Cumulative Contribution Rate

4.875 37.500 37.500
3.474 26.724 64.224
1.270 9.769 73.993
1.257 9.671 83.664

Table A2. Component function matrix.

Components of Component Function Matrix

X Z1 Z2 Z3 Z4
X11 0.015 −0.073 0.623 −0.208
X12 −0.140 0.313 −0.146 0.049
X13 −0.083 −0.008 0.017 0.767
X14 0.199 0.010 −0.066 −0.107
X15 0.002 0.240 −0.040 −0.028
X16 −0.045 0.283 0.008 −0.067
X21 −0.109 0.302 0.200 0.043
X22 −0.076 0.068 0.576 0.262
X23 0.198 0.038 −0.056 −0.231
X24 0.188 −0.130 0.109 0.108
X25 0.212 −0.015 −0.014 −0.112
X26 −0.210 0.203 0.037 −0.286
X27 0.229 −0.066 −0.034 −0.045

To calculate social vulnerability, we first calculated the principal component score
function of each typical city according to the obtained component score coefficient matrix:

Fi = ∑ Zij × X (A1)

where X represents the standardized numerical value of each index, and Zij represents
the corresponding component score of the index. Then, the social vulnerability value of
each typical city was calculated using the contribution rate of each principal component
as follows.

F =
37.5

83.664
F1 +

26.724
83.664

F1 +
9.769
83.664

F1 +
9.671
83.664

F1 (A2)

Here, F represents social vulnerability, and F1, F2, F3, and F4 represent the scores of
each principal component, respectively.
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Abstract: The booming population and accelerating urbanization in the Huaihe River Basin have
sped up the land use transformation and the cultivated land fragmentation (CLF), seriously impeded
the advancement of agricultural modernization, and threatened regional stability and national food
security as well. The analysis of CLF degree and its spatiotemporal distribution characteristics, along
with the influencing factors in the Huaihe River Basin, is of great significance for promoting the
intensive and efficient utilization of cultivated land resources and maintaining food security. Previous
studies lack the measurement and cause analysis of CLF in Huaihe River Basin. To bridge the gap,
this study introduces Fragstats4.2 and ArcGIS10.3 to analyze the spatiotemporal characteristics of
CLF in county units in the Huaihe River Basin from 2000 to 2018 through the Lorentz curve, entropy
method, and spatial auto-correlation method while the causes of the spatiotemporal differentiation
of CLF in the basin were explored with the help of a geographic detector. The results show that
the spatial distribution of cultivated land in the Huaihe River Basin is relatively balanced, and the
Gini coefficients of cultivated land from 2000 to 2018 were 0.105, 0.108, and 0.113, respectively. More
than 56% of the counties in the basin have a location entropy greater than 1. the percentage of
landscape, area-weighted mean patch area, patch cohesion index, and aggregation index decrease
year by year while the patch density and splitting index show an upward trend. The landscape
pattern of cultivated land is highly complex, and the overall fragmentation degree is increasing. The
county distribution pattern of the CLF degree with random and agglomeration is generally stable.
The spatiotemporal differentiation of CLF in the Huaihe River Basin is affected by multiple factors,
among which the influences of the normalized difference vegetation index, per capita cultivated land
area, and intensity of human activity obviously stronger than other factors, and the contribution rate
of the factors reached more than 0.4. The interaction effect among the factors is stronger than that of
single factor, with dual-factor enhancement and nonlinear enhancement dominating. The results of
this study have important implications for optimizing the agricultural structure in the Huaihe River
Basin and alleviating the CLF in important grain production areas.

Keywords: cultivated land fragmentation; landscape pattern index; spatial autocorrelation; geo-
graphic detector; Huaihe River Basin; China

1. Introduction

Serving as the fundamental resource for human survival and society development [1],
cultivated land performs multiple functions, such as production and living, and plays
an important role in maintaining ecological security and food security and promoting
social and economic stability [2,3]. Since the 21st century, the disordered expansion of

Int. J. Environ. Res. Public Health 2022, 19, 138. https://doi.org/10.3390/ijerph19010138 https://www.mdpi.com/journal/ijerph
217



Int. J. Environ. Res. Public Health 2022, 19, 138

urban construction land [4,5], and the intensification of man-land contradiction brought
about by the rapid development of social economy have forced land use changes and the
intensification of cultivated land fragmentation (CLF) [6]. Cultivated land resources in
China are facing serious threats, which, to a certain extent, hinder the development process
of agricultural modernization and large-scale development [7], reduce the agricultural
production efficiency [8], and threaten national food security and social stability. As an
important grain production base in China, the Huaihe River Basin covers an area of only
2.9% of China’s land area, but its cultivated land area accounts for 12% of the country’s
total [9]. In recent years, the degree of CLF in the basin has been deepened, and the food
security has been threatened. Therefore, scientific measurement of the level and causes of
CLF in the Huaihe River Basin has become a key to improve the efficiency of cultivated
land use and to ensure regional food security.

CLF refers to the difficulty of concentrated and contiguous operation of cultivated
land under the interference of human or natural factors, showing the state of interpolation,
and scattered and disorderly utilization [1,2]. Corresponding to the scale operation of
cultivated land, CLF not only features Chinese traditional agricultural production, but also
exhibits one of the most distinctive characteristics of agricultural landscapes globally [10].
CLF can lead to an increase in the area of field cans and ditches, which directly results
in the loss and waste of cultivated land resources [11]. A survey showed that cultivated
land wasted by fragmentation in China accounts for about 19% of the net cultivated
land areas [12], resulting in serious land waste. Simultaneously, some researchers have
observed the increase of food production costs [13], and a reduction of productivity [14–16]
and grain production as fragmentation increases. Moreover, ecological consequences
invoked by fragmentation also include biodiversity loss, declined agricultural efficiency,
and local micro-climate change, which will undoubtedly lessen the agricultural ecosystem
provisioning service [17], further holding up China’s agricultural modernization. Currently,
research touching on CLF has achieved fruitful results owing to the hard work of numerous
scholars [18–20]. Current research on CLF mainly focuses on three aspects: the evaluation
of CLF, the causes of the spatial differentiation of CLF, and the impact of CLF.

Pieces of evidence from previous literature have proved that landscape metrics can
effectively externalize agricultural fragmentation [21], and thus have been widely acknowl-
edged and utilized by academia [22]. Currently, related research on the evaluation of CLF
most adopt the landscape pattern index to characterize the degree of CLF. However, the
processing of the landscape pattern index differs. Most scholars prefer methods, such as the
moving window [23], principal component analysis [17], and multiple linear regression [24],
to comprehensively deal with the landscape pattern index. Nevertheless, in previous stud-
ies on CLF evaluation, the multi-collinearity among them was seldom considered in the
selection of the landscape pattern index, which had a certain impact on the accuracy of the
evaluation results. In the study of the causes of CLF, the impacts of social and economic
factors, such as the urbanization rate, population density, land use degree, road traffic, and
land property rights, and natural factors, such as altitude, slope, annual precipitation, and
water network density, on CLF were mainly explored. Scholars have used different research
methods and focused on different directions. Most of them used geographically weighted
regression models to identify the influencing factors of CLF, focusing on both natural and
socioeconomic factors [24–29]. According to the results of scholars’ studies, the influencing
factors of CLF in different study areas are various, with some scholars considering soil
quality diversity as the most important influencing factor of CLF [25], while others believe
that socioeconomic factors play a more important role [26]. However, in the analysis of the
causes of CLF, only the macro-qualitative analysis of the influencing factors of CLF was
carried out, while the influence of each factor was not specifically quantified. Moreover,
only the individual effects of each factor have been analyzed, but the interaction between
the influencing factors has not been explored yet.

A review of previous studies found that a wide range of research areas of CLF tend
to use qualitative analysis, and the quantitative analysis research mostly takes provinces
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or districts as the research object, but there is a lack of CLF measurement and influencing
factors detection research on the watershed scale. It is necessary to analyze important
grain-producing areas of the CLF mechanism from the perspective of the basin, which will
provide a reference for ensuring food security and sustainable utilization of cultivated land
resources. This study focuses on the following three aspects:

(1) The degree of CLF and the balance of the spatiotemporal distribution of cultivated
land resources in the Huaihe River Basin from 2000 to 2018 were measured by the
entropy method and Lorentz curve method.

(2) The spatial auto-correlation method was introduced to detect the spatial clustering
characteristics of high and low values of CLF change in county units.

(3) In cooperation with the geographical detector, the influencing factors of spatiotempo-
ral differentiation of CLF were explored.

The purpose of this study is to improve the agricultural modernization level and
ensure food security of the Huaihe River Basin, and to provide a scientific reference for
evaluating the CLF from the perspective of the basin and studying the driving mechanism
of the CLF in important grain production areas.

2. Materials and Methods

2.1. Study Area

Covering a total watershed area of 270,000 km2, the Huaihe River Basin is located in
eastern China, between the Yangtze River and the Yellow River (Figure 1). It is divided into
the Huaihe River and the Yishusi River with the abandoned Yellow River as the boundary.
The Huaihe River enjoys a pleasant climate, with the south a subtropical zone and the
north a warm temperate zone. The overall terrain of the basin is flat, dominated by plain,
with extensive cultivated land. The total cultivated land area is 12.7 million hectares,
accounting for 11.7% of China’s total cultivated land area [30]. The grain output reaches
1/6 of the total grain output in China, making it an important grain production base in
China. In recent years, with rapid development of the social economy and the acceleration
of urbanization and industrialization in the Huaihe River Basin, the problem of CLF has
become increasingly severe. The increase of CLF not only reduces the technical efficiency
of cultivated land utilization [31], but also hinders the improvement of the scale efficiency
of agricultural production and the process of agricultural modernization [14], which exerts
a certain impact on the utilization of cultivated land resources and food production capacity
in the Huaihe River Basin [32], threatening the food security and regional stability of the
basin. According to the study of Zhou et al. [33], this study identified the Huaihe River
Basin as the four provinces of Anhui, Henan, Shandong, and Jiangsu. A total of 218 counties
in the four provinces were selected as the research objects, and the degree of CLF and its
causes in the basin were analyzed from the county unit scale to provide ideas for improving
the grain production efficiency in the Huaihe River Basin and solidifying its status as
a grain production base.

2.2. Data Sources

The remote sensing monitoring data of land use in 2000, 2010, and 2018, annual average
precipitation, road network, rivers, and normalized difference vegetation index (NDVI)
of each county used in this study are all from the Resource and Environment Science and
Data Center, Chinese Academy of Sciences (http://www.resdc.cn/ (accessed on 10 May
2021)). Among them, land use data is generated through manual visual interpretation, with
a spatial resolution of 1 km and a comprehensive accuracy of over 90%. According to the
national land use classification system, the land use types were divided into seven first-level
types: cultivated land, forest land, grassland, water area, urban and rural construction land,
unused land, and wetland [34]. Altitude data were obtained using 90 m resolution ASTERG
DEM data from Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 15 May
2021)). The population density data is from the WorldPop (https://www.worldpop.org/
(accessed on 11 July 2021)), with a resolution of 100 m.
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Figure 1. Location of the study area.

2.3. Method

To explore the CLF and its influencing factors in the Huaihe River Basin, this study first
measured the spatiotemporal distribution characteristics of cultivated land in the Huaihe River
Basin with the Lorentz curve, and then the degree of cultivated land fragmentation based on
the entropy weight method was measured, and the spatial agglomeration characteristics of CLF
with the spatial autocorrelation tool were analyzed. Eventually, the primary influencing factors
of CLF in Huaihe River Basin were explored by the geographical detector (Figure 2).

Figure 2. Conceptual framework for measuring cultivated land fragmentation and detecting its
influencing factors.

2.3.1. Lorentz Curve

The Lorentz curve, proposed by Lorentz, an American statistician, is widely applied to
reflect the fairness of income distribution in a country or region. In recent years, more and
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more studies have introduced the Lorentz curve into studies on cultivated land resource
change, food security, land use structure analysis, and land use transition, etc. [35–37].
In this study, the Lorentz curve was introduced to identify the concentration degree of
cultivated land spatial distribution in the Huaihe River Basin from 2000 to 2018, and on
this basis, the difference degree of cultivated land distribution in different county units
was further described quantitatively through the calculation of Gini coefficients, providing
a basis for the measurement of CLF in the Basin. The calculation equation is as follows:

Q =
P1/P2

P3/P4
, (1)

where Q is the location entropy of cultivated land in the study area, also known as the
specialization rate; P1 is the cultivated land area of a county in the study area; P2 is the
total area of cultivated land in the study area; P3 is the total land area of a county; and
P4 is the total land area of the study area. The Q value can reflect the balance degree of
cultivated land distribution in the basin. When Q < 1, it indicates that the proportion of
cultivated land area in the county is less than that of the total land area in the study area,
namely, the specialization degree is low, and the county is at a disadvantage. Otherwise,
when Q > 1, it indicates that cultivated land has a high degree of specialization and is
a regional advantage.

According to Equation (1), the location entropy Q of cultivated land is calculated, and
the Q value is sorted from small to large. The cumulative percentage of cultivated land
area and land area in each county is calculated, and then the cumulative percentage of
cultivated land area in each county is used as the horizontal coordinate and the cumulative
percentage of cultivated land area is plotted on the ordinate to draw the Lorentz curve.

Gini coefficient is used to describe the uniformity of the spatial distribution of research
objects in the research area and to quantify the Lorentz curve. The calculation equation is
as follows :

G = ∑m−1
i=1 (PiQi+1 − Pi+1Qi), (2)

where G is the Gini coefficient; Pi represents the cumulative percentage of a county’s land
area in the total land area of the study area; and Qi represents the cumulative percentage of
cultivated land area of a county in the total cultivated land area of the study area. With
reference to related research [38], the larger G is, the more uneven the distribution of
cultivated land in the study area is. When G < 0.2, the distribution is uniform; 0.2 < G < 0.3,
the distribution is relatively uniform; 0.3 < G < 0.4, the distribution is basically reasonable;
0.4 < G < 0.6, the distribution difference is large; and G > 0.6, the distribution difference is
over the top.

2.3.2. Cultivated Land Fragmentation Index Selection

The degree of CLF is affected by different factors, such as the shape, size, and connec-
tivity of cultivated land blocks, which cannot be simply described by a single dimension
index. With reference to previous studies [1,24,39] and the actual situation of the Huaihe
River Basin, 10 landscape indicators were selected from three aspects: size, edge-shape, and
aggregation, to characterize the degree of CLF in the Huaihe River Basin. They are the per-
centage of landscape (PLAND), patch density (PD), edge density (ED), area-weighted mean
patch area (AREA_AM), area-weighted mean shape index (SHAPE_AM), area-weighted
mean patch fractal dimension (FRAC_AM), interspersion and juxtaposition index (IJI),
patch cohesion index (COHESION), splitting index (SPLIT), and aggregation index (AI).

To reduce redundant indicators and improve the accuracy of the evaluation model,
SPSS22 software (IBM, Armonk, NY, USA) was applied to test the multi-collinearity of
the evaluation indicators to determine whether a variable should be excluded and the
reciprocal of tolerance, namely the variance inflation factor (VIF), can be used for testing.
When VIF > 10, it indicates that the multi-collinearity of this variable is very serious, which
will affect the parameter estimation of the evaluation model and should be considered to
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remove this variable [40]. The multi-collinearity diagnosis results of various landscape
metrics are shown in Table 1.

Table 1. Multi-collinearity diagnosis table of landscape metrics.

Metrics PLAND PD ED AREA_AM SHAPE_AM

VIF 7.473 4.433 5.750 7.131 18.309
Metrics FRAC_AM IJI COHESION SPLIT AI

VIF 11.263 1.223 5.409 1.823 9.625

According to the test results above, the area-weighted mean shape index (SHAPE_AM)
and area-weighted fractal dimension (FRAC_AM) with VIF > 10 are finally removed to
maintain the accuracy of the evaluation results. The calculation equation and ecological
significance of each landscape metric are shown in Table 2 [41,42].

Table 2. Cultivated land fragmentation index and its description.

Aspects Landscape Pattern Index Calculation Formula Description of Index

Size

Percentage of landscape
(PLAND)

PLAND =
∑n

j=1 aij
LA

where aij is the area of patch ij; LA is the total landscape area
of the study area.

PLAND indicates the area of a certain
patch type accounts for the percentage of

the total landscape area, and the value
tends to be 0. The scarcer the patch type,

the more fragmented the
landscape pattern.

Patch density (PD)

PD =
m
∑

i=1
Ni/LA

where m is the total number of landscape types; LA is the total
landscape area of the study area; Ni is the patch number of

landscape i.

PD indicates the degree of influence of the
patch boundary of the landscape type on
the entire landscape. The larger the value,
the more concentrated the patch type is

distributed in the landscape.

Edge—shape

Edge density (ED)
ED =

m
∑

i=1

m
∑

j=1
Pij/LA

where Pij is the boundary length between type i and type j
landscape element patches.

ED refers to the degree of landscape type
segmentation by element boundary, which

is a direct reflection of landscape
fragmentation. The larger the value, the

more fragmented the landscape pattern of
this type of element.

Area-weighted mean patch
area (AREA_AM)

MPS = LA/NP
where LA is the total landscape area of the study area; NP is

the number of patches in the landscape.

AREA_AM reflects the degree of
fragmentation of a certain type of

landscape in landscape structure analysis.
The higher the value, the lower the degree

of fragmentation.

Aggregation

Interspersion and
juxtaposition index (IJI)

I J I =
−∑m

i=1 ∑m
j=i+1

[(
Eij
E

)
ln

(
Eij
E

)]

ln[0.5m(m−1)] × 100
where Eij is the adjacent edge length between the type i and

the type j of feature patch; m is the total number of landscape
types; E is the edge length of the whole landscape.

IJI refers to the adjacent probability
between certain patch element and other
patches. The higher the value, the more
adjacent other patch types, and the more

fragmented the landscape of this type.

Patch cohesion index
(COHESION)

COHESION =

[
1 − ∑m

i=1 ∑n
j=1 Pij

∑m
i=1 ∑n

j=1 Pij
√

aij

]
×
[
1 − 1√

Z

]−1 × 100

where Pij represents the perimeter of patch i of landscape type
j; aij represents the area of patch i of landscape type j; Z

represents the number of patches in the landscape.

COHESION indicates the degree of
agglomeration between different types of

patches, the larger the value, the higher the
degree of combination between dominant
types of patches, and the lower the degree
of fragmentation of this type of landscape.

Splitting index (SPLIT)

SPLIT = LA2

∑m
i=1 ∑n

j=1 a2
ij

where LA is the total landscape area of the study area; aij is
the area of patch j of landscape type i; n is the number of

patches of landscape type.

SPLIT refers to the degree of separation of
landscape element. The larger the value is,
the more dispersed among the same patch

types and the higher the degree
of fragmentation.

Aggregation index (AI)
AI =

[
gij

max→gij

]
where gij is the number of similar adjacent patches of the

landscape patch type

AI refers to the degree of agglomeration
between patches of a certain type of

landscape element. The larger the value,
the more agglomerated patches of this type

of element and the lower the degree
of fragmentation.

2.3.3. Measurement of Cultivated Land Fragmentation

To reflect the degree of CLF in the basin from 2000 to 2018 more intuitively, the entropy
weight method is introduced to determine the weight of the selected landscape indicators
on the degree of CLF in the basin. The specific steps are as follows [43]:

(1) Data standardization
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To avoid the inconsistency of the indicator units from affecting the calculation weight,
the range method is adopted to standardize the data and the indicator data is converted to
a range between 0 and 1. The larger the positive indicator value, the closer the evaluation
target value is to the ideal value. The larger the negative indicator value, the more the
evaluation target deviates from the ideal value.

Positive indicator:

y′ij =
yij − min

{
yij
}

max
{

yij
}− min

{
yij
} (3)

Negative indicator:

y′ij =
max

{
yij
}− yij

max
{

yij
}− min

{
yij
} (4)

where y′ij represents the standardized value of indicator j in the year i; yij represents the
actual value of indicator j in the year i; and max

{
yij
}

and min
{

yij
}

represent the maximum
and minimum values of the indicator j, respectively.

(2) Calculation of the standardized value Pij of indicator j in the year i:

Pij = y′ij/∑n
i=1 y′ij (5)

(3) Calculation of the entropy value ej of indicator j:

ej = −k
n

∑
i=1

Pij = − 1
ln m

n

∑
i=1

Pijln Pij (6)

where k represents the proportionality coefficient, k = 1/ln m, and m is the number of
research samples.

(4) Calculation of weight Wj of indicator j:

Wj =
(
1 − ej

)
/

n

∑
j=1

(
1 − ej

)
(7)

(5) Calculation of composite scores:

Z =
m

∑
j=1

(
Wj·Pij

)
(8)

where Z is the composite score of the CLF index, Wj is the weight coefficient of indicator j,
and Pij is the standardized value of indicator j.

2.3.4. Spatial Autocorrelation

Spatial autocorrelation is often used to detect the potential interdependence between
geographic data within a region [44]. With the help of Geoda1.12, this study uses the local
spatial auto-correlation method to detect the random mode, discrete mode, and clustering
characteristics of the spatial distribution of CLF in the Huaihe River Basin, and performs
visual analysis. According to the spatial location of county units and the change of the CLF
degree in the Huaihe River Basin, Local Moran’s I statistic was introduced to measure the
spatial autocorrelation of CLF degree change in the Huaihe River Basin from 2000 to 2018.
The Local Moran’s I can be calculated using Equation (9):

Local Moran′s I =
(xi − x)

S2

m

∑
j=1

wij
(
xj − x

)
(9)
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S2 =
1
m

m

∑
i=1

(xi − x)2 (10)

where m is the number of county units; xi and xj are the measured values of spatial unit
attributes, respectively; x is the mean value of the measured value; and wij is the spatial
weight matrix, and S2 is its variance.

2.3.5. Geographical Detector

Geographical detector is a statistical method to detect the spatial differentiation char-
acteristics of geographical phenomena and reveal their influence [45], which has been
widely applied in multiple disciplines (e.g., environmental science and resource utilization,
regional economy, physical geography, tourism, agricultural basic science, etc.). It consists
of factor detection, interactive detection, ecological detection, and risk detection. This study
mainly uses factor detection and interactive detection methods to distinguish the influence
of the driving factors of the spatial differentiation of CLF in the Huaihe River Basin, and
reveals the correlation between the driving factors. The calculation is as follows:

q = 1 − 1
Nσ2

L

∑
i=1

Niσ
2
i (11)

where q is the influence of the driving factor, q∈[0,1]; N is the number of samples in the
study area, and i is the partition (i = 1,2, . . . , L); and σ2 and σ2

i are the variances of indicators
in the study area and the variances of partition i, respectively. The size of q reflects the
degree of spatial differentiation of the indicators. The larger the q value, the stronger the
explanatory ability of each factor to the dependent variable, and vice versa.

Cultivated land is a complex of natural environment and socioeconomic conditions
composed of topography, soil, climate, hydrology, vegetation, and human socioeconomic
activities, which is affected by multi-dimensional factors. Considering previous stud-
ies [1,14,24] and data availability, this study selected the following indicators from two
aspects of natural resource endowment and socioeconomic development as the influencing
factors for the spatial distribution of CLF in the Huaihe River Basin. Among them, natural
factors are the basis for the formation of the spatial pattern of cultivated land resources
in the Huaihe River Basin. Altitude (X1) and slope (X2) directly affect the distribution
and utilization of cultivated land. The distance to the river (X3), NDVI (X4), and average
annual precipitation (X5) provide important conditions for the distribution and develop-
ment and utilization of cultivated land resources. Socioeconomic factors mainly reflect the
interference degree of different human activities on the cultivated land landscape pattern,
including per capita cultivated land area (X6), intensity of human activities (X7), population
density (X8), and distance from road network (X9). The selected influencing factor data
is processed by the Arc Toolbox/Spatial Analyst Tools/Reclass and Arc Toolbox/Spatial
Analyst Tools/Zonal/Zonal Statistics tools of ArcGIS10.3 (Esri, Redlands, CA, USA) for
discretization and classification. The spatialization and quantification of the influencing
factors of county units within the basin was realized, and the specific classification methods
and descriptions are shown in Table 3.
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Table 3. Description of the driving factors classification of the geographic detector.

Driving Factors Classification Method Level Level Description

Altitude NaturalBreaks 1–6 Calculation with Arc Toolbox/Spatial Analyst
Tools/Reclass of ArcGIS10.3

Slope NaturalBreaks 1–6 1. 0~5; 2. 6~10; 3. 11~15; 4. 16~20; 5. 21~25; 6. >25

Distance to river NaturalBreaks 1–5 Calculation with Arc Toolbox/Spatial Analyst
Tools/Reclass of ArcGIS10.3

NDVI Zhang et al. [46] 1–5 1. ≤0.2; 2. 0.2~0.4; 3. 0.4~0.6; 4. 0.6~0.8; 5. 0.8~1

Average annual precipitation NaturalBreaks 1–5 Calculation with Arc Toolbox/Spatial Analyst
Tools/Reclass of ArcGIS10.3

Per capita cultivated land area NaturalBreaks 1–5 Calculation with Arc Toolbox/Spatial Analyst
Tools/Reclass of ArcGIS10.3

Intensity of human activities Li et al. [47] 0–10

0. sparse woodland, shrub, sparse grass, barren
land; 1. river, reservoir,

ponds, tidal flat, natural and plantation forest land,
Moderate grass; 2. other woodland, dense grass; 7.
cultivated land; 8. rural settlements; 9. industrial

land; 10. Urban built-up

Population density Ge et al. [48] 1–5 1. 0~60; 2. 61~150; 3. 151~300; 4. 301~500; 5. >500

Distance from road network NaturalBreaks 1–5 Calculation with Arc Toolbox/Spatial Analyst
Tools/Reclass of ArcGIS10.3

3. Results

3.1. Spatiotemporal Distribution Characteristics of Cultivated Land
3.1.1. General Pattern of the Spatiotemporal Distribution

According to the statistics of land use data in the study area, cultivated land, forest
land, grass land, and unused land decreased from 2000 to 2018. The most obvious change
was in grass land, with a 22.08% reduction. Construction land and water area continued
to increase, with increases of 27.96% and 12.17%, respectively. Specifically, there were
183,751 km2 of cultivated land in the Huaihe River Basin in 2018, of which the dry land area
was 134,591 km2, accounting for 73.25% of the total cultivated land area, and the paddy
land area was 49,160 km2, accounting for 26.75% of the total cultivated land area. From the
perspective of time scale, the cultivated land area decreased by 2363 km2 from 2000 to 2010,
and 6524 km2 from 2010 to 2018, indicating that the cultivated land area in the Huaihe
River Basin decreased year by year and the reduction amplitude increased. According to
the spatial distribution of land use in the study area (Figure 3), the spatial distribution of
cultivated land in the Huaihe River Basin is relatively balanced, and the spatial distribution
boundary between dry land and paddy field is clear. Dry land is mainly distributed in the
area north of the Huaihe River while paddy field is mostly distributed in the area south
of the Huaihe River, and a small amount is also distributed in Xuzhou, Suqian, and other
cities north of the Huaihe River.
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Figure 3. Spatial distribution of land use in the Huaihe River Basin from 2000 to 2018. Notes: (a) the
spatial distribution of land use in 2000; (b) the spatial distribution of land use in 2010; (c) the spatial
distribution of land use in 2018.

3.1.2. Balance of Spatiotemporal Distribution

To further explore the balance of the spatiotemporal distribution of cultivated land
resources in the Huaihe River Basin during the study period, Equation (1) was used to
calculate the location entropy Q of the cultivated area of each county in the basin, and
then plot the cultivated land Lorentz curve in the Huaihe River Basin in 2000, 2010, and
2018, respectively (Figure 4), and the Gini coefficient of the cultivated land according to
Equation (2) was calculated. The results showed that the Lorentz curve of cultivated land
in the Huaihe River Basin was close to the absolute average line from 2000 to 2018, and
the variation range was small, indicating that the spatial distribution of cultivated land
resources in the basin was relatively scattered during the study period. The Gini coefficients
of cultivated land in 2000, 2010, and 2018 were 0.105, 0.108, and 0.113, respectively, increas-
ing year by year but less than 0.2, illustrating that the spatial distribution of cultivated land
in the Huaihe River Basin was relatively uniform during the study period. According to
the spatial distribution of the cultivated land locational entropy in the Huaihe River Basin
from 2000 to 2018 (Figure 5), the locational entropy of cultivated land in more than 56% of
the counties in the basin was greater than 1, indicating a high degree of specialization of
the cultivated land in the basin. Simultaneously, the location entropy shows a coexistence
of an increase and decrease, but the increasing trend dominated, indicating that the degree
of cultivated land specialization in Huaihe River Basin increased. Specifically, the areas
with a low location entropy of cultivated land were concentrated in Lu’an, Xinyang, and
Zibo—Xuzhou—Huai’an, revealing that these areas are inferior areas of cultivated land
with low specialization, which is possibly attributed to the rapid economic development
and excessive occupation of cultivated land by urban expansion in some areas. From
2000 to 2018, the location entropy of some regions decreased significantly, most notably
in Zhengzhou, Kaifeng, and Pingdingshan, indicating that the level of cultivated land
agglomeration and specialization showed a conspicuous decrease. The location entropy of
cultivated land in Zhumadian, Bozhou, Bengbu, and other cities increased significantly,
and the agglomeration trend was constantly enhanced.
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Figure 4. The Lorentz curve of cultivated land in the Huaihe River Basin from 2000 to 2018. Notes:
(a) the Lorentz curve of cultivated land in 2000; (b) the Lorentz curve of cultivated land in 2010;
(c) the Lorentz curve of cultivated land in 2018.

Figure 5. Spatial distribution of the cultivated land location entropy in the Huaihe River Basin from
2000 to 2018. Notes: (a) the spatial distribution of cultivated land location entropy in 2000; (b) the
spatial distribution of cultivated land location entropy in 2010; (c) the spatial distribution of cultivated
land location entropy in 2018.

3.2. Spatiotemporal Distribution of Cultivated Land Fragmentation
3.2.1. Spatiotemporal Distribution of the Cultivated Land Fragmentation Index

According to the measurement results of the CLF index in the Huaihe River Basin
from 2000 to 2018 (Table 4), four negative indicators that characterize the CLF, namely
PLAND, AREA_AM, COHESION, and AI, all show a decreasing trend year by year, which
to some extent reflect that CLF increased in the Huaihe River Basin during the study
period. Whereas PD and SPLIT of the positive indicators increased year by year, implying
that the CLF in the Huaihe River Basin deteriorated. Among them, PLAND continued
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to decrease, and the decreasing amplitude grew, indicating that the composition of the
cultivated land landscape in the basin increased and diversified. ED first increased and
then decreased, indicating that the edge shape of the cultivated land landscape elements in
the basin changed from irregular to regular, and the area of cultivated land patches also
fluctuated significantly. COHESION decreased year by year, illustrating that the physical
connection between cultivated land patches in the basin continued to decrease, and the
phenomenon of cultivated land patch dispersion and fragmentation was severe. SPLIT
kept on increasing and the increase rate gradually enlarged, demonstrating that cultivated
land patches tended to be scattered, and the cultivated land landscape became more and
more fragmented in the basin during the study period.

Table 4. Multi-collinearity diagnosis table of landscape metrics.

Landscape
Index

PLAND
(#/100 ha)

PD
(m/km2)

ED
AREA_AM

(ha)
IJI
(%)

COHESION SPLIT
AI
(%)

2000 69.236 0.009 5.350 83,991.047 49.444 97.346 10.220 76.025
2010 67.495 0.010 5.410 82,716.491 48.591 96.792 12.562 75.257
2018 63.603 0.011 5.357 79,706.491 46.155 93.374 17.511 73.439

The spatial distribution of the cultivated land landscape indexes PLAND and COHE-
SION in the Huaihe River Basin differed significantly and had clear boundaries during
2000–2018 (Figures 6 and 7). The high value areas were concentrated in some counties
of Henan and Anhui in the middle and west of the basin while the low value areas were
only distributed in Zaozhuang, Xinyang, and Lu’an. During the study period, a large
number of PLAND areas changed from high to low values, with significant changes in
most counties in Huaibei, Zhengzhou, Heze, and other cities, which is closely related to
the decreasing amount of cultivated land in these areas. The transition from a middle- and
low-value area to a high-value area was rare, and the change was more obvious in some
counties of Suzhou and Linyi, principally because of the remarkable achievement of land
development and reclamation in these counties and the obvious increase of cultivated land
patches. PD showed little difference in the spatial distribution (Figure 8). Low-value areas
were widely distributed, and a small number of medium-value areas and high-value areas
were scattered in some counties of Lu’an, Xinyang, Zibo, and other cities. During the study
period, the spatial distribution did not change much. Only a very small number of counties
in Zhengzhou, Huainan, Linyi, and other cities changed from low-value areas to medium-
to high-value areas. The high-value areas of ED were concentrated in the northeast of the
basin while the low-value areas were concentrated in Yancheng and Nantong in the east of
the basin and some southern counties, such as Lu’an (Figure 9). The spatial distribution
characteristics of AREA_AM and IJI were relatively similar (Figures 10 and 11). During the
study period, the high-value areas of these two types were predominantly distributed in the
south of the Huaihe River, whereas the low-value areas were concentrated in the middle of
the basin. Some counties, such as Xuchang, Nanyang, and Lu’an, changed from high-value
areas of AREA_AM to low-value areas, and only a few counties like Yancheng changed
from low-value areas to high-value areas. Some counties, such as Xinyang, Huainan, and
Huaibei City, changed from high-value areas of IJI to low-value areas, and only a few
counties, such as Linyi City, changed from low-value areas to high-value areas. Low-value
areas and high-value areas of SPLIT showed wide spatial distribution differences and clear
boundaries (Figure 12). Low-value areas were concentrated in the central and eastern
counties of the basin, whereas high-value areas were scattered, with Zibo, Huai’an, and
Lu’an in the majority. During the study period, Luoyang, Xinyang, and Huai’an changed
from low-value areas to high-value areas with significant changes. The spatial distribution
of AI was balanced, with only a small number of low-value areas distributed in Lu’an
and Zibo (Figure 13), whereas high-value areas were only distributed in some counties in
Yancheng and Nantong.
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Figure 6. Spatial distribution of PLAND of cultivated land in the Huaihe River Basin from 2000
to 2018. Notes: (a) the spatial distribution of PLAND of cultivated land in 2000; (b) the spatial
distribution of PLAND of cultivated land in 2010; (c) the spatial distribution of PLAND of cultivated
land in 2018. PLAND: Percentage of landscape.

Figure 7. Spatial distribution of COHESION of cultivated land in the Huaihe River Basin from 2000
to 2018. Notes: (a) the spatial distribution of COHESION of cultivated land in 2000; (b) the spatial
distribution of COHESION of cultivated land in 2010; (c) the spatial distribution of COHESION of
cultivated land in 2018. COHESION: Patch cohesion index.
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Figure 8. Spatial distribution of PD of cultivated land in the Huaihe River Basin from 2000 to 2018.
Notes: (a) the spatial distribution of PD of cultivated land in 2000; (b) the spatial distribution of PD of
cultivated land in 2010; (c) the spatial distribution of PD of cultivated land in 2018. PD: Patch density.

Figure 9. Spatial distribution of ED of cultivated land in the Huaihe River Basin from 2000 to 2018.
Notes: (a) the spatial distribution of ED of cultivated land in 2000; (b) the spatial distribution of ED of
cultivated land in 2010; (c) the spatial distribution of ED of cultivated land in 2018. ED: Edge density.
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Figure 10. Spatial distribution of AREA_AM of cultivated land in the Huaihe River Basin from 2000
to 2018. Notes: (a) the spatial distribution of AREA_AM of cultivated land in 2000; (b) the spatial
distribution of AREA_AM of cultivated land in 2010; (c) the spatial distribution of AREA_AM of
cultivated land in 2018. AREA_AM: Area-weighted mean patch area.

Figure 11. Spatial distribution of IJI of cultivated land in the Huaihe River Basin from 2000 to 2018.
Notes: (a) the spatial distribution of IJI of cultivated land in 2000; (b) the spatial distribution of IJI of
cultivated land in 2010; (c) the spatial distribution of IJI of cultivated land in 2018. IJI: Interspersion
and juxtaposition index.
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Figure 12. Spatial distribution of SPLIT of cultivated land in the Huaihe River Basin from 2000 to
2018. Notes: (a) the spatial distribution of SPLIT of cultivated land in 2000; (b) the spatial distribution
of SPLIT of cultivated land in 2010; (c) the spatial distribution of SPLIT of cultivated land in 2018.
SPLIT: Splitting index.

Figure 13. Spatial distribution of AI of cultivated land in the Huaihe River Basin from 2000 to 2018. Notes:
(a) the spatial distribution of AI of cultivated land in 2000; (b) the spatial distribution of AI of cultivated
land in 2010; (c) the spatial distribution of AI of cultivated land in 2018. AI: Aggregation index.
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3.2.2. Spatiotemporal Distribution Characteristics of Comprehensive Index of Cultivated
Land Fragmentation

According to the entropy weight method, the spatiotemporal distribution of the
comprehensive fragmentation index of cultivated land from 2000 to 2018 was obtained
(Figure 14). Overall, the spatial heterogeneity and complexity of the cultivated land land-
scape pattern in the Huaihe River Basin was comparatively high while the spatiotemporal
differences of fragmentation varied significantly. The degree of fragmentation was high in
the north and south of the basin but low in the middle. The overall degree of CLF deepened,
but in some regions, the degree of fragmentation exhibited both increasing and decreasing
trends. In 2000, Zibo, Zaozhuang, and Lu’an were the most seriously fragmented areas,
whereas Bozhou, Huaibei, and Yancheng were the least fragmented. In 2010, areas with
severe CLF in the basin had not yet been improved, and the degree of fragmentation in
Zhengzhou, Jining, and other cities and the Bengbu-Huai’an-Taizhou line was significantly
deepened. In 2018, the overall fragmentation of the basin further deteriorated, and the frag-
mentation degree of counties in Zhengzhou, Xuzhou, Taizhou, and other cities continued
to deepen, while only some counties in Zhoukou, Shangqiu, Linyi, and other cities showed
a decrease in the fragmentation degree. Additionally, it is worth noting that from 2000 to
2018, except for Hefei and Lu’an, the degree of CLF deepened in other counties along the
Huaihe River, and the degree of CLF changed dramatically in the area of Huainan, Huai’an,
and Yancheng, with a relatively high degree of fragmentation.

Figure 14. Spatial distribution of the comprehensive fragmentation degree of cultivated land in the
Huaihe River Basin from 2000 to 2018. Notes: (a) the spatial distribution of comprehensive fragmen-
tation degree of cultivated land in 2000; (b) the spatial distribution of comprehensive fragmentation
degree of cultivated land in 2010; (c) the spatial distribution of comprehensive fragmentation degree
of cultivated land in 2018.

3.3. Correlation Analysis of Spatial Distribution of Cultivated Land Fragmentation

To further explore the spatiotemporal distribution characteristics of the comprehensive
index of CLF in the Huaihe River Basin from 2000 to 2018, Geoda 1.12 was applied in this
study to conduct a univariate local spatial auto-correlation analysis of the comprehensive
index of CLF in the basin during the study period, and a local indicators of spatial asso-
ciation (LISA) map was generated, namely, the aggregation distribution pattern of the
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comprehensive fragmentation index. In the LISA map, the comprehensive fragmentation
index of the counties in the four quadrants of high-high, low-low, low-high, and high-low
was significant at the level of 5%. To better display the comprehensive degree of fragmenta-
tion of each county in the basin, ArcGIS10.3 was used for visual analysis of changes in 2000,
2010, and 2018 (Figure 14). As shown in Figure 15, the distribution pattern of random and
agglomeration counties in the Huaihe River Basin was generally stable during the study
period. High-high areas represent the agglomeration areas of high value and high value,
which were concentrated in some counties in Linyi, Zaozhuang, Pingdingshan, and other
cities. The altitude of the counties in this region is higher than that of most counties in
the basin, indicating that altitude exerted a certain impact on CLF. Low-low areas mean
low-value and low-value agglomeration areas, which were concentrated in various cities at
the junction of Anhui and Henan, counties mainly included Zhoukou, Shangqiu, Fuyang,
Bozhou, and other cities, and the eastern part of some basin counties of Yancheng, Taizhou,
and Nantong along the coast were also distributed. The low-high area reflects that the low
value is surrounded by the high value. This type of area exhibits a small and scattered
distribution, mainly scattered in a few counties in cities, such as Xuzhou and Pingdingshan.
The high-low area indicates that the high value is surrounded by the low value. This type
covers fewer counties, which did not appear during the study periods. Such counties are
generally “outliers” and appear less frequently.

Figure 15. Local indicators of the spatial association (LISA) map of cultivated land fragmentation
in the Huaihe River Basin from 2000 to 2018. Notes: (a) LISA map of cultivated land fragmentation
in 2000; (b) LISA map of cultivated land fragmentation in 2010; (c) LISA map of cultivated land
fragmentation in 2018.

3.4. Influencing Factors of Cultivated Land Fragmentation

Based on Equation (11), the spatiotemporal distribution mechanism of CLF in 218 counties
of the Huaihe River Basin from 2000 to 2018 was explored, through which the spatiotempo-
ral differentiation of CLF in the Huaihe River Basin was influenced by natural factors and
socioeconomic factors can be observed. Additionally, the influence of different factors on
CLF varied significantly. Overall, the comprehensive influence of socioeconomic factors
on CLF in the Huaihe River Basin during the study period far exceeded that of natural
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factors. The comprehensive influence of NDVI (X4), per capita of cultivated land area
(X6), and intensity of human activities (X7) reached more than 54% of the total factor
contribution rate, which was significantly stronger than other factors (Table 5). Specifically,
during the study period, the influence of the altitude (X1) and slope (X2) on CLF exhibited
a fluctuating upward trend, revealing that the intensity of the impact of these natural
background characteristics on CLF increased. This was mainly because of the ever-growing
input of agricultural science and technology, which has enabled the natural geographical
advantages of a lower elevation and lower slope in the Huaihe River Basin weigh heavily
in accelerating the large-scale management of cultivated land in the basin. The influence
of the distance to river (X3) on CLF first increased and then decreased because with the
comprehensive promotion of irrigation projects in the Huaihe River Basin, the water con-
sumption of cultivated land was effectively guaranteed, and the dependence on important
water bodies and natural precipitation weakened. NDVI (X4) exerted a high impact on
CLF, but it showed a decreasing trend year by year, with a decrease of 25.6%, which is
closely related to the dramatic changes of vegetation cover types and land use structure
in the process of rapid urbanization. During the study period, the per capita cultivated
land area (X6) and the intensity of human activities (X7) exerted a high impact on the CLF,
and seemed to gain momentum. The factor contribution rate reached 0.4. On the one hand,
with the improvement of the socioeconomic development level in Huaihe River Basin, the rapid
population growth burdened the load of cultivated land and decreased the per capita cultivated
land area (X6) continuously, leading to widespread CLF management. On the other hand, the
intensifying human activities, such as disordered urban sprawl and irrational land development
and utilization, badly affected the cultivated land landscape pattern.

Table 5. Contribution rate of impact factors from 2000 to 2018.

Year X1 X2 X3 X4 X5 X6 X7 X8 X9

2000 0.182 0.163 0.147 0.512 0.063 0.384 0.376 0.150 0.151
2010 0.169 0.159 0.165 0.406 0.096 0.424 0.378 0.259 0.141
2018 0.186 0.169 0.141 0.381 0.143 0.408 0.433 0.237 0.144

Notes: X1: altitude; X2: slope; X3: distance to river; X4: normalized difference vegetation index (NDVI); X5:
average annual precipitation; X6: per capita cultivated land area; X7: intensity of human activities; X8: population
density; X9: distance from road network.

To more clearly identify the main influencing factors of CLF and the changes in the
intensity of interactions among the main influencing factors during the study period, we
selected only the 10 interactions with high intensity. As shown in Table 6, the influences
of each influencing factor on CLF in the Huaihe River Basin during the study period
were not independent of each other, and the influence of the. interaction among factors
was significantly stronger than that of a single factor, with dual-factor enhancement and
nonlinear enhancement representing the majority. Specifically, in 2000, the interaction
was dominated by dual-factor enhancement, and the main interaction factor intensity
reached above 0.5, with the interaction intensity of human activity (X7) and NDVI (X4) the
highest, reaching 0.677. In 2010, the interaction intensity of the main interaction factors
increased significantly, and the dual-factor enhancement dominated. The interaction
intensity between human activity intensity (X7) and per capita cultivated land area (X6)
was the highest, reaching 0.729. In 2018, the dual-factor enhancement effect weakened,
and the nonlinear enhancement gradually dominated. The interactive intensity of human
activity (X7) and per capita cultivated land area (X6) was as high as 0.722. In general, the
interaction between the intensity of human activity (X7) and other factors can better explain
the CLF in the Huaihe River Basin than the interaction among other factors, indicating that
the intensity of human activity (X7) played a major role in the process of CLF in the Huaihe
River Basin. Mainly because the level of socioeconomic development in the Huaihe River
Basin has improved, the man-land contradiction intensified, and the unreasonable human
activities, such as urban sprawl and excessive reclamation, made the interaction with other
factors more complex, further interfering with the landscape pattern of cultivated land.
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Table 6. Main interaction factors and changes.

2000 2010 2018

Interaction
Factors

Interaction
Intensity

Interaction
Factors

Interaction
Intensity

Interaction
Factors

Interaction
Intensity

X3∩X4 0.555 * X1∩X4 0.532 * X5∩X4 0.544 #

X5∩X4 0.567 * X8∩X4 0.570 * X5∩X7 0.558 #

X8∩X4 0.585 * X6∩X4 0.580 * X8∩X7 0.571 *
X8∩X6 0.588 # X5∩X4 0.582 # X8∩X6 0.579 *
X1∩X6 0.590 # X8∩X7 0.594 * X1∩X4 0.604 #

X1∩X4 0.594 * X7∩X4 0.602 * X1∩X6 0.608 #

X6∩X4 0.596 * X2∩X6 0.609 # X2∩X4 0.609 #

X2∩X6 0.598 # X8∩X6 0.618 * X2∩X6 0.612 #

X2∩X4 0.619 * X1∩X6 0.627 # X7∩X4 0.674 *
X7∩X4 0.677 * X7∩X6 0.729 * X7∩X6 0.722 *

Notes: * means dual-factor enhancement; # means nonlinear enhancement. X1: altitude; X2: slope; X3: distance
to river; X4: normalized difference vegetation index (NDVI); X5: average annual precipitation; X6: per capita
cultivated land area; X7: intensity of human activities; X8: population density.

4. Discussion

4.1. Comparing with Previous Studies

It can be observed in this study that the spatial distribution of cultivated land resources
in the Huaihe River Basin was relatively uniform, the Gini coefficient of cultivated land
increased year by year, and the degree of cultivated land specialization was high, which
is similar to the results obtained by Liu et al. based on NDVI and the transfer matrix
method [49]. Previous studies have shown that cultivated land in mountainous and hilly
areas was more inclined to show the spatial separation characteristics of land structure than
that in plain areas [20]. Profiting from the topographic characteristics of the wide-spread
topography of the plain, the Huaihe River basin typically performs the above-mentioned
cultivated land distribution characteristics. In terms of the indicators characterizing CLF,
studies have constructed an evaluation index system from the aspects of the resource scale,
spatial agglomeration, and convenience of utilization [1,24] but without considering the
multi-collinearity of landscape indices. Principal component analysis has been applied
in most relevant studies to reduce the redundancy among the selected metrics [50]. In
this study, SPSS22 software was introduced for collinearity diagnostics testing of the
fragmentation index selected, and the eight indicators filtered covered the three aspects of
size, edge-shape, and aggregation, which can comprehensively reflect the complex process
involved in fragmentation.

During the study period, the comprehensive index of CLF in the Huaihe River Basin
increased by 3.8%, and the degree of fragmentation displayed an upward trend, which is
consistent with the development trend of CLF across China, that is, an increasing trend
of fragmentation in China was identified and southern China was characterized by more
CLF than the other parts [17]. The analysis of influencing factors based on geographical
detectors showed that the main factors leading to the increasing degree of fragmentation
are the intensity of human activities (X7), per capita of cultivated land area (X6), and NDVI
(X4), and their contribution rates were all above 0.4. Yet, based on the hierarchical linear
model, Xu et al. found that the average patch area, gross domestic product (GDP), land use
intensity, and urbanization rate at the county level were the main factors affecting the CLF
in Jiangsu Province, and natural factors were considered to be the primary factor leading to
CLF [1]. Sklenicka et al. drew the same conclusion on research concerning CLF in central
and eastern Europe [25]. However, this study observed the opposite, namely the influence
of socioeconomic factors on CLF weighed heavier than that of natural factors, and similar
conclusions could be drawn from the study of Tan et al. [51]. This is mainly due to the
rapid economic development in the Huaihe River Basin, where the impact of man-land
contradiction on CLF has deepened. Meanwhile, the terrain of the basin is dominated by
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plain, and the impact exerted on CLF by natural factors, such as altitude and slope, was
not prominent; thus, socioeconomic factors exceeded the natural ones.

Additionally, most scholars have taken socioeconomic factors [1,24], natural fac-
tors [1,20], and policy regulation factors [52] into account in the analysis touching on
the. influencing factors of CLF. However, only a simple linear combination analysis of
their forces weakened the chain reaction caused by the combination of multiple objectively
existing factors, and lacks discussion on the intensity and mode of interaction between
different influencing factors. This study found that the combination of different influenc-
ing factors of CLF produced multiple interactions, such as dual-factor enhancement and
nonlinear enhancement, which increased the intensity of the impact on CLF. In addition,
current research on the factors affecting CLF is mostly based on a single province or re-
gion [1,24,53], which is far-fetched to provide a reference for river basin units and important
food production bases in China.

4.2. Policy Implications

CLF can exert a profound negative impact on the efficiency of cultivated land use,
food production, and agricultural development [19,54]. In 2017, the Chinese government
put forward the Rural Revitalization Strategy, which aims to accelerate the realization of
agricultural and rural modernization [55]. However, the intensification of CLF has become
a huge obstacle; hence, it is imperative to take measures to alleviate it. Acting as the
important grain production base in China, the Huaihe River Basin covers an area of only
2.9% of China’s land area, but its cultivated land area accounts for 12% of the country’s
land area [9]. However, because of the continuous urbanization occurring throughout the
basin, population growth, excessive reclamation, and other high-intensity human activities
in the Huaihe River Basin have resulted in frequent floods and droughts, soil erosion,
ecological environment deterioration, and the associated aggravation of fragmentation,
which has restricted sustainable socioeconomic development, increased the cost of food
production, hindered the development of agricultural scale, and squeezed the space for
future improvement of the total food production capacity in the basin, eventually seriously
threatening national food security [51]. Therefore, it is of theoretical and practical signifi-
cance to determine the characteristics of cultivated land resources among natural, spatial,
and utilization attributes in the basin and adopt scientific and reasonable management
measures to prevent and alleviate the exacerbation of the CLF phenomenon for formulating
regional cultivated land utilization strategy, promoting agricultural modernization, and
ensuring food security.

State-regulated consolidation is often perceived as a critical measure to tackle the CLF
problem [56]. Based on the research results, the following suggestions are put forward:

(1) Strictly control the occupation of cultivated land by construction land in the basin,
earnestly implement the policy of requisition-compensation balance [57], strictly
observe the red line of cultivated land protection, ensure the efficient utilization of
cultivated land resources in the Huaihe River Basin, guarantee food security, and
stabilize the position of the grain production base in the basin.

(2) On the basis of protecting the ecological environment, implement differentiated con-
version of cultivated land to avoid unreasonable conversion and excessive greening
of cultivated land, and reduce the degree of dispersion of cultivated land patches.

(3) Formulate reasonable land use planning, realize the optimization of land use structure,
take the Huaihe River as the boundary, adjust paddy field and dry land differently,
implement a reasonable dry land conversion project, and avoid blindly pursuing
high-income land use transformation.

(4) Leverage the advantages of extensive natural geography in the eastern and southern
plain of the Huaihe River Basin, strengthen the support for large-scale agricultural
industry management, reduce the phenomenon of land fragmentation management
in the plain by support and encouragement, and improve the utilization efficiency of
cultivated land resources.
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4.3. Limitations and Future Directions

Certain limitations could be observed in this study. CLF is widely distributed glob-
ally [15,58]. CLF driven by the process of ownership fragmentation is a pervasive issue in
various planning and managing activities in different countries [59]. Current research is
more frequently carried out on characterizing CLF through the landscape pattern index,
but the landscape scale cannot touch the cause of CLF caused by the division of ownership
and the land use distribution system [60,61]. CLF is a complex process, which is formed
under the combined effect of various factors, such as social economy, nature, policy, and
culture. Therefore, it is not only necessary to pay attention to the impact of quantitative
indicators, such as the level of socioeconomic development and natural geographical condi-
tions on the CLF, but also to policy regulation [52], cultural customs [62], and institutional
background [60,63] and other relevant indicators. Due to the limitations of data sources, it
is beyond the scope of this study to indulge in a full-scale discussion on the above issues
comprehensively, but these factors are crucial in exploring the study of CLF at the micro
scale. Besides, the interaction between different driving force groups is complex [25], so it
is extremely difficult to comprehensively study the influencing factors of CLF. Furthermore,
although this study focused on the different intensities of the interactions of different
influencing factors, due to the limitations of research methods, it failed to detect the driving
mechanism of the interaction of different factors, which needs further improvement in
follow-up study. Simultaneously, based on the understanding of the CLF in the county unit
of the Huaihe River Basin, we will further explore it in township units and even villages in
the future, with a view to providing support for the governance of CLF in the basin and
ensuring food security.

5. Conclusions

Based on the land use remote sensing data from 2000 to 2018, Fragstats4.2 (Oregon
State University, Corvallis, OR, USA) and ArcGIS10.3 were adopted, the spatiotemporal
distribution characteristics of CLF index at county level in the Huaihe River Basin were
measured by the entropy weight method, and multiple influencing factors of CLF were
explored with the help of the geographical detector. The main conclusions are as follows:

(1) From 2000 to 2018, the Gini coefficients of cultivated land were 0.105, 0.108, and
0.113, respectively, increasing year by year but less than 0.15. More than 56% of the
counties in the basin showed a cultivated land location entropy greater than 1, and
the degree of specialization of cultivated land continued to increase. Whereas the
location entropy of counties in Zhengzhou, Xinyang, Huaibei, and other cities showed
a downward trend.

(2) From 2000 to 2018, PLAND, AREA_AM, COHESION, and AI, which are four nega-
tive indicators of cultivated land fragmentation in the Huaihe River Basin, showed
a decreasing trend year by year while the positive indicators of PD and SPLIT in-
creased year by year. Overall, the spatial and temporal differences of CLF in the
Huaihe River Basin were distinguished, and the degree of CLF increased, but the
degree of CLF in some areas showed a coexistence of an increase and decrease.

(3) The county distribution pattern of the CLF degree with random and agglomeration
was generally stable. High-high areas were concentrated in some counties in Linyi,
Xuzhou, Zhengzhou, and other cities; low-low areas were concentrated in cities at
the junction of Anhui and Henan, with Zhoukou, Shangqiu, Fuyang, and Bozhou
the main counties. The low-high areas had a small and scattered distribution, mainly
distributed in a small number of counties in Xuzhou, Pingdingshan, Linyi, and other
cities. High-low areas did not appear in the three time breakpoints, indicating that
within the basin, there was no significant difference in the degree of CLF between
adjacent counties, and no obvious polarization phenomenon was observed.

(4) During the study period, the spatiotemporal differentiation of CLF in the Huaihe River
Basin was affected by multiple factors, such as nature, socioeconomic, etc., and the
influence of different factors on CLF was significantly different. The comprehensive
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influence of socioeconomic factors was significantly stronger than that of natural
factors. The influence of NDVI (X4), per capita of cultivated land area (X6), and
intensity of human activity (X7) was significantly stronger than that of other factors,
with the factor contribution rate above 0.4. The intensity of human activity (X7) played
a major role in the process of CLF. The influence of various factors on the CLF in the
Huaihe River Basin was not independent of each other. The interaction effect among
the factors was stronger than that of a single factor, with dual-factor enhancement
dominant and nonlinear enhancement the supplement.

We hope that the results of this study and the proposed policy recommendations can
provide references for identifying and alleviating CLF in important grain production areas
to ensure regional food security.
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Abstract: The cultivated land use eco-efficiency (CLUE) is an important indicator to evaluate ecologi-
cal civilization construction in China. Research on the spatial-temporal pattern and evolution trend
of the CLUE can help to assess the level of ecological civilization construction and reveal associated
demonstration and driving effects on surrounding areas. Based on the perspective of the CLUE, this
paper obtains cultivated land use data pertaining to National Pilot Zones for Ecological Conservation
in China and neighboring provinces from 2008 to 2018. In this study, the SBM-undesirable, Moran’s
I, and Markov chain models are adopted to quantitatively measure and analyze the CLUE and its
temporal and spatial patterns and evolution trend. The research results indicate that the CLUE
in the whole study area exhibited the characteristics of one growth, two stable, and two decline
stages, with a positive spatial autocorrelation that increased year by year, and a spatial spillover effect
was observed. Geographical spatial patterns and spatial spillover effects played a major role in the
evolution of the CLUE, and there occurred a higher probability of improvement in the vicinity of
cities with high CLUE values. In the future, practical construction experience should be disseminated
at the provincial level, and policies and measures should be formulated according to local conditions.
In addition, a linkage model between prefecture-level cities should be developed at the municipal
level to fully manifest the positive spatial spillover effect. Moreover, we should thoroughly evaluate
the risk associated with CLUE transition from high to low levels and establish a low-level early
warning mechanism.

Keywords: land use; CLUE; temporal and spatial evolution; spatial spillover; national pilot zone for
ecological conservation in China

1. Introduction

With increasing social and economic development levels, cultivated land notably func-
tions as the basic means of agricultural production, provides ecological products, and plays
a significant role in ensuring both national food and ecological security. However, with
the rapid advancement of industrialization and urbanization in China, cultivated land also
faces difficulties such as sharp reductions in quantity and quality, and idle abandonment.
On the premise of ensuring national food security, this has led to changes in the cultivated
land input and production structure, and an agricultural production mode dominated by
petrol-agriculture has gradually been established. The accompanying changes in cultivated
land use intensity have significantly undermined the integrity of biodiversity [1], and
seriously threatened the quality of cultivated land habitat [2], accordingly resulting in food
security problems in China [3]. According to the Second National Pollution Source Census
released by China in 2020, in 2017, the ammonia nitrogen emissions of the planting industry
in China reached 83,000 tons, the total phosphorus emissions reached 76,200 tons, the use
of plastic films reached 1,419,300 tons, and the accumulated residue reached 1,184,800 tons
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over time. The anti-ecological effect of cultivated land utilization has gradually accumu-
lated, thereby seriously restricting the green development of cultivated land utilization
in China. Based on these aspects, the 18th Communist Party of China (CPC) National
Congress report clearly proposed the five-in-one overall layout accounting for ecological
civilization construction, which requires comprehensive consideration of regional economic
development and ecological civilization construction to promote coordinated development.
Moreover, to further promote the implementation of ecological civilization construction at
the national level, the Central Committee of the CPC further selected and deployed Fujian,
Jiangxi, and Guizhou provinces with a good ecological foundation and a high resource and
environmental carrying capacity as the first batch of National Pilot Zones for Ecological
Conservation in China to take the lead in exploration and provide model experience for
ecological civilization construction in other regions. Agriculture constitutes an essential
part of promoting regional ecological civilization construction, and cultivated land is the
primary material carrier and production factor. Therefore, optimization of the input-output
structure of cultivated land use and improvement of the cultivated land use efficiency
have become critical paths to realize regional agricultural ecological civilization construc-
tion. Therefore, within this context, methods to enhance ecological use of cultivated land
and ensure the coupling and coordination between cultivated land use and ecological
environment have become critical aspects to promote ecological civilization construction.

The concept of eco-efficiency was proposed in 1990. It is an important indicator
for measuring the construction of regional ecological civilization. It refers to the ratio of
economic growth to environmental impact and emphasizes the coordinated development
of economic growth and ecological environment [4]. In 1996, the World Business Council
for Sustainable Development (WBCSD) further deepened and expanded the concept, and
proposed that in the process of resource consumption, it is not only required to meet
the basic needs of human society, but also to ensure that the ecological environmental
impact is consistent with the environmental carrying capacity of the Earth [5]. This concept
takes into account both social and economic development and resource environmental
protection, which effectively solves the problem of how to quantify the two at the same
level, and so it has been gradually expanded and applied by various institutions and
scholars in different fields. The existing studies are mainly focused on the basic theory of
eco-efficiency [6–8] and practical applications in different fields. The application fields cover
agriculture [9,10], industry [11,12], manufacturing industry, etc. [13,14], and the application
areas cover cities [15,16], regions [17,18], and countries [19]. Among them, the practical
applications involved in the field of land use mainly focus on land management, cultivated
land compensation, intensive land use, land use zoning, land use transformation, etc. [20–24].

The eco-efficiency of land use, as an important indicator to quantify the construction
of ecological civilization in the field of land use, accurately reflects the degree of coordi-
nation between regional land use and the ecological environment, and accordingly has
been widely applied and implemented by scholars. The existing studies mainly focus on
the design of methods for measuring the eco-efficiency of land use, and the analysis of the
spatial and temporal characteristics of regional eco-efficiency of land use and its influencing
factors. The measurement methods mainly include ecological footprint [21,25], princi-
pal component analysis (PCA) [12,26] and data envelopment analysis (DEA), etc. [27–29].
Among these methods, the DEA-SBM model derived on the basis of DEA does not need to
set the specific form and estimation parameters of the model in advance, and can effectively
solve the slack problem of input and output variables, and thus has become the mainstream
model for measuring the eco-efficiency of land use in the current academic circles. As
regards the evolution of temporal and spatial characteristics, scholars mainly analyzed
the temporal and spatial variation in eco-efficiency of land use [30,31], and summarized
and elaborated the temporal and spatial evolution rules of eco-efficiency of land use in a
specific study area [32,33]. In terms of the analysis of influencing factors, existing studies
generally incorporate socio-economic development situations, the marketization level, the
industrial development state, and the ecological input level into the analysis system of
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factors influencing the eco-efficiency of land use [33–37]. Specifically, the economic devel-
opment level, industrial agglomeration and openness, and ecological input are considered
to exert a positive effect on promoting the eco-efficiency of land use [33–36], while the land
marketization level, urban-rural income gap, and ecological pressure are considered to play
a negative hindering role in the eco-efficiency of land use [33,36,37].

As one of the most fundamental elements of agricultural production, cultivated land
not only has the social and economic service functions of producing food to ensure the
regional food security, but also has ecological service functions such as conserving water
and soil resources, regulating climate, and protecting biodiversity [38,39]. Therefore,
to strengthen the multi-functional value of cultivated land, quantify the environmental
efficiency loss caused by cultivated land use, and realize the sustainable use of cultivated
land, some scholars gradually shifted their research perspectives on the eco-efficiency
of land use to the cultivated land use eco-efficiency (CLUE). At present, the research
achievements of the CLUE are mainly concentrated on the measurement of application
methods, including two categories: the ecological footprint method [25] and the DEA
method [27]; at the same time, some scholars analyzed factors influencing the CLUE [34].

The above relevant research laid a solid theoretical foundation for this paper, but there
is still room for further research in the following two aspects: (1) cultivated land use is an
important activity in the process of agricultural production. Exploring the CLUE is highly
important to promote agricultural ecological civilization construction. However, there exists
relatively little research in this field in current academic circles, and it is difficult to establish
a policy system, especially given the current measures aimed at vigorously promoting
the experimental area of ecological civilization in China. The lack of relevant research on
National Pilot Zones for Ecological Conservation in China makes it challenging to achieve
a demonstration effect at the national level, which readily limits the effectiveness of these
zones. (2) Existing research has only measured the CLUE within a certain region to analyze
temporal and spatial evolution patterns, but the spillover effect has not been sufficiently
explored. However, according to the first law of geography, each object in a geographical
space exhibits a specific spatial autocorrelation. Therefore, in CLUE exploration research,
we should consider the inherent spillover phenomenon. Based on this consideration, we
can more accurately describe the temporal and spatial evolution rules of the CLUE.

Based on the above analysis of existing relevant research, the aims of this paper can
be summarized as follows: (1) first, this paper aims to construct a CLUE evaluation index
system from an ecological perspective. Taking the first batch of National Pilot Zones
for Ecological Conservation in China and surrounding related prefecture-level cities as
the research area, it measures the CLUE from 2008 to 2018 using the SBM-undesirable
model, and analyzes the spatial-temporal evolution characteristics of the CLUE. (2) Then,
traditional and spatial Markov chain models are constructed to empirically examine the
evolution trend and the spatial spillover effect of the CLUE within the study area, and
analyze the formation process of regional spatial agglomeration phenomena and the spatial
spillover effect. (3) Finally, the fundamental strategies for low-carbon, low-pollution and
efficient cultivated land use are put forward, and development ideas are assessed for
agricultural ecological construction in National Pilot Zones for Ecological Conservation in
China to provide policy recommendations for efficient cultivated land use and agricultural
ecological construction in these zones.

2. Research Methods and Data Sources

2.1. Overview of the Study Area

Jiangxi, Fujian, and Guizhou comprise the first batch of National Pilot Zones for Eco-
logical Conservation in China, with an excellent ecological environment, but the ecological
advantage does not directly match the economic advantage. The economic development
process of areas with a certain ecological advantage has occurred at a disadvantage for
a long time [40], which is quite evident in the agricultural economy. Moreover, with
increasing agricultural mechanization levels in China, regional carbon emissions have
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continuously risen. In addition, farmers use land intensively, but cultivated land is lightly
maintained in the process of cultivated land utilization, while large amounts of chemical
fertilizers and pesticides are applied, resulting in increasing pressure on regional resources
and the environment and worsening environmental problems. In addition, ecological
civilization construction is facing challenges. Therefore, in response to the call to reduce the
application of chemical fertilizers and pesticides, decrease the discharge of harmless agri-
cultural solid waste and improve green ecological agriculture, as proposed by the state in
the Implementation Plan for National Ecological Civilization Pilot Zones, we must correctly
understand the coupling and coordination of economic development and ecological protec-
tion in cultivated land utilization and strive to realize the unification and optimization of
ecological, economic and social benefits, thereby promoting the construction of National
Pilot Zones for Ecological Conservation in China. Based on these considerations, this paper
selects 57 prefecture-level cities in the first batch of National Pilot Zones for Ecological
Conservation in China (Jiangxi, Fujian, and Guizhou), in addition to Anhui and Hunan
provinces (Figure 1), as the research object, studies the temporal and spatial patterns and
evolution trend of the CLUE from the perspective of comparative analysis and provides
theoretical support to improve the construction and leading role of National Pilot Zones
for Ecological Conservation in China.

Figure 1. The geographical location of study area.

2.2. Research Methods
2.2.1. SBM-Undesirable Model

The SBM-undesirable model can solve the problem of efficiency measurement, in-
cluding unexpected outputs, and can avoid result deviations due to radial and angular
problems. This model is a scientific evaluation method established through the continuous
improvement of the traditional DEA model according to practical experience. It has been
widely used in efficiency evaluation in various research fields [41–43], and it is also a
mainstream measurement method for land use efficiency evaluation in recent years [44–46].
Because CLUE calculation results can differ between variable return to scale (VRS) and
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constant return to scale (CRS), combined with the research of Zhou P. et al. [47–50], the
SBM-undesirable model based on the VRS is adopted, which can better reflect the essence
of the CLUE. Its basic principles are expressed as follows:

In the process of cultivated land use, it is assumed that there are n decision-making
units, all corresponding to m input indicators xi0, a expected output indicators yn

r0 and
b unexpected output indicators yn

h0. Then, matrices X, Ye, and Yn can be defined as
(x1, x2, . . . , xn)∈Rm×n, (ye

1, ye
2, . . . , ye

n)∈Ra×n, (yn
1 , yn

2 , . . . , yn
n)∈Rb×n, respectively. More-

over, assuming that X, Ye, and Yn are greater than zero, the production possibility set can
be defined as Pij(N), and the SBM-undesirable model can be expressed as:

ρ∗ = min
1 − 1

m

m
∑

i=1

D−
i

xi0

1 + 1
a+b (

a
∑

r=1

De
r

ye
r0
+

b
∑

h=1

Dn
h

yn
h0
)

(1)

s.t.x0 = Xλ + D−, ye
0 = Yeλ − De, and yn

0 = Ynλ + Dn.
D− ≥ 0, De ≥ 0, Dn ≥ 0, and λ ≥ 0.
In Equation (1), ρ∗ denotes the CLUE value in each region within the study area,

and the value ranges from 0 to 1. When the ρ∗ value is 1, this indicates that the process
is entirely effective. For ρ∗ < 1, efficiency loss occurs, and there exists room for further
optimization. The number of inputs and the expected and unexpected outputs are denoted
as m, a, and b, respectively, and the corresponding slack variables are denoted as D−, De,
and Dn, respectively. Furthermore, the corresponding input-output values are denoted as
xi0, yn

r0, and yn
h0, respectively, and λ denotes the weight vector.

2.2.2. Spatial Autocorrelation Model

Spatial autocorrelation analysis is an effective method to describe spatial correlation
and spatial heterogeneity by panel data. Spatial geographical relations are integrated into
data analysis through global Moran’s I [51–53]. The global Moran’s index (Moran’s I)
reflects the spatial correlation characteristics of the CLUE from a global perspective, and
the model is expressed in Equation (2):

I =

σ2
n
∑

i=1

n
∑

j=1
wij(xi − x)(xj − x)

σ2
n
∑

i=1

n
∑

j=1
wij

(2)

In Equation (2), I is Moran’s I, n is the total number of evaluation units in the study
area, xi and xj are the attribute values of evaluation units i and j, respectively (i = j), x is
the average CLUE value of the evaluation unit, and σ2 is the sample variance. For I > 0,
a positive spatial correlation exists in terms of the CLUE. For I < 0, a negative spatial
correlation exists. The magnitude of the positive or negative I values reflects the degree of
spatial positive or negative correlation, respectively, and wij is the spatial weight matrix,
which reflects the spatial adjacency relationship between the evaluation units. The data in
this paper are based on panel data pertaining to the study area, and the Queen adjacency
matrix based on GeoDa is adopted. Then, a certain criterion is applied to construct the
spatial weight matrix.

The global spatial autocorrelation reflects the average correlation and the different
degrees of the CLUE in the overall space but cannot reflect the specific characteristics
of local spatial aggregation or differentiation. Therefore, to implement the local spatial
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autocorrelation method for analysis purposes, this paper adopts local Moran’s I, and the
calculation equation is as follows:

Ii =
(xi − x)

σ2

n

∑
j=1

wij(xj − x) (3)

In Equation (3), Ii is the local Moran’s I of evaluation unit i. Positive or negative Ii
values correspond to adjacent areas with similar or different CLUE values, respectively.
The absolute value of Ii reflects the degree of spatial proximity.

2.2.3. Markov Chain Model

The Markov chain model determines the change trend of each state of objects through
the initial probability of different states and the transition probability between states. In
Environmental Science, it is applied to analyze the spatial-temporal dynamic evolution
characteristics of things [54,55]. In this paper, traditional and spatial Markov chain models
are adopted for analysis.

According to the state type of the CLUE, the traditional Markov chain model can
construct an N × N-order Markov probability transfer matrix to analyze the temporal
evolution characteristics of regional CLUE values. Assuming that Pij is the transition
probability of the CLUE of a given unit in the study area from state Ei to state Ej from year
t to year t + 1, the value can be estimated with Equation (4), as follows:

Pij(Ei → Ej) =
nij

ni
(4)

In Equation (4), nij denotes the total number of regional units as the state type of
the CLUE transitions from Ei to Ej, and ni denotes the number of regional units with Ei
occurring at the i level.

The spatial Markov chain model combines the traditional Markov chain with the
concept of the spatial lag, which can explore the mechanism of the spatial spillover effect in
the temporal and spatial transfer processes of the CLUE and can be applied to analyze the
possibility of CLUE transfer against different geospatial backgrounds to explore the internal
relationship between the evolution process of the CLUE and the regional background.
Under the condition of spatial lag Ni, the traditional N × N-order Markov probability
transfer matrix is decomposed into an N × N × N-order probability transfer matrix. Pij(N)
indicates that under the condition of spatial lag Ni, the possibility of CLUE transfer shifts
from type Ei into type Ej.

2.3. Index System Construction and Data Sources

Referring to relevant research results [37,56], the evaluation index system of the CLUE
constructed from an ecological perspective should cover three aspects, namely, the input,
expected output, and unexpected output, of the four systems of resources, economy, nature,
and society. The constructed index system of the CLUE is provided in Table 1.

In terms of the input index, the actual sowing area of crops (1000 hm2), number of
employees (10,000 persons), net amount of pesticide application (t), and net amount of
chemical fertilizer application (t) were selected as representative indicators. In terms of the
expected output index, the total grain output (t) and planting output value (10,000 yuan)
were selected as representative indicators. In terms of the unexpected output index, the
difference between the total carbon emissions (t) and total carbon absorption (t) was selected
as a representative indicator.

The basic input and output data required to measure the CLUE in the study area
were retrieved from the China Statistical Yearbook 2009–2020, China Rural Statistical Year-
book 2009–2020, provincial and municipal statistical yearbooks, and statistical bulletins.
The acquired carbon emission data were related to chemical fertilizers, pesticides, and
agricultural films. These data were obtained by multiplying and summarizing basic data,
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such as mechanized operation and cultivated land plowing data. The carbon emission
coefficients of the various carbon sources were determined based on the carbon emission
model and calculation coefficients of West and Marland et al. [57,58]. The carbon absorption
coefficient of cultivated land was set to 0.0070 t/hm, as reported by He Yong et al. [59]. Cor-
relation measurement coefficients were obtained from Liang Liu Tao and Feng Yonggang
et al. [60,61].

Table 1. Evaluation index system of the CLUE.

Variable Type Variable Index Meaning

Input index

Cultivated land input Actual sown area of crops/1000 hm2

Labor input

Number of employees in the primary
industry × (agricultural output

value/total output value of agriculture,
forestry, animal husbandry, and

fishery)/10,000

Pesticide and fertilizer input Net amount of pesticide and chemical
fertilizer application/t

Expected output
index

Agricultural output value Output value of the planting
industry/10,000 yuan

Grain yield Total grain output/t

Unexpected output
index Net carbon emissions

Difference between the total carbon
emissions of mechanical operation and

chemical fertilizer and pesticide
application and the total carbon
absorption of cultivated land/t

3. Analysis of the Empirical Results

3.1. Temporal Dynamic Evolution Characteristics of the CLUE

The CLUE was measured with DEA-SOLVER PRO13 software. According to the
overall observations, the CLUE in the study area was notably different from 2008 to 2018,
thereby exhibiting the characteristics of one growth, two stable, and two decline stages
(Figure 2).

The growth stage suggests that the CLUE in Guizhou Province experiences a growth
trend, with an average annual growth rate of 3.21%, which occupies the leading position
in the region (Figure 2). This suggests that ecological civilization construction in Guizhou
Province achieved remarkable results in cultivated land utilization. From 2008 to 2018,
the average input of pesticides and chemical fertilizers in Guizhou Province reached
187.42 t/1000 hm2, the lowest in the whole region, 27.3% lower than that in Jiangxi Province,
which ranked second-lowest. In terms of the land average net carbon emissions, the land
average net carbon emissions in Guizhou Province decreased from 238.87 T/1000 hm2

in 2008 to 1869.18 T/1000 hm2 in 2018. These land average net carbon emissions were
the lowest in the study area, and Guizhou Province was the only province indicating a
decline in emissions. In terms of the average annual growth rate of the agricultural output
value, Guizhou Province attained a rate of 15.79%, while Jiangxi, Fujian, Anhui, and Hunan
attained rates of 7.82%, 7.57%, 1.49%, and 0.24%, respectively, of which the annual average
growth rate in Guizhou Province was much higher than that in the other provinces within
the study area. Based on the above three groups of data, it is observed that although the
initial average agricultural output value in Guizhou Province was the lowest, the expected
output value growth rate was the highest, and the average pesticide and chemical fertilizer
input and average net carbon emissions remained the lowest. Moreover, these findings are
the main reasons why the CLUE in Guizhou Province has taken the lead in the study area
in recent years.
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Figure 2. Change trend of the CLUE in the study region from 2008 to 2018.

The two stable stages and two decline stages suggest that the CLUE exhibited the char-
acteristics of high and stable fluctuations in Jiangxi and Fujian and an overall downward
trend in Hunan and Anhui, respectively (Figure 2). The average CLUE values in Jiangxi and
Fujian were 0.856 and 0.842, respectively, ranking as the top two highest values in the study
area, but the fluctuation range was smaller than 2%. The CLUE in Hunan and Anhui re-
vealed a downward trend. In 2018, the CLUE in these two provinces reached 0.62 and 0.719,
declines of 23.8% and 13.4%, respectively, compared to 2008. The reason why the CLUE
in Jiangxi and Fujian remained high with stable fluctuations could be that the ecological
basis of cultivated land use in these two provinces is good. The average grain production
in Jiangxi and Fujian provinces from 2008 to 2018 reached 4113.6 and 2894.3 t/1000 hm2,
respectively, higher than the average grain production values of 2473.8 t/1000 hm2 in
Hunan and 2136.4 t/1000 hm2 in Anhui Province. Moreover, the average annual net car-
bon emissions in these two provinces reached 1,955,700 and 1,642,300 tons, respectively,
lower than those in Hunan (3,379,500 tons) and Anhui (3,942,800 tons). Compared to
the data for Jiangxi and Fujian provinces within the ecological civilization construction
experimental area in 2018, Anhui and Hunan provinces exhibited room for improvement
by approximately 19% and 36%, respectively, in the CLUE.

3.2. Spatial Evolution Characteristics of the CLUE
3.2.1. Overall Spatial Evolution Characteristics

Table 2 indicates that the global spatial autocorrelation of the CLUE within the whole
region is increasing, and the spatial correlation between adjacent regions is increasingly
intensifying. From 2008 to 2018, global Moran’s I value of the CLUE increased from 0.136
to 0.323, and the significance test result increased from 5% to 1%, indicating a fluctuating
upward trend. This suggests that there occurs a significant positive spatial autocorrelation
in regard to the CLUE in the study area.
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Table 2. Global Moran’s I of the CLUE in the study area from 2008 to 2018.

Year Global Moran’s I Z-Value p-Value

2008 0.136 1.759 0.039
2009 0.1869 2.1414 0.032
2010 0.1493 1.9436 0.029
2011 0.3403 3.9418 0.003
2012 0.2308 2.8181 0.004
2013 0.2362 2.7097 0.003
2014 0.1942 2.3543 0.009
2015 0.2561 3.0089 0.007
2016 0.191 2.3219 0.009
2017 0.2572 2.9803 0.002
2018 0.3234 3.7426 0.001

3.2.2. Local Evolution Characteristics of the CLUE

To further analyze the specific spatial agglomeration characteristics of the CLUE,
according to the calculation results of local Moran’s I at the 10% significance level, a Local
Indicators of Spatial Association (LISA) cluster diagram of the CLUE in the study area
for 2008, 2013, and 2018 was generated (Figure 3). As shown in the figure, the CLUE in
the study area exhibited significant high-high (H-H) and low-low (L-L) agglomeration
phenomena within the geographical space encompassing prefecture-level cities, which
became increasingly significant over time.

 

Figure 3. LISA cluster map of the CLUE in the study area from 2008 to 2018.

In 2008, the H-H and L-L agglomeration areas of the CLUE indicated the single-
core agglomeration phenomenon. An H-H single-core aggregation area was located at
the junction of Jiangxi and Fujian provinces in the National Pilot Zone for Ecological
Conservation in China, comprising Fuzhou and Nanping. An L-L single-core aggregation

251



Int. J. Environ. Res. Public Health 2022, 19, 111

area was located in western Guizhou Province, comprising Bijie, Liupanshui, and Anshun.
The degree of single-core agglomeration was low in 2008.

In 2013, the H-H and L-L agglomeration areas of the CLUE revealed an increased scale
of single-core agglomeration. An H-H single-core agglomeration area was still located at
the junction of Jiangxi and Fujian provinces, comprising Yingtan, Yichun, Fuzhou, and
Nanping. An L-L single-core agglomeration area was located in the west of Guizhou
Province and comprised Guiyang, Bijie, Liupanshui, and Anshun. Compared to 2008, the
geographical location of the H-H and L-L single-core agglomeration areas did not shift.
According to the number of cities, the agglomeration scale expanded by 100% and 33.3%,
respectively, and the positive spatial spillover effect was notable.

In 2018, the H-H and L-L agglomeration areas of the CLUE demonstrated the double-
core agglomeration phenomenon. H-H dual-core agglomeration areas were located at the
junction of Jiangxi and Fujian provinces and western Guizhou. The agglomeration area
in western Guizhou Province represented a new agglomeration area. This agglomeration
area comprised Guiyang, Zunyi, Bijie, and Anshun, exhibiting the characteristics of east–
west H-H and dual-core agglomeration encompassing six cities. The L-L aggregation area
shifted, and a new L-L dual-core aggregation area comprising seven cities was formed in
Hunan and Anhui.

In summary, from 2008 to 2018, the spatial agglomeration of the CLUE in the study
area exhibited the characteristics of agglomeration core-based expansion and transfer. In
terms of agglomeration core-based expansion, a development trend was observed from
two to four cores. In terms of agglomeration core-based transfer, the L-L agglomeration
phenomenon in western Guizhou evolved into an H-H agglomeration phenomenon. The
observed agglomeration phenomena indicated that there occurred a spatial spillover effect
in the study area. In particular, when an adjacent area was observed with a high (low)
level of the CLUE, the target area was more likely to become an area with a high (low)
CLUE level. As of 2018, H-H aggregation areas of the CLUE were distributed among Fujian,
Jiangxi, and Guizhou provinces, indicating that the positive spatial spillover effect of the
National Pilot Zone for Ecological Conservation in China was notable. However, the effect
was largely distributed within the National Pilot Zone for Ecological Conservation in China,
and the driving effect on the surrounding provinces and cities of the National Pilot Zone
for Ecological Conservation in China was not notable.

3.3. Markov Chain Analysis of the CLUE in the Study Area
3.3.1. Traditional Markov Chain Analysis

According to the quantile division method, thereby adopting the first, second, and
third quantiles as boundaries, the 57 prefecture-level cities in the study area from 2008 to
2018 were divided into four adjacent but nonintersecting state spaces with low, medium-
low, medium-high, and high efficiency values according to the difference in the CLUE,
denoted as levels I, II, III and IV, respectively. The probability transition matrix of the
traditional Markov chain analysis method was thus obtained (Table 3).

Table 3. Traditional Markov chain probability transition matrix of the CLUE in the study area from
2008 to 2018.

Local Status Type I Type II Type III Type IV

<25% 25–50% 50–75% >75%

Type I 0.832 0.117 0.007 0.044
Type II 0.190 0.647 0.085 0.085
Type III 0.058 0.385 0.365 0.192
Type IV 0.018 0.048 0.079 0.855

The CLUE in the whole region generally exhibited a consistent trend, and the conver-
gence phenomenon was observed in regard to the extreme value. It was difficult to achieve
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a significant improvement over the short term, and there existed a certain transfer risk of to
the medium-low state.

In terms of state maintenance, the probability along the diagonal at levels I, II and
IV of the state space was significantly higher than that along the nondiagonal. Notably,
the transformation probability of the CLUE at the same level was much higher than that
between the different levels, in which the minimum value reached 0.647 and the maximum
value reached 0.832. Under the above conditions, the CLUE attained a probability of at
least 64.7% in the future development process and remained at the same level.

In terms of extreme value convergence, Table 3 demonstrates that the probability
values of maintaining the current CLUE level along the diagonal followed the order of
PIV-IV (0.855) > PI-I (0.832) > PII-II (0.674) > PIII-III (0.365), and the probability values at both
ends of the diagonal were significantly higher than the median value, indicating that the
CLUE values were characterized by H-H and L-L agglomeration patterns, i.e., the core
convergence phenomenon occurred.

In terms of efficiency improvement, except for PIII-II (0.385), the state transition proba-
bility along the nondiagonal was significantly lower than that along the diagonal, of which
the maximum value reached 0.192 and the minimum value reached 0.007, indicating that it
is difficult to greatly and rapidly improve the CLUE within a short timeframe. Long-term
and effective ecological civilization construction is thus needed.

In terms of risk prediction, the CLUE could indicate a certain transfer risk from
medium-high to medium-low efficiency values over the short term. The probability of
transferring from type III to type II was significantly higher than that of transferring from
type III to types IV and I (PIII-II (0.385) > PIII-III (0.365) > PIII-IV (0.192) > PIII-I (0.058)). These
areas are more likely to fall into the low eco-efficiency trap.

3.3.2. Spatial Markov Chain Analysis

Figure 3 shows that the spatial pattern of the CLUE in the study area exhibits significant
spatial agglomeration characteristics. Therefore, a spatial lag was incorporated into the
traditional Markov chain model, and a spatial Markov probability transfer matrix was
constructed based on the spatial lag type of each regional unit in the first year. Similarly,
according to the quantile division method, the spatial lag types in the study area were
divided into four types, namely low, medium-low, medium-high, and high, denoted
as types I, II, III and IV, respectively. The analysis results are listed in Table 4 below.
Through comparison with the traditional Markov probability transfer matrix, the following
spatial evolution characteristics of the CLUE could be obtained after considering the
geospatial background:

Geospatial patterns play a significant role in the dynamic evolution process of the
CLUE. Against the neighborhood background entailing different efficiency levels, the CLUE
transfer probability varies, and the transfer probability further differs from that determined
according to the corresponding traditional Markov probability transfer matrix. For example,
in the traditional Markov probability transfer matrix, the transition probability of the CLUE
level from type III to type II is the highest, at PIII-II = 0.385, while in the spatial Markov
probability transfer matrix, when a location is adjacent to a type-I area, the transition
probability of the CLUE level from type III to type II is PIII-II (I) = 0.333, which is lower
than the probability that the CLUE level remains unchanged. When a given location is
adjacent to a type II area, the transition probability is PIII-II (II) = 0.400, higher than the
probability that the CLUE level remains unchanged. When the adjacent area is a type-IV
area, the transition probability is PIII-II (IV) = 0.411 = PIII-III (IV). The probability that the
CLUE level remains unchanged is the same as the transition probability to a medium-low
efficiency level. Therefore, geographical spatial patterns can exert a significant impact on
CLUE evolution.
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Table 4. Markov chain probability transition matrix of the CLUE in the study area from 2008 to 2018.

Spatial Lag Local Status
Type I Type II Type III Type IV

<25% 25–50% 50–75% >75%

Type I

I 0.770 0.148 0.000 0.082
II 0.231 0.513 0.051 0.205
III 0.000 0.333 0.444 0.222
IV 0.077 0.077 0.077 0.769

Type II

I 0.854 0.122 0.000 0.024
II 0.179 0.678 0.143 0.000
III 0.100 0.400 0.300 0.200
IV 0.000 0.048 0.065 0.887

Type III

I 0.926 0.074 0.000 0.000
II 0.175 0.750 0.050 0.025
III 0.063 0.375 0.313 0.25
IV 0.016 0.049 0.098 0.836

Type IV

I 0.750 0.125 0.125 0.000
II 0.139 0.639 0.111 0.111
III 0.059 0.411 0.411 0.118
IV 0.001 0.050 0.075 0.863

The spatial spillover effect plays a vital role in the dynamic transfer process of the
CLUE. Generally, the transfer probability of the CLUE to reach a low level increases in areas
adjacent to cities with low CLUE values, while the transfer probability of the CLUE to reach
a high level increases at locations adjacent to areas with high CLUE values. For example,
near areas with low CLUE values, PII-I (I) (0.231) > PII-I (0.190) and PIII-II (I) (0.333) > PIII-II
(0.385), while at locations near areas with high CLUE values, PI-II (IV) (0.125) > PI-II (0.117)
and PII-III (IV) (0.111) > PII-III (0.085). Areas with low CLUE values exert a negative impact
on surrounding areas, while areas with high CLUE values impose a positive spillover
effect on adjacent areas. Adopting Chizhou city, Anhui Province, and Ganzhou city, Jiangxi
Province, as examples, from 2008 to 2018, the average CLUE value in the surrounding cities
of Chizhou reached only 0.66, which affected the decline in CLUE in Chizhou city from 0.64
to 0.48 to a certain extent. The average CLUE value in the surrounding cities of Ganzhou
reached as high as 0.82, which increased the CLUE in Ganzhou from 0.61 to 0.75.

4. Discussion

4.1. Policy Recommendations

Based on the above research results and analysis conclusions, the construction of
National Pilot Zones for Ecological Conservation in China provides a suitable practical
foundation and development trend in terms of cultivated land utilization. Through the
spatial spillover effect at the municipal scale, CLUE improvement can be achieved in both
cities within the National Pilot Zone for Ecological Conservation in China and surrounding
areas, its demonstration and leading roles can be fully manifested, and national ecological
civilization construction can be promoted. Based on these findings, the following policy
recommendations are outlined:

Based on the determined unbalanced development of the CLUE at the provincial level,
it is suggested to widely disseminate model construction experience, formulate provincial
ecological measures, and realize CLUE enhancement in surrounding areas of National
Pilot Zones for Ecological Conservation in China. Anhui and Hunan should learn from
the construction experience of ecological civilization pilot areas similar to Jiangxi, Fujian,
and Guizhou, including the formulation and implementation of safe utilization schemes
of polluted cultivated land, the establishment of a classification list of cultivated land soil
environmental quality categories, and the construction of a responsibility assessment sys-
tem involving four-level cultivated land protection objectives at the provincial, municipal,
county and township levels. Hence, policies and measures should be designed according
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to local conditions to reverse the downward trend of the CLUE to narrow the gap with
areas exhibiting high CLUE values.

Based on the mechanism of the spatial adjacency spillover effect at the prefecture-
level city scale, it is suggested to fully manifest the positive spillover effect of H-H CLUE
agglomeration areas and establish a city linkage model. By improving the breadth and
depth of opening-up policies, strengthening agricultural cooperation, resource flow, and
personnel exchange processes, promoting coordinated and balanced development of the
whole region, and learning from the improvement model of the CLUE in Ganzhou City,
Jiangxi Province, under the influence of the positive spillover effect of neighboring cities,
low-level areas should be encouraged to overcome their dilemmas.

Based on the downward transfer trend of the CLUE in the evolution process, it is
recommended to thoroughly assess the transfer risk from high to low levels, establish a
low-level early warning mechanism, and prevent downward transformation of the regional
eco-efficiency. A cultivated land ecological utilization evaluation organization shall be
established to promptly adjust and optimize the input-output structure of cultivated land,
such as the allocation of low-carbon fertilizers and the optimization of the operation time
of cultivated land machinery, based on the monitoring of cultivated land carbon emissions
sources such as pesticides, chemical fertilizers and agricultural films and the prediction of
cultivated land output, so as to ensure synchronous ecological construction in the process
of cultivated land utilization.

4.2. Research Limitation and Future Research

In this paper, an evaluation index system of the CLUE is constructed, the SBM-
undesirable model is adopted to measure the CLUE, and the spatial spillover effect of the
CLUE is analyzed. The following two points should be further examined:

The undesired indicators in the eco-efficiency index system of cultivated land use
constructed in this paper only consider carbon emissions, and do not consider nonpoint
source pollution. In fact, the use of cultivated land can not only produce a large amount
of carbon dioxide, but can also produce nonpoint source pollution, such as water and soil
pollution attributed to pesticides and fertilizers. However, due to the regional characteristics
of the correlation coefficient of nonpoint source pollution measurements, most current
studies consider the same coefficient in China. The lack of regional characteristics may
affect the accuracy of regional CLUE assessment. Based on this aspect, this paper only
considers carbon emissions to ensure the accuracy of the measurements. The nonpoint
source pollution emission coefficient based on regional characteristics should be measured
in future research. Nonpoint source pollution and carbon emissions could be incorporated
into the unexpected output index in the cultivated land use process to measure the CLUE
more accurately.

Based on the prefecture-level city scale, this paper studies the temporal and spatial
evolution characteristics and spatial spillover effect of the CLUE from the perspective of
comparative analysis, thereby choosing 57 prefecture-level cities in Jiangxi, Fujian, Guizhou,
Hunan, and Anhui as the research objects. In the future, microscale multilevel research can
be carried out at the farm scale. In fact, as the main body of cultivated land use, based on
the research scale, farms can better refine the input-output characteristics of cultivated land
use, the cultivated land planting behavior of farmers can be elucidated, and the efficiency
value can be determined more accurately. This could provide a greater reference value
for follow-up optimization of cultivated land use and ecological civilization construction.
Moreover, exploring the eco-efficiency of regional cultivated land use at the meso- and
microscales could more comprehensively explain the construction effect of cultivated land
use in National Pilot Zones for Ecological Conservation in China and provide a theoretical
basis for other regions to learn from the model experience gained in these zones.
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5. Conclusions

Based on the obtained panel data of cultivated land use pertaining to 57 cities in
Jiangxi, Fujian, Guizhou, Hunan, and Anhui from 2008 to 2018, this paper adopts the
SBM-undesirable model to measure the CLUE, and Moran’s I and Markov chain models
are employed to analyze the corresponding temporal and spatial evolution characteristics.
The main conclusions are as follows:

In terms of temporal evolution, the CLUE in the whole region is significantly differen-
tiated during the research period, exhibiting the characteristics of one growth, two stable,
and two decline stages. Guizhou reveals a prominent growth trend, Jiangxi and Fujian
exhibit high and stable fluctuation characteristics, and Hunan and Anhui demonstrate
an overall downward trend. These results indicate that the effect of cultivated land use
and ecological construction in the provinces within the National Pilot Zone for Ecological
Conservation in China is better than that in Hunan and Anhui provinces.

In terms of the spatial pattern, during the research period, the CLUE in the whole
region exhibits a positive spatial autocorrelation that increases year by year, and the spatial
spillover effect is observed. In addition, local H-H and L-L agglomeration core areas
exhibit expansion and transfer phenomena. Within the considered National Pilot Zone for
Ecological Conservation in China, the positive spatial spillover effect is very pronounced.
However, at present, the driving effect on the surrounding regions is not notable.

In terms of trend transfer, geospatial patterns and the spatial spillover effect play
a significant role in CLUE evolution. The transfer probability of the CLUE against the
different geographical backgrounds varies, and a high probability of improvement is
attained near cities with high CLUE values. Proximity to cities with low CLUE values can
inhibit enhancement, i.e., the core convergence phenomenon occurs.
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Abstract: Many scholars have conducted in-depth research on the theme of land use change and
food security, and formed fruitful research results, but there is a lack of quantitative analysis and
comprehensive evaluation of research achievements. Therefore, based on the relevant literature
on the theme of land use change and food security in the core collection of the Web of Science
(WOS) database, this paper takes the advantage of CiteSpace and VOSviewer bibliometric software
to draw the cooperative network and keyword cooccurrence map to analyze the research progress
and frontier. The results reveal that: (1) The research started in 1999 and can be divided into three
stages: initial research, rapid development, and a stable in-depth stage. This topic has increasingly
become a research hotspot in the academic community. (2) The distribution of research institutions is
concentrated and forms a small cluster, and the research networks between developed and developing
countries have been established, and developed countries are in the core position, but the cooperation
network is not prominent. (3) The research content is becoming increasingly organized and systematic,
and the research hot topics are divided into seven aspects. (4) The research area of the subject covers
multiple levels, such as global, national, and specific natural geographical regions, and has formed a
research system of geographic information technology and satellite remote sensing technology. It
also presents the trend of cross integration with economics, land management and soil science. In the
future, theoretical innovation still needs to be strengthened, and we should strengthen the research
on the impact of agricultural chemical fertilizers on food security and study the impact of urban
expansion on land use change.

Keywords: land use change; food security; visual analysis; CtieSpace; VOSviewer; progress and frontier

1. Introduction

Land use change and its impact on food security have become one of the frontiers
and hot topics studied by scholars worldwide [1–4]. With the development of human
society, the structure, depth and intensity of land use are constantly changing, which not
only affects biodiversity but also has a great impact on human food security [5]. The issue
of “food security” was first put forward by the United Nations International Food and
Agriculture Organization at the First World Food Summit in November 1974. The definition
of food security is to ensure that anyone can obtain enough food for survival and health
at any time, including food supply, food access, food stability and food utilization [6,7].
Over the years, food security has been a major issue related to the overall political and
economic situation of a country or region. In particular, regional food production and
food security have become hot issues of concern to governments and scholars [8–10].
According to the prediction of the United Nations [11], the global population will exceed
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9.8 billion in 2050, food demand will increase by more than 50%, and food problems will
be extremely serious [12]. However, there are many factors affecting grain production,
including institutional and policy innovation, scientific and technological progress, material
and labor investment, climate change, but cultivated land resources in land resources are
the most important factor in grain production [13,14]. Cultivated land resources are the
most basic natural condition of agricultural production. Food security is closely related
to changes in cultivated land. The change in the quantity and quality of cultivated land
directly affects grain output and then affects the effective supply of grain and the level of
food security [15,16].

In recent years, research related to the theme of land use change and food security has
emerged in the academic community, mainly combined with issues of climate change, car-
bon emissions, agricultural intensification [5,17,18]. For example, Galeana-Pizaña et al. [1]
used a GIS-based food environmental efficiency (FEE) index to evaluate the trend of land
use change and regional food security, and the FEE index proved useful assessment of land
use policies. Moore et al. [19] used the regional climate model to compare the impacts of
projected future greenhouse gases and future land use change on spatial variability of grain
yields in East Africa. These show that this theme is an evolving knowledge field, but there
is a lack of systematic review of research results. Accurately understanding the research
progress and academic trends of land use change and food security is of great significance
for carrying out follow-up research. Therefore, based on the core collection of the Web of
Science (WOS) database, this paper comprehensively uses the advantages of CiteSpace and
VOSviewer software to conduct bibliometric analysis, systematically and visually analyze
and summarize the literature in the fields of land use change and food security, and explore
the status of research. This research field objectively reveals the trends, accurately evaluates
the research progress on land use change and food security and provides a reference for
combining the research framework and expanding new ideas and methods in this field.

2. Data Collection and Research Methods

2.1. Data Collection

The data on the relevant literature used in this paper come from the core collection
of the WOS database (http://apps.webofknowledge.com, accessed on 6 September 2021)
and adopt the method of group retrieval. The WOS Citation database is an information
retrieval platform developed by Thomson Reuters of the United States. With the Science
Citation Index, Social Science Citation Index, and Arts and Humanities Citation Index as
the core, it contains more than 9000 world authoritative and influential academic journals,
and the documents in the database have high authority in the academic community [20,21].
The search prerequisites of this research are set as follows: (TS = “land use change” and
“grain security”) OR (TS = “land use change” and “food security”), TS is the theme, time
spans are unlimited, the language is “English”, and the literature types are “article” and
“review”. There were 628 literature records related to the subject that were retrieved. To
avoid duplicate literature, CiteSpace’s deduplication function was used for inspection, and
no duplicate publications were found.

2.2. Research Methods

As an auxiliary procedure of bibliometrics, science mapping provides a spatial repre-
sentation of network structures. Science mapping involves the interdisciplinary fields of
applied mathematics, information science and computer science. It is a new development
of scientometrics and information metrology. In recent years, with the rapid develop-
ment of computer science, many scholars have used various science mapping tools to
analyze the potential dynamic mechanism of discipline evolution [22–24]. CiteSpace and
VOSviewer software are two powerful and complementary science mapping analysis tools.
CiteSpace (https://sourceforge.net/projects/citespace, accessed on 6 September 2021) is
a Java-based application software proposed by Professor Chen of Drexel University in
2004. It is based on the co-citation analysis theory and pathfinder, minimum spanning trees
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algorithm to make a quantitative analysis of the literature in specific fields, which is used
to analyze and visualize the emerging trends and patterns in the knowledge field of scien-
tific publications [25,26]. It has unique advantages in literature keyword analysis, cluster
analysis, subject words, author information. VOSviewer (https://www.vosviewer.com,
accessed on 6 September 2021) is also a literature analysis and knowledge visualization
software tool developed by van Eck and Waltman of the Centre for Science and Technol-
ogy Studies at Leiden University [27]. It can realize the construction and visualization of
the keyword cooccurrence network in various fields. Compared with other visualization
software, VOSviewer software has advantages in processing big data and drawing images,
which can more clearly show the hot spots and topics in the research field [28].

3. Results

3.1. Trend Analysis of Literature Publication

The annual distribution of the number of published articles can reflect the research
level and degree of development of a certain discipline [29]. The number of published arti-
cles on land use change and food security is shown in Figure 1. From 1999 to 6 September
2021, the number of published studies on land use change and food security showed a
stable growth trend on the whole, which experienced three stages, i.e., initial research,
rapid development, and a stable in-depth stage.

 

Figure 1. Number of articles published annually on the theme of land use change and food security.

The initial stage of the research (1999–2008): At this stage, the number of relevant
research studies was relatively small, the research topic was relatively limited, and the
number of research scholars in this field was also small, mainly because there was not
much research on land use change and food security. Before this stage, scholars studied the
theme of land use change or food security separately. In 1999, Sporton et al. first studied the
theme of land use change and food security [30]. Subsequently, Murdiyarso and Verburg
et al. paid more attention to this research topic [31,32].

The rapid development stage of the research (2009–2017): During this stage, scholars
showed great interest in the research topic, the number of published articles continued
to increase, the research questions and perspectives were further expanded, and several
leading studies emerged, such as Alexander and Verburg et al. [33,34]. In 2009, famous
scholars such as Khan, Garnett, Mertz and Yan et al. [35–38] published a series of high-level
papers, meanwhile, the number of people suffering from hunger in the world will reach
1.02 billion in 2009 announced by the United Nations, reversing the continuous decline
of hungry people, which made the research on land use change and food security widely
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concerned in the academic community. With the intensification of global land use change
and food security, scholars researched climate change, biodiversity, policy development,
agriculture, greenhouse gas emissions, and the research contents and methods were further
enriched [19,39].

Stable in-depth stage of the research (2018-present): During this stage, the literature
publication trend was relatively smooth, and the research content and perspective gradually
increased in depth. The research perspective has focused on both macro and micro issues,
including population growth, land systems, rural development, soil organic carbon, and
life cycle assessment, in the research agenda of land use change and food security, and the
overall research has continued to deepen [40,41].

3.2. Network Analysis of Author Cooperation, Institutional Cooperation and National Cooperation
3.2.1. Analysis of Author Cooperation Network

By analyzing the author’s cooperation network [42], we can determine the strength of
representative scholars and core research teams in the field of land use change and food
security. VOSviewer software was used to overlay and visualize the author collaborative
networks with more than 5 published articles. Through the color gradient, it can intuitively
reflect the cooperation of various scholars in recent years (Figure 2) and present the author
information with the number of published articles for the top 20 publications (Table 1). We
found that the authors with a large number of published articles showed obvious network
characteristics, mainly including the cooperative network of Verburg, Smith, Havlik and
Popp. This indicates that these are core authors who have developed a high-yield author
research team in the field of land use change and food security that has initially formed a
scale. According to the Price Law [43], the formula for calculating the minimum number of
published articles of core authors in a field is m = 0.749 ×√

nmax = 2.996 (where nmax is
the number of published articles of the top 1 author). Therefore, authors with more than
three published articles are regarded as the core authors in this field. The top three scholars
in the number of published articles are Verburg (16 articles), Smith (13 articles) and Havlik
(10 articles). According to the data, there are 43 core authors and 206 articles, accounting
for 32.8% of the total articles published in this field, which is less than the standard of 50%
of the Price Law. This shows that after more than 20 years of development, the core author
group in the field of land use change and food security has initially formed, but still needs
further development.

Figure 2. Author cooperation network map.
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Table 1. Author information table of the top 20 published articles.

Ranker Count Centrality Year Authors Ranker Count Centrality Year Authors

1 16 0 2016 Peter H Verburg 11 5 0 2018 Wenbin Wu
2 13 0.03 2008 Pete Smith 12 5 0 2015 Isabelle Weindl

3 10 0.01 2014 Petr Havlik 13 5 0 2013 Alexander V
Prishchepov

4 9 0.03 2014 Alexander Popp 14 5 0 2017 K Butterbachbahl

5 7 0 2014 Hermann
Lotzecampen 15 5 0 2014 Hans Van Meijl

6 6 0 2014 Tomoko Hasegawa 16 5 0 2017 M C Rufino
7 6 0 2009 Jiyuan Liu 17 5 0 2017 Jasper Van Vliet
8 6 0 2014 Hugo Valin 18 4 0 2016 Almut Arneth
9 5 0 2014 Shinichiro Fujimori 19 4 0 2017 Kamini Yadav
10 5 0 2014 Christoph Schmitz 20 4 0 2014 Andrzej Tabeau

Note: The centrality indicator measures the importance of network nodes [44]. The larger the value of centrality, the more articles published
by the author in cooperation with other authors.

3.2.2. Analysis of Institutional Cooperation Network

Taking the research institution as the node for visual analysis, we can obtain the
cooperation network map of the research institution (Figure 3) and show the network
with connections. According to the information of the top 20 major research institutions
(Table 2), the Chinese Academy of Sciences has the highest number of published articles
(52), followed by Vrije University Amsterdam (26) and Wageningen University (22), and
a research network has been formed of these three research institutions as the core. This
shows that these institutions have strong scientific research and influence in the field,
and there are cooperative relations and large-scale collaborations between the different
institutions. It is worth noting that the reason for the highest number of documents issued
by the Chinese Academy of Sciences may be related to China’s national conditions. The
main reasons include the following points: (1) In terms of policy, the Chinese Government
has put forward the “red line of 1.8 billion mu of cultivated land” and other cultivated land
protection policies to control land use changes and ensure food security. (2) In terms of
economics, the Chinese Government has adjusted agricultural protection policies, increased
investment in agricultural science and technology, and continuously improved the rate
of grain self-sufficiency. (3) In terms of society, China is a populous country in the world,
it is required to ensure food supply and firmly put its rice bowl in its own hands. (4) In
terms of the environment, the deterioration of land and other production factors had a
great impact on food security. To ensure food security, the Government has always taken
measures to prevent land resource degradation and improve the ecological environment.

In Figure 3, the research institutions are in a local aggregation state, indicating that the
distribution of research institutions is relatively concentrated and that a small aggregation
cluster is formed; that is, there are some cooperative relations among institutions. Generally,
there are a large number of research institutions related to the theme of land use change and
food security, but a large cross-national institutional cooperation group has not yet formed.
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Figure 3. Institutional cooperation network map.

Table 2. Information table of the top 20 major research institutions with published articles.

Ranker Count Centrality Year Research Institutions Ranker Count Centrality Year Research Institutions

1 52 0.18 2003 Chinese Academy
Science 11 12 0.1 2006 Potsdam Institute for

Climate Impact Research

2 26 0.12 2014 Vrije University
Amsterdam 12 12 0.01 2009 Beijing Normal

University
3 22 0.22 2010 Wageningen University 13 12 0.03 2010 University of Edinburgh

4 19 0.02 2013 University of Chinese
Academy of Sciences 14 12 0.03 2016 Karlsruhe Institute of

Technology
5 18 0.13 2008 University of Aberdeen 15 11 0.05 2008 University of Maryland

6 18 0.12 2011 Humboldt University 16 10 0.03 2006 University of
Copenhagen

7 16 0.1 2009 Michigan State
University 17 10 0.02 2009 Lancaster University

8 14 0.09 2011 International Food
Policy Research Institute 18 10 0.06 2000 Chinese Academy of

Agricultural Sciences

9 13 0.07 2014
Commonwealth

Scientific and Industrial
Research Organization

19 9 0.04 2004 Columbia University

10 12 0.05 2000
International Institute
for Applied Systems

Analysis
20 9 0.03 2017

PBL Netherlands
Environmental

Assessment Agency

3.2.3. Analysis of Country Cooperation Network

According to Figure 4 and Table 3, there are more than 100 articles published in
the USA, China, and Germany, which is significantly higher than that in other countries.
The number of articles published in these three countries accounted for 31.84%, 19.9%
and 18.15% of the total number of articles published in this field, respectively. It can be
seen from the connectivity in Figure 4 that the connections between nodes are dense and
complex, indicating that there are many cooperative relations between different countries.
In Figure 4, purple appears at the edge of some nodes, indicating that the centrality is ≥0.1,
which also indicates that the node is in an important position within the network structure.
Among them, the centrality values of the USA (0.58), Germany (0.13), England (0.11) and
France (0.11) are higher than 0.1, indicating that these countries are in a relatively core area
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in the research field of land use change and food security and that the relevant research
studies have a significant impact on this field.

Figure 4. Country cooperation network map.

Table 3. Information table of the top 20 major research countries with published articles.

Ranker Count Centrality Year Countries Ranker Count Centrality Year Countries

1 200 0.58 2003 USA 11 30 0.11 2010 France
2 125 0.1 2009 China 12 26 0.01 2007 Italy
3 114 0.13 2009 Germany 13 25 0.06 2013 Switzerland
4 93 0.11 2009 England 14 23 0.01 2011 Indonesia
5 92 0.1 2008 The Netherlands 15 22 0.02 2008 Belgium
6 56 0.04 2009 Australia 16 22 0.03 2008 Canada
7 47 0.04 2010 Scotland 17 20 0.09 2009 Denmark
8 36 0.02 2007 Austria 18 20 0.01 2009 Sweden
9 35 0.03 2008 Kenya 19 19 0.01 2015 Colombia

10 33 0 2009 Brazil 20 18 0.01 2012 India

3.3. Analysis of Hot Research Topics and Frontiers Trending
3.3.1. Analysis of Hot Research Topics

Keywords capture the core idea of the article. Through the research on keywords in a
field, we can quickly grasp the hot topics in the field [44]. In this study, VOSviewer software
was used to visualize keywords. Nodes in the knowledge map represent keywords. The
larger the node is, the higher the frequency, and the lines between nodes represent the
cooccurrence of particular keywords. In addition, in the VOSviewer knowledge map,
different colors represent different clusters, and the same color represents the same cluster.
By analyzing the keyword cooccurrence knowledge map (Figure 5), we find that the whole
keyword knowledge map takes “food security”, “land use change” and “climate change”
as the core, producing a radial shape. Considering that high-frequency keywords can be
clearly displayed, a total of 279 high-frequency keywords are obtained with the threshold
of five of each keyword. The cooccurrence map of keywords is relatively clear, and the
top 20 high-frequency keywords are shown in Table 4. As seen from Figure 5 and Table 4,
“land use change” (185), “food security” (141), “climate change” (119), “impact” (102) and
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other high-frequency keywords constitute representative terms in this field. In terms of
layout, these high-frequency keywords are also key hub nodes. Other nodes around them
have together formed the hot cutting-edge research topics in this field in recent years.

Figure 5. Keyword cooccurrence network map.

Table 4. Information table of top 20 keywords with cooccurrence.

Ranker Count Centrality Year Keywords Ranker Count Centrality Year Keywords

1 185 0.29 2000 Land use change 11 42 0.08 2009 Biodiversity
2 141 0.21 2006 Food security 12 41 0.07 2006 Deforestation
3 119 0.13 2006 Climate change 13 37 0.05 2010 Land use
4 102 0.08 1999 Impact 14 34 0.05 2000 Policy
5 62 0.14 2003 Agriculture 15 33 0.06 2008 Conservation
6 45 0.08 2009 Management 16 32 0.02 2014 Ecosystem service

7 45 0.04 2011 System 17 31 0.04 2012 Greenhouse gas
emission

8 45 0.02 2000 Model 18 30 0.02 2006 Cover change
9 43 0.05 2006 Dynamics 19 30 0.08 2005 Carbon

10 43 0.06 2000 Pattern 20 27 0.02 2012 Expansion

To refine the research topics more intuitively and effectively in this field, we use the
unique clustering density map function of VOSviewer software to visualize the keyword
cooccurrence clustering results (Figure 6). In the cluster density map, the density of an
element depends on the number and weight of its surrounding elements. From the cold
tone to the warm tone, the representative clustering density gradually increases; that is,
the frequency of keyword cooccurrence increases, and the heat of related research topics
increases [45]. According to the clustering results in Figure 6, combined with professional
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knowledge, we can extract seven frontier hot topics in the current research field of land use
change and food security (Table 5) and further analyze and discuss the research contents
and important achievements of each frontier hot topic.

 

Figure 6. Keyword cooccurrence clustering density map produced by VOSviewer software.

Climate Change and Carbon Emissions

With excessive carbon emissions produced in the process of human production and
consumption, global warming and abnormal climate events frequently occur, which have a
direct impact on land use, especially on changes in cultivated land area, threatening global
food security [46–48]. At present, with the continuous intensification of abnormal climate
change, the geographical distribution of food-deficient areas will further expand. At the
same time, grain production areas have been chronically affected by energy crops, feed
crops, forestry and other economic crops, as well as the continuous expansion of vegetation
areas caused by climate warming, which forces people to reduce the land allocated to
grain production, thus, causing a global food supply crisis [49–51]. Hasegawa et al. built a
comprehensive assessment model of the impact of climate change mitigation policies on
food security [52]. The research found that if mitigation policies to address climate change
are strictly implemented, they will have a huge negative impact on global food production
and consumption, especially in low-income countries in Africa and South Asia. Moreover,
Nobre and Beltrán-Tolosa et al. found that the development of traditional agriculture
and animal husbandry will inevitably reduce the area of vegetation coverage, resulting in
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environmental problems such as soil and water loss and soil erosion, leading to drought
with climate change, thus affecting the production of the main food crops [53–55]. Relevant
studies show that by the end of this century, due to the impact of climate change, grain
prices may rise by 110% or more over the prices in the baseline year. Similarly, Hasegawa
and Popp et al. also confirmed that food prices in parts of Asia and Africa will be more
affected, increasing the potential risk of a food crisis [49,56]. Therefore, the impact of
climate change and carbon emissions on land use change and food security will still be one
of the key topics that scholars continue to pay attention to in the future [57,58].

Table 5. Keyword cooccurrence clustering induction.

Cluster-ID Research Topics Main Keywords Included

1 Climate change and carbon emissions

Climate change, global change, climate change mitigation, change
impacts, greenhouse gas emissions, carbon sequestration, carbon
stocks, greenhouse gas emissions, soil carbon sequestration, soil
organic carbon

2 Sustainable land management policy
Land management, policy, protection policies, cropland protection,
farmland abandonment, rapid urbanization, transformation, urban
expansion, urban sprawl, urbanization

3 Agricultural intensive development
Agricultural intensification, sustainable intensification, agricultural
productivity, ecosystem, environmental change, food security,
biodiversity conservation, impacts, risk

4 Land degradation
Cropping systems, land use change, degradation, desertification,
land degradation, pollution, soil erosion, water resources, croplands,
climate change impacts, rice, river basin

5 Renewable bioenergy

Carbon, carbon footprint, water footprint, bioenergy, biofuel, energy,
environmental impact, farming systems, life cycle assessment,
production systems, renewable energy, soil erosion, sustainable
agriculture

6 Food production
Crop productivity, crop yield, efficiency, food production, human
appropriation, impact assessment, yield gap, use efficiency, net
primary production, irrigation, maize, wheat

7 Agricultural benefits
Agriculture, benefits, biodiversity, certification, costs, crop, food
demand, integrated assessment, intensification, plantations, policies,
scenarios, validation, yields

Sustainable Land Management Policy

A sustainable land management policy can help mitigate climate change, protect the
land from soil erosion and ensure food security. Its core is to emphasize the resilience
of management methods, that is, to seek maximum synergy through the combination of
different land management policies [59,60]. Russo and Pavone believe that the mitigation
potential of multiple land management policies that work together on the same land is
generally greater than that of a single policy [61]. Moreover, Dax et al. also confirm that
the combination of multiple land management policies can save resources, enhance social
resilience and promote ecological restoration to better mitigate and adapt to climate change,
prevent desertification and land degradation, and strengthen food security [62]. For exam-
ple, (1) strengthening the combination of fire management and afforestation can increase
land carbon sequestration, enhance the potential to mitigate climate change and land degra-
dation, reduce management costs and ensure food production areas [63]. (2) Reducing
food waste and a carnivorous diet will help to reduce carbon emissions, achieve sustainable
land use management, and ensure food security and low carbon emissions [64]. (3) The
construction of urban green infrastructure is also a solution to mitigate climate change.
Through measures such as vertical greening, roof gardens, suburban agriculture and ver-
tical agriculture, it can not only meet some food needs of urban residents but may also
reduce the pressure of rural land food production and land degradation [65,66]. (4) In
addition, improving land market management policies, ensuring land ownership and
integrating environmental costs into food security and ecological compensation will help
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to achieve sustainable land management and eliminate poverty to achieve food security
with stable food production [67,68]. A successful sustainable land management policy
requires the participation of more stakeholders, especially local stakeholders such as local
farmers and community residents who are easy to ignore, which can fully mobilize their
enthusiasm to understand and practice land management policies [69,70]. However, there
are great differences in the actual situation in diverse regions. Therefore, in future research,
scholars should realistically build sustainable land management policies suitable for each
region to achieve the stable production of food crops and ensure food security.

Agricultural Intensive Development

In the face of the food security crisis, although the development of marginal ecological
land can improve food output in the short term, this process is mostly irreversible, and
the opportunity for agricultural land expansion is limited [71]. Excessive exploitation of
natural resources can easily lead to land degradation and reduction of ecological land area,
resulting in greater social and ecological costs [12]. Therefore, the intensive development
of land use is considered to be the fundamental approach to not only ensure the needs
of human land products and functions but also to effectively reduce marginal land devel-
opment and protect the ecological environment [72,73]. Compared with the traditional
intensification realized by changing management practices and decisions, sustainable land
use intensification has been widely discussed and explored as a necessary way to improve
global food security and reduce ecological vulnerability and environmental pollution.
Moreover, Charles and Struik et al. sustainable intensification can balance the compet-
ing demands for land use, improve ecosystem services and maintain biodiversity while
increasing production to achieve common growth [74,75].

Research on agricultural intensification can be traced back to 1990. Vlek took sub-
Saharan Africa as an example to explore the role of alternative soil fertility and other
measures in agricultural production [76]. There are relatively many studies on sustain-
able intensification, focusing on the sustainable intensification of agricultural land, farms
and agricultural production; the specific research contents include the conceptual conno-
tation, empirical evaluation, impact mechanism, biodiversity, and improvement of soil
organic matter [72,77]. For example, Wezel et al. [78] distinguished between the concepts
of “ecological intensification”, “sustainable intensification” and “agricultural ecological
intensification” and analyzed the subtle differences of the three concepts. Mulwa et al. [79]
used the dynamic random effect probit model and the control function method to eval-
uate the vitality of adopting sustainable agricultural inputs and the effect of large grain
traders strengthening the adoption of these sustainable agricultural inputs at the farm level.
However, with the in-depth development of agricultural intensification, ecological and
environmental problems have gradually appeared. How to stabilize food production under
the condition of coordinating land use types and protecting the ecological environment
still needs further research.

Land Degradation

Climate change has changed the process of surface change and terrestrial ecosystems
and their composition, structure and function [80], triggered changes in land use, acceler-
ated the process of desertification and land degradation in many areas, reduced agricultural
output and agricultural income, and deeply affected the security of world food production.
According to the relevant data released by the Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services (IPBES) of the United Nations, human intervention
has degraded the ecological function of approximately 80% of the world’s agricultural land,
10–20% of pasture land and 87% of wetlands, which brings economic losses ranging from
450 billion to 10.6 trillion US dollars to the global ecological service system every year; it
also directly or indirectly affects the well-being of approximately 3.2 billion people around
the world [81,82].
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Land degradation seriously affects food production and distribution through soil
erosion, the decline of land fertility and salinization [83]. Paoloni and Onorati found that
it also directly threatens the well-being of the rural population, children and women and
affects food security worldwide [84]. At present, a large number of studies have analyzed
the factors of land degradation by exploring the driving force of land use change to analyze
its impact on food security, especially from the aspects of geographical conditions, popu-
lation characteristics, economic growth, road traffic, meteorological factors, Government
policies, and technological evolution [75,85–87]. Among them, Prokop [86] analyzed the
degree and type of land degradation of the Meghalaya Plateau through remote sensing
data and found that the impact of different land degradation types and degrees on grain
yield showed differentiated trends. In the face of land degradation, in response to the
increase in food demand, Ranasinghe and Piyadasa [87] argue that we should integrate the
main environmental, natural and socioeconomic factors in a region to build a productive
land management system and explore an optimal mode of land production use to ensure
the stable production of food. Land degradation is closely related to food production.
Adopting sustainable land management policies not only effectively curbs the trend of
land degradation and optimizes land use structure but also gives full play to the overall
efficiency of different land types.

Renewable Bioenergy

With increasing attention given to energy security and ecological security, govern-
ments worldwide are pursuing multiple goals of energy security, reducing greenhouse gas
emissions, and developing rural economies. Tian and Renzaho et al. found that the gov-
ernment have invested much money or established tax incentive mechanisms to develop
renewable bioenergy represented by fuel ethanol and biodiesel to replace nonrenewable
fossil fuels (coal, oil and natural gas) [88,89]. While the world vigorously advocates for the
development of bioenergy to ensure energy security, the demand for land for bioenergy
production is also increasing [90]. With the sharp rise of global food prices, whether bioen-
ergy threatens food security is not only the focus of major international organizations and
governments but also the main topic of debate within the academic community [46,91].
Although the use of bioenergy instead of fossil fuels can effectively reduce greenhouse
gas emissions to a certain extent, the large-scale increase in bioenergy demand may also
cause forest degradation and reduce food production [56,92]. Moreover, a large number
of agricultural products are used to produce bioenergy, which greatly reduces the food
supply in the international market and will inevitably lead to an increase in food prices [93],
threatening global food security, especially the basic living needs of people in low-income
countries with food shortages [94,95]. However, at present, there is no systematic research
on how much-cultivated land is occupied by the development of bioenergy, what impact it
has on land use change, how energy crops compete with other crop types at the household
scale, and how to stabilize food production, which are worthy of further exploration by
scholars in the future.

Food Production

Food security is a multidimensional security goal and is affected by many factors,
among which food production is the most critical link in the food security system [96–98].
Land use change affects regional food production through changes in area and spatial
location among different land use types, and temporal and spatial changes in cultivated
land are one of the main forms of land use change [99], which affects the global food
security supply [100]. At present, the research focus of most scholars is on quantifying
the impact of cultivated land change on food security. However, due to the differences in
research methods, regions and periods, the research results are also quite different [100].
For example, Wang et al. constructed the evaluation framework of “land food water” to
quantify the impact of temporal and spatial changes in cultivated land on food production
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and water resource consumption and proposed the sustainable development policy of
cultivated land and the optimal management policy of water resources [101].

In addition, the research results of some scholars show that grain production is affected
by a variety of natural and socioeconomic factors, among which regional factors, family
size, farming system, land use intensity, land tenure, climate change and environmental
cost have a great influence on grain productivity. The actual grain yield is affected by
the quantity and quality of cultivated land, climate, agricultural technology, and planting
methods [13,102,103]. However, on the whole, although the current research helps to
alleviate the contradiction between cultivated land change and food production, there are
still some aspects to be optimized. For example, (1) the relevant research in this field is
carried out at the national or a natural area level, which makes it difficult to guide practical
work at the provincial level, and (2) weak supervision of newly reclaimed cultivated land
and insufficient reserve resources of cultivated land easily leads to potential questions of
food security production.

Agricultural Benefits

Global land use change is affected not only by climate change, land degradation and
other factors but also by economic factors such as agricultural benefits [104]. The former is
an irresistible natural factor, while the latter is the spontaneous change of land use types by
farmers in pursuit of better comprehensive benefits [105]. In the environment of the market
economy, farmers, as “rational economic people”, their subjective will and choice of land
production mode are the main influencing factors of cultivated land resource utilization
and management and grain production capacity. Moreover, Wang and Tian et al. found
that the price of agricultural products directly affects the type of cultivated land utilization
and the result of grain production [106]. At present, there is a realistic situation that is
not optimistic; that is, the economic benefits of food production are generally lower than
those of other economic crops. Therefore, when there is no government subsidy or it is
too low, farmers’ willingness to plant food will continue to decrease and then switch to
other economic crops [107]. In recent years, scholars have recognized that the change of
land use types poses a greater threat to world food security than the small reduction of
cultivated land area, and called on the Government to take effective measures to curb the
drastic change of modes of man-made land use, which will help to stabilize the production
area of cultivated food [108].

In addition, facing the problems of land fragmentation, higher agricultural production
costs, lower agricultural productivity and lower grain output, most countries in the world
have generally used effective measures, promoting moderately intensive land and large-
scale production and management to transform and upgrade the agricultural system, to
reduce agricultural production costs and to improve agricultural benefits [109]. Moreover,
with the deepening of people’s understanding of environmental pollution and biodiver-
sity [110], scholars’ attention to agricultural benefits has increased social and ecological
benefits from a single economic benefit to emphasis more on the comprehensive benefits
of agricultural production [111]. In this way, improving agricultural benefits not only
protects the ecological environment but also stabilizes food production and ensures global
food security.

3.3.2. Analysis of Frontier Trending Topics

Although the keyword clustering density map of the VOSviewer software can intu-
itively show the hot research topics in the field, the time factor is not considered. The time
zone map of the CiteSpace software arranges keywords according to time series, which can
more intuitively show the distribution of hot topics in each period [112]. Therefore, this
paper combines the time zone map with the burst word detection function of CiteSpace
software, which vividly shows the evolution of the research topic over time. We selected
keywords with a frequency of more than five every one year (slice length = 1) from 1999 to
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6 September 2021, to build a keyword cooccurrence network map (Figure 7). Furthermore,
three burst words were detected (Table 6).

 

Figure 7. Time zone map for studying the evolution path produced by CiteSpace software.

Table 6. Top three burst keywords detection with the CiteSpace software.

Keywords Year Strength Begin End 1999–2021

Area 1999 3.56 2015 2016  
Consumption 1999 3.21 2015 2017  

Ecosystem service 1999 3.4 2019 2021  

Combined with Figure 7 and Table 6, according to the time distribution of key nodes,
we summarize the development trend in the research field of land use change and food
security as follows: (1) The research in the field of land use change and food security
started from the field of land use change and then combined the research with food security.
(2) From 2009 to 2017, there were a large number of key nodes related to the theme of land
use change and food security, including agriculture, land use, forest, rice, food demand
and yield. During this period, research on land use change and food security was in a stage
of rapid development, which once again shows that research on this topic has attracted
the continuous attention of scholars. (3) In addition, scholars generally pay attention to
key nodes, including climate change, carbon, urban expansion, and environmental impact,
which suggests that scholars prefer to further analyze the impact of land use change on
food security by researching the current situation and influencing factors of land use
change. (4) Since 2017, scholars have paid more attention to global research on land use
change and food security, raised the issue of food security to the field of risk research, and
advocated the formulation and implementation of agricultural protection policies to ensure
food security.

The burst detection algorithm was proposed by Kleinberg to explore the research
frontier trend in a field by studying the strength and duration of keyword bursts [113].
The research on land use change and food security includes three top burst keywords:
“area”, “consumption” and “ecosystem service” (Table 6). In 2015, the keywords “area” and
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“consumption” were the research hotspots, focusing on “differences in different research
regions” and “energy and food consumption”, but the duration was short. In 2019, the
keyword “ecosystem service” has become a new research hotspot and continues until now.
It focuses on agricultural intensive development, grain production and environmental
protection, which shows that ecosystem service will become a hotspot and trend in future
research. As a whole, there are few burst words in this research field, indicating that the
research concentration in this field is poor, and further research is needed.

4. Discussion

To ensure food security, countries all over the world have generally adopted strict
land use restriction measures, such as China’s cultivated arable land minimum policy,
Japan’s land classification management system and the United States’ land fallow policy.
They hope to strictly restrict land use change through administrative control methods to
stabilize food production and limit food risk within a controllable range [114–116]. At the
same time, the academic research results on the theme of land use change and food security
have increased significantly in the past two decades, and these results show a significant
positive development trend.

4.1. Research Process

The results of this paper show that the first research article on the theme of land use
change and food security was published in 1999. Since then, the number of published
articles has shown a slow-growth trend. To deeply analyze the evolution of the research
field of land use change and food security, this paper divides these research studies into
three stages according to the number of articles published annually and the category and
frequency of keywords. The first stage is the initial stage of research (1999–2008), during
which the number of published articles was small, the research theme concentrated on a
single topic, and overall research progress went slowly. Related research mainly focuses
on conceptual and technical analysis, as well as direct analysis of the impact of land use
change on food security. The second stage is the rapid development stage (2009–2017),
during which basic research knowledge increased to a certain extent. The research focused
on the influencing factors of land use change, including climate change, carbon emissions,
and sustainable land management, climate change and sustainability would continue
to be focused on in the future. During this stage, scholars also paid more attention to
improving the ability to deal with land use change and food security risks, and to explore
countermeasures and governance schemes at multiple levels, such as technology and policy.
The number of articles published on the theme of land use change and food security did
not increase significantly until 2009, which may attribute to the theme of World Food Day
in that year, which was described as “coping with the crisis and achieving food security”,
and emphasized the serious plight of malnutrition of 1.02 billion people in the world, as
well as the need to help solve the problem of hungry people under conditions of economic
crisis. The third stage is the stable deepening stage (2018–present). In this stage, as the
global food security problem becomes increasingly serious, scholars pay more attention
to global land use change and food security, and they raise the issue of food security to a
risk problem.

4.2. The Impact of Land Use Changes on Food Security

We found that the research in this field mainly explores the impact on food security
from four land use change factors: environmental change, land quality, crop planting
type and agricultural production mode. First, environmental change involves climate
change and carbon emissions. Excessive carbon emissions will lead to global warming
and extreme climate events, resulting in changes in production factors such as moisture,
heat, humidity, and temperature, which will lead to changes in land use patterns to
varying degrees, eventually affecting the cultivated land area of food production and
endangering food security. Second, land quality is related to land degradation. Due to
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the unreasonable use of land and changes in the natural environment, part of land in the
world has experienced serious degradation (soil erosion), which leads to a decline in land
productivity and has a serious impact on food production. Third, crop planting types
involve renewable bioenergy and food production. Compared with the economic benefits
of food crops, the economic benefits of other cash crops are higher, especially with the
rapid development of clean energy (bioenergy), which leads to the conversion of some
cultivated land originally planted with food crops to other cash crops. The reduction in
the planting area of food crops will inevitably lead to a decline in total food production,
then threatening global food security. Fourth, the agricultural production model involves
sustainable land management policy, agricultural intensive development, food production
and agricultural benefits. Facing practical problems such as land degradation, reduction of
ecological land, land pollution and decline of soil fertility, people urgently need to change
the extensive agricultural production model to the production model with higher overall
efficiency. For example, the intensive agricultural model pays more attention to the stability
of grain production and the protection of the ecological environment, which can give full
play to the economic, social and ecological effects of agricultural production [117].

4.3. Research Hotspots

At present, the research topic in this field is mainly aimed at the complex practical
problems of global land use change and food security, and the research content is becoming
increasingly organized and systematic. According to the clustering results, we can extract
seven frontier hot topics in this field: climate change and carbon emissions, sustainable
land management policy, agricultural intensive development, land degradation, renewable
bioenergy, food production and agricultural benefits. These results present the trend of
cross integration with economics, land management, soil science, public policy, politics,
geography, and other disciplines, and indicate that the research in this field continues to
expand. Meanwhile, it is worth noting that although the theme of land use change and
food security has become very popular in recent years, scholars’ research perspective is not
limited to the direct analysis of the impact of land use change on food security but also
considers climate change, carbon emissions, renewable bioenergy, agricultural intensive
development models and other relevant aspects [7,8,54]. In terms of research methods, this
field has formed a research system of geographic information technology, satellite remote
sensing technology, theoretical models, investigations and interviews and other methods.
Besides, through the analysis and summary of recent relevant literature, we found that
scholars mainly focus on the hot issues including the utilization efficiency of chemical
fertilizer (active nitrogen, etc.), urbanization expansion, greenhouse effects, and pay more
attention to the combination of economic, social and ecological benefits of agricultural
production to reduce the threat of land use change to food security [118–121].

4.4. Research Deficiency

This paper also has some research limitations that can be improved in the future.
Firstly, because we only selected the WOS database as the data source for the bibliometric
analysis of this study, and did not choose other databases (such as China National Knowl-
edge Infrastructure, Scopus, et al.), the data used in our study cannot include all literature.
However, as one of the most comprehensive databases in the world, the WOS database
contains high-quality documents, it can represent the research hotspot and frontier in this
field. Secondly, we can fully analyze the most influential publications in the database in
the future, which will help to understand the real impact of the most important research in
the scientific community.

5. Conclusions

This paper comprehensively used CiteSpace and VOSviewer software for bibliometric
analysis and performed a visual analysis of the knowledge map of the literature with the
theme of land use change and food security in the WOS database, and explored the research
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status, knowledge structure and evolution context. Since 1999, the number of annual
published articles in the field of land use change and food security has shown an overall
upward trend, which can be divided into three stages: initial research, rapid development,
and a stable in-depth stage. Although a core author group was initially formed, the overall
cooperation network is still relatively scattered. The distribution of research institutions is
concentrated and forms a small cluster, which shows that there are only a few cooperative
relationships among research institutions, and large institutional collaborative groups have
not been formed across countries or regions. In national cooperation networks, developed
countries are in the core position, but the cooperation network is not prominent. Meanwhile,
keywords such as food security, land use change and climate change are taken as the core
issues, they exhibit a radial shape and form seven frontier hot topics in this field. Moreover,
due to the complexity of the research theme of land use change and food security, the
research methods in this field are in-depth and diverse, and multidisciplinary development
is constantly integrated. In addition, with the emergence of factors or problems such as
climate change, carbon emission limitations, the application of new land use models and
technologies, and the imbalance between food production and demand, there are new
opportunities and challenges to the research on land use change and food security.

The research field of land use change and food security can be strengthened in the
following aspects in the future. (1) Theoretical innovation still needs to be strengthened.
At present, the research in this field is carried out through technology and mathematical
models, which lack theoretical construction and innovation. The research perspective
can also be innovated from the dimensions of land property rights systems and land
management systems. (2) We should strengthen the research on the impact of agricultural
chemical fertilizers on food security. Agricultural chemical fertilizer plays an important
role in slowing down land use change and ensuring the sufficiency of food production,
especially synthetic nitrogen fertilizer. However, the loss of active nitrogen will not only
affect grain yields but also pollute the ecological environment. (3) Further research can
focus on the impact of urban expansion on land use change. Due to the urbanization process
of countries worldwide, a large amount of high-quality cultivated land around cities is
occupied, which seriously threatens food security, especially in developing countries.
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Abstract: The Ecological Functional Zone of the Upper Yellow River (EFZUYR) is a critical water-
catching area in the Yellow River Basin, the ecological security of which affects the sound development
of the ecosystem in the entire basin. Recently, significant land use changes have aggravated regional
ecological risks and seriously affected the sustainable development of EFZUYR. In this context, this
paper provides an in-depth study of the ecological risks caused by land use landscape changes.
With the help of land use data and dynamic degree analysis, the land use transfer matrix, and the
landscape pattern index, this paper quantifies the distribution trends of land use landscape patterns
in EFZUYR from 1990 to 2018. In addition, this research explores the temporal and spatial dynamic
distribution characteristics of landscape ecological risks in this functional zone. The research results
show the following: (1) The transfer of land use in EFZUYR from 1990 to 2018 mainly occurred
among cultivated land, grassland, and woodland, with the transferred area accounting for 87.16% of
the total changed area. (2) The fragmentation degree of built-up areas is 0.1097, 0.1053, 0.0811 and
0.0762 in 1990, 2000, 2010 and 2018, respectively, with a decreasing trend. The dominance degree of
grassland has been maintained at the highest level for a long time, with all values above 0.59. The
separation degree and the interference degree of built-up areas were the highest and the values of
the four periods were above 1.2 and 0.44, respectively. The loss degree of water was the highest,
with a value above 0.67, while the value of other land use was mostly below 0.4. (3) The landscape
ecological risk of EFZUYR presented a fluctuating rising, falling, and then rising trend. The spatial
distribution characteristic of EFZUYR presented “high in the north and south, low in the middle.”,
which has been maintained for a long time. The proportion of low-risk areas is as high as 70%, and
the overall ecological risk of the region was low. However, the ecological risk of some areas, such as
Linxia City and Magu County, increased. These findings can provide theoretical support for land use
planning and achieving sustainable development of EFZUYR.

Keywords: land use/land cover change; landscape pattern index; landscape ecological risk; EFZUYR

1. Introduction

Watershed is an important area in which humans engage in social production, and
the population distributed in significant watersheds in the world is as high as 2.24 billion,
accounting for about one-third of the world’s population [1]. As the fifth-longest river in the
world and the second-longest river in China, the Yellow River is famous for being among
the birthplaces of the ancient Chinese civilization and the most extensive sand content. In
2019, China identified the ecological protection and high-quality development of the Yellow
River Basin as the fifth national strategy. The policy of ecological environment management
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has reached an unprecedented high, and the construction of the ecological security pattern
of the Yellow River Basin has continued to advance [2]. With these efforts, breakthroughs
have been made in restoring the ecosystem and the environmental protection of the Yellow
River Basin. However, due to the fragility of the ecological environment of the Yellow
River Basin and the intensification of human interference, the ecological security problems
of the entire basin have taken severe forms (such as soil erosion, land degradation, and
weakening of ecosystem function). Ecological governance remains highly arduous [3].
Since 2001, to promote the implementation of ecological security protection project in
the Yellow River Basin, the relevant departments of the State of China began to study
the zoning of ecological functions and clarify the crucial areas for safeguarding national
ecological security. The ecological functional zone is a comprehensive ecosystem that
integrates conserving river sources, mediating the relationship between humans and
nature, and promoting ecological protection. It plays a critical role in maintaining the
safety of the region’s ecological environment and the whole country. The protection of
the stable development of the ecological functional zone depends on the rational use of
land [4]. Located in the north-eastern part of the Tibetan Plateau, EFZUYR is known as the
reservoir of the Yellow River and has a prominent ecological strategic position. Land use
or land cover change (LUCC) in China has undergone a complex series of changes over
the past three decades due to fast economic growth and the adoption of several land use
policies [5], and EFUYR is no exception. However, assessing the ecological risk of EFZUYR
based on LUCC is particularly important for ecological restoration and water conservation.

Scientific regional ecological risk assessment can provide an essential basis for the
policy formulation, planning, and land management of natural resource sustainability [6].
The demand for environmental decision-making and planning management has promoted
the continuous expansion of the scope and content of ecological risk research and, as
a result, ecological risk assessment has received increasing attention from academic cir-
cles [7]. Moreover, ecological risk assessment has changed from a traditional ecological
risk assessment to a regional ecological risk assessment and a landscape ecological risk
assessment [8]. Compared with the traditional ecological risk assessment, the landscape
ecological risk assessment can better express spatial heterogeneity, which has become the
most popular method for assessing ecological risk [9]. Numerous scholars have made
breakthroughs in landscape ecological risk. The typical research areas selection mainly
covers research areas such as watershed [10], cities [11], mountain [12,13], wetland [14] and
nature reserves [15,16]. The research content mainly focuses on the assessment of landscape
ecological risk [17,18], spatial and temporal patterns [16], and the impact of different factors
on landscape ecological risk [19]. With regard to research methods, the measurement and
calculation of landscape ecological risk mainly include the risk “source-collection” method
and landscape index method [11]. The evaluation method based on risk source collection is
more suitable for evaluating specific ecological risks with apparent stress factors in certain
areas. However, this method must be combined with the specific ecological processes or dis-
aster risks to identify the landscape type that promotes or hinders the sound development
of the ecosystem [20] and does not take landscape heterogeneity and ecosystem change
patterns into consideration. However, the evaluation method based on the landscape index
method focuses on assessing ecological risk from the spatial pattern of the landscape, which
can comprehensively evaluate the ecological impact and cumulative effects of multiple
risk sources in the landscape mosaic [21]. In this method, land use/cover change (LUCC)
is the basis of ecological risk assessment [22]. Compared with the evaluation method of
risk source collection, the landscape index method quantitatively evaluates the overall
ecological quality of the region and focuses on analysing the spatial-temporal variation
characteristics of risks and the risks of land use status to ecological functions and processes.
This is the reason that, in recent years, landscape ecological risk assessment based on the
landscape index method has witnessed its most comprehensive application.

EFZUYR is an important ecological barrier of the Yellow River, with important func-
tions of water recharge, maintaining biodiversity and regulating regional climate, and
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has an irreplaceable role in maintaining the water resources and ecological security of the
Yellow River basin. Therefore, this study quantitatively analyzed the spatial distribution
characteristics of EFZUYR ecological risks using the land transfer matrix, landscape eco-
logical risk model and cold-hot spot analysis, which fills the knowledge gap of landscape
ecological risk assessment in the upper Yellow River Basin. The main goal of this study was
to assess the landscape ecological risk of EFZUYR based on the changes in LUCC using
the landscape index approach. The specific objectives of this study were (1) to analyze the
area change of EFZUYR land use and the transfer characteristics between different land
uses from 1900 to 2018, (2) to explore the change characteristics of the landscape index of
EFZUYR land use, and (3) to evaluate the spatial and temporal evolution characteristics of
EFZUYR landscape ecological risk.

2. Materials and Methods

2.1. Study Area

EFZUYR is located in the north-eastern extension of the Qinghai-Tibet Plateau and is
the drainage divide between the Yellow River Basin and the Yangtze River Basin in China.
Its unique geographical location and natural geographic characteristics have determined its
fundamental ecological attributes, such as an ecological transition zone and a fragile zone,
which is of great significance for maintaining social stability and ecological security [23].
The rapid socio-economic development and overuse of land have led to an increase in
regional ecological risks. In addition, EFZUYR is not only the largest plateau wetland at
the eastern end of the Qinghai-Tibet Plateau and a vital water replenishment region for
the upper reaches of the Yellow River, but also an important conservation area for rare
flora and fauna of the Tibetan Plateau. Its administrative region includes most counties in
Linxia Hui Autonomous Prefecture (Linxia Prefecture) and Gannan Tibetan Autonomous
Prefecture (Gannan Prefecture) in Gansu Province of China (Figure 1). The terrain of the
study area is high in the southwest and low in the northeast, with altitudes ranging from
1500 to 4900m. The vegetation is mainly grassland, wetland, and mountain woodland, such
as alpine meadow, which is mainly composed of Carex and Kobresia, and subalpine shrub,
which is mainly composed of Rh. przewalskii and Rh. rufum. The climate is temperate
continental monsoon with a large diurnal temperature difference. The annual average
temperature in the southwest area is 4 ◦C. Additionally, precipitation in the southwest
is unevenly distributed with large interannual variations. Linxia Prefecture and Gannan
Prefecture are the gathering and living areas for Hui, Tibetan, Dongxiang, Salar, and Tu
ethnic groups. Data from the seventh census of China shows that the resident population
of the study area is 2,143,900.

2.2. Data

The land use data used in this paper are from 1990, 2000, 2010 and 2018, which were obtained
from the Resources and Environmental Science and Data Center (http://www.resdc.cn/; accessed
on 5 March 2021) and have a spatial resolution of 30 m × 30 m. These data have been widely
used and their accuracy meets the criteria of the present study. Referring to the classification
standard of China’s land use status (GB/T21010—2007) and considering the characteristics
of different land use in EFZUYR, this study utilized the reclassification function of ArcGIS
10.6 to classify the land use data into six categories: cultivated land, woodland, grassland,
water, built-up areas and unused land (Figure 2). The Digital Elevation Model (DEM) data
comes from the Geospatial Data Cloud (http://www.gscloud.cn/; accessed on 5 March
2021), with a spatial resolution of 90 m× 90 m.

2.3. Methods
2.3.1. Land Use Dynamic Degree

The dynamic degree of land use is mainly used to describe the area change in land
use in a certain period, to express the intensity of land use in a region and the differences
among different land uses, periods, or regions. In this study, the dynamic degree of various
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land uses of EFZUYR for 1990–2000, 2000–2010, 2010–2018 and 1990–2018 was calculated
to analyze the land use changes in the study area. The formula for the dynamic degree of
land use is detailed in the literature (Equation (A1)) [24].

Figure 1. Overview of the study area in the background of Yellow River Basin.

2.3.2. Landscape Ecological Risk Index

Landscape ecological risk refers to the possible adverse consequences of the interac-
tion between the landscape pattern and ecological process under the influence of natural
or human factors [20]. The landscape ecological risk index (ERI) consists of the landscape
disturbance index and the landscape vulnerability index, reflecting the relationship be-
tween landscape patterns of land use and ecological risk [25]. Based on fully considering
the impact of land use and landscape variability on the ecological environment under
human activity disturbance, this study used the landscape pattern index to establish the
assessment method of the landscape ecological risk of EFZUYR. The formula for ERI is
detailed in the literature (Equation (A2)) [16,26].

Combining the research results of Chen [26] and the actual condition of the research
area, this study divided the ecological risk of the ecological function area in the upper
Yellow River Basin into five grades with an equal interval division method: the low-
est risk area (ERI ≤ 0.20), the lower risk area (0.20 < ERI ≤ 0.22), the medium risk
area (0.22 < ERI ≤ 0.24), the higher risk area (0.24 < ERI ≤ 0.26), and the highest risk area
(ERI > 0.26).

To present the EFZUYR landscape ecological risk index’s spatial distribution charac-
teristics, this study utilized landscape ecology theory to conduct equidistant sampling of
land use data in 1990, 2000, 2010 and 2018. After many experiments and comparisons, it
was found that 5 km × 5 km is the optimal scale for ecological risk research in the area,
so the research area was divided into 5 km× 5 km grids (Figure 3). In data processing,
grids were used as small research units for spatial sampling. Ecological risk values were
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calculated for all grids, and landscape ecological risk values were assigned to the center of
each ecological risk unit.

Figure 2. Land use of EFZUYR from 1990 to 2018. (a) 1990 (b) 2000, (c) 2010 and (d) 2018.

2.3.3. Cold-Hot Spot Analysis

Cold-hot spot analysis is often used to find the spatial distribution characteristics of
landscape ecological risks in the study area. In this study, the Getis-Ord General G was
used to explore the overall pattern and trend of landscape ecological risk in the study area,
and the Getis-Ord Gi* index of landscape ecological risk was used to describe the spatial
distribution of cold and hot spots of ecological units. Hot spots indicate areas where high
values of landscape ecological risk are clustered, and cold spots represent areas where low
values of landscape ecological risk are clustered. The formulas for the Getis-Ord General G
and the Getis-Ord Gi* are detailed in the literature (Equations (A3)–(A5)) [27].
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Figure 3. Grid division of EFZUYR ecological risk.

3. Results

3.1. Change Characteristics of Land Use
3.1.1. Area Changes in Land Use

This study performed a statistical analysis on the land use data of EFZUYR of four
periods from 1990 to 2018 and obtained statistics on the area changes in the six land use
types in functional areas (Table 1). During the research period, grassland and woodland
were the main land use of EFZUYR, and the characteristics of the number changes in
each land use type were widely different. In 1990, the ranking of the EFZUYR land use
area ratio was as follows: grassland (61.07%) > woodland (21.82%) > cultivated land
(8.72%) > unused land (6.67%) > water (0.92%) > built-up areas (0.72%); by 2018, the proportion
transitioned into the following order: grassland (60.81%) > woodland (21.68%) > cultivated
land (8.87%) > unused land (6.57%) > built-up areas (1.14%) > water (0.93%)). It can be
seen that the sum of EFZUYR grassland and woodland maintained at more than 80%, and
the increased speed of built-up areas exceeded water. Considering the number change
degree of each land use type, unused land had the most significant reduction in area. From
1990 to 2018, unused land witnessed a reduction of 72.13 km2 and a reduced rate of 3.03%,
and the grassland area showed a fluctuant decreasing trend in area, with a decrease of
130.13 km2. However, due to the large base of grassland area, the reduction area only
accounted for 0.61% of the total area, and thus the change rate was rather low; woodland
also showed a fluctuant decreasing trend in area, with a decrease of 64.94 km2 compared
with 1990 and a reduced rate of 0.85%. In EFZUYR, the land use with the largest increased
area was built-up areas which increased by 148 km2 during the research period, with an
increased rate of 59.06%. From 1900 to 2018, the cultivated land area showed a fluctuating
increasing trend of 47.07 km2, and the rate of increase was 1.54%. Water also showed a
trend of fluctuant increase in area and increased by 4.57 km2, with an increased rate of
1.42%. The above statistics show that woodland and grassland cover a greater portion of
ecological land use in EFZUYR, and the built-up areas showed a rapid increasing trend.
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3.1.2. Dynamic Changes in Land Use

According to the dynamic degree of EFZUYR land use (Table 1), differences in the
change rate of land use in different periods can be noticed. Cultivated land showed an
increasing trend first and then decreased slowly from 1990 to 2018. The overall change
showed the characteristics of growth, with a change rate of 0.04 %. The increase was
the most obvious from 1990 to 2000, with a growth rate of 0.74 %. Woodland showed a
decreasing trend first and then increased from 1990 to 2018. The overall change showed
a decreasing characteristic, with a reduction rate of 0.02%. From 1990 to 2000, the rate
of decrease was the largest, with a reduction rate of 0.16%. Grassland first showed a
decreasing trend, then increased and decreased from 1990 to 2018. The overall change
showed a characteristic of decreasing, with a reduction rate of 0.02%. The reduction rate
in 1990–2000 and 2010–2018 was the same-both 0.06%. Water first showed a decreasing
trend and then increased from 1990 to 2018. The overall change showed an increasing
characteristic, with a growth rate of 0.04%. It increased rapidly from 2010 to 2018, with a
growth rate of 6.21%. Built-up areas showed a continuous increasing trend from 1990 to
2018, with a growth rate of 1.51%, and was the fastest growing from 2000 to 2010, with a
growth rate of 3.53%. Unused land showed a constant trend first and then decreased, and
the overall change showed the decreasing characteristics. The decrease in 2000–2018 was
the largest, with a decrease rate of 0.29%.

Table 1. Dynamics of different land use in EFZUYR.

Type of Land Use
Dynamic Degree of Land
Use from 1990 to 2000 (%)

Dynamic Degree of Land
Use from 2000 to 2010 (%)

Dynamic Degree of Land
Use from 2010 to 2018 (%)

Dynamic Degree of Land
Use from 1990 to 2018 (%)

Cultivated Land 0.74 −0.39 −0.18 0.04

Woodland −0.16 0.05 0.02 −0.02

Grassland −0.06 0.05 −0.06 −0.02

Water −0.33 −3.27 6.21 0.04

Built-up areas 1.07 3.53 0.69 1.51

Unused land 0.00 −0.05 −0.29 −0.08

This study used the land use transfer matrix to reveal the detailed transfer status
among each land use type (Figure 4, Table 2). According to the land use transfer of EFZUYR
from 1990 to 2018, the total land use change was 5774.01 km2, with a change rate of 16.45%.
In the study area, grassland is 2530.28 km2, accounting for 7.21% of the total transferred
area, which is the largest land use transfer area. These areas were mainly transformed
into woodland, cultivated land and unused land. Cultivated land was one of the major
land-uses that transferred into other types, mainly grassland, woodland, and built-up
areas. The transferring area of cultivated land was 818.61 km2, accounting for 2.33% of the
transferred land. Built-up areas were the main type of inflow, which was mainly derived
from cultivated land and grassland. The area change reached 250.22 km2, accounting
for 76.80% of the total change area of built-up areas. Woodland mainly transferred into
grassland and cultivated land, with a changing area of 1683.49 km2, accounting for 22.14%
of the total woodland area. Water was mainly transferred from grassland and cultivated
land, with a changing area of 115.71 km2, accounting for 35.52% of the total water area.
Unused land mainly transferred into grassland and woodland, with the transferring area
accounting for 14.28% and 1.07% of the total unused land. Overall, compared with built-up
areas and cultivated land, the transfer area of other land use was smaller.

287



Int. J. Environ. Res. Public Health 2021, 18, 12943

Figure 4. Transformation distribution of different land use from 1990 to 2018.

Table 2. Land use transfer matrix in ecological function zones of the Upper Yellow River from 1990 to 2018.

Type of Land Use
Area of Land Use in 2018 (km2)

Cultivated Land Woodland Grassland Water Built-Up Areas Unused Land

Area of land use
in 1990 (km2)

Cultivated Land 3064.99 8.72 3291.26 9.36 3162.44 8.99

Woodland 7675.08 21.82 7553.57 21.48 7594.41 21.60

Grassland 21,475.31 61.07 21,353.60 60.72 21,455.15 61.01

Water 321.99 0.92 311.49 0.89 209.52 0.60

Built-up areas 252.04 0.72 278.95 0.79 377.32 1.07

Unused land 2377.96 6.76 2378.52 6.76 2367.47 6.73

In sum, the transfer of cultivated land, grassland, and woodland in EFZUYR was
obvious, with a transfer area of 5023.37 km2 from 1990 to 2018. The data showed that the
expansion of urban built-up areas has taken up many cultivated land resources.

3.2. Analysis of Landscape Index Changes of Land Use

The landscape indexes of different land types in 1990, 2000, 2010, and 2018, including
the fragmentation degree (C), the separation degree (N), the dominance degree (K), the
interference degree (S) and the loss degree (R), were evaluated in this study. From Table 3,
the following results can be drawn: (1) There was a relatively small change in the overall
fragmentation degree of each land use type. The fragmentation degree of cultivated land,
water area, and unused land increased during the research period. The fragmentation
degree of woodland and grassland was unchanged. The fragmentation degree of built-up
areas showed a decreasing trend, which indicates that built-up areas possess an obvious
contiguous development trend, reducing their fragmentation degree. (2) The separation
degree index of cultivated land, grassland, and unused land increased, while the index of
woodland, grassland, and built-up areas are downward. Therefore, the separation degree
of built-up areas was above 1.2, which is much higher than that of other land use type.
(3) Grassland had the highest dominance degree, followed by woodland. The unique
geographical environment and climatic conditions allowed the alpine grassland and forest
ecosystem in EFZUYR to develop into a complete ecosystem, with the extensive distribution
of grassland and woodland. (4) Built-up areas had the highest interference degree because
people have the greatest interference degree regarding the environment. In addition, the
interference degree of cultivated land and unused land showed a continuous increase
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during the research period. (5) The loss degree was affected by the interference degree and
the vulnerability degree, and its development trend is the same as the interference degree.
Water area had the highest loss degree among all land types, with the loss degree index
value of the four phases exceeding 0.67. Built-up areas had the second-largest loss degree,
with the loss degree index value exceeding 0.44. Due to its relatively large vulnerability
degree index, water had the most extensive loss degree. Although the vulnerability of
built-up areas was relatively low, the degree of loss was also influenced by the degree
of disturbance. Therefore, the maximum disturbance degree of built-up areas led to an
increased loss degree.

3.3. Temporal and Spatial Evolution Characteristics of Landscape Ecological Risk
3.3.1. Temporal Variations of Landscape Ecological Risk

To clearly express the temporal and spatial characteristics of ecological risks, this study
calculated the EFZUYR ecological risk grade area and proportion (Table 4). We visualized
ecological risks through the ordinary Kriging interpolation method (Figure 5).

Table 3. Changes in the fragmentation degree (C), the separation degree (N), the dominance
degree (K), the interference degree (S), and the loss degree(R).

Type of Land Use Year C N K S R

Cultivated Land

1990 0.0047 0.1163 0.1584 0.0536 0.2142
2000 0.0048 0.1138 0.1683 0.0539 0.2155
2010 0.0050 0.1180 0.1655 0.0550 0.2198
2018 0.0052 0.1206 0.1635 0.0556 0.2224

Woodland

1990 0.0083 0.0975 0.4212 0.0764 0.1527
2000 0.0085 0.0992 0.4168 0.0765 0.1530
2010 0.0085 0.0990 0.4189 0.0767 0.1533
2018 0.0084 0.0985 0.4154 0.0762 0.1523

Grassland

1990 0.0011 0.0217 0.5977 0.0670 0.2009
2000 0.0012 0.0220 0.5955 0.0668 0.2005
2010 0.0011 0.0209 0.5935 0.0663 0.1988
2018 0.0012 0.0219 0.5944 0.0667 0.2001

Water

1990 0.0064 0.4190 0.0560 0.1351 0.6757
2000 0.0065 0.4289 0.0560 0.1382 0.6909
2010 0.0113 0.6875 0.0416 0.2172 1.0858
2018 0.0100 0.5179 0.0616 0.1675 0.8377

Built-up areas

1990 0.1097 1.9559 0.1348 0.6660 0.6660
2000 0.1053 1.8213 0.1376 0.6233 0.6233
2010 0.0811 1.3746 0.1460 0.4757 0.4757
2018 0.0762 1.2911 0.1470 0.4477 0.4477

Unused land

1990 0.0039 0.1199 0.1480 0.0531 0.3186
2000 0.0039 0.1207 0.1478 0.0534 0.3202
2010 0.0042 0.1256 0.1556 0.0558 0.3346
2018 0.0044 0.1287 0.1563 0.0569 0.3412

Table 4. The area and proportion of different risk levels from 1990 to 2018.

Risk Level
1990 2000 2010 2018

Area (km2) Proportion (%) Area (km2) Proportion (%) Area (km2) Proportion (%) Area (km2) Proportion (%)

Lowest Risk 16,655.00 47.36% 16,509.25 46.94% 16,440.50 46.75% 16,331.00 46.44%

Lower Risk 10,113.50 28.76% 10,093.25 28.70% 10,660.25 30.31% 9341.75 26.56%

Middle Risk 4627.75 13.16% 4725.00 13.44% 4278.75 12.17% 5167.00 14.69%

Higher Risk 1514.25 4.31% 1571.75 4.47% 1644.75 4.68% 2019.00 5.74%

Highest Risk 2258.25 6.42% 2269.50 6.45% 2144.50 6.10% 2310.00 6.57%
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From the characteristic of temporal variations evolution (Table 4), the change in
landscape ecological risk in EFZUYR was characterized by an “N” type, with relatively
minor changes. Therefore, the ecological risk was relatively stable. As the proportion of
low ecological risk areas, including the lowest and lower ecological risk areas, remained
above 70% for a long time, the whole area was in a low ecological risk state. Specifically,
the average ecological risk values for the four periods of EFZUYR were 0.2122, 0.2126,
0.2115, and 0.2123, showing a fluctuant rising, falling, and then rising trend. However, the
change rate was minimal. From the area change in different land use types, the proportion
of low ecological risk type shows a decreasing trend from 1990 to 2018, and the area
decreased by 1095.75 km2, with a decreasing percentage of 3.11%. Among them, the area
of the lowest ecological risk regions shows a continuous decline, with a total decrease of
324.00 km2. The area of the lower ecological risk regions showed a trend of rising and then
falling, with a decrease of 771.75 km2. Contrary to the change characteristic in the low-risk
regions, the area changes in the medium risk regions showed an “increasing-decreasing-
increasing” trend, with an overall increase of 539.25 km2. The highest risk regions showed
an “increasing-decreasing-increasing” trend in the entire research area, with the total area
increasing from 3772.50 km2 in 1990 to 4329.00 km2 in 2018. Among them, the higher risk
regions had a relatively sizeable increasing range, with an increased area of 504.75 km2

which accounted for 90.84% of the area change in the high ecological risk regions. The area
changes in the highest risk regions increased, but the increased area was only 51.75 km2,
with an increasing percentage of only 0.15% compared with the increased area in 1990.

Figure 5. Spatial distribution map of landscape ecological risk. (a) 1990; (b) 2000; (c) 2010; (d) 2018.

3.3.2. Spatial Evolution of Landscape Ecological Risk

From the spatial distribution map of landscape ecological risk (Figure 5), we found
that the characteristics of the spatial evolution of EFAUYR ecological risk were that the
overall landscape ecological risk was relatively low. The ecological risk level increased
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in some areas, maintaining a long-term spatial pattern of “high at the north and south
ends and low in the middle” from 1990 to 2018. Specifically, the highest-risk areas were
mainly distributed in Linxia City, Linxia County and Dongxiang County in the north, and
Maqu County and Luqu County in the south. Among them, Luqu County, which did not
present the highest risk regions until 2010, has suffered a significant increase in highest
risk regions, which has increased to 184.75 km2, since 2010. Regions with higher risk were
mainly concentrated in Maqu County in the south. In 2018, the area of the higher risk
regions in this area reached 1059.75 km2, accounting for 52.49% of the higher ecological
risk regions in the entire region, followed by Linxia County and Hezuo City in the north.
Medium risk regions were mainly distributed in Maqu County. From 1990 to 2018, the
area of the medium risk regions in Maqu County accounted for more than 45% of the total
area of the medium-risk regions in the research area, and this number exceeded 50% in
2010. The remaining medium ecological risk regions were mainly distributed in Dongxiang
County, Jishishan County, Guanghe County, Luqu County and others. The lower risk
regions were mainly distributed in Maqu County and Luqu County. The area of the lower
risk regions in Maqu County, accounted for approximately 40% of the total area of the lower
risk regions in the research area, and this proportion in Luqu County was approximately
10%. The remaining lower ecological risk regions were distributed in Zhuoni County, Xiahe
County and other regions. The lowest ecological risk regions were mainly distributed in
Xiahe County, Zhuoni County and Luqu County, which are in the central part of EFAUYR.
Among them, the area of the lowest ecological risk regions in Xiahe County accounted
for approximately 30–35% of the total area of the lowest risk regions in the research area,
and the proportions in Zhuoni County and Luqu County were approximately 25% and
17%. The results showed that from 1990 to 2018, EFZUYR had two high risk agglomeration
areas for a long time, which were distributed in the south and north. The low-risk area
was mainly concentrated in the central area, and the degree of agglomeration showed a
downward trend.

3.3.3. Spatial Clustering Characteristics of Landscape Ecological Risk

The spatial clustering of landscape ecological risks can better identify the spatial
clustering characteristics of high and low ecological risk regions. According to the General
G Index (Table 5), the Observed General G was greater than Expected General G, which
indicated that high-value clusters were more obvious. Moreover, the Observed General G
in the four periods has an increasing trend, which indicated that the spatial high-value clus-
tering characteristic of the ecological risk in the research area was continuously increasing.

Table 5. Related parameters of the General G Index.

Year Observed General G Expected General G z-Score p-Value

1990 0.002394 0.00237 4.742 0.000
2000 0.002396 0.00237 5.123 0.000
2010 0.002455 0.00237 13.328 0.000
2018 0.002428 0.00237 10.156 0.000

In terms of spatial distribution characteristics, the spatial clustering pattern of EFAUYR
ecological risk has long been characterized by “high in the north and south and low in
the central”. In this pattern, the ecological risks of various counties are relatively different.
Among them, the ecological risks of Maqu County, Linxia City and Dongxiang County are
the highest, and the ecological risks of Lintan County, Zhuoni County and other regions
are lower, which forms higher ecological security (Figure 6). Specifically, EFZUYR has
long been distributed with two hot spot clustering regions in the north and south. The hot
spot regions in the north are mainly concentrated in the Daxia River valley area, and hot
spot clustering regions cover the whole area of Linxia City. At the same time, the hot spot
regions in the south are mainly concentrated in Maqu County. In addition, the cold spot of
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the landscape ecological risk is mainly in Zhuoni County and Lintan County, which are in
the central part of EFZUYR.

Figure 6. Analysis on Cold and Hot Spots of Landscape Ecological Risks in EFZUYR. (a) 1990; (b)
2000; (c) 2010 and (d) 2018.

4. Discussion

4.1. Reasons for Spatial Clustering Characteristics of Landscape Ecological Risks

According to the above research results, EFZUYR has long been distributed with
two hot spot clustering regions in the north and south. Although there are two hot spot
regions in the north and south of EFZUYR, the causes for the formation are different. The
hot-spot regions in the north have a high level of economic development, which means that
humans have greater interference with the ecological environment, and the destruction of
the ecological environment is severe. In the south, Maqu County has become a hot-spot
region. The causes are both natural and anthropogenic. Among them, natural causes are
the most fundamental factor in the deterioration of Maqu County’s ecological environment.
Anthropogenic causes are an influencing factor but do not play the leading role. Climate
warming has led to increased evaporation, surface drought, vegetation degradation, and
lake retreat, reducing the stability of the originally fragile ecosystem and weakening its
resilience, which has become the main driving force for the degradation of the ecological
environment [28]. It is worth noting that the role of anthropogenic causes cannot be
ignored [29]. The cold spot of the landscape ecological risk is mainly in Zhuoni County
and Lintan County, which are in the central part of EFZUYR. The main reason for this is
that there is a large area of forest and grassland in Zhuoni County and Lintan County. The
attractive natural ecological environment facilitates the spatial clustering of low values of
ecological risks, which constitutes the cold-spot clustering region. Due to temporal and
spatial change, the clustering characteristic of the cold-spot region is gradually weakening.
In addition, a small hot-spot area in Hezuo City, located in the central part of EFZUYR,
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was gradually formed and rapidly expanding, mainly due to the fact that Hezuo City is
the political, economic and cultural center of Gannan Prefecture. In recent years, with the
implementation of the Chinese government’s specific poverty alleviation policy, the level of
urbanization in poor areas such as Linxia Prefecture has rapidly increased [30]. At the same
time, the continuous improvement of the urban infrastructure, the increasing concentration
of the urban population and the increasing proportion of land urbanization means that
human interference with the ecological environment is increasing, and ecological risks
are rising.

4.2. Partition Management of EFZUYR

The study divided the ecological functional service zones in the upper Yellow River
Basin into different levels and calculated the area proportion of the five risk levels in each
county (city) in 2018 (Figure 7). It was found that Maqu County, Dongxiang County, and
Linxia County are the main distribution areas of the highest, higher, and medium landscape
ecological risk areas. The whole area of Linxia City is the highest and higher risk regions,
and Xiahe County, Zhuoni County and Luqu County are the main distribution area of
the lowest and lower risk regions. The reasons for the spatial difference of ecological
risk distribution are very different. First, Maqu County has become a high-risk area
mainly due to natural factors. From 1990 to 2018, the annual average temperature in
Maqu County showed a significant upward trend. Climate warming led to a reduction
in wetlands, grassland degradation, a reduction in biodiversity and the weakening of
ecosystem functions [31,32], resulting in a larger proportion of landscape ecological risks in
the region. Of course, human economic activities have also exacerbated the ecological risks
in the area to a certain extent. Second, the entire area of Linxia City is a high-risk area, and
a relatively high proportion of high-risk areas in Linxia Country and Dongxiang County
are caused by human activities. Linxia City is the seat of the Linxia Hui Autonomous
Prefecture and is the area with the highest degree of economic development in the study
area. The population urbanization rate is as high as 88.69%. The land expansion is the
most obvious in the study area [30]. This indicates that Linxia City is the most frequent
human activity in the study area. In the process of rapid urbanization, the development of
the land use landscape has changed greatly, resulting in a high concentration of landscape
ecological risks. Dongxiang County and Linxia County are close to Linxia City, and
their economic development is relatively fast. Regional development has shown that the
ecological environment restricts economic development [33]. Ecological risks have also
been aggravated due to excessive economic development. Finally, Xiahe County, Zhuoni
County, and Luqu County are restricted by natural conditions, their economic development
is relatively slow, the population is small, and human activities are relatively weak. At the
same time, the vegetation in Gannan has generally improved since 2000. The increase in
vegetation in Xiahe County, Luqu County and Zhuoni County is the most obvious [34], so
the landscape ecological risk is relatively low.

The partition management of EFZUYR is of great significance for improving the eco-
logical environment of the research area and promoting a virtuous cycle of the ecosystem.
Conducting partitioning based on the different ecological environments means propos-
ing a more targeted ecological environment management plan and future development
plan [35,36], which is a suitable solution. The following suggestions are made for different
ecological risk areas: (1) ecological restoration should be emphasized in areas with the
highest, higher, and medium risks, such as Linxia City, Linxia County, Hezuo City and
others with higher economic development levels. In these areas, the human demand for
natural systems is accelerating, leading to imbalances in natural systems and a significant
loss of biodiversity [37]. Therefore, these areas should strictly control the construction area
and reduce land abuse. By rationally adjusting land use and increasing the green area in
urban areas, the ecological benefits of urban areas will be improved, and financial and
technical support for environmental protection will be strengthened. In Maqu County,
where the natural environment is poor, excessive development must be prohibited to
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reduce human interference. As the recharge water volume of Maqu County accounts for
45% of the total flow of the Yellow River [38], nine provinces along the middle and lower
Yellow River in China will be severely affected if the landscape ecological risks of Maqu
County further rise. (2) The lowest and lower risk regions should emphasize protecting the
original landscape. For example, areas such as Xiahe County and Zhuoni County should
actively respond to national, provincial, and municipal ecological protection policies to
continuously improve their ecological environment. Since ethnic clustering regions are
endowed with unique cultural, historical, and natural landscape values, ecotourism can
be carried out within the carrying capacity of their ecological environments to increase
the fiscal revenue, which can be invested t back into the ecological construction projects.
(3) The ecological security of the research area is highly dependent on natural climatic
conditions. It is not easy to support the continued improvement of the ecology of the whole
area with the measures taken by humans such as ecological construction and protection
engineering. Therefore, the critical points for the development of EFZUYR are balanced
between coordinating the conservation of the ecological environment and pursuing sus-
tainable economic development, formulating corresponding partition control measures,
and maximizing the role of the research area as a safety barrier for the entire river basin.

Figure 7. The proportion of the area of the five risk levels in each county (city) in 2018.

4.3. The Advantage and Limitations of This Research

The study explored the spatial and temporal evolution of land use change and land-
scape ecological risk in EFZUYR, supported by long-term data. The advantage of using
long-term data is that they can eliminate the effects of the short-term data mutation on
the research results, reducing uncertainty [39]. In addition, the ecological risk evaluation
method based on landscape pattern in this study, to a certain extent, gets rid of the tra-
ditional ecological risk evaluation inherent model of “risk source identification-receptor
analysis-exposure and hazard evaluation” and pays more attention to the spatial and tem-
poral change characteristics of risk, which helps to better elucidate understand the current
situation of regional ecological risk [20]. Furthermore, the optimization of landscape spatial
pattern is closely related to land planning and design [40], this study fully analyzes the
change of land use landscape pattern in EFZUYR, which can effectively provide support
for the sustainable development of land use in the area. However, there are still some limi-
tations. For example, the data underlying this study are land use data, and the accuracy of
land use data interpretation significantly impacts the study. Errors in the characteristics of
remote sensing data and technical methods, etc., may lead to uncertainty in the assessment
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results. Although the study adopted unified land use classification standards in the data
processing to eliminate the errors of remote sensing data as much as possible and ensure
the accuracy of the data, data errors still exist. Additionally, the spatial and temporal
evolution of landscape ecological risk is an integrated and complex process influenced by
various aspects of natural and human activities. Therefore, further research and analysis
are needed and, thus, a more accurate assessment of regional landscape ecological risks
is needed.

5. Conclusions

Using the theoretical knowledge of landscape ecology, this study constructed an
ecological risk index based on the landscape ecological index and analyzed the spatial and
temporal pattern evolution and spatial clustering of ecological risks in EFZUYR with the
help of spatial statistical analysis methods. The main conclusions are:

(1) From 1990 to 2018, land use showed different changes. Here, built-up areas
and grassland showed the largest increase and the largest decrease, with an increase of
148.84 km2 and a decrease of 130.13 km2, respectively. Among different types of land
transfer, the transfer among cultivated land, grassland, and woodland had prominent
advantages, with a transfer area of 5023.37 km2, which accounted for 87.16% of the changing
area. The order of change rate was as follows: built-up areas > unused land > cultivated
land = water area > woodland = grassland. Among them, the dynamic degree of built-up
areas is the only one that always showed a growth trend during the research period.

(2) During the study period, the landscape index changes in various land use types
had obvious differences. As for the degree of fragmentation, built-up areas were the
highest and decreased year by year, with the value dropping from 0.1053 to 0.07962, and
the changes in other land types were relatively small. In terms of separation degree, the
value of built-up areas dropped from 1.8213 to 1.2911, which was the most dramatic change.
The separation degree of water fluctuated from 0.41 to 0.68 and then fell to 0.51. The value
of other land use did not change significantly. Regarding the dominance degree, the values
of grassland and woodland were maintained at 0.59 and 0.41, respectively, for a long period
of time, occupying an absolute advantage. The dominance degree of other land use was
below 0.2. For the interference degree, the value of built-up areas was the largest, and the
value showed a downward trend, from 0.666 to 0.4477. The interference degree of water
fluctuated, increasing from 0.1351 to 0.2172 and then decreasing to 0.1675. The value of
cultivated land and unused land increased slightly. In terms of the loss degree, the value of
water was the highest, with a value above 0.67, reaching the highest value of 1.0858 in 2010.
The loss degree of built-up areas was above 0.44, in second place. The value of woodland
was the smallest, which was maintained at around 0.15 for a long time.

(3) The ecological risks of EFZUYR presented a fluctuant rising, falling and then rising
trend. The area of the low-risk regions accounted for more than 70% of the entire area,
and the overall ecological risk of the area was relatively low. The ecological risks in the
EFZUYR long maintained the spatial distribution characteristic of “high at the north and
south ends and low in the middle.” In addition, the spatial clustering characteristics of
high-risk regions were more obvious: two large-scale hot-spot regions formed in the north
and south, and cold spot regions mainly concentrated in the central area, with a decrease
in the clustering degree.
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Appendix A

Table 1. The area and proportion of different land use in EFZUYR from 1990 to 2018.

Type of Land Use
1990 2000 2010 2018

Area (km2) Proportion (%) Area (km2) Proportion (%) Area (km2) Proportion (%) Area (km2) Proportion (%)

Cultivated Land 3064.99 8.72 3291.26 9.36 3162.44 8.99 3112.06 8.87

Woodland 7675.08 21.82 7553.57 21.48 7594.41 21.60 7610.14 21.68

Grassland 21,475.31 61.07 21,353.60 60.72 21,455.15 61.01 21,345.18 60.81

Water 321.99 0.92 311.49 0.89 209.52 0.60 326.56 0.93

Built-up areas 252.04 0.72 278.95 0.79 377.32 1.07 400.88 1.14

Unused land 2377.96 6.76 2378.52 6.76 2367.47 6.73 2305.83 6.57

Equation (A1)

The dynamic degree of land use can demonstrate the number of different land use
changes in a certain period. It can be used to quantitatively describe the strength of the
variance of different land use in the research area. The specific calculation formula is
as follows:

K =
Ut − U0

U0
× 1

T
× 100% (A1)

In Equation (A1), K represents the dynamic degree of a certain land use in a certain
period; Ut and U0 are the amounts of different land use at the beginning and end of the
study period; T is the research interval. The absolute value of K indicates the transferring
speed of a certain land use. When K is greater than zero, the area of land use types
shows an increasing trend, but if K is less than zero, the area of land use types shows a
decreasing trend.

Equation (A2)

Landscape ecological risk index is composed of landscape disturbance index and
landscape vulnerability index, reflecting the relationship between landscape pattern based
on land use and ecological risk. The calculation formulas are as follows:

ERIk =
m

∑
i=1

AkiRi
Ak

(A2)

In Equation (A2), ERI is the landscape ecological risk index of ecological research
unit k; i represents different land use landscapes; Aki represents the type i landscape area of
ecological unit k; Ak is the total area of ecological unit; Ri is the landscape loss degree index
of the type i land use, which is calculated from the landscape pattern index and the specific
required landscape index is shown in Table 2.

Equations (A3)–(A5)

Global statistics such as high/low clustering (Getis-Ord General G) are used to eval-
uate the overall pattern and trend of the data. The score of z has a greater impact on the
research results. If the value of z score is positive, the observed General G index will be
larger than the expected one, indicating that high-value attributes will cluster in the re-
search area. If the value of z score is negative, the observed General G index will be smaller
than the expected one, showing that low-value attributes will cluster in the research area.
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The local spatial autocorrelation of landscape ecological risk describes the spatial
correlation characteristics among the attribute values of ecological risk units with the
Getis-Ord Gi* index, characterizing the spatial distribution of cold and hot spots. Hot spots
indicate the areas where the high values of landscape ecological risks cluster and cold
spots represent the areas where the low values of landscape ecological risks cluster. The
calculation formula is as follows:

G∗
i =

n
∑

j=1
wi,jxj − X

n
∑

j=1
wi,j

S

√√√√
⎡
⎣n

n
∑

j=1
w2

i,j
−
(

n
∑

j=1
wi,j

)2
⎤
⎦

n−1

(A3)

X =
n

∑
j=1

xi

/
n (A4)

S =

√√√√√
n
∑

j=1
xi

n
− (X)

2 (A5)

In Equations (A3)–(A5), Xi and Xj represent the ERI of ecological risk cells i and j,
respectively. Wij is the binary matrix of the adjacent space; when ecological cell i is
adjacent to ecological cell j, Wij = 1; otherwise, Wij = 0. X and S are the mean value and
standard deviation.

Table 2. The construction method of landscape pattern index.

Landscape Index Calculation Formula Ecological Meaning

Landscape Fragmentation Degree
Index (Ci)

Ci = ni/Ai

In the formula, ni is the patch number of the type i
landscape; Ai is the distribution area of type i landscape. This
index can reflect the degree of fragmentation of different
landscape types and partly reflect the complexity of the spatial
distribution of the landscape as well as the interference by
human activities in the landscape. The smaller the landscape
fragmentation, the higher the continuity of different landscape
patch types distribution in the research unit. Additionally, the
more significant the proportion of the area of different patch
types, the more stable the corresponding landscape ecosystem.

Landscape Separation Degree
Index (Ni)

Ni =
1
2

√
ni
A × A/Ai

In the formula, A is the total area of all landscapes. Its value
represents the separation degree between patches in the same
landscape type. The greater the landscape separation degree,
the longer the distance between the patch boundaries of the
same landscape type, and the higher the heterogeneity of the
landscape patch types in the research unit.

Landscape Dominance Degree
Index (Ki)

Ki =
(Bi+Li)

4 + Di
2

In the formula, Bi equals the ratio between the quadrat
numbers of patch i and the total quadrat number; Li equals to
the ratio between the numbers of patch i and the total patch
number; Di equals to the ratio between the distribution areas of
patch i and the total area of the quadrat. Its value can reflect
whether the distribution of a certain landscape type occupies
the dominant position of the landscape. The landscape type
with a greater dominance degree can directly affect the
evolution of the landscape pattern.
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Table 2. Cont.

Landscape Index Calculation Formula Ecological Meaning

Landscape Interference Degree
Index (Si)

Si = aCi + bNi + cKi

In the formula, a, b, c are the weights of their corresponding
landscape indexes, and the sum of a, b and c equals one. Based
on the analysis and combined with the research experience, a, b
and c are assigned with the weights of 0.6, 0.3, and 0.1. These
values are used to express the interference degree of human
production activities on different types of landscapes.

Landscape Vulnerability Degree
Index (Fi)

Obtained by expert
scoring, assignment
and normalization

It refers to the vulnerability of the landscape ecosystem
when encountering different factors. This value has a greater
relationship with the level of the landscape ecosystem.
Generally, the lower the ecosystem level, the higher the internal
vulnerability of the system. According to the research results,
the vulnerability of unused land, water, cultivated land,
grassland, woodland, and built-up areas is 6, 5, 4, 3, 2 and 1.

Landscape Loss Degree Index (Ri) Ri = Si × Fi

The loss degree is related to each stage in the development of
the landscape ecosystem. Typically, the lower the level of the
landscape ecosystem, the higher its vulnerability. Conversely,
the higher the level of the landscape ecosystem, the more stable
its internal organizational structure and the lower the
interference degree, and therefore the lower the vulnerability.
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Abstract: Measuring the efficiency of construction land utilisation is important for optimising the
allocation of regional resources and guiding the sustainable development of the regional society and
economy. Based on municipal panel data on urban land use from 2009 to 2017 from a municipal
perspective, this research built a slacks-based measure of a super-efficiency model (SE-SBM) to
evaluate the temporal and spatial differentiation characteristics of the construction land-use efficiency
of 41 cities in the Yangtze River Delta. Following this, the driving force of construction land effi-
ciency was calculated using the Malmquist–Luenberger index. Finally, the entropy-weight TOPSIS
(technique for order preference by similarity to ideal solution) model and the k-means clustering
method were applied to evaluate an input–output model of the cities. The main conclusions are
as follows: (1) The construction land efficiency of the Yangtze River Delta remains at a low level
and presents a spatial differentiation pattern, with the efficiency being higher in the east and lower
in the west. Due to undesired outputs, the mean value has dropped by 4.67%, and the regional
imbalance has decreased. (2) The degree of efficiency loss is significantly positively correlated
with the intensity of urban pollution emissions—the higher the pollution emissions, the greater
the efficiency loss. (3) The total factor productivity of urban construction land is mainly driven by
technological progress, while the promotion of technical efficiency is low and unstable. (4) The
evaluation of construction land efficiency must include resource allocation or pollution emission
factors to scientifically measure the input–output level. These research results will help to formulate
reasonable land-use countermeasures.

Keywords: SE-SBM; construction land-use efficiency; environmental constraints; Yangtze River
Delta; China

1. Introduction

The efficient use of urban construction land, the site of economic and social activi-
ties [1], is essential for the sustainable development of the urban economy [2,3]. There
are many ways to measure whether urban land has been used efficiently, among which
measuring the land-use efficiency is the most direct, effective, and universal. More impor-
tantly, the efficiency of land use is not only able to reflect the allocation of land and space
resources but is also related to the scientific exploration of human settlements and human
well-being. There has been abundant research on land-use efficiency evaluations, both
nationally and internationally [4,5].

Regarding research approaches, scholars mostly use the traditional data envelopment
analysis (DEA) model, the Cobb–Douglas production function, and stochastic frontier
analysis, among other methods, to measure the land inputs and outputs of an entire
country [6,7], regions [8], provinces [9], cities [10–12], urban agglomerations [13,14], or
counties [15]. In the past, scholars mostly began from an economic perspective and
measured the land-use efficiency using the single economic output of the land [16]. Chen
used the traditional DEA model to measure the efficiency of industrial land use in China’s
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resource-based cities, revealing regional differences [17]. Liu used an extended Cobb–
Douglas production function to determine that the efficiency of construction land allocation
in China needed to be further improved, while the intensive use of land resources was also
necessary [18]. Gui introduced stochastic frontier analysis (SFA) to determine that urban
land-use efficiency in the Yangtze River Economic Zone showed a significant growth trend
with a cumulative growth rate of 54.07% [19].

However, in recent years, as the green “people-oriented” development concept has
become the social consensus, relevant research has shifted its perspective from the eco-
nomic benefits of land use to the ecological benefits [20] and has begun to focus on the
spatial-distribution characteristics of comprehensive benefits [21], such as economic, so-
cial, and ecological benefits, within the region. Generally speaking, scholars characterize
the concept of greenness by considering undesired outputs (e.g., wastewater and carbon
emissions), which not only reflects the ecological connotations of urban land use but also
highlights the coordination relationship between humans and land [22]. Yu attempted
to incorporate ecological factors into the urban-agglomeration land-use efficiency eval-
uation index system and found that the efficiency of urban-agglomeration construction
land under ecological constraints was significantly reduced, which is consistent with the
actual situation [23]. Liang believes that only a measurement factor framework containing
undesired outputs can be used to obtain scientific results for urban land-use efficiency and
contribute to coordinated urban development [24]. Liu adopted a one-stage SFA model to
reveal the potential to improve urban land-use efficiency [25]. On the basis of explaining
the connotations of land-use efficiency, Hu constructed an evaluation index system for
comprehensive land-use efficiency. The analysis found that the comprehensive benefits of
land use within the Jiangsu Province differed significantly, and the gradient structure was
more obvious, with the efficiency generally decreasing from southern Jiangsu to northern
Jiangsu [26]. In addition, many scholars usually use Malmquist index, Tobit model, panel
threshold model, and other spatial measurement methods to study the change mechanism
behind land use efficiency, as well as the corresponding optimal allocation and intensive
use of urban land [27–29].

These studies provide a reference for formulating countermeasures for the efficient use
of urban construction land resources and the optimization of the corresponding industrial
layouts. Conversely, they provide reference for countermeasures to promote the healthy
coupling of high-quality economic development and the ecological environment. Zhao ap-
plied an extended STIRPAT (Stochastic Impacts by Regression on Population, Affluence and
Technology) model to explore the relationship between new-type urbanization and land
eco-efficiency. The evidence revealed that the relationship follows an N-shaped curve [30].
According to a Finnish study, at the macroeconomic level, the domestic use of biomass
per unit of value added decreased (−2.2%/a) as the amount of human appropriation of
net primary productivity (HANPP) per unit of biomass decreased (−1.1%/a), reflecting
increased economic efficiency in land use [31]. Some scholars have also found that adding
a HSR (High-Speed Rail) route will increase urban land-use efficiency by 0.012 in the case
that the city has opened HSR [32]. Overall, the existing results provide a useful reference
for further research on the use efficiency of urban construction land. However, scholars
have mainly discussed the temporal and spatial characteristics and evolutionary dynamics
of efficiency itself, and insufficient attention has been paid to quantitative research on the
relationship between efficiency and input–output factors. Therefore, additional efforts are
needed in the future to make up for the lack of research in this field.

Since the reform and opening up, land use in the Yangtze River Delta has been
characterized by a spatial expansion of construction land, a sharp decline of high-quality
arable land resources, and an increase in environmental pollution, which has limited urban
development to a certain extent. Especially after the 2008 financial crisis, the Yangtze River
Delta is facing more unstable factors, and economic development has entered a new growth
cycle, which puts forward higher requirements for the coupling coordination between
economic development, social progress and ecological protection. A scientific evaluation
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of construction land-use efficiency is a key step for sustainable regional development
including economy, society and environment. However, there are few relevant studies
on this area, which is not conducive to promoting the long-term development of the
region. In conclusion, quantitative studies to explain the utilization efficiency of land
input in economic growth in this period is warranted, which is also of important reference
significance for the formulation and implementation of the new round of Three-year Action
Plan for The Integrated Development of the Yangtze River Delta region (2021–2023).

The aim of this study was to use a slacks-based measure of super-efficiency model
(SE-SBM) to quantify the current status of construction land-use efficiency in 41 cities in the
Yangtze River Delta, use the Malmquist–Luenberger index (ML) to identify the key driving
forces of the evolution of urban construction land-use efficiency; use the entropy-weight
TOPSIS model to explore the specific correlation between the city’s input, output, and
pollution emissions; and use the k-means clustering method to judge the urban construction
land-use mode. Through the above calculations, the study explored the unevenness of the
construction land-utilisation efficiency, technological innovation level, and management
systems and mechanism levels of cities in the Yangtze River Delta region; identified the
problems existing in the construction land-utilisation process of each city; and tried to
identify the improvement directions of different types of cities in the process of future
development. In the context of global integration, the subsequent development of cities and
creative cooperation between cities require new developmental increments. Construction
land has always been an important engine for regional economic and social development
and an essential place for high-quality development. By providing relevant suggestions for
the optimization and management of regional construction land, this research can help the
Yangtze River Delta to form a truly stronger, larger, and more concentrated world-class
integrated urban-development area, and help it to stabilize its strategic position in the
overall situation of national modernization and all-round opening to the outside world.

2. Data Sources and Research Methods

2.1. Overview of the Study Area

The Yangtze River Delta includes three provinces and one city, namely, Jiangsu, Zhe-
jiang, Anhui and Shanghai, respectively, with a total of 41 prefecture-level cities (Figure 1).
The Outline of integrated development of the Yangtze River Delta [33] pointed out that the
Yangtze River Delta is experiencing strong and active growth in the new era and is a new
focus of reform and opening. At the end of 2017, the total permanent population of the
region was 224 million, the per capita gross domestic product (GDP) was CNY 88,600, and
the urbanisation level reached 66.35%, together giving the region a leading position within
the country. Further, the economic and social development have expanded rapidly, along
with the construction land in the region, which increased from 5.3063 million hectares
in 2009 to 6.1865 million hectares in 2017. The average annual growth of construction
land during this period was 1.94%, which significantly exceeded the national average.
Furthermore, the expansion of construction land led to insufficient arable land reserve
resources. At the end of 2017, the per capita arable land area in the Yangtze River Delta
was less than 0.072 hm2, which was far lower than the national average of 0.097 hm2. In
addition, ecological and environmental problems, such as water resources, solid waste,
and air pollution in the region have become increasingly severe. Regional construction
mostly relies on natural resource endowments, and the development model is restricted by
traditional thinking. Although the benefits are good, the cost and the emissions are high,
and they no longer meet the strategic requirements of ecological civilisation construction.
Therefore, promoting the green development of construction land and tapping into the
potential of construction land utilisation have become important tasks that must be solved
during the urbanisation process of the Yangtze River Delta.
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Figure 1. The geographical location and administrative divisions of study area.

2.2. Data Source

This study uses land use and socioeconomic panel data on 41 cities in the Yangtze
River Delta region from 2009–2017 as a sample. In the data, construction land includes the
following three types of land: urban-rural construction land, land for transportation and
water conservancy, and other construction land. The data come from the Natural Resources
Department’s land-use change survey data, and the socioeconomic data come from the
China City Statistical Yearbook (2010–2018) [34] and the provincial and municipal statistical
yearbooks (2010–2018) [35–38]. In addition, during the study period, the administrative
divisions of Chaohu, Tongling, Anqing, Lu’an and Huainan were adjusted. This study
uses the new administrative division as the benchmark and decomposes and merges the
corresponding indicators according to the adjustment of the administrative division.

2.3. Research Methods
2.3.1. The Research Design of the Paper

First, based on understanding the current status of construction land use in the Yangtze
River Delta region, combined with literature reading, this study screened the input-output
evaluation index system for construction land use in line with the actual development of
the Yangtze River Delta from the perspectives of land, capital, labour, and output. Second,
the article uses the SE-SBM model and the Malmquist–Luenberger model to calculate the
static and dynamic efficiency of construction land use in cities in the Yangtze River Delta.
Third, we used the entropy-weight TOPSIS method and K-means clustering method to
determine the land use types of 41 cities based on the input, output, and pollution emission
levels of each city. Finally, combining efficiency characteristics and input-output types, we
put forward policy recommendations for optimizing construction land-utilization efficiency.
The research design of this article is shown in Figure 2.
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Figure 2. Flowchart of construction land-use optimization.

2.3.2. Construction of the Evaluation Index System

According to the current situation of construction land utilisation in the Yangtze River
Delta region, by referring to existing studies [39–41] and based on the principles of a
scientific, systematic, and representative selection of indicators, this work constructed an
input–output evaluation index system for construction land in the Yangtze River Delta
region (Table 1). Amongst the indicators, the input indicators include land, capital, and
labour, which are characterised by the area of urban construction land, fixed-asset in-
vestments of the whole society, and employment numbers in the secondary and tertiary
industries, respectively. The output indicators include the expected economic output and
undesired environmental outputs, which are denoted by the gross regional product and
the total discharge of industrial wastewater, exhaust gas, and dust waste. In addition, the
entropy-weight TOPSIS method was used to synthesise the three types of waste data to
characterise a comprehensive pollution-emission index before the calculations.

Table 1. Input–output indicator system for urban construction land-utilisation efficiency.

Indicator Type Index Content

Input indicators
Land Urban construction land area/hectare

Capital Fixed-asset investment in the whole society/100 million yuan
Labour force Employees in the secondary and tertiary industries/ten thousand people

Output indicators

Expected output GDP/100 million yuan

Undesired output
Industrial wastewater discharge/ton

Industrial sulphur dioxide emissions/ton
Industrial smoke and dust emissions/ton

305



Int. J. Environ. Res. Public Health 2021, 18, 12634

2.3.3. SE-SBM with Undesirable Output Model

Data envelopment analysis (DEA) [42] models are widely used to evaluate the effi-
ciency status of decision-making units (DEA uses a decision-making unit (DMU) as its
measurement object of efficiency). As it does not require there to be a lack of high correla-
tion (collinearity) between the input indicators and output indicators, and there is no need
to estimate parameters or weight assumptions in advance, DEA is especially suitable for
systems with multiple inputs and multiple outputs. In 1978, Charnes, Cooper, and Rhodes
created the first DEA model, called the CCR model, based on constant returns to scale
(CRS). Its basic concept is to take one DMU as an evaluated unit and create an evaluation
group with other DMUs, establish a mathematical model corresponding to the problem,
and comprehensively analyse the relative efficiency (within the interval of (0, 1)) by solving
the results of the model. Then, the production possibility set (PPS) and the production
frontier (PF) are determined. According to the distance between the DMUs and the PF, we
can determine whether the DMUs are DEA-effective or not. Then, we order the evaluation
results. It should be noted that, in the DEA theory, the input and output vectors of the
production activities of the decision-making unit are combined into the PPS. The PF is
an “envelope surface” formed by the combination of input and output used to achieve
maximum efficiency in the PPS. A DMU can be categorized into one of two states: effective
or invalid. To judge whether a DMU is DEA effective is, essentially, to judge whether it
falls into the PF of the PPS.

In the traditional DEA model, when multiple DMU are evaluated as effective, the
maximum efficiency value obtained by the DEA model is 1, namely, the effective DMU
efficiency value is the same. Therefore, The efficiency of these effective DMUs cannot
be further distinguished.In addition, in the traditional DEA model, the weight coefficient
used to calculate the efficiency value is set in a specific range that is most beneficial to the
evaluated unit (maximizing its efficiency value), making it easy to exaggerate advantages
and avoid shortcomings. As the traditional DEA model cannot evaluate the efficiency
most reasonably and is unable to reorder multiple DMUs with an efficiency value of 1 [43].
Tone [44] further revised the DEA model and proposed the SE-SBM model to make up
for the abovementioned defect. Based on the SE-SBM model with undesired outputs
(SE-SBM-UN), this study measured the construction land-utilisation efficiency of cities in
the Yangtze River Delta. The non-oriented CRS SE-SBM-UN model is expressed as follows:

minp =
1 + 1

e ∑e
i=1

s−i
aik

1 − 1
r1+r2

(
∑r1

r=1
sg+

r
bg

rk
+ ∑r2

t=1
sh−

t
bh

tk

) (1)

s.t. ∑u
j=1,j �=k aijλj − s−i ≤ aik (2)

∑u
j=1,j �=k bh

rj − sh−
t ≤ bh

tk (3)

∑u
j=1,j �=k bh

tjλj + sg+
r ≥ bg

rk (4)

λ, s−, sg, sh ≥ 0 (5)

i = 1, · · · , e; r = 1, · · · , q; j = 1, · · · , u; (j �= k) (6)

where s.t. denotes the set of constraints, and p indicates the efficiency value of the research
unit. When p < 1, the DMU is invalid in the model, indicating that it has deviated from
the PF, and the land-resource-use efficiency is low. Theoretically, improvement is based
on reducing input and increasing output, making it possible to intensively use of land
resources. When p ≥ 1, the DMU is valid in the model, showing that it is at the PF, that is,
the point of production efficiency. A larger p represents higher efficiency; λ represents the
proportion of a DMU that is reassembled in a new effective DMU; aij represents the i-th
input of the research unit j; btj is the t-th output of the research unit j; k is the DMU; e is the
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number of input indicators; r1 and r2 represent the numbers of expected and unexpected
output factors, respectively; and s represents the slack variable of the input–output factors.
Ferrier and Lovell believe that slack variables can ultimately be regarded as invalid resource
allocation [45]. Among them, s− is the input slack, which indicates the excess of input
elements in the DMU, and sg is the expected output slack, which indicates the output of the
DMU is insufficient. Finally, sh is the undesired output slack, which represents the surplus
of the output factors of the DMU.

2.3.4. Malmquist–Luenberger Model

When the data of the evaluated DMU are panel data containing observations at multi-
ple time points, the variation of productivity and decomposition factors of the variation
can be analysed. The Malmquist model index is a non-parametric method commonly used
to dynamically analyse changes in productivity. The Malmquist index model that includes
undesired output is called the Malmquist–Luenberger (ML) model and is used to measure
total factor productivity (TFP) with undesired output. It is also known as the ML index.
It takes into account the intertemporal effect of dynamic factors and is strong in terms
of practical applications [46]. In addition, compared to parametric methods, it has the
following advantages: First, it does not need to provide the specific statistical distribution
of the DMU. Second, it can deal with small amounts of data and classification variables.
Third, it does not need to introduce a temporal trend into the data analysis, helping to avoid
the phenomenon of smooth productivity change, which is an issue with most parametric
methods [47]. The ML index is favoured by scholars based on these advantages.

Therefore, to study the evolution mechanism of dynamic efficiency, this study referred
to the improved method of Fare [48,49] to calculate the ML index as follows:

ML
(

xt, yt, xt+1, yt+1
)
=

√
Et(xt+1, yt+1) Et+1(xt+1, yt+1)

Et(xt, yt) Et+1(xt, yt)
(7)

=
Et+1(xt+1, yt+1)

Et(xt, yt)

√
Et(xt, yt) Et(xt+1, yt+1)

Et+1(xt, yt) Et+1(xt+1, yt+1)
(8)

= EC ∗ TC (9)

where
(
xt, yt) is the input–output vector in the period t;

(
xt+1, yt+1) is the input–output

vector in the period t + 1; and Et and Et+1 represent the distance function during t and
t + 1. The ML index is used to measure the changes in construction land-use efficiency,
and it expresses the productivity change of

(
xt+1, yt+1) relative to

(
xt, yt). If ML > 1, the

productivity level increases; otherwise, it decreases. The ML can be split into two aspects to
obtain two decomposition indices: the technological change (TC) and technical efficiency
change (EC). The TC index reflects the contribution of technological progress, such as
system-element optimisation and economic structural transformation, to improve construc-
tion land-utilisation efficiency [50]. If the value is greater than 1, the production technology
has improved. The EC index reflects the distance of the evaluation unit relative to the PF in
different periods and is called the ”catch-up effect”. When its value is greater than 1, this
indicates progress in technical efficiency, meaning that the allocation of construction land
input resources is reasonable, and the management level has improved [51].

2.3.5. Entropy-Weight TOPSIS Model

The entropy-weight TOPSIS model is derived from combining the entropy-weight
and TOPSIS methods. Overall, it is a novel comprehensive evaluation method that scholars
use to combine the advantages of the two methods and overcome the subjectivity of the
index-weight setting [52]. The model has the advantages of less data loss in the calculation
process, intuitive geometric meaning, and a lack of interference by the selection of reference
sequences. It is also able to reflect the dynamic changes and laws of the evaluation
indicators more scientifically, objectively, comprehensively, and reasonably, allowing a
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better explanation of the results [53]. Therefore, this study used this method to integrate
the sub-indices that cover construction land-use inputs and outputs and pollution-emission
levels. The calculation steps are as follows [54]:

First, the dimensional difference of measure index, Sit, was eliminated through stan-
dardisation as follows:

Sit =
Mit − min(Mit)

max(Mit)− min(Mit)
, Mit is a positive indicator (10)

Here, i represents the study area, Mit refers to the initial value of the indicator and
Sit is the standardised value.

Second, j is a sub-index. By calculating the information entropy ej and weight Wj of
Sit, a weighting matrix R is constructed as follows:

ej = ln
1
x ∑x

i=1[(Sit/ ∑x
i=1 Sit) ln(Sit/ ∑x

i=1 Sit)] (11)

Wj =
(
1 − ej

)
/ ∑m

j=1

(
1 − ej

)
(12)

R =
(
aij
)

x×m, aij = Wj × Sij (13)

Again, we determine the optimal scheme G+
t , the worst scheme G−

t , and the corre-
sponding Euclidean distances h+i and h−i as follows:

G+
t = (maxai1, maxai2, · · · , maxaim ) (14)

G−
t = (minai1, minai2, · · · , minaim) (15)

h+i =

√
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)2
(16)

h−i =

√
∑m

j=1

(
G−

j − aij

)2
(17)

Finally, the comprehensive index K of the evaluation object is calculated, and its value
range is (0, 1):

K = h−i
/

h+i + h−i
(18)

3. Results

3.1. Static Analysis of Urban Construction Land-Utilisation Efficiency

To obtain a more comprehensive understanding of the land-use situation in the
Yangtze River Delta, this study used the MaxDEA(Beijing Rewomaidi Software Co., LTD,
Beijing, China) professional software to calculate two types of construction land-utilisation
efficiency in 41 prefecture-level cities in the Yangtze River Delta from 2009 to 2017. The
results are shown below (Figure 3).
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Figure 3. Average efficiency of construction land in the Yangtze River Delta from 2009 to 2017.

In general, the average construction land-use efficiency in the Yangtze River Delta from
2009 to 2017 was low, and the overall efficiency under the influence of pollution emissions
(0.397–0.466) was slightly lower than the traditional efficiency (0.437–0.478). Although the
efficiency dropped by 4.67% in total, over time, two types of efficiencies exhibited a fluctu-
ating growth trend, and the gap between them gradually narrowed. Therefore, although
the inclusion of undesired outputs will reduce the efficiency value, it is able to reflect the
actual situation of regional construction land utilisation more scientifically. Recently, the
Yangtze River Delta region has shown results based on the implementation of an ecological
civilisation strategy, transforming the economic development mode, conserving energy,
and reducing emissions, which has caused the construction land efficiency, including
undesired outputs, to catch up with the traditional efficiency. However, overall, the low
efficiency level reflects the current regional land-use pattern and is relatively extensive, and
the land output is far from optimal. This is not conducive to promoting new urbanisation
and high-quality city development, and there is room for the efficiency to be improved.

At the city level, traditional efficiency presents regional differentiation, being higher
in the east and lower in the west (Figure 4a). Cities with high construction land efficiency
are mostly located in the Jiangsu, Zhejiang, and Shanghai regions, which have significant
geographical advantages, a high level of urbanisation, and developed economies. The
Anhui region, which is located in a remote location in the Yangtze River Delta, has a
relatively undeveloped economy. Therefore, coupled with insufficient radiation from
the metropolitan area and core cities, the land-use efficiency of cities in this province
is generally low. However, if environmental constraints are considered, this regional
difference will be decreased (Figure 4b).

To better understand the constraints of undesired outputs, this study comprehensively
analysed the impact of environmental factors on land-use efficiency based on the difference
between the two efficiencies and the actual pollution-emission intensity of the city. Tests
using the Stata16 software and an ordinary least squares (OLS) regression analysis method
revealed a significant positive correlation between the efficiency differences and pollution
emissions (t = 2.29; p < 0.05; where t is the regression coefficient and p is significance level),
which indicates that the higher the pollution-emission intensity of a city, the greater the
efficiency loss caused by undesired outputs.

(1) Southern Jiangsu, northern Zhejiang, and south-eastern Anhui have experienced
greater efficiency losses (>0.1) due to a high pollution intensity. For example, Suzhou
has been reduced from a high-efficiency city to a medium-high-efficiency city due to its
pollution intensity of 0.192. Furthermore, six cities, namely, Jiaxing, Shaoxing, Lishui,
Ma’anshan, Wuhu, and Tongling, are affected by high pollution emissions, and their
land-use efficiency has changed from medium to low.

(2) The construction land utilisation efficiency of eastern Zhejiang, northern Jiangsu,
and northern Anhui was moderately negatively affected by undesired outputs (0.05–0.1)
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due to a higher pollution intensity. Amongst these regions, the land-use efficiency of
Changzhou and Quzhou changed from medium-high to medium, and that of Yancheng
changed from medium to medium-low. The efficiency of the four cities of Huai’an, Lianyun-
gang, Huaibei, and Huainan were originally at the lower-middle level. Due to the impact
of pollution emissions, the efficiency was further reduced.

(3) The difference between the two efficiencies is relatively small in most cities in
southwestern Anhui due to the low total pollution emissions. For example, the pollution-
emission indices of some cities, such as Wuhu and Anqing, are less than 0.008, which
results in a small degree of efficiency loss. Therefore, the real efficiency of several high-
efficiency cities in the region is greatly reduced due to exorbitant environmental pollution
emissions, whereas some low-efficiency cities are less affected by relatively small emissions
of pollution, and their efficiency only fluctuates within a small range. Accordingly, the
efficiency differences within the region are reduced, and the spatial equilibrium of the
efficiency is strengthened.

Figure 4. Mean value comparison between the traditional efficiency of urban construction land and the efficiency with unde-
sired outputs in the Yangtze River Delta from 2009 to 2017. (a) Traditional efficiency; (b) efficiency with undesired outputs.

3.2. Analysis of the Driving Force of the Evolution of Urban Construction Land-Utilisation Efficiency

To further realise dynamic changes in urban construction land-utilisation efficiency
and their driving factors, this study measured the ML and its decomposition index (TC
and EC) and analysed these accordingly.

Using the ArcMap10.6 software and Natural Breaks (jenks) method, the annual aver-
age ML, TC, and EC indices of 41 prefecture-level cities in the Yangtze River Delta were
divided into three levels, from small to large (Figure 5). Generally, the ML of the Yangtze
River Delta had the highest spatial distribution characteristics in southern Jiangsu and
southern Anhui, followed by northern Zhejiang and northern Jiangsu. Lower spatial distri-
bution characteristics were present in Shanghai, southern Zhejiang, and northern Anhui.
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Figure 5. Annual average values of ML, TC, and EC of urban construction land in the Yangtze River Delta. (a) The spatial
distribution of ML index; (b) spatial distribution of TC index; (c) spatial distribution of EC index.

(1) As the largest cities in the region, Suzhou, Wuxi, and Changzhou, among others,
have gathered much high-level talent due to their advantages regarding their locations
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for transportation, economic and technological development, and strong capital strength.
These drive TC and EC towards improving regional industrial innovation and management
system optimisation (TC > 1.12; EC > 1.05). This has resulted in a significant improve-
ment in the ML (1.418 > ML > 1.212), and the efficiency of construction land increased
significantly during the study period. Recently, Lu’an, Huangshan, and Chizhou have
reorganised their input production factors, optimised resource allocation, and strengthened
their technological updates and creations to promote the rapid growth of ML.

(2) The economic strengths of northern Zhejiang and northern Jiangsu are relatively
lower than those of other regions. Although they have certain technological advancement
capabilities, such as research and development (R&D) investment and technological output
(1.12 < TC < 1.20), some cities are hindered regarding the improvement of ML due to a
low EC (EC < 1), such as an imbalanced allocation of input resources or rigid management
systems (1.094 < ML < 1.211). Additionally, though the efficiency of this type of urban
construction land has improved, there is still plenty of room for improvement in the future.
As a large city in the Yangtze River Delta, Shanghai has unique advantages in science,
technology, policy, information, and capital. However, its land-use efficiency has reached
the highest level on the common frontier, and there is limited room for its efficiency to
improve. Therefore, its ML is low, but its efficiency is still in a slow growth status.

(3) The cities of Quzhou, Lishui, Huaibei, Suzhou, and Chuzhou in southern Zhejiang
and northern Anhui have relatively little advantage regarding technology application and
achievement conversion, and their technological progress is not obvious (1 < TC < 1.09).
Coupled with their inadequacies regarding resource allocation and information circulation,
they are restricted by technology efficiency (EC < 1), which results in little improvement in
their ML and a lack of potential for the improvement of urban construction land efficiency.

In general, the average ML value for construction land in the Yangtze River Delta is
1.154, the TC index is 1.142, and the EC index is 1.010. The values of the three indicators
are all greater than one, which indicates that the improvement of ML is affected by the
combined effect of the TC and EC. However, the contribution rate for TC is 14 times that
for EC. In addition, the average value of each index of the above case city shows that 98%
of the cities’ ML indices are greater than 1, and 41 cities are driven by TC, whereas only
63.41% of the cities are driven by EC. Moreover, the growth of the ML indices of the other
36.59% of the cities is restrained due to a low EC. Therefore, TC is the core driver for the
improvement of ML, and the contribution of EC is relatively insignificant.

3.3. Correlation Analysis of Urban Construction Land-Utilisation Efficiency and Factor Inputs
and Outputs

Using the method presented by Liu [55], the element input and output and pollution-
emission levels during the construction land-utilisation process were analysed to further
determine the internal causes of the differentiation in regional efficiency. As the factor
input index, the unit land labour force and fixed-assets investment represent the land input
level. Using the land-average production value as the expected output index for land use
indicates the level of land output. Moreover, the land-average wastewater, sulphur dioxide,
and dust emissions were used as undesired output indicators of land use to characterise
the degree of land-use pollution emissions. In addition, using the entropy-weight TOPSIS
method, three kinds of indicators of the input, expected output, and unexpected output
were, respectively constructed into three kinds of comprehensive indices of input, expected
output, and non-expected output, to scientifically and comprehensively measure the input–
output situation of land. Finally, the K-means clustering method was used to divide
the comprehensive indicators of construction land-use input and output and pollution
emissions into the following three types: low, medium, and high (Table 2).
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Table 2. Correlation types for input–output and pollution emissions of construction land use in cities of the Yangtze River
Delta.

Input–Output Model of Construction Land
2009 2017

City City

High input, high output, low pollution Shanghai (1.299) /
High input, medium output, high pollution Changzhou (0.369) /

High input, medium output, medium pollution Nanjing (0.445), Wuxi (0.592),
Ma’anshan (0.366) /

High input, medium output, low pollution Hefei (1.234) Wenzhou (1.004)
High input, low output, low pollution Wuhu (0.301) Zhoushan (0.462)

Medium input, high output, medium pollution / Shanghai (1.291)
Medium input, medium output, high pollution Hangzhou (0.439) /

Medium input, medium output, medium pollution Suzhou (0.637) Wuxi (1.04), Changzhou (0.721),
Hangzhou (0.52)

Medium input, medium output, low pollution Ningbo (0.549), Zhoushan (0.436) Nanjing (1.006), Ningbo (0.525),
Hefei (1.032)

Medium input, low output, high pollution / Shaoxing (0.366)
Medium input, low output, medium pollution Shaoxing (0.206) Jiaxing (0.323), Ma’anshan (0.28)

Medium input, low output, low pollution
Nantong (0.355), Zhenjiang (0.454)

Taizhou (0.315), Jiaxing (0.226),
Xuancheng (0.157), Tongling (0.265)

Yangzhou (0.494), Zhenjiang (0.524),
Taizhou (0.62), Wuhu (0.399),

Tongling (0.261)
Low input, medium output, medium pollution Quzhou (1.044) Suzhou (1.016)

Low input, medium output, low pollution Huzhou (1.03), Jinhua (1.025),
Taizhou (1.011) Xuzhou (1.089)

Low input, low output, medium pollution / Quzhou (0.272)

Low input, low output, low pollution

Xuzhou (0.373), Lianyungang (0.229)
Huaian (0.198), Yancheng (0.315),
Yangzhou (0.379), Suqian (0.19),
Wenzhou (0.46), Lishui (0.303),
Huaibei (0.254), Bozhou (0.239),
Suzhou (0.237), Bengbu (0.238),

Fuyang (0.279), Huainan (0.263),
Chuzhou (0.172), Lu’an (0.216),
Chizhou (0.164), Anqing (0.203),

Huangshan (0.189)

Nantong (0.445), Lianyungang
(0.283), Huaian (0.381), Yancheng
(0.289), Suqian (0.268), Huzhou
(0.306), Jinhua (0.362), Taizhou

(0.421), Lishui(0.288), Huaibei (0.229),
Bozhou (0.16), Suzhou (0.177),
Bengbu (0.276), Fuyang (0.135),

Huainan (0.164), Chuzhou (0.188),
Lu’an (0.422), Xuancheng (0.2),

Chizhou (0.419), Anqing (0.192),
Huangshan (0.265)

(1) Generally, a high input and output will result in high efficiency. Shanghai’s land
input and economic output are leading in the region, and its construction land utilisation
maintained a high level of efficiency during the study period. Moreover, a low input and
output often result in low efficiency. Cities with low input, output, and pollution comprise
more than 46% of the Yangtze River Delta region, and most of them are located in marginal
areas of northern Jiangsu, northern Zhejiang, northern Anhui, and southwest Anhui,
such as Lianyungang, Huaian, Lishui, and Chizhou. Such cities are relatively deficient in
economic and technological development and resource management and allocation, which
results in insufficient input and a low output. Although the pollution degree is small, as
the actual output of construction land at this time has become the fundamental constraint
for efficiency evaluation, the land-use efficiency is low. With the transformation of the
economic structure and the continuous progress of society, some areas, such as Yangzhou
and Wenzhou, have gradually shifted from low input to medium-high input, while the
land-use output has risen, and the efficiency of construction land has increased.

(2) However, during the process of urban development, the utilisation efficiency for
construction land is not always consistent with the level of land input and output due
to improper resource allocation or pollution discharge. Although Changzhou, Nanjing,
Wuxi, Ma’anshan, and Wuhu, among other cities, have high input levels, they also have
redundant or unreasonable input elements. Therefore, the land output failed to achieve
synchronous growth. At the same time, these areas experience medium to high levels of

313



Int. J. Environ. Res. Public Health 2021, 18, 12634

pollution emissions during the process of economic construction, which further reduces
the efficiency of land use. In addition, low and medium inputs may result in a higher
land output and land-use efficiency on the basis of controlling pollution emissions. In
2009, cities such as Huzhou, Jinhua, and Quzhou adopted low input, medium output, and
low pollution land use model to achieve a relatively high level of construction land use
efficiency. In 2017, some cities, such as Hefei and Nanjing, adopted a medium input and
output and reduced the total pollution emissions to make more efficient use of construction
land. However, although Hangzhou’s land input and output levels are relatively high, its
construction land efficiency is always in the lower position for the same level of cities due
to negative impacts, such as high pollution emissions.

(3) In addition, medium inputs and low outputs will be the top priority of land-market-
consolidation efforts in the future. The associated cities are mainly located in central Jiangsu
and other areas with good economic development. They have strong comprehensive
strength and development potential and can provide sufficient input for land use. However,
due to their limitations, including technical conditions and inadequate means of resource
allocation, the improvement of land efficiency has encountered bottlenecks, resulting in
a clear deviation of land use from the optimal PF. In the future, we should improve the
quality and efficiency of land use through comprehensive land consolidation and remould
the land-use pattern.

4. Discussion

Urban construction land resources have become an important bottleneck restricting
urban economic and social development. China’s strict farmland-protection policies have
significantly blocked the external supply of construction land resources [56]. In the context
of new urbanization, each region should fully consider its own resource endowments and
functional positioning, relying on the new era of territorial space planning, and compre-
hensively improve the use efficiency for urban construction land. The research of relevant
scholars shows that the impact and rate of contribution of construction land expansion on
economic growth gradually decreases with the evolution of economic development [57].
The development of construction land will play a more obvious driving economic role in
underdeveloped areas [58]. The Yangtze River Delta region is one of the most economically
developed regions in China, and the southern Jiangsu and northern Zhejiang and Shanghai
areas have entered the later stages of urbanization. Therefore, these cities should pay
attention to the connotative development of the city, supplement them with territorial
space planning, and tap the potential of the urban stock land through the reconstruction
of the old city, urban village renewal, and the development of idle and inefficient land.
As northern Jiangsu, northern Anhui, and western Zhejiang are in the middle and later
stages of urbanization, with the advancement of China’s common prosperity, these areas
need more indicators of construction land to drive economic development, which requires
the overall coordination of construction land resource allocation in the compilation of
territorial space planning. In view of the excellent ecological endowments in northern
Jiangsu, northern Anhui, and western Zhejiang, the construction land index should be
appropriately tilted to them under the conditions that the regional resource and environ-
mental carrying capacity permit. Central Jiangsu, southern Anhui, and southern Zhejiang
should give full play to their regional advantages, adjust the industrial structure to attract
the transfer of industries in the core area of the Yangtze River Delta, and increase the level
of land output.

Generally speaking, the economic development of certain regions is often accom-
panied by the excessive use of resources and greenhouse gas emissions. Given that the
overall construction land-use efficiency in the Yangtze River Delta under environmental
constraints is low, the regional imbalance is prominent, and the improvement of efficiency
mainly comes from TC, we believe that further targeted efficiency-improvement measures
should be taken in future. First, we should assume that the political responsibility and
development mission of “putting ecology and green development first” strengthens the
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concept of ecological protection. Then, we should jointly build a strong environmental
constraint mechanism and implement the negative list system for industrial access. In
areas where the input and output levels are high, but the efficiency is reduced due to high
pollution emissions, it is necessary to pay special attention to ecological protection and en-
hance the competitiveness of green development. Second, the Yangtze River Delta should
prioritize the powerful driving effect of provincial capitals or large cities, promote overall
regional efficiency, and strive to create high-quality integrated regional developmental
growth. Third, the exchange culture of sharing resources and win–win cooperation should
be promoted. By strengthening inter-regional communal work and rationally scheduling
the spatial transfer and allocation of product factors between cities, the Yangtze River
Delta region can overcome the contradiction between the production scale and technical
structure that exists in economic, social, and environmental activities in various regions.
With institutional innovation as the core, using policy innovation as the key factor and
technological innovation as the driving force (based on continuous technological advance-
ment), the Yangtze River Delta region can further improve EC and the technology catch-up
effect by optimizing the scale allocation and management level of construction land input
resources. Accordingly, the use efficiency of construction land will be evenly increased.

This paper has several shortcomings. First, due to the limited data acquisition re-
garding the measurement of urban construction land efficiency that includes undesired
outputs, the total emissions made up of only three types of waste discharge were selected
as environmental constraints to represent the level of urban pollution emissions. Follow-up
studies could consider deepening and perfecting the evaluation indicators of undesired
outputs in terms of environmental protection investment, carbon emissions, environmental
governance, and air quality (PM2.5). Second, this study used only 41 prefecture-level cities
in the Yangtze River Delta as its research object. If county-level cities could be selected for
research in the future, the efficiency of regional construction land use would be reflected
more comprehensively and accurately. Finally, although this study performed a correlation
analysis for the efficiency of urban construction land use, input factors, and output levels,
it did not explore specific input and output types in depth, which must be expanded upon
in future research.

5. Conclusions

Based on the land input–output data for 41 prefecture-level cities in the Yangtze
River Delta, this study constructed an SE-SBM model to compare and evaluate the static
efficiency of urban construction land use from 2009 to 2017 considering traditional and
environmental constraints. Furthermore, using the ML index and its decomposition items,
the dynamic evolution of the construction land-use efficiency was studied. In addition,
the entropy-weight TOPSIS method was used to analyse the relationship between the
urban construction land efficiency and input–output level. The research conclusions are as
follows:

(1) Based on the results of the static efficiency measurement, it was found that the
construction land efficiency of the Yangtze River Delta region remained at a low level,
overall, during 2009–2017. Furthermore, due to the addition of undesired outputs, the
efficiency dropped by 4.67%. However, with the transformation and upgrading of the
economy structure, the land-use efficiency under environmental constraints has gradually
caught up with the traditional efficiency, and the total efficiency has increased slightly. At
the city level, the traditional construction land efficiency presents regional differentiation,
being higher in the east and lower in the west. High-efficiency cities are concentrated
in the economically developed Jiangsu, Zhejiang, and Shanghai regions, and most of
the low-efficiency cities are located in the economically underdeveloped Anhui region.
Due to the influence of pollution emissions, the regional imbalance in efficiency has been
weakened. This change stems from the efficiency loss caused by pollution emissions, and
the degree of efficiency loss is significantly positively correlated with the intensity of urban
pollution emissions. For example, southern Jiangsu, northern Zhejiang, and south-eastern
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Anhui have lost more than 0.1 efficiency due to their high pollution emission intensity, and
eastern Zhejiang, northern Jiangsu, and northern Anhui suffered 0.05–0.1 efficiency losses
due to their medium-to-high pollution emission intensity. Cities in southwest Anhui only
lost small amounts of efficiency due to their lower pollution emissions. Compared to the
traditional-efficiency values, the gap between high and low-efficiency cities in the region
has been narrowed, decreasing the spatial differentiation of efficiency.

(2) Based on the results of the dynamic efficiency measurements, it was found that the
ML in southern Jiangsu and southern Anhui has the fastest growth, followed by northern
Zhejiang and northern Jiangsu, while the growth rates of Shanghai, southern Zhejiang, and
northern Anhui are relatively slow. Amongst them, the ML productivity of construction
land in 98% of cities is mainly improved by TC, whereas EC has a limited promoting effect
and does not cover the whole area. Therefore, although, during the process of construction
land use for production, the economic structure of most regions has been transformed and
upgraded, the institutional system has been optimized, and scientific and technological
innovations have been iterated, small and medium-sized cities still have outstanding
problems. These include a lack of ecological protection, an unbalanced allocation of
resource elements, unreasonable investment scales, and low management levels, restricting
the further improvement of construction land-use efficiency and exacerbating regional
differentiation.

(3) Using the entropy-weight TOPSIS model and K-means clustering method, the
construction land input and output and pollution emission indicators of 41 cities in the
Yangtze River Delta were divided into the following three types: low, medium, and high.
The correlation between the efficiency and the input and output was then investigated. The
results show that, under normal circumstances, there is a correlation between construction
land-use efficiency and land input and output; namely, a high input and output lead to
high efficiency, and a low input and output lead to low efficiency. However, the two are
not always consistent. A medium input and output and a low input and medium output
may result in higher land-use efficiency resulting from the control of pollution emissions.
Medium-input and low-output types have sufficient room for efficiency improvement and
should be the top priority in comprehensive land consolidation in the future.
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Abstract: Ecosystem restoration has been widely concerned with the damage and degradation of
ecosystems worldwide. Scientific and reasonable formulations of ecological restoration zoning is
the basis for the formulation of an ecological restoration plan. In this study, a restoration zoning
index system was proposed to comprehensively consider the ecological problems of ecosystems. The
linear weighted function method was used to construct the ecological restoration index (ERI) as an
important index of zoning. The research showed that: (1) the ecological restoration zones of the
Qilian Mountains can be divided into eight basins, namely the headwaters of the Datong River Basin,
the Danghe-Dahaerteng River Basin, the northern confluence area of the Qinghai Lake, the upper
Shule River to middle Heihe River, the Oasis Agricultural Area in the northern foothills of the Qilian
Mountain, the Huangshui Basin Valley, Aksay (corridor region of the western Hexi Basin), and the
northeastern Tsaidam Basin; (2) the restoration index of the eight ecological restoration zones of the
Qilian Mountains was between 0.34–0.8, with an average of 0.61 (the smaller the index, the more
prominent the comprehensive ecological problem representing the regional mountains, rivers, forests,
cultivated lands, lakes, and grasslands, and thus the greater the need to implement comprehensive
ecological protection and restoration projects); and (3) the ecological problems of different ecological
zones are frequently numerous, and often show the phenomenon of multiple overlapping ecological
problems in the same zone.

Keywords: land use zoning; ecosystem system; ecological restoration; Qilian Mountains; China

1. Introduction

Ecosystems as a whole connect biological organisms and the inorganic environment
through a variety of ecological functions, which feature comprehensive, holistic, and
systematic characteristics. The unreasonable use of natural resources has caused many
ecological problems, such as soil erosion, land desertification, and the degradation of forest
and grass vegetation. Many ecological problems have caused widespread concern for the
restoration of ecosystems. For the formulation of ecological restoration plans in a scientific
and reasonable manner, it is necessary to comprehensively analyze the problems existing in
ecosystems and identify the key restoration areas. From this point of view, the demarcation
of ecological restoration zoning is of great significance.
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The earliest studies of ecosystem zoning can be traced back to the zoning studies of
natural ecosystems. In the early 19th century, the isothermal graph of the German geogra-
pher A.V. Humboldt marked the beginning of the study of natural ecological zoning [1].
On this basis, the concept of ecological zones and their divisions, as proposed by Merriam,
became the prototype of ecological divisions [2]. Since then, ecologists have continued to
research the principles of ecological divisions. Ecological zoning during this period mainly
considered the natural factors affecting the ecosystem, and the functional factors of the
ecosystem itself were less prioritized. In the 1980s, ecosystem functional divisions were
created, which were widely used for large-scale regional natural resource management
by the Environmental Cooperation Commission [3], the World Wildlife Fund [4], and the
Food and Agriculture Organization of the United Nations. In the initial stage of ecosys-
tem functional zoning, the research areas were mainly considered on a large or medium
scale [5,6], as in the case of the construction of large-scale ecosystem zoning systems in
Europe, North America, and Africa [7,8]. Since then, researchers have focused more on the
zoning of single ecosystems, especially in water environment ecosystems [9–11].

In recent years, the deterioration of ecosystems has become an important factor
restricting socio-economic development [12,13], and the study of the restoration zoning
of ecosystems has received increasing attention. For example, Li et al. [14] took China’s
National Ocean Park, in the Haizhou Bay National Ocean Park, as their research area.
Based on the evaluation of the ecological environment of the Haizhou Bay Reserve, the
ecosystem health of the island’s terrestrial ecosystem, intertidal ecosystem, and shallow sea
ecosystem were assessed, and the ecosystem restoration zones were divided according to a
vulnerability assessment. Yang et al. [15], using the ecological compensation zoning index
of cultivated lands and the financial payment model of cultivated lands’ ecology, divided
the cultivated lands’ ecological compensation areas in Wuhan. Wang et al. [16], taking the
Tarbagatay Basin in the Xinjiang province as an example, constructed an evaluation index
system from three aspects of the suitability of ecological protection, urban development,
and agricultural production, and divided the ecological, agricultural, and urban space
regions of the Tarbagatay Basin.

For the zoning research method, the current commonly used methods mainly include
main component analysis, index partition, empirical partition, graph cascade adding, and
cluster partition. In recent years, due to the rapid development of computer and remote
sensing technologies, the means of ecological zoning research has become more and more
advanced. The quantity of regional research is increasing due to software and technologies
such as ArcGIS, SPSS, Matlab, and neural networks. For example, Wang et al. [17], using the
Sunan Yugu Autonomous County in the Qilian Mountain District as an example, discussed
ecological space demarcation and zoning methods based on the ArcGIS platform. Some
scholars [18,19] have also carried out zoning based on ArcGIS technologies based on the
analysis of regional environmental statuses and spatial variations in ecological sensitivity.
In another example, Jing et al. [20] proposed a regional-scale ecological protection zone
division method based on an improved artificial bee colony.

Overall, the zoning of the ecosystem underwent three stages: natural-element-based
zoning, functional-based zoning, and ecological-restoration-oriented zoning. Given the
urgency for ecosystem restoration, research on ecosystem restoration zoning has received
increasing attention in recent years. However, in this study, there were some problems both
in the concept of zoning and its indicators. For example, how ecosystem zoning changes
from the partitioning of a single ecosystem component into an integrated ecosystem
restoration partition is worthy of attention [21].

In summary, research on ecosystem zoning has entered a new era in which more
attention is being given to ecosystem restoration zoning. However, due to the inadequacy
of zoning concepts and index system construction, there are still great challenges related
to ecosystem restoration zoning. In light of this, taking the Qilian Mountains of China as
an example, the ecological restoration zone of the Qilian Mountains was developed based
on the concept of the integrated protection and restoration of mountains, rivers, forests,
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cultivated lands, lakes, and grasslands. Specifically, the research goals of this paper were
to: (1) reveal the land use restoration of the Qilian Mountains in recent years; (2) put forth
a new set of ecological restoration zone index systems based on the concept of the life
communities of mountains, rivers, forests, cultivated lands, lakes, and grasslands; and
(3) to delimit the ecological restoration zones of the Qilian Mountains scientifically and
reasonably. The paper is structured as follows:

- In Section 2, we introduce the study area and data sources.
- In Section 3, we introduce the methods used for ecological restoration zoning.
- In Section 4, we document the key areas of ecological restoration and their ecological

problems.
- The limitations and future research prospects are discussed in Section 5.
- The conclusions are then presented in Section 6.

2. Study Area and Data Sources

2.1. Study Area

The Qilian Mountain area is one of the main mountainous provinces in China (Figure 1),
situated in the northeast of the Qinghai Province and the western border of the Gansu
Province (northeast of the Qinghai–Tibet Plateau) between 94◦20′–103◦ E, 36–40◦ N, with
a total area of 237,000 km2. The annual average temperature in the study area is 1.4 ◦C
below zero to 9.6 ◦C, and the total amount of solar radiation is 5916–15,000 MJ/m2. The
annual average precipitation is between 0–700 mm. The Qilian Mountain area consists of
a number of northwest–southeast parallel mountains and wide valleys. The mountains
mainly include the Daxue Mountain, Tuolai Mountain, Tuolai South Mountain, Yema South
Mountain, Shule South Mountain, Danghe South Mountain, Tuergen Daban Mountain,
Chai Damu Mountain, and Zongwulong Mountain. The Qilian Mountains have an average
elevation of 4000–4500 m, and many peaks are over 5000 m.

Figure 1. Geographic location of the Qilian Mountains in China.

2.2. Data Sources

The data used in this paper mainly include soil data, land use data, desertification
data, cultivated land quality data, and statistical data. Among them, the soil organic matter
content and soil texture data were derived from the Harmonised World Soil Database
(HWSD) [22]. Land use data come from remote sensing monitoring data of land uses in
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China in 2015 [23]. In this monitoring data, land use types include six primary types and
twenty-four secondary types. The desertification data were obtained from the 1:100,000
Chinese Desert Gobi Distribution Map for 2000 [24]. The cultivated land quality data come
from a 1:1 million land resource map [25]. The assessment of the change status of forest
grassland vegetation is based on the 16-day synthetic NDVI products (MYD13A2 and
MOD13A2) of MODIS from 2001–2015 with a spatial resolution of 1000 m [26]. The animal
husbandry statistics at the county level come from the provincial statistical yearbooks, and
the corresponding rural income per capita income come from the Gansu Development
Yearbook for 2015 [27] and the Qinghai Statistical Yearbook for 2015 [28]. The mine
distribution density was obtained from a large network crawler data search. Precipitation
data were derived from the China Ground Climate Data Daily Value Dataset (V3.0) [29],
and the spatial distribution was obtained by interpolation.

3. Research Methods

3.1. Index System Construction

The ecological development, overall protection, and comprehensive governance of all
ecological and environmental elements are required for the ecological restoration of the
“life community” of mountains, rivers, forests, cultivated lands, lakes, and grasslands. The
demarcation of the ecological restoration zones of the Qilian Mountains aims to consider
the comprehensive ecological problems related to the ecological factors of mountains,
rivers, forests, cultivated lands, lakes, and grasslands in the Qilian Mountains. These
comprehensive ecological problems include soil erosion, forest and grass quality degrada-
tion, cultivated land quality degradation, and water and soil erosion caused by mining,
etc. We constructed the regional evaluation index system of ecological restoration in the
Qilian Mountains according to the principles of scientific nature, systems, correlations,
and operability; eight evaluation indicators were considered, including the amount of soil
conservation, mine distribution densities, rainstorm days, annual precipitation, interannual
change rates of forestry area vegetation, agricultural production potential, interannual
change rates of grassland vegetation, and rural income per capita (Table 1).

Table 1. Diagnosis index system of mountains, forestry, fields, lakes, and grassland ecology systems in the Qilian Mountains.

Type Ecological Issues Indicators Meaning of the Index

Mountain
Soil erosion Amount of soil conservation

Application of land use and management
methods to prevent soil erosion by human or
natural factors to maintain the total amount

of natural soil functions

Mining Mine distribution density Reference to the number of mines within a
certain geographical space range

Water

Extreme precipitation Rainstorm days Number of days with daily precipitation
exceeding 50 mm

Uneven precipitation
distribution Annual precipitation

The sum of the average monthly
precipitation in the year represents the

annual precipitation

Forestry areas
Forest is degraded Interannual change rate of

forest vegetation
Changes of forest vegetation within one year

Poor forest score quality

Cultivated land Low farm quality Agricultural production
potential

Agricultural production potential is the
maximum possible output to be achieved

annually on lands per unit of land

Grassland Meadows are degraded Interannual change rate of
grassland vegetation

Changes of grassland vegetation within
one year

People Poverty situation Rural per capita income Average income of rural individuals within
one year
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Among them, soil erosion and mining are the main ecological problems related to
mountain elements. The diagnostic index of the ecological problems of soil erosion is
soil conservation [30], and the diagnostic index of ecological problems in mining is the
mine distribution density [31]. The imbalance of extreme precipitation and precipitation
distribution is an ecological problem related to water [32]. The diagnostic index of extreme
precipitation is represented by rainstorm days, and the diagnostic index of unbalanced pre-
cipitation distribution is the spatialized annual precipitation. The degradation of forested
areas is an ecological problem related to forests, and its diagnostic index is the interannual
change rate of forest land vegetation [33]. The quality of cultivated lands is an ecological
problem related to cultivated lands, and its diagnostic index is its agricultural production
potential [34]. Grassland degradation is an ecological problem related to grasslands, and
its diagnosis index is the interannual change rate of grassland vegetation [33]. Poverty
status is a human-related problem. Although poverty may not be an ecological problem,
poverty is closely related to the emergence of ecological problems. The diagnostic index of
poverty status selection is the rural per capita income [35]. The specific calculation process
of indicators is shown in Appendix A.

3.2. Ecological Restoration Index (ERI) of the Qilian Mountains

We used the linear weighted function method to construct the regional ecological
restoration index (ERI) and analyze the spatial differences by using the spatial clustering
and grouping method. The specific steps are as follows:

First, with different units, meanings, and contents, there are differences in data dimen-
sions and trend directions. Therefore, each index must be standardized. The formula was
as follows [36]: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Positive index : x′ij =
xij − xmin

j

xmax
j − xmin

j

Negative index : x′ij =
xmax

j − xij

xmax
j − xmin

j

(1)

Second, according to the number of ecological factors of mountains, rivers, forests,
cultivated lands, lakes, grasslands, and people involved in various ecological indicators,
the weight of various ecological indicators was determined. In other words, if this index
involved only one ecological problem related to mountains, rivers, forests, cultivated lands,
lakes, and grasslands, the value was 1; if two ecological problems are involved, the value
was 2; and so on. Then, the score of each indicator was expressed as a percentage (Table 2)
representing the indicator weight.

Table 2. Weight of the ecological restoration evaluation index in the Qilian Mountains.

Evaluation Indicators Ecological Restoration Object Indicator Weight

Amount of soil conservation Mountains; rivers; and forests 0.3
Mine distribution density Mountains 0.1

Extreme precipitation Rivers 0.1
Annual precipitation Rivers 0.1

Interannual change rate of
forest vegetation Forests 0.1

Interannual change rate of
grassland vegetation Grasslands 0.1

Cultivated land grade Cultivated lands 0.1
Rural income per capita People 0.1

Finally, based on the constructed ERI system and weight, the linear weighted function
method was used to measure the ERI. The comprehensive situation of the ecological
problems of regional mountains, rivers, forests, cultivated lands, lakes, and grasslands
can be reflected through this indicator. The overall rule is that the smaller the ERI, the
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more prominent the comprehensive ecological problems representing mountains, rivers,
forests, cultivated lands, lakes, and grasslands, and the more necessary it is to carry out
comprehensive ecological restoration projects. The calculation formula was as follows [37]:

ERI =
n

∑
i=1

wi × Ei (2)

where “Ei” is the value of the i-th ecological indicator and “wi” is the weight of the i-th
ecological indicator.

3.3. Division of Basic Evaluation Units Based on River Basin Division

From the perspective of systematic restoration, we extracted small basins in the
study area as the basic units for the evaluation of ecological restoration zoning. Basin
extraction, or catchment extraction, is the joint determination of its spatial scope based on
the river’s flow direction and outlet. From a hydrology and geography perspective, its
region must correspond to that of the river. Therefore, rivers must be designated before the
watershed extraction. River data can be extracted from digital elevation model (DEM) data
or converted from existing vector rivers. We used a slope runoff simulation algorithm to
realize automatic water system extraction and river basin segmentation. The main steps
were as follows:

First, we determined the direction of the water flow of the grid unit. After preprocess-
ing the DEM data, the flow direction was calculated. We then extracted the depression,
analyzed the threshold of the depression, and set the threshold to fill the DEM data. This
step was repeated until all existing depressions in the DEM were eliminated to lay the basis
for the hydrological analysis.

Second, the drainage basin was calculated, and the flow accumulation matrix was
determined by the flow direction. Next, the upstream catchment area of each grid unit was
obtained. Then, the appropriate confluence threshold was determined. The confluence
threshold value needed to be measured repeatedly, and the threshold value was inversely
proportional to the number of river basins. The water exchange area extraction was
conducted based on the flow direction. After determining the basin outlet grid, all grids
to the outlet could be searched according to the flow direction matrix to obtain the basin
boundary and that of the sub-basin in order for basin segmentation to be realized.

Finally, the Qilian Mountain area was divided into 108 small river basins (Figure 2).

Figure 2. Small watershed division of the Qilian Mountains.
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4. Results

4.1. Land Use Change in the Qilian Mountains from 1990–2015

The cultivated lands in the Qilian Mountains are mainly distributed between Ganzhou,
Minle, Yongchang, Shandan, and Gulang in the northeast and Huzhu, Ledu, and Minle
in the southeast, and most of them are dry lands (Figure 3). The forestry areas are mainly
distributed in Qilian and Menyuan in the central region. Grasslands and unused lands
collectively account for approximately 80% of the study area, mainly at high elevations.
Among them, the grasslands are mainly distributed in the center of the study area, while
the unused lands are distributed in the center and the northeast. The water areas comprise
the smallest type in the research area, featuring blocks distributed in the middle and south
of the study area. The built-up areas are scattered in the eastern and southeastern regions,
which also correspond to the distribution areas of cultivated lands.

Figure 3. Types of land use in the Qilian Mountains in 1990 (a), 2000 (b), 2005 (c), 2010 (d), and
2015 (e).

From 1990–2015, the cultivated lands, grasslands, and built-up areas of the Qilian
Mountains generally increased (Figure 4), while forestry areas, water bodies, and unused
lands generally declined. The cultivated lands in the Qilian Mountains increased by 0.31%
from 1990 (5.8%) to 2015 (6.11%). Of these cultivated lands, 0.79% were converted into
other land use types, and the proportion of converted to cultivated lands was 1.11%.
In terms of spatial change, the area of cultivated lands is mainly part of Ganzhou and
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Sunan; meanwhile, in the southeast of Sunan, Menyuan, Tianzhu, and Yongdeng, a large
proportion of the cultivated lands has been transformed into grasslands and built-up areas.
As with cultivated lands, the area of grasslands has also shown an increasing trend over
the years, increasing by 1.28% from 1990 (36.85%) to 2015 (38.13%). The Qilian Mountain
area is mainly dominated by medium- and low-cover grasslands. From 1990–2015, the
conversion of high-, medium-, and low-complexity grasslands to other land use types was
0.71%, 2.12%, and 2.72%, respectively. The proportions of conversion to high-, medium-,
and low-complexity grasslands were 0.015%, 1.05%, and 1.84%, respectively. Spatially,
the grasslands increased in the northeast and southeast of the Qilian Mountains, and the
main reason for the decrease in grasslands was that the grasslands were transformed into
unused lands; however, because the proportion was small, the spatial performance was
not obvious.

 
Figure 4. Land use transfer matrix in the Qilian Mountains from 1990 to 2015.

The built-up areas increased from 0.36% in 1990 to 0.54% in 2015, with an increase of
0.18%. In terms of spatial change, in the southeast region of the research area, the built-up
areas showed a large increasing trend. In contrast, the forestry areas decreased from 6.12%
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in 1990 to 6.10% in 2015, with a decrease of 0.02%. Of this latest percentage, the forestry
areas, scrubs, sparse, and other land use types made up 0.18%, 0.48%, 0.22%, and 0.01% of
the total, respectively. The proportion of lands converted from other lands into forested,
shrub lands, open woodlands, and other wooded lands accounted for 0.19%, 0.46%, 0.21%,
and 0.00% of the total, respectively. Spatially, the areas with forests were basically converted
into grasslands, so the areas where grasslands increased just happened to be the areas of
forest reduction. The water area increased by 0.20%, from 1.75% in 1990 to 1.95% in 2015.
Within these areas, the conversion from water to other land types was 0.17%, and 3.94%
from other land types into water bodies. Due to the impact of global warming, the Qilian
Mountain glaciers have experienced a large-scale retreat. The glaciers are in a state of
material loss, generally receding and thinning. Coupled with the reduction in wetlands, the
waters generally show a downward trend. Spatially, the areas with water decreased mainly
in Tianjun, Gangcha, and Qilian. The proportion of unused lands decreased from 48.6%
in 1990 to 46.38% in 2015, with a total decrease of 2.22%. The proportion of unused lands
converted to other land use types was 4.43%, and that of other land use types converted to
unused lands was 2.21%. The unused reductions were concentrated in large areas in the
northeastern part of the study area, including in places such as Aksai, Tianjun, Delingha,
and Sunan.

4.2. Key Areas of Ecological Restoration in the Qilian Mountains

Considering the eight factors of soil conservation, mine distribution density, extreme
precipitation, annual precipitation, the annual change rates of areas with forestry vegeta-
tion and poverty level, quality of cultivated lands, and annual change rates of grassland
vegetation and poverty level, and using the comprehensive evaluation system of ecological
restoration, we calculated the comprehensive ERI of mountains, forests, cultivated land,
lakes, and grasslands in the planning area (Figure 5). The index reflects the degree neces-
sary to implement the comprehensive ecological restoration of mountains, rivers, forests,
cultivated lands, lakes, and grasslands. The average of the ecological restoration indicator
in the Qilian Mountains was 0.57, and the average in each basin ranged between 0.34 and
0.80. It can be seen that the ERI of the Qilian Mountain area showed a law of decreasing
from the edges to inland.

Figure 5. Ecological restoration index (ERI) of the Qilian Mountains.

327



Int. J. Environ. Res. Public Health 2021, 18, 12417

The ERI is an index that measures the key areas of ecological restoration. The greater
the value, the greater the need to carry out ecological restoration work in the ecological area.
It can be seen that the ERI in the southeast and southwest of the study area is relatively
large. This means that there is an urgent need for ecological restoration in these areas.

4.3. Ecological Restoration Zoning of the Qilian Mountains

Due to the different natural resource endowments of the Qilian Mountains and the
strong spatial heterogeneity of various ecological restoration indicators, the use of ecological
restoration zones divided by the comprehensive ERI cannot further reflect the differences
in the ecological restoration directions in each district, and it is not conducive to the
appropriate measures. Therefore, this paper used an ArcGIS cluster analysis tool based on
the calculation results of eight ecological restoration indicators and ERIs in each district,
and divided them into two level divisions in accordance with the principle of natural
division order.

Finally, the Qilian Mountain area was divided into three primary districts and eight
secondary districts. The first division included the forests and grassland water conservation
areas, the ecological restoration areas of cultivated lands, and ecological control areas of
deserted grassland (Table 3). The secondary ecological restoration zone included the
headwaters of the Datong River Basin, the Danghe-Dahaerteng River Basin, the northern
confluence area of the Qinghai Lake, the upper Shule River to middle Heihe River, the
Oasis Agricultural Area at the northern foothills of the Qilian Mountains, the Huangshui
Basin Valley, Aksay (corridor region of the western Hexi Basin), and the northeastern
Tsaidam Basin (Table 3 and Figure 6).

Figure 6. Ecological restoration zoning of the Qilian Mountains. Zoning 1 represents the headwaters
of the Datong River Basin; Zoning 2 represents the Danghe-Dahaerteng River Basin; Zoning 3 repre-
sents Aksay (corridor region of the western Hexi Basin); Zoning 4 represents the Oasis Agricultural
Area at the northern foothills of the Qilian Mountains; Zoning 5 represents the northern confluence
area of the Qinghai Lake; Zoning 6 represents the upper Shule River to middle Heihe River; Zoning 7
represents the Huangshui Basin Valley; and Zoning 8 represents the northeastern Tsaidam Basin.
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Table 3. Ecological restoration zones of the Qilian Mountains planning area.

First-Level Division Secondary Division
Regional Area: Ten

Thousand (km2)
Area Ratio (%)

Ecological
Restoration Index

I—forests’ and grasslands’
water conservation areas

1—headwaters of the Datong
River Basin 2.75 11.61 0.54

2—Danghe-Dahaerteng
River Basin 2.80 11.83 0.65

5—northern confluence area of
the Qinghai Lake 3.28 13.84 0.62

6—upper Shule River to middle
Heihe River 3.62 15.26 0.50

II—cultivated lands’ and
grasslands ecological

restoration areas

4—Oasis Agricultural Area at
the northern foothills of the

Qilian Mountains
3.43 14.45 0.68

7—Huangshui Basin Valley 0.66 2.77 0.73

III—deserted grasslands’
ecological control area

3—Aksay, corridor region of the
western Hexi Basin 6.11 25.78 0.56

8—northeastern Tsaidam Basin 1.06 4.46 0.57

4.4. Ecological Problems of Different Ecological Restoration Zones

Combined with the land use data, we further compared the differences of various
ecological restoration indicators in different divisions (Figure 7) and discussed the main
ecological problems of each ecological restoration division.

Figure 7. Ecological indicators of different ecological restoration zones of the Qilian Mountains. “AEZ” represents the
agricultural production potential; “EP” represents extreme precipitation; “FS” represents the interannual change rate of the
normalized difference vegetation index (NDVI) in forestry areas’ vegetation; “Rural per capita income” represents regional
GDP; “GS” represents the NDVI interannual change rate of grassland vegetation; “MD” represents the mine distribution
density; “PRE” represents the total annual precipitation; “SE” represents the soil erosion volume; Zoning 1 represents the
headwaters of the Datong River Basin; Zoning 2 represents the Danghe-Dahaerteng River Basin; Zoning 3 represents Aksay
(corridor region of the western Hexi Basin); Zoning 4 represents the Oasis Agricultural Area at the northern foothills of
Qilian Mountain; Zoning 5 represents the northern confluence area of the Qinghai Lake; Zoning 6 represents the upper Shule
River to middle Heihe River; Zoning 7 represents the Huangshui Basin Valley; and Zoning 8 represents the northeastern
Tsaidam Basin.
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The headwaters of the Datong River Basin are located in the eastern section of the
Qilian Mountains, and they are also the source of the Heihe, Shiyang River, and other river
basins in the Qinghai and Gansu provinces. The main ecological functions of the area
are water conservation and soil conservation. The district includes four counties: Qilian,
Sunan, Menyuan, and Datong. The area covers 2.75 × 104 km2, accounting for 11.61% of
the total regional area. Compared with other zones, the area is seriously affected by extreme
precipitation, with greater extreme precipitation days and a large mine density (Figure 7).
The interannual growth of forest vegetation is weak, and the production potential of
cultivated land resources is very low.

The Danghe-Dahaerteng River Basin is located in the high mountains in the western
section of the Qilian Mountains, including the three sub-basins of the Danghe River, Da-
haerteng River, and Yema River. The counties comprising this area are Delingha, Subei, and
Aksay. The main ecological functions of the area are water conservation, soil conservation,
windbreaks, and sand fixation. The basin covers an area of 2.80 × 104 km2, accounting for
11.86% of the total regional area. The main ecological problem is the uneven distribution
of water resources (Figure 7), showing a decline from east to west; such a low production
potential further increases poverty.

The northern part of Aksay (corridor region of the western Hexi Basin) is the western
section of the Hexi Corridor, with the Aksay Basin to its south. The two counties in this
region Subei and Aksay. The main ecological functions of the area are windbreaks and sand
fixation, as well as water–soil conservation. The area measures 6.11 × 104 km2, accounting
for 25.78% of the total regional area. The biggest natural problem of this zone compared to
others is the sparse local precipitation and its uneven distribution (Figure 7). Droughts, less
rain, and serious wind erosion have become the leading causes for its restricted ecological
functions, and are also the source of other problems.

The Oasis Agricultural Area at the northern foothills of the Qilian Mountains is the
core area of human activity and economic development in the Gansu Province. The main
functions of the area are water and soil conservation, in addition to food production. The
region covers an area of 3.43 × 104 km2, accounting for 14.45% of the total regional area.
Compared with other subdivisions, the development of agriculture, animal husbandry, and
mineral resources is intense; ecological problems such as overgrazing, vegetation degra-
dation, soil erosion, and desertification are thus prominent, and the relationship between
humans and the natural environment has gradually become unbalanced (Figure 7).

The northern confluence area of the Qinghai Lake is located in the middle of the Qilian
Mountains, centering around the Qinghai Lake Basin, and reaching the Shule Nanshan
Mountain in the north and the Qinghai Nanshan one in the south. The main functions
of the area are water and soil conservation. The area is 3.28 × 104 km2, accounting for
13.84% of the total regional area. Compared with other divisions, the main ecological
problems in the area include serious mountain soil erosion (Figure 7), as seen in the Buha
River Basin and the southern foot of the Datong Mountain, thus often causing landslides
and debris flows. Vegetation degradations in the northeast of the Qinghai Lake have also
made the local microclimates unstable or even caused them to deteriorate. Finally, less
cultivated land resources with a low production potential and poverty have destroyed the
ecological environment.

The upper Shule River to middle Heihe River is located in the middle of the Qilian
Mountains, south of the Shule Henan Mountain and north of the Hexi Corridor, including
the upper reaches of the Shule River and the middle reaches of the Heihe River. The main
functions of the area are water and soil conservation. The area covers 3.62 × 104 km2,
accounting for 15.26% of the total regional area. Compared with other divisions, the soil
development is poor, both the quantity and quality of cultivated lands are rather low, and
the poverty index is high (Figure 7).

The Huangshui Basin Valley is located in the river valley area of the Huangshui River
Basin, and is its central area of human activity and economic development. The main
functions of the area are soil conservation and food supply. The region covers an area of
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0.66 × 104 km2, accounting for 2.77% of the total regional area. The area is adjacent to the
Oasis Agricultural Area at the northern foothills of the Qilian Mountains, but the current
agricultural productivity and production potential of the area are significantly lower than
those of the latter, and the problem of soil erosion is more prominent (Figure 7).

The northeast Tsaidam Basin is situated on the northeast edge of the Tsaidam Basin,
with the Zongwu Mountain in the north. The main functions of the area are water and
soil conservation. The area is 1.06 × 104 km2, accounting for 4.46% of the total regional
area. The subdivision has similar natural conditions to Aksay (corridor region of the
western Hexi Basin) and is spatially divided into different ecological restoration zones
due to discontinuity. The ecological problems in this zone mainly include less droughts
and sparse vegetation, which indicate a fragile natural environment, a low agricultural
production potential, and the fact that agricultural and animal husbandry production
operations are extensive (Figure 7).

5. Discussion

In previous studies, many scholars have carried out ecological vulnerability [38] and
ecological security assessments [39], as well as other related studies to provide decision-
making guidelines based on ecological protection and restoration by identifying important
and key areas of ecological restoration [40]. The commonly used assessment models for
ecosystem vulnerability studies are the pressure-state-response (PSR) [41] and the exposure-
sensitive-adaptive (ESA) models [42]. Ecological security pattern studies are based on
ecological networks, especially those from Europe [43] and the United States [44]. The
framework of ecological security patterns comprises the “ecological sources-ecological resis-
tance surfaces-ecological corridors” [45]. Compared with these studies, China’s ecological
restoration projects emphasize the combination of important ecological areas (mountains,
rivers, forests, farmlands, lakes, grasslands, etc.). Ecological restoration involves paying
more attention to the systematic restoration of total regional elements to ensure the integrity
of ecosystem structures and functions. China’s 13th five-year plan puts forward the concept
that “mountains, rivers, forests, fields, lakes, and grasslands are a community of life” in
ecological restoration. Therefore, for ecological restoration zoning, the ecosystem as a
community must also be comprehensively diagnosed. Based on this, this study proposed a
comprehensive diagnosis method for identifying ecological problems, and a comprehen-
sive restoration zoning method based on different ecosystem problems, which can provide
better technical support for the implementation of ecological restoration projects.

In this study, some key indicators were selected to characterize each ecosystem ele-
ment. For example, the assessment of soil conservation was used to describe “mountains,
water, and forests” in the ecosystem elements of the Qilian Mountains. However, there
were some limitations and uncertainties. Firstly, considering the natural environmental
conditions and special ecological and environmental problems in different regions, the
different needs for ecological services and ecological restoration will affect the selection of
various ecosystem element indicators. Therefore, the scientific index selection method for
evaluating ecological restoration needs to be further explored. Secondly, the index weight
assignment involved the difficulty of constructing the ERI. The application of inappropriate
methods may thus have directly affected the distribution characteristics of the evaluation
results and significantly increased the uncertainty. Although the method of determining in-
dex weights in this study could better reflect the extent to which various indicators involve
ecological problems, the weight value will be influenced by subjective selected indicators.
Further ecological restoration zoning could be studied by combining different index weight
determination methods. For example, research has shown that spatial principal component
analysis has advantages in ecosystem vulnerability assessment [46]. It can objectively
determine the weight of the evaluation indicators and avoid subjective arbitrariness, but
there is a certain problem of information loss.

When planning ecological restoration projects, the allocation of restoration areas and
the cost of restoration measures are two major problems faced by decision makers, which
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can be further studied by considering the construction of appropriate ecological restoration
development frameworks. For example, Zhang et al. [47] planned wetland restoration
projects based on the framework of interval fuzzy linear programming, which can deal
with the trade-off between eco-environmental benefits and economic costs. Under the
background of global climate change, ecosystem restoration should not only combine the
characteristics of the ecosystem itself, but also consider the impact of climate change [48].
In addition, with the development and application of remote sensing (RS), geographic
information systems (GIS), global positioning systems (GPS), and other technologies,
ecological restoration zoning results have become more dynamic. In future research, it is
also worth paying attention to carrying out the real-time diagnosis of ecological restoration
problems and make timely policy adjustments by using remote sensing image data with
high spatial and temporal resolutions.

6. Conclusions

Based on the land use data of the resources and environmental data centers of the
Chinese Academy of Sciences, the cultivated land quality data of the 1:1 million land
resource map, the NDVI data of MODIS, and the big data search of the network crawler, the
ecological problems related to the mountains, water, forests, fields, lakes, and grasslands
of the Qilian Mountains were systematically analyzed. The study found that mining
exploration and hydropower projects have been the main reasons for the ecological damage
of the Qilian Mountains for nearly half a century. From 1990–2015, the land use of the
Qilian Mountains changed significantly: the forestry and wetland areas diminished while
the proportion of grassland areas increased. From 1990–2015, cultivated lands and built-up
areas expanded significantly. The high-coverage grasslands, low-coverage grasslands, and
other woodlands showed increasing trends. The shrub forestry areas, medium-coverage
grasslands, sparse forests, unused lands, and water areas decreased significantly.

Here, we have presented the index of the Qilian Mountains’ ERI, from which we
identified the key areas of the latter’s ecological restoration and distinguished different
restoration zones. The ERIs in the southeast and southwest of the research area were
relatively large, implying that an urgent restoration of ecological protection is needed in
these areas. Finally, we divided the study area into three primary ecological restoration
zones and eight secondary ecological restoration zones. The average restoration index of the
eight ecological restoration zones was 0.61, and the partition restoration index was between
0.34 and 0.8. Of these indices, the zone with the lowest values occurred in the upper
Shule River to middle Heihe River, which had the most serious comprehensive ecological
problems and the highest urgency of repair. In contrast, the ERI of the Huangshui River
Basin, the area with the highest ecological quality in the Qilian Mountain area, was 0.73.

Our findings can serve as a scientific basis for policy implementations for the diag-
nosis and restoration of ecological problems. However, there were some limitations and
areas of uncertainty, such as those involving the selection of indicators and the determina-
tion of indicator weights. The scientific index selection method for evaluating ecological
restoration should be further explored. Ecological restoration zoning can be studied by
combining different index weight determination methods. It is also worth paying atten-
tion to carrying out real-time diagnoses of ecological restoration problems and making
timely policy adjustments by combining remote sensing image data with high spatial and
temporal resolutions.
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Appendix A

The Specific Calculation Process of Indicators

(1) Soil Conservation

The soil conservation determination method of the Qilian Mountains adopted the
general equation of soil erosion, and its calculation was performed using MATLAB. First,
the potential soil erosion was calculated according to rainfall erosivity, “R”, soil erodibility,
“K”, and slope length slope factor, “LS”. Second, under the conditions of the vegetation
cover, management factor, “C”, and engineering measure factor, “P”, a value was assigned
according to different land use types. Finally, the actual soil erosion was calculated by
using the general soil erosion equation. The difference from the potential soil erosion was
the soil conservation value. The specific formula was as follows:

First, the potential soil erosion amount was calculated. The formula was as fol-
lows [49]:

RKLS = R × K × LS (A1)

Second, in the case of vegetation cover and engineering measures, the general soil loss
equation was used to calculate the actual soil loss [50]. The formula was as follows:

USLE = R × K × LS × C × P (A2)

Finally, the amount of soil conservation was defined as the difference between RKLS
and USLE, expressed by the soil holding conservation (SHC), as follows:

SHC = RKLS − USLE (A3)

where “R” is the rainfall erosion force, “K” is the soil erodibility, “LS” is the long slope factor,
“C” is the vegetation cover and management factor, and “P” is a project measure factor.

Rainfall erosivity, “R”, reflects the potential capacity of soil erosion caused by rainfall,
in addition to Wischmeier’s empirical formula [51,52], which was used in the calculation:

R =
12

∑
1

1.735 × 10[(1.5×lg
p2

i
p )−0.8188] (A4)

where “pi” is the average monthly rainfall and “p” is the average annual rainfall.
Soil erodibility, “K”, is an important index of the soil erosion equation, and the Erosion–

Productivity Impact Calculator (EPIC) formula established by Williams et al. [53] was used
for calculations, namely:

K =

{
0.2 + 0.3 exp

[
−0.025san

(
1 − sil

100

)]}
×
[

sil
cla + sil

]0.3
×

[
1 − 0.025

c
c + exp(3.72 − 2.95c)

]
×
[

1 − 0.7
sn1

sn1 + exp(22.9sn1 − 5.51)

] (A5)

where “san”, “sil”, “cla”, and “c” represent the contents of sand, silt, clay particles, and
organic carbon in the soil (%), respectively, and “snl” is equal to 1 − san/100.

The topographic factor “LS” reflects the relationship between slope and surface con-
ditions, and is the distance from which rain drops or sediments flow until the energy
disappears, reflecting the impact of the topographic and geomorphological characteristics
on soil erosion. For different slopes, the model can automatically calculate the value of
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the terrain factor and set the slope threshold to 25%, depending on the actual situation.
The surface cover management, factor “C”, refers to the ratio of the soil loss of a specific
crop or natural vegetation under the same soil, terrain, and rainfall, mainly affected by soil
water, early land use mode, and vegetation crops’ planting sequence to reflect the impact
of vegetation or crops and management measures on soil loss. This value is between 0–1.
The soil conservation measure, factor “P”, indicates the ratio of soil loss to soil loss after
slope planting, reflecting the difference in soil loss caused by the differences in vegetation
management measures. This is one of the most important factors to inhibit soil erosion,
whose range is between 0–1. “P” and “C” can be obtained from the relevant literature [54].

(2) Mine Distribution Acquisition

The mining strength was quantitatively analyzed according to the mine distribution
density (MD). Mine distribution data were obtained using mine information searching
technologies. Mine information searching was mainly based on the Amap application
programming interface (API), and was completed through secondary development. In
other words, relevant means such as a point of interest (POI) search, geographic position
inverse queries, and so on, were used to obtain the longitude and latitude coordinates
of the mines, and then GIS software was used to generate the spatial distribution of the
mines. This research used a Python programming crawler program to access the Amap
WEB service, search for place names related to “mines”, and determine the density of the
Qilian Mountain mines based on their geographical location.

(3) Precipitation and Extreme Precipitation

The level of precipitation in China was mainly based on daily precipitation values.
In Northern China, the standard of daily precipitation is 10 mm/d or less for light rain,
10–25 mm/d for moderate rain, 25–50 mm/d for heavy rain, and 50 mm/d and up for
extreme precipitation. Therefore, this study selected days with daily precipitation values
greater than 50 mm as the extreme precipitation index (rainstorms). In this paper, the daily
precipitation and radiation data with a resolution of 250 m from 2001–2015 were obtained
from the daily dataset of China’s surface climate data (V3.0), and the spatial distribution
was obtained by interpolation.

(4) Interannual Change Rate of Forests and Grassland Vegetation

We evaluated the 16-day synthetic normalized difference vegetation index (NDVI)
products (MYD13A2 and MOD13A2) of grassland vegetation based on the 1000 MODIS
for the years 2001–2015. To obtain the vegetation NDVI time series curve of the Qilian
Mountains from 2001–2015, the noise time series curve of “cloud pollution” with quality
control documents was eliminated, and the NDVI time series curve of each pixel was
reconstructed with a Savitzky–Golay filter.

The change in vegetation in the Qilian Mountains was characterized by the interannual
change rate of vegetation’s NDVI, which was calculated using the slope of the trend line in
linear regression analyses. The calculation formula was as follows [55–57]:

θslope =

n × n
∑

i=1
i × NDVIi −

n
∑

i=1
i × n

∑
i=1

NDVIi

n × n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (A6)

where “θslope” is the slope of the fitted trend line, “n” is the study period, and “NDVI” is
the vegetation’s NDVI for the i-th year. When θslope > 0, there was a downward trend in
“NDVI” in the time series of the pixel; otherwise, “NDVI” had an upward trend.
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Abstract: Chemical fertilizers are important inputs in agricultural production. They not only increase
crop yield but also bring many negative effects, such as agricultural non-point source pollution.
Therefore, a scientific understanding of the regional differences in chemical fertilizer application
and its environmental risks is of significance to promote China’s agricultural development. In this
study, we analyzed the spatiotemporal pattern of chemical fertilizer application intensity (CFAI) in
China since 2000, evaluated the environmental risks of provincial CFAI, and investigated the internal
mechanism behind them. The results showed that the total amount and intensity of chemical fertilizer
application in China from 2000 to 2019 presented a trend of increasing first and then decreasing.
In 2000 and 2019, provincial CFAI in eastern China was generally higher than that in central and
western China, and the environmental risks of provincial CFAI were spatially characterized by “high
in the north and low in the south”. Factors such as poor soil conditions, unreasonable farming
structure and backward fertilization methods are the main reasons for the continuous increase in
the total amount and intensity of chemical fertilizer application, while the construction of ecological
civilization and the transformation of society and economy are the main reasons for their decline.
Finally, measures such as targeted fertilization, adjusting the use structure of chemical fertilizers, im-
proving fertilization methods and replacing chemical fertilizers with organic fertilizers are proposed
to promote the quantity reduction and efficiency increase of chemical fertilizer application in China.

Keywords: chemical fertilizer application; environmental risks; agricultural production; food security;
high-quality development; rural revitalization

1. Introduction

Agriculture is not only the main source of human food and clothing but also the foun-
dation supporting economic development and social progress [1,2]. Before the industrial
revolution, agricultural development mainly depended on the self-recovery of soil fertility
or the increase of soil organic matter through returning animal manure and straw to the
field [3]. As a result, the development of agriculture was slow and the scale was small.
By the middle of the 19th century, the emergence of chemical fertilizers opened a channel
to provide nutrients for crop growth from outside the agricultural system, expanded the
contents of material flow and energy cycle in agricultural system, and greatly promoted
the development of agricultural production [4]. Through balancing nutrient composition
and improving soil fertility, the application of chemical fertilizers effectively ensures the
stable and high yield of grain, which makes great contributions to human survival and
development. According to the existing research, the contribution rate of chemical fertiliz-
ers to the growth of food production in various countries is generally between 30% and
60% [5–7].

China is the most populous developing country in the world [8,9]. The long-standing
problem of insufficient food and clothing makes the Chinese government attach great impor-

Int. J. Environ. Res. Public Health 2021, 18, 11911. https://doi.org/10.3390/ijerph182211911 https://www.mdpi.com/journal/ijerph
337



Int. J. Environ. Res. Public Health 2021, 18, 11911

tance to agricultural development and continue to strengthen financial and policy supports
to improve grain production capacity and ensure national food
security [10–12]. After nearly 70 years of efforts, China’s grain yield per unit area has
increased from 1029 kg/ha in 1949 to 6272 kg/ha in 2019, and the per capita output of grain
has correspondingly increased from 209 kg/person to 475 kg/person [13], feeding about
22% of the world’s population with just 7% of the world’s farmland [14–18]. In terms of
the driving force behind it, technological progress, especially the development of chemical
fertilizer technology, has played a vital role [19–21]. Since 2006, China has been the biggest
producer and consumer of chemical fertilizers in the world, producing more than a quarter
of the world chemical fertilizers and consuming more than 30% every year.

As one of the important components of the green revolution [22], chemical fertilizers
are the “food” of crop growth and the necessary means of production for agriculture.
Thus, they have played a critical role in aspects such as ensuring national food security
and guaranteeing social stability [21]. However, because of the traditional agricultural pro-
duction mode and unreasonable fertilization methods, the overuse of chemical fertilizers
is widespread in China’s agricultural production [23,24], and has been one of the main
sources of agricultural non-point source pollution [25–27]. With the construction of eco-
logical civilization and the enhancement of people’s ecological awareness, more and more
attention has been paid to resource and environmental problems such as water pollution,
air pollution and land degradation, which are caused by the excessive use of chemical
fertilizers [16,19,25,28–30]. As a result, how to deal with these problems has become an
important target of the government policies and measures [31]. Due to the lack of scientific
understanding of soil nutrients, the unreasonable chemical fertilizer application structure
is also common in agricultural production [32], especially the prominent problems such as
attaching importance to chemical fertilizers and neglecting organic fertilizers, attaching
importance to nitrogenous fertilizers and neglecting phosphate and potash fertilizers and
attaching importance to major elements and neglecting trace elements, all of which have
seriously hindered crop growth [20,33]. In general, the unreasonable and unscientific
problems in China’s chemical fertilizer application not only damage basic soil fertility and
increase the cost of grain production, but also affect the quantity and quality of agricultural
products and threaten national food security.

Currently, China’s socialist modernization has entered a new stage of high-quality
development, and the focus of rural development has shifted to rural revitalization [9,34].
In this context, the Chinese government actively promotes the construction of ecological
civilization to optimize human–earth relationship and achieve the sustainable development
of agricultural system [35,36]. These new situations inherently require promoting the quan-
tity reduction and efficiency improvement of agricultural inputs, especially the chemical
fertilizers, to realize the green and high-quality development of agriculture. China is a
country with vast territory and significant regional differences [37]. A scientific under-
standing of regional differences in chemical fertilizer application and its environmental
risks is of great significance to guide the rational application of chemical fertilizers and the
transformation and upgrading of agriculture in different areas. Employing a dataset of
chemical fertilizer application from 2000 to 2019, this study analyzes the spatiotemporal
pattern of chemical fertilizer application intensity (CFAI) in China, measures provincial
CFAI safety thresholds according to local soil conditions, and then reveals the environmen-
tal risks of chemical fertilizer application in different provinces. Ultimately, the driving
mechanism behind the spatial inequality of chemical fertilizer application as well as the
measures for agricultural sustainable development are discussed. These findings will
contribute to the implementation of new development concepts, promote the construction
of resource-saving and environment-friendly industrial system in rural China, and finally
realize the modernization of agriculture and rural areas.
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2. Materials and Methods

2.1. Chemical Fertilizer Application Intensity

CFAI is a concept which reflects the consumption of chemical fertilizers per unit area
of land. It has two statistic calibers of cultivated area and sown area [38]. Based on relevant
studies [38,39], the latter is employed in this study to investigate the regional pattern of
China’s CFAI and its environmental risks, and the formula is given as follows:

CFAI = CCF/SAC (1)

where CCF denotes the consumption of chemical fertilizers, which refers to the quantity of
chemical fertilizers applied in agricultural production in the year, including nitrogenous
fertilizers, phosphate fertilizers, potash fertilizers, and compound fertilizers. For the conve-
nience of comparison, CCF is calculated in terms of the volume of effective components by
converting the gross weight of respective fertilizers into weight containing effective com-
ponents, e.g., nitrogen content in nitrogenous fertilizers, phosphorous pentoxide contents
in phosphate fertilizers, and potassium oxide contents in potash fertilizers. SAC denotes
the total sown area of crops, which refers to the area of all land sown or transplanted with
crops that are harvested within the calendar year. All crops harvested within the year are
counted as sown area, regardless of being sown in the current year or the previous year,
and crops that are sown this year but harvested in the coming year are excluded.

2.2. Environmental Risk Assessment

The concept of risk assessment generally has a long history [40], but environmental
risk assessment (ERA), as a scientific field, originated only in the early 1970s [41]. An ERA
is a process used to evaluate the quantitative and qualitative characteristics of environment
that may be impacted due to exposure to one or more environmental stressors, such as
chemicals, disease, invasive species, and climate change [42,43]. The environmental risks
of CFAI are the possibility of ecological damage and environmental pollution caused by
chemical fertilizer application in the process of agricultural production, which has the
characteristic of being non-sudden. Here, the ERA of CFAI is calculated as follows:

Ri = Fi/(Fi + Ti) (2)

where Ri is the environmental risk index of region i, Fi is the CFAI of region i, and Ti is
the environmental safety threshold of CFAI of region i. According to the calculation of
environmental risks, the value of Ri varies from 0 to 1. When Ri is 0.50, it means that Fi and
Ti are equal, which is the critical point of environmental safety; when Ri approaches 1, it
means that Fi greatly exceeds Ti, i.e., there are extremely serious environmental risks in
chemical fertilizer application; while Ri approaching 0 means that Fi is much lower than Ti.
According to the multiple of Fi to Ti, the environmental risks are divided into five types:
safe, low risk, moderate risk, high risk and serious risk (Table 1).

Table 1. Classification of the environmental risks of chemical fertilizer application.

Classification Type Threshold Criteria

Level I Safe 0.00 < Ri ≤ 0.50 Fi ≤ Ti
Level II Low risk 0.50 < Ri ≤ 0.67 Ti < Fi ≤ 2Ti
Level III Moderate risk 0.67 < Ri ≤ 0.75 2Ti < Fi ≤ 3Ti
Level IV High risk 0.75 < Ri ≤ 0.80 3Ti < Fi ≤ 4Ti
Level V Serious risk 0.80 < Ri < 1.00 Fi > 4Ti

2.3. Data Source and Processing

The basic geographic data used in this study come from the Resource and Environ-
ment Science and Data Center of Chinese Academy of Sciences (https://www.resdc.cn/)
(accessed on 5 September 2021). Data on sown area of farm crops and chemical fertilizer ap-
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plication are obtained from China Statistical Yearbook. Data on the grade of cultivated land
are collected from the Ministry of Natural Resources of the PRC (http://www.mnr.gov.cn/)
(accessed on 5 September 2021). According to the research design, Hong Kong, Macao, and
Taiwan are excluded in the analysis. As a result, a total of 31 provincial-level administrative
units are obtained to investigate the regional differences of CFAI and their environmental
risks in China.

3. Results

3.1. Evolution of Chemical Fertilizer Application in China

In 2000, the total amount of chemical fertilizers applied in China’s agricultural pro-
duction was 41.46 million tons, and increased to 54.04 million tons in 2019, with an average
annual growth rate of 1.40%. Accordingly, China’s CFAI increased from 265.28 kg/ha to
325.65 kg/ha, and the average annual growth rate was 1.08%. Specifically, the consump-
tion of chemical fertilizers maintained a stable growth trend before 2015, and the average
annual growth rate during this period reached 2.52%. Then, as the Ministry of Agriculture
and Rural Affairs of the PRC issued the action plan for zero growth of chemical fertilizer
application by 2020 in February 2015 to promote the green development of agriculture, the
total amount of chemical fertilizer application in China decreased at an average annual
rate of 2.67% in 2015–2019. The evolution of CFAI also showed a trend of increasing first
and then decreasing, but the turning year was advanced to 2014, and the average annual
growth rate of the two stages changed from 2.26% to −2.15% (Figure 1).

Figure 1. Evolution of chemical fertilizer application in China from 2000 to 2019.

In terms of the provincial CFAI, CFAI in Tibet was the lowest in 2000,
only 108.18 kg/ha, followed by Inner Mongolia (126.47 kg/ha), Qinghai (130.03 kg/ha)
and Heilongjiang (130.34 kg/ha). These provinces were the only four provinces with a
CFAI lower than 150 kg/ha. The province with the highest CFAI was Fujian, followed by
Jiangsu, Beijing and Shandong, where the value of CFAI was all greater than 375 kg/ha
(Figure 2a). After nearly two decades of development, provincial CFAI has developed
rapidly. In 2019, Qinghai was the province with the smallest CFAI, which was just
112.01 kg/ha and the only province with a CFAI lower than 150 kg/ha in the whole
country. On the other end of the spectrum were three eastern provinces, Beijing, Hainan,
and Fujian, where CFAI was 699.77 kg/ha, 684.71 kg/ha and 664.67 kg/ha, respectively;
CFAIs of these three provinces were much greater than those of other provinces (Figure 2b).
Spatially, provincial CFAI showed an obvious east-central-west gradient differentiation
in 2000 and 2019, that is, provincial CFAI in the eastern coastal region was significantly
greater than that in the central region, and provincial CFAI in the western region was
generally small.
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Figure 2. Spatial pattern of China’s provincial CFAI in 2000 (a) and 2019 (b).

The analysis of the changes of provincial CFAI from 2000 to 2019 showed that CFAI
decreased in only five provinces, namely, Shanghai, Qinghai, Jiangsu, Shandong and
Guizhou, with a decrease of 22.59%, 13.86%, 8.94%, 4.76% and 0.02%, respectively. Among
the provinces with an increase of CFAI, there were eleven provinces with an increase greater
than 50%, and the greatest was Hainan (135.87%), followed by Inner Mongolia (94.36%),
Xinjiang (78.93%) and Beijing (78.77%); only CFAI in Liaoning, Hubei and Sichuan increased
by less than 10%, and the value was 9.43%, 7.56% and 3.89%, respectively. In general, the
changes of provincial CFAI showed a characteristic of being small in traditional agricultural
areas and large in non-traditional agricultural areas.

3.2. Environmental Risks of Chemical Fertilizer Application in China

To measure the environmental risks of chemical fertilizer application in different
provinces, it is necessary to first determine the provincial safety upper limit of CFAI.
According to existing research, the internationally recognized ceiling for safe CFAI is
225 kg/ha [44,45]. Here, we also set this value as the safety upper limit of CFAI in China,
that is, the ceiling of CFAI corresponding to 9.96-grade cultivated land is 225 kg/ha.
The calculation of China’s CFAI over the years shows that CFAI in China has exceeded
the safety upper limit since 1995, and has been running at a high level for a long time [13].
Because of the regional inequality in cultivated land grades derived from the spatial
heterogeneity of natural and human conditions [37,46], the provincial safety upper limit of
CFAI is also different. In line with the safety upper limit of CFAI, which is corresponding
to the national average grade of cultivated land, the cultivated land grades of different
provinces are employed to calculate their safety upper limits of CFAI. As shown in Figure 3,
the environmental safety threshold of chemical fertilizer application in each province shows
a significant gradient descent pattern from the southeast coastal areas to the northwest
inland areas. Specifically, there are sixteen provinces with a safety upper limit of CFAI
greater than 225 kg/ha, mainly distributed in the eastern coastal region and the central
region with good natural conditions, such as abundant water and good soil. Among
them, there are four provinces with a safety upper limit greater than 375 kg/ha, including
Hubei (428.42 kg/ha), Guangdong (424.98 kg/ha), Shanghai (411.64 kg/ha) and Jiangsu
(399.27 kg/ha). Jiangxi and Henan are also close to that level. It is noted that the provinces
with a safety upper limit less than 225 kg/ha mainly distribute in the western and northeast
regions, including Inner Mongolia, Gansu, Qinghai, Shanxi, and Tibet, where the upper
safety limits are all less than 150 kg/ha.
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Figure 3. Spatial pattern of provincial environmental safety upper limits of CFAI in China.

Due to the relative stability of natural conditions [47], we assume that the cultivated
land grade of each province is the same in 2000 and 2019. Based on provincial CFAI
and their environmental safety upper limits, formula (2) is employed to calculate the
environmental risks of chemical fertilizer application, and ArcGIS 10.4 is used for spatial
visualization (Figure 4). In 2000, there were only two types of environmental risks for
provincial CFAI, namely, safety and low risk. The former included sixteen provinces,
mainly distributed in the south, of which the province with the lowest risk was Jiangxi
(0.36), followed by Hubei (0.43) and Hunan (0.43). The other provinces belonged to the
latter, and the province with the highest risk level was Gansu (0.66), with Shaanxi (0.64)
and Liaoning (0.64) being close to that level. In 2019, there were only eight provinces whose
environmental risk type was safety, mainly distributed in the middle and upper reaches
of the Yangtze River. Among them, the province with the lowest environmental risk was
Jiangxi (0.38), followed by Shanghai (0.41) and Hubei (0.45), and the other five provinces
were on the edge of the safety line. The number of provinces with a risk type of moderate
risk was seven; except for Hainan, Fujian and Beijing in the east, the rest were mainly
distributed in the northwest. Only the risk type of Inner Mongolia was high risk.
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Figure 4. Spatial pattern of the environmental risks of China’s CFAI in 2000 (a) and 2019 (b).

In terms of the changes of environmental risks of CFAI during the period of
2000–2019, there were five provinces with a decreased value of environmental risks, namely
Shanghai, Qinghai, Jiangsu, Shandong and Guizhou, and the decrease was 13.31%, 6.36%,
4.55%, 2.15% and 0.01%, respectively. Among the provinces with an increased value of
environmental risks, there were eight provinces with an increase greater than 20%, of
which the highest was Hainan (41.06%), followed by Tibet (27.87%) and Guangxi (27.39%).
The analysis of the changes of environmental risk types from 2000 to 2019 showed that
there were eight provinces changing from safe to low risk and one province changing from
safe to moderate risk; there was one province changing from low risk to safe, six provinces
changing from low risk to moderate risk, and one province changing from low risk to high
risk; there were seven provinces whose risk types remained safety, and the number of
provinces whose risk type has always been low risk was also 7 (Table 2).

Table 2. Changes of the environmental risk type of provincial CFAI in China from 2000 to 2019.

2019

Safe Low Risk
Moderate

Risk
High
Risk

2000
Safe

Jiangxi, Shanghai,
Hubei, Sichuan,

Guizhou, Hunan,
Heilongjiang

Anhui, Chongqing,
Zhejiang,

Guangdong,
Tibet, Henan,

Guangxi, Yunnan

Hainan

Low risk Jiangsu

Qinghai,
Shandong,

Tianjin, Ningxia,
Liaoning, Jilin,

Hebei

Fujian,
Shanxi,
Gansu,
Beijing,

Xin-
jiang,

Shaanxi

Inner
Mongo-

lia

4. Discussion

4.1. Understanding the Chemical Fertilizer Application in China

Through solving the problem that soil nutrients cannot meet the needs of crop growth,
chemical fertilizers effectively promote agricultural development, thus ensuring national
food security [19]. Wang et al. pointed out that 40% of the increase in China’s agricultural
production during the period of 1986–1990 came from the increase of chemical fertilizer
application [48]. However, the growth rate of chemical fertilizer application in this process
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has far exceeded the growth rate of grain output, resulting in a serious problem of excessive
and inefficient application of chemical fertilizers, which become an important challenge
restricting the sustainable development of agriculture in China [16,49]. According to
statistics from the Ministry of Agriculture and Rural Affairs of the PRC, the comprehensive
utilization rate of chemical fertilizers for rice, wheat, and corn in 2020 was only 40.2%,
which was far lower than that of 60%~70% in developed countries. As the products of
technological progress, chemical fertilizers are essentially harmless. The problem related
to chemical fertilizers in agricultural production is not the problem of chemical fertilizers
itself but stems from the unreasonable and unscientific use of chemical fertilizers [50],
including unreasonable farming structure and backward fertilization method, as well as
insufficient scientific and technological guidance.

First, China’s per capita cultivated land is small, less than 0.10 ha/person, and the ba-
sic fertility of cultivated land is low, with medium and low yield cultivated land accounting
for nearly 65%. To ensure national food security, increasing the use of chemical fertilizers
has become an important choice in agricultural production [19,51]. However, due to the
imperfect fertilizer management system, the massive application of chemical fertilizers
has caused many resources and environmental problems, such as soil degradation and
the decline of land productivity, which further increases the use of chemical fertilizers,
forming a vicious circle [52]. Meanwhile, the low-quality cultivated land is poor in wa-
ter and fertilizer conservation, reducing the utilization efficiency of chemical fertilizers.
Second, the adjustment of farming structure boosts the increase of chemical fertilizer ap-
plication. Guided by a market economy and consumption upgrading, more and more
cultivated land in China is used to grow non-grain crops [8], such as fruits and vegeta-
bles (Figure 5), which have a higher demand for chemical fertilizers [53–55]. Due to the
traditional fertilization habits and the lack of understanding of fertilizer performance, the
phenomenon of excessive chemical fertilizer application is widespread in the process of
cash crops production, especially in the eastern developed region [56]. Third, the dominant
position of small-scale peasant economy in rural China makes the agricultural mechaniza-
tion develop slowly. In this context, the traditional artificial fertilization is still dominant,
such as spreading and surface application, which leads to the volatilization and leaching of
chemical fertilizers and reduces the utilization rate of chemical fertilizers. Fourth, due to
the urban–rural dual structure and urban-biased development strategy, problems such as
imperfect agricultural technology service system and few technicians are common in rural
China, which make farmers unable to get guidance from technicians in chemical fertilizer
application. Fifth, with the rapid development of industrialization and urbanization, many
rural working people flow to urban areas. This results in the aging and weakening of
agricultural producers, and causes the substitution of modern production factors such
as chemical fertilizer for labor force, which further increases CFAI [57]. Additionally, in
the process of circulation, fertilizer dealers tend to increase the recommended application
number of chemical fertilizers to obtain more benefits, resulting in excessive chemical
fertilizer application [58].
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Figure 5. Changes of the sown areas of vegetables and orchards in China from 2000 to 2019.

After more than 30 years of reform and opening-up, China’s economy developed
to the new normal stage in 2014, which requires optimizing the economic structure and
realizing the transformation and upgrading of economic growth from factor-driven to
innovation-driven [59,60]. Against this background, China’s agricultural development
has gradually changed from extensive growth of scale–speed type to intensive growth of
quality–efficiency type, constantly optimizing the structure of chemical fertilizer application
and improving the efficiency of chemical fertilizer application. On the other hand, the
report to the 18th National Congress of the Communist Party of China (CPC) proposed to
vigorously promote the construction of ecological civilization and form resource-saving
and environment-friendly spatial pattern, industrial structure, production and living mode
to reverse the trend of ecological and environmental deterioration from the source [61].
To achieve this goal, the Chinese government has issued a series of policies and measures
to promote the quantity reduction and efficiency improvement of agricultural inputs such
as chemical fertilizers and pesticides, and paid attention to the comprehensive utilization
of agricultural wastes, thus building a high-efficiency, low-carbon and green agriculture
system. Moreover, the promotion of rural reform continues to help the rapid development
of various new agricultural business entities [62], which promote the scale of agricultural
production and improves the efficiency of chemical fertilizer application. Driven by the
transformation of major national policies, the total amount and intensity of chemical
fertilizer application in China has decreased steadily since the late 12th Five-Year Plan, and
this trend will continue, thus boosting the high-quality development of agriculture and
achieving the goal of agricultural and rural modernization.

4.2. Policy Implications for Agricultural Development

Since 2004, China’s grain production has achieved bumper harvests for 16 consec-
utive years. However, the grain supply and demand is still in a tight balance, and the
food-security situation remains grim [8,63]. As people’s food demand changes from
enough to high-quality and diversified, the grain consumed in the production of meat,
eggs, milk and other food will continue to increase, which leads to rapid growth of grain
consumption [64–66]. On the other hand, the restrictive factors such as fresh water re-
sources and environmental carrying capacity have rigid constraints on grain production,
and become increasingly prominent, which increases the difficulty of increasing grain
production [67–69]. To ensure national food security and meet people’s needs for a better
life, chemical fertilizers must continue to be used. In the foreseeable future, chemical fertil-
izers will continue to play an important role in China’s agricultural production, and more
attention should be paid to scientific fertilization to maximize its socioeconomic benefits
and avoid the adverse impacts of unreasonable and unscientific fertilization on resources
and environment. Meanwhile, some targeted measures should be taken to establish and
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improve the chemical fertilizer application system to ensure production, save cost and
increase efficiency according to local conditions.

First, it is necessary to promote targeted fertilization. According to soil conditions,
crop yield potential and the requirements of comprehensive nutrient management, the
fertilization quota standard per unit area of crop should be reasonably formulated in differ-
ent regions to reduce blind fertilization. Second, more attention should be paid to adjust
the use structure of chemical fertilizers. By optimizing the ratio of nitrogen, phosphorus
and potassium fertilizers, the reasonable combination of major element and medium and
trace element can be realized. Meanwhile, there is an urgent need to guide the optimiza-
tion and upgrading of fertilizer products to meet the need of modern agriculture. Third,
fertilization method needs to be improved. The technology of soil testing and formula fer-
tilization (Cetu Peifang Shifei) should be popularized to improve farmers’ skills of scientific
fertilization. The government also should promote suitable fertilization equipment and
guide the changes of fertilization methods from surface application and spreading applica-
tion to mechanical deep application, water and fertilizer integration and foliar spraying.
Fourth, chemical fertilizers should be replaced by organic fertilizers. Through rational
utilization of organic nutrient resources, organic fertilizers are used to replace part of
chemical fertilizers, realizing the rational combination of organic and inorganic fertilizers.
In addition, some guarantee mechanisms need to be established and improved to ensure
the implementation of these measures for quantity reduction and efficiency increase of
chemical fertilizers, including a working mechanism of up–down linkage and multiparty
cooperation, a national fertilizer efficiency monitoring network, publicity and training of
new business entities, and supporting policies such as finance and taxation.

4.3. Limitations and Future Research Prospects

The objects of farming include not only grain crops, such as rice and corn, but also
cash crops, such as vegetables and fruits [8], and there are significant differences in nutrient
elements required for the growth of different crops. As a result, their demands for nitrogen
fertilizers, phosphorus fertilizers, potassium fertilizers, compound fertilizers and other
types of chemical fertilizers are different. Here, we only discuss the overall situation of
regional chemical fertilizer application, but lack of understanding of the use structure of
chemical fertilizers, the regional differences of different types of chemical fertilizers and
their environmental risks. Therefore, the chemical fertilizer application of different crops is
worthy of further investigation. When measuring the environmental risks of provincial
CFAI, the environmental safety threshold used in this study is a value calculated by inter-
national general standards. In fact, the environmental safety threshold is closely related
to the nutrient situations of cultivated land [70]. Thus, it is necessary to further promote
soil testing in future research and comprehensively determine whether chemical fertilizer
application is excessive according to regional soil fertility, thus scientifically guiding the
chemical fertilizer application in agricultural production and avoiding various resource and
environmental problems caused by the overuse of chemical fertilizers. In addition, with the
rapid development of society and the economy, greenhouse gas emissions dominated by
carbon dioxide are posing a serious threat to the global climate and ecology [71,72]. In this
context, China is actively committed to the implementation of the Paris Agreement, striving
to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutralization
by 2060. The process of chemical fertilizer production is an important carbon source, and
chemical fertilizer application also produces a large amount of carbon dioxide [73,74].
Therefore, scientific discussion on the relationship between chemical fertilizer produc-
tion/application and carbon emission and its internal mechanism is of great significance to
achieve the goal of carbon emission reduction in China.
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5. Conclusions

Currently, China’s agricultural development is in the critical stage of transformation
and upgrading, and its driving force is changing from factor input to technological innova-
tion [75]. Against this background, optimizing the structure and efficiency of agricultural
inputs, such as chemical fertilizers, has become an important measure to promote agri-
cultural development to a higher level in the new era. Affected by poor soil conditions,
unreasonable farming structure and backward fertilization methods, the total amount and
intensity of chemical fertilizer application in China have maintained an increasing trend
for a long time. With the promotion of ecological civilization and rural reform, the total
amount and intensity of chemical fertilizer application began to decline at the end of the
12th Five-Year Plan. Spatially, provincial CFAI in 2000 and 2019 showed a pattern of “high
in the east and low in the west”, and the changes of non-traditional agricultural areas
were more obvious than those of traditional agricultural areas. The analysis of the CFAI
safety thresholds showed that the provinces with a high safety threshold were mainly
distributed in the third terrain ladder, and those with a low safety threshold were mainly
distributed in northwest China and Qinghai–Tibet Plateau. As a result, the environmental
risks of provincial CFAI in 2000 and 2019 were all characterized by “high in the north and
low in the south”. To solve excessive application of chemical fertilizers and its related
problem in China, it is necessary to promote the quantity reduction and efficiency increase
of chemical fertilizers through targeted fertilization, adjusting the use structure of chemical
fertilizers, improving fertilization methods, and replacing chemical fertilizers with organic
fertilizers, thus realizing agricultural green and high-quality development and supporting
agricultural and rural modernization.
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Abstract: Continuous coal mining results in dramatic regional land use change, and significantly
influences the sustainable development of coal resource-based cities. Present studies pay little
attention to the characteristics and regularities of land use change in coal resource-based cities,
caused by underground coal mining in high groundwater areas. Based on the Landsat remote
sensing images of 1999, 2000, 2010, and 2018 of Huaibei City, a typical coal resource-based city of
a high ground water area on the North China Plain, this paper applies the dynamic degree and
transition matrix of land use to analyze the land use change characteristics, and identify the regularity
between land use type and coal mining production in this coal resource-based city. Results show
that the land use change in the research area presents an overall characteristic of a constant increase
in water area, urban construction land, and rural settlement land, and a continuous decrease in
cultivated land. Cultivated land is converted into a water area, urban construction land, and rural
settlement land, and rural settlement land and cultivated land are converted bidirectionally. The land
use change in this coal resource-based city demonstrates significant reliance on coal resources, and
coal mining is significantly related to the area of cultivated land, water area, and rural settlement land,
which demonstrates that continuous large-scale coal mining results in damage to cultivated land, a
decrease in rural settlement land, and an increase in water area. The research result contributes to the
sustainable land use of coal resource-based cities.

Keywords: coal mining; high ground water area; land use change; resource-based city

1. Introduction

Land has always been a crucial resource for human existence and development, and
acts as the base and carrier that support human activities [1–3]. Land use change is a long-
term activity that is based on certain social and economic aims. As an important research
area of global change science and sustainable science, it is the most direct representation of
terrestrial ecosystem change and the influence of human activities on the earth’s surface
system [4–6]. The measurement of land use change is a significant part of land resource
management and observation. However, most studies often focus on the analysis of land
use change on large scales, such as global, region, country, basin, island, or peninsula
scales, while less attention is given to land use change on small scales in city or rural
areas. Land use change is mainly caused by the complex interaction of human activities
and ecological and social factors [7,8]. Present studies mainly probe the influence of
macro human activities, such as urbanization and industrialization on land use change [9],
while showing less interest in the micro driving force of regional land use change. Due
to the difference between different types and degrees of human activities, as well as the
heterogeneity of the earth’s surface, land use changes in various areas also present different
characteristics and regularities. In this regard, it is important to explore the dynamic change
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regularities of typical regional land use to promote sustainable regional land use, to further
achieve the United Nations (UN) Sustainable Development Goals.

With the fast development of society and the economy, there is a growing demand for
coal resources. Large-scale, high strength, and long-term coal mining inescapably affects
the regional land use type change [10,11]. A coal resource-based city is one that develops
based on exploring, processing, and producing coal resources, and mainly functions
as the coal resource supplier. The activities of coal mining are critical driving factors
of land use change in coal resource-based cities. However, the differentiation of coal
resources determines various coal mining types, including open-cast coal mining and
underground coal mining, which further contribute to different regional land use change
characteristics and regularities [12–14]. The present research pays more attention to the
land use change caused by the way of open-cast coal mining, instead of underground coal
mining. Furthermore, there are few researchers studying the land use change characteristics
in coal resource-based cities caused by coal mining [15–17]. Therefore, it is of crucial
importance to carry out studies on land use spatial change paradigms in coal resource-
based cities, and analyze the relationship between coal mining and land use type, further
disclosing the interaction mechanism of regional land use change and coal mining.

However, there are still some limitations in the relative studies on land use change in
coal resource-based cities. First, present studies tend to probe the transformation of the
regional terrestrial ecological environment to a water ecological environment caused by
underground coal mining in specific coal areas, instead of analyzing the land use change
resulting from coal mining in populated, developed, high ground water areas on the plain
from the perspective of the city. Second, land subsidence caused by coal mining is a long-
term and complex evolution. Present studies fail to present the new characteristics of land
use change after the transformation development in coal resource-based cities in today’s era,
which is facing structural transformation from energy resource use, obstacles of ecological
environment, and constraints of traditional industry development. Therefore, the relevant
remote sensing image data must also be updated. Lastly, the externality of coal mining
greatly affects the land use change in coal resource-based cities. Moreover, the correlation
analysis of land use type change and total coal production in coal resource-based cities is
still unclear, and the relationship needs to be further illustrated.

Compared with the energy structures of other developed countries, the resource
characteristics—coal-rich, oil- and gas-poor—contributes to China’s long-term energy
structure, which prioritizes coal. China is the largest coal-consuming country in the world,
and approximately 90% of its total coal production comes from underground coal mining.
Mining subsidence is the serious problem in the mining process [18]. There are great
compositive areas of underground coal resources, cultivated land, and urban construction
land and rural settlement land in high ground water areas of eastern China [19]. The
subsidence caused by accumulated underground coal mining results in large-scale water-
logged and inundated land in coal areas of the China Plains, which further leads to the
decline in cultivated land and sharp conflicts between population, land, and agriculture [16].
In this regard, this paper selects Huaibei City—a coal resource-based city on the North
China Plain—as an example to explore the characteristics and influencing factors of land
use change, and attempts to answer the following questions: (1) is there any regularity in
the mutual transformation of land use types in the coal resource-based city in high ground
water areas on the plain with long-term scale? (2) What is the relationship between the
amount of coal mining and land use types?

2. Research Method and Data Collection

2.1. Background of Research Area

The North China Plain is low and flat, with the majority of its land under 50 m above
sea level, and is the most populous plain, making up approximately 24.2% of the total
population in China. It is also the major grain-producing area, and an important high
ground water area in China. As a typical mine–grain mixed zone, the North China Plain
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produces both coal and grain [20]. Huaibei City, a city of Anhui Province, is located in the
North China Plain (Figure 1).

Figure 1. Huaibei’s geographical location in China (note: the figure is drawn by the author).
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Huaibei City, with a total land area of 2741 km2, was founded in 1957 for coal mining.
It is a typical coal resource-based city that governs three districts and one county, namely
Xiangshan district, Duji district, Lieshan district, and Suixi county. It is a city with a dense
population and a well-developed economy, whose permanent population density is 792 per
square kilometers; the permanent population urbanization rate reached 65.9%, and the
industrialization rate was 39% in 2019. At present, there are 23 large coal mines in Huaibei
City, with an average annual total coal production of 33.97 million tons from 1990 to 2018
(Figure 2). Moreover, the largest annual coal production in the city occurred in 2012; since
then, coal production has fallen markedly. On the one hand, China’s economic growth has
slowed since 2012, which has led to a decline in the demand for coal production. On the
other hand, Huaibei City was listed as a resource-exhausted city by the state in 2009, and
the amount of coal to be mined was insufficient (approximately 80% of the mines are in the
coal-resource depletion phase). Under the influence of these two factors, the annual coal
production in Huaibei City declined after 2012, and this trend will exist for a certain period
of time.

Figure 2. The total coal production and GDP in Huaibei City from 1990 to 2018.

Huaibei City’s underground water level is 2–3 m, the annual average temperature
is 14.5 ◦C, and the annual average amount of precipitation is 862.9 mm. As a coal–grain
mixed zone in high ground water areas, land use in Huaibei prioritizes agriculture before
coal mining development. With the development of coal mining, the coal industry has
gradually become the pillar industry in the economic development of Huaibei since the
1990s. After 2010, the city entered a transition period, and the proportion of coal industry
output value gradually decreased (Figure 3). With constant large-scale coal mining, the
cultivated land is in the process of dynamic subsidence, which further results in waterlog-
ging and becomes a water body, increasing the proportion of affected cultivated land. In
the future, coal resource mining activities will continue, and their impact on land use will
continue to exist.
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Figure 3. Structure of output value of major industrial sectors in Huaibei City.

2.2. Research Method

The data analysis methods in this article include land use dynamic degree (in order to
describe the rate of change of a certain land use type in a region) and land use intensity (in
order to describe the degree of change of a certain land use type during the study period).
The specific formulas are as follows:

K =

[
Ub − Ua

Ua

]
× 1

T
× 100% (1)

where K indicates the dynamic degree of a certain land use type during the study period,
Ua indicates the area of a certain land use type at the beginning of the study period, Ub
indicates the area of a certain land use type at the end of the study period, and T indicates
the length of study period.

Si =
Ui

(U × T)
(2)

where Si indicates the land use intensity of a certain land use type during the study period,
Ui indicates the absolute change of the i-land type within the study period, U indicates the
absolute change of all land types in the study area during the study period, and T indicates
the length of study period.

2.3. Data Collection

The research data are mainly from the Landsat remote sensing image of Huaibei City
in 1990, 2000, 2010, and 2018, with a spatial resolution of 30 × 30 m. The choice of research
period mainly considers the availability of data, and the phased characteristics of Huaibei
City’s development. Although annual coal production began declining in 2012, the city has
entered a transitional stage of development since 2010. Therefore, it is reasonable to select
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the year 2010 in this research. This paper applies the methods of geometric correction and
image enhancement to process the remote sensing image, and adopts the human–machine
interactive visual interpretation to extract the land use data of Huaibei. Referring to the
classification of the International Geosphere–Biosphere Programme (IGBP), this paper
divides the land use types in Huaibei City into six types, including cultivated land, forest
land, grass land, water area, urban construction land, and rural settlement land, based
on the actual situation of the case. In addition, the socio-economic data of this paper are
primarily from the Huaibei City Statistical Yearbook [21].

3. Results

3.1. Stage Division of Land Use Change

Based on the analysis of total coal production, different land use type change and
socio-economic development background in research area over the years (Figure 4), this
research proposes that the land use change is generally divided into three stages, including
low-speed dispersion development stage, medium-speed aggregation development stage,
and high-speed equilibrium development stage. (1) During the low-speed dispersion
development stage (from 1990 to 2000), the speed of land use change was low, and the
development in coal resource-based cities mainly focused on the coal mining industry.
Under the mainly influence of China’s planned economic system, Huaibei City had a single
industrial structure (Figure 3), and the extent of the city’s economic development was
low. The mining scope of this stage is small, and the influence of mining activities on
the overall pattern of land use is not significant. (2) In the medium-speed aggregation
development stage (from 2000 to 2010), the overall speed of land use change was faster. In
the context of China’s market economic system, the development of the coal industry and
non-coal industry is accelerating in the city. Coal production increased from 24.59 million
tons in 2000 to 47.35 million tons in 2010, and industrial output increased from CNY
3.84 billion in 2000 to CNY 27.37 billion [21]. The development of the industry has led to
the expansion of the city’s economic scope and population concentration. The urbanization
process in Huaibei has accelerated, with the number of urban residents increasing from 0.73
million in 2000 to 1.161 million in 2010, which further promoted the rapid transformation
of land types, such as cultivated land into urban construction land. (3) During the high-
speed equilibrium development stage (from 2010 to 2018), the speed of land use change
accelerated significantly. The total coal production first increased and then decreased,
coal-related industries gradually declined, and the effect of coal resources on land use
change was also weakened due to coal resource reserve shortages. However, under the
influence of the central government support policy (by 2018, Huaibei City has received
a total of approximately CNY 5.4 billion in financial transfer funds from the state), the
city has carried out transformation and upgrading, the speed of urban construction has
accelerated, and changes of the various types of land use in the city have been drastic.

3.2. Rate of Change of Different Land Use Types

According to dynamic degree and change intensity index models, this paper calculates
the dynamic degree and change intensity index of each type of land use in all the stages in
Huaibei City (Table 1). The results demonstrate that the overall land use structure in the
city has dramatically changed since 1990, especially the decrease in cultivated land, and
the increase in urban construction land and rural settlement land and water area.

The leading role of cultivated land was not significantly changed, although its area
plummeted to 177.82 km2 from 1990 to 2018. The changing intensity in different stages
was significantly higher than other land use types. The dynamic degree of cultivated
land improved from −0.07% at the low-speed dispersion development stage to −0.61% at
the medium-speed aggregation development stage, and presented a constant accelerating
decrease and decreasing pace characteristic. On the other hand, the urban construction land
and rural settlement land continuously increased and showed an acceleration tendency,
especially at the high-speed equilibrium development stage with a significant expansion
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area of 108.65 km2—this was also observed for water land. Due to the promotion of coal
mining development in Huaibei City, the changing intensity of water area has been continu-
ously increasing since 2000. Both forest land and grass land presented the tendency of first
increasing, and then declining, even though they were from comparatively minor bases.

Figure 4. The total coal production and land use type in Huaibei City.

Table 1. Land use change rate and land use intensity at different stages.

Land Use Type

Low-Speed Dispersion Development
Stage (1990–2000)

Medium-Speed Aggregation
Development Stage (2000–2010)

High-Speed Equilibrium
Development Stage (2010–2018)

Variation
(km2)

Land Use
Dynamic
Degree

(%)

Land Use
Intensity

(%)

Variation
(km2)

Land Use
Dynamic
Degree

(%)

Land Use
Intensity

(%)

Variation
(km2)

Land Use
Dynamic
Degree

(%)

Land Use
Intensity

(%)

Cultivated land −18.95 −0.07 4.94 −46.24 −0.20 4.99 −115.63 −0.61 6.05
Forest land 0.77 0.38 0.20 2.02 0.95 0.22 −1.51 −0.65 0.08
Grass land 0.07 0.01 0.02 0.01 - 0.00 −2.52 −0.29 0.13
Water area 1.60 0.38 0.41 3.77 0.7 0.42 10.47 2.14 0.55

Urban construction land 3.02 0.62 0.79 30.12 5.83 3.25 85.16 10.41 4.46
Rural settlement land 13.98 0.44 3.64 10.45 0.34 1.13 23.49 0.68 1.23

3.3. Dynamic Conversion between Different Land Use Types

To better reflect the land use types conversion, this paper probes the transition matrix
(Table 2), and spatial distribution of land use change at different stages (Figure 5). Moreover,
the table and figure only list the land use types that go through great change.

Based on the data analysis, this paper concludes that coal mining results in an increase
in water land, which is mainly converted from cultivated land and rural settlement land.
There was approximately 6.90 km2, 9.57 km2, and 28.86 km2 of cultivated land and rural
settlement land being converted into water area at the low-speed dispersion development
stage, medium-speed aggregation development stage, and high-speed equilibrium devel-
opment stage, respectively. This paper illustrates the stacking chart of water area change
and major mine distribution to explore the relationship between the increase in water area
and coal mining, and concludes that the distribution of increased water area is basically in
line with major mine distribution, which further discloses that the increase in water area is
closely related to the coal mining.

In addition, the increase in urban construction land and rural settlement land comes
at the expense of a decrease in cultivated land. It is estimated that almost 199.04 km2 of
cultivated land was converted into construction and settlement land in the past 29 years,
despite the fact that there were 15.00 km2, 13.29 km2, and 28.17 km2 of other land use
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types being converted into cultivated land at the low-speed dispersion development stage,
medium-speed aggregation development stage, and high-speed equilibrium development
stage, respectively, which could have largely contributed to the land reclamation in the
coal resource-based city. Huaibei City has implemented land reclamation since 1985, and
has initiated many reclamation patterns such as deep digging and filling shallow.

Table 2. Land use transition matrix at different stages.

Research Period Land Use Type
Cultivated Land

(km2)
Water Area

(km2)
Urban Construction

Land (km2)
Rural Settlement

Land (km2)

Low-speed dispersion
development stage

(1990–2000)

Cultivated land 2179.34 5.86 2.74 24.35
Water area 4.22 44.97 0.04 1.08

Urban construction land 0.38 0.04 48.17 0.01
Rural settlement land 10.40 1.04 0.02 312.28

Medium-speed
aggregation development

stage (2000–2010)

Cultivated land 2153.52 6.57 28.97 21.99
Water area 3.14 45.75 0.65 2.01

Urban construction land 0.03 0.00 51.64 0.01
Rural settlement land 10.12 3.00 0.43 336.68

High-speed equilibrium
development stage

(2010–2018)

Cultivated land 2020.84 22.81 62.61 58.38
Water area 6.32 35.73 8.35 4.46

Urban construction land 0.21 0.01 79.53 2.04
Rural settlement land 21.64 6.05 9.24 332.80

Figure 5. Land use type conversion spatial distribution map of Huaibei City (note: the figure is
drawn by the author).
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3.4. The Effect of Coal Mining on Land Use Types Change

Coal mining is the most prominent driving force of land use change in resource-based
cities. Different from other city types, the development of coal resource-based cities presents
significant resource-related reliance and orientation, and coal mining causes changes to the
region of different land use types. Therefore, this paper analyzes the relationship between
total coal production and cultivated land, forest land, grass land, water area, urban con-
struction land, and rural settlement land in 1990, 1995, 2000, 2005, 2010, 2015, and 2018,
respectively. This paper concludes that cultivated land, water area, and rural settlement
land correlate significantly with total coal production (Figures 6–8). There is a significant
positive correlation between water area and total coal production (r = 0.791, p = 0.034),
rural settlement land, and total coal production (r = 0.863, p = 0.012), and a significant neg-
ative correlation between cultivated land and total coal production (r = −0.773, p = 0.042).
However, there is no significant correlation between urban construction land and total coal
production (r = 0.712, p = 0.072), forest land and total coal production (r = 0.744, p = 0.055),
and grass land and total coal production (r = −0.673, p = 0.097). These results demonstrate
that constant coal mining and the accumulation of total coal production contribute to
the continuous expansion of water area and rural settlement land, as well as a constant
decrease in cultivated land in the research area.

Subsidence is the most significant externality caused by underground coal mining
in high ground water areas on a plain. Constant underground coal mining and eventual
mining result in the failing of ground support, leading to surface land subsidence. Due to
the difference between deep subsidence and land nature, subsidence causes different land
changes from seasonal and perennial waterlogging to subtle land deformation. Seasonal
and perennial water logging converts cultivated land, forest land, and construction or
settlement land into wetland, which completely changes the land use type and increases
the area of water area in the research area directly. Mining subsidence further influences
the research area—water area, rural settlement land, and cultivated land. In this regard,
the former three land use types are significantly correlated with coal mining. There is
no significant correlation between urban construction land and coal mining, due to the
following two aspects. First, the construction of urban construction land is generally based
on the planning of the government, instead of the layout of a coal mine. Second, urban land
use change is a result of multiple factors such as urbanization and government behavior,
rather than the single effect of the coal mining industry. Furthermore, forest land and grass
land are not significantly correlated with total coal production, mainly due to the scarcity
of research area of these two land use types, thus there is no stable change regularity.

Figure 6. The relationship between total coal production and cultivated land.
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Figure 7. The relationship between total coal production and water land.

Figure 8. The relationship between total coal production and rural settlement land.

4. Discussion and Conclusion

4.1. Discussion
4.1.1. Land Use Changes in Coal Resource-Based Cities

Underground coal mining exerts a far-reaching influence on land use change in coal
resource-based cities in high ground water areas on a plain. China’s energy structure,
dominated by coal, will not change in the short term. Moreover, the influence of coal
mining on land use continues in many other coal-producing countries [22]. There are three
major aspects of land use change that are affected by coal mining in high ground water
areas of coal-producing countries.

The first is the worsening decline of cultivated land. Coal mining not only causes
the subsidence of cultivated land and the loss of soil nutrients, which directly causes the
reduction of cultivated land area and the decrease of soil quality in the research area, but
also increases the content of heavy metal pollutants in water sources, which leads to the
reduction of crop yield. The destruction of high-quality cultivated land caused by coal
mining threatens regional, national, and even global, food security [23,24]. There were
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more than 0.268 million hectares of high-quality cultivated land damaged due to coal
mining in the research area by the year 2018, with an urban per capita cultivated land area
of 0.062 hectares, slightly above the minimum size of 0.053 hectares recommended by the
United Nations Food and Agriculture Organization (UN-FAO).

The second is the expansion of water area with the development of coal mining.
The formation of subsidence water land and its expansion alters the city water structure,
and influences the city’s ecosystem [25]. The terrain in the research area was previously
dominated by plains and had few landscape types, such as wetland and lakes, before coal
mining. However, the large-scale subsidence of water land—resulting from coal mining—
was converted into a wetland landscape with collapsed lakes, which increased the city’s
water area.

The third is the destruction of rural settlement land. Mining subsidence forces a large
number of villagers to move out. Since 1990, there have been 275 villages moving due to
mining subsidence—more than 0.3 million people involved in the research area. Village
moving in coal mining areas reconstructs the living space and converts the lifestyle of rural
residents [26]. This new movement pattern leads to increased construction land that is
smaller than the released land after moving, which contributes to the rural settlement land
conservation, mitigates rural-urban land use conflict, and optimizes the urban land use
structure. In 2009–2020, the relocation of villages in coal mining collapse areas could save
1275.55 hm2 of land in the research area.

In addition, this paper discloses that there is no significant correlation between coal
mining and urban construction land change, which is different from previous scholars, who
hold that urban construction land in resource-based cities is significantly correlated with
coal mining [27,28]. This is mainly due to the co-effectiveness of economic development
and government regulation on urban construction land in coal resource-based cities in
China. Influenced by the city’s development planning, as well as the fiscal reliance on
land, local government activates the real estate industry (real estate investment in Huaibei
increased nearly 50-fold from 264 million in 2000 to 13.169 billion in 2018), which results
in uncontrolled expansion and increased speed of construction land in the city [29]. This
is highlighted in the fast expansion of urban construction land, even though the coal
production decreased and economic growth slowed down (Huaibei’s economic growth
rate fell to 6.62% from 24.14%) in the city’s transition development period.

4.1.2. Impact on Coal Resource-Based Cities Development Planning

The complex land use change in coal resource-based cities exerts a profound influence
on the social economy, such as construction land destruction, cultivated land degeneration,
and moving villages in coal mining areas. Coal resource-based cities need to coordinate
the conflicts between mining, land reclamation, cultivated land protection, and city devel-
opment before land exploitation and land use.

First, a plan for reclamation in advance and safeguard food security should be con-
structed. Despite the results that the present cultivated land protection policy has achieved,
the degeneration of high-quality farmland caused by mining subsidence greatly threatens
local food security [30]. Accelerating land reclamation is a comparatively effective way to
recover the losses. Land reclamation in collapsed areas is of great practical significance
for restoring cultivated land, repairing the ecological environment, and alleviating land
use contradictions. Land reclamation in China was developed in practice in the early
1980s. The state has made compulsory provisions for land reclamation and ecological
restoration in abandoned industrial and mining areas, and has promulgated relevant laws
and regulations such as the Provisions on Land Reclamation (1988) and the Regulations
on Land Reclamation (2011). However, traditional land reclamation carried out after land
subsidence is lengthy, and has comparatively low efficiency. In this regard, it is important
to consider production and land reclamation, integrate mining and reclamation, and de-
velop overall planning of mining and reclamation, to achieve the goal of cultivated land
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protection before complete subsidence, reduce the reclamation time of disturbed land, and
promote the land reclamation efficiency.

Second, reasonable city planning can improve land use efficiency. China is in the stage
of rapid urbanization, and the conflicts between development, coal mining, ecological
optimization, and cultivated land protection need to be highlighted in city planning. It is of
crucial importance to predict the land use type after coal mining accurately, and grasp the
rules of land use to formulate city planning in coal resource-based cities [31]. According
to the statistics, more than one-third of underground land is coal-bearing land in the
research area. The distribution of villages is generally in line with the distribution of mines,
which results in the destruction of local residents’ living environment. Moreover, forced
evacuation causes land resource waste. Therefore, it is significant to develop coordinated
planning of land reclamation and village moving in coal mining areas, and optimize the
regional land use efficiency.

Third, water areas should be used rationally, and the ecological environment optimized.
Mining subsidence enables single terrestrial landscapes to transform into terrestrial–wetland
landscapes, which enhances the diversity of land use type, and enhances the anti-jamming
capacity of the ecosystem [32]. In this regard, formulating reasonable planning and utilizing
subsidence water land contributes to the city’s ecological environment protection. In
addition, the government should integrate ecological management concepts into all parts of
land planning, including design, formulation, implementation, and feedback.

4.2. Limitations and Recommendations for Further Study

This paper has achieved certain progress in exploring the influence of coal mining in
high ground water areas on land use change in a coal resource-based city, while failing to
undertake further research on the following three topics. First, this study does not establish
separate classification standards of land use type for coal mining and other uses, which
might help to accurately measure the influence of coal mining on land use. Second, the
present study does not probe the influence of land use change on ecosystem service in a coal
resource-based city [33,34]. Third, this paper does not explore the coupling relationship
between land use change and social economy in a coal resource-based city, especially the
influence of coal mining on residents’ livelihood transitions. It is also worth considering
the costs related to industrial activity—mining damages and reclamation versus profits
related to mining in future research.

4.3. Conclusions

Based on the adoption of RS and GIS, this paper takes Huaibei City on the North China
Plain as a case to analyze the influence of coal mining in a high ground water area on land
use change in a coal resource-based city, and examines the relationship between coal mining
production and the dynamic change of land use type in Huaibei City, which provides
support for decisions of regional sustainable land use and socio-economic development.

The significant expansion of urban construction land and water area, and constant
decrease in cultivated land are major characteristics of land use change in coal resource-
based cities. There are frequent conversions between different land use types, mainly
dominated by cultivated land converted into construction and settlement land. Compared
with other type cities, land use structure change is faster and more complex in coal resource-
based cities, due to mining subsidence. The contradiction between land supply and demand
becomes even more acute, and severely threatens the sustainable development of cities.

There is an apparent periodical characteristic in the land use of coal resource-based
cities. The land use change is generally divided into three stages, including (1) the low-
speed dispersion development stage, (2) the medium-speed aggregation development
stage, and (3) the high-speed equilibrium development stage. The land use change in coal
resource-based cities demonstrates significant reliance on resources, and coal mining is
significantly related to the area of cultivated land, water area, and rural settlement land,
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which demonstrates that continuous large-scale coal mining results in damage to cultivated
land, decrease in rural settlement land, and increase in water area.
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Abstract: The basic premise of regional ecological construction would be to scientifically and effec-
tively grasp the characteristics of land use change and its impact on landscape ecological risk. The
research objects of this paper are the typical areas of the Yellow River Basin in China and “process-
change-drive” as the logical main line. Moreover, this paper is based on multi-period land use remote
sensing data from 2000 to 2020, the regional land use change process and influencing factors are
identified, the temporal and spatial evolution and response process of landscape ecological risk are
discussed, and the land use zoning control strategy to reduce ecological risk is put forward. The
results indicated: (1) The scale and structure of land use show the characteristics of “many-to-one”
and “one-to-many”; (2) the process of land use change is affected by the alternation of multiple factors.
The natural environment and socio-economic factors dominate in the early stage and the location
and policy factors have a significant impact in the later stage; (3) the overall landscape ecological
risk level and conversion rate show a trend of “high in the southeast, low in the northwest”, shift
from low to high and landscape ecological risks gradually increase; and (4) in order to improve
the regional ecological safety and according to the characteristics of landscape ecological risk and
spatial heterogeneity, we should adopt the management and control zoning method and set different
levels of control intensity (from key intensity to strict intensity to general intensity), and develop
differentiated land use control strategies.

Keywords: land use; landscape ecological risk; ecological risk assessment; influencing factors; Yellow
River Basin

1. Introduction

Ecological environmental risks have gradually become an important factor affecting
national security and restricting the sustainable development of the economy and healthy
society [1,2]. The continuous implementation of the “Five Development Concepts” and
the “Two Mountains Theory” [3], as well as analyzing and resolving ecological risks in
time in order to guarantee the environmental safety as a crucial part of achieving ecologi-
cal civilization in China based on its construction goals, include harmonious symbiosis,
virtuous circle, and comprehensive development. Ecological risk refers to the potential
damage to the structure or function of the ecosystem, caused by accidents or hazards in the
region [4,5]. The relationship between land use change and landscape ecological risk (LER)
is complex. The process of land use type change affects a series of ecological processes,
such as the atmosphere, soil, water bodies, and organisms. As a result, the ecosystem
structure and function are changed by land cover changes, caused by land use changes and
the extensive effects of ecological changes [6–8]. The landscape ecological risk assessment
(LERA), based on the pattern of land use change, can measure the adverse effects of the
combined landscape pattern and ecological process, and it is of great significance to analyze
the global aspects, dynamic evolution, and optimization of prevention and control risk
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of regional ecological risks [9–11]. The rapid economic development has caused many
ecological safety issues to be solved urgently. The protection of ecologically fragile areas
has an irreplaceable role in promoting ecological safety and harmony between human
and land. Existing studies have mostly carried out beneficial explorations on the LER in
small-scale and intense human activities, while less attention has been given to large and
medium scale ecologically sensitive and fragile natural areas. The study of land use change
and ecological risk response in fragile areas provides a foundation for regional ecological
construction, environmental restoration, and high-quality sustainable development [12].

The concept of landscape was first proposed by the German geographer, Carl Troll. As
a complex of natural surface, the landscape is a collection of highly spatially heterogeneous
regional ecosystems [13]. At present, LER research has gradually shifted from unilateral
examination on risk sources and risk receptors to the overall impact of the ecosystem and
the spatial correlation of LER, paying more attention to the macroscopicity and practi-
cability [14–16]. Scholars have conducted in-depth research on land use and ecological
risks, and LER patterns assessment based on the perspective of land use change, which has
gradually become the mainstream of research [17]. At the beginning of the 1990s, scholars
such as Heggem et al. [18], Kapustka et al. [19], and Estoque et al. [20] introduced landscape
pattern analysis methods to assess the impact of human activities on ecological changes
in the watershed. Most of the studies use high-risk communities as the evaluation unit,
disregarding the spatial differences and natural geography relation, which is not helping
in grasping the overall landscape pattern. However, the geographical significance of the
evaluation cannot be ignored. As the evaluation unit, the administrative area should be
ideal for studying the prevention and risk control in sensitive and fragile areas, in order for
different policies to be defined for the ecological risk situation of different administrative
regions [21,22]. The research on LER, brought by land use changes, is generally established
on two evaluation models. One is based on the traditional “source-receptor analysis, expo-
sure evaluation, and hazard evaluation” inherent mode. The ecological risk assessment
index system is constructed from the risk source intensity, the receptor exposure, and the
risk effect. The other model directly evaluates the LER from the landscape pattern and
uses the landscape ecological index from the perspective of landscape ecology to reflect
the ecological effect of land use and land cover change (LULCC) [23–26]. Comparing
these two models, the conclusion is that the model based on the landscape perspective is
more suitable for evaluating the ecological risks caused by human activities, since human
activities will have an immense influence on the landscape pattern. The consequences of
this influence will directly lead to changes in the ecological environment, and the research
in this area becomes more reliable. Many academics have conducted research, analysis, and
experiments on various landscape indices [10,27,28]. Therefore, based on the landscape
pattern, the ecological risk assessment is relatively scientifically founded and feasible [29].
Existing studies mostly focused on the construction of LER models and spatial analy-
sis [30,31]. The lack of attention to the LER and land use change process and the lack of
time-period process research have led to a decline in the credibility and applicability of
the risk assessment results. At the same time, according to the administrative division, the
meso-scale study which takes into account the core field of economic development and
the area with fragile ecological environment has gradually become a research hotspot [32].
In summary, scholars mainly explore landscape risks by constructing evaluation models,
and have formed relatively mature evaluation methods and systems. They rarely involve
a quantitative analysis of the influencing factors or driving forces of land use changes
that lead to the differentiation of LER, and lack zoned explorations of local LER control
measures [33].

The ecological protection and high-quality development of the Yellow River Basin
are related to China’s social development and ecological protection, and have risen to a
major national strategy. As the only province along the Yellow River in the East, along
the Yellow River and along the coast, Shandong Province is in a dominant position in
the “Yellow River Strategy”. The areas along the Yellow River in Shandong Province
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have the most developed economy and the largest permanent population among the
provinces and cities along the Yellow River, with the highest urbanization rate and obvious
geographical advantages of river sea intersection. At the same time, since the entire
territory is downstream, the degradation of the natural ecological environment has become
increasingly prominent, the pressure of ecological protection is great, and the problem of
ecological security is prominent. The areas along the Yellow River in Shandong Province
are a typical representative of the Yellow River Basin. Studying the landscape ecological
risk response and countermeasures in typical areas of the Yellow River Basin is conducive
to the healthy and sustainable development of the Yellow River Basin.

Therefore, this article selects the typical areas of the Yellow River Basin that are both
ecologically fragile and economically developed as the study area. Taking the county area
as the research scale, based on the land use data of the typical areas of the Yellow River
Basin in 2000, 2010, and 2020, the landscape pattern index is calculated with the help of
FRAGSTATS 4.2 (a program designed to compute a wide variety of landscape metrics
for categorical map patterns) to construct the LERA model. It depicts the process of land
use change, based on multiple dimensions of “process-change-drive” [34], explores and
analyzes the influencing factors of land use change, fully reveals the temporal and spatial
differentiation and LER transfer laws, explores the LER response of land use changes
and conducts zoned prevention and control, proposing targeted management and control
recommendations, in order to provide a useful reference for the realization of ecological
protection and high-quality development strategy in the Yellow River Basin.

2. Materials and Methods

2.1. Study Area

The typical areas of the Yellow River Basin (34◦26′–38◦16′ N, 114◦45′–119◦19′ E)
are located in the west of Shandong Province (Figure 1). The Yellow River enters from
Dongming County of Shandong Province, flows north to east and through Heze, Jining,
Taian, Liaocheng, Jinan, Dezhou, Binzhou, Zibo, and Dongying. The typical areas of
the Yellow River Basin are a warm temperate humid and semi-humid monsoon climate
type with four distinct seasons, significantly dry and wet, followed by rain and heat in
the same season. The total land area in nine cities of seventy-seven counties along the
Yellow River is 82,500 square kilometers (km2), accounting for 53.4% of the provincial total
land area. The terrain is complex, i.e., mountains and hills account for about 35% of the
area, while plains, depressions, and beaches account for about 65% of the total area of the
Yellow River Basin in Shandong. The mountains in central and southern Shandong are
protruding. The northwest of Shandong is low-lying and flat, and the gentle hills in the
southwest of Shandong are undulating, forming a general terrain with mountains and
hills as the skeleton, while plains and basins are interlaced and ringed in between. In
2020, the regional gross domestic product (GDP) of the nine cities along the Yellow River is
CNY 3891.7 billion, accounting for 50.9% of Shandong regional GDP, with a permanent
population of 54.272 million. It is an important part of the economic circle for the capital
of Shandong Province and southern Shandong. Ecological and environmental problems,
such as soil salinization, desertification, and soil erosion in the region, are becoming more
serious. Environmental pollution and degradation are prominent, and the LER prevention
and control is imminent. Taking this as a case area to carry out LER research has an
important significance.
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Figure 1. Location of the study area.

2.2. Data

The land use data are from the Resource and Environment Science and Data Center
(RESDC) of Chinese Academy of Sciences (http://www.resdc.cn) (accessed on 3 February
2021), including the national land use remote sensing data in 2000, 2010, and 2020 (raster
data, resolution of 1 km) and China’s administrative division data (vector data). The land
use data were cropped, according to the administrative boundaries of the study field, and
the land use data of the typical areas of the Yellow River Basin in 2000, 2010, and 2020
were obtained. The test data with ENVI 5.3 (tool for processing remote sensing images),
show the comprehensive accuracy of the three periods over 92%. On this basis, with the
help of the ArcGIS operating platform, the relevant data of land use can be extracted from
the administrative area of the study area, and construct a land use database of the typical
area in the Yellow River Basin. Referring to the existing literature, it can reclassify the
relevant data of land use in ArcGIS, and divide the land use types into six categories:
Cultivated land, wetland, grass land, forest land, construction land, and bare land [17].
The data in the analysis of influencing factors include relevant data, such as natural
environment foundation, social and economic conditions, traffic and location conditions,
policy and institutional environment, which are from the geospatial data cloud (http:
//www.gscloud.cn) (accessed on 5 March 2021), the global nightlight remote sensing data
(https://www.nature.com/sdata) (accessed on 5 March 2021), Chinese Soil Database of
Nanjing Institute of Soil, Chinese Academy of Sciences (http://vdb3.soil.csdb.cn) (accessed
on 5 March 2021), National Geomatics Center of China (NGCC, http://ngcc.sbsm.gov.cn/)
(accessed on 5 March 2021), and statistical yearbooks of the nine cities along the Yellow
River in 2000, 2021, and 2020. See Table 1 for details:
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2.3. Methods

Changes in natural factors and human interference, directly or indirectly, affect the
land use structure and function, and changes in land use types further lead to changes in
landscape patterns [35,36]. Due to the significant landscape pattern heterogeneity and its
relation to ecological process, under the stress and involvement of natural background and
human geography elements, it will cause potential adverse effects or harms. Moreover, it
indicates that LER and land use changes respond to each other [30,37]. LER are caused
by land use changes and are driven by natural factors and human activities. To avoid,
adapt, and comprehensively manage risks, it is necessary to improve the related factors of
land use change and carry out the zoned management and control (Figure 2). Therefore,
this paper first applies the chord diagram and geographical information system (GIS) map
to identify the overall and process characteristics of regional land use change, and then
analyzes the influencing factors and driving mechanism of land use change process with
the help of factor detectors in geographic detectors. Second, the LERA model constructed
by the landscape disturbance index and landscape vulnerability index is used to explore
the temporal and spatial transfer and evolution of LER and the distribution of land types,
and the LER response of land use change is obtained with the help of ecological risk
contribution rate model. Finally, based on the above research results, it divides the LER
management and control area of the typical area of the Yellow River Basin and proposes
relevant measures to guide the high-quality sustainable development of the region [38].

Figure 2. The framework of this study.

2.3.1. Chord Diagram of Land Use Changes

The chord diagram is a graphical method that shows the inter-relationship between
data. The data points in the chord diagram are arranged radially in the form of circles,
and lines are used to show the connections between the data. The chord diagram can
reflect the number of conversions and relationship-flow between different land use types
in the process of land use change and visualize it [39]. The wider the chord (connecting
line), the higher the number of conversions between land use types. This paper uses the
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Multi-Charts 1.8 software (https://jshare.com.cn/new) (accessed on 5 March 2021) to
visualize the change process of different land use types.

2.3.2. GIS Map Analysis of Land Use Changes

The GIS map analysis is used to reflect the degree of quantitative changes in land use
types, and is the basic manifestation of the impact of social and economic activities on land
use [40]. The process of land use change reflects the relation of change from one land use
type into another, including two conversion directions, transfer-in and transfer-out. The
former pays attention to the increase in the transfer-in land use type, and the latter focuses
on the reduction of the land use type. This paper uses the grid calculator of ArcGIS 10.3 to
superimpose the land use types from 2000 to 2020 (Equation (1)), and obtain the land use
change map of the typical area in the Yellow River Basin at different periods as follows:

W = A × 10 + B (1)

where W represents the newly generated graph coding; A represents the land use atlas unit
coding at the beginning of the study; and B represents the land use atlas unit coding at the
end of the study (secondary classification code). For example, W = 12 indicates a GIS map
of land use types converted from forest land to wetland.

2.3.3. Land Use Change Influencing Factors Analysis

The geographical detectors can be used to analyze spatial differentiation characteristics
and explore the interaction between factors. It is convenient to operate and is less affected
by the sample size [41]. The main types of geographical detectors are risk, factor, ecological,
and interaction detectors, among which factor detectors can disclose the explanatory power
of independent variables to dependent variables [42,43]. This study selects factor detectors,
takes typical counties (cities, districts) in the Yellow River Basin as the basic unit, and the
six types of land use change rates from 2000 to 2020 as the geographical detector indicators,
and carries out an analysis on the influencing factors of LER in typical areas of the Yellow
River Basin by GeoDetector (http://www.geodetector.cn) (accessed on 8 March 2021). The
method is shown in the following equation:

q = 1 − 1
Nδ2

H

∑
h=1

Nhδ2
h (2)

where q represents the influencing factors index of land use change; N represents the
number of global samples; Nh represents the number of samples in the secondary region;
H represents the factors stratification; δ2 represents the total variance of the whole region;
and δ2

h represents the secondary region discrete variance. The value interval of q is [0, 1],
and the greater the q value, the greater the influence force on land use change.

Land use change occurs within the three-fold framework of natural system, socio-
economic system, and institutional system. The typical areas of the Yellow River Basin
are greatly undulating, with rich landform types, strongly affected by the monsoon cli-
mate, and the significant change rate of average annual precipitation and average annual
temperature. At the same time, with the advancement of the Yellow River Basin regional
development strategy, the typical areas in the Yellow River Basin are committed to in-
dustrial structure adjustment and upgrading, infrastructure construction, and ecosystem
restoration. Government departments provide continuous and strong financial support for
the industrial development of the region. In addition, the level of urbanization, industrial
structure, quality of life, and ecological environment in the region have been significantly
improved. Therefore, based on the actual conditions of the typical areas in the Yellow
River Basin, such as significant topographic fluctuations and rapid regional economic
development, thirteen indicators were selected as the detection factors of land use changes,
including natural environment foundation, social and economic conditions, traffic and
location conditions, and policy and institutional environment (Table 2). The ArcGIS is
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used to rasterize all of the influence factors and unify the projection coordinate system. In
addition, the natural break point method is used to process the spatial discretization of the
influencing factors, to measure the degree of influence between land use changes, and the
influencing factors in typical areas of the Yellow River Basin.

Table 2. Land use change influencing factors index.

Influencing Factor Variable Index Description

Natural environment foundation

Elevation N1 Terrain condition factors
Average annual precipitation N2 Precipitation condition factors
Average annual temperature N3 Weather condition factor
Soil organic matter content N4 Soil condition factors

Social and economic conditions

Change rate of urbanization S1 Development level of urbanization
Change rate of per capita social consumer

goods sales S2 Resident consumption level

Change rate of ground-average agricultural
machinery S3 Level of technological progress

Population change rate S4 Human-factor level
Night light remote sensing S5 Level of economic development

Traffic and location conditions
Change rate of road density T1 Traffic accessibility

Distance from the town center T2 Location advantage degree

Policy and institutional
environment

Change rate of ground-average investment in
fixed assets P1 Investment level

Change rate of public financial expenditure P2 Fiscal expenditure level

2.3.4. LERA Method

The landscape pattern production is the result of differences of human impact on
natural ecosystems. This ecological impact presents regional and cumulative characteristics.
The intensity of external disturbance and the ability of internal resistance to the disturbance
of the ecosystems, represented by different landscapes, determine the size of LER [44].

In view of the relation between landscape pattern and ecological risk, the land-
scape disturbance index and landscape vulnerability index are used to construct a LERA
model [21–25]. The landscape disturbance index is composed of landscape fragmentation
index, landscape separation index, and landscape subdimension index.

1. Landscape disturbance index (Li)

Li indicates the ability of different landscape ecosystems to resist interference from
the outside world and self-recovery. The sensitivity of landscape ecosystems increases with
the rise of the landscape disturbance pattern, which leads to a greater LER. By selecting
the landscape fragmentation index (Bi), landscape separation index (Si), and landscape
subdimension index (Fi), the Li is constructed. Bi represents the degree of fragmentation
of the landscape space, from single continuous to complex discontinuous, reflecting the
degree of natural or human disturbance to the landscape. It shows that the larger the
value, the lower the stability of the corresponding landscape type. Si refers to the degree of
separation in different patches of the landscape. The larger the value, the more scattered the
corresponding landscape and the more complex the landscape distribution. Fi is an index
used to determine the patch shape influence on the internal patch ecological process. The
larger the value, the more complex the corresponding patch shape. The indices calculation
equations are as follows:

Li = aBi + bSi + cFi (3)

Bi =
ni
Ai

(4)

Si =
A

2Ai

√
ni
A

(5)

Fi =
2ln(Pi/4)

lnAi
(6)
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where a represents the weight value of Bi; b represents the weight value of Si; c represents
the weight value of Fi; and a + b + c = 1. According to the relevant research results and the
actual situation of the study area, the values are assigned to 0.5, 0.3, 0.2 [3,21]; ni represents
the number of patches in the i-th landscape; Ai represents the area of the i-th landscape,
in km2; A represents the total area of all the landscapes, in km2; and Pi represents the
perimeter of the i-th landscape, in km.

2. Landscape vulnerability index (Wi)

Wi represents the sensitivity of different landscape ecosystems to external disturbances.
The larger the value, the lower the stability of the ecosystem and the higher the possibility
of damage. Based on previous studies and the actual situation in typical areas of the
Yellow River Basin, the six types of landscapes from high to low are assigned as follows:
6—construction land, 5—bare land, 4—cultivated land, 3—grass land, 2—wetland, and
1—forest land [24,25], which are normalized.

3. LERA index (ERIk)

ERIk is constructed by Li and Wi. It separates the spatial ecological risk from the land-
scape spatial structure and represents the degree of ecological loss within the assessment
unit. The greater the value, the higher the corresponding LER, as shown in the following
equation:

ERIk =
z

∑
i=1

Aki
Ak

(LiWi) (7)

where ERIk represents the LERA index unit k; z represents the number of landscape types;
Aki represents the area of the i-th landscape in the LERA unit k, in km2; and Ak represents
the area of landscape ecological risk assessment unit k, in km2.

2.3.5. Land Use Change Ecological Risk Contribution Rate

The ecological risk contribution rate of land use changes refers to the degree of change
in the regional LER, which is caused by a certain land use type change [45]. A positive value
indicates that this type of change has aggravated the LER in the region, and a negative
value indicates that this type of change improves the LER in the region. Isolating the main
land use types that affect the LER changes is conducive to exploring the leading factors of
changes in regional LER [46]. The calculation is as follows:

LEI =
(ERI1 − ERI0)LA

TA
(8)

where LEI represents the ecological risk contribution rate of land use changes; ERI0 repre-
sents a LER index at the early stage of change of land use type, and ERI1 represents a LER
index at the end of change of land use type; LA represents the area of the change type; and
TA represents the total area of the region.

The positive and negative analysis of the LEI can be used to comprehensively deter-
mine the land use types that affect the LER change index in typical areas of the Yellow
River Basin, which is helpful in distinguishing the leading factors of the improvement and
degradation of LER in typical areas of the Yellow River Basin.

3. Results

3.1. Analysis of the Overall Characteristics of the Land Use Change

From 2000 to 2020, the land use is dominated by cultivated and construction land
(Table 3), with the largest proportion of cultivated land in typical areas of the Yellow
River Basin. This is consistent with the characteristics of Shandong Province as a major
agricultural province and the rapid development of economic society and urbanization.
From the perspective of time series characteristics, the area of forest land first increased
and then decreased. The fluctuation range in the first 10 years was small, and the area
of forest land decreased by 4.41 hectare (ha) in the next 10 years. The area of grass land,
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cultivated land, and bare land has shown a downward trend in the past two decades.
The area of cultivated land has relatively stable changes and it decreased by 3.41%. This
is inseparable from the Shandong Province emphasis on cultivated land safety and the
effective implementation of basic farmland protection policy. The area of grass land has
decreased by 42.11%, indicating that the implementation of the 2003 policy of returning
cultivated land to forests and grass land needs to be strengthened. In addition, the area
of bare land is significantly smaller, and a lot of bare land is fully utilized for project
construction. The area of wetland and construction land is increasing gradually, and the
increase rate of wetland, from 2010 to 2020, is as high as 51.86%. This is a remarkable result
of paying attention to the protection of wetland system and vigorously investing in the
construction of nature reserves and wetland parks in typical areas of the Yellow River
Basin. The area of construction land has increased for 33.83%, reflecting the common needs
of rapid urbanization and economic development.

Table 3. Different types of land use area and change rate in typical areas of the Yellow River Basin
from 2000 to 2020.

Land Use Type
Area/km2 Change Rate/%

2000 2010 2020 2000–2010 2010–2020 2000–2020

Forest land 0.3585 0.3592 0.3151 0.20 −12.28 −12.11
Wetland 0.3786 0.4034 0.6126 6.55 51.86 61.81

Grass land 0.4819 0.4135 0.2790 −14.19 −32.53 −42.11
Cultivated land 5.7116 5.6426 5.5167 −1.21 −2.23 −3.41

Bare land 0.2026 0.1534 0.0401 −24.28 −73.86 −80.21
Construction land 1.1369 1.2986 1.5215 14.22 17.16 33.83

3.2. Land Use Change Process Analysis

1. Scale feature analysis

From a staged perspective, the scale of land use change from 2000 to 2010 showed the
characteristics of “many to one” and “one to many” in typical areas of the Yellow River
Basin (Figure 3). Among them, the main construction land transfer sources are cultivated
land, bare land, and wetland. The transferred areas are 1144, 314, and 125 km2. The main
wetland transfer sources are cultivated land, grass land, and bare land, and the transferred
areas are 239, 128, and 62 km2. The forest land transferred area is relatively small, and the
main sources are cultivated land and grass land, and the transfer area is 21 and 17 km2,
respectively. The construction land, wetland, and forest land transferred area decreases
successively, showing a “many-to-one” characteristic. Cultivated land is mainly converted
into construction land and wetland, with the transferred area as 1144 and 239 km2. Grass
land is mainly converted into cultivated land, wetland, and construction land, with the
transferred area as 460, 128, and 53 km2, respectively. Bare land is mainly converted into
construction land, cultivated land, and wetland, and the transferred area is 314, 174, and
62 km2, respectively. The transferred area of cultivated land, grass land, and bare land
successively decreased, showing the characteristics of “one-to-many”.

Except for bare land, from 2010 to 2020, the dominant characteristics of “one-to-many”
transfers continue, mainly for cultivated land, wetland, and construction land, with transfer
areas as 828, 412, and 191 km2, respectively. Other land use types show balanced conversion
attributes, but their respective transfer-in and transfer-out dominant types show significant
differences. Among them, the reciprocal conversion of cultivated land and construction
land is crucial. The main source of cultivated land transfer is construction land, with an
area of 7477 km2, while the main source of construction land transfer is cultivated land
with an area of 9922 km2. Wetland, construction land, and cultivated land are mutually
transformed, but the transfer-in scale is larger than the transfer-out scale. Grass land, wood
land, and cultivated land are mutually transformed, and the transfer-out scale is larger
than the transfer-in scale. Forest land, cultivated land, and construction land are mutually
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transformed, and the transfer-out scale is not much different from the transfer-in scale.
From the perspective of the whole time period, the land use change trend scale in typical
areas of the Yellow River Basin, from 2000 to 2020, follows the elements of transformation
from 2010 to 2020, and the scale of conversion of some internal land use types slightly
increases or decreases.

Figure 3. Chord diagram of land use changes in typical areas of the Yellow River Basin from: (a) 2000–2010, (b) 2010–2020,
and (c) 2000–2020.

Here, FL, WL, GL, CL, BL, and CONL represent forest land, wetland, grass land,
cultivated land, bare land, and construction land, respectively.

2. The spatial map analysis

The land use change map of the typical areas of the Yellow River Basin generates
30 types of map units from 2000 to 2010, and 24 types of map units are changed (Figure 4).
Among them, the map type of “cultivated land → construction land” (code 46) is the
most obvious, and widely distributed in urban agglomerations, mostly in urban fringe
areas, which is in line with the features of rapid urbanization expansion in this region.
At times when the government paid insufficient attention to the cultivated land safety,
part of the cultivated land was transformed into urban and rural construction land. The
“cultivated land → wetland” (code 42) and “grass land → wetland” (code 32) are mainly
distributed in the coastal areas of Dongying City. To alleviate the ecosystem vulnerability,
large amounts of cultivated land and grass land are converted into wetland. From 2010
to 2020, there are 36 types of land use change map units in typical areas of the Yellow
River Basin, while 30 types of map units have changed. The spatial aggregation degree
is particularly stronger than in the previous stage, and the coastal area is higher than
in the inland area. Among them, the most important is the rapid expansion and wide
distribution of “construction land → cultivated land” (code 64). The main reason is that the
state gives a great authority to the protection of cultivated land and the implementation
of the occupation and compensation balance policy. Substantial construction land is
converted into cultivated land, which is conducive to the response to the slogan that the
total area of Chinese farmland must remain above the red line of 120 million hectares.
The “construction land → wetland” (code 62) and “bare land → wetland” (code 52) are
becoming more dominant in the transformation, and they are distributed in the northern
coastal areas. In the development theory of transformation, from focusing on speed growth
to high-quality development and ecological protection, Shandong Province pays more
attention to ecological environment protection, in order to gradually improve the ecological
conditions of key protection areas, and the scale of wetland has been greatly expanded.
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Figure 4. Map of land use changes in typical areas of the Yellow River Basin from: (a) 2000–2010, (b) 2010–2020, and
(c) 2000–2020.

Regarding the whole period, the land use change map of the typical areas of the
Yellow River Basin generated a total of 36 types of map units from 2000 to 2020, and a
total of 30 types of map units have changed. The overall change is similar to the spatial
distribution of the period from 2010 to 2020. Among them, “cultivated land → construction
land” (code 46) and “construction land → cultivated land” (code 64) are more evenly
distributed in typical areas of the Yellow River Basin, with obvious spatial dispersion. The
“construction land → wetland” (code 62) and “bare land → wetland” (code 52) are mainly
distributed in the northern coastal areas, while “cultivated land → wetland” (code 42) is
mainly distributed near the Yellow River and its tributaries.

Here, codes 1–6 represent forest land, wetland, grass land, cultivated land, bare land,
and construction land, respectively. The map unit represents land use type transformations,
and the coding is a combination of secondary classification coding from two transforma-
tions, e.g., “forest land → wetland” (code 12).

From the fluctuation process point of view, from 2000 to 2020, the types of land use
growth in typical areas of the Yellow River Basin are relatively obvious and complex.
Among them, the land use was relatively stable from 2000 to 2010, with more than 95% of
the area unchanged. The types of land use that have changed are mainly new construction
land and cultivated land, which are mainly distributed in offshore areas. Urbanization
expansion was the mainstream of the development of the typical areas in the Yellow
River Basin during this period. Relying on marine resources, many ports and salt fields
were built, while plenty of cultivated lands were supplemented through the saline-alkali
land management. By 2010–2020, the overall land use changes are quite drastic, with the
change area accounting for more than 35%, mainly cultivated land, construction land, and
wetland. The newly added cultivated land is distributed more along the Yellow River banks
and at the sea mouth. The newly-added construction land is mainly distributed around
the existing urban and town areas, and the newly-added wetland is concentrated in the
coastal areas. In this period, a national agricultural high-tech industry demonstration zone
was established, and it provides support for the development of ecological and circular
agriculture. Soil improvement has encouraged the planting and promotion of salt-tolerant
crops such as cotton, vegetables, and forests, which has led to a significant increase in
cultivated land. Driven by industrial transformation and development, the urbanization
of the population has been brisk, and construction land has also increased. At the same
time, ecological protection began to be carried out vigorously. The original overexploited
and constructed industrial and mining land and the heavily polluted chemical enterprises
gradually withdrew and changed from construction land to wetland.

3.3. Analysis of Land Use Change Influencing Factors

Altogether, the spatial differentiation characteristics of land use changes in typical
areas of the Yellow River Basin are affected by natural and socio-economic factors, traffic,
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location, and policy, but the influencing factors and intensity of land use change rates of
various types of land show some difference (Figure 5).

From the forest land perspective, the top three influencing factors, leading to the
differentiation of forest land spatial change rates, from 2000 to 2010, are elevation (0.67),
soil organic matter content (0.53), and change rate of public financial expenditure (0.37).
Elevation affects the rate of conversion of other land types to forest land, and soil conditions
affect the scale of conversion of forest land to grass land and cultivated land. Since the
2003 policy of farm land to forest return, the tendency of fiscal expenditure has prompted
part of the cultivated land to be converted into forest land. During this time, the natural
environment and the policy environment were the main influencing factors. Compared
with the previous period, from 2010 to 2020, the top three influencing factors have been
transformed into elevation (0.57), change rate of urbanization (0.43), and change rate of
ground-average agricultural machinery (0.39). With the accelerated urbanization, due
to the lax industrial orientation and policy, the construction land has been invaded and
occupied by forest land, and the continuous improvement of agricultural technology has
promoted the use of forest land that is not suitable for planting crops for food production,
which are the leading factor at this stage.

Figure 5. Influencing factors of land use changes: (a) From 2000 to 2010 and (b) from 2010 to 2020.

From the perspective of wetlands from 2000 to 2010, the top three influencing factors
that led to the spatial differentiation of wetland change rates were average annual pre-
cipitation (0.52), public financial expenditure change rate (0.35), and population change
rate (0.33). The decreasing trend of precipitation, from coastal to inland territory, signifi-
cantly affected the spatial distribution of wetland. Government policies, financial support,
and human interference have led to the conversion of cultivated land and bare land into
wetland. From 2010 to 2020, the top three influencing factors have been transformed into
the public financial expenditure change rate (0.65), population change rate (0.43), and per
capita social consumer goods sales change rate (0.37). Due to the establishment of the
Yellow River Delta High-Efficiency Eco-Economic Zone, the impact of fiscal expenditures
sharply increased. With the growth of the total population and per capita consumption
level, due to the ecosystem integrity and ecotourism demand, the wetland area is quickly
replenished. The level of social and economic development and policy guidance jointly
drive the differentiation of wetland change rates.

From the perspective of grass land from 2000 to 2010, the main three factors leading
to the spatial differentiation of grass land change rates are average annual precipitation
(0.41), elevation (0.39), and soil organic matter content (0.32). The natural world plays a
leading role in the transformation between grass land and forest land and between grass
land and cultivated land. During 2010–2020, the three dominant factors are average annual
precipitation (0.43), elevation (0.42), and average ground agricultural machinery change
rate (0.30). In addition to natural factors, the expansion of agricultural technology promotes
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the full growth of animal husbandry, and part of grass land is transformed into cultivated
land, and these are all key influencing factors.

From the cultivated land perspective from 2000 to 2010, the main three influencing
factors leading to the spatial differentiation of cultivated land change rates are urbanization
change rate (0.58), average annual precipitation (0.51), and population change rate (0.43).
Driven by the interests of urbanization, a large number of cultivated lands are converted
to construction land. Regional precipitation conditions are restraining the cultivated land
expansion scale. The demand for homesteads, due to the population increase, will appro-
priately reduce the scale of cultivated land appropriately. Compared with the previous
period, the change rates of average ground agricultural machinery (0.42), average ground
investment in fixed assets (0.39), and the town center distance (0.36) have become the dom-
inant factors. The improvement of the agricultural technology accelerates the agricultural
production efficiency, but also creates favorable conditions for the development of bare
land, which is conducive to timely cultivated land renewal. The “Development Plan for
the Yellow River Delta High-Efficiency Ecological Economic Zone” initiates a strategic
layout for establishing a high-efficiency eco-agricultural demonstration zone, and a further
division of variety of production land zoning, differentiated policy support, and capital
investment, based on the development characteristics and regional location advantages.

From the bare land point of view from 2000 to 2010, the leading three influencing
factors that cause spatial differentiation of the bare land were the change rates of urban-
ization (0.65), average ground agricultural machinery (0.54), and road density (0.36). The
urbanization expansion forces various types of land to be supplemented in time, and
technology and transportation advantages provide excellent conditions for the effective
development and utilization of bare land. Compared with the previous period, the top
three influencing factors are transformed into the average ground agricultural machinery
change rate (0.57), the town center distance (0.49), and the average ground fixed assets
investment change rate (0.38). As the available land area is declining, location advantages
and national investment support policies are conducive to the conversion of bare land to
construction land and wetlands that are beneficial to ecological protection, which have
become the leading factors.

From the construction land perspective from 2000 to 2010, the dominant three factors
leading to the spatial differentiation of the construction land change rate are the urban-
ization change rate (0.61), the population change rate (0.53), and the road density change
rate (0.46). The Yellow River Basin typical area is rich in oil and salt resources, and has
an advantage of location transportation. With the level of urbanization and population
agglomeration, the demand for industrial, mining, and residential land continues to in-
crease. Generally speaking, the level of ecological environment protection lags behind the
urbanization development, and the rapidness of urbanization has aggravated the regional
LER. In comparison with the previous period, the main three factors have been transformed
into the average ground fixed assets investment change rate (0.65), the town center distance
(0.45), and the urbanization change rate (0.43). With the urbanization acceleration, relying
on the advantages of industry and location, the metropolitan areas of Jinan, Dongbin, and
Jihe formed gradually. At the same time, the Agricultural High-Tech Industry Demon-
stration Area of the Yellow River Delta was established in 2015, and the Yellow River
Delta Industrial Investment Fund provides strong financial support for economic and
technological development zones and typical industrial parks.

In view of the influencing factors of land use changes in the two periods, and based
on the main three influencing factors, Figure 6 presents the comparative analysis of the
driving mechanism in two periods (from 2000 to 2010 and from 2010 to 2020).
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Figure 6. The land use change driving mechanism in typical areas of the Yellow River Basin.

During 2000–2010, a land use change pattern, affected by large-scale land development
and high-intensity use, mainly resulted from the expansion of construction land, wetland,
and forest land. On the one hand, the complex terrain and abundant rainfall provide a
good natural basis for the changes in various land types in typical areas of the Yellow
River Basin. At the same time, economic development and large-scale construction of
transportation infrastructure, such as railways and highways, provide conditions for
the mutual circulation of production factors [42]. During this period, the continuous
industrialization, urbanization, and population expansion promoted the formation of more
urban industrial, mining, and residential land. In addition, the country has introduced
comprehensive and diverse policies for returning farm land to forest and grass land and
other favorable ecosystems, prompting the expansion of forest land and wetland. From 2010
to 2020, the state began to pay attention to the importance of ecological protection in the
Yellow River region, and successively established the Yellow River Delta High-Efficiency
Eco-Economic Zone and the Agricultural High-Tech Industrial Demonstration Zone of
the Yellow River Delta. The determination of the efficient eco-economic development
promotes the corresponding changes of land use in this stage. In one way, affected by the
increase in precipitation, the carbon and water cycle within the region has been accelerated.
Additionally, with the continuous development of soil improvement technology, a large
number of beaches have been developed and utilized, and the scale of new wetland and
construction land is relatively large. In another way, the location advantages are prominent
at this stage. The types of regional land use are constantly adjusted according to the
location, and the industrial structure is more reasonable. Urbanization has shifted from
incremental expansion to stock revitalization. At the same time, the investment of a large
number of special funds and advances in technology provide economic support for land
use changes. This has advanced the modern and efficient agricultural development and
the replacement of old growth drivers with new ones, leading to a significant increase in
the level of intensive land use in typical areas of the Yellow River Basin.

3.4. The LER Spatiotemporal Evolution Analysis

Through the LERA model, the value of each risk unit in 2000, 2010, and 2020 is
calculated. Based on the natural break point method, the ecological risk is divided into
five levels, corresponding to five levels of risk areas: Low (ERI < 0.36), relatively low
(0.36 < ERI < 0.50), medium (0.50 < ERI < 0.58), relatively high (0.58 < ERI < 0.60), and
high risk area (ERI > 0.60). Using GIS, the temporal and spatial evolution of risk conversion
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rate from 2000 to 2010, risk conversion rate from 2010 to 2020, and total conversion rate
from 2000 to 2020 are plotted. It can be seen from Figure 7 that the temporal and spatial
differentiation of LER in typical areas of the Yellow River Basin are significant. In 2000,
high-risk areas accounted for 9.1%, mainly distributed in the central city of Jinan, the
Dawen River basin, and Dongying area in northern Shandong. At the same time, taking the
high-risk area as the center, the risk level shows a decreasing trend. In 2010, the high-risk
area accounted for 7.8%, and the LER level of northern Shandong coastal area and the
Dawen River basin decreased. In 2020, the proportion of high-risk areas increased to 14.3%
and concentrated in Jinan metropolitan area. The overall LER of Northern Shandong
coastal area continued to improve and the effect was significant, gradually showing the
trend of “high in southeast, low in northwest” and “high in center, low around”.

Based on the natural break point method, the LER conversion rate is divided into six
levels, as shown in Figure 8. From 2000 to 2010, about 59.74% of the area had increased
LER. Areas with excellent ecological transformation are distributed in the Dezhou Plain
Ecological Zone in the northwest of Shandong, the Jihe Plain Ecological Zone in the south-
west of Shandong, the Dongying Coastal Ecological Zone in the north of Shandong, and
the Zibin Mountain and hills Ecological Zone in the middle east of Shandong. From 2010
to 2020, about 62.34% of the areas have increased LER, and the area of excellent ecological
transformation areas has decreased. The overall landscape ecological transformation rate
shows a decreasing trend from southeast to northwest. The landscape risks in the southeast
have intensified, and the situation is concerning.

Figure 7. Spatiotemporal variation of LER grade in: (a) 2000, (b) 2010, and (c) 2020.

Figure 8. Spatiotemporal variation of LER conversion rate: (a) From 2000 to 2010, (b) from 2010 to 2020, and (c) from 2000 to
2020.

In summary, the conversion rate of LER in typical areas of the Yellow River Basin
has gradually increased from 2000 to 2020. The highest value of the positive conversion
rate of LER at the county scale has increased from 9.32% to 10.27%, and the negative
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conversion rate of LER has increased from 2.35% to 19.81%. In terms of spatial distribution,
the high positive risk conversion areas are distributed stably and concentrated in the Jinan
metropolitan area. The central urban area conversion rate is higher than the surrounding
areas. The rapid urbanization and economic development of these areas have led to the
continuous expansion of construction land, increasing the ecological pressure, and the LER
index has crucially changed. During the study period, the LER in the typical areas of the
Yellow River Basin continued to deteriorate. The overall landscape risk in the central urban
area increased, the landscape ecology in the northwest region gradually improved, and
the ecological risk index showed a decreasing trend, while the ecological risk index in the
southeast showed an increasing trend.

By superimposing the LER distribution maps in 2000, 2010, and 2020, the LER transfer
levels in typical areas of the Yellow River Basin are obtained (Figure 9). From 2000 to 2010,
the risk transfer ratio was 59.74%, among which, the proportion of low risk to relatively
low risk, low risk to medium risk, and medium risk to relatively low risk is larger in the
number of administrative units. In the first 10 years, the LER levels in typical areas of
the Yellow River Basin mostly shifted to relatively low and medium risk. Deterioration
was accompanied by improvement. Altogether, the main development trend is a further
increase in risk levels. From 2010 to 2020, the risk transfer ratio is 70.13%, among which,
the proportion of relatively low risk to relatively high risk, relatively low risk to medium
risk, and medium risk to low risk is larger in the number of transferred administrative
units. In the next 10 years, the LER of the typical areas of the Yellow River Basin mostly
turned to medium-high risk, and the overall risk increased. It can be seen that the LER
mostly shifted from low-level to high-level, and the ecological risks are aggravated, which
lead to consequential ecological challenges.

Figure 9. LER transfer situation in typical areas of the Yellow River Basin from 2000 to 2020.

Here, A, B, C, D, and E represent low risk area, relatively low risk area, medium risk
area, relatively high risk area, and high risk area in 2000, respectively; A1, B1, C1, D1, and
E1 represent low risk area, relatively low risk area, medium risk area, relatively high risk
area, and high risk area in 2010, respectively; and A2, B2, C2, D2, and E1 represent low risk
area, relatively low risk area, medium risk area, relatively high risk area, and high risk area
in 2020, respectively.
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3.5. Analysis of LER Response of Land Use Change
3.5.1. The Relationship between Land Use and LER Conversion

The ArcGIS statistical tools were used to obtain the area proportions of different
types of land in the transfer of various levels of ecological risk from 2000 to 2020 (Table 4).
In the first decade, forest land was mainly distributed in low positive risk conversion
areas, accounting for 27.86% of the total forest area. In the second decade, forest land
was mainly distributed in low negative risk conversion areas, accounting for 30.54%. The
results show that the LER of the forest land is decreasing and the speed is relatively stable.
The ecological improvement of forest land is closely related to the state policy on the
cultivated land conversion to forest and forest land protection. The forest land ecological
improvement is inseparable from the state policies of returning farm land to forest and
forest land protection. From 2000 to 2010, wetlands were mainly distributed in low positive
risk conversion areas, accounting for 30.05% of the total wetland area. From 2010 to 2020,
wetlands areas in relatively high positive risk conversion regions increased significantly,
with a total proportion of 33.96%, indicating that the LER of wetland increased sharply
during the study period. In recent years, the excessive development of construction land
has had a considerable impact on the wetland system. From 2000 to 2010, grass land was
mainly distributed in low negative risk conversion areas, accounting for 34.13% of the total
grass land area. From 2010 to 2020, the ratio of grass land in relatively high positive risk
conversion areas increased significantly, accounting for 29.43%, indicating that the LER of
grass land has increased drastically during the study period, but the proportion of the area
distributed in the high risk conversion area is smaller. From 2000 to 2010, cultivated land
was mainly distributed in low negative risk conversion areas, accounting for 36.35% of the
total cultivated land areas. From 2010 to 2020, the ratio of cultivated land in negative risk
conversion areas increased significantly, of which low negative risk accounted for 45.47%.
This suggested that the LER of cultivated land has been continuously reduced during the
research period, which is closely related to provincial emphasis on ensuring the safety of
cultivated land and reducing the human interference.

Table 4. Proportion of LER transfer area of different types in typical areas of the Yellow River Basin from 2000 to 2020.

Period Type

High Negative
Risk

Conversion
Zone

Relatively
High Negative

Risk
Conversion

Zone

Low Negative
Risk

Conversion
Zone

Low Positive
Risk

Conversion
Zone

Relatively
High Positive

Risk
Conversion

Zone

High Positive
Risk

Conversion
Zone

2000–2010

Forest land 10.35 15.59 20.04 27.86 18.24 7.92
Wetland 12.85 11.90 16.32 30.05 20.66 8.22

Grass land 13.56 15.89 34.13 16.34 18.59 1.49
Cultivated land 10.23 12.45 36.35 15.75 16.34 8.88

Bare land 7.32 6.34 19.73 20.23 28.96 17.42
Construction land 8.47 7.40 12.93 21.56 26.45 23.19

2010–2020

Forest land 12.86 18.34 30.54 18.95 16.21 3.10
Wetland 11.53 10.69 13.25 24.68 33.96 5.89

Grass land 12.84 14.63 20.34 18.35 29.43 4.41
Cultivated land 12.31 14.56 45.47 12.96 10.21 4.49

Bare land 7.02 8.23 12.05 27.45 29.34 15.91
Construction land 1.79 8.21 12.76 25.67 26.23 25.34

From 2000 to 2020, the distribution areas of construction land and bare land are mainly
positive risk conversion areas, and the LER index crucially increased. Among them, the
construction land is mainly distributed in high positive risk conversion areas, which is
caused by the demand of rapid economic growth and accelerated urbanization process in
typical areas of the Yellow River Basin, and the continuous expansion of the construction
land is at the cost of the bare land prosperity and the existing land renewal.
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3.5.2. The Impact of Land Use Type Conversion on LER

The regional LER often has two opposite trends of improvement and deterioration
at the same time. In a certain area, the two trends can be offset to different degrees. On
the one hand, the change of LER index reflects the overall LER development level. On
the other hand, the LER stability does not mean that the internal ecological risk has not
changed. The process of land use change affects the regional LER differentiation, and the
mutual transformation between the different types may have a positive or negative effect
on LER.

According to the actual situation of the study area, based on the related research
results [47,48], the change in the regional LER index caused by the change of a certain
land use type is obtained through the ecological risk contribution rate of land use change,
and then the impact of land use type transformation on the LER of the typical areas of the
Yellow River Basin was determined. Table 5 shows the change of LER index and its main
land use change types contribution rate that promote the improvement and degradation of
LER in typical areas of the Yellow River Basin during 2000–2020.

Table 5. The main types of land use changes that affect LER and their contribution rate to ecological risks.

Mode

2000–2010 2010–2020

The Main Types of
Land Use Changes

Index
Change

Contribution
Proportion (%)

The Main Types of
Land Use Changes

Index
Change

Contribution
Proportion (%)

Leading to
deterioration of

LER

Cultivated land
-Construction land 0.01628 39.82 Bare land

-Construction land 0.01821 37.98

Wetland
-Construction land 0.01069 15.24 Cultivated land

-Construction land 0.00953 23.17

Wetland
-Cultivated land 0.00729 12.13 Wetland

-Construction land 0.01083 10.86

Bare land
-Construction land 0.00217 11.65 Grass land-Cultivated

land 0.00603 6.39

Forest land
-Construction land 0.00372 8.24 Wetland

-Cultivated land 0.00527 2.38

Grass land—Cultivated
land 0.00598 5.67 Forest land-Cultivated

land 0.00386 1.28

Total 0.04613 92.75 Total 0.05373 82.06

Leading to the
improvement of

LER

Cultivated land
-Wetland −0.01023 39.11 Construction land

-Cultivated land −0.00289 36.10

Bare land
-Wetland −0.00253 18.94 Bare land

-Wetland −0.00363 28.34

Bare land
-Cultivated land −0.00162 14.83 Construction land

-Wetland −0.00928 10.04

Grass land-Wetland −0.00115 9.34 Bare land
-Cultivated land −0.00135 8.96

Cultivated land
-Grass land −0.00102 5.23 Cultivated land

-Wetland −0.00296 6.48

Cultivated land
-Forest land −0.00154 3.72 Cultivated land

-Grass land −0.00423 3.27

Total −0.01809 91.17 Total −0.02434 93.19

From 2000 to 2010, land use changes generally promoted the increase of the regional
LER index. The conversion of cultivated land to construction land was the leading factor
in the deterioration of LER at this stage, accounting for 39.82% of the positive effect of
LER. Due to the inadequacy of government policies and the demand for rapid economic
development, a large amount of cultivated land has been converted to construction land,
which has caused a rise in the LER index and substantial deterioration in ecological safety.
At the same time, the conversion of wetland to construction land and the conversion of
wetland to cultivated land also contributed to the deterioration of LER to a certain extent,
and both accounted for nearly one-third of the LER contribution rate of positive effects.
Second, the types of land use changes that worsen the LER are relatively concentrated.
One is that other types of land use are converted to construction land and the other is that
other types of land use, with ecological protection functions, are converted to cultivated

383



Int. J. Environ. Res. Public Health 2021, 18, 11301

land. This is mainly the construction and cultivated land transfer that accounted for more
than 92% of the total contribution rate of the positive effects of LER. On the contrary, the
transfer of wetland, the utilization of bare land, and the return of farm land to forests and
grass land are important factors to improve the LER in the study area. Among them, the
occupation of cultivated land and bare land by wetland is dominant, which accounts for
more than 58% of the contribution rate of the LER positive effect.

From 2010 to 2020, the conversion of bare land to construction land is the leading
factor in the deterioration of LER in typical areas of the Yellow River Basin at this stage,
accounting for 37.98% of the LER positive effect. Under the background of urban expansion,
the urgency of social and economic development makes a large number of bare lands
exploited and utilized. However, due to the lack of institutional guidance and ecological
considerations, the large-scale development of bare land leads to the increase of LER index.
The rapid urbanization in this period was at the expense of the environment. At the
same time, due to the increase in demand for construction land, some cultivated land and
wetland have also been converted to construction land which, to a certain extent, has also
contributed to the deterioration of the LER in the study area. The two accounted for more
than one-third of the LER positive effect, and the ecological safety problem should not
be underestimated. During this period, the type of land use change that worsened the
LER was the transfer of construction land and cultivated land, and the contribution rate of
forest land and grass land occupied by cultivated land slightly increased. The important
factors for the LER improvement in the study area are the conversion of construction land
to cultivated land and bare land, and the transfer of construction land to wetland, with a
contribution rate of more than 70%. The transfers of cultivated land, wetland, and grass
land are important reasons for the LER improvement.

Changes in land use types will change the landscape structure and vulnerability index,
leading to original landscape fragmentation and increasing landscape ecological risks. In
summary, LER improvement and deterioration coexist in typical areas of the Yellow River
Basin, but the overall deterioration trend is greater than the improvement trend, and the
degree of deterioration of LER continues to increase.

4. Discussion

4.1. The Relationship between Land Use Change and LER

Land is the carrier of the main social and economic activities, and an important
part of the global environmental change and sustainable development research. Driven
by economic and social changes and innovation, the types of regional land use have
also changed. Land resources are the basis for the survival and development of human
society [3]. In recent years, with the acceleration of urbanization, the loss and fragmentation
of cultivated land have become more critical. Land itself is the macroscopic representation
of the surface landscape, while frequent human activities and high-intensity development
and construction make the landscape fragmented and complex, threatening the harmony
of humans and land relationship [9]. Changes in land cover, caused by changes in land
use, have created changes in the structure and function of ecosystems, and the pattern of
surface landscapes has continued to change. Ecosystems may have adverse effects under
the direct or indirect effects of land use, and their impacts involve a series of ecological
processes such as the atmosphere, soil, water bodies, and organisms and have a wide
range of ecological effects. This leads to a variety of real or potential LER, including land
degradation [21]. Land use change is highly correlated with the temporal and spatial
distribution and dynamics of LER. In fact, the land use change induces LER. To sum up, the
LER based on land use change refers to the possibility of changes in landscape structure
and reduction of corresponding ecological functions caused by land use and its changes.

LER management refers to the effective prevention and governing measures taken
by risk managers for early warning, response, and restoration of LER according to the
differences in risk levels and land use types changes in the process of LERA, in order
to avoid and reduce LER [44]. The results of LERA of land use can enable managers

384



Int. J. Environ. Res. Public Health 2021, 18, 11301

to understand the spatial distribution of regional LER, identify high risk and medium-
high risk areas, and put forward feasible risk control strategies for the temporal and
spatial differentiation of different land use types. Land use management is an important
approach to LER management. By optimizing the types of land use changes and spatial
layout, the regional LER can be effectively reduced. At the same time, land use LERA
and management can be continuously improved through mutual feedback. Land use LER
management has stages and timeliness. In addition, it is connected with the dynamics of
land use research and can promote a virtuous circle of the evaluation process. Land use
LER management is a very important part of the ecological risk assessment process. The
LERA results can be combined with complex factors, such as regional laws, politics, society,
and economy, and its management results can be used for the next landscape risk. Since
land use change is driven by nature, social economy, transportation, location, and policies,
the LER management of land use can be carried out based on the results of LERA and the
factors affecting land use change [48]. Therefore, through the LER differences based on
the type of land use, according to the response of the regional LER to the type of land use
change, the prevention and control strategies for the LER response and restoration can be
proposed.

An important approach for ecological restoration is the construction of ecological
projects, most of which involve changes in land use. Carrying out land use LERA provides
a strong support and guarantee for ecological restoration. As a new field and important
branch of LER research, the LERA of land use can provide a scientific basis and strong
decision support for spatial planning and ecological restoration under the background of
ecological civilization construction.

4.2. Land Use Control Strategy to Reduce Landscape Ecological Risk

The spatial difference in LER is large in typical areas of the Yellow River Basin. Com-
prehensively considering that the LER grade and conversion rate in the study area show
the trend of “high in the center, low around”, the idea of core-peripheral management and
control zoning is proposed. Based on the results of county-scale ecological risk diagnosis, in
accordance with the need for ecological risk prevention and control and for the convenience
of regional management, the typical areas of the Yellow River Basin are divided into “two
districts and six pieces” LER key control area, strict control area, and general control area
according to the principle of not crossing the municipal administrative region and changing
the LER index conversion rate. The “two districts and six pieces” include the core area
along the Yellow River and the peripheral linkage area. The core area is divided into four
control areas, and the peripheral linkage area is divided into two areas (Figure 10).

1. The control strategy of the core area

The core area covers the main stream of the Yellow River and counties (cities and
districts) where Dawen River flows, covering an area of 42,800 km2. Its development
guideline is to build a core area and demonstration leading area for the ecological protection
and high-quality progress of the Yellow River Basin. The focus should be on the latter
two and on coordinating the inconsistencies among various types of land use, as well as
the land use pattern optimization. The essence has to be on improving the central cities’
influence and radiation, as well as strengthening the role of Jinan metropolitan area in
ecological protection and high-quality development.

The LER of the strict control area in the upper section belongs to the relatively low risk
level and medium risk level, and the conversion rate is first reduced and then increased,
while the overall conversion rate is positive. Its development orientation is the Yellow
River Ecological Corridor Construction Demonstration Zone. The main types of land use
changes are “wetland-construction land” and “construction land-cultivated land”, which
lead to increasing LER in recent years. In the future, the region should pay attention to
the implementation of the policy regarding the balance between farmland occupation and
compensation. In order to effectively protect wetland, forest land, and other lands from
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occupation, the ecological security barrier system should be optimized and the radiation
ability of Heze metropolitan area to the surrounding areas should be increased.

Figure 10. Spatial control distribution of LER in typical areas of the Yellow River Basin.

The LER of the general control area of the Dawen River Basin is dominated by medium
and high risks. The risk conversion rate is first increased and then reduced, and the
overall conversion rate is negative. Its development is positioned as a long-term unruffled
demonstration area of the Yellow River. The main types of land use changes are grass
land-wetland and grass land-forest land. Moreover, the intensive use of land reduces the
ecological protection function. This region should make full use of mountain landscape and
water resources. Relying on the existing nature reserves and tourist attractions, a certain
protection zone should be set forth, and the region of adjacent forest land and wetland
should be expanded to make them concentrated and contiguous to ensure the ecological
environment. Then, the fragmentation of the landscape should be reduced and the anti-risk
ability of the ecosystem should be improved.

The LER of the key control area in the middle section is mainly high risk, and the
conversion rate showed the simultaneous increase and high positive conversion rate. The
main types of land use changes are “cultivated land-construction land” and “bare land-
construction land”. The economic expansion leads to ”the blind expansion” of construction
land, resulting in the loss of cultivated land, the transition of bare land development,
and the destruction of landscape ecosystem structure. This area is a key area leading the
high-quality development of the Yellow River Basin. The maintenance of forest and grass
land should be strengthened to reduce land loss and improve the stability of the ecosystem.
In addition, it is necessary to control the regional population and reduce the occupation of
cultivated land resources due to the expansion of construction land, and then rationally
develop the unused land and adjust the land use structure based on location factors.

The LER of the general control area in the lower section belongs to relatively low
and medium risk, and the conversion rate shows the simultaneous decrease, and the
overall conversion rate is negative. The main land use change types are “cultivated
land-wetland” and “construction land-cultivated land”. The ecological risk has reduced
significantly. The development is oriented towards collaborative protection and developing
demonstration zones. We should establish wetland parks and other nature reserves,
strengthen the maintenance of forest and grass land around rivers, reduce land loss and
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water fragmentation, and continue to provide policy and financial support, by exploring
regional ecological protection and linkages to development mechanisms, while promoting
the integrated development of the cities, such as Dongying, Binzhou and Lijin.

2. The control strategy of the peripheral linkage area

The peripheral linkage area includes 42 counties (cities, districts), except the core
area. The LER level of the collaborative linkage of the key control area mainly belongs to
the low risk, while the conversion rate shows a simultaneous increase and a low positive
conversion rate. It is located in the ecological area of the northwest plain of Shandong
Province. The types of land use change are relatively scattered, and the proportion of
cultivated land to construction land is relatively large. With accelerated urbanization,
the construction land continues to spread outward, the ecological load is severe, and the
ecological risk continues to rise. As Shandong Province is largely agricultural and the
protection and utilization of cultivated land is very important, it is recommended to divide
the cultivated land based on quality and implement a policy of returning the farm land to
forests on cultivated land of poor quality. In addition, the pressure of construction land
expansion should be appropriately eased and shifted from incremental development to
stock renewal with intensive and efficient utilization. The level of LER in the collaborative
linkage strict control area is mainly medium and high risk, and the conversion rate is first
increased and then reduced, while the overall conversion rate is positive. The main land
use change types in this area are “wetland-construction land” and “forest land-construction
land”. We should adopt the leading role of land and space planning to reduce the human
interference intensity, make a gradual development of construction land to go together
with stock renewal, and protect forest land and wetland from intrusion. While mobilizing
the enthusiasm of economic development, the negative impact on landscape ecology will
be minimized, in order to maintain the current trend of ecological risk transformation and
further improve the landscape ecology. The peripheral linkage area should focus on the
joint protection and governance of environment, the integration of living spaces, and the
coordinated development of urban and rural areas, while comprehensively reinforcing the
collaborative linkage with the core area.

There are extensive distinctions in resource endowments and industrial development
levels in typical areas of the Yellow River Basin. The changes in land use types should be
promoted according to regional resource endowment conditions, ecological environment
capacity, and positioning of main functions. Moreover, its ecological effects should be
considered in the formulation of relevant policies and plans. In the process of land use
change, it is necessary to actively adjust the structure and layout of land use to strengthen
the self-healing function of the ecosystem.

5. Conclusions

Based on the land cover data in typical areas of the Yellow River Basin in 2000,
2010, and 2020, this study conducts a research on landscape ecological risk response and
countermeasures of land use change. The main conclusions are as follows:

(1) The analysis of land use structure demonstrates that the main types of land use in
typical areas of the Yellow River Basin are cultivated land and construction land.
The change processes of various land use types are significantly different, showing
the characteristics of “many-to-one”, “one-to-many”, and “balanced”. Among them,
the scale of forest land first increases and then decreases, the area of wetland and
construction land increases sharply, and the areas of grass land, cultivated land,
and bare land continue to shrink. In the conversion of different land use types, the
exchange of cultivated land and construction land, the transfer of construction land
to wetland, and the transfer of bare land to wetland are more prominent, as well as
denser in coastal areas and more scattered in inland areas;

(2) The process of land use change is affected by the factors of nature, society, economy,
location, and policy. Within the first decade, the natural environment, society, and
economy played a leading role in land use changes. In the second decade, the
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influence of natural factors declined, while the influence of location and policy factors
increased significantly;

(3) The results show that the overall LER grades have the characteristics of “high in the
southeast, low in the northwest” and “high in the center, low in the surroundings”.
The conversion rate of LER increased gradually, and the spatial distribution showed
a decreasing trend from southeast to northwest. Most of the ecological risks have
shifted from low level to high level. In recent years, the ecological risks of bare land
and construction land have increased severely, which should cause concern;

(4) The change of land use type will change the landscape structure and vulnerability
index, resulting in the original landscape fragmentation and the increase of LER. The
landscape ecological improvement and deterioration coexist in typical areas of the
Yellow River Basin, but the general landscape ecological deterioration trend is greater
than the improvement trend, and the deterioration degree of the landscape ecological
environment is increasing; and

(5) According to the results of the diagnosis of county-scale LER and the need of eco-
logical risk prevention and control, the typical areas of the Yellow River Basin are
divided into “two districts and six pieces” LER with the key control area, strict control
area, and general control area. It is committed to transform the Yellow River Basin
in Shandong Province into “Shandong model for ecological protection of the Yellow
River Basin and a core growth pole for high-quality development”.

This paper attempts to develop differentiated land use regulation strategies for re-
search areas with different landscape ecological risk levels and regional characteristics
from the influencing factors and driving mechanism of land use change for the first time.
However, the following contents in the future should get further exploration. First, the LER
temporal and spatial characteristics have obvious scale effects, and there may be a certain
degree of difference in the research results with various exploration scales. This article is
based on the remote sensing of land use (raster data, resolution of 1 km) from 2000 to 2020
obtained from the Resource and Environment Science and Data Center (RESDC) of Chinese
Academy of Sciences. The results of this study reflect the LER distinctions and their change
process at the macro-level in typical areas of the Yellow River Basin, but it is difficult to
accurately describe the risk traits of some local areas or land types with a small area. In
order to reflect the change of ecological risk more sensitively, it should be considered to
study the scale characteristics of ecological risk change by setting grid cells of different
sizes. Second, remote sensing data are not only an effective method for land use change
research, especially dynamic monitoring, but also play an important role in analyzing the
land use change pattern. Remote sensing is able to obtain a large range of data by virtue of
its advantages, such as multiple means of obtaining information, fast speed, and not being
blocked by terrain, but it may not be able to fully display the LUCC process. Therefore, the
combination of traditional ground survey methods, such as land survey, topographic map
query, field visit, and questionnaire survey with remote sensing technology will be the
focus of the next step. Moreover, it is an important means to deepen the understanding of
land use dynamics. Furthermore, this exploration will help in providing more reasonable
suggestions for the high-quality development of the basin, and provide more effective
regulation and control strategies for decision makers.
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Abstract: Soil erosion is a serious ecological problem in the fragile ecological environment of the
Tibetan Plateau (TP). Rainfall erosivity is one of the most important factors controlling soil erosion and
is associated with the El Niño southern oscillation (ENSO). However, there is a lack of studies related
to the spatial distribution and temporal trends of rainfall erosivity on the TP as a whole. Additionally,
the understanding of the general influence of ENSO on rainfall erosivity across the TP remains to
be developed. In this study, long-term (1971–2020) daily precipitation data from 91 meteorological
stations were selected to calculate rainfall erosivity. The analysis combines co-kriging interpolation,
Sen’s slope estimator, and the Mann–Kendall trend test to investigate the spatiotemporal patten
of rainfall erosivity across the TP. The Oceanic Niño Index (ONI) and multivariate ENSO Index
(MEI) were chosen as ENSO phenomenon characterization indices, and the relationship between
ENSO and rainfall erosivity was explored by employing a continuous wavelet transform. The results
showed that an increasing trend in annual rainfall erosivity was detected on the TP from 1971 to
2020. The seasonal and monthly rainfall erosivity was highly uneven, with the summer erosivity
accounting for 60.36%. The heterogeneous spatial distribution of rainfall erosivity was observed
with an increasing trend from southeast to northwest. At the regional level, rainfall erosivity in
the southeastern TP was mainly featured by a slow increase, while in the northwest was more
destabilizing and mostly showed no significant trend. The rainfall erosivity on the whole TP was
relatively high during non-ENSO periods and relatively low during El Niño/La Niña periods. It is
worth noting that rainfall erosivity in the northwest TP appears to be more serious during the La Niña
event. Furthermore, there were obvious resonance cycles between the rainfall erosivity and ENSO in
different regions of the plateau, but the cycles had pronounced discrepancies in the occurrence time,
direction of action and intensity. These findings contribute to providing references for soil erosion
control on the TP and the formulation of future soil conservation strategies.

Keywords: rainfall erosivity; soil erosion; spatiotemporal variation; ENSO; Tibetan Plateau

1. Introduction

Soil erosion has already emerged as one of the most serious ecological and environ-
mental problems globally, which not only threatens terrestrial ecosystems, but also severely
restricts the security of human existence and the sustainable development of economy and
society [1,2]. Soil erosion not only contributes to land degradation, but even interferes
with the ability of the soil carbon cycle to mitigate the greenhouse effect [3,4]. Soil erosion
by water is considered to be one of the most detrimental types of soil erosion, causing a
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loss of soil nutrients, which reduces crop yields, pollutes water quality, contributes to the
sedimentation of rivers, and raises flooding [5–9]. Therefore, the accurate prediction of
water erosion is of great significance for the comprehensive management of soil erosion
and effective soil protection.

The causes of water erosion are related to a series of natural factors involving rainfall,
soil, topography, vegetation, and other human factors such as land use and crop cultivation
management [10,11]. In particular, rainfall is the principal climatic factor responsible for
water erosion, which influences water erosion through the duration, amount, and intensity
of rainfall events [12]. The principal predictive tools for water erosion are the Universal Soil
Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE), which have
been applied worldwide, and rainfall erosivity (R-factor), one of the key input parameters
in the model, is the potential capacity of rainfall to induce water erosion [12,13]. The
R-factor is defined as the product of the rainfall energy and the maximum rainfall intensity
in a 30 min period (EI30), and the calculation requires the use of consecutive rainfall data
series with a temporal resolution of at least 15 min, which is however, hardly available
in many countries and regions. Even if an adequate rain gauge data can be accessed, the
complicated calculation process is time-consuming and laborious, which dramatically
restricts model promotion and implementation [14].

In this context, as alternative algorithms based on the relationship between R-factor
and available rainfall data were developed, including the calculation of rainfall erosivity
based on annual [15,16], monthly [17,18], and daily [19,20] rainfall data from meteorological
stations or satellite radar [21,22]. Among these, daily rainfall data are widely used due to
their relative accessibility, which provides more characteristic information of rainfall and
facilitates the precision and reliability of R-factor estimation [23]. In the daily rainfall data
model, the rainfall erosivity algorithm was divided into linear exponential, logarithmic,
and power functions to fit the relationship between rainfall and rainfall erosivity, and
the models are mostly combined experimental and empirical based [24–26]. In general,
these models perform an important role in the quantitative evaluation of rainfall erosivity,
and provide scientific reference for the forming mechanism of water erosion, evolutionary
process and even the mechanics of climate change.

It has become an indisputable fact that the global climate is changing remarkably,
with extreme weather events growing stronger, more frequent, and lasting longer [27]. El
Niño southern oscillation (ENSO) is the most intense sea-air interaction event affecting
the global climate, and although it usually occurs in the eastern equatorial Pacific region,
it can be responsible for rainfall anomalies spreading globally [28]. The ENSO cycle has
a pronounced periodic character as a result of the interaction between the ocean and the
atmosphere, with El Niño (warm phase) and La Niña (cold phase) as the two extreme
phases of the ENSO cycle. Considerable work has been conducted on the relationship
between ENSO and precipitation events, anomalous temperature, wet and dry variability,
and atmospheric circulation [29–32]. The studies also pointed out that El Niño and La
Niña showed diverse rainfall patterns, for example, compared with the La Niña period,
northern China is more arid during El Niño in the northern hemisphere, while rainfall in
the southeast of China appears to increase substantially, while the contrary phenomenon
is present in the southern hemisphere [33,34]. Although these studies have enhanced our
comprehension of atmospheric tele-correlation model (ENSO) effects on rainfall, currently
the effect of ENSO on rainfall erosivity is still only shown in a few studies [35–39]. A sig-
nificant dependence between rainfall erosivity and the ENSO indices has been observed
in eastern China [35,37], northeastern Spain [40], and the southwestern United States [41],
while studies on how ENSO affects rainfall erosivity on the TP are still unknown.

The Tibetan Plateau (TP) is the largest and highest geographical unit in the world, with
an average altitude of over 4000 m, and is called the Earth’s “third pole”. It is of extreme
importance to regional economic development and ecological security, as well as global
climate, water resources, and ecosystem functioning [42]. Since the 21st century, however,
drastic environmental changes have been remarkably observed on the TP [43]. These
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changes have become key drivers of increased soil erosion risk. Studies have demonstrated
that grassland ecosystems on the TP are suffering from severe degradation due to the
combined effects of climate change and human activities. This in turn has triggered a
decline in biomass, biodiversity, and landscape complexity, fragmentation or complete loss
of services such as soil and water conservation, and an increase in rainfall erosivity and
sandstorms [44–47]. Permafrost degradation can reduce the stability of soil aggregates and
the water content in the surface soil is abnormally high during the thawing stage, thus
shortening the time of runoff generation and exacerbating erosion caused by rainfall [48,49].
The glaciers’ retreat and the rise of the snow line in cold areas at high altitudes have
changed the surface albedo and atmospheric heat circulation and thus have affected the
local rainfall intensity, and the form of erosion caused by glacial meltwater and snowmelt
runoff generated is one of the main reasons for increased erosion [50,51]. Additionally,
according to observations and climatological models, the TP has suffered a faster rate of
warming since the 1960s, which is three times the global average [52]. Notable changes in
the plateau climate system, such as short periods of intense rainfall triggered by extreme
precipitation events, may have led to an increasing trend in the rainfall erosivity on the
TP [51]. Some studies have analyzed the variation in rainfall erosivity in the catchment
and local scales of the TP, indicating an increasing trend of rainfall erosivity [53–55]. These
studies provided useful information on the variation in rainfall erosivity, but a further
analysis is necessary for the TP as a whole.

Soil erosion is serious on the TP, with 70% of the area suffering from varying degrees
of soil erosion [56]. In both sides of the Yarlung Tsangpo River and the South Qiangtang
area, gully erosion is widely distributed, while in the interior of the plateau scale erosion
becomes the main type of erosion in grasslands [57]. Soil erosion on the TP has caused
irreparable soil degradation and land area reduction, and is leading to the sedimentation
of downstream rivers, landslides, mudslides and other disasters, posing a threat to trans-
portation, agriculture, and animal husbandry. Moreover, soil conservation is particularly
important in the TP due to its harsh physical environment, widespread permafrost and
fragile alpine ecosystems making it the most sensitive and fragile region [58]. Once erosion
happens, its rehabilitation process is prolonged and difficult.

Detection of long-term trends in rainfall erosivity can provide information regarding
the potential impact of rainfall changes on soil erosion. It is particularly useful for the
TP region, which is more sensitive to water erosion and climate change because of the
fragile biophysical conditions [59]. However, these unique geographical features and
complicated terrain have restricted soil erosion studies due to the scarce observational data
on precipitation and soil erosion. Previous studies have focused on local watersheds or
small areas of the TP, while the spatial and temporal characteristics of how rainfall erosivity
vary over the entire TP have not been adequately studied [60,61]. Moreover, periodic
factors lead to ‘poverty years’ and ‘abundant years’ of precipitation in the highlands in
different years. The interannual variation in precipitation erosivity on the TP may be the
result of ENSO action, but the general effect of ENSO on rainfall erosivity in the TP is not
clear at present, and it is necessary to expand the related understanding.

In view of this, the TP as a whole was chosen as the study area, and daily rainfall
data from 91 meteorological stations were selected to calculate the rainfall erosivity and
to explore its relationship with ENSO. The objectives of the study are as follows: (1) to
characterize the temporal trends of rainfall erosivity during 1971–2020 across the entire TP;
(2) to present the spatial distribution of rainfall erosivity on the TP; (3) and to investigate
the impacts of ENSO on rainfall erosivity in different regions of the TP.

2. Materials and Methods

This study was based on a single case study of the TP. In this section, the basic
information about the study area, the required data handling process and the methods
related to rainfall erosivity were described in detail.
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2.1. Study Area

The Tibetan Plateau is located in the southwestern part of China, with an area of
2.74 × 106 km2 and an average altitude of over 4000 m. It is known as the “roof of the
world” [62]. It is included in the Tibet Autonomous Region and Qinghai Province, and
the southern part of the Xinjiang Uygur Autonomous Region, the western part of Gansu
Province, the western part of Sichuan Province and the northern part of Yunnan Province.
The main mountain ranges are the Kunlun Mountains, Qilian Mountains, Karakorum
Mountains, Himalayas, and Hengduan Mountains. The climate ranges from a humid
monsoon climate in the southeast to an alpine arid plateau climate in the northwest,
controlled by the Pacific monsoon, Indian monsoon, and prevailing westerly winds, and is
influenced by the mountain terrain [63]. Diverse climate types form subtropical rainforests,
shrubs, alpine meadows, alpine grasslands, and alpine desert vegetation types are present.
TP precipitation exhibits a distinct gradient, gradually decreasing from more than 1000 mm
in the southeast to less than 50 mm in the northwest [64]. The region has experienced soil
erosion, desertification and landslide hazard [51,65]. Referring to [66], the criteria for the
physical geographic zoning of the TP divided the plateau into Region I (arid zone) and
Region II (humid zone) (Figure 1).

Figure 1. Study area of Tibetan Plateau (TP) and the distribution of meteorological stations.

2.2. Database
2.2.1. Daily Rainfall Data

The observed daily precipitation data used in this study was obtained from the Cli-
matic Data Center, National Meteorological Information Center of the China Meteorological
Administration (CMA) (http://data.cma.cn (accessed on 10 October 2021)). The data in-
cluded a total of 91 meteorological stations (Figure 1), with complete data series, covering
the time period 1971 to 2020 (Table S1). Moreover, considering the continuity of spatial
interpolation and the stations spreading over the entire TP as much as possible, 27 meteo-
rological stations around the study area were selected with the criterion that the shortest
linear distance from a meteorological station to the TP boundary is not greater than 100 km.
The observation records of all surrounding stations were recorded at the same time as the
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study period. In order to ensure data reliability and continuity, each meteorological data
record was evaluated by the National Meteorological Center [67].

2.2.2. ENSO Indices

ENSO is a phenomenon of irregular periodic changes in sea surface temperature and
wind occurring in the equatorial eastern Pacific Ocean, one of the strongest natural signals
of interannual climate change worldwide. The typical characteristics of ENSO events are
commonly known to be anomalous SSTs (±0.5 ◦C) in the eastern Pacific Ocean for more
than 5 months, where warm episodes are El Niño events and cold episodes are La Niña
events [68,69]. The multivariate ENSO Index (MEI) was obtained as the first non-rotating
principal component (PC) of the six variables (sea-level pressure, zonal and meridional
components of the surface wind, sea surface temperature, surface air temperature, total
cloudiness fraction of the sky) over the tropical Pacific [70,71]. it is considered as a better
index for detecting the ENSO phenomena with respect to other indices because it takes
into account more information and fewer data failures [37]. Therefore, in this study, the
occurrence and duration of the El Niño event and La Niña event were determined based
on the Oceanic Niño Index (ONI), and MEI was selected as the ENSO proxy to probe the
relationship between rainfall erosivity and ENSO during the time period of 1971–2020.
These indexes are obtained from the National Oceanic and Atmospheric Administration
(NOAA). Specifically, ONI was acquired from NOAA Climate Prediction Center [72], and
MEI was acquired from NOAA Earth System Research Laboratory.

2.3. Methods
2.3.1. Technical Route

The study was divided into four steps (Figure 2):

Figure 2. Technical route. Note: MK-test refers to Mann–Kendall test, CV refers to the coefficient
of variation.
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Step 1: Estimation of rainfall erosivity at different time scales. Based on the daily
rainfall data of 91 stations, the annual, seasonal, and monthly average rainfall erosivity of
TP from 1971 to 2020 were calculated using the daily rainfall erosivity model.

Step 2: Trend analysis and spatial distribution of rainfall erosivity in TP. Firstly, the
temporal changes trend of rainfall erosivity was evaluated by using Sen’s slope estimation
and the MK trend test, and then the co-kriging method was used for the spatial mapping
of rainfall erosivity for the period of 1971–2020.

Step 3: Pattern identification and analysis of rainfall erosivity change at each meteoro-
logical station. Firstly, the change trend of rainfall erosivity at each station was classified
by integrating multiple indicators. Then, the coefficient of variation (CV) and the seasonal
spatial distribution of rainfall erosivity of each site was analyzed.

Step 4: Relationship between rainfall erosivity and ENSO. Based on ONI, the variation
in monthly mean rainfall erosivity during El Niño and La Niña events from 1971 to 2020
was analyzed; based on the MEI index, a continuous wavelet transform analysis method
was used to examine the influence of ENSO on rainfall erosivity, and to clarify the response
of the resonance period in different regions of the TP.

2.3.2. Calculation of Rainfall Erosivity

The half-monthly rainfall erosivity was estimated for each of the 91 meteorological
stations from 1971 to 2020 using the daily rainfall erosivity model. The agent model
was originally built from Richardson’s equation [73], and later improved by Zhang [20].
Previous studies have demonstrated that this method is reliable and has been widely used
on the national and regional scales in China [36,74–76]. This method is based on daily
rainfall data to obtain monthly, seasonal, and annual rainfall erosivity. The calculation
procedures are as follows:

Ri = α ∑k
j=1

(
Pj
)β (1)

α = 21.586β−7.1981 (2)

β = 0.8363 +
18.144
P(d12)

+
24.455
P(y12)

(3)

where Ri is the rainfall erosivity in the i-th half-month period (MJ mm ha−1 h−1), k is the
number of days in the half-month period, and Pj is the daily erosive rainfall amount (mm)
on the j-th day during the half-month period. The half-month interval method is as follows:
with the fifteenth day of each month as the dividing point, the whole year is divided into
24 half months. The half-month period as a basic statistical unit is used to calculate the
corresponding half-month rainfall erosivity.

According to the national rainfall and runoff analysis, ≥12 mm is defined as erosive
rainfall [77]. Therefore, the daily rainfall ≥12 mm is applied to Formula (1), otherwise, it is
regarded as value of 0 in the calculations.

The terms α and β are two parameters to be determined in the model. P(d12) is the
average daily erosive rainfall amount (mm) and P(y12) is the average annual erosive rainfall
amount (mm). In this study, Formulas (1)–(3) are used to calculate the half-month rainfall
erosivity of each meteorological station. The annual and seasonal rainfall erosivity of is the
cumulative value of rainfall erosivity in every half-month period.

2.3.3. Sen’s Slope Estimator and Mann–Kendall Test

In this study, the trends magnitude of annual rainfall erosivity was estimated with
the non-parametric Sen’s method. The trends and significance of annual and seasonal
(monthly) rainfall erosivity were detected with the non-parametric Mann–Kendall test.

Sen’s slope estimation is a non-parametric method of slope calculation, which is
commonly used in the trend analysis due to its high robustness and computational effi-
ciency [78]. The determination for the slope of annual rainfall erosivity is as follows: first,
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the values of Qi calculated by the Formula (4) are ranked in order of magnitude, and then
determines the overall estimator (SLOPEmed) as the median of these Qi by Formula (5).

The slope in the N pairs of samples is calculated as follows:

Qi =
xj − xk

j − k
(i = 1, . . . , N) (4)

where xj and xk are values of the rainfall erosivity corresponding to periods j and k,
respectively (j > k). SLOPEmed is calculated according to the following formula:

SLOPEmed =

⎧⎨
⎩

Q[ N+1
2 ] < 0 if N is odd

Q
[ N+1

2 ]
+Q

[ N+1
2 ]

2 if N is even
(5)

where SLOPEmed > 0 indicates an upward trend, and vice versa. Its value indicates the
magnitude of the trend change.

The non-parametric Mann–Kendall test is a widely used technique for to assess the
significance of trends in long time series [79,80]. It is distribution free and not affected
by missing values and outliers, and is highly recommended by the World Meteorological
Organization [81]. This method is primarily based on two parameters, S and Z, to determine
whether a time series has a significant trend. The intermediate variable S is computed as:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn
(
xj − xk

)
(6)

where n is the length of the time series, xj and xk are values of the rainfall erosivity
corresponding to periods j and k, respectively (j > k). S is the summation of sgn

(
xj − xk

)
,

which takes the value of −1, 0, or 1 when
(
xj − xk

)
is less than, equal to, or greater than 0,

respectively. The variance of S can be acquired as follows:

var(S) =
n(n − 1)(2n + 5)

18
(7)

Then the normalized statistical value Z is denoted as follows:

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
var(S)

if S > 0

0 if S = 0
S+1√
var(S)

if S < 0
(8)

where a positive (negative) value of Z indicates an upward (downward) trend. In bilateral
trend detection, a time series with a significant trend is indicated if |Z|≥ Z1−α/2 at a
certain significance level α, where Z1−α/2 is obtained from the standard normal cumulative
distribution tables. The trend is statistically significant at the 0.1, 0.05, and 0.01 significance
level when |Z| > 1.645, 1.96 and 2.576, respectively. Besides, the Mann–Kendall test
can also be used to detect the abrupt points. The abrupt points and the approximate
time of occurrence can be located according to the intersection of the progressive and
retrograde sequences within the sequence. More details of the abrupt points calculation on
the Mann–Kendall Test are available from the network resources.

2.3.4. Spatial and Statistical Analysis

The mean annual rainfall erosivity at each of the 91 stations was calculated by a
long-term (1971–2020) average value of annual rainfall erosivity. Based on these station’s
values, the co-kriging interpolation method was used to interpolate the spatial distribution
of the average annual erosivity of the TP, using the geostatistical analysis tool ArcGIS 10.4.

Different from the inverse distance weighting (IDW) method which only considered
one assumption: nearby points should be closer to the value of the interpolation position
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than distant points, the co-kriging interpolation method allowed the addition of covariates
to improve the accuracy of estimation or prediction [74,82]. Considering the complex terrain
of the TP, the elevation factor was defined as a co-variable in the co-kriging interpolation
method [36]. The elevation data of each meteorological station was provided by the
China Meteorological Administration (CMA). Based on the values of rainfall erosivity for
91 meteorological stations on the TP, the co-kriging interpolation method was performed
and generated the spatial distribution map of rainfall erosivity for the period of 1971–2020.

In this study, the rainfall erosivity anomalies of the TP is expressed as the difference
between the annual erosivity value of the observation year and the 50-year average value.
The 5-year moving average anomaly can smooth fluctuations and reduce potential errors,
and was used to analyze the temporal changes of the rainfall erosivity across the TP. The
seasonal (monthly) average rainfall erosivity of the TP was calculated by averaging the
seasonal (monthly) erosivity of 91 meteorological stations during the same time span,
from 1971 to 2020. The annual variation from the meteorological site is represented by the
coefficient of variation (CV), which is expressed as a percentage of the standard deviation
of the annual erosivity to the average of the observation year. The map of seasonal spatial
distribution of rainfall erosivity is expressed as a percentage of the seasonal rainfall erosivity
in the annual total erosivity at each weather station.

2.3.5. Identification of Rainfall Erosivity Trend Patterns

With reference to the time series trend identification method of Ray [83], rainfall
erosivity change patterns were identified for each meteorological station from 1971 to 2020.
Multiple indicators were integrated: the Z values calculated by Mann–Kendall, SLOPE%
and RST.

The SLOPE% value represents as a percentage of SLOPE for the average rainfall
erosivity for each meteorological station during 1971–2020. The calculation formula is
as follows:

SLOPE% =
SLOPE

(∑n
i=1 xi)/n

× 100 (9)

where SLOPE is the Sen’s slope value of rainfall erosivity changes, xi is the value of the
rainfall erosivity corresponding to period i, and n is the length of the time series. The
RST is defined as the ratio of the average rainfall erosivity for the last 3 years to the
maximum 3 year moving average. This is used to identify whether the increasing trend of
annual rainfall erosivity is interrupted, shifting to a decline at later stages. The equation is
expressed below:

RST =
ave(xn−2, xn−1, xn)

max(AVE(x1, x2, x3), AVE(x2, x3, x4), . . . AVE(xn−2, xn−1, xn))
(10)

where xi is the value of the rainfall erosivity corresponding to period i, and n is the length
of the time series.

The trend of rainfall erosivity was classified by the above-mentioned three indicators
into four patterns of decreasing, stagnant, increasing-stagnant and increasing (Table 1),
abbreviated as DE, ST, IN-ST and IN, respectively. The Z value indicates whether there
is a significant trend of rainfall erosivity (|Z| > 1.96 at the 0.05 significance level), a non-
significant change trend (0.675 < |Z| ≤ 1.96 at the 0.05–0.5 significance level), and no
change trend (|Z| ≤ 0.675 at the below 0.5 significance level); SLOPE% indicates whether
the magnitude of the rainfall erosivity trend change is significant. References [84,85] used
0.25% as a criterion, i.e., a change greater than 0.25% is assumed to be significant. RST is
used to determine whether the annual rainfall erosivity growth trend is interrupted, or
turns down and mitigates at a later stage.
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Table 1. Definition and indicators of rainfall erosivity trend patten.

Trend Patten Definition Identification Indicators

DE Rainfall erosivity decreased significantly
during the study period

Z < −1.96, or 1.96 ≤ Z < −0.675 and
SLOPE% < −0.25%

ST Rainfall erosivity showed no significant
change during the study period

|Z| < 0.675, or 0.675 ≤ |Z| < 1.96 and
|SLOPE%| < 0.25%

IN-ST
Rainfall erosivity showed an increasing
trend in the early stage, but showed a

stable trend in the later stage

0.675 ≤ Z < 1.96 and SLOPE% > 0.25%
and RST < 1, or Z ≥ 1.96 and RST < 1

IN Rainfall erosivity showed a gradual
increase trend during the study period

0.675 < Z < 1.96 and SLOPE% > 0.25% and
RST = 1, or Z ≥ 1.96 and RST = 1

Note: The Z value indicates the MK trend detection value, the SLOPE% is the trend change rate percentage, and
the RST refers to the ratio of the rainfall erosivity in the past 3 years to the maximum 3-year moving average. DE:
decreasing, ST: stagnating, IN-ST: increasing-stagnating, IN: increasing.

2.3.6. Continuous Wavelet Transform Analysis

The continuous wavelet transform (CWT) is a method to decompose a time series into a
two-dimensional phase plane of the time-frequency simultaneously. It is commonly applied
to the analysis of various hydrological and meteorological processes with high variability
to detect non-stationary trends, periodicities, and durations as it better characterizes
oscillatory behaviors of signals than discrete wavelet transforms [86–88]. Specifically,
two CWTs, cross wavelet transform (XWT), and wavelet transform coherence (WTC),
were constructed to investigate whether there is any periodicities or correlations between
rainfall erosivity and ENSO. The XWT reveals regions of high common power in the time-
frequency spectrum, and calculates the phase relationships between signals. The WTC
identifies two time series variation correlations in both time and frequency space, even
in the absence of high-power regions. In this study, the wavelet power spectrum of CWT
was employed to analyze the relationship and the possible periodicity between rainfall
erosivity in different regions and changing patterns of MEI. XWT revealed high common
power regions and phase relationships between the two variables, and WTC was used to
determine the correlation position of the two variables at local scales. The CWT toolbox
package for MATLAB was used to perform all wavelet analyses. For further details about
CWT, refer to [89].

3. Results

In the following section, the results are represented according to the technical approach
mentioned in Section 2. This section analyzed the variability characteristics of rainfall
erosivity at different time scales and the spatial distribution pattern of rainfall erosivity at
each station, while identifying the relationship between rainfall erosivity and ENSO on
the TP.

3.1. Variation Characteristics of Annual Rainfall Erosivity

Sen’s slope estimation analysis showed an increasing trend of rainfall erosivity on the
Tibetan Plateau from 1971 to 2020, with a Sen’s slope value of 2.69 for annual rainfall erosiv-
ity (Figure 3). The average annual erosivity range from 713.50 to 1495.41 MJ·mm·ha−1·h−1,
with a multi-year average erosivity of 1071.42 MJ·mm·ha−1·h−1. An anomaly analysis
indicated obvious inter-annual fluctuation in rainfall erosivity. The magnitude of rainfall
erosivity undulation was relatively small until 1996 and increased significantly after 1996,
with longer fluctuation periods. For the entire study period, the annual rainfall erosivity
was above the mean for the same duration as the periods below the mean, with the highest
value of 1495.41 MJ·mm·ha−1·h−1 in 2020; the lowest value of 713.50 MJ·mm·ha−1·h−1 in
2009; the extreme value ratio was 2.1 (Figure S1). Meanwhile, the Mann–Kendall trend
analysis had a Z value of 1.67, indicating that this trend passed the significance test at the
90% confidence level, with the mutation point occurring in approximately 2017 (Figure S2).
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Figure 3. Annual variation in rainfall erosivity on the TP from 1971 to 2020, the red dotted line
represents Sen’s estimate.

3.2. Changes in Seasonal and Monthly Rainfall Erosivity

The seasonal mean rainfall erosivity showed significant discrepancies at 91 meteorologi-
cal stations on the TP. The rainfall erosivity in order was summer > autumn > spring > winter,
with a range of 89.33–662.58 MJ·mm·ha−1·h−1. In particular, the average rainfall erosivity
in summer was the highest, accounting for 60.36%, while winter was the lowest, accounting
for only 8.14% of the total annual erosivity (Figure 4). This phenomenon was mainly influ-
enced by the heterogeneity of the seasonal distribution of precipitation. With the transport
of water vapor from the North Indian and Western Pacific monsoons, the summer monsoon
brought 58.5% of the year’s rainfall, while late spring and early autumn accounted for 90%
of the year’s rainfall [90]. As shown in Figure S3, the summer rainfall erosivity showed a
non-significant increasing trend, with the MK statistical value of 1.54. In contrast, there
was a decreasing trend in spring, autumn, and winter rainfall erosion; the spring and
autumn MK statistic passed the significance test (p = 0.05), which were −2.19 and −2.09,
respectively.

Figure 4. Statistics of seasonal and monthly average rainfall erosivity and its percentage.

Although the monthly average rainfall erosivity was highly variable, there was a
clear temporal consistency with the seasonal rainfall erosivity. June, July, and August,
corresponding to summer, were the three months with the highest percentage of rainfall
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erosivity for the year. The monthly rainfall erosivity was 168.73 MJ·mm·ha−1·h−1, 264.75,
and 229.10 MJ·mm·ha−1·h−1, respectively. Rainfall erosivity was highest on the Tibetan
Plateau in July, the proportion of erosivity reached 24.19% for the year. November was
the lowest with 1.12%, but a higher variability was found in this period, with a high
extreme ratio of 18.71 (Figure 4). The trends in the monthly average rainfall erosivity from
1971 to 2020 were further examined, showing an increasing trend in eight months and a
decreasing trend in four months. Specifically, the greatest increasing trend in mean rainfall
erosivity was in August, but the increasing trend was insignificant in all months. Three
months showed a significant decreasing trend, including March and April at 90% and 95%
confidence levels, respectively, and the most significant decreasing trend was in November,
which passed 99% confidence level (Figure S3).

3.3. Spatial Patten of Rainfall Erosivity in the Tibetan Plateau

In order to reduce the boundary effect on the annual rainfall erosivity spatial pattern,
91 meteorological stations were selected for the interpolation better to reveal the spatial
variation in rainfall erosivity. In general, the rainfall erosivity on the TP from 1971 to 2020
had obvious spatial differences, roughly exhibiting a spatial pattern of decreasing distribu-
tion from southeast to northwest (Figure 5). The high value zone of rainfall erosivity was
approximately in the southeastern part of the TP, mainly distributed in the lower altitude
regions such as the Hengduan Mountains and the Yarlung Tsangpo Valley. There were
three stations with an average annual rainfall erosivity greater than 6000 MJ·mm·ha−1·h−1,
of which the highest value occurs at Dujiangyan station in Sichuan Province, with an
average annual rainfall erosivity of 6605.21 MJ·mm·ha−1·h−1. The other two stations are
Gongshan station and Huaping station in Yunnan Province, with an average annual rainfall
erosivity of 6152.44 MJ·mm·ha−1·h−1 and 6193.75 MJ·mm·ha−1·h−1, respectively. The
zones with low average annual rainfall erosivity were mainly found in the northern and
western parts of the TP, including concentrations in the Qiangtang Plateau and the Qaidam
Basin. For example, the lowest value was at Shiquanhe station in the Tibet Autonomous
Region, where the annual rainfall erosivity was only 103.46 MJ·mm·ha−1·h−1. In summary,
the average annual rainfall erosivity was less than 500 MJ·mm·ha−1·h−1 which accounted
for 48.35% of all stations, 500–1000 MJ·mm·ha−1·h−1 for 24.16% and that of more than
1000 MJ·mm·ha−1·h−1 accounted for 27.47%.

Figure 5. Spatial distribution of rainfall erosivity on the TP during the period from 1971 to 2020.
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The long time series trend analysis of each meteorological station on the TP from
1971 to 2020 showed that the annual rainfall erosivity exhibited an increasing trend at
49 meteorological stations, accounting for 54% of all stations. Thereby this demonstrated
the reason for the increasing rainfall erosivity across the entire TP since 1971 (Figure S4). Of
these, 13 meteorological stations increased consistently, mainly in the eastern Hengduan
Mountains of the TP, accounting for 27% of the total increases. The meteorological stations
that showed a pattern of rainfall erosivity increased first and then gradually stabilized were
mainly located in the Hehuang valley in the northeastern part of the Tibetan Plateau and the
southern Tibetan valley in the southeast, accounting for 27% of the total increase in stations.
The annual rainfall erosivity showed a long-term stable (no significant trend) pattern at
37 meteorological stations, accounting for 41% of all meteorological stations. Only five
stations showed a gradual decrease in annual rainfall erosivity, accounting for 5% of all
meteorological stations, but both patterns of change were not significant. In addition, as
shown in Table S2, further analysis based on the statistics results of the multiple indicators
at each station revealed that the types of trends at each site differ significantly in terms
of significance levels and magnitude of change. Of all the increasing pattern stations,
the significant increases were seen at Min station (p = 0.05) and Derong station (p = 0.01).
The largest and smallest increases were at Min station and Pishan station, respectively.
Of all the increasing-stagnating pattern stations, there are five meteorological stations at
more than 95% confidence level, namely Zekog station (p = 0.01), Gerze station (p = 0.01),
Dulan station (p = 0.01), Wuwei station (p = 0.01), and Guinan station (p = 0.05). Of all the
decreasing pattern stations, the largest and smallest increases were at Gongshan station
and Artux station, respectively.

As shown in Figure 6, the mean coefficient of variation (CV, the ratio of the standard
deviation to the mean) in the interannual rainfall erosivity for 91 stations since 1971 was
0.61, indicating moderately high rainfall erosivity variability across the plateau. The spatial
distribution pattern of CV had high consistency with annual rainfall erosivity. In other
words, the CV increased from south-east to north-west. Specifically, 11 meteorological sta-
tions were in regions of intense variation (CV > 1), mostly in the north-western flank of the
Kunlun Mountains on the TP, the Ali Mountains in the Tibet Autonomous Region, and the
northern Qilian Mountains in eastern Qinghai Province. while 54 meteorological stations
were in regions of lesser variation (CV < 0.5), accounting for 59% of the total meteorological
stations, mainly in the south-eastern part of the TP. Furthermore, the meteorological station
with the smallest CV in the interannual rainfall erosivity was Jiulong Station, located in
Sichuan Province in the southeastern part of the Tibetan Plateau, while the largest CV was
Pishan Station, located in Xinjiang Autonomous Region in the northwestern part of the
Tibetan Plateau. In summary, over the past half century, rainfall erosivity exhibited clear
spatial disparities on the TP, specifically, annual rainfall erosivity in the southeast were
mainly characterized by a slowly and steadily increase, while annual rainfall erosivity in
the northwestern part of the plateau showed greater fluctuations and instability, with no
significant trends.

The seasonal spatial distribution pattern of rainfall erosivity varied widely across the
TP (Figure 7). Five meteorological stations (5.5% of the total) with the highest percentage of
spring rainfall erosivity were concentrated in the Kunlun Mountains on the Tibetan Plateau
near the Pamir Plateau and in the Nu River basin in the Eastern Himalaya. In particular,
the erosivity of spring rainfall accounted for more than 50% of Pishan station, Kashgar
station, and Zayu station, and Pishan station was as high as 79%. (Figure 7a). Nearly 92%
of the meteorological stations (total 84) had the highest percentage of summer rainfall
erosivity. The largest was Shiquanhe station, which surprisingly had 94.28% of the annual
rainfall erosivity (Figure 7b). There was only one meteorological station with the highest
percentage of fall rainfall erosivity, with three stations accounting for more than 30%,
namely Nyalam, Burang, and Keriya station (Figure 7c). Winter was the season with the
lowest percentage of rainfall erosivity, all stations had less than 30% of rainfall erosivity
(Figure 7d). Summer and autumn were the most erosive seasons. It is worth noting that
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rainfall erosivity was generally higher across the plateau in summer, particularly in the
southeastern part of the Tibetan Plateau, whereas rainfall erosivity in autumn and winter
was still higher proportion in the south-western part of the plateau near the Himalayas.
Thus, extra caution will be needed to prevent aggravation of soil erosion in this region.

Figure 6. Spatial distribution of the coefficient of variation (CV) in rainfall erosivity during 1971–2020.

Figure 7. Spatial pattern of rainfall erosivity from 1971 to 2020 in spring (a), summer (b), autumn (c), and winter (d). Note:
Percentage refers to the proportion of seasonal rainfall erosivity to total annual erosivity.
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3.4. Relationship between Rainfall Erosivity and ENSO
3.4.1. Influence of ENSO on Rainfall Erosivity in the Different Regions of TP

The El Niño and La Niña events are the ENSO cycles of the warm and cold periods,
respectively. Statistics on the rainfall erosivity in Region I (arid zone) and Region II (humid
zone) of the TP and whole plateau during the El Niño (ENSO warm event) and La Niña
(ENSO cold event) periods are presented in Table 2.The occurrence and duration of El Niño
event and La Niña event were determined based on ONI.

Table 2. Average monthly rainfall erosivity in different regions (Region I and Region II) and TP for El Niño and La Niña
events from 1971 to 2020. The bottom table provides a summary of the average monthly rainfall erosivity.

No. Time Internal Duration Time Region I Erosivity Region II Erosivity TP Erosivity

El Niño events

1 1972.05–1973.03 11 282.09 233.00 201.92
2 1976.09–1977.02 6 90.57 216.53 198.37
3 1977.09–1978.01 5 114.40 132.34 120.58
4 1979.10–1980.02 5 104.33 209.91 175.40
5 1982.04–1983.06 15 83.32 214.03 174.49
6 1986.09–1988.02 18 315.97 221.63 225.18
7 1991.05–1992.06 14 106.09 256.33 210.08
8 1994.09–1995.03 7 74.89 167.78 142.50
9 1997.05–1998.05 13 144.15 235.53 193.00

10 2002.06–2003.02 9 141.13 251.03 208.63
11 2004.07–2005.02 8 155.69 247.67 133.83
12 2006.09–2007.01 5 84.40 167.47 188.51
13 2009.07–2010.03 9 128.03 217.52 170.04
14 2014.10–2016.04 19 63.75 193.68 204.68
15 2018.09–2019.06 10 318.80 169.55 201.92

La Niña events

1 1971.01–1972.01 12 105.87 162.81 142.12
2 1973.05–1974.07 15 101.82 327.52 197.69
3 1974.10–1976.04 19 136.34 246.86 234.16
4 1983.09–1984.01 5 170.46 216.68 191.36
5 1984.10–1985.08 11 125.46 251.72 216.24
6 1988.05–1989.05 13 408.05 261.23 486.03
7 1995.08–1996.03 8 117.67 249.63 190.13
8 1998.07–2001.02 32 153.16 264.05 209.01
9 2005.11–2006.03 5 474.19 124.57 142.75

10 2007.06–2008.06 13 155.75 201.97 178.10
11 2008.11–2009.03 5 283.13 123.77 138.83
12 2010.06–2011.05 12 102.80 214.74 185.26
13 2011.07–2012.04 10 195.09 192.46 187.99
14 2016.08–2016.12 5 109.84 251.42 223.47
15 2017.10–2018.04 7 48.87 116.56 101.67
16 2020.08–2020.12 5 93.12 156.05 229.36

Average monthly erosivity El Niño 147.17 208.93 181.94
Average monthly erosivity La Niña 173.85 210.13 203.39
Average monthly erosivity ENSO 160.51 209.53 192.67

Average monthly erosivity non-ENSO 140.48 253.09 213.77
Average monthly erosivity 1971–2020 146.25 233.68 208.12

In terms of the degree of influence of cold and warm events on the rainfall erosivity,
the average monthly rainfall erosivity for the El Niño event was slightly lower than the
La Niña event across the TP, but the average of both events was less than the monthly
rainfall erosivity for the period 1971–2020. During the El Niño event, the maximum
monthly average rainfall erosivity was 225.18 MJ·mm·ha−1·h−1 and the minimum value
was 120.58 MJ·mm·ha−1·h−1, with an extreme value ratio of 1.87; during the La Niña event,
the maximum monthly average rainfall erosivity was 486.03 MJ·mm·ha−1·h−1 and the
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minimum value was 101.67 MJ·mm·ha−1·h−1, with an extreme value ratio of 4.78; thus,
higher variability occurred during the La Niña event. In terms of the presence or absence of
ENSO events, the average rainfall erosivity during the ENSO and Non-ENSO periods were
192.67 MJ·mm·ha−1·h−1 and 213.77 MJ·mm·ha−1·h−1, respectively. It was evident that
the average monthly rainfall erosivity during the non-ENSO period was not only greater
than that during the ENSO period, but also greater than the total average monthly rainfall
erosivity for the whole study period.

The impact of ENSO events on the monthly mean rainfall erosivity in different regions
was notably dissimilar. For Region I, the average monthly rainfall erosivity for the El
Niño and La Niña events were 147.17 MJ·mm·ha−1·h−1 and 173.85 MJ·mm·ha−1·h−1,
respectively. This was higher than the average monthly rainfall erosivity for this region
for 1971–2020. Moreover, we found that when El Niño events or La Niña events occurred,
there was a significant increase in rainfall erosivity in Region I relative to the Non-ENSO
period, but La Niña events had a greater impact on the monthly average rainfall erosivity,
compared with El Niño events; For Region II, the average monthly rainfall erosivity for the
El Niño and La Niña events were 208.93 MJ·mm·ha−1·h−1 and 210.13 MJ·mm·ha−1·h−1,
respectively, with the El Niño event slightly lower than the La Niña event. There was a
modest gap between the two events. However, compared with Region I, the direction of
influence of ENSO in Region II was in the opposite direction. In other words, when ENSO
occurs, the average monthly rainfall erosivity in this region decreased more significantly
than the average for the study period. Due to the difference in the magnitude of rainfall
erosivity on the Tibetan Plateau during the ENSO period and the non-ENSO period, under
the premise that other contributing factors was fixed, rainfall erosivity was stronger during
the non-ENSO period and soil erosion concerns and soil conservation measures should
be strengthened during this period. Considering the obvious spatial heterogeneity of
the impact of ENSO on the Tibetan Plateau, the emphasis should be on erosion in the
north-west during El Niño or La Niña events, especially during the La Niña event when
control measures should be enhanced.

3.4.2. Correlation between Rainfall Erosivity and Multivariate ENSO Index

To examine the extent and impact of ENSO on rainfall erosivity, an XWT and WTC
analysis were conducted on the time series of rainfall erosivity and MEI index in different
regions of the Tibetan Plateau from 1971 to 2020, revealing the periodicity characteristics of
both. As shown in Figure 8, in the time-frequency space domain of Region I, it is obvious
that there was 3–5 years of high-energy resonance cycle between rainfall erosivity and
the MEI index for the period of 1981–1988, during which there was a negative correlation
between both time series. In the Region II power spectrum, there were two significant
high-energy domains, specifically a 3–5 years resonance cycle from 1981 to 1988 was similar
to that of Region I, indicating a consistent ENSO effect across the plateau during this period,
but the intensity of the Region II resonance cycle was higher. The other was that there
was a 2–5 years resonance cycle of rainfall erosivity and the MEI index from 1995 to 1999,
and the mean phase angle was nearly 90◦ vertically upwards, indicating that the rainfall
erosivity change was later than the MEI index. In other words, rainfall erosivity had a lag
compared with ENSO over the same period. As shown in Figure 9, in the Region I WTC
power spectrum, there were negative phase cycles of 3–5 years and 2–3 years in 1985–1992
and 2006–2009, respectively, indicating a negative correlation between rainfall erosivity
and the MEI index during this period. Regarding Region II, there were negative phase
cycles of 3–7 years from 1977 to 1988, 1–3 years from 1994 to 1998 and 2–4 years from 2007
to 2013, indicating a negative correlation between rainfall erosivity and the MEI index
during these periods. While positive phase cycles of 1–2 years from 1987 to 1989 indicate a
positive correlation between rainfall erosivity and the MEI index during this period.
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(a) (b) 

Figure 8. Cross wavelet transforms (XWTs) for annual rainfall erosivity and multivariate ENSO Index (MEI) in Region I
(a) and Region II (b). NOTE: The thick black outline indicates the 95% significance level against red noise, the white
translucent area indicates the cone of influence, and the color bar indicates the magnitude of the XWT cross spectral power.
That is, red is strong and blue is weak. The arrows (vectors) designate the phase difference between rainfall erosivity and
MEI. Where the left arrow indicates the opposite phase relationship between the rainfall erosivity and MEI and vice versa.
The north-pointing arrow indicates that the peak rainfall erosivity are lower than the peak MEI.

Figure 9. Wavelet transform coherence (WTC) for annual rainfall erosivity and multivariate ENSO Index (MEI) in Region I
(a) and Region II (b). NOTE: The thick black outline indicates the 95% significance level, the white translucent area indicates
the cone of influence, and the color bar indicates the significance level of the Monte Carlo test. That is, red means strong
correction and blue is weak. where the left arrow indicates the opposite phase relationship between the two-time series,
vice versa.

4. Discussion

This study revealed the spatial and temporal characteristics of rainfall erosivity on the
TP from 1971 to 2020 and their relationship with the ENSO Index. The results showed that
the average annual rainfall erosivity on the TP since 1971 was 1071.42 MJ·mm·ha−1·h−1.
According to previous studies, this value is higher than in northwestern China but lower
than in southeastern China [74], and the overall degree of erosion is light, approximately
0.5 times the global average [91]. Upward trends are shown for rainfall erosivity during
1971 to 2020. Gu et al. also found an increasing trend in rainfall erosivity from 1981 to
2015 in the Tibet Autonomous Region (TAR) [60], and Wang et al. found a same uptrend in
rainfall-runoff erosivity from 1961 to 2012 in Sanjiangyuan region, Qinghai Province [53],
which is consistent with this study. Fan et al. [61] used TRMM 3B42 data to assess the
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spatial and temporal variability of rainfall erosivity in the TAR from 2000 to 2010 and
found that the average rainfall erosivity was 768 MJ·mm·ha−1·h−1, which is lower than
the results of this study, probably due to the different extent of the study area and the
accuracy of the data. Moreover, the reasons for the trend of increasing annual rainfall
erosivity but significant decreasing rainfall erosivity in spring and autumn may be related
to the variation in rainfall on the TP [92]. Previous studies have shown that since 1961, the
Tibetan Plateau is gradually warming and humidifying [93], which may contribute to an
increase in rainfall erosivity. Meanwhile, while changes in the westerly circulation lead to a
reduction in rainfall in spring and autumn which in turn affects rainfall erosivity [94].

In the previous section, this work indicated rainfall erosivity on the TP varied greatly
not only seasonally but also monthly. This may be caused by its complicated geography
and dominant atmospheric circulation conditions [95]. The plateau spans a wide range of
latitudes and longitudes and has a variety of climate types. It is also at the crossroads of
monsoon and non-monsoon zones, and is influenced by the prevailing westerly winds,
the South Asian monsoon and the East Asian monsoon circulation, resulting in an uneven
spatial and temporal distribution of rainfall. Besides, according to previous reports, the
amount and intensity of rainfall are the main factors affecting the rainfall erosivity [96]. The
spatial and temporal variability of rainfall at various magnitudes will certainly contribute
to soil erosion by water at different times and regions to different degrees [97,98]. The
average heavy rainfall and average heavy rainfall erosivity for each station from 1971
to 2020 are presented in Table S3. It can be seen from Table S3 that the average heavy
rainfall (≥25 mm) of 91 meteorological stations in the plateau was 33.05 mm, and the
average rainfall erosivity was 243.35 MJ·mm·ha−1·h−1. The absolute amount of erosivity
caused by heavy rainfall on the TP is low compared with the eastern coastal areas of China,
mainly because the total rainfall erosivity in the plateau is much lower than those in the
east [35,99,100]. Furthermore, the comparison of the proportion of heavy rain and rainfall
erosivity found that the average heavy rainfall on the TP accounted for only 27.02% of the
total rainfall, but the rainfall erosivity caused by heavy rainfall occupied by 43.3% of the
total rainfall erosivity (Figure 10). In addition, the change in the percentage of heavy rainfall
and heavy rainfall erosivity has a high consistency on the TP. In case of heavy rainfall, it
can be easily seen that rain erosivity becomes more intense. The maximum values of heavy
rainfall and heavy rainfall erosivity were 71.26% and 81.46%, respectively, both of which
occurred at Dujiangyan station, and the minimum values of 6.77% and 8.15%, respectively,
which occurred at Zhidoi station. Studies have revealed that rainfall is the most important
climatic factor contributing to soil erosion, and in particular, heavy rainfall (≥25 mm) is one
of the main factors affecting the rainfall erosivity [101]. In general, the higher the intensity
of the heavy rainfall, the greater the amount of soil erosion. The frequency of extreme
rainfall events is growing as a result of global climate change [102,103], Future research
should pay more attention to high intensity rainfall and soil erosion.

The spatial distribution of rainfall erosivity on the TP decreased roughly from south-
east to north-west, with significant spatial heterogeneity. Previous studies have shown that
mountain tectonics and topographic gradients are essential factors influencing precipita-
tion [104]. The high rainfall erosivity in the south-east is largely attributed to the roughly
north-south alignment of the Hengduan Mountains and the gradual rise in elevation from
south to north, which is a natural water vapor corridor and facilitates the deeper uplift of
monsoon air masses and the formation of rainfall. The north-west of the plateau, on the
other hand, is located in an inland region, with high altitude and low temperatures. It is
extremely hard for the monsoon to reach it, and rainfall is minimal throughout the year,
resulting in lower rainfall erosivity. Besides, in the southern part of the plateau, although it
is on the leeward slopes of the Himalayas, where water vapor is not easily accessible, the
Yarlung Tsangpo valley is at a relatively low altitude and has locally better hydrothermal
conditions, resulting in a higher rainfall erosivity in the region. In addition, the role of
anthropogenic activities should not be neglected. Nearly 38.8% of the grasslands on the TP
have been degraded [105], and the degradation of meadows caused by overgrazing is a
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serious environmental and ecological problem. Consequently, soil erosion caused by the
contradiction between people and land may exacerbate the rainfall erosivity.

Figure 10. Comparison of the proportion of heavy rain (daily rainfall ≥ 25 mm) and rainfall erosivity for 91 meteorological
stations on the TP from 1971 to 2020. Note: the designation of station numbers is shown in Table S3; and the percentage of
heavy rainfall represents the proportion of heavy rain amount to total annual precipitation; percentage of heavy rainfall
erosivity represents the proportion of heavy rainfall erosivity to annual rainfall erosivity.

Clarifying the temporal and spatial patterns of rainfall erosivity on the TP over the
past 50 years is of great significance for soil conservation and future land use planning.
This paper indicates that the tendency of increasing rainfall erosivity was identified in the
southeastern part of the TP. Published studies have shown that the Hengduan Mountains
region has the highest soil erosion modulus of the TP [106]. Furthermore, the alternation
of steep slopes and deep ravines, the superimposed effect of complex topography and
intensified rainfall erosivity may further magnify soil erosion in this region. The Yarlung
Tsangpo Valley and the Hehuang Valley are areas of intensive human activity on the TP,
and are also major wheat and barley cultivation areas, with crops mostly grown on the
slopes of the valleys [107]. Although rainfall erosivity has not shown a sharp rise over the
past 50 years in these origins, the region’s originally high rainfall erosivity may still result
in frequent natural hazards and elevated ecological risks. The deployment of measures
against landslides and debris flows should be considered as a priority. In the western
and northern parts of the Tibetan Plateau, there is higher variability, although with lower
rainfall erosivity. On the one hand, in the context of increased rainfall erosivity across the
plateau, it is still possible to damage the low-cover turf. In particular, the interactive effects
of human activities such as grazing and soil erosion processes can also exacerbate the ‘black
beach’ degradation of plateau grasslands. On the other hand, the north-west has a higher
altitude and fragile natural environment where seasonal differences in rainfall erosivity is
more likely to cause damage to alpine ecosystems. Therefore, soil erosion management
strategies in this region should not be neglected either.

The impact of global-scale climate oscillation regimes on climate change has received
widespread attention. This paper used MEI to characterize the global-scale climate oscil-
lation model ENSO in an attempt to explore the relationship between ENSO and rainfall
erosivity on the Tibetan Plateau, with a view to providing guidance for collaborative
work on climate change and soil conservation. This study found that rainfall erosivity
was lower during ENSO than during non-ENSO, and other studies have found the same
results [35,36]. ENSO is a major factor influencing temperature and precipitation in China.
Some studies have shown that precipitation anomalies can reach up to 30% of the average
precipitation during ENSO periods [108]. It is worth noting that rainfall erosivity was
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higher during the La Niña period than during the El Niño period on the TP. This is not
in agreement with previous studies, with results in places such as Fujian in southeastern
China [37], but is consistent with studies in Guizhou in southwestern China [36]. The other
research indicated that El Niño occurs with a delayed arrival of the southwest monsoon,
while the opposite occurs at La Niña, so this may be related to a weakening of the Indian
monsoon [109,110]. These findings would explain the difference of rainfall erosivity be-
tween the La Niña period and El Niño period. According to the CWT results, a noticeable
resonance cycle between rainfall erosivity and MEI was found in different regions of the
Tibetan Plateau, but there were also significant differences in cycle duration, direction of
action, and intensity. This may be due to the fact that ENSO events themselves present
diversities of climatic features at each stage of occurrence, development, maturation and
decline [108]. Additionally, it also suggested that global climate anomalies are an important
driver of changes in the rainfall erosivity on the TP.

Due to the vast expanses of land and sparse populations as well as the harsh natural
conditions, the distribution of weather stations on the Tibetan Plateau is extremely irregular,
which may affect the accuracy of the interpolation. Although this study improves the
comprehension of the impact of ENSO on rainfall erosivity, it still lacks further explanation
from a mechanistic perspective. Furthermore, in light of the known results, it is clear that
not only ENSO but also topography, altitude, and microclimate are associated with rainfall
erosivity, and detailed knowledge will be necessary for future studies.

5. Conclusions

This study carried out an insightful analysis of the spatial, interannual, and seasonal
variability of rainfall erosivity on the TP from 1971 to 2020 and its relationship with ENSO.
Daily rainfall data from 91 meteorological stations were collected, and the change trend
of rainfall erosivity calculated based on a daily rainfall erosivity model were detected
at a regional and site-scale using methods such as Mann–Kendall test and Sen’s slope.
The potential influence of ENSO on rainfall erosivity was revealed using the continuous
wavelet transform method. The main findings were summarized below:

Rainfall erosivity has shown a fluctuating trend of increasing over the past half century.
Seasonal and monthly rainfall erosivity showed high heterogeneity, which was greatly related
to heavy rainfall. The rainfall erosivity in order was summer > autumn > spring > winter.
July was the most erosive month, accounting for 24.19% of the year, while November was
the lowest, accounting for only 1.12%. The rainfall erosivity in spring and autumn showed
a significant decreasing trend (p < 0.05), and in summer it showed an increasing trend but
not significant. There was generally an obvious spatial variation in rainfall erosivity on
the TP from 1971 to 2020, presenting a roughly spatial pattern of decreasing distribution
from southeast to northwest. Annual rainfall erosivity in the south-eastern part of the
plateau was mainly characterized by a slow increase, while in the north-western part
annual rainfall erosivity was more unstable with mostly no significant trends.

ENSO events had a significant impact on rainfall erosivity on the TP. The rainfall
erosivity in the non-ENSO period was higher than that in the ENSO period, and the
La Niña event was higher than the El Niño event. It was also found that there was a
clear resonance cycle between rainfall erosivity and ENSO in different regions of the
plateau, with an average cycle of about 3–5 years in the high energy region, but there were
differences in the timing of occurrence, direction of action, and intensity of the cycle. The
rainfall erosivity on the TP was relatively large during non-ENSO periods and relatively
small during El Niño/La Niña periods. In addition, the response of rainfall erosivity to
ENSO was spatially heterogeneous. Rainfall erosivity in the northwest of TP appears to be
more serious during the La Niña event and less severe during the El Niño event. It can
be concluded that soil erosion may become more intense during the La Niña event in the
northwest TP. Therefore, during the La Niña event, soil protection should be enhanced to
diminish soil spattering and disturbance.
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This study contributes to the understanding of the spatial and temporal variability
of annual rainfall erosivity across the entire TP over the last half century and extends the
cognition of the possible impact of changes in ENSO characteristics associated with climate
change. Uncertainties may be involved due to limited data availability and interpolation
bias errors. Future studies should integrate the effects of multiple factors on rainfall
erosivity, more carefully relate the effects of climate extremes, and improve the insights
from the mechanistic aspects of change.
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UF > 0 indicates an increasing trend, UF < 0 indicates a decreasing trend. The mutation year exists at
the intersection of UF and UB. The dashed line represents the 95% confidence interval, Figure S3:
Seasonal and monthly average rainfall erosivity Mann–Kendall trends of plateau from 1971 to 2020.
** p < 0.01; * p < 0.05; + p < 0.1, Figure S4: Long–term trend pattern of rainfall erosivity at each station
from 1971 to 2020. Note: DE: decreasing, ST: stagnating, IN-ST: increasing-stagnating, IN: increasing,
Table S1: The basic information of 91 meteorological stations in this study. ‘No’ refers to station
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Abstract: The evaluation of ecological restoration projects can provide support for further strength-
ening the efforts of ecological restoration work and implementing the strategic objectives of the
ecological region. Considering the current problem of the single evaluation index, this study evalu-
ated the implementation effect of ecological projects from different temporal and spatial dimensions.
Based on the MODIS vegetation index time series data, this study first computed the Sustainable
Development Goal (SDG) indicator 15.3.1 of Great Khingan Mountain (GKM) to evaluate the impact
of ecological engineering on land use change and land productivity. As a common indicator, the
Normalized Difference Vegetation Index (NDVI) values showed a trend of a decrease and then
gradual increase after the start of the Natural Forest Protection Project (NFPP) II, which was related
to the land use changes from the forest to the grassland during the implementation of the NFPP.
However, land productivity maintained a steady trend because of the transition between the forest
and grassland. Meanwhile, to detect changes in vegetation at a smaller scale, the LandTrendr algo-
rithm was used to identify the magnitude of forest disturbance, the years when it occurred, and the
year of restoration. After implementing the ecological project, the forests in the GKM region were
only partially disturbed, and most of the forests in most areas maintained a stable trend. Our study
highlighted the varying effectiveness of different indexes for NFPP and evaluated the ecological
impact of ecological projects from multiple perspectives.

Keywords: SDG indicator; forest degradation; land productivity; land degradation

1. Introduction

Ecosystems are mainly influenced by human activities and climate variations [1].
With the development of the global modernization trend, a larger scale of environmental
pollution and destruction is accompanied by a new wave of worldwide environmental
protection. Many large-scale ecological restoration projects, especially forest restoration
projects were underway for more than 20 years to reverse ecological degradation and
achieve environmental sustainability [2]. Of these ecological projects, forest conservation
and restoration projects are the most important, as the effects of forest loss and degradation
are felt on all scales, from global climate change to the decline in the economic value of
forest resources and biodiversity, and threats to local livelihoods [3,4]. The New Zealand
government announced the One Billion Trees (1 BT) program which aimed to plant one
billion trees in the country by 2028 [3,5]. Reducing Emissions from Deforestation and
Forest Degradation plus (REDD+), as the best-known international forestry-based policy
for carbon dioxide removal, was created by the United Nations Framework Convention
on Climate Change (UNFCCC) Conference and aimed to implement schemes by national
governments to reduce human impact on forests, an activity which results in greenhouse
gas emissions at the national level [6].
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China has a long history of forest degradation and restoration. To minimize the human
impact on the environment and restore vegetation coverage, a series of vegetation-related
policies were implemented by China [7]. The largest project is the Three-North Shelter
Forest Program (TNSFP), focused on increasing forest cover from 5% to 15% from 1978 to
2050 [8]. In 2000, the Chinese government fully implemented the Natural Forest Protection
Project (NFPP), which instilled logging bans and harvesting reductions in 68.2 million ha of
forest land. The main goal of this project was to protect the existing natural forests, increase
vegetation cover and mitigate soil erosion and desertification through the revegetation and
conversion of agricultural land to forest land [9]. In 2014, the State Forestry Administration
(SFA) expanded the scope of NFPP and tried to ban commercial logging in the state-
owned natural forests of Heilongjiang Province. The log supply in Heilongjiang Province
historically accounted for more than 30% of China’s domestic log supply.

A large number of ecological projects were implemented and estimating the effects of
these ecological projects became an important research direction. Several studies investi-
gated the spatial and temporal effects of climatic factors and human activities on changes in
vegetation productivity from 1985 to 2015, where actual net primary productivity (ANPP)
and net primary productivity (NPP) were often used to quantify vegetation dynamics [3,7].
Several studies used multiple satellite images to assess the changes of the leaf area index
(LAI), gross primary productivity (GPP), Normalized Difference Vegetation Index (NDVI),
and aboveground biomass in different regions in China [10,11]. Previous studies focused
on long-term change analysis, often failing to capture such subtle changes which occurred
over long periods, but could have significant impacts on forest structure, composition,
and function, and thus ultimately limited the successful implementation of sustainable
development goals (SDG) [12].

Trend and change analysis using different time series data is the most common method
when performing calculations using the different indexes. To find the trend of NDVI or
GPP time series, the linear regression technique is a viable and robust method [13]. As
vegetation change is influenced not only by human activities but also by the climate, a
residual trend analysis is now commonly used to separate human-induced and climate-
driven vegetation changes [14,15]. The Breaks for Additive Season and Trend (BFAST)
algorithm and LandTrendr algorithm are used to identify long-term trends and abrupt
changes (breaks) in the time series [16–18]. These methods use multivariate (parametric)
time series analysis and effective algorithms to comprehensively assess the effects of
vegetation restoration, which provide us with the data, information, and knowledge
necessary to better implement and manage large-scale ecological projects. Although all of
the above methods are used in many current studies, there is relatively little research on
applying them to analyze the impact of ecological engineering on the environment.

To integrate the application of different methods to evaluate the impact of ecological
engineering, this study uses the alpine region of Great Khingan Mountain (GKM) as the
research object and integrates the application of various methods. In this study design, the
three sub-indicators used for SDG 15.3.1 are first used to measure different aspects of land
cover which relate to vegetation. Primary productivity, the first sub-indicator, can directly
measure changes in the biomass present in an area, but it is not able to determine whether
this change is positive, as not all increases in plant biomass are interpreted as improvements.
As the second sub-indicator, land cover fills this gap. It explains the landscape from a
thematic point of view, looking at the features that were there previously and those that
are there now. It includes changes in vegetation, as well as bare land, cities, and water.
The last sub-indicator, the Soil Organic Carbon Index, uses a land cover map to inform
changes in the organic carbon of the soil over time. Although the results of this method are
not ideal, considering the status of global soil science and measurement, researchers agree
that this method is the best method to implement on a global scale. Vegetation is a key
component of most ecosystems and a good representation of its overall function and health.
For example, within a particular land cover type, the land productivity or soil carbon levels
may change over time. However, changes in land cover types usually lead to changes in
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the level and dynamics of land productivity, which in turn affect the carbon storage of
a particular area. Therefore, when evaluating the degradation status against these three
sub-indices, it is convenient to summarize the fine-scale results (such as the pixel-scale
evaluation in this method) into the spatial characteristics determined in the land cover
and land cover change sub-indices. In addition to the SDG factor, in order to find changes,
disturbances, and causes of vegetation at a smaller scale, the LandTrendr algorithm is used
in this study to identify disturbances in the vegetation of the study area.

Forest change can be influenced by many factors. In this study, the influence of other
climatic factors are removed from the calculations to study the impact of ecological projects.
This means that the study assumes that external factors such as the climate are consistent
over the period of forest change in the study area. To assess the interest and potential of
ecological engineering in forests from different perspectives, this study uses images at
different scales to identify the forest degradation and improvement in order to explore the
possible impacts of different contexts and policies.

2. Study Area and Data

2.1. Study Area

As the northernmost border area in China, the Greater Khingan Mountains are located
at 121◦12′−127◦00′ East longitude and 50◦10′−53◦33′ North latitude. With an average
altitude of 573 meters, it has a cold temperate and a continental monsoon climate with
short summers and long winters. The annual average frost-free period is only 80−110 days.
The annual average temperature is −2.1 ◦C, and the historical minimum temperature is
−52.3 ◦C. In the study area, the mountains are mainly covered by boreal coniferous forest
and grass (Figure 1). The huge mountains and forests effectively block the Siberian cold
current and the cold wind of the Mongolian plateau and become a natural barrier for the
Songnen Plain in northeast China and the Hulunbuir grassland in inner Mongolia. This
area is also an important water conservation area for the Heilongjiang and Nenjiang rivers
and other water sources, guaranteeing the water supply for residents in the middle and
lower reaches of the two rivers.

Figure 1. Land use and land cover in Great Khingan Mountain (GKM), China in 2000.
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2.2. Data
2.2.1. NDVI Datasets

Normalized Difference Vegetation Index (NDVI) (Exelis Visual Information Solutions,
Boulder, CO, USA) is often used to measure vegetation cover and health. Moderate Res-
olution Imaging Spectroradiometer (MODIS) and Landsat provide two-scale NDVI data
sets. MODIS products provide vegetation indices with 16-day intervals and multiple
spatial resolutions, providing a consistent spatial and temporal comparison of vegetation
canopy greenness, which is a comprehensive attribute of leaf area, chlorophyll, and canopy
structure. The MODIS Vegetation Indices product, MOD13Q1, at 250 m spatial resolution,
was selected to compute the annual value and land productivity, as well as degradation.
Landsat data sets provided the Surface Reflectance-derived NDVI with a 30-meter reso-
lution, derived from Landsat 4–5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper Plus (ETM+), and Landsat 8 Operational Land Image (OLI)/Thermal Infrared
Sensor (TIRS). The finer resolution NDVI dataset was used to quantify vegetation greenness
and was more helpful to assess changes in plant health. The data used in this study are
shown in Table 1.

Table 1. Remote sensing image data source for Great Khingan Mountain (GKM), China.

Sensor Satellite Frequency Data Source Data Record Spatial Resolution Time Step

MODIS Terra/Aqua 1–2 days MOD13 vegetation index 2000–present 250 m, 500 m, 1 km 8-day, 16-day
TM Landsat 4–5 16 days USGS/EROS 1982–2011 30 m Distributed by scene

ETM+ Landsat 7 16 days USGS/EROS 1999–presnet 30 m Distributed by scene
OLI Landsat 8 16 days USGS/EROS 2013–present 30 m Distributed by scene

2.2.2. Land Cover and Climate Data

To assess changes in land cover, we used land cover maps downloaded from ESA CCI
(European Space Agency Climate Change Initiative) datasets, which covering the study
area for the baseline and target years. The land use classes included forest, grassland,
cropland, wetland, artificial areas, bare areas and water, with a 300 m resolution.

Land productivity was affected by several factors, such as temperature, the availability
of light, nutrients, and water. Water availability had a significant influence on the amount
of plant tissue produced every year. It was important to interpret the results in the context
of the information on historical precipitation. When the land trends were driven by regional
patterns of changes in water availability, the declining productivity of these trends could be
identified as human-caused land degradation. The precipitation product CHIRPS (Climate
Hazards Group InfraRed Precipitation) was used to eliminate the effects of the climate.
From 1981 to the present, CHIRPS combined our internal climatology, CHPclim, 0.05◦
resolution satellite imagery, and in situ station data to create a gridded rainfall time series
for trend analysis and seasonal drought monitoring.

3. Method

The effect of ecological engineering projects policies on forests is a long-term process,
so time series analyses with multivariable (parameters) and effective algorithms are neces-
sary to comprehensively assess the effectiveness of vegetation restoration which provide
essential data, information, and knowledge. Due to the long duration of ecological projects
and the number of influencing factors, a multi-parameter time series analysis was used to
assess the impact of ecological projects in providing the necessary data and information for
forest restoration. The temporal dynamics of terrestrial ecosystems commonly consisted of
continuous changes, discontinuous changes, and no changes [10]. The ability to identify
the trend or dynamic change in policies, not the effect of natural factors (precipitation, fire,
temperature, diseases) is important for better assessing the effects of policies. In this study
design, we conducted a time series analysis using multi-scale satellite images, climate data,
and statistical data (Figure 2).
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Figure 2. Scheme for calculating land productivity and disturbance for assessment effect of policy in Great Khingan
Mountain (GKM), China.

3.1. Land Productivity Index

The land productivity is the maximum productivity of the land at the current level
of farming technology and the measures relevant to it. It is the source of all food, fiber,
and fuel that sustains human life. As land productivity can reflect long-term changes
that indicate the health and productivity of the land and the net effect of changes in the
ecosystem functions of plants and biomass growth, land productivity can be used as an
indicator in the evaluation of ecological projects. Land productivity can be measured
over large areas by the satellite Earth observations of NPP. The productivity index is the
algorithm used to measure land productivity levels from image data. This study used
NDVI [19] as the surrogates of NPP. To separate degradation effects from other sources
of variation in productivity observations, a calibration was performed by calculating the
ratio of iNDVI to iET (Evapotranspiration) to minimize the influence of climatic or seasonal
factors [20]. The method for calculating water use efficiency (WUE) with corrected iNDVI
(iNDVIw) per year is:

iNDVIw =
iNDVI

iET
(1)

where iNDVI is the NDVI integrated over the growing season or relevant period each year,
and iET is ET integrated over the same period.

Productivity was assessed in terms of trajectory, performance, and status. Trajectories
could be used to identify degradation in areas with increasing productivity trends, and
performance could identify low productivity compared to other areas with similar land
cover types and similar climatic conditions. Status was used to compare the historical
range of productivity levels at the site over time.

Productivity trajectory was calculated using the Thiel-Sen median, a robust, non-
parametric linear regression method. The trend significance was determined by Mann–
Kendall [21–23]. Positive and negative z-scores indicated trends of increasing productivity
or decreasing productivity. The significance of the slope of the trajectory, calculated at the
p = 0.05 level for more than eight data points, should be reported on three scales: improved,
degraded, and insignificant.
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Productivity state represented the level of productivity in a given spatial unit com-
pared to the observed productivity levels for that spatial unit over time. Productivity
state could be interpreted as an indicator of the relative standing biomass [24]. Existing
degradation based on productivity performance could be identified by a mean productiv-
ity performance in the baseline period of less than 50% of the potential maximum. The
iNDVIw values were classified during the baseline period into ten decile classes using
the unsupervised ISODATA classification. These become the baseline iNDVIw classes.
Productivity state change was assessed by comparing iNDVIw in the assessment year to
the baseline iNDVIw classes.

As the NFPP was a long-term project, this study used 2000 as a cut-off point to analyze
the different land use changes and land degradation before and after the NFPP. The year
2010, the start of the second phase of the NFPP, was chosen as the interval. The average
productivity of the early epoch (2001 to 2010) and late epoch (2011 to 2018) could be
calculated. Then, pixels in which the productivity level decresed between early and late
epochs were identified for this metric.

3.2. Land Trendr

To detect trends in forest disturbance and recovery at multi-scale using yearly Land-
sat time series, we used LandTrendr as temporal segmentation algorithms. LandTrendr
reduced image data to a single band or spectral index and then divided it into a series of
straight-line segments by breakpoint (vertex) identification [3,18]. In practice, LandTrendr
looks at the spectral history of a pixel to identify the breakpoints which separate periods of
persistent change or stability in the spectral trajectory and records the year in which the
change occurred. In this study, the breakpoints, durable changes, and the year could be
used to detect trends in forest disturbance and recovery. Meanwhile, the typical area could
be selected and compared with the Landsat remote sensing images selected on Google
Earth to explore the possible reason for disturbance.

4. Results

4.1. Trend and Changes of Land Productivity Index

Land cover addresses the state and changes in the structure and composition of the
landscape, from natural events and human activities. As the NFPP was a long-term project
this study used 2000 as a cut-off point to analyze the different land use changes and
land degradation before and after the NFPP. The forest was the dominant land use type
in the study area throughout the project period. The western side of GKM was mainly
grassland, while the eastern side was cropland (Figure 3a,b). The land cover transition
map in Figure 3c showed that most land use types maintained the original state for a
long time before the NFPP. After project implementation, the type of land use conversion
in the area was dominated by the loss of forest (Figure 4a,b), and the distribution of
forest loss was more concentrated (Figure 4c). According to the definition of land cover
degradation in SDG, Figures 3d and 4d showed the results of the land cover degradation
in the study area. After the project implementation, there was a higher concentration
of land degradation appearing in the north and northeast area and some areas of land
improvement (Figure 4d). Additionally, prior to the start of the project, the study area was
less prone to land degradation and land improvement (Figure 3d).
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(a) 1992 (b) 2000 

  
(c) land cover transition (d) land cover degradation 

Figure 3. Land cover change and degradation in Great Khingan Mountain (GKM), China (1992–2000).

  
(a) 2000 (b) 2018 

  
(c) land cover transition (d) land degradation 

Figure 4. Land cover change and degradation in Great Khingan Mountain (GKM), China (2000–2018).
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Figure 5 compared the different changes in the quantity of land cover before and after
the implementation of the project. Before 2000, land use losses were dominated by forest
losses. This was inseparable from the deforestation of that period. After 2000, the natural
forest protection project was implemented. After the implementation of the policy, land
use losses became dominated by grassland losses.

Figure 5. Land cover change and loss from 1992 to 2018 in Great Khingan Mountain (GKM), China
(inner circle: 1992–2000; outer circle: 2000–2018).

The ecological engineering projects had an effect not only on the land use change
but also on forest degradation or deforestation. Figure 6 showed the trend of NDVI using
the annual NDVI value. The NDVI showed a stable increase trend while experiencing a
dramatic decrease from 2002 to 2003. The annual NDVI values maintained a decreasing
trend under the trend line until 2010. At that time, all large-scale ecological engineering
projects, especially NFPP, were launched by the Chinese Government to speed up the
restoration of the forest ecosystems.

Figure 6. Normalized Difference Vegetation Index (NDVI) trend from 2000 to 2019, in Great Khingan
Mountain (GKM), China.

Land productivity reflected the net effects of changes in the ecosystem functioning on
plant and biomass growth. Figure 7 interpretated the trend and its significance regarding
the variability of annual NPP in the time series. Throughout the project period, most of the
study area showed an increase in land productivity, a small amount of stability and a very
small trend of degradation: 67.3%, 31.8%, and 0.9%, respectively.
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Figure 7. Productivity trajectory degradation in Great Khingan Mountain (GKM), China (2000–2018).

Productivity state change can be reported in terms of three classes relative to the base-
line productivity state: (1) Improvement: observed productivity in baseline iNDVI classes 9
or 10. (2) Stable: observed productivity in baseline iNDVI classes 6, 7 or 8. (3) Degradation:
observed productivity in baseline iNDVI classes 1, 2, 3, 4 or 5. The forest experienced a
degradation between the two periods, whereas the other land showed an improvement
(Figure 8). The degradation areas, especially in forest area, consisted of productivity trajec-
tory degradation. Figure 9 showed that most of the land use types had no degradation,
except 0.6% grassland and cropland located in the eastern and southeastern areas.

Figure 8. Productivity state degradation in Great Khingan Mountain (GKM), China (2001–2010 vs.
2011–2018).
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Figure 9. Land productivity performance degradation (2000–2018) in Great Khingan Mountain
(GKM), China.

4.2. Forest Change Monitoring
4.2.1. Magnitude, Duration, and Years of Land Use Changes

Corse-scale image analyses revealed that the land cover/use and land productivity of
the study area only had a little degradation (Figure 9). The magnitude, duration, and years
of land use changes were computed by the LandTrendr algorithm shown in Figure 10. The
higher disturbances of magnitude occurred only in some parts of the central area. The
relatively high disturbances occurred in the northeastern area near the border. Most of the
remaining areas were largely free of disturbances. The larger disturbances occurred in 2003
and 2006. The vast majority of vegetation disturbance across the study region was mostly
short-term disturbance with rapid recovery, lasting up to three years (e.g., yellow areas in
the northeast of the map).

(a) 

Figure 10. Cont.
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(b) 

 
(c) 

Figure 10. Forest disturbance and recovery at multi-scale and time series in Great Khingan Mountain
(GKM), China: (a) magnitude of change, (b) duration of change, and (c) year of detection.

Taking 2000 as the starting point of the disturbance, the obtained annual time series
of the disturbed areas from 2001 to 2020 is shown in Figure 11a. It can be seen that
the disturbed area in 2001 reached 330,000 ha, accounting for 35.8%, followed by larger
disturbed areas in 2003, 2006, 2015, and 2020.

The study area was mainly disturbed for a short period and the disturbance durations
were all within three years. This indicated that the vegetation in the Daxinganling area
recovered within a relatively short time after the disturbance occurred. In this area, the
disturbance duration was approximately 1–2 years, and the disturbance duration area ratio
reached 72%, as shown in Figure 11b.
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(a) (b) 

Figure 11. (a) Disturbance area and (b) duration year, in Great Khingan Mountain (GKM), China.

4.2.2. Detection of Typical Deforest Area

The typical sites were selected to explore the fine-scale changes and reasons for
changes using the LandTrendr algorithms. Figure 12 shows the distribution of typical
area and the high-resolution images at different years. From the typical area selected in
Figure 12a, it can be seen that the main disturbance in this area occurred in the year 2003,
and the Landsat remote sensing images of 2004, 2005, and 2006 were selected from Google
Earth for comparison in Figure 12b. Additionally, it was found that there was a certain
amount of disturbance in all years in this area, but none of these disturbances were the
main disturbance, and the disturbance in 2003 was the main interference, consistent with
the main interference obtained by LandTrendr algorithm.

  
(a) (b) 

Figure 12. (a) Typical disturbance area and (b) remote sensing images, in Great Khingan Mountain (GKM), China.

In the typical region, the sampling point (123◦15′53.70′ ′ E, 51◦26′5.26′ ′ N) was selected
for the LandTrendr algorithm pixel time series trajectory extraction, and the time series
was 2000–2020. The Normalized Burn Ratio (NBR) index (multiplied by 1000) was fitted to
make the change information more intuitive, shown in Figure 13. From the index trajectory
of the sampling point, the NBR value of this point ranged from 0.355 to 0.487.
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Figure 13. Normalized Burn Ratio (NBR) index trend from 2000 to 2020, in typical disturbance area.

In 2003 after a serious disturbance, the NBR value was −0.118, demonstrating bare
soil. The area was continuously disturbed for a short period of 1 year and started to recover
gradually after 1 to 2 years. After 8 to 10 years, it returned to the initial vegetation cover
level after the disturbance.

5. Discussion

5.1. Land Use Change Trend

This research compared the similarities and differences in land use changes before
and after NFPP implementation, as shown in Figure 5. Until the late 1990s, forests were
reported to show a trend of shrinkage [25,26]. After the implementation of the policy in
2000, the loss of forests decelerated, while the loss of grasslands became the most significant
loss. The trends in forest changes were consistent with those previously reported [27].
The results of land use change were related to policies in the natural forest protection
project: reducing the amount of natural forest resources harvested in state-owned forest
areas in northeastern and inner Mongolia, strictly controlling timber consumption and
eliminating over-limit harvesting. However, after the implementation of the natural forest
protection policy, while deforestation was halted under the constraints of a strict policy,
the loss of grasslands increased. The dramatic increase in population led to the occupation
of grassland and the clearing of arable land and other land use types [22,28]. Meanwhile,
the decline in grassland trends found in this study were consistent with those found in the
other literature. The local peasants generally prefer to convert their cropland into forest
rather than grassland to receive a higher compensation [29].

This study showed the trend of the annual mean NDVI; that the NDVI began to decline
sharply from 2003 and maintained a downward trend until 2013, when an upward trend
was observed. The trend in NDVI change is consistent with the trend in land use change:
after the implementation of the 2000 policy, there was also a loss of forests, especially
grasslands, which led to a decrease in the annual average NDVI value [30]. In addition,
the forest gain after 2004 was in line with investments at the early stages of the ecological
programs [31].

5.2. Land Productivity Trend

In addition to the first indication of land cover change, representing to some extent
the underlying use, as well as land conversion and the resulting habitat fragmentation,
land productivity provided an indication of ecosystem function and health and brought in-
creased attention to ecosystem services. On average, land productivity in GKM maintained
a stable state throughout the implementation of the NFPP. The improvement in trajectory
was seen in grasslands and croplands (on the sides of the forest in Figure 9). Most of the
forest remained intact, with a small proportion degraded to some extent. Land productivity
trends showed that this research was consistent with the results of other methods and field
surveys [32].
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From 2010, the government began implementing the second phase of the NFPP in key
state-owned forest areas in northeast China and inner Mongolia [31]. The aim of the second
phase of the project was to continue to protect the natural forest and, at the same time, to
treat the previously cultivated tree species on a merit basis [22,33,34]. In this study, land
productivity degradation was calculated using 2010 as the time transition point (shown in
Figure 8). After 2010, there was a certain degree of productivity degradation in the forested
part of GKM, which was related to the purpose of the NFPP II. In Phase II, there were many
low-yielding and inefficient forests that needed to be renovated and nurtured. Additionally,
natural forests only recently entered the stage of recovery and development, and the quality
of forest resources remains insufficient, with a large proportion of medium and young
forests. Moreover, within the NFPP provinces, Heilongjiang and Inner Mongolia in north-
eastern China, were designated in the NFPP as “key state-owned forest regions.” Logging
was not as strictly banned in this region as it was in the watersheds of the Yangtze and
Yellow Rivers [35]. So, in the forest core of GKM, there was a land productivity degradation,
due to the felling of weak and ecologically worthless tree species and deforestation. In
2014, the State Forestry Administration (SFA) expanded the NFPP with the launch of a trial
ban on commercial logging in state-owned natural forests in Heilongjiang Province [33].
The NDVI trends shown in Figure 6 were consistent with the new commercial logging ban.

This study used SDG 15.3.1 as an important indicator to evaluate the effectiveness
of large-scale ecological projects, with three sub-objectives in land productivity trajectory
degradation, state degradation and performance degradation. The results were consistent
with the situation of actual land use change and policy direction. The sub-indicator
based on SDG 15.3.1 provided a reliable and practical method to assess the effect of
ecological projects.

5.3. LandTrendr Analyses

The LandTrendr algorithm detected the magnitude of vegetation change, the year of
change, and the timing of recovery at a more granular level. In terms of the magnitude of
disturbance occurrence, there was a concentration of disturbances in the forest area, mainly
in three areas: the Genhe area in the central part of the forest area and the Mohe area in
the northeast. The disturbances occurred at different times in the three areas, in 2003, 2006,
and 2010. The magnitude of disturbance was moderate and light, except in the Genhe area.
To further identify the causes of disturbance in the Genhe area, the high-resolution images
of the surrounding years in which the disturbances occurred are given in Figure 11. It can
be seen from the images that a dramatic change occurred in the Genhe region in 2003. The
identification of the images and the comparison of the information shows that a forest fire
occurred in the area in 2003 [36]. Following the forest fires, the forest gradually recovered.
Compared to other disturbed areas, the recovery period in this area was longer: around
3 years. Since 2008 there was a decreasing trend in forest disturbance. The implementation
of the "NFPP II" campaign for nature reserves, in 2011, with the Ministry of Environmental
Protection as the main enforcement agency, served as a catalyst for the protection and
supervision of nature reserves at the provincial and municipal levels.

The distribution of disturbance outside the forest area was more dispersed, mainly on
grassland and cultivated land to the east and west of the forest area. Disturbances occurred
to a lesser extent and largely occurred around 2004. In terms of the impact of policy, the
implementation of strict natural forest protection projects after 2000 did effectively protect
the forests from further deforestation. Most of the disturbances which occurred during the
implementation of the policy were dominated by natural disturbances (e.g., forest fires),
and man-made deforestation did not pose a threat.

6. Conclusions

Based on the long-term Modis and Landsat time-series, this study explored the impact
of major ecological projects on the ecological environment using the SDG index and land
disturbance index in GKM. Our study found that the browning trends of vegetation
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coexisted with tree transition to grass. Only in some areas was there some degree of
land productivity degradation, while most other areas showed improvement. Multiple
factors such as precipitation, temperature, and the inappropriate afforestation led to a
contrasting pattern of vegetation restoration. To remove the effect of precipitation, the
effect of precipitation is considered in the calculation of land productivity and its effect
is removed in the algorithm. Meanwhile, to identify the causes of the forest disturbance,
the LandTrendr algorithm explored several places with high disturbance and analyzed
the causes. The land degradation index of SDG 15.3.1 could be used to identify the land
type change and changes in land productivity. As discussed in the previous section, land
use change as the first indicator of ecological effects provided a direct indication of land
change under the influence of the policy.

The study emphasizes that the continuous monitoring and effective management are
the keys to the successful implementation of large-scale ecological projects. In addition,
in the goal of the ecological restoration project, strengthening the functions of integrated
ecosystems should be prioritized over increasing vegetation coverage. We suggest that
future research should pay more attention to the scientific planning of large-scale ecological
restoration projects, whilst fully considering local conditions and the goal of promoting
ecosystem functions.
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Abstract: The precise simulation of urban space evolution and grasping of the leading factors are
the most important basis for urban space planning. However, the simulation ability of current
models is lacking when it comes to complicated/unpredictable urban space changes, resulting in
flawed government decision-making and wasting of urban resources. In this study, a macro–micro
joint decision model was proposed to improve the ability of urban space evolution simulation. The
simulation objects were unified into production, living and ecological space to realize “multiple
planning in one”. For validation of the proposed model and method, remote sensing images,
geographic information and socio-economic data of Xuzhou, China from 2000 to 2020 were collected
and tested. The results showed that the simulation precision of the cellular automata (CA) model
was about 87% (Kappa coefficient), which improved to 89% if using a CA and multi-agent system
(MAS) joint model. The simulation precision could be better than 92% using the prosed model.
The result of factor weight determination indicated that the micro factors affected the evolution of
production and living space more than the macro factors, while the macro factors had more influence
on the evolution of ecological space than the micro factors. Therefore, active policies should be
formulated to strengthen the ideological guidance towards micro individuals (e.g., a resident, farmer,
or entrepreneur), and avoid disordered development of living and production space. In addition,
ecological space planning should closely link with the local environment and natural conditions, to
improve urban ecological carrying capacity and realize urban sustainable development.

Keywords: urban space evolution simulation; cellular automata; multi-agent system; leading factors
analysis; urban sustainable development

1. Introduction

Land use/cover change (LUCC) has been generally considered a main driving force
of global ecosystem and climate change [1]. Urbanization is the most typical form of LUCC,
and has a significant impact on biological diversity and ecosystem services [2]. Nowadays,
about 55% of the world’s population lives in cities with this rate expected to reach 68% by
2050 [3]. Therefore, the study of urban LUCC is of great importance to understand and
grasp global LUCC. The process of urbanization influences the flow of material, energy,
and information, and affects the structure and function of ecosystems [4]. Therefore, on
the one hand, the socio-economic level may be significantly improved; on the other hand,
it leads to loss of farmland, fragmentation of habitats, and increases in the heat island
effect [5–7]. However, these problems can be alleviated through reasonable urban space
planning and efficient utilization of urban resources [8]. Therefore, urban space planning is
considered an effective tool/means to improve urban sustainable development.

The precise simulation of urban space evolution and analysis of the leading factors are
the most important bases and essential prerequisites for urban space planning. Therefore,
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many studies of urban space evolution simulation and leading factors analysis have been
carried out, and some typical simulation models have been constructed, such as the
econometric statistics model (ES) [9], the system dynamics model (SD) [10], the cellular
automata model (CA) [11], the multi-agent system model (MAS) [12], etc. Each of these
models has its own advantages and disadvantages. In ES models, mathematical statistics
methods are used to simulate the variations in scale of urban space, such as the logistic
regression model [13], Kuznets curve model [14], and panel econometric model [15]. These
ES models are easy to construct and use, but they cannot simulate the dynamic process and
variation in urban spatial distribution. In SD models, the process of urban space evolution
is expressed by simulating the interactions of urban elements, e.g., MEPLAN model [16],
Dortmund model [17] and LILT model [18]. However, these SD models also cannot
describe variation in urban spatial distribution. The ES and SD models are considered
“top-down” models.

To improve the ability to simulate urban spatial variation, the CA model was first
introduced by Chapin and Weiss in 1968 [19]. From the late 1990s to the early 21st century,
the CA model entered a high-speed development period, and saw widespread use in
urban space planning [20,21]. However, it cannot well represent macro-scale political,
economic and cultural driving forces that influence urban spatial variations [22]. Therefore,
some improved methods have been proposed, for example taking the macro factors as
constraint conditions in the CA model [23]. With the development of artificial intelligence
(AI) technology, the study and application of the MAS model became popular over the past
two decades. MAS defines a set of agents living in a common environment, with all agents
coming to a joint decision on urban space use type within this system. The MAS model can
provide a more powerful tool for simulating the multi-level decision-making processing in
urban space evolution than the other existing methods [24,25]. However, the MAS model
has to be used in conjunction with CA for considering the effects of neighborhood space
use type on urban space evolution [26]. Both CA and MAS are considered “bottom-up”
models. Table 1 shows the comparison of the characteristics of the four kinds of models.

Table 1. Performance comparison of current models for urban spatial evolution simulation.

Performance ES (a) SD (b) CA (c) MAS (d)

Scale changes simulation Strong Strong Strong Strong
Spatial distribution simulation Weak Weak Strong Strong

Time varying simulation Weak Normal Strong Strong
Macro factors simulation Strong Strong Weak Strong
Micro factors simulation Weak Weak Normal Strong

Model operation mechanism Top-down Bottom-up
(a) econometric statistics model; (b) system dynamics model; (c) the cellular automata model; (d) the multi-agent
system model.

From Table 1, it is apparent that the simulation ability of the MAS model is stronger
than that of other models. However, there are still some defects in the current MAS model.
For example, the interaction between macro and micro factors is rarely considered, despite
having a significant effect on the simulation precision of the model. Macro factors (e.g., the
natural condition, government policy) often restrict the decision-making behaviors of micro
factors (a resident, farmer, entrepreneur or environmentalist), particularly in developing
countries [27]. The choice preferences of micro factors may also have an important influence
on the decision-making behaviors of macro factors [28]. If the interaction and mutual
influence between macro and micro factors are neglected, the simulation precision of the
model will inevitably decrease. Moreover, the simulation objects are usually unit plots
of different types of land use (e.g., urban construction land, cultivated land, woodland,
grassland, water bodies, etc.) in current models. If the types of land use are different from
the categories of urban planning (e.g., traffic planning, garden planning, land planning) for
the same unit plot at the same time, it will lead to land use conflicts.
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To solve these problems, a macro–micro joint decision model is proposed in this study
for improving the simulation ability of urban space evolution. In this model, all simulation
objects are unified into production, living and ecological space for realizing “multiple
planning in one”. Compared with current models, the proposed model has two main
characteristics. One is that the interaction and mutual influence between the macro and
micro factors are fully considered; the other is that “Production–Living–Ecological” (PLE)
space is taken as the simulation object, replacing exclusive types of land use. For validation
of the proposed model, remote sensing images, geographic information and socio-economic
data from Xuzhou, China between 2000–2020 were collected and tested. The results
show that the simulation precision of CA model was 87.14% (Kappa coefficient), with an
increase to 89.63% when using CA + MAS model. An additional 2.68% improvement of
simulation precision was achieved by using the CA + MAS + Correlation model. Moreover,
the result of factor weight determination indicated that the micro factors affected the
evolution of production and living space more than the macro factors. However, the
macro factors had more influence on the evolution of ecological space evolution than the
micro factors. Therefore, we should pay more attention to the micro factors to realize
the orderly development of living and production spaces. For example, some active
policies should be formulated to strengthen the ideological guidance for micro individuals
(e.g., residents, farmers, entrepreneurs), helping them establish scientific views of urban
space utilization. Meanwhile, macro factors should be paid more attention to ensure the
sustainable development of ecological space. For example, ecological space planning
should closely link with the local environment and natural conditions to improve the urban
ecological carrying capacity.

2. Study Area and Data Sources

2.1. Study Area

To analyze the leading factors and construct a precise simulation model of urban
space evolution, Xuzhou, an eastern city of China, was selected as the study area. It
is located in the northwest of Jiangsu Province, China (between 33◦43′–34◦58′ N and
116◦22′–118◦40′ E). It includes five districts, three counties and two county-level cities,
with a total area of 11,765 km2. Figure 1 shows the geographic location and administrative
divisions of Xuzhou. The majority of the Xuzhou region consists of plains, which account
for 90% of the total area. This area has a temperate continental monsoon climate and
receives 44–54% possible sunshine. The annual average temperature is 14 ◦C, and the
annual average rainfall is 900 mm. In addition, Xuzhou is rich in mineral resources
and well placed for easy access to the other Chinese cities. Therefore, it is an important
coal production base and a transportation hub in China [29]. In the past two decades
(2000–2019), the population of Xuzhou increased from 8,964,400 to 10,417,300, and the
Gross National Product (GDP) improved from 61.630 billion CNY to 715.135 billion CNY;
the per capita green area increased from 10.5 m2 to 15.4 m2, and the urbanization rate
increased from 25.8% to 66.7% [30].
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Figure 1. The geographical location and administrative divisions of Xuzhou in China.

From the above statistics, it is evident that the socio-economic level and living stan-
dards of Xuzhou have improved significantly in the past two decades. The types of land
use/coverage have changed significantly in Xuzhou, which can provide a good basic
dataset to investigate the process of urban space evolution and leading factors. However,
it should be noted that the level of economic development is still low and the cost of
economic development is high in Xuzhou compared with other cities in Jiangsu Province.
In 2018, the per capita GDP of Xuzhou was 76,915 CNY, which was 66.88% of the average
level of Jiangsu Province, but the comprehensive energy consumption of Xuzhou was
0.37 tons (consumed standard coal for obtaining 10,000 CNY of industrial output), which
was 3.12 times the average level of Jiangsu Province [31]. Therefore, more energy needs to
be consumed in order to realize the same amount of economic growth in Xuzhou as in other
cities. Therefore, it is important and urgent to strengthen the urban space planning and
optimize the industrial structure as soon as possible, to realize the sustainable development
of social economy and the ecological environment in Xuzhou.
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2.2. Data Sources

In this study, three kinds of data were collected and used: the first was remote sensing
(RS) images of Xuzhou from 2000 to 2020, which provided the basic data for Production-
Living-Ecological (PLE) space recognition; the second was geographic information system
(GIS) data, which provided vector files of the administrative divisions, traffic networks
and distribution of public facilities in Xuzhou, such as schools, hospitals, and shopping
malls, as downloaded from a geographic national conditions monitoring cloud platform;
the third was socio-economic statistical data from the literature and statistical yearbooks
from 2000 to 2020, including population, industrial economy, natural resources, etc. Details
on the three types of data are listed in Table 2.

Table 2. Study data sources and contents.

Data Type Content Time Source

RS image data GF (a)-2 1 m × 1 m RS (b) image 2000–2020 Natural Resources Satellite RS
Cloud Service Platform

Urban GIS (c) data
Vector files of administrative division

Road 2018 Geographical Information
Monitoring Cloud

Socioeconomic statistics Population, industrial economy,
natural resources 2000–2020 Literature, statistical yearbooks

(a) GaoFen-2 remote sensing images; (b) Remote sensing; (c) Geographic information system.

It should be noted that the RS images needed to be chosen and processed carefully
in order to obtain the precise urban space evolution information. Therefore, RS image
data was collected during summer (from mid-July to mid-August), because identifying RS
images of vegetation in the growth season peak is easier than during other seasons [31].
Environment for Visualizing Images (ENVI) software (Research System Comp., Boulder,
CO, USA) was used for data processing. The main procedures included radiative correc-
tion, atmospheric correction, geometric correction, contrast stretching, graphics clipping,
etc. Finally, the land was classified into urban construction land, rural residential land,
cultivated land, woodland, grassland, water area, industrial land, and mining land by
the supervised classification and visual interpreted method. To improve the accuracy of
land use classification, convolutional neural network (CNN) technology was adopted [32].
Through land function evaluation, the above eight types of land use could be amalgamated
into production, living and ecological space [33]. The recognition precision of PLE space
was better than 96% (Kappa coefficient) based on the RS image data. Therefore, it could
meet the requirements of PLE space evolution simulation and leading factor analysis.

3. Research Methods

3.1. Production-Living-Ecological Space Evolution Simulation Model Based on Macro-Micro
Joint Decision

According to Section 1, many models have been constructed to simulate urban space
evolution, and the simulation ability of CA + MAS is the strongest among the current
models. However, there are still some defects in the CA + MAS model; for example, the
correlations between macro and micro factors are neglected. To improve the performance of
the CA + MAS model, a macro–micro joint decision model is proposed in this study. Com-
pared with the current CA + MAS model, the proposed model has two main characteristics.
One is that the interaction between and mutual influence of the macro and micro factors
are considered to improve the simulation precision over the CA + MAS model; the other is
that PLE space is taken as the planning object to facilitate the unified implementation of
multiple planning. The specific steps of the proposed model are as follows: (i) Areas of
increased living space are obtained by predicting the growth of the urban population in
the future. (ii) Locations of increased living space are determined by the CA + MAS model.
It should be noted that the probability of the ith unit space to be transformed into living
space is calculated by the joint decision of macro and micro factors; the highest-probability
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unit space is transformed into living space. (iii) After completing the transformation of
the ith unit space, the model checks if the total of transformed area is equal to the area of
increased living space. If not, the above work is done iteratively until the total transformed
area is equal to the area of increased living space. (iv) After completing the simulation of
living space evolution, production and ecological space evolution are simulated using the
same method. However, the areas of increased production and ecological space are instead
determined by historical data and a Markov model. (v) After completing the nth simulation
of PLE space evolution, the simulation precision is calculated (Kappan) by comparing with
the results of RS image recognition. If the value of (Kappan − Kappan−) is smaller than the
threshold, the solution has converged and the nth simulation result is outputted. If not, the
weights of macro and micro factors aree adjusted and the above steps are done iteratively.
The method of factor weight adjustment is introduced below in Section 3.2. Figure 2 shows
the data processing flow of PLE space evolution simulation based on the macro and micro
factor joint decision model.

RS-remote sensing. 

Figure 2. The data processing flow for simulating Production–Living–Ecological space evolution based on the macro and
micro factor joint decision model.

436



Int. J. Environ. Res. Public Health 2021, 18, 9832

3.1.1. Simulation Method of Living Space Evolution

According to Figure 2, the areas of increased living space should be determined first in
order to simulate the evolution of urban space. Two methods are often used to realize this.
One is based on the historical data (areas of increased living space in previous years) and a
Markov model. The other is based on predicting the growth of the urban population and
the per capita area of living space in the region. Existing studies indicate that the estimation
precision of areas of increased living space from the latter method is better than that from
the former method, if the urban population is predicted accurately [34]. Therefore, the
latter method is adopted in this study and the calculation formula is:

Ak = Pk × S (1)

Ak and Pk are the areas of increased living space and urban population in the kth year,
respectively. S is the per capita area of living space, which refers to the historical data of
this city or its urban planning and design standards. In China, the per capita area of living
space is divided into seven types, according to the urban population size and climatic
conditions. The per capita area of living space ranges from 65 m2 to 115 m2 based on the
different type of city. Xuzhou belongs to the second type of city, where the per capita area
of living space is 110 m2.

After obtaining the area of increased living space, one of most important problems is
determining the locations of these increases. In this model, locations of increased living
space are determined by the joint decision of macro and micro factors. The greater the
transformation probability of unit space, the higher its priority for transformation into
living space. The calculation formula is:

Fk
i,j = WmacroF

′k
i,j + WmicroF

′′′k
i,j (2)

Fk
i,j is the probability of unit space (i, j) to be transformed into living space in the

kth year. For convenience, probability is replaced with a score, where 0–100 scores de-
note 0–100%. F’k

i,j and F”’k
i,j are the scores from the macro and micro factors, respec-

tively. Wmacro and Wmicro are the weights of macro and micro factors, respectively, where
Wmacro + Wmicro = 1. The initial values of Wmacro and Wmicro can be determined by statistical
analysis. The specific implementation steps are introduced below in Section 3.2. Final
weights of the macro and micro factors are adjusted by comparing the simulation results
with RS image recognition results. The scores from macro factors include two components:
suitability and all other factors. The calculation formula is:

F
′k
i,j = WEEi,j + WQQk

i,j (3)

Ei,j and Qk
i,j are the scores of unit space (i, j) from the suitability evaluation and the

other factors, respectively. WE and WQ are their weights and Wmacro + Wmicro = 1. The
calculation formula is:

Ei,j = ∑n
m=1 WmFm

i,j (4)

Fm
i,j and Wm are the score and weight of the mth factor, respectively. In this model, the

factors of suitability evaluation include two parts: one is denoted the natural factor (e.g.,
elevation, slope); the other is denoted the location factor (e.g., the distances to water, main
road and city center). These can be obtained with ArcGIS (ESRI, Redlands, CA, USA). The
specific marking standards are as follows: the smaller the difference between the elevation
of the unit space (i, j) and the average elevation of the region, the higher the likelihood of
its transformation into living space. As the height difference increases from 0 to 10 km,
the suitability score decreases from 100 to 0. The steeper the slope, the lower the score; as
the slope increases from 0 to 90 degrees, the score decreases from 100 to 0. Likewise, the
shorter the distance to a water area (0–5 km), the lower the score (0–100); the shorter the
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distance to a main road (0–5 km), the higher the score (100–0); and the shorter the distance
to the city center (0–50 km), the higher the score (100–0). The calculation formula of scores
from the other factors is:

Qk
i,j = W1Fg + W2Fk−1

l + W3FN(∑n2
m2=1 Nm2

i,j ) + W4Fq(∑n3
m3=1 wm3 qm3

i,j ) (5)

Fg, Fk−1
l , Fn, Fq and W1, W2, W3, W4 are the scores and weights from government

planning, land type, neighborhood influence, and influence of micro factors, respectively.
W1 + W2 + W3 + W4 = 1. The specific marking standards are as follows: If the unit
space belongs to the first, second, or third class of urban construction land in government
planning, the score of Fg is 100, 80, or 50 respectively. If the probability of lth type of land to
be transformed into urban construction land is between 0 and 1 in the (k−1)th year, the score
of Fk−1

l is correspondingly between 0 and 100. If the number of living spaces permitted
is between 0 and 8 (in a 3 × 3 neighborhood), the score of Fn is correspondingly between
0 and 100. The score of Fq is a weighted average of the scores of qm3

i,j , where m3 = 4 (rural

resident, city resident, entrepreneur and environmentalist), and w1 + w2 + w3 + w4 = 1. The
calculation formula of F

′′′k
i,j in Equation (2) and the marking standards of qm3

i,j are as follows:

F
′′′k
i,j = WF′′

F
′′k
i,j + WF′

F
′k
i,j (6)

F
′′k
i,j denotes the scores of the pure micro factors, which are calculated by Equation (7).

F
′k
i,j is the scores from the macro factors in Equation (3). WF′′

and WF′
are their weights,

and WF′′
+ WF′

=1.

F
′′k
i,j =

n3

∑
m3=1

wm3 qm3
i,j (7)

The meanings of the symbols in Equation (7) are the same as those in Equation (5).
The marking standards of qm3

i,j can be introduced in detail: The shorter the distance to
cultivated land (0–10 km), the lower the score (0–100) from the rural resident agent. The
shorter the distance to public facilities (e.g., hospital, school, mall, 0–10 km), the higher the
score (100–0) from the city resident agent. The higher the housing price per unit of space
(0–20,000 CNY), the higher the score (0–100) from the enterprise agent. The shorter the
distance to ecological space (0–10 km), the lower the score (0–100) from the environmentalist
agent. Through Equations (1)–(7), the scores of all unit spaces transformed into living space
can be obtained. The highest scoring unit space is then transformed into living space. If the
accumulated transformed area is smaller than the area of increased living space (X), the
above work is done iteratively.

3.1.2. Simulation Method of Production and Ecological Space Evolution

After completing the simulation of living space evolution, production and ecological
space evolution is simulated by the above method. Similarly, the areas of increased
production and ecological space need to be determined first. In general, they are determined
by historical data and a Markov model. If the areas of increased production and ecological
space are Y and Z, and the areas of production and ecological space transformed into living
space are X1 and X2 (X1 + X2 = X), the following equation can be employed:

(SL + X1 + X2) + (SP − X1 − Z + Y) + (SE − X2 + Z − Y) = SL + SP + SE (8)

SL, SP and SE are the areas of original living, production and ecological space, respec-
tively. Equation (8) requires that the total area before and after transformation be equal, and
the method of determining the locations of increased production and ecological space is
the same as that for increased living space. However, their factors and marking standards
are different. In the simulation of production space evolution, the macro factors include
the natural factor (elevation, slope, soil quality), location factor (distance to water area,
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main road, city center), and the other factors. The marking standards are: the larger the
height difference between the elevation of unit space (i, j) and the average elevation of the
region (0–10 km), the lower the score for its transformation into production space (0–100);
the steeper the slope (0–90 degrees), the lower the score (0–100); the higher the soil quality
(level 1–10), the lower the score (100–0); the shorter the distance to a water area (0–5 km),
the higher the score (100–0); the shorter the distance to a main road (0–5 km), the higher
the score (100–0); and the shorter the distance to the city center (0–50 km), the higher the
score (100–0). The other factors include the land type, the neighborhood and the influence
of micro factors. The marking standards of land type and neighborhood influence are
similar to those of increased living space. However, the influence rules of micro factors are
different to those of increased living space.

In the simulation of production space evolution, the shorter the distance to cultivated
land (0–10 km), the higher the score (100–0) from the rural resident agent. The shorter
the distance to living space (0–10 km), the lower the score (0–100) from the city resident
agent. The higher the cost of land (0–10,000 CNY), the lower the score (100–0) from the
enterprise agent. The shorter the distance to ecological space (0–10 km), the lower the
score (0–100) from the environmentalist agent. Following the above rules, the final score
of each unit space can be obtained from the weighted average of the scores of all factors.
The highest-scoring unit space is transformed into production space. If the accumulated
transformed area is smaller than the area of increased production space (Y), the above work
is done iteratively.

In the simulation of ecological space evolution, the macro factors also include the
natural factor (elevation, slope), location factor (distance to water area, woodland, grass-
land), and the other factors. The marking standards are: the larger the height difference
between the elevation of unit space (i, j) and the average elevation of the region (0–10 km),
the higher the score for its transformation into ecological space (100–0); the steeper the
slope (0–90 degrees), the higher the score (100–0); the shorter the distance to a water area
(0–5 km), the higher the score (100–0); the shorter the distance to woodland (0–5 km), the
higher the score (100–0); and the shorter the distance to grassland (0–5 km), the higher the
score (100–0). The other factors include the land type, the neighborhood and the influence
of micro factors. The marking standards of land type and neighborhood influence are
similar to those of increased living space. However, the influence rules of micro factors
are different.

The shorter the distance to cultivated land (0–10 km), the lower the score (0–100) from
the rural resident agent for the simulation of ecological space evolution. The shorter the
distance to living space (0–10 km), the higher the score (100–0) from the city resident agent.
The shorter the distance to production space (0–10 km), the lower the score (0–100) from the
enterprise agent. The shorter the distance to ecological space (0–10 km), the higher the score
(100–0) from the environmentalist agent. The highest-scoring unit space is transformed into
ecological space, and the above work is done iteratively until the accumulated transformed
area is equal to the area of increased ecological space (Z).

3.2. Method of Factor Weight Determination

In general, factor weight determination includes two main steps: the first step is
the initial weight determination and the second step is the final weight adjustment. The
initial weights of all factors can be determined through the Delphi method (expert scoring)
or through statistical analysis. Although the Delphi method is easy to use, it has strong
subjectivity. Therefore, the statistical analysis method is adopted in this study. The im-
plementation steps of this method are introduced as follows, taking living space as an
example: (i) One hundred experimental units are selected as the samples and they are
evenly distributed across the study region. The area of each sample unit is 3 km × 3 km,
which include 10,000 grids (30 m × 30 m). (ii) Those grids are picked out which belonged
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to production or ecological spaces in 2000. If the number of grids is n, n equations can be
formed in one sample unit; see Equation (9).

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

W1F1
1 + . . . WjF1

j + . . . WmF1
m = V1

...
W1Fi

1 + . . . WjFi
j + . . . WmFi

m = Vi

...
W1Fn

1 + . . . WjFn
j + . . . WmFn

m = Vn

(9)

Wj is the weight of the jth factor, which is a known parameter; Fi
j is the score of the jth

factor in the ith grid, which can be obtained by the methods in Section 3.1; Vi is the total
score of the ith grid, which can be determined based on the time order of the transformation
into living space. The earlier the grid is transformed into living space (from 2001 to 2010),
the higher the score (from 100 to 0), which can be obtained by comparing the results of
RS image recognition in different years. For example, if the ith grid was transformed into
living space in 2001, Vi is 100; if it was transformed into living space in 2002, Vi is 90; if it
had not been transformed into living space in 2010, Vi is 0. m is the number of factors for
living space evolution simulation, which is 16 in this study (see Table 5). n is the number
of grids which belonged to production or ecological spaces in one sample unit in 2000. In
general, n is larger than m. In this example, n is approximately 6000. Therefore, in order
to strengthen the stability of solutions, n equations of one sample unit are divided into k
groups, with each group including approximately 200 equations. The unknown parameters
(factor weight Wj) of each group can then be estimated by the adjustment method (e.g.,
least square adjustment, LSQ), and solution precision (root mean square error, RMS) can
be obtained. If the RMS of this group is more than three times larger than the minimal
RMS of all groups, it is treated as an outlier and the estimated results of this group are
removed. Then, the weighted average values of the remaining groups are taken as the
estimated results of this sample unit. (iii) Finally, the estimated results of one hundred
units are analyzed by statistical methods (e.g., Shapiro–Wilk Test [35]). If the estimated
result of the factor shows a normal distribution, the weighted average value of all units
is taken as the initial weight of this factor. Otherwise, sample units are deleted from the
samples where the estimated values obviously deviate from the mean value of all samples,
and the estimated results are tested for a normal distribution again.

After the factor initial weights are obtained, they must be further adjusted to determine
the final weights, because the estimated precision and reliability of factor initial weight is
strongly related to the sample selection. Therefore, they need to be adjusted by comparing
the overall consistency of simulation and recognition results from the study region. In this
model, the best-fit method is adopted to determine the final weights of all factors. The
basic idea is that the results of simulation are always compared with those of RS image
recognition, in order to test the rationality of factor weight allocation. For example, if
the initial weights of macro and micro factors are 0.6 and 0.4, they will be reset to 0.59
and 0.41 on the first try. If the matching rate (Kappa) improves, they will be further
set to 0.58 and 0.42 in the second try and similar attempts will be carried out until the
matching rate starts to decline. Otherwise, if the matching rate in the first try is declined,
the weights of macro and micro factors will be adjusted in the opposite direction (e.g.,
be set to 0.61 and 0.39) and similar attempts will be carried out until the matching rate
starts to decline. The purpose of this method is to hunt for the optimal weight allocation
of factors by a continuous adjustment. However, some rules of weight adjustment are
defined to improve operating efficiency: (i) the overall weights between macro and micro
factors must be adjusted first, followed by the local weights of internal elements in macro
and micro factors; (ii) the lower the matching rate of space simulations, the more likely
the factor weight of this type of space is adjusted first. Based on the above rules, the
implementation steps of this method are as follows: (i) The matching rates of production,
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living and ecological spaces are calculated, based on the initial weights. (ii) The weights of
macro and micro factors are adjusted first in the type of space with the lowest matching
rate. If the matching rate improves, the adjustment is increased. If not, the adjustment is
repeated in the opposite direction and increased until the matching rate starts to decline.
(iii) Then, the weights of internal elements in the macro and micro factors are adjusted,
using a method similar to that of (ii). (iv) Finally, the weights of macro factors, micro factors
and their internal elements are adjusted one by one in the spaces with the second highest
and highest matching rates. After the weights of all factors are determined, the effect of
each factor on PLE space evolution can be analyzed by its weight. Figure 3 shows the data
process flow of factor weight determination by the statistical analysis and best-fit method.

 
Figure 3. The data processing flow of factor weight determination using statistical analysis and best-fit method. The
meanings of symbols are same with those in Equations (1)–(9).

4. Experimental Results and Analysis

4.1. Simulation and Prediction Results of Production-Living-Ecological Space Evolution

For validation of the proposed model and method in Section 3, GaoFen-2 (GF) remote
sensing images, geographic information and socio-economic data from Xuzhou, China
between 2000 and 2020 were collected. Three experimental schemes were designed. In
scheme 1, the results of PLE space recognition from RS imaging in 2000 were taken as the
basic data, and used to simulate the PLE space evolution in 2010 based on the CA model.
The simulation precision was obtained by comparing its results with the result of RS image
recognition in 2010. In schemes 2 and 3, the basic data were the same as in scheme 1.
However, the CA + MAS model and the macro–micro joint decision model (CA + MAS
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+ Correlation) were adopted in schemes 2 and 3, respectively. Figure 4 shows the spatial
distribution of patches where the simulation results of the three schemes were different
from the results of RS imaging. Table 3 shows the statistical results of the simulation
precisions (Kappa coefficient) of the three schemes.

 
(a) PLE recognition results of RS image in 2010 (b) Differences between Scheme 1 and (a) 

 

 

 

(c) Differences between Scheme 2 and (a) (d) Differences between Scheme 3 and (a) 

Figure 4. Differences between production-living-ecological (PLE) space evolution results from three experimental simulation
schemes and remote sensing image recognition in Xuzhou, China in 2010. (a) is PLE recognition results of RS image in 2010;
(b–d) are the differences between the simulation results of scheme 1, 2, 3 and the recognition results of (a), respectively.

Table 3. Statistical precisions of PLES evolution simulation from three schemes Unit: %.

Evaluated Object Scheme 1 Scheme 2 Scheme 3

Model CA CA + MAS CA + MAS + Correlation
Kappa 87.14 89.63 92.31

From Figure 4 and Table 3, it can be seen that the simulation precision of the CA
model was poor (87.14%) and that most of errors resulted from the simulation of living
space evolution. The simulation precision of production space evolution was better, and
that of ecological space evolution was best. In scheme 2, the simulation precision of PLE
space evolution was improved to 89.63% using the CA + MAS model. The precision
improvement in living space evolution simulation was the maximum. In scheme 3, the
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simulation precision of PLE space evolution increased to 92.31% by using the CA + MAS
+ Correlation model. These experimental results prove that the proposed model has a
stronger ability to simulate PLE space evolution than the current models (e.g., CA and CA
+ MAS).

To further verify the prediction ability of PLE space evolution of our proposed model,
three further experimental schemes were designed. In scheme 1, the recognition result
of PLE space from RS imaging in 2010 was taken as the basic data source. It was used
to predict the PLE space evolution in 2020 based on the CA model, and the prediction
precision was calculated by comparison with the results of RS image recognition in 2020. It
should be noted that the weights of all factors remained unchanged in the prediction, and
were derived from the simulation results comparing 2000 to 2010. The main reason was
that the actual distribution of PLE space in 2020 could not be known in advance during
the prediction. Therefore, the weights of all factors could not be adjusted over time in the
simulation. This led to a decrease in prediction precision. In schemes 2 and 3, the data and
method were the same as those used in scheme 1. However, the CA + MAS model and the
CA + MAS + Correlation were adopted to predict PLE space evolution in 2020 in schemes 2
and 3 respectively. Figure 5 shows the spatial distribution of patches where the prediction
results of three schemes were different from the recognition results from RS imaging in
2020. Table 4 is the statistical result of the prediction precisions of the three schemes.

  
(a) PLE recognition results of RS image in 2020 (b) Differences between Scheme 1 and (a) 

 
(c) Differences between Scheme 2 and (a) (d) Differences between Scheme 3 and (a) 

Figure 5. Differences between PLE space evolution predictions from three experimental schemes and that determined from
remote sensing image recognition in Xuzhou, China in 2020.
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Table 4. Statistical precisions of PLES evolution prediction from three schemes Unit: %.

Evaluated Object Scheme 1 Scheme 2 Scheme 3

Model CA CA + MAS CA + MAS + Correlation
Kappa 84.59 86.19 89.33

From Figure 5 and Table 4, it can be seen that the prediction precisions of PLE space
evolution were lower than their simulation precisions in the earlier schemes, as the factor
weights from the prediction models were replaced with those from the simulation models.
This inevitably leads to errors. However, the prediction precision of the CA + MAS +
Correlation model remained better than that of the CA and CA + MAS models, and the
improvement in prediction precision was larger than that in simulation precision, after
considering the interactions of macro and micro factors. This proves that the proposed
model had a stronger ability to predict PLE space evolution than the CA and CA + MAS
models. Thus, the future distribution of urban PLE space may best be predicted by the
CA + MAS + Correlation model. Policy makers and city administrators can determine the
problems of urban space development in advance based on prediction results, and some
positive policies can be formulated to avoid these problems and realize the sustainable
development of urban PLE space.

4.2. Results of Factor Weight Determination

The initial weights of all factors can be obtained by statistical analysis methods and
the final weights are determined by the best-fit method, as introduced in Section 3.2.
The effect of each factor on PLE space evolution can be obtained based on the weight
determination results. It is helpful for policy makers to grasp the leading factors and
formulate scientific planning of urban PLE space development. Tables 5–7 show the
initial weight determination results of factors using the CA + MAS + Correlation model to
simulate the evolution of production, living and ecological space as described in Section 4.1,
respectively. Figure 6 shows the error distribution of the estimated initial weights of some
factors (e.g., elevation, slope, distance to water and distance to road) in the simulation of
living space evolution. Figure 7 shows the final weight determination results of all factors
in the simulation of production, living, and ecological space evolution and their differences
with the initial weights, respectively.

Table 5. Initial weight determination results of factors in living space evolution simulation.

Elevation Slope
Distance to

Water
Distance to

Road
Distance to

Center
Government

Planning
Type of

Land
Neighborhood

Influence

0.028 0.104 0.035 0.064 0.043 0.076 0.047 0.056

Influence of
Micro factor

Protected
land House Price Hospital Mall School

Distance to
Ecological

Space

Influence of
Macro factor

0.014 0.076 0.095 0.109 0.058 0.089 0.064 0.042

Table 6. Initial weight determination results of factors in production space evolution simulation.

Elevation Slope Soil Quality
Distance to

Water
Distance to

Road
Distance to

Center
Type of Land

0.042 0.046 0.052 0.059 0.106 0.043 0.109

Neighborhood
Influence

Influence of
Micro factor Protected land Land Price Distance to

living space

Distance to
Ecological

Space

Influence of
Macro factor

0.065 0.032 0.184 0.091 0.102 0.035 0.034
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Table 7. Initial weight determination results of factors in ecological space evolution simulation.

Elevation Slope
Distance to

Water
Distance to
Woodland

Distance to
Grassland

Type of Land
Neighborhood

Influence

0.069 0.076 0.072 0.148 0.076 0.064 0.091

Influence of
Micro factor Protected land

Distance to
production

space

Distance to
living space

Distance to
Ecological

Space

Influence of
Macro factor /

0.081 0.037 0.056 0.057 0.149 0.024 /

(a) Elevation (b) Slope 

(c) Distance to Water (d) Distance to Road 

Figure 6. Error distributions of initial weight estimation of Elevation (a), Slope (b), Distance to Water (c) and Distance to
Road (d) in living space evolution simulation.
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(a) Living space (b) Production space 

 
(c) Ecological space (d) Differences between the initial weight and final weight 

Figure 7. Final weight determination results of living space (a), production space (b) and ecological space (c) evolution
simulation factors and their differences with the initial weights (d).

From Figures 5 and 6, it is known that the initial weights of all factors could be
obtained by statistical analysis methods and that the estimated results were reliable. In
general, the weights obeyed normal distributions, although the estimated precisions were
different. Some were high (e.g., elevation and distance to water), and some were low (e.g.,
slope and distance to road), because the estimated precision of factor initial weight was
strongly related to the sample selection. Therefore, it is a key to selecting representative
and diverse samples.

From Figure 7, it can be seen that the final weights of all factors had some changes from
the initial weights in Tables 5–7. The reason was that the local consistency of simulation
and recognition results from the samples was exclusively considered in the initial weight
determination, while the overall consistency from the study region was emphasized in
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the final weight determination. It is noted that the differences between the initial and
final weight determination were not obvious, proving that the initial weight determination
and sample selection were suitable for this study. Based on the results of factor weight
determination, the effect of each factor on PLE space evolution could be obtained. The
micro factors affected the evolution of production and living space more than the macro
factors. By contrast, the macro factors influenced the evolution of ecological space more
than the micro factors. For living space evolution, the most important factors were the city
resident (0.215), the entrepreneur (0.127) and the environmentalist (0.123). This indicates
that the decision-making behaviors of city residents play the most important role in urban
living space development. For production space evolution, the most important factors
were the rural resident (0.202), the entrepreneur (0.147), and the city resident (0.098). This
means that production space development depends more on human wishes than on natural
resources and conditions or the development of science and technology. For ecological
space evolution, the most important factors were the location condition (0.230), natural
condition (0.150), and neighborhood influence (0.142). This indicates that the location and
natural condition have an important influence on the development of ecological space, and
with the increase in awareness of environmental protection, human intervention in the
evolution of ecological space is decreasing. It has instead developed according to local
conditions in Xuzhou in the past decades.

5. Discussions

The scientific planning of urban space is an important way to realize urban sustainable
development. The precise simulation and understanding of the leading factors in urban
space evolution are essential prerequisites for urban space planning. However, there are
still some defects in existing models. For example, the econometric statistics model and the
system dynamics model have a strong ability to predict the size of urban space evolution,
but they are unable to simulate the variation in urban spatial distribution [36]. For another
example, the cellular automata model is a key milestone in the development of urban
spatial simulation technology, which can simulate not only the variation in urban space
size but also the variation in urban spatial distribution, but it is unable to simulate the
effects of macro-scale factors (e.g., policy, economy, culture) on urban space evolution, and
nor can it simulate the decision-making behaviors of different urban agents (e.g., resident,
entrepreneur, environmentalist) [37]. With the development of artificial intelligence (AI)
technology, the study of a joint model of MAS and CA has become a hot spot for urban
space evolution simulation. This type of model can simulate the influences of macro factors
(e.g., natural environment, geographical location, policy) and micro factors (e.g., different
urban agents) on urban space evolution [38]. Therefore, the joint model of MAS and CA
has a stronger ability to simulate urban space than other models.

However, the current CA + MAS model does not consider the correlations between
macro and micro factors. It is assumed that the effects of macro and micro factors are
completely independent, which is inconsistent with the facts, as macro factors (e.g., the
natural condition, government policy) often restrict the decision-making behaviors of micro
factors (e.g., residents, entrepreneurs, environmentalists). Meanwhile, the preferences of
micro factors also have an important influence on the decision-making behaviors of macro
factors. Therefore, if the interaction between and mutual influence of macro and micro
factors are neglected, the simulation precision of CA + MAS model will decrease. In
addition, the simulation objects of current models are usually unit plots with different
types of land use (e.g., woodland, grassland, water body). Therefore, the simulation result
ascribes a specific type of land use to each unit plot. However, the type of land use may
be different from the urban planning for a given unit plot (e.g., traffic planning, garden
planning, land planning) [39]. Therefore, if multiple plans are implemented in the same
place at the same time, it will lead to difficulties in decision-making and implementation
(e.g., the conflict areas) [40].
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To alleviate the above problems, a macro–micro joint decision model is proposed
based on the CA + MAS model in this study to improve the simulation of urban space
evolution. The simulation objects are unified into production, living and ecological space
for the convenience of unified implementation of multiple plans. For validation of the
proposed model, remote sensing images, geographic information and socio-economic data
from Xuzhou, China between 2000 and 2020 were collected and tested. The results proved
that the simulation and prediction precisions of the proposed model were better than those
of current models (e.g., CA, CA + MAS) for urban space evolution simulation, particularly
for the simulation of living space evolution.

It is very important for urban planning and sustainable development strategies that
the precision of PLE evolution simulation models be improved, because urban space
evolution simulation models are often used to compare the implementation effects of
different urban planning schemes. Therefore, it is beneficial to select the optimal planning
scheme for realizing sustainable urban development, if the model simulation precision
is high. Otherwise, this can result in faulty government decision-making and the waste
of urban resources if the model simulation precision is poor. A high-precision simulation
model helps urban planners discover the problems associated with different plans in
advance, and is also an important tool to analyze the effects of different factors on the
evolution of urban space. Therefore, it is very useful to grasp the rules governing urban
space evolution and operation mechanisms.

However, there are still some limitations of the proposed model in this study. (i) The
urban space is expressed as a regular grid (30 m × 30 m) in the proposed model, but actual
urban space is an irregular polygon. This led to inconsistencies between the simulation
result and the RS imaging-observed results, as well as a decrease in simulation preci-
sion [41]. (ii) In theory, the smaller the area of unit space, the higher the precision of urban
space simulation. However, the computational burden increases at exponential levels with
decreasing areas of unit space. Therefore, the selection of optimal geographic unit scale
for simulation of urban space evolution remains an unsolved problem. For larger areas
(e.g., an urban agglomeration or economic zone), an adaptive theory should be applied
to define the grid scale. Regions with rapid land use change could be defined using a
small grid (e.g., 30 m × 30 m), while regions with slow land use change could be simulated
using a large grid (e.g., 300 m × 300 m). On the one hand, the differentiating grids could
improve simulation accuracy; on the other hand, they could ensure operational efficiency.
(iii) The estimated precision of the factor initial weight is strongly related to the sample
selection when using a statistical method. Therefore, the selection of representative and
diverse samples is a key problem. In this study, an even sampling strategy was adopted to
select the experimental samples. However, this was not an optimal solution. In addition,
the variation in urban population size and spatial distribution is an important factor that
affects urban space evolution [42]. In this study, the information on urban population
size was used to predict the variation in living space size, but the data of population
spatial distribution is not used. Therefore, urban space evolution simulation models should
be further investigated considering the variations in population spatial distribution in
the future.

6. Conclusions

The accurate simulation of urban space evolution and understanding of the leading
factors are key issues to improve the sustainability of urban development. In this study, a
macro–micro joint decision model was constructed based on the CA + MAS model in order
to improve the ability to simulate urban space. A method of factor weight determination
was proposed to analyze the effects of different factors on urban space evolution. For
validation of the proposed model and method, experimental data (e.g., RS data, GIS
data and socio-economic data) were collected and tested. The results proved that the
proposed model and method were valid and reliable, and could improve the simulation
and prediction of urban space evolution. The main conclusions of this study are as follows:
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(1) The simulation precision of urban space evolution from the CA + MAS model
was better than that from the CA model, because the decision-making behaviors of dif-
ferent urban agents (e.g., resident, entrepreneur, environmentalist) were considered in
the CA + MAS model and not the CA model. Moreover, if the interactions and influences
of macro and micro factors were considered (e.g., CA + MAS + Correlation model), the
simulation precision of the CA + MAS model could be further improved. In this study, the
simulation precisions (Kappa coefficient) of urban space evolution from the CA, CA + MAS
and CA + MAS + Correlation models were 87.14%, 89.63% and 92.31%, respectively. The
improvement in living space simulation precision was the most significant when using the
CA + MAS+ Correlation model, compared with simulation of other types of spaces.

(2) The prediction precisions of CA, CA + MAS and CA + MAS + Correlation model
were worse than their simulation precisions, as the factor weights in prediction models
were replaced with those from the simulation models, disregarding changes that occurred
during the prediction period. Therefore, errors were inevitably introduced. However, the
prediction precision of the CA + MAS + Correlation model remained better than that of the
CA and CA + MAS models, and the improvement in prediction precision was larger than
that in simulation precision using the CA + MAS + Correlation model, compared to the
CA and CA + MAS models. It was proved that the CA + MAS + Correlation model had a
stronger ability to predict PLE space evolution than the CA and CA + MAS models.

(3) According to the results of factor weight determination, it was determined that the
effects of micro factors on the evolution of living and production space were greater than
those of macro factors. This indicated that the influences of desires and behaviors of human
beings on the evolution of living and production space are increasing, correlating with the
development of science and technology. The decision-making behaviors of city residents
played the most important role in urban living space development. In the evolution of
production space, rural residents and entrepreneurs had more influence than the other
factors. By comparison, the effects of macro factors on the evolution of ecological space
were more significant than those of micro factors, where the three most important factors
were the location condition, neighborhood influence and natural condition. This means
that the location and natural condition have more influence on the evolution of ecological
space than the other factors.

According to the above analysis and conclusions, some policy implications are pro-
posed to improve the sustainability of urban development. At present, the micro factors
(e.g., city and rural residents and entrepreneurs) are the leading factors in the evolution of
living and production space. Therefore, active policies should be formulated to strengthen
the ideological guidance for these micro individuals, help them establish scientific views
of urban space utilization, and realize the ordered development of living and production
space. In addition, macro factors (e.g., location condition, natural environment) have the
most important influence on the evolution of ecological space. Therefore, urban ecological
space planning should closely link with the local environmental and natural conditions, to
improve urban ecological carrying capacity and realize urban sustainable development.
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Abstract: Driven by technological progress and market demand, the optimization and adjustment
of grain planting structure played an important role in increasing grain output. Due to the great
difference between the yield per unit area of different types of food crops, the consumption of
cropland and water resources has a significant change during the grain growth. From the perspective
of structural adjustment, rather than the usual productive factor input, we analyze the process of
adjustment for grain planting structure in China and its effect on the consumption of cropland
and water resources by using the scenario comparative analysis method. The results show that:
(1) From 2003 to 2019, China’s grain output has increased steadily and the planting structure has
changed greatly. Rice was replaced by corn to become the grain crop with the maximum proportion
of planting area since 2007. The increase of corn planting structure proportion is concentrated in the
northern regions. (2) At the national level, according to the adjustment of grain planting structure,
the saving of cropland and water resources consumption showed a “cumulative effect” as time went
on. (3) The saving effects of structural adjustment in the northern regions on cropland and water
resources consumption are better than that in the southern regions, such as Northeast China Plain,
Northern arid and semiarid region and Loess Plateau. (4) In reality, although the adjustment of
grain planting structure saved lots of cropland and water resources, the continuous growth of grain
output has increased the pressure on the ecological environment in the northern regions according to
theirs water limits. Therefore, it is necessary to continuously optimize the grain planting structure
and restrict land reclamation in northern China. In addition, to ensure food security, it is feasible
to encourage the southern regions with abundant water and heat resources to increase the grain
planting area and meet its self-sufficiency in grain demand.

Keywords: grain production; structure adjustment; cropland and water resources; food security

1. Introduction

Grain production is the main source of cropland and water resource consumption
in the world [1]. Statistics also indicate that agricultural water use accounts for about
80% of the global total water consumption [2]. China is an important country for food
production and consumption in the world [3]. However, the supply of cropland and water
resources is insufficient in China, with per capita occupancy equal to 28% and 40% of the
world average, respectively [4,5]. The evolution of China’s grain production pattern is not
only reflected in the movement of grain production gravity [6], but also accompanied by
the adjustment of grain planting structure [7]. Further, these will cause the problem of
spatial allocation of cropland and water resources and ultimately affect the sustainable
development of the whole agriculture. Therefore, this is crucial to ensuring China’s food
security and promoting agricultural sustainable development, through the analysis of grain
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planting structure adjustment and its impact on the consumption of cropland and water
resources.

With the rapid development of the regional economy and society, great changes have
taken place in terms of grain production and supply-demand patterns in China. It has been
found the barycenter of grain crops presents a trend of goes to north and center movement
in China [6], which is driven by factors such as economic benefits, per capita farmland
acreage and grain yield per unit area [8]. In addition, the gravity of China’s grain output is
also moving northward due to urbanization, land-use policies and climate change. The
pattern of grain supply-demand has changed, from the traditional pattern of “grain in
the south being transported to the north” to the present pattern of “grain in the north
being transported to the south” [9,10]. Due to 0 ◦C isotherm moved northward, the annual
accumulated temperature (AAT) increased and the rice planting area continued to expand
in Northeast China [7,11,12]. The shortage and spatial imbalance of cropland and water
resources restrict the sustainable development of grain production. Other studies analyze
the utilization of cropland and water resources and their spatial allocation and evaluate
the relationship between grain production and the spatial allocation of cropland and water
resources [13–15].

As one of the most populous countries in the world, China has always paid high
attention to food security. Many studies have identified several ways to help increase grain
production. We summarize as follows: (1) Expand arable land to increase the area of grain
crop planting [16]. (2) Increase the input of productive factors, such as chemical fertilizers,
pesticides, etc. [17,18]. (3) Increase the intensity of grain crop planting [19,20]. There are
some problems with this approach to increasing food production. On the one hand, the
abuse of pesticides and fertilizers causes serious ecological and environmental problems in
grain production, such as agricultural non-point source pollution [21], which affects the
food quality and further threatens human health. On the other hand, factor input has a
marginal effect. That is to say, the increase of production factor input has less and less effect
on improving grain output [22]. Moreover, overuse of cultivated land resources leads to the
decline of soil fertility, which is not conducive to agricultural sustainable development. In
this case, we need to explore more effective strategies to increase grain production [23]. As
such, the previous studies focused on the input amount of grain production and crop yield,
as well as the driving factors of crop structure adjustment. Few studies have analyzed
the effects of grain production on cropland and water resources from the perspective
of planting structure. Different grain crops not only have different yields per unit area,
but also have great differences in cropland and water consumption. The adjustment of
the grain planting structure has become a “bridge” to observe the relationship between
grain demand and consumption of cropland and water resources. Therefore, while the
total grain yield increases, the adjustment of the internal grain planting structure has an
impact on the consumption of cropland and water resources in grain production. In other
words, it is very feasible and meaningful to analyze the consumption of cropland and
water resources in grain production through adjustment of planting structure rather than
the input of production factors. Therefore, this paper abandons the traditional research
idea of analyzing grain production based on productive factor input. From the perspective
of the adjustment of grain planting structure, to calculate its effects on cropland and water
resources consumption while the grain yield continues to increase.

Considering the condition of the shortage and spatial imbalance of cropland and water
resources in China, we want to answer two questions: (1) Does the adjustment of the grain
planting structure contribute to the economic utilization of cropland and water resources?
(2) What are the differences in the consumption of cropland and water resources between
different agricultural areas? These questions are posed based on the scenario comparison
method, taking the grain planting structure without adjustment as the base scenario in
2003. This paper aims to explore the impact of cropland and water resources by adjusting
the grain planting structure from 2003 to 2019. It provides a reference for the rational
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adjustment of grain production structure and relevant departments to make decisions in
the future.

2. Materials and Methods

2.1. Data Sources and Processing

The agricultural division is an important approach to guide agricultural produc-
tion [17]. China is divided into nine agricultural regions based on geographical zoning
and regional characteristics of the grain planting system, which are Northeast China Plain,
Northern arid and semiarid region, Huang-Huai-Hai Plain, Loess Plateau, Qinghai Tibet
Plateau, Sichuan Basin and surrounding regions, Middle-lower Yangtze Plain, Yunnan-
Guizhou Plateau and Southern China. The study region includes 31 provinces (except Hong
Kong, Macao and Taiwan) that participated in the complete information (Figure 1). The ba-
sic map of the nine agricultural regions is taken from the Resources and Environmental Sci-
ences and Data Center, Chinese Academy of Science (http://www.resdc.cn/Default.aspx
(accessed on 5 March 2021)).

Figure 1. Map of agricultural regions in China.

All of the study data are public data obtained from different sources. These data
were derived from the following sources. Data sets on grain planting area and yield of
rice, wheat, corn, beans and tubers were obtained from the China Statistical Yearbook
(2004–2020) (http://www.yearbookchina.com/index.aspx (accessed on 20 March 2021)).
Agricultural water consumption data were obtained from the China Water Resources
Bulletin of the corresponding years. The basic data of the nine agricultural regions were
collected by each province, such as grain output, agricultural water consumption, cropland
resources and so on.

Due to the different climatic conditions and soil environment in nine agricultural
regions, water resource consumption varies greatly among different crops in the same
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agricultural region or the same crop in different agricultural regions [24]. Before the water
consumption analysis, virtual water content per unit mass of grain crops needs to be
considered. Firstly, the weight mean of virtual water content per unit mass of grain crops
was calculated in each province by referring to relevant research results. Secondly, the
proportions of different grain production were measured in each province. Finally, the
virtual water content per unit mass of different grain crops was obtained in nine agricultural
regions of China.

2.2. Model Design
2.2.1. Calculation Formula of Cropland Resource Consumption

To obtain the same grain yield, the gap between the cropland resources consumption
with structural adjustment and without structural adjustment is the number of cropland
resources saved by the adjustment of the grain structure. The specific calculation process is
shown as follows:

Qt = At × Yt = At × ∑(sit × yit) (1)

Qt+j = At+j × ∑
(
si,t+j × yi,t+j

)
; j = 1, 2, 3 . . . 16 (2)

where Qt, Qt+j represents the grain yield in t and t + j period, j is the number of the year
(in this study, j = 16). At is the sown area of grain, Sit represents the sown area of crop i
accounted for the proportion of the sown total area and yi is the yield per unit area of crop
i. Similarly, At+j, Si,t+j, yi,t+j represent sown area of grain, sown area of crop i accounted
for the proportion of the sown total area and the yield per unit area of crop i in t + j period,
respectively.

Qt+j = A′
t+j × ∑

(
sit × yi,t+j

)
(3)

A′
t+j = At+j ×

∑
(
si,t+j × yi,t+j

)
∑
(
sit × yi,t+j

) (4)

A′
t+j represents sown area of grain when without structural adjustment. Meanwhile,

Sit = Si,t+j. Therefore, the gap between the cropland resources consumption with structural
adjustment and without structural adjustment can be calculated using Equation (5):

A′
t+j − At+j =

[
∑
(
si,t+j × yi,t+j

)
∑
(
sit × yi,t+j

) − 1

]
× At+j (5)

If A′
t+j − At+j > 0, it means that the adjustment of grain planting structure can help

save cropland resources, while if A′
t+j − At+j < 0, it means that the adjustment of grain

planting structure increases the consumption of cropland resources and if A′
t+j − At+j = 0,

it means there is no effect.

2.2.2. Calculation Formula of Water Resource Consumption

Following the same train of thought, the amount of water resources saving can be
calculated by the adjustment of the grain structure. The formula is:

βi,t+j =
∑
((

si,t+j × yi,t+j
))

∑
(
sit × yi,t+j

) (6)

W ′
t+j − Wt+j = At+j ×

[
∑
(
sit × βi,t+j × yi,t+j × mi,t+j

)− ∑
(
si,t+j × yi,t+j × mi,t+j

)]
(7)

where βi,t+j is the increase or decrease coefficient, it indicates that the changing intensity is
caused by structural adjustment compared with no structural adjustment. In Equation (7),
W ′

t+j, Wt+j represent the amount of water resources consumption with structural adjust-
ment and without structural adjustment, respectively. mi,t+j represents water consumption
per unit mass of crop i.
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If W ′
t+j −Wt+j > 0, it means that the adjustment of grain planting structure contributes

to the economic utilization of water resources, while if W ′
t+j − Wt+j < 0, it means that the

adjustment of grain planting structure increases the consumption of water resources and if
W ′

t+j − Wt+j = 0, it means there is no effect.

2.2.3. Consumption Reduction Contribution (CRC) of Cropland and Water Resources

The consumption reduction contribution is used to measure the saving effect of
cropland and water resources in an agricultural region. It can provide a concise and
intuitive result regardless of the total amount of cropland and water resources among
agricultural regions. The formula is

CRCl =
A′

t+j − At+j

A′
t+j

(8)

CRCw =
W ′

t+j − Wt+j

W ′
t+j

(9)

In Equations (8) and (9), CRCl and CRCw represent consumption reduction contribu-
tion of cropland resources and consumption reduction contribution of water resources,
respectively. The values of CRCl and CRCw range from −1 to 1. The higher the value, the
higher the consumption reduction contribution (CRC) of cropland and water resources.
On the contrary, the smaller the value, the lower the consumption reduction contribution
(CRC) of cropland and water resources.

The last required a bit of explanation that the study results were calculated by Excel
and visualized by ArcGIS and Origin software.

3. Results

3.1. Changes of Grain Yield and Consumption of Cropland and Water Resources in China

From 2003 to 2019, China’s output of major farm products has shown a steady increase
(Figure 2), which can be divided into two stages: the rapid growth stage (2003–2015) and
the fluctuating growth stage (2016–2019). During the rapid growth stage (2003–2015),
China’s grain output increased from 431 million tons to 621 million tons, with an average
annual growth rate of 3.10%. In the fluctuating growth stage (2016–2019), although grain
production has declined in some years, it has maintained a rapid growth overall, reaching
664 million tons in 2019.

Figure 2. Changes of grain yield and cropland and water resources consumption in China from 2003
to 2019. Sown area of major farm crops (rice, wheat, corn, beans and tubers) and its outputs data
were obtained from the China Statistical Yearbook (2004–2020). Agricultural water consumption data
were obtained from the China Water Resources Bulletin (2004–2020).
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However, with the rapid increasing of the total grain yield, the consumption of cropland
and water resources for grain production remained stable on the whole. The water resource
consumption showed a trend of small fluctuation, which remain between 350 × 109 m3 and
390 × 109 m3. The cropland resource consumption increased from 99.41 × 104 km2 in 2003 to
116.06 × 104 km2 in 2019, which was only 1.17 times higher. However, grain production
increased 1.54 times in 17 years. Therefore, the rapid increase of grain output is not only
related to the use of chemical fertilizers and pesticides, technological progress [25] and
other input elements, but also closely related to the adjustment of grain planting structure.

3.2. Spatio-Temporal Changes of Grain Planting Structure in China
3.2.1. Temporal Changes of Grain Planting Structure in China

We selected five types of grain crops, including rice, wheat, corn, beans and tubers, to
analyze the change of grain planting structure in China. Figure 3 shows that significant
changes have taken place in grain planting structure during the steady growth stage of
grain outputs. Concretely, the proportion of rice, wheat and corn changed from 27.85%,
23.11% and 25.29% in 2003 to 26.30%, 21.01% and 36.56% in 2019, respectively. Since 2007,
corn, the maximum proportion of planting structure, has replaced rice as China’s largest
grain crop, which has continued to increase.

Figure 3. Changes of grain planting structure in China from 2003 to 2019.

After China acceded to the World Trade Organization (WTO), a large number of
international agricultural products entered the Chinese market, especially the import of
soybeans increased sharply. The soybean imports have reached 88.51 million tons in 2019,
accounting for 83.10% of China’s total soybean consumption. As a result, China’s grain
planting structure has also been strategically adjusted, with the proportion of soybeans
planted gradually declining from 13.55% in 2003 to 9.81% in 2019.

3.2.2. Spatial Characteristics of Grain Planting Structure in China

Figure 3 reflects the dynamic change trend of China’s grain planting structure from
2003 to 2019, but does not reflect the spatial distribution characteristics among the nine
agricultural regions. Therefore, Using the agricultural division in Figure 1, we show the
grain planting structure of different agricultural regions in China at two time points in
2003 and 2019 (Figure 4).
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Figure 4. Changes of grain planting structure of China’s nine agricultural regions in 2003 and 2019.
(A–I) represents each agricultural regions, (A,B) refer to 2003 and 2019, respectively. The values are
the planting structure of different food crops.

Significant differences in grain planting structure among the nine agricultural regions
in China and the proportion of corn planted in the northern region has increased rapidly,
which can be presented by Figure 4. For example, the proportion of corn planted in the
Northeast China Plain, the Loess Plateau and the Northern arid and semiarid region has
increased from 43.21%, 34.74% and 34.76% in 2003 to 55.13%, 55.03% and 55.30% in 2019,
respectively. Compared with 2003, in 2019, the planting area of rice continued to expand
and the planting proportion increased by 5.8% in the Northeast China Plain, while the
planting proportion of beans decreased by 12.43%. Wheat is the dominant crop in Huang-
Huai-Hai Plain and the proportion of planting area is stable at about 48%. Rice is the main
grain crop in southern China, but its planting proportion decreased in some agricultural
regions and was gradually replaced by corn, such as Yunnan-Guizhou, Plateau Sichuan
Basin and surrounding regions.

3.3. The Impact Analysis of Grain Planting Structure Adjustment on Cropland Resource
Consumption

We used Equation (5) to calculate the cropland resource consumption with or without
the adjustment of grain planting structure from 2003 to 2019 (Figure 5) to analyze the
evolution trend in both scenarios and then used Equation (8) to calculate the consumption
reduction contribution (Table 1) to measure the saving effect of cropland resource.

It can be seen from Figure 5 that the cropland resource consumption with structural
adjustment is less than that without structural adjustment, indicating that the adjustment
of the grain planting structure contributes to saving cropland resources under certain grain
output. Note the difference value of the slope of the trend line in both scenarios, it represents
the extent to which the structural adjustment affects the cropland resource consumption
in this region. From 2003 to 2019, due to the adjustment of grain planting structure, the
saving of cropland resources consumption showed a “cumulative effect” at the national
total. Consistent with the overall trend of the country, the northern region also showed a
significant “cumulative effect”, such as Northeast China Plain and the Northern arid and
semiarid region. For the southern region where arable cropland resources are relatively
scarce, such as Middle-lower Yangtze Plain, Yunnan-Guizhou Plateau and Southern China,
the trend lines of cropland resource consumption under the two scenarios are nearly
parallel, indicating that grain planting structural adjustment plays a certain role in the
reduction of cropland resources, but the reduction scope is almost to the limit.
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Figure 5. The evolution trend of cropland resources consumption with or without the adjustment of grain planting structure.
(a,b,d,g,j) fit the linear approximation, (c,e,f,h) are described by polynomials, (i) uses the moving average method to express
the evolution trend. y represents the cropland resources consumption with or without the adjustment of grain planting
structure, x represents the year, R2 expresses the explanatory degree of the relationship between the x and y variables. The
values of R2 range from 0 to 1. The higher the value, the closer relationship between the x and y variables. Green and blue
line are fitted curve, which means the evolution trend of cropland resources consumption without structural adjustment or
with the structural adjustment, respectively.
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Table 1. Effect of grain planting structure adjustment on cropland resources consumption during 2003–2019.

Regions Agricultural Division
Actual Area Changes

(104 km2)
Area Saved
(104 km2)

CRCl

(%)

The Northern Regions

Northeast China Plain 9.01 3.62 15.61
Huang-Huai-Hai Plain 4.45 0.43 1.70

Loess Plateau 0.09 0.54 9.83
Northern arid and semiarid region 3.53 1.58 13.93

The Southern Regions

Qinghai Tibet Plateau −0.01 0.02 8.97
Sichuan Basin and surrounding regions −0.44 0.15 1.79

Middle-lower Yangtze Plain 3.51 0.95 3.56
Southern China −1.51 0.08 2.57

Yunnan-Guizhou Plateau −0.88 0.06 0.62

National Total - 17.75 5.21 4.62

CRCl means consumption reduction contribution of cropland resources.

At the national total, 5.21 × 104 km2 of cropland resources saved by the adjustment of
grain planting structure and consumption reduction contribution of cropland resources
(CRCl) was 4.62%. From the perspective of regions, both the area saved and the CRCl of
the northern region were the highest. More concretely, because high-yielding rice and corn
replaced the relatively low-yielding wheat and soybean, area saved of cropland resources
and CRCl in Northeast China Plain reached 3.62 × 104 km2 and 15.61%, respectively,
which were higher than other agricultural regions. Followed by the Northern arid and
semiarid region, area saved of cropland resources and CRCl were 1.58 × 104 km2 and
13.93% respectively, which were mainly caused by the substitution of planting corn for
wheat. However, compared with the substantial expansion of the actual grain planting area
in northern China, the cropland resources saved by grain planting structural adjustment
were still quite limited, accounting for only 29.35% of the actual increase of the grain sown
area in the same period.

Different from the northern region, the proportion of high-yielding rice planting is
relatively high in the southern region, such as Middle-lower Yangtze Plain and Southern
China, so the scope for the adjustment of the grain planting structure becomes very
limited. Therefore, the cropland resource area saved by the adjustment of the grain planting
structure is less than 1 × 104 km2 and the CRCl value is also quite low in each agricultural
region. In other words, the adjustment of the grain planting structure has a small effect
on saving cropland resources in China’s southern region. However, in reality, except for
the Middle-lower Yangtze Plain, the grain planting area of other agricultural regions has
shrunk to some extent.

3.4. The Impact Analysis of Grain Planting Structure Adjustment on Water Resource Consumption

Figure 6 shows the evolution trend of water resource consumption with or without
the adjustment of grain planting structure in nine agricultural regions and national total
from 2003 to 2019. At the national level, the adjustment of the grain planting structure has
a crucial effect on saving water resources. The gap of water resource consumption under
the two scenarios became larger over time in the process of grain production, which also
showed a significant “cumulative effect”.
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Figure 6. The evolution trend of water resource consumption with or without the adjustment of grain planting structure.
(a–d,f,g,j) fit the linear approximation, (e,h) are described by polynomials, (i) uses the moving average method to express the
evolution trend. y represents the water resources consumption with or without the adjustment of grain planting structure, x
represents the year, R2 expresses the explanatory degree of the relationship between the x and y variables. The values of
R2 range from 0 to 1. The higher the value, the closer relationship between the x and y variables. Green and blue line are
fitted curve, which means the evolution trend of water resources consumption without structural adjustment or with the
structural adjustment, respectively.
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Compared with the southern regions and northern regions, we found that in the
northern regions where water resources supply is insufficient, the adjustment of grain
planting structure has a more obvious effect on saving water consumption. For example,
compared with the non-adjustment scenario, water resource consumption continues to
decrease in the Northeast China Plain, Loess Plateau and Northern arid and semiarid
region. From the perspective of development trends, it is still possible to continue to save
more water resources. However, in water-rich southern regions, such as Middle-lower
Yangtze Plain and Southern China, the trend lines of water consumption almost coincide
with or without the adjustment of grain planting structure, indicating that the adjustment
of grain planting structure has a small effect on water resource reduction and reaches the
upper limit.

It can be seen from Table 2 that the grain planting structural adjustment has helped to
save an appropriate 437.09 × 108 m3 water resource for the country, compared with the sce-
narios without structure adjustment, accounting for 38.58% of the increased water resource
consumption in actual grain production. At the regional level, Qinghai Tibet Plateau has
the largest value of consumption reduction contribution of water resources (CRCw)under
both scenarios, followed by the Northern arid and semiarid region, Loess Plateau and
Northeast China Plain. However, the Qinghai-Tibet Plateau has a low grain planting area
and limited water resource consumption, so its reference value is insufficient. Thus, the
Northern Region has a greater effect on water resource reduction. In particular, because of
the rare rainfall all the year-round, the water resource consumption of grain production
mainly depends on irrigation water in the Northern arid and semiarid region [26], which
is part of the temperate continental climate region. CRCw is 14.68%, higher than in other
agricultural regions. Through grain planting structural adjustment, 102.27 × 108 m3 of
water resources were saved, accounting for 47.98% of the actual increase in the total water
demand for grain production in this region.

Table 2. Effect of grain planting structure adjustment on water resources consumption during 2003–2019.

Regions Agricultural Division
Actual Water Changes

(108 m3)
Water Saved

(108 m3)
CRCw

(%)

The Northern Regions

Northeast China Plain 576.42 159.33 11.37
Huang-Huai-Hai Plain 268.52 59.21 3.53

Loess Plateau −2.66 40.44 12.57
Northern arid and semiarid region 213.14 102.27 14.68

The Southern Regions

Qinghai Tibet Plateau −1.53 2.02 22.86
Sichuan Basin and surrounding regions −31.37 10.33 1.78

Middle-lower Yangtze Plain 320.05 11.53 0.57
Southern China −123.96 −4.62 -1.51

Yunnan-Guizhou Plateau −75.65 19.82 3.22

National Total - 1133.05 437.09 5.72

CRCw—means consumption reduction contribution of water resources.

The southern region is located in subtropical and tropical climates and has abundant
water resources. Statistics also show that the water resources per unit arable area in
southern regions is 8 times that in northern regions [27]. The value of water saved and
CRCw are relatively low in the southern regions. Middle-lower Yangtze Plain, which is
the most important grain planting area in the southern regions, the water resources saved
accounted for about 1/30 of the actual increase in water resources consumption due to
the expansion of grain planting area. Even, the water resources consumption has further
increased by grain planting structural adjustment in Southern China and CRCw is −1.51%.

4. Discussion

As the population grows and wealth increases, people can buy more varied and
resource-intensive diets. For now, the human demand for food is still increasing. It has
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been found that global agricultural production may need to increase by 70–110% to meet
the growing demands associated with human uses and livestock feed by 2050 [28]. There
is increased competition for land, water, energy and other inputs into food production [29].
The expansion of built-up areas occupies a lot of arable lands in the process of rapid
urbanization, crowding out the space for grain production [30]. Recent studies also show
that future urbanization will result in a 1.8–2.4% loss of global cultivated lands by 2030 [31,32].
The sudden outbreak of COVID-19 has alerted the world to the importance and seriousness
of food security [33,34]. Global food security faces even more severe challenges in the
future. However, China has achieved a sustained and steady increase in grain output in the
process of rapid urbanization, which has ensured the country’s food security. The study
results prove that the proportion of grain planting increased, such as corn, which alleviated
the pressure of grain production on the consumption of cropland and water resources to a
certain extent.

Remarkably, with the improvement of technology and living standard, people pay
more attention to the nutritional content in food consumption, which further enhances
the substitutability among different food crops demands. For the past few years, the
consumption quantity of animal food increases year by year, especially the consumption
of milk and dairy product. At the same time, grain consumption decreases significantly.
This reflects the replacement of basic rations with feed and industrial grains. In China, the
food structure of residents is transforming from vegetable fiber orientation to animal fat
and high protein orientation. FAO statistics on the food supply of countries and regions
indicate that per capita nutritional level of the Chinese Mainland is close to Japan, Taiwan
and Korea, which is 3 kcal each day [35,36]. Consumer demand tends to be more about the
nutrient content of a grain crop than its type. Therefore, the structure of grain production
weakens the constraints on food supply. In that sense, the adjustment of the grain planting
structure becomes an inevitable trend. It is possible to increase grain production and reduce
the pressure of cropland and water resource consumption by increasing the planting area
of high-yielding crops in the context of marketization.

However, the study also found that the adjustment of grain planting structure of the
corn and other crops were concentrated in the northern regions, such as the Northern
arid and semiarid region, the Northeast China Plain and the Loess Plateau, which are also
areas with severe water shortage. Although the structural adjustment has improved the
utilization efficiency of cropland and water resources, the growing acreage of food crops has
further aggravated the contradiction of water shortage in northern regions. It has brought
more pressure to the ecologically fragile northern regions. By contrast, the southern regions
with superior water and heat conditions are suitable for grain production. The loss of
the agricultural labor force has resulted in the abandonment of arable land [37,38], which
threatens agricultural production and food security. In a word, the natural conditions for
grain production in the northern regions, such as heat and water resources, are inferior to
those in the southern regions. The spatial movement of grain production barycenter and
the spatial dynamic change of grain planting structure aggravated the spatial imbalance
of cropland and water resources to some extent. What should be paid attention to is the
spatial dislocation between the expansion of grain production and the natural resources,
such as cropland, heat and water resources.

Therefore, future research should focus on the following points: First, the regional
types of grain production in China are classified, such as core area, potential area and buffer
area. The purpose is to clarify the ability to ensure self-sufficiency in food demands. Second,
the trend of grain planting structure adjustment was predicted from the perspective of
the nutrient content of crops. In the end, it is also of great significance to further explore
the effects of the adjustment of grain planting structure on the consumption of cropland
and water resources at the microscale, such as prefecture-level city or county units. In
addition, in this paper, the scenario analysis was used to analyze the process of adjustment
for grain planting structure in China and its effect on the consumption of cropland and
water resources in the past ten years, but it lacks the prediction of grain planting structure
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and its impact in the future. Next, different scenarios can be set to predict the adjustment
of grain planting structure, such as policy intervention, natural disasters and international
market environment. Based on this, it is of great significance to explore the impact on the
consumption of cropland and water resources for agricultural sustainable development.

Ensuring agricultural production and food security is a systematic project that in-
volves not only natural factors such as water, heat and land, but also social and economic
factors such as economic development, urbanization and the international market envi-
ronment. Therefore, in other words, a sustainable agricultural system is one which is
environmentally sound, nonexploitative and which contributes to economic development
and social progress [39]. For the stable operation of the agricultural system, it is necessary
to encourage the southern regions with rich-water resources to increase the planting area
of grain crops and meet its self-sufficiency in grain demand and guide the agricultural
areas with water shortage to plant crops in the same season of rain and heat, to improve
the spatial matching relationship between the planting of grain crops and cropland and
water resources consumption. It is also very important to balance the supply and demand
of domestic agricultural products for ensuring food security through international grain
market cooperation.

5. Conclusions

In this paper, a mathematical econometric model was established by using a scenario
comparison analysis method to analyze the process of grain planting structural adjustment
and its impact on the consumption of cropland and water resources from 2003 to 2019. The
main conclusions were drawn as follows:

During the study period, China’s outputs of major farm products exhibited a marked
upward trend, which can be divided into the rapid growth stage (2003–2015) and the
fluctuating growth stage (2016–2019). Meanwhile, the grain planting structure has changed
greatly and rice was replaced by corn to become the grain crop with the maximum propor-
tion of planting area since 2007. The increase of corn planting structure proportion was
concentrated in the northern regions, such as Northeast China Plain, Northern arid and
semiarid region and Loess Plateau.

At the national level, the saving of cropland and water resources consumption showed
a “cumulative effect” by the adjustment of the grain planting structure. CRCl and CRCw
were 4.62% and 5.72%, respectively. The structural adjustment of grain planting still has
a certain effect on saving the consumption of cropland and water resources. From the
regional perspective, the impacts of structural adjustment in the northern regions, where
cropland resources are relatively abundant but water resources are scarce, are ”saving
cropland and water”, such as Northeast China Plain and Northern arid and semiarid
region. Meanwhile, that in the southern regions, where water resources are relatively
abundant, but cropland resources are scarce, are “saving cropland but not the water”, such
as Southern China and Middle-lower Yangtze Plain.
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Abstract: In ecologically fragile areas, an uncontrolled increase in urban development intensity
(UDI) will erode the ecological carrying capacity (ECC). This study aimed to explore the relationship
between UDI and ECC and quantify the impacts of UDI on ECC. The Three Gorges Reservoir Area
(Chongqing section) was chosen for the case study. Firstly, the UDI and ECC were comprehensively
evaluated. Then, the coupling coordination relationship between the two was analyzed by a coupling
coordination degree model. Finally, the influences of UDI on the coordinated development of the
two were analyzed by a geographically weighted regression model. The results show that the
distributions of UDI and ECC are opposite; UDI and ECC are mutually restricted to some extent.
UDI and ECC are moderately coupled and poorly coordinated, and a higher UDI is mostly correlated
to a higher coordination degree of UDI and ECC. In areas with higher UDI, an appropriate control
on population and economy may benefit the coordinated development. Meanwhile, in areas with
lower UDI, the promotion of population aggregation and economic investment would enhance the
coordinated development between UDI and ECC. This study could optimize the dimensional control
of UDI, which contributes to the long-term sustainability of ecologically fragile areas.

Keywords: ecologically fragile area; ecological carrying capacity; urban development intensity; the
Three Gorges Reservoir Area (Chongqing section); coupling coordination degree model; geographi-
cally weighted regression model; ordinary least squares model; pressure-state-response model

1. Introduction

According to the annual report of the China Council for international cooperation
in environment and development (CCICED) (2012), more than 360 million people are
living in ecologically fragile areas, accounting for about one-quarter of the total population
of China [1]. Meanwhile, there is a certain overlap between ecologically fragile areas
and poverty-stricken areas [2–4]. Therefore, equal attention to urban development in
ecologically fragile areas is necessary for the sustainable development of the whole region.

Ecological fragile areas are located in the transition zone of two different types of
ecosystems [5]. They are more sensitive to climate change, weak in anti-interference, and
prone to various ecological problems [6,7]. Lots of cities in ecologically fragile areas are fac-
ing challenges [7–9]. For example, various human activities (e.g., urban construction) tend
to have a huge impact on the environment, even posing a threat to ecological security [7,9].
Cities in ecologically fragile areas are in urgent need of development, which could alleviate
poverty. Therefore, for cities in ecologically fragile areas, how to achieve reasonable urban
development yet prevent environmental problems and ensure ecological security is an
important practical question.
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To address this issue, we need to investigate the impacts of urban development on
the environment. Recently, many scholars have described the process of urban develop-
ment from the perspectives of urbanization [10–12], urban expansion [13,14], land-use
change [7,15], and urban forms [16], and explored the various impacts of urban develop-
ment on the environment. However, these descriptions, focused on the physical changes of
urban development, do not apply to the real situation of cities in ecologically fragile areas.
In particular, due to the constraints of a complex terrain, the change in physical space in
ecologically fragile areas is not as significant an influencing factor as the socioeconomic
and demographic level [7,17]. Therefore, physical and socioeconomic explanations should
be suitable for revealing the realistic changes of urban development in ecologically fragile
areas.

Urban development intensity (UDI) can be defined as the multiple impacts of various
human activities on urban areas [18–20], including land-use intensity, population density,
economic intensity, etc. This term reflects the compound state of urban land use, population,
and economic development in a specific period [19,20]. It can well reflect the compound
changes of urban physical space and socioeconomic level, making it applicable to cities in
ecologically fragile areas. Furthermore, UDI has been widely used in urban planning, land
use, and other fields [18,20,21], and the control and guidance of UDI are a direct reflection
of relevant planning and policy [22]. Therefore, considering UDI as the basis to reveal
the relationship between urban development and the ecological environment would be
beneficial for urban managers and policymakers in ecologically fragile areas.

At present, there are some studies on the impact of UDI on the environment. It is
pointed out that excessive land-use intensity will reduce biodiversity [15,23,24]. Similarly,
an increase in land-use intensity would reduce the ecosystem regulation services [7,14]. In
addition, an increase in UDI leads to an increase in carbon dioxide emissions [16,19,25],
which may aggravate the urban heat island effect. Additionally, land-use intensity is
positively correlated with the PM2.5 concentration [26,27], which means a negative impact
on air quality. These studies give some suggestions for the control and guidance of UDI.
However, most of the evaluation factors for the impact selected in the above works are
relatively one-sided, and attention to ecological security issues is missing. Therefore, they
are not suitable for revealing the practical problems of ecologically fragile areas.

Ecological carrying capacity (ECC) [28], i.e., the environmental carrying capacity, is an
important index to reflect the state of the environment. According to the theory of urban
complex ecosystem [29], it is also the ability of the ecosystem to provide services, prevent
ecological problems, and protect regional ecological security. Those are exactly what cities
in ecologically fragile areas are concerned about. Specifically, the ECC is the comprehensive
“social–economic–natural” capacity of the urban complex ecosystem [30–32], including
support capacity, supply capacity, and coordination capacity. Therefore, it can reflect the
sustainable development ability of a region and has been widely developed in urban
planning, resource and environmental management, regional development, and other
fields.

The evaluation methods of ECC are rich, some of which can be applied to a variety
of different research scenarios [28,33,34]. In particular, the state space method, such as
the pressure-state-response (PSR) model [35–37], can better reflect the dynamic changes
of regional ECC in a certain period. This is conducive to the prevention of environmental
problems caused by the weakening of ECC in advance, which is very useful for ecologically
fragile areas. Thus, it is appropriate to consider the ECC assessed by the PSR model as the
basis for revealing the impact of UDI on the environment in ecologically fragile areas.

The Three Gorges Reservoir Area (Chongqing section) [38,39] is located in the upper
reaches of the Yangtze River, accounting for more than 85% of the whole Three Gorges
Reservoir area. As an ecotone of the karst landscape ecosystem and the karst forest
ecosystem in Southwest China, the Three Gorges Reservoir Area (Chongqing Section) is
a typical ecologically fragile area [6,40]. Due to the complex geological conditions, the
area is easily affected by various natural disasters, e.g., landslides, bank collapses, debris
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flows, etc. [39]. At present, research on the Three Gorges Reservoir Area (Chongqing
Section) mainly focuses on the evaluation of environmental sensitivity [6], landscape
change [41], and ecosystem services in the area [42], with less attention paid to an analysis
of the relationship between urban development and the environment. However, urban
development in the Three Gorges Reservoir Area (Chongqing section) also encounters
challenges faced by other cities in ecologically fragile areas. As a case study, it has typicality
and can reveal the impact of UDI on ECC.

To demonstrate the impact of UDI on ECC, it is also necessary to analyze the re-
lationship between UDI and ECC. However, little research has been conducted on the
relationship between UDI and ECC. Most research has been conducted on the relationship
between urban development and the environment, which can also indirectly illustrate
the relationship between UDI and ECC [10,12,43]. Meanwhile, the coupling coordination
degree model has been widely used to quantify the relationship between urbanization and
the environment (hereafter called relationships). For instance, relationships in the whole
country [12,44], river basin [10,45], and city [44,46] have been analyzed from the macro,
middle, and micro perspectives. It was found that the relationships of most regions in
China was in a state of moderately coupled and weakly coordinated [12]. Subsequently, we
found that there were obvious spatial differentiations in the coordination degree between
urban development and the environment [12,45]. Specifically, the coordination degree in
the eastern region of China with a mature urban development level was higher than that in
the middle and western regions, and this trend had been constantly strengthening from
2005 to 2016 [12]. Similarly, in research from 2021 [45], it was found that the relationships
of most areas in the Pearl River Delta were in a middle coupling and coordination state
from 2000 to 2015. Some cities located in the relatively central parts of the Pearl River
Delta, i.e., developed cities, had a higher coordination degree than the surrounding areas,
forming a core-periphery spatial distribution pattern. Furthermore, we found that this
phenomenon was not only affected by the spatial distribution of the cities, but also seemed
to be relevant to the urban development trajectories. In 2017, a case conducted in Shang-
hai [46], a developed city in China, found that the coordination degree of urbanization
and the environment was growing gradually from a barely coordinated stage to a highly
coordinated stage from 1980 to 2013. Therefore, we believe that there is a linkage between
the urban development trajectory and coordination degree growth: the higher the level of
urban development, the higher the coordination degree.

These previous studies have enriched our understanding of the interaction between
UDI and the ECC based on the relationship between urban development and the environ-
ment. It is mostly defined as a coupling and coordination relationship [44–47]. However,
most of the studies focus on urban developed areas, while less attention is paid to devel-
oping, ecologically fragile areas. Thus, there is a lack of targeted research that can better
reveal the practical problems in ecologically fragile areas. Meanwhile, it has become a
common phenomenon that in areas with higher urban development, such as developed
cities, the coordination degree of urbanization and the environment is higher than in other
areas. However, they have, as a result, failed to provide clear and adequate evidence of
what caused that common phenomenon, which is critical for further explanation of the
specific impact of urban development on the environment, as well as the impact of UDI on
the ECC.

To further explore the relationship between UDI and ECC in ecologically fragile areas,
this paper takes the Three Gorges Reservoir Area (Chongqing section) as a typical case
to explore the relationship between UDI and ECC in 2010, 2014, and 2019. First, we
establish a comprehensive index system to evaluate UDI and ECC. Then, we reveal the
coupling coordinated relationship between UDI and ECC by a coupling coordinated degree
model. Finally, we analyze the impact of UDI on the coordination degree of UDI and
ECC by a geographic weighted regression model. It is expected that the specific impact
of UDI on ECC in ecologically fragile areas can be revealed to provide valuable reference
suggestions for urban development strategies and management measures in ecologically
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fragile areas. Based on this, the urban development practice can be optimized, so that a
win–win situation between high-quality urban development and environmental protection
can be achieved in ecologically fragile areas.

The aims of this paper can be summarized as follows: (1) We use UDI and ECC
as crucial indicators to evaluate the realistic situation of urban development and the
environment in ecologically fragile areas from a dynamic perspective. (2) Motivated by
this, we analyze the spatiotemporal distribution characteristics of UDI and ECC, and
explore the reasons behind this phenomenon, as well as the potential relationship between
UDI and ECC. (3) Then, we analyze the spatiotemporal distribution characteristics of the
coupling coordination relationship between UDI and ECC, as well as the reasons behind
this phenomenon. (4) Based on this, we present the in-depth influences of different realistic
factors of UDI (e.g., economy, population) on the coordinated development of UDI and
ECC in the ecologically fragile areas in the long term. (5) Finally, we propose some effective
ways to achieve coordinated development for cities in ecologically fragile areas.

2. Materials and Methods

2.1. Study Area

The Three Gorges Reservoir Area (Chongqing section) is mainly located at the end of
the upper reaches of the Yangtze River [40,48]. Geographical coordinates range from 28◦28′–
31◦44′ N and 105′N◦49′–110◦12′ E. It involves 22 districts and counties in Chongqing,
starting from Jiangjin District in the west, Wushan County in the East, Wulong District
in the south, Wuxi County, and Kaizhou District in the north, as shown in Figure 1. The
whole Chongqing section covers an area of 46,158.53 km2 [38], accounting for 80% of the
Three Gorges Reservoir Area.

Figure 1. Study area. Sources: Standard Chinese Maps issued by the Ministry of Natural Resources (China) in 2020.

According to the National Plan for the Protection of Ecologically Fragile Areas issued
in 2008 [42], the Three Gorges Reservoir area (Chongqing section) is located in the southwest
karst rocky desertification ecologically fragile area. It is often affected by various natural
disasters, such as debris flow, soil erosion, etc. Meanwhile, the Three Gorges Reservoir area
plays an important role in national ecological security. As an ecological barrier area with
important ecological functions, the ecological security of this area is related to the overall
security of the entire upper reaches of the Yangtze River [38].
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By the end of 2009, the Three Gorges Project was completed, and the Resettlement
Project in the Three Gorges Reservoir Area (Chongqing section) smoothly came to an
end [42]. The Resettlement Project led to rapid urbanization in this area and caused some
problems for the environment. Therefore, at the end of 2013, the government positioned
the Three Gorges Reservoir Area (Chongqing section) as an Ecological Conservation and
Development Zone [49]. With more emphasis on environmental protection and ecological
development, this area entered the new era of urbanization transformation.

To authentically illustrate the development track of the Three Gorges Reservoir Area
(Chongqing section), the years 2010, 2014, and 2019 are selected as three key time points of
this research.

2.2. The Interaction between UDI and ECC

Based on previous studies [10,12,43], urban development and the environment are
mutually constrained and coordinated in a long time series. Therefore, the relationship
between UDI and ECC can be defined as a coupling coordination relationship. That is to
say, there is a dynamic equilibrium between the UDI and ECC. Under the impact of UDI,
the ECC shows a law of resilience and constantly converts from a balance to a new balance
for a certain period of time. We summarize the coupling mechanism between UDI and
ECC and represent it in Figure 2. The specific explanation is as follows.

 

Figure 2. Coupling mechanism between UDI and ECC. Source: Summarized according to the literature [10,12,43].

For instance, if the UDI continues to increase without regulation, the environmental
pressure would be exacerbated, especially for ecologically fragile areas [50,51]. With the
development of human society, human residences have moved from the countryside to the
city, the population has grown excessively, and the urban space has expanded. Following
this, the construction area of the city gradually expanded, and more and more skyscrapers
have sprung up. These activities resulted in the erosion of ecological spaces and the
continuous reduction of ecological resources such as green space and cultivated land. The
ecological security of the whole area will be under serious threat. As a result, the ECC
would inevitably decrease, and the initial equilibrium state would become imbalanced.

On the other hand, urban development is inseparable from the rigid constraints of the
environment [12,43]. The construction and expansion of a city, the growth of the popula-
tion, and the thriving of the economy inevitably consume many types of environmental
resources: land resources, water resources, forest resources, etc. When the consumption of
various resources exceeds the carrying capacity, it will affect the development of agriculture,
industry, and even tertiary industry. What is worse, in extreme cases, it can lead to terrible
natural disasters, such as soil erosion and drought. In that situation, the process of urban
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development has to slow down, or even stop. Then, the urban development intensity
decreases.

In addition, a coupling coordination degree (CCD) model could well reflect the mutual
influence and coordinated development of the two systems [52,53], which has been widely
used to analyze the coupling coordination relationship between urban development and
the environment [44–47]. It is also suitable for analyzing the relationship between UDI and
ECC.

2.3. Research Framework

We took 22 districts and counties in the Three Gorges Reservoir Area (Chongqing sec-
tion) as representatives, using the data from 2010, 2014, and 2019 to explore the interaction
between UDI and ECC in ecologically fragile areas.

First, we comprehensively evaluated UDI from the aspects of population, economy,
and land use in 2010, 2014, and 2019. We used a PSR model to assess the ECC in 2010, 2014,
and 2019. In addition, the space–time characteristics of UDI and ECC were represented,
which is useful for discussing the potential relationship between them.

Secondly, based on the understanding of the relationship of UDI and ECC, we used
a coupling coordination degree (CCD) model to analyze the coupling coordination rela-
tionship between UDI and ECC in ecologically fragile areas, and the coupling degree of
UDI and ECC (UDI–ECC coupling degree) and the coordination degree of UDI and ECC
(UDI–ECC coordination degree) were obtained.

Then, we further explored the specific impact of the UDI on the coordinated develop-
ment of UDI and ECC. The geographic weighted regression (GWR) model was adopted,
which could embed its geographical coordinates into the model during a regression analy-
sis and form a regression coefficient related to the location [54,55]. Thus, it could well reveal
the impact of UDI on the UDI–ECC coordination in the three dimensions of population,
economy, and land use.

Finally, according to the analysis results, we provide a discussion and give our conclu-
sions. The research framework is shown in Figure 3.

 

Figure 3. Research framework. Sources: Established by the authors.

474



Int. J. Environ. Res. Public Health 2021, 18, 7094

2.4. Methods
2.4.1. Evaluations of UDI and ECC
Evaluation of UDI

UDI reflects the compound state of urban land use, population, and economic devel-
opment in a specific period [18–20]. Considering previous studies on the measurements of
UDI [18–20] and the realistic situation in this paper, the comprehensive evaluation index
system of UDI constructed included three first-grade indicators (population concentration
intensity, economic agglomeration intensity, and land-use intensity). In addition, two
second-grade indicators were selected under the first-grade indicators. The final index
system is illustrated in Table 1, including six indicators.

Table 1. Evaluation index system of UDI and ECC.

Target Layer Element Layer Index Layer Unit Weight Direction

Urban
development

intensity (UDI)

Population concentration
intensity

Population density Person/km2 0.2455 +

Urbanization rate % 0.1116 +

Economic agglomeration
intensity

Economic density 10,000 yuan/km2 0.1759 +

Per capita GDP Ten thousand yuan 0.1129 +

Land-use intensity

Per capita construction
land area 100 m2/person 0.1324 +

Proportion of urban
built-up area in total area % 0.2217 +

Ecological carrying
capacity (ECC)

Ecological pressure

Per capita industrial waste
water discharge T/person 0.1036 _

Per capita industrial solid
waste discharge 10,000 m3/person 0.0917 _

Per capita industrial
emission T/person 0.0937 _

Energy consumption per
10,000 yuan output value

T standard
coal/person 0.1262 _

Ecological state

Green coverage rate of
built-up area % 0.0656 +

Forest coverage % 0.0832 +

Per capita cultivated land
area Hm2/person 0.0889 +

Per capita water resources 10,000 m3/person 0.1666 +

Ecological response

Standard rate of industrial
waste water discharge % 0.0581 +

Synthesis utilization rate
of industrial waste % 0.0558 +

Proportion of
environmental protection

investment in GDP
% 0.0666 +

Source: Chongqing Statistical Yearbook (the districts and counties data section) from 2011, 2015, and 2020 (the Statistical Yearbook for a
certain year only contains the data up to the previous year, which was decided by the Statistics Department in China); Historical Remote
Sensing Data of 22 districts and counties for 2010, 2014, and 2019; Environmental Statistics Bulletin and Water Resources Statistics Bulletin
of Chongqing from 2010, 2014, and 2019. The missing data were obtained by interpolation method.

Based on the multifactor comprehensive evaluation method, we also constructed a
measurement model of UDI as follows:
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f(xi) =
n

∑
i=1

xi·Wj (1)

where n is the number of research units; f(xi) is the UDI value of the i-th unit; xi is the
standardized value of the i-th unit on the j-th index; and Wj is the index weight of the j-th
index.

Referring to previous studies [18–20] and the real situation of the case, the calculation
results of UDI were classified with the Jenk’s Natural Breaks Classification method, as
shown in Table 2.

Table 2. Classification standard of UDI.

Low Level Middle Level High Level Over High Level

<0.22 0.22~0.96 0.96~1.93 >1.93
Sources: Literature [18–20].

Evaluation of ECC

The ECC is the comprehensive capacity of the social–economic–natural complex
ecosystem [30–32], including support capacity, supply capacity, and coordination capacity.
The pressure-state-response (PSR) model can well reflect the dynamic changes of this com-
prehensive capacity in a certain period of time, which is helpful for assessing ecologically
fragile areas. Therefore, we used the PSR model (Figure 4) to establish a comprehensive
evaluation method for ECC.

 

Figure 4. The framework of the PSR model. Source: Summarized by the authors according to the
literature [35–37].

The PSR model is composed of three parts [35–37]. The first part is the pressure level,
i.e., the impacts on the environment caused by the activities that exert some pressure on
the system. The second part is the state level, i.e., the description of the current situation of
the system. The last one is the response level, which refers to the response to the system in
the form of laws, regulations, and standards or environmental management behavior.

Based on the framework of the PSR model and previous studies [35–37] on the mea-
surements of ECC, four indicators were selected to represent the pressure level, four to
represent the state level, and three to represent the response level. The final index system
is shown in Table 1, including 11 indicators.

At the same time, based on the multifactor comprehensive evaluation method, a
measurement model of ECC was constructed. The details are as follows:
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g(yi) =
n

∑
i=1

yi·Wj (2)

where g(yi) is the ECC value of the i-th unit; yi is the standardized value of the i-th unit on
the j-th index; and Wj is the index weight of the j-th index.

Referring to the previous studies [35–37] and the realistic situation of the case, the
calculation results of ECC are classified with Jenk’s Natural Breaks Classification method,
as in the following Table 3.

Table 3. Classification standard of ECC.

Low Level Middle Level Higher Level High Level

<0.34 0.34~0.85 0.85~1.19 >1.19
Sources: Literature [35–37].

Index Weight and Direction

The entropy method and the analytic hierarchy process (AHP) were used to calculate
the weight of each index, which could achieve a good balance between subjective and
objective [36,52]. The calculation formula is as follows:

Wj = aWm + (1 − a)Wn, (3)

where n is the number of research units; Wj is the combination weight; Wm is the weight
given by the AHP; Wn is the weight given by the entropy method; a is the proportion of
the AHP weight in combination weight, with a value of 0.5; and 1 − a is the proportion of
the entropy method in combination weight.

The positives and negatives of all the indicators were determined according to whether
their roles are beneficial or harmful in the system in reality, as shown in Table 3.

2.4.2. Coupling Coordination Degree Model

The coupling coordination degree model can well analyze the coupling coordination
relationship between UDI and ECC [44–47]. It consists of a coupling degree model, a
comprehensive evaluation index, and a coordination degree model.

Coupling Degree

Coupling degree can measure the interaction degree between the system or elements.
To measure the coupling degree of UDI and ECC quantitatively, according to the cou-
pling coordination model, the measurement model of the UDI–ECC coupling degree is
constructed as follows:

C = 2
{

f(x)× g(y)/(f(x) + g(y))2
}1/2

, (4)

where C is the coupling degree, f(x) and g(y) are the index system function of UDI and the
index system function of ECC, respectively.

Comprehensive Evaluation Index

The comprehensive evaluation index indicates the comprehensive development level
of UDI and ECC. The function is as follows,

T = af(x) + bg(y) (5)

where a and b respectively represent the weight of UDI and ECC. According to previous
studies [44–47] and comprehensive consideration, this paper considers that they have the
same contribution, so a = b = 0.5 in the formula.
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Coordination Degree

Coordination degree was constructed from the comprehensive evaluation index T and
the coupling degree C, which can well measure the coordinated development level of the
whole system [44–47]. The function is as follows:

D =
√

C•T, (6)

where D is the coordination degree. Moreover, C ∈ [0,1], D ∈ [0,1], the coupling degree is
directly proportional to the C value, and the coordination degree is directly proportional to
the D value. When C = 1, the UDI and ECC reach the optimal coupling state. When D = 1,
UDI and ECC reach the optimal coordination state.

At the same time, referring to the existing research results, the calculation results
of the coupling degree and coordination degree were classified by the Equal-interval
Classification method [44–47], as in Table 4.

Table 4. Classification standard of coupling coordination degree.

Coupling Degree C
Value

Coupling Degree
Coordination

Degree D Value
Coordination Level

0.8 < C < 1 Highly coupled 0.8 < D ≤ 1 Highly coordinated

0.5 < C ≤ 0.8 Moderately coupled 0.6 < D ≤ 0.8 Moderately
coordinated

0.3 < C ≤ 0.5 Weakly coupled 0.4 < D ≤ 0.6 Weakly coordinated

0 < C ≤ 0.3 Barely coupled 0 < D ≤ 0.4 Barely coordinated
Sources: Literature [44–47].

2.4.3. Moran’s I

Testing the spatial autocorrelation of dependent variables is a prerequisite for the
application of the geographically weighted regression model [54,55]. We used the global
Moran’s I to test whether there was a significant spatial correlation between the coordina-
tion degree of UDI and ECC. The specific calculation formula is as follows:

I =

n
n
∑

i=1

n
∑

j=1
Wij(xi − x)(xj − x)

(
n
∑

i=1

n
∑

j=1
Wij)

n
∑

i=1
(xi − x)2

(7)

where n is the number of research units; xi and xj are the observed value of the marked
i and j of research units; and Wij is the spatial weight matrix. If the research units are
adjacent, the result is 1; if they are not adjacent, the result is 0.

When I > 0, it means that the results are positively correlated, which represents that
the research units belong to the aggregation spatial layout, and there is an autocorrelation.
When I < 0, it means that the results are negatively correlated, which indicates that the
research units and the research units belong to a decentralized spatial layout.

The global Moran’s I exponential statistics are generally tested by constructing value
statistics (The Z value is the deviation between the attribute of element i and its average
value); the calculation formula is as follows:

Z =
I − E(I)√

var(I)
, (8)

where E(I) is the expected value, var(I) is the variance, and the evaluation standard of the
Z value is as in Table 5.
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Table 5. Value evaluation criteria.

Z Value (Standard
Deviation)

p Value (Probability) Confidence

<−1.65 or >+1.65 <0.10 90.0000%

<−1.96 or >+1.96 <0.05 95.0000%

<−2.58 or >+2.58 <0.01 99.0000%
Sources: Literature [54,55].

2.4.4. Geographically Weighted Regression Model

The geographically weighted regression (GWR) model is a spatial econometric regres-
sion analysis method [54,55]. It can reflect different influences of a variable in the region
based on different geographical coordinates.

Therefore, this paper analyzes the spatiotemporal differentiation characteristics of
the impact of UDI on the UDI–ECC coordination by the GWR model. The function of the
model is presented as follows:

yi = aio(ui, vi) +
n

∑
i=1

aik(ui, vi)·xik + εi (9)

where the coordinate of the i-th point is (ui,vi); xik is the independent variable of the ith
point; aio(ui,vi) is the estimated value of the constant term of the i-th point, aik(ui,vi) is the
estimated value of the regression parameter of the k-th independent variable at the i-th
point; n is the number of regression terms, and εi is the residual correction term.

To verify the fitting effect of the GWR model in this paper, the fitting parameters of
the GWR model will be compared with the traditional least square linear regression model.
The ordinary least squares (OLS) model is a global linear regression model, which uses
the best fitting line method to analyze the relationship between explained variables and
explanatory variables [55]. The calculation formula is as follows:

yi = βo +
n

∑
k=1

βkxik + εi, (10)

where yi is the value of the dependent variable at i-th point; xik is the value of the k-th
independent variable at the i-th point; k is the number of independent variables; βo is the
constant term; βk is the regression coefficient of the k-th independent variable; n is the
number of regression terms, εi is the residual.

In this paper, the weight function of geographically weighted regression is cali-
brated by the adaptive method, and the minimum Akaike information criterion (AIC)
method [54,55] is used to determine the bandwidth. The Akaike information criterion
(AIC) is a technique that measures the goodness of an estimated statistical model [56]. As
for the calculation results, the corrected Akaike information criterion (AICc) can help to
compare different regression models. R2 (the goodness of fit) [57] indicates the degree of
explanation of the regression equation to the changes of dependent variables. Adjusted R2

is the calculation result of variable compensation based on R2, which could minimize the
calculation error [57].

Both geographically weighted regression analysis and least square linear regression
analysis were completed in ArcGIS 10.2 (ESRI, Redlands, CA, USA).

2.5. Data
2.5.1. Data Resources

The social and economic data mainly came from the Statistical Yearbook published
by the Chongqing Municipality or the governments of each district and county (in the
Three Gorges Reservoir) from 2010 to 2020 (the statistical yearbook for a certain year only
contains data up to the previous year, which was decided by the Statistics Department in
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China). The environmental data mainly came from the Environmental Statistical Bulletin
of Chongqing and the Water Resources Statistical Bulletin of Chongqing from 2010 to 2019.
The spatial data mainly came from the geospatial cloud data of Chongqing from 2010 to
2019. The missing data were obtained by interpolation using the nearest year’s data, to
ensure the authenticity and integrity of the data.

2.5.2. Standardization Treatment

Due to the differences in dimensions, meanings, and attributes of the original data,
it was necessary to eliminate the influence caused by the differences. Thus, we used the
Z-score Equation (10) to standardize the original data, as follows:

x′i =
xi − x√

n
∑

i−1
(xi − x)2/(n − 1)

(11)

where xi is the original index value and x′i is the standardized value of xi.

3. Results

3.1. Spatiotemporal Variations of UDI

Based on the evaluation index system of UDI, we obtained the UDI values of the
22 districts and counties in the Three Gorges Reservoir Area (Chongqing section) for the
years 2010, 2014, and 2019. Then, we analyzed their spatial distributions and temporal
changes by ArcGIS 10.2 (ESRI, Redlands, CA, USA) and SPSS 25 (IBM, Armonk, NY, USA).

As shown in Figure 5, in 2010, 2014, and 2019, the cities with relatively high UDI were
mostly distributed in the upper reaches of the Three Gorges Reservoir Area, close to the
main urban area of Chongqing. On the contrary, the cities with relatively low UDI were
mostly located in the lower reaches of the Three Gorges Reservoir Area. Yuzhong District
had the highest UDI value, and the average of the UDI over the three years reached 7.82,
which means it stayed at an over high level. Wuxi County had the lowest UDI value, and
the UDI average in the three years was as low as 0.147, which means it stayed at a low
level. This distribution phenomenon may be affected by the urban development pattern of
Chongqing. In particular, most of the central urban areas of Chongqing were located in the
upper reaches of the Three Gorges Reservoir Area, the UDI values of which were relatively
high.

Figure 5. Spatial distribution of UDI in the Three Gorges Reservoir Area (Chongqing section) in year 2010, 2014, and
2019 (presented in subfigure a–c, respectively). Sources: Calculation results of UDI in the Three Gorges Reservoir Area
(Chongqing section).

As shown in Figure 6, the variations of UDI average values of the counties were
not significant in 2010, 2014, and 2019, which indicates that the UDI in the Three Gorges
Reservoir Area was nearly constant on the whole. However, the UDI variance of districts
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and counties in the Three Gorges Reservoir Area (Chongqing section) was about 3.4 in
2010 and 2.92 in 2019, a decline of 0.48. That is, the UDI differences between districts and
counties narrowed over time. This indicates that the western development projects in the
western region of China have indeed achieved corresponding results for the past 10 years.

 

Figure 6. Changes of UDI in the Three Gorges Reservoir Area (Chongqing section). Sources: Calculation results of UDI in
the Three Gorges Reservoir Area (Chongqing section).

On the whole, the spatial distribution of UDI in the Three Gorges Reservoir Area
(Chongqing section) is high upstream and low downstream. In the terms of time, the
differences between districts and counties are shrinking, and a balanced development
trend between districts and counties is appearing.

3.2. Spatiotemporal Variations of ECC

After calculation, the ECC values in 2010, 2014, and 2019 were obtained. Then, the
spatial distributions and temporal variations were analyzed by ArcGIS 10.2 and SPSS 25.

As shown in Figure 7, the results show that the areas with relatively high ECC in the
Three Gorges Reservoir Area (Chongqing section) were mostly distributed in the middle–
lower reaches. In 2010, 2014, and 2019, Wuxi County had the highest ECC value with an
average value of 1.77, which means it stayed at a high level. Yuzhong District had the
lowest ECC value with an average value of 0.39, which means it stayed at a low level. This
situation was opposite to the distribution of UDI.

Figure 7. Spatial distribution of ECC in the Three Gorges Reservoir Area (Chongqing section) in year 2010, 2014, and
2019 (presented in subfigure a–c, respectively). Sources: Calculation results of ECC in the Three Gorges Reservoir Area
(Chongqing section).
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As shown in Figure 8, the average ECC values of the Three Gorges Reservoir Area
(Chongqing section) in 2010, 2014, and 2019 were all about 1, which means almost the
whole area was in the higher level for ECC. The variance values in 2010, 2014, and 2019 all
stayed at about 0.1, indicating that the distributions of ECC between districts and counties
were relatively concentrated and stable.

 

Figure 8. Changes of ECC in Three Gorges Reservoir Area (Chongqing section). Sources: Calculation results of ECC in
Three Gorges Reservoir Area (Chongqing section).

In summary, the ECC of the Three Gorges Reservoir Area (Chongqing section) formed
a spatial pattern of lower upstream and higher downstream. In terms of time, the ECC
stayed at a high level, and the changes of ECC were not significant. At the same time, the
high UDI areas had low ECC, while the low UDI areas had high ECC.

3.3. Coupling Coordination Degree between UDI and ECC

In 2010, 2014, and 2019, the UDI–ECC coupling degree in the Three Gorges Reservoir
Area (Chongqing section) remained at a medium or low level.

As shown in Figure 9, Wuxi County and Yuzhong District had the lowest UDI–ECC
coupling degree, showing that they were barely coupled. The districts in the high coupling
stage were Nan’an District, Dadukou District, Shapingba District, Jiangbei District, and
Jiulongpo District. Their UDI–ECC coupling degree values were all over 0.8 in 2010, 2014,
and 2019. Meanwhile, most of them were distributed in the upper reaches, close to the
main area of Chongqing.

Figure 9. Spatial distribution of coupling degree in the Three Gorges Reservoir Area (Chongqing section) in year 2010, 2014,
and 2019 (presented in subfigure a–c, respectively). Sources: Calculation results of the CCD model.

The average values of the UDI–ECC coupling degree in 2010, 2014, and 2019 were
0.566, 0.576, and 0.502, respectively. We can see that the average value declined by 0.064
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from 2010 to 2019. This may indicate that the overall UDI–ECC coupling degree of the
Three Gorges Reservoir Area (Chongqing section) had a slight downward trend.

As shown in Figure 10, in 2010, 2014, and 2019, the UDI–ECC coordination degrees of
the Three Gorges Reservoir Area (Chongqing section) were mostly at a low level. Specif-
ically, there were 13, 15, and 13 districts and counties that had a UDI–ECC coordination
degree values lower than 0.4, in 2010, 2014, and 2019, respectively. Meanwhile, most of
the districts and counties with relatively low coordination were distributed in the lower
reaches, and parts of them were distributed in the middle and upper reaches.

Figure 10. Spatial distribution of coordination degree in the Three Gorges Reservoir Area (Chongqing section) in year 2010,
2014, and 2019 (presented in subfigure a–c, respectively). Sources: Calculation results of the CCD model.

On the whole, the average values of UDI–ECC coordination were 0.377, 0.367, and
0.338 in 2010, 2014, and 2019, respectively, showing a decreasing trend over time. This
demonstrates that the UDI–ECC coordination degree value declined over the past 10 years,
and most of the districts and counties in the Three Gorges Reservoir Area (Chongqing
section) were in a barely coordinated state.

As we can see from Figure 11, it is worth noting that the UDI–ECC coupling degrees
and UDI–ECC coordination degrees of Yuzhong District (high UDI, low ECC), Wuxi County
(low ECC, high ECC), and Wushan County (low ECC, high ECC) were all at a relatively
low level in 2010, 2014, and 2019. This indicates that the UDI–ECC coupling degrees and
UDI–ECC coordination degrees of these areas were barely coupled and weakly coordinated
for a long time.

 

(a) (b) 

Figure 11. Cont.
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(c) 

Figure 11. Comparison of UDI-ECC coupling degree and UDI–ECC coordination degree in 2010 (a), 2014 (b), and 2019 (c).
Sources: Calculation results of the CCD model.

Therefore, the values of UDI and ECC should be kept in a relatively balanced range,
which is more helpful for the coordination of UDI and ECC.

3.4. The Impacts of UDI on UDI–ECC Coordination Degree

According to the relevant research [11,18,20], the coordination degree value in the
CCD model can well measure the coordinated development level of the whole system.
Therefore, the UDI–ECC coordination degree can be used to represent the coordinated
development levels between UDI and ECC.

After a comparison with the previous results in Sections 3.1 and 3.3, we found that the
coordination degree of the regions with higher UDI is also higher. It is worth exploring
what kind of impact UDI has on the UDI–ECC coordination degree.

To figure out the answers, this section will use a GWR model to analyze the internal
influence of the UDI on the UDI–ECC coordination degree in different dimensions.

3.4.1. Spatial Autocorrelation Test

Based on the evaluation criteria in Table 5, the global Moran’s I values of the UDI–ECC
coordination degree were greater than 0 in 2010, 2014, and 2019, indicating that the spatial
distribution of the UDI–ECC coordination had a positive spatial correlation. As shown
in Table 6, in 2010, 2014, and 2019, the Z values were 5.225, 3.282, and 3.708, respectively,
and higher than the test value of 2.58. In other words, they were all in the 99% confidence
interval of normal distribution. There was indeed a significant spatial correlation between
the coordination degree of UDI and ECC.

Table 6. Moran’s I value of coordination in Three Gorges Reservoir Area (Chongqing section).

Year Moran’s I
Z Value (Standard

Deviation)
p Value (Probability) Confidence

2010 0.506 5.225 0 99%

2014 0.304 3.282 0.001 99%

2019 0.347 3.708 0.0002 99%
Sources: Calculation results of the global Moran’s I.
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3.4.2. Selection of Independent Variables and Model

For the independent variables, we first selected six indicators from the three dimen-
sions of population, economy, and land: urbanization rate, population density, economic
density, per capita GDP, construction land proportion, and per capita construction land
area. After the significance test and multicollinearity test, only the indicators population
density, per capita GDP, and per capita construction land area were chosen to represent the
UDI from the dimensions of population, economy, and land, respectively.

Motivated by this, we used the GWR model and OLS model to analyze the impacts
of UDI on UDI–ECC coordination in 22 districts and counties in 2010, 2014, and 2019,
respectively. The calculation results of the GWR model and the OLS model are shown in
Table 7. By comparison, we found that R2 (the goodness of fit) of the GWR model were
higher than that of the OLS model, and AICc were lower than that of the OLS model.

Table 7. The fitting parameters of the GWR model and OLS model (2010, 2014, and 2019).

Year Index
GWR Model OLS Model

AICc R2 Adjusted R2 AICc R2 Adjusted R2

2010

Population density −48.4281 0.5502 0.4978 23.4375 0.4638 0.4370

Per capita GDP −46.8069 0.5175 0.4594 33.9026 0.4481 0.4205

Per capita construction land area −82.6492 0.8951 0.8898 3.5383 0.8951 0.8898

2014

Population density −21.2195 0.4136 0.3581 30.4726 0.3539 0.3216

Per capita GDP −21.5387 0.4222 0.3669 32.4790 0.3776 0.3465

Per capita construction land area −42.8567 0.7662 0.7544 18.4766 0.7662 0.7544

2019

Population density −52.3502 0.81 0.7568 109.4140 0.1081 0.0636

Per capita GDP −40.9364 0.6403 0.5625 34.7369 0.0588 0.0117

Per capita construction land area −58.5241 0.7879 0.7773 11.8778 0.7879 0.7773

Sources: Calculation results of the GWR model. Note: A lower AICc value means the model better fits the observed data. The R2 value
varies from 0 to 1. The larger the value, the better. The adjusted R2 is usually lower than the R2 value. Its evaluation standard is the same as
for R2.

Furthermore, we found that the fitting parameters of the OLS model and GWR model
were almost unchanged with per capita construction land area as the independent variable.
However, the fitting parameters of the two models changed significantly when population
density or per capita GDP was an independent variable. This indicates that the impacts
of UDI on UDI–ECC coordination under the land-use dimension may not have spatial
differences, and the spatial differences were more reflected in the impacts of population
and economy.

Therefore, in this study, the GWR model has a better fitting effect and a stronger
explanation of geographic differences than the OLS model. It is appropriate to choose the
GWR model to explain the impacts of UDI on UDI–ECC coordination.

3.4.3. Impacts of UDI on UDI–ECC Coordination Degree

The impacts of UDI on the UDI–ECC coordination degree in different dimensions are
analyzed by the GWR model in this section.

For the UDI in population dimension (P-UDI), the average regression coefficients in
2010, 2014, and 2019 were 0.1214, 0.1667, and 0.1644, respectively, which indicates that the
impact of P-UDI on the UDI-ECC coordination was gradually strengthened in the Three
Gorges Reservoir Area (Chongqing section).

As shown in Figure 12, in 2010 and 2014, the regression coefficients in 22 districts
and counties were all positive, and the values in the upstream area were lower than in the
downstream area. However, in 2019, the impact of P-UDI on the UDI-ECC coordination
appeared an obvious spatial differentiation. In the middle and upper reaches of the Three
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Gorges Reservoir Area (Chongqing section), there were weak/negative values, while in
the lower reaches, there were strong/positive values.

Figure 12. Spatial distribution of regression coefficient of P-UDI in year 2010, 2014, and 2019 (presented in subfigure a–c,
respectively). Sources: Calculation results of the GWR model from the population dimension.

Specifically, as Figure 13 shows, in 2019, the P-UDI regression coefficients in sixteen
districts and counties changed from positive to negative, and only six remained positive.
In particular, the values of four districts and counties in Northeast Chongqing, Yunyang,
Fengjie, Wushan, and Wuxi, increased significantly from 2014 to 2019. This shows that
the impact of P-UDI on the UDI-ECC coordination has changed from a positive effect to a
negative effect in most areas.

Figure 13. Changes of regression coefficient of P-UDI in the Three Gorges Reservoir Area (Chongqing section). Sources:
Calculation results of the GWR model from the population dimension.

Therefore, for good coordination in the Three Gorges Reservoir Area (Chongqing
section), those areas with negative values should appropriately control the excessive
population aggregation, while those with positive values should appropriately guide the
population growth.
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For UDI in the economic dimension (E-UDI), the average regression coefficients of
2010, 2014, and 2019 were 0.0943, 0.1536, and 0.045, respectively, indicating that the E-UDI
on the UDI–ECC coordination first strengthened and later weakened over the past 10 years.

As shown in Figure 14, similar to the population dimension, in 2010 and 2014, the
regression coefficients of 22 districts and counties in the Three Gorges Reservoir Area
(Chongqing section) were positive, and the upper reaches were lower than the lower
reaches. When it came to 2019, the impact of E-UDI on the UDI–ECC coordination showed
an obvious spatial differentiation, i.e., the values were negative in the upper reaches and
positive in the middle and lower reaches.

Figure 14. Spatial distribution of regression coefficient of E-UDI in year 2010, 2014, and 2019 (presented in subfigure a–c,
respectively). Sources: Calculation results of the GWR model from the economic dimension.

Specifically, as Figure 15 shows, in 2019, the E-UDI regression coefficients of twelve
districts and counties changed from positive to negative, and only ten remained positive. In
particular, the values of five districts and counties located in the middle and lower reaches,
including Kaizhou, Yunyang, Fengjie, Wushan, and Wuxi, have increased significantly
during 2014–2019. This shows that the impact of E-UDI on the UDI–ECC coordination has
changed from positive effect to negative effect in more than half of the regions in 2019.

 

Figure 15. Changes of regression coefficient of E-UDI in the Three Gorges Reservoir Area (Chongqing section). Sources:
Calculation results of the GWR model from the economic dimension.
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Therefore, we should pay attention to ensuring a balanced economic development both
in the upstream and downstream areas of the Three Gorges Reservoir Area (Chongqing
section), and increasing investment in underdeveloped areas, so as to improve the coordi-
nation development for the whole region.

For UDI in the land-use dimension (L-UDI), the average regression coefficients of
L-UDI in 2010, 2014, and 2019 were 0.1255, 0.2042, and 0.1685, respectively, indicating
that the impact of L-UDI on UDI–ECC coordination degree was significantly enhanced
from 2010 to 2014. From 2014 to 2019, urbanization in the Three Gorges Reservoir Area
(Chongqing section) entered the transition period, and the growth of UDI slowed down.
Therefore, the regression coefficients of L-UDI in 2019 were lower than those in 2014. To
summarize, L-UDI has a low positive correlation with UDI–ECC coordination.

As shown in Figure 16, in 2010, 2014, and 2019, the regression coefficients of 22 districts
and counties in the Three Gorges Reservoir area were all positive, and the values of
regression coefficients were nearly close. Furthermore, as shown in Figure 17, in 2010, 2014,
and 2019, the variance of the L-UDI regression coefficient of the whole region remained
around 0. Therefore, there was no spatial differentiation. These were consistent with our
inference in Section 3.4.2.

Figure 16. Spatial distribution of regression coefficient of L-UDI in year 2010, 2014, and 2019 (presented in subfigure a–c,
respectively). Sources: Calculation results of the GWR model from the land-use dimension.

 

Figure 17. Changes of regression coefficient of L-UDI in the Three Gorges Reservoir Area (Chongqing section). Sources:
Calculation results of the GWR model from the land-use dimension.
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In addition, the regression coefficient of L-UDI has been kept at a low positive value
in the past 10 years, which indicates that the appropriate improvement of L-UDI will be
conducive to UDI–ECC coordination.

By comparing the mean values of the regression coefficient of UDI in different dimen-
sions, we can find that the mean value of the L-UDI regression coefficient (0.166) > the mean
value of the P-UDI regression coefficient (0.1508) > the mean value of E-UDI regression
coefficient (0.0977). This shows that the UDI–ECC coordination degree was affected more
by L-UDI and P-UDI than by E-UDI. What is more, the impacts of the dimensions on
the UDI–ECC coordination degree all showed a low degree of positive correlation, which
means that an appropriate increase in UDI may be helpful for the improvement of the
UDI–ECC coordination degree.

4. Discussion

The fundamental spatial distribution pattern of ECC is determined by the natural
environment [28,58]. The terrain is high in the east and low in the west in the Three Gorges
Reservoir Area (Chongqing section) [38]. The area with steep terrain has more abundant
natural resources, such as forest, water, etc. In this study, a stable spatial distribution with
relatively low ECC upstream and relatively high ECC downstream reflects this point. The
spatial distribution of ECC is also affected by social and economic factors [30,32]. In 2008,
the National Council released the National Ecological Function Zoning, identifying the
Three Gorges Reservoir Area as one of 25 key ecological function areas [42]. Then, in 2013,
the Chongqing municipal government issued the Ecological Conservation Function Zone
Planning, mentioning the important role of the Three Gorges Reservoir area (Chongqing
section) in maintaining the overall ecological quality [42]. The varying of ECC in the Three
Gorges Reservoir Area (Chongqing section) over the past 10 years is not significant, and the
whole ECC stays at a high level. Therefore, we can see that these policies indeed played a
positive role, and we should pay more attention to the implementation of relevant policies
in the future.

Previous studies suggested that effective land use is of positive significance in terms
of ecosystem services and ECC [7]. The results of this study demonstrate the same points.
In the Three Gorges Reservoir Area (Chongqing section), the UDI values were relatively
high upstream and relatively low downstream in 2010, 2014, and 2019. With the release of
a series of policies [42], such as the Chengdu Chongqing Urban Agglomeration Planning
in 2016, etc., the districts and countries in the upper reaches have had more economic
investment and opportunities, and the UDI has developed faster than in the lower reaches.
Meanwhile, the ECC has maintained a high level over the past 10 years, which indicates
that reasonable guidance of UDI is conducive to maintaining a high ECC. However, it
is worth noting that areas with extremely high UDI are linked to extremely low ECC.
Therefore, we speculate that the UDI and ECC may be mutually restricted within a certain
range, but this situation is not obvious outside the range.

Based on a further analysis of the relationship between UDI and ECC, we found that
the UDI–ECC coupling degree and UDI–ECC coordination degree of the Three Gorges
Reservoir Area (Chongqing section) were mostly in the state of moderate coupling and
weak coordination in 2010, 2014, and 2019. Previous studies [12] have found that the
coupling coordination relationship in most regions of China was at a low level. Therefore,
the results of this study also verify this point, indicating that there are some contradictions
between urban development and the environment in many parts of China, especially in
ecologically fragile areas.

Previous studies [10,45,46] have shown that a higher urban development level, such as
in the Yangtze River Delta and Pearl River Delta, is linked to a higher coordination degree
between urban development and the environment. However, the specific impact of UDI on
the coordination degree between urban development and the environment requires further
analysis. In this study, we found that the areas with relatively high UDI correlate to the
higher UDI–ECC coordination degree—that is, also the area close to the main urban area
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of Chongqing. At the same time, the UDI–ECC coordination degree often stayed at a low
level in areas where the values of UDI and ECC were extreme (too high or too low). This
verifies our initial assumption that too high a UDI value will restrict the ECC. Therefore,
we believe that the UDI level can promote the coordinated development between UDI
and ECC to a certain extent. The values of UDI and ECC in the region should be kept to a
relatively narrow range, not too high or too low, for the coordinated development of urban
spaces and the environment.

Moreover, we have analyzed the specific impact of UDI on UDI–ECC coordination by
the GWR model. The UDI of different dimensions and UDI–ECC coordination degree all
had a weakly positive correlation in 2010, 2014, and 2019. In particular, the UDI changes
in population and land had a greater positive impact on UDI–ECC coordination than
changes in the economy. This means that the reasonable improvement of UDI was, to a
certain extent, conducive to the UDI–ECC coordination. This confirms our hypothesis
about the impact of UDI on UDI–ECC coordination, and applies to most areas in the Three
Gorges Reservoir Area (Chongqing section). Motivated by this, we also found that the
impacts of P-UDI and E-UDI on the UDI–ECC coordination degree had obvious spatial
differentiations, while the impacts of L-UDI on the UDI–ECC coordination degree had
no spatial differentiation yet showed a slightly positive correlation in the whole region.
Therefore, we put forward some corresponding suggestions for improvement based on the
specific research results, as follows.

Specifically, in the regions with relatively high UDI, i.e., the upper reaches areas of
the river, the impacts of P-UDI on the UDI–ECC coordination degrees went from positive
to negative over time. This shows that the improvement in P-UDI used to have a positive
effect on the degree of coordination in a certain range, but now has a moderately negative
effect. The impacts of E-UDI on UDI–ECC coordination showed a similar development
trajectory, and were relatively lower than those of P-UDI. Therefore, in areas with high UDI,
more attention should be paid to controlling overpopulation and encouraging a balanced
economic distribution, which will be useful for the coordinated development of urban
spaces and the environment.

For regions with relatively low UDI, i.e., the lower reaches, the impacts of P-UDI
and E-UDI on UDI–ECC coordination were positive and had a tendency to strengthen.
In particular, the impacts of P-UDI were greater than those of E-UDI. This indicates that
appropriate improvements in UDI in the population and economy will be conducive to
UDI–ECC coordination in areas with low UDI. Therefore, we should improve the UDI in
the region appropriately, such as by leading to population aggregation and enhancing the
economic investments, to facilitate the coordinated development of urban spaces and the
environment.

5. Conclusions

In this paper, taking the Three Gorges Reservoir Area (Chongqing section) as a typical
ecologically fragile area, the UDI and ECC in this area in 2010, 2014, and 2019 were
evaluated, and the internal relationship of UDI and ECC was analyzed using the CCD and
GWR models. On this basis, the impact of UDI on the environment was discussed in depth.

Specifically, we found that: (1) The distributions of UDI and ECC are different. The
UDI and ECC may be mutually restricted to some extent. (2) UDI and ECC are mostly
moderately coupled and lowly coordinated. Extreme UDI and ECC values are linked to
extreme coordination degrees. (3) The UDI–ECC coordination degree tends to be higher
in areas with higher UDI. However, it is not suitable for a case with extreme values. (4)
UDI can promote the coordinated development of UDI and ECC to some extent. (5) The
UDI changes in population and land have a greater impact on UDI–ECC coordination
than those in the economy. (6) For areas with different UDI, the measurements to promote
the coordinated development of UDI and ECC should be different. Specifically, in areas
with higher UDI, i.e., the upper reaches, more attention should be paid to controlling
overpopulation and encouraging a balanced economy distribution, which will be conducive
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to the coordinated development of urban spaces and the environment. Meanwhile, in
areas with lower UDI, i.e., the lower reaches, promotion of population aggregation and
economic investment will encourage the coordinated development of urban spaces and the
environment.

The results of this study have revealed the relationship between UDI and ECC and
the specific impact of UDI on the coordinated development of the two, and enriched our
theoretical understanding of the impact of urban development on the environment. This
is helpful for city managers and policymakers in ecologically fragile areas to formulate
different control measures for UDI under different dimensions and promote the realization
of long-term sustainable development and a virtuous circle.

This paper has some limitations. The impacts of UDI in different dimensions on
the coordinated development of UDI and ECC have been revealed. We also found that
some areas in the Three Gorges Reservoir Area (Chongqing section) are facing extremely
imbalanced coordinated degree values, if let be, which will be detrimental to the ecological
security for the whole region. However, due to the limitations of the methods and the short
time selected, the specific desirable range of UDI remains to be further studied, especially
for the imbalanced areas. Therefore, we expect to conduct targeted research in imbalanced
areas in the future, using system models such as neural network algorithms and system
dynamics models to calculate the numerical rational range of UDI from a long time series.
This will be useful for the dynamic monitoring of UDI, and potential ecological security
problems can be prevented in time.
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Abstract: As the “Third Pole”, the Qinghai-Tibet Plateau is threatened by environmental changes.
Ecosystem vulnerability refers to the sensitivity and resilience of ecosystems to external disturbances.
However, there is a lack of relevant studies on the driving factors of ecosystem vulnerability. There-
fore, based on spatial principal components analysis and geographic detectors methods, this paper
evaluates the ecosystem vulnerability and its driving factors on the Qinghai-Tibet Plateau from the
years 2005 to 2015. The results were as follows: (1) The ecosystem vulnerability index (EVI) of the
Qinghai-Tibet Plateau is mainly heavy and extreme, showing a gradually increasing trend from
southeast to northwest. (2) The spatial heterogeneity of the EVI is significant in the southeast and
northwest, but not in the southwest and central parts. (3) Analysis of influencing factors shows that
environmental factors have more significant effects on EVI than socioeconomic variables, facilitating
the proposal of adequate policy implications. More efforts should be devoted to ecological protec-
tion and restoration to prevent grassland degradation and desertification in the high-EVI areas in
northwest. The government is also urged to improve the ecological compensation mechanisms and
balance ecological protection and residents’ development needs in the southeast.

Keywords: ecosystem vulnerability; spatiotemporal distribution; influencing factors; Qinghai-Tibet
Plateau; principal components analysis

1. Introduction

Ecosystem is the general term for all organisms and environments within a particular
space. Ecosystems are complex open systems, mainly including social systems, natural
systems and social-natural coupled systems [1]. According to Adger [2], vulnerability is
the sensitivity of ecosystem under the stress of natural and social changes due to the lack
of adaptability. In recent years, as a result of increased human activities and global climate
changes, ecosystems have been under increasing pressure, aggravating their vulnerability
towards a series of stressors [3]. Ecosystem vulnerability assessments are therefore critical
in global environmental change research [4], providing a decision-making basis and techni-
cal support for ecological protection and environmental restoration and governance [5].
Ecosystem vulnerability has become a hot spot of global environmental change and sus-
tainable development research [6–9]. Understanding the driving mechanisms of regional
ecological vulnerability evolution can facilitate the establishment of guidelines for the use
and protection of the regional ecological environment [10].

Several studies have considered the impacts of climate change and natural disasters on
ecosystem vulnerability. For example, based on the prediction results of temperature and
precipitation under low (B1), medium (A1B) and high (A2) emission scenarios, released
in the fourth assessment report of the International Panel of Climate Change (IPCC),
Gonzalez et al. [11] studied the changes in vegetation vulnerability patterns in global
ecosystems in the 21st century. Based on their results, one-tenth to one-half of the global
vegetation area may be highly (confidence level 0.80–0.95) to very highly (confidence ≥ 0.95)
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vulnerable to climatic changes. Similarly, Alexander et al. [12] assessed the vulnerability of
tropical ecosystems in southern Ecuador and found differences in ecosystem vulnerability
under different climate scenarios. Patrick et al. [13] investigated the vulnerability of
52 major vegetation types in the western United States exposed to changes in temperature
and precipitation under RCP 4.5 scenarios (RCP4.5, Representative Concentration Pathway
4.5, a moderate emission scenario proposed by the Coupled Model Intercomparison Project
Phase 5). Their results showed that by the middle of the 21st century, 33 vegetation types
will be faced with high or very high vulnerability, of which more than 50% will have higher
regional vulnerability levels.

In recent years, the vulnerability of different types of ecosystems has gradually been
studied, with a higher number of studies on the vulnerability of certain ecosystem sys-
tems, such as mining areas, economically developed areas and oceans. For example,
Sarah et al. [14] assessed the vulnerability of marine ecosystems in California and found
that tidal flats, beaches, salt marshes and intertidal rocky ecosystems were most vulnerable
to human activities. Similarly, Zhang et al. [15] investigated the effects of extreme rainfall
on ecosystem vulnerability in the middle and lower reaches of the Yangtze River in China
and showed that both human-dominated ecosystems (e.g., agro-ecosystems) and natural
ecosystems are vulnerable to extreme climate events. The current vulnerability studies of
typical ecosystems that are particularly sensitive to global climate change mainly focus on
coastal zones [16–18] and wetland regions [19,20]. However, there are no studies on the
vulnerability of high-elevation ecosystems, such as the Qinghai-Tibet Plateau, the largest
and highest plateau in the world. Due to its unique environment, it is highly sensitive to
climate change and human activities, with a fragile ecosystem [21].

China is one of the countries with the most vulnerable ecosystem types in the world,
and the research on its ecosystem vulnerability began in the 1980s. For example, Niu [22]
conducted a study from the perspective of the ecotone. Early studies mainly focused
on the impacts of climate change, extreme weather and natural disasters on ecosystems,
such as the analysis of the vulnerability of China’s forest ecosystems under global climate
change [23]. In the 1990s, socio-economic factors started to become increasingly considered
in the assessment of ecosystem vulnerability, such as the relationship between the fragile
zone of the ecosystem and the population [24] or the relationship between ecosystem
vulnerability and agricultural development [25]. Since the 21st century, natural and socio-
economic factors have been regarded as important factors that play a crucial role assessing
ecosystem vulnerability, and numerous related studies have been conducted in typical
regions, such as the Three Rivers Source [26]. In addition, the vulnerability of different
components of an ecosystem, such as grassland ecosystems [27], was further studied.

In recent years, as the government has started to increasingly consider the importance
of environmental integrity, substantial investments have been made in the field of ecological
protection. For example, in 2020, the Chinese government put forward the concept of
building a “beautiful China” and promoted the construction of an ecological civilization.
As a consequence, researchers are paying more attention to the evaluation of ecosystem
vulnerability in typical regions with serious ecological and environmental problems. Even
though in some areas of the Qinghai-Tibet Plateau, studies on ecosystem vulnerability have
been performed, there is a lack of consideration of anthropogenic factors [28]. Due to the
construction of infrastructure, such as the Qinghai-Tibet Railway, and the development
of tourism, the intensity of human activities in the Qinghai-Tibet Plateau has increased
sharply. Against the background of the implementation of China’s ecological protection
policy, it is now necessary to gain insights into the overall ecosystem vulnerability and
driving forces of the Qinghai-Tibet Plateau. Such studies can provide theoretical references
for the sustainable development of the Qinghai-Tibet Plateau and put forward feasible
suggestions for the protection of this area.

The objective of this study is to explore the temporal and spatial changes of ecosys-
tem vulnerability and the impacts of natural and socio-economic factors on the Qinghai
Tibet Plateau. Specifically, we tested two main hypotheses: (1) the spatial distribution of
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ecosystem vulnerability has significant spatial patterns; (2) the impacts of natural factors
on ecosystem vulnerability are greater than those of socio-economic factors.

2. Literature Review

2.1. The Concept of Ecosystem Vulnerability

Since the concept of ecological vulnerability has evolved from vulnerability, we start
with a brief review of the development of the vulnerability concept. There are numerous
statements about the concept of vulnerability. In 1945, White et al. [29] put forward the
“adaptation and adjustment view” for the first time when studying flood disasters, which
marked the beginning of vulnerability research. After that, White [30] defined vulnerability
as a system, subsystem or system component due to its exposure and sensitivity, making it
susceptible to external disturbance and pressure. Timmerman [31] defined vulnerability
as the degree to which a system is adversely affected or damaged. After that, Dow [32],
Cutter [33] and the IPCC [34] defined ecosystem vulnerability from different perspectives.
In the 21st century, the concept of vulnerability has been widely used in many fields,
including sustainable development [35], climate change [3] and ecology [12].

Ecosystem vulnerability was initially introduced into ecology by Clements, with the
concept of the “ecological transition zone” [36], and a unified definition of ecosystem
vulnerability as not yet been provided (Table 1). At present, the IPCC’s definition of vulner-
ability has been widely accepted and adopted in the field of climate change research. Based
on relevant literature, ecosystem vulnerability can be summarized as the sensitivity and
resilience of ecosystems in response to external interference including human disturbance,
climate change, etc.

Table 1. Some definitions of ecosystem vulnerability.

Organization/Author Definition of Ecosystem Vulnerability

Williams et al. [37]
The potential of an ecosystem to modulate its response to stressors over time and space, where that
potential is determined by the characteristics of an ecosystem with many levels of organization. It is an
estimate of the inability of an ecosystem to tolerate stressors over time and space.

Birkmann [38] The sensitive response and self-restoring ability of an ecosystem when it is subjected to external
interference. It usually occurs within a specific time and space and is an inherent attribute of the ecosystem.

IPCC [39] The degree of sensitivity and self-regulation of an ecosystem to disturbances caused by climate change,
including extreme weather events.

2.2. Assessment of Ecosystem Vulnerability

Ecosystem vulnerability studies rely on building assessment models. At present, there
is no unified model for ecosystem vulnerability assessment; the common evaluation models
include the Pressure-State-Response model (PSR) [21] and the Exposure-Sensitive-Adaptive
model (ESA) [40]. Based on the PSR model framework, some scholars have developed a se-
ries of models by adding factors, such as the Driving force-Pressure-State-Impact-Response
(DPSIR) [41] and the Pressure-Support-State-Response (PSSR) [42]. Similar to the ESA mod-
els, there is the Vulnerability-scoping-Diagram (VSD) model [43]. Based on PSR and ESA
models, some scholars have also proposed Pressure-Sensitivity-Elasticity (PSE) [44] and
Sensitivity-Resilience-Pressure (SRP) models [45]. The ecosystem vulnerability assessment
model is developing in the direction of integrating multiple systems and multiple factors.

On the basis of the indicator system, ecological vulnerability assessment needs to be
carried out in conjunction with the assessment methodology, such as the hierarchical analy-
sis method [46], the fuzzy evaluation method [47], the artificial neural network method [48],
the entropy weight analysis method [49] and the expert scoring method [50]. With the de-
velopment and application of RS (Remote Sensing), GIS (Geographic Information System),
GPS (Global Positioning System) and other technologies, vulnerability assessment results
have become more dynamic. For example, Yaw et al. [51] used GIS and RS to analyze the
vulnerability of the Niger River Basin and its influencing factors. The spatial principal
components analysis method (SPCA), based on principal components analysis and spatial
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feature extraction, has advantages in ecosystem vulnerability assessment [52]. For example,
it not only adds spatial constraints to the traditional PCA but also considers the spatial
dependence in data sets.

Since the purposes and regional characteristics of the studies, along with their em-
phasize, can largely differ, there is no unified index system. In recent years, ecosystem
vulnerability assessment indicators for different regions have been selected (Table 2). In
this study, the Sensitivity-Resilience-Pressure (SRP) model was used to construct the index
system. This model is constructed based on the connotation of ecosystem stability and
has been widely used in the Karst Mountains [53], the Yimeng Mountain area [45] and
the Shiyang River region [54], among others. Here, sensitivity reveals the resistance of the
ecosystem to various disturbances and is usually expressed by topographical and meteoro-
logical factors. In contrast, restoration refers to the ability of an ecosystem to be restored to
the original state after damage by internal and external interference factors; it is mainly
characterized by vegetation factors. Pressure refers to the variety of pressures from anthro-
pogenic interference, often expressed by population pressure and intensity of economic
activities. Since ecosystem vulnerability is generally the result of a combination of natural
and human activities, the driving factors that affect changes in ecological vulnerability can
be divided into two categories: natural and socio-economic factors [10,55].

Table 2. Different ecosystem vulnerability assessment indicators.

Year Study Area Level Indicators Secondary Indicators

2017 Yellow River Delta, China [20] Pressure, support,
state, response

Land reclamation rate, population density, human
disturbance index, normalized difference vegetation
index (NDVI), afforestation area percentage,
Shannon’s evenness index, ecological water
percentage, pollution load, elastic degree of wetland
evaluation; wetland area of change, gross
domestic product

2018 Southern Shaanxi, China [10] Environmental topography
and socio-economic level

Cultivation ratio, land use rate, natural growth rate,
population density, gross domestic product (GDP) per
capita, agricultural output, industrial output, NDVI,
average precipitation, average annual temperature,
hours of sunshine, average elevation

2018 Jiangsu, China [56] Pressure, state, response
Soil erosion sensitivity, soil desertification sensitivity,
landscape patch density, landscape evenness, land
resource use degree

2020 Ningxia Hui Autonomous
Region, China [57] Natural and social factors

Digital elevation model, hours of sunshine, average
annual precipitation, average annual temperature,
NDVI soil erosion and degree of land use, GDP,
agricultural output, industrial output, population
density, grassland area

2020 Karst Mountains, China [53] Sensitivity, resiliency, pressure Climate, soil, terrain, water, geology, vegetation, land
use, social development, economic development

3. Study Area and Data Sources

3.1. Study Area

The Qinghai-Tibet Plateau in southwest China is the highest plateau in the world, also
known as the “Third Pole” (Figure 1). Its average elevation is more than 4000 m above sea
level. The administrative regions include Tibet Autonomous Region, Qinghai Province and
parts of Xinjiang Uygur Autonomous Region, Gansu, Sichuan and Yunnan Province. It is
the birthplace of the Yangtze River, the Yellow River and the Lancang River, among others.
The terrain is diverse, containing valleys and basins and the climate is highly complex
and largely affected by the terrain. The spatial and temporal distribution patterns of air
and heat on the Qinghai-Tibet Plateau are significant. The southeastern area is warm and
humid, whereas the northwestern area is dry and cold. The annual average temperature
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of the entire region ranges between 5.6 and 17.6 ◦C. Annual precipitation is unevenly
distributed, gradually decreasing from 2000 mm to less than 50 mm from southeast to
northwest. Under the influence of temperature and precipitation, the surface cover type
changes from southeast to northwest, gradually transitioning from forest and shrub areas
to grassland, meadow and desert. As a result of overgrazing, the alpine grassland on
the Qinghai-Tibet Plateau is subjected to serious desertification. The major ecological
issues faced include freeze-thaw erosion, hydraulic erosion, desertification, salinization
and water scarcity [58].

Figure 1. Geographical location of the Qinghai-Tibet Plateau.

3.2. Data Sources

For this study, the data used include socio-economic, remote sensing, topographic,
meteorological and land use (Table 3) from 2010, 2010 and 2015. They were mostly ob-
tained from the Resource and Environmental Science Data Center of the Chinese Academy
of Sciences (RESDC) and include socio-economic (population and GDP (gross domestic
product)), topographic (DEM (digital elevation model)), meteorological (annual precip-
itation and average annual temperature) and land use data with a spatial resolution of
1 km. Remote sensing data were obtained from MODIS (Moderate resolution imaging
spectroradiometer) and include NDVI (Normalized difference vegetation index), NP (Net
Primary Productivity) and ET (Evapotranspiration). The spatial resolution of NDVI and
NP is 1 km ant that of ET 500 m.

Table 3. Basic data and sources of ecological vulnerability assessment for the Qinghai-Tibet Plateau.

Type Source Spatial Resolution Temporal Resolution

NDVI MODIS/MOD13A3 [59] 1 km Monthly
Land use RESDC [60] 1 km Yearly
DEM RESDC 1 km Yearly
Annual average temperature RESDC 1 km Yearly
Annual precipitation RESDC 1 km Yearly
NPP MODIS/MOD17A3 1 km Yearly
ET MODIS/MOD16A3 500 m Yearly
Population RESDC 1 km Yearly
GDP RESDC 1 km Yearly

Notes: NDVI is Normalized difference vegetation index; DEM is digital elevation model; NPP is Net Primary Productivity; ET is Evapotran-
spiration; GDP is gross domestic product; RESDC is Resource and Environment Science and Data Center, Chinese Academy of Sciences.
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All data were preprocessing using the ARCGIS 10.2 software. First, all data were
projected into the same coordinate system (WGS_1984_UTM_45N) and then cut into the
same spatial boundary according to the study area. Finally, the spatial resolution of data
was unified to 1 km by bilinear interpolation. The NDVI represents the monthly data with
12 periods per year, and the annual NDVI was generated by selecting the annual maximum.

4. Research Method

4.1. Technical Route

The study was divided into the following four steps (Figure 2):

 

Figure 2. Flowchart showing the process followed in this analysis for assessing ecosystem vulnera-
bility of the Qinghai-Tibet Plateau.
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Step 1: Establishing the ecosystem vulnerability assessment index system. According
to the Sensitivity-Resilience-Pressure (SRP) model, the indicators were selected from three
aspects: ecological sensitivity, resilience and pressure.

Step 2: Mapping the distribution of ecosystem vulnerability. First, the indicators were
standardized and uniformly mapped to the same value range to solve the problem of
inconsistent original data units. Subsequently, the spatial scale of ecological vulnerability
was determined using the ARCGIS 10.2 software and the SPCA method.

Step 3: Spatial heterogeneity analysis. The spatial and temporal distribution character-
istics of ecosystem vulnerability were analyzed via exploratory spatial data analysis.

Step 4: Driving force analysis. Using the factor and interaction detector in the geode-
tector model, the effects of natural and socio-economic factors on ecosystem vulnerability
were analyzed.

4.2. Establishing an Ecosystem Vulnerability Assessment Indicator System

In this study, the Sensitivity-Resilience-Pressure (SRP) model was used to construct
the index system. The selected 12 indicators were divided into three categories, namely
sensitivity, resilience and pressure (Table 4). In previous studies of ecosystem vulnerability
in Shiyang River Basin [54], Karst [53] and Yimeng [45] mountainous areas using SRP model,
sensitivity is considered to be the product of the interaction between the topographic factors
and the distribution of meteorological factors. In this study, annual average temperature,
annual precipitation and ET were just selected to reflect the hydrothermal conditions of the
ecosystem [10,28]. Here they are not affected as external hazards. Elevation, slope, surface
cutting depth and degree of relief were used to characterize the regional topography [61].
Resilience is usually characterized by vegetation factors [62], and NDVI and NPP were
selected to reflect vegetation growth. The NDVI can detect the vegetation growth status
and accurately reflect the surface vegetation coverage [63]. The NPP not only reflects the
productive capacity of vegetation communities, but also represents ecosystem quality [64].
Pressure factors include population density, gross domestic product density and land
use rate. Population density and GDP density represent the degree of population and
economic concentration, reflecting the interference intensity of human activities. When
the disturbance intensity exceeds the carrying capacity of the ecosystem, the ecological
environment will be degraded, resulting in increased ecosystem vulnerability [26]. The
land use rate (proportion of cultivated land) was selected to reflect the influence of human
activities on land use.

Table 4. Ecosystem vulnerability assessment indicators for the Qinghai-Tibet Plateau.

Factor Category Indicator Type

Sensitivity

Annual precipitation (PRE) −
Annual average temperature (TEM) −
Evapotranspiration (ET) −
Elevation (ELE) +
Slope +
Surface cutting depth (SCD) +
Degree of relief (DR) +

Resilience
Normalized difference vegetation index (NDVI) −
Net Primary Productivity (NPP) −

Pressure
Population density (PD) +
Gross domestic product density (GDPD) +
Land use rate (LUR) +

Note: “+” means positive action; the greater the value, the lower the quality of the ecological environment, the
greater the probability of a fragile ecological environment; ”−” means reverse action.
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4.3. Mapping Ecosystem Vulnerability
4.3.1. Data Standardization

Standardization is generally carried out to solve the issue of inconsistent original data
units [53]. There are two relationships between ecosystem vulnerability and evaluation
factors [65]. The lower the index value, the lower the ecosystem vulnerability, representing
a positive correlation. Conversely, there is a negative correlation, that is, the lower the index
value, the stronger the ecosystem vulnerability. The maximum-difference normalization
method was used to standardize the positive and negative indicators. For the positive indi-
cators in the ecosystem vulnerability assessment index system, the standardized methods
are as follows [10]:

Mi =
Xi − Xmin

Xmax − Xmin
, (1)

The negative indicators are treated as follows:

Mi =
Xmax − Xi

Xmax − Xmin
, (2)

where “Mi” is the standardized value of index i; “Xi” is the initial value of index i; “Xmin”
is the minimum value of index i; “Xmax” is the maximum value of index i.

4.3.2. Spatial Principal Components Analysis

Spatial principal components analysis (SPCA) is a statistical analysis method that
converts initial multiple indicators into irrelevant comprehensive indicators by dimension
reduction [66,67]. At the same time, the correlation between the original evaluation indexes
is reduced, and the information reflected by the original variables is kept to the maximum
extent with less comprehensive indices to avoid the repetition of the indicators affecting
the accuracy of the evaluation. In this study, we analyzed 12 standardized indices by
principal components analysis to generate a new comprehensive index. By solving the
correlation coefficient matrix of the index, the feature vector was obtained, and 12 principal
component results are acquired. The principal component with a cumulative contribution
rate of more than 85% was selected to replace the original index, and the principal factor
was determined [67]. On this basis, the comprehensive index of the principal component
was calculated as follows [66]:

PCi = a1iX1 + a2iX2 + a3iX3 + . . . aniXn, (3)

where “PCi” is the i-th principal component; “a1i, a2i. . . ani” are the feature vectors corre-
sponding to the respective index factors of the i-th principal component; “X1, X2. . . Xn” are
the respective index factors.

The ecosystem vulnerability index (EVI) was calculated based on the principal compo-
nents analysis, using the following equation [68]:

EVI = b1PC1 + b2PC2 + b3PC3 + . . . bnPCn, (4)

where “EVI” is the ecosystem vulnerability index; “bi” is the contribution rate correspond-
ing to the i-th principal component; “PCi” is the i-th principal component; “n” is the first n
principal component whose cumulative contribution rate exceeds 85%. The SPCA in this
study was calculated by the ArcGIS 10.2 software. The SPCA results for the years 2005,
2010 and 2015 are shown in Table 5.

To compare the EVI results of several years, the EVI was standardized as follows:

Ki =
EVIi − EVImin

EVImax − EVImin
, (5)

where “Ki” is the standardized value of ecosystem vulnerability in the i-th year, with a
value range of 0–1; “EVIi” is the actual value of the ecosystem vulnerability index in the i-th
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year; “EVImax” is the maximum value of the i-th ecosystem vulnerability index; “EVImin” is
the minimum value of the i-th ecosystem vulnerability index.

Table 5. Results of the SPCA (spatial principal components analysis) of ecosystem vulnerability on
the Qinghai-Tibet Plateau.

PC
Eigenvalues

Contribution Ratio of
Eigenvalues/%

Cumulative Contribution
of Eigenvalues/%

2005 2010 2015 2005 2010 2015 2005 2010 2015

1 0.0669 0.0729 0.0763 48.7327 48.5814 51.9332 48.7327 48.5814 51.9332
2 0.0391 0.0429 0.0392 28.5202 28.5649 26.6587 77.2529 77.1463 78.5920
3 0.0101 0.0105 0.0092 7.3796 7.0087 6.2786 84.6325 84.1550 84.8706
4 0.0070 0.0079 0.0072 5.0880 5.2544 4.8803 89.7204 89.4094 89.7509

4.3.3. EVI Classification

We used natural breakage classification (NBC) to classify the EVI to reflect different
degrees of ecosystem vulnerability. This method is generally used to analyze the statistical
distribution of attribute, maximizing the difference between classes [56]. In this study,
according to the results of the NBC for 2005, the EVI was divided into five grades, namely,
slight, light, medium, heavy and extreme vulnerability (Table 6). Subsequently, the ArcGIS
10.2 software was used to visualize the spatial distribution of EVI.

Table 6. Classification of the ecosystem vulnerability index (EVI).

EVI Slight Light Medium Heavy Extreme

Grading standard <0.35 0.35–0.5 0.5–0.64 0.64–0.77 >0.77

4.4. Spatial Heterogeneity Analysis

The exploratory spatial data analysis method (ESDA) can be used to reveal the spatial
interaction mechanism by describing and visualizing the spatial distribution pattern [69].
According to the different scales of analysis, global and local spatial autocorrelation are
often used to study the spatial feature of the observation [56]. Here, this was performed
using the OpenGeoda 1.16.0.16 software at a spatial resolution of 1 km. Global spatial
autocorrelation analysis is mainly used to reflect the cluster degree of similar attributes in a
study area [70]. The degree of spatial autocorrelation is usually measured by the Global
Moran’s I proposed by Moran [71]. Local spatial autocorrelation is mainly used to measure
the spatial correlation and difference between the region of the research target and its
surrounding areas [72].

The global Moran index is calculated as follows:

Ii =
N

∑N
i=1(xi − x)2 × ∑N

i=1 ∑N
j=1(xi − x)

(
xj − x

)
∑N

i=1 ∑N
j=1 wij

, (6)

where “I” is the Moran index, “N” is the number of research objects, “xi” and “xj” are the
spatial attribute values of the research objects, and “wij” is the spatial weight matrix. The
value range of “I” is [–1, 1]. If the index is greater than 0, the space is positively correlated;
if it is smaller than 1, it is negatively correlated. At a value equal to 0, there is no correlation.

The specific equation to calculate local spatial autocorrelation is as follows:

Ii =
N

∑N
i=1(xi − x)

× (xi − x)× ∑N
j=1 wij(xi − x), (7)

where when Ii > 0, the local space of the research target is positively correlated, and the
surrounding area presents a similar attribute value cluster. When the attribute values of
the research target area and the surrounding research area are both high, they are hotspot
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clusters, generally represented by high-high (HH); when the attribute values of the research
target area and its surrounding research area are low, they are coldspot clusters, generally
represented by low-low (LL). When Ii < 0, the research target’s local space is negatively
correlated, and the surrounding area of the research target shows the opposite phenomenon
of attribute value cluster. When the attribute value of the research target area itself is high,
but that of the surrounding area is low, it is a high-low cluster, generally represented by
high-low (HL). When the attribute value of the research target area itself is low, but that of
the surrounding area is high, it is a low-high cluster, generally represented by low-high (LH).

4.5. Driving Force Analysis

The Geographic Detector Model (GDM) is a set of statistical methods to identify spatial
differentiation among the geographical elements. This method can quantitatively analyze
the driving mechanisms of geographical phenomena and is widely used to determine the
explanatory power of driving factors and the interaction between factors without too many
hypothetical conditions [73–75].

The GDM includes four detectors, namely risk detector, factor detector, ecological
detector and interaction detector. In this study, factor detector and interaction detector were
used to analyze the driving factors of ecosystem vulnerability on the Qinghai-Tibet Plateau,
with the aim to explore the main driving mechanism of ecosystem vulnerability and to
compare the spatial consistency between EVI and evaluation indices. If a factor dominates
the cause of vulnerability, vulnerability will exhibit a spatial distribution similar to the
evaluation index and the intra-layer variance is lower than the inter-layer variance. Using
q-statistics to measure the decisive effect of each evaluation index on EVI, the calculation
method is as follows [76]:

q = 1 − ∑L
h=1 Nhδ2

h
Nδ2 , (8)

where “q” is the explanatory power of the influencing factors to the vulnerability of the
ecosystem, “N” is the sample size, “L” is the classification number of the index factors and
“Nh” and “δ2

h” represent the variance of h-layer sample size and ecosystem vulnerability,
respectively. The value of the q-statistic is in the range of [0, 1]; the larger the value, the
stronger the explanatory power of the influence factor to the ecosystem vulnerability, and
its spatial distribution is consistent with the EVI. When the q-statistic is equal to 0, there
is no significant relationship between the given influence factor and the EVI distribution.
When the value is 1, the impact factor can fully explain the spatial variation of the EVI.

The interaction detector was adopted to reveal the factor explanatory power to the
results after multi-factor interaction, that is, whether the interaction of impact factors X1
and X2 will strengthen or weaken the impact on ecosystem vulnerability. The main types
are shown in Table 7.

Table 7. Interaction Detector Model.

Description Interaction Type

q (X1∩X2) < Min (q (X1), q (X2)) Non-linear-weaken
Min(q (X1), q (X2)) < q (X1∩X2) < Max(q (X1)), q (X2)) Uni-weaken
q (X1∩X2) > Max (q (X1), q (X2)) Bi-enhance
q (X1∩X2) = q (X1) + q (X2) Independent
q (X1∩X2) > q (X1) + q (X2) Non-linear-enhance

Note: q (X1∩X2) represents the interaction effect of influencing factors X1 and X2, and q (X1) and q (X2) represent
the respective effects of X1 and X2, respectively.

5. Results

5.1. Spatiotemporal Variations in Ecosystem Vulnerability
5.1.1. Temporal Variations in Ecosystem Vulnerability

The ecosystem vulnerability levels in most areas of the Qinghai-Tibet Plateau were
dominated by heavy and extreme vulnerability (Figure 3). In 2005, 2010 and 2015, heavily
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and extremely vulnerable areas accounted for 51.37, 51.64 and 53.08% of the total area,
respectively. Heavily vulnerable areas accounted for the largest proportions, namely 28.10,
28.62 and 29.07%, respectively. From 2005 to 2015, the proportions of slightly and medium
vulnerable areas decreased by 0.72 and 0.99%, respectively. The proportion of slightly
vulnerable areas did not change, whereas those of heavily and extremely vulnerable areas
increased by 0.97 and 0.77%, respectively.

Figure 3. Area proportions of different ecosystem vulnerability levels on the Qinghai-Tibet Plateau
in 2005, 2010 and 2015.

The transition areas of ecosystem vulnerability level were calculated for 2005, 2010 and
2015 (Figure 4). Area conversion mainly occurred between adjacent levels. For example,
the increasing areas of heavily and extremely vulnerable areas were former medium and
heavily vulnerable areas. From 2005 to 2015, highly vulnerable areas were mainly a result
of the transformation of medium and extremely vulnerable areas, accounting for 76.32
and 23.64%, respectively. The extremely vulnerable areas are almost entirely transformed
into heavily vulnerable ones. The main types of ecosystem vulnerability scale conversion
include medium to high, light to medium, slight to light and high to extreme vulnerability.

 

Figure 4. Area conversion of ecosystem vulnerability grades on the Qinghai-Tibet Plateau in 2005,
2010 and 2015.
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5.1.2. Spatial Variations in Ecosystem Vulnerability

According to the spatial distribution pattern of EVI classification (Figure 5), the
Qinghai-Tibet Plateau as a whole is mainly extremely vulnerable. The overall distribution
of ecosystem vulnerability grades was higher in the northwest than in the southeast and
gradually increased from southeast to northwest. The ecosystem vulnerability level in the
northwest in 2005–2015 was mainly extreme; extremely vulnerable areas first decreased
and then increased, whereas for lightly vulnerable areas, the opposite pattern was observed.
Ecosystem vulnerability in the southeast was mainly slight and light, with a decrease in
slightly vulnerable areas. From southeast to northwest, the vulnerability index increased,
and the degree of vulnerability intensified. The middle area mainly showed a medium
vulnerability, and the area with medium vulnerability decreased over time.

Figure 5. Spatial distribution of ecosystem vulnerability on the Qinghai-Tibet Plateau in (a) 2005, (b) 2010 and (c) 2015.

To analyze the transition between different levels of ecosystem vulnerability on each
patch, we visualized the change in vulnerability grade from 2005 to 2015 (Figure 6). The
main changes in ecosystem vulnerability levels consisted of the reduction of slightly and
medium vulnerable areas and the increase in heavily and extremely vulnerable areas.
From 2005 to 2015, changes in ecosystem vulnerability occurred in 14.80% of the study
area, with 18 transformation types. The transition from medium vulnerability to heavy
vulnerability accounted for 3.30% of the study area and mainly occurred in the northwest
of the Qinghai-Tibet Plateau. The conversion of light vulnerability to medium vulnerability
accounted for 2.52% of the study area, mainly in the central region.

5.2. Spatial Heterogeneity of Ecosystem Vulnerability

The EVI Global Moran Index for 2005, 2010 and 2015 passed the significance test,
with values of 0.916, 0.915 and 0.929 (Figure 7). Ecosystem vulnerability showed positive
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spatial autocorrelation and high clustering. The overall cluster trend decreased first (from
2005–2010) and then slightly increased (from 2010–2015).

Figure 6. Temporal variations in ecosystem vulnerability on the Qinghai-Tibet Plateau in (a) 2005–2010, (b) 2010–2015,
(c) 2005–2010.

   
(a) (b) (c) 

Figure 7. Moran scatterplot of EVI on the Qinghai-Tibet Plateau in (a) 2005, (b) 2010, (c) 2015.

Using the local spatial autocorrelation index, the distribution of EVI spatial clustering
characteristics and the spatial variation difference on the time scale can be seen intuitively
from 2005 to 2015 (Figure 8). In 2005, 2010 and 2015, the distribution of spatial clustering
characteristics was similar. The spatial clustering characteristics of EVI on the Qinghai-Tibet
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Plateau were mainly high-high and low-low. The high-high area was mainly distributed on
in the Kunlun Alpine Plateau and in the Qaidam Basin in the northwest of the Qinghai-Tibet
Plateau, with heavy and extreme vulnerability. The low-low are was mainly distributed in
the southeast, with slight and light vulnerability. The southern part showed insignificant
spatial clustering distribution, mainly with medium vulnerability. Compared with other
cluster types, the distribution range of the low-high cluster type was lower. The distribution
range of the high-low agglomeration was the smallest; such areas were scattered in the
transition area from low-low to high-high clusters.

Figure 8. Local spatial autocorrelation diagram for the Qinghai-Tibet Plateau in (a) 2005, (b) 2010, (c) 2015.

5.3. Determinants and Interactions of EVI

In this study, we used the geographic detector method to determine the importance
and mutual influence of potential determinants of ecosystem vulnerability. The EVI mean
values for the years 2005–2015 were selected as dependent variables, and the corresponding
assessment indicators included socio-economic and natural factors. One of the most
important findings of this analysis is that natural factors contribute more significantly to
EVI than socio-economic factors.

By using factor detectors in geographical detectors, the q-statistics of the explanatory
power of each influencing factor to ecosystem vulnerability could be obtained (Table 8).
The q-statistics for natural factors ranged from 0.036 to 0.918, with an average value of 0.449.
All factors were statistically significant. The determinants of these factors (in descending
order) were the normalized difference vegetation index (NDVI), net primary productivity
(NPP), evapotranspiration (ET), annual precipitation (PRE), annual mean temperature
(TEM), elevation (ELE), Degree of Relief (DR), slope and surface cutting degree (SCD).
These results indicate that vegetation types and climatic characteristics are important
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determinants of the spatial distribution of ecosystem vulnerability, whereas the effect of
topography is relatively weak.

Table 8. Results for different factors of EVI.

Factors NDVI NPP ET PRE TEM ELE DR Slope LUR PD SCD GDPD

q statistic 0.918 0.868 0.746 0.600 0.334 0.239 0.152 0.150 0.067 0.063 0.036 0.022
p Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The q-statistical values of socio-economic factors ranged between 0.022 and 0.067,
with an average value of 0.051 (Table 8). The determinants of the socio-economic factors
obtained here can be ranked in descending order of land use ratio (LUR), population
density (PD) and GDP density (GDPD). Overall, q-statistics show that LUR, PD and GDPD
(in descending order) can significantly explain the spatial changes of EVI for the entire
Qinghai-Tibet Plateau. The total value ranged between 2.21 and 6.71%.

In addition to exploring the effects of single factors on ecosystem vulnerability, we
also used the interactive detection module in geographical detectors to analyze the effects
of two factors on ecosystem vulnerability. The results show that the interaction between
the two factors exceeded that only of a single factor (Figure 9). The effects of NDVI and ET
interaction on ecosystem vulnerability were the most significant, indicating that vegetation
and surface evapotranspiration were the main factors affecting ecosystem vulnerability on
the Qinghai-Tibet Plateau. The q-statistics between socio-economic factors were small, but
the interaction between the socio-economic and natural factors also strongly affected EVI.

 

Figure 9. Interactions between pairs of forces influencing EVI. (Notes: the q-statistic on the diagonal
line in each case denotes the separate effects of each variable (Table 2), whereas the lower periodic
matrix includes values for interactive effects between private sources.).
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There were two types of interactive detection results, namely bi-enhanced and non-
linear enhanced effects (Figure 10). Most of the interaction of the two factors showed
bi-enhanced effects, and a few showed nonlinear enhanced effects. In fact, the bi-enhanced
effects were most often observed for topographic factors (e.g., between elevation and
slope and between elevation and slope), which means that the interaction effect was more
significant than that produced by a single factor. The interaction effects exhibited nonlinear
enhanced effects (such as NDVI, NPP, climate and other factors), indicating that they
exceeded the effects of the sum of their individual factors.

 

Figure 10. Interaction type between pairs of forces influencing EVI.

6. Discussion

6.1. Spatial Distribution of Ecosystem Vulnerability

Based on remote sensing data, we used spatial principal components analysis to
evaluate the ecosystem vulnerability of the Qinghai-Tibet Plateau for the years 2005, 2010
and 2015 at a spatial resolution of 1 km. The distribution of ecosystem vulnerability showed
significant spatial differences, and the overall distribution trend gradually increased from
southeast to northwest. The spatial distribution characteristics were similar to those of
previous studies on Tibetan Plateau vulnerability [61]. The ecosystem vulnerability of
the Qinghai-Tibet Plateau is mainly heavy and extreme, whereas previous studies found
medium or heavy vulnerability; these differences might be related to the boundary of the
study area and the criteria of vulnerability classification. Previous studies have focused on
some areas of the Qinghai-Tibet Plateau, such as the Tibet Plateau [61], the Three-River-
Source Area [26], of Delhi City [21]. Compared with previous studies, we expanded the
research area to cover the entire Qinghai-Tibet Plateau. However, there is a large desert
area in the northwest, resulting in mainly heavy and extreme overall vulnerability.
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6.2. Effects of Natural and Socio-Economic Factors on Ecological Vulnerability

The q-statistical values for natural factors based on GDM ranged from 0.036 to 0.918,
with an average of 0.449, whereas those of socio-economic factors were between 0.022 and
0.067, with an average value of 0.051. Therefore, the spatiotemporal variation of EVI mainly
depended on natural factors and their changes than on socio-economic factors. Based on
analyzing the effects of single factors on vulnerability, we discuss the influences of two
factors on vulnerability. The results indicate that NDVI and ET interaction showed the
greatest explanatory power to ecosystem vulnerability, instead of NDVI and NPP with the
highest single-factor explanatory power. The NPP of the Qinghai-Tibet Plateau decreased
gradually from southeast to northwest, showing significant spatial correlation with NDVI,
giving it a certain consistency in explaining ecosystem vulnerability. The parameters NDVI
and ET can more accurately reflect ecosystem conditions in terms of vegetation and climate
than NDVI and NPP interactions. Interaction detection can supplement the analysis results
of single-factor detection. A previous study has shown that ecosystem quality is highly
positively correlated with NDVI and NPP [26]. Therefore, a decrease in vegetation coverage
will inevitably lead to an increase in ecosystem vulnerability. Affected by global warming,
rising temperatures with result in increased ET and, subsequently, a loss in soil moisture.

6.3. Policy Implications

The Qinghai-Tibet Plateau is an important ecological security barrier for China and
even Asia, and the Chinese government attaches great importance to the construction of
an ecological civilization on the plateau. Based on the mapping of the vulnerability of the
Qinghai-Tibet Plateau ecosystem, the spatial distribution of high- and low-vulnerability
areas can be seen. This provides clear evidence for the selection of pilot projects for eco-
logical protection and restoration of the Qinghai-Tibet Plateau. The vegetation types were
mainly grassland and desert in the high-vulnerability area in the northwest. Ecological
protection and restoration should be therefore be emphasized in this area to prevent grass-
land degradation and desertification. The vegetation coverage in the low-vulnerability
areas in the southeast was high and there were significant human activity impacts. The
regional government should therefore improve the ecological compensation mechanism
and balance the needs of ecological protection and residential development. In the analysis
of factor detection, the q-statistics for evapotranspiration and precipitation reached 0.746
and 0.6, respectively, indicating significant effects on ecosystem vulnerability. Therefore,
when carrying out ecosystem restoration, it is not only necessary to combine the charac-
teristics of the ecosystem itself, but also to consider the impacts of climate change. For
example, Jiang et al. [77] studied the changes in ecosystem services on the Loess Plateau
and stated that ecosystem protection needs to consider climate change. In addition, human
activities, such as excessive livestock production, which leads to overgrazing, will also
have a great impact on the ecological environment. Chen et al. [78], studying the ecosystem
of the Mongolian Plateau, showed that the impact of human activities exceeds that of
natural environmental changes. Therefore, the future protection of ecosystems should not
ignore human interference, and sustainable human activity is a factor to be considered in
ecological restoration. For example, a moderate grazing intensity can improve grassland
adaptability and reduce grassland vulnerability [27].

6.4. Limitations and Future Research Perspectives

In this study, we investigated the influences of natural and socioeconomic factors on
the spatial distribution of ecosystem vulnerability. However, there were some limitations
and areas of uncertainty. First, ecosystem fragility covers many factors such as nature,
economy, society and policies. Due to limitations, such as the inaccessibility of data sources
or the difficulty of spatial expression, some indicators compared to other ecosystem vulner-
ability studies are not included in the indicator system. There is no uniform standard for the
selection of sensitivity, resilience and pressure indices. In this paper, climatic conditions are
classified as sensitivity index, but some scholars classify them as exposure index (exposure
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usually refers to the interference degree of environmental and socioeconomic pressure on
the ecosystem) [79]. Even if the same ecosystem vulnerability assessment model is selected,
climate factors are also divided into different index categories. For example, based on
same Exposure-Sensitive-Adaptive model, Jiang et al. [79] takes meteorological factors as
exposure, whereas Zheng et al. [80] divides them into sensitivity indicator. Therefore, the
scientific index selection method to assess ecosystem vulnerability remains to be explored
in depth. Second, the ecosystem vulnerability of the Qinghai-Tibet Plateau was divided
into five levels, with only relative differences. For example, the slight vulnerability in this
article may be medium or heavy in other areas. Therefore, the classification standard of
ecosystem vulnerability is not applicable to areas outside the study area.

7. Conclusions

We explored the spatial and temporal differentiation characteristics of the Qinghai-
Tibet Plateau ecosystem vulnerability and its driving factors. The Qinghai-Tibet Plateau
was mainly in a heavy and extreme vulnerability state from the years 2005 to 2015. The
ecosystem vulnerability in the northwest was greater than that in the southeast. The
vulnerability grade gradually increased from southeast to northwest. Overall, ecosystem
vulnerability deteriorated slightly in 2005–2015. The spatial distribution of EVI showed
significant clustering. The high-value area was mainly concentrated in the northwest and
the low-values are in the southeast.

The EVI spatial distribution was mainly affected by natural factors. The intensity
of these effects followed the order NDVI, NPP, ET, PRE, TEM, ELE, DR, Slope and SCD.
Vegetation growth and hydrothermal conditions had significant effects on changes in
ecosystem vulnerability. We could also show that socio-economic factors exerted a less
significant effect on EVI, on average, than natural factors. The q-statistics for these variables
followed the order LUR, PD and GDPD. The types of factor interactions were mainly
bi-enhanced, with some showing nonlinear enhanced effects. The explanatory power of
factor interaction for EVI was greater than that of single factors. The interaction of NDVI
and ET had the greatest explanatory power on ecological vulnerability.

Our findings can serve as a scientific base for the establishment of policy implications.
Larger efforts are needed to ensure ecological protection and restoration and to prevent
grassland degradation and desertification in the high-EVI areas in the northwest. The
government should also improve the ecological compensation mechanism and balance
ecological protection and residents’ development needs in the southeast. In addition, in
the process of ecosystem restoration, it is not only necessary to combine the characteristics
of the ecosystem itself, but also to consider the impacts of a changing climate.
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Abstract: Large-scale vegetation restoration greatly changed the soil erosion environment in the
Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the
effects of vegetation restoration on soil erosion is significant to local soil and water conservation and
vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil
erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration,
using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images
and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by
comparing the average annual soil erosion modulus under two scenarios among 16 years. The results
showed: (1) vegetation restoration significantly changed the local land use, characterized by the
conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area
of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2

to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to
34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current
scenarios of vegetation restoration was 114.44 t/(hm2·a) and 78.42 t/(hm2·a), respectively, with an
average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration;
(3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and
light erosion”, vegetation restoration greatly improved the soil erosion environment in the study
area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting
for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of
the watershed, respectively. Irrational land use changes in local areas (such as the conversion of
farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation
restoration are the main reasons leading to the existence of areas with increased erosion.

Keywords: vegetation restoration; soil erosion; land use; Loess Plateau; Ansai Watershed

1. Introduction

Approximately 20% of the land area is currently experiencing a decline in productivity
linked to erosion, wastage, and pollution in the world [1]. Among these factors, soil
erosion not only causes problems such as soil quality decline, land degradation, and loss of
farmland resources, but also leads to a series of ecological and environmental problems
such as water environment deterioration, river siltation, debris flows, and even flood
disasters [2–6]. The global soil erosion area has reached 25 million km2, accounting for
16.8% of the total land area and threatening the security of 27% of the total farmland area [7].
To this end, soil erosion has become a global ecological and environmental problem [8–12].
The land that has undergone water erosion or wind erosion is up to 3 million km2 in China,
accounting for approximately 32% of the total land area [13]. The Loess Plateau is the
region with the most severe soil erosion in China, where the area of soil and water loss is as
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high as 4.5 × 105 km2, mainly dominated by intensive erosion (>5000 t/(hm2·a)), and the
average sediment transport over years is 1.6 × 109 t [14]. The area, intensity, and amounts
of the soil erosion in the Loess Plateau are the largest in the world [14–16].

To effectively control soil erosion and ecological degradation, the Chinese government
implemented the “Grain for Green Project” (GGP) since 1999 to return farmland with
slopes of 25◦ or more to perennial vegetation [2,17,18]. Vegetation restoration triggered
by the “GGP” is an effective approach to ecological construction and soil erosion control
in the western region of China [19–21]. Since the implementation of the “GGP”, the
soil erosion environment in the Loess Plateau has been greatly changed by large-scale
vegetation restoration [2,9,17–19]. The United Nations General Assembly announced the
“United Nations Decade on Ecosystem Restoration 2021–2030 (UNDER)” on 1 March 2019,
a movement aimed to expand the restoration of degraded and damaged ecosystems as an
effective measure to address the climate crisis and enhance food security, water resources,
and biodiversity [1,22]. Under the global background of the UNDER, assessing the effects
of vegetation restoration on soil erosion over the past 20 years is significant to sustaining
the water and soil conservation benefits of vegetation restoration in the Loess Plateau.

Selecting the Ansai Watershed as the case study area of the Loess Plateau, this study
identified the effects of vegetation restoration on soil erosion by comparing the differences
between the soil erosion modulus from 2000 to 2015 under two land use scenarios (the
initial and current scenarios of vegetation restoration). The research results have impor-
tant theoretical and practical significance for regional soil and water conservation and
vegetation construction.

2. Materials and Methods

2.1. Study Area

The Ansai watershed (108◦5′44′ ′–109◦26′18′ ′ E, 36◦30′45′ ′–37◦19′3′ ′ N) is located in
the upper reaches of the Yanhe River basin, in the inland hinterland of the northwestern
Loess Plateau. This watershed lies in the northern part of Shaanxi Province and borders the
Ordos basin (Figure 1). It belongs to the typical loess hilly and gully region, and covers a
total area of 1334.00 km2 [23]. The soil type in the study area is loess soil, with low fertility
and high vulnerability to erosion [24,25]. The topography is complex and varied, and
the land surface is fragmented into different land uses, dominated by rain-fed farmland,
grassland, shrubland, and forest land [26]. The elevations within the watershed are low
in the southeast and high in the northwest, ranging between 997 m and 1731 m above sea
level [23]. The climate is a continental semi-arid monsoon climate in the middle temperate
zone, and the average annual precipitation is 505.3 mm, and 74% of the rainfall occurs from
June to September [26].

 
Figure 1. The study area: (a) The geographical location of the Ansai Watershed; (b) The elevation,
rainfall and hydrometric stations distribution in the Ansai Watershed.
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2.2. Data Sources

We used 25 m resolution DEM data, obtained from the 1:50,000 database of the
National Center for Basic Geographic Information of China [27]. Vector land cover data
in 2000 and 2015 was obtained from the Data Center for Resources and Environmental
Sciences at the Chinese Academy of Sciences [28]. Daily rainfall data at 20 rainfall stations
in and around the Ansai Watershed from 2000 to 2015 was collected from the Hydrological
Yearbook of the People’s Republic of China [29]. Remote sensing images from 2000 to 2015 were
obtained from the Geospatial Data Cloud [30]. Terrace and silting dam data from 2000 to
2015 were collected from the Statistical Yearbook of Ansai County. Soil data, derived from
a dataset of 151 sample points was obtained from a soil survey in the Ansai Watershed
conducted in July to August of 2014. In Figure 2, 151 soil sample points are evenly
distributed in the Ansai watershed, which can well represent the soil attribute conditions
in the study area; the location of sample points is accurately located by handheld GPS.

Figure 2. Soil sampling points in the Ansai Watershed.

2.3. Research Methods

Since the 1980s, Chinese scholars proposed some regional models for soil erosion
estimation based on the Universal Soil Loss Equation (USLE) and combined with local
topographical features [31]. Among these models, the Chinese Soil Loss Equation (CSLE)
fully considers the impact of biological, engineering, and tillage measures on the process
and results of soil erosion, making it more suitable and widely used in the soil erosion
estimation in China [32]. The CSLE model expression is as follows:

A = R · K · L · S · B · E · T (1)

where A is the average annual soil erosion modulus in t/(hm2·a); R is the rainfall ero-
sivity factor in MJ·mm/(hm2·a); K is the soil erodibility factor in t·h/(MJ·mm); L and S
are dimensionless factors of slope length and slope steepness, respectively; and B, E, T
are dimensionless factors of biological-control, engineering-control, and tillage practices,
respectively. The dimensionless factors of slope and soil conservation measures were
defined as the ratio of soil erosion amounts from unit plot to actual plot with the aimed
factor changed but the same sizes of other factors as the unit plot [32].

Based on the CSLE model and the control variable method, this study calculated
the soil erosion modulus in the Ansai Watershed from 2000 to 2015 under two land use
scenarios (the initial and current scenarios of vegetation restoration). The effect of vege-
tation restoration on soil erosion during the study period was identified by comparing
the differences of average soil erosion modulus under two scenarios among 16 years. It
should be noted that for the soil erosion modulus calculation under the two scenarios in the
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same year, the R, K, L, S, E, and T factors remained unchanged, while the B factor related
to vegetation restoration was calculated based on the land use maps and remote sensing
images in 2000 and 2015, respectively. Furthermore, the calculation method of each factor
is as follows.

2.3.1. Rainfall Erosivity (R) Factor

Rainfall erosivity (R) factor reflects the influence of rainfall on soil erosion [33]. In
this study, we calculated the R factor according to the method proposed by Zhang et al.
(2002) [34], a method that has been widely used in China [34,35]. The R factor, based
on aggradations of half-month rainfall erosivity, was estimated using daily rainfall data
obtained from the Hydrological Yearbook of the People’s Republic of China from 2000 to 2015.
The calculation method is as follows:

Mi = α
k

∑
j=1

(Dj)
β (2)

where Mi is the half-month rainfall erosivity in MJ·mm/(hm2·h·a), k refers to the number
of days in a half-month, and Dj represents the effective rainfall for day j in one half-month.
Dj is equal to the actual rainfall if the actual rainfall is greater than the threshold value
of 12 mm, which is the standard for China’s erosive rainfall. Otherwise, Dj is equal to
zero [34]. The terms α and β are the undetermined parameters of the model and are
calculated as follows:

β = 0.8363 +
18.177
Pd12

+
24.455
Py12

(3)

α = 21.586β−7.1891 (4)

where Pd12 is the daily average rainfall that is greater than 12 mm, and Py12 is the yearly
average rainfall for days with rainfall more than 12 mm.

2.3.2. Soil Erodibility (K) Factor

Soil erodibility (K) factor indicates both the susceptibility of soil to erosion and the
amount and rate of runoff, as measured under standard plot conditions [36]. Previous
studies found that the existing foreign K factor estimation models cannot be directly applied
to the K factor calculation in China, and their estimated values are far greater than the
actual measured values, while there is a certain linear relationship among them [37]. To this
end, based on soil data obtained from the soil survey conducted in the Ansai Watershed,
the K factor was calculated according to the Equations (5) and (6) [37,38].

Kshirazi = 7.594
{

0.0017 + 0.0494e−
1
2 [

log(Dg)+1.675
0.6986 ]

2}
(5)

K = −0.00911 + 0.55066Kshirazi (6)

where Dg is the geometric mean diameter of soil grains, and Kshirazi is the K value estimated
by the Equation (5) proposed by Shirazi et al. (1988) [38].

2.3.3. Slope Length (L) and Steepness (S) Factor

Topography is an important factor that directly affects soil erosion. The slope length
factor (L) and slope steepness factor (S) represent the effects of slope length and slope
gradient on soil erosion, respectively [39]. The L factor and S factor can be calculated using
the following equations:

L = (λ/22.13)m (7)

m = β/(1 + β) (8)

β = (
sin θ

0.0896
)/[3.0 × (sin θ)0.8 + 0.56] (9)
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S =

{
10.8 × sin θ + 0.03, θ < 5.14◦
16.8 × sin θ − 0.50, θ ≥ 5.14◦ (10)

where λ is the length of the slope, m is the variable length-slope exponent, β is a factor that
varies with slope gradient, and θ is slope gradient calculated based on DEM.

2.3.4. Biological-Control (B) Factor

Biological-control (B) factor refers to the ratio of the soil erosion amounts of land
with vegetation cover or field management, and that of continuously fallowed land under
certain conditions [40,41]. In this study, we extracted NDVI values and calculated the
vegetation coverage by using Equation (11) according to Li et al. (2020) [42] based on
remote sensing images captured from June to September during 2000 to 2015; B factor
was obtained according to the relationship between B factor and the land use types, and
vegetation coverage (Table 1) [43]. The vegetation coverage was calculated as follows:

f =
NDVI − NDVImin

NDVImax − NDVImin
(11)

where f is the vegetation coverage, and NDVImin and NDVImax are the minimum and
maximum NDVI values.

Table 1. B factor under different land use types and different vegetation coverage.

Land Use Type
Vegetation

Coverage (%)
B Factor Land Use Type

Vegetation
Coverage (%)

B Factor

Arboreal and shrub land

0~20 0.100

Grassland

0~20 0.450
20~40 0.080 20~40 0.240
40~60 0.060 40~60 0.150
60~80 0.020 60~80 0.090

80~100 0.004 80~100 0.043
Water – 0.000 Farmland – 0.476

Construction land – 0.353 Desert land – 1.000

2.3.5. Engineering-Control (E) Factor

Engineering-control (E) factor refers to the ratio of the soil erosion amounts occurring
under certain engineering measures to that occurring without engineering measures under
the same conditions [32]. The engineering-control practices in the Ansai Watershed mainly
include silting dams and terraces. Considering the difficulty of collecting data on engi-
neering measures, this study obtained terrace and silting dam data based on the Statistical
Yearbook of Ansai County and calculated the E factor by referring to Equation (12) proposed
by Xie et al. (2009) [44]:

E = (1 − St

S
× α)(1 − Sd

S
× β) (12)

where St is the terrace area, Sd is the area controlled by silting dams, S is the total land area,
and α and β refer to the sediment reduction coefficients of terrace and silting dam and are
0.836 and 1, respectively.

2.3.6. Tillage (T) Factor

Tillage (T) factor refers to the ratio of the soil erosion amounts occurring under a spe-
cific tillage measure to that occurring under consistent flat cropping or slope tillage [45]. In
this study, the slope gradient was extracted based on the DEM, and T factor was calculated
according to the relationship between the slope gradient and the T factor (Table 2).
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Table 2. T factor under different slope gradient.

Slope Gradient ≤5◦ 5–10◦ 10–15◦ 15–20◦ 20–25◦ >25◦

T factor 0.100 0.221 0.305 0.575 0.735 0.800

3. Results

3.1. Dynamic Land Use Changes Since Vegetation Restoration

Large-scale vegetation restoration led to significant land use changes in the Ansai
Watershed (Figure 3). Land use was dominated by grassland and farmland, while arboreal
land and shrub land were scattered and did not form contiguous patterns in 2000. With
the progress of vegetation restoration, grassland became the main land use type, and
arboreal land and shrub land increased significantly and formed a distribution pattern
which decreased gradually from southeast to northwest in 2015. Thanks to the relatively
superior natural conditions and the location conditions closer to the urban area, compared
with the upstream areas, the implementation of the “GGP” is more active and the benefits
of vegetation restoration is more obvious in the downstream areas.

Figure 3. Land use map of the Ansai Watershed in 2000 (a) and in 2015 (b).

From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased
significantly in the Ansai Watershed, while the farmland decreased drastically, and the
construction land, water land, and desert land increased slightly (Table 3). Furthermore,
the farmland was mainly converted to grassland, followed by arboreal land, and shrub
land; while a small part was converted to construction land, water land, and desert
land. The primary driving factor of the changes was the implementation of “GGP” since
1999 [2,18,44].

3.2. Estimation of Soil Erosion under the Initial Scenario of Vegetation Restoration

The soil erosion modulus calculated based on the initial scenario of vegetation restora-
tion was 31.18, 116.45, 170.88, 99.92, 147.21, 167.17, 88.56, 91.38, 55.03, 162.21, 80.11, 68.66,
115.97, 291.11, 115.96, and 31.19 t/(hm2·a) from 2000 to 2015, respectively, and the average
soil erosion modulus among the 16 years was 114.56 t/(hm2·a) (Table 4). The light erosion
accounted for the largest proportion, with 22.61%; the severe erosion followed, with an
area of 300.67 km2; the areas of moderate erosion, extreme erosion, and serious erosion
all exceeded 150 km2, accounting for 17.09%, 14.66%, and 12.29%, respectively, and the
proportion of slight erosion was the smallest, with an area of 144.25 km2. It can be seen that
the soil erosion under the initial scenario of vegetation restoration in the Ansai Watershed
was dominated by severe erosion and light erosion, and the soil erosion situation was
relatively severe.
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Table 3. Transfer matrix of land use changes in the Ansai Watershed from 2000 to 2015 (km2).

Land Use Type

2015

TotalArboreal
Land

Shrub
Land

Grassland Farmland
Construction

Land
Water

Desert
Land

2000

Arboreal land 2.41 1.20 16.01 0.04 0.14 0.16 0.01 19.96
Shrub land 1.22 16.07 2.00 0.07 0.02 0.04 0.01 19.43
Grassland 44.83 23.43 643.08 1.66 2.13 3.13 1.24 719.49
Farmland 50.72 35.25 422.78 32.57 3.84 1.86 0.89 547.90

Construction
land 0.03 0.02 0.18 0.02 1.89 0.01 0.00 2.14

Water 0.04 0.01 0.20 0.00 0.00 0.00 0.00 0.25
Desert land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 99.26 75.97 1084.24 34.35 8.02 5.20 2.14 –
Change from 2000 to 2015 79.30 56.54 364.75 −513.55 5.88 4.95 2.14 –

Table 4. Soil erosion in the Ansai Watershed from 2000 to 2015 under the initial scenario of vegetation restoration.

Year
Soil Erosion

Modulus
(t/(hm2·a))

Area of Different Soil Erosion Intensity (%)

Slight Light Moderate Serious Extreme Severe

2000 31.18 22.88 41.67 15.47 8.51 8.86 2.60
2001 116.45 8.18 18.44 18.64 13.75 16.19 24.80
2002 170.88 6.12 13.65 14.53 13.15 18.39 34.16
2003 99.92 9.55 21.30 19.14 13.77 14.60 21.63
2004 147.21 7.21 15.29 16.66 13.20 17.45 30.19
2005 167.17 6.59 13.96 15.02 13.09 17.97 33.36
2006 88.56 10.69 23.77 19.44 13.11 13.90 19.09
2007 91.38 10.25 22.74 19.37 13.52 14.23 19.88
2008 55.03 14.68 33.43 19.72 10.53 11.42 10.23
2009 162.21 6.74 14.46 15.26 13.31 17.67 32.55
2010 80.11 11.15 25.45 19.80 12.87 13.49 17.24
2011 68.66 15.07 29.23 18.47 11.36 12.02 13.85
2012 115.97 8.52 18.78 18.40 13.71 15.92 24.67
2013 291.11 4.45 9.45 8.81 10.59 17.53 49.16
2014 115.96 8.61 18.41 18.64 13.74 15.75 24.85
2015 31.19 22.34 41.79 15.98 8.41 9.10 2.38

Average 114.56 10.81 22.61 17.09 12.29 14.66 22.54

Note: Slight erosion (≤5 t/(hm2·a)), light erosion (5–25 t/(hm2·a)), moderate erosion (25–50 t/(hm2·a)), serious erosion (50–80 t/(hm2·a)),
extreme erosion (80–150 t/(hm2·a)), and severe erosion (>150 t/(hm2·a)).

3.3. Estimation of Soil Erosion under the Current Scenario of Vegetation Restoration

The soil erosion modulus calculated based on the current scenario of vegetation
restoration was 20.88, 80.67, 119.51, 68.41, 101.07, 114.77, 60.17, 62.51, 36.16, 111.59, 54.80,
46.05, 80.01, 97.60, 79.13, and 21.44 t/(hm2·a) from 2000 to 2015, respectively, and the
average soil erosion modulus among the 16 years was 78.42 t/(hm2·a) (Table 5). The light
erosion accounted for 23.71% of the total area, covering the largest area of 316.30 km2; the
moderate erosion and extreme erosion followed by 19.35% and 17.57%; the proportions
of serious erosion and severe erosion all exceed 14%, with the area of 199.53 km2 and
188.68 km2, respectively, and the proportion of slight erosion was the smallest, with an
area of 137.10 km2. Therefore, in contrast from the soil erosion dominated by severe and
light erosion under the initial stage of vegetation restoration, soil erosion under the current
scenario of vegetation restoration was dominated by light erosion and moderate erosion in
the Ansai Watershed. Furthermore, the proportion of severe erosion decreased from 22.54%
to 14.14%, indicating that the soil erosion situation had been greatly improved.
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Table 5. Soil erosion in the Ansai Watershed from 2000 to 2015 under the current scenario of vegetation restoration.

Year
Soil Erosion

Modulus
(t/(hm2·a))

Area of Different Soil Erosion Intensity (%)

Slight Light Moderate Serious Extreme Severe

2000 20.88 22.16 49.11 20.38 5.63 2.28 0.44
2001 80.67 7.82 18.43 19.00 18.51 22.07 14.16
2002 119.51 5.85 13.72 13.52 15.16 24.09 27.67
2003 68.41 8.93 20.98 21.86 18.03 20.51 9.69
2004 101.07 6.86 15.22 15.58 17.19 23.53 21.62
2005 114.77 6.19 13.98 13.84 15.71 24.07 26.22
2006 60.17 9.91 23.61 23.74 17.38 18.12 7.23
2007 62.51 9.42 22.58 23.50 17.54 19.26 7.70
2008 36.16 14.47 34.98 26.34 14.77 7.32 2.12
2009 111.59 6.16 14.84 14.87 15.96 23.49 24.67
2010 54.80 10.38 25.14 25.15 17.16 16.68 5.50
2011 46.05 14.21 31.27 23.00 14.28 12.81 4.44
2012 80.01 7.87 19.09 19.71 17.85 21.54 13.93
2013 197.60 4.22 9.32 8.86 9.85 21.00 46.75
2014 79.13 7.94 18.72 19.33 18.50 21.91 13.60
2015 21.44 22.05 48.37 20.87 5.78 2.37 0.56

Average 78.42 10.28 23.71 19.35 14.96 17.57 14.14

Note: Slight erosion (≤5 t/(hm2·a)), light erosion (5–25 t/(hm2·a)), moderate erosion (25–50 t/(hm2·a)), serious erosion (50–80 t/(hm2·a)),
extreme erosion (80–150 t/(hm2·a)), and severe erosion (>150 t/(hm2·a)).

3.4. Changes in Soil Erosion before and after Vegetation Restoration

The average soil erosion modulus from 2000 to 2015 under the initial and the current
scenarios of vegetation restoration was 114.44 t/(hm2·a) and 78.42 t/(hm2·a), respectively,
with an average annual reduction of 4.81 × 106 t of soil erosion amount. The soil erosion
condition was improved by vegetation restoration, and the soil erosion modulus decreased
annually by 10.30, 35.78, 51.37, 31.51, 46.14, 52.40, 28.39, 28.87, 16.87, 50.62, 25.31, 22.61,
35.96, 93.51, 36.83, and 9.75 t/hm2 from 2000 to 2015, respectively (Figure 4). In addition,
the effects of vegetation restoration on soil erosion were different in different years, mainly
because of the large differences of rainfall in each year. The water and soil conservation
benefits of vegetation restoration was more obvious in the years with heavy rainfall such
as 2002, 2005, 2009, and 2013.

Figure 4. Effects of vegetation restoration on soil erosion from 2000 to 2015.

The average soil erosion modulus changes from 2000 to 2015 were divided into two cat-
egories, increased erosion (>0) and decreased erosion (<0), based on the reclassification
function of ArcGIS 10.6 (Figure 5). During the study period, the areas with increased
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erosion and decreased erosion were alternately distributed in the Ansai Watershed. The
south and southeast of the Ansai Watershed had obvious improvement effects on soil
erosion and were the main areas with decreased soil erosion, while the northwest of the
study area was the main region experiencing increased soil erosion. Although the areas
with increased and decreased soil erosion distributed alternatively, the former was lower
than the latter (Table 6). The area of decreased and increased soil erosion from 2000 to 2015
was 696.92 km2 and 637.12 km2, respectively, accounting for 52% and 48% of the total land
area of the Ansai Watershed.

Figure 5. Spatial differentiation of the effect of vegetation restoration on soil erosion in 2000–2015.

Table 6. Changes in soil erosion areas and proportions from 2000 to 2015.

Year
Increased

Erosion Area
(km2)

Proportion
(%)

Decreased
Erosion Area

(km2)

Proportion
(%)

2000 630.34 47.25 703.66 52.75
2001 673.74 50.51 661.73 49.60
2002 625.30 46.87 707.83 53.06
2003 634.18 47.54 699.67 52.45
2004 614.26 46.05 719.81 53.96
2005 614.26 46.05 719.81 53.96
2006 640.90 48.04 693.10 51.96
2007 642.82 48.19 691.18 51.81
2008 640.46 48.01 693.54 51.99
2009 640.81 48.04 693.19 51.96
2010 638.50 47.86 695.50 52.14
2011 640.93 48.05 693.06 51.95
2012 638.06 47.83 695.94 52.17
2013 653.53 48.99 680.47 51.01
2014 637.94 47.82 696.06 52.18
2015 627.85 47.07 706.14 52.93

Average 637.12 47.76 696.92 52.24
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4. Discussion

4.1. Effects of Vegetation Restoration on Soil Erosion

Land use types not only affect the properties of the underlying soil surface, but also
influence the redistribution of rainfall and the transport of runoff and sediment [46]. Ac-
cording to previous research in Yanan city, the soil conservation modulus varied with
the land use types; furthermore, forest land and grassland had the best soil conservation
effects [47]. Since the implementation of the “GGP” in 1999, the land use structure in the
Ansai Watershed has undergone significant changes, mainly characterized by the con-
version of sloping farmland to grassland, arboreal land, and shrub land. The effective
implementation of this project significantly improved the soil erosion environment in the
study area, in accordance with previous research results [40,48,49]. Wang et al. (2016) [49]
found that compared with the sloping farmland, the conversion of sloping farmland to
grassland or woodland can reduce gully erosion by more than 90%. Results of this study
indicated that the average annual soil erosion modulus dropped from 114.56 t/(hm2·a)
to 78.42 t/(hm2·a), and the dominant soil erosion intensity changed from severe erosion
and light erosion to moderate erosion and light erosion in the Ansai Watershed during
2000–2015. In addition, according to the data released by the China National Forestry and
Grassland Administration (http://www.forestry.gov.cn/ accessed on 25 April 2021), the
average annual soil erosion modulus in the Ansai County dropped from 140.00 t/(hm2·a)
in 1998 to 54.00 t/(hm2·a) in 2018 since the implementation of the “GGP”, which further
confirmed the accuracy and credibility of our research results. By the end of 2018, a total
of 94,920 hm2 forest land was increased, of which 56,520 hm2 was transferred from slop-
ing farmland, and 36,470 hm2 was transferred from desert land and grassland in Ansai
County [50]. Thanks to massive vegetation restoration, with increasing vegetation coverage
and biomass, the dense vegetation canopy reduced the effective precipitation in forest land,
prolonged the precipitation and runoff duration, and cut off the kinetic energy of raindrops;
surface mulch dispersed the kinetic energy of runoff, and the complex vegetation root
system increased the resistance of the soil runoff erosion, effectively strengthened the
regional soil and water conservation benefits, and improved soil erosion conditions [51].
Furthermore, previous studies showed that the soil profile structure destroyed by erosion
became more and more complete, and soil properties were restored in loess hilly and
gully regions after the implementation of “GGP” [16]. For example, soil bulk density and
PH value decreased, while soil organic matter content, C, and N content increased. The
conversion of sloping farmland to forest land with relatively little human interference
was conducive to the accumulation of soil nutrients and the maintenance of porosity, and
effectively enhanced the water and fertilizer retention performance of soil.

The spatial differentiation of soil erosion changes also further indicated the positive
effect of vegetation restoration on soil erosion. Vegetation restoration was actively carried
out in the southeast and south of the Ansai Watershed, where the land use change was
relatively drastic, and mainly included transformations from farmland to grassland, shrub
land and arboreal land, and from grassland to shrub land and arboreal land. The massive
vegetation restoration in this area effectively strengthened the water and soil conservation
benefits, and greatly improved the soil erosion condition. However, in the northwest of the
Ansai Watershed, the implementation effect of vegetation restoration was poor, which led
to more serious soil erosion in local areas.

4.2. Policy Implications

The main reason for the poor soil erosion control effect in the northwest of the Ansai
Watershed was the ineffective implementation of the “GGP” and the unreasonable land
use changes, such as the conversion of farmland and grassland into construction land. In
view of this, local governments should actively carry out this project, strictly implement
land use planning, control the occupation of farmland for non-agricultural construction,
and prevent unreasonable land use changes.
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The field survey in the Ansai Watershed found that although the “GGP” was also
carried out in the northwest of the watershed and a certain number of sea-buckthorn and
Caragana korshinskii plants were planted in this region where soil erosion was increas-
ingly serious, the majority of these trees did not survive due to lack of supervision and
management. Previous studies showed that the phenomenon of “seeing only the saplings
but not the forest” was common in the process of returning farmland to forest in Ansai
County [48]. The main reasons include the following two aspects: first, farmers lacked
the initiative in the management of forest seedlings, and only focused on the subsidies for
returning farmland to forest, but ignored the follow-up management of forest land; second,
the lack of support for pest control and forest fire prevention directly affected the quality
and subsequent benefits of this project. The implementation of the “GGP” is a long-term
process, and the local government should strengthen the supervision and management
of ecological restoration, follow the principle of “whoever builds, manages and benefits”,
strengthen the management and protection of vegetation seedlings, and ensure the normal
growth of young forests. Considering the fragile ecological environment in the Loess
Plateau region, excellent tree and grass species with strong adaptability and good quality
should be selected to improve the survival rate of seedlings. Local governments should
carry out inspections of vegetation restoration occasionally. To ensure the effects of vegeta-
tion restoration, measures such as supplementary planting, tending, pruning, watering,
weeding, and pest control should be taken for forest land converted from farmland with
substandard numbers of living plants and low survival rates.

4.3. Research Limitation and Future Research

The CSLE model proposed by the Chinese scholar is widely used to calculate the soil
erosion amount in China. The applicability of this model in Ansai county, the loess hilly
and gully regions, and even in China has been verified by previous studies [32,33,52–56],
and can well reflect the soil erosion situation in China. Among them, by comparing the
simulation results of the CSLE model with the soil erosion data measured by the Ministry
of Water Resources of the People’s Republic of China, the predecessors proved that the
model has good applicability and credibility in the soil erosion evaluation in Shaanxi
Province [52]. In view of this, this study assessed the soil erosion amount using the CSLE
model in the Ansai Watershed belonging to Shaanxi Province. Furthermore, all parameters
of the CSLE model in this study were calibrated based on previous research. Although
model uncertainties are unavoidable, the calculation results of the soil erosion modulus in
the Ansai watershed using the CSLE model can reflect the actual situation.

Unlike the soil erosion amount which can be measured on the field spot, the effect of
vegetation restoration on soil erosion cannot be directly measured through field experi-
ments. Through field control experiments, comparing the changes of soil erosion amount
in the two watersheds with the same conditions only, except for implementing or not
implementing the “GGP”, can verify our research results to a certain extent. However,
considering the effect of vegetation restoration on soil erosion is correlated with the length
of time for reforestation [20], short-term field monitoring results through field control
experiments cannot verify the model simulation results from 2000 to 2015. Furthermore,
it takes a lot of manpower and time to conduct continuous monitoring of soil erosion
for more than 10 years at the watershed scale, and the gap in existing data sources also
makes it difficult to currently verify our research results on the field spot. Under the above
constraints, we validated our research results based on the official data on the effect of
vegetation restoration on soil erosion in Ansai County released by the National Forestry
and Grass Administration of the People’s Republic of China, and the previous research
results in loess hilly and gully regions. It is worth mentioning that the data released by
the National Forestry and Grass Administration was obtained through on-site monitoring
of the Ansai Hydrological Station, which is not the model simulation result, and its con-
sistency with our research results provided a good proof of the credibility of our research.
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In follow-up studies, we will increase long-term field monitoring experiments to more
accurately assess the effect of vegetation restoration on soil erosion.

5. Conclusions

Large-scale vegetation restoration triggered by the “Grain for Green Project” (GGP)
since 1999 led to significant land use changes in the Loess Plateau. Using the CSLE model,
this study calculated and compared the differences between the soil erosion modulus from
2000 to 2015 under two land use scenarios (the initial and current scenarios of vegetation
restoration), and identified the effect of vegetation restoration on soil erosion in the Ansai
Watershed. The results showed that the soil erosion conditions have greatly improved in
the Ansai Watershed since vegetation restoration. The average soil erosion modulus under
the initial scenario of vegetation restoration among the 16 years was 114.56 t/(hm2·a),
dominated by severe erosion and light erosion; while the average soil erosion modulus
under the current scenario of vegetation restoration among the 16 years was 78.42 t/(hm2·a),
with light and moderate erosion as the dominant soil erosion intensity. However, due to
the unreasonable land use changes (farmland, grassland was converted into construction
land, etc.) and the ineffective implementation of vegetation restoration, soil erosion became
more serious in some areas. Therefore, it is necessary to strengthen the supervision and
management of the “GGP”, control unreasonable land use changes by land use planning,
and prevent decreases in vegetation coverage to control soil erosion in the Ansai Watershed.
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Abstract: This paper systematically summarizes the hierarchical cross-regional multi-directional
linkage in terms of air pollution control models implemented in the Beijing-Tianjin-Hebei urban
agglomeration, including the hierarchical linkage structure of national-urban agglomeration-city, the
cross-regional linkage governance of multiple provinces and municipalities, the multi-directional
linkage mechanism mainly involving industry access, energy structure, green transportation, cross-
regional assistance, monitoring and warning, consultation, and accountability. The concentration
data of six air pollutants were used to analyze spatiotemporal characteristics. The concentrations
of SO2, NO2, PM10, PM2.5, CO decreased, and the concentration of O3 increased from 2014 to
2017; the air pollution control has achieved good effect. The concentration of O3 was the highest
in summer and lowest in winter, while those of other pollutants were the highest in winter and
lowest in summer. The high pollution ranges of O3 diffused from south to north, and those of
other pollutants decreased significantly from north to south. Finally, we suggest strengthening the
traceability and process research of heavy pollution, increasing the traceability and process research
of O3 pollution, promoting the joint legislation of different regions in urban agglomeration, create
innovative pollution discharge supervision mechanisms, in order to provide significant reference for
the joint prevention and control of air pollution in urban agglomerations.

Keywords: control models; spatiotemporal characteristics; air pollution; urban agglomeration; China

1. Introduction

Rapid economic development and urbanization have concurrently boosted energy
consumption and pollutant emissions while promoting nations’ overall power and social
progress [1], which has led to increasingly serious environmental pollution [2] and health
problems [3] in urban areas. As Samet [4] suggested, urban air pollution could become a
public health and environmental problem of crisis proportions in the near future, if it is not
so already. Since 2012, haze pollution has become a severe environmental problem that has
impacted individuals’ health and daily lives in China [5,6]. On the one hand, the continuous
spread of air pollution on a large scale endangers the health of local residents, especially
the elderly [7]. On the other hand, pollution has huge economic consequences. China will
lose 2% of its total GDP and bear healthcare costs of USD 25.2 billion until 2030 [8]. As one
of the five national-level urban agglomerations in China, the Beijing–Tianjin–Hebei urban
agglomeration (BTHUA) is the implementation of the regional coordinated development
strategy, and it is also the region with the most serious air pollution [9,10] and the most
acute contradiction between resources, environment, and development [11] in China. Eight
of the ten cities with the highest average annual concentration of PM2.5 were located in
BTHUA in 2015 [9]. Therefore, the status of high strategic status, high population density,
high development speed, high environmental pollution, high energy emissions, and low
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environmental carrying capacity has led to the great conflict between regional economic
development and environmental protection in BTHUA [12]. The central and regional
governments have put forward many policies, models, and strategies for the air pollution
control in BTHUA from the scale of nation, urban agglomeration, city, and county. It is
urgent to systematically sort out and summarize them, so as to provide significant reference
for the prevention and control of air pollution in other regions.

Air pollution is the result of the comprehensive effects of natural climate, topogra-
phy, ecological environment, economic, and social factors in urban areas, determining
the long-term, arduous, and complex prevention and control of air pollution. In recent
years, scholars from all countries have created rich academic literature on air pollution
chemical composition [13], spatiotemporal characteristics [14], source apportionment [15],
impact mechanism [16], prevention and control model [17], regional division of joint con-
trol [18], and other related topics. Specifically, the influencing factors of air pollution
include urbanization level [19], energy consumption structure [20], transportation infras-
tructure construction [21], foreign direct investment [22], climate conditions [23], policy
elements [24], etc. In the international literature of urban air pollution, Liu et al. [25] found
that the atmospheric pollutants revealed a stable trend from 2008 to 2018 in Germany.
Hossain et al. [26] found that the emission control measures resulted in NO2, SO2, and PM
reductions from 2000 to 2018. Chakraborty and Basu [27] considered that PM2.5 concentra-
tion levels were significantly higher in more urbanized districts located predominantly in
northern India. Practical experience shows that developing strict air quality standards and
pollution control policies through cross-regional governance agencies, industrial restruc-
turing, using clean energy and renewable energy, implementing and improving public
transport, planning urban infrastructure, and pricing electricity for more efficient usage
can effectively reduce air pollution [28]. In the short term, realistic approaches include
energy conservation, promoting mass transit, reducing open burning, instituting motor
vehicle inspection programs, and phasing out lead in petrol. In the longer term, air qual-
ity management strategies, such as urban and transportation planning, institutional and
technological limitations should be incorporated in industrial and urban development [29].

In order to improve the air quality, the Chinese government has made great efforts
in the control of air pollution, the ultra-low emission policy of China’s thermal power
industry has led to a significant reduction in the emissions of various air pollutants [30].
As the leading area of joint prevention and control models of air pollution in China, the air
pollution control in the BTHUA has become a benchmark for measuring the effectiveness
of urban environmental governance in China. However, there are few studies system-
atically sorting out and summarizing the air pollution control models from the regional
perspective, and few studies have explored the spatiotemporal changes characteristics
of the air pollution in BTHUA from the perspective of the air pollution prevention and
control effectiveness.

Therefore, based on the air pollution control models of different cities in BTHUA, this
paper forms the hierarchical cross-regional multi-directional linkage (HCML) in terms of
air pollution prevention and control models, in order to reduce air pollutant concentration
and adverse health effects. This paper introduces the structural characteristics and specific
strategies of the models in detail from the model architecture, model management, and
model guarantee. In order to explore the effectiveness of this model in air pollution control,
this paper uses statistical method and spatial pattern analysis method to quantitatively
analyze the annual, quarterly, and monthly and compliance rate characteristic of six air
pollutants (PM2.5, PM10, SO2, O3, NO2, and CO) in BTHUA from 2014 to 2017. Finally,
we further discussed the problems of air pollution control and the recommendations of
research and policy about the efficient control.

2. Hierarchical Cross-Regional Multi-Directional Linkage in Terms of Air Pollution
Control Models

The atmosphere is a public resource that exhibits fluidity and infinity. Its state and
composition are directly affected by natural geographical factors, such as solar radiation,
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temperature, humidity, air pressure, wind direction, precipitation, and other meteorolog-
ical and topographical elements. The state and composition of the atmosphere are also
indirectly affected by interactions between atmospheric particulate and pollution emissions
resulting from human activity, such as the use of motor vehicles, industrial production,
and coal burning. Based on the spatial and temporal attributes of pollution sources and
pollution spread, the government also coordinates multiple levels of countries, urban
agglomerations, cities, and enterprises and continuously adopts actions for the preven-
tion and control of air pollution via direct and indirect governance. We summarize this
action as the hierarchical cross-regional multi-directional linkage in terms of air pollution
control models (Figure 1), which comprises the following framework and operational
mechanism [17].

 
Figure 1. Hierarchical cross-regional multi-directional linkage model in terms of air pollution in BTHUA.

2.1. Linkage Architecture of Vertical Layer

First, a top-level design plan was created at the national level. In 2013, the governance
issued the “Air Pollution Prevention and Control Action Plan” (hereinafter referred to
as the “Plan”), proposing overall requirements, goals, and policy measures for the pre-
vention and control of air pollution nationwide. After 2014, the relevant departments
successively issued control documents, such as the “Air Pollution Prevention and Control
Law”, the new “Environmental Protection Law of the People’s Republic of China”, “Urban
Environmental Air Quality Change Degree Ranking Scheme”, and the “Fire Power Plant
Pollution Prevention and Control Technology Policy”, to further refine the air pollution
control objectives. Second, task decomposition and accountability mechanisms were im-
plemented in the urban agglomerations. The state council authorized the Ministry of
Environmental Protection and the people’s governments of all provinces (autonomous
regions and municipalities) within the urban agglomeration to sign the responsibility letter
for air pollution prevention and control; breakdown the emission reduction tasks to all
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levels of government, departments, and enterprises; and establish the air pollution control
responsibility assessment system both vertically and laterally. Third, specific plans were
implemented for lateral emission reductions at the city level. A city project management
system of energy conservation and emission reduction was established, including source
control, end pollution control, industrial structure optimization, energy structure upgraded,
motor vehicle structure adjustment, ecological environment construction, and air heavy
pollution emergency prevention and control projects. Finally, a “special responsibility list”
was developed, the territorial management responsibilities of the governments at all levels
determined, and the responsibilities divided between various departments in the city.

2.2. Linkage Governance of Horizontal Cross-Region

First, the air pollution control agency was established cross-regionally. In 2013, air
pollution prevention and control cooperation groups were established in BTHUA and the
surrounding area. In response to the pollution problem, regular meetings were organized to
engage the government official for the provinces and cities, such as Beijing, Tianjin, Hebei,
Shanxi, Shandong, Neimenggu, Henan, and other relevant ministries and commissions.
Second, short-term prevention targets were identified in the interregional action plans. The
“Beijing–Tianjin–Hebei Air Pollution Prevention and Control Action Plan Implementation
Rules” (hereinafter referred to as the “Rules”), jointly issued by the six ministries and
commissions, such as the Ministry of Environmental Protection, clearly defined the annual
average concentration control targets for particulate matter and environmental standards
for industrial access and elimination tasks of the high-pollution industries in provinces
and cities. Third, cross-regional collaborative planning was used to develop long-term
prevention and control routes. The “BTHUA Collaborative Development Plan” and the
“BTHUA National Economic and Social Development Plan during the 13th Five-Year Plan”
proposed the construction of an ecological restoration environment improvement demon-
stration zone, and defined the framework and models for pollution prevention and green
development in BTHUA. Fourth, the dispatch order system was created cross-regionally.
In 2016, the system was initiated and implemented in Hebei Province. The dispatching
order is authorized by the provincial government to improve atmospheric environmental
quality and address regionally polluted areas and outstanding environmental issues, using
the results from research on pollution sources. The order can also schedule key tasks, such
as the reduction of industrial enterprises, use of clean energy, motor vehicle restrictions,
urban dust control, and non-point-source pollution control in specific regions.

2.3. Linkage Mechanism of Synergistic Multi-Direction

The industrial structure, energy structure, and transportation network pattern are the
main influencing factors of air pollution in BTHUA. Based on this observation, the govern-
ments at all levels of the urban agglomeration formulated the following linkage measures.

The first is the heavy-industry access linkage mechanism. Excess and new capacity
projects, such as steel, cement, electrolytic aluminum, flat glass, ship, coking, colored,
calcium carbide, and ferroalloy, cannot be approved in BTHUA and its surrounding areas.
General manufacturing and new capacity labor-intensive projects cannot be approved, and
existing projects are gradually shifting outward from Beijing. The six major industries,
thermal power, iron and steel, petrochemical, cement, nonferrous metals and chemical
industries, and coal-fired boiler projects, must strictly impose special emission limits
for atmospheric pollutants in the BTHUA. Concurrently, highly polluting companies’
elimination lists and capacity reduction targets were formulated in various provinces.

The second is the energy structure adjustment linkage mechanism. The government
implemented a control plan for total coal consumption, reducing total consumption by
83 million tons in 2017; implemented a clean energy replacement plan; increased the
proportion of clean energy use; promoted a coal clean utilization plan; expanded the scope
of high-pollution fuel-free zones; promoted efficient and clean heating and solar water
heating systems; optimized industrial space layout; and completed the relocation and
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transformation of heavy-polluting enterprises, such as steel, petrochemical, and chemical
industries, in the main urban area. As a result of these measures, coal accounted for less
than 10% of energy production in Beijing.

The third is the green transportation linkage mechanism. The government optimized
the intercity integrated transportation system for the urban agglomerations; implemented
a bus priority strategy; increased the proportion of green transportation; increased the
proportion of public transportation by more than 60% in Beijing and Tianjin in 2017;
controlled the number of motor vehicles, simultaneously implemented total motor vehicle
control; limited travel time according to license plate tail number in Beijing, Tianjin, and
Langfang; eliminated all yellow label cars (those heavy-polluting vehicles) at the end of
2017; upgraded the fuel quality to meet the national fifth stage standard; promoted new
energy vehicles; and increased the proportion of new energy and clean fuel vehicles to 60%
in Beijing, Tianjin, and the provincial capital cities.

The fourth is the inter-regional assistance linkage mechanism. Simultaneously with the
implementation of the regional internal linkage plan, the joint pollution control programs
of Beijing and Tianjin assisting the key polluted cities in Hebei Province were executed.
Beijing provided 460 million yuan to compensate Langfang and Baoding for joint pollution
control activities, with reducing the coal-fired emissions by 0.770 million tons and the
annual sulfur dioxide emissions by more than 6 thousand tons in 2014. Tianjin invested
400 million yuan in special funds to support air pollution control projects in Zhangzhou
and Tangshan in 2016.

The fifth is the monitoring and early warning linkage mechanism. The government
established a unified national air quality monitoring network in prefecture-level cities,
improved the online monitoring system for pollution sources, built a monitoring platform
for motor vehicle sewage discharge, established a monitoring and early warning system for
heavy-pollution weather, prepared heavy-pollution emergency plans, and implemented a
regional emergency response mechanism for heavy-pollution weather.

The sixth is the consultation and accountability mechanism. The provincial, munic-
ipality, and autonomous region governments and relevant ministries and commissions
jointly coordinated efforts to address major environmental issues as well as to organize and
implement environmental assessments, information sharing, joint law enforcement, early
warning, and emergency measures. The state Council, provinces, and cities signed the
responsibility book for air pollution prevention and control objectives, with each organiza-
tion respectively implementing their pollution control task. The assessment system was
established by focusing on government assessment whilst considering third-party input.
Pollution control status reports from previous years are assessed in a timely manner, and
the results reported to the state council and announced to the public.

3. Data Methods and Framework

3.1. Data Source and Initial Processing

The research scopes are the 13 cities above the prefecture level in the BTHUA, in-
cluding Beijing, Tianjin, Shijiazhuang, Baoding, Zhangzhou, Chengde, Handan, Hengshui,
Langfang, Qinhuangdao, Tangshan, Xingtai, and Zhangjiakou; these cities cover an area of
0.22 million km2 (Figure 2). In 2017, the BTHUA carried 8% of the country’s population
and contributed 10% of the country’s total economic output with a national land area of
2.3%. Data for SO2, NO2, PM10, PM2.5, O3, and CO concentration were obtained from the
urban air quality real-time release platform of the China Environmental Monitoring Station.
According to the effectiveness requirements of air pollutant concentration data in the
GB3095-2012 [31], with reference to the research results [6], the quality of monitoring data
was controlled. Because the number of urban inspection points and daily data time points
are different, this paper averaged the data to obtain mean daily concentration values for
the six pollutants. Daily average refers to the arithmetic mean of the 24-h average concen-
tration of a natural day, monthly average refers to the arithmetic mean of the average daily
concentration in a calendar month, quarter average refers to the average concentration for
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each day in a calendar season, and annual average refers to the arithmetic mean of the
average concentration of each day in a calendar year. In addition, spring season refers to
the months of March–May, summer to June–August, autumn to September–November,
and winter to December–February.

 
Figure 2. Location of the study area in China.

3.2. Spatial Pattern Analysis Method

Spatial interpolation is a method of estimating unknown points by using locally known
points according to the correlation of adjacent regions in geospatial space. The surface is
created by a highly accurate interpolation method with known sample selection. The spatial
analysis of air pollution mainly uses kriging interpolation method, inverse distance weight
interpolation, geographic weighted regression model [32], and geographic semivariogram
method [33] to estimate spatial differentiation. This study uses the geostatistical wizard of
geostatistical analyst in ArcGIS software to perform spatial interpolation and to accurately
analyze the spatial distribution of six pollutants in the BTHUA. The commonly used
methods mainly include inverse distance weighted, spline method, and kriging method.
The geostatistical kriging interpolation method is the most flexible, and the result is the
highest precision [34]. The formula is as follows:

h(x0) =
n

∑
i=1

λih(xi) (1)

Among them, h(x0) is the monitoring value of the point x0; h(xi) is the monitoring
value of the point xi; λi is the kriging weight coefficient; n is the total number of monitored
cities. For the selection of different semivariograms (exponential model, triangular model,
spherical model, Gaussian model, linear model) in kriging method, this study used the
cross-validation of spatial interpolation results to compare the average absolute error and
the root mean square error, and finally selected the higher precision function model as the
method for analyzing the spatial pattern of atmospheric pollution in the BTHUA.
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3.3. Research Framework

Air pollution has significant spatial and temporal differentiation in BTHUA. The
fundamental reason is that its topography, industry, meteorology, and urban scale have
significant spatial differentiation. The differentiation of time is reflected in the difference
between heating season and non-heating season. The phenomenon of “scattering pollution”
in Baoding and other cities is serious, and the amount of loose coal is large and the emission
level is high. The differentiation of space is mainly determined by the spatial distribution
of high-emission and high-pollution heavy industry. The total emissions and intensity are
large with the steel, glass, petrochemical, chemical industry, and the supporting heavy
transport vehicles in Tangshan, Tianjin, Shijiazhuang, Handan, and Xingtai. The main
goal of the model governance is to prevent and control air pollution by adjusting the
industrial structure, energy structure, transportation structure, land use structure, and
emergency measures in BTHUA. However, topographical and meteorological elements are
uncontrollable, and the government cannot regulate the flow of pollutants from outside
the BTHUA into the area. Therefore, this model needs to be promoted in a larger area, even
nationally and internationally. Based on the above analysis, this paper made the following
logical framework diagram (Figure 3).

 
Figure 3. The logical framework of this study.

4. Spatiotemporal Characteristics of Air Pollution in the BTHUA

This section uses the kriging interpolation method to analyze the timing evolution and
the spatial pattern characteristics of air pollution from 2014 to 2017 in BTHUA, respectively.
The thorough comparison of 112 ground monitoring stations, primarily across the BTHUA,
was conducted to evaluate the concentrations of the main atmospheric pollutants from
2014 to 2017.

4.1. Air Pollution Concentration Analysis

Air quality significantly improved from 2014 to 2017 in the BTHUA. Except for O3, the
concentration of other air pollutants declined, the high-pollution spatial scope decreased
from north to south. The mean annual concentrations of PM2.5, PM10, SO2, NO2, and
CO decreased by 30%, 23%, 52%, 3%, and 17%, respectively. Therefore, a large overall
improvement of air quality was achieved, confirming the successful implementation of air
pollution controls (Figure 4); however, the overall concentration value is still high, and the
decline range is far from reaching the environmental capacity, so the task of air pollution
prevention and control is still arduous. From a year-on-year comparison, the concentrations
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of PM2.5, PM10, SO2, and CO continued to decline from 2014 to 2017, but the downward
trend slowed down, indicating that the difficulty of air pollution control increased with the
overall improvement of air quality [35]. The concentration of NO2 showed a downward
trend as a whole but increased in 2016, indicating that the effect of air pollution control
has certain volatility [36]. The concentration of O3 continues to rise, and the rising trend is
more significant, which indicates that the problem of O3 pollution has become more and
more serious in recent years, which needs to arouse the attention of relevant government
departments. At the same time, it also needs the academic community to carry out in-depth
research on the chemical composition, impact mechanism, and prevention and control
models of O3 in urban agglomerations [37].

 

Figure 4. Trends in the seasonal variations of six air pollutant concentrations in BTHUA from 2014 to 2017.
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In terms of the monthly change trend, the concentrations of PM2.5, PM10, and SO2 kept
a downward trend year by year from 2014 to 2017, and the prevention and control measures
were significantly effective. The concentrations of NO2 and CO showed a trend of first
rising and then decreasing, it is still necessary to further strengthen pollution prevention
and control; the concentration of O3 kept increasing year by year on the whole. Therefore, it
is necessary to attach great importance to O3 pollution and strictly implement an ultra-low
emission policy [38]. Specifically, compared with the monthly pollutant concentration in
2014, the concentrations of PM2.5 and SO2 decreased significantly in all months in 2017, the
concentrations of PM10 and CO increased only in January, and decreased significantly in
other months; the concentration of NO2 increased in January, February, June, September,
December, and decreased in other months; the concentration of O3 only decreased in
October and increased significantly in other months.

In terms of the seasonal average concentration, the concentrations of PM2.5, NO2, CO,
PM10, and SO2 were the highest in winter, the lowest in summer, the middle in spring and
autumn, the concentrations of the first three were higher in autumn than in spring, and the
concentrations of the last two were higher in spring than in autumn. The coal burning and
heavy industrial production increased the emission of the above pollutants [39], the adverse
climate conditions led to the increase of PM2.5 concentrations [40]. The concentration of O3
was the highest in summer, the lowest in winter, and medium in spring and autumn. Under
strong sunlight, nitrogen oxides and volatile organic compounds (VOCs) can produce O3
by photochemical reaction [41]. In terms of the seasonal change trend, compared with that
in 2014, the concentrations of PM2.5, PM10, SO2, and CO showed a downward trend in
all quarters in 2017, the concentration of PM10 decreased significantly, followed by PM2.5.
The concentration of NO2 only increased by 1.5% in winter, the other quarters showed a
downward trend [42]. The concentration of O3 showed an upward trend in all quarters.
The reduction degrees of pollutant concentration in autumn and winter were higher than
those in spring and autumn, and the government effects were more significant in autumn
and winter.

4.2. Analysis of Pollutant Compliance Rate

According to the requirements of GB 3095-2012, the 24 h average concentration limits
of a second-class region for PM2.5, PM10, SO2, O3, NO2, and CO are 75 μg/m3, 150 μg/m3,
150 μg/m3, 160 μg/m3, 80 μg/m3, and 4 mg/m3, respectively. Excluding O3 and CO,
the concentrations of the other air pollutants showed a significant growth in the rate of
compliance in the BTHUA from 2014 to 2017 (Figure 5). The compliance rates of PM2.5,
PM10, and SO2 continued to increase by 25.6%, 21.50%, 0.85%, respectively; PM2.5 increased
from 49.58% to 75.98%; PM10 increased from 60.34% to 81.84%; SO2 increased from 99.15%
to 100%. The compliance rate of NO2 first decreased and then increased, with an overall
increase of 0.9%, 95.47% in 2014; 93.48% in 2015; and 96.37% in 2017. The compliance rate
of CO also first declined and then rose, with an overall decline of 0.83%, 99.43% in 2014;
97.17% in 2015; and 98.60% in 2017. The compliance rate of O3 first increased and then
decreased, with an overall decrease of 7.54%, 80.45% in 2014; 83.29% in 2015; and 72.91%
in 2017.
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Figure 5. Trends in compliance rates for six air pollutants from 2014 to 2017.

4.3. Spatial Characteristics of Air Pollution

The paper uses kriging interpolation method in the ArcGIS software to perform
spatial interpolation analysis on the site data of six atmospheric pollutants in the BTHUA.
The air quality high-pollution range decreased significantly in the BTHUA from 2014 to
2017, excluding that the O3 high-pollution range spread from south to north, the high
pollution ranges for other pollutant decreased significantly from north to south in the
BTHUA (Figure 6). Concentrations of PM2.5 and PM10 both showed a pattern of high
values in the south and low values in the north, and the concentrations decreased in
the high-polluted southern areas more than those in the low-polluted northern areas.
Pollution in excess of the 75 μg/m3 standard line for PM2.5 concentration retreated to the
south of Beijing and Tianjin, but the PM10 concentration in the entire urban agglomeration
was higher than the national annual limit of 70 μg/m3. Areas with large fluctuations
in PM2.5 concentrations are mainly concentrated in the central of urban agglomeration,
such as Beijing, Tianjin, Hengshui, Langfang, and Baoding, indicating that it is more
difficult to control the PM2.5 pollution in the central area of the urban agglomeration with
Beijing–Tianjin as the core. SO2 concentrations show a spatial pattern of high values in
the south and low values in the north, these values decreased significantly in the four
quarters, the decline in the north was more significant than that in the south, with the
concentrations decreasing significantly in Xingtai, Baoding, Shijiazhuang, and Tangshan.
The only pollutant with an increased concentration was O3 in the urban agglomeration, the
average annual concentration increased by 21 μg/m3 (up 20.59%) in four years [43]. The
O3 concentrations decreased in the south of Beijing, such as Zhangzhou, Xingtai, Handan,
Hengshui, Tianjin, and Shijiazhuang, increased in the north, with those increasing by 75%
in Zhangjiakou. NO2 concentrations declined first, then increased in 2016, and declined
again in 2017, with an overall decline of 3% over four years. Cangzhou and Hengshui have
become the pollution centers in the south, while other regions have shown a downward
trend. Although the concentrations in Tangshan have decreased, it is still a northern
pollution center due to the high concentration. The concentration of CO decreased by
17% in four years, with decreases in the central cities of Beijing, Tianjin, Zhangjiakou, and
Baoding driving the overall concentration in the urban agglomeration, which decreased by
33% and 18% in Beijing and Tianjin, respectively, the concentration increased in the south,
i.e., in Hengshui, Chengde, Langfang, and Xingtai.
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5. Discussion and Proposals

5.1. Discussion on the Air Pollution Control Models in China

The implementation of the HCML model has effectively improved the air quality in
heavily polluted areas over a short time period in China. On the whole, China’s prevention
and control strategies have the following unique characteristics. First, it has the most
stringent laws in China, such as the Environmental Protection Law of the People’s Republic
of China (Revised in 2014) and Atmospheric Pollution Prevention and Control Law of
the People’s Republic of China (2015 Revision). Companies are subject to more stringent
standards, with harsher penalties. Illegal sewage discharge from illegal enterprises is
punished on a daily basis, and penalties are not capped. Furthermore, the four types of
non-crime, such as the implementation of environmental impact assessment, are subject
to administrative detainment. The local government is responsible for the quality of the
environment in its jurisdiction, and the environmental protection objectives are linked
to the administrative personnel evaluations. The government controls the total amount
of pollution discharge and limits the projects that exceed the total amount in the region.
Regulatory authorities have also been endowed more responsibility: the environmental
protection department has greater power to directly shut down illegal enterprises, and
relevant unregulated officials have strict administrative accountability.

Second, the model has the toughest plan to date for combating air pollution, the Air
Pollution Prevention and Control Action Plan. This plan is the largest governance effort,
with the tightest protection measures and most stringent assessment. For the first time, the
action plan incorporates fine particulate matter into binding indicators and incorporates
environmental quality improvement into the official assessment system. The state council
and provincial (district, municipal) people’s governments sign the responsibility book for
air pollution prevention and control targets and breakdown the target tasks for distribution
to the local people’s government. Enterprises adopt administrative means to force the
completion of capacity-reduction plans for 21 key industries, including steel, cement,
electrolytic aluminum, and flat glass enterprises, according to the timetable.

Third, the model provides a fully covered weather monitoring and early warning
system and the national–provincial–city–enterprise linkage action mechanism. In 2015,
31 provinces (autonomous regions and municipalities) implemented provincial air quality
monitoring and early warning systems in China, and 32 cities and provincial capital cities
launched municipal air quality monitoring and early warning systems. Aiming at the spa-
tiotemporal characteristics of air pollution, the national–provincial–municipal–department–
enterprise management structure was constructed, including the target decomposition
models and the fast dispatching and execution models.

5.2. Discussion of Research Proposals
5.2.1. Traceability and Process Research of Heavy Pollution in Autumn and Winter

According to the trend analysis, air pollution is reduced significantly from the spring
to the summer of the subsequent year and increased in the autumn and winter in BTHUA.
The volatility results showed that the daily average concentration volatility of pollutants
showed a weakening trend and tended to be stable, but the time performance was lower in
the first half of the year and higher in the second half. Therefore, air pollution in autumn
and winter is the focus of future prevention and control, especially in winter, which is
the season in which the most serious air pollution occurs in the BTHUA. Using PM2.5 as
an example, in 2014 and 2015, the proportion of winter pollution days was more than
70% (60 days), accounting for 35% and 43% of the total number of those days in the
year, respectively, and the number of days with heavy pollution accounted for 54% and
83% of the total number of those days in the year, respectively. Therefore, it is critical
to strengthen the traceability and process research of heavy pollution in the winter coal
burning period [44].
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5.2.2. Traceability and Process Research of O3 Pollution

Ozone is the main component of smog in Los Angeles; its formation is directly related
to automobile exhaust and gas particle conversion due to photochemical reactions. It
is also one of the most prominent air pollution problems in the Beijing–Tianjin–Hebei
urban agglomeration [45]. Among the six pollutants in the BTHUA, only the levels of
O3 pollution are increasing, and the increase is more significant in the summer in the
southern region with Hengshui as the general center. Pan et al. [46] proposed that the
increase in the relative contribution of nitrate to PM1 observed during the early stages of
haze pollution was due to new particle formation, whereas the nitrate formed in PM1–2.5
during the latter stages was due to heterogeneous formation and hygroscopic growth.
Therefore, controlling NOx emissions should be a priority for improving air quality in
mega cities of the BTHUA [47]. The BTHUA is located in the VOC control area, and VOC
emissions have not been effectively controlled, resulting in an upward trend of O3 and
PM2.5 pollution. The VOC emission reduction project should be implemented to control
O3 and PM2.5 emissions [48]. Given the health hazards, the explanations, processes, and
solutions for aggravated O3 pollution in the BTHUA urgently warrant further research.

5.3. Policy Recommendations
5.3.1. Multi-Regionally Joint Legislation and Implementing Policies

There are significant spatial differences in the high-pollution range in BTHUA, the
air pollution was serious with dense population and rapid industrial development in
the central and southern region. However, the intensity of fighting against pollution
is weak, and the legal treatment awareness of pollution is not strong in those areas; it
is urgent to carry out coordinated legislation and multi-regional linkage measures and
strengthen market-oriented policies and incentive measures in BTHUA [49]. Taking cues
from the implementation of the new “Air Pollution Prevention and Control Law” and the
“Environmental Protection Law”, a coordinated legislative mechanism that is compatible
with the coordinated development of the BTHUA may be developed. This mechanism
will be mutually supportive and reinforcing and enable the development of coordinated
legislation in key areas by integrating and matching relevant regulations from different
locations, continuing to refine legal constraints, eliminating administrative barriers and
local protection through legislation, and ensuring that all localities can conduct concerted
and precise attacks on air-polluting behavior.

5.3.2. Innovative Pollution Discharge Supervision Mechanisms and Public Supervision

In recent years, the air quality has been improved, and the pollution control has certain
effect, but it has obvious volatility; the air pollution problem is still relatively serious in
BTHUA. Industrial pollution, motor vehicle pollution, and heating coal in winter are the
main reasons for the air pollution of urban agglomeration. With people’s desire for a better
life, public participation is very important in air pollution control. Therefore, it is necessary
to further innovate the emission supervision mode and improve the public supervision
mechanism [50]. Both the “plan” and the “details” clarify the objectives for the closure
and renovation of industrial enterprises and key industries in the BTHUA. However, the
number of industrial enterprises within the urban agglomeration is huge. The proportion of
small- and medium-size enterprises is over 96%, and their locations are scattered. There are
many issues, such as undocumented smuggling, night smuggling, online data fraud, and
no using pollution control facilities. Concurrently, the number of management supervisors
cannot meet the need of enterprises, which, in turn, impacts the regulation of atmospheric
pollutant discharge. Therefore, the implementation of a unified supervision mechanism
for multi-sectors and multi-subjects and a joint supervision model for the implementation
of responsibilities and improved public supervision are inevitable directions for pollution
supervision work.
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6. Conclusions

Air pollution caused by the rapid development of Chinese cities in the past few
decades and its impact on resident health cannot be ignored [51]. The governments of
the BTHUA have achieved certain progress in implementing the “stratified cross-region
multi-directional linkage” air pollution prevention and control model. However, the
industrial structure, energy structure, and traffic pattern in the current industrialization
stage continues to pose long-term challenges to air pollution prevention and control
measures in urban agglomerations.

Based on air pollution control in BTHUA, this paper constructs the hierarchical cross-
regional multi-directional linkage in terms of air pollution control models to provide
significant reference and theoretical support for air pollution control in other regions of
China and other countries in the world. We hope to arouse the discussion and application of
this models and the practical details and problems in the academic societies. However, we
do not further reveal the issue of policy transferability by using the quantitative methods,
which is the focus of our future research. In addition, each region and each country have
different difficulties for air pollution control. Therefore, it is necessary to consider the
specific characteristics of the city when controlling the air pollution.

From the perspective of the effectiveness of air pollution control, this paper explores
the change characteristics of six pollutants, namely, SO2, NO2, PM10, PM2.5, O3, and CO
in BTHUA from 2014 to 2017. Due to the length of the article, we do not further reveal
the impact mechanism of different air pollutants. Impact mechanism and traceability
analysis is important for the radical cure of air pollution, which is a meaningful direction
of our future research. In the spatial analysis section of this paper, we use the statistical
cokriging interpolation method of statistics, which is the spatial analysis method used in
geography. We can also use other advanced methods to explore the spatial characteristics
of air pollutants.
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Abstract: Exploring the spatiotemporal change characteristics of ecosystem service value (ESV) under
the influence of national land space pattern (NLSP) changes is of great significance for promoting the
rational use of land resources and the optimization of ecosystems. In this study, Fengdu County in
the Three Gorges Reservoir Area was selected as a case study. We analyzed the changes in NLSP
using land use data from 1990, 2000, 2010 and 2018. Then, we used the equivalent factor method
and exploratory spatial data analysis method to explore the spatiotemporal change characteristics of
the ESV of Fengdu County. The results show that: (1) From 1990 to 2018, the changes in NLSP in
Fengdu County generally manifested in the transformation of agricultural space into urban space
and ecological space; (2) The spatiotemporal change of ESV is a process that positively responds to
the increase in ecological space and negatively responds to the expansion of urban space. From 1990
to 2018, the total ESV of Fengdu County showed a trend of continuous growth, with a total increase
of CNY 11.10 × 108, and the change rate was 9.33%. The ESV gain area is mainly located along the
Yangtze River and the southernmost part of the county, and the loss area is mainly located near
the south bank of the Yangtze River; (3) ESV and its changes in Fengdu County have a significant
positive spatial autocorrelation. The cold and hot spots of ESV change are mainly distributed along
the Yangtze River and to the south of the Yangtze River. Therefore, it is suggested to integrate ESV as
an important indicator into the decision-making of national land space planning. At the same time,
it is necessary to strengthen the intensive use of urban space and protect the important ecological
space from decreasing. Our study results provide useful insights for the development of regional
NLS management and environmental protection policies. However, it is worth noting that the results
of this paper are more applicable to areas where the terrain is dominated by mountains.

Keywords: ecosystem services value; national land space pattern; spatiotemporal changes; Fengdu
County; the Three Gorges Reservoir Area

1. Introduction

Ecosystem services are the sum of life-sustaining products and services that humans
obtain from ecosystems, which are closely related to human well-being and sustainable
development [1]. The ecosystem supports and maintains the balance of the human living
environment by regulating the climate and maintaining biodiversity [2]. It also provides
the food and raw materials needed in life and production and brings entertainment and
aesthetic enjoyment to human beings [3]. Ecosystem service value (ESV) is an important
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indicator to measure ecosystem service functions [4]. National land space (NLS) is the
territorial space under the jurisdiction of national sovereignty and sovereign rights [5].
According to the categories of products provided, the NLS can be divided into urban space,
with the main function of providing industrial products and service products, agricultural
space, with the main function of providing agricultural products, and ecological space,
with the main function of providing ecological products [6]. NLS includes resources and
industrial elements such as land, labor, and minerals. Land is the supporting carrier of NLS,
and the type, scale, and intensity of land use determine the national land space pattern
(NLSP). At the same time, land is also a material provider of ecosystem services. Land use
change is considered to be one of the main driving forces of changes in ecosystem services
at regional and global levels because it reflects the coupling relationship between natural
systems and human systems and profoundly affects the structure, function, and process
of ecosystems [7]. Therefore, the NLSP change is an important factor leading to changes
in ESV.

At present, with the increasing economic downturn and structural adjustment pres-
sure, China is in a period of economic and social transformation. They face the challenges of
tightening resource constraints, insufficient ecological environment carrying capacity, and
incomplete institutional systems. It has become a top priority to coordinate the scientific
protection and rational use of natural resources and to improve regional development
quality. In this context, the Chinese government has changed the value orientation and
measures of land resource allocation. The main functional area plan, land-use plan, and
urban and rural plan are integrated into a unified national land spatial plan, and “multiple
planning integration” is realized [8]. The emphasis of the national land spatial plan is
to optimize the structure and layout of urban space, agricultural space, and ecological
space. At the same time, the Chinese government has also proposed building a spatial
planning system based on the core value orientation of pushing the development of an eco-
logical civilization and practicing the “Two Mountains” Theory (Appendix A). Ecosystem
services are related to environmental quality and human well-being and can be used as
carriers for spatial plans to shape the value of natural resources [9,10]. ESV change can
reflect the spatiotemporal effects and causality of planning decisions, which is conducive to
deepening the understanding of the priority of space uses under the influence of multiple
factors [11,12]. Therefore, the ESV is an important basis for promoting NLSP to conform
to the concept of ecological civilization. Exploring the spatiotemporal change characteris-
tics of ESV under the influence of NLSP change can provide a decision-making basis for
national land spatial planning in the new era.

ESV is a hot topic of study because of the quick degradation of ecosystem services
under intensive human disturbance [13]. Thus far, scholars have conducted significant
work, primarily regarding the definition [1,7,14–16], classification [1,7,14,16,17], and val-
uation [1,18–22] of ecosystem services. Scientifically assessing the ESV can provide an
important reference for ecosystem management [23,24], biological conservation [25], ecosys-
tem service trade-offs [26,27], and ecological restoration [28,29]. At present, three main
approaches have been widely applied to assess ecosystem services, including equivalent
factors, productivity, and biomass [30]. Among them, the result of the equivalent factor
method is presented in the form of monetary quantity, which can reflect the willingness of
humans to pay for ecological services, with strong operability and wider applicability [31].
In 1997, Costanza et al. [1] divided the global ecosystem service functions, estimated the
service value of each ecosystem item by item, and proposed the principles and methods of
ESV estimation. Subsequently, scholars have studied the evaluation methods proposed
by Costanza et al. and have explored and improved the theoretical methods of valuing
ecosystem services [18–20]. Based on the research of Costanza et al. [1], Xie et al. [21,22]
conducted a questionnaire survey among 200 professionals with ecological backgrounds
and developed and improved the equivalent coefficient of ESV per unit area according to
the actual situation in China, which has been used to evaluate the service value of land
ecosystems. This method has the advantages of simple use, low data demand, high com-

548



Int. J. Environ. Res. Public Health 2021, 18, 5007

parability of results, and comprehensive evaluation. It has been widely used in the study
of ESV spatiotemporal change characteristics of administrative regions [32–35], natural
regions [36–40], and economic regions [41–43] at different scales in China.

At present, the studies of NLS mainly focus on the optimization and regulation of
NLSP based on the relationship between land systems and the internal environment of
natural systems [44,45]. The partitioning and adjustment of regional NLS are studied from
the aspect of multifunctional land characteristics [10,46]. China’s territorial imbalance has
intensified [47,48] and there has been a coexistence of insufficient space for the development
and over-development of space; therefore, the optimization and control methods of NLSP
based on regional functional suitability and resource and environmental carrying capacity
have gradually become a hot topic [49,50].

In summary, we find that the existing research methods are gradually mature and the
research results are constantly enriched, but still need to be improved in the following three
aspects: (1) Most scholars believe that land use/cover change (LUCC) is the main reason for
the change in ESV, mainly studying the spatiotemporal change characteristics of ESV based
on the perspective of LUCC [32–35,37,38,41,51]. However, attention has rarely been paid to
changes in the urban–agricultural–ecological functions of NLSs. No scholar has explored
the spatiotemporal change characteristics of ESV based on the perspectives of ecology,
agriculture, and urban spatial changes. Therefore, the relevant studies have limited guiding
value for national land spatial planning; (2) The exploratory spatial statistical analysis
method based on grid cells can effectively express the spatial change characteristics of ESV
and can also more accurately describe the local impact of changes in NLSP on ESV, but it
has only been applied by a few studies [52,53]; (3) In terms of case area selection, most of the
current studies have selected provincial or city-level administrative areas, while there are
few studies on county-level administrative areas. Although these studies are typical, their
results are insufficient for the practical significance of county-level administrative units.

The Three Gorges Reservoir Area (TGRA) is an important ecological barrier in the
Yangtze River Basin. Its ecological environment is not only directly related to the long-term
safe operation of the Three Gorges Dam (TGD) and the stable enrichment of millions of
immigrants, but is also related to the ecological security and sustainable development of the
whole Yangtze River Basin. However, the terrain of the TGRA is dominated by mountains
and hills, with serious problems such as a fragile ecological environment, nonpoint source
pollution, landscape fragmentation and soil erosion, and the contradiction between humans
and land is prominent [54]. Located in the hinterland of the TGRA, Fengdu County
is faced with multiple problems, such as immigration relocation, hollowing out of the
countryside, rapid urban expansion, and deterioration of the ecological environment.
The rational development of NLSs and ecological environmental protection are facing
huge challenges. In view of this, we selected Fengdu County as the study area, using
land use data from 1990, 2000, 2010, and 2018 to analyze the NLSP change based on the
perspectives of urban, agricultural, and ecological spaces. Then, we used the equivalent
factor method and exploratory spatial data analysis method to explore the spatiotemporal
change characteristics of ESV in Fengdu County. The specific objectives of this study are
described as follows: (1) to characterize the change characteristics of NLSP in Fengdu
County from 1990 to 2018; (2) to analyze the spatiotemporal change characteristics of ESV
in Fengdu County; and (3) to explore the spatial autocorrelation characteristics of ESV and
its change.

2. Materials and Methods

2.1. Study Area

Fengdu County of Chongqing city is located in the upper reaches of the Yangtze River
and in the hinterland of the TGRA. The geographical coordinates are 107◦28′–108◦12′ E
and 29◦33′–30◦16′ N (Figure 1). The terrain is dominated by mountains, followed by hills
and only a few flat dams in mountains and river valleys, showing a general pattern of
high south and low north. The land uses are mainly cropland and forest, with abundant
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forest resources and diverse ecosystems. Fengdu County has a total area of 2900.86 km2,
with 2 subdistricts, 23 towns, and 5 townships. In 2018, the per capita GDP of Fengdu
County was CNY 40,400, the per capita disposable income was CNY 21,300, and the
population urbanization rate was 46.48%. Since the 21st century, the immigrant population
in Fengdu County has been larger than the non-immigrant population, and the number of
total permanent population dropped from 671,100 in 2000 to 585,200 in 2018. The outflow
population mainly comes from rural areas. Between 2000 and 2018, the number of rural
population decreased by 210,600.

Figure 1. The study area: (a) the location of Fengdu County in the Three Gorges Reservoir Area; (b) the administrative
divisions and elevation distribution of Fengdu County.

2.2. Data Sources

The data used in this paper mainly include: (1) Land use data obtained from the
Chinese Academy of Sciences Resource and Environmental Science Data Center (https:
//www.resdc.cn/ (accessed on 1 September 2020)), including four periods of land use data
in 1990, 2000, 2010 and 2018, with a spatial resolution of 30 m. The types of land use in
the study area include 6 primary categories (cropland, forest, grassland, water, built-up
and unused land) and 17 secondary categories (omitted here); (2) Net Primary Productiv-
ity (NPP) data were obtained from the National Aeronautics and Space Administration
(https://www.nasa.gov/ (accessed on 1 September 2020)), and soil conservation simula-
tion and precipitation data were obtained from the National Earth System Science Data
Sharing Service Platform (https://www.geodata.cn/ (accessed on 1 September 2020)).
These data were used to modify the ecosystem service value equivalent factors; (3) The
data on the yield per unit area and average price of rice, wheat and corn are from the
“China Agricultural Product Price Survey Yearbook”, which is used for the calculation of
the ESV of a standard equivalent factor. The other socioeconomic data required for this
article come from the “China Statistical Yearbook”, “Chongqing Statistical Yearbook”, and
“Fengdu Yearbook” of the corresponding years.
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2.3. Methods
2.3.1. Quantitative Analysis of National Land Space Pattern Change

(1). National Land Space Classification
NLS classification is the process of considering the various functions of land in the

natural environment and the development of human society, and dividing it into several
functional areas [55]. Among the multiple functions of NLS, ecological function is the
premise and foundation of other functions [56]. Based on the “Main Functional Area
Planning” issued by the State Council of China, we took the strengthening of the basic status
of ecological functions as the goal and established the NLS classification system of Fengdu
County [57]. The classification system included 3 primary categories and 6 secondary
categories (Table 1, Figure 2). As the spaces with different functions in the urban space
are closely connected and the boundaries are blurred, the urban space is not divided into
secondary categories. It is worth noting that the Chinese government added Fengdu County
as an important area for soil conservation in the “National Ecological Function Zoning
of China” program, and made the protection and restoration of vegetation as the focus
of the regional ecosystem management. Therefore, we classified forest and grassland as
vegetation ecological space, which not only emphasizes its ecological attributes, but is also
conducive to the management of local soil erosion and rocky desertification. In addition,
we classified the bare land as other ecological spaces, to prevent the blind adjustment of
these lands into cropland and built-up in the process of subsequent NLS development,
which is conducive to promoting the natural ecological restoration of degraded land.

Table 1. The classification of NLS in Fengdu County.

Primary Categories Secondary Categories
Corresponding Land Use Type (Second-Level

Categories)

Urban space (US) — Built-up (urban land, industrial and mining land)

Agricultural space (AS)
Agricultural production space (APS) Cropland (paddy field, dry land)

Agricultural living space (ALS) Built-up (rural residential land)

Ecological space (ES)

Vegetation ecological space (VES)

Forest (closed forest land, open forest land, and
other forest land) and Grassland (high coverage

grassland, medium coverage grass, and low
coverage grass)

Water ecological space (WES) Water (river, lake, reservoir, pond, and beach)

Other ecological space (OES) Unused land (bare land)
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Figure 2. Spatial distribution of NLS in Fengdu County from 1990 to 2018.

(2). National land Space Transition Matrix
The land-use transition matrix can not only reflect the initial and final land type

structure of the study area, but also describes the detailed changes of land use in the
study area, including the source, composition, and direction of the changes [58]. Based on
the theory of the land use transition matrix, we established the NLS transition matrix to
analyze the change structure and direction of NLS during the study period; its mathematical
expression is:

Sij =

∣∣∣∣∣∣∣∣∣

S11 S12 · · · S1n
S21 S22 · · · S2n

...
...

...
...

Sn1 Sn2 · · · Snn

∣∣∣∣∣∣∣∣∣
, (1)

552



Int. J. Environ. Res. Public Health 2021, 18, 5007

In the formula, i and j are the NLS types in the previous stage and later stage, n is the
number of NLS types, and Sij is the area of the ith NLS type transferred to the jth NLS type
during the research period. We used the raster calculator tool in ArcGIS 10.7 to calculate
the NLS transition matrix, and to realize the visualization of the results. The formula is
as follows:

G = 10Ga + Gb, (2)

In Equation (2), G is the new NLS unit code formed by the change in NLS during
the study stage, Ga is the NLS unit code in the previous stage, Gb is the NLS unit code in
the later stage, and the codes for US, APS, ALS, VES, WES, and OES are 1, 2, 3, 4, 5, and
6, respectively.

2.3.2. Calculation of Ecosystem Services Value

This study used the equivalent factor method proposed by Xie et al. [59] to measure
ESV. In this method, ecosystem services are divided into 4 primary categories and 11 sec-
ondary categories. Specifically, provisioning services include food supply, raw material
supply, and water supply. Regulating services include air quality regulation, climate regu-
lation, waste treatment, and regulation of water flows. Supporting services include erosion
prevention, maintenance of soil fertility, and habitat services. Cultural services include
cultural and amenity services. The equivalent value per unit area of food production of
cropland was set to 1, and the equivalent value per unit area of other ecosystem services
could be quantified by comparison with the standard value of 1. Generally, the economic
value provided by natural ecosystems without human input is approximately 1/7 of the
economic value of food provided by existing farmland per unit area. From 1990 to 2018,
the annual average yield of the three main food crops (rice, corn, and soybean) in Fengdu
County was 3589.90 kg/hm2, and the average price of the three main food crops in 2018 was
2.98 CNY/kg. Therefore, the unit value of the equivalent factor (En) was 1528.27 CNY/hm2,
obtained using the following equation:

En = 1/7 PQ, (3)

In the formula, P is the annual average grain yield, and Q is the average grain price.
Considering the regional heterogeneity of the internal structure and external form

of the ecosystem, there are obvious differences in ecosystem service functions and value
in different regions [60]. The table of the ESV equivalent factors proposed by Xie et al. is
applicable at the national scale. If applied directly to regional ESV research, major errors
may occur. Therefore, we adjusted the ESV coefficients to suit the ecological characteristics
of Fengdu County. The ecosystems were divided into 6 primary categories and 14 secondary
categories in the study of Xie et al. [59]. Land use types cannot correspond to ecosystem
types one by one; therefore, we selected the closest land use type for equivalent evaluation
according to the actual situation of the study area. Specifically, the equivalent factors of the
corresponding ecosystem types were used for paddy field, dry land, water, and bare land.
Broadleaf forests are the main types of forest, and shrub grass is the main type of grassland
in Fengdu County [61]; we used the equivalent factors of broadleaf forest and shrub grass
as the representatives of forest and grassland, respectively. Simultaneously, we adjusted the
ESV equivalent factors based on the spatial distribution raster data of national net primary
productivity (NPP), precipitation per unit area, and soil conservation [22]. Among these
raster data, the NPP, precipitation per unit area, and simulated soil conservation of each
grid are the average values of 1990, 2000, 2010 and 2015, calculated by the raster calculator
tool in ArcGIS 10.7. Thus, the ESV coefficients per unit area were calculated according to
Equation (4).

VCf =

⎧⎨
⎩

Df 1 × En × B/Bt or
Df 2 × En × W/Wt or

Df 3 × En × E/Et

, (4)
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In the formula, VCf is the ESV coefficient per unit area of the f th ecological service
type of a certain ecosystem in the study area, Df 1, Df 2, and Df 3 are the equivalent factors
of the ecosystem service function related to NPP, precipitation, and soil conservation, re-
spectively [61], B, W, and E are the average NPP, precipitation per unit area, and simulated
soil conservation in the study area, respectively, and Bt, Wt, and Et are the national average
NPP, precipitation per unit area, and soil conservation simulation quantity, respectively. In
addition, several researchers believe that “built-up” does not belong to natural ecosystems
and assign an ESV value of zero to built-up areas [62,63]. However, due to the strong
disturbance of human activities, built-up spaces have a huge impact on regional ecosystem
services. Human activities in built-up areas consume food and water, and emit exhaust
gas, wastewater, and solid waste at the same time, which have a negative impact on pro-
visioning services and regulating services. However, built-up zones have the function
of maintaining soil, and also add the values of appreciation and entertainment; thus, it
has a positive impact on supporting services and cultural services [51]. In this study,
we determined the ESV coefficient per unit of built-up area based on the research of the
Chengdu–Chongqing Economic Zone by Yuan et al. [64]. Finally, we obtained the ESV per
unit area for Fengdu County (Table 2).

Table 2. Ecosystem service value per hectare of different land use categories in the study area. (Unit: CNY/hm2/year).

Land Use Paddy Field Dry Land Forest Grassland Water Built-Up
Unused

Land

Ecosystem Paddy field Dry land Broad-leaved Shrub grass Weter — Barren
Provisioning service −3257.20 3094.90 3285.32 3174.83 314,672.47 −406.34 0
Regulating service 12,310.37 3521.59 39,376.18 32,601.97 7200.90 −10,653.50 377.79
Supporting service 988.79 2339.02 10,797.07 9769.31 4592.60 4138.55 82.22

Cultural service 218.70 145.80 2575.75 2332.75 352,787.22 9.47 24.30
Total 10,260.66 9101.31 56,034.32 47,878.86 679,253.19 −6911.82 484.31

The formulae for estimating the ESV are as follows:

ESVf = ∑ Ak × VCf k, (5)

ESV = ∑ Ak × VCk, (6)

where ESVf is the value of the f th ecological service type, ESV is the total value of ecosys-
tem services in the study area, Ak is the area of the kth land use type, VCf k is the ESV per
unit area of the f th ecological service type of the kth land use type, and VCk is the ESV per
unit area of the kth land use type.

Based on this, the formula for calculating the ESV of different NLS types is as follows:

ESVg = ∑ Sk × VCk, (7)

In Equation (7), ESVg is the ESV of a certain type of NLS, and Sk is the area of the kth
land-use type included in this type of NLS.

2.3.3. Exploratory Spatial Data Analysis

Exploratory spatial data analysis is a collection of techniques for describing and visu-
alizing spatial distributions, determining atypical locations or spatial outliers, discovering
spatial associations, clusters, or hot spots, and inferring spatial characteristics or other
forms of space heterogeneity [65]. In this study, the global spatial autocorrelation analysis
method and hot spot analysis method are adopted to explore the spatial autocorrelation
characteristics of ESV. We calculated Moran’s I value, which is used to describe the global
spatial autocorrelation characteristics of ESV. At the same time, we calculated Getis–Ord Gi*
statistics to describe the spatial locations of “cold spots” and “hot spots” of ESV changes.
These statistics are used to reveal the spatial clustering pattern of the high and low values
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of ESV change. The Spatial Autocorrelation (Moran’s I) and Hot Spot Analysis (Getis–Ord
Gi*) tools in ArcGIS 10.7 software were used for analysis.

3. Results

3.1. National Land Space Pattern Change
3.1.1. The Area Change of National Land Space

According to the land use data for the four periods of 1990, 2000, 2010 and 2018, the
area change of NLS was calculated (Table 3), and the results showed that Fengdu County
is dominated by ES, which accounted for approximately 53%, followed by AS, which
accounted for more than 45%, while US is the smallest, accounting for less than 1%. From
1990 to 2018, the US of Fengdu County expanded significantly (1165.64%). There was a
slight decrease in AS (−4.15%) and a small increase in ES (2.18%). From the changes in the
secondary types, it can be seen that US, ALS, VES and WES have increased, while the rest
of the space has decreased. Among them, the US has the fastest growth rate (41.69%/a),
which reflects the intense urbanization process that Fengdu County has experienced in the
past 28 years. The growth rate of ALS is 5.47%/a, which is second only to US. From the
changes of different stages, it can be seen that US, ALS and WES continue to increase. US
is gradually increasing, and the increase in ALS at each stage is relatively stable. The WES
increased explosively from 2000 to 2010, mainly because the Three Gorges Reservoir began
to store water at this stage, which led to the expansion of the water area of the Yangtze
River and its tributaries. APS and OES continued to decrease, and both had the largest
decrease from 2000 to 2010. The VES increased sharply from 2000 to 2010, which may
be related to the effective implementation of policies such as the Grain for Green Project,
the Natural Forest Protection Program, and the policy of rocky desertification control at
this stage.

Table 3. Changes in NLS structure in Fengdu County from 1990 to 2018.

Type US
AS ES

APS ALS Total VES WES OES Total

1990
Area/km2 1.95 1379.68 3.26 1382.94 1474.90 39.40 0.36 1514.66

Proportion/% 0.07 47.58 0.11 47.69 50.87 1.36 0.01 52.24

2000
Area/km2 5.76 1373.02 5.03 1378.05 1474.10 41.27 0.35 1515.72

Proportion/% 0.20 47.35 0.17 47.52 50.84 1.42 0.01 52.27

2010
Area/km2 13.71 1327.67 7.02 1334.69 1498.70 50.89 0.05 1549.64

Proportion/% 0.47 45.81 0.24 46.05 51.71 1.76 1.83 × 10−3 53.47

2018
Area/km2 24.68 1317.37 8.24 1325.61 1495.37 52.33 0.05 1547.75

Proportion/% 0.85 45.46 0.28 45.74 51.60 1.81 1.74 × 10−3 53.41
Rate of change/% 1165.64 −4.52 152.76 −4.15 1.39 32.82 −86.11 2.18

Annual rate of change/% 41.63 −0.16 5.46 −0.15 0.05 1.17 −3.08 0.08

3.1.2. National Land Space Transition

Table 4 shows the NLS transition matrix of Fengdu County. It can be seen that VES has
the largest transfer-in area, which is mainly from APS (100.45 km2). Next is WES, which
mainly comes from APS (8.35 km2) and VES (5.04 km2). US is mainly transferred from APS
(18.24 km2) and VES (5.24 km2), and ALS is mainly transferred from APS (5.39 km2). We
found that the hot spot of transfer in Fengdu County is the transfer of APS to VES and US.
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Table 4. NLS transition matrix of Fengdu County from 1990 to 2018. (Unit: km2).

1990
2018

US APS ALS VES WES OES

US 0.76 0.02 0 0.01 1.17 0
APS 18.24 1246.66 5.39 100.45 8.35 0
ALS 0.21 0.49 2.45 0.10 0 0
VES 5.24 68.44 0.33 1393.57 5.04 0.01
WES 0.23 1.18 0.06 0.36 37.56 0
OES 0 0.12 0 0.01 0.19 0.04

From the spatial distribution of NLS in Fengdu County (Figure 2), it can be seen
that, initially, the APS was roughly distributed in mountain valleys and gentle slope
areas. These areas have a flat terrain and good hydraulic conditions, which are suitable
for agricultural production. VES were scattered in mountains and valleys. The complex
natural environment in these areas restricts human activities and provides a good condition
for the restoration of vegetation. The WES mainly includes the Yangtze River and Long
River. The US and ALS are mainly distributed along the Yangtze River. According to the
NLS transition map in Fengdu County from 1990 to 2018 (Figure 3), the most obvious NLS
change was the expansion of US, which is mainly distributed in the north of the Sanhe
subdistrict, northwest of Shuanglu town, and northwest of Xingyi town. This is mainly
because Fengdu County started the construction of a new county town on the south bank
of the Yangtze River after the old county town was flooded. Next, transitions between
APS and VES occurred in Fengdu County at a large scale, but the locations were relatively
scattered. Among them, the transfer from APS to VES in some areas with steep slopes in
townships, such as Shuren Town, Dudu Town, Jilong Town, Wuping Town, and Taipingba
Township is obvious. These areas were unsuitable for farming, therefore they were the
key areas for the Grain for Green Project. The expansion of WES was distributed along the
Yangtze River, mainly due to the operation of the TGD. The construction of many small
reservoirs in Gaojia town, Longhe town and Baoluan town also resulted in the transfer of a
small amount of APS into WES. The transfer-in of ALS was mainly distributed in northern
Zhanpu town, eastern Mingshan town, and northeastern Gaojia town.
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Figure 3. NLS transition map in Fengdu County from 1990 to 2018.

3.2. Spatiotemporal Changes of Ecosystem Service Value
3.2.1. The Changes of Ecosystem Service Value

The ESVs of Fengdu County in 1990, 2000, 2010, and 2018 were calculated in combina-
tion with the ESV per unit area (Table 5). The results show that the total ESV of Fengdu
County showed a trend of continuous growth, with a total increase of CNY 11.10 × 108,
and the change rate was 9.33%, during the 1990–2018 period. From the perspective of
different stages, the total ESV growth rate of Fengdu County was the largest from 2000 to
2010, which was mainly due to the rapid expansion of the scale of VES and WES during
this period. Among the four primary types of ecosystems services, the value of regulating
services had the largest contribution to the total ESV. In the past 28 years, the value of the
four ecosystem services has increased. Among them, cultural services (CNY 4.66 × 108)
have the most value growth, followed by provisioning services (CNY 3.97 × 108) and
regulating services (CNY 1.97 × 108); supporting services (CNY 0.49 × 108) have the least
value growth.
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Table 5. ESV of Fengdu County from 1990 to 2018 (unit: 108 CNY).

Ecosystem Service 1990 2000 2010 2018

Provisioning service 19.13 19.70 22.67 23.09
Regulating service 63.57 63.41 65.85 65.54
Supporting service 18.43 18.43 18.92 18.92

Cultural service 17.83 18.48 21.99 22.49
Total 118.95 120.03 129.43 130.05

The largest ESV per unit area is for the water and the lowest is for the unused land,
whereas the ESV per unit area of the built-up is negative (Table 2). According to Equation
(7), the ESV of different NLS types was calculated (Table 6), and it was found that the VES
is the main contributor to the ESV of Fengdu County and has contributed more than 60%
during the four periods; the next highest contributor is the WES, at approximately 25%.
The contributions of the other NLS types, which have smaller areas, were relatively low;
especially for OES, which was close to zero. From the perspective of ESV changes, we
observed that the ESV of VES and WES increased by CNY 3.07 × 108 and CNY 8.78 × 108,
respectively. The ESV of the remaining space types all declined. Among them, the ESV
of APS decreased the most (CNY 0.57 × 108), followed by US (CNY 0.16 × 108) and ALS
(CNY 0.03 × 108). In summary, the ESV loss caused by the expansion of the construction
space (US and ALS) and the reduction in APS is offset by the ESV gain caused by the
increase in ES. The significant increase in the ESV of the WES is the main reason for the
increase in the total ESV of Fengdu County.

Table 6. The ESV of different NLS types in 1990–2018 (unit: 108 CNY).

Type US
AS ES

APS ALS Total VES WES OES Total

1990 −0.01 12.98 −0.02 12.96 79.24 26.77 1.72 × 10−4 102.61
2000 −0.04 12.92 −0.03 12.89 79.15 28.03 1.72 × 10−4 103.61
2010 −0.09 12.51 −0.05 12.46 82.50 34.57 2.44 × 10−5 111.86
2018 −0.17 12.42 −0.06 12.36 82.31 35.55 2.44 × 10−5 112.82

change −0.16 −0.57 −0.03 −0.60 3.07 8.78 −1.48 × 10−4 10.21

3.2.2. The Spatial Change of Ecosystem Service Value

To further analyze the spatial variation characteristics of ESV, the Fish net tool in
ArcGIS 10.7 was used to divide the administrative area of Fengdu County into 12,052 square
cells with a side length of 500 m. We calculated the ESV of each grid and used natural
breaks to divide it into six levels from high to low. Among them, an ESV of level one was
the lowest, and an ESV of level six was the highest (Figure 4). The results showed that
the spatial difference in ESV in Fengdu County was obvious. Due to the vast water area,
the Yangtze River is a concentrated area with the highest value of ecosystem services. In
addition, the ESV in Fengdu County has obvious spatial distribution characteristics, with
the Yangtze River as the boundary, high in the south and low in the north.
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Figure 4. Spatial distribution of ESV in Fengdu County, 1990 and 2018.

Figure 5 is the spatial distribution map of ESV changes in Fengdu County from 1990
to 2018. The changes of ESV in Fengdu County were mainly distributed along the Yangtze
River and the southernmost part of the county, while the changes of ESV in other areas
were not obvious. The ESV gain area along the Yangtze River was distributed in a zonal
pattern, mainly located to the north of Zhanpu town and the south of Mingshan subdistrict,
Shuren town and Shizhi town. The loss areas were distributed in blocks, mainly located in
the northern Sanhe subdistrict, Shuanglu town, Xingzhi town and Gaojia town. Among
them, the gain in ESV was mainly due to expansion of the water area of the Yangtze River,
and the loss of ESV was mainly due to the continuous encroachment of other spaces by
US and ALS. The areas with high ESV values in Sanba Township, Jilong Township, Dudu
Township, Taipingba Township and Wuping Town in the southernmost part of Fengdu
County increased, which was mainly due to the transition of a large amount of grassland
in the ES into forest. There were also some scattered ESV gain and loss areas. Among them,
the loss of ESV was mainly due to the transformation of APS and VES into US and ALS.
The main reasons for the gain of ESV on both sides of the Yangtze River are different. In
the north of the Yangtze River, it was mainly due to the transformation of APS into VES.
However, in the south of the Yangtze River, it was mainly due to the transformation of VES
into WES.
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Figure 5. Spatial distribution of ESV change in Fengdu County from 1990 to 2018.

3.2.3. Spatial Autocorrelation Characteristics of Ecosystem Service Value

(1). Global Spatial Autocorrelation Analysis
The spatial correlation characteristics of ESV are shown in Table 7. It can be seen that

the global Moran’s I of ESV and ESV changes in each stage were all greater than 0 and
significant at the threshold level of 1%, indicating that ESV and its changes in Fengdu
County were not randomly distributed but positively correlated. This indicates that the
spatial distribution of ESV and its changes showed strong spatial clustering characteristics.
The Moran’s I of ESV first decreased from 0.6324 to 0.6214, and then continually rose to
0.6437. This indicates that the clustering characteristics of ESV distribution were weakened
from 1990 to 2000, but the clustering characteristics of ESV distribution were enhanced
from 2000 to 2018 under the influence of the construction of the Three Gorges Project, the
implementation of macro policies, and the rapid development of urbanization; the Moran’s
I of ESV changes at different stages showed “up–down” fluctuation characteristics. From
2000 to 2010, the Moran’s I value of ESV changes was 0.4724, and the spatial distribution of
ESV changes had the strongest clustering characteristics. From 2010 to 2018, the Moran’s
I value of ESV changes was only 0.2394, and the spatial distribution of ESV changes had
the weakest clustering characteristics.
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Table 7. Moran’s I value of ESV in Fengdu County.

Index 1990 2000 2010 2018 1990–2000 2000–2010 2010–2018 1990–2018

Moran’s I 0.6324 0.6214 0.6398 0.6437 0.34674 0.4724 0.2394 0.4542
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
z-scores 132.5123 134.4064 128.2431 147.6582 115.3241 123.1716 89.9226 96.9496

(2). Hot Spot Analysis
Figure 6 shows the hot spot spatial distribution pattern of ESV changes in Fengdu

County. From 1990 to 2018, most of the cold spots and hot spots of ESV changes in Fengdu
County were distributed along the Yangtze River and to the south of the Yangtze River,
which was consistent with the spatial distribution of ESV changes.

 
Figure 6. Hot spot spatial distribution pattern of ESV change in Fengdu County from 1990 to 2018.
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From 1990 to 2000, cold spots and hot spots of ESV changes were few and scattered.
Among them, the cold spots were mainly distributed in the Mingshan subdistrict, Sanhe
subdistrict, Zhanpu town, Baoluan town, Shuanglu town, and Gaojia town. This was
mainly due to the expansion of US and ALS. The hot spots were mainly distributed in
Longhe town. The reason is that the construction of Shiban Reservoir (since 1997) led
to the rapid expansion of local WES; from 2000 to 2010, the cold spots and hot spots in
Fengdu County increased significantly. As the TGD began to store water, hot spots were
concentrated along the Yangtze River. At the same time, the increase in the water area of
the Long River also led to the emergence of hot spots within the Sanhe subdistrict and
Sanjian township. Due to the transition of grassland to forest with higher ESV per unit
area, large areas of hot spots appeared in Sanba township, Jilong town, Wuping town,
Taipingba township and Dudu township. In addition, due to the construction of the
Danzitai reservoir (since 2003), hot spots also appeared in Baoluan town. The cold spots
were mainly distributed in the Sanhe subdistrict, Baohe township, Xingyi town, Gaojia
town and Sanba township. From 2010 to 2018, the cold spots and hot spots decreased
compared with the previous period. The further expansion of the water area of the Yangtze
River triggered the agglomeration of hot spots. The hot spots were mainly distributed in
the Mingshan subdistrict, Baoluan town, and Gaojia town. The main reasons were the
further expansion of the water area of the Yangtze River, and Jiangjiagou Reservoir (since
2015), Guantiangou Reservoir (since 2017), and Liziping Reservoir (since 2017), which
have been built one after another. The cold spots were mainly distributed in Huwei town,
Baoluan town, Sanhe subdistrict, Shuanglu town, Xingyi town, Gaojia town and Sanba
township. The main reasons are the construction of the Fengdu Railway Station (since
2013) and the Fuling–Fengdu–Shizhu Expressway (since 2013), and the continuous growth
of urban space and agricultural living space in each township. Overall, the cold spots and
hot spots were the most widely distributed from 2000 to 2010, and this was the period with
the most dramatic changes in ESV in Fengdu County.

4. Discussion

The reform of China’s ecological civilization system is the cornerstone of the reform of
national land spatial planning. In the context of increasing emphasis on the development
of an ecological civilization, ecosystem services have important reference significance
for national land spatial planning. However, there is an objective contradiction between
the complexity of the theory and methods of ecosystem services and the feasibility of
national land spatial planning practices. How to integrate ecosystem services into the new
spatial planning system has become an important task of China’s NLS governance [66,67].
This paper starts with ESV, an important measure of ecosystem services, and attempts to
analyze the spatiotemporal change characteristics of ESV under the influence of NLSP
change in Fengdu County. The conclusions can provide a scientific basis for promoting
the multifaceted supporting role of ecosystem services in the formulation of national land
spatial plans.

4.1. Effects of NLSP Change on ESV

The ESV of Fengdu County increased by CNY 11.10 × 108 from 1990 to 2018. The
construction and operation of the Three Gorges Reservoir and some small reservoirs has
greatly increased the water ecological space in Fengdu County, which has made the most
contribution to the total growth of ESV. This was similar to the research results in the
upstream Xiong’an New Area [41]. In the ES, the large increase in forest has had a huge
contribution to the total growth of ESV. Particularly, since 2000, with the implementation
of the Grain for Green Project and Natural Forest Protection Program, the forest coverage
rate has greatly increased, resulting in a significant increase in ESV. This was similar to
the research results in northern Shaanxi [68]. The ESV per unit area of the construction
space was negative. Over the past 28 years, a large number of other spaces have been
transformed into construction space, which has had a large negative impact on the ESV of
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Fengdu County. This also reflects the problems existing in the development and utilization
of NLSs in Fengdu County. Firstly, the development and utilization model of US pays
too much attention to scale and speed and neglects the intensive use of space. Secondly,
with the massive outflow of the rural population, the ALS has not decreased but has
increased. Relevant studies have shown that this pattern of dysfunctional development of
rural human–land relationships is widespread in China, and it is one of the main problems
in China’s space governance [69–71].

In general, the spatiotemporal changes of ESV are processes that positively respond
to the increase in ecological space but negatively respond to the expansion of urban
space. With the completion and operation of the Three Gorges Reservoir and the long-
term implementation of the Grain for Green Project, the water area and forest area of
Fengdu County have basically stabilized. In the future, it will be difficult to significantly
increase the ESV by increasing the water and forest. However, the urbanization process of
Fengdu County will continue to advance, and it is foreseeable that ESV will face downward
pressure in the future. Therefore, the NLSP should be guided to develop in the direction of
ESV appreciation while ensuring that ESV does not depreciate.

We also found that ESV change shows obvious positive spatial autocorrelation char-
acteristics, which indicates that NLSP change may have a certain spatial spillover effect
on ESV. Moreover, NLSP changes may cause ESV gains and losses in the region. At the
same time, they may also cause ESV increases and decreases in surrounding areas. The
study of Lu et al. [72] reached a similar conclusion. The reason may be that NLSP changes
have affected the material, energy, and information interactions between organisms and
environmental components in the local ecosystem. The theory of landscape ecology shows
that when the ES changes to AS and US, in which human activities are more intense, it will
increase resistance to the migration and flow of species and energy between heterogeneous
landscapes, which is not conducive to the progress of regional ecological processes [73],
in turn leading to the weakening of ESV in surrounding areas. Therefore, preventing the
expansion and penetration of spaces with higher ESV per unit area to spaces with lower
ESV per unit area is an effective way to maintain the continuity of the ecosystem pattern
and increase regional ESV.

4.2. Discussion on the Impact of the Three Gorges Dam on the Ecological Environment

This study mainly analyzed the impact of the construction of the TGD on ESV from
the perspective of NLSP changes. From the research results, the construction of the
TGD has increased the scale of water ecological space and has had positive significance
for the regional ecosystem. However, it is worth discussing that the construction and
operation of large dams also has a huge adverse impact on the ecological environment [74],
which is confirmed by relevant studies in the Amazon Basin [75], Tennessee Valley [76]
and the Mekong River Basin [77]. The TGD is the world’s largest hydro project, and
is of great significance in flood control, power generation, and shipping. However, the
TGD has also caused ecosystem degradation, water pollution, biodiversity reduction,
downstream river erosion, geology disasters, and many other ecological hazards [78,79].
The Chinese government has implemented a series of policy interventions to mitigate
adverse eco-environmental impacts of the TGD. Initially, during the construction of the
TGD (1993–2002), many ecological programs were planed and enforced. The Transforming
Sloping Cropland to Terraced Land (since 1993), Grain for Green Program (since 1998),
Natural Forest Protection Program (since 1998), and the Comprehensive Plan on Prevention
and Control of Geological Hazards in the Three Gorges Reservoir Area (since 2001) are
a few examples. Subsequently, since the start of operation of the TGD in 2003, projects
such as the Water Pollution Prevention and Control Plan in the Three Gorges Reservoir
Area and the Upstream (2001–2010), and the Outline of the Water Pollution Prevention
and Water Pollution Prevention and Control Plan in the Key Basins (2011–2015) have
gradually been implemented. More than ten ecological operation trials were carried out
simultaneously to rehabilitate “four domestic fish species (herring, grass carp, silver carp,
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bighead carp)”. These ecological programs have played a significant role in mitigating
the negative ecological impacts of the TGD. From 1996 to 2016, 2118.47 km2 of sloping
cropland were returned to forest or grassland, 2196 km2 of soil under erosion were curbed,
and the forest coverage rate increased from 22% to 49% in the Three Gorges Reservoir Area.
At the same time, water quality in the tributaries in the reservoir area improved, with the
proportion of eutrophication being reduced from 39.4% in 2011 to 29.8% in 2016. Annual
average spawning stocks of four domestic fish species increased by 137.4% in 2011–2016
on the basis of 2003–2010 levels [80]. In summary, we suggest that the pros and cons of
the dams should be fully traded-off before construction. For dams that have already been
built, it is necessary to carry out systematic ecological restoration measures, especially in
some developing countries with increasing demand for water and energy but not enough
awareness of ecological protection [81].

4.3. Policy Implications

Combined with our research, the following policy recommendations are suggested.
(1) This study concludes that NLSP is an important influencing factor of ESV, and

ESV is an important basis for promoting NLSP to conform to the concept of ecological
civilization. It is necessary to integrate ESV into the decision-making of national land
space planning. Therefore, we suggest: (a) providing special training on ESV for spatial
planners so that they can firmly grasp the relevant theories and evaluation methods of ESV;
(b) based on relevant academic research, ESV should be included as a quantitative indicator
in the work of delineating the “three zones and three lines” (three zones—ecological zone,
agricultural zone, and urban zone; three lines—permanent basic farmland red line, urban
development boundary, and ecological red line) and identifying key areas for ecological
restoration [82]; and (c) monitoring and assessing the impact of the implementation of the
national land spatial plan on the ESV to provide a basis for the revision of plans.

(2) Promoting the coordinated development of urban, agricultural, and ecological
spaces is an important way to simultaneously achieve stable economic and social develop-
ment and sustainable improvement of ecosystem services. Thus, we suggest the following:
(a) It is necessary to strengthen the intensive use of urban space, fully tap the potential of
existing urban land use, increase spatial compactness, and strictly enforce the control of ur-
ban development boundaries; (b) The protection of basic farmland should be strengthened,
and sloping farmland and abandoned farmland should be gradually returned to forests.
At the same time, rural residential land consolidation should be combined with the flow of
urban and rural construction land indicators to maintain a balance between urban and rural
construction land; (c) Land use control measures must be strictly implemented to protect
the important ecological space from decreasing. At the same time, the integrated land con-
solidation and ecological restoration project of mountain–river–forest–field–lake–grassland
should be implemented to improve the quality of the ecological environment.

(3) The spatial spillover effects of NLSP change on ESV should be fully considered.
We suggest that a population withdrawal policy should be implemented in the ecological
space, and the regional population should be encouraged to congregate in the urban spaces.
At the same time, the development and construction activities in high ESV areas should
be minimized. In addition, the urban space and agricultural living space should focus on
the development of eco-friendly space uses on their natural edges, such as country parks
and Linpan [83] (a kind of natural settlement of forests, water, houses, and fields widely
distributed in southwestern China), so that they can be integrated with the surrounding
ecosystem. Especially along the Yangtze River, it is even more necessary to plant a certain
scale of ecological forests or build green parks to create ecological coastal zones to avoid
pollution of the water environment of the Yangtze River from urban construction.

(4) The Three Gorges Reservoir area undertakes the important task of ecological envi-
ronmental protection and restoration and has lost some opportunities for economic and
social development to improve the service functions of the ecosystem. This has widened
the gap in regional development and caused an imbalance between fairness and efficiency.
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For the sake of achieving regional fairness and sustainable development, we suggest taking
ESV as the foundation for defining the regional ecological compensation relationship, de-
termining the ecological compensation standard, and dividing the ecological compensation
zones. At the same time, we have explored the establishment of a market-oriented and
diversified ecological compensation mechanism for different regions and different principal
parts to improve the enthusiasm and sustainability of ecological environmental protection.

4.4. Limitations

This study also has limitations. The ESV assessment method adopted in this study
does not consider the impact of different use methods and use conditions of built-up
areas on the ESV coefficient [84]. The negative impact of built-up spaces on ecosystem
service functions mainly comes from human disturbance. The population density on urban
land is relatively high, and the interaction between humans and land is strong. However,
rural residential land carries a smaller population per unit area and causes less damage
to the natural ecosystem of the land. In addition, idle rural residential land is subject
to little human disturbance, and its negative impact on ecosystem service functions is
almost negligible. Therefore, if the types of built-up land are subdivided and assigned
value coefficients consistent with their ecological functions, the evaluation result of ESV
will be more accurate. For other land use types such as forest, grassland, and water, the
internal differences between them has less influence on the ESV coefficient. This is because
these land use types belong to natural ecosystems, which are weakly disturbed by human
activities, and the interaction between man and land is simple; the ESV coefficient mainly
depends on the regional natural endowment [59]. At the county scale, regional natural
endowments have a certain degree of homogeneity [85], and the difference in the spatial
distribution of the internal structure and external form of the ecosystem is not significant.

The scope of application of the research results in this paper also has certain limi-
tations. A significant negative relationship existed between topographic gradients and
human disturbance. With the increase in altitude, the disturbance of human activities to
the land ecosystem continued to weaken, and the value of ecosystem services showed an
upward trend [86]. The terrain of Fengdu County is dominated by mountains, and the
population is mainly distributed in mountain troughs with a flat terrain. In addition, in
recent years, a large number of people have moved out of mountainous areas, which has
further strengthened the differences in population distribution on topographical gradi-
ents [87]. Therefore, the spatial distribution of ESV in Fengdu County showed obvious
imbalance. However, the topographical gradients of plain areas have little influence on
human activities, and the difference in the spatial distribution of ESV may not be obvious.
Therefore, the results of this research are not necessarily applicable to plain areas, such as
the Amazon Plain, the North American Prairie, the Gangetic Plain, and the Northeast China
Plain. However, the analysis conclusions of the ESV change mechanisms in this research
are universal and can provide references for the management of ecosystem services in
plain areas.

5. Conclusions

(1) From 1990 to 2018, the changes of NLSP in Fengdu County generally manifested in
the transformation of AS into US and ES. US, ALS, VES, and WES increased, while APS
and OES decreased. The newly added US and WES were mainly located along the Yangtze
River, and the newly added ALS and VES were scattered.

(2) The spatiotemporal changes of ESV are processes that positively respond to the
increase in ES but negatively respond to the expansion of US. From 1990 to 2018, the total
ESV of Fengdu County showed a trend of continuous growth, with a total increase of
CNY 11.10 × 108, and the change rate was 9.33%. The significant increase in the ESV of
the WES was the main reason for the increase in the total ESV of Fengdu County. The
ESV gain area was mainly located along the Yangtze River and south of Fengdu County,
and it has benefited from the implementation of ecological protection policies and the
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construction of the Three Gorges Reservoir and some small reservoirs. The ESV loss area
was mainly located in Sanhe subdistrict, Shuanglu town, and Xingyi town on the south
bank of the Yangtze River. The reason is that the construction of the new city invaded many
other spaces.

(3) ESV and its change have a significant positive spatial autocorrelation. From 1990 to
2018, Moran’s I of ESV and its change in Fengdu County were all greater than 0, indicating
that the spatial distribution of ESV and its changes showed strong spatial clustering
characteristics. The spatial distribution of cold spots and hot spots of ESV changes at
different stages was consistent with ESV changes, and these cold and hot spots were mainly
located along the Yangtze River and to the south of the Yangtze River.
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Abbreviations

The abbreviations in this article:

ESV Ecosystem Service Value
NLS National Land Space
NLSP National Land Space Pattern
TGRA Three Gorges Reservoir Area
TGD Three Gorges Dam
US Urban space
AS Agricultural space
ES Ecological space
APS Agricultural production space
ALS Agricultural living space
VES Vegetation ecological space
WES Water ecological space
OES Other ecological space
NPP Net Primary Productivity

Appendix A

The “Two Mountains” Theory is a scientific conclusion put forward in 2005 by Jinping
Xi, the President of China. Its core idea is that “lucid waters and lush mountains are
invaluable assets”, which means that a good ecological environment is the most inclusive
factor promoting human well-being, and maintaining the ecological environment means
maintaining productivity.
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Abstract: Since the 1950s, human activities have been driving economic development and land
changes, hindering the conservation of biological habitats and landscape connectivity. Constructing
ecological networks is an effective means to avoid habitat destruction and fragmentation. Mountain
areas are hotspots of biological habitats and biodiversity; however, the pace of urbanization in
mountain areas is also accelerating. To protect an ecosystem more effectively, it is necessary to
identify ecological corridors and ecological networks. Therefore, based on the Minimal Cumulative
Resistance model and taking Chongqing in China as an example, the identification of potential
ecological corridors and the construction of an ecological network in Chongqing were realized using
the Linkage Mapper software. The results were as follows: (1) From 2005 to 2015, the patch area of
cultivated land and grassland in Chongqing decreased by 0.08% and 1.46%, respectively, while that
of built-up areas increased by 1.5%. The fragmentation degree of cultivated land was higher, and the
internal connectivity of forestry areas was worse. (2) In total, 24 ecological sources were selected, and
87 potential ecological corridors and 35 ecological nodes were generated using the Morphological
Spatial Pattern Analysis and the Conefor2.6 software. The total length of the ecological network in
Chongqing is 2524.34 km, with an average corridor length of 29.02 km. (3) The overall complexity and
network efficiency are high, but the spatial distribution of ecological corridors is uneven, especially
in the southwest of Chongqing.

Keywords: ecological corridor; ecological network; landscape pattern; Linkage Mapper software;
Chongqing; China

1. Introduction

Currently, the global scale of cities continues to grow [1,2], with an expanding scope
of human activities [3], putting the global biodiversity at risk of further degradation [4,5].
Although considerable efforts have been made by governments around the world to protect
biodiversity [6–10], the coordination of economic development and biodiversity conser-
vation is still challenging [11,12]. Among the factors affecting biodiversity, fragmentation
and loss of biological habitat are considered the most important ones [13]. As an ecologi-
cal network can adequately depict the ecological processes [14] and can protect habitats
and maintain landscape connectivity [15,16], the construction of ecological networks has
become a research hotspot in ecosystem protection [17,18].

An ecological network is a complex network having ecological corridors and ecolog-
ical nodes as its constituent elements that connect core areas, nature reserves, and other
landscape elements [19–22]. Ecological networks have first been used in the study of bio-
logical protection [23]. Along with the expansion and improvement of ecological network
functions, they are widely used in biodiversity conservation [21]. For example, from the
1970s to the 1990s, some Eastern European countries, the Netherlands, Canada, and the
United States developed network plans for nature reserves [24] and began to emphasize the
role of ecological interconnection. In the early 21st century, Europe established an ecological
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network framework that emphasized green protection [23]. In the Convention on Biological
Diversity 2010, the Aichi Target 11 (Aichi refers to Japan’s Aichi Prefecture) defined the
goal of ecosystem protection by 2020, which is to protect at least 17% of the land and
inland water areas and 10% of the marine area by linking ecological areas [10,25]. It further
highlights the significance of using ecological networks for biodiversity conservation.

An ecological corridor is an important tool connecting ecological networks [26]. Eco-
logical corridors were originally designed to connect natural habitats for wildlife pro-
tection [23]. However, due to the interference from human activities [27], habitat frag-
mentation around the world has become increasingly prominent [28], and against this
background, in 1975, Wilson and Willis put forward the view of connecting broken patches
with corridors to weaken the impact of habitat fragmentation [23]. The concept of ecological
corridors was put forward for the first time in the early 21st century by Jordan, based on
reliability theory [29]. Subsequently, scholars have engaged in extensive discussions and
studies on ecological corridors. For example, Bowers and McKnight put forward the neces-
sity of constructing ecological corridors in North America [30], and Chettri et al. discussed
the importance of constructing ecological corridors in the Kangchenjunga landscape from
the view of maintaining forest ecosystems and protecting biodiversity [31].

Although the models and methods of describing ecological corridors and ecological
networks are slightly different, the construction of an ecological network generally includes
three steps [25,32]: (1) selecting the ecological source; (2) determining the resistance surface;
(3) extracting ecological corridors and nodes. Based on these steps, the ecological network is
constructed. The early selection of ecological sources was mostly limited to large landscape
patches such as nature reserves and scenic spots [33,34], lending this method a certain
subjectivity. With the development of relevant research methods, MSPA (Morphological
Spatial Pattern Analysis) and other methods are gradually used to quantitatively evaluate
the importance of ecological sources and landscape connectivity [4,35], thereby improving
the scientific nature of ecological source selection. The resistance surface reflects the
resistance of species passing through ecological patches during migration, which is one of
the important factors to measure the risk of species migration. Currently, most scholars
prefer to choose terrain conditions, human activity intensity [36], and land use type [37],
among others, as the factors impacting the resistance surface, and some prefer to build the
resistance surface based on land use types [35]. An ecological corridor is an important tool
for the formation of an ecological network, and the research methods are constantly being
improved. For example, Pomianowski and Solon used the GraphScape software to generate
an ecological corridor [38], whereas Guo et al. constructed an ecological corridor based on
the least-cost distance (LCD) and the least-cost path (LCP) [39]. Peng et al. combined the
circuit theory and the Linkage Mapper software to identify the ecological corridor [40].

Ecological nodes are generally located at the convergence between the least-cost paths
of the ecological corridors, at the site of the functional weakness area to connect scattered
and isolated patches, which is the key to enhance the connectivity of ecological sources
and promote the operation of ecological flows among ecological networks. The ecological
resistance surface model is widely used in the extraction of ecological nodes [20]. Consider-
ing the resistance factors, the MCR (Minimal Cumulative Resistance) model is widely used
in ecological corridor identification and ecological network construction [36]. For exam-
ple, it has been used by Yang et al. [26] to identify the ecological corridor of Wuhan City,
China, with the aim to construct an ecological network of urban agglomeration. Similarly,
Dai et al. [41] combined the MCR model and the DOI (Duranton and Overman Index) to
construct the ecological network of the Poyang Lake urban agglomeration in China.

Overall, current studies on ecological networks mainly focus on the construction of an
urban agglomeration ecological network [42], a wetland ecological network, and a desert
oasis ecological network [20], whereas studies in mountain areas are scarce [31,43]. In
China, mountain areas account for 70% of the country’s terrestrial area [44], and ecosystem
protection in mountain areas plays an important role for ecosystem protection in China [45].
In this context, this paper takes Chongqing, China’s “Mountain City”, as the research
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area, discussing ecological corridor identification and ecological network construction
in mountain areas. The specific objectives are as follows: (1) to reveal the landscape
pattern evolution of Chongqing from 2005 to 2015; (2) to use the Linkage Mapper software
(The Nature Conservancy, Seattle, WA, USA) to identify potential ecological corridors in
Chongqing; (3) in combination with GIS (Geographic Information System), to construct the
potential ecological network of Chongqing.

2. Study Area and Data Sources

2.1. Study Area

The city of Chongqing (28◦10′ N~32◦13′ N, 105◦11′ E~110◦11′ E) is located in the
southwest of inland China (Figure 1) and is the sole municipality in central and western
China. It stretches over 470 km from east to west and 450 km from north to south, covering
an area of 82,400 square kilometers. The terrain of Chongqing decreases from north
and south in the direction of the Yangtze River valley; the area is mainly covered by
mountains and hills, also known as the “Mountain City”. Chongqing is located in the
Subtropical Zone, with abundant precipitation, four distinct seasons, and a high annual
relative humidity. Driven by China’s reform and opening up, urbanization in Chongqing
is rapid [46], with a rate above 81.04% in 2017 [47]. The gross domestic product in 2019
amounted to 236.06 billion RMB. The surge of the urban population and the rapid economic
development result in an increased land development [48], with conflicts between humans
and the ecological environment becoming increasingly prominent [49], resulting in a
continuous deterioration of ecosystems [50].

Figure 1. Geographical location of Chongqing, China.

2.2. Data Sources

We used four data types, namely land use data, DEM (Digital Elevation Model data),
road data, and river data. Land use data were derived from the Resources and Environment
Science and Data Center of the Chinese Academy of Sciences [51]. We selected data from
the years 2005 and 2015, with a spatial resolution of 1 km; the data type was raster data. The
main types of land use data included 6 first-class categories (cultivated land, forest land,
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grassland, water area, built-up areas, and unused land) and 17 s-class categories (paddy
fields, dry land, forested land, shrub land, sparse forest land, other forestry areas, high-
coverage grassland, medium-coverage grassland, low-coverage grassland, river channel,
lake, reservoir pit, beach land, urban land, rural residential area, other built-up areas, and
other unused land). The DEM data were derived from the geospatial data cloud [52]; the
data type was raster data with a resolution of 250 m. Data for roads and rivers were derived
from the Resources and Environment Science and Data Center of the Chinese Academy
of Sciences [51]; the data type was vector data. Road data included data from national
highways, railways, and highways. River data had a spatial distribution of 1–5 rivers.

3. Research Method

3.1. Technical Route

The study was divided into four steps (Figure 2). First, based on the landscape pattern
analysis method, we used the Fragstats4.2 software (Oregon State University, Corvallis,
OR, USA) to calculate the index values of PLAND (Percentage of Landscape), PD (Patch
Density), COHESION (Patch Cohesion Index), DIVISION (Landscape Division Index),
and AI (Aggregation Index) in Chongqing to analyze the evolution process of land use
in Chongqing from 2005 to 2015. Second, using land use data from 2015, applying the
MSPA method and the Conefor2.6 software (Jenness Enterprises, Flagstaff, AZ, USA),
the ecological sources of Chongqing were selected. Then, based on available land use
data, DEM data, road data, and river data, the appropriate GIS method was applied to
obtain the resistance value, determine the landscape resistance surface, and generate the
comprehensive resistance surface with reference to previous studies and specific conditions
in Chongqing. Finally, we used the Linkage Mapper software to input the obtained
ecological source data and the comprehensive resistance surface data to generate the
ecological corridor and the accumulated resistance surface. By overlaying ecological
sources, ecological corridors, and ecological nodes, Chongqing’s ecological network was
finally constructed. According to the number of ecological corridors and nodes, the
ecological network was evaluated and analyzed using the α index, β index, and γ index.

3.2. Landscape Pattern Index Analysis

The landscape pattern index is a quantitative method that provides different landscape
indices for streamlining the structure of the landscape spatial pattern and the concise land-
scape spatial morphological characteristics [53]. Taking into account the specific ecological
situation of Chongqing and other relevant data [54,55], we selected five landscape indices,
namely PLAND, PD, COHESION, DIVISION, and AI, to depict the landscape character-
istics of Chongqing. Among them, PLAND quantifies the proportion of each patch type
area in the landscape; the larger the proportion, the larger the corresponding patch type
area. The Patch Density represents the degree of landscape fragmentation; the greater
the value, the higher the fragmentation degree. The Patch Cohesion Index indicates the
degree of physical connection between patch types; greater values indicate better landscape
connectivity. The Landscape Division Index reflects cuts of the landscape by urban roads
and other factors, with greater values indicating that cutting is more obvious and landscape
fragmentation is high. The Aggregation Index reflects the connectivity inside the patch; the
larger the value, the better the connectivity. Related work has been completed using the
Fragstats4.2 software [56].

3.3. Selection of Ecological Sources
3.3.1. Identification of Core Ecological Patches by the MSPA Method

The MSPA method originates from mathematical morphology and was initially ap-
plied in studies on forest fragmentation [57,58]. When Peter Vogt developed the Guidos
software (European Commission Joint Research Centre, Ispra, Italy), MSPA was formally
applied to the research of landscape connectivity [59]. By using the ArcGIS software (En-
vironmental Systems Research Institute, Redlands, CA, USA), the land use type data in
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raster data format were divided into raster binary maps of foreground and background.
Forestland, grassland, water area, among others, are generally taken as the foreground
and other land use types as the background. Using the Guidos Toolbox software, the
foreground was divided into the seven categories core area, bridge area, edge area, branch
line, isolated island, ring road, and pore [60]. Among them, core areas generally refer to
ecological sources, and the bridging zone is a corridor connecting ecological source patches;
both have significant impacts on the connectivity of regional ecological landscapes [61].

Figure 2. Technical route. Notes: PLAND (Percentage of Landscape) refers to landscape percentage, PD (Patch Density)
refers to patch density, COHESION (Patch Cohesion Index) refers to the cohesion index, DIVISION (Landscape Division
Index) refers to the landscape separation index, AI (Aggregation Index) refers to the aggregation index. α index refers to the
network closure index, β index refers to the network connectivity index, γ index refers to the network connectivity rate.

We conducted MSPA analysis on land use data of Chongqing using the Guidos
Toolbox software platform to identify the core ecological patches of Chongqing, with the
following steps:

1. Standardized Data Processing

The land use data of Chongqing for 2015 were loaded into the ArcMap, and the forest
land, grassland, and water areas were set as the foreground with a value of 2. The other
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land classes were assigned as the background with a value of 1 and converted into a binary
grid map. Finally, the land use data were exported to the TIFF format.

2. Neighborhood Rule Setting

After loading the binary grid map of Chongqing in the Guidos Toolbox software,
the neighborhood structure rules of foreground pixels were set. The software provides
two kinds of neighborhood structure: the eight-neighborhood structure and the four-
neighborhood structure. Structural elements refer to the units that deal with the target land-
scape map. The selection of structural elements affects the movement law and the osmotic
critical threshold of species in habitat patches. Here, we selected the eight-neighborhood
structure for MSPA analysis.

3. Edge Width Setting

The width of the ecological corridor has a direct impact on the analysis results for an
ecological network. The terrain and other features analyzed in previous studies [62,63] are
similar compared to our study. In addition, because the width increases, a small core area
becomes an island, and a narrow core area becomes a bridge. At the same time, combined
with the actual situation in Chongqing, we selected a 30 m edge width. In the MSPA
method, corridor width is equal to the edge width multiplied by the pixel resolution, that
is, the edge width can be determined according to the value of the corridor width and the
pixel resolution. The raster data pixel size was 1000 × 1000 m, the width of the ecological
corridor was set to 30 m, and the corresponding edge width parameter was set to 0.03.

4. Generation of Seven Landscape Types

After importing the binary grid diagram in the Guidos Toolbox software, we set the
required parameters. We used MSPA to generate seven landscape types, non-overlapping
and independent of each other: core area, island, pore, edge area, bridge area, ring road,
and branch line.

3.3.2. Identification of Ecological Sources by the Landscape Connectivity Index

The MSPA method can identify regional core ecological patches, but it cannot distin-
guish their importance. This paper uses the landscape connectivity index to classify the
importance of the identified ecological patches in the core area [64], and the larger area
and higher connectivity in the patches in the core area were selected as ecological sources.
Currently, the commonly used landscape connectivity index includes overall connectivity
(IIC, Equation (1)), possible connectivity (PC, Equation (2)), and plaque importance (dPC,
Equation (3)) [65]. We therefore selected the overall connectivity index, IIC, and the possible
connectivity index, PC, to calculate the patch importance value, dPC and, consequently,
to evaluate the relative importance of ecological connectivity in the core area. We used
equations described elsewhere [66]. The overall connectivity index was calculated as

I IC =

n
∑

i=1

n
∑

j=1

ai
×

aj
1+nlij

Al
2 (1)

where 0 < IIC < 1; when IIC equals 1, all landscapes are occupied by habitats. Factors. ai
and aj refer to the area of patch “i” and patch “j”, respectively, and nlij is the number of
connections between patch “i” and patch “j”. Al represents the total landscape area of the
study area. The PC was calculated as

PC =

n
∑

i=1

n
∑

j=1
ai × aj × P∗

ij

Al
2 (2)

where p∗ij refers to the maximum connection probability of two patches. The calculation
result of PC ranges between 0 and 1, and the PC value represents the high or low possibility
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of landscape connection. p∗ij represents the maximum possible connectivity probability
between patch “i” and patch “j”. In general, the smaller the distance between patches, the
higher the probability of maximum possible connectivity will be and vice versa. The dPC
was calculated as follows:

dPC =
PC − PC′

PC
× 100% (3)

where the dPC refers to the important value of the possible connectivity index of the patch,
PC refers to the possible connectivity index of a patch in the landscape, and PC′ refers to
the possible connectivity index of the landscape after removing the patch. For example,
when PC is 80 and PC′ is 20, the calculated dPC is 75.

We calculated dPC in the Conefor2.6 software. First, the Conefor Toolbox plug-in in
ArcGIS was used to extract the distance information between the core patches generated
by MSPA, and subsequently, we entered the generated file into the Conefor2.6 software to
solve the important value of connectivity. According to the geography of Chongqing, and
based on relevant literature [25], the threshold of connectivity distance was set as 500 m,
and the connectivity probability was 0.5. According to relevant studies [61], when dPC > 1,
the patch’s connectivity is better and the patch is more important. Therefore, the core patch
of the case where dPC > 1 was selected as the ecological source in this paper.

3.4. Resistance Surface Construction

Different types of patches will cause different resistances to species migration. The
magnitude of resistance can reflect the difficulty of species migration. For example, the
resistance value of forest land and green land is small, which is conducive to species
migration, whereas that of cultivated land, built-up areas, and unused land is larger,
impeding species migration. In addition, resistance factors such as elevation, slope, roads,
and rivers also affect species migration. Based on the actual situation in Chongqing, we
comprehensively considered the influencing factors of land use types, elevation, slope,
roads, and rivers and finally determined the resistance value of various landscape patches
in Chongqing (Table 1), based on relevant studies [25,37].

Table 1. Resistance values and weights of resistance factors in Chongqing.

Resistance Factors Weight Classification Indicators Resistance Value

Land use types 0.30

Forests 1
Shrubs, sparse forests 3
Paddy fields, dry lands 50
Other forestry areas 300
High-coverage grassland 10
Medium-cover grassland 15
Low-coverage grassland 20
Rivers 600
Lakes 300
Reservoir Pit Tong 100
Beach 1
Urban land, rural settlements 900
Other construction sites 1000
Others 700

Elevation 0.10

Elevation range Resistance value
<450 m 150
450–700 m 300
700–1000 m 500
1000–1400 m 800
1400–1800 m 1000
>1800 m 1500
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Table 1. Cont.

Resistance Factors Weight Classification Indicators Resistance Value

Slope 0.10

Slope range Resistance value
<3◦ 1
3–6◦ 20
6–10◦ 100
10–16◦ 200
>16◦ 600

Roads 0.25

Road types Resistance value
Railways 700
National Highway 2000
Other roads 500

Rivers

0.25

Buffer Resistance value

Level I rivers
<50 m 5
50–120 m 25
120–300 m 50

Level II rivers
<50 m 10
50–120 m 50
120–300 m 100

Level III rivers
<50 m 20
50–120 m 100
120–300 m 500

Note: Resistance value data in Table 1 are derived from literature [39,42,67].

3.4.1. Construction of Landscape Resistance Surfaces

Based on the GIS software platform and the characteristics of Chongqing, we con-
verted the land use raster data for 2015 into vector data and assigned corresponding
resistance values according to different types, which were finally converted into landscape
type raster data to generate the landscape resistance surface. The DEM data of Chongqing
were reclassified and assigned to generate the elevation resistance surface. We then per-
formed slope analysis and reclassification of Chongqing DEM data and generated the slope
resistance surface after assignment. The core density of road element data in Chongqing
was calculated, and the corresponding search radius parameters were set to generate the
road resistance surface. The river data of Chongqing were graded and assigned, and
the river resistance surface was generated. All landscape resistance values are shown in
Table 1.

3.4.2. Construction of the Integrated Resistance Surface

Each resistance surface contributes to the comprehensive resistance surface according
to a certain weight, making it necessary to adequately allocate the weight of each resistance
surface before constructing the comprehensive resistance. In this paper, we adopted
the analytic hierarchy process [12] to determine the weight of each resistance surface, in
combination with the opinions of relevant experts. The greater the weight given, the higher
the importance. Based on this, the weights of a total of five resistance surfaces of the
landscape type resistance surface, elevation resistance surface, slope resistance surface,
road resistance surface, and river resistance surface were set to 0.30, 0.10, 0.10, 0.25, and
0.25, respectively (Table 1). The integrated resistance surface was obtained by weighted
superposition of the grid calculator tool of the ArcMap software as the cost data of the
minimum cost distance model.

3.4.3. Construction of the Cumulative Resistance Surface

The cumulative resistance surface was generated using the Linkage Mapper software
tool in ArcGIS. This tool facilitates the analysis of the connectivity of regional animal
habitat [68] and identifies and maps the lowest-cost relationship among ecological sources
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through ecological source vector data and integrated resistance surface raster data. Each
pixel of the integrated resistance surface has a value that reflects the difficulty of the
species passing through that pixel. It is usually the pixel feature that determines the
resistance value, such as land use type or elevation, slope, road, river, among others. The
cost-weighted distance will produce a cumulative resistance surface when the species
leaves a specific ecological source area.

3.5. Minimal Cumulative Resistance Model

The MCR model, first proposed by Knaapen et al. in 1992, is used to simulate the min-
imum path of species passing through different types of spatial resistance from ecological
sources [69]. The model has been improved to identify the ecological corridor [70]. The
equation is as follows [71]:

MCR = fmin

i=m

∑
j=n

(Dij × Ri) (4)

where MCR is the minimum cumulative resistance, “f ” is the positive function relationship
between the minimum cumulative resistance and the ecological process, “min” is the
minimum cumulative resistance of the evaluated patches to different sources, “∑” is the
cumulative value of the distance and resistance between landscape unit “i” and ecological
source patch “j” across all units, “Dij” is the spatial distance of species from landscape
unit “i” to ecological source patch “j”, and “Ri” represents the resistance coefficient of the
landscape unit “i” to the movement of a certain species.

3.6. Evaluation of the Ecological Network Index

An ecological network is formed by connecting ecological sources with corridors
and various ecological function nodes, and its quality can be evaluated via landscape
connectivity. In this paper, we selected the network closure index (α index), the network
connectivity index (β index), and the network connectivity rate (γ index) to analyze the
ecological corridor network structure and to analyze and evaluate the network closure and
connectivity of the Chongqing ecological network [72], with the aim of quantifying the
landscape connectivity and complexity of Chongqing. It can not only provide a scientific
basis for the construction of the Chongqing ecological network but also represents a
reference for the further optimization of this network. The equations for the above three
indices are as follows [73]:

α =
L − V + 1

2V − 5
(5)

β =
L
V

(6)

γ =
L

3 (V − 2)
(7)

where “L” represents the number of corridors, “V” is the number of nodes, “L − V + 1” is
the actual number of loops, “2V − 5” is the maximum number of possible loops, and “3
(V − 2)” represents the maximum number of possible corridors in the network.

4. Results and Discussion

4.1. Landscape Pattern Index

According to the land use data of Chongqing for 2005 and 2015 (Figure 3a,b), the
values of each landscape pattern index in Chongqing were obtained (Table 2). Furthermore,
the landscape pattern index was evaluated and compared, and the evolution trend of land
use types in Chongqing from 2005 to 2015 was obtained.
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Figure 3. Land use types in Chongqing in 2005 (a) and 2015 (b).

Table 2. Calculation results of the landscape pattern index in Chongqing for 2005 and 2015.

Landscape
Index

Year
Cultivated

Land
Forestland Grassland Water Areas

Built-Up
Areas

Unused
Land

PLAND
(100%)

2005 46.49 40.45 11.00 1.16 0.88 0.02
2015 45.61 41.01 9.54 1.45 2.38 0.01

PD (n/ha)
2005 0.31 0.15 0.08 0.01 0.02 0.00
2015 0.30 0.15 0.08 0.01 0.04 0.00

COHESION
2005 99.83 99.95 99.47 99.77 98.32 93.23
2015 99.84 99.95 99.10 99.81 98.84 93.01

DIVISION
2005 0.98 0.98 1.00 1.00 1.00 1.00
2015 0.98 0.97 1.00 1.00 1.00 1.00

AI
2005 94.84 95.08 92.66 93.73 93.34 87.19
2015 94.87 95.15 92.59 94.09 95.21 86.64

Notes: “PLAND” represents landscape percentage; “PD” represents patch density; “COHESION” represents the cohesion index; “DIVI-
SION” represents the landscape separation index; “AI” represents the aggregation index; “n/ha” represents the number of landscape
patches per 100 hectares.

Among the land use types of Chongqing in 2005 (Table 2), the proportions of cultivated
land and forested land both exceeded 40%, and the proportion of unused land was lowest
with only 0.02%. This indicates that the cultivated land area and the forested area in
Chongqing were larger in 2005. The patch density of cultivated land and forestry areas
in Chongqing was higher, and the patch density of the water area and unused land was
lower, indicating a high degree of fragmentation for cultivated and forest areas and a
low degree for water areas and unused land. The patch cohesion index of all landscape
types was above 90, and landscape connectivity was high. For cultivated and forested
land, the landscape separation degree was 0.98, and that of other landscape types was 1,
indicating serious landscape segmentation. The aggregation index of unused land was
87.19 and that of other landscape types was above 90, indicating a high connectivity, except
for unused land.

Compared to 2005, in 2015, the proportions of forest land area, water area, and built-up
areas were higher. This increase was most significant for built-up areas with 1.5 percentage
points, reflecting the large-scale expansion of built-up areas in the process of urbanization.
The proportions of cultivated land, grassland, and unused land were lower, with the
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greatest decline for grassland (1.46%); the cultivated land area only decreased by 0.88%.
The cultivated land area in Chongqing was 0.01 n/ha lower in 2015 than in 2005, whereas
the built-up area was 0.02 n/ha higher. The patch density of other landscape types did
not change considerably, reflecting the occupation and destruction of cultivated land in
the process of urbanization in Chongqing over 10 years. The patch cohesion index values
of cultivated land, water area, and built-up areas increased slightly, indicating that the
connectivity of cultivated land, water area, and built-up areas in Chongqing was high
during this period. Affected by human activities, the connectivity of grassland and unused
land reduced. When comparing the landscape separation index of each landscape type,
the division of landscape types in Chongqing was not obvious during the 10 years. Except
for grassland and unused land, the aggregation index values of the other landscape types
increased, which was most significant for the built-up areas.

When comparing the land use types in 2005 and 2015, cultivated land was the dom-
inant landscape type in both years. Cultivated land fragmentation increased over time,
and the connectivity between forested areas decreased. As the ecological network has the
function of repairing the ecosystem, these changes show that the urgency of constructing
the ecological network in Chongqing is more apparent.

4.2. Ecological Source Selection
4.2.1. Identification of Core Ecological Patches

Based on the generated binary grid, the foreground area was 42,973 km2, accounting
for 52.03% of the total landscape area. The MSPA showed that, for the seven landscape
types generated (Figure 4), the proportions of all kinds of landscapes followed the order
bridge (50.69%), core area (16.70%), edge (14.35%), branch (11.36%), isolated island (5.68%),
loop (1.02%), and perforation (0.20%). Among them, the bridge area is the current corridor
in the region, which is conducive to the spread of species and to energy flows. The area
of the bridge area was 21,781 km2, accounting for 50.69% of the total foreground area.
The number of ecological corridors in Chongqing is larger, facilitating the construction of
ecological corridors in Chongqing. The core area, which plays a key role in the level of
ecological network connectivity, has a large scale, with an area of 7177 km2, accounting
for 16.70% of the total area of the foreground land category. Compared with other related
studies [65,74], the core area is relatively small, most likely because of the specific natural
geographical conditions of Chongqing, with a more fragmented landscape and a smaller
core area. However, the bridge area of Chongqing is larger than that in other cities, which
is more conducive to the construction of ecological corridors.

In addition, the patches of core area are unevenly distributed, with most of its area
being in the northeastern and the southeastern parts of Chongqing. Most likely, this is
because of the large nature reserves such as Daba Mountain, Yintiaoling Mountain, and
Wushan in the northeast and the large landscapes such as Jinfo Mountain, Black Valley,
and Qingxi Gou Reservoir in the southeast. The edge area is the transition area between
the core area and the background landscape and can reduce the interference of external
factors, with an area of 6167 km2, accounting for 14.35% of the total foreground area. The
branch also has a certain connectivity, with an area of 4881 km2, accounting for 11.36% of
the total foreground area. The isolated islands are mainly small patches distributed inside
the building land, with an area of 2441 km2, accounting for 5.68% of the total foreground
area. The loop is a shortcut for species movement within the same core area, covering an
area of 438 km2 and accounting for 1.02% of the total foreground area. The perforation
with the same edge effect is the inner edge of the core area, with an area of only 88 km2,
accounting for 0.20% of the prospects. In general, Chongqing fulfills the requirements for
the construction of an ecological network, and further analyses of the core area patches are
crucial to screen out ecological sources.

581



Int. J. Environ. Res. Public Health 2021, 18, 4797

Figure 4. Landscape type map of Chongqing generated via Morphological Spatial Pattern Analysis.

4.2.2. Identification of Ecological Sources

The important value of connectivity (dPC) of the core patch generated by MSPA shows
that the greater the dPC values of the core patch, the greater the contribution of the patch
to the overall landscape connectivity. The ecological network constructed in this paper
should not only play a macro-role in maintaining regional ecological security, but also
guide the layout of land use in ecological construction. Overall, we obtained 24 source
plots (Figure 5).

 

Figure 5. Distribution of ecological sources in Chongqing.
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We selected 24 core patches with high connectivity as ecological sources. These patches
not only have large area but can also protect the biodiversity and strengthen the landscape
connectivity. The IIC value, the PC value, and dPC value of the 24 ecological sources
were calculated according to Equations (1)–(3); the total area was 2961 km2, accounting
for 68.90% of the total foreground area. The largest ecological source was source No. 10,
with an area of 447 km2. The IIC and PC values were also the largest, indicating that the
connectivity between them and other ecological sources is the strongest and plays a key
role in the ecological process.

4.3. Resistance Surface Analysis

Based on all data types for Chongqing, by the construction method of each front
resistance surface, the landscape resistance surface map, the comprehensive resistance
surface map, and the accumulative resistance surface map were obtained (Figure 6), and
analysis and evaluation were carried out.

 

Figure 6. Landscape resistance surface (a), elevation resistance surface (b), slope resistance surface (c), road resistance
surface (d), river resistance surface (e), comprehensive resistance surface (f), and cumulative resistance surface (g) obtained
for Chongqing.
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Based on Figure 6a, the landscape types of Chongqing are rich and diverse. The
resistance value of the western main urban area is high, and the resistance value of species
movement in this area is high, followed by the central part of the area and the northeast of
Chongqing. The resistance values of other areas with rich forest and grassland resources
are low, and the resistance value of species movement or migration in these areas is also
low. The spatial distribution of elevation and slope resistance values in Chongqing is
similar. The resistance values in the northeast and southeast of Chongqing are higher,
along with those of species migration, whereas the values for other areas are relatively
low, indicating easier species migration. Based on the road resistance surface (Figure 6d),
the resistance value is higher in the southwest of Chongqing, where the road network is
dense and it is difficult for species to move or migrate, whereas the resistance value in
the southeast is smaller and the road network is less distributed, which is conducive to
species movement or migration. According to the river resistance surface, in the southeast,
species movement and migration are easier. Finally, according to the comprehensive
resistance surface (Figure 6f), the resistance values of the southwestern and northern parts
of Chongqing are larger, impeding species movement.

In general, the accumulative resistance surface of Chongqing is lower in the south
and east, higher in the southwest, and unevenly distributed in the north. Considering
that, generally, species choose paths with lower resistance for movement and migra-
tion, the cumulative resistance surface provides a data basis for the construction of an
ecological networks.

4.4. Construction of Potential Ecological Corridors in Chongqing
4.4.1. Identification of Potential Ecological Corridors in Chongqing

Based on the ArcGIS software, the corresponding parameters were set up by the
Linkage Mapper software to construct the potential ecological corridors of Chongqing
(Figure 7a). Overall, there are 87 potential corridors in Chongqing, with a total length of
2524.34 km and an average length of 29.02 km. Spatially, the ecological corridors are mainly
concentrated in the northern and southeastern areas, connecting 24 ecological patches.

 

Figure 7. Potential ecological corridor (a) and ecological node distribution (b) in Chongqing.
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4.4.2. Ecological Node Identification

Ecological node quantity, quality, and spatial distribution affect the efficiency of species
activity or migration. The results of ecological node extraction in Chongqing are shown
in Figure 7b above. There are 35 ecological nodes in Chongqing, mainly distributed in
the northeast and south, with an uneven distribution. Therefore, based on the particular
geographical location of Chongqing, it is necessary to improve the stability of regional
ecological nodes and promote their coordination, ensuring that each node can adequately
be protected and restored.

4.5. Construction of Chongqing’s Ecological Network
4.5.1. Identification of Chongqing’s Ecological Network

The ecological network of Chongqing was constructed by overlaying ecological
sources, ecological corridors, and ecological nodes (Figure 8). The distribution of eco-
logical corridors and ecological nodes in the north and southeast of Chongqing is relatively
dense, and the large core areas in the southwest consist of only a few patches. The rapid
urbanization of Chongqing has brought great pressure to the ecological environment,
and the landscape is more fragmented. The ecological network provides the best path
choice for species movement or migration, avoiding risks and maintaining biodiversity to
a large extent.

 

Figure 8. Chongqing ecological network.

The unique geographical conditions of mountainous areas challenge species survival
and migration. However, with the development of urbanization worldwide, the destruction
of mountainous ecosystems is unstoppable [73]. As a country with a significant amount of
mountainous terrain, China needs to pay more attention to the protection of mountain en-
vironments. In recent years, the deterioration of the ecological environment in Chongqing
has also attracted the attention of the Chinese government and scholars [75]. The estab-
lishment of ecological networks as an effective means to maintain biodiversity should also
be considered. In addition, the construction of ecological networks requires financial and
material support. On the basis of existing nature reserves, the Chinese government should
increase investments in the construction of ecological networks in Chongqing, especially
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in the southwest, and the following measures should be taken: generating urban green
spaces and other green landscapes, formulating relevant policies, strictly managing urban
industrial development, and scientifically planning built-up areas.

4.5.2. Ecological Network Index Analysis

The ecological network in Chongqing contains 87 ecological corridors and 24 ecological
sources. By calculating the α index, the β index, and the γ index, the structural characteristic
index of the ecological network in the study area was obtained (Table 3), and the constructed
ecological network was evaluated and analyzed.

Table 3. Characteristics of the Chongqing ecological network.

Index L V L − V + 1 2V − 5 3 (V − 2) Results

Ecological
Network

α index 87 35 53 65 0.82
β index 87 35 2.49
γ index 87 35 99 0.89

The value of the α index ranges from 0 to 1, with larger values indicating a higher
number of loops in the network, a higher accessibility of the ecological flows in the network,
and a higher number of paths that can be selected for migration. For the ecological network
constructed in this paper, the actual number of loops is 53, the maximum possible number
of loops is 65, and the value of the α index is 0.82, indicating a high connectivity of
the network. Species flow or migration and other ecological processes are extremely
smooth. However, the distribution of network circuits in Chongqing is uneven, and the
network circuits composed of ecological sources and ecological corridors in the central and
southwestern regions are less. The construction of ecological sources needs to be increased
in this part of the region to strengthen the network circuits, providing more path choices
for species migration.

The value of the β index ranges between 0 and 3; the larger the value, the higher the
complexity of the network. Here, the β index is 2.49, which indicates that the ecological
network is more complex as a whole, and the interaction among ecological sources in the
network is facilitated.

The value of the γ index ranges between 0 and 1, and the larger the value, the higher
the connection degree of the ecological sources. In this paper, this value is 0.89, indicating
that the ecological corridor in the ecological network connects more ecological sources
and that the network efficiency is better. However, due to the small number of ecologi-
cal sources and ecological corridors in the southwest of Chongqing, species movement
and migration are impeded. Therefore, to promote the diffusion of ecological flows in
Chongqing and improve biodiversity protection, corridor connection in the southwest
should be strengthened.

5. Conclusions

Based on land use data for Chongqing, China, from 2005 and 2015, we used MSPA
and the Conefor2.6 software to identify 24 important ecological sources. Based on the
MCR models and the Linkage Mapper software, 87 potential ecological corridors and
35 ecological nodes were constructed. Finally, the ecological sources, corridors, and nodes
were superimposed, and Chongqing ecological network was generated. The total length of
the potential ecological corridor is 2524.34 km, with an average corridor length off 29.02 km.
The α index, β index, and γ index values indicate a good connectivity between the selected
ecological sources, with a high network efficiency.

Against the background of topography and urbanization, the number of ecological
sources in Chongqing is small and the spatial distribution is uneven. They are mainly
distributed in the northeast and southeast, with fewer sources in the southwest. The
spatial distribution of ecological nodes is similar to that of ecological sources. The spatial
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distribution of potential ecological corridors is not balanced, as they are concentrated in
the northeast and southeast, indicating a poor efficiency of the ecological network.

Our results provide a scientific basis for the protection of Chongqing’s ecological
environment. Regarding the southwestern part of Chongqing, it is necessary to strengthen
the connectivity between the sources, thereby further improving the ecological network. In
addition, the parameter setting of the resistance value is relatively subjective. Based on
the current land use data for Chongqing, economic factors should be considered, and the
effective resistance surface data for landscape, elevation, slope, roads, and rivers should be
further combined.
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Abstract: Farmland abandonment is one of the most important land use changes in the world today
and crucial to the sustainable development of the global environment. The authors carried out
extensive research on farmland abandonment from many perspectives, but, due to the variety of the
research contents, rich research perspectives, and complex research objects, the current research in
this field lacks comprehensiveness, objectivity, and systematization. In this study, the bibliometric
R software packages bibliometrix and biblioshiny (K-Synth Srl, Naples, Italy) were used to analyze
the development history and current situation of 896 articles on farmland abandonment in the Web
of Science core collection database from 1980 to 2021, revealing their research hotspots and predicting
the future development trends. Over the past 40 years, the number of published papers on abandoned
farmland has continuously increased. Research mainly focused on the ecological environment, with
natural succession, biodiversity, and vegetation restoration being high-frequency keywords in this
field. Research on the social aspects of farmland abandonment has developed rapidly in the past
6 years. Based on these findings, this paper put forward four future research directions: the data
source for the extraction of abandoned farmland should transform to high spatial-temporal resolution
and hyperspectral remote sensing images; the method should pay more attention to the time series
change detection and the application of the model; future research should focus on the economic
costs of the reclamation of abandoned farmland and the ecological consequences of such reclamation;
and the global ecological impact of vegetation succession after the abandonment of farmland should
be further discussed from a broader perspective.

Keywords: farmland abandonment; research progress; theme evolution; biodiversity; reclamation;
bibliometric analysis

1. Introduction

Land use change seriously affects the sustainable development of the global envi-
ronment [1,2], especially in terms of ecosystem services and biodiversity [3]. Globally,
farmland abandonment is one of the major land use changes today [4,5] and a result of the
marginalization of farmland driven by social, economic, and environmental factors [6,7].
The main consequences of farmland abandonment are vegetation succession, environ-
mental problems, as well as landscape and socio-economic impacts, with global impacts.
Extensive farmland abandonment in one area may lead to large-scale grain imports, often
resulting in deforestation [8] in other countries, with effects on ecology, goods, production,
and services [9,10]. Recently, farmland abandonment has attracted wide attention from
scholars, organizations, research institutions, and the public.
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The term “farmland abandonment” has different definitions, depending on the method
and content of the study [7]. The Joint Research Centre (JRC) defined farmland abandon-
ment as changes in ecosystem services due to a significant reduction in farmland manage-
ment. In some studies, farmland abandonment was defined as the cessation of agricultural
activity on a given land surface and the subsequent natural restoration of vegetation to
grassland [11], shrub vegetation [12], or forest [13], rather than its occupation by other
activities (e.g., urbanization or afforestation) [14]. Some studies classified the conversion
to forest into a special category of abandonment [15]. At a temporal scale, some studies
defined abandoned farmland as farmland left idle for more than 1 year [7]. However,
according to the Food and Agriculture Organization (FAO), an idle period of 2 to 5 years
must be guaranteed to define farmland as abandoned [16]. Fallows have been assessed as
part of a crop rotation cycle to determine whether a plot of land was abandoned or awaiting
future use [17]. Some studies distinguished abandoned farmland as a long-term fallow
from temporary fallow (defined as farmland that was not cultivated within 1 year) [18].

Previous studies reviewed numerous aspects of research in the field of farmland
abandonment. For example, the impact of farmland abandonment on the ecosystem and
biodiversity [19] could be regarded as positive or negative [20]. Regarding the positive
aspects, farmland abandonment is conducive to the regional biodiversity [21–23], increasing
the soil organic carbon and vegetation water retention capacity [24,25], and promoting
reforestation [26]. However, early succession vegetation after farmland abandonment
provides fuel for wildfires [27] and increases the reproductive fitness of weeds, pests,
and pathogens on the remaining farmland [28]. Farmland abandonment may also lead
to the marginalization of the agricultural cultural landscape, causing the loss of cultural
and aesthetic value [29,30]. These effects vary with the geographic area distribution and
abandonment period. For example, in Spain, farmland abandonment led to the loss
of bird habitat, reduced biodiversity [31], decreased the soil erosion potential within
50 years of farmland abandonment, and increased the incidence of soil erosion within
80–100 years of abandonment [32]. Against the background of food security and the local
demand for agricultural products, in some areas, abandoned farmland is being reclaimed.
Some examples are the reclamation of some areas after the disintegration of the former
Soviet Union [24,33] and the cultivation of formerly abandoned farmland in mountainous
areas of China [34,35]. To better understand the ecological consequences and reclamation
potential of farmland abandonment, the spatial and temporal patterns and drivers of
farmland abandonment distribution have been investigated [36–38]. Numerous factors
can affect the distribution of abandoned farmland, including natural conditions (such as
climate [39], terrain [40], soil [41]), market demand, traffic location conditions, urbanization,
and policy [42–44].

Generally, literature reviews on farmland abandonment only cover a certain country
or region [45,46], thereby lacking a global perspective. Moreover, they largely focus on
one aspect of farmland abandonment, failing to outline the current situation or to predict
the future development direction. Such an approach limits the ability of researchers to
investigate farmland abandonment from different viewpoints and perspectives.

Bibliometrics is an alternative approach to analyze the distribution structure, research
topics, and changing trends of a large number of academic publications via mathematical
and statistical methods and visualizes the results through visual and intuitive charts [47,48].
Compared with classical review writing, researchers do not need to screen large amounts of
literature one by one, which is more convenient, objective, and reliable. The commonly used
bibliometric analysis tools include HistCite [49], SATI [50], and CiteSpace [51]. Bibliometrix
is an open-source tool developed by Massimo Aria in the R language in 2017. Compared to
other bibliometric software packages, such as CITAN [52] and ScientoText, bibliometrix
can import and transform data from various database sources, such as the Web of Science,
Scopus, Dimensions, and Lens.org, and has more literature information analysis and result
visualization functions [53]. Based on the secondary development of bibliometrix, the
entire bibliometric steps were assembled into an automated online workflow of biblioshiny.
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The difference between the two packages is that the bibliometrix’s mode of operation
consisted of code commands, whereas biblioshiny uses the Shiny package to package the
bibliometrix’s core code and create a web-based online data analysis framework, making
it fully available for researchers without any programming skills. It can provide multiple
types of statistical methods and a wide variety of visual charts [54].

Bibliometrix has been widely used to quantitatively analyze the literature in geography-
related fields. For example, Soler et al. [55] retrieved 1150 publications on rural population
reduction, published in the Web of Science and Scopus databases from 1979 to 2018, and
used co-word analysis and the co-citation network to conclude that important themes of
rural depopulation were relevant to specific geographic areas. Xie et al. [54] conducted data
mining and quantitative analysis by retrieving publications in the field of land degradation
from 1990 to 2019 from the core collection database of the Web of Science, revealing the
research status of global land degradation and evaluating the direction of future research
on land degradation. However, publications in the field of farmland abandonment have
rarely been reviewed via bibliometrics.

Here, we used the bibliometrix and biblioshiny R language packages to comprehen-
sively analyze the literature in the field of farmland abandonment, considering studies
published in the Web of Science core database between 1980 and 2021. First, the develop-
ment process, current situation, and trend of the research period in the field were identified
through the statistical analysis of the annual output of related publications, citations, jour-
nal sources, and the main research countries and regions. In addition, collaborative network
analysis and clustering of authors, keywords, and topics determined the research hotspots
and future frontiers in this field. Based on the above analysis, the problems to be addressed
are as follows: (1) What is the trend of article production and citation in the field of farmland
abandonment? (2) What are the fluctuation trends regarding the authors, journals, and
countries in the field of farmland abandonment? (3) What are the main research directions
in the field of farmland abandonment? (4) What is the future research focus in the field of
farmland abandonment?

2. Data Sources and Methods

2.1. Data Sources

To improve the representativeness and usability of the data, the data were collected
from the Web of Science core collection database [56], which is the largest and one of the
most comprehensive bibliometric analysis databases in the world, including data from
natural sciences, computer sciences, biology, arts, humanities, and other fields from more
than 12,000 high-impact academic journals. By referring to relevant articles in the field
of farmland abandonment, we identified the most commonly used keyword “farmland
abandonment” [35,57–60], and the search formula was as follows: T1 = (cropland abandon-
ment) or T2 = (abandoned cropland) or T3 = (farmland abandonment) or T4 = (abandoned
farmland) or T5 = (agricultural land abandonment) or T6 = (abandoned agricultural land)
or T7 = (cultivated land abandonment) or T8 = (abandoned cultivated land) or T9 = (land
abandonment) or T10 = (abandoned land). We limited the publication years to 1980–2021 as
some articles will still be published in 2022, whereas the number of articles published before
1980 was extremely small. Overall, 977 publications were found. We focused on journal
articles, conference transcript articles, and reviews, excluding comments, news, and letters.
After filtering, 926 criteria-compliant publications were downloaded, exported as complete
records, and referenced in the format “.txt”. To ensure the completeness and accuracy of
the retrieved data, duplicates were manually removed. Finally, a total of 896 publications
on farmland abandonment were obtained (Figure 1, Supplementary Table S1). We searched
by title rather than by theme, author, abstract, and keywords. In many bibliometric studies,
search by title is considered as the most accurate search method [61–63], whereas searching
by theme/abstract/keywords will produce many false-positive results (the main concern
is not the abandonment of farmland itself). Although searching by title can result in the
loss of some documents (false-negatives), there will be more false-positive results when
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searching by theme. In this study, we searched by title and theme, respectively, resulting in
8603 documents being different between the two scenarios. Sorting according to the global
citation rate of articles, manually reviewing the titles, abstracts, and keywords of the top
100 articles with the highest citation rates (Supplementary Tables S2 and S3), we found that
only 12% of the articles appeared by a theme search focused on farmland abandonment,
and most of them also appeared in the articles searched by title. Overall, 42% of the articles
on farmland abandonment appeared as marginal research, and 46% of the articles did
not investigate farmland abandonment. Among the articles found by the title search, 72%
focused on farmland abandonment, 19% only marginally studied farmland abandonment,
and 9% did not carry out research on farmland abandonment. Based on this, it was decided
to search by title.

Figure 1. Technical flow of the applied bibliometrics approach.

2.2. Methods

Using the bibliometrix and biblioshiny software packages, the research status and
trends in the field of farmland abandonment were reviewed and analyzed. Data analysis in-
cluded a quantitative analysis of annual scientific production, citations, and journal sources,
a collaborative network analysis of authors, countries, and regions, a clustering analysis
of document keywords, and the evolution analysis of thematic trends and monitoring
methods in abandoned farmland areas during the research period (Figure 1). The present
situation and law of research in abandoned farmland were expounded through multiple
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perspectives to provide a reference and suggestions for future research in this field. The
workflow is as follows:

(1) Problems and spans of design research: This paper identified farmland abandon-
ment as the research topic and searched the core database of the Web of Science for articles
from 1980 to 2021 by determining search terms, search time, and document types. (2) Data
collection: An article database was built [64] by exporting the retrieved documents into the
appropriate format of bibliometric tools. (3) Data analysis and visualization: This included
co-word analysis [65], collaborator analysis [66], citation analysis [67–69], coupling analy-
sis [70,71], and co-citation analysis [72]. For example, two-dimensional maps, dendrograms,
and collaborative network diagrams were generated. This step was implemented in the
bibliometric software packages bibliometrix and biblioshiny. (4) Data interpretation: the
results were analyzed and described, and future research directions in the field of farmland
abandonment were proposed.

3. Results and Discussion

3.1. Analysis of Annual Scientific Results Output and Citation Number

To analyze the general situation and development trend of the research field, the
number of published articles (Figure 2) and the mean number of citations (Figure 3) were
summarized. From 1980 to 2000, fewer than 11 articles were published in any given year,
representing only 10.9% of the total articles published. The mean number of citations can
reflect the quality and influence of the article, with four peaks during this period, i.e., in
1987, 1994, 1997, and 2000. The research content was focused on the ecological impacts of
farmland abandonment, such as species recovery [73], carbon fixation [74], water retention
potential [75], and soil erosion [76]. Immediately after abandonment, because of the lack
of vegetation, soil erosion and runoff were serious. In sites that had been abandoned for
several years, with a dense vegetation cover, soil erosion and runoff were negligible. There
were also studies evaluating the possibility of abandonment reclamation from the ecological
perspective [77]. Although in this period studies were scarce, investigating a series of
influences after the succession of abandoned farmland from an ecological perspective laid
the foundation for subsequent research.

 

Figure 2. Number of articles on farmland abandonment published from 1980 to 2021 (Note: The
different colors in the figure represent the three stages of the number of articles published).

From 2001 to 2015, the number of published articles on farmland abandonment showed
an upward trend, albeit with fluctuations, with an average of 25.13 articles per year,
accounting for 42.1% of the total published volume. Mean citations peaked in 2003, 2008,
and 2015. During this period, sustainability issues, such as climate change and food security,
became major concerns. With increasing population size, urbanization, and farmland
intensification, the migration of the rural population to cities has led to the large-scale
abandonment of farmland. In this period, the contribution of the rational use of abandoned
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farmland to sustainable development was recognized, and the administration of abandoned
farmland has become a hotspot [78,79]. For example, Calcerrada et al. predicted landscape
dynamics after farmland abandonment by developing a landscape change transfer matrix
model. The authors assumed that, in addition to the ecological value, abandoned farmland
can also be used for a series of human activities, such as agriculture, animal husbandry, and
tourism [80]. Vegetation succession on abandoned sites and the ecological impacts are some
of the main research directions [81–84]. At the same time, with the emergence of machine
learning and different resolution sensors, the use of remote sensing means combined with
mathematical models to extract abandoned farmland also attracted wide attention [41,85].

Figure 3. Mean total citations per year on farmland abandonment from 1980 to 2021.

From 2016 to 2021, the number of articles on farmland abandonment increased dra-
matically, especially in 2020 and 2021, with 80 and 93 articles, respectively. The papers
published during this period accounted for 46.99% of the total articles published. In this
period, in addition to a change from the traditional ecological perspective to a more modern
approach, the research perspective was more diversified, involving the driving factors of
farmland abandonment [86–88], social, economic, and environmental consequences [6,89],
spatial patterns [90], and policy enlightenment [91]. For example, Xu et al. used survey data
of rural households in 27 provinces of China to analyze the spatial patterns of abandoned
farmland and studied the impact of farmers’ employment on farmland abandonment.
Based on the results, labor migration and non-agricultural employment were the main
factors driving the abandonment of rural farmland in China [92]. The methods and means
of extracting abandoned farmland were also enriched, resulting in a higher accuracy. For
example, Yin et al. developed a new method for the extraction of abandoned farmland
using a 30-m resolution Landsat satellite time series, with an extraction accuracy of 97% [59].
Although the research content was richer and more diverse, the mean number of citations
per project declined after 2018, and the influence of respective articles decreased in 2020
and 2021.

3.2. Journal Sources

To study the development of the research area in different journals, the sources of
journals were ranked considering the number of publications, the H index, and TC (total
citations) (Table 1). The H index was used to measure the importance and impact of the
authors’ cumulative research contributions, and the TC represented the total citations for
all articles from a journal source. The number of articles published in these journals ranged
from 13 to 32. Articles published by Land Use Policy over the entire period accounted for
3.6% of the total published articles, followed by those published in Sustainability, with 2.9%.
In terms of total citations, Land Use Policy was the most-cited source, followed by Catena
with 1642 citations; the ninth-ranked journal, Remote Sensing, had the lowest number of
citations (165). Taking into account the H index, Remote Sensing was again at the bottom
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of the list, whereas the seventh-ranked journal, Forest Ecology and Management, had an H
index of 17, which was the same as the first-ranked journal Land Use Policy.

Table 1. Journal sources with the most published articles on farmland abandonment from 1980 to
2021 (Note: TC = total citations).

Rank Total Articles H Index TC

1 Land Use Policy 32 17 1856
2 Sustainability 26 12 423
3 Catena 25 14 1462
4 Land Degradation & Development 24 14 690
5 Land 24 9 190
6 Agriculture Ecosystems & Environment 23 14 1170
7 Forest Ecology and Management 23 17 970
8 Science of the Total Environment 23 13 527
9 Remote Sensing 14 7 165
10 Ecological Engineering 13 10 357

According to the journal source dynamics, the evolution curve of the cumulative
number of published articles for the 10 most productive journals was plotted over time
(Figure 4), obtaining the following information: (1) Land Use Policy had the largest produc-
tion volume and the fastest growth rate during the research period. (2) Forest Ecology and
Management had a significant production volume before 2014, with a decrease thereafter.
(3) Catena published the first papers on farmland abandonment in 1999, with stagna-
tion in the middle part of the research period and a significant increase after 2016; Land
Degradation & Development showed a similar trend. In general, over time, farmland aban-
donment become the focus of several journals.

Figure 4. Growth curves of journal sources on farmland abandonment from 1980 to 2021.

3.3. Author Analysis

We first ranked the most relevant authors in the field of farmland abandonment, along
with several bibliometric metrics (Table 2), and subsequently generated the author collabo-
ration network (Figure 5), which reflects the connection of different authors’ knowledge or
social levels. This network can be used to identify previously unknown research groups and
represents the similarity of research themes [93]. Finally, we plotted the authors’ changing
results over time (Figure 6). Articles fractionalized (AF) indicated the contribution rate of
the author to the article in the article jointly published by the author and other authors.
Overall, 2747 authors contributed to publications in the field of farmland abandonment.
Among them, the top three authors were Guobin Liu, Teodoro Lasanta, and Tobias Kuem-
merle, with 19, 18, and 16 published papers, respectively (Table 2). Using the H index to
measure the importance and influence of the cumulative research contribution, the author
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with the highest H index was the German scholar Tobias Kuemmerle, with a H index of
15 and a total citation number of 1813, indicating the high quality and influence of his
published papers.

Table 2. Top 10 most relevant authors in the field of farmland abandonment from 1980 to 2021
(Note: AF = articles fractionalized; TC = total citations).

Rank Authors Articles AF H Index TC

1 Guobin Liu 19 4.12 12 789
2 Teodoro Lasanta 18 4.28 12 949
3 Tobias Kuemmerle 16 2.8 15 1813
4 Estela Nadal-Romero 15 3.43 9 359
5 Alexander V Prishchepov 15 2.6 12 1505
6 Daniel Muller 12 2.92 12 1197
7 Sha Xue 12 2.63 8 527
8 Artemi Cerda 11 3.16 10 612
9 Volker C Radeloff 11 1.78 11 1453
10 Ju-Ying Jiao 9 1.83 7 229

Figure 5. Collaborative network of authors publishing papers on farmland abandonment from 1980
to 2021.

The results in the Author Collaborative Network (Figure 5) were divided into
13 clusters, with each color representing a group of collaborative authors. The larger
the circle, the more productive the author. The most representative seven groups of authors
were selected, and their studies were analyzed.
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Figure 6. Works of different authors in the field of farmland abandonment over time (Note: N.
Articles = number of articles; TC per Year = total citations per year).

The first group examined farmland abandonment in eastern Europe and the former
Soviet Union after the disintegration of socialism. Different land policies, economic devel-
opment, and reform strategies led to large differences in the abandonment rates among
different countries [94,95]. During the transition period of 1990–2000, the agricultural
sector in Russia, Latvia, and Lithuania declined sharply, while the socio-economic and
agricultural infrastructure in Lithuania were more suitable for agriculture, leading to a low
abandonment rate. In this period, the Russian government almost completely abolished
agricultural subsidies, which led to a high abandonment rate [96]. In contrast, the Belaru-
sian government provided more support for agriculture, leading to a low abandonment
rate. Poland and Slovakia, located near the edge of the Carpathian Mountains, are largely
affected by terrain and market access, which resulted in a high abandonment rate. However,
due to the adoption of private agriculture in the socialist period in Poland’s plain area,
the agricultural sector in this area quickly adapted to the post-socialist framework, which
resulted in a low abandonment rate [94].

The second author group mainly studied the effects of farmland abandonment on
soil and hydrological conditions in the Mediterranean region [97,98]. For example, in the
southeast of Spain, soil degradation after farmland abandonment is serious. Droughts led
to the generation of a surface crust, which reduces the permeability and increases surface
runoff and soil erosion [76]. In the Pyrenees Mountains, farmland abandonment has greatly
increased the contents of suspended sediment in the water, which has affected the water
supply and agricultural activities in the downstream area. However, the local environment
is humid, which is conducive to afforestation. Vegetation has increased the soil stability in
this area, resulting in reduced soil erosion, surface runoff, and flood probability [5,97,98].

The third group of authors focused on the effects of farmland abandonment on the
Loess Plateau of China, such as the effects on soil carbon sequestration [99] and the mi-
crobial community [100]. For example, Zhang et al. reported that the vegetation coverage
rate decreased in the 10 years before abandonment and returned to normal levels after
15–20 years of abandonment [101]. Deng et al. studied the organic carbon reserves of soil
after abandonment on the Loess Plateau, which decreased significantly in the first 20 years
and recovered to pre-abandoned levels 30 years later [102]. Similar to the second group, this
author group studied the impacts of farmland abandonment on the land. However, whilst
the second group focused on soil properties and runoff, this group mainly investigated the
succession of vegetation communities and organic carbon reserves over time.

The fourth group of authors mainly analyzed the factors driving and influencing
the abandonment of rural farmland in China. In this country, more areas are abandoned
in mountainous and hilly areas than in the plains [101]. Xu et al. revealed a significant
inverted U-shaped relationship between farmers’ employment outside the agricultural
sector and farmland abandonment; based on their results, non-agricultural labor does not
necessarily lead to farmland abandonment. On the one hand, when rural laborers are
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employed in non-agricultural sectors, this leads to a shortage of the agricultural labor force,
a lack of the land transfer market in rural areas, and insufficient labor resources for families
to maintain the production of their existing land, often resulting in extensive farmland
abandonment. On the other hand, most farmers are unable to integrate into urban areas
and are unwilling to sacrifice their land; they may, therefore, choose outsourcing to avoid
giving up their farmland [92,103]. Another study shows that the internet can help farmers
significantly reduce farmland abandonment [104].

Similar to the second and third groups, the fifth group of authors also discussed the
relationships between farmland abandonment and vegetation and species diversity but
paying more attention to the afforestation on abandoned farmland in eastern and northern
Europe. For example, hybrid aspen plantations planted on abandoned farmland in Estonia
were monitored, and their impacts on understory vegetation and species numbers were
discussed [105], as well as the effect of alder on soil nitrogen [106]. In another study, the
aboveground biomass, belowground biomass, and nutrients of natural birch forests on
abandoned farmland in Estonia were studied [107].

The sixth group of authors focused on abandoned farmland in the mountainous areas
of Nepal, such as the Himalayan mountains [108,109] and the Dordi River basin [110]. For
example, Chaudhary et al. evaluated the temporal and spatial degradation of abandoned
farmland in the Dordi River basin and analyzed its causes and the resulting ecological
environment risks. Of the total farmland surveyed, 92% had been completely destroyed,
leading to landslides, debris flow, rock fall, gully formation, soil erosion, and limestone
pits, thus increasing the negative impact on land resources and vegetation succession [109].
The authors also evaluated the temporal and spatial distribution and driving factors of
farmland abandonment in the mountainous areas of Nepal and discussed the ecological
and social impacts of abandonment. Based on their results, farmland abandonment is
widespread in the hills and mountains of Nepal, with one fifth of the total farmland
area being abandoned from 2001 to 2010. Population growth, migration, urbanization,
inconvenient transportation, scattered living, poverty, and lack of land policies are the main
factors driving farmland abandonment in Nepal. In turn, abandoned farmland restricts
the supporting structure of terraced fields in this area, causing natural disasters, such as
landslides and mud rock flows, and impeding natural succession. Overall, the results on
the ecological environment and the rural society are negative [108,111].

The seventh group of authors studied the changes in species distributions after farm-
land abandonment, focusing on birds. The main study area was Hokkaido, Japan, where
abandoned farmland and wetlands coexist. The authors assessed the landscape patterns of
the abandoned farmland [112] and compared the bird biodiversity of the abandoned farm-
land with that of other local land use types [113,114], indicating that the bird abundance in
abandoned areas is equivalent to that of wetlands. Different from the European region, the
positive impact of farmland abandonment in this region is greater than the negative impact.
Abandoned farmland may evolve into wetlands and forests, which can provide habitat and
recovery opportunities for local species. In this context, the management of abandoned
farmland in this area is crucial to the protection of bird species in the agricultural landscape.

At least five of these clusters were interested in ecological issues, whereas the remain-
ing two clusters reported social concerns. Based on different natural conditions, policies,
and systems, studies on farmland abandonment showed obvious regional differences.

Considering the authors’ production over time (Figure 6), Teodoro Lasanta and Artemi
Cerda were the two authors with the longest-standing involvement in research on farmland
abandonment. Daniel Muller published four articles with other authors in 2013, with
the highest annual total citation number of 68.6. Abandoned farmland in Europe was
extracted mainly by means of remote sensing methods. For example, the abandoned
farmland [115] in 30 countries, including central and eastern Europe, was quantified by
support vector machine classification in an article in cooperation with Alcantara et al.,
using MODIS NDVI time series satellite images. A spatial allocation model that obtained
a time series of abandoned farmland [24] in Russia, Ukraine, and Belarus from 1990 to
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2009 was developed in cooperation with Schierhorn et al. Four articles published by Tobias
Kuemmerle in collaboration with other authors received 58.2 annual total citations, also
studying farmland abandonment in Europe [116,117]. Two authors, Daniel Muller and
Tobias Kuemmerle, belong to the first cluster of the author collaboration network (Figure 5),
with most of the total citations.

3.4. Analysis of the Distribution Characteristics of the Main Research Countries/Regions

To identify the key countries and regions in terms of publication number and im-
pact, the cooperation network between countries and regions was analyzed (Figure 7).
Between 1980 and 2021, a total of 62 countries or regions published papers. Among the
top 20 countries regarding publication number (Table 3), there were three Asian countries
(China, Japan, Korea), two American countries (the United States, Canada), 14 European
countries (Spain, Italy, Germany, Poland, the Netherlands, the United Kingdom, France, Es-
tonia, Sweden, Switzerland, Russia, Greece, Slovakia, Portugal), and one Oceanian country
(Australia). Among the top five countries with the largest numbers of publications, three
were European countries. Based on our findings, European authors were more concerned
about the issue of farmland abandonment. China was the only developing country among
the top five countries regarding publication number, ranking first and having published
193 papers. However, the mean number of citations per article was low, with only 20.71,
indicating that Chinese authors need to pay more attention to the quality of their articles.
The countries with the highest mean citation numbers were the Netherlands, followed by
Switzerland, with 96.88 and 95.07, respectively, but with fewer publications, ranking ninth
and 15th, respectively.

Figure 7. National collaborative network for research on farmland abandonment from 1980 to 2021.
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Table 3. Numbers of publications and citations on farmland abandonment in different countries from
1980 to 2021.

Country Articles Total Citations Average Citations

China 193 3997 20.71
USA 105 3936 37.49
Spain 83 2856 34.41
Italy 42 1223 29.12
Germany 39 2325 59.62
Japan 34 484 14.24
Poland 30 423 14.1
Canada 26 990 38.08
Netherlands 25 2422 96.88
Australia 20 1164 58.2
United Kingdom 18 1021 56.72
France 17 723 42.53
Estonia 16 418 26.12
Sweden 15 833 55.53
Switzerland 14 1331 95.07
Russia 13 61 4.69
Greece 12 376 31.33
Slovakia 12 146 12.17
Korea 11 81 7.36
Portugal 11 310 28.18

Based on the national collaboration network (Figure 7), the most closely cooperating
countries were Germany and the United States, Russia and Germany, and Spain and the
Netherlands, with 17, 15, and 19 cooperation articles, respectively (the thicker the lines, the
closer the connection between countries). The node size represents the number of articles
published in cooperation with other countries. The countries with the most co-published ar-
ticles were China, Spain, and Germany, with 42, 32, and 27 articles, respectively (Figure A1),
accounting for 16%, 12%, and 10% of the total output of co-published articles, respectively.
China and Spain published a larger number of articles independently, with Germany, the
UK, and the Netherlands focusing on collaborative research with other countries.

3.5. Document Analysis
3.5.1. Analysis of Highly Cited Papers

The top 10 cited articles (Table 4) reflected the most influential content in the field of
farmland abandonment from the perspective of citations, including seven research papers
and three reviews. The article with the highest overall number of citations proposed that
determining the ecological restoration goal of abandoned farmland is a challenge that
people will face in the future. It was also proposed that the future research direction
should be combined with land use policy [78]. Gellrich et al. [118] developed an economic
model to analyze the driving factors of natural forest regeneration in the Swiss mountains,
showing that natural forest regeneration is more likely to occur in areas where farmland
has been abandoned. Similar findings were found in other mountainous areas, such as the
Alps as well as in Sweden, Poland, Denmark, the Baltic Sea, and parts of Slovenia. Other
studies focused on Europe; for example, the 10th article [119] used the revised CAPRI
model to assess the consequences of farmland abandonment in the EU under the Common
Agricultural Policy (CAP). In the whole of the EU, the distribution of abandoned farmland
in different countries, regions, and farm types is uneven. Abandoned farmland caused by
agricultural and trade policy reforms may have a significant impact on rural livelihoods
and the environment, such as a reduced biodiversity.

In addition, the paper ranked No. 2 [120] used the Dyna CLUE model to conduct
a clear simulation and spatial evaluation on the natural succession track of abandoned
farmland and vegetation in Europe from 2000 to 2030. The simulation results show that
abandoned farmland in Europe mainly occurs in the mountainous regions. The natural
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succession after abandonment mainly depends on local conditions, such as climate, popula-
tion density, and terrain [81,121–123]. The seventh-ranked article assessed the hydrological
impacts of land abandonment in the Mediterranean region of Europe, focusing on water
resource availability and soil erosion [45]. This study shows that vegetation succession after
abandonment is related to many factors, including soil depth and fertility, slope aspect,
and climate (annual average precipitation, evapotranspiration), among others [124]. In the
Mediterranean region, abandoned farmland is mainly concentrated in mountain terraces
and semi-arid areas, such as southern France, southeast Spain, south central Portugal, and
Italy [81,125,126]. In terraced areas, such as the Iberian Mountains and the Pyrenees Moun-
tains in Spain [84,127,128], farmland abandonment has resulted in landscape degradation
and soil erosion, sediment deposition in river channels, and increased surface runoff. In
semi-arid areas, higher temperatures, less precipitation, and long-term drought impede
vegetation succession on abandoned farmland. The resulting surface crust reduces the
infiltration rate, increases surface runoff, and leads to surface erosion [129]. On the contrary,
in humid areas, the succession of vegetation dominated by herbaceous and shrub species
is rapid [120].

After the collapse of the socialist system in eastern Europe and the former Soviet
Union, under the dual impact of the system and the economy, farmland abandonment
differed among different European countries. The article ranked No. 8 [42] studied the
spatial distribution and driving factors of farmland abandonment in western Ukraine after
the collapse of the socialist system, identifying differences with other parts of Europe. In
western Europe, abandonment is mainly driven by industrialization, market orientation,
and urbanization, such as in areas around the Alps and Romania [130]. The abandonment
rate in the plains of western Ukraine is high, whereas that in the marginal areas is low. In the
transitional period, the agriculture in this area was not yet industrialized and dominated by
traditional self-supporting agriculture. The plain soil is relatively barren and not suitable for
farming, and the reduction of the agricultural labor force due to large-scale migration and
regular remittances from family members seeking non-agricultural employment in other
regions can maintain the livelihood of the farmers. In addition, compared with other eastern
European countries, such as Latvia, Poland, Russia, Lithuania, and Estonia [91,131,132], the
abandonment mode in western Ukraine is different, most likely because of differences in
socialist land ownership patterns, post-socialist land reform strategies, and rural population
densities [94,115]. With this in mind, the factors driving farmland abandonment cannot be
generalized among countries that are also impacted by the collapse of socialism.

The third-ranked article mainly studied the driving mechanism of grassland abandon-
ment on forest expansion. Although the total citation number was high, the local citation
rate (LCR) was 0, indicating that the article was not correlated to the field of farmland
abandonment. The fourth-ranked article estimated the abandoned global farmland area
via land use data from the global Environment 3.0 historical database and MODIS satellite
images, demonstrating the bioenergy potential of the global abandoned farmland [79]
using the CASA ecosystem model. Another article reviewed farmland abandonment and
its impact on biodiversity from a global perspective by investigating studies from different
countries, ranking No. 9 [19]. Reviewing 276 papers, this paper found that the impact
of abandoned farmland on biodiversity differs regionally. Whilst most studies in Europe
reported a negative impact of farmland abandonment on biodiversity, studies in central
and southern America largely found positive impacts on biodiversity. In the latter region,
agricultural expansion is the primary issue in biodiversity conservation. Most studies in
North America discussed the processes and mechanisms that lead to or accompany farm-
land abandonment, largely neglecting its impact on biodiversity. Through further analysis,
the authors found that the differences were mainly related to the environment, the methods
used by researchers, and the concerns about the landscape before and after abandonment.
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Table 4. Highly cited articles on farmland abandonment from 1980 to 2021 (Note: TC per Year = total
citations per year; LCR = local citation rate).

Paper Year Total Citations TC per Year LCR Source

What’s new about old fields? Land abandonment and
ecosystem assembly [78] 2008 531 35.4 12.81 Trends in Ecology

and Evolution
Combining top-down and bottom-up dynamics in
land use modeling: exploring the future of
abandoned farmlands in Europe with the Dyna-CLUE
model [120]

2009 449 32.07 8.02 Landscape Ecology

Tree line shifts in the Swiss Alps: Climate change or
land abandonment? [133] 2007 433 27.06 0 Journal of Vegetation

Science
The global potential of bioenergy on abandoned
agriculture lands [79] 2008 418 27.87 9.09 Environmental Science

& Technology
The potential for carbon sequestration through
reforestation of abandoned tropical agricultural and
pasture lands [74]

2000 347 15.09 2.88 Restoration Ecology

Agricultural land abandonment and natural forest
re-growth in the Swiss mountains: A spatially explicit
economic analysis [118]

2007 342 21.38 23.98 Agriculture Ecosystems
& Environment

Hydrological and erosive consequences of farmland
abandonment in Europe, with special reference to the
Mediterranean region—A review [45]

2011 288 24 17.71 Agriculture Ecosystems
& Environment

Patterns and drivers of post-socialist farmland
abandonment in Western Ukraine [42] 2011 287 23.92 27.87 Land Use Policy

Farmland abandonment: threat or opportunity for
biodiversity conservation? A global review [19] 2014 262 29.11 21.76 Frontiers in Ecology and

the Environment
Policy reform and agricultural land abandonment in
the EU [119] 2013 259 25.9 21.24 Land Use Policy

3.5.2. Keyword Analysis

By comparing the top 20 author keywords (DE) and keywords-plus (ID) most related
to the field of farmland abandonment (Table A1), farmland abandonment/agricultural
land abandonment, succession, soil erosion, biodiversity, restoration, and Europe were the
six keywords shared by the two. Different author keywords clearly defined the content,
approach, or method of the author’s research, and the common ones were farmland
abandonment, land use change, land use, secondary succession, and afforestation. The
keywords-plus in the Web of Science database could objectively describe the content of the
article from a macro-perspective, such as farmland abandonment, vegetation, dynamics
(mostly referred to soil dynamics), forest, and management. This indicates that, currently,
studies focus on the natural succession of abandoned farmland and the impacts of human
activities on the ecological environment.

3.5.3. High-Frequency Keyword Cluster Analysis and Multiple Correspondence Analysis

Using the functions of cluster analysis and multiple correspondence analysis,
biblioshiny could reflect the hotspots, themes, and writing directions in the field of farmland
abandonment. Cluster analysis was used to cluster complex keyword–network relation-
ships into several relatively simple groups [134]. The keywords with the highest similarity
were merged into one cluster, and the cluster with the highest similarity was merged into a
large cluster, and so on, until all categories were finally merged into one class, forming a
dendrogram representing the close or alienation relationship of the keywords in the field
of farmland abandonment (Figure 8). Multiple correspondence analysis (MCA) resulted
in the formation of an intuitive two-dimensional graph by reducing multi-dimensional
data to low dimensions, using a plane distance to reflect the similarity among keywords. A
close proximity to the center indicates that this type of topic had received higher attention,
whereas a greater distance of keywords from the center indicates less attention or a greater
degree of deviation from the topic [135] (Figure A2).
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Figure 8. Hierarchical clustering analysis of keywords in the field of farmland abandonment.

The first cluster category focuses on the study of biodiversity, species richness, and
plant communities after farmland abandonment. There are obvious regional differences in
the ecological and environmental consequences of farmland abandonment. For example,
most studies in European regions show that the encroachment of vegetation on bare
land and original farmland after abandonment will have a negative impact on lizards,
birds, and other animal species [136]. One study in the Mediterranean Sea shows that
vegetation encroachment after farmland abandonment will cause the loss of bird habitats.
Regular burning, grazing, and other means may help to protect bird diversity. However,
a study on Hokkaido, Japan, obtained opposite results. Most wetlands in this area have
been transformed into farmland, which is now abandoned. The authors assume that the
abandoned farmland can be used as a habitat for wetland birds through management,
helping to promote biodiversity [137,138]. In southeast Europe, such as in Bulgaria and
Croatia, plant species diversity is greatly affected by elevation and temperature. In areas
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with low elevation and cold temperatures, species are more abundant [139]. However, the
richness of bird species declines after farmland abandonment, highlighting the importance
of the management and maintenance of traditional rural landscapes in this area.

The second cluster category mainly contains studies on vegetation and species restora-
tion over time after farmland abandonment. Zhang et al. [140] studied the vegetation
community and soil characteristics of abandoned farmland in the Qinling Mountains
of China after a period of natural succession, indicating that natural succession is con-
ducive to the ecological recovery of abandoned farmland, which is characterized by high
biodiversity, high soil fertility, and high species richness. The species richness of the
community increased in the first 15 years after abandonment [100,102,141]. However,
Yannelli et al. [142] reported that, in arid regions, natural succession may not be the best
method for ecological restoration, and soil erosion may occur during succession, preventing
the establishment of a vegetation cover. Restoration should be adapted to local conditions,
taking into account environmental factors such as climate and topography in different
regions. Standish et al. [143] also considered the impact of alien species invasion on the
restoration of abandoned farmland vegetation, indicating that, during natural succession,
alien species are more competitive than native ones. The authors also highlighted that
restoration should be more focused on maintaining ecosystem services at the site, rather
than attempting to restore historic ecosystem states.

The third category contains publications on the impacts of natural succession on
forests, soils, and microbial communities, mostly in the mountainous areas of Europe
and on the Loess Plateau of China. Cojzer et al. [144], in Slovenia, compared the species
structure, quantity, and tending time of young forests formed by secondary succession and
artificial reforestation after farmland abandonment. The results showed that the young
forests formed by secondary succession had great structural complexity and biodiversity,
and the management of these stands was more conducive to local ecological restoration
than reforestation. Treml et al. [145] evaluated the changes in tree coverage and number
in the Sudeten Mountains of Central Europe through aerial images; based on their results,
farmland abandonment is the main cause of forest intensification. Chinese authors studied
the vegetation succession and soil carbon reserves after farmland abandonment on the
Loess Plateau, reporting that vegetation coverage, species richness, and soil carbon reserves
significantly increased over time, recovering to the original levels [146] within about
15 years, increasing significantly within 15 to 25 years; however, after 50 years, they were
still lower than those of natural grassland [147,148]. In one study, the introduction of alien
species reduced the time to restore vegetation to its original level to 11 years [149]. Another
study showed that the reforestation of farmland after abandonment can significantly
increase soil fertility [150].

The fourth category focused on methods to extract abandoned farmland, studying the
mode, driving force, and spatial determinants of abandoned farmland. The commonly used
method identified abandoned farmland by analyzing the inter-annual land use change
in a given study area. Subsequently, the driving factors and spatial determinants of
farmland abandonment [151,152] were determined by mathematical models. For example,
Baumann et al. [42] plotted the abandoned farmland in the post-socialist period of western
Ukraine, using the support vector machine classification method and Landsat images
from 1986 to 2008, and determined the spatial determinants of abandonment using a
combination of the optimal subset linear regression model and hierarchical division. Based
on the results, 30% of the farmland was abandoned in the post-socialist period, mainly as
the result of the combined impact of the system and the economy. A study in southern
Chile [153] extracted the abandoned farmland by comparing land use in 1985 and 2007,
using a spatial explicit statistical model. The authors showed that soil quality, distance
to secondary roads, and agricultural subsidies were important drivers of local farmland
abandonment. In eastern Poland, Zgłobicki et al. [154] showed that natural conditions
(topography, soil), socioeconomic characteristics (farmland area, forest cover changes, farm
size), and agricultural policies were the largest drivers of local farmland abandonment.

606



Int. J. Environ. Res. Public Health 2022, 19, 16007

The fifth category was similar to the third and fourth categories. However, this
category not only constructed the extraction method of farmland abandonment but also
focused on the bioenergy potential abandoned farmland [155], estimating that the potential
is 8% of the global demand for primary energy [79]. Schierhorn et al. developed a model
for mapping abandoned farmland and calculating carbon sinks in such farmland, based on
acreage statistics. The authors provided the means to map abandoned farmland in areas
in which remote sensing is difficult to perform and stated that the rich carbon sinks of
abandoned farmland can mitigate global climate change; reclamation of such areas is likely
to lead to large amounts of carbon emission [24].

In Europe, with the highest number of publications on farmland abandonment, studies
on the distribution, patterns, consequences, and impacts of farmland abandonment formed
a separate cluster. The causes of farmland abandonment in Europe are various, depending
on the region and period under consideration. Due to natural conditions, historical devel-
opment, and economic, social, and demographic backgrounds, agricultural conditions vary
from region to region. For example, Terres et al. established a unified indicator of the driv-
ing factors of abandonment through a comprehensive analysis of farmland abandonment in
different regions of Europe, including the aging population, the low population density, the
low farm income, the small scale, and the poor implementation of agricultural plans. This
indicator covers the possible drivers of abandonment in all EU countries and can be flexibly
applied according to the background of different regions [156–158]. Prishchepov et al. [132]
discussed the impacts of institutional changes in different countries in eastern Europe and
the former Soviet Union on farmland abandonment after the collapse of socialism. The
authors stated that the reform of systems and policies is an important factor indirectly
driving farmland abandonment in this region. In places where the institutional change
of agricultural land management is relatively small, and where the new institutions after
the institutional change are relatively strong, the abandonment rate is the lowest. On
the contrary, countries that delay the formulation of new agricultural production systems
and regulations have a higher abandonment rate. In addition, the European region also
focuses on the impact of farmland abandonment on ecology. For example, in the Alps,
farmland abandonment leads to spontaneous reforestation, reducing grassland species
and negatively impacting plant diversity [159]. Another study assessed the carbon stor-
age dynamics of abandoned farmland in the former Soviet Union and showed that the
abandoned farmland is transformed into an ecosystem dominated by grassland, result-
ing in an increase in carbon sequestration and a significant impact on the carbon sink
in the region [160].

3.5.4. Analysis of the Research Theme Evolution

Theme evolution analysis can explore the changing laws, relationships, paths, and
trends of the content, and intensity and structure of the research topic over time. Here,
the study period was divided into three stages, with strategic coordinates being drawn
(Figure A3). Overall, the research topics in the field of farmland abandonment experienced
a process from increase to decrease to increase. In the initial stage of 1980–2000 (Figure A3),
the core themes with high maturity were vegetation, landscape, dynamic degree, and
management (the first quadrant in Figure A3). For example, a Swiss study provided advice
on the local agricultural management policy [161] by interviewing people regarding their
preferences for reforestation after farmland abandonment. However, Puerto Rico was the
area of concern for this phase, mainly because it was funded by the US National Fund at
the time [74] and because of the support of the University of Puerto Rico in this field [162].
The themes competition and basin disappeared in the following stage. In addition, the
natural succession of abandoned farmland resulted in the formation of new forests after
the abandonment, and forest communities, soil, and vegetation became research hotspots.

During the development stage from 2001 to 2015 (Figure A3), the theme type with
high maturity was relatively single, and the dynamic degree (forests dynamic, land cover
dynamics, vegetation dynamics) was still the core theme of this period. The new core
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themes, such as land cover and agricultural abandonment, were consistent with the study
of land cover changes [81] following agricultural abandonment in the Mediterranean
mountains and the role [80] of farmland abandonment in landscape dynamics in central
Spain, using three Landsat land cover maps. Runoff and soil erosion were emerging themes
in this period. However, the occurrence in the third quadrant showed that the research on
this theme was not mature enough, and the topics such as vegetation, forest, and diversity
are still hot topics for future research, getting closer to the first quadrant. Notably, the top
10 most-cited articles (Table 4) were all published in the second half of this period.

During the active phase of 2016–2021 (Figure A3), studies on forest, vegetation, dy-
namic degree, and biodiversity formed the core of the field of farmland abandonment
research. Europe, as an important area in respective research, is distributed in the fourth
quadrant as a keyword with a high number of occurrences. Along with the analysis of
the driving factors and the determinants of abandonment, this field may become a re-
search hotspot in the future. Whereas previous studies on farmland abandonment in
Europe were mainly conducted in typical European countries and regions, with a small
scale, with the increase in achievements and the improvement of technical means, large-
scale studies covering the entire European continent appeared in this stage. For example,
Walter et al. evaluated the causes and consequences of farmland abandonment in Europe
by summarizing previous studies [6], whereas Ustaoglu et al. evaluated the drivers of
farmland abandonment and their sustainability impact on society and the environment [86].
Lasanta studied the spatial and temporal processes and drivers of farmland abandonment
in Europe [87]. Research on abandoned farmland in typical regions such as Ukraine [163],
Russia, and Kazakhstan [37] has also been revitalized. Compared with previous stages, this
stage of research pays more attention to the determinants of the reclamation of abandoned
farmland, with the aim to avoid the ecological impacts of farmland expansion.

3.5.5. Analysis of the Monitoring Method Evolution

This study reviewed the abandoned farmland monitoring methods used in the database.
The representative methods in this field changed over time (Table 5) and can be divided
into three types: (1) Field survey; (2) remote sensing image classification methods, such as
visual interpretation, supervised classification, object-oriented classification; and (3) change
detection methods, including vegetation index change detection and multi-temporal re-
mote sensing image time series change detection. At present, the monitoring of abandoned
farmland mainly considers multi-source remote sensing images and the integration of
multiple monitoring methods. Over time, the monitoring methods changed from field
survey and the visual interpretation of aerial photos to remote sensing. Remote sensing
data also changed from small-scale- and medium low-spatial-resolution data to large-scale-
and high-spatial-resolution data [94,116,131,164,165].

Table 5. Evolution of methods for the extraction of abandoned farmland.

Countries and Regions Data Source Research Methods Notes

Cal Rodo catchment (southern margin of
the Pyrenees)

Two aerial photos from 1957 and
1996 (20 m) Visual interpretation Poyatos et al., 2003

Swiss mountains Land use survey data during the 1980s
and 1990s Field survey Gellrich and Zimmermann, 2006

Peyne in France Aerial photos (1 m) from 1946, 1954, 1970,
1971, 1983, and 1988, field geographic data

Field survey, visual
interpretation Sluiter and Jong, 2006

Ijuez River Valley (Central Spanish Pyrenees) Aerial photos from 1957, 1977, and
2002 (1 m) Visual interpretation Pueyo and Beguería, 2007

Poland, Slovakia, and Ukraine Landsat TM/ETM+ images from 1986,
1988, and 2000 (30 m) Support Vector Machines Kuemmerle et al., 2008

Galicia (Spain)
Aerial photographs from 1956 and 1957,
and land use of the plot size specified in
SIGPAC (2004)

Visual interpretation Corbelle et al., 2011

Western Ukraine Landsat TM images from 1986, 1989, 2006,
and 2008 (30 m) Support Vector Machines Baumann et al., 2011

Smolensk, Kaluga, Tula, Rjazan, and
Vladimir in European Russia

Landsat TM/ETM+ satellite images from
1990 and 2000 (30 m) Support Vector Machines Prishchepov et al., 2012
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Table 5. Cont.

Countries and Regions Data Source Research Methods Notes

Baltic countries, Belarus, and Poland MODIS NDVI time series from 2003 to
2008 (250 m)

Vegetation index change
detection, Support Vector
Machines

Alcantara et al., 2012

Belarus, Lithuania, and Poland Landsat TM/ETM+ satellite images from
1989 and 1999 (30 m) Support Vector Machines Prishchepov et al., 2012

Poland, Belarus, Latvia, Lithuania, and
European Russia

Landsat TM/ETM+ satellite images from
1990 and 2000 (30 m) Support Vector Machines Prishchepov et al., 2012

Covering 6.4 Mkm2 across central and
eastern Europe and the Balkan Peninsula,
including 30 countries fully or partly

MODIS NDVI time series from 2004 to
2006 (250 m)

Vegetation index change
detection, Support
Vector Machines

Alcantara et al., 2013

European Russia, Ukraine, and Belarus GLC2000, MODIS, national sown area
statistics (1 km)

A spatial allocation model was
developed to allocate national
area statistics to remote sensing
image data

Schierhorn et al., 2013

Throughout Europe MODIS NDVI time series from 2000 to
2012 (250 m)

Vegetation index change
detection, Random Forest Estel et al., 2015

Mountainous areas in China Household survey data of 262 counties
from 2011 to 2012 Field survey Li et al., 2017

Parts of Georgia and the North Caucasian
Federal District of Russia Landsat images from 1985 to 2015 (30 m)

LandTrendr time series change
detection, object-oriented
classification

Yin et al., 2018

Northern Kazakhstan Landsat images from 1988 to 2013 (30 m) LandTrendr time series change
detection, Random Forest Dara et al., 2018

14 regions in the world (Iraq, Nebraska,
Shaanxi, Orenburg, Uganda, Belarus, Bosnia
and Herzegovina, Sardinia, Volgograd,
Wisconsin, Chongqing, Goias,
Mato Grosso, Nepal)

Landsat images from 1987 to 2017 (30 m) Time series change detection,
Random Forest Yin et al., 2020

Global CCI-LC data from 1992 and 2015 (300 m) Change detection
after classification Næss et al., 2021

(1) Field survey. The largest advantage of this method is that it can explain the
mechanism behind farmland abandonment, although it is difficult to obtain a complete
view of all abandoned farmland areas in a given region due to the lack of spatial details.
Therefore, the extraction of abandoned farmland often uses field survey data coupled with
other models. For example, Florian et al. distributed the survey data of European Russia,
Ukraine, and Belarus to the remote sensing image data through the spatial allocation model,
obtaining an accuracy of 65% [117]. Raymond et al. combined geographic data obtained
from field surveys with aerial photos to extract abandoned farmland in southern France,
which accounted for 5% of the study area [166].

(2) Classification of remote sensing images. Visual interpretation methods are mostly
applied to Mediterranean mountains [41,42,81], and the data sources are mostly aerial
photos. Visual interpretation has the advantages of simple operation and high accuracy,
although it is greatly influenced by the interpreter, and the degree of automation is low.
It requires considerable manpower and time to process data, and the data are difficult
to obtain. The application of supervised classification originated in eastern Europe and
the former Soviet Union [96,121,132,167], generally applying Landsat TM/ETM+ data.
Supervised classification can use prior knowledge to improve classification accuracy by
learning sample features. This method can be applied to high-, medium-, and low-spatial-
resolution remote sensing data at the same time, allowing its wide use in abandoned
farmland monitoring. The disadvantage is that the sample selection is highly subjective,
and it is difficult to distinguish land types with similar spectral characteristics.

(3) Change detection method. Some authors took more than 30 countries in central and
eastern Europe as the research area and used MODIS NDVI time series products to extract
abandoned farmland. This product has a high time resolution, and the characteristics of
abandoned farmland can be compared with the growth cycle characteristics of vegetation
types. However, the spatial resolution is low (250 m). This study also combines SVM
classification, obtaining an accuracy of 50.7% [115]. Estel et al. used MODIS NDVI time
series products combined with random forest classification to monitor abandoned farmland
throughout Europe and mapped the reclamation range of farmland, with an accuracy of
90.1%. Farmland was mainly abandoned in eastern Europe, southern Scandinavia, and
the European mountains. Reclamation is also common, mainly in eastern Europe (such as
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Russia in Europe, Poland, Belarus, Ukraine, and Lithuania) and the Balkans [85]. Vegeta-
tion index change detection can identify the growth difference between crops and natural
vegetation, with low data redundancy and high method fault tolerance, but, due to the
influence of image spatial resolution, the recognition accuracy of abandoned farmland is
low [79,115]. In recent years, the most commonly used method was Landsat remote sensing
image time series change detection. Its key is the initial classification accuracy of the image,
and the change detection accuracy is accumulated by different time phase classification
accuracies. Yin et al. used Landsat images from 1985 to 2015 and the LandTrendr model
to detect changes in the time series of multi-temporal remote sensing images, applying
the object-oriented classification method. This method is not only based on the spectral
information and texture information of abandoned farmland but also considers the geomet-
ric information. By formulating a variety of rules to constrain the target land class, it has
significant advantages in improving the initial classification accuracy of remote sensing
images. The overall accuracy of the study on the classification of abandoned farmland is
97%, which is better than that obtained using the pixel level change detection (82%) [59].

4. Conclusions and Prospects

We conducted a quantitative analysis and visualization of articles published in the
field of farmland abandonment from 1980–2021 at the macro-scale by using the bibliometrix
and biblioshiny software packages, based on the Web of Science core collection database.
From this, we determined the current status and future development trends of scientific
production in this field, overcoming the shortcomings of previous literature reviews that
rarely comprehensively analyzed the research results from multiple perspectives and
revealed the potential changes.

The annual scientific output results showed that the number of articles in the field of
farmland abandonment fluctuated and increased rapidly, especially after 2016. According
to the number of articles issued, the research period can be divided into three stages:
budding stage, development stage, and active stage. Judging from the average number
of citations of papers, the years with the strongest development in the field of farmland
abandonment were 1987, 2003, 2008, and 2015. Over time, more attention was paid to
abandoned farmland as such, with most papers being published from 2007 to 2017; however,
the overall quality of the publications declined after 2018.

Journal source analysis showed that Land Use Policy was the most productive journal in
the field of farmland abandonment from 1980 to 2021, with the highest number of citations
and the highest H index. In terms of research strength, China was the country that published
the most articles, although countries in Europe were more influential. Cooperation between
countries suggested that some countries in Europe, such as Germany, the UK, and the
Netherlands, focused more on collaborative research. When considering both the number of
papers published by independent authors and international cooperations, papers published
by countries such as China and the United States through independent research were
more common.

Studies on farmland abandonment were two-branched: one branch mainly analyzed
the social factors, such as policies and trade, which may promote or inhibit the abandon-
ment of farmland; the other focused on the ecological impacts of farmland abandonment,
such as impacts on soil quality, carbon sequestration, and biodiversity. The same trend
was found in the authors’ collaborative network, with five of the seven most productive
research groups focusing on ecological aspects and the other two on social factors.

The most common keywords were farmland abandonment, land use, vegetation, dy-
namics, forest, and management. Analysis of the theme evolution of abandoned farmland
showed that vegetation, landscape, dynamic degree, and management were the most
commonly used keywords in the first stage. The influence of the most used keywords in
the second stage was weakened; in this stage, the focus was on the improvement of the
extraction technology. The last period was related to the driving forces and determinants of
farmland abandonment, in addition to vegetation succession and biodiversity. The theme
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that remained constant throughout the study period was the succession of vegetation after
farmland abandonment.

This study has two limitations. First, it relies more on dynamic databases that are
constantly updated as the number of indexed journals increases or decreases. Therefore,
the bibliometric analysis of farmland abandonment may change in the next few years.
Another limitation is that this study largely relies on the results obtained from visual charts.
However, the display of results lacks a richer global perspective. The global perspective
can, however, be improved by incorporating other databases, such as Scopus.

Overall, the results obtained can help researchers determine the specific research areas
and contents of farmland abandonment. The analysis of the cooperation between the author
and the country may facilitate the investigation of the authors in the field of farmland
abandonment or the formulation of policies at the national level. In addition, this study
provides a database and analyzes the different topics and methods for future researchers,
assisting in the selection of research areas and topics.

According to the results, farmland abandonment research needs to be further ex-
panded in the following aspects:

(1) In terms of data sources, farmland abandonment experienced a process from the
traditional family survey data to the remote sensing image data; the latter underwent a
transformation from low to high spatial resolution. However, the high-resolution images
used for farmland abandonment generally have a low temporal resolution. In the future,
the use of multi-source remote sensing data to combine high temporal resolution and
high spatial resolution for farmland abandonment extraction may become the mainstream
of research. Nowadays, there are more and more applications of hyperspectral images,
and improvements in spectrum number and spectral resolution can significantly enrich
spectral information, revealing more details of ground objects. Such an approach would
greatly improve the accuracy of remote sensing in the identification of ground objects. In
the future, this direction can be explored with the use of hyperspectral images to extract
abandoned farmland.

(2) To extract abandoned farmland, change detection methods are mostly used. The
extraction accuracy largely depends on the classification accuracy, and the classification
error of each temporary phase will be accumulated, affecting the final result. Moreover, the
classification of heterogeneous images is independent and does not consider the correlation
of time, making it easy to ignore vegetation changes in the growth cycle, resulting in
unreasonable change detection results. Classification time series data can effectively avoid
this problem, and models such as the Landsat-based detection of trends in disturbance
and recovery (LandTrendr), breaks for additive season and trend (BFAST), and contin-
uous change detection and classification (CCDC) can demonstrate this. Today, only the
LandTrendr model is used for the extraction of abandoned farmland. With the rise of deep
learning, the remote sensing time series change detection research based on deep learning
has attracted the interest of many researchers. Deep learning is an automated learning
based on the end-to-end mechanism. It does not rely on prior knowledge, but it is still
difficult to automatically mine data and acquire the spatiotemporal features of images. In
the future, how to use these models to effectively extract abandoned farmland may be an
important development trend.

(3) Since the 21st century, the impact of global climate change on ecology and the social
economy has been an important topic. In recent years, the global outbreak of COVID-19
and regional armed conflict have caused unprecedented crises in the world, seriously
affecting agriculture, the economy, human health, and food security. It is, therefore, of great
significance to meet the global food crisis by rationally reclaiming abandoned farmland
to rapidly increase food production and the global grain supply. However, there is still
controversy about the economic cost of abandoned farmland reclamation and the ecological
consequences of such reclamation. Should the abandoned farmland be reclaimed, continue
to expand, or be subjected to intensive farming? Research around this area may be a
future focus.
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(4) According to the results of this study, future studies will still focus on the ecological
impacts of abandoned fields, such as vegetation succession, carbon sequestration, and
impacts on biodiversity. However, most of the current studies focus on a certain country
and region, with conflicting ecological impacts along with different geographical locations
and environmental conditions. At present, the ecological impact of abandoned farmland is
still controversial among scholars. In the future, further discussions on this impact are: Is
this a threat or an opportunity? Is this negative or positive? The formulation of policies
according to local conditions when facing farmland abandonment may be an important
research topic in the near future.
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Figure A1. Number of independent and cooperative publications in the 20 countries with the most
published articles from 1980 to 2021.
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Figure A2. Multiple correspondence analysis of keywords in the field of farmland abandonment.
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Figure A3. Cont.
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(C) 

Figure A3. Strategic coordinates of the farmland abandonment period 1980–2000 (A), 2001–2015 (B),
and 2016–2021 (C).

Appendix B

Table A1. Most relevant keywords when searching for publications in farmland abandonment from
1980 to 2021.

Rank Author Keywords (DE) Articles Keywords-Plus (ID) Articles

1

Abandonment/land abandonment/farmland
Abandonment/abandoned farmland/cropland
abandonment/abandoned land/abandoned
cropland/agricultural abandonment/agricultural
land abandonment/abandoned agricultural land

284
Farmland abandon-
ment/agricultural land
abandonment

107

2 Land use change 81 Vegetation 90
3 Land use 42 Dynamics 86
4 Secondary succession 32 Forest 81
5 Afforestation 25 Management 79
6 Soil erosion 24 Diversity 74
7 Remote sensing 22 Europe 62
8 Agriculture 21 Consequences 61
9 China 21 Conservation 61
10 Loess plateau 21 Biodiversity 56
11 Succession 20 Landscape 54
12 Mediterranean 15 Patterns 54
13 Soil organic carbon 15 Drivers 46
14 Biodiversity 14 Restoration 46
15 Reforestation 14 Impact 44
16 Restoration 14 Cover 43
17 Spain 14 Nitrogen 43
18 Europe 11 Carbon 42
19 GIS 11 Succession 40
20 Natural regeneration 11 Soil erosion 39
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Abstract: Based on the Web of Science core collection database, this paper retrieves 349 research
papers on terraced fields published during 1991–2020. Keyword co-occurrence analysis, cluster
analysis, and thematic evolutionary analysis were used to identify the evolutionary path of terrace
research. The findings were as follows: (1) In the past 20 years, the study of terraced fields has
shown an upward trend. The number of annual published papers during 2012–2020 was much
more than that during 1991–2011, but papers during 1991–2011 were more academically influential
than those during 2012–2020. (2) Regional analysis showed that terrace research in China is the
most abundant currently, and is mainly focused on agricultural production, agricultural engineer-
ing, cultural tourism, and ecological environment. (3) Keyword co-occurrence analysis showed
that terrace landscape, terrace agriculture, terrace abandonment, land use change, soil and water
conservation, and sustainable utilization of typical terraces are the main modules of current terrace
studies. (4) In a temporal dynamic perspective, terrace research presented 10 main evolutionary paths
during 1991–2020, reflecting the trend of terrace research towards sustainable terrace development of
ecological agriculture and ecosystem service. (5) Finally, this paper suggests that here is a need to
deepen studies on terrace ecosystem services and human well-being based on their structure and
processes, to analyze the interaction and comprehensive effect of natural process and humanistic
driving forces on terrace abandonment, and to explore the multi-functional benefits and sustainable
management of high quality terraced landscape.

Keywords: agricultural terraces; land use; bibliometrics; co-word analysis; thematic evolution

1. Introduction

Terraces refer to cultivated land with terraced distributions, horizontal surfaces, and
ridges [1]. Terraced fields are recognized as living fossils created by human beings in nature,
and they are great symbols of human utilization and transformation of nature. Terraces
built at different times are scattered all over the world, especially in Asia and Europe.
Terraced fields first appeared in prehistoric times. Terraced fields were initially used to
build fortifications on hillsides and to cultivate land. Later, they evolved into an intensive
agricultural production mode on mountains all over the world [2]. Nowadays, various
new terraces have been built in mountainous and hilly areas, and they can be divided into
different types according to different classification standards. For example, terraces can be
divided into table terraces and wave terraces by their cross-section structure [3]. They can
be divided into horizontal terraces, slope terraces, reverse slope terraces, and separated
slope terraces by the field surface structure, among which the horizontal terrace is the most
common [4]. Terraces can be divided into earth terraces and stone terraces by construction
material. In modern times, cement terraces have become more and more common due to
their role in landslide prevention and control. In addition, terraces can be divided into rice
terraces and dry farming terraces, where cash crops such as grapes and kiwifruit are usually
planted. According to literature review, current research on terraces mainly focuses on their
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history and distribution, and their value and utilization. The world-famous terraces listed
on the World Cultural Heritage list by UNESCO, including the Honghe Hani rice terraces
and Yuanyang terraces in China, the Ifugao rice terraces in the Philippines, and the Lavaux
vineyard terraces in Switzerland, have attracted most scholars’ attention in fields such as
agricultural planting benefits, soil and water conservation, and landscape aesthetics.

Terraced fields are of great value in broadening agricultural production sources, alle-
viating soil erosion and degradation [5,6], saving agricultural water resources, reducing
runoff, improving biodiversity [7], and increasing ecological and cultural values. Terrace
archaeology has also shown that terraced fields in different periods were built for different
reasons, such as increasing per capita cultivated land area and grain output, soil and water
conservation, and cultural landscape promotion. Due to the limitations of population and
terrain, people in areas with low per capita cultivated land area have to develop terraces
in hilly areas to increase food output. Modern scientific research in areas with severe soil
erosion has proven that terraced fields effectively slow surface runoff [8–10]. Terraced fields
help reduce water loss in soil [11] and prevent the deposition of soil organic matter from ter-
races on the bottom of sloping land or prevent losses [12,13]. Some studies have also found
that terraced fields play an important role in microclimate and flood relief [14,15]. More
than material practicability, the value of terraced fields is also reflected in intangible cultural
value [16], such as providing landscape aesthetics [17–19] or cultural heritage [20,21].

Although terraced fields are of great value, their utilization is not optimal. Studies
show that influenced by agricultural input cost, grain yield, agricultural facilities, labor
quantity, and labor opportunity cost [22–26], the abandoned terrace area has reached 77.4%
in the past 60 years [27]. Compared with ordinary farmland, terraced fields are more
likely to be abandoned due to poor farming, irrigation, or transportation conditions, which
will result in low grain yield. Especially in recent years, with the rapid development of
secondary and tertiary industries, the proportion of farmers’ agricultural income continues
to decrease, while the cost of farming continues to rise. In this context, terraced fields will
be abandoned preferentially among farmers’ contracted land.

The influence of terraced land abandonment is multifaceted. Although terrace aban-
donment may benefit biodiversity improvement and soil habitat restoration, its adverse
effects cannot be ignored. Research show that terrace abandonment will cause resource
waste, ecosystem service value reduction, land cover change, and an overall decline in
water resource availability [28], resulting in wildfire risk and land degradation [29,30].
However, the adverse influence of abandonment will diminish over time [31].

More than typical ecological agriculture modes in mountainous areas, terraced fields
are also outstanding ecological and cultural landscapes and precious agricultural cultural
heritage, which have important enlightenment and reference significance to the sustainable
development of agriculture. The second section of this paper introduces data sources and
research methods. The third and fourth sections describe quantitative and qualitative scien-
tometric analysis on terraced fields by bibliometrix and VOSviewer software, respectively.
The fifth section draws conclusions and describes prospects for future research. This review
provides a broader vision of terrace study, which has a positive effect on terrace landscape
maintenance, ecological protection, and sustainable development in hilly and mountainous
areas.

2. Data Sources and Research Methods

2.1. Data Sources

The data in this study were sourced from the world’s largest comprehensive infor-
mation resource, the Web of Science core collection database of the Institute for Science
Information (ISI). This database includes over 8700 core academic journals in various fields
of natural sciences, engineering, biomedicine, social sciences, arts, and humanities. In
this paper, the core collection of the Web of Science was used as the data source, the SCI-
EXPANDED and SSCI databases were indexed, articles were selected as the literature type,
and English was set as the language. After screening and removing the duplicated data,
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349 papers on terraced fields during 1991–2020 were obtained, and the downloaded data
was saved in a text format.

2.2. Research Methods

Bibliometric analysis provides a comprehensive overview of a large body of research
literature and further develops previously unevaluated insights by allowing quantitative
and objective identification of past and present research topics [32]. The Bibliometrix
R package provides a set of tools for quantitative research in scientific metrology. R-
language-based bibliometric software developed by Dr. Aria and others provides support
for importing and processing literature information from SCOPUS and WoS, statistically
analyzing relevant scientific literature indices, constructing a data matrix, and conducting
research and visualization processing on co-citation, coupling, cooperative analysis, and
co-word analysis [33]. It has been widely used in scientific research in various fields
in recent years [34–36]. VOS viewer, developed by Jan van Eck and Ludo Waltman, is
widely used in different kinds of co-occurrence analysis software, especially in keyword
co-occurrence analysis [37–41]. To accurately and comprehensively analyze the research
status and popular topics on terraced fields, this study used VOS viewer and bibliometrix
software packages to analyze and visualize current research on terraced fields. This paper
analyzes the annual number of published papers, research power (country and author),
and popular research topics quantitatively and qualitatively. At the same time, this paper
analyzes the trends in terrace research through historical citation analysis, theme evolution
analysis, and coupling analysis. The specific research steps are shown in Figure 1.

Figure 1. Bibliometrix and science-mapping workflow.
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3. Summary of Quantitative Research

3.1. Article Publication and Citation Analysis

Based on the statistical analysis of 349 papers on terraces during 1991–2020 from WoS,
the research was divided into two stages. The first stage was the exploration of the period
of low yield from 1991 to 2011, which was characterized by the small number of published
papers on terraces. In this period, the average number of annual published papers was 7.1
and the average annual number of citations was 23.1. The second stage was the period of
increasing production during 2012–2020. The average number of annual published papers
had increased to 21.7 and the average annual citations reached 10.9. While the number of
published papers in the second stage was approximately three times that of the first stage,
the number of citations in the second stage was only half that of the first stage, indicating a
greater academic influence in the first stage and a higher research enthusiasm in the second
stage. It also indicates that the early pioneering studies from varied perspectives laid a
foundation for subsequent terrace research. Based on current research trend, it is expected
that terrace research will be further enriched.

In the first stage during 1991–2011, there were four small peaks of citations, namely,
1994, 1998, 2003, and 2007 (line chart of average citations in Figure 2). The paper “Studying
the role of old agricultural terraces on runoff generation in small Mediterranean mountainous basin”
published in 1994 had been cited 122 times by the end of the study period. It was proven
in this paper that surface runoff in the Mediterranean mountainous area was related to
the spontaneous reorganization of the artificial drainage network in abandoned terraced
fields [42]. By the end of 2020, the article “Land use change effects on abandoned terraced
soils in a Mediterranean catchment, NE Spain” published in 2003 had been cited 146 times.
In this paper, the different vegetation stages were divided into four main land-use types
according to the age of abandonment: cultivated fields (vineyard and olive tree, 0 years),
recent abandonment (dense and cleared shrubs, 5 years), moderate abandonment (cleared
cork trees and dense olive trees, 25 years) and early abandonment (dense cork trees and
pine trees reforestation, 50 years), and variance analysis indicated significant differences
in the main soil quality parameters such as soil organic matter (SOM), total nitrogen (N),
water holding capacity (WHC), and pH, among the selected environments under different
land-use conditions [43]. The paper “Land environment and slope gradient as key factors of soil
erosion in Mediterranean terraced lands” published in 2007 had been cited 211 times by the end
of 2020. The research results showed that the influence of traditional extensive cultivation
abandonment on soil sediment losses varied with slope gradient. When slope gradient was
steep (25%), soil erosion increased significantly. When slope gradient was very steep (40%),
soil sediment losses remained at the same high levels after cultivation abandonment as
slope gradient was the main factor controlling soil erosion, although soil and vegetation
properties were changing [44]. The highly cited papers in the first period solved key basic
problems such as classification standards and environmental impacts in the initial stage of
terrace research through exploratory attempts, so their influence was greater. The average
number of annual published papers and citations are shown in Figure 2 below.

 
Figure 2. Agricultural-terrace research articles and citations during 1991–2020.
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3.2. Analysis of Authors’ Papers

As shown in Figure 3, the bubble chart of authors’ papers directly reflects the published
number of articles and citations of each author in different years. The circle size represents
authors’ published article numbers, the color depth represents the number of the paper’s
citations. The top ten authors in terrace research field are shown in Figure 3. H-indexes,
total numbers of published articles, total citations, and publication dates of the ten authors
are shown in Table 1. An author’s H-index means that at least H of his/her papers had
been cited at least H times in a given period [45]. It can be seen from Table 1 that the
H-index of Min Q. W. and Li Y. was 5, indicating that their studies were the most influential.
Taking rice-fish system in Hani Terrace as an example, Min Q.W. studied the standards of
ecological compensation for traditional eco-agriculture [46]. Li Y. studied crops planted in
terraced fields from a biological viewpoint for 19 years. He proposed that the accumulation
of H2O2 and MDA helped induce the improvement of antioxidant enzyme activity, thus
improving the tolerance of plants to UV-B radiation. The enhancement of UV-B radiation
directly affected rice growth, and changed the system of Magnaporthe grisea indirectly, which
was conducive to terraced-field planting [47,48]. Li Y.’s team quantified the soil quality
parameters of terraced and steep slopes on the Loess Plateau of China, and cleared the
influence of tillage erosion and water erosion on soil quality parameters. It was concluded
that water erosion was the main reason for the overall decline in the soil quality of steeply
sloping farmland, and that tillage had a controlling effect on the spatial pattern of organic
matter, nitrogen, and phosphorus in terraced and steep-slope soil [49]. These studies on
terraced fields from different angles, such as economy, ecology, and landscape, have laid a
foundation for multidisciplinary comprehensive study of terraced fields.

Figure 3. Authors’ publications on agricultural terraced fields over time.

Table 1. Top 10 authors in the field of agricultural-terrace research.

Author H_Index TC NP PY_Start

Min Q.W. 5 96 9 2013
Li Y. 5 121 7 2001

Egashira K. 3 20 6 1995
Jiao Y.M. 4 53 6 2012

Karim A.J.M.S. 3 20 6 1995
Liu M.C. 4 69 6 2014
Yang L. 4 41 6 2017

Kladnik D. 4 49 5 2009
Ramos M.C. 4 159 5 1997

Tarolli P. 3 137 5 2014
Notes: TC: total article citations; NP: number of papers; PY_start: publication year.
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3.3. Analysis of National Documents
3.3.1. Global Research Analysis

In Figure 4, the shades of blue indicate the number of papers published in the country,
the gray indicates that there is no relevant literature on terraces in the country, the red dots
indicate the location of the 20 countries with the largest number of papers, and the yellow
triangle indicates the famous terraces that have been listed as world heritage sites by FAO
or UNESCO. The distribution map of numbers of papers published by different countries
shows that there is little research on terraces in Africa and Western Asia. As can be seen
from Table 2, related articles published in China are more abundant, indicating a strong
research force and phased research focus in China. However, in terms of research influence,
articles from developed countries in Europe and America seem to be more influential,
which can be seen from the higher citations of articles from developed countries. On the
whole, research on terraces is consistent with the distribution of terraced fields, that is,
terrace research is more abundant in regions with more terraced fields, such as East Asia,
Western Europe, and North America. Asian terraces are mainly planted with rice, and these
large-scale terraced landscapes support a large population and form a common and distinct
“terraced cultural circle” [50], while European terraces were mainly built to facilitate the
mechanized production of vineyards during their long history. They are represented by
the Lavaux vineyard terraces in Switzerland, and terraces in Hungary, Italy, Portugal, and
Spain. However, agricultural industrialization and abandonment in Europe led to the
degradation and disappearance of traditional terraced landscapes after the 1960s.

Table 2. Top 10 countries in terms of article number.

Region Articles Total Citations
Average Number of

Article Citations

China 203 732 3.61
USA 95 784 8.25
Japan 62 224 3.61
Spain 60 1136 18.93
Italy 38 401 10.55

United Kingdom 35 510 14.57
India 30 40 1.33

Germany 28 234 8.36
Philippines 26 85 3.27

France 18 74 4.11

 
Figure 4. Number of publications on terraced fields in each region of the world.

3.3.2. Analysis of Major Research Countries

China is the country with the largest number of publications. There are 203 articles
written by Chinese authors, accounting for 58.2% of the total publications. Due to the large
population and limited per capita cultivated land area in China, the Chinese government
attaches great attention to terrace development and protection to ensure food security. In
recent years, owing to the Transforming Slope into Terrace Project on the Loess Plateau,
terraced area has increased significantly in China [51–54]. Data from WoS show that the
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five Chinese world terraced fields, namely Honghe Hani Terraced Fields, Ziquejie Terrace,
Longji Terrace, Youxi United Terrace, and Chongyi Hakka Terraces, are the main research
areas of Chinese publications (Table 3, Figure 4).

Table 3. Main terraces in China.

Name Location Area (hm) Crop World Heritage Site

Honghe Hani Terraced
Fields Yunnan 16,603 Rice UNESCO(2013),

GIAHS(2010)
Longji Terrace Guangxi 7010 Rice GIAHS(2018)

Ziquejie Terrace Hunan 1334 Rice GIAHS(2018)
Chongyi Hakka Terraces Jiangxi 2000 Rice GIAHS(2018)

Youxi United Terrace Fujian 713 Rice GIAHS(2018)

Discipline analysis shows that terrace research in China is mainly focused on the
following four aspects (Figure 5). 1© Agricultural production. Rice and local rice varieties
are the main varieties, among which, red rice in Hani Terrace is a traditional high-quality
variety. 2© Agricultural engineering. To solve soil and water loss in the Loess Plateau
and control Yellow River bed aggradation, some scholars suggest transforming sloping
land into terraced farmland, so as to reduce nutrient loss on the surface of cultivated
land. In addition, the identification and extraction of terrace spatial information has
developed rapidly in recent years, but its application on a large scale still needs to be
improved. 3© Cultural tourism. Represented by Hani Terrace and Longji Terrace, terraced
field tourism combines visual enjoyment brought by terraced landscapes and ethnic culture,
thus bringing positive travel opportunities and economic benefits. In this way, a new terrace-
tourism mode combining terrace protection with landscape, local culture, and tourism
revenue, can be formed [55–57]. 4© Ecological environment. Biodiversity conservation,
ecological compensation, and ecosystem service value, especially terraced cultural service
value which involves cultural, aesthetic, spiritual, and religious aspects, has attracted more
and more attention in terrace field [58,59].

Figure 5. The main terrace research subjects in China.

4. Summary of Qualitative Research

4.1. Analysis of Keyword Co-Occurrence Network

The 20 most frequent keywords in terrace studies were obtained by eliminating
meaningless or repetitive words through statistics, as shown in Figure 6. “Agricultural
terraces” was the most frequent keyword, followed by “soil erosion”, “surface runoff”,
“terraced landscape”, and “land environment”. A single keyword can identify the core
information of terrace research, but it cannot identify the necessary relationship between
the core information. Therefore, the co-occurrence analysis in VOS viewer was introduced
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to set the author keywords at least five times to obtain keyword co-occurrence (Figure 7).
In Figure 7, the lines represent the usage of keywords. The larger the node, the higher
the frequency of keywords. The five main clusters of keywords, labeled #1–#5, in terrace
studies are highlighted by rectangular boxes of different colors in Figure 7. They also reflect
the main modules of current terrace studies.

Figure 6. High frequency keywords and their occurrence in agricultural terrace publications.

Figure 7. Co-occurrence network of agricultural terrace keywords.

Cluster 1 mainly focuses on the geological and archaeological characteristics of ter-
raced fields. Geoarchaeology not only helps understand terrace history, function, and
sustainability, but also provides evidence for vegetation change and erosion over time [60].
Terrace construction is a long process. Terraces are rarely constructed in a single stage but
gradually develop or even evolve, and new terraces are usually built gradually based on
maintaining ancient terraces [2,61,62]. Archaeological study of isotopic carbon or nitrogen
on terraced soil indicates that the Longji terrace in China was constructed in the late Chinese
Yuan Dynasty. In the late Yuan Dynasty, the strong survival pressure brought by social
upheaval motivated minority populations to migrate to the Longji Mountain area to open
up new living space. As a result, agricultural terraces and gravity irrigation networks were
built on hillside land [63]. Archaeological research in Bali proved that the spatial pattern of
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Balinese terraces built hundreds of years ago was more about farmers’ decision-making
and rice field ecology [64].

Cluster 2 mainly involves studies on terrace landscape and its cultural value. Cultural
landscape is formed in the long-term interaction between humans and nature [65]. It
also represents humans’ living landscape formed by long-term intensive and continuous
cultivation [66]. As the cultural value of terraced landscape is derived from the combination
of terrace maintenance and value creation [67], Japan attaches great importance to the
protection and inheritance of terraced landscape culture. Local people believe that terraced
field is the manifestation of hard work, which represents people’s belief in natural spirit [68].
In addition, beautiful terrace landscape brings visual enjoyment to tourists and even affects
people’s world outlook, which tourists are willing to pay for. In many places, owing to
their cultural value, terraces are mainly retained as decorative elements of the landscape
rather than for their original agricultural function although farmers actively cultivate their
fields [69]. Especially in some tourist attractions, terrace cultivation is maintained mainly to
protect its cultural landscape value, which is much higher than its food production value.

Cluster 3 mainly involves studies on soil and water conservation and agricultural
utilization of terraced fields. Traditional slope tillage causes severe soil erosion, while
terrace construction helps prevent soil erosion effectively [70]. However, the effectiveness
is limited by factors including climate, soil properties, topography, land use, culture,
population, and socioeconomic status [71]. To maximize the function of terraces in soil and
water conservation, numerous studies have been carried out. It is proposed that terraces
should be well maintained to retain more water, and vegetation restoration is essential in
areas prone to water flow [72,73]. Studies in abandoned terraced fields, which are more
prone to soil erosion, show that terraces planted with vegetation produce less runoff than
those planted with crops [74]. Therefore, adjusting planting types and avoiding terrace
abandonment helps reduce soil erosion.

Cluster 4 mainly involves studies on terrace soil erosion, land abandonment, and
land-use change. In recent years, with the development of the social economy, farmland
abandonment has become more and more serious [75]. In comparison to flat land, aban-
donment is more likely to occur in terraced fields due to their inferior topography and
irrigation conditions. Currently, studies on terrace abandonment are mainly focused on the
identification [76], driving forces, impacts, and recovery. Some reasons for cultivated land
abandonment and terrace abandonment might be similar, but the degree of influence is
different. For example, the influence of slope on abandonment is greater for terraces than
for cultivated land [44]. Terrace abandonment may cause soil erosion and wildfires [30],
and further reduce biodiversity and landscape cultural value [77]. It is noteworthy that
soil erosion and terrace abandonment are mutually causal. Therefore, to alleviate the
adverse effects of terrace abandonment, it is proposed to restore and maintain terraced
fields. Local endemic species are encouraged to be replanted to promote the restoration of
local ecosystems, so as to enable the ecology and land use in terraced fields to evolve in a
better way [78].

Cluster 5 mainly involves studies on the protection and sustainable utilization of
typical terraces, which are represented by the Ifugao rice terraces. Although some ancient
terraced fields function fully, it cannot be ignored that inefficient utilization still widely
exists. Combining historical and cultural landscape perspectives, scholars have studied
well-maintained and typical terraced fields to seek the sustainable utilization of terraced
fields. Studies have found that both natural and social-economic factors affect the sustain-
able use of terraced fields. For example, the El Niño phenomenon has caused drought
and insufficient irrigation infrastructure in the Ifugao rice terraces, resulting in decreased
ecosystem value, and obvious changes in extensive planting and ripening [79]. At the same
time, the influence of organisms is striking too. In the Ifugao rice terraces, golden apple
snails seriously harm crops, and earthworms and mice disintegrate terraces [80,81]. Similar
problems exist in the Hani terraces. The introduction of new rice varieties significantly
increases the plant diseases and insect pests [82]. In addition, extensive management and
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abandonment begin to spread as farmers’ willingness to plant decreases. To realize the
sustainable utilization of terraced fields, dynamic protection approaches are proposed. First,
it is necessary to enhance farmers’ cultural cognitive abilities, especially their consciousness
to traditional agricultural knowledge. Second, it is necessary encourage young people to
participate in the management and maintenance of terraced fields [83,84]. Third, there is a
need to improve the ecological compensation mechanism to promote ecological agriculture
and ecological services [85]. For terraced areas with cultural value, tourism development
and community monitoring can be combined to explore an endogenous development
strategy [86].

The above analysis shows that the five clusters are closely related and mutually
supported. Despite their own focus, the contents of the five clusters are both dependent
and intersecting, reflecting the interdisciplinary development trend in terrace research. As
a whole, the five clusters reflect the general research situation of terraced fields involving
utilization, functions, values, and development.

4.2. Analysis of Thematic Evolution

To further analyze the research context reflected by keywords, Figure 8 is charted
to present the temporal information of keywords and research hotspots, thus providing
support to study the relationship between different research fields from temporal and
causal dimensions. In Figure 8, the darker the color, the hotter the research. To visualize
the theme evolution of terrace research over time, a Sankey diagram (Figure 9) is charted to
present the qualitative information and flow status of different themes [87], such as theme
flow and its direction and transformation relationships.

Three evolutionary time nodes of 2004, 2013, and 2017 were given through the software.
Figure 9 shows that both single research paths and extended research paths exist in terrace
research over time. The single research path means that the research theme remained
unchanged during the study period, and continues to be the research focus for a period of
time in the future. Single research paths are divided into traditional paths and emerging
paths based on when they formed, among which, emerging paths are more likely to become
popular. For extended research paths, the former and latter research themes are closed
related but different; to be specific, the former enlightens the latter while the latter deepens
the former.

Figure 8. Thermal map of terrace research.
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Figure 9. Thematic evolution of agricultural-terrace research (1991–2020).

The four main single research paths are as follows:

(1) Agriculture (1991–2017);
(2) Soil erosion (1991–2017);
(3) Agricultural landscape (2005–2017);
(4) Land abandonment (2014–2020).

According to the study period, paths 1, 2, and 3 are traditional paths, while path 4 is
an emerging path. The temporal information shows that early terrace research (1991–2017)
focused on agricultural and soil erosion. Traditional terraces were generally built on
hillsides to develop cultivated land, regulate water circulation, and maintain soil. The early
research paths were consistent with the original development needs for terraced fields.
Namely, to control soil and water loss of production land by slope treatment, and to improve
soil physical and chemical properties through terrace cultivation to accumulate nutrients
needed for crop growth, thus improving agricultural production capacity. Terraced fields
play an important role in maintaining slope landscape pattern and tourism development by
changing land landscape and increasing regional landscape heterogeneity. Therefore, with
the development and improvement of terrace engineering technology, scholars pay more
attention to the agricultural landscape value of terraced fields, including landscape pattern
change, typical watershed landscape patterns, terraced cultural landscapes, comprehensive
evaluation of landscape multifunctional value, and landscape protection. In recent years,
due to the decline of agricultural comparative income, the rise of agricultural opportunity
cost, and the constraints in terrace engineering design, abandoned terrace fields gradually
expanded and became an emerging research focus. The advancement of industrialization
and urbanization highlights the intensifying terrace abandonment. Therefore, study of
abandoned terraced fields will continue to be a hotspot in future.

The expanded research paths are as follows:

(1) Cultivation terraces (2005–2013) → sustainability (2014–2017);
(2) Ifugao rice terraces (1991–2004) → biodiversity (2005–2013);
(3) Ifugao rice terraces (1991–2013) → ecosystem services (2014–2017);
(4) Soil erosion (1991~2004) → terraces (2005–2013) → runoff (2014–2017);
(5) Soil erosion (1991~2004) → terraces (2005–2017) → terraces landscape (2018–2020);
(6) Terraces (2005~2017) → soil and water conservation (2018–2020).
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The evolutionary process of expanded research paths is more abundant than the single
research paths. Path (1) reflects the sustainability goals and research trends of terrace
cultivation, including the necessity of terrace sustainable development [88], sustainable
terrace management [89], and sustainable terrace practice mode and its evaluation [90,91].
For example, Ni (2014) believed that the Hani terrace in China should develop small-
scale sustainable and ecological agriculture, and take this as an opportunity to develop
ecological agricultural tourism [92]. Paths (2) and (3) reflect the importance of the studies
on the ecosystem service value of rice terraces. Among them, the literature on the Ifugao
rice terrace in the Philippines is the most abundant and representative. For example, the
study on the resilience of the Ifugao terraced agricultural system provides a reference for
evaluating the biodiversity and sustainable development of terraced ecosystems. More than
food supply, the functions of a rice terrace ecosystem with rice as the main crop also include
climate regulation [93], soil and water conservation [94], pest regulation, tourism [95,96],
and aesthetics [97]. The cultivation and development of rice terrace is of great significance
in maintaining ecological security and food security in mountainous areas. Biodiversity
maintenance is a research hotspot of terrace ecosystem service. For example, Drechsler
and Settele (2001) studied the predator–prey interactions in rice ecosystems of Philippine
rice terraces, thus exploring the effects of guild composition, trophic relationships, and
land use changes on terrace biodiversity [98]. These studies provide important support
for the realization of ecosystem services. Paths (4), (5), and (6) are similar in research
content regarding the effective management of water and soil resources in terraced fields,
including terrace soil erosion and runoff and its countermeasures. Currently, soil and water
conservation measures have also become an important part of the terraced landscape, that
is conducive to the planning and stability of landscape pattern. As the role of soil and
water conservation in maintaining terrace landscape ecology highlights, the theme of path
(5) develops from soil erosion (1991–2004) to terrace landscapes (2018–2020).

The theme evolution pathways present a terrace research trend from single to diver-
sified and from simple to complex in the past 30 years. Themes have evolved from the
initial topics of agriculture, terraces, and soil erosion to sustainable utilization, biodiver-
sity, and ecosystem services. However, research on the classified management of terrace
fields is still deficient, and research on terrace historical evolution, value evaluation, eco-
environmental effect analysis, and specific management strategies is expected to become
popular in the future.

5. Conclusions and Suggestions

This paper conducted quantitative and qualitative analysis on literature of terraced
fields from 1991–2020 from the WoS database. The quantitative analysis included article,
author, and regional analysis, and the main conclusions were as follows: (1) terrace research
presents an increasing trend with fluctuations during 1991–2020; (2) terrace research has
attracted scholars from various fields, and is expected to remain a hotspot in the future;
and (3) agricultural production, agricultural engineering, cultural tourism, and ecological
environment are the main research aspects in China. Qualitative studies included keyword
co-occurrence and thematic evolution analysis. The main conclusions were as follows:
(1) keyword co-occurrence analysis formed five research clusters focused on terrace geolog-
ical archaeology, terrace landscape and cultural value, the effectiveness of terrace soil and
water conservation, and the utilization and change of terraces, reflecting the main modules
of current terrace studies and (2) thematic evolution analysis presented 10 main evolution-
ary paths of terrace research in a temporal dynamic perspective, which were characterized
by single and expanded research paths and included “land abandonment (2014–2020)”
and “soil erosion (1991–2004) → terraces (2005–2017) → terraces landscape (2018–2020)”,
reflecting the trend of terrace research towards sustainable terrace development of ecologi-
cal agriculture and ecosystem service. By reflecting terrace research emphases in different
periods, thematic evolution analysis provides ideas for analyzing the evolutionary process
and mechanism of terraced field research, thus providing a basis for understanding the
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future research direction of terraced fields. Based on the existing literature, this paper puts
forward the key content and direction of terrace research in future.

(1) As important agricultural landscapes and cultural heritages, terraced fields have
become a model of the coupling between man and nature, and also a unique way for
humans to adapt to the mountain ecosystem during their long-term struggle against harsh
natural conditions. Terrace ecosystems provide a variety of services for mankind, and
their ecosystem structure and processes affect the service supply. However, there is little
research on the spatial–temporal matching of terrace ecosystem services in current studies,
thus failing to reveal the interaction between multiple services from the service formation
mechanism, and research on the evaluation of terrace ecosystem services is also lacking.
Therefore, based on the structure and processes of terrace ecosystems, future studies may
focus on terrace ecosystem services and human well-being, and carry out quantitative and
qualitative evaluation of terrace ecosystem services according to the research environment
and purpose.

(2) Terrace research shows a comprehensive and diversified trend in terms of research
content, research scope, and research scale. However, studies on the driving forces and
risk assessment of terrace abandonment are few. In view of the complexity and coupling
effect of terrace abandonment, it is necessary to give full play to the multi-disciplinary
advantages of natural ecology, sociology, economics, geography, and human policies and
to take into account the demands of stakeholders including scientists, decision makers,
grass-roots managers, and farmers, thus comprehensively analyzing the interaction and
effect of natural process and humanistic driving forces on terrace abandonment.

(3) There is a need to study countermeasures to strengthen ecological protection and
restoration of terraced fields, and to explore the multi-functional benefits and sustainable
management of high-quality terraced landscapes. In fact, under the impact of the modern
scientific and technological revolution and the new ways of production and life, terrace
ecosystems in most parts of the world are threatened by abandonment and extinction. It is
necessary to establish a long-term self-sustaining mechanism of terrace ecosystems through
dynamic protection and adaptive management of terrace landscapes, so as to realize the
sustainable utilization and development of terraced multi-functional landscapes.

Author Contributions: Conceptualization, Q.C. and Y.W.; methodology, Y.W.; software, Z.Z.; validation,
X.Z.; formal analysis, Q.C.; investigation, Z.Z.; resources, Y.W.; data curation, Z.Z.; writing—original
draft preparation, Y.W.; writing—review and editing, Q.C.; visualization, Y.W.; supervision, Q.C.; project
administration, Q.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers 41971243 and 41930757.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewers and editors whose suggestions
greatly improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ni, G. Liang Jiamian’s Collection of Agricultural History; China Agricultural Publishing House: Beijing, China, 2002; pp. 218–236.
(In Chinese)

2. Branch, N.P.; Kemp, R.A.; Silva, B.; Meddens, F.M.; Williams, A.; Kendall, A.; Pomacanchari, C.V. Testing the sustainability and
sensitivity to climatic change of terrace agricultural systems in the Peruvian Andes: A pilot study. J. Archaeol. Sci. 2007, 34, 1–9.
[CrossRef]

3. Barker, G.W.; Adams, R.; Creighton, O.H.; Daly, P.; Gilbertson, D.D.; Grattan, J.P.; Hunt, C.O.; Mattingly, D.J.; Mclaren, S.J.;
Newson, P.L. Archaeology and Desertification in the Wadi Faynan: The Fourth (1999) Season of the Wadi Faynan Landscape
Survey. Levant 2000, 32, 27–52. [CrossRef]

633



Int. J. Environ. Res. Public Health 2022, 19, 7796

4. Chen, D.; Wei, W.; Chen, L. Historical distribution of terrace landscape and typical international case analysis. Chin. J. Appl. Ecol.
2017, 2, 326–335. (In Chinese)

5. Mishra, P.K.; Rai, A.; Rai, S.C. Indigenous knowledge of terrace management for soil and water conservation in the Sikkim
Himalaya, India. Indian J. Tradit. Knowl. 2020, 19, 475–485.

6. Xu, Q.X.; Pan, W.; Dai, J.F.; Wan, T.W. The effects of rainfall regimes and terracing on runoff and erosion in the Three Gorges area,
China. Environ. Sci. Pollut. Res. 2018, 25, 9474–9484. [CrossRef] [PubMed]

7. Zhao, X.; Zhu, H.S.; Dong, K.H.; Li, D.Y. Plant Community and Succession in Lowland Grasslands under Saline–Alkali Conditions
with Grazing Exclusion. Agron. J. 2017, 109, 2428–2437. [CrossRef]

8. Gebreslase, M.S.; Oliveira, L.A.A.; Yazew, E.; Bresci, E.; Castelli, G. Spatial Variability of Soil Moisture in Newly Implemented
Agricultural Bench Terraces in the Ethiopian Plateau. Water 2019, 11, 2134. [CrossRef]

9. Londero, A.L.; Minella, J.P.G.; Deuschle, D.; Schneider, F.J.A.; Boeni, M.; Merten, G.H. Impact of broad-based terraces on water
and sediment losses in no-till (paired zero-order) catchments in southern Brazil. J. Soils Sediments 2017, 18, 1159–1175. [CrossRef]

10. Bary, A.A.; Pierzgalski, E. Ridged terraces—Functions, construction and use. J. Environ. Eng. Landsc. Manag. 2008, 16, 1–6.
11. Xu, G.C.; Zhang, T.G.; Li, Z.B.; Li, P.; Cheng, Y.T.; Cheng, S.D. Temporal and spatial characteristics of soil water content in diverse

soil layers on land terraces of the Loess Plateau, China. Catena 2017, 158, 20–29. [CrossRef]
12. Blecourt, M.; Hansel, V.M.; Brumme, R.; Corre, M.D.; Veldkamp, E. Soil redistribution by terracing alleviates soil organic carbon

losses caused by forest conversion to rubber plantation. For. Ecol. Manag. 2014, 313, 26–33. [CrossRef]
13. Ni, S.J.; Zhang, J.H. Variation of chemical properties as affected by soil erosion on hillslopes and terraces. Eur. J. Soil Sci. 2007, 58,

1285–1292. [CrossRef]
14. Koyanagi, T.F.; Yamada, S.; Yonezawa, K.I.; Kitagawa, Y.; Ichikawa, K.; Ohlemuller, R. Plant species richness and composition

under different disturbance regimes in marginal grasslands of a Japanese terraced paddy field landscape. Appl. Veg. Sci. 2015, 17,
636–644. [CrossRef]

15. Chen, S.K.; Chen, R.S.; Yang, T.Y. Application of a tank model to assess the flood-control function of a terraced paddy field.
Hydrol. Sci. J.-J. Des Sci. Hydrol. 2014, 59, 1020–1031. [CrossRef]

16. Agnoletti, M.; Conti, L.; Frezza, L.; Santor, A. Territorial Analysis of the Agricultural Terraced Landscapes of Tuscany (Italy):
Preliminary Results. Sustainability 2015, 7, 4564–4581. [CrossRef]

17. Pietsch, D.; Mabit, L. Terrace soils in the Yemen Highlands: Using physical, chemical and radiometric data to assess their
suitability for agriculture and their vulnerability to degradation. Geoderma 2012, 185–186, 48–60. [CrossRef]

18. Xie, H.L.; Chen, Q.R. Land Use and Ecological Civilization: A Collection of Empirical Studies. J. Resour. Ecol. 2021, 12, 137–142.
19. Lasanta, T.; Arnaez, J.; Ruiz-Flaño, P.; Lana-Renault, N. Agricultural terraces in the Spanish mountains: An abandoned landscape

and a potential resource. South Asian Stud. 2013, 63, 487–491.
20. Caga, K.A.D. Mixed Views on the Philippines’ Ifugao Rice Terraces: ‘Good’ versus ‘Beautiful’ in the Management of a UNESCO

World Heritage Site. J. Southeast Asian Stud. 2018, 49, 84–104. [CrossRef]
21. Fukamachi, K. Sustainability of terraced paddy fields in traditional satoyama landscapes of Japan. J. Environ. Manag. 2016, 202,

543–549. [CrossRef]
22. Mori, Y.; Sasaki, M.; Morioka, E.; Tsujimoto, K. When do rice terraces become rice terraces? Paddy Water Environ. 2019, 17, 323–330.

[CrossRef]
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Abstract: Land consolidation is widely used as a powerful tool for land use management in many
countries. In order to objectively reveal the current research status in the field of land consolidation,
this paper uses the Bibliometrix and Biblioshiny software packages, and VOSviewer to analyze the
literature in the field of land consolidation in the last 20 years of the Web of Science Core Collection
Database. The results show that: (1) In the past two decades, the annual publication of papers on
land consolidation rose. It can be divided into three stages: 2000–2007 for the embryonic period,
2008–2012 for the long-term, and 2013–2020 for the high-yield period. (2) Land consolidation studies
covered 68 countries or regions. The top three countries were China, Poland, and the United States.
China and the United States played an important role in international cooperation in the field of land
consolidation, and Turkey mainly conducted independent research in the field of land consolidation.
(3) Land consolidation, reclamation, China, remote sensing, and land fragmentation were the high-
frequency keywords in the field of land consolidation in recent years. (4) The research focusing on the
field of land consolidation involved its development course, its impact on ecosystem services, and the
evaluation of its benefits. (5) The theme of land consolidation studies was shunted and evolved over
time, and nine evolution paths could be summarized in the studies of cultivated land fragmentation,
development course of land consolidation, and impacts of land consolidation on soil. Finally, this
paper predicted the future research directions of land consolidation: exploring new methods for
evaluating the benefits of land consolidation, the scale effects of the impact of land consolidation on
ecosystem services, research on the mechanism and comprehensive effects of land consolidation on
soil, research on land consolidation and rural revitalization, and land consolidation theory research.

Keywords: Bibliometrix; land consolidation; thematic evolution; reclamation; Biblioshiny

1. Introduction

Land is the basic resource for human survival and development [1,2]. The rapid
development of the social economy and population growth increase the demand for land.
However, the limited land cannot provide more space and resources for human beings, and
the contradiction between man and land becomes prominent [2,3]. Currently, more than
half (54%) of the world’s population lives in urban areas, and this proportion is expected to
reach 66% by 2050 [4]. Food production is expected to increase by 70% (by 2050) to satisfy
the growing population, and land requires a more sustainable management mode [5].
It demonstrates the need for the rational and efficient use of the world’s limited land
resources in order to maximize the provision of products and services to the growing food
needs of humankind.

Land consolidation refers to the activities of integrated management of unused, in-
efficient and idle, damaged, and degraded land to meet the needs of human production,
life, and ecological functions. It is the general term for land development, consolidation,
reclamation, and restoration [6]. The function of land consolidation is reflected in many
ways. As an effective tool to supplement cultivated land, land consolidation plays an
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active role in achieving the balance of arable land [7], ensuring national food security [8],
and promoting rural revitalization [9]. It has been widely used all over the world in re-
cent decades. Land consolidation policies have gradually shifted from initial agricultural
production objectives to a means of supporting rural development [10]. Moreover, land
consolidation has far-reaching effects on promoting the scale of agricultural production and
improving the competitiveness of agricultural products, adjusting the structure of land use,
developing modern agriculture, alleviating ecological risks, and improving agricultural
production efficiency [11–15].

Bibliometrics is a quantitative analysis method that uses mathematical and statistical
tools to measure the interrelationship and impact of publications in a particular research
area [16]. It enables researchers to sketch out complex knowledge maps that represent the
structure of knowledge in a field of study and study their properties through statistical and
mathematical methods [17–19]. As a powerful tool for analyzing the field of knowledge
and revealing its cognitive–epistemological structure [20], it provides a macro-overview
of a large number of academic studies and reliably identifies influential research, authors,
journals, organizations, and countries [21].

Scholars have used large-scale data sets and bibliometric methods to carry out bib-
liometric analysis in the field of land consolidation, and obtained valuable research re-
sults. However, most of the research focuses on keyword co-occurrence analysis, journal
sources, and author publications, while studies on the context of historical citation, high-
frequency keyword clustering analysis, subject evolution, future development direction
prediction, etc. are rare. Therefore, the Bibliometrix and Biblioshiny software packages
in the R tool are adopted in this paper to systematically measure the literature of land
consolidation in the Web of Science core collection database set during 2000–2020. This
study aims to solve the following scientific questions.

(1) How are the keywords in the field of land consolidation clustered?
(2) What countries have cooperated in the field of land consolidation?
(3) How did the history of citations in the field of land consolidation develop?
(4) What is the focus and direction of future research in the field of land consolidation?

2. Data Sources and Research Methods

2.1. Data Sources

Web of Science is the world’s largest and most subject-covering comprehensive aca-
demic information resources, including more than 8700 core academic journals in various
fields of natural sciences, engineering, biomedicine, social sciences, and arts and humanities.
This paper took the core collection in the Web of Science database as the data source. The
search term included TI = “land consolidation” or TI = “land reclamation”. The document
type was limited to “Article”, and the retrieval time was 2000–2020. The languages were
English and Chinese. After pre-processing, such as de-duplication and the removal of irrel-
evant data, a total of 599 papers in the field of land consolidation were obtained. Among
them, 594 papers were in English, accounting for 99.17% of the total number of articles.
The downloaded data were saved in a text format.

2.2. Research Methods

Bibliometric analysis provides a comprehensive overview of a large body of research
literature and further developed previously unevaluated insights by allowing quantitative
and objective identification of past and present research topics [22].

The Bibliometrix R package provides a set of tools for quantitative research in scientific
metrology. It is written in R, an open-source environment and ecosystem. The existence of
a large number of effective statistical algorithms, access to high-quality numerical routines,
and integrated data visualization tools may be the strongest qualities of R languages in
scientific computing over other languages [23].

Biblioshiny was developed by Massimo Aria in a secondary development of the
Bibliometrix-based Shiny package in the R language, encapsulating Bibliometrix’s core
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code and creating a web-based online data analysis framework. Users can carry out relevant
scientific measurement and visual analysis work on the interactive web interface, which
reduces the user’s threshold of use and the intensity of information input, to a certain
extent [24].

Developed by Nis Jan van Eck and Ludo Waltman, VOSviewer is also widely used
in bibliometric analysis due to its more aesthetically pleasing visualization processing, in
particular, keyword co-occurrence analysis [25,26]. The specific Bibliometrix and science-
mapping workflow is shown in Figure 1.

 

Figure 1. Bibliometrix and the recommended science-mapping workflow.

3. Results Analysis

3.1. Distribution of Annual Documents

The analysis of the distribution of literation volume from the time series can reflect the
trend of study [24]. Figure 2 shows that, from 2000 to 2020, the number of research studies
published in the field of land consolidation fluctuated slightly, but is on an upward trend
overall. Combined with the macro-policy changes in land consolidation, it was divided
into three research stages: 2000–2007, 2008–2012, 2013–2020. The 2000–2007 period was the
germination period of land consolidation research. The annual publication volume was very
small with few differences. The 2008–2012 period was the long term. Although the growth
rate of literature publication was not obvious, but compared with the previous stage, the
annual publication volume was more stable, indicating that the function of land consolidation
attracted the attention of scholars. The 2013–2020 period was the high-yield period with an
obvious growth rate. The number of publications reached a peak of 92 in 2020. Combined
with China’s comprehensive land consolidation policy formulated in 2013, it shows that the
research on land consolidation in recent years is of important practical significance.

Figure 2. Number of land consolidation research documents published from 2000 to 2020.
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3.2. Analysis of Cited Papers in Land Consolidation Research
3.2.1. Annual Development Trend of Citations

As can be seen from the average citation distribution of papers per year (Figure 3),
the citations were low in 2000–2004. Especially in 2004, the citation was lowest, showing
that the research period was in its infancy. The cited frequency was at an average of 3.0 in
2006–2012 and 2014–2016. It reached its highest level in 2014 at 5.18. At the same time, the
fluctuation was greater than the annual change in paper yield. In 2018–2020, the average
citation of papers on land consolidation was in a declining stage, while the volume of
published papers was on a steady upward trend. This indicates that, despite the various
research directions on land consolidation, the influence of papers was decreasing.

Figure 3. The number of annual cited papers.

The highest yield of cited papers was in 2014 at 5.20. From 2012 to 2014, the average
citation of highly cited papers increased explosively. Most scholars in this period mainly
analyzed the effects of land consolidation based on multi-type land policies. For exam-
ple, Li analyzed the negative impacts of land consolidation on China’s coastal ecosystem
and its services, and called on China to strengthen the construction of laws and regu-
lations, improve marine spatial planning, and fully assess the negative impacts of land
consolidation [27].

3.2.2. Historical Cited Papers of Land Consolidation Research

Using the historical citation visual analysis in the Bibliometrix installation package
in R Studio, 20 nodes were selected, and the pioneering works and some classic stud-
ies in this field were found. CiteScore is the youngest indicator, which was released in
December 2016 [28]. In this paper, LCS and GCS indicators were used to analyze the
research methods and contents of classical literature. LCS refers to the reference score in
the downloaded paper dataset, and GSC refers to the reference score in the Web of Science
core collection database.

As can be seen from Figure 4, the earliest node in the literature on land consolidation
was an article published in Ground Water in 2001 entitled “Analytical Studies on The Impact
of Land Reclamation on The Water Flow”. On the basis of the negative impacts that land
reclamation will have on the ecosystem and its services, this paper analyzed the influence
of land reclamation on groundwater flow. The results showed that the larger the scale of
land reclamation, the more significant the increase in the horizontal line of the coast [29].
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Figure 4. Historical direct citation network of top-cited papers in the field of land consolidation
during 2000–2020.

Several classic articles emerged between 2005 and 2007 (Figure 4 clearly cites the
relationship). Terry’s article in 2007 in Geoforum entitled “Complications for Traditional Land
Consolidation in Central Europe” had four distinct chains of citations, and its citation fre-
quency of 39 was also the highest of the LCS. This article described the complexity of
implementing traditional land consolidation in Central Europe from factors such as unfa-
vorable macro conditions, absentee landowners, land ties, and unfinished privatization [30].
Terry first published a paper on land consolidation in 2002 in European Planning Research,
entitled “Export of Planning Knowledge Needs Comparative Analysis: The Case of Applying
Western Land Consolidation Experience in Central”. Its innovation lies in putting forward
cross-border knowledge transfer research comparative analysis by demonstrating land
consolidation as a case [31].

Wu’s article in China Economic Review in 2005 entitled “Land Consolidation and Pro-
ductivity in Chinese Household Crop Production” also presented three significant chains of
citation relationships. As shown in Table 1, both LCS and GCS ranked second, which were
17 and 81 respectively. This indicates that the literature is not only a classic document in
the field of land consolidation, but also favored by scholars in many fields with a strong
cross-cutting with other disciplines. Based on raw data from 227 Chinese households,
this paper evaluated the effectiveness of land consolidation projects in the agricultural
comprehensive development plan. The results showed that the land consolidation project
improved the land quality and contributed 1.52% to the crop yield [32]. The LCS and GCS
of Hoeksema’s article in Irrigation and Drainage in 2007 entitled “Three Stages in the History
of Land Reclamation in the Netherlands” are at a high level. This paper briefly introduced the
three stages of land reclamation in the history of the Netherlands and laid a foundation for
other scholars’ research [33].

Table 1. Top 10 local citation scores (LCS) in land consolidation research.

Documents DOI Year LCS GCS

TERRY VD, 2007, GEOFORUM 10.1016/j.geoforum.2006.11.010 2007 39 78
WU ZP, 2005, CHINA ECON REV 10.1016/j.chieco.2004.06.010 2005 17 81
CAY T, 2011, EXPERT SYST APPL 10.1016/j.eswa.2011.02.150 2011 16 30
YASLIOGLU E, 2009, EUR PLAN STUD 10.1080/09654310802553639 2009 14 20
SUZUKI T, 2003, MAR POLLUT BULL 10.1016/S0025-326X(02)00405-8 2003 12 48
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Table 1. Cont.

Documents DOI Year LCS GCS

ASLAN STA, 2007, SPAN J AGRIC RES 2007 11 21
ASIAMA KO, 2017, J RURAL STUD 10.1016/j.jrurstud.2017.09.007 2017 11 25
HOEKSEMA RJ, 2007, IRRIG DRAIN 10.1002/ird.340 2007 10 71
JIAO JJ, 2001, GROUND WATER 10.1111/j.1745-6584.2001.tb02479.x 2001 9 25
TOURINO J, 2003, INT J GEOGR INF SCI 10.1080/1365881031000072636 2003 9 26

Yang et al. [34] published an article in Bird Conservation International in 2011 entitled
“Impacts of Tidal Land Reclamation in Bohai Bay, China: Ongoing Losses of Critical Yellow
Sea Waterbird Staging and Wintering Sites”. As shown in Table 2, the GCS is as high as 90,
while the LCS is not ideal, which is 6, and only one lead chain appeared. Based on remote
sensing technology to collect data, this paper analyzed the influence of wetland reclamation
on water birds on the Bohai coast of China.

Table 2. Top 10 global citation scores (GCS) in land consolidation research.

Documents DOI Year LCS GCS

YANG HY, 2011, BIRD CONSERV INT 10.1017/S0959270911000086 2011 6 90
WU ZP, 2005, CHINA ECON REV 10.1016/j.chieco.2004.06.010 2005 17 81
TERRY VD, 2007, GEOFORUM 10.1016/j.geoforum.2006.11.010 2007 39 78
HOEKSEMA RJ, 2007, IRRIG DRAIN 10.1002/ird.340 2007 10 71
SIKOR T, 2009, WORLD DEV 10.1016/j.worlddev.2008.08.013 2009 6 63
LIU SL, 2013, ECOL ENG 10.1016/j.ecoleng.2012.12.001 2013 9 54
SUZUKI T, 2003, MAR POLLUT BULL 10.1016/S0025-326X(02)00405-8 2003 12 48
ADRIANSEN HK, 2009, GEOFORUM 10.1016/j.geoforum.2009.05.006 2009 5 37
MUCHOVA Z, 2016, ECOL ENG 10.1016/j.ecoleng.2016.01.018 2016 8 31
CAY T, 2011, EXPERT SYST APPL 10.1016/j.eswa.2011.02.150 2011 16 30

3.3. Analysis of Main Researchers

A total of 1585 authors were involved in the paper data set on land consolidation,
of whom Liu, Zhou, and Jin were the top three authors, with 12, 12, and 11 publications,
respectively (Table 3). In this field, the largest number of publications was from China’s
Liu, with a h-index of 7, g-index of 12, and total number of citations of 349. It indicates
the high quality and great influence of Liu’s papers. As can be seen from Figure 5, Liu’s
most frequently cited paper appeared in 2019 (the darkest color of the graph), which was
cited 28 times. Liu’s article entitled “Land consolidation boosting poverty alleviation in China:
Theory and practice”, published in Land Use Policy in 2019, analyzed the mechanisms and
dynamics of land consolidation to alleviate poverty in China. The results showed that land
consolidation plays an active role in increasing the cultivated land area, promoting the
agricultural production scale, improving the conditions of rural production, and reducing
ecological risks [35].

Zhou’s most frequently cited paper also appeared in 2019. His article entitled “Land
consolidation boosting poverty alleviation in China: Theory and practice” revealed the link
between land consolidation and poverty alleviation [35]. The total number of citations of
Li from China was the highest (Table 3), which was 455, and his most frequently cited year
was 2014.

Hirsch believes that the h-index is not only an acceptable tool for measuring the
importance, significance, and broad impact of authors’ cumulative research contributions,
but also for assessing current paper volumes and predicting authors’ future performance,
as this indicator combines productivity and impact [36,37]. However, comparison of the
h-index alone may be misleading due to the loss of citation information [38]. To compare
the influence of authors in this field at different times, the m-index can be introduced. To
be specific, m = h/n, where n indicates the age of the author’s publication in the field [28].
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Len’s m-index was the highest, which was 1.167. Len has been publishing papers in
the field of land consolidation since 2016, while the most frequently cited year was 2018.
For example, Len’s article in Computers and Electronics in Agriculture in 2018 entitled “An
algorithm for selecting groups of factors for prioritization of land consolidation in rural areas” pre-
sented a general algorithm for factor group selection. Based on similar areas of two regions,
but varied significantly in spatial structure in Poland, this paper proved that the algorithm
could prioritize land consolidation activities in these areas [39].

Table 3. Top 10 influential authors in the field of land consolidation.

Author h-Index g-Index m-Index TC NP PY-Start

LIU Y 7 12 0.7 349 12 2012
ZHOU Y 7 12 1 197 12 2015

JIN X 7 11 1 161 11 2015
LI Y 7 10 0.875 455 10 2014

LEN P 7 9 1.167 114 9 2016
ARULRAJAH A 6 7 0.333 170 7 2004

BO MW 6 7 0.333 170 7 2004
DEMETRIOU D 6 6 0.6 180 6 2012

ZHANG Y 5 10 0.833 104 11 2016
CAY T 5 8 0.417 196 8 2010

 
Figure 5. Authors’ production over time in the field of land consolidation.

3.4. Analysis of Distribution Characteristics of Major Research Countries/Regions

The distribution characteristics of major research countries/regions reflect each coun-
try’s influence in the field of land consolidation and provide conditions for further ex-
ploitation on the reasons for different degrees of influence. The dataset used in this
article was published in 68 countries or regions. The top 25 published papers were dis-
tributed as follows: nine Asian countries (China, Turkey, Korea, Japan, India, Singapore,
Iran, Malaysia, and Thailand), three American countries (the United States, Canada, and
Brazil), two Oceania countries (Poland and Australia), and eleven European countries
(Netherlands, United Kingdom, Spain, Czech Republic, Italy, Russia, Germany, France,
Serbia, Slovakia, and Romania).

As can be seen from Figure 6, papers on land consolidation were published mainly in
Asia and Europe. Specifically, China is the only developing country in the top three, with
several times the number of studies of that of other countries, accounting for about 50% of
the total production. The reasons for such high production may be China’s far-reaching
history in land consolidation and the evolution of related policies (Figure 7). In 2003, the
Chinese “National Land Development and Consolidation Plan” specifically elaborated the

645



Int. J. Environ. Res. Public Health 2022, 19, 3218

objectives, principles, key areas, etc. of land consolidation, providing a guiding role for
the nationwide implementation of land consolidation. Before 2008, the prevailing idea of
“emphasized quantity over quality” in land consolidation increased the cultivated land
area in China [40]. However, grain production at this stage still remains stagnant. In 2011,
the Ministry of Natural Resources issued the “High-standard Basic Farmland Construction
Specification”, aiming at improving the quality and productivity of arable land. It meant
that the quality of arable land was as important as quantity. In March 2012, the Chinese
“National Land Consolidation Plan (2011–2015)” was implemented [41]. It meant the
beginning of comprehensive land consolidation in China, which included agricultural
land, construction land, and unused land, and more attention was paid to the protection
of the ecological environment. However, the average citation for each paper was 13.44.
It was lower than that of the United States of 17.90, while its paper volume ranked the
third in the world. This indicates that the influence of literature on land consolidation in
China needs to be improved. Thailand leads the list, with an average of 57.75 citations
per article. Niroula and Thapa [42], for example, analyzed the structural problems of land
consolidation that did not address fragmentation, and concluded with an overview of
a wide range of sustainable land consolidation policies and legal measures.

Figure 6. Scientific production distribution in the field of land consolidation.

Figure 7. The history of land consolidation in China. Source: Land consolidation and rural revitalization
in China: Mechanisms and paths [43].
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Based on the downloaded studies from the Web of Science database, we used VOSviewer
software to screen out the cooperation between 18 countries (Figure 8). Country was set as
the analysis unit, full counting was set as the counting method, and the minimum number
of documents in each country was set to 7. The size of the circle in the figure indicates the
number of papers published by each country. The finer the line between the two labels, the
weaker the cooperation intensity between countries, and vice versa.

Figure 8. Country collaboration map in the field of land consolidation.

As can be seen from Figure 8, China is at the center of international cooperation,
followed by the United States, Australia, and Canada, with 31, 11, and 6 respectively. In
total, 244 Chinese documents were sourced from state cooperation, accounting for about
22% of all published papers in China (Figure 9). China’s main cooperative countries were
Australia and Germany, accounting for 73% and 66%, respectively. Among them, Australia
and China, Singapore, and Canada constituted a cooperative, with frequencies of 11, 6,
and 6, respectively. Germany published a total of nine documents in the field of land
consolidation, mainly in cooperation with China and the Netherlands, with frequencies
of three and two, respectively. In particular, the 29 papers published in Turkey were
all independent research. The above indicates that international cooperation should be
strengthened in the field of land consolidation.

 

Figure 9. Corresponding authors’ nationalities in the 20 most prolific countries in the field of
land consolidation.
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3.5. Analysis of Keywords
3.5.1. Analysis of High-Frequency Keywords

Keywords are the high generalization of a research topic and content. Analysis of
high-frequency keywords reflects the hotspots in the field of land consolidation in a straight-
forward way. The Bibliometrix and Biblioshiny installation packages in the R tool were
adopted to count the author keywords and draw a Word TreeMap of the top 20 keywords
in this area. Figure 10 shows that land consolidation, land reclamation, and reclamation
accounted for over half of the total keywords, with proportions of 27%, 19%, and 9%
respectively. The keyword “China” in the bright red box of Figure 10 accounted for 8% of
the keywords, indicating that China was one of the main study areas of land consolidation
studies. It corresponded to the total paper number and the state of international cooperation
in China analyzed above. Remote sensing and GIS accounted for 2% of the keywords. This
indicates that they are two major study tools in this area. For example, Karan et al. [44] used
remote sensing and GIS to monitor the land degradation and reclamation of coal mines
through the pioneering combination of ratio vegetation index (RVI), enhanced vegetation
index (EVI), normalized vegetation index (NDVI), and normalized moisture index (NDMI).

 
Figure 10. Word treemap of high-frequency keywords in the field of land consolidation.

Land fragmentation and fragmentation were the major problems to be solved by
land consolidation, accounting for 4% and 2% respectively. Land fragmentation limits
agricultural production and development in many countries, so it is urgent to address the
problem of land fragmentation [45]. For example, Liu et al. [46] took Jiangsu Province
of China as an example to analyze the distribution characteristics, influencing factors,
and classification of arable land, and finally suggested that land fragmentation should be
incorporated into the land consolidation plan so as to achieve high-quality and sustainable
cultivated land development.

Finally, the proportions of land, land use, land reallocation, rural development, and
sustainable development were lower, accounting for 1−2%. Even so, they have become
an integral part of land consolidation policy, as there is a strong correlation between rural
development and sustainable development and the issue of land fragmentation.

3.5.2. Cluster Analysis and Multiple Correspondence Analysis of High-Frequency Keywords

Clustering analysis in literature metrology, based on the frequency of two or two key
words appearing at the same time, uses statistical methods to simplify the complex keyword
mesh relationship into a few relatively small groups of classes [47]. It is designed to detect
the natural division of network groupings (clusters) based on similarity and to minimize
similarity between clusters [48]. This study used hierarchical clustering to treat each
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clustered keyword as a category, then merged it among the clusters with the highest degree
of similarity, and finally grouped all of the individuals into one category and demonstrated
the similarity of the key words in the field of land consolidation research in the form of
treemaps (Figure 11).

Figure 11. Tree dendrogram of hierarchical cluster analysis of keywords in the field of land consolidation.

Correspondence analysis first appeared in the 1960s, and has had a long and varied
history [49,50]. It represents an exploratory approach of graphically representing the
associations between variables in large, classified data sets to explore their relationships [51].
The corresponding analysis is designed to reveal the correspondence between different
variables or categories of the same variable in qualitative data by lowering the dimension.
Figures 11 and 12 show the clustering results of multiple corresponding analyses in the
field of land consolidation. It can be classified into four categories.
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Figure 12. Multiple correspondence analysis of high-frequency keywords in the field of
land consolidation.

(1) The first category of cluster analysis: this category is mainly related to crop produc-
tivity, technical efficiency, arable land patterns, and landscape types. For example,
Zeng et al. [52] used random cutting-edge analytical methods to calculate the effi-
ciency of agricultural techniques for land consolidation. The results showed that
the overall agricultural technology efficiency of producers was greatly improved
after land consolidation, with an average technical efficiency of 0.924. Using the
revised ecological connectivity index, the study of Wang et al. [53] in Da’an City, Jilin
Province of China during 2008–2014 verified the negative impacts of land consolida-
tion on ecosystem services, reflecting the problems in the implementation of the land
consolidation project.

(2) The second category of cluster analysis: this category is mainly related to the im-
pacts of land consolidation policies, reform, and land fragmentation. The review and
prospects of land consolidation development, as well as the study of the influencing
factors of land fragmentation, help the government to formulate relevant land consoli-
dation policies. Based on the regional data of Jiangsu Province, Liu et al. [46] explored
the characteristics, influencing factors, and classification of the spatial distribution
of cultivated land, which is of great significance to the improvement of agricultural
production capacity on the regional scale. At the same time, the fragmentation degree
of cultivated land in the construction area is higher than that outside the construction
area. The awareness of this situation helps the government to formulate relevant land
consolidation policies.

(3) The third category of cluster analysis: based on population growth, this category
mainly studies the impacts of land consolidation on ecosystem services through
land-use change under the background of accelerated urbanization. It is represented
by studies in China. For instance, using GIS-RS technology, Hao et al. [54] selected
typical farmlands to analyze the change in the cropland ecosystem service value with
land-use change in northeast China.

(4) The fourth category of cluster analysis: this category is mainly related to the benefit
evaluation of land consolidation and the adoption of models. The benefit evaluation
of land consolidation includes three aspects: economic benefit, social benefit, and
ecological benefit. Based on land-use patch data, Shi et al. [55] combined landscape
pattern analysis with production, life, and benefit evaluation to overcome the short-
comings of previous single-benefit evaluation and conduct comprehensive research
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on land consolidation projects. The results showed that land consolidation directly
or indirectly improved the landscape ecological pattern of the project area, and land
consolidation obviously improved the balanced distribution of cultivated land and
the centralized distribution of construction land in the project area.

3.6. Evolution Analysis of Themes in the Field of Land Consolidation

According to Weismayer and Pezenka [56], it is important to study research develop-
ment in a field in terms of themes and thematic evolution. Sankey diagrams, or Sankey
energy shunts, are also known as Sankey energy shunts. Sankey diagrams describe the
flow of different nodes in a network, and they are most typically used to analyze the flow
of energy or matter. Arrows or direction lines are used to represent these flows, and the
thickness of the arrows or direction lines is proportional to the flow size. These diagrams
are commonly used in industrial ecology to describe product life cycle assessments and for
rapidly visualizing energy efficiency in engineering [57]. Sankey diagrams emphasize the
size and direction of traffic within the system, which, due to their wide practicality, have
been applied to many geographic or human environmental research environments. Based
on the Sankey diagram’s visual presentation of the changes in the subject matter of the land
consolidation research field over time, this study can see the diversion of different topics
in the field of land consolidation, and clarify the quantitative information, such as subject
flow and conversion relationship [58].

Referring to Zhou et al. [43], this paper divides the subject diversion of land consol-
idation development process into three stages, with 2007 and 2012 as breakpoints. Over
the past 20 years, the research topics in the field of land consolidation have shown several
evolutionary paths in three directions (Figure 13).

 

Figure 13. Thematic evolution of the land consolidation research field (2000–2020).

(1) Studies on land fragmentation related to land consolidation. Fragmentation→
management→conservation, fragmentation. Fragmentation→impact→fragmentation,
China, water. While enriching the structure and dispersing the risk of agricultural
cultivation, and increasing farmers’ income, the fine fragmentation of cultivated
land has also caused the waste of land resources and the increase of the agricultural
production cost to a certain extent, thus reducing agricultural production efficiency
and hindering the development of agricultural mechanization. Land consolidation
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is an effective way to reduce cultivated land fragmentation. For example, Ela [59]
took Turkey as an example, and analyzed the impacts of land consolidation projects
on agricultural land fragmentation. The proportions of agricultural enterprises with
an index value of less than 0.40 were 1.17% and 3.7%, respectively, before land
consolidation, and decreased to 0.6% and 2.3%, respectively, after land consolidation.
The resulting values indicate a decrease in the degree of plot fragmentation in the
area. Moreover, land consolidation projects have brought great economic benefits to
the owners of agricultural enterprises in the region.

(2) Research on the development process of land consolidation. Management→
management→conservation. Management→management→fragmentation. As
time passed, the number of publications decreased significantly after 2012 with
evolved themes. The development stages and priorities of land consolidation differed
between countries. The study of the development process is conducive to the formu-
lation of relevant policies. The focus of land consolidation in Germany has changed
from adjusting farmland ecology and improving agricultural supporting facilities to
the current stage of focusing on the transformation of rural infrastructure construction
and regional planning, and the protection of natural landscapes; in addition, spe-
cial attention is paid to public participation in land consolidation projects [60]. The
focus of the current land consolidation work in the Netherlands is to enhance the
comprehensive role of the land and strengthen the protection and improvement of the
ecological environment in the process of renovation [61]. Land consolidation in Japan
was initially aimed at the treatment of farmland salinization and the reclamation of
land from the sea, but later developed into an overall plan of the region. Since the
1980s, land consolidation has been an important means to realize the symbiosis of
residential space and agricultural land. The preparation of a comprehensive village
development plan that maintains agricultural characteristics has fully demonstrated
the important position and huge role of land consolidation in rural development [62].
Portugal believes that comprehensive land consolidation projects are geographically
defined as rural land development activities [43].

(3) Research on the impacts of land consolidation on soil. Soil→soil→fragmentation,
growth. Forest→impact→fragmentation, China, water. Microbial biomass→
dynamics, growth. Decomposition→China, dynamics, water. Organic matter→
growth. Soil is an important resource basis for agricultural production, as well as
an important object of land consolidation. The direction of the thematic evolution is
mainly between the effects of land consolidation behavior on soil physical structure,
nutrient cycling, and microbial functions. This research is of great significance for
avoiding the negative effects of land consolidation and improving the benefits of
land consolidation. For example, He et al. [63] characterized the soil microbial com-
munities under five land-use patterns, and used DNA fingerprinting and metabolic
analysis as the characteristics, revealing that land reclamation has severely affected
the population size, composition, and structure of soil microbial communities, as well
as bacteria. In addition, Hou et al. [64] investigated soil samples of cinder-reclaimed
land after reclamation periods of 1, 6, and 15 years, compared the characteristics of
various soil microbial communities in the reclamation area, and compared areas not
affected by coal mining. Soil sample analysis revealed that the application of micro-
bial remediation technology can be used to adjust the structure of the soil microbial
community, improve soil quality, and shorten the soil recovery cycle.

4. Conclusions and Discussion

Based on the Web of Science database to retrieve studies in the field of land consolida-
tion during 2000–2020 and adopting the Bibliometrix and Biblioshiny software packages
for data mining and analysis, the conclusions of this study are as follows.

(1) In view of year distribution and the number of publications, the development of land
consolidation studies can be divided into three stages: 2000–2007 is the germination
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period, 2008–2012 is the growth period, and 2013–2020 is the high-yield period. The
number of publications reached its peak in 2020, indicating that more and more
attention was paid to this field.

(2) In terms of the distribution of research countries, the published papers were mainly
from Asia and Europe. Among them, China had the largest number of publications,
while Thailand had the greatest influence. The analysis of cooperation between coun-
tries showed that most studies were independent research, which was not conducive
to the globalization of scientific research forces in land consolidation.

(3) The high-frequency keywords in land consolidation mainly included land consolida-
tion, land reclamation, China, remote sensing, and land fragmentation. The future
research directions included land consolidation, its impacts on ecosystem services,
benefit evaluation of land consolidation, research combining land fragmentation, etc.

(4) The research on land consolidation presents three evolutionary paths, namely the
study of land fragmentation related to land consolidation, the study of the developing
process of land consolidation, and the study of the impacts of land consolidation
on soil.

Based on existing literature, future studies on land consolidation can be carried out
from the following aspects.

(1) Exploring new methods for benefit evaluation of land consolidation. At present, the
evaluation method of land consolidation benefits is relatively single, and the standard
for index selection is not uniform. The determination of index weight values is mostly
qualitative. Future research should explore new benefit evaluation methods for land
consolidation, improve the evaluation index system, and strengthen quantitative
research on the benefit evaluation of land consolidation [65].

(2) The scale effect of the impacts of land consolidation on ecosystem services. Under the
influence of land consolidation, the spatial heterogeneity and temporal dynamics of
ecosystem services will change in time and space [66]. In view of the characteristics of
land consolidation implementation and research, the coupling mechanism analysis of
ecosystem services at different temporal–spatial scales and the construction of a multi-
scale coupling model to achieve the integration of multi-scale land consolidation
management and regulation is of important scientific significance and practical value.

(3) Research on the mechanism and comprehensive effects of land consolidation on soil.
Future research is expected to focus on exploring the morphological characteristics,
evolutionary process, and causative mechanism of the soil system under different
remediation modes, types of areas, and remediation years [67]; continue an in-depth
study of the impact of land consolidation on the overall soil environment; and establish
a quantitative model of the impact of land consolidation on the soil environment.

(4) Multidisciplinary integrated system research on land consolidation. Land consolida-
tion is a comprehensive system engineering involving natural resources, the economy,
society, ecological environment, technology, etc. [68]. Current studies on land consol-
idation are mostly based on independent studies. It is necessary to strengthen the
cooperation between experts and scholars in different fields and countries, which is
of great significance for condensing innovative ideas, sharing research resources, and
promoting the development of land consolidation.

(5) Research on land consolidation and rural revitalization. The Chinese Rural Revitaliza-
tion strategy aims to establish a sound urban–rural integration development system,
mechanism, and policy system, and accelerate the modernization of agriculture and
rural areas. Based on this perspective, land consolidation should activate key de-
velopment factors, such as the rural population, land, and industry, and coordinate
the revitalization of material space and the promotion of a spiritual core. Under the
unified spatial planning system, coordinate land consolidation planning and rural
revitalization planning, and vigorously develop a new model that combines land
consolidation and multi-functional agriculture [8].

653



Int. J. Environ. Res. Public Health 2022, 19, 3218

(6) Strengthen theoretical research on land consolidation. Land consolidation has been
practiced in many countries for many years, and there is an urgent need for theoretical
improvement and systematic summary. It is necessary to make full use of the theo-
retical fruits of related disciplines to carry out solid internal theoretical research and
promptly introduce innovative methods and research concepts from other disciplines
so as to realize the continuous development of land consolidation [69].

(7) Promote 3S technology research and the application of land consolidation. Due to
the complex process and high technical requirements, on-site investigation of land
consolidation is difficult [70,71]. The time-consuming and laborious traditional survey
methods perform poorly in locating, surveying, and recording tasks [72]. Applying
3S technology in land consolidation will help to solve these problems, and refers
to RS, GIS, and GPS. Remote Sensing (RS) can be used to obtain various ground
feature elements. The Global Positioning System (GPS) can be used for the spatial
positioning of important features. The Geographic Information System (GIS) can be
used for comprehensive processing and integrated management of land consolidation
data [73]. As an efficient means of acquiring and managing spatial information, 3S
technology has a broad application prospect in the field of land consolidation.

(8) Improve the supervision mechanism of land consolidation. A scientific and reason-
able supervision and management mechanism is not only a guarantee for the smooth
completion of land consolidation projects, but also has irreplaceable practical signifi-
cance for promoting the harmonious development of localities [74]. It is essential to
speed up the improvement of land consolidation supervision and management mech-
anisms, and implement joint responsibilities for land consolidation. Combine legal,
administrative, technological, and other management methods to reasonably establish
a government-led, land-based, departmental-collaborative, and public-participation
working mechanism, effectively implement land consolidation objectives and respon-
sibilities, and guarantee the completion quality and implementation level of land
consolidation projects.
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